xref: /linux/kernel/events/core.c (revision ef5b28372c565128bdce7a59bc78402a8ce68e1b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	for_each_sibling_event(sibling, group_leader) {
1951 		if (__perf_event_read_size(sibling->attr.read_format,
1952 					   group_leader->nr_siblings + 1) > 16*1024)
1953 			return false;
1954 	}
1955 
1956 	return true;
1957 }
1958 
1959 static void perf_group_attach(struct perf_event *event)
1960 {
1961 	struct perf_event *group_leader = event->group_leader, *pos;
1962 
1963 	lockdep_assert_held(&event->ctx->lock);
1964 
1965 	/*
1966 	 * We can have double attach due to group movement (move_group) in
1967 	 * perf_event_open().
1968 	 */
1969 	if (event->attach_state & PERF_ATTACH_GROUP)
1970 		return;
1971 
1972 	event->attach_state |= PERF_ATTACH_GROUP;
1973 
1974 	if (group_leader == event)
1975 		return;
1976 
1977 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978 
1979 	group_leader->group_caps &= event->event_caps;
1980 
1981 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982 	group_leader->nr_siblings++;
1983 	group_leader->group_generation++;
1984 
1985 	perf_event__header_size(group_leader);
1986 
1987 	for_each_sibling_event(pos, group_leader)
1988 		perf_event__header_size(pos);
1989 }
1990 
1991 /*
1992  * Remove an event from the lists for its context.
1993  * Must be called with ctx->mutex and ctx->lock held.
1994  */
1995 static void
1996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1997 {
1998 	WARN_ON_ONCE(event->ctx != ctx);
1999 	lockdep_assert_held(&ctx->lock);
2000 
2001 	/*
2002 	 * We can have double detach due to exit/hot-unplug + close.
2003 	 */
2004 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2005 		return;
2006 
2007 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2008 
2009 	ctx->nr_events--;
2010 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2011 		ctx->nr_user--;
2012 	if (event->attr.inherit_stat)
2013 		ctx->nr_stat--;
2014 
2015 	list_del_rcu(&event->event_entry);
2016 
2017 	if (event->group_leader == event)
2018 		del_event_from_groups(event, ctx);
2019 
2020 	/*
2021 	 * If event was in error state, then keep it
2022 	 * that way, otherwise bogus counts will be
2023 	 * returned on read(). The only way to get out
2024 	 * of error state is by explicit re-enabling
2025 	 * of the event
2026 	 */
2027 	if (event->state > PERF_EVENT_STATE_OFF) {
2028 		perf_cgroup_event_disable(event, ctx);
2029 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2030 	}
2031 
2032 	ctx->generation++;
2033 	event->pmu_ctx->nr_events--;
2034 }
2035 
2036 static int
2037 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2038 {
2039 	if (!has_aux(aux_event))
2040 		return 0;
2041 
2042 	if (!event->pmu->aux_output_match)
2043 		return 0;
2044 
2045 	return event->pmu->aux_output_match(aux_event);
2046 }
2047 
2048 static void put_event(struct perf_event *event);
2049 static void event_sched_out(struct perf_event *event,
2050 			    struct perf_event_context *ctx);
2051 
2052 static void perf_put_aux_event(struct perf_event *event)
2053 {
2054 	struct perf_event_context *ctx = event->ctx;
2055 	struct perf_event *iter;
2056 
2057 	/*
2058 	 * If event uses aux_event tear down the link
2059 	 */
2060 	if (event->aux_event) {
2061 		iter = event->aux_event;
2062 		event->aux_event = NULL;
2063 		put_event(iter);
2064 		return;
2065 	}
2066 
2067 	/*
2068 	 * If the event is an aux_event, tear down all links to
2069 	 * it from other events.
2070 	 */
2071 	for_each_sibling_event(iter, event->group_leader) {
2072 		if (iter->aux_event != event)
2073 			continue;
2074 
2075 		iter->aux_event = NULL;
2076 		put_event(event);
2077 
2078 		/*
2079 		 * If it's ACTIVE, schedule it out and put it into ERROR
2080 		 * state so that we don't try to schedule it again. Note
2081 		 * that perf_event_enable() will clear the ERROR status.
2082 		 */
2083 		event_sched_out(iter, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2085 	}
2086 }
2087 
2088 static bool perf_need_aux_event(struct perf_event *event)
2089 {
2090 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2091 }
2092 
2093 static int perf_get_aux_event(struct perf_event *event,
2094 			      struct perf_event *group_leader)
2095 {
2096 	/*
2097 	 * Our group leader must be an aux event if we want to be
2098 	 * an aux_output. This way, the aux event will precede its
2099 	 * aux_output events in the group, and therefore will always
2100 	 * schedule first.
2101 	 */
2102 	if (!group_leader)
2103 		return 0;
2104 
2105 	/*
2106 	 * aux_output and aux_sample_size are mutually exclusive.
2107 	 */
2108 	if (event->attr.aux_output && event->attr.aux_sample_size)
2109 		return 0;
2110 
2111 	if (event->attr.aux_output &&
2112 	    !perf_aux_output_match(event, group_leader))
2113 		return 0;
2114 
2115 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2116 		return 0;
2117 
2118 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2119 		return 0;
2120 
2121 	/*
2122 	 * Link aux_outputs to their aux event; this is undone in
2123 	 * perf_group_detach() by perf_put_aux_event(). When the
2124 	 * group in torn down, the aux_output events loose their
2125 	 * link to the aux_event and can't schedule any more.
2126 	 */
2127 	event->aux_event = group_leader;
2128 
2129 	return 1;
2130 }
2131 
2132 static inline struct list_head *get_event_list(struct perf_event *event)
2133 {
2134 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2135 				    &event->pmu_ctx->flexible_active;
2136 }
2137 
2138 /*
2139  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2140  * cannot exist on their own, schedule them out and move them into the ERROR
2141  * state. Also see _perf_event_enable(), it will not be able to recover
2142  * this ERROR state.
2143  */
2144 static inline void perf_remove_sibling_event(struct perf_event *event)
2145 {
2146 	event_sched_out(event, event->ctx);
2147 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2148 }
2149 
2150 static void perf_group_detach(struct perf_event *event)
2151 {
2152 	struct perf_event *leader = event->group_leader;
2153 	struct perf_event *sibling, *tmp;
2154 	struct perf_event_context *ctx = event->ctx;
2155 
2156 	lockdep_assert_held(&ctx->lock);
2157 
2158 	/*
2159 	 * We can have double detach due to exit/hot-unplug + close.
2160 	 */
2161 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2162 		return;
2163 
2164 	event->attach_state &= ~PERF_ATTACH_GROUP;
2165 
2166 	perf_put_aux_event(event);
2167 
2168 	/*
2169 	 * If this is a sibling, remove it from its group.
2170 	 */
2171 	if (leader != event) {
2172 		list_del_init(&event->sibling_list);
2173 		event->group_leader->nr_siblings--;
2174 		event->group_leader->group_generation++;
2175 		goto out;
2176 	}
2177 
2178 	/*
2179 	 * If this was a group event with sibling events then
2180 	 * upgrade the siblings to singleton events by adding them
2181 	 * to whatever list we are on.
2182 	 */
2183 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184 
2185 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186 			perf_remove_sibling_event(sibling);
2187 
2188 		sibling->group_leader = sibling;
2189 		list_del_init(&sibling->sibling_list);
2190 
2191 		/* Inherit group flags from the previous leader */
2192 		sibling->group_caps = event->group_caps;
2193 
2194 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2195 			add_event_to_groups(sibling, event->ctx);
2196 
2197 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2199 		}
2200 
2201 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2202 	}
2203 
2204 out:
2205 	for_each_sibling_event(tmp, leader)
2206 		perf_event__header_size(tmp);
2207 
2208 	perf_event__header_size(leader);
2209 }
2210 
2211 static void sync_child_event(struct perf_event *child_event);
2212 
2213 static void perf_child_detach(struct perf_event *event)
2214 {
2215 	struct perf_event *parent_event = event->parent;
2216 
2217 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2218 		return;
2219 
2220 	event->attach_state &= ~PERF_ATTACH_CHILD;
2221 
2222 	if (WARN_ON_ONCE(!parent_event))
2223 		return;
2224 
2225 	lockdep_assert_held(&parent_event->child_mutex);
2226 
2227 	sync_child_event(event);
2228 	list_del_init(&event->child_list);
2229 }
2230 
2231 static bool is_orphaned_event(struct perf_event *event)
2232 {
2233 	return event->state == PERF_EVENT_STATE_DEAD;
2234 }
2235 
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240 	       perf_cgroup_match(event);
2241 }
2242 
2243 static void
2244 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2245 {
2246 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2247 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2248 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249 
2250 	// XXX cpc serialization, probably per-cpu IRQ disabled
2251 
2252 	WARN_ON_ONCE(event->ctx != ctx);
2253 	lockdep_assert_held(&ctx->lock);
2254 
2255 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2256 		return;
2257 
2258 	/*
2259 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2260 	 * we can schedule events _OUT_ individually through things like
2261 	 * __perf_remove_from_context().
2262 	 */
2263 	list_del_init(&event->active_list);
2264 
2265 	perf_pmu_disable(event->pmu);
2266 
2267 	event->pmu->del(event, 0);
2268 	event->oncpu = -1;
2269 
2270 	if (event->pending_disable) {
2271 		event->pending_disable = 0;
2272 		perf_cgroup_event_disable(event, ctx);
2273 		state = PERF_EVENT_STATE_OFF;
2274 	}
2275 
2276 	if (event->pending_sigtrap) {
2277 		bool dec = true;
2278 
2279 		event->pending_sigtrap = 0;
2280 		if (state != PERF_EVENT_STATE_OFF &&
2281 		    !event->pending_work) {
2282 			event->pending_work = 1;
2283 			dec = false;
2284 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2285 			task_work_add(current, &event->pending_task, TWA_RESUME);
2286 		}
2287 		if (dec)
2288 			local_dec(&event->ctx->nr_pending);
2289 	}
2290 
2291 	perf_event_set_state(event, state);
2292 
2293 	if (!is_software_event(event))
2294 		cpc->active_oncpu--;
2295 	if (event->attr.freq && event->attr.sample_freq)
2296 		ctx->nr_freq--;
2297 	if (event->attr.exclusive || !cpc->active_oncpu)
2298 		cpc->exclusive = 0;
2299 
2300 	perf_pmu_enable(event->pmu);
2301 }
2302 
2303 static void
2304 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2305 {
2306 	struct perf_event *event;
2307 
2308 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2309 		return;
2310 
2311 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2312 
2313 	event_sched_out(group_event, ctx);
2314 
2315 	/*
2316 	 * Schedule out siblings (if any):
2317 	 */
2318 	for_each_sibling_event(event, group_event)
2319 		event_sched_out(event, ctx);
2320 }
2321 
2322 #define DETACH_GROUP	0x01UL
2323 #define DETACH_CHILD	0x02UL
2324 #define DETACH_DEAD	0x04UL
2325 
2326 /*
2327  * Cross CPU call to remove a performance event
2328  *
2329  * We disable the event on the hardware level first. After that we
2330  * remove it from the context list.
2331  */
2332 static void
2333 __perf_remove_from_context(struct perf_event *event,
2334 			   struct perf_cpu_context *cpuctx,
2335 			   struct perf_event_context *ctx,
2336 			   void *info)
2337 {
2338 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2339 	unsigned long flags = (unsigned long)info;
2340 
2341 	if (ctx->is_active & EVENT_TIME) {
2342 		update_context_time(ctx);
2343 		update_cgrp_time_from_cpuctx(cpuctx, false);
2344 	}
2345 
2346 	/*
2347 	 * Ensure event_sched_out() switches to OFF, at the very least
2348 	 * this avoids raising perf_pending_task() at this time.
2349 	 */
2350 	if (flags & DETACH_DEAD)
2351 		event->pending_disable = 1;
2352 	event_sched_out(event, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 	if (flags & DETACH_DEAD)
2359 		event->state = PERF_EVENT_STATE_DEAD;
2360 
2361 	if (!pmu_ctx->nr_events) {
2362 		pmu_ctx->rotate_necessary = 0;
2363 
2364 		if (ctx->task && ctx->is_active) {
2365 			struct perf_cpu_pmu_context *cpc;
2366 
2367 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2368 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2369 			cpc->task_epc = NULL;
2370 		}
2371 	}
2372 
2373 	if (!ctx->nr_events && ctx->is_active) {
2374 		if (ctx == &cpuctx->ctx)
2375 			update_cgrp_time_from_cpuctx(cpuctx, true);
2376 
2377 		ctx->is_active = 0;
2378 		if (ctx->task) {
2379 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2380 			cpuctx->task_ctx = NULL;
2381 		}
2382 	}
2383 }
2384 
2385 /*
2386  * Remove the event from a task's (or a CPU's) list of events.
2387  *
2388  * If event->ctx is a cloned context, callers must make sure that
2389  * every task struct that event->ctx->task could possibly point to
2390  * remains valid.  This is OK when called from perf_release since
2391  * that only calls us on the top-level context, which can't be a clone.
2392  * When called from perf_event_exit_task, it's OK because the
2393  * context has been detached from its task.
2394  */
2395 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2396 {
2397 	struct perf_event_context *ctx = event->ctx;
2398 
2399 	lockdep_assert_held(&ctx->mutex);
2400 
2401 	/*
2402 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2403 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2404 	 * event_function_call() user.
2405 	 */
2406 	raw_spin_lock_irq(&ctx->lock);
2407 	if (!ctx->is_active) {
2408 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2409 					   ctx, (void *)flags);
2410 		raw_spin_unlock_irq(&ctx->lock);
2411 		return;
2412 	}
2413 	raw_spin_unlock_irq(&ctx->lock);
2414 
2415 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2416 }
2417 
2418 /*
2419  * Cross CPU call to disable a performance event
2420  */
2421 static void __perf_event_disable(struct perf_event *event,
2422 				 struct perf_cpu_context *cpuctx,
2423 				 struct perf_event_context *ctx,
2424 				 void *info)
2425 {
2426 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2427 		return;
2428 
2429 	if (ctx->is_active & EVENT_TIME) {
2430 		update_context_time(ctx);
2431 		update_cgrp_time_from_event(event);
2432 	}
2433 
2434 	perf_pmu_disable(event->pmu_ctx->pmu);
2435 
2436 	if (event == event->group_leader)
2437 		group_sched_out(event, ctx);
2438 	else
2439 		event_sched_out(event, ctx);
2440 
2441 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2442 	perf_cgroup_event_disable(event, ctx);
2443 
2444 	perf_pmu_enable(event->pmu_ctx->pmu);
2445 }
2446 
2447 /*
2448  * Disable an event.
2449  *
2450  * If event->ctx is a cloned context, callers must make sure that
2451  * every task struct that event->ctx->task could possibly point to
2452  * remains valid.  This condition is satisfied when called through
2453  * perf_event_for_each_child or perf_event_for_each because they
2454  * hold the top-level event's child_mutex, so any descendant that
2455  * goes to exit will block in perf_event_exit_event().
2456  *
2457  * When called from perf_pending_irq it's OK because event->ctx
2458  * is the current context on this CPU and preemption is disabled,
2459  * hence we can't get into perf_event_task_sched_out for this context.
2460  */
2461 static void _perf_event_disable(struct perf_event *event)
2462 {
2463 	struct perf_event_context *ctx = event->ctx;
2464 
2465 	raw_spin_lock_irq(&ctx->lock);
2466 	if (event->state <= PERF_EVENT_STATE_OFF) {
2467 		raw_spin_unlock_irq(&ctx->lock);
2468 		return;
2469 	}
2470 	raw_spin_unlock_irq(&ctx->lock);
2471 
2472 	event_function_call(event, __perf_event_disable, NULL);
2473 }
2474 
2475 void perf_event_disable_local(struct perf_event *event)
2476 {
2477 	event_function_local(event, __perf_event_disable, NULL);
2478 }
2479 
2480 /*
2481  * Strictly speaking kernel users cannot create groups and therefore this
2482  * interface does not need the perf_event_ctx_lock() magic.
2483  */
2484 void perf_event_disable(struct perf_event *event)
2485 {
2486 	struct perf_event_context *ctx;
2487 
2488 	ctx = perf_event_ctx_lock(event);
2489 	_perf_event_disable(event);
2490 	perf_event_ctx_unlock(event, ctx);
2491 }
2492 EXPORT_SYMBOL_GPL(perf_event_disable);
2493 
2494 void perf_event_disable_inatomic(struct perf_event *event)
2495 {
2496 	event->pending_disable = 1;
2497 	irq_work_queue(&event->pending_irq);
2498 }
2499 
2500 #define MAX_INTERRUPTS (~0ULL)
2501 
2502 static void perf_log_throttle(struct perf_event *event, int enable);
2503 static void perf_log_itrace_start(struct perf_event *event);
2504 
2505 static int
2506 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2507 {
2508 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2509 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2510 	int ret = 0;
2511 
2512 	WARN_ON_ONCE(event->ctx != ctx);
2513 
2514 	lockdep_assert_held(&ctx->lock);
2515 
2516 	if (event->state <= PERF_EVENT_STATE_OFF)
2517 		return 0;
2518 
2519 	WRITE_ONCE(event->oncpu, smp_processor_id());
2520 	/*
2521 	 * Order event::oncpu write to happen before the ACTIVE state is
2522 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2523 	 * ->oncpu if it sees ACTIVE.
2524 	 */
2525 	smp_wmb();
2526 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2527 
2528 	/*
2529 	 * Unthrottle events, since we scheduled we might have missed several
2530 	 * ticks already, also for a heavily scheduling task there is little
2531 	 * guarantee it'll get a tick in a timely manner.
2532 	 */
2533 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2534 		perf_log_throttle(event, 1);
2535 		event->hw.interrupts = 0;
2536 	}
2537 
2538 	perf_pmu_disable(event->pmu);
2539 
2540 	perf_log_itrace_start(event);
2541 
2542 	if (event->pmu->add(event, PERF_EF_START)) {
2543 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2544 		event->oncpu = -1;
2545 		ret = -EAGAIN;
2546 		goto out;
2547 	}
2548 
2549 	if (!is_software_event(event))
2550 		cpc->active_oncpu++;
2551 	if (event->attr.freq && event->attr.sample_freq)
2552 		ctx->nr_freq++;
2553 
2554 	if (event->attr.exclusive)
2555 		cpc->exclusive = 1;
2556 
2557 out:
2558 	perf_pmu_enable(event->pmu);
2559 
2560 	return ret;
2561 }
2562 
2563 static int
2564 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2565 {
2566 	struct perf_event *event, *partial_group = NULL;
2567 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2568 
2569 	if (group_event->state == PERF_EVENT_STATE_OFF)
2570 		return 0;
2571 
2572 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2573 
2574 	if (event_sched_in(group_event, ctx))
2575 		goto error;
2576 
2577 	/*
2578 	 * Schedule in siblings as one group (if any):
2579 	 */
2580 	for_each_sibling_event(event, group_event) {
2581 		if (event_sched_in(event, ctx)) {
2582 			partial_group = event;
2583 			goto group_error;
2584 		}
2585 	}
2586 
2587 	if (!pmu->commit_txn(pmu))
2588 		return 0;
2589 
2590 group_error:
2591 	/*
2592 	 * Groups can be scheduled in as one unit only, so undo any
2593 	 * partial group before returning:
2594 	 * The events up to the failed event are scheduled out normally.
2595 	 */
2596 	for_each_sibling_event(event, group_event) {
2597 		if (event == partial_group)
2598 			break;
2599 
2600 		event_sched_out(event, ctx);
2601 	}
2602 	event_sched_out(group_event, ctx);
2603 
2604 error:
2605 	pmu->cancel_txn(pmu);
2606 	return -EAGAIN;
2607 }
2608 
2609 /*
2610  * Work out whether we can put this event group on the CPU now.
2611  */
2612 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2613 {
2614 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2615 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2616 
2617 	/*
2618 	 * Groups consisting entirely of software events can always go on.
2619 	 */
2620 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2621 		return 1;
2622 	/*
2623 	 * If an exclusive group is already on, no other hardware
2624 	 * events can go on.
2625 	 */
2626 	if (cpc->exclusive)
2627 		return 0;
2628 	/*
2629 	 * If this group is exclusive and there are already
2630 	 * events on the CPU, it can't go on.
2631 	 */
2632 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2633 		return 0;
2634 	/*
2635 	 * Otherwise, try to add it if all previous groups were able
2636 	 * to go on.
2637 	 */
2638 	return can_add_hw;
2639 }
2640 
2641 static void add_event_to_ctx(struct perf_event *event,
2642 			       struct perf_event_context *ctx)
2643 {
2644 	list_add_event(event, ctx);
2645 	perf_group_attach(event);
2646 }
2647 
2648 static void task_ctx_sched_out(struct perf_event_context *ctx,
2649 				enum event_type_t event_type)
2650 {
2651 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2652 
2653 	if (!cpuctx->task_ctx)
2654 		return;
2655 
2656 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2657 		return;
2658 
2659 	ctx_sched_out(ctx, event_type);
2660 }
2661 
2662 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2663 				struct perf_event_context *ctx)
2664 {
2665 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2666 	if (ctx)
2667 		 ctx_sched_in(ctx, EVENT_PINNED);
2668 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2669 	if (ctx)
2670 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2671 }
2672 
2673 /*
2674  * We want to maintain the following priority of scheduling:
2675  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2676  *  - task pinned (EVENT_PINNED)
2677  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2678  *  - task flexible (EVENT_FLEXIBLE).
2679  *
2680  * In order to avoid unscheduling and scheduling back in everything every
2681  * time an event is added, only do it for the groups of equal priority and
2682  * below.
2683  *
2684  * This can be called after a batch operation on task events, in which case
2685  * event_type is a bit mask of the types of events involved. For CPU events,
2686  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2687  */
2688 /*
2689  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2690  * event to the context or enabling existing event in the context. We can
2691  * probably optimize it by rescheduling only affected pmu_ctx.
2692  */
2693 static void ctx_resched(struct perf_cpu_context *cpuctx,
2694 			struct perf_event_context *task_ctx,
2695 			enum event_type_t event_type)
2696 {
2697 	bool cpu_event = !!(event_type & EVENT_CPU);
2698 
2699 	/*
2700 	 * If pinned groups are involved, flexible groups also need to be
2701 	 * scheduled out.
2702 	 */
2703 	if (event_type & EVENT_PINNED)
2704 		event_type |= EVENT_FLEXIBLE;
2705 
2706 	event_type &= EVENT_ALL;
2707 
2708 	perf_ctx_disable(&cpuctx->ctx, false);
2709 	if (task_ctx) {
2710 		perf_ctx_disable(task_ctx, false);
2711 		task_ctx_sched_out(task_ctx, event_type);
2712 	}
2713 
2714 	/*
2715 	 * Decide which cpu ctx groups to schedule out based on the types
2716 	 * of events that caused rescheduling:
2717 	 *  - EVENT_CPU: schedule out corresponding groups;
2718 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2719 	 *  - otherwise, do nothing more.
2720 	 */
2721 	if (cpu_event)
2722 		ctx_sched_out(&cpuctx->ctx, event_type);
2723 	else if (event_type & EVENT_PINNED)
2724 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2725 
2726 	perf_event_sched_in(cpuctx, task_ctx);
2727 
2728 	perf_ctx_enable(&cpuctx->ctx, false);
2729 	if (task_ctx)
2730 		perf_ctx_enable(task_ctx, false);
2731 }
2732 
2733 void perf_pmu_resched(struct pmu *pmu)
2734 {
2735 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2736 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2737 
2738 	perf_ctx_lock(cpuctx, task_ctx);
2739 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2740 	perf_ctx_unlock(cpuctx, task_ctx);
2741 }
2742 
2743 /*
2744  * Cross CPU call to install and enable a performance event
2745  *
2746  * Very similar to remote_function() + event_function() but cannot assume that
2747  * things like ctx->is_active and cpuctx->task_ctx are set.
2748  */
2749 static int  __perf_install_in_context(void *info)
2750 {
2751 	struct perf_event *event = info;
2752 	struct perf_event_context *ctx = event->ctx;
2753 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2754 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2755 	bool reprogram = true;
2756 	int ret = 0;
2757 
2758 	raw_spin_lock(&cpuctx->ctx.lock);
2759 	if (ctx->task) {
2760 		raw_spin_lock(&ctx->lock);
2761 		task_ctx = ctx;
2762 
2763 		reprogram = (ctx->task == current);
2764 
2765 		/*
2766 		 * If the task is running, it must be running on this CPU,
2767 		 * otherwise we cannot reprogram things.
2768 		 *
2769 		 * If its not running, we don't care, ctx->lock will
2770 		 * serialize against it becoming runnable.
2771 		 */
2772 		if (task_curr(ctx->task) && !reprogram) {
2773 			ret = -ESRCH;
2774 			goto unlock;
2775 		}
2776 
2777 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2778 	} else if (task_ctx) {
2779 		raw_spin_lock(&task_ctx->lock);
2780 	}
2781 
2782 #ifdef CONFIG_CGROUP_PERF
2783 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2784 		/*
2785 		 * If the current cgroup doesn't match the event's
2786 		 * cgroup, we should not try to schedule it.
2787 		 */
2788 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2789 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2790 					event->cgrp->css.cgroup);
2791 	}
2792 #endif
2793 
2794 	if (reprogram) {
2795 		ctx_sched_out(ctx, EVENT_TIME);
2796 		add_event_to_ctx(event, ctx);
2797 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2798 	} else {
2799 		add_event_to_ctx(event, ctx);
2800 	}
2801 
2802 unlock:
2803 	perf_ctx_unlock(cpuctx, task_ctx);
2804 
2805 	return ret;
2806 }
2807 
2808 static bool exclusive_event_installable(struct perf_event *event,
2809 					struct perf_event_context *ctx);
2810 
2811 /*
2812  * Attach a performance event to a context.
2813  *
2814  * Very similar to event_function_call, see comment there.
2815  */
2816 static void
2817 perf_install_in_context(struct perf_event_context *ctx,
2818 			struct perf_event *event,
2819 			int cpu)
2820 {
2821 	struct task_struct *task = READ_ONCE(ctx->task);
2822 
2823 	lockdep_assert_held(&ctx->mutex);
2824 
2825 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2826 
2827 	if (event->cpu != -1)
2828 		WARN_ON_ONCE(event->cpu != cpu);
2829 
2830 	/*
2831 	 * Ensures that if we can observe event->ctx, both the event and ctx
2832 	 * will be 'complete'. See perf_iterate_sb_cpu().
2833 	 */
2834 	smp_store_release(&event->ctx, ctx);
2835 
2836 	/*
2837 	 * perf_event_attr::disabled events will not run and can be initialized
2838 	 * without IPI. Except when this is the first event for the context, in
2839 	 * that case we need the magic of the IPI to set ctx->is_active.
2840 	 *
2841 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2842 	 * event will issue the IPI and reprogram the hardware.
2843 	 */
2844 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2845 	    ctx->nr_events && !is_cgroup_event(event)) {
2846 		raw_spin_lock_irq(&ctx->lock);
2847 		if (ctx->task == TASK_TOMBSTONE) {
2848 			raw_spin_unlock_irq(&ctx->lock);
2849 			return;
2850 		}
2851 		add_event_to_ctx(event, ctx);
2852 		raw_spin_unlock_irq(&ctx->lock);
2853 		return;
2854 	}
2855 
2856 	if (!task) {
2857 		cpu_function_call(cpu, __perf_install_in_context, event);
2858 		return;
2859 	}
2860 
2861 	/*
2862 	 * Should not happen, we validate the ctx is still alive before calling.
2863 	 */
2864 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2865 		return;
2866 
2867 	/*
2868 	 * Installing events is tricky because we cannot rely on ctx->is_active
2869 	 * to be set in case this is the nr_events 0 -> 1 transition.
2870 	 *
2871 	 * Instead we use task_curr(), which tells us if the task is running.
2872 	 * However, since we use task_curr() outside of rq::lock, we can race
2873 	 * against the actual state. This means the result can be wrong.
2874 	 *
2875 	 * If we get a false positive, we retry, this is harmless.
2876 	 *
2877 	 * If we get a false negative, things are complicated. If we are after
2878 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2879 	 * value must be correct. If we're before, it doesn't matter since
2880 	 * perf_event_context_sched_in() will program the counter.
2881 	 *
2882 	 * However, this hinges on the remote context switch having observed
2883 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2884 	 * ctx::lock in perf_event_context_sched_in().
2885 	 *
2886 	 * We do this by task_function_call(), if the IPI fails to hit the task
2887 	 * we know any future context switch of task must see the
2888 	 * perf_event_ctpx[] store.
2889 	 */
2890 
2891 	/*
2892 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2893 	 * task_cpu() load, such that if the IPI then does not find the task
2894 	 * running, a future context switch of that task must observe the
2895 	 * store.
2896 	 */
2897 	smp_mb();
2898 again:
2899 	if (!task_function_call(task, __perf_install_in_context, event))
2900 		return;
2901 
2902 	raw_spin_lock_irq(&ctx->lock);
2903 	task = ctx->task;
2904 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2905 		/*
2906 		 * Cannot happen because we already checked above (which also
2907 		 * cannot happen), and we hold ctx->mutex, which serializes us
2908 		 * against perf_event_exit_task_context().
2909 		 */
2910 		raw_spin_unlock_irq(&ctx->lock);
2911 		return;
2912 	}
2913 	/*
2914 	 * If the task is not running, ctx->lock will avoid it becoming so,
2915 	 * thus we can safely install the event.
2916 	 */
2917 	if (task_curr(task)) {
2918 		raw_spin_unlock_irq(&ctx->lock);
2919 		goto again;
2920 	}
2921 	add_event_to_ctx(event, ctx);
2922 	raw_spin_unlock_irq(&ctx->lock);
2923 }
2924 
2925 /*
2926  * Cross CPU call to enable a performance event
2927  */
2928 static void __perf_event_enable(struct perf_event *event,
2929 				struct perf_cpu_context *cpuctx,
2930 				struct perf_event_context *ctx,
2931 				void *info)
2932 {
2933 	struct perf_event *leader = event->group_leader;
2934 	struct perf_event_context *task_ctx;
2935 
2936 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2937 	    event->state <= PERF_EVENT_STATE_ERROR)
2938 		return;
2939 
2940 	if (ctx->is_active)
2941 		ctx_sched_out(ctx, EVENT_TIME);
2942 
2943 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2944 	perf_cgroup_event_enable(event, ctx);
2945 
2946 	if (!ctx->is_active)
2947 		return;
2948 
2949 	if (!event_filter_match(event)) {
2950 		ctx_sched_in(ctx, EVENT_TIME);
2951 		return;
2952 	}
2953 
2954 	/*
2955 	 * If the event is in a group and isn't the group leader,
2956 	 * then don't put it on unless the group is on.
2957 	 */
2958 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2959 		ctx_sched_in(ctx, EVENT_TIME);
2960 		return;
2961 	}
2962 
2963 	task_ctx = cpuctx->task_ctx;
2964 	if (ctx->task)
2965 		WARN_ON_ONCE(task_ctx != ctx);
2966 
2967 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2968 }
2969 
2970 /*
2971  * Enable an event.
2972  *
2973  * If event->ctx is a cloned context, callers must make sure that
2974  * every task struct that event->ctx->task could possibly point to
2975  * remains valid.  This condition is satisfied when called through
2976  * perf_event_for_each_child or perf_event_for_each as described
2977  * for perf_event_disable.
2978  */
2979 static void _perf_event_enable(struct perf_event *event)
2980 {
2981 	struct perf_event_context *ctx = event->ctx;
2982 
2983 	raw_spin_lock_irq(&ctx->lock);
2984 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2985 	    event->state <  PERF_EVENT_STATE_ERROR) {
2986 out:
2987 		raw_spin_unlock_irq(&ctx->lock);
2988 		return;
2989 	}
2990 
2991 	/*
2992 	 * If the event is in error state, clear that first.
2993 	 *
2994 	 * That way, if we see the event in error state below, we know that it
2995 	 * has gone back into error state, as distinct from the task having
2996 	 * been scheduled away before the cross-call arrived.
2997 	 */
2998 	if (event->state == PERF_EVENT_STATE_ERROR) {
2999 		/*
3000 		 * Detached SIBLING events cannot leave ERROR state.
3001 		 */
3002 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3003 		    event->group_leader == event)
3004 			goto out;
3005 
3006 		event->state = PERF_EVENT_STATE_OFF;
3007 	}
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 
3010 	event_function_call(event, __perf_event_enable, NULL);
3011 }
3012 
3013 /*
3014  * See perf_event_disable();
3015  */
3016 void perf_event_enable(struct perf_event *event)
3017 {
3018 	struct perf_event_context *ctx;
3019 
3020 	ctx = perf_event_ctx_lock(event);
3021 	_perf_event_enable(event);
3022 	perf_event_ctx_unlock(event, ctx);
3023 }
3024 EXPORT_SYMBOL_GPL(perf_event_enable);
3025 
3026 struct stop_event_data {
3027 	struct perf_event	*event;
3028 	unsigned int		restart;
3029 };
3030 
3031 static int __perf_event_stop(void *info)
3032 {
3033 	struct stop_event_data *sd = info;
3034 	struct perf_event *event = sd->event;
3035 
3036 	/* if it's already INACTIVE, do nothing */
3037 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3038 		return 0;
3039 
3040 	/* matches smp_wmb() in event_sched_in() */
3041 	smp_rmb();
3042 
3043 	/*
3044 	 * There is a window with interrupts enabled before we get here,
3045 	 * so we need to check again lest we try to stop another CPU's event.
3046 	 */
3047 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3048 		return -EAGAIN;
3049 
3050 	event->pmu->stop(event, PERF_EF_UPDATE);
3051 
3052 	/*
3053 	 * May race with the actual stop (through perf_pmu_output_stop()),
3054 	 * but it is only used for events with AUX ring buffer, and such
3055 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3056 	 * see comments in perf_aux_output_begin().
3057 	 *
3058 	 * Since this is happening on an event-local CPU, no trace is lost
3059 	 * while restarting.
3060 	 */
3061 	if (sd->restart)
3062 		event->pmu->start(event, 0);
3063 
3064 	return 0;
3065 }
3066 
3067 static int perf_event_stop(struct perf_event *event, int restart)
3068 {
3069 	struct stop_event_data sd = {
3070 		.event		= event,
3071 		.restart	= restart,
3072 	};
3073 	int ret = 0;
3074 
3075 	do {
3076 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3077 			return 0;
3078 
3079 		/* matches smp_wmb() in event_sched_in() */
3080 		smp_rmb();
3081 
3082 		/*
3083 		 * We only want to restart ACTIVE events, so if the event goes
3084 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3085 		 * fall through with ret==-ENXIO.
3086 		 */
3087 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3088 					__perf_event_stop, &sd);
3089 	} while (ret == -EAGAIN);
3090 
3091 	return ret;
3092 }
3093 
3094 /*
3095  * In order to contain the amount of racy and tricky in the address filter
3096  * configuration management, it is a two part process:
3097  *
3098  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3099  *      we update the addresses of corresponding vmas in
3100  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3101  * (p2) when an event is scheduled in (pmu::add), it calls
3102  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3103  *      if the generation has changed since the previous call.
3104  *
3105  * If (p1) happens while the event is active, we restart it to force (p2).
3106  *
3107  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3108  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3109  *     ioctl;
3110  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3111  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3112  *     for reading;
3113  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3114  *     of exec.
3115  */
3116 void perf_event_addr_filters_sync(struct perf_event *event)
3117 {
3118 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3119 
3120 	if (!has_addr_filter(event))
3121 		return;
3122 
3123 	raw_spin_lock(&ifh->lock);
3124 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3125 		event->pmu->addr_filters_sync(event);
3126 		event->hw.addr_filters_gen = event->addr_filters_gen;
3127 	}
3128 	raw_spin_unlock(&ifh->lock);
3129 }
3130 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3131 
3132 static int _perf_event_refresh(struct perf_event *event, int refresh)
3133 {
3134 	/*
3135 	 * not supported on inherited events
3136 	 */
3137 	if (event->attr.inherit || !is_sampling_event(event))
3138 		return -EINVAL;
3139 
3140 	atomic_add(refresh, &event->event_limit);
3141 	_perf_event_enable(event);
3142 
3143 	return 0;
3144 }
3145 
3146 /*
3147  * See perf_event_disable()
3148  */
3149 int perf_event_refresh(struct perf_event *event, int refresh)
3150 {
3151 	struct perf_event_context *ctx;
3152 	int ret;
3153 
3154 	ctx = perf_event_ctx_lock(event);
3155 	ret = _perf_event_refresh(event, refresh);
3156 	perf_event_ctx_unlock(event, ctx);
3157 
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL_GPL(perf_event_refresh);
3161 
3162 static int perf_event_modify_breakpoint(struct perf_event *bp,
3163 					 struct perf_event_attr *attr)
3164 {
3165 	int err;
3166 
3167 	_perf_event_disable(bp);
3168 
3169 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3170 
3171 	if (!bp->attr.disabled)
3172 		_perf_event_enable(bp);
3173 
3174 	return err;
3175 }
3176 
3177 /*
3178  * Copy event-type-independent attributes that may be modified.
3179  */
3180 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3181 					const struct perf_event_attr *from)
3182 {
3183 	to->sig_data = from->sig_data;
3184 }
3185 
3186 static int perf_event_modify_attr(struct perf_event *event,
3187 				  struct perf_event_attr *attr)
3188 {
3189 	int (*func)(struct perf_event *, struct perf_event_attr *);
3190 	struct perf_event *child;
3191 	int err;
3192 
3193 	if (event->attr.type != attr->type)
3194 		return -EINVAL;
3195 
3196 	switch (event->attr.type) {
3197 	case PERF_TYPE_BREAKPOINT:
3198 		func = perf_event_modify_breakpoint;
3199 		break;
3200 	default:
3201 		/* Place holder for future additions. */
3202 		return -EOPNOTSUPP;
3203 	}
3204 
3205 	WARN_ON_ONCE(event->ctx->parent_ctx);
3206 
3207 	mutex_lock(&event->child_mutex);
3208 	/*
3209 	 * Event-type-independent attributes must be copied before event-type
3210 	 * modification, which will validate that final attributes match the
3211 	 * source attributes after all relevant attributes have been copied.
3212 	 */
3213 	perf_event_modify_copy_attr(&event->attr, attr);
3214 	err = func(event, attr);
3215 	if (err)
3216 		goto out;
3217 	list_for_each_entry(child, &event->child_list, child_list) {
3218 		perf_event_modify_copy_attr(&child->attr, attr);
3219 		err = func(child, attr);
3220 		if (err)
3221 			goto out;
3222 	}
3223 out:
3224 	mutex_unlock(&event->child_mutex);
3225 	return err;
3226 }
3227 
3228 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3229 				enum event_type_t event_type)
3230 {
3231 	struct perf_event_context *ctx = pmu_ctx->ctx;
3232 	struct perf_event *event, *tmp;
3233 	struct pmu *pmu = pmu_ctx->pmu;
3234 
3235 	if (ctx->task && !ctx->is_active) {
3236 		struct perf_cpu_pmu_context *cpc;
3237 
3238 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3239 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3240 		cpc->task_epc = NULL;
3241 	}
3242 
3243 	if (!event_type)
3244 		return;
3245 
3246 	perf_pmu_disable(pmu);
3247 	if (event_type & EVENT_PINNED) {
3248 		list_for_each_entry_safe(event, tmp,
3249 					 &pmu_ctx->pinned_active,
3250 					 active_list)
3251 			group_sched_out(event, ctx);
3252 	}
3253 
3254 	if (event_type & EVENT_FLEXIBLE) {
3255 		list_for_each_entry_safe(event, tmp,
3256 					 &pmu_ctx->flexible_active,
3257 					 active_list)
3258 			group_sched_out(event, ctx);
3259 		/*
3260 		 * Since we cleared EVENT_FLEXIBLE, also clear
3261 		 * rotate_necessary, is will be reset by
3262 		 * ctx_flexible_sched_in() when needed.
3263 		 */
3264 		pmu_ctx->rotate_necessary = 0;
3265 	}
3266 	perf_pmu_enable(pmu);
3267 }
3268 
3269 static void
3270 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3271 {
3272 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3273 	struct perf_event_pmu_context *pmu_ctx;
3274 	int is_active = ctx->is_active;
3275 	bool cgroup = event_type & EVENT_CGROUP;
3276 
3277 	event_type &= ~EVENT_CGROUP;
3278 
3279 	lockdep_assert_held(&ctx->lock);
3280 
3281 	if (likely(!ctx->nr_events)) {
3282 		/*
3283 		 * See __perf_remove_from_context().
3284 		 */
3285 		WARN_ON_ONCE(ctx->is_active);
3286 		if (ctx->task)
3287 			WARN_ON_ONCE(cpuctx->task_ctx);
3288 		return;
3289 	}
3290 
3291 	/*
3292 	 * Always update time if it was set; not only when it changes.
3293 	 * Otherwise we can 'forget' to update time for any but the last
3294 	 * context we sched out. For example:
3295 	 *
3296 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3297 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3298 	 *
3299 	 * would only update time for the pinned events.
3300 	 */
3301 	if (is_active & EVENT_TIME) {
3302 		/* update (and stop) ctx time */
3303 		update_context_time(ctx);
3304 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3305 		/*
3306 		 * CPU-release for the below ->is_active store,
3307 		 * see __load_acquire() in perf_event_time_now()
3308 		 */
3309 		barrier();
3310 	}
3311 
3312 	ctx->is_active &= ~event_type;
3313 	if (!(ctx->is_active & EVENT_ALL))
3314 		ctx->is_active = 0;
3315 
3316 	if (ctx->task) {
3317 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3318 		if (!ctx->is_active)
3319 			cpuctx->task_ctx = NULL;
3320 	}
3321 
3322 	is_active ^= ctx->is_active; /* changed bits */
3323 
3324 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3325 		if (cgroup && !pmu_ctx->nr_cgroups)
3326 			continue;
3327 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3328 	}
3329 }
3330 
3331 /*
3332  * Test whether two contexts are equivalent, i.e. whether they have both been
3333  * cloned from the same version of the same context.
3334  *
3335  * Equivalence is measured using a generation number in the context that is
3336  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3337  * and list_del_event().
3338  */
3339 static int context_equiv(struct perf_event_context *ctx1,
3340 			 struct perf_event_context *ctx2)
3341 {
3342 	lockdep_assert_held(&ctx1->lock);
3343 	lockdep_assert_held(&ctx2->lock);
3344 
3345 	/* Pinning disables the swap optimization */
3346 	if (ctx1->pin_count || ctx2->pin_count)
3347 		return 0;
3348 
3349 	/* If ctx1 is the parent of ctx2 */
3350 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3351 		return 1;
3352 
3353 	/* If ctx2 is the parent of ctx1 */
3354 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3355 		return 1;
3356 
3357 	/*
3358 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3359 	 * hierarchy, see perf_event_init_context().
3360 	 */
3361 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3362 			ctx1->parent_gen == ctx2->parent_gen)
3363 		return 1;
3364 
3365 	/* Unmatched */
3366 	return 0;
3367 }
3368 
3369 static void __perf_event_sync_stat(struct perf_event *event,
3370 				     struct perf_event *next_event)
3371 {
3372 	u64 value;
3373 
3374 	if (!event->attr.inherit_stat)
3375 		return;
3376 
3377 	/*
3378 	 * Update the event value, we cannot use perf_event_read()
3379 	 * because we're in the middle of a context switch and have IRQs
3380 	 * disabled, which upsets smp_call_function_single(), however
3381 	 * we know the event must be on the current CPU, therefore we
3382 	 * don't need to use it.
3383 	 */
3384 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3385 		event->pmu->read(event);
3386 
3387 	perf_event_update_time(event);
3388 
3389 	/*
3390 	 * In order to keep per-task stats reliable we need to flip the event
3391 	 * values when we flip the contexts.
3392 	 */
3393 	value = local64_read(&next_event->count);
3394 	value = local64_xchg(&event->count, value);
3395 	local64_set(&next_event->count, value);
3396 
3397 	swap(event->total_time_enabled, next_event->total_time_enabled);
3398 	swap(event->total_time_running, next_event->total_time_running);
3399 
3400 	/*
3401 	 * Since we swizzled the values, update the user visible data too.
3402 	 */
3403 	perf_event_update_userpage(event);
3404 	perf_event_update_userpage(next_event);
3405 }
3406 
3407 static void perf_event_sync_stat(struct perf_event_context *ctx,
3408 				   struct perf_event_context *next_ctx)
3409 {
3410 	struct perf_event *event, *next_event;
3411 
3412 	if (!ctx->nr_stat)
3413 		return;
3414 
3415 	update_context_time(ctx);
3416 
3417 	event = list_first_entry(&ctx->event_list,
3418 				   struct perf_event, event_entry);
3419 
3420 	next_event = list_first_entry(&next_ctx->event_list,
3421 					struct perf_event, event_entry);
3422 
3423 	while (&event->event_entry != &ctx->event_list &&
3424 	       &next_event->event_entry != &next_ctx->event_list) {
3425 
3426 		__perf_event_sync_stat(event, next_event);
3427 
3428 		event = list_next_entry(event, event_entry);
3429 		next_event = list_next_entry(next_event, event_entry);
3430 	}
3431 }
3432 
3433 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3434 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3435 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3436 	     !list_entry_is_head(pos1, head1, member) &&		\
3437 	     !list_entry_is_head(pos2, head2, member);			\
3438 	     pos1 = list_next_entry(pos1, member),			\
3439 	     pos2 = list_next_entry(pos2, member))
3440 
3441 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3442 					  struct perf_event_context *next_ctx)
3443 {
3444 	struct perf_event_pmu_context *prev_epc, *next_epc;
3445 
3446 	if (!prev_ctx->nr_task_data)
3447 		return;
3448 
3449 	double_list_for_each_entry(prev_epc, next_epc,
3450 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3451 				   pmu_ctx_entry) {
3452 
3453 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3454 			continue;
3455 
3456 		/*
3457 		 * PMU specific parts of task perf context can require
3458 		 * additional synchronization. As an example of such
3459 		 * synchronization see implementation details of Intel
3460 		 * LBR call stack data profiling;
3461 		 */
3462 		if (prev_epc->pmu->swap_task_ctx)
3463 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3464 		else
3465 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3466 	}
3467 }
3468 
3469 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3470 {
3471 	struct perf_event_pmu_context *pmu_ctx;
3472 	struct perf_cpu_pmu_context *cpc;
3473 
3474 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3475 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3476 
3477 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3478 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3479 	}
3480 }
3481 
3482 static void
3483 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3484 {
3485 	struct perf_event_context *ctx = task->perf_event_ctxp;
3486 	struct perf_event_context *next_ctx;
3487 	struct perf_event_context *parent, *next_parent;
3488 	int do_switch = 1;
3489 
3490 	if (likely(!ctx))
3491 		return;
3492 
3493 	rcu_read_lock();
3494 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3495 	if (!next_ctx)
3496 		goto unlock;
3497 
3498 	parent = rcu_dereference(ctx->parent_ctx);
3499 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3500 
3501 	/* If neither context have a parent context; they cannot be clones. */
3502 	if (!parent && !next_parent)
3503 		goto unlock;
3504 
3505 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3506 		/*
3507 		 * Looks like the two contexts are clones, so we might be
3508 		 * able to optimize the context switch.  We lock both
3509 		 * contexts and check that they are clones under the
3510 		 * lock (including re-checking that neither has been
3511 		 * uncloned in the meantime).  It doesn't matter which
3512 		 * order we take the locks because no other cpu could
3513 		 * be trying to lock both of these tasks.
3514 		 */
3515 		raw_spin_lock(&ctx->lock);
3516 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3517 		if (context_equiv(ctx, next_ctx)) {
3518 
3519 			perf_ctx_disable(ctx, false);
3520 
3521 			/* PMIs are disabled; ctx->nr_pending is stable. */
3522 			if (local_read(&ctx->nr_pending) ||
3523 			    local_read(&next_ctx->nr_pending)) {
3524 				/*
3525 				 * Must not swap out ctx when there's pending
3526 				 * events that rely on the ctx->task relation.
3527 				 */
3528 				raw_spin_unlock(&next_ctx->lock);
3529 				rcu_read_unlock();
3530 				goto inside_switch;
3531 			}
3532 
3533 			WRITE_ONCE(ctx->task, next);
3534 			WRITE_ONCE(next_ctx->task, task);
3535 
3536 			perf_ctx_sched_task_cb(ctx, false);
3537 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3538 
3539 			perf_ctx_enable(ctx, false);
3540 
3541 			/*
3542 			 * RCU_INIT_POINTER here is safe because we've not
3543 			 * modified the ctx and the above modification of
3544 			 * ctx->task and ctx->task_ctx_data are immaterial
3545 			 * since those values are always verified under
3546 			 * ctx->lock which we're now holding.
3547 			 */
3548 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3549 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3550 
3551 			do_switch = 0;
3552 
3553 			perf_event_sync_stat(ctx, next_ctx);
3554 		}
3555 		raw_spin_unlock(&next_ctx->lock);
3556 		raw_spin_unlock(&ctx->lock);
3557 	}
3558 unlock:
3559 	rcu_read_unlock();
3560 
3561 	if (do_switch) {
3562 		raw_spin_lock(&ctx->lock);
3563 		perf_ctx_disable(ctx, false);
3564 
3565 inside_switch:
3566 		perf_ctx_sched_task_cb(ctx, false);
3567 		task_ctx_sched_out(ctx, EVENT_ALL);
3568 
3569 		perf_ctx_enable(ctx, false);
3570 		raw_spin_unlock(&ctx->lock);
3571 	}
3572 }
3573 
3574 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3575 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3576 
3577 void perf_sched_cb_dec(struct pmu *pmu)
3578 {
3579 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3580 
3581 	this_cpu_dec(perf_sched_cb_usages);
3582 	barrier();
3583 
3584 	if (!--cpc->sched_cb_usage)
3585 		list_del(&cpc->sched_cb_entry);
3586 }
3587 
3588 
3589 void perf_sched_cb_inc(struct pmu *pmu)
3590 {
3591 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3592 
3593 	if (!cpc->sched_cb_usage++)
3594 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3595 
3596 	barrier();
3597 	this_cpu_inc(perf_sched_cb_usages);
3598 }
3599 
3600 /*
3601  * This function provides the context switch callback to the lower code
3602  * layer. It is invoked ONLY when the context switch callback is enabled.
3603  *
3604  * This callback is relevant even to per-cpu events; for example multi event
3605  * PEBS requires this to provide PID/TID information. This requires we flush
3606  * all queued PEBS records before we context switch to a new task.
3607  */
3608 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3609 {
3610 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3611 	struct pmu *pmu;
3612 
3613 	pmu = cpc->epc.pmu;
3614 
3615 	/* software PMUs will not have sched_task */
3616 	if (WARN_ON_ONCE(!pmu->sched_task))
3617 		return;
3618 
3619 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3620 	perf_pmu_disable(pmu);
3621 
3622 	pmu->sched_task(cpc->task_epc, sched_in);
3623 
3624 	perf_pmu_enable(pmu);
3625 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3626 }
3627 
3628 static void perf_pmu_sched_task(struct task_struct *prev,
3629 				struct task_struct *next,
3630 				bool sched_in)
3631 {
3632 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3633 	struct perf_cpu_pmu_context *cpc;
3634 
3635 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3636 	if (prev == next || cpuctx->task_ctx)
3637 		return;
3638 
3639 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3640 		__perf_pmu_sched_task(cpc, sched_in);
3641 }
3642 
3643 static void perf_event_switch(struct task_struct *task,
3644 			      struct task_struct *next_prev, bool sched_in);
3645 
3646 /*
3647  * Called from scheduler to remove the events of the current task,
3648  * with interrupts disabled.
3649  *
3650  * We stop each event and update the event value in event->count.
3651  *
3652  * This does not protect us against NMI, but disable()
3653  * sets the disabled bit in the control field of event _before_
3654  * accessing the event control register. If a NMI hits, then it will
3655  * not restart the event.
3656  */
3657 void __perf_event_task_sched_out(struct task_struct *task,
3658 				 struct task_struct *next)
3659 {
3660 	if (__this_cpu_read(perf_sched_cb_usages))
3661 		perf_pmu_sched_task(task, next, false);
3662 
3663 	if (atomic_read(&nr_switch_events))
3664 		perf_event_switch(task, next, false);
3665 
3666 	perf_event_context_sched_out(task, next);
3667 
3668 	/*
3669 	 * if cgroup events exist on this CPU, then we need
3670 	 * to check if we have to switch out PMU state.
3671 	 * cgroup event are system-wide mode only
3672 	 */
3673 	perf_cgroup_switch(next);
3674 }
3675 
3676 static bool perf_less_group_idx(const void *l, const void *r)
3677 {
3678 	const struct perf_event *le = *(const struct perf_event **)l;
3679 	const struct perf_event *re = *(const struct perf_event **)r;
3680 
3681 	return le->group_index < re->group_index;
3682 }
3683 
3684 static void swap_ptr(void *l, void *r)
3685 {
3686 	void **lp = l, **rp = r;
3687 
3688 	swap(*lp, *rp);
3689 }
3690 
3691 static const struct min_heap_callbacks perf_min_heap = {
3692 	.elem_size = sizeof(struct perf_event *),
3693 	.less = perf_less_group_idx,
3694 	.swp = swap_ptr,
3695 };
3696 
3697 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3698 {
3699 	struct perf_event **itrs = heap->data;
3700 
3701 	if (event) {
3702 		itrs[heap->nr] = event;
3703 		heap->nr++;
3704 	}
3705 }
3706 
3707 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3708 {
3709 	struct perf_cpu_pmu_context *cpc;
3710 
3711 	if (!pmu_ctx->ctx->task)
3712 		return;
3713 
3714 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3715 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3716 	cpc->task_epc = pmu_ctx;
3717 }
3718 
3719 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3720 				struct perf_event_groups *groups, int cpu,
3721 				struct pmu *pmu,
3722 				int (*func)(struct perf_event *, void *),
3723 				void *data)
3724 {
3725 #ifdef CONFIG_CGROUP_PERF
3726 	struct cgroup_subsys_state *css = NULL;
3727 #endif
3728 	struct perf_cpu_context *cpuctx = NULL;
3729 	/* Space for per CPU and/or any CPU event iterators. */
3730 	struct perf_event *itrs[2];
3731 	struct min_heap event_heap;
3732 	struct perf_event **evt;
3733 	int ret;
3734 
3735 	if (pmu->filter && pmu->filter(pmu, cpu))
3736 		return 0;
3737 
3738 	if (!ctx->task) {
3739 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3740 		event_heap = (struct min_heap){
3741 			.data = cpuctx->heap,
3742 			.nr = 0,
3743 			.size = cpuctx->heap_size,
3744 		};
3745 
3746 		lockdep_assert_held(&cpuctx->ctx.lock);
3747 
3748 #ifdef CONFIG_CGROUP_PERF
3749 		if (cpuctx->cgrp)
3750 			css = &cpuctx->cgrp->css;
3751 #endif
3752 	} else {
3753 		event_heap = (struct min_heap){
3754 			.data = itrs,
3755 			.nr = 0,
3756 			.size = ARRAY_SIZE(itrs),
3757 		};
3758 		/* Events not within a CPU context may be on any CPU. */
3759 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3760 	}
3761 	evt = event_heap.data;
3762 
3763 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3764 
3765 #ifdef CONFIG_CGROUP_PERF
3766 	for (; css; css = css->parent)
3767 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3768 #endif
3769 
3770 	if (event_heap.nr) {
3771 		__link_epc((*evt)->pmu_ctx);
3772 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3773 	}
3774 
3775 	min_heapify_all(&event_heap, &perf_min_heap);
3776 
3777 	while (event_heap.nr) {
3778 		ret = func(*evt, data);
3779 		if (ret)
3780 			return ret;
3781 
3782 		*evt = perf_event_groups_next(*evt, pmu);
3783 		if (*evt)
3784 			min_heapify(&event_heap, 0, &perf_min_heap);
3785 		else
3786 			min_heap_pop(&event_heap, &perf_min_heap);
3787 	}
3788 
3789 	return 0;
3790 }
3791 
3792 /*
3793  * Because the userpage is strictly per-event (there is no concept of context,
3794  * so there cannot be a context indirection), every userpage must be updated
3795  * when context time starts :-(
3796  *
3797  * IOW, we must not miss EVENT_TIME edges.
3798  */
3799 static inline bool event_update_userpage(struct perf_event *event)
3800 {
3801 	if (likely(!atomic_read(&event->mmap_count)))
3802 		return false;
3803 
3804 	perf_event_update_time(event);
3805 	perf_event_update_userpage(event);
3806 
3807 	return true;
3808 }
3809 
3810 static inline void group_update_userpage(struct perf_event *group_event)
3811 {
3812 	struct perf_event *event;
3813 
3814 	if (!event_update_userpage(group_event))
3815 		return;
3816 
3817 	for_each_sibling_event(event, group_event)
3818 		event_update_userpage(event);
3819 }
3820 
3821 static int merge_sched_in(struct perf_event *event, void *data)
3822 {
3823 	struct perf_event_context *ctx = event->ctx;
3824 	int *can_add_hw = data;
3825 
3826 	if (event->state <= PERF_EVENT_STATE_OFF)
3827 		return 0;
3828 
3829 	if (!event_filter_match(event))
3830 		return 0;
3831 
3832 	if (group_can_go_on(event, *can_add_hw)) {
3833 		if (!group_sched_in(event, ctx))
3834 			list_add_tail(&event->active_list, get_event_list(event));
3835 	}
3836 
3837 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3838 		*can_add_hw = 0;
3839 		if (event->attr.pinned) {
3840 			perf_cgroup_event_disable(event, ctx);
3841 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3842 		} else {
3843 			struct perf_cpu_pmu_context *cpc;
3844 
3845 			event->pmu_ctx->rotate_necessary = 1;
3846 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3847 			perf_mux_hrtimer_restart(cpc);
3848 			group_update_userpage(event);
3849 		}
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3856 				struct perf_event_groups *groups,
3857 				struct pmu *pmu)
3858 {
3859 	int can_add_hw = 1;
3860 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3861 			   merge_sched_in, &can_add_hw);
3862 }
3863 
3864 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3865 				struct perf_event_groups *groups,
3866 				bool cgroup)
3867 {
3868 	struct perf_event_pmu_context *pmu_ctx;
3869 
3870 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3871 		if (cgroup && !pmu_ctx->nr_cgroups)
3872 			continue;
3873 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3874 	}
3875 }
3876 
3877 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3878 			       struct pmu *pmu)
3879 {
3880 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3881 }
3882 
3883 static void
3884 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3885 {
3886 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3887 	int is_active = ctx->is_active;
3888 	bool cgroup = event_type & EVENT_CGROUP;
3889 
3890 	event_type &= ~EVENT_CGROUP;
3891 
3892 	lockdep_assert_held(&ctx->lock);
3893 
3894 	if (likely(!ctx->nr_events))
3895 		return;
3896 
3897 	if (!(is_active & EVENT_TIME)) {
3898 		/* start ctx time */
3899 		__update_context_time(ctx, false);
3900 		perf_cgroup_set_timestamp(cpuctx);
3901 		/*
3902 		 * CPU-release for the below ->is_active store,
3903 		 * see __load_acquire() in perf_event_time_now()
3904 		 */
3905 		barrier();
3906 	}
3907 
3908 	ctx->is_active |= (event_type | EVENT_TIME);
3909 	if (ctx->task) {
3910 		if (!is_active)
3911 			cpuctx->task_ctx = ctx;
3912 		else
3913 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3914 	}
3915 
3916 	is_active ^= ctx->is_active; /* changed bits */
3917 
3918 	/*
3919 	 * First go through the list and put on any pinned groups
3920 	 * in order to give them the best chance of going on.
3921 	 */
3922 	if (is_active & EVENT_PINNED)
3923 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3924 
3925 	/* Then walk through the lower prio flexible groups */
3926 	if (is_active & EVENT_FLEXIBLE)
3927 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3928 }
3929 
3930 static void perf_event_context_sched_in(struct task_struct *task)
3931 {
3932 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3933 	struct perf_event_context *ctx;
3934 
3935 	rcu_read_lock();
3936 	ctx = rcu_dereference(task->perf_event_ctxp);
3937 	if (!ctx)
3938 		goto rcu_unlock;
3939 
3940 	if (cpuctx->task_ctx == ctx) {
3941 		perf_ctx_lock(cpuctx, ctx);
3942 		perf_ctx_disable(ctx, false);
3943 
3944 		perf_ctx_sched_task_cb(ctx, true);
3945 
3946 		perf_ctx_enable(ctx, false);
3947 		perf_ctx_unlock(cpuctx, ctx);
3948 		goto rcu_unlock;
3949 	}
3950 
3951 	perf_ctx_lock(cpuctx, ctx);
3952 	/*
3953 	 * We must check ctx->nr_events while holding ctx->lock, such
3954 	 * that we serialize against perf_install_in_context().
3955 	 */
3956 	if (!ctx->nr_events)
3957 		goto unlock;
3958 
3959 	perf_ctx_disable(ctx, false);
3960 	/*
3961 	 * We want to keep the following priority order:
3962 	 * cpu pinned (that don't need to move), task pinned,
3963 	 * cpu flexible, task flexible.
3964 	 *
3965 	 * However, if task's ctx is not carrying any pinned
3966 	 * events, no need to flip the cpuctx's events around.
3967 	 */
3968 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3969 		perf_ctx_disable(&cpuctx->ctx, false);
3970 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3971 	}
3972 
3973 	perf_event_sched_in(cpuctx, ctx);
3974 
3975 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3976 
3977 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3978 		perf_ctx_enable(&cpuctx->ctx, false);
3979 
3980 	perf_ctx_enable(ctx, false);
3981 
3982 unlock:
3983 	perf_ctx_unlock(cpuctx, ctx);
3984 rcu_unlock:
3985 	rcu_read_unlock();
3986 }
3987 
3988 /*
3989  * Called from scheduler to add the events of the current task
3990  * with interrupts disabled.
3991  *
3992  * We restore the event value and then enable it.
3993  *
3994  * This does not protect us against NMI, but enable()
3995  * sets the enabled bit in the control field of event _before_
3996  * accessing the event control register. If a NMI hits, then it will
3997  * keep the event running.
3998  */
3999 void __perf_event_task_sched_in(struct task_struct *prev,
4000 				struct task_struct *task)
4001 {
4002 	perf_event_context_sched_in(task);
4003 
4004 	if (atomic_read(&nr_switch_events))
4005 		perf_event_switch(task, prev, true);
4006 
4007 	if (__this_cpu_read(perf_sched_cb_usages))
4008 		perf_pmu_sched_task(prev, task, true);
4009 }
4010 
4011 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4012 {
4013 	u64 frequency = event->attr.sample_freq;
4014 	u64 sec = NSEC_PER_SEC;
4015 	u64 divisor, dividend;
4016 
4017 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4018 
4019 	count_fls = fls64(count);
4020 	nsec_fls = fls64(nsec);
4021 	frequency_fls = fls64(frequency);
4022 	sec_fls = 30;
4023 
4024 	/*
4025 	 * We got @count in @nsec, with a target of sample_freq HZ
4026 	 * the target period becomes:
4027 	 *
4028 	 *             @count * 10^9
4029 	 * period = -------------------
4030 	 *          @nsec * sample_freq
4031 	 *
4032 	 */
4033 
4034 	/*
4035 	 * Reduce accuracy by one bit such that @a and @b converge
4036 	 * to a similar magnitude.
4037 	 */
4038 #define REDUCE_FLS(a, b)		\
4039 do {					\
4040 	if (a##_fls > b##_fls) {	\
4041 		a >>= 1;		\
4042 		a##_fls--;		\
4043 	} else {			\
4044 		b >>= 1;		\
4045 		b##_fls--;		\
4046 	}				\
4047 } while (0)
4048 
4049 	/*
4050 	 * Reduce accuracy until either term fits in a u64, then proceed with
4051 	 * the other, so that finally we can do a u64/u64 division.
4052 	 */
4053 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4054 		REDUCE_FLS(nsec, frequency);
4055 		REDUCE_FLS(sec, count);
4056 	}
4057 
4058 	if (count_fls + sec_fls > 64) {
4059 		divisor = nsec * frequency;
4060 
4061 		while (count_fls + sec_fls > 64) {
4062 			REDUCE_FLS(count, sec);
4063 			divisor >>= 1;
4064 		}
4065 
4066 		dividend = count * sec;
4067 	} else {
4068 		dividend = count * sec;
4069 
4070 		while (nsec_fls + frequency_fls > 64) {
4071 			REDUCE_FLS(nsec, frequency);
4072 			dividend >>= 1;
4073 		}
4074 
4075 		divisor = nsec * frequency;
4076 	}
4077 
4078 	if (!divisor)
4079 		return dividend;
4080 
4081 	return div64_u64(dividend, divisor);
4082 }
4083 
4084 static DEFINE_PER_CPU(int, perf_throttled_count);
4085 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4086 
4087 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4088 {
4089 	struct hw_perf_event *hwc = &event->hw;
4090 	s64 period, sample_period;
4091 	s64 delta;
4092 
4093 	period = perf_calculate_period(event, nsec, count);
4094 
4095 	delta = (s64)(period - hwc->sample_period);
4096 	delta = (delta + 7) / 8; /* low pass filter */
4097 
4098 	sample_period = hwc->sample_period + delta;
4099 
4100 	if (!sample_period)
4101 		sample_period = 1;
4102 
4103 	hwc->sample_period = sample_period;
4104 
4105 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4106 		if (disable)
4107 			event->pmu->stop(event, PERF_EF_UPDATE);
4108 
4109 		local64_set(&hwc->period_left, 0);
4110 
4111 		if (disable)
4112 			event->pmu->start(event, PERF_EF_RELOAD);
4113 	}
4114 }
4115 
4116 /*
4117  * combine freq adjustment with unthrottling to avoid two passes over the
4118  * events. At the same time, make sure, having freq events does not change
4119  * the rate of unthrottling as that would introduce bias.
4120  */
4121 static void
4122 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4123 {
4124 	struct perf_event *event;
4125 	struct hw_perf_event *hwc;
4126 	u64 now, period = TICK_NSEC;
4127 	s64 delta;
4128 
4129 	/*
4130 	 * only need to iterate over all events iff:
4131 	 * - context have events in frequency mode (needs freq adjust)
4132 	 * - there are events to unthrottle on this cpu
4133 	 */
4134 	if (!(ctx->nr_freq || unthrottle))
4135 		return;
4136 
4137 	raw_spin_lock(&ctx->lock);
4138 
4139 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4140 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4141 			continue;
4142 
4143 		// XXX use visit thingy to avoid the -1,cpu match
4144 		if (!event_filter_match(event))
4145 			continue;
4146 
4147 		perf_pmu_disable(event->pmu);
4148 
4149 		hwc = &event->hw;
4150 
4151 		if (hwc->interrupts == MAX_INTERRUPTS) {
4152 			hwc->interrupts = 0;
4153 			perf_log_throttle(event, 1);
4154 			event->pmu->start(event, 0);
4155 		}
4156 
4157 		if (!event->attr.freq || !event->attr.sample_freq)
4158 			goto next;
4159 
4160 		/*
4161 		 * stop the event and update event->count
4162 		 */
4163 		event->pmu->stop(event, PERF_EF_UPDATE);
4164 
4165 		now = local64_read(&event->count);
4166 		delta = now - hwc->freq_count_stamp;
4167 		hwc->freq_count_stamp = now;
4168 
4169 		/*
4170 		 * restart the event
4171 		 * reload only if value has changed
4172 		 * we have stopped the event so tell that
4173 		 * to perf_adjust_period() to avoid stopping it
4174 		 * twice.
4175 		 */
4176 		if (delta > 0)
4177 			perf_adjust_period(event, period, delta, false);
4178 
4179 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4180 	next:
4181 		perf_pmu_enable(event->pmu);
4182 	}
4183 
4184 	raw_spin_unlock(&ctx->lock);
4185 }
4186 
4187 /*
4188  * Move @event to the tail of the @ctx's elegible events.
4189  */
4190 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4191 {
4192 	/*
4193 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4194 	 * disabled by the inheritance code.
4195 	 */
4196 	if (ctx->rotate_disable)
4197 		return;
4198 
4199 	perf_event_groups_delete(&ctx->flexible_groups, event);
4200 	perf_event_groups_insert(&ctx->flexible_groups, event);
4201 }
4202 
4203 /* pick an event from the flexible_groups to rotate */
4204 static inline struct perf_event *
4205 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4206 {
4207 	struct perf_event *event;
4208 	struct rb_node *node;
4209 	struct rb_root *tree;
4210 	struct __group_key key = {
4211 		.pmu = pmu_ctx->pmu,
4212 	};
4213 
4214 	/* pick the first active flexible event */
4215 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4216 					 struct perf_event, active_list);
4217 	if (event)
4218 		goto out;
4219 
4220 	/* if no active flexible event, pick the first event */
4221 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4222 
4223 	if (!pmu_ctx->ctx->task) {
4224 		key.cpu = smp_processor_id();
4225 
4226 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4227 		if (node)
4228 			event = __node_2_pe(node);
4229 		goto out;
4230 	}
4231 
4232 	key.cpu = -1;
4233 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234 	if (node) {
4235 		event = __node_2_pe(node);
4236 		goto out;
4237 	}
4238 
4239 	key.cpu = smp_processor_id();
4240 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 	if (node)
4242 		event = __node_2_pe(node);
4243 
4244 out:
4245 	/*
4246 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4247 	 * finds there are unschedulable events, it will set it again.
4248 	 */
4249 	pmu_ctx->rotate_necessary = 0;
4250 
4251 	return event;
4252 }
4253 
4254 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4255 {
4256 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4257 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4258 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4259 	int cpu_rotate, task_rotate;
4260 	struct pmu *pmu;
4261 
4262 	/*
4263 	 * Since we run this from IRQ context, nobody can install new
4264 	 * events, thus the event count values are stable.
4265 	 */
4266 
4267 	cpu_epc = &cpc->epc;
4268 	pmu = cpu_epc->pmu;
4269 	task_epc = cpc->task_epc;
4270 
4271 	cpu_rotate = cpu_epc->rotate_necessary;
4272 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4273 
4274 	if (!(cpu_rotate || task_rotate))
4275 		return false;
4276 
4277 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4278 	perf_pmu_disable(pmu);
4279 
4280 	if (task_rotate)
4281 		task_event = ctx_event_to_rotate(task_epc);
4282 	if (cpu_rotate)
4283 		cpu_event = ctx_event_to_rotate(cpu_epc);
4284 
4285 	/*
4286 	 * As per the order given at ctx_resched() first 'pop' task flexible
4287 	 * and then, if needed CPU flexible.
4288 	 */
4289 	if (task_event || (task_epc && cpu_event)) {
4290 		update_context_time(task_epc->ctx);
4291 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4292 	}
4293 
4294 	if (cpu_event) {
4295 		update_context_time(&cpuctx->ctx);
4296 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4297 		rotate_ctx(&cpuctx->ctx, cpu_event);
4298 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4299 	}
4300 
4301 	if (task_event)
4302 		rotate_ctx(task_epc->ctx, task_event);
4303 
4304 	if (task_event || (task_epc && cpu_event))
4305 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4306 
4307 	perf_pmu_enable(pmu);
4308 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4309 
4310 	return true;
4311 }
4312 
4313 void perf_event_task_tick(void)
4314 {
4315 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4316 	struct perf_event_context *ctx;
4317 	int throttled;
4318 
4319 	lockdep_assert_irqs_disabled();
4320 
4321 	__this_cpu_inc(perf_throttled_seq);
4322 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4323 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4324 
4325 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4326 
4327 	rcu_read_lock();
4328 	ctx = rcu_dereference(current->perf_event_ctxp);
4329 	if (ctx)
4330 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4331 	rcu_read_unlock();
4332 }
4333 
4334 static int event_enable_on_exec(struct perf_event *event,
4335 				struct perf_event_context *ctx)
4336 {
4337 	if (!event->attr.enable_on_exec)
4338 		return 0;
4339 
4340 	event->attr.enable_on_exec = 0;
4341 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4342 		return 0;
4343 
4344 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4345 
4346 	return 1;
4347 }
4348 
4349 /*
4350  * Enable all of a task's events that have been marked enable-on-exec.
4351  * This expects task == current.
4352  */
4353 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4354 {
4355 	struct perf_event_context *clone_ctx = NULL;
4356 	enum event_type_t event_type = 0;
4357 	struct perf_cpu_context *cpuctx;
4358 	struct perf_event *event;
4359 	unsigned long flags;
4360 	int enabled = 0;
4361 
4362 	local_irq_save(flags);
4363 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4364 		goto out;
4365 
4366 	if (!ctx->nr_events)
4367 		goto out;
4368 
4369 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4370 	perf_ctx_lock(cpuctx, ctx);
4371 	ctx_sched_out(ctx, EVENT_TIME);
4372 
4373 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4374 		enabled |= event_enable_on_exec(event, ctx);
4375 		event_type |= get_event_type(event);
4376 	}
4377 
4378 	/*
4379 	 * Unclone and reschedule this context if we enabled any event.
4380 	 */
4381 	if (enabled) {
4382 		clone_ctx = unclone_ctx(ctx);
4383 		ctx_resched(cpuctx, ctx, event_type);
4384 	} else {
4385 		ctx_sched_in(ctx, EVENT_TIME);
4386 	}
4387 	perf_ctx_unlock(cpuctx, ctx);
4388 
4389 out:
4390 	local_irq_restore(flags);
4391 
4392 	if (clone_ctx)
4393 		put_ctx(clone_ctx);
4394 }
4395 
4396 static void perf_remove_from_owner(struct perf_event *event);
4397 static void perf_event_exit_event(struct perf_event *event,
4398 				  struct perf_event_context *ctx);
4399 
4400 /*
4401  * Removes all events from the current task that have been marked
4402  * remove-on-exec, and feeds their values back to parent events.
4403  */
4404 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4405 {
4406 	struct perf_event_context *clone_ctx = NULL;
4407 	struct perf_event *event, *next;
4408 	unsigned long flags;
4409 	bool modified = false;
4410 
4411 	mutex_lock(&ctx->mutex);
4412 
4413 	if (WARN_ON_ONCE(ctx->task != current))
4414 		goto unlock;
4415 
4416 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4417 		if (!event->attr.remove_on_exec)
4418 			continue;
4419 
4420 		if (!is_kernel_event(event))
4421 			perf_remove_from_owner(event);
4422 
4423 		modified = true;
4424 
4425 		perf_event_exit_event(event, ctx);
4426 	}
4427 
4428 	raw_spin_lock_irqsave(&ctx->lock, flags);
4429 	if (modified)
4430 		clone_ctx = unclone_ctx(ctx);
4431 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4432 
4433 unlock:
4434 	mutex_unlock(&ctx->mutex);
4435 
4436 	if (clone_ctx)
4437 		put_ctx(clone_ctx);
4438 }
4439 
4440 struct perf_read_data {
4441 	struct perf_event *event;
4442 	bool group;
4443 	int ret;
4444 };
4445 
4446 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4447 {
4448 	u16 local_pkg, event_pkg;
4449 
4450 	if ((unsigned)event_cpu >= nr_cpu_ids)
4451 		return event_cpu;
4452 
4453 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4454 		int local_cpu = smp_processor_id();
4455 
4456 		event_pkg = topology_physical_package_id(event_cpu);
4457 		local_pkg = topology_physical_package_id(local_cpu);
4458 
4459 		if (event_pkg == local_pkg)
4460 			return local_cpu;
4461 	}
4462 
4463 	return event_cpu;
4464 }
4465 
4466 /*
4467  * Cross CPU call to read the hardware event
4468  */
4469 static void __perf_event_read(void *info)
4470 {
4471 	struct perf_read_data *data = info;
4472 	struct perf_event *sub, *event = data->event;
4473 	struct perf_event_context *ctx = event->ctx;
4474 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4475 	struct pmu *pmu = event->pmu;
4476 
4477 	/*
4478 	 * If this is a task context, we need to check whether it is
4479 	 * the current task context of this cpu.  If not it has been
4480 	 * scheduled out before the smp call arrived.  In that case
4481 	 * event->count would have been updated to a recent sample
4482 	 * when the event was scheduled out.
4483 	 */
4484 	if (ctx->task && cpuctx->task_ctx != ctx)
4485 		return;
4486 
4487 	raw_spin_lock(&ctx->lock);
4488 	if (ctx->is_active & EVENT_TIME) {
4489 		update_context_time(ctx);
4490 		update_cgrp_time_from_event(event);
4491 	}
4492 
4493 	perf_event_update_time(event);
4494 	if (data->group)
4495 		perf_event_update_sibling_time(event);
4496 
4497 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4498 		goto unlock;
4499 
4500 	if (!data->group) {
4501 		pmu->read(event);
4502 		data->ret = 0;
4503 		goto unlock;
4504 	}
4505 
4506 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4507 
4508 	pmu->read(event);
4509 
4510 	for_each_sibling_event(sub, event) {
4511 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4512 			/*
4513 			 * Use sibling's PMU rather than @event's since
4514 			 * sibling could be on different (eg: software) PMU.
4515 			 */
4516 			sub->pmu->read(sub);
4517 		}
4518 	}
4519 
4520 	data->ret = pmu->commit_txn(pmu);
4521 
4522 unlock:
4523 	raw_spin_unlock(&ctx->lock);
4524 }
4525 
4526 static inline u64 perf_event_count(struct perf_event *event)
4527 {
4528 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4529 }
4530 
4531 static void calc_timer_values(struct perf_event *event,
4532 				u64 *now,
4533 				u64 *enabled,
4534 				u64 *running)
4535 {
4536 	u64 ctx_time;
4537 
4538 	*now = perf_clock();
4539 	ctx_time = perf_event_time_now(event, *now);
4540 	__perf_update_times(event, ctx_time, enabled, running);
4541 }
4542 
4543 /*
4544  * NMI-safe method to read a local event, that is an event that
4545  * is:
4546  *   - either for the current task, or for this CPU
4547  *   - does not have inherit set, for inherited task events
4548  *     will not be local and we cannot read them atomically
4549  *   - must not have a pmu::count method
4550  */
4551 int perf_event_read_local(struct perf_event *event, u64 *value,
4552 			  u64 *enabled, u64 *running)
4553 {
4554 	unsigned long flags;
4555 	int event_oncpu;
4556 	int event_cpu;
4557 	int ret = 0;
4558 
4559 	/*
4560 	 * Disabling interrupts avoids all counter scheduling (context
4561 	 * switches, timer based rotation and IPIs).
4562 	 */
4563 	local_irq_save(flags);
4564 
4565 	/*
4566 	 * It must not be an event with inherit set, we cannot read
4567 	 * all child counters from atomic context.
4568 	 */
4569 	if (event->attr.inherit) {
4570 		ret = -EOPNOTSUPP;
4571 		goto out;
4572 	}
4573 
4574 	/* If this is a per-task event, it must be for current */
4575 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4576 	    event->hw.target != current) {
4577 		ret = -EINVAL;
4578 		goto out;
4579 	}
4580 
4581 	/*
4582 	 * Get the event CPU numbers, and adjust them to local if the event is
4583 	 * a per-package event that can be read locally
4584 	 */
4585 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4586 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4587 
4588 	/* If this is a per-CPU event, it must be for this CPU */
4589 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4590 	    event_cpu != smp_processor_id()) {
4591 		ret = -EINVAL;
4592 		goto out;
4593 	}
4594 
4595 	/* If this is a pinned event it must be running on this CPU */
4596 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4597 		ret = -EBUSY;
4598 		goto out;
4599 	}
4600 
4601 	/*
4602 	 * If the event is currently on this CPU, its either a per-task event,
4603 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4604 	 * oncpu == -1).
4605 	 */
4606 	if (event_oncpu == smp_processor_id())
4607 		event->pmu->read(event);
4608 
4609 	*value = local64_read(&event->count);
4610 	if (enabled || running) {
4611 		u64 __enabled, __running, __now;
4612 
4613 		calc_timer_values(event, &__now, &__enabled, &__running);
4614 		if (enabled)
4615 			*enabled = __enabled;
4616 		if (running)
4617 			*running = __running;
4618 	}
4619 out:
4620 	local_irq_restore(flags);
4621 
4622 	return ret;
4623 }
4624 
4625 static int perf_event_read(struct perf_event *event, bool group)
4626 {
4627 	enum perf_event_state state = READ_ONCE(event->state);
4628 	int event_cpu, ret = 0;
4629 
4630 	/*
4631 	 * If event is enabled and currently active on a CPU, update the
4632 	 * value in the event structure:
4633 	 */
4634 again:
4635 	if (state == PERF_EVENT_STATE_ACTIVE) {
4636 		struct perf_read_data data;
4637 
4638 		/*
4639 		 * Orders the ->state and ->oncpu loads such that if we see
4640 		 * ACTIVE we must also see the right ->oncpu.
4641 		 *
4642 		 * Matches the smp_wmb() from event_sched_in().
4643 		 */
4644 		smp_rmb();
4645 
4646 		event_cpu = READ_ONCE(event->oncpu);
4647 		if ((unsigned)event_cpu >= nr_cpu_ids)
4648 			return 0;
4649 
4650 		data = (struct perf_read_data){
4651 			.event = event,
4652 			.group = group,
4653 			.ret = 0,
4654 		};
4655 
4656 		preempt_disable();
4657 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4658 
4659 		/*
4660 		 * Purposely ignore the smp_call_function_single() return
4661 		 * value.
4662 		 *
4663 		 * If event_cpu isn't a valid CPU it means the event got
4664 		 * scheduled out and that will have updated the event count.
4665 		 *
4666 		 * Therefore, either way, we'll have an up-to-date event count
4667 		 * after this.
4668 		 */
4669 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4670 		preempt_enable();
4671 		ret = data.ret;
4672 
4673 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4674 		struct perf_event_context *ctx = event->ctx;
4675 		unsigned long flags;
4676 
4677 		raw_spin_lock_irqsave(&ctx->lock, flags);
4678 		state = event->state;
4679 		if (state != PERF_EVENT_STATE_INACTIVE) {
4680 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4681 			goto again;
4682 		}
4683 
4684 		/*
4685 		 * May read while context is not active (e.g., thread is
4686 		 * blocked), in that case we cannot update context time
4687 		 */
4688 		if (ctx->is_active & EVENT_TIME) {
4689 			update_context_time(ctx);
4690 			update_cgrp_time_from_event(event);
4691 		}
4692 
4693 		perf_event_update_time(event);
4694 		if (group)
4695 			perf_event_update_sibling_time(event);
4696 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4697 	}
4698 
4699 	return ret;
4700 }
4701 
4702 /*
4703  * Initialize the perf_event context in a task_struct:
4704  */
4705 static void __perf_event_init_context(struct perf_event_context *ctx)
4706 {
4707 	raw_spin_lock_init(&ctx->lock);
4708 	mutex_init(&ctx->mutex);
4709 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4710 	perf_event_groups_init(&ctx->pinned_groups);
4711 	perf_event_groups_init(&ctx->flexible_groups);
4712 	INIT_LIST_HEAD(&ctx->event_list);
4713 	refcount_set(&ctx->refcount, 1);
4714 }
4715 
4716 static void
4717 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4718 {
4719 	epc->pmu = pmu;
4720 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4721 	INIT_LIST_HEAD(&epc->pinned_active);
4722 	INIT_LIST_HEAD(&epc->flexible_active);
4723 	atomic_set(&epc->refcount, 1);
4724 }
4725 
4726 static struct perf_event_context *
4727 alloc_perf_context(struct task_struct *task)
4728 {
4729 	struct perf_event_context *ctx;
4730 
4731 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4732 	if (!ctx)
4733 		return NULL;
4734 
4735 	__perf_event_init_context(ctx);
4736 	if (task)
4737 		ctx->task = get_task_struct(task);
4738 
4739 	return ctx;
4740 }
4741 
4742 static struct task_struct *
4743 find_lively_task_by_vpid(pid_t vpid)
4744 {
4745 	struct task_struct *task;
4746 
4747 	rcu_read_lock();
4748 	if (!vpid)
4749 		task = current;
4750 	else
4751 		task = find_task_by_vpid(vpid);
4752 	if (task)
4753 		get_task_struct(task);
4754 	rcu_read_unlock();
4755 
4756 	if (!task)
4757 		return ERR_PTR(-ESRCH);
4758 
4759 	return task;
4760 }
4761 
4762 /*
4763  * Returns a matching context with refcount and pincount.
4764  */
4765 static struct perf_event_context *
4766 find_get_context(struct task_struct *task, struct perf_event *event)
4767 {
4768 	struct perf_event_context *ctx, *clone_ctx = NULL;
4769 	struct perf_cpu_context *cpuctx;
4770 	unsigned long flags;
4771 	int err;
4772 
4773 	if (!task) {
4774 		/* Must be root to operate on a CPU event: */
4775 		err = perf_allow_cpu(&event->attr);
4776 		if (err)
4777 			return ERR_PTR(err);
4778 
4779 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4780 		ctx = &cpuctx->ctx;
4781 		get_ctx(ctx);
4782 		raw_spin_lock_irqsave(&ctx->lock, flags);
4783 		++ctx->pin_count;
4784 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4785 
4786 		return ctx;
4787 	}
4788 
4789 	err = -EINVAL;
4790 retry:
4791 	ctx = perf_lock_task_context(task, &flags);
4792 	if (ctx) {
4793 		clone_ctx = unclone_ctx(ctx);
4794 		++ctx->pin_count;
4795 
4796 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4797 
4798 		if (clone_ctx)
4799 			put_ctx(clone_ctx);
4800 	} else {
4801 		ctx = alloc_perf_context(task);
4802 		err = -ENOMEM;
4803 		if (!ctx)
4804 			goto errout;
4805 
4806 		err = 0;
4807 		mutex_lock(&task->perf_event_mutex);
4808 		/*
4809 		 * If it has already passed perf_event_exit_task().
4810 		 * we must see PF_EXITING, it takes this mutex too.
4811 		 */
4812 		if (task->flags & PF_EXITING)
4813 			err = -ESRCH;
4814 		else if (task->perf_event_ctxp)
4815 			err = -EAGAIN;
4816 		else {
4817 			get_ctx(ctx);
4818 			++ctx->pin_count;
4819 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4820 		}
4821 		mutex_unlock(&task->perf_event_mutex);
4822 
4823 		if (unlikely(err)) {
4824 			put_ctx(ctx);
4825 
4826 			if (err == -EAGAIN)
4827 				goto retry;
4828 			goto errout;
4829 		}
4830 	}
4831 
4832 	return ctx;
4833 
4834 errout:
4835 	return ERR_PTR(err);
4836 }
4837 
4838 static struct perf_event_pmu_context *
4839 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4840 		     struct perf_event *event)
4841 {
4842 	struct perf_event_pmu_context *new = NULL, *epc;
4843 	void *task_ctx_data = NULL;
4844 
4845 	if (!ctx->task) {
4846 		/*
4847 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4848 		 * relies on the fact that find_get_pmu_context() cannot fail
4849 		 * for CPU contexts.
4850 		 */
4851 		struct perf_cpu_pmu_context *cpc;
4852 
4853 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4854 		epc = &cpc->epc;
4855 		raw_spin_lock_irq(&ctx->lock);
4856 		if (!epc->ctx) {
4857 			atomic_set(&epc->refcount, 1);
4858 			epc->embedded = 1;
4859 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4860 			epc->ctx = ctx;
4861 		} else {
4862 			WARN_ON_ONCE(epc->ctx != ctx);
4863 			atomic_inc(&epc->refcount);
4864 		}
4865 		raw_spin_unlock_irq(&ctx->lock);
4866 		return epc;
4867 	}
4868 
4869 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4870 	if (!new)
4871 		return ERR_PTR(-ENOMEM);
4872 
4873 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4874 		task_ctx_data = alloc_task_ctx_data(pmu);
4875 		if (!task_ctx_data) {
4876 			kfree(new);
4877 			return ERR_PTR(-ENOMEM);
4878 		}
4879 	}
4880 
4881 	__perf_init_event_pmu_context(new, pmu);
4882 
4883 	/*
4884 	 * XXX
4885 	 *
4886 	 * lockdep_assert_held(&ctx->mutex);
4887 	 *
4888 	 * can't because perf_event_init_task() doesn't actually hold the
4889 	 * child_ctx->mutex.
4890 	 */
4891 
4892 	raw_spin_lock_irq(&ctx->lock);
4893 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4894 		if (epc->pmu == pmu) {
4895 			WARN_ON_ONCE(epc->ctx != ctx);
4896 			atomic_inc(&epc->refcount);
4897 			goto found_epc;
4898 		}
4899 	}
4900 
4901 	epc = new;
4902 	new = NULL;
4903 
4904 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4905 	epc->ctx = ctx;
4906 
4907 found_epc:
4908 	if (task_ctx_data && !epc->task_ctx_data) {
4909 		epc->task_ctx_data = task_ctx_data;
4910 		task_ctx_data = NULL;
4911 		ctx->nr_task_data++;
4912 	}
4913 	raw_spin_unlock_irq(&ctx->lock);
4914 
4915 	free_task_ctx_data(pmu, task_ctx_data);
4916 	kfree(new);
4917 
4918 	return epc;
4919 }
4920 
4921 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4922 {
4923 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4924 }
4925 
4926 static void free_epc_rcu(struct rcu_head *head)
4927 {
4928 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4929 
4930 	kfree(epc->task_ctx_data);
4931 	kfree(epc);
4932 }
4933 
4934 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4935 {
4936 	struct perf_event_context *ctx = epc->ctx;
4937 	unsigned long flags;
4938 
4939 	/*
4940 	 * XXX
4941 	 *
4942 	 * lockdep_assert_held(&ctx->mutex);
4943 	 *
4944 	 * can't because of the call-site in _free_event()/put_event()
4945 	 * which isn't always called under ctx->mutex.
4946 	 */
4947 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4948 		return;
4949 
4950 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4951 
4952 	list_del_init(&epc->pmu_ctx_entry);
4953 	epc->ctx = NULL;
4954 
4955 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4956 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4957 
4958 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4959 
4960 	if (epc->embedded)
4961 		return;
4962 
4963 	call_rcu(&epc->rcu_head, free_epc_rcu);
4964 }
4965 
4966 static void perf_event_free_filter(struct perf_event *event);
4967 
4968 static void free_event_rcu(struct rcu_head *head)
4969 {
4970 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4971 
4972 	if (event->ns)
4973 		put_pid_ns(event->ns);
4974 	perf_event_free_filter(event);
4975 	kmem_cache_free(perf_event_cache, event);
4976 }
4977 
4978 static void ring_buffer_attach(struct perf_event *event,
4979 			       struct perf_buffer *rb);
4980 
4981 static void detach_sb_event(struct perf_event *event)
4982 {
4983 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4984 
4985 	raw_spin_lock(&pel->lock);
4986 	list_del_rcu(&event->sb_list);
4987 	raw_spin_unlock(&pel->lock);
4988 }
4989 
4990 static bool is_sb_event(struct perf_event *event)
4991 {
4992 	struct perf_event_attr *attr = &event->attr;
4993 
4994 	if (event->parent)
4995 		return false;
4996 
4997 	if (event->attach_state & PERF_ATTACH_TASK)
4998 		return false;
4999 
5000 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5001 	    attr->comm || attr->comm_exec ||
5002 	    attr->task || attr->ksymbol ||
5003 	    attr->context_switch || attr->text_poke ||
5004 	    attr->bpf_event)
5005 		return true;
5006 	return false;
5007 }
5008 
5009 static void unaccount_pmu_sb_event(struct perf_event *event)
5010 {
5011 	if (is_sb_event(event))
5012 		detach_sb_event(event);
5013 }
5014 
5015 #ifdef CONFIG_NO_HZ_FULL
5016 static DEFINE_SPINLOCK(nr_freq_lock);
5017 #endif
5018 
5019 static void unaccount_freq_event_nohz(void)
5020 {
5021 #ifdef CONFIG_NO_HZ_FULL
5022 	spin_lock(&nr_freq_lock);
5023 	if (atomic_dec_and_test(&nr_freq_events))
5024 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5025 	spin_unlock(&nr_freq_lock);
5026 #endif
5027 }
5028 
5029 static void unaccount_freq_event(void)
5030 {
5031 	if (tick_nohz_full_enabled())
5032 		unaccount_freq_event_nohz();
5033 	else
5034 		atomic_dec(&nr_freq_events);
5035 }
5036 
5037 static void unaccount_event(struct perf_event *event)
5038 {
5039 	bool dec = false;
5040 
5041 	if (event->parent)
5042 		return;
5043 
5044 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5045 		dec = true;
5046 	if (event->attr.mmap || event->attr.mmap_data)
5047 		atomic_dec(&nr_mmap_events);
5048 	if (event->attr.build_id)
5049 		atomic_dec(&nr_build_id_events);
5050 	if (event->attr.comm)
5051 		atomic_dec(&nr_comm_events);
5052 	if (event->attr.namespaces)
5053 		atomic_dec(&nr_namespaces_events);
5054 	if (event->attr.cgroup)
5055 		atomic_dec(&nr_cgroup_events);
5056 	if (event->attr.task)
5057 		atomic_dec(&nr_task_events);
5058 	if (event->attr.freq)
5059 		unaccount_freq_event();
5060 	if (event->attr.context_switch) {
5061 		dec = true;
5062 		atomic_dec(&nr_switch_events);
5063 	}
5064 	if (is_cgroup_event(event))
5065 		dec = true;
5066 	if (has_branch_stack(event))
5067 		dec = true;
5068 	if (event->attr.ksymbol)
5069 		atomic_dec(&nr_ksymbol_events);
5070 	if (event->attr.bpf_event)
5071 		atomic_dec(&nr_bpf_events);
5072 	if (event->attr.text_poke)
5073 		atomic_dec(&nr_text_poke_events);
5074 
5075 	if (dec) {
5076 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5077 			schedule_delayed_work(&perf_sched_work, HZ);
5078 	}
5079 
5080 	unaccount_pmu_sb_event(event);
5081 }
5082 
5083 static void perf_sched_delayed(struct work_struct *work)
5084 {
5085 	mutex_lock(&perf_sched_mutex);
5086 	if (atomic_dec_and_test(&perf_sched_count))
5087 		static_branch_disable(&perf_sched_events);
5088 	mutex_unlock(&perf_sched_mutex);
5089 }
5090 
5091 /*
5092  * The following implement mutual exclusion of events on "exclusive" pmus
5093  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5094  * at a time, so we disallow creating events that might conflict, namely:
5095  *
5096  *  1) cpu-wide events in the presence of per-task events,
5097  *  2) per-task events in the presence of cpu-wide events,
5098  *  3) two matching events on the same perf_event_context.
5099  *
5100  * The former two cases are handled in the allocation path (perf_event_alloc(),
5101  * _free_event()), the latter -- before the first perf_install_in_context().
5102  */
5103 static int exclusive_event_init(struct perf_event *event)
5104 {
5105 	struct pmu *pmu = event->pmu;
5106 
5107 	if (!is_exclusive_pmu(pmu))
5108 		return 0;
5109 
5110 	/*
5111 	 * Prevent co-existence of per-task and cpu-wide events on the
5112 	 * same exclusive pmu.
5113 	 *
5114 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5115 	 * events on this "exclusive" pmu, positive means there are
5116 	 * per-task events.
5117 	 *
5118 	 * Since this is called in perf_event_alloc() path, event::ctx
5119 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5120 	 * to mean "per-task event", because unlike other attach states it
5121 	 * never gets cleared.
5122 	 */
5123 	if (event->attach_state & PERF_ATTACH_TASK) {
5124 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5125 			return -EBUSY;
5126 	} else {
5127 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5128 			return -EBUSY;
5129 	}
5130 
5131 	return 0;
5132 }
5133 
5134 static void exclusive_event_destroy(struct perf_event *event)
5135 {
5136 	struct pmu *pmu = event->pmu;
5137 
5138 	if (!is_exclusive_pmu(pmu))
5139 		return;
5140 
5141 	/* see comment in exclusive_event_init() */
5142 	if (event->attach_state & PERF_ATTACH_TASK)
5143 		atomic_dec(&pmu->exclusive_cnt);
5144 	else
5145 		atomic_inc(&pmu->exclusive_cnt);
5146 }
5147 
5148 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5149 {
5150 	if ((e1->pmu == e2->pmu) &&
5151 	    (e1->cpu == e2->cpu ||
5152 	     e1->cpu == -1 ||
5153 	     e2->cpu == -1))
5154 		return true;
5155 	return false;
5156 }
5157 
5158 static bool exclusive_event_installable(struct perf_event *event,
5159 					struct perf_event_context *ctx)
5160 {
5161 	struct perf_event *iter_event;
5162 	struct pmu *pmu = event->pmu;
5163 
5164 	lockdep_assert_held(&ctx->mutex);
5165 
5166 	if (!is_exclusive_pmu(pmu))
5167 		return true;
5168 
5169 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5170 		if (exclusive_event_match(iter_event, event))
5171 			return false;
5172 	}
5173 
5174 	return true;
5175 }
5176 
5177 static void perf_addr_filters_splice(struct perf_event *event,
5178 				       struct list_head *head);
5179 
5180 static void _free_event(struct perf_event *event)
5181 {
5182 	irq_work_sync(&event->pending_irq);
5183 
5184 	unaccount_event(event);
5185 
5186 	security_perf_event_free(event);
5187 
5188 	if (event->rb) {
5189 		/*
5190 		 * Can happen when we close an event with re-directed output.
5191 		 *
5192 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5193 		 * over us; possibly making our ring_buffer_put() the last.
5194 		 */
5195 		mutex_lock(&event->mmap_mutex);
5196 		ring_buffer_attach(event, NULL);
5197 		mutex_unlock(&event->mmap_mutex);
5198 	}
5199 
5200 	if (is_cgroup_event(event))
5201 		perf_detach_cgroup(event);
5202 
5203 	if (!event->parent) {
5204 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5205 			put_callchain_buffers();
5206 	}
5207 
5208 	perf_event_free_bpf_prog(event);
5209 	perf_addr_filters_splice(event, NULL);
5210 	kfree(event->addr_filter_ranges);
5211 
5212 	if (event->destroy)
5213 		event->destroy(event);
5214 
5215 	/*
5216 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5217 	 * hw.target.
5218 	 */
5219 	if (event->hw.target)
5220 		put_task_struct(event->hw.target);
5221 
5222 	if (event->pmu_ctx)
5223 		put_pmu_ctx(event->pmu_ctx);
5224 
5225 	/*
5226 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5227 	 * all task references must be cleaned up.
5228 	 */
5229 	if (event->ctx)
5230 		put_ctx(event->ctx);
5231 
5232 	exclusive_event_destroy(event);
5233 	module_put(event->pmu->module);
5234 
5235 	call_rcu(&event->rcu_head, free_event_rcu);
5236 }
5237 
5238 /*
5239  * Used to free events which have a known refcount of 1, such as in error paths
5240  * where the event isn't exposed yet and inherited events.
5241  */
5242 static void free_event(struct perf_event *event)
5243 {
5244 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5245 				"unexpected event refcount: %ld; ptr=%p\n",
5246 				atomic_long_read(&event->refcount), event)) {
5247 		/* leak to avoid use-after-free */
5248 		return;
5249 	}
5250 
5251 	_free_event(event);
5252 }
5253 
5254 /*
5255  * Remove user event from the owner task.
5256  */
5257 static void perf_remove_from_owner(struct perf_event *event)
5258 {
5259 	struct task_struct *owner;
5260 
5261 	rcu_read_lock();
5262 	/*
5263 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5264 	 * observe !owner it means the list deletion is complete and we can
5265 	 * indeed free this event, otherwise we need to serialize on
5266 	 * owner->perf_event_mutex.
5267 	 */
5268 	owner = READ_ONCE(event->owner);
5269 	if (owner) {
5270 		/*
5271 		 * Since delayed_put_task_struct() also drops the last
5272 		 * task reference we can safely take a new reference
5273 		 * while holding the rcu_read_lock().
5274 		 */
5275 		get_task_struct(owner);
5276 	}
5277 	rcu_read_unlock();
5278 
5279 	if (owner) {
5280 		/*
5281 		 * If we're here through perf_event_exit_task() we're already
5282 		 * holding ctx->mutex which would be an inversion wrt. the
5283 		 * normal lock order.
5284 		 *
5285 		 * However we can safely take this lock because its the child
5286 		 * ctx->mutex.
5287 		 */
5288 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5289 
5290 		/*
5291 		 * We have to re-check the event->owner field, if it is cleared
5292 		 * we raced with perf_event_exit_task(), acquiring the mutex
5293 		 * ensured they're done, and we can proceed with freeing the
5294 		 * event.
5295 		 */
5296 		if (event->owner) {
5297 			list_del_init(&event->owner_entry);
5298 			smp_store_release(&event->owner, NULL);
5299 		}
5300 		mutex_unlock(&owner->perf_event_mutex);
5301 		put_task_struct(owner);
5302 	}
5303 }
5304 
5305 static void put_event(struct perf_event *event)
5306 {
5307 	if (!atomic_long_dec_and_test(&event->refcount))
5308 		return;
5309 
5310 	_free_event(event);
5311 }
5312 
5313 /*
5314  * Kill an event dead; while event:refcount will preserve the event
5315  * object, it will not preserve its functionality. Once the last 'user'
5316  * gives up the object, we'll destroy the thing.
5317  */
5318 int perf_event_release_kernel(struct perf_event *event)
5319 {
5320 	struct perf_event_context *ctx = event->ctx;
5321 	struct perf_event *child, *tmp;
5322 	LIST_HEAD(free_list);
5323 
5324 	/*
5325 	 * If we got here through err_alloc: free_event(event); we will not
5326 	 * have attached to a context yet.
5327 	 */
5328 	if (!ctx) {
5329 		WARN_ON_ONCE(event->attach_state &
5330 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5331 		goto no_ctx;
5332 	}
5333 
5334 	if (!is_kernel_event(event))
5335 		perf_remove_from_owner(event);
5336 
5337 	ctx = perf_event_ctx_lock(event);
5338 	WARN_ON_ONCE(ctx->parent_ctx);
5339 
5340 	/*
5341 	 * Mark this event as STATE_DEAD, there is no external reference to it
5342 	 * anymore.
5343 	 *
5344 	 * Anybody acquiring event->child_mutex after the below loop _must_
5345 	 * also see this, most importantly inherit_event() which will avoid
5346 	 * placing more children on the list.
5347 	 *
5348 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5349 	 * child events.
5350 	 */
5351 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5352 
5353 	perf_event_ctx_unlock(event, ctx);
5354 
5355 again:
5356 	mutex_lock(&event->child_mutex);
5357 	list_for_each_entry(child, &event->child_list, child_list) {
5358 
5359 		/*
5360 		 * Cannot change, child events are not migrated, see the
5361 		 * comment with perf_event_ctx_lock_nested().
5362 		 */
5363 		ctx = READ_ONCE(child->ctx);
5364 		/*
5365 		 * Since child_mutex nests inside ctx::mutex, we must jump
5366 		 * through hoops. We start by grabbing a reference on the ctx.
5367 		 *
5368 		 * Since the event cannot get freed while we hold the
5369 		 * child_mutex, the context must also exist and have a !0
5370 		 * reference count.
5371 		 */
5372 		get_ctx(ctx);
5373 
5374 		/*
5375 		 * Now that we have a ctx ref, we can drop child_mutex, and
5376 		 * acquire ctx::mutex without fear of it going away. Then we
5377 		 * can re-acquire child_mutex.
5378 		 */
5379 		mutex_unlock(&event->child_mutex);
5380 		mutex_lock(&ctx->mutex);
5381 		mutex_lock(&event->child_mutex);
5382 
5383 		/*
5384 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5385 		 * state, if child is still the first entry, it didn't get freed
5386 		 * and we can continue doing so.
5387 		 */
5388 		tmp = list_first_entry_or_null(&event->child_list,
5389 					       struct perf_event, child_list);
5390 		if (tmp == child) {
5391 			perf_remove_from_context(child, DETACH_GROUP);
5392 			list_move(&child->child_list, &free_list);
5393 			/*
5394 			 * This matches the refcount bump in inherit_event();
5395 			 * this can't be the last reference.
5396 			 */
5397 			put_event(event);
5398 		}
5399 
5400 		mutex_unlock(&event->child_mutex);
5401 		mutex_unlock(&ctx->mutex);
5402 		put_ctx(ctx);
5403 		goto again;
5404 	}
5405 	mutex_unlock(&event->child_mutex);
5406 
5407 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5408 		void *var = &child->ctx->refcount;
5409 
5410 		list_del(&child->child_list);
5411 		free_event(child);
5412 
5413 		/*
5414 		 * Wake any perf_event_free_task() waiting for this event to be
5415 		 * freed.
5416 		 */
5417 		smp_mb(); /* pairs with wait_var_event() */
5418 		wake_up_var(var);
5419 	}
5420 
5421 no_ctx:
5422 	put_event(event); /* Must be the 'last' reference */
5423 	return 0;
5424 }
5425 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5426 
5427 /*
5428  * Called when the last reference to the file is gone.
5429  */
5430 static int perf_release(struct inode *inode, struct file *file)
5431 {
5432 	perf_event_release_kernel(file->private_data);
5433 	return 0;
5434 }
5435 
5436 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5437 {
5438 	struct perf_event *child;
5439 	u64 total = 0;
5440 
5441 	*enabled = 0;
5442 	*running = 0;
5443 
5444 	mutex_lock(&event->child_mutex);
5445 
5446 	(void)perf_event_read(event, false);
5447 	total += perf_event_count(event);
5448 
5449 	*enabled += event->total_time_enabled +
5450 			atomic64_read(&event->child_total_time_enabled);
5451 	*running += event->total_time_running +
5452 			atomic64_read(&event->child_total_time_running);
5453 
5454 	list_for_each_entry(child, &event->child_list, child_list) {
5455 		(void)perf_event_read(child, false);
5456 		total += perf_event_count(child);
5457 		*enabled += child->total_time_enabled;
5458 		*running += child->total_time_running;
5459 	}
5460 	mutex_unlock(&event->child_mutex);
5461 
5462 	return total;
5463 }
5464 
5465 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5466 {
5467 	struct perf_event_context *ctx;
5468 	u64 count;
5469 
5470 	ctx = perf_event_ctx_lock(event);
5471 	count = __perf_event_read_value(event, enabled, running);
5472 	perf_event_ctx_unlock(event, ctx);
5473 
5474 	return count;
5475 }
5476 EXPORT_SYMBOL_GPL(perf_event_read_value);
5477 
5478 static int __perf_read_group_add(struct perf_event *leader,
5479 					u64 read_format, u64 *values)
5480 {
5481 	struct perf_event_context *ctx = leader->ctx;
5482 	struct perf_event *sub, *parent;
5483 	unsigned long flags;
5484 	int n = 1; /* skip @nr */
5485 	int ret;
5486 
5487 	ret = perf_event_read(leader, true);
5488 	if (ret)
5489 		return ret;
5490 
5491 	raw_spin_lock_irqsave(&ctx->lock, flags);
5492 	/*
5493 	 * Verify the grouping between the parent and child (inherited)
5494 	 * events is still in tact.
5495 	 *
5496 	 * Specifically:
5497 	 *  - leader->ctx->lock pins leader->sibling_list
5498 	 *  - parent->child_mutex pins parent->child_list
5499 	 *  - parent->ctx->mutex pins parent->sibling_list
5500 	 *
5501 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5502 	 * ctx->mutex), group destruction is not atomic between children, also
5503 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5504 	 * group.
5505 	 *
5506 	 * Therefore it is possible to have parent and child groups in a
5507 	 * different configuration and summing over such a beast makes no sense
5508 	 * what so ever.
5509 	 *
5510 	 * Reject this.
5511 	 */
5512 	parent = leader->parent;
5513 	if (parent &&
5514 	    (parent->group_generation != leader->group_generation ||
5515 	     parent->nr_siblings != leader->nr_siblings)) {
5516 		ret = -ECHILD;
5517 		goto unlock;
5518 	}
5519 
5520 	/*
5521 	 * Since we co-schedule groups, {enabled,running} times of siblings
5522 	 * will be identical to those of the leader, so we only publish one
5523 	 * set.
5524 	 */
5525 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5526 		values[n++] += leader->total_time_enabled +
5527 			atomic64_read(&leader->child_total_time_enabled);
5528 	}
5529 
5530 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5531 		values[n++] += leader->total_time_running +
5532 			atomic64_read(&leader->child_total_time_running);
5533 	}
5534 
5535 	/*
5536 	 * Write {count,id} tuples for every sibling.
5537 	 */
5538 	values[n++] += perf_event_count(leader);
5539 	if (read_format & PERF_FORMAT_ID)
5540 		values[n++] = primary_event_id(leader);
5541 	if (read_format & PERF_FORMAT_LOST)
5542 		values[n++] = atomic64_read(&leader->lost_samples);
5543 
5544 	for_each_sibling_event(sub, leader) {
5545 		values[n++] += perf_event_count(sub);
5546 		if (read_format & PERF_FORMAT_ID)
5547 			values[n++] = primary_event_id(sub);
5548 		if (read_format & PERF_FORMAT_LOST)
5549 			values[n++] = atomic64_read(&sub->lost_samples);
5550 	}
5551 
5552 unlock:
5553 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5554 	return ret;
5555 }
5556 
5557 static int perf_read_group(struct perf_event *event,
5558 				   u64 read_format, char __user *buf)
5559 {
5560 	struct perf_event *leader = event->group_leader, *child;
5561 	struct perf_event_context *ctx = leader->ctx;
5562 	int ret;
5563 	u64 *values;
5564 
5565 	lockdep_assert_held(&ctx->mutex);
5566 
5567 	values = kzalloc(event->read_size, GFP_KERNEL);
5568 	if (!values)
5569 		return -ENOMEM;
5570 
5571 	values[0] = 1 + leader->nr_siblings;
5572 
5573 	mutex_lock(&leader->child_mutex);
5574 
5575 	ret = __perf_read_group_add(leader, read_format, values);
5576 	if (ret)
5577 		goto unlock;
5578 
5579 	list_for_each_entry(child, &leader->child_list, child_list) {
5580 		ret = __perf_read_group_add(child, read_format, values);
5581 		if (ret)
5582 			goto unlock;
5583 	}
5584 
5585 	mutex_unlock(&leader->child_mutex);
5586 
5587 	ret = event->read_size;
5588 	if (copy_to_user(buf, values, event->read_size))
5589 		ret = -EFAULT;
5590 	goto out;
5591 
5592 unlock:
5593 	mutex_unlock(&leader->child_mutex);
5594 out:
5595 	kfree(values);
5596 	return ret;
5597 }
5598 
5599 static int perf_read_one(struct perf_event *event,
5600 				 u64 read_format, char __user *buf)
5601 {
5602 	u64 enabled, running;
5603 	u64 values[5];
5604 	int n = 0;
5605 
5606 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5607 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5608 		values[n++] = enabled;
5609 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5610 		values[n++] = running;
5611 	if (read_format & PERF_FORMAT_ID)
5612 		values[n++] = primary_event_id(event);
5613 	if (read_format & PERF_FORMAT_LOST)
5614 		values[n++] = atomic64_read(&event->lost_samples);
5615 
5616 	if (copy_to_user(buf, values, n * sizeof(u64)))
5617 		return -EFAULT;
5618 
5619 	return n * sizeof(u64);
5620 }
5621 
5622 static bool is_event_hup(struct perf_event *event)
5623 {
5624 	bool no_children;
5625 
5626 	if (event->state > PERF_EVENT_STATE_EXIT)
5627 		return false;
5628 
5629 	mutex_lock(&event->child_mutex);
5630 	no_children = list_empty(&event->child_list);
5631 	mutex_unlock(&event->child_mutex);
5632 	return no_children;
5633 }
5634 
5635 /*
5636  * Read the performance event - simple non blocking version for now
5637  */
5638 static ssize_t
5639 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5640 {
5641 	u64 read_format = event->attr.read_format;
5642 	int ret;
5643 
5644 	/*
5645 	 * Return end-of-file for a read on an event that is in
5646 	 * error state (i.e. because it was pinned but it couldn't be
5647 	 * scheduled on to the CPU at some point).
5648 	 */
5649 	if (event->state == PERF_EVENT_STATE_ERROR)
5650 		return 0;
5651 
5652 	if (count < event->read_size)
5653 		return -ENOSPC;
5654 
5655 	WARN_ON_ONCE(event->ctx->parent_ctx);
5656 	if (read_format & PERF_FORMAT_GROUP)
5657 		ret = perf_read_group(event, read_format, buf);
5658 	else
5659 		ret = perf_read_one(event, read_format, buf);
5660 
5661 	return ret;
5662 }
5663 
5664 static ssize_t
5665 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5666 {
5667 	struct perf_event *event = file->private_data;
5668 	struct perf_event_context *ctx;
5669 	int ret;
5670 
5671 	ret = security_perf_event_read(event);
5672 	if (ret)
5673 		return ret;
5674 
5675 	ctx = perf_event_ctx_lock(event);
5676 	ret = __perf_read(event, buf, count);
5677 	perf_event_ctx_unlock(event, ctx);
5678 
5679 	return ret;
5680 }
5681 
5682 static __poll_t perf_poll(struct file *file, poll_table *wait)
5683 {
5684 	struct perf_event *event = file->private_data;
5685 	struct perf_buffer *rb;
5686 	__poll_t events = EPOLLHUP;
5687 
5688 	poll_wait(file, &event->waitq, wait);
5689 
5690 	if (is_event_hup(event))
5691 		return events;
5692 
5693 	/*
5694 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5695 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5696 	 */
5697 	mutex_lock(&event->mmap_mutex);
5698 	rb = event->rb;
5699 	if (rb)
5700 		events = atomic_xchg(&rb->poll, 0);
5701 	mutex_unlock(&event->mmap_mutex);
5702 	return events;
5703 }
5704 
5705 static void _perf_event_reset(struct perf_event *event)
5706 {
5707 	(void)perf_event_read(event, false);
5708 	local64_set(&event->count, 0);
5709 	perf_event_update_userpage(event);
5710 }
5711 
5712 /* Assume it's not an event with inherit set. */
5713 u64 perf_event_pause(struct perf_event *event, bool reset)
5714 {
5715 	struct perf_event_context *ctx;
5716 	u64 count;
5717 
5718 	ctx = perf_event_ctx_lock(event);
5719 	WARN_ON_ONCE(event->attr.inherit);
5720 	_perf_event_disable(event);
5721 	count = local64_read(&event->count);
5722 	if (reset)
5723 		local64_set(&event->count, 0);
5724 	perf_event_ctx_unlock(event, ctx);
5725 
5726 	return count;
5727 }
5728 EXPORT_SYMBOL_GPL(perf_event_pause);
5729 
5730 /*
5731  * Holding the top-level event's child_mutex means that any
5732  * descendant process that has inherited this event will block
5733  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5734  * task existence requirements of perf_event_enable/disable.
5735  */
5736 static void perf_event_for_each_child(struct perf_event *event,
5737 					void (*func)(struct perf_event *))
5738 {
5739 	struct perf_event *child;
5740 
5741 	WARN_ON_ONCE(event->ctx->parent_ctx);
5742 
5743 	mutex_lock(&event->child_mutex);
5744 	func(event);
5745 	list_for_each_entry(child, &event->child_list, child_list)
5746 		func(child);
5747 	mutex_unlock(&event->child_mutex);
5748 }
5749 
5750 static void perf_event_for_each(struct perf_event *event,
5751 				  void (*func)(struct perf_event *))
5752 {
5753 	struct perf_event_context *ctx = event->ctx;
5754 	struct perf_event *sibling;
5755 
5756 	lockdep_assert_held(&ctx->mutex);
5757 
5758 	event = event->group_leader;
5759 
5760 	perf_event_for_each_child(event, func);
5761 	for_each_sibling_event(sibling, event)
5762 		perf_event_for_each_child(sibling, func);
5763 }
5764 
5765 static void __perf_event_period(struct perf_event *event,
5766 				struct perf_cpu_context *cpuctx,
5767 				struct perf_event_context *ctx,
5768 				void *info)
5769 {
5770 	u64 value = *((u64 *)info);
5771 	bool active;
5772 
5773 	if (event->attr.freq) {
5774 		event->attr.sample_freq = value;
5775 	} else {
5776 		event->attr.sample_period = value;
5777 		event->hw.sample_period = value;
5778 	}
5779 
5780 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5781 	if (active) {
5782 		perf_pmu_disable(event->pmu);
5783 		/*
5784 		 * We could be throttled; unthrottle now to avoid the tick
5785 		 * trying to unthrottle while we already re-started the event.
5786 		 */
5787 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5788 			event->hw.interrupts = 0;
5789 			perf_log_throttle(event, 1);
5790 		}
5791 		event->pmu->stop(event, PERF_EF_UPDATE);
5792 	}
5793 
5794 	local64_set(&event->hw.period_left, 0);
5795 
5796 	if (active) {
5797 		event->pmu->start(event, PERF_EF_RELOAD);
5798 		perf_pmu_enable(event->pmu);
5799 	}
5800 }
5801 
5802 static int perf_event_check_period(struct perf_event *event, u64 value)
5803 {
5804 	return event->pmu->check_period(event, value);
5805 }
5806 
5807 static int _perf_event_period(struct perf_event *event, u64 value)
5808 {
5809 	if (!is_sampling_event(event))
5810 		return -EINVAL;
5811 
5812 	if (!value)
5813 		return -EINVAL;
5814 
5815 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5816 		return -EINVAL;
5817 
5818 	if (perf_event_check_period(event, value))
5819 		return -EINVAL;
5820 
5821 	if (!event->attr.freq && (value & (1ULL << 63)))
5822 		return -EINVAL;
5823 
5824 	event_function_call(event, __perf_event_period, &value);
5825 
5826 	return 0;
5827 }
5828 
5829 int perf_event_period(struct perf_event *event, u64 value)
5830 {
5831 	struct perf_event_context *ctx;
5832 	int ret;
5833 
5834 	ctx = perf_event_ctx_lock(event);
5835 	ret = _perf_event_period(event, value);
5836 	perf_event_ctx_unlock(event, ctx);
5837 
5838 	return ret;
5839 }
5840 EXPORT_SYMBOL_GPL(perf_event_period);
5841 
5842 static const struct file_operations perf_fops;
5843 
5844 static inline int perf_fget_light(int fd, struct fd *p)
5845 {
5846 	struct fd f = fdget(fd);
5847 	if (!f.file)
5848 		return -EBADF;
5849 
5850 	if (f.file->f_op != &perf_fops) {
5851 		fdput(f);
5852 		return -EBADF;
5853 	}
5854 	*p = f;
5855 	return 0;
5856 }
5857 
5858 static int perf_event_set_output(struct perf_event *event,
5859 				 struct perf_event *output_event);
5860 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5861 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5862 			  struct perf_event_attr *attr);
5863 
5864 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5865 {
5866 	void (*func)(struct perf_event *);
5867 	u32 flags = arg;
5868 
5869 	switch (cmd) {
5870 	case PERF_EVENT_IOC_ENABLE:
5871 		func = _perf_event_enable;
5872 		break;
5873 	case PERF_EVENT_IOC_DISABLE:
5874 		func = _perf_event_disable;
5875 		break;
5876 	case PERF_EVENT_IOC_RESET:
5877 		func = _perf_event_reset;
5878 		break;
5879 
5880 	case PERF_EVENT_IOC_REFRESH:
5881 		return _perf_event_refresh(event, arg);
5882 
5883 	case PERF_EVENT_IOC_PERIOD:
5884 	{
5885 		u64 value;
5886 
5887 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5888 			return -EFAULT;
5889 
5890 		return _perf_event_period(event, value);
5891 	}
5892 	case PERF_EVENT_IOC_ID:
5893 	{
5894 		u64 id = primary_event_id(event);
5895 
5896 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5897 			return -EFAULT;
5898 		return 0;
5899 	}
5900 
5901 	case PERF_EVENT_IOC_SET_OUTPUT:
5902 	{
5903 		int ret;
5904 		if (arg != -1) {
5905 			struct perf_event *output_event;
5906 			struct fd output;
5907 			ret = perf_fget_light(arg, &output);
5908 			if (ret)
5909 				return ret;
5910 			output_event = output.file->private_data;
5911 			ret = perf_event_set_output(event, output_event);
5912 			fdput(output);
5913 		} else {
5914 			ret = perf_event_set_output(event, NULL);
5915 		}
5916 		return ret;
5917 	}
5918 
5919 	case PERF_EVENT_IOC_SET_FILTER:
5920 		return perf_event_set_filter(event, (void __user *)arg);
5921 
5922 	case PERF_EVENT_IOC_SET_BPF:
5923 	{
5924 		struct bpf_prog *prog;
5925 		int err;
5926 
5927 		prog = bpf_prog_get(arg);
5928 		if (IS_ERR(prog))
5929 			return PTR_ERR(prog);
5930 
5931 		err = perf_event_set_bpf_prog(event, prog, 0);
5932 		if (err) {
5933 			bpf_prog_put(prog);
5934 			return err;
5935 		}
5936 
5937 		return 0;
5938 	}
5939 
5940 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5941 		struct perf_buffer *rb;
5942 
5943 		rcu_read_lock();
5944 		rb = rcu_dereference(event->rb);
5945 		if (!rb || !rb->nr_pages) {
5946 			rcu_read_unlock();
5947 			return -EINVAL;
5948 		}
5949 		rb_toggle_paused(rb, !!arg);
5950 		rcu_read_unlock();
5951 		return 0;
5952 	}
5953 
5954 	case PERF_EVENT_IOC_QUERY_BPF:
5955 		return perf_event_query_prog_array(event, (void __user *)arg);
5956 
5957 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5958 		struct perf_event_attr new_attr;
5959 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5960 					 &new_attr);
5961 
5962 		if (err)
5963 			return err;
5964 
5965 		return perf_event_modify_attr(event,  &new_attr);
5966 	}
5967 	default:
5968 		return -ENOTTY;
5969 	}
5970 
5971 	if (flags & PERF_IOC_FLAG_GROUP)
5972 		perf_event_for_each(event, func);
5973 	else
5974 		perf_event_for_each_child(event, func);
5975 
5976 	return 0;
5977 }
5978 
5979 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5980 {
5981 	struct perf_event *event = file->private_data;
5982 	struct perf_event_context *ctx;
5983 	long ret;
5984 
5985 	/* Treat ioctl like writes as it is likely a mutating operation. */
5986 	ret = security_perf_event_write(event);
5987 	if (ret)
5988 		return ret;
5989 
5990 	ctx = perf_event_ctx_lock(event);
5991 	ret = _perf_ioctl(event, cmd, arg);
5992 	perf_event_ctx_unlock(event, ctx);
5993 
5994 	return ret;
5995 }
5996 
5997 #ifdef CONFIG_COMPAT
5998 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5999 				unsigned long arg)
6000 {
6001 	switch (_IOC_NR(cmd)) {
6002 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6003 	case _IOC_NR(PERF_EVENT_IOC_ID):
6004 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6005 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6006 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6007 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6008 			cmd &= ~IOCSIZE_MASK;
6009 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6010 		}
6011 		break;
6012 	}
6013 	return perf_ioctl(file, cmd, arg);
6014 }
6015 #else
6016 # define perf_compat_ioctl NULL
6017 #endif
6018 
6019 int perf_event_task_enable(void)
6020 {
6021 	struct perf_event_context *ctx;
6022 	struct perf_event *event;
6023 
6024 	mutex_lock(&current->perf_event_mutex);
6025 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6026 		ctx = perf_event_ctx_lock(event);
6027 		perf_event_for_each_child(event, _perf_event_enable);
6028 		perf_event_ctx_unlock(event, ctx);
6029 	}
6030 	mutex_unlock(&current->perf_event_mutex);
6031 
6032 	return 0;
6033 }
6034 
6035 int perf_event_task_disable(void)
6036 {
6037 	struct perf_event_context *ctx;
6038 	struct perf_event *event;
6039 
6040 	mutex_lock(&current->perf_event_mutex);
6041 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6042 		ctx = perf_event_ctx_lock(event);
6043 		perf_event_for_each_child(event, _perf_event_disable);
6044 		perf_event_ctx_unlock(event, ctx);
6045 	}
6046 	mutex_unlock(&current->perf_event_mutex);
6047 
6048 	return 0;
6049 }
6050 
6051 static int perf_event_index(struct perf_event *event)
6052 {
6053 	if (event->hw.state & PERF_HES_STOPPED)
6054 		return 0;
6055 
6056 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6057 		return 0;
6058 
6059 	return event->pmu->event_idx(event);
6060 }
6061 
6062 static void perf_event_init_userpage(struct perf_event *event)
6063 {
6064 	struct perf_event_mmap_page *userpg;
6065 	struct perf_buffer *rb;
6066 
6067 	rcu_read_lock();
6068 	rb = rcu_dereference(event->rb);
6069 	if (!rb)
6070 		goto unlock;
6071 
6072 	userpg = rb->user_page;
6073 
6074 	/* Allow new userspace to detect that bit 0 is deprecated */
6075 	userpg->cap_bit0_is_deprecated = 1;
6076 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6077 	userpg->data_offset = PAGE_SIZE;
6078 	userpg->data_size = perf_data_size(rb);
6079 
6080 unlock:
6081 	rcu_read_unlock();
6082 }
6083 
6084 void __weak arch_perf_update_userpage(
6085 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6086 {
6087 }
6088 
6089 /*
6090  * Callers need to ensure there can be no nesting of this function, otherwise
6091  * the seqlock logic goes bad. We can not serialize this because the arch
6092  * code calls this from NMI context.
6093  */
6094 void perf_event_update_userpage(struct perf_event *event)
6095 {
6096 	struct perf_event_mmap_page *userpg;
6097 	struct perf_buffer *rb;
6098 	u64 enabled, running, now;
6099 
6100 	rcu_read_lock();
6101 	rb = rcu_dereference(event->rb);
6102 	if (!rb)
6103 		goto unlock;
6104 
6105 	/*
6106 	 * compute total_time_enabled, total_time_running
6107 	 * based on snapshot values taken when the event
6108 	 * was last scheduled in.
6109 	 *
6110 	 * we cannot simply called update_context_time()
6111 	 * because of locking issue as we can be called in
6112 	 * NMI context
6113 	 */
6114 	calc_timer_values(event, &now, &enabled, &running);
6115 
6116 	userpg = rb->user_page;
6117 	/*
6118 	 * Disable preemption to guarantee consistent time stamps are stored to
6119 	 * the user page.
6120 	 */
6121 	preempt_disable();
6122 	++userpg->lock;
6123 	barrier();
6124 	userpg->index = perf_event_index(event);
6125 	userpg->offset = perf_event_count(event);
6126 	if (userpg->index)
6127 		userpg->offset -= local64_read(&event->hw.prev_count);
6128 
6129 	userpg->time_enabled = enabled +
6130 			atomic64_read(&event->child_total_time_enabled);
6131 
6132 	userpg->time_running = running +
6133 			atomic64_read(&event->child_total_time_running);
6134 
6135 	arch_perf_update_userpage(event, userpg, now);
6136 
6137 	barrier();
6138 	++userpg->lock;
6139 	preempt_enable();
6140 unlock:
6141 	rcu_read_unlock();
6142 }
6143 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6144 
6145 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6146 {
6147 	struct perf_event *event = vmf->vma->vm_file->private_data;
6148 	struct perf_buffer *rb;
6149 	vm_fault_t ret = VM_FAULT_SIGBUS;
6150 
6151 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6152 		if (vmf->pgoff == 0)
6153 			ret = 0;
6154 		return ret;
6155 	}
6156 
6157 	rcu_read_lock();
6158 	rb = rcu_dereference(event->rb);
6159 	if (!rb)
6160 		goto unlock;
6161 
6162 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6163 		goto unlock;
6164 
6165 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6166 	if (!vmf->page)
6167 		goto unlock;
6168 
6169 	get_page(vmf->page);
6170 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6171 	vmf->page->index   = vmf->pgoff;
6172 
6173 	ret = 0;
6174 unlock:
6175 	rcu_read_unlock();
6176 
6177 	return ret;
6178 }
6179 
6180 static void ring_buffer_attach(struct perf_event *event,
6181 			       struct perf_buffer *rb)
6182 {
6183 	struct perf_buffer *old_rb = NULL;
6184 	unsigned long flags;
6185 
6186 	WARN_ON_ONCE(event->parent);
6187 
6188 	if (event->rb) {
6189 		/*
6190 		 * Should be impossible, we set this when removing
6191 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6192 		 */
6193 		WARN_ON_ONCE(event->rcu_pending);
6194 
6195 		old_rb = event->rb;
6196 		spin_lock_irqsave(&old_rb->event_lock, flags);
6197 		list_del_rcu(&event->rb_entry);
6198 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6199 
6200 		event->rcu_batches = get_state_synchronize_rcu();
6201 		event->rcu_pending = 1;
6202 	}
6203 
6204 	if (rb) {
6205 		if (event->rcu_pending) {
6206 			cond_synchronize_rcu(event->rcu_batches);
6207 			event->rcu_pending = 0;
6208 		}
6209 
6210 		spin_lock_irqsave(&rb->event_lock, flags);
6211 		list_add_rcu(&event->rb_entry, &rb->event_list);
6212 		spin_unlock_irqrestore(&rb->event_lock, flags);
6213 	}
6214 
6215 	/*
6216 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6217 	 * before swizzling the event::rb pointer; if it's getting
6218 	 * unmapped, its aux_mmap_count will be 0 and it won't
6219 	 * restart. See the comment in __perf_pmu_output_stop().
6220 	 *
6221 	 * Data will inevitably be lost when set_output is done in
6222 	 * mid-air, but then again, whoever does it like this is
6223 	 * not in for the data anyway.
6224 	 */
6225 	if (has_aux(event))
6226 		perf_event_stop(event, 0);
6227 
6228 	rcu_assign_pointer(event->rb, rb);
6229 
6230 	if (old_rb) {
6231 		ring_buffer_put(old_rb);
6232 		/*
6233 		 * Since we detached before setting the new rb, so that we
6234 		 * could attach the new rb, we could have missed a wakeup.
6235 		 * Provide it now.
6236 		 */
6237 		wake_up_all(&event->waitq);
6238 	}
6239 }
6240 
6241 static void ring_buffer_wakeup(struct perf_event *event)
6242 {
6243 	struct perf_buffer *rb;
6244 
6245 	if (event->parent)
6246 		event = event->parent;
6247 
6248 	rcu_read_lock();
6249 	rb = rcu_dereference(event->rb);
6250 	if (rb) {
6251 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6252 			wake_up_all(&event->waitq);
6253 	}
6254 	rcu_read_unlock();
6255 }
6256 
6257 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6258 {
6259 	struct perf_buffer *rb;
6260 
6261 	if (event->parent)
6262 		event = event->parent;
6263 
6264 	rcu_read_lock();
6265 	rb = rcu_dereference(event->rb);
6266 	if (rb) {
6267 		if (!refcount_inc_not_zero(&rb->refcount))
6268 			rb = NULL;
6269 	}
6270 	rcu_read_unlock();
6271 
6272 	return rb;
6273 }
6274 
6275 void ring_buffer_put(struct perf_buffer *rb)
6276 {
6277 	if (!refcount_dec_and_test(&rb->refcount))
6278 		return;
6279 
6280 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6281 
6282 	call_rcu(&rb->rcu_head, rb_free_rcu);
6283 }
6284 
6285 static void perf_mmap_open(struct vm_area_struct *vma)
6286 {
6287 	struct perf_event *event = vma->vm_file->private_data;
6288 
6289 	atomic_inc(&event->mmap_count);
6290 	atomic_inc(&event->rb->mmap_count);
6291 
6292 	if (vma->vm_pgoff)
6293 		atomic_inc(&event->rb->aux_mmap_count);
6294 
6295 	if (event->pmu->event_mapped)
6296 		event->pmu->event_mapped(event, vma->vm_mm);
6297 }
6298 
6299 static void perf_pmu_output_stop(struct perf_event *event);
6300 
6301 /*
6302  * A buffer can be mmap()ed multiple times; either directly through the same
6303  * event, or through other events by use of perf_event_set_output().
6304  *
6305  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6306  * the buffer here, where we still have a VM context. This means we need
6307  * to detach all events redirecting to us.
6308  */
6309 static void perf_mmap_close(struct vm_area_struct *vma)
6310 {
6311 	struct perf_event *event = vma->vm_file->private_data;
6312 	struct perf_buffer *rb = ring_buffer_get(event);
6313 	struct user_struct *mmap_user = rb->mmap_user;
6314 	int mmap_locked = rb->mmap_locked;
6315 	unsigned long size = perf_data_size(rb);
6316 	bool detach_rest = false;
6317 
6318 	if (event->pmu->event_unmapped)
6319 		event->pmu->event_unmapped(event, vma->vm_mm);
6320 
6321 	/*
6322 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6323 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6324 	 * serialize with perf_mmap here.
6325 	 */
6326 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6327 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6328 		/*
6329 		 * Stop all AUX events that are writing to this buffer,
6330 		 * so that we can free its AUX pages and corresponding PMU
6331 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6332 		 * they won't start any more (see perf_aux_output_begin()).
6333 		 */
6334 		perf_pmu_output_stop(event);
6335 
6336 		/* now it's safe to free the pages */
6337 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6338 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6339 
6340 		/* this has to be the last one */
6341 		rb_free_aux(rb);
6342 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6343 
6344 		mutex_unlock(&event->mmap_mutex);
6345 	}
6346 
6347 	if (atomic_dec_and_test(&rb->mmap_count))
6348 		detach_rest = true;
6349 
6350 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6351 		goto out_put;
6352 
6353 	ring_buffer_attach(event, NULL);
6354 	mutex_unlock(&event->mmap_mutex);
6355 
6356 	/* If there's still other mmap()s of this buffer, we're done. */
6357 	if (!detach_rest)
6358 		goto out_put;
6359 
6360 	/*
6361 	 * No other mmap()s, detach from all other events that might redirect
6362 	 * into the now unreachable buffer. Somewhat complicated by the
6363 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6364 	 */
6365 again:
6366 	rcu_read_lock();
6367 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6368 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6369 			/*
6370 			 * This event is en-route to free_event() which will
6371 			 * detach it and remove it from the list.
6372 			 */
6373 			continue;
6374 		}
6375 		rcu_read_unlock();
6376 
6377 		mutex_lock(&event->mmap_mutex);
6378 		/*
6379 		 * Check we didn't race with perf_event_set_output() which can
6380 		 * swizzle the rb from under us while we were waiting to
6381 		 * acquire mmap_mutex.
6382 		 *
6383 		 * If we find a different rb; ignore this event, a next
6384 		 * iteration will no longer find it on the list. We have to
6385 		 * still restart the iteration to make sure we're not now
6386 		 * iterating the wrong list.
6387 		 */
6388 		if (event->rb == rb)
6389 			ring_buffer_attach(event, NULL);
6390 
6391 		mutex_unlock(&event->mmap_mutex);
6392 		put_event(event);
6393 
6394 		/*
6395 		 * Restart the iteration; either we're on the wrong list or
6396 		 * destroyed its integrity by doing a deletion.
6397 		 */
6398 		goto again;
6399 	}
6400 	rcu_read_unlock();
6401 
6402 	/*
6403 	 * It could be there's still a few 0-ref events on the list; they'll
6404 	 * get cleaned up by free_event() -- they'll also still have their
6405 	 * ref on the rb and will free it whenever they are done with it.
6406 	 *
6407 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6408 	 * undo the VM accounting.
6409 	 */
6410 
6411 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6412 			&mmap_user->locked_vm);
6413 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6414 	free_uid(mmap_user);
6415 
6416 out_put:
6417 	ring_buffer_put(rb); /* could be last */
6418 }
6419 
6420 static const struct vm_operations_struct perf_mmap_vmops = {
6421 	.open		= perf_mmap_open,
6422 	.close		= perf_mmap_close, /* non mergeable */
6423 	.fault		= perf_mmap_fault,
6424 	.page_mkwrite	= perf_mmap_fault,
6425 };
6426 
6427 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6428 {
6429 	struct perf_event *event = file->private_data;
6430 	unsigned long user_locked, user_lock_limit;
6431 	struct user_struct *user = current_user();
6432 	struct perf_buffer *rb = NULL;
6433 	unsigned long locked, lock_limit;
6434 	unsigned long vma_size;
6435 	unsigned long nr_pages;
6436 	long user_extra = 0, extra = 0;
6437 	int ret = 0, flags = 0;
6438 
6439 	/*
6440 	 * Don't allow mmap() of inherited per-task counters. This would
6441 	 * create a performance issue due to all children writing to the
6442 	 * same rb.
6443 	 */
6444 	if (event->cpu == -1 && event->attr.inherit)
6445 		return -EINVAL;
6446 
6447 	if (!(vma->vm_flags & VM_SHARED))
6448 		return -EINVAL;
6449 
6450 	ret = security_perf_event_read(event);
6451 	if (ret)
6452 		return ret;
6453 
6454 	vma_size = vma->vm_end - vma->vm_start;
6455 
6456 	if (vma->vm_pgoff == 0) {
6457 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6458 	} else {
6459 		/*
6460 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6461 		 * mapped, all subsequent mappings should have the same size
6462 		 * and offset. Must be above the normal perf buffer.
6463 		 */
6464 		u64 aux_offset, aux_size;
6465 
6466 		if (!event->rb)
6467 			return -EINVAL;
6468 
6469 		nr_pages = vma_size / PAGE_SIZE;
6470 
6471 		mutex_lock(&event->mmap_mutex);
6472 		ret = -EINVAL;
6473 
6474 		rb = event->rb;
6475 		if (!rb)
6476 			goto aux_unlock;
6477 
6478 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6479 		aux_size = READ_ONCE(rb->user_page->aux_size);
6480 
6481 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6482 			goto aux_unlock;
6483 
6484 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6485 			goto aux_unlock;
6486 
6487 		/* already mapped with a different offset */
6488 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6489 			goto aux_unlock;
6490 
6491 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6492 			goto aux_unlock;
6493 
6494 		/* already mapped with a different size */
6495 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6496 			goto aux_unlock;
6497 
6498 		if (!is_power_of_2(nr_pages))
6499 			goto aux_unlock;
6500 
6501 		if (!atomic_inc_not_zero(&rb->mmap_count))
6502 			goto aux_unlock;
6503 
6504 		if (rb_has_aux(rb)) {
6505 			atomic_inc(&rb->aux_mmap_count);
6506 			ret = 0;
6507 			goto unlock;
6508 		}
6509 
6510 		atomic_set(&rb->aux_mmap_count, 1);
6511 		user_extra = nr_pages;
6512 
6513 		goto accounting;
6514 	}
6515 
6516 	/*
6517 	 * If we have rb pages ensure they're a power-of-two number, so we
6518 	 * can do bitmasks instead of modulo.
6519 	 */
6520 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6521 		return -EINVAL;
6522 
6523 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6524 		return -EINVAL;
6525 
6526 	WARN_ON_ONCE(event->ctx->parent_ctx);
6527 again:
6528 	mutex_lock(&event->mmap_mutex);
6529 	if (event->rb) {
6530 		if (data_page_nr(event->rb) != nr_pages) {
6531 			ret = -EINVAL;
6532 			goto unlock;
6533 		}
6534 
6535 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6536 			/*
6537 			 * Raced against perf_mmap_close(); remove the
6538 			 * event and try again.
6539 			 */
6540 			ring_buffer_attach(event, NULL);
6541 			mutex_unlock(&event->mmap_mutex);
6542 			goto again;
6543 		}
6544 
6545 		goto unlock;
6546 	}
6547 
6548 	user_extra = nr_pages + 1;
6549 
6550 accounting:
6551 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6552 
6553 	/*
6554 	 * Increase the limit linearly with more CPUs:
6555 	 */
6556 	user_lock_limit *= num_online_cpus();
6557 
6558 	user_locked = atomic_long_read(&user->locked_vm);
6559 
6560 	/*
6561 	 * sysctl_perf_event_mlock may have changed, so that
6562 	 *     user->locked_vm > user_lock_limit
6563 	 */
6564 	if (user_locked > user_lock_limit)
6565 		user_locked = user_lock_limit;
6566 	user_locked += user_extra;
6567 
6568 	if (user_locked > user_lock_limit) {
6569 		/*
6570 		 * charge locked_vm until it hits user_lock_limit;
6571 		 * charge the rest from pinned_vm
6572 		 */
6573 		extra = user_locked - user_lock_limit;
6574 		user_extra -= extra;
6575 	}
6576 
6577 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6578 	lock_limit >>= PAGE_SHIFT;
6579 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6580 
6581 	if ((locked > lock_limit) && perf_is_paranoid() &&
6582 		!capable(CAP_IPC_LOCK)) {
6583 		ret = -EPERM;
6584 		goto unlock;
6585 	}
6586 
6587 	WARN_ON(!rb && event->rb);
6588 
6589 	if (vma->vm_flags & VM_WRITE)
6590 		flags |= RING_BUFFER_WRITABLE;
6591 
6592 	if (!rb) {
6593 		rb = rb_alloc(nr_pages,
6594 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6595 			      event->cpu, flags);
6596 
6597 		if (!rb) {
6598 			ret = -ENOMEM;
6599 			goto unlock;
6600 		}
6601 
6602 		atomic_set(&rb->mmap_count, 1);
6603 		rb->mmap_user = get_current_user();
6604 		rb->mmap_locked = extra;
6605 
6606 		ring_buffer_attach(event, rb);
6607 
6608 		perf_event_update_time(event);
6609 		perf_event_init_userpage(event);
6610 		perf_event_update_userpage(event);
6611 	} else {
6612 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6613 				   event->attr.aux_watermark, flags);
6614 		if (!ret)
6615 			rb->aux_mmap_locked = extra;
6616 	}
6617 
6618 unlock:
6619 	if (!ret) {
6620 		atomic_long_add(user_extra, &user->locked_vm);
6621 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6622 
6623 		atomic_inc(&event->mmap_count);
6624 	} else if (rb) {
6625 		atomic_dec(&rb->mmap_count);
6626 	}
6627 aux_unlock:
6628 	mutex_unlock(&event->mmap_mutex);
6629 
6630 	/*
6631 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6632 	 * vma.
6633 	 */
6634 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6635 	vma->vm_ops = &perf_mmap_vmops;
6636 
6637 	if (event->pmu->event_mapped)
6638 		event->pmu->event_mapped(event, vma->vm_mm);
6639 
6640 	return ret;
6641 }
6642 
6643 static int perf_fasync(int fd, struct file *filp, int on)
6644 {
6645 	struct inode *inode = file_inode(filp);
6646 	struct perf_event *event = filp->private_data;
6647 	int retval;
6648 
6649 	inode_lock(inode);
6650 	retval = fasync_helper(fd, filp, on, &event->fasync);
6651 	inode_unlock(inode);
6652 
6653 	if (retval < 0)
6654 		return retval;
6655 
6656 	return 0;
6657 }
6658 
6659 static const struct file_operations perf_fops = {
6660 	.llseek			= no_llseek,
6661 	.release		= perf_release,
6662 	.read			= perf_read,
6663 	.poll			= perf_poll,
6664 	.unlocked_ioctl		= perf_ioctl,
6665 	.compat_ioctl		= perf_compat_ioctl,
6666 	.mmap			= perf_mmap,
6667 	.fasync			= perf_fasync,
6668 };
6669 
6670 /*
6671  * Perf event wakeup
6672  *
6673  * If there's data, ensure we set the poll() state and publish everything
6674  * to user-space before waking everybody up.
6675  */
6676 
6677 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6678 {
6679 	/* only the parent has fasync state */
6680 	if (event->parent)
6681 		event = event->parent;
6682 	return &event->fasync;
6683 }
6684 
6685 void perf_event_wakeup(struct perf_event *event)
6686 {
6687 	ring_buffer_wakeup(event);
6688 
6689 	if (event->pending_kill) {
6690 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6691 		event->pending_kill = 0;
6692 	}
6693 }
6694 
6695 static void perf_sigtrap(struct perf_event *event)
6696 {
6697 	/*
6698 	 * We'd expect this to only occur if the irq_work is delayed and either
6699 	 * ctx->task or current has changed in the meantime. This can be the
6700 	 * case on architectures that do not implement arch_irq_work_raise().
6701 	 */
6702 	if (WARN_ON_ONCE(event->ctx->task != current))
6703 		return;
6704 
6705 	/*
6706 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6707 	 * task exiting.
6708 	 */
6709 	if (current->flags & PF_EXITING)
6710 		return;
6711 
6712 	send_sig_perf((void __user *)event->pending_addr,
6713 		      event->orig_type, event->attr.sig_data);
6714 }
6715 
6716 /*
6717  * Deliver the pending work in-event-context or follow the context.
6718  */
6719 static void __perf_pending_irq(struct perf_event *event)
6720 {
6721 	int cpu = READ_ONCE(event->oncpu);
6722 
6723 	/*
6724 	 * If the event isn't running; we done. event_sched_out() will have
6725 	 * taken care of things.
6726 	 */
6727 	if (cpu < 0)
6728 		return;
6729 
6730 	/*
6731 	 * Yay, we hit home and are in the context of the event.
6732 	 */
6733 	if (cpu == smp_processor_id()) {
6734 		if (event->pending_sigtrap) {
6735 			event->pending_sigtrap = 0;
6736 			perf_sigtrap(event);
6737 			local_dec(&event->ctx->nr_pending);
6738 		}
6739 		if (event->pending_disable) {
6740 			event->pending_disable = 0;
6741 			perf_event_disable_local(event);
6742 		}
6743 		return;
6744 	}
6745 
6746 	/*
6747 	 *  CPU-A			CPU-B
6748 	 *
6749 	 *  perf_event_disable_inatomic()
6750 	 *    @pending_disable = CPU-A;
6751 	 *    irq_work_queue();
6752 	 *
6753 	 *  sched-out
6754 	 *    @pending_disable = -1;
6755 	 *
6756 	 *				sched-in
6757 	 *				perf_event_disable_inatomic()
6758 	 *				  @pending_disable = CPU-B;
6759 	 *				  irq_work_queue(); // FAILS
6760 	 *
6761 	 *  irq_work_run()
6762 	 *    perf_pending_irq()
6763 	 *
6764 	 * But the event runs on CPU-B and wants disabling there.
6765 	 */
6766 	irq_work_queue_on(&event->pending_irq, cpu);
6767 }
6768 
6769 static void perf_pending_irq(struct irq_work *entry)
6770 {
6771 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6772 	int rctx;
6773 
6774 	/*
6775 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6776 	 * and we won't recurse 'further'.
6777 	 */
6778 	rctx = perf_swevent_get_recursion_context();
6779 
6780 	/*
6781 	 * The wakeup isn't bound to the context of the event -- it can happen
6782 	 * irrespective of where the event is.
6783 	 */
6784 	if (event->pending_wakeup) {
6785 		event->pending_wakeup = 0;
6786 		perf_event_wakeup(event);
6787 	}
6788 
6789 	__perf_pending_irq(event);
6790 
6791 	if (rctx >= 0)
6792 		perf_swevent_put_recursion_context(rctx);
6793 }
6794 
6795 static void perf_pending_task(struct callback_head *head)
6796 {
6797 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6798 	int rctx;
6799 
6800 	/*
6801 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6802 	 * and we won't recurse 'further'.
6803 	 */
6804 	preempt_disable_notrace();
6805 	rctx = perf_swevent_get_recursion_context();
6806 
6807 	if (event->pending_work) {
6808 		event->pending_work = 0;
6809 		perf_sigtrap(event);
6810 		local_dec(&event->ctx->nr_pending);
6811 	}
6812 
6813 	if (rctx >= 0)
6814 		perf_swevent_put_recursion_context(rctx);
6815 	preempt_enable_notrace();
6816 
6817 	put_event(event);
6818 }
6819 
6820 #ifdef CONFIG_GUEST_PERF_EVENTS
6821 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6822 
6823 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6824 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6825 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6826 
6827 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6828 {
6829 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6830 		return;
6831 
6832 	rcu_assign_pointer(perf_guest_cbs, cbs);
6833 	static_call_update(__perf_guest_state, cbs->state);
6834 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6835 
6836 	/* Implementing ->handle_intel_pt_intr is optional. */
6837 	if (cbs->handle_intel_pt_intr)
6838 		static_call_update(__perf_guest_handle_intel_pt_intr,
6839 				   cbs->handle_intel_pt_intr);
6840 }
6841 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6842 
6843 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6844 {
6845 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6846 		return;
6847 
6848 	rcu_assign_pointer(perf_guest_cbs, NULL);
6849 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6850 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6851 	static_call_update(__perf_guest_handle_intel_pt_intr,
6852 			   (void *)&__static_call_return0);
6853 	synchronize_rcu();
6854 }
6855 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6856 #endif
6857 
6858 static void
6859 perf_output_sample_regs(struct perf_output_handle *handle,
6860 			struct pt_regs *regs, u64 mask)
6861 {
6862 	int bit;
6863 	DECLARE_BITMAP(_mask, 64);
6864 
6865 	bitmap_from_u64(_mask, mask);
6866 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6867 		u64 val;
6868 
6869 		val = perf_reg_value(regs, bit);
6870 		perf_output_put(handle, val);
6871 	}
6872 }
6873 
6874 static void perf_sample_regs_user(struct perf_regs *regs_user,
6875 				  struct pt_regs *regs)
6876 {
6877 	if (user_mode(regs)) {
6878 		regs_user->abi = perf_reg_abi(current);
6879 		regs_user->regs = regs;
6880 	} else if (!(current->flags & PF_KTHREAD)) {
6881 		perf_get_regs_user(regs_user, regs);
6882 	} else {
6883 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6884 		regs_user->regs = NULL;
6885 	}
6886 }
6887 
6888 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6889 				  struct pt_regs *regs)
6890 {
6891 	regs_intr->regs = regs;
6892 	regs_intr->abi  = perf_reg_abi(current);
6893 }
6894 
6895 
6896 /*
6897  * Get remaining task size from user stack pointer.
6898  *
6899  * It'd be better to take stack vma map and limit this more
6900  * precisely, but there's no way to get it safely under interrupt,
6901  * so using TASK_SIZE as limit.
6902  */
6903 static u64 perf_ustack_task_size(struct pt_regs *regs)
6904 {
6905 	unsigned long addr = perf_user_stack_pointer(regs);
6906 
6907 	if (!addr || addr >= TASK_SIZE)
6908 		return 0;
6909 
6910 	return TASK_SIZE - addr;
6911 }
6912 
6913 static u16
6914 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6915 			struct pt_regs *regs)
6916 {
6917 	u64 task_size;
6918 
6919 	/* No regs, no stack pointer, no dump. */
6920 	if (!regs)
6921 		return 0;
6922 
6923 	/*
6924 	 * Check if we fit in with the requested stack size into the:
6925 	 * - TASK_SIZE
6926 	 *   If we don't, we limit the size to the TASK_SIZE.
6927 	 *
6928 	 * - remaining sample size
6929 	 *   If we don't, we customize the stack size to
6930 	 *   fit in to the remaining sample size.
6931 	 */
6932 
6933 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6934 	stack_size = min(stack_size, (u16) task_size);
6935 
6936 	/* Current header size plus static size and dynamic size. */
6937 	header_size += 2 * sizeof(u64);
6938 
6939 	/* Do we fit in with the current stack dump size? */
6940 	if ((u16) (header_size + stack_size) < header_size) {
6941 		/*
6942 		 * If we overflow the maximum size for the sample,
6943 		 * we customize the stack dump size to fit in.
6944 		 */
6945 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6946 		stack_size = round_up(stack_size, sizeof(u64));
6947 	}
6948 
6949 	return stack_size;
6950 }
6951 
6952 static void
6953 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6954 			  struct pt_regs *regs)
6955 {
6956 	/* Case of a kernel thread, nothing to dump */
6957 	if (!regs) {
6958 		u64 size = 0;
6959 		perf_output_put(handle, size);
6960 	} else {
6961 		unsigned long sp;
6962 		unsigned int rem;
6963 		u64 dyn_size;
6964 
6965 		/*
6966 		 * We dump:
6967 		 * static size
6968 		 *   - the size requested by user or the best one we can fit
6969 		 *     in to the sample max size
6970 		 * data
6971 		 *   - user stack dump data
6972 		 * dynamic size
6973 		 *   - the actual dumped size
6974 		 */
6975 
6976 		/* Static size. */
6977 		perf_output_put(handle, dump_size);
6978 
6979 		/* Data. */
6980 		sp = perf_user_stack_pointer(regs);
6981 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6982 		dyn_size = dump_size - rem;
6983 
6984 		perf_output_skip(handle, rem);
6985 
6986 		/* Dynamic size. */
6987 		perf_output_put(handle, dyn_size);
6988 	}
6989 }
6990 
6991 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6992 					  struct perf_sample_data *data,
6993 					  size_t size)
6994 {
6995 	struct perf_event *sampler = event->aux_event;
6996 	struct perf_buffer *rb;
6997 
6998 	data->aux_size = 0;
6999 
7000 	if (!sampler)
7001 		goto out;
7002 
7003 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7004 		goto out;
7005 
7006 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7007 		goto out;
7008 
7009 	rb = ring_buffer_get(sampler);
7010 	if (!rb)
7011 		goto out;
7012 
7013 	/*
7014 	 * If this is an NMI hit inside sampling code, don't take
7015 	 * the sample. See also perf_aux_sample_output().
7016 	 */
7017 	if (READ_ONCE(rb->aux_in_sampling)) {
7018 		data->aux_size = 0;
7019 	} else {
7020 		size = min_t(size_t, size, perf_aux_size(rb));
7021 		data->aux_size = ALIGN(size, sizeof(u64));
7022 	}
7023 	ring_buffer_put(rb);
7024 
7025 out:
7026 	return data->aux_size;
7027 }
7028 
7029 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7030                                  struct perf_event *event,
7031                                  struct perf_output_handle *handle,
7032                                  unsigned long size)
7033 {
7034 	unsigned long flags;
7035 	long ret;
7036 
7037 	/*
7038 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7039 	 * paths. If we start calling them in NMI context, they may race with
7040 	 * the IRQ ones, that is, for example, re-starting an event that's just
7041 	 * been stopped, which is why we're using a separate callback that
7042 	 * doesn't change the event state.
7043 	 *
7044 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7045 	 */
7046 	local_irq_save(flags);
7047 	/*
7048 	 * Guard against NMI hits inside the critical section;
7049 	 * see also perf_prepare_sample_aux().
7050 	 */
7051 	WRITE_ONCE(rb->aux_in_sampling, 1);
7052 	barrier();
7053 
7054 	ret = event->pmu->snapshot_aux(event, handle, size);
7055 
7056 	barrier();
7057 	WRITE_ONCE(rb->aux_in_sampling, 0);
7058 	local_irq_restore(flags);
7059 
7060 	return ret;
7061 }
7062 
7063 static void perf_aux_sample_output(struct perf_event *event,
7064 				   struct perf_output_handle *handle,
7065 				   struct perf_sample_data *data)
7066 {
7067 	struct perf_event *sampler = event->aux_event;
7068 	struct perf_buffer *rb;
7069 	unsigned long pad;
7070 	long size;
7071 
7072 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7073 		return;
7074 
7075 	rb = ring_buffer_get(sampler);
7076 	if (!rb)
7077 		return;
7078 
7079 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7080 
7081 	/*
7082 	 * An error here means that perf_output_copy() failed (returned a
7083 	 * non-zero surplus that it didn't copy), which in its current
7084 	 * enlightened implementation is not possible. If that changes, we'd
7085 	 * like to know.
7086 	 */
7087 	if (WARN_ON_ONCE(size < 0))
7088 		goto out_put;
7089 
7090 	/*
7091 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7092 	 * perf_prepare_sample_aux(), so should not be more than that.
7093 	 */
7094 	pad = data->aux_size - size;
7095 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7096 		pad = 8;
7097 
7098 	if (pad) {
7099 		u64 zero = 0;
7100 		perf_output_copy(handle, &zero, pad);
7101 	}
7102 
7103 out_put:
7104 	ring_buffer_put(rb);
7105 }
7106 
7107 /*
7108  * A set of common sample data types saved even for non-sample records
7109  * when event->attr.sample_id_all is set.
7110  */
7111 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7112 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7113 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7114 
7115 static void __perf_event_header__init_id(struct perf_sample_data *data,
7116 					 struct perf_event *event,
7117 					 u64 sample_type)
7118 {
7119 	data->type = event->attr.sample_type;
7120 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7121 
7122 	if (sample_type & PERF_SAMPLE_TID) {
7123 		/* namespace issues */
7124 		data->tid_entry.pid = perf_event_pid(event, current);
7125 		data->tid_entry.tid = perf_event_tid(event, current);
7126 	}
7127 
7128 	if (sample_type & PERF_SAMPLE_TIME)
7129 		data->time = perf_event_clock(event);
7130 
7131 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7132 		data->id = primary_event_id(event);
7133 
7134 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7135 		data->stream_id = event->id;
7136 
7137 	if (sample_type & PERF_SAMPLE_CPU) {
7138 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7139 		data->cpu_entry.reserved = 0;
7140 	}
7141 }
7142 
7143 void perf_event_header__init_id(struct perf_event_header *header,
7144 				struct perf_sample_data *data,
7145 				struct perf_event *event)
7146 {
7147 	if (event->attr.sample_id_all) {
7148 		header->size += event->id_header_size;
7149 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7150 	}
7151 }
7152 
7153 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7154 					   struct perf_sample_data *data)
7155 {
7156 	u64 sample_type = data->type;
7157 
7158 	if (sample_type & PERF_SAMPLE_TID)
7159 		perf_output_put(handle, data->tid_entry);
7160 
7161 	if (sample_type & PERF_SAMPLE_TIME)
7162 		perf_output_put(handle, data->time);
7163 
7164 	if (sample_type & PERF_SAMPLE_ID)
7165 		perf_output_put(handle, data->id);
7166 
7167 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7168 		perf_output_put(handle, data->stream_id);
7169 
7170 	if (sample_type & PERF_SAMPLE_CPU)
7171 		perf_output_put(handle, data->cpu_entry);
7172 
7173 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7174 		perf_output_put(handle, data->id);
7175 }
7176 
7177 void perf_event__output_id_sample(struct perf_event *event,
7178 				  struct perf_output_handle *handle,
7179 				  struct perf_sample_data *sample)
7180 {
7181 	if (event->attr.sample_id_all)
7182 		__perf_event__output_id_sample(handle, sample);
7183 }
7184 
7185 static void perf_output_read_one(struct perf_output_handle *handle,
7186 				 struct perf_event *event,
7187 				 u64 enabled, u64 running)
7188 {
7189 	u64 read_format = event->attr.read_format;
7190 	u64 values[5];
7191 	int n = 0;
7192 
7193 	values[n++] = perf_event_count(event);
7194 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7195 		values[n++] = enabled +
7196 			atomic64_read(&event->child_total_time_enabled);
7197 	}
7198 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7199 		values[n++] = running +
7200 			atomic64_read(&event->child_total_time_running);
7201 	}
7202 	if (read_format & PERF_FORMAT_ID)
7203 		values[n++] = primary_event_id(event);
7204 	if (read_format & PERF_FORMAT_LOST)
7205 		values[n++] = atomic64_read(&event->lost_samples);
7206 
7207 	__output_copy(handle, values, n * sizeof(u64));
7208 }
7209 
7210 static void perf_output_read_group(struct perf_output_handle *handle,
7211 			    struct perf_event *event,
7212 			    u64 enabled, u64 running)
7213 {
7214 	struct perf_event *leader = event->group_leader, *sub;
7215 	u64 read_format = event->attr.read_format;
7216 	unsigned long flags;
7217 	u64 values[6];
7218 	int n = 0;
7219 
7220 	/*
7221 	 * Disabling interrupts avoids all counter scheduling
7222 	 * (context switches, timer based rotation and IPIs).
7223 	 */
7224 	local_irq_save(flags);
7225 
7226 	values[n++] = 1 + leader->nr_siblings;
7227 
7228 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7229 		values[n++] = enabled;
7230 
7231 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7232 		values[n++] = running;
7233 
7234 	if ((leader != event) &&
7235 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7236 		leader->pmu->read(leader);
7237 
7238 	values[n++] = perf_event_count(leader);
7239 	if (read_format & PERF_FORMAT_ID)
7240 		values[n++] = primary_event_id(leader);
7241 	if (read_format & PERF_FORMAT_LOST)
7242 		values[n++] = atomic64_read(&leader->lost_samples);
7243 
7244 	__output_copy(handle, values, n * sizeof(u64));
7245 
7246 	for_each_sibling_event(sub, leader) {
7247 		n = 0;
7248 
7249 		if ((sub != event) &&
7250 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7251 			sub->pmu->read(sub);
7252 
7253 		values[n++] = perf_event_count(sub);
7254 		if (read_format & PERF_FORMAT_ID)
7255 			values[n++] = primary_event_id(sub);
7256 		if (read_format & PERF_FORMAT_LOST)
7257 			values[n++] = atomic64_read(&sub->lost_samples);
7258 
7259 		__output_copy(handle, values, n * sizeof(u64));
7260 	}
7261 
7262 	local_irq_restore(flags);
7263 }
7264 
7265 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7266 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7267 
7268 /*
7269  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7270  *
7271  * The problem is that its both hard and excessively expensive to iterate the
7272  * child list, not to mention that its impossible to IPI the children running
7273  * on another CPU, from interrupt/NMI context.
7274  */
7275 static void perf_output_read(struct perf_output_handle *handle,
7276 			     struct perf_event *event)
7277 {
7278 	u64 enabled = 0, running = 0, now;
7279 	u64 read_format = event->attr.read_format;
7280 
7281 	/*
7282 	 * compute total_time_enabled, total_time_running
7283 	 * based on snapshot values taken when the event
7284 	 * was last scheduled in.
7285 	 *
7286 	 * we cannot simply called update_context_time()
7287 	 * because of locking issue as we are called in
7288 	 * NMI context
7289 	 */
7290 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7291 		calc_timer_values(event, &now, &enabled, &running);
7292 
7293 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7294 		perf_output_read_group(handle, event, enabled, running);
7295 	else
7296 		perf_output_read_one(handle, event, enabled, running);
7297 }
7298 
7299 void perf_output_sample(struct perf_output_handle *handle,
7300 			struct perf_event_header *header,
7301 			struct perf_sample_data *data,
7302 			struct perf_event *event)
7303 {
7304 	u64 sample_type = data->type;
7305 
7306 	perf_output_put(handle, *header);
7307 
7308 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7309 		perf_output_put(handle, data->id);
7310 
7311 	if (sample_type & PERF_SAMPLE_IP)
7312 		perf_output_put(handle, data->ip);
7313 
7314 	if (sample_type & PERF_SAMPLE_TID)
7315 		perf_output_put(handle, data->tid_entry);
7316 
7317 	if (sample_type & PERF_SAMPLE_TIME)
7318 		perf_output_put(handle, data->time);
7319 
7320 	if (sample_type & PERF_SAMPLE_ADDR)
7321 		perf_output_put(handle, data->addr);
7322 
7323 	if (sample_type & PERF_SAMPLE_ID)
7324 		perf_output_put(handle, data->id);
7325 
7326 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7327 		perf_output_put(handle, data->stream_id);
7328 
7329 	if (sample_type & PERF_SAMPLE_CPU)
7330 		perf_output_put(handle, data->cpu_entry);
7331 
7332 	if (sample_type & PERF_SAMPLE_PERIOD)
7333 		perf_output_put(handle, data->period);
7334 
7335 	if (sample_type & PERF_SAMPLE_READ)
7336 		perf_output_read(handle, event);
7337 
7338 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7339 		int size = 1;
7340 
7341 		size += data->callchain->nr;
7342 		size *= sizeof(u64);
7343 		__output_copy(handle, data->callchain, size);
7344 	}
7345 
7346 	if (sample_type & PERF_SAMPLE_RAW) {
7347 		struct perf_raw_record *raw = data->raw;
7348 
7349 		if (raw) {
7350 			struct perf_raw_frag *frag = &raw->frag;
7351 
7352 			perf_output_put(handle, raw->size);
7353 			do {
7354 				if (frag->copy) {
7355 					__output_custom(handle, frag->copy,
7356 							frag->data, frag->size);
7357 				} else {
7358 					__output_copy(handle, frag->data,
7359 						      frag->size);
7360 				}
7361 				if (perf_raw_frag_last(frag))
7362 					break;
7363 				frag = frag->next;
7364 			} while (1);
7365 			if (frag->pad)
7366 				__output_skip(handle, NULL, frag->pad);
7367 		} else {
7368 			struct {
7369 				u32	size;
7370 				u32	data;
7371 			} raw = {
7372 				.size = sizeof(u32),
7373 				.data = 0,
7374 			};
7375 			perf_output_put(handle, raw);
7376 		}
7377 	}
7378 
7379 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7380 		if (data->br_stack) {
7381 			size_t size;
7382 
7383 			size = data->br_stack->nr
7384 			     * sizeof(struct perf_branch_entry);
7385 
7386 			perf_output_put(handle, data->br_stack->nr);
7387 			if (branch_sample_hw_index(event))
7388 				perf_output_put(handle, data->br_stack->hw_idx);
7389 			perf_output_copy(handle, data->br_stack->entries, size);
7390 		} else {
7391 			/*
7392 			 * we always store at least the value of nr
7393 			 */
7394 			u64 nr = 0;
7395 			perf_output_put(handle, nr);
7396 		}
7397 	}
7398 
7399 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7400 		u64 abi = data->regs_user.abi;
7401 
7402 		/*
7403 		 * If there are no regs to dump, notice it through
7404 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7405 		 */
7406 		perf_output_put(handle, abi);
7407 
7408 		if (abi) {
7409 			u64 mask = event->attr.sample_regs_user;
7410 			perf_output_sample_regs(handle,
7411 						data->regs_user.regs,
7412 						mask);
7413 		}
7414 	}
7415 
7416 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7417 		perf_output_sample_ustack(handle,
7418 					  data->stack_user_size,
7419 					  data->regs_user.regs);
7420 	}
7421 
7422 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7423 		perf_output_put(handle, data->weight.full);
7424 
7425 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7426 		perf_output_put(handle, data->data_src.val);
7427 
7428 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7429 		perf_output_put(handle, data->txn);
7430 
7431 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7432 		u64 abi = data->regs_intr.abi;
7433 		/*
7434 		 * If there are no regs to dump, notice it through
7435 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7436 		 */
7437 		perf_output_put(handle, abi);
7438 
7439 		if (abi) {
7440 			u64 mask = event->attr.sample_regs_intr;
7441 
7442 			perf_output_sample_regs(handle,
7443 						data->regs_intr.regs,
7444 						mask);
7445 		}
7446 	}
7447 
7448 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7449 		perf_output_put(handle, data->phys_addr);
7450 
7451 	if (sample_type & PERF_SAMPLE_CGROUP)
7452 		perf_output_put(handle, data->cgroup);
7453 
7454 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7455 		perf_output_put(handle, data->data_page_size);
7456 
7457 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7458 		perf_output_put(handle, data->code_page_size);
7459 
7460 	if (sample_type & PERF_SAMPLE_AUX) {
7461 		perf_output_put(handle, data->aux_size);
7462 
7463 		if (data->aux_size)
7464 			perf_aux_sample_output(event, handle, data);
7465 	}
7466 
7467 	if (!event->attr.watermark) {
7468 		int wakeup_events = event->attr.wakeup_events;
7469 
7470 		if (wakeup_events) {
7471 			struct perf_buffer *rb = handle->rb;
7472 			int events = local_inc_return(&rb->events);
7473 
7474 			if (events >= wakeup_events) {
7475 				local_sub(wakeup_events, &rb->events);
7476 				local_inc(&rb->wakeup);
7477 			}
7478 		}
7479 	}
7480 }
7481 
7482 static u64 perf_virt_to_phys(u64 virt)
7483 {
7484 	u64 phys_addr = 0;
7485 
7486 	if (!virt)
7487 		return 0;
7488 
7489 	if (virt >= TASK_SIZE) {
7490 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7491 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7492 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7493 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7494 	} else {
7495 		/*
7496 		 * Walking the pages tables for user address.
7497 		 * Interrupts are disabled, so it prevents any tear down
7498 		 * of the page tables.
7499 		 * Try IRQ-safe get_user_page_fast_only first.
7500 		 * If failed, leave phys_addr as 0.
7501 		 */
7502 		if (current->mm != NULL) {
7503 			struct page *p;
7504 
7505 			pagefault_disable();
7506 			if (get_user_page_fast_only(virt, 0, &p)) {
7507 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7508 				put_page(p);
7509 			}
7510 			pagefault_enable();
7511 		}
7512 	}
7513 
7514 	return phys_addr;
7515 }
7516 
7517 /*
7518  * Return the pagetable size of a given virtual address.
7519  */
7520 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7521 {
7522 	u64 size = 0;
7523 
7524 #ifdef CONFIG_HAVE_FAST_GUP
7525 	pgd_t *pgdp, pgd;
7526 	p4d_t *p4dp, p4d;
7527 	pud_t *pudp, pud;
7528 	pmd_t *pmdp, pmd;
7529 	pte_t *ptep, pte;
7530 
7531 	pgdp = pgd_offset(mm, addr);
7532 	pgd = READ_ONCE(*pgdp);
7533 	if (pgd_none(pgd))
7534 		return 0;
7535 
7536 	if (pgd_leaf(pgd))
7537 		return pgd_leaf_size(pgd);
7538 
7539 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7540 	p4d = READ_ONCE(*p4dp);
7541 	if (!p4d_present(p4d))
7542 		return 0;
7543 
7544 	if (p4d_leaf(p4d))
7545 		return p4d_leaf_size(p4d);
7546 
7547 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7548 	pud = READ_ONCE(*pudp);
7549 	if (!pud_present(pud))
7550 		return 0;
7551 
7552 	if (pud_leaf(pud))
7553 		return pud_leaf_size(pud);
7554 
7555 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7556 again:
7557 	pmd = pmdp_get_lockless(pmdp);
7558 	if (!pmd_present(pmd))
7559 		return 0;
7560 
7561 	if (pmd_leaf(pmd))
7562 		return pmd_leaf_size(pmd);
7563 
7564 	ptep = pte_offset_map(&pmd, addr);
7565 	if (!ptep)
7566 		goto again;
7567 
7568 	pte = ptep_get_lockless(ptep);
7569 	if (pte_present(pte))
7570 		size = pte_leaf_size(pte);
7571 	pte_unmap(ptep);
7572 #endif /* CONFIG_HAVE_FAST_GUP */
7573 
7574 	return size;
7575 }
7576 
7577 static u64 perf_get_page_size(unsigned long addr)
7578 {
7579 	struct mm_struct *mm;
7580 	unsigned long flags;
7581 	u64 size;
7582 
7583 	if (!addr)
7584 		return 0;
7585 
7586 	/*
7587 	 * Software page-table walkers must disable IRQs,
7588 	 * which prevents any tear down of the page tables.
7589 	 */
7590 	local_irq_save(flags);
7591 
7592 	mm = current->mm;
7593 	if (!mm) {
7594 		/*
7595 		 * For kernel threads and the like, use init_mm so that
7596 		 * we can find kernel memory.
7597 		 */
7598 		mm = &init_mm;
7599 	}
7600 
7601 	size = perf_get_pgtable_size(mm, addr);
7602 
7603 	local_irq_restore(flags);
7604 
7605 	return size;
7606 }
7607 
7608 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7609 
7610 struct perf_callchain_entry *
7611 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7612 {
7613 	bool kernel = !event->attr.exclude_callchain_kernel;
7614 	bool user   = !event->attr.exclude_callchain_user;
7615 	/* Disallow cross-task user callchains. */
7616 	bool crosstask = event->ctx->task && event->ctx->task != current;
7617 	const u32 max_stack = event->attr.sample_max_stack;
7618 	struct perf_callchain_entry *callchain;
7619 
7620 	if (!kernel && !user)
7621 		return &__empty_callchain;
7622 
7623 	callchain = get_perf_callchain(regs, 0, kernel, user,
7624 				       max_stack, crosstask, true);
7625 	return callchain ?: &__empty_callchain;
7626 }
7627 
7628 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7629 {
7630 	return d * !!(flags & s);
7631 }
7632 
7633 void perf_prepare_sample(struct perf_sample_data *data,
7634 			 struct perf_event *event,
7635 			 struct pt_regs *regs)
7636 {
7637 	u64 sample_type = event->attr.sample_type;
7638 	u64 filtered_sample_type;
7639 
7640 	/*
7641 	 * Add the sample flags that are dependent to others.  And clear the
7642 	 * sample flags that have already been done by the PMU driver.
7643 	 */
7644 	filtered_sample_type = sample_type;
7645 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7646 					   PERF_SAMPLE_IP);
7647 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7648 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7649 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7650 					   PERF_SAMPLE_REGS_USER);
7651 	filtered_sample_type &= ~data->sample_flags;
7652 
7653 	if (filtered_sample_type == 0) {
7654 		/* Make sure it has the correct data->type for output */
7655 		data->type = event->attr.sample_type;
7656 		return;
7657 	}
7658 
7659 	__perf_event_header__init_id(data, event, filtered_sample_type);
7660 
7661 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7662 		data->ip = perf_instruction_pointer(regs);
7663 		data->sample_flags |= PERF_SAMPLE_IP;
7664 	}
7665 
7666 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7667 		perf_sample_save_callchain(data, event, regs);
7668 
7669 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7670 		data->raw = NULL;
7671 		data->dyn_size += sizeof(u64);
7672 		data->sample_flags |= PERF_SAMPLE_RAW;
7673 	}
7674 
7675 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7676 		data->br_stack = NULL;
7677 		data->dyn_size += sizeof(u64);
7678 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7679 	}
7680 
7681 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7682 		perf_sample_regs_user(&data->regs_user, regs);
7683 
7684 	/*
7685 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7686 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7687 	 * the dyn_size if it's not requested by users.
7688 	 */
7689 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7690 		/* regs dump ABI info */
7691 		int size = sizeof(u64);
7692 
7693 		if (data->regs_user.regs) {
7694 			u64 mask = event->attr.sample_regs_user;
7695 			size += hweight64(mask) * sizeof(u64);
7696 		}
7697 
7698 		data->dyn_size += size;
7699 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7700 	}
7701 
7702 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7703 		/*
7704 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7705 		 * processed as the last one or have additional check added
7706 		 * in case new sample type is added, because we could eat
7707 		 * up the rest of the sample size.
7708 		 */
7709 		u16 stack_size = event->attr.sample_stack_user;
7710 		u16 header_size = perf_sample_data_size(data, event);
7711 		u16 size = sizeof(u64);
7712 
7713 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7714 						     data->regs_user.regs);
7715 
7716 		/*
7717 		 * If there is something to dump, add space for the dump
7718 		 * itself and for the field that tells the dynamic size,
7719 		 * which is how many have been actually dumped.
7720 		 */
7721 		if (stack_size)
7722 			size += sizeof(u64) + stack_size;
7723 
7724 		data->stack_user_size = stack_size;
7725 		data->dyn_size += size;
7726 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7727 	}
7728 
7729 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7730 		data->weight.full = 0;
7731 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7732 	}
7733 
7734 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7735 		data->data_src.val = PERF_MEM_NA;
7736 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7737 	}
7738 
7739 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7740 		data->txn = 0;
7741 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7742 	}
7743 
7744 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7745 		data->addr = 0;
7746 		data->sample_flags |= PERF_SAMPLE_ADDR;
7747 	}
7748 
7749 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7750 		/* regs dump ABI info */
7751 		int size = sizeof(u64);
7752 
7753 		perf_sample_regs_intr(&data->regs_intr, regs);
7754 
7755 		if (data->regs_intr.regs) {
7756 			u64 mask = event->attr.sample_regs_intr;
7757 
7758 			size += hweight64(mask) * sizeof(u64);
7759 		}
7760 
7761 		data->dyn_size += size;
7762 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7763 	}
7764 
7765 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7766 		data->phys_addr = perf_virt_to_phys(data->addr);
7767 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7768 	}
7769 
7770 #ifdef CONFIG_CGROUP_PERF
7771 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7772 		struct cgroup *cgrp;
7773 
7774 		/* protected by RCU */
7775 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7776 		data->cgroup = cgroup_id(cgrp);
7777 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7778 	}
7779 #endif
7780 
7781 	/*
7782 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7783 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7784 	 * but the value will not dump to the userspace.
7785 	 */
7786 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7787 		data->data_page_size = perf_get_page_size(data->addr);
7788 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7789 	}
7790 
7791 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7792 		data->code_page_size = perf_get_page_size(data->ip);
7793 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7794 	}
7795 
7796 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7797 		u64 size;
7798 		u16 header_size = perf_sample_data_size(data, event);
7799 
7800 		header_size += sizeof(u64); /* size */
7801 
7802 		/*
7803 		 * Given the 16bit nature of header::size, an AUX sample can
7804 		 * easily overflow it, what with all the preceding sample bits.
7805 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7806 		 * per sample in total (rounded down to 8 byte boundary).
7807 		 */
7808 		size = min_t(size_t, U16_MAX - header_size,
7809 			     event->attr.aux_sample_size);
7810 		size = rounddown(size, 8);
7811 		size = perf_prepare_sample_aux(event, data, size);
7812 
7813 		WARN_ON_ONCE(size + header_size > U16_MAX);
7814 		data->dyn_size += size + sizeof(u64); /* size above */
7815 		data->sample_flags |= PERF_SAMPLE_AUX;
7816 	}
7817 }
7818 
7819 void perf_prepare_header(struct perf_event_header *header,
7820 			 struct perf_sample_data *data,
7821 			 struct perf_event *event,
7822 			 struct pt_regs *regs)
7823 {
7824 	header->type = PERF_RECORD_SAMPLE;
7825 	header->size = perf_sample_data_size(data, event);
7826 	header->misc = perf_misc_flags(regs);
7827 
7828 	/*
7829 	 * If you're adding more sample types here, you likely need to do
7830 	 * something about the overflowing header::size, like repurpose the
7831 	 * lowest 3 bits of size, which should be always zero at the moment.
7832 	 * This raises a more important question, do we really need 512k sized
7833 	 * samples and why, so good argumentation is in order for whatever you
7834 	 * do here next.
7835 	 */
7836 	WARN_ON_ONCE(header->size & 7);
7837 }
7838 
7839 static __always_inline int
7840 __perf_event_output(struct perf_event *event,
7841 		    struct perf_sample_data *data,
7842 		    struct pt_regs *regs,
7843 		    int (*output_begin)(struct perf_output_handle *,
7844 					struct perf_sample_data *,
7845 					struct perf_event *,
7846 					unsigned int))
7847 {
7848 	struct perf_output_handle handle;
7849 	struct perf_event_header header;
7850 	int err;
7851 
7852 	/* protect the callchain buffers */
7853 	rcu_read_lock();
7854 
7855 	perf_prepare_sample(data, event, regs);
7856 	perf_prepare_header(&header, data, event, regs);
7857 
7858 	err = output_begin(&handle, data, event, header.size);
7859 	if (err)
7860 		goto exit;
7861 
7862 	perf_output_sample(&handle, &header, data, event);
7863 
7864 	perf_output_end(&handle);
7865 
7866 exit:
7867 	rcu_read_unlock();
7868 	return err;
7869 }
7870 
7871 void
7872 perf_event_output_forward(struct perf_event *event,
7873 			 struct perf_sample_data *data,
7874 			 struct pt_regs *regs)
7875 {
7876 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7877 }
7878 
7879 void
7880 perf_event_output_backward(struct perf_event *event,
7881 			   struct perf_sample_data *data,
7882 			   struct pt_regs *regs)
7883 {
7884 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7885 }
7886 
7887 int
7888 perf_event_output(struct perf_event *event,
7889 		  struct perf_sample_data *data,
7890 		  struct pt_regs *regs)
7891 {
7892 	return __perf_event_output(event, data, regs, perf_output_begin);
7893 }
7894 
7895 /*
7896  * read event_id
7897  */
7898 
7899 struct perf_read_event {
7900 	struct perf_event_header	header;
7901 
7902 	u32				pid;
7903 	u32				tid;
7904 };
7905 
7906 static void
7907 perf_event_read_event(struct perf_event *event,
7908 			struct task_struct *task)
7909 {
7910 	struct perf_output_handle handle;
7911 	struct perf_sample_data sample;
7912 	struct perf_read_event read_event = {
7913 		.header = {
7914 			.type = PERF_RECORD_READ,
7915 			.misc = 0,
7916 			.size = sizeof(read_event) + event->read_size,
7917 		},
7918 		.pid = perf_event_pid(event, task),
7919 		.tid = perf_event_tid(event, task),
7920 	};
7921 	int ret;
7922 
7923 	perf_event_header__init_id(&read_event.header, &sample, event);
7924 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7925 	if (ret)
7926 		return;
7927 
7928 	perf_output_put(&handle, read_event);
7929 	perf_output_read(&handle, event);
7930 	perf_event__output_id_sample(event, &handle, &sample);
7931 
7932 	perf_output_end(&handle);
7933 }
7934 
7935 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7936 
7937 static void
7938 perf_iterate_ctx(struct perf_event_context *ctx,
7939 		   perf_iterate_f output,
7940 		   void *data, bool all)
7941 {
7942 	struct perf_event *event;
7943 
7944 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7945 		if (!all) {
7946 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7947 				continue;
7948 			if (!event_filter_match(event))
7949 				continue;
7950 		}
7951 
7952 		output(event, data);
7953 	}
7954 }
7955 
7956 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7957 {
7958 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7959 	struct perf_event *event;
7960 
7961 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7962 		/*
7963 		 * Skip events that are not fully formed yet; ensure that
7964 		 * if we observe event->ctx, both event and ctx will be
7965 		 * complete enough. See perf_install_in_context().
7966 		 */
7967 		if (!smp_load_acquire(&event->ctx))
7968 			continue;
7969 
7970 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7971 			continue;
7972 		if (!event_filter_match(event))
7973 			continue;
7974 		output(event, data);
7975 	}
7976 }
7977 
7978 /*
7979  * Iterate all events that need to receive side-band events.
7980  *
7981  * For new callers; ensure that account_pmu_sb_event() includes
7982  * your event, otherwise it might not get delivered.
7983  */
7984 static void
7985 perf_iterate_sb(perf_iterate_f output, void *data,
7986 	       struct perf_event_context *task_ctx)
7987 {
7988 	struct perf_event_context *ctx;
7989 
7990 	rcu_read_lock();
7991 	preempt_disable();
7992 
7993 	/*
7994 	 * If we have task_ctx != NULL we only notify the task context itself.
7995 	 * The task_ctx is set only for EXIT events before releasing task
7996 	 * context.
7997 	 */
7998 	if (task_ctx) {
7999 		perf_iterate_ctx(task_ctx, output, data, false);
8000 		goto done;
8001 	}
8002 
8003 	perf_iterate_sb_cpu(output, data);
8004 
8005 	ctx = rcu_dereference(current->perf_event_ctxp);
8006 	if (ctx)
8007 		perf_iterate_ctx(ctx, output, data, false);
8008 done:
8009 	preempt_enable();
8010 	rcu_read_unlock();
8011 }
8012 
8013 /*
8014  * Clear all file-based filters at exec, they'll have to be
8015  * re-instated when/if these objects are mmapped again.
8016  */
8017 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8018 {
8019 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8020 	struct perf_addr_filter *filter;
8021 	unsigned int restart = 0, count = 0;
8022 	unsigned long flags;
8023 
8024 	if (!has_addr_filter(event))
8025 		return;
8026 
8027 	raw_spin_lock_irqsave(&ifh->lock, flags);
8028 	list_for_each_entry(filter, &ifh->list, entry) {
8029 		if (filter->path.dentry) {
8030 			event->addr_filter_ranges[count].start = 0;
8031 			event->addr_filter_ranges[count].size = 0;
8032 			restart++;
8033 		}
8034 
8035 		count++;
8036 	}
8037 
8038 	if (restart)
8039 		event->addr_filters_gen++;
8040 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8041 
8042 	if (restart)
8043 		perf_event_stop(event, 1);
8044 }
8045 
8046 void perf_event_exec(void)
8047 {
8048 	struct perf_event_context *ctx;
8049 
8050 	ctx = perf_pin_task_context(current);
8051 	if (!ctx)
8052 		return;
8053 
8054 	perf_event_enable_on_exec(ctx);
8055 	perf_event_remove_on_exec(ctx);
8056 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8057 
8058 	perf_unpin_context(ctx);
8059 	put_ctx(ctx);
8060 }
8061 
8062 struct remote_output {
8063 	struct perf_buffer	*rb;
8064 	int			err;
8065 };
8066 
8067 static void __perf_event_output_stop(struct perf_event *event, void *data)
8068 {
8069 	struct perf_event *parent = event->parent;
8070 	struct remote_output *ro = data;
8071 	struct perf_buffer *rb = ro->rb;
8072 	struct stop_event_data sd = {
8073 		.event	= event,
8074 	};
8075 
8076 	if (!has_aux(event))
8077 		return;
8078 
8079 	if (!parent)
8080 		parent = event;
8081 
8082 	/*
8083 	 * In case of inheritance, it will be the parent that links to the
8084 	 * ring-buffer, but it will be the child that's actually using it.
8085 	 *
8086 	 * We are using event::rb to determine if the event should be stopped,
8087 	 * however this may race with ring_buffer_attach() (through set_output),
8088 	 * which will make us skip the event that actually needs to be stopped.
8089 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8090 	 * its rb pointer.
8091 	 */
8092 	if (rcu_dereference(parent->rb) == rb)
8093 		ro->err = __perf_event_stop(&sd);
8094 }
8095 
8096 static int __perf_pmu_output_stop(void *info)
8097 {
8098 	struct perf_event *event = info;
8099 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8100 	struct remote_output ro = {
8101 		.rb	= event->rb,
8102 	};
8103 
8104 	rcu_read_lock();
8105 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8106 	if (cpuctx->task_ctx)
8107 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8108 				   &ro, false);
8109 	rcu_read_unlock();
8110 
8111 	return ro.err;
8112 }
8113 
8114 static void perf_pmu_output_stop(struct perf_event *event)
8115 {
8116 	struct perf_event *iter;
8117 	int err, cpu;
8118 
8119 restart:
8120 	rcu_read_lock();
8121 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8122 		/*
8123 		 * For per-CPU events, we need to make sure that neither they
8124 		 * nor their children are running; for cpu==-1 events it's
8125 		 * sufficient to stop the event itself if it's active, since
8126 		 * it can't have children.
8127 		 */
8128 		cpu = iter->cpu;
8129 		if (cpu == -1)
8130 			cpu = READ_ONCE(iter->oncpu);
8131 
8132 		if (cpu == -1)
8133 			continue;
8134 
8135 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8136 		if (err == -EAGAIN) {
8137 			rcu_read_unlock();
8138 			goto restart;
8139 		}
8140 	}
8141 	rcu_read_unlock();
8142 }
8143 
8144 /*
8145  * task tracking -- fork/exit
8146  *
8147  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8148  */
8149 
8150 struct perf_task_event {
8151 	struct task_struct		*task;
8152 	struct perf_event_context	*task_ctx;
8153 
8154 	struct {
8155 		struct perf_event_header	header;
8156 
8157 		u32				pid;
8158 		u32				ppid;
8159 		u32				tid;
8160 		u32				ptid;
8161 		u64				time;
8162 	} event_id;
8163 };
8164 
8165 static int perf_event_task_match(struct perf_event *event)
8166 {
8167 	return event->attr.comm  || event->attr.mmap ||
8168 	       event->attr.mmap2 || event->attr.mmap_data ||
8169 	       event->attr.task;
8170 }
8171 
8172 static void perf_event_task_output(struct perf_event *event,
8173 				   void *data)
8174 {
8175 	struct perf_task_event *task_event = data;
8176 	struct perf_output_handle handle;
8177 	struct perf_sample_data	sample;
8178 	struct task_struct *task = task_event->task;
8179 	int ret, size = task_event->event_id.header.size;
8180 
8181 	if (!perf_event_task_match(event))
8182 		return;
8183 
8184 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8185 
8186 	ret = perf_output_begin(&handle, &sample, event,
8187 				task_event->event_id.header.size);
8188 	if (ret)
8189 		goto out;
8190 
8191 	task_event->event_id.pid = perf_event_pid(event, task);
8192 	task_event->event_id.tid = perf_event_tid(event, task);
8193 
8194 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8195 		task_event->event_id.ppid = perf_event_pid(event,
8196 							task->real_parent);
8197 		task_event->event_id.ptid = perf_event_pid(event,
8198 							task->real_parent);
8199 	} else {  /* PERF_RECORD_FORK */
8200 		task_event->event_id.ppid = perf_event_pid(event, current);
8201 		task_event->event_id.ptid = perf_event_tid(event, current);
8202 	}
8203 
8204 	task_event->event_id.time = perf_event_clock(event);
8205 
8206 	perf_output_put(&handle, task_event->event_id);
8207 
8208 	perf_event__output_id_sample(event, &handle, &sample);
8209 
8210 	perf_output_end(&handle);
8211 out:
8212 	task_event->event_id.header.size = size;
8213 }
8214 
8215 static void perf_event_task(struct task_struct *task,
8216 			      struct perf_event_context *task_ctx,
8217 			      int new)
8218 {
8219 	struct perf_task_event task_event;
8220 
8221 	if (!atomic_read(&nr_comm_events) &&
8222 	    !atomic_read(&nr_mmap_events) &&
8223 	    !atomic_read(&nr_task_events))
8224 		return;
8225 
8226 	task_event = (struct perf_task_event){
8227 		.task	  = task,
8228 		.task_ctx = task_ctx,
8229 		.event_id    = {
8230 			.header = {
8231 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8232 				.misc = 0,
8233 				.size = sizeof(task_event.event_id),
8234 			},
8235 			/* .pid  */
8236 			/* .ppid */
8237 			/* .tid  */
8238 			/* .ptid */
8239 			/* .time */
8240 		},
8241 	};
8242 
8243 	perf_iterate_sb(perf_event_task_output,
8244 		       &task_event,
8245 		       task_ctx);
8246 }
8247 
8248 void perf_event_fork(struct task_struct *task)
8249 {
8250 	perf_event_task(task, NULL, 1);
8251 	perf_event_namespaces(task);
8252 }
8253 
8254 /*
8255  * comm tracking
8256  */
8257 
8258 struct perf_comm_event {
8259 	struct task_struct	*task;
8260 	char			*comm;
8261 	int			comm_size;
8262 
8263 	struct {
8264 		struct perf_event_header	header;
8265 
8266 		u32				pid;
8267 		u32				tid;
8268 	} event_id;
8269 };
8270 
8271 static int perf_event_comm_match(struct perf_event *event)
8272 {
8273 	return event->attr.comm;
8274 }
8275 
8276 static void perf_event_comm_output(struct perf_event *event,
8277 				   void *data)
8278 {
8279 	struct perf_comm_event *comm_event = data;
8280 	struct perf_output_handle handle;
8281 	struct perf_sample_data sample;
8282 	int size = comm_event->event_id.header.size;
8283 	int ret;
8284 
8285 	if (!perf_event_comm_match(event))
8286 		return;
8287 
8288 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8289 	ret = perf_output_begin(&handle, &sample, event,
8290 				comm_event->event_id.header.size);
8291 
8292 	if (ret)
8293 		goto out;
8294 
8295 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8296 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8297 
8298 	perf_output_put(&handle, comm_event->event_id);
8299 	__output_copy(&handle, comm_event->comm,
8300 				   comm_event->comm_size);
8301 
8302 	perf_event__output_id_sample(event, &handle, &sample);
8303 
8304 	perf_output_end(&handle);
8305 out:
8306 	comm_event->event_id.header.size = size;
8307 }
8308 
8309 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8310 {
8311 	char comm[TASK_COMM_LEN];
8312 	unsigned int size;
8313 
8314 	memset(comm, 0, sizeof(comm));
8315 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8316 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8317 
8318 	comm_event->comm = comm;
8319 	comm_event->comm_size = size;
8320 
8321 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8322 
8323 	perf_iterate_sb(perf_event_comm_output,
8324 		       comm_event,
8325 		       NULL);
8326 }
8327 
8328 void perf_event_comm(struct task_struct *task, bool exec)
8329 {
8330 	struct perf_comm_event comm_event;
8331 
8332 	if (!atomic_read(&nr_comm_events))
8333 		return;
8334 
8335 	comm_event = (struct perf_comm_event){
8336 		.task	= task,
8337 		/* .comm      */
8338 		/* .comm_size */
8339 		.event_id  = {
8340 			.header = {
8341 				.type = PERF_RECORD_COMM,
8342 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8343 				/* .size */
8344 			},
8345 			/* .pid */
8346 			/* .tid */
8347 		},
8348 	};
8349 
8350 	perf_event_comm_event(&comm_event);
8351 }
8352 
8353 /*
8354  * namespaces tracking
8355  */
8356 
8357 struct perf_namespaces_event {
8358 	struct task_struct		*task;
8359 
8360 	struct {
8361 		struct perf_event_header	header;
8362 
8363 		u32				pid;
8364 		u32				tid;
8365 		u64				nr_namespaces;
8366 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8367 	} event_id;
8368 };
8369 
8370 static int perf_event_namespaces_match(struct perf_event *event)
8371 {
8372 	return event->attr.namespaces;
8373 }
8374 
8375 static void perf_event_namespaces_output(struct perf_event *event,
8376 					 void *data)
8377 {
8378 	struct perf_namespaces_event *namespaces_event = data;
8379 	struct perf_output_handle handle;
8380 	struct perf_sample_data sample;
8381 	u16 header_size = namespaces_event->event_id.header.size;
8382 	int ret;
8383 
8384 	if (!perf_event_namespaces_match(event))
8385 		return;
8386 
8387 	perf_event_header__init_id(&namespaces_event->event_id.header,
8388 				   &sample, event);
8389 	ret = perf_output_begin(&handle, &sample, event,
8390 				namespaces_event->event_id.header.size);
8391 	if (ret)
8392 		goto out;
8393 
8394 	namespaces_event->event_id.pid = perf_event_pid(event,
8395 							namespaces_event->task);
8396 	namespaces_event->event_id.tid = perf_event_tid(event,
8397 							namespaces_event->task);
8398 
8399 	perf_output_put(&handle, namespaces_event->event_id);
8400 
8401 	perf_event__output_id_sample(event, &handle, &sample);
8402 
8403 	perf_output_end(&handle);
8404 out:
8405 	namespaces_event->event_id.header.size = header_size;
8406 }
8407 
8408 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8409 				   struct task_struct *task,
8410 				   const struct proc_ns_operations *ns_ops)
8411 {
8412 	struct path ns_path;
8413 	struct inode *ns_inode;
8414 	int error;
8415 
8416 	error = ns_get_path(&ns_path, task, ns_ops);
8417 	if (!error) {
8418 		ns_inode = ns_path.dentry->d_inode;
8419 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8420 		ns_link_info->ino = ns_inode->i_ino;
8421 		path_put(&ns_path);
8422 	}
8423 }
8424 
8425 void perf_event_namespaces(struct task_struct *task)
8426 {
8427 	struct perf_namespaces_event namespaces_event;
8428 	struct perf_ns_link_info *ns_link_info;
8429 
8430 	if (!atomic_read(&nr_namespaces_events))
8431 		return;
8432 
8433 	namespaces_event = (struct perf_namespaces_event){
8434 		.task	= task,
8435 		.event_id  = {
8436 			.header = {
8437 				.type = PERF_RECORD_NAMESPACES,
8438 				.misc = 0,
8439 				.size = sizeof(namespaces_event.event_id),
8440 			},
8441 			/* .pid */
8442 			/* .tid */
8443 			.nr_namespaces = NR_NAMESPACES,
8444 			/* .link_info[NR_NAMESPACES] */
8445 		},
8446 	};
8447 
8448 	ns_link_info = namespaces_event.event_id.link_info;
8449 
8450 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8451 			       task, &mntns_operations);
8452 
8453 #ifdef CONFIG_USER_NS
8454 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8455 			       task, &userns_operations);
8456 #endif
8457 #ifdef CONFIG_NET_NS
8458 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8459 			       task, &netns_operations);
8460 #endif
8461 #ifdef CONFIG_UTS_NS
8462 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8463 			       task, &utsns_operations);
8464 #endif
8465 #ifdef CONFIG_IPC_NS
8466 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8467 			       task, &ipcns_operations);
8468 #endif
8469 #ifdef CONFIG_PID_NS
8470 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8471 			       task, &pidns_operations);
8472 #endif
8473 #ifdef CONFIG_CGROUPS
8474 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8475 			       task, &cgroupns_operations);
8476 #endif
8477 
8478 	perf_iterate_sb(perf_event_namespaces_output,
8479 			&namespaces_event,
8480 			NULL);
8481 }
8482 
8483 /*
8484  * cgroup tracking
8485  */
8486 #ifdef CONFIG_CGROUP_PERF
8487 
8488 struct perf_cgroup_event {
8489 	char				*path;
8490 	int				path_size;
8491 	struct {
8492 		struct perf_event_header	header;
8493 		u64				id;
8494 		char				path[];
8495 	} event_id;
8496 };
8497 
8498 static int perf_event_cgroup_match(struct perf_event *event)
8499 {
8500 	return event->attr.cgroup;
8501 }
8502 
8503 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8504 {
8505 	struct perf_cgroup_event *cgroup_event = data;
8506 	struct perf_output_handle handle;
8507 	struct perf_sample_data sample;
8508 	u16 header_size = cgroup_event->event_id.header.size;
8509 	int ret;
8510 
8511 	if (!perf_event_cgroup_match(event))
8512 		return;
8513 
8514 	perf_event_header__init_id(&cgroup_event->event_id.header,
8515 				   &sample, event);
8516 	ret = perf_output_begin(&handle, &sample, event,
8517 				cgroup_event->event_id.header.size);
8518 	if (ret)
8519 		goto out;
8520 
8521 	perf_output_put(&handle, cgroup_event->event_id);
8522 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8523 
8524 	perf_event__output_id_sample(event, &handle, &sample);
8525 
8526 	perf_output_end(&handle);
8527 out:
8528 	cgroup_event->event_id.header.size = header_size;
8529 }
8530 
8531 static void perf_event_cgroup(struct cgroup *cgrp)
8532 {
8533 	struct perf_cgroup_event cgroup_event;
8534 	char path_enomem[16] = "//enomem";
8535 	char *pathname;
8536 	size_t size;
8537 
8538 	if (!atomic_read(&nr_cgroup_events))
8539 		return;
8540 
8541 	cgroup_event = (struct perf_cgroup_event){
8542 		.event_id  = {
8543 			.header = {
8544 				.type = PERF_RECORD_CGROUP,
8545 				.misc = 0,
8546 				.size = sizeof(cgroup_event.event_id),
8547 			},
8548 			.id = cgroup_id(cgrp),
8549 		},
8550 	};
8551 
8552 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8553 	if (pathname == NULL) {
8554 		cgroup_event.path = path_enomem;
8555 	} else {
8556 		/* just to be sure to have enough space for alignment */
8557 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8558 		cgroup_event.path = pathname;
8559 	}
8560 
8561 	/*
8562 	 * Since our buffer works in 8 byte units we need to align our string
8563 	 * size to a multiple of 8. However, we must guarantee the tail end is
8564 	 * zero'd out to avoid leaking random bits to userspace.
8565 	 */
8566 	size = strlen(cgroup_event.path) + 1;
8567 	while (!IS_ALIGNED(size, sizeof(u64)))
8568 		cgroup_event.path[size++] = '\0';
8569 
8570 	cgroup_event.event_id.header.size += size;
8571 	cgroup_event.path_size = size;
8572 
8573 	perf_iterate_sb(perf_event_cgroup_output,
8574 			&cgroup_event,
8575 			NULL);
8576 
8577 	kfree(pathname);
8578 }
8579 
8580 #endif
8581 
8582 /*
8583  * mmap tracking
8584  */
8585 
8586 struct perf_mmap_event {
8587 	struct vm_area_struct	*vma;
8588 
8589 	const char		*file_name;
8590 	int			file_size;
8591 	int			maj, min;
8592 	u64			ino;
8593 	u64			ino_generation;
8594 	u32			prot, flags;
8595 	u8			build_id[BUILD_ID_SIZE_MAX];
8596 	u32			build_id_size;
8597 
8598 	struct {
8599 		struct perf_event_header	header;
8600 
8601 		u32				pid;
8602 		u32				tid;
8603 		u64				start;
8604 		u64				len;
8605 		u64				pgoff;
8606 	} event_id;
8607 };
8608 
8609 static int perf_event_mmap_match(struct perf_event *event,
8610 				 void *data)
8611 {
8612 	struct perf_mmap_event *mmap_event = data;
8613 	struct vm_area_struct *vma = mmap_event->vma;
8614 	int executable = vma->vm_flags & VM_EXEC;
8615 
8616 	return (!executable && event->attr.mmap_data) ||
8617 	       (executable && (event->attr.mmap || event->attr.mmap2));
8618 }
8619 
8620 static void perf_event_mmap_output(struct perf_event *event,
8621 				   void *data)
8622 {
8623 	struct perf_mmap_event *mmap_event = data;
8624 	struct perf_output_handle handle;
8625 	struct perf_sample_data sample;
8626 	int size = mmap_event->event_id.header.size;
8627 	u32 type = mmap_event->event_id.header.type;
8628 	bool use_build_id;
8629 	int ret;
8630 
8631 	if (!perf_event_mmap_match(event, data))
8632 		return;
8633 
8634 	if (event->attr.mmap2) {
8635 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8636 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8637 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8638 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8639 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8640 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8641 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8642 	}
8643 
8644 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8645 	ret = perf_output_begin(&handle, &sample, event,
8646 				mmap_event->event_id.header.size);
8647 	if (ret)
8648 		goto out;
8649 
8650 	mmap_event->event_id.pid = perf_event_pid(event, current);
8651 	mmap_event->event_id.tid = perf_event_tid(event, current);
8652 
8653 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8654 
8655 	if (event->attr.mmap2 && use_build_id)
8656 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8657 
8658 	perf_output_put(&handle, mmap_event->event_id);
8659 
8660 	if (event->attr.mmap2) {
8661 		if (use_build_id) {
8662 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8663 
8664 			__output_copy(&handle, size, 4);
8665 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8666 		} else {
8667 			perf_output_put(&handle, mmap_event->maj);
8668 			perf_output_put(&handle, mmap_event->min);
8669 			perf_output_put(&handle, mmap_event->ino);
8670 			perf_output_put(&handle, mmap_event->ino_generation);
8671 		}
8672 		perf_output_put(&handle, mmap_event->prot);
8673 		perf_output_put(&handle, mmap_event->flags);
8674 	}
8675 
8676 	__output_copy(&handle, mmap_event->file_name,
8677 				   mmap_event->file_size);
8678 
8679 	perf_event__output_id_sample(event, &handle, &sample);
8680 
8681 	perf_output_end(&handle);
8682 out:
8683 	mmap_event->event_id.header.size = size;
8684 	mmap_event->event_id.header.type = type;
8685 }
8686 
8687 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8688 {
8689 	struct vm_area_struct *vma = mmap_event->vma;
8690 	struct file *file = vma->vm_file;
8691 	int maj = 0, min = 0;
8692 	u64 ino = 0, gen = 0;
8693 	u32 prot = 0, flags = 0;
8694 	unsigned int size;
8695 	char tmp[16];
8696 	char *buf = NULL;
8697 	char *name = NULL;
8698 
8699 	if (vma->vm_flags & VM_READ)
8700 		prot |= PROT_READ;
8701 	if (vma->vm_flags & VM_WRITE)
8702 		prot |= PROT_WRITE;
8703 	if (vma->vm_flags & VM_EXEC)
8704 		prot |= PROT_EXEC;
8705 
8706 	if (vma->vm_flags & VM_MAYSHARE)
8707 		flags = MAP_SHARED;
8708 	else
8709 		flags = MAP_PRIVATE;
8710 
8711 	if (vma->vm_flags & VM_LOCKED)
8712 		flags |= MAP_LOCKED;
8713 	if (is_vm_hugetlb_page(vma))
8714 		flags |= MAP_HUGETLB;
8715 
8716 	if (file) {
8717 		struct inode *inode;
8718 		dev_t dev;
8719 
8720 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8721 		if (!buf) {
8722 			name = "//enomem";
8723 			goto cpy_name;
8724 		}
8725 		/*
8726 		 * d_path() works from the end of the rb backwards, so we
8727 		 * need to add enough zero bytes after the string to handle
8728 		 * the 64bit alignment we do later.
8729 		 */
8730 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8731 		if (IS_ERR(name)) {
8732 			name = "//toolong";
8733 			goto cpy_name;
8734 		}
8735 		inode = file_inode(vma->vm_file);
8736 		dev = inode->i_sb->s_dev;
8737 		ino = inode->i_ino;
8738 		gen = inode->i_generation;
8739 		maj = MAJOR(dev);
8740 		min = MINOR(dev);
8741 
8742 		goto got_name;
8743 	} else {
8744 		if (vma->vm_ops && vma->vm_ops->name)
8745 			name = (char *) vma->vm_ops->name(vma);
8746 		if (!name)
8747 			name = (char *)arch_vma_name(vma);
8748 		if (!name) {
8749 			if (vma_is_initial_heap(vma))
8750 				name = "[heap]";
8751 			else if (vma_is_initial_stack(vma))
8752 				name = "[stack]";
8753 			else
8754 				name = "//anon";
8755 		}
8756 	}
8757 
8758 cpy_name:
8759 	strscpy(tmp, name, sizeof(tmp));
8760 	name = tmp;
8761 got_name:
8762 	/*
8763 	 * Since our buffer works in 8 byte units we need to align our string
8764 	 * size to a multiple of 8. However, we must guarantee the tail end is
8765 	 * zero'd out to avoid leaking random bits to userspace.
8766 	 */
8767 	size = strlen(name)+1;
8768 	while (!IS_ALIGNED(size, sizeof(u64)))
8769 		name[size++] = '\0';
8770 
8771 	mmap_event->file_name = name;
8772 	mmap_event->file_size = size;
8773 	mmap_event->maj = maj;
8774 	mmap_event->min = min;
8775 	mmap_event->ino = ino;
8776 	mmap_event->ino_generation = gen;
8777 	mmap_event->prot = prot;
8778 	mmap_event->flags = flags;
8779 
8780 	if (!(vma->vm_flags & VM_EXEC))
8781 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8782 
8783 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8784 
8785 	if (atomic_read(&nr_build_id_events))
8786 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8787 
8788 	perf_iterate_sb(perf_event_mmap_output,
8789 		       mmap_event,
8790 		       NULL);
8791 
8792 	kfree(buf);
8793 }
8794 
8795 /*
8796  * Check whether inode and address range match filter criteria.
8797  */
8798 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8799 				     struct file *file, unsigned long offset,
8800 				     unsigned long size)
8801 {
8802 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8803 	if (!filter->path.dentry)
8804 		return false;
8805 
8806 	if (d_inode(filter->path.dentry) != file_inode(file))
8807 		return false;
8808 
8809 	if (filter->offset > offset + size)
8810 		return false;
8811 
8812 	if (filter->offset + filter->size < offset)
8813 		return false;
8814 
8815 	return true;
8816 }
8817 
8818 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8819 					struct vm_area_struct *vma,
8820 					struct perf_addr_filter_range *fr)
8821 {
8822 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8823 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8824 	struct file *file = vma->vm_file;
8825 
8826 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8827 		return false;
8828 
8829 	if (filter->offset < off) {
8830 		fr->start = vma->vm_start;
8831 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8832 	} else {
8833 		fr->start = vma->vm_start + filter->offset - off;
8834 		fr->size = min(vma->vm_end - fr->start, filter->size);
8835 	}
8836 
8837 	return true;
8838 }
8839 
8840 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8841 {
8842 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8843 	struct vm_area_struct *vma = data;
8844 	struct perf_addr_filter *filter;
8845 	unsigned int restart = 0, count = 0;
8846 	unsigned long flags;
8847 
8848 	if (!has_addr_filter(event))
8849 		return;
8850 
8851 	if (!vma->vm_file)
8852 		return;
8853 
8854 	raw_spin_lock_irqsave(&ifh->lock, flags);
8855 	list_for_each_entry(filter, &ifh->list, entry) {
8856 		if (perf_addr_filter_vma_adjust(filter, vma,
8857 						&event->addr_filter_ranges[count]))
8858 			restart++;
8859 
8860 		count++;
8861 	}
8862 
8863 	if (restart)
8864 		event->addr_filters_gen++;
8865 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8866 
8867 	if (restart)
8868 		perf_event_stop(event, 1);
8869 }
8870 
8871 /*
8872  * Adjust all task's events' filters to the new vma
8873  */
8874 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8875 {
8876 	struct perf_event_context *ctx;
8877 
8878 	/*
8879 	 * Data tracing isn't supported yet and as such there is no need
8880 	 * to keep track of anything that isn't related to executable code:
8881 	 */
8882 	if (!(vma->vm_flags & VM_EXEC))
8883 		return;
8884 
8885 	rcu_read_lock();
8886 	ctx = rcu_dereference(current->perf_event_ctxp);
8887 	if (ctx)
8888 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8889 	rcu_read_unlock();
8890 }
8891 
8892 void perf_event_mmap(struct vm_area_struct *vma)
8893 {
8894 	struct perf_mmap_event mmap_event;
8895 
8896 	if (!atomic_read(&nr_mmap_events))
8897 		return;
8898 
8899 	mmap_event = (struct perf_mmap_event){
8900 		.vma	= vma,
8901 		/* .file_name */
8902 		/* .file_size */
8903 		.event_id  = {
8904 			.header = {
8905 				.type = PERF_RECORD_MMAP,
8906 				.misc = PERF_RECORD_MISC_USER,
8907 				/* .size */
8908 			},
8909 			/* .pid */
8910 			/* .tid */
8911 			.start  = vma->vm_start,
8912 			.len    = vma->vm_end - vma->vm_start,
8913 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8914 		},
8915 		/* .maj (attr_mmap2 only) */
8916 		/* .min (attr_mmap2 only) */
8917 		/* .ino (attr_mmap2 only) */
8918 		/* .ino_generation (attr_mmap2 only) */
8919 		/* .prot (attr_mmap2 only) */
8920 		/* .flags (attr_mmap2 only) */
8921 	};
8922 
8923 	perf_addr_filters_adjust(vma);
8924 	perf_event_mmap_event(&mmap_event);
8925 }
8926 
8927 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8928 			  unsigned long size, u64 flags)
8929 {
8930 	struct perf_output_handle handle;
8931 	struct perf_sample_data sample;
8932 	struct perf_aux_event {
8933 		struct perf_event_header	header;
8934 		u64				offset;
8935 		u64				size;
8936 		u64				flags;
8937 	} rec = {
8938 		.header = {
8939 			.type = PERF_RECORD_AUX,
8940 			.misc = 0,
8941 			.size = sizeof(rec),
8942 		},
8943 		.offset		= head,
8944 		.size		= size,
8945 		.flags		= flags,
8946 	};
8947 	int ret;
8948 
8949 	perf_event_header__init_id(&rec.header, &sample, event);
8950 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8951 
8952 	if (ret)
8953 		return;
8954 
8955 	perf_output_put(&handle, rec);
8956 	perf_event__output_id_sample(event, &handle, &sample);
8957 
8958 	perf_output_end(&handle);
8959 }
8960 
8961 /*
8962  * Lost/dropped samples logging
8963  */
8964 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8965 {
8966 	struct perf_output_handle handle;
8967 	struct perf_sample_data sample;
8968 	int ret;
8969 
8970 	struct {
8971 		struct perf_event_header	header;
8972 		u64				lost;
8973 	} lost_samples_event = {
8974 		.header = {
8975 			.type = PERF_RECORD_LOST_SAMPLES,
8976 			.misc = 0,
8977 			.size = sizeof(lost_samples_event),
8978 		},
8979 		.lost		= lost,
8980 	};
8981 
8982 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8983 
8984 	ret = perf_output_begin(&handle, &sample, event,
8985 				lost_samples_event.header.size);
8986 	if (ret)
8987 		return;
8988 
8989 	perf_output_put(&handle, lost_samples_event);
8990 	perf_event__output_id_sample(event, &handle, &sample);
8991 	perf_output_end(&handle);
8992 }
8993 
8994 /*
8995  * context_switch tracking
8996  */
8997 
8998 struct perf_switch_event {
8999 	struct task_struct	*task;
9000 	struct task_struct	*next_prev;
9001 
9002 	struct {
9003 		struct perf_event_header	header;
9004 		u32				next_prev_pid;
9005 		u32				next_prev_tid;
9006 	} event_id;
9007 };
9008 
9009 static int perf_event_switch_match(struct perf_event *event)
9010 {
9011 	return event->attr.context_switch;
9012 }
9013 
9014 static void perf_event_switch_output(struct perf_event *event, void *data)
9015 {
9016 	struct perf_switch_event *se = data;
9017 	struct perf_output_handle handle;
9018 	struct perf_sample_data sample;
9019 	int ret;
9020 
9021 	if (!perf_event_switch_match(event))
9022 		return;
9023 
9024 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9025 	if (event->ctx->task) {
9026 		se->event_id.header.type = PERF_RECORD_SWITCH;
9027 		se->event_id.header.size = sizeof(se->event_id.header);
9028 	} else {
9029 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9030 		se->event_id.header.size = sizeof(se->event_id);
9031 		se->event_id.next_prev_pid =
9032 					perf_event_pid(event, se->next_prev);
9033 		se->event_id.next_prev_tid =
9034 					perf_event_tid(event, se->next_prev);
9035 	}
9036 
9037 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9038 
9039 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9040 	if (ret)
9041 		return;
9042 
9043 	if (event->ctx->task)
9044 		perf_output_put(&handle, se->event_id.header);
9045 	else
9046 		perf_output_put(&handle, se->event_id);
9047 
9048 	perf_event__output_id_sample(event, &handle, &sample);
9049 
9050 	perf_output_end(&handle);
9051 }
9052 
9053 static void perf_event_switch(struct task_struct *task,
9054 			      struct task_struct *next_prev, bool sched_in)
9055 {
9056 	struct perf_switch_event switch_event;
9057 
9058 	/* N.B. caller checks nr_switch_events != 0 */
9059 
9060 	switch_event = (struct perf_switch_event){
9061 		.task		= task,
9062 		.next_prev	= next_prev,
9063 		.event_id	= {
9064 			.header = {
9065 				/* .type */
9066 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9067 				/* .size */
9068 			},
9069 			/* .next_prev_pid */
9070 			/* .next_prev_tid */
9071 		},
9072 	};
9073 
9074 	if (!sched_in && task->on_rq) {
9075 		switch_event.event_id.header.misc |=
9076 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9077 	}
9078 
9079 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9080 }
9081 
9082 /*
9083  * IRQ throttle logging
9084  */
9085 
9086 static void perf_log_throttle(struct perf_event *event, int enable)
9087 {
9088 	struct perf_output_handle handle;
9089 	struct perf_sample_data sample;
9090 	int ret;
9091 
9092 	struct {
9093 		struct perf_event_header	header;
9094 		u64				time;
9095 		u64				id;
9096 		u64				stream_id;
9097 	} throttle_event = {
9098 		.header = {
9099 			.type = PERF_RECORD_THROTTLE,
9100 			.misc = 0,
9101 			.size = sizeof(throttle_event),
9102 		},
9103 		.time		= perf_event_clock(event),
9104 		.id		= primary_event_id(event),
9105 		.stream_id	= event->id,
9106 	};
9107 
9108 	if (enable)
9109 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9110 
9111 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9112 
9113 	ret = perf_output_begin(&handle, &sample, event,
9114 				throttle_event.header.size);
9115 	if (ret)
9116 		return;
9117 
9118 	perf_output_put(&handle, throttle_event);
9119 	perf_event__output_id_sample(event, &handle, &sample);
9120 	perf_output_end(&handle);
9121 }
9122 
9123 /*
9124  * ksymbol register/unregister tracking
9125  */
9126 
9127 struct perf_ksymbol_event {
9128 	const char	*name;
9129 	int		name_len;
9130 	struct {
9131 		struct perf_event_header        header;
9132 		u64				addr;
9133 		u32				len;
9134 		u16				ksym_type;
9135 		u16				flags;
9136 	} event_id;
9137 };
9138 
9139 static int perf_event_ksymbol_match(struct perf_event *event)
9140 {
9141 	return event->attr.ksymbol;
9142 }
9143 
9144 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9145 {
9146 	struct perf_ksymbol_event *ksymbol_event = data;
9147 	struct perf_output_handle handle;
9148 	struct perf_sample_data sample;
9149 	int ret;
9150 
9151 	if (!perf_event_ksymbol_match(event))
9152 		return;
9153 
9154 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9155 				   &sample, event);
9156 	ret = perf_output_begin(&handle, &sample, event,
9157 				ksymbol_event->event_id.header.size);
9158 	if (ret)
9159 		return;
9160 
9161 	perf_output_put(&handle, ksymbol_event->event_id);
9162 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9163 	perf_event__output_id_sample(event, &handle, &sample);
9164 
9165 	perf_output_end(&handle);
9166 }
9167 
9168 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9169 			const char *sym)
9170 {
9171 	struct perf_ksymbol_event ksymbol_event;
9172 	char name[KSYM_NAME_LEN];
9173 	u16 flags = 0;
9174 	int name_len;
9175 
9176 	if (!atomic_read(&nr_ksymbol_events))
9177 		return;
9178 
9179 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9180 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9181 		goto err;
9182 
9183 	strscpy(name, sym, KSYM_NAME_LEN);
9184 	name_len = strlen(name) + 1;
9185 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9186 		name[name_len++] = '\0';
9187 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9188 
9189 	if (unregister)
9190 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9191 
9192 	ksymbol_event = (struct perf_ksymbol_event){
9193 		.name = name,
9194 		.name_len = name_len,
9195 		.event_id = {
9196 			.header = {
9197 				.type = PERF_RECORD_KSYMBOL,
9198 				.size = sizeof(ksymbol_event.event_id) +
9199 					name_len,
9200 			},
9201 			.addr = addr,
9202 			.len = len,
9203 			.ksym_type = ksym_type,
9204 			.flags = flags,
9205 		},
9206 	};
9207 
9208 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9209 	return;
9210 err:
9211 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9212 }
9213 
9214 /*
9215  * bpf program load/unload tracking
9216  */
9217 
9218 struct perf_bpf_event {
9219 	struct bpf_prog	*prog;
9220 	struct {
9221 		struct perf_event_header        header;
9222 		u16				type;
9223 		u16				flags;
9224 		u32				id;
9225 		u8				tag[BPF_TAG_SIZE];
9226 	} event_id;
9227 };
9228 
9229 static int perf_event_bpf_match(struct perf_event *event)
9230 {
9231 	return event->attr.bpf_event;
9232 }
9233 
9234 static void perf_event_bpf_output(struct perf_event *event, void *data)
9235 {
9236 	struct perf_bpf_event *bpf_event = data;
9237 	struct perf_output_handle handle;
9238 	struct perf_sample_data sample;
9239 	int ret;
9240 
9241 	if (!perf_event_bpf_match(event))
9242 		return;
9243 
9244 	perf_event_header__init_id(&bpf_event->event_id.header,
9245 				   &sample, event);
9246 	ret = perf_output_begin(&handle, &sample, event,
9247 				bpf_event->event_id.header.size);
9248 	if (ret)
9249 		return;
9250 
9251 	perf_output_put(&handle, bpf_event->event_id);
9252 	perf_event__output_id_sample(event, &handle, &sample);
9253 
9254 	perf_output_end(&handle);
9255 }
9256 
9257 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9258 					 enum perf_bpf_event_type type)
9259 {
9260 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9261 	int i;
9262 
9263 	if (prog->aux->func_cnt == 0) {
9264 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9265 				   (u64)(unsigned long)prog->bpf_func,
9266 				   prog->jited_len, unregister,
9267 				   prog->aux->ksym.name);
9268 	} else {
9269 		for (i = 0; i < prog->aux->func_cnt; i++) {
9270 			struct bpf_prog *subprog = prog->aux->func[i];
9271 
9272 			perf_event_ksymbol(
9273 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9274 				(u64)(unsigned long)subprog->bpf_func,
9275 				subprog->jited_len, unregister,
9276 				subprog->aux->ksym.name);
9277 		}
9278 	}
9279 }
9280 
9281 void perf_event_bpf_event(struct bpf_prog *prog,
9282 			  enum perf_bpf_event_type type,
9283 			  u16 flags)
9284 {
9285 	struct perf_bpf_event bpf_event;
9286 
9287 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9288 	    type >= PERF_BPF_EVENT_MAX)
9289 		return;
9290 
9291 	switch (type) {
9292 	case PERF_BPF_EVENT_PROG_LOAD:
9293 	case PERF_BPF_EVENT_PROG_UNLOAD:
9294 		if (atomic_read(&nr_ksymbol_events))
9295 			perf_event_bpf_emit_ksymbols(prog, type);
9296 		break;
9297 	default:
9298 		break;
9299 	}
9300 
9301 	if (!atomic_read(&nr_bpf_events))
9302 		return;
9303 
9304 	bpf_event = (struct perf_bpf_event){
9305 		.prog = prog,
9306 		.event_id = {
9307 			.header = {
9308 				.type = PERF_RECORD_BPF_EVENT,
9309 				.size = sizeof(bpf_event.event_id),
9310 			},
9311 			.type = type,
9312 			.flags = flags,
9313 			.id = prog->aux->id,
9314 		},
9315 	};
9316 
9317 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9318 
9319 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9320 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9321 }
9322 
9323 struct perf_text_poke_event {
9324 	const void		*old_bytes;
9325 	const void		*new_bytes;
9326 	size_t			pad;
9327 	u16			old_len;
9328 	u16			new_len;
9329 
9330 	struct {
9331 		struct perf_event_header	header;
9332 
9333 		u64				addr;
9334 	} event_id;
9335 };
9336 
9337 static int perf_event_text_poke_match(struct perf_event *event)
9338 {
9339 	return event->attr.text_poke;
9340 }
9341 
9342 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9343 {
9344 	struct perf_text_poke_event *text_poke_event = data;
9345 	struct perf_output_handle handle;
9346 	struct perf_sample_data sample;
9347 	u64 padding = 0;
9348 	int ret;
9349 
9350 	if (!perf_event_text_poke_match(event))
9351 		return;
9352 
9353 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9354 
9355 	ret = perf_output_begin(&handle, &sample, event,
9356 				text_poke_event->event_id.header.size);
9357 	if (ret)
9358 		return;
9359 
9360 	perf_output_put(&handle, text_poke_event->event_id);
9361 	perf_output_put(&handle, text_poke_event->old_len);
9362 	perf_output_put(&handle, text_poke_event->new_len);
9363 
9364 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9365 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9366 
9367 	if (text_poke_event->pad)
9368 		__output_copy(&handle, &padding, text_poke_event->pad);
9369 
9370 	perf_event__output_id_sample(event, &handle, &sample);
9371 
9372 	perf_output_end(&handle);
9373 }
9374 
9375 void perf_event_text_poke(const void *addr, const void *old_bytes,
9376 			  size_t old_len, const void *new_bytes, size_t new_len)
9377 {
9378 	struct perf_text_poke_event text_poke_event;
9379 	size_t tot, pad;
9380 
9381 	if (!atomic_read(&nr_text_poke_events))
9382 		return;
9383 
9384 	tot  = sizeof(text_poke_event.old_len) + old_len;
9385 	tot += sizeof(text_poke_event.new_len) + new_len;
9386 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9387 
9388 	text_poke_event = (struct perf_text_poke_event){
9389 		.old_bytes    = old_bytes,
9390 		.new_bytes    = new_bytes,
9391 		.pad          = pad,
9392 		.old_len      = old_len,
9393 		.new_len      = new_len,
9394 		.event_id  = {
9395 			.header = {
9396 				.type = PERF_RECORD_TEXT_POKE,
9397 				.misc = PERF_RECORD_MISC_KERNEL,
9398 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9399 			},
9400 			.addr = (unsigned long)addr,
9401 		},
9402 	};
9403 
9404 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9405 }
9406 
9407 void perf_event_itrace_started(struct perf_event *event)
9408 {
9409 	event->attach_state |= PERF_ATTACH_ITRACE;
9410 }
9411 
9412 static void perf_log_itrace_start(struct perf_event *event)
9413 {
9414 	struct perf_output_handle handle;
9415 	struct perf_sample_data sample;
9416 	struct perf_aux_event {
9417 		struct perf_event_header        header;
9418 		u32				pid;
9419 		u32				tid;
9420 	} rec;
9421 	int ret;
9422 
9423 	if (event->parent)
9424 		event = event->parent;
9425 
9426 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9427 	    event->attach_state & PERF_ATTACH_ITRACE)
9428 		return;
9429 
9430 	rec.header.type	= PERF_RECORD_ITRACE_START;
9431 	rec.header.misc	= 0;
9432 	rec.header.size	= sizeof(rec);
9433 	rec.pid	= perf_event_pid(event, current);
9434 	rec.tid	= perf_event_tid(event, current);
9435 
9436 	perf_event_header__init_id(&rec.header, &sample, event);
9437 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9438 
9439 	if (ret)
9440 		return;
9441 
9442 	perf_output_put(&handle, rec);
9443 	perf_event__output_id_sample(event, &handle, &sample);
9444 
9445 	perf_output_end(&handle);
9446 }
9447 
9448 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9449 {
9450 	struct perf_output_handle handle;
9451 	struct perf_sample_data sample;
9452 	struct perf_aux_event {
9453 		struct perf_event_header        header;
9454 		u64				hw_id;
9455 	} rec;
9456 	int ret;
9457 
9458 	if (event->parent)
9459 		event = event->parent;
9460 
9461 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9462 	rec.header.misc	= 0;
9463 	rec.header.size	= sizeof(rec);
9464 	rec.hw_id	= hw_id;
9465 
9466 	perf_event_header__init_id(&rec.header, &sample, event);
9467 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9468 
9469 	if (ret)
9470 		return;
9471 
9472 	perf_output_put(&handle, rec);
9473 	perf_event__output_id_sample(event, &handle, &sample);
9474 
9475 	perf_output_end(&handle);
9476 }
9477 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9478 
9479 static int
9480 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9481 {
9482 	struct hw_perf_event *hwc = &event->hw;
9483 	int ret = 0;
9484 	u64 seq;
9485 
9486 	seq = __this_cpu_read(perf_throttled_seq);
9487 	if (seq != hwc->interrupts_seq) {
9488 		hwc->interrupts_seq = seq;
9489 		hwc->interrupts = 1;
9490 	} else {
9491 		hwc->interrupts++;
9492 		if (unlikely(throttle &&
9493 			     hwc->interrupts > max_samples_per_tick)) {
9494 			__this_cpu_inc(perf_throttled_count);
9495 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9496 			hwc->interrupts = MAX_INTERRUPTS;
9497 			perf_log_throttle(event, 0);
9498 			ret = 1;
9499 		}
9500 	}
9501 
9502 	if (event->attr.freq) {
9503 		u64 now = perf_clock();
9504 		s64 delta = now - hwc->freq_time_stamp;
9505 
9506 		hwc->freq_time_stamp = now;
9507 
9508 		if (delta > 0 && delta < 2*TICK_NSEC)
9509 			perf_adjust_period(event, delta, hwc->last_period, true);
9510 	}
9511 
9512 	return ret;
9513 }
9514 
9515 int perf_event_account_interrupt(struct perf_event *event)
9516 {
9517 	return __perf_event_account_interrupt(event, 1);
9518 }
9519 
9520 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9521 {
9522 	/*
9523 	 * Due to interrupt latency (AKA "skid"), we may enter the
9524 	 * kernel before taking an overflow, even if the PMU is only
9525 	 * counting user events.
9526 	 */
9527 	if (event->attr.exclude_kernel && !user_mode(regs))
9528 		return false;
9529 
9530 	return true;
9531 }
9532 
9533 /*
9534  * Generic event overflow handling, sampling.
9535  */
9536 
9537 static int __perf_event_overflow(struct perf_event *event,
9538 				 int throttle, struct perf_sample_data *data,
9539 				 struct pt_regs *regs)
9540 {
9541 	int events = atomic_read(&event->event_limit);
9542 	int ret = 0;
9543 
9544 	/*
9545 	 * Non-sampling counters might still use the PMI to fold short
9546 	 * hardware counters, ignore those.
9547 	 */
9548 	if (unlikely(!is_sampling_event(event)))
9549 		return 0;
9550 
9551 	ret = __perf_event_account_interrupt(event, throttle);
9552 
9553 	/*
9554 	 * XXX event_limit might not quite work as expected on inherited
9555 	 * events
9556 	 */
9557 
9558 	event->pending_kill = POLL_IN;
9559 	if (events && atomic_dec_and_test(&event->event_limit)) {
9560 		ret = 1;
9561 		event->pending_kill = POLL_HUP;
9562 		perf_event_disable_inatomic(event);
9563 	}
9564 
9565 	if (event->attr.sigtrap) {
9566 		/*
9567 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9568 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9569 		 * it is the first event, on the other hand, we should also not
9570 		 * trigger the WARN or override the data address.
9571 		 */
9572 		bool valid_sample = sample_is_allowed(event, regs);
9573 		unsigned int pending_id = 1;
9574 
9575 		if (regs)
9576 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9577 		if (!event->pending_sigtrap) {
9578 			event->pending_sigtrap = pending_id;
9579 			local_inc(&event->ctx->nr_pending);
9580 		} else if (event->attr.exclude_kernel && valid_sample) {
9581 			/*
9582 			 * Should not be able to return to user space without
9583 			 * consuming pending_sigtrap; with exceptions:
9584 			 *
9585 			 *  1. Where !exclude_kernel, events can overflow again
9586 			 *     in the kernel without returning to user space.
9587 			 *
9588 			 *  2. Events that can overflow again before the IRQ-
9589 			 *     work without user space progress (e.g. hrtimer).
9590 			 *     To approximate progress (with false negatives),
9591 			 *     check 32-bit hash of the current IP.
9592 			 */
9593 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9594 		}
9595 
9596 		event->pending_addr = 0;
9597 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9598 			event->pending_addr = data->addr;
9599 		irq_work_queue(&event->pending_irq);
9600 	}
9601 
9602 	READ_ONCE(event->overflow_handler)(event, data, regs);
9603 
9604 	if (*perf_event_fasync(event) && event->pending_kill) {
9605 		event->pending_wakeup = 1;
9606 		irq_work_queue(&event->pending_irq);
9607 	}
9608 
9609 	return ret;
9610 }
9611 
9612 int perf_event_overflow(struct perf_event *event,
9613 			struct perf_sample_data *data,
9614 			struct pt_regs *regs)
9615 {
9616 	return __perf_event_overflow(event, 1, data, regs);
9617 }
9618 
9619 /*
9620  * Generic software event infrastructure
9621  */
9622 
9623 struct swevent_htable {
9624 	struct swevent_hlist		*swevent_hlist;
9625 	struct mutex			hlist_mutex;
9626 	int				hlist_refcount;
9627 
9628 	/* Recursion avoidance in each contexts */
9629 	int				recursion[PERF_NR_CONTEXTS];
9630 };
9631 
9632 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9633 
9634 /*
9635  * We directly increment event->count and keep a second value in
9636  * event->hw.period_left to count intervals. This period event
9637  * is kept in the range [-sample_period, 0] so that we can use the
9638  * sign as trigger.
9639  */
9640 
9641 u64 perf_swevent_set_period(struct perf_event *event)
9642 {
9643 	struct hw_perf_event *hwc = &event->hw;
9644 	u64 period = hwc->last_period;
9645 	u64 nr, offset;
9646 	s64 old, val;
9647 
9648 	hwc->last_period = hwc->sample_period;
9649 
9650 	old = local64_read(&hwc->period_left);
9651 	do {
9652 		val = old;
9653 		if (val < 0)
9654 			return 0;
9655 
9656 		nr = div64_u64(period + val, period);
9657 		offset = nr * period;
9658 		val -= offset;
9659 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9660 
9661 	return nr;
9662 }
9663 
9664 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9665 				    struct perf_sample_data *data,
9666 				    struct pt_regs *regs)
9667 {
9668 	struct hw_perf_event *hwc = &event->hw;
9669 	int throttle = 0;
9670 
9671 	if (!overflow)
9672 		overflow = perf_swevent_set_period(event);
9673 
9674 	if (hwc->interrupts == MAX_INTERRUPTS)
9675 		return;
9676 
9677 	for (; overflow; overflow--) {
9678 		if (__perf_event_overflow(event, throttle,
9679 					    data, regs)) {
9680 			/*
9681 			 * We inhibit the overflow from happening when
9682 			 * hwc->interrupts == MAX_INTERRUPTS.
9683 			 */
9684 			break;
9685 		}
9686 		throttle = 1;
9687 	}
9688 }
9689 
9690 static void perf_swevent_event(struct perf_event *event, u64 nr,
9691 			       struct perf_sample_data *data,
9692 			       struct pt_regs *regs)
9693 {
9694 	struct hw_perf_event *hwc = &event->hw;
9695 
9696 	local64_add(nr, &event->count);
9697 
9698 	if (!regs)
9699 		return;
9700 
9701 	if (!is_sampling_event(event))
9702 		return;
9703 
9704 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9705 		data->period = nr;
9706 		return perf_swevent_overflow(event, 1, data, regs);
9707 	} else
9708 		data->period = event->hw.last_period;
9709 
9710 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9711 		return perf_swevent_overflow(event, 1, data, regs);
9712 
9713 	if (local64_add_negative(nr, &hwc->period_left))
9714 		return;
9715 
9716 	perf_swevent_overflow(event, 0, data, regs);
9717 }
9718 
9719 static int perf_exclude_event(struct perf_event *event,
9720 			      struct pt_regs *regs)
9721 {
9722 	if (event->hw.state & PERF_HES_STOPPED)
9723 		return 1;
9724 
9725 	if (regs) {
9726 		if (event->attr.exclude_user && user_mode(regs))
9727 			return 1;
9728 
9729 		if (event->attr.exclude_kernel && !user_mode(regs))
9730 			return 1;
9731 	}
9732 
9733 	return 0;
9734 }
9735 
9736 static int perf_swevent_match(struct perf_event *event,
9737 				enum perf_type_id type,
9738 				u32 event_id,
9739 				struct perf_sample_data *data,
9740 				struct pt_regs *regs)
9741 {
9742 	if (event->attr.type != type)
9743 		return 0;
9744 
9745 	if (event->attr.config != event_id)
9746 		return 0;
9747 
9748 	if (perf_exclude_event(event, regs))
9749 		return 0;
9750 
9751 	return 1;
9752 }
9753 
9754 static inline u64 swevent_hash(u64 type, u32 event_id)
9755 {
9756 	u64 val = event_id | (type << 32);
9757 
9758 	return hash_64(val, SWEVENT_HLIST_BITS);
9759 }
9760 
9761 static inline struct hlist_head *
9762 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9763 {
9764 	u64 hash = swevent_hash(type, event_id);
9765 
9766 	return &hlist->heads[hash];
9767 }
9768 
9769 /* For the read side: events when they trigger */
9770 static inline struct hlist_head *
9771 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9772 {
9773 	struct swevent_hlist *hlist;
9774 
9775 	hlist = rcu_dereference(swhash->swevent_hlist);
9776 	if (!hlist)
9777 		return NULL;
9778 
9779 	return __find_swevent_head(hlist, type, event_id);
9780 }
9781 
9782 /* For the event head insertion and removal in the hlist */
9783 static inline struct hlist_head *
9784 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9785 {
9786 	struct swevent_hlist *hlist;
9787 	u32 event_id = event->attr.config;
9788 	u64 type = event->attr.type;
9789 
9790 	/*
9791 	 * Event scheduling is always serialized against hlist allocation
9792 	 * and release. Which makes the protected version suitable here.
9793 	 * The context lock guarantees that.
9794 	 */
9795 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9796 					  lockdep_is_held(&event->ctx->lock));
9797 	if (!hlist)
9798 		return NULL;
9799 
9800 	return __find_swevent_head(hlist, type, event_id);
9801 }
9802 
9803 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9804 				    u64 nr,
9805 				    struct perf_sample_data *data,
9806 				    struct pt_regs *regs)
9807 {
9808 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9809 	struct perf_event *event;
9810 	struct hlist_head *head;
9811 
9812 	rcu_read_lock();
9813 	head = find_swevent_head_rcu(swhash, type, event_id);
9814 	if (!head)
9815 		goto end;
9816 
9817 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9818 		if (perf_swevent_match(event, type, event_id, data, regs))
9819 			perf_swevent_event(event, nr, data, regs);
9820 	}
9821 end:
9822 	rcu_read_unlock();
9823 }
9824 
9825 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9826 
9827 int perf_swevent_get_recursion_context(void)
9828 {
9829 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9830 
9831 	return get_recursion_context(swhash->recursion);
9832 }
9833 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9834 
9835 void perf_swevent_put_recursion_context(int rctx)
9836 {
9837 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9838 
9839 	put_recursion_context(swhash->recursion, rctx);
9840 }
9841 
9842 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9843 {
9844 	struct perf_sample_data data;
9845 
9846 	if (WARN_ON_ONCE(!regs))
9847 		return;
9848 
9849 	perf_sample_data_init(&data, addr, 0);
9850 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9851 }
9852 
9853 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9854 {
9855 	int rctx;
9856 
9857 	preempt_disable_notrace();
9858 	rctx = perf_swevent_get_recursion_context();
9859 	if (unlikely(rctx < 0))
9860 		goto fail;
9861 
9862 	___perf_sw_event(event_id, nr, regs, addr);
9863 
9864 	perf_swevent_put_recursion_context(rctx);
9865 fail:
9866 	preempt_enable_notrace();
9867 }
9868 
9869 static void perf_swevent_read(struct perf_event *event)
9870 {
9871 }
9872 
9873 static int perf_swevent_add(struct perf_event *event, int flags)
9874 {
9875 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9876 	struct hw_perf_event *hwc = &event->hw;
9877 	struct hlist_head *head;
9878 
9879 	if (is_sampling_event(event)) {
9880 		hwc->last_period = hwc->sample_period;
9881 		perf_swevent_set_period(event);
9882 	}
9883 
9884 	hwc->state = !(flags & PERF_EF_START);
9885 
9886 	head = find_swevent_head(swhash, event);
9887 	if (WARN_ON_ONCE(!head))
9888 		return -EINVAL;
9889 
9890 	hlist_add_head_rcu(&event->hlist_entry, head);
9891 	perf_event_update_userpage(event);
9892 
9893 	return 0;
9894 }
9895 
9896 static void perf_swevent_del(struct perf_event *event, int flags)
9897 {
9898 	hlist_del_rcu(&event->hlist_entry);
9899 }
9900 
9901 static void perf_swevent_start(struct perf_event *event, int flags)
9902 {
9903 	event->hw.state = 0;
9904 }
9905 
9906 static void perf_swevent_stop(struct perf_event *event, int flags)
9907 {
9908 	event->hw.state = PERF_HES_STOPPED;
9909 }
9910 
9911 /* Deref the hlist from the update side */
9912 static inline struct swevent_hlist *
9913 swevent_hlist_deref(struct swevent_htable *swhash)
9914 {
9915 	return rcu_dereference_protected(swhash->swevent_hlist,
9916 					 lockdep_is_held(&swhash->hlist_mutex));
9917 }
9918 
9919 static void swevent_hlist_release(struct swevent_htable *swhash)
9920 {
9921 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9922 
9923 	if (!hlist)
9924 		return;
9925 
9926 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9927 	kfree_rcu(hlist, rcu_head);
9928 }
9929 
9930 static void swevent_hlist_put_cpu(int cpu)
9931 {
9932 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9933 
9934 	mutex_lock(&swhash->hlist_mutex);
9935 
9936 	if (!--swhash->hlist_refcount)
9937 		swevent_hlist_release(swhash);
9938 
9939 	mutex_unlock(&swhash->hlist_mutex);
9940 }
9941 
9942 static void swevent_hlist_put(void)
9943 {
9944 	int cpu;
9945 
9946 	for_each_possible_cpu(cpu)
9947 		swevent_hlist_put_cpu(cpu);
9948 }
9949 
9950 static int swevent_hlist_get_cpu(int cpu)
9951 {
9952 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9953 	int err = 0;
9954 
9955 	mutex_lock(&swhash->hlist_mutex);
9956 	if (!swevent_hlist_deref(swhash) &&
9957 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9958 		struct swevent_hlist *hlist;
9959 
9960 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9961 		if (!hlist) {
9962 			err = -ENOMEM;
9963 			goto exit;
9964 		}
9965 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9966 	}
9967 	swhash->hlist_refcount++;
9968 exit:
9969 	mutex_unlock(&swhash->hlist_mutex);
9970 
9971 	return err;
9972 }
9973 
9974 static int swevent_hlist_get(void)
9975 {
9976 	int err, cpu, failed_cpu;
9977 
9978 	mutex_lock(&pmus_lock);
9979 	for_each_possible_cpu(cpu) {
9980 		err = swevent_hlist_get_cpu(cpu);
9981 		if (err) {
9982 			failed_cpu = cpu;
9983 			goto fail;
9984 		}
9985 	}
9986 	mutex_unlock(&pmus_lock);
9987 	return 0;
9988 fail:
9989 	for_each_possible_cpu(cpu) {
9990 		if (cpu == failed_cpu)
9991 			break;
9992 		swevent_hlist_put_cpu(cpu);
9993 	}
9994 	mutex_unlock(&pmus_lock);
9995 	return err;
9996 }
9997 
9998 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9999 
10000 static void sw_perf_event_destroy(struct perf_event *event)
10001 {
10002 	u64 event_id = event->attr.config;
10003 
10004 	WARN_ON(event->parent);
10005 
10006 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10007 	swevent_hlist_put();
10008 }
10009 
10010 static struct pmu perf_cpu_clock; /* fwd declaration */
10011 static struct pmu perf_task_clock;
10012 
10013 static int perf_swevent_init(struct perf_event *event)
10014 {
10015 	u64 event_id = event->attr.config;
10016 
10017 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10018 		return -ENOENT;
10019 
10020 	/*
10021 	 * no branch sampling for software events
10022 	 */
10023 	if (has_branch_stack(event))
10024 		return -EOPNOTSUPP;
10025 
10026 	switch (event_id) {
10027 	case PERF_COUNT_SW_CPU_CLOCK:
10028 		event->attr.type = perf_cpu_clock.type;
10029 		return -ENOENT;
10030 	case PERF_COUNT_SW_TASK_CLOCK:
10031 		event->attr.type = perf_task_clock.type;
10032 		return -ENOENT;
10033 
10034 	default:
10035 		break;
10036 	}
10037 
10038 	if (event_id >= PERF_COUNT_SW_MAX)
10039 		return -ENOENT;
10040 
10041 	if (!event->parent) {
10042 		int err;
10043 
10044 		err = swevent_hlist_get();
10045 		if (err)
10046 			return err;
10047 
10048 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10049 		event->destroy = sw_perf_event_destroy;
10050 	}
10051 
10052 	return 0;
10053 }
10054 
10055 static struct pmu perf_swevent = {
10056 	.task_ctx_nr	= perf_sw_context,
10057 
10058 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10059 
10060 	.event_init	= perf_swevent_init,
10061 	.add		= perf_swevent_add,
10062 	.del		= perf_swevent_del,
10063 	.start		= perf_swevent_start,
10064 	.stop		= perf_swevent_stop,
10065 	.read		= perf_swevent_read,
10066 };
10067 
10068 #ifdef CONFIG_EVENT_TRACING
10069 
10070 static void tp_perf_event_destroy(struct perf_event *event)
10071 {
10072 	perf_trace_destroy(event);
10073 }
10074 
10075 static int perf_tp_event_init(struct perf_event *event)
10076 {
10077 	int err;
10078 
10079 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10080 		return -ENOENT;
10081 
10082 	/*
10083 	 * no branch sampling for tracepoint events
10084 	 */
10085 	if (has_branch_stack(event))
10086 		return -EOPNOTSUPP;
10087 
10088 	err = perf_trace_init(event);
10089 	if (err)
10090 		return err;
10091 
10092 	event->destroy = tp_perf_event_destroy;
10093 
10094 	return 0;
10095 }
10096 
10097 static struct pmu perf_tracepoint = {
10098 	.task_ctx_nr	= perf_sw_context,
10099 
10100 	.event_init	= perf_tp_event_init,
10101 	.add		= perf_trace_add,
10102 	.del		= perf_trace_del,
10103 	.start		= perf_swevent_start,
10104 	.stop		= perf_swevent_stop,
10105 	.read		= perf_swevent_read,
10106 };
10107 
10108 static int perf_tp_filter_match(struct perf_event *event,
10109 				struct perf_sample_data *data)
10110 {
10111 	void *record = data->raw->frag.data;
10112 
10113 	/* only top level events have filters set */
10114 	if (event->parent)
10115 		event = event->parent;
10116 
10117 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10118 		return 1;
10119 	return 0;
10120 }
10121 
10122 static int perf_tp_event_match(struct perf_event *event,
10123 				struct perf_sample_data *data,
10124 				struct pt_regs *regs)
10125 {
10126 	if (event->hw.state & PERF_HES_STOPPED)
10127 		return 0;
10128 	/*
10129 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10130 	 */
10131 	if (event->attr.exclude_kernel && !user_mode(regs))
10132 		return 0;
10133 
10134 	if (!perf_tp_filter_match(event, data))
10135 		return 0;
10136 
10137 	return 1;
10138 }
10139 
10140 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10141 			       struct trace_event_call *call, u64 count,
10142 			       struct pt_regs *regs, struct hlist_head *head,
10143 			       struct task_struct *task)
10144 {
10145 	if (bpf_prog_array_valid(call)) {
10146 		*(struct pt_regs **)raw_data = regs;
10147 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10148 			perf_swevent_put_recursion_context(rctx);
10149 			return;
10150 		}
10151 	}
10152 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10153 		      rctx, task);
10154 }
10155 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10156 
10157 static void __perf_tp_event_target_task(u64 count, void *record,
10158 					struct pt_regs *regs,
10159 					struct perf_sample_data *data,
10160 					struct perf_event *event)
10161 {
10162 	struct trace_entry *entry = record;
10163 
10164 	if (event->attr.config != entry->type)
10165 		return;
10166 	/* Cannot deliver synchronous signal to other task. */
10167 	if (event->attr.sigtrap)
10168 		return;
10169 	if (perf_tp_event_match(event, data, regs))
10170 		perf_swevent_event(event, count, data, regs);
10171 }
10172 
10173 static void perf_tp_event_target_task(u64 count, void *record,
10174 				      struct pt_regs *regs,
10175 				      struct perf_sample_data *data,
10176 				      struct perf_event_context *ctx)
10177 {
10178 	unsigned int cpu = smp_processor_id();
10179 	struct pmu *pmu = &perf_tracepoint;
10180 	struct perf_event *event, *sibling;
10181 
10182 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10183 		__perf_tp_event_target_task(count, record, regs, data, event);
10184 		for_each_sibling_event(sibling, event)
10185 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10186 	}
10187 
10188 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10189 		__perf_tp_event_target_task(count, record, regs, data, event);
10190 		for_each_sibling_event(sibling, event)
10191 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10192 	}
10193 }
10194 
10195 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10196 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10197 		   struct task_struct *task)
10198 {
10199 	struct perf_sample_data data;
10200 	struct perf_event *event;
10201 
10202 	struct perf_raw_record raw = {
10203 		.frag = {
10204 			.size = entry_size,
10205 			.data = record,
10206 		},
10207 	};
10208 
10209 	perf_sample_data_init(&data, 0, 0);
10210 	perf_sample_save_raw_data(&data, &raw);
10211 
10212 	perf_trace_buf_update(record, event_type);
10213 
10214 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10215 		if (perf_tp_event_match(event, &data, regs)) {
10216 			perf_swevent_event(event, count, &data, regs);
10217 
10218 			/*
10219 			 * Here use the same on-stack perf_sample_data,
10220 			 * some members in data are event-specific and
10221 			 * need to be re-computed for different sweveents.
10222 			 * Re-initialize data->sample_flags safely to avoid
10223 			 * the problem that next event skips preparing data
10224 			 * because data->sample_flags is set.
10225 			 */
10226 			perf_sample_data_init(&data, 0, 0);
10227 			perf_sample_save_raw_data(&data, &raw);
10228 		}
10229 	}
10230 
10231 	/*
10232 	 * If we got specified a target task, also iterate its context and
10233 	 * deliver this event there too.
10234 	 */
10235 	if (task && task != current) {
10236 		struct perf_event_context *ctx;
10237 
10238 		rcu_read_lock();
10239 		ctx = rcu_dereference(task->perf_event_ctxp);
10240 		if (!ctx)
10241 			goto unlock;
10242 
10243 		raw_spin_lock(&ctx->lock);
10244 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10245 		raw_spin_unlock(&ctx->lock);
10246 unlock:
10247 		rcu_read_unlock();
10248 	}
10249 
10250 	perf_swevent_put_recursion_context(rctx);
10251 }
10252 EXPORT_SYMBOL_GPL(perf_tp_event);
10253 
10254 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10255 /*
10256  * Flags in config, used by dynamic PMU kprobe and uprobe
10257  * The flags should match following PMU_FORMAT_ATTR().
10258  *
10259  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10260  *                               if not set, create kprobe/uprobe
10261  *
10262  * The following values specify a reference counter (or semaphore in the
10263  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10264  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10265  *
10266  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10267  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10268  */
10269 enum perf_probe_config {
10270 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10271 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10272 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10273 };
10274 
10275 PMU_FORMAT_ATTR(retprobe, "config:0");
10276 #endif
10277 
10278 #ifdef CONFIG_KPROBE_EVENTS
10279 static struct attribute *kprobe_attrs[] = {
10280 	&format_attr_retprobe.attr,
10281 	NULL,
10282 };
10283 
10284 static struct attribute_group kprobe_format_group = {
10285 	.name = "format",
10286 	.attrs = kprobe_attrs,
10287 };
10288 
10289 static const struct attribute_group *kprobe_attr_groups[] = {
10290 	&kprobe_format_group,
10291 	NULL,
10292 };
10293 
10294 static int perf_kprobe_event_init(struct perf_event *event);
10295 static struct pmu perf_kprobe = {
10296 	.task_ctx_nr	= perf_sw_context,
10297 	.event_init	= perf_kprobe_event_init,
10298 	.add		= perf_trace_add,
10299 	.del		= perf_trace_del,
10300 	.start		= perf_swevent_start,
10301 	.stop		= perf_swevent_stop,
10302 	.read		= perf_swevent_read,
10303 	.attr_groups	= kprobe_attr_groups,
10304 };
10305 
10306 static int perf_kprobe_event_init(struct perf_event *event)
10307 {
10308 	int err;
10309 	bool is_retprobe;
10310 
10311 	if (event->attr.type != perf_kprobe.type)
10312 		return -ENOENT;
10313 
10314 	if (!perfmon_capable())
10315 		return -EACCES;
10316 
10317 	/*
10318 	 * no branch sampling for probe events
10319 	 */
10320 	if (has_branch_stack(event))
10321 		return -EOPNOTSUPP;
10322 
10323 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10324 	err = perf_kprobe_init(event, is_retprobe);
10325 	if (err)
10326 		return err;
10327 
10328 	event->destroy = perf_kprobe_destroy;
10329 
10330 	return 0;
10331 }
10332 #endif /* CONFIG_KPROBE_EVENTS */
10333 
10334 #ifdef CONFIG_UPROBE_EVENTS
10335 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10336 
10337 static struct attribute *uprobe_attrs[] = {
10338 	&format_attr_retprobe.attr,
10339 	&format_attr_ref_ctr_offset.attr,
10340 	NULL,
10341 };
10342 
10343 static struct attribute_group uprobe_format_group = {
10344 	.name = "format",
10345 	.attrs = uprobe_attrs,
10346 };
10347 
10348 static const struct attribute_group *uprobe_attr_groups[] = {
10349 	&uprobe_format_group,
10350 	NULL,
10351 };
10352 
10353 static int perf_uprobe_event_init(struct perf_event *event);
10354 static struct pmu perf_uprobe = {
10355 	.task_ctx_nr	= perf_sw_context,
10356 	.event_init	= perf_uprobe_event_init,
10357 	.add		= perf_trace_add,
10358 	.del		= perf_trace_del,
10359 	.start		= perf_swevent_start,
10360 	.stop		= perf_swevent_stop,
10361 	.read		= perf_swevent_read,
10362 	.attr_groups	= uprobe_attr_groups,
10363 };
10364 
10365 static int perf_uprobe_event_init(struct perf_event *event)
10366 {
10367 	int err;
10368 	unsigned long ref_ctr_offset;
10369 	bool is_retprobe;
10370 
10371 	if (event->attr.type != perf_uprobe.type)
10372 		return -ENOENT;
10373 
10374 	if (!perfmon_capable())
10375 		return -EACCES;
10376 
10377 	/*
10378 	 * no branch sampling for probe events
10379 	 */
10380 	if (has_branch_stack(event))
10381 		return -EOPNOTSUPP;
10382 
10383 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10384 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10385 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10386 	if (err)
10387 		return err;
10388 
10389 	event->destroy = perf_uprobe_destroy;
10390 
10391 	return 0;
10392 }
10393 #endif /* CONFIG_UPROBE_EVENTS */
10394 
10395 static inline void perf_tp_register(void)
10396 {
10397 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10398 #ifdef CONFIG_KPROBE_EVENTS
10399 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10400 #endif
10401 #ifdef CONFIG_UPROBE_EVENTS
10402 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10403 #endif
10404 }
10405 
10406 static void perf_event_free_filter(struct perf_event *event)
10407 {
10408 	ftrace_profile_free_filter(event);
10409 }
10410 
10411 #ifdef CONFIG_BPF_SYSCALL
10412 static void bpf_overflow_handler(struct perf_event *event,
10413 				 struct perf_sample_data *data,
10414 				 struct pt_regs *regs)
10415 {
10416 	struct bpf_perf_event_data_kern ctx = {
10417 		.data = data,
10418 		.event = event,
10419 	};
10420 	struct bpf_prog *prog;
10421 	int ret = 0;
10422 
10423 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10424 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10425 		goto out;
10426 	rcu_read_lock();
10427 	prog = READ_ONCE(event->prog);
10428 	if (prog) {
10429 		perf_prepare_sample(data, event, regs);
10430 		ret = bpf_prog_run(prog, &ctx);
10431 	}
10432 	rcu_read_unlock();
10433 out:
10434 	__this_cpu_dec(bpf_prog_active);
10435 	if (!ret)
10436 		return;
10437 
10438 	event->orig_overflow_handler(event, data, regs);
10439 }
10440 
10441 static int perf_event_set_bpf_handler(struct perf_event *event,
10442 				      struct bpf_prog *prog,
10443 				      u64 bpf_cookie)
10444 {
10445 	if (event->overflow_handler_context)
10446 		/* hw breakpoint or kernel counter */
10447 		return -EINVAL;
10448 
10449 	if (event->prog)
10450 		return -EEXIST;
10451 
10452 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10453 		return -EINVAL;
10454 
10455 	if (event->attr.precise_ip &&
10456 	    prog->call_get_stack &&
10457 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10458 	     event->attr.exclude_callchain_kernel ||
10459 	     event->attr.exclude_callchain_user)) {
10460 		/*
10461 		 * On perf_event with precise_ip, calling bpf_get_stack()
10462 		 * may trigger unwinder warnings and occasional crashes.
10463 		 * bpf_get_[stack|stackid] works around this issue by using
10464 		 * callchain attached to perf_sample_data. If the
10465 		 * perf_event does not full (kernel and user) callchain
10466 		 * attached to perf_sample_data, do not allow attaching BPF
10467 		 * program that calls bpf_get_[stack|stackid].
10468 		 */
10469 		return -EPROTO;
10470 	}
10471 
10472 	event->prog = prog;
10473 	event->bpf_cookie = bpf_cookie;
10474 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10475 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10476 	return 0;
10477 }
10478 
10479 static void perf_event_free_bpf_handler(struct perf_event *event)
10480 {
10481 	struct bpf_prog *prog = event->prog;
10482 
10483 	if (!prog)
10484 		return;
10485 
10486 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10487 	event->prog = NULL;
10488 	bpf_prog_put(prog);
10489 }
10490 #else
10491 static int perf_event_set_bpf_handler(struct perf_event *event,
10492 				      struct bpf_prog *prog,
10493 				      u64 bpf_cookie)
10494 {
10495 	return -EOPNOTSUPP;
10496 }
10497 static void perf_event_free_bpf_handler(struct perf_event *event)
10498 {
10499 }
10500 #endif
10501 
10502 /*
10503  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10504  * with perf_event_open()
10505  */
10506 static inline bool perf_event_is_tracing(struct perf_event *event)
10507 {
10508 	if (event->pmu == &perf_tracepoint)
10509 		return true;
10510 #ifdef CONFIG_KPROBE_EVENTS
10511 	if (event->pmu == &perf_kprobe)
10512 		return true;
10513 #endif
10514 #ifdef CONFIG_UPROBE_EVENTS
10515 	if (event->pmu == &perf_uprobe)
10516 		return true;
10517 #endif
10518 	return false;
10519 }
10520 
10521 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10522 			    u64 bpf_cookie)
10523 {
10524 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10525 
10526 	if (!perf_event_is_tracing(event))
10527 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10528 
10529 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10530 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10531 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10532 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10533 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10534 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10535 		return -EINVAL;
10536 
10537 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10538 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10539 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10540 		return -EINVAL;
10541 
10542 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10543 		/* only uprobe programs are allowed to be sleepable */
10544 		return -EINVAL;
10545 
10546 	/* Kprobe override only works for kprobes, not uprobes. */
10547 	if (prog->kprobe_override && !is_kprobe)
10548 		return -EINVAL;
10549 
10550 	if (is_tracepoint || is_syscall_tp) {
10551 		int off = trace_event_get_offsets(event->tp_event);
10552 
10553 		if (prog->aux->max_ctx_offset > off)
10554 			return -EACCES;
10555 	}
10556 
10557 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10558 }
10559 
10560 void perf_event_free_bpf_prog(struct perf_event *event)
10561 {
10562 	if (!perf_event_is_tracing(event)) {
10563 		perf_event_free_bpf_handler(event);
10564 		return;
10565 	}
10566 	perf_event_detach_bpf_prog(event);
10567 }
10568 
10569 #else
10570 
10571 static inline void perf_tp_register(void)
10572 {
10573 }
10574 
10575 static void perf_event_free_filter(struct perf_event *event)
10576 {
10577 }
10578 
10579 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10580 			    u64 bpf_cookie)
10581 {
10582 	return -ENOENT;
10583 }
10584 
10585 void perf_event_free_bpf_prog(struct perf_event *event)
10586 {
10587 }
10588 #endif /* CONFIG_EVENT_TRACING */
10589 
10590 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10591 void perf_bp_event(struct perf_event *bp, void *data)
10592 {
10593 	struct perf_sample_data sample;
10594 	struct pt_regs *regs = data;
10595 
10596 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10597 
10598 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10599 		perf_swevent_event(bp, 1, &sample, regs);
10600 }
10601 #endif
10602 
10603 /*
10604  * Allocate a new address filter
10605  */
10606 static struct perf_addr_filter *
10607 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10608 {
10609 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10610 	struct perf_addr_filter *filter;
10611 
10612 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10613 	if (!filter)
10614 		return NULL;
10615 
10616 	INIT_LIST_HEAD(&filter->entry);
10617 	list_add_tail(&filter->entry, filters);
10618 
10619 	return filter;
10620 }
10621 
10622 static void free_filters_list(struct list_head *filters)
10623 {
10624 	struct perf_addr_filter *filter, *iter;
10625 
10626 	list_for_each_entry_safe(filter, iter, filters, entry) {
10627 		path_put(&filter->path);
10628 		list_del(&filter->entry);
10629 		kfree(filter);
10630 	}
10631 }
10632 
10633 /*
10634  * Free existing address filters and optionally install new ones
10635  */
10636 static void perf_addr_filters_splice(struct perf_event *event,
10637 				     struct list_head *head)
10638 {
10639 	unsigned long flags;
10640 	LIST_HEAD(list);
10641 
10642 	if (!has_addr_filter(event))
10643 		return;
10644 
10645 	/* don't bother with children, they don't have their own filters */
10646 	if (event->parent)
10647 		return;
10648 
10649 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10650 
10651 	list_splice_init(&event->addr_filters.list, &list);
10652 	if (head)
10653 		list_splice(head, &event->addr_filters.list);
10654 
10655 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10656 
10657 	free_filters_list(&list);
10658 }
10659 
10660 /*
10661  * Scan through mm's vmas and see if one of them matches the
10662  * @filter; if so, adjust filter's address range.
10663  * Called with mm::mmap_lock down for reading.
10664  */
10665 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10666 				   struct mm_struct *mm,
10667 				   struct perf_addr_filter_range *fr)
10668 {
10669 	struct vm_area_struct *vma;
10670 	VMA_ITERATOR(vmi, mm, 0);
10671 
10672 	for_each_vma(vmi, vma) {
10673 		if (!vma->vm_file)
10674 			continue;
10675 
10676 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10677 			return;
10678 	}
10679 }
10680 
10681 /*
10682  * Update event's address range filters based on the
10683  * task's existing mappings, if any.
10684  */
10685 static void perf_event_addr_filters_apply(struct perf_event *event)
10686 {
10687 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10688 	struct task_struct *task = READ_ONCE(event->ctx->task);
10689 	struct perf_addr_filter *filter;
10690 	struct mm_struct *mm = NULL;
10691 	unsigned int count = 0;
10692 	unsigned long flags;
10693 
10694 	/*
10695 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10696 	 * will stop on the parent's child_mutex that our caller is also holding
10697 	 */
10698 	if (task == TASK_TOMBSTONE)
10699 		return;
10700 
10701 	if (ifh->nr_file_filters) {
10702 		mm = get_task_mm(task);
10703 		if (!mm)
10704 			goto restart;
10705 
10706 		mmap_read_lock(mm);
10707 	}
10708 
10709 	raw_spin_lock_irqsave(&ifh->lock, flags);
10710 	list_for_each_entry(filter, &ifh->list, entry) {
10711 		if (filter->path.dentry) {
10712 			/*
10713 			 * Adjust base offset if the filter is associated to a
10714 			 * binary that needs to be mapped:
10715 			 */
10716 			event->addr_filter_ranges[count].start = 0;
10717 			event->addr_filter_ranges[count].size = 0;
10718 
10719 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10720 		} else {
10721 			event->addr_filter_ranges[count].start = filter->offset;
10722 			event->addr_filter_ranges[count].size  = filter->size;
10723 		}
10724 
10725 		count++;
10726 	}
10727 
10728 	event->addr_filters_gen++;
10729 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10730 
10731 	if (ifh->nr_file_filters) {
10732 		mmap_read_unlock(mm);
10733 
10734 		mmput(mm);
10735 	}
10736 
10737 restart:
10738 	perf_event_stop(event, 1);
10739 }
10740 
10741 /*
10742  * Address range filtering: limiting the data to certain
10743  * instruction address ranges. Filters are ioctl()ed to us from
10744  * userspace as ascii strings.
10745  *
10746  * Filter string format:
10747  *
10748  * ACTION RANGE_SPEC
10749  * where ACTION is one of the
10750  *  * "filter": limit the trace to this region
10751  *  * "start": start tracing from this address
10752  *  * "stop": stop tracing at this address/region;
10753  * RANGE_SPEC is
10754  *  * for kernel addresses: <start address>[/<size>]
10755  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10756  *
10757  * if <size> is not specified or is zero, the range is treated as a single
10758  * address; not valid for ACTION=="filter".
10759  */
10760 enum {
10761 	IF_ACT_NONE = -1,
10762 	IF_ACT_FILTER,
10763 	IF_ACT_START,
10764 	IF_ACT_STOP,
10765 	IF_SRC_FILE,
10766 	IF_SRC_KERNEL,
10767 	IF_SRC_FILEADDR,
10768 	IF_SRC_KERNELADDR,
10769 };
10770 
10771 enum {
10772 	IF_STATE_ACTION = 0,
10773 	IF_STATE_SOURCE,
10774 	IF_STATE_END,
10775 };
10776 
10777 static const match_table_t if_tokens = {
10778 	{ IF_ACT_FILTER,	"filter" },
10779 	{ IF_ACT_START,		"start" },
10780 	{ IF_ACT_STOP,		"stop" },
10781 	{ IF_SRC_FILE,		"%u/%u@%s" },
10782 	{ IF_SRC_KERNEL,	"%u/%u" },
10783 	{ IF_SRC_FILEADDR,	"%u@%s" },
10784 	{ IF_SRC_KERNELADDR,	"%u" },
10785 	{ IF_ACT_NONE,		NULL },
10786 };
10787 
10788 /*
10789  * Address filter string parser
10790  */
10791 static int
10792 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10793 			     struct list_head *filters)
10794 {
10795 	struct perf_addr_filter *filter = NULL;
10796 	char *start, *orig, *filename = NULL;
10797 	substring_t args[MAX_OPT_ARGS];
10798 	int state = IF_STATE_ACTION, token;
10799 	unsigned int kernel = 0;
10800 	int ret = -EINVAL;
10801 
10802 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10803 	if (!fstr)
10804 		return -ENOMEM;
10805 
10806 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10807 		static const enum perf_addr_filter_action_t actions[] = {
10808 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10809 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10810 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10811 		};
10812 		ret = -EINVAL;
10813 
10814 		if (!*start)
10815 			continue;
10816 
10817 		/* filter definition begins */
10818 		if (state == IF_STATE_ACTION) {
10819 			filter = perf_addr_filter_new(event, filters);
10820 			if (!filter)
10821 				goto fail;
10822 		}
10823 
10824 		token = match_token(start, if_tokens, args);
10825 		switch (token) {
10826 		case IF_ACT_FILTER:
10827 		case IF_ACT_START:
10828 		case IF_ACT_STOP:
10829 			if (state != IF_STATE_ACTION)
10830 				goto fail;
10831 
10832 			filter->action = actions[token];
10833 			state = IF_STATE_SOURCE;
10834 			break;
10835 
10836 		case IF_SRC_KERNELADDR:
10837 		case IF_SRC_KERNEL:
10838 			kernel = 1;
10839 			fallthrough;
10840 
10841 		case IF_SRC_FILEADDR:
10842 		case IF_SRC_FILE:
10843 			if (state != IF_STATE_SOURCE)
10844 				goto fail;
10845 
10846 			*args[0].to = 0;
10847 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10848 			if (ret)
10849 				goto fail;
10850 
10851 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10852 				*args[1].to = 0;
10853 				ret = kstrtoul(args[1].from, 0, &filter->size);
10854 				if (ret)
10855 					goto fail;
10856 			}
10857 
10858 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10859 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10860 
10861 				kfree(filename);
10862 				filename = match_strdup(&args[fpos]);
10863 				if (!filename) {
10864 					ret = -ENOMEM;
10865 					goto fail;
10866 				}
10867 			}
10868 
10869 			state = IF_STATE_END;
10870 			break;
10871 
10872 		default:
10873 			goto fail;
10874 		}
10875 
10876 		/*
10877 		 * Filter definition is fully parsed, validate and install it.
10878 		 * Make sure that it doesn't contradict itself or the event's
10879 		 * attribute.
10880 		 */
10881 		if (state == IF_STATE_END) {
10882 			ret = -EINVAL;
10883 
10884 			/*
10885 			 * ACTION "filter" must have a non-zero length region
10886 			 * specified.
10887 			 */
10888 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10889 			    !filter->size)
10890 				goto fail;
10891 
10892 			if (!kernel) {
10893 				if (!filename)
10894 					goto fail;
10895 
10896 				/*
10897 				 * For now, we only support file-based filters
10898 				 * in per-task events; doing so for CPU-wide
10899 				 * events requires additional context switching
10900 				 * trickery, since same object code will be
10901 				 * mapped at different virtual addresses in
10902 				 * different processes.
10903 				 */
10904 				ret = -EOPNOTSUPP;
10905 				if (!event->ctx->task)
10906 					goto fail;
10907 
10908 				/* look up the path and grab its inode */
10909 				ret = kern_path(filename, LOOKUP_FOLLOW,
10910 						&filter->path);
10911 				if (ret)
10912 					goto fail;
10913 
10914 				ret = -EINVAL;
10915 				if (!filter->path.dentry ||
10916 				    !S_ISREG(d_inode(filter->path.dentry)
10917 					     ->i_mode))
10918 					goto fail;
10919 
10920 				event->addr_filters.nr_file_filters++;
10921 			}
10922 
10923 			/* ready to consume more filters */
10924 			kfree(filename);
10925 			filename = NULL;
10926 			state = IF_STATE_ACTION;
10927 			filter = NULL;
10928 			kernel = 0;
10929 		}
10930 	}
10931 
10932 	if (state != IF_STATE_ACTION)
10933 		goto fail;
10934 
10935 	kfree(filename);
10936 	kfree(orig);
10937 
10938 	return 0;
10939 
10940 fail:
10941 	kfree(filename);
10942 	free_filters_list(filters);
10943 	kfree(orig);
10944 
10945 	return ret;
10946 }
10947 
10948 static int
10949 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10950 {
10951 	LIST_HEAD(filters);
10952 	int ret;
10953 
10954 	/*
10955 	 * Since this is called in perf_ioctl() path, we're already holding
10956 	 * ctx::mutex.
10957 	 */
10958 	lockdep_assert_held(&event->ctx->mutex);
10959 
10960 	if (WARN_ON_ONCE(event->parent))
10961 		return -EINVAL;
10962 
10963 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10964 	if (ret)
10965 		goto fail_clear_files;
10966 
10967 	ret = event->pmu->addr_filters_validate(&filters);
10968 	if (ret)
10969 		goto fail_free_filters;
10970 
10971 	/* remove existing filters, if any */
10972 	perf_addr_filters_splice(event, &filters);
10973 
10974 	/* install new filters */
10975 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10976 
10977 	return ret;
10978 
10979 fail_free_filters:
10980 	free_filters_list(&filters);
10981 
10982 fail_clear_files:
10983 	event->addr_filters.nr_file_filters = 0;
10984 
10985 	return ret;
10986 }
10987 
10988 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10989 {
10990 	int ret = -EINVAL;
10991 	char *filter_str;
10992 
10993 	filter_str = strndup_user(arg, PAGE_SIZE);
10994 	if (IS_ERR(filter_str))
10995 		return PTR_ERR(filter_str);
10996 
10997 #ifdef CONFIG_EVENT_TRACING
10998 	if (perf_event_is_tracing(event)) {
10999 		struct perf_event_context *ctx = event->ctx;
11000 
11001 		/*
11002 		 * Beware, here be dragons!!
11003 		 *
11004 		 * the tracepoint muck will deadlock against ctx->mutex, but
11005 		 * the tracepoint stuff does not actually need it. So
11006 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11007 		 * already have a reference on ctx.
11008 		 *
11009 		 * This can result in event getting moved to a different ctx,
11010 		 * but that does not affect the tracepoint state.
11011 		 */
11012 		mutex_unlock(&ctx->mutex);
11013 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11014 		mutex_lock(&ctx->mutex);
11015 	} else
11016 #endif
11017 	if (has_addr_filter(event))
11018 		ret = perf_event_set_addr_filter(event, filter_str);
11019 
11020 	kfree(filter_str);
11021 	return ret;
11022 }
11023 
11024 /*
11025  * hrtimer based swevent callback
11026  */
11027 
11028 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11029 {
11030 	enum hrtimer_restart ret = HRTIMER_RESTART;
11031 	struct perf_sample_data data;
11032 	struct pt_regs *regs;
11033 	struct perf_event *event;
11034 	u64 period;
11035 
11036 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11037 
11038 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11039 		return HRTIMER_NORESTART;
11040 
11041 	event->pmu->read(event);
11042 
11043 	perf_sample_data_init(&data, 0, event->hw.last_period);
11044 	regs = get_irq_regs();
11045 
11046 	if (regs && !perf_exclude_event(event, regs)) {
11047 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11048 			if (__perf_event_overflow(event, 1, &data, regs))
11049 				ret = HRTIMER_NORESTART;
11050 	}
11051 
11052 	period = max_t(u64, 10000, event->hw.sample_period);
11053 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11054 
11055 	return ret;
11056 }
11057 
11058 static void perf_swevent_start_hrtimer(struct perf_event *event)
11059 {
11060 	struct hw_perf_event *hwc = &event->hw;
11061 	s64 period;
11062 
11063 	if (!is_sampling_event(event))
11064 		return;
11065 
11066 	period = local64_read(&hwc->period_left);
11067 	if (period) {
11068 		if (period < 0)
11069 			period = 10000;
11070 
11071 		local64_set(&hwc->period_left, 0);
11072 	} else {
11073 		period = max_t(u64, 10000, hwc->sample_period);
11074 	}
11075 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11076 		      HRTIMER_MODE_REL_PINNED_HARD);
11077 }
11078 
11079 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11080 {
11081 	struct hw_perf_event *hwc = &event->hw;
11082 
11083 	if (is_sampling_event(event)) {
11084 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11085 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11086 
11087 		hrtimer_cancel(&hwc->hrtimer);
11088 	}
11089 }
11090 
11091 static void perf_swevent_init_hrtimer(struct perf_event *event)
11092 {
11093 	struct hw_perf_event *hwc = &event->hw;
11094 
11095 	if (!is_sampling_event(event))
11096 		return;
11097 
11098 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11099 	hwc->hrtimer.function = perf_swevent_hrtimer;
11100 
11101 	/*
11102 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11103 	 * mapping and avoid the whole period adjust feedback stuff.
11104 	 */
11105 	if (event->attr.freq) {
11106 		long freq = event->attr.sample_freq;
11107 
11108 		event->attr.sample_period = NSEC_PER_SEC / freq;
11109 		hwc->sample_period = event->attr.sample_period;
11110 		local64_set(&hwc->period_left, hwc->sample_period);
11111 		hwc->last_period = hwc->sample_period;
11112 		event->attr.freq = 0;
11113 	}
11114 }
11115 
11116 /*
11117  * Software event: cpu wall time clock
11118  */
11119 
11120 static void cpu_clock_event_update(struct perf_event *event)
11121 {
11122 	s64 prev;
11123 	u64 now;
11124 
11125 	now = local_clock();
11126 	prev = local64_xchg(&event->hw.prev_count, now);
11127 	local64_add(now - prev, &event->count);
11128 }
11129 
11130 static void cpu_clock_event_start(struct perf_event *event, int flags)
11131 {
11132 	local64_set(&event->hw.prev_count, local_clock());
11133 	perf_swevent_start_hrtimer(event);
11134 }
11135 
11136 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11137 {
11138 	perf_swevent_cancel_hrtimer(event);
11139 	cpu_clock_event_update(event);
11140 }
11141 
11142 static int cpu_clock_event_add(struct perf_event *event, int flags)
11143 {
11144 	if (flags & PERF_EF_START)
11145 		cpu_clock_event_start(event, flags);
11146 	perf_event_update_userpage(event);
11147 
11148 	return 0;
11149 }
11150 
11151 static void cpu_clock_event_del(struct perf_event *event, int flags)
11152 {
11153 	cpu_clock_event_stop(event, flags);
11154 }
11155 
11156 static void cpu_clock_event_read(struct perf_event *event)
11157 {
11158 	cpu_clock_event_update(event);
11159 }
11160 
11161 static int cpu_clock_event_init(struct perf_event *event)
11162 {
11163 	if (event->attr.type != perf_cpu_clock.type)
11164 		return -ENOENT;
11165 
11166 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11167 		return -ENOENT;
11168 
11169 	/*
11170 	 * no branch sampling for software events
11171 	 */
11172 	if (has_branch_stack(event))
11173 		return -EOPNOTSUPP;
11174 
11175 	perf_swevent_init_hrtimer(event);
11176 
11177 	return 0;
11178 }
11179 
11180 static struct pmu perf_cpu_clock = {
11181 	.task_ctx_nr	= perf_sw_context,
11182 
11183 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11184 	.dev		= PMU_NULL_DEV,
11185 
11186 	.event_init	= cpu_clock_event_init,
11187 	.add		= cpu_clock_event_add,
11188 	.del		= cpu_clock_event_del,
11189 	.start		= cpu_clock_event_start,
11190 	.stop		= cpu_clock_event_stop,
11191 	.read		= cpu_clock_event_read,
11192 };
11193 
11194 /*
11195  * Software event: task time clock
11196  */
11197 
11198 static void task_clock_event_update(struct perf_event *event, u64 now)
11199 {
11200 	u64 prev;
11201 	s64 delta;
11202 
11203 	prev = local64_xchg(&event->hw.prev_count, now);
11204 	delta = now - prev;
11205 	local64_add(delta, &event->count);
11206 }
11207 
11208 static void task_clock_event_start(struct perf_event *event, int flags)
11209 {
11210 	local64_set(&event->hw.prev_count, event->ctx->time);
11211 	perf_swevent_start_hrtimer(event);
11212 }
11213 
11214 static void task_clock_event_stop(struct perf_event *event, int flags)
11215 {
11216 	perf_swevent_cancel_hrtimer(event);
11217 	task_clock_event_update(event, event->ctx->time);
11218 }
11219 
11220 static int task_clock_event_add(struct perf_event *event, int flags)
11221 {
11222 	if (flags & PERF_EF_START)
11223 		task_clock_event_start(event, flags);
11224 	perf_event_update_userpage(event);
11225 
11226 	return 0;
11227 }
11228 
11229 static void task_clock_event_del(struct perf_event *event, int flags)
11230 {
11231 	task_clock_event_stop(event, PERF_EF_UPDATE);
11232 }
11233 
11234 static void task_clock_event_read(struct perf_event *event)
11235 {
11236 	u64 now = perf_clock();
11237 	u64 delta = now - event->ctx->timestamp;
11238 	u64 time = event->ctx->time + delta;
11239 
11240 	task_clock_event_update(event, time);
11241 }
11242 
11243 static int task_clock_event_init(struct perf_event *event)
11244 {
11245 	if (event->attr.type != perf_task_clock.type)
11246 		return -ENOENT;
11247 
11248 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11249 		return -ENOENT;
11250 
11251 	/*
11252 	 * no branch sampling for software events
11253 	 */
11254 	if (has_branch_stack(event))
11255 		return -EOPNOTSUPP;
11256 
11257 	perf_swevent_init_hrtimer(event);
11258 
11259 	return 0;
11260 }
11261 
11262 static struct pmu perf_task_clock = {
11263 	.task_ctx_nr	= perf_sw_context,
11264 
11265 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11266 	.dev		= PMU_NULL_DEV,
11267 
11268 	.event_init	= task_clock_event_init,
11269 	.add		= task_clock_event_add,
11270 	.del		= task_clock_event_del,
11271 	.start		= task_clock_event_start,
11272 	.stop		= task_clock_event_stop,
11273 	.read		= task_clock_event_read,
11274 };
11275 
11276 static void perf_pmu_nop_void(struct pmu *pmu)
11277 {
11278 }
11279 
11280 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11281 {
11282 }
11283 
11284 static int perf_pmu_nop_int(struct pmu *pmu)
11285 {
11286 	return 0;
11287 }
11288 
11289 static int perf_event_nop_int(struct perf_event *event, u64 value)
11290 {
11291 	return 0;
11292 }
11293 
11294 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11295 
11296 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11297 {
11298 	__this_cpu_write(nop_txn_flags, flags);
11299 
11300 	if (flags & ~PERF_PMU_TXN_ADD)
11301 		return;
11302 
11303 	perf_pmu_disable(pmu);
11304 }
11305 
11306 static int perf_pmu_commit_txn(struct pmu *pmu)
11307 {
11308 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11309 
11310 	__this_cpu_write(nop_txn_flags, 0);
11311 
11312 	if (flags & ~PERF_PMU_TXN_ADD)
11313 		return 0;
11314 
11315 	perf_pmu_enable(pmu);
11316 	return 0;
11317 }
11318 
11319 static void perf_pmu_cancel_txn(struct pmu *pmu)
11320 {
11321 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11322 
11323 	__this_cpu_write(nop_txn_flags, 0);
11324 
11325 	if (flags & ~PERF_PMU_TXN_ADD)
11326 		return;
11327 
11328 	perf_pmu_enable(pmu);
11329 }
11330 
11331 static int perf_event_idx_default(struct perf_event *event)
11332 {
11333 	return 0;
11334 }
11335 
11336 static void free_pmu_context(struct pmu *pmu)
11337 {
11338 	free_percpu(pmu->cpu_pmu_context);
11339 }
11340 
11341 /*
11342  * Let userspace know that this PMU supports address range filtering:
11343  */
11344 static ssize_t nr_addr_filters_show(struct device *dev,
11345 				    struct device_attribute *attr,
11346 				    char *page)
11347 {
11348 	struct pmu *pmu = dev_get_drvdata(dev);
11349 
11350 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11351 }
11352 DEVICE_ATTR_RO(nr_addr_filters);
11353 
11354 static struct idr pmu_idr;
11355 
11356 static ssize_t
11357 type_show(struct device *dev, struct device_attribute *attr, char *page)
11358 {
11359 	struct pmu *pmu = dev_get_drvdata(dev);
11360 
11361 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11362 }
11363 static DEVICE_ATTR_RO(type);
11364 
11365 static ssize_t
11366 perf_event_mux_interval_ms_show(struct device *dev,
11367 				struct device_attribute *attr,
11368 				char *page)
11369 {
11370 	struct pmu *pmu = dev_get_drvdata(dev);
11371 
11372 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11373 }
11374 
11375 static DEFINE_MUTEX(mux_interval_mutex);
11376 
11377 static ssize_t
11378 perf_event_mux_interval_ms_store(struct device *dev,
11379 				 struct device_attribute *attr,
11380 				 const char *buf, size_t count)
11381 {
11382 	struct pmu *pmu = dev_get_drvdata(dev);
11383 	int timer, cpu, ret;
11384 
11385 	ret = kstrtoint(buf, 0, &timer);
11386 	if (ret)
11387 		return ret;
11388 
11389 	if (timer < 1)
11390 		return -EINVAL;
11391 
11392 	/* same value, noting to do */
11393 	if (timer == pmu->hrtimer_interval_ms)
11394 		return count;
11395 
11396 	mutex_lock(&mux_interval_mutex);
11397 	pmu->hrtimer_interval_ms = timer;
11398 
11399 	/* update all cpuctx for this PMU */
11400 	cpus_read_lock();
11401 	for_each_online_cpu(cpu) {
11402 		struct perf_cpu_pmu_context *cpc;
11403 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11404 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11405 
11406 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11407 	}
11408 	cpus_read_unlock();
11409 	mutex_unlock(&mux_interval_mutex);
11410 
11411 	return count;
11412 }
11413 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11414 
11415 static struct attribute *pmu_dev_attrs[] = {
11416 	&dev_attr_type.attr,
11417 	&dev_attr_perf_event_mux_interval_ms.attr,
11418 	NULL,
11419 };
11420 ATTRIBUTE_GROUPS(pmu_dev);
11421 
11422 static int pmu_bus_running;
11423 static struct bus_type pmu_bus = {
11424 	.name		= "event_source",
11425 	.dev_groups	= pmu_dev_groups,
11426 };
11427 
11428 static void pmu_dev_release(struct device *dev)
11429 {
11430 	kfree(dev);
11431 }
11432 
11433 static int pmu_dev_alloc(struct pmu *pmu)
11434 {
11435 	int ret = -ENOMEM;
11436 
11437 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11438 	if (!pmu->dev)
11439 		goto out;
11440 
11441 	pmu->dev->groups = pmu->attr_groups;
11442 	device_initialize(pmu->dev);
11443 
11444 	dev_set_drvdata(pmu->dev, pmu);
11445 	pmu->dev->bus = &pmu_bus;
11446 	pmu->dev->parent = pmu->parent;
11447 	pmu->dev->release = pmu_dev_release;
11448 
11449 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11450 	if (ret)
11451 		goto free_dev;
11452 
11453 	ret = device_add(pmu->dev);
11454 	if (ret)
11455 		goto free_dev;
11456 
11457 	/* For PMUs with address filters, throw in an extra attribute: */
11458 	if (pmu->nr_addr_filters)
11459 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11460 
11461 	if (ret)
11462 		goto del_dev;
11463 
11464 	if (pmu->attr_update)
11465 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11466 
11467 	if (ret)
11468 		goto del_dev;
11469 
11470 out:
11471 	return ret;
11472 
11473 del_dev:
11474 	device_del(pmu->dev);
11475 
11476 free_dev:
11477 	put_device(pmu->dev);
11478 	goto out;
11479 }
11480 
11481 static struct lock_class_key cpuctx_mutex;
11482 static struct lock_class_key cpuctx_lock;
11483 
11484 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11485 {
11486 	int cpu, ret, max = PERF_TYPE_MAX;
11487 
11488 	mutex_lock(&pmus_lock);
11489 	ret = -ENOMEM;
11490 	pmu->pmu_disable_count = alloc_percpu(int);
11491 	if (!pmu->pmu_disable_count)
11492 		goto unlock;
11493 
11494 	pmu->type = -1;
11495 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11496 		ret = -EINVAL;
11497 		goto free_pdc;
11498 	}
11499 
11500 	pmu->name = name;
11501 
11502 	if (type >= 0)
11503 		max = type;
11504 
11505 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11506 	if (ret < 0)
11507 		goto free_pdc;
11508 
11509 	WARN_ON(type >= 0 && ret != type);
11510 
11511 	type = ret;
11512 	pmu->type = type;
11513 
11514 	if (pmu_bus_running && !pmu->dev) {
11515 		ret = pmu_dev_alloc(pmu);
11516 		if (ret)
11517 			goto free_idr;
11518 	}
11519 
11520 	ret = -ENOMEM;
11521 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11522 	if (!pmu->cpu_pmu_context)
11523 		goto free_dev;
11524 
11525 	for_each_possible_cpu(cpu) {
11526 		struct perf_cpu_pmu_context *cpc;
11527 
11528 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11529 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11530 		__perf_mux_hrtimer_init(cpc, cpu);
11531 	}
11532 
11533 	if (!pmu->start_txn) {
11534 		if (pmu->pmu_enable) {
11535 			/*
11536 			 * If we have pmu_enable/pmu_disable calls, install
11537 			 * transaction stubs that use that to try and batch
11538 			 * hardware accesses.
11539 			 */
11540 			pmu->start_txn  = perf_pmu_start_txn;
11541 			pmu->commit_txn = perf_pmu_commit_txn;
11542 			pmu->cancel_txn = perf_pmu_cancel_txn;
11543 		} else {
11544 			pmu->start_txn  = perf_pmu_nop_txn;
11545 			pmu->commit_txn = perf_pmu_nop_int;
11546 			pmu->cancel_txn = perf_pmu_nop_void;
11547 		}
11548 	}
11549 
11550 	if (!pmu->pmu_enable) {
11551 		pmu->pmu_enable  = perf_pmu_nop_void;
11552 		pmu->pmu_disable = perf_pmu_nop_void;
11553 	}
11554 
11555 	if (!pmu->check_period)
11556 		pmu->check_period = perf_event_nop_int;
11557 
11558 	if (!pmu->event_idx)
11559 		pmu->event_idx = perf_event_idx_default;
11560 
11561 	list_add_rcu(&pmu->entry, &pmus);
11562 	atomic_set(&pmu->exclusive_cnt, 0);
11563 	ret = 0;
11564 unlock:
11565 	mutex_unlock(&pmus_lock);
11566 
11567 	return ret;
11568 
11569 free_dev:
11570 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11571 		device_del(pmu->dev);
11572 		put_device(pmu->dev);
11573 	}
11574 
11575 free_idr:
11576 	idr_remove(&pmu_idr, pmu->type);
11577 
11578 free_pdc:
11579 	free_percpu(pmu->pmu_disable_count);
11580 	goto unlock;
11581 }
11582 EXPORT_SYMBOL_GPL(perf_pmu_register);
11583 
11584 void perf_pmu_unregister(struct pmu *pmu)
11585 {
11586 	mutex_lock(&pmus_lock);
11587 	list_del_rcu(&pmu->entry);
11588 
11589 	/*
11590 	 * We dereference the pmu list under both SRCU and regular RCU, so
11591 	 * synchronize against both of those.
11592 	 */
11593 	synchronize_srcu(&pmus_srcu);
11594 	synchronize_rcu();
11595 
11596 	free_percpu(pmu->pmu_disable_count);
11597 	idr_remove(&pmu_idr, pmu->type);
11598 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11599 		if (pmu->nr_addr_filters)
11600 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11601 		device_del(pmu->dev);
11602 		put_device(pmu->dev);
11603 	}
11604 	free_pmu_context(pmu);
11605 	mutex_unlock(&pmus_lock);
11606 }
11607 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11608 
11609 static inline bool has_extended_regs(struct perf_event *event)
11610 {
11611 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11612 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11613 }
11614 
11615 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11616 {
11617 	struct perf_event_context *ctx = NULL;
11618 	int ret;
11619 
11620 	if (!try_module_get(pmu->module))
11621 		return -ENODEV;
11622 
11623 	/*
11624 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11625 	 * for example, validate if the group fits on the PMU. Therefore,
11626 	 * if this is a sibling event, acquire the ctx->mutex to protect
11627 	 * the sibling_list.
11628 	 */
11629 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11630 		/*
11631 		 * This ctx->mutex can nest when we're called through
11632 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11633 		 */
11634 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11635 						 SINGLE_DEPTH_NESTING);
11636 		BUG_ON(!ctx);
11637 	}
11638 
11639 	event->pmu = pmu;
11640 	ret = pmu->event_init(event);
11641 
11642 	if (ctx)
11643 		perf_event_ctx_unlock(event->group_leader, ctx);
11644 
11645 	if (!ret) {
11646 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11647 		    has_extended_regs(event))
11648 			ret = -EOPNOTSUPP;
11649 
11650 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11651 		    event_has_any_exclude_flag(event))
11652 			ret = -EINVAL;
11653 
11654 		if (ret && event->destroy)
11655 			event->destroy(event);
11656 	}
11657 
11658 	if (ret)
11659 		module_put(pmu->module);
11660 
11661 	return ret;
11662 }
11663 
11664 static struct pmu *perf_init_event(struct perf_event *event)
11665 {
11666 	bool extended_type = false;
11667 	int idx, type, ret;
11668 	struct pmu *pmu;
11669 
11670 	idx = srcu_read_lock(&pmus_srcu);
11671 
11672 	/*
11673 	 * Save original type before calling pmu->event_init() since certain
11674 	 * pmus overwrites event->attr.type to forward event to another pmu.
11675 	 */
11676 	event->orig_type = event->attr.type;
11677 
11678 	/* Try parent's PMU first: */
11679 	if (event->parent && event->parent->pmu) {
11680 		pmu = event->parent->pmu;
11681 		ret = perf_try_init_event(pmu, event);
11682 		if (!ret)
11683 			goto unlock;
11684 	}
11685 
11686 	/*
11687 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11688 	 * are often aliases for PERF_TYPE_RAW.
11689 	 */
11690 	type = event->attr.type;
11691 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11692 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11693 		if (!type) {
11694 			type = PERF_TYPE_RAW;
11695 		} else {
11696 			extended_type = true;
11697 			event->attr.config &= PERF_HW_EVENT_MASK;
11698 		}
11699 	}
11700 
11701 again:
11702 	rcu_read_lock();
11703 	pmu = idr_find(&pmu_idr, type);
11704 	rcu_read_unlock();
11705 	if (pmu) {
11706 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11707 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11708 			goto fail;
11709 
11710 		ret = perf_try_init_event(pmu, event);
11711 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11712 			type = event->attr.type;
11713 			goto again;
11714 		}
11715 
11716 		if (ret)
11717 			pmu = ERR_PTR(ret);
11718 
11719 		goto unlock;
11720 	}
11721 
11722 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11723 		ret = perf_try_init_event(pmu, event);
11724 		if (!ret)
11725 			goto unlock;
11726 
11727 		if (ret != -ENOENT) {
11728 			pmu = ERR_PTR(ret);
11729 			goto unlock;
11730 		}
11731 	}
11732 fail:
11733 	pmu = ERR_PTR(-ENOENT);
11734 unlock:
11735 	srcu_read_unlock(&pmus_srcu, idx);
11736 
11737 	return pmu;
11738 }
11739 
11740 static void attach_sb_event(struct perf_event *event)
11741 {
11742 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11743 
11744 	raw_spin_lock(&pel->lock);
11745 	list_add_rcu(&event->sb_list, &pel->list);
11746 	raw_spin_unlock(&pel->lock);
11747 }
11748 
11749 /*
11750  * We keep a list of all !task (and therefore per-cpu) events
11751  * that need to receive side-band records.
11752  *
11753  * This avoids having to scan all the various PMU per-cpu contexts
11754  * looking for them.
11755  */
11756 static void account_pmu_sb_event(struct perf_event *event)
11757 {
11758 	if (is_sb_event(event))
11759 		attach_sb_event(event);
11760 }
11761 
11762 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11763 static void account_freq_event_nohz(void)
11764 {
11765 #ifdef CONFIG_NO_HZ_FULL
11766 	/* Lock so we don't race with concurrent unaccount */
11767 	spin_lock(&nr_freq_lock);
11768 	if (atomic_inc_return(&nr_freq_events) == 1)
11769 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11770 	spin_unlock(&nr_freq_lock);
11771 #endif
11772 }
11773 
11774 static void account_freq_event(void)
11775 {
11776 	if (tick_nohz_full_enabled())
11777 		account_freq_event_nohz();
11778 	else
11779 		atomic_inc(&nr_freq_events);
11780 }
11781 
11782 
11783 static void account_event(struct perf_event *event)
11784 {
11785 	bool inc = false;
11786 
11787 	if (event->parent)
11788 		return;
11789 
11790 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11791 		inc = true;
11792 	if (event->attr.mmap || event->attr.mmap_data)
11793 		atomic_inc(&nr_mmap_events);
11794 	if (event->attr.build_id)
11795 		atomic_inc(&nr_build_id_events);
11796 	if (event->attr.comm)
11797 		atomic_inc(&nr_comm_events);
11798 	if (event->attr.namespaces)
11799 		atomic_inc(&nr_namespaces_events);
11800 	if (event->attr.cgroup)
11801 		atomic_inc(&nr_cgroup_events);
11802 	if (event->attr.task)
11803 		atomic_inc(&nr_task_events);
11804 	if (event->attr.freq)
11805 		account_freq_event();
11806 	if (event->attr.context_switch) {
11807 		atomic_inc(&nr_switch_events);
11808 		inc = true;
11809 	}
11810 	if (has_branch_stack(event))
11811 		inc = true;
11812 	if (is_cgroup_event(event))
11813 		inc = true;
11814 	if (event->attr.ksymbol)
11815 		atomic_inc(&nr_ksymbol_events);
11816 	if (event->attr.bpf_event)
11817 		atomic_inc(&nr_bpf_events);
11818 	if (event->attr.text_poke)
11819 		atomic_inc(&nr_text_poke_events);
11820 
11821 	if (inc) {
11822 		/*
11823 		 * We need the mutex here because static_branch_enable()
11824 		 * must complete *before* the perf_sched_count increment
11825 		 * becomes visible.
11826 		 */
11827 		if (atomic_inc_not_zero(&perf_sched_count))
11828 			goto enabled;
11829 
11830 		mutex_lock(&perf_sched_mutex);
11831 		if (!atomic_read(&perf_sched_count)) {
11832 			static_branch_enable(&perf_sched_events);
11833 			/*
11834 			 * Guarantee that all CPUs observe they key change and
11835 			 * call the perf scheduling hooks before proceeding to
11836 			 * install events that need them.
11837 			 */
11838 			synchronize_rcu();
11839 		}
11840 		/*
11841 		 * Now that we have waited for the sync_sched(), allow further
11842 		 * increments to by-pass the mutex.
11843 		 */
11844 		atomic_inc(&perf_sched_count);
11845 		mutex_unlock(&perf_sched_mutex);
11846 	}
11847 enabled:
11848 
11849 	account_pmu_sb_event(event);
11850 }
11851 
11852 /*
11853  * Allocate and initialize an event structure
11854  */
11855 static struct perf_event *
11856 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11857 		 struct task_struct *task,
11858 		 struct perf_event *group_leader,
11859 		 struct perf_event *parent_event,
11860 		 perf_overflow_handler_t overflow_handler,
11861 		 void *context, int cgroup_fd)
11862 {
11863 	struct pmu *pmu;
11864 	struct perf_event *event;
11865 	struct hw_perf_event *hwc;
11866 	long err = -EINVAL;
11867 	int node;
11868 
11869 	if ((unsigned)cpu >= nr_cpu_ids) {
11870 		if (!task || cpu != -1)
11871 			return ERR_PTR(-EINVAL);
11872 	}
11873 	if (attr->sigtrap && !task) {
11874 		/* Requires a task: avoid signalling random tasks. */
11875 		return ERR_PTR(-EINVAL);
11876 	}
11877 
11878 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11879 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11880 				      node);
11881 	if (!event)
11882 		return ERR_PTR(-ENOMEM);
11883 
11884 	/*
11885 	 * Single events are their own group leaders, with an
11886 	 * empty sibling list:
11887 	 */
11888 	if (!group_leader)
11889 		group_leader = event;
11890 
11891 	mutex_init(&event->child_mutex);
11892 	INIT_LIST_HEAD(&event->child_list);
11893 
11894 	INIT_LIST_HEAD(&event->event_entry);
11895 	INIT_LIST_HEAD(&event->sibling_list);
11896 	INIT_LIST_HEAD(&event->active_list);
11897 	init_event_group(event);
11898 	INIT_LIST_HEAD(&event->rb_entry);
11899 	INIT_LIST_HEAD(&event->active_entry);
11900 	INIT_LIST_HEAD(&event->addr_filters.list);
11901 	INIT_HLIST_NODE(&event->hlist_entry);
11902 
11903 
11904 	init_waitqueue_head(&event->waitq);
11905 	init_irq_work(&event->pending_irq, perf_pending_irq);
11906 	init_task_work(&event->pending_task, perf_pending_task);
11907 
11908 	mutex_init(&event->mmap_mutex);
11909 	raw_spin_lock_init(&event->addr_filters.lock);
11910 
11911 	atomic_long_set(&event->refcount, 1);
11912 	event->cpu		= cpu;
11913 	event->attr		= *attr;
11914 	event->group_leader	= group_leader;
11915 	event->pmu		= NULL;
11916 	event->oncpu		= -1;
11917 
11918 	event->parent		= parent_event;
11919 
11920 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11921 	event->id		= atomic64_inc_return(&perf_event_id);
11922 
11923 	event->state		= PERF_EVENT_STATE_INACTIVE;
11924 
11925 	if (parent_event)
11926 		event->event_caps = parent_event->event_caps;
11927 
11928 	if (task) {
11929 		event->attach_state = PERF_ATTACH_TASK;
11930 		/*
11931 		 * XXX pmu::event_init needs to know what task to account to
11932 		 * and we cannot use the ctx information because we need the
11933 		 * pmu before we get a ctx.
11934 		 */
11935 		event->hw.target = get_task_struct(task);
11936 	}
11937 
11938 	event->clock = &local_clock;
11939 	if (parent_event)
11940 		event->clock = parent_event->clock;
11941 
11942 	if (!overflow_handler && parent_event) {
11943 		overflow_handler = parent_event->overflow_handler;
11944 		context = parent_event->overflow_handler_context;
11945 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11946 		if (overflow_handler == bpf_overflow_handler) {
11947 			struct bpf_prog *prog = parent_event->prog;
11948 
11949 			bpf_prog_inc(prog);
11950 			event->prog = prog;
11951 			event->orig_overflow_handler =
11952 				parent_event->orig_overflow_handler;
11953 		}
11954 #endif
11955 	}
11956 
11957 	if (overflow_handler) {
11958 		event->overflow_handler	= overflow_handler;
11959 		event->overflow_handler_context = context;
11960 	} else if (is_write_backward(event)){
11961 		event->overflow_handler = perf_event_output_backward;
11962 		event->overflow_handler_context = NULL;
11963 	} else {
11964 		event->overflow_handler = perf_event_output_forward;
11965 		event->overflow_handler_context = NULL;
11966 	}
11967 
11968 	perf_event__state_init(event);
11969 
11970 	pmu = NULL;
11971 
11972 	hwc = &event->hw;
11973 	hwc->sample_period = attr->sample_period;
11974 	if (attr->freq && attr->sample_freq)
11975 		hwc->sample_period = 1;
11976 	hwc->last_period = hwc->sample_period;
11977 
11978 	local64_set(&hwc->period_left, hwc->sample_period);
11979 
11980 	/*
11981 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11982 	 * See perf_output_read().
11983 	 */
11984 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11985 		goto err_ns;
11986 
11987 	if (!has_branch_stack(event))
11988 		event->attr.branch_sample_type = 0;
11989 
11990 	pmu = perf_init_event(event);
11991 	if (IS_ERR(pmu)) {
11992 		err = PTR_ERR(pmu);
11993 		goto err_ns;
11994 	}
11995 
11996 	/*
11997 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11998 	 * events (they don't make sense as the cgroup will be different
11999 	 * on other CPUs in the uncore mask).
12000 	 */
12001 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12002 		err = -EINVAL;
12003 		goto err_pmu;
12004 	}
12005 
12006 	if (event->attr.aux_output &&
12007 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12008 		err = -EOPNOTSUPP;
12009 		goto err_pmu;
12010 	}
12011 
12012 	if (cgroup_fd != -1) {
12013 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12014 		if (err)
12015 			goto err_pmu;
12016 	}
12017 
12018 	err = exclusive_event_init(event);
12019 	if (err)
12020 		goto err_pmu;
12021 
12022 	if (has_addr_filter(event)) {
12023 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12024 						    sizeof(struct perf_addr_filter_range),
12025 						    GFP_KERNEL);
12026 		if (!event->addr_filter_ranges) {
12027 			err = -ENOMEM;
12028 			goto err_per_task;
12029 		}
12030 
12031 		/*
12032 		 * Clone the parent's vma offsets: they are valid until exec()
12033 		 * even if the mm is not shared with the parent.
12034 		 */
12035 		if (event->parent) {
12036 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12037 
12038 			raw_spin_lock_irq(&ifh->lock);
12039 			memcpy(event->addr_filter_ranges,
12040 			       event->parent->addr_filter_ranges,
12041 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12042 			raw_spin_unlock_irq(&ifh->lock);
12043 		}
12044 
12045 		/* force hw sync on the address filters */
12046 		event->addr_filters_gen = 1;
12047 	}
12048 
12049 	if (!event->parent) {
12050 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12051 			err = get_callchain_buffers(attr->sample_max_stack);
12052 			if (err)
12053 				goto err_addr_filters;
12054 		}
12055 	}
12056 
12057 	err = security_perf_event_alloc(event);
12058 	if (err)
12059 		goto err_callchain_buffer;
12060 
12061 	/* symmetric to unaccount_event() in _free_event() */
12062 	account_event(event);
12063 
12064 	return event;
12065 
12066 err_callchain_buffer:
12067 	if (!event->parent) {
12068 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12069 			put_callchain_buffers();
12070 	}
12071 err_addr_filters:
12072 	kfree(event->addr_filter_ranges);
12073 
12074 err_per_task:
12075 	exclusive_event_destroy(event);
12076 
12077 err_pmu:
12078 	if (is_cgroup_event(event))
12079 		perf_detach_cgroup(event);
12080 	if (event->destroy)
12081 		event->destroy(event);
12082 	module_put(pmu->module);
12083 err_ns:
12084 	if (event->hw.target)
12085 		put_task_struct(event->hw.target);
12086 	call_rcu(&event->rcu_head, free_event_rcu);
12087 
12088 	return ERR_PTR(err);
12089 }
12090 
12091 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12092 			  struct perf_event_attr *attr)
12093 {
12094 	u32 size;
12095 	int ret;
12096 
12097 	/* Zero the full structure, so that a short copy will be nice. */
12098 	memset(attr, 0, sizeof(*attr));
12099 
12100 	ret = get_user(size, &uattr->size);
12101 	if (ret)
12102 		return ret;
12103 
12104 	/* ABI compatibility quirk: */
12105 	if (!size)
12106 		size = PERF_ATTR_SIZE_VER0;
12107 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12108 		goto err_size;
12109 
12110 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12111 	if (ret) {
12112 		if (ret == -E2BIG)
12113 			goto err_size;
12114 		return ret;
12115 	}
12116 
12117 	attr->size = size;
12118 
12119 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12120 		return -EINVAL;
12121 
12122 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12123 		return -EINVAL;
12124 
12125 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12126 		return -EINVAL;
12127 
12128 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12129 		u64 mask = attr->branch_sample_type;
12130 
12131 		/* only using defined bits */
12132 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12133 			return -EINVAL;
12134 
12135 		/* at least one branch bit must be set */
12136 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12137 			return -EINVAL;
12138 
12139 		/* propagate priv level, when not set for branch */
12140 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12141 
12142 			/* exclude_kernel checked on syscall entry */
12143 			if (!attr->exclude_kernel)
12144 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12145 
12146 			if (!attr->exclude_user)
12147 				mask |= PERF_SAMPLE_BRANCH_USER;
12148 
12149 			if (!attr->exclude_hv)
12150 				mask |= PERF_SAMPLE_BRANCH_HV;
12151 			/*
12152 			 * adjust user setting (for HW filter setup)
12153 			 */
12154 			attr->branch_sample_type = mask;
12155 		}
12156 		/* privileged levels capture (kernel, hv): check permissions */
12157 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12158 			ret = perf_allow_kernel(attr);
12159 			if (ret)
12160 				return ret;
12161 		}
12162 	}
12163 
12164 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12165 		ret = perf_reg_validate(attr->sample_regs_user);
12166 		if (ret)
12167 			return ret;
12168 	}
12169 
12170 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12171 		if (!arch_perf_have_user_stack_dump())
12172 			return -ENOSYS;
12173 
12174 		/*
12175 		 * We have __u32 type for the size, but so far
12176 		 * we can only use __u16 as maximum due to the
12177 		 * __u16 sample size limit.
12178 		 */
12179 		if (attr->sample_stack_user >= USHRT_MAX)
12180 			return -EINVAL;
12181 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12182 			return -EINVAL;
12183 	}
12184 
12185 	if (!attr->sample_max_stack)
12186 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12187 
12188 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12189 		ret = perf_reg_validate(attr->sample_regs_intr);
12190 
12191 #ifndef CONFIG_CGROUP_PERF
12192 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12193 		return -EINVAL;
12194 #endif
12195 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12196 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12197 		return -EINVAL;
12198 
12199 	if (!attr->inherit && attr->inherit_thread)
12200 		return -EINVAL;
12201 
12202 	if (attr->remove_on_exec && attr->enable_on_exec)
12203 		return -EINVAL;
12204 
12205 	if (attr->sigtrap && !attr->remove_on_exec)
12206 		return -EINVAL;
12207 
12208 out:
12209 	return ret;
12210 
12211 err_size:
12212 	put_user(sizeof(*attr), &uattr->size);
12213 	ret = -E2BIG;
12214 	goto out;
12215 }
12216 
12217 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12218 {
12219 	if (b < a)
12220 		swap(a, b);
12221 
12222 	mutex_lock(a);
12223 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12224 }
12225 
12226 static int
12227 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12228 {
12229 	struct perf_buffer *rb = NULL;
12230 	int ret = -EINVAL;
12231 
12232 	if (!output_event) {
12233 		mutex_lock(&event->mmap_mutex);
12234 		goto set;
12235 	}
12236 
12237 	/* don't allow circular references */
12238 	if (event == output_event)
12239 		goto out;
12240 
12241 	/*
12242 	 * Don't allow cross-cpu buffers
12243 	 */
12244 	if (output_event->cpu != event->cpu)
12245 		goto out;
12246 
12247 	/*
12248 	 * If its not a per-cpu rb, it must be the same task.
12249 	 */
12250 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12251 		goto out;
12252 
12253 	/*
12254 	 * Mixing clocks in the same buffer is trouble you don't need.
12255 	 */
12256 	if (output_event->clock != event->clock)
12257 		goto out;
12258 
12259 	/*
12260 	 * Either writing ring buffer from beginning or from end.
12261 	 * Mixing is not allowed.
12262 	 */
12263 	if (is_write_backward(output_event) != is_write_backward(event))
12264 		goto out;
12265 
12266 	/*
12267 	 * If both events generate aux data, they must be on the same PMU
12268 	 */
12269 	if (has_aux(event) && has_aux(output_event) &&
12270 	    event->pmu != output_event->pmu)
12271 		goto out;
12272 
12273 	/*
12274 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12275 	 * output_event is already on rb->event_list, and the list iteration
12276 	 * restarts after every removal, it is guaranteed this new event is
12277 	 * observed *OR* if output_event is already removed, it's guaranteed we
12278 	 * observe !rb->mmap_count.
12279 	 */
12280 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12281 set:
12282 	/* Can't redirect output if we've got an active mmap() */
12283 	if (atomic_read(&event->mmap_count))
12284 		goto unlock;
12285 
12286 	if (output_event) {
12287 		/* get the rb we want to redirect to */
12288 		rb = ring_buffer_get(output_event);
12289 		if (!rb)
12290 			goto unlock;
12291 
12292 		/* did we race against perf_mmap_close() */
12293 		if (!atomic_read(&rb->mmap_count)) {
12294 			ring_buffer_put(rb);
12295 			goto unlock;
12296 		}
12297 	}
12298 
12299 	ring_buffer_attach(event, rb);
12300 
12301 	ret = 0;
12302 unlock:
12303 	mutex_unlock(&event->mmap_mutex);
12304 	if (output_event)
12305 		mutex_unlock(&output_event->mmap_mutex);
12306 
12307 out:
12308 	return ret;
12309 }
12310 
12311 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12312 {
12313 	bool nmi_safe = false;
12314 
12315 	switch (clk_id) {
12316 	case CLOCK_MONOTONIC:
12317 		event->clock = &ktime_get_mono_fast_ns;
12318 		nmi_safe = true;
12319 		break;
12320 
12321 	case CLOCK_MONOTONIC_RAW:
12322 		event->clock = &ktime_get_raw_fast_ns;
12323 		nmi_safe = true;
12324 		break;
12325 
12326 	case CLOCK_REALTIME:
12327 		event->clock = &ktime_get_real_ns;
12328 		break;
12329 
12330 	case CLOCK_BOOTTIME:
12331 		event->clock = &ktime_get_boottime_ns;
12332 		break;
12333 
12334 	case CLOCK_TAI:
12335 		event->clock = &ktime_get_clocktai_ns;
12336 		break;
12337 
12338 	default:
12339 		return -EINVAL;
12340 	}
12341 
12342 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12343 		return -EINVAL;
12344 
12345 	return 0;
12346 }
12347 
12348 static bool
12349 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12350 {
12351 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12352 	bool is_capable = perfmon_capable();
12353 
12354 	if (attr->sigtrap) {
12355 		/*
12356 		 * perf_event_attr::sigtrap sends signals to the other task.
12357 		 * Require the current task to also have CAP_KILL.
12358 		 */
12359 		rcu_read_lock();
12360 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12361 		rcu_read_unlock();
12362 
12363 		/*
12364 		 * If the required capabilities aren't available, checks for
12365 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12366 		 * can effectively change the target task.
12367 		 */
12368 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12369 	}
12370 
12371 	/*
12372 	 * Preserve ptrace permission check for backwards compatibility. The
12373 	 * ptrace check also includes checks that the current task and other
12374 	 * task have matching uids, and is therefore not done here explicitly.
12375 	 */
12376 	return is_capable || ptrace_may_access(task, ptrace_mode);
12377 }
12378 
12379 /**
12380  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12381  *
12382  * @attr_uptr:	event_id type attributes for monitoring/sampling
12383  * @pid:		target pid
12384  * @cpu:		target cpu
12385  * @group_fd:		group leader event fd
12386  * @flags:		perf event open flags
12387  */
12388 SYSCALL_DEFINE5(perf_event_open,
12389 		struct perf_event_attr __user *, attr_uptr,
12390 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12391 {
12392 	struct perf_event *group_leader = NULL, *output_event = NULL;
12393 	struct perf_event_pmu_context *pmu_ctx;
12394 	struct perf_event *event, *sibling;
12395 	struct perf_event_attr attr;
12396 	struct perf_event_context *ctx;
12397 	struct file *event_file = NULL;
12398 	struct fd group = {NULL, 0};
12399 	struct task_struct *task = NULL;
12400 	struct pmu *pmu;
12401 	int event_fd;
12402 	int move_group = 0;
12403 	int err;
12404 	int f_flags = O_RDWR;
12405 	int cgroup_fd = -1;
12406 
12407 	/* for future expandability... */
12408 	if (flags & ~PERF_FLAG_ALL)
12409 		return -EINVAL;
12410 
12411 	err = perf_copy_attr(attr_uptr, &attr);
12412 	if (err)
12413 		return err;
12414 
12415 	/* Do we allow access to perf_event_open(2) ? */
12416 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12417 	if (err)
12418 		return err;
12419 
12420 	if (!attr.exclude_kernel) {
12421 		err = perf_allow_kernel(&attr);
12422 		if (err)
12423 			return err;
12424 	}
12425 
12426 	if (attr.namespaces) {
12427 		if (!perfmon_capable())
12428 			return -EACCES;
12429 	}
12430 
12431 	if (attr.freq) {
12432 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12433 			return -EINVAL;
12434 	} else {
12435 		if (attr.sample_period & (1ULL << 63))
12436 			return -EINVAL;
12437 	}
12438 
12439 	/* Only privileged users can get physical addresses */
12440 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12441 		err = perf_allow_kernel(&attr);
12442 		if (err)
12443 			return err;
12444 	}
12445 
12446 	/* REGS_INTR can leak data, lockdown must prevent this */
12447 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12448 		err = security_locked_down(LOCKDOWN_PERF);
12449 		if (err)
12450 			return err;
12451 	}
12452 
12453 	/*
12454 	 * In cgroup mode, the pid argument is used to pass the fd
12455 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12456 	 * designates the cpu on which to monitor threads from that
12457 	 * cgroup.
12458 	 */
12459 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12460 		return -EINVAL;
12461 
12462 	if (flags & PERF_FLAG_FD_CLOEXEC)
12463 		f_flags |= O_CLOEXEC;
12464 
12465 	event_fd = get_unused_fd_flags(f_flags);
12466 	if (event_fd < 0)
12467 		return event_fd;
12468 
12469 	if (group_fd != -1) {
12470 		err = perf_fget_light(group_fd, &group);
12471 		if (err)
12472 			goto err_fd;
12473 		group_leader = group.file->private_data;
12474 		if (flags & PERF_FLAG_FD_OUTPUT)
12475 			output_event = group_leader;
12476 		if (flags & PERF_FLAG_FD_NO_GROUP)
12477 			group_leader = NULL;
12478 	}
12479 
12480 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12481 		task = find_lively_task_by_vpid(pid);
12482 		if (IS_ERR(task)) {
12483 			err = PTR_ERR(task);
12484 			goto err_group_fd;
12485 		}
12486 	}
12487 
12488 	if (task && group_leader &&
12489 	    group_leader->attr.inherit != attr.inherit) {
12490 		err = -EINVAL;
12491 		goto err_task;
12492 	}
12493 
12494 	if (flags & PERF_FLAG_PID_CGROUP)
12495 		cgroup_fd = pid;
12496 
12497 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12498 				 NULL, NULL, cgroup_fd);
12499 	if (IS_ERR(event)) {
12500 		err = PTR_ERR(event);
12501 		goto err_task;
12502 	}
12503 
12504 	if (is_sampling_event(event)) {
12505 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12506 			err = -EOPNOTSUPP;
12507 			goto err_alloc;
12508 		}
12509 	}
12510 
12511 	/*
12512 	 * Special case software events and allow them to be part of
12513 	 * any hardware group.
12514 	 */
12515 	pmu = event->pmu;
12516 
12517 	if (attr.use_clockid) {
12518 		err = perf_event_set_clock(event, attr.clockid);
12519 		if (err)
12520 			goto err_alloc;
12521 	}
12522 
12523 	if (pmu->task_ctx_nr == perf_sw_context)
12524 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12525 
12526 	if (task) {
12527 		err = down_read_interruptible(&task->signal->exec_update_lock);
12528 		if (err)
12529 			goto err_alloc;
12530 
12531 		/*
12532 		 * We must hold exec_update_lock across this and any potential
12533 		 * perf_install_in_context() call for this new event to
12534 		 * serialize against exec() altering our credentials (and the
12535 		 * perf_event_exit_task() that could imply).
12536 		 */
12537 		err = -EACCES;
12538 		if (!perf_check_permission(&attr, task))
12539 			goto err_cred;
12540 	}
12541 
12542 	/*
12543 	 * Get the target context (task or percpu):
12544 	 */
12545 	ctx = find_get_context(task, event);
12546 	if (IS_ERR(ctx)) {
12547 		err = PTR_ERR(ctx);
12548 		goto err_cred;
12549 	}
12550 
12551 	mutex_lock(&ctx->mutex);
12552 
12553 	if (ctx->task == TASK_TOMBSTONE) {
12554 		err = -ESRCH;
12555 		goto err_locked;
12556 	}
12557 
12558 	if (!task) {
12559 		/*
12560 		 * Check if the @cpu we're creating an event for is online.
12561 		 *
12562 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12563 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12564 		 */
12565 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12566 
12567 		if (!cpuctx->online) {
12568 			err = -ENODEV;
12569 			goto err_locked;
12570 		}
12571 	}
12572 
12573 	if (group_leader) {
12574 		err = -EINVAL;
12575 
12576 		/*
12577 		 * Do not allow a recursive hierarchy (this new sibling
12578 		 * becoming part of another group-sibling):
12579 		 */
12580 		if (group_leader->group_leader != group_leader)
12581 			goto err_locked;
12582 
12583 		/* All events in a group should have the same clock */
12584 		if (group_leader->clock != event->clock)
12585 			goto err_locked;
12586 
12587 		/*
12588 		 * Make sure we're both events for the same CPU;
12589 		 * grouping events for different CPUs is broken; since
12590 		 * you can never concurrently schedule them anyhow.
12591 		 */
12592 		if (group_leader->cpu != event->cpu)
12593 			goto err_locked;
12594 
12595 		/*
12596 		 * Make sure we're both on the same context; either task or cpu.
12597 		 */
12598 		if (group_leader->ctx != ctx)
12599 			goto err_locked;
12600 
12601 		/*
12602 		 * Only a group leader can be exclusive or pinned
12603 		 */
12604 		if (attr.exclusive || attr.pinned)
12605 			goto err_locked;
12606 
12607 		if (is_software_event(event) &&
12608 		    !in_software_context(group_leader)) {
12609 			/*
12610 			 * If the event is a sw event, but the group_leader
12611 			 * is on hw context.
12612 			 *
12613 			 * Allow the addition of software events to hw
12614 			 * groups, this is safe because software events
12615 			 * never fail to schedule.
12616 			 *
12617 			 * Note the comment that goes with struct
12618 			 * perf_event_pmu_context.
12619 			 */
12620 			pmu = group_leader->pmu_ctx->pmu;
12621 		} else if (!is_software_event(event)) {
12622 			if (is_software_event(group_leader) &&
12623 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12624 				/*
12625 				 * In case the group is a pure software group, and we
12626 				 * try to add a hardware event, move the whole group to
12627 				 * the hardware context.
12628 				 */
12629 				move_group = 1;
12630 			}
12631 
12632 			/* Don't allow group of multiple hw events from different pmus */
12633 			if (!in_software_context(group_leader) &&
12634 			    group_leader->pmu_ctx->pmu != pmu)
12635 				goto err_locked;
12636 		}
12637 	}
12638 
12639 	/*
12640 	 * Now that we're certain of the pmu; find the pmu_ctx.
12641 	 */
12642 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12643 	if (IS_ERR(pmu_ctx)) {
12644 		err = PTR_ERR(pmu_ctx);
12645 		goto err_locked;
12646 	}
12647 	event->pmu_ctx = pmu_ctx;
12648 
12649 	if (output_event) {
12650 		err = perf_event_set_output(event, output_event);
12651 		if (err)
12652 			goto err_context;
12653 	}
12654 
12655 	if (!perf_event_validate_size(event)) {
12656 		err = -E2BIG;
12657 		goto err_context;
12658 	}
12659 
12660 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12661 		err = -EINVAL;
12662 		goto err_context;
12663 	}
12664 
12665 	/*
12666 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12667 	 * because we need to serialize with concurrent event creation.
12668 	 */
12669 	if (!exclusive_event_installable(event, ctx)) {
12670 		err = -EBUSY;
12671 		goto err_context;
12672 	}
12673 
12674 	WARN_ON_ONCE(ctx->parent_ctx);
12675 
12676 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12677 	if (IS_ERR(event_file)) {
12678 		err = PTR_ERR(event_file);
12679 		event_file = NULL;
12680 		goto err_context;
12681 	}
12682 
12683 	/*
12684 	 * This is the point on no return; we cannot fail hereafter. This is
12685 	 * where we start modifying current state.
12686 	 */
12687 
12688 	if (move_group) {
12689 		perf_remove_from_context(group_leader, 0);
12690 		put_pmu_ctx(group_leader->pmu_ctx);
12691 
12692 		for_each_sibling_event(sibling, group_leader) {
12693 			perf_remove_from_context(sibling, 0);
12694 			put_pmu_ctx(sibling->pmu_ctx);
12695 		}
12696 
12697 		/*
12698 		 * Install the group siblings before the group leader.
12699 		 *
12700 		 * Because a group leader will try and install the entire group
12701 		 * (through the sibling list, which is still in-tact), we can
12702 		 * end up with siblings installed in the wrong context.
12703 		 *
12704 		 * By installing siblings first we NO-OP because they're not
12705 		 * reachable through the group lists.
12706 		 */
12707 		for_each_sibling_event(sibling, group_leader) {
12708 			sibling->pmu_ctx = pmu_ctx;
12709 			get_pmu_ctx(pmu_ctx);
12710 			perf_event__state_init(sibling);
12711 			perf_install_in_context(ctx, sibling, sibling->cpu);
12712 		}
12713 
12714 		/*
12715 		 * Removing from the context ends up with disabled
12716 		 * event. What we want here is event in the initial
12717 		 * startup state, ready to be add into new context.
12718 		 */
12719 		group_leader->pmu_ctx = pmu_ctx;
12720 		get_pmu_ctx(pmu_ctx);
12721 		perf_event__state_init(group_leader);
12722 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12723 	}
12724 
12725 	/*
12726 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12727 	 * that we're serialized against further additions and before
12728 	 * perf_install_in_context() which is the point the event is active and
12729 	 * can use these values.
12730 	 */
12731 	perf_event__header_size(event);
12732 	perf_event__id_header_size(event);
12733 
12734 	event->owner = current;
12735 
12736 	perf_install_in_context(ctx, event, event->cpu);
12737 	perf_unpin_context(ctx);
12738 
12739 	mutex_unlock(&ctx->mutex);
12740 
12741 	if (task) {
12742 		up_read(&task->signal->exec_update_lock);
12743 		put_task_struct(task);
12744 	}
12745 
12746 	mutex_lock(&current->perf_event_mutex);
12747 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12748 	mutex_unlock(&current->perf_event_mutex);
12749 
12750 	/*
12751 	 * Drop the reference on the group_event after placing the
12752 	 * new event on the sibling_list. This ensures destruction
12753 	 * of the group leader will find the pointer to itself in
12754 	 * perf_group_detach().
12755 	 */
12756 	fdput(group);
12757 	fd_install(event_fd, event_file);
12758 	return event_fd;
12759 
12760 err_context:
12761 	put_pmu_ctx(event->pmu_ctx);
12762 	event->pmu_ctx = NULL; /* _free_event() */
12763 err_locked:
12764 	mutex_unlock(&ctx->mutex);
12765 	perf_unpin_context(ctx);
12766 	put_ctx(ctx);
12767 err_cred:
12768 	if (task)
12769 		up_read(&task->signal->exec_update_lock);
12770 err_alloc:
12771 	free_event(event);
12772 err_task:
12773 	if (task)
12774 		put_task_struct(task);
12775 err_group_fd:
12776 	fdput(group);
12777 err_fd:
12778 	put_unused_fd(event_fd);
12779 	return err;
12780 }
12781 
12782 /**
12783  * perf_event_create_kernel_counter
12784  *
12785  * @attr: attributes of the counter to create
12786  * @cpu: cpu in which the counter is bound
12787  * @task: task to profile (NULL for percpu)
12788  * @overflow_handler: callback to trigger when we hit the event
12789  * @context: context data could be used in overflow_handler callback
12790  */
12791 struct perf_event *
12792 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12793 				 struct task_struct *task,
12794 				 perf_overflow_handler_t overflow_handler,
12795 				 void *context)
12796 {
12797 	struct perf_event_pmu_context *pmu_ctx;
12798 	struct perf_event_context *ctx;
12799 	struct perf_event *event;
12800 	struct pmu *pmu;
12801 	int err;
12802 
12803 	/*
12804 	 * Grouping is not supported for kernel events, neither is 'AUX',
12805 	 * make sure the caller's intentions are adjusted.
12806 	 */
12807 	if (attr->aux_output)
12808 		return ERR_PTR(-EINVAL);
12809 
12810 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12811 				 overflow_handler, context, -1);
12812 	if (IS_ERR(event)) {
12813 		err = PTR_ERR(event);
12814 		goto err;
12815 	}
12816 
12817 	/* Mark owner so we could distinguish it from user events. */
12818 	event->owner = TASK_TOMBSTONE;
12819 	pmu = event->pmu;
12820 
12821 	if (pmu->task_ctx_nr == perf_sw_context)
12822 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12823 
12824 	/*
12825 	 * Get the target context (task or percpu):
12826 	 */
12827 	ctx = find_get_context(task, event);
12828 	if (IS_ERR(ctx)) {
12829 		err = PTR_ERR(ctx);
12830 		goto err_alloc;
12831 	}
12832 
12833 	WARN_ON_ONCE(ctx->parent_ctx);
12834 	mutex_lock(&ctx->mutex);
12835 	if (ctx->task == TASK_TOMBSTONE) {
12836 		err = -ESRCH;
12837 		goto err_unlock;
12838 	}
12839 
12840 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12841 	if (IS_ERR(pmu_ctx)) {
12842 		err = PTR_ERR(pmu_ctx);
12843 		goto err_unlock;
12844 	}
12845 	event->pmu_ctx = pmu_ctx;
12846 
12847 	if (!task) {
12848 		/*
12849 		 * Check if the @cpu we're creating an event for is online.
12850 		 *
12851 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12852 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12853 		 */
12854 		struct perf_cpu_context *cpuctx =
12855 			container_of(ctx, struct perf_cpu_context, ctx);
12856 		if (!cpuctx->online) {
12857 			err = -ENODEV;
12858 			goto err_pmu_ctx;
12859 		}
12860 	}
12861 
12862 	if (!exclusive_event_installable(event, ctx)) {
12863 		err = -EBUSY;
12864 		goto err_pmu_ctx;
12865 	}
12866 
12867 	perf_install_in_context(ctx, event, event->cpu);
12868 	perf_unpin_context(ctx);
12869 	mutex_unlock(&ctx->mutex);
12870 
12871 	return event;
12872 
12873 err_pmu_ctx:
12874 	put_pmu_ctx(pmu_ctx);
12875 	event->pmu_ctx = NULL; /* _free_event() */
12876 err_unlock:
12877 	mutex_unlock(&ctx->mutex);
12878 	perf_unpin_context(ctx);
12879 	put_ctx(ctx);
12880 err_alloc:
12881 	free_event(event);
12882 err:
12883 	return ERR_PTR(err);
12884 }
12885 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12886 
12887 static void __perf_pmu_remove(struct perf_event_context *ctx,
12888 			      int cpu, struct pmu *pmu,
12889 			      struct perf_event_groups *groups,
12890 			      struct list_head *events)
12891 {
12892 	struct perf_event *event, *sibling;
12893 
12894 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12895 		perf_remove_from_context(event, 0);
12896 		put_pmu_ctx(event->pmu_ctx);
12897 		list_add(&event->migrate_entry, events);
12898 
12899 		for_each_sibling_event(sibling, event) {
12900 			perf_remove_from_context(sibling, 0);
12901 			put_pmu_ctx(sibling->pmu_ctx);
12902 			list_add(&sibling->migrate_entry, events);
12903 		}
12904 	}
12905 }
12906 
12907 static void __perf_pmu_install_event(struct pmu *pmu,
12908 				     struct perf_event_context *ctx,
12909 				     int cpu, struct perf_event *event)
12910 {
12911 	struct perf_event_pmu_context *epc;
12912 	struct perf_event_context *old_ctx = event->ctx;
12913 
12914 	get_ctx(ctx); /* normally find_get_context() */
12915 
12916 	event->cpu = cpu;
12917 	epc = find_get_pmu_context(pmu, ctx, event);
12918 	event->pmu_ctx = epc;
12919 
12920 	if (event->state >= PERF_EVENT_STATE_OFF)
12921 		event->state = PERF_EVENT_STATE_INACTIVE;
12922 	perf_install_in_context(ctx, event, cpu);
12923 
12924 	/*
12925 	 * Now that event->ctx is updated and visible, put the old ctx.
12926 	 */
12927 	put_ctx(old_ctx);
12928 }
12929 
12930 static void __perf_pmu_install(struct perf_event_context *ctx,
12931 			       int cpu, struct pmu *pmu, struct list_head *events)
12932 {
12933 	struct perf_event *event, *tmp;
12934 
12935 	/*
12936 	 * Re-instate events in 2 passes.
12937 	 *
12938 	 * Skip over group leaders and only install siblings on this first
12939 	 * pass, siblings will not get enabled without a leader, however a
12940 	 * leader will enable its siblings, even if those are still on the old
12941 	 * context.
12942 	 */
12943 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12944 		if (event->group_leader == event)
12945 			continue;
12946 
12947 		list_del(&event->migrate_entry);
12948 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12949 	}
12950 
12951 	/*
12952 	 * Once all the siblings are setup properly, install the group leaders
12953 	 * to make it go.
12954 	 */
12955 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12956 		list_del(&event->migrate_entry);
12957 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12958 	}
12959 }
12960 
12961 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12962 {
12963 	struct perf_event_context *src_ctx, *dst_ctx;
12964 	LIST_HEAD(events);
12965 
12966 	/*
12967 	 * Since per-cpu context is persistent, no need to grab an extra
12968 	 * reference.
12969 	 */
12970 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12971 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12972 
12973 	/*
12974 	 * See perf_event_ctx_lock() for comments on the details
12975 	 * of swizzling perf_event::ctx.
12976 	 */
12977 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12978 
12979 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12980 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12981 
12982 	if (!list_empty(&events)) {
12983 		/*
12984 		 * Wait for the events to quiesce before re-instating them.
12985 		 */
12986 		synchronize_rcu();
12987 
12988 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12989 	}
12990 
12991 	mutex_unlock(&dst_ctx->mutex);
12992 	mutex_unlock(&src_ctx->mutex);
12993 }
12994 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12995 
12996 static void sync_child_event(struct perf_event *child_event)
12997 {
12998 	struct perf_event *parent_event = child_event->parent;
12999 	u64 child_val;
13000 
13001 	if (child_event->attr.inherit_stat) {
13002 		struct task_struct *task = child_event->ctx->task;
13003 
13004 		if (task && task != TASK_TOMBSTONE)
13005 			perf_event_read_event(child_event, task);
13006 	}
13007 
13008 	child_val = perf_event_count(child_event);
13009 
13010 	/*
13011 	 * Add back the child's count to the parent's count:
13012 	 */
13013 	atomic64_add(child_val, &parent_event->child_count);
13014 	atomic64_add(child_event->total_time_enabled,
13015 		     &parent_event->child_total_time_enabled);
13016 	atomic64_add(child_event->total_time_running,
13017 		     &parent_event->child_total_time_running);
13018 }
13019 
13020 static void
13021 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13022 {
13023 	struct perf_event *parent_event = event->parent;
13024 	unsigned long detach_flags = 0;
13025 
13026 	if (parent_event) {
13027 		/*
13028 		 * Do not destroy the 'original' grouping; because of the
13029 		 * context switch optimization the original events could've
13030 		 * ended up in a random child task.
13031 		 *
13032 		 * If we were to destroy the original group, all group related
13033 		 * operations would cease to function properly after this
13034 		 * random child dies.
13035 		 *
13036 		 * Do destroy all inherited groups, we don't care about those
13037 		 * and being thorough is better.
13038 		 */
13039 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13040 		mutex_lock(&parent_event->child_mutex);
13041 	}
13042 
13043 	perf_remove_from_context(event, detach_flags);
13044 
13045 	raw_spin_lock_irq(&ctx->lock);
13046 	if (event->state > PERF_EVENT_STATE_EXIT)
13047 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13048 	raw_spin_unlock_irq(&ctx->lock);
13049 
13050 	/*
13051 	 * Child events can be freed.
13052 	 */
13053 	if (parent_event) {
13054 		mutex_unlock(&parent_event->child_mutex);
13055 		/*
13056 		 * Kick perf_poll() for is_event_hup();
13057 		 */
13058 		perf_event_wakeup(parent_event);
13059 		free_event(event);
13060 		put_event(parent_event);
13061 		return;
13062 	}
13063 
13064 	/*
13065 	 * Parent events are governed by their filedesc, retain them.
13066 	 */
13067 	perf_event_wakeup(event);
13068 }
13069 
13070 static void perf_event_exit_task_context(struct task_struct *child)
13071 {
13072 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13073 	struct perf_event *child_event, *next;
13074 
13075 	WARN_ON_ONCE(child != current);
13076 
13077 	child_ctx = perf_pin_task_context(child);
13078 	if (!child_ctx)
13079 		return;
13080 
13081 	/*
13082 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13083 	 * ctx::mutex over the entire thing. This serializes against almost
13084 	 * everything that wants to access the ctx.
13085 	 *
13086 	 * The exception is sys_perf_event_open() /
13087 	 * perf_event_create_kernel_count() which does find_get_context()
13088 	 * without ctx::mutex (it cannot because of the move_group double mutex
13089 	 * lock thing). See the comments in perf_install_in_context().
13090 	 */
13091 	mutex_lock(&child_ctx->mutex);
13092 
13093 	/*
13094 	 * In a single ctx::lock section, de-schedule the events and detach the
13095 	 * context from the task such that we cannot ever get it scheduled back
13096 	 * in.
13097 	 */
13098 	raw_spin_lock_irq(&child_ctx->lock);
13099 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13100 
13101 	/*
13102 	 * Now that the context is inactive, destroy the task <-> ctx relation
13103 	 * and mark the context dead.
13104 	 */
13105 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13106 	put_ctx(child_ctx); /* cannot be last */
13107 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13108 	put_task_struct(current); /* cannot be last */
13109 
13110 	clone_ctx = unclone_ctx(child_ctx);
13111 	raw_spin_unlock_irq(&child_ctx->lock);
13112 
13113 	if (clone_ctx)
13114 		put_ctx(clone_ctx);
13115 
13116 	/*
13117 	 * Report the task dead after unscheduling the events so that we
13118 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13119 	 * get a few PERF_RECORD_READ events.
13120 	 */
13121 	perf_event_task(child, child_ctx, 0);
13122 
13123 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13124 		perf_event_exit_event(child_event, child_ctx);
13125 
13126 	mutex_unlock(&child_ctx->mutex);
13127 
13128 	put_ctx(child_ctx);
13129 }
13130 
13131 /*
13132  * When a child task exits, feed back event values to parent events.
13133  *
13134  * Can be called with exec_update_lock held when called from
13135  * setup_new_exec().
13136  */
13137 void perf_event_exit_task(struct task_struct *child)
13138 {
13139 	struct perf_event *event, *tmp;
13140 
13141 	mutex_lock(&child->perf_event_mutex);
13142 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13143 				 owner_entry) {
13144 		list_del_init(&event->owner_entry);
13145 
13146 		/*
13147 		 * Ensure the list deletion is visible before we clear
13148 		 * the owner, closes a race against perf_release() where
13149 		 * we need to serialize on the owner->perf_event_mutex.
13150 		 */
13151 		smp_store_release(&event->owner, NULL);
13152 	}
13153 	mutex_unlock(&child->perf_event_mutex);
13154 
13155 	perf_event_exit_task_context(child);
13156 
13157 	/*
13158 	 * The perf_event_exit_task_context calls perf_event_task
13159 	 * with child's task_ctx, which generates EXIT events for
13160 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13161 	 * At this point we need to send EXIT events to cpu contexts.
13162 	 */
13163 	perf_event_task(child, NULL, 0);
13164 }
13165 
13166 static void perf_free_event(struct perf_event *event,
13167 			    struct perf_event_context *ctx)
13168 {
13169 	struct perf_event *parent = event->parent;
13170 
13171 	if (WARN_ON_ONCE(!parent))
13172 		return;
13173 
13174 	mutex_lock(&parent->child_mutex);
13175 	list_del_init(&event->child_list);
13176 	mutex_unlock(&parent->child_mutex);
13177 
13178 	put_event(parent);
13179 
13180 	raw_spin_lock_irq(&ctx->lock);
13181 	perf_group_detach(event);
13182 	list_del_event(event, ctx);
13183 	raw_spin_unlock_irq(&ctx->lock);
13184 	free_event(event);
13185 }
13186 
13187 /*
13188  * Free a context as created by inheritance by perf_event_init_task() below,
13189  * used by fork() in case of fail.
13190  *
13191  * Even though the task has never lived, the context and events have been
13192  * exposed through the child_list, so we must take care tearing it all down.
13193  */
13194 void perf_event_free_task(struct task_struct *task)
13195 {
13196 	struct perf_event_context *ctx;
13197 	struct perf_event *event, *tmp;
13198 
13199 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13200 	if (!ctx)
13201 		return;
13202 
13203 	mutex_lock(&ctx->mutex);
13204 	raw_spin_lock_irq(&ctx->lock);
13205 	/*
13206 	 * Destroy the task <-> ctx relation and mark the context dead.
13207 	 *
13208 	 * This is important because even though the task hasn't been
13209 	 * exposed yet the context has been (through child_list).
13210 	 */
13211 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13212 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13213 	put_task_struct(task); /* cannot be last */
13214 	raw_spin_unlock_irq(&ctx->lock);
13215 
13216 
13217 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13218 		perf_free_event(event, ctx);
13219 
13220 	mutex_unlock(&ctx->mutex);
13221 
13222 	/*
13223 	 * perf_event_release_kernel() could've stolen some of our
13224 	 * child events and still have them on its free_list. In that
13225 	 * case we must wait for these events to have been freed (in
13226 	 * particular all their references to this task must've been
13227 	 * dropped).
13228 	 *
13229 	 * Without this copy_process() will unconditionally free this
13230 	 * task (irrespective of its reference count) and
13231 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13232 	 * use-after-free.
13233 	 *
13234 	 * Wait for all events to drop their context reference.
13235 	 */
13236 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13237 	put_ctx(ctx); /* must be last */
13238 }
13239 
13240 void perf_event_delayed_put(struct task_struct *task)
13241 {
13242 	WARN_ON_ONCE(task->perf_event_ctxp);
13243 }
13244 
13245 struct file *perf_event_get(unsigned int fd)
13246 {
13247 	struct file *file = fget(fd);
13248 	if (!file)
13249 		return ERR_PTR(-EBADF);
13250 
13251 	if (file->f_op != &perf_fops) {
13252 		fput(file);
13253 		return ERR_PTR(-EBADF);
13254 	}
13255 
13256 	return file;
13257 }
13258 
13259 const struct perf_event *perf_get_event(struct file *file)
13260 {
13261 	if (file->f_op != &perf_fops)
13262 		return ERR_PTR(-EINVAL);
13263 
13264 	return file->private_data;
13265 }
13266 
13267 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13268 {
13269 	if (!event)
13270 		return ERR_PTR(-EINVAL);
13271 
13272 	return &event->attr;
13273 }
13274 
13275 /*
13276  * Inherit an event from parent task to child task.
13277  *
13278  * Returns:
13279  *  - valid pointer on success
13280  *  - NULL for orphaned events
13281  *  - IS_ERR() on error
13282  */
13283 static struct perf_event *
13284 inherit_event(struct perf_event *parent_event,
13285 	      struct task_struct *parent,
13286 	      struct perf_event_context *parent_ctx,
13287 	      struct task_struct *child,
13288 	      struct perf_event *group_leader,
13289 	      struct perf_event_context *child_ctx)
13290 {
13291 	enum perf_event_state parent_state = parent_event->state;
13292 	struct perf_event_pmu_context *pmu_ctx;
13293 	struct perf_event *child_event;
13294 	unsigned long flags;
13295 
13296 	/*
13297 	 * Instead of creating recursive hierarchies of events,
13298 	 * we link inherited events back to the original parent,
13299 	 * which has a filp for sure, which we use as the reference
13300 	 * count:
13301 	 */
13302 	if (parent_event->parent)
13303 		parent_event = parent_event->parent;
13304 
13305 	child_event = perf_event_alloc(&parent_event->attr,
13306 					   parent_event->cpu,
13307 					   child,
13308 					   group_leader, parent_event,
13309 					   NULL, NULL, -1);
13310 	if (IS_ERR(child_event))
13311 		return child_event;
13312 
13313 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13314 	if (IS_ERR(pmu_ctx)) {
13315 		free_event(child_event);
13316 		return ERR_CAST(pmu_ctx);
13317 	}
13318 	child_event->pmu_ctx = pmu_ctx;
13319 
13320 	/*
13321 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13322 	 * must be under the same lock in order to serialize against
13323 	 * perf_event_release_kernel(), such that either we must observe
13324 	 * is_orphaned_event() or they will observe us on the child_list.
13325 	 */
13326 	mutex_lock(&parent_event->child_mutex);
13327 	if (is_orphaned_event(parent_event) ||
13328 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13329 		mutex_unlock(&parent_event->child_mutex);
13330 		/* task_ctx_data is freed with child_ctx */
13331 		free_event(child_event);
13332 		return NULL;
13333 	}
13334 
13335 	get_ctx(child_ctx);
13336 
13337 	/*
13338 	 * Make the child state follow the state of the parent event,
13339 	 * not its attr.disabled bit.  We hold the parent's mutex,
13340 	 * so we won't race with perf_event_{en, dis}able_family.
13341 	 */
13342 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13343 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13344 	else
13345 		child_event->state = PERF_EVENT_STATE_OFF;
13346 
13347 	if (parent_event->attr.freq) {
13348 		u64 sample_period = parent_event->hw.sample_period;
13349 		struct hw_perf_event *hwc = &child_event->hw;
13350 
13351 		hwc->sample_period = sample_period;
13352 		hwc->last_period   = sample_period;
13353 
13354 		local64_set(&hwc->period_left, sample_period);
13355 	}
13356 
13357 	child_event->ctx = child_ctx;
13358 	child_event->overflow_handler = parent_event->overflow_handler;
13359 	child_event->overflow_handler_context
13360 		= parent_event->overflow_handler_context;
13361 
13362 	/*
13363 	 * Precalculate sample_data sizes
13364 	 */
13365 	perf_event__header_size(child_event);
13366 	perf_event__id_header_size(child_event);
13367 
13368 	/*
13369 	 * Link it up in the child's context:
13370 	 */
13371 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13372 	add_event_to_ctx(child_event, child_ctx);
13373 	child_event->attach_state |= PERF_ATTACH_CHILD;
13374 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13375 
13376 	/*
13377 	 * Link this into the parent event's child list
13378 	 */
13379 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13380 	mutex_unlock(&parent_event->child_mutex);
13381 
13382 	return child_event;
13383 }
13384 
13385 /*
13386  * Inherits an event group.
13387  *
13388  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13389  * This matches with perf_event_release_kernel() removing all child events.
13390  *
13391  * Returns:
13392  *  - 0 on success
13393  *  - <0 on error
13394  */
13395 static int inherit_group(struct perf_event *parent_event,
13396 	      struct task_struct *parent,
13397 	      struct perf_event_context *parent_ctx,
13398 	      struct task_struct *child,
13399 	      struct perf_event_context *child_ctx)
13400 {
13401 	struct perf_event *leader;
13402 	struct perf_event *sub;
13403 	struct perf_event *child_ctr;
13404 
13405 	leader = inherit_event(parent_event, parent, parent_ctx,
13406 				 child, NULL, child_ctx);
13407 	if (IS_ERR(leader))
13408 		return PTR_ERR(leader);
13409 	/*
13410 	 * @leader can be NULL here because of is_orphaned_event(). In this
13411 	 * case inherit_event() will create individual events, similar to what
13412 	 * perf_group_detach() would do anyway.
13413 	 */
13414 	for_each_sibling_event(sub, parent_event) {
13415 		child_ctr = inherit_event(sub, parent, parent_ctx,
13416 					    child, leader, child_ctx);
13417 		if (IS_ERR(child_ctr))
13418 			return PTR_ERR(child_ctr);
13419 
13420 		if (sub->aux_event == parent_event && child_ctr &&
13421 		    !perf_get_aux_event(child_ctr, leader))
13422 			return -EINVAL;
13423 	}
13424 	if (leader)
13425 		leader->group_generation = parent_event->group_generation;
13426 	return 0;
13427 }
13428 
13429 /*
13430  * Creates the child task context and tries to inherit the event-group.
13431  *
13432  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13433  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13434  * consistent with perf_event_release_kernel() removing all child events.
13435  *
13436  * Returns:
13437  *  - 0 on success
13438  *  - <0 on error
13439  */
13440 static int
13441 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13442 		   struct perf_event_context *parent_ctx,
13443 		   struct task_struct *child,
13444 		   u64 clone_flags, int *inherited_all)
13445 {
13446 	struct perf_event_context *child_ctx;
13447 	int ret;
13448 
13449 	if (!event->attr.inherit ||
13450 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13451 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13452 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13453 		*inherited_all = 0;
13454 		return 0;
13455 	}
13456 
13457 	child_ctx = child->perf_event_ctxp;
13458 	if (!child_ctx) {
13459 		/*
13460 		 * This is executed from the parent task context, so
13461 		 * inherit events that have been marked for cloning.
13462 		 * First allocate and initialize a context for the
13463 		 * child.
13464 		 */
13465 		child_ctx = alloc_perf_context(child);
13466 		if (!child_ctx)
13467 			return -ENOMEM;
13468 
13469 		child->perf_event_ctxp = child_ctx;
13470 	}
13471 
13472 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13473 	if (ret)
13474 		*inherited_all = 0;
13475 
13476 	return ret;
13477 }
13478 
13479 /*
13480  * Initialize the perf_event context in task_struct
13481  */
13482 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13483 {
13484 	struct perf_event_context *child_ctx, *parent_ctx;
13485 	struct perf_event_context *cloned_ctx;
13486 	struct perf_event *event;
13487 	struct task_struct *parent = current;
13488 	int inherited_all = 1;
13489 	unsigned long flags;
13490 	int ret = 0;
13491 
13492 	if (likely(!parent->perf_event_ctxp))
13493 		return 0;
13494 
13495 	/*
13496 	 * If the parent's context is a clone, pin it so it won't get
13497 	 * swapped under us.
13498 	 */
13499 	parent_ctx = perf_pin_task_context(parent);
13500 	if (!parent_ctx)
13501 		return 0;
13502 
13503 	/*
13504 	 * No need to check if parent_ctx != NULL here; since we saw
13505 	 * it non-NULL earlier, the only reason for it to become NULL
13506 	 * is if we exit, and since we're currently in the middle of
13507 	 * a fork we can't be exiting at the same time.
13508 	 */
13509 
13510 	/*
13511 	 * Lock the parent list. No need to lock the child - not PID
13512 	 * hashed yet and not running, so nobody can access it.
13513 	 */
13514 	mutex_lock(&parent_ctx->mutex);
13515 
13516 	/*
13517 	 * We dont have to disable NMIs - we are only looking at
13518 	 * the list, not manipulating it:
13519 	 */
13520 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13521 		ret = inherit_task_group(event, parent, parent_ctx,
13522 					 child, clone_flags, &inherited_all);
13523 		if (ret)
13524 			goto out_unlock;
13525 	}
13526 
13527 	/*
13528 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13529 	 * to allocations, but we need to prevent rotation because
13530 	 * rotate_ctx() will change the list from interrupt context.
13531 	 */
13532 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13533 	parent_ctx->rotate_disable = 1;
13534 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13535 
13536 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13537 		ret = inherit_task_group(event, parent, parent_ctx,
13538 					 child, clone_flags, &inherited_all);
13539 		if (ret)
13540 			goto out_unlock;
13541 	}
13542 
13543 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13544 	parent_ctx->rotate_disable = 0;
13545 
13546 	child_ctx = child->perf_event_ctxp;
13547 
13548 	if (child_ctx && inherited_all) {
13549 		/*
13550 		 * Mark the child context as a clone of the parent
13551 		 * context, or of whatever the parent is a clone of.
13552 		 *
13553 		 * Note that if the parent is a clone, the holding of
13554 		 * parent_ctx->lock avoids it from being uncloned.
13555 		 */
13556 		cloned_ctx = parent_ctx->parent_ctx;
13557 		if (cloned_ctx) {
13558 			child_ctx->parent_ctx = cloned_ctx;
13559 			child_ctx->parent_gen = parent_ctx->parent_gen;
13560 		} else {
13561 			child_ctx->parent_ctx = parent_ctx;
13562 			child_ctx->parent_gen = parent_ctx->generation;
13563 		}
13564 		get_ctx(child_ctx->parent_ctx);
13565 	}
13566 
13567 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13568 out_unlock:
13569 	mutex_unlock(&parent_ctx->mutex);
13570 
13571 	perf_unpin_context(parent_ctx);
13572 	put_ctx(parent_ctx);
13573 
13574 	return ret;
13575 }
13576 
13577 /*
13578  * Initialize the perf_event context in task_struct
13579  */
13580 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13581 {
13582 	int ret;
13583 
13584 	child->perf_event_ctxp = NULL;
13585 	mutex_init(&child->perf_event_mutex);
13586 	INIT_LIST_HEAD(&child->perf_event_list);
13587 
13588 	ret = perf_event_init_context(child, clone_flags);
13589 	if (ret) {
13590 		perf_event_free_task(child);
13591 		return ret;
13592 	}
13593 
13594 	return 0;
13595 }
13596 
13597 static void __init perf_event_init_all_cpus(void)
13598 {
13599 	struct swevent_htable *swhash;
13600 	struct perf_cpu_context *cpuctx;
13601 	int cpu;
13602 
13603 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13604 
13605 	for_each_possible_cpu(cpu) {
13606 		swhash = &per_cpu(swevent_htable, cpu);
13607 		mutex_init(&swhash->hlist_mutex);
13608 
13609 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13610 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13611 
13612 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13613 
13614 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13615 		__perf_event_init_context(&cpuctx->ctx);
13616 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13617 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13618 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13619 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13620 		cpuctx->heap = cpuctx->heap_default;
13621 	}
13622 }
13623 
13624 static void perf_swevent_init_cpu(unsigned int cpu)
13625 {
13626 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13627 
13628 	mutex_lock(&swhash->hlist_mutex);
13629 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13630 		struct swevent_hlist *hlist;
13631 
13632 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13633 		WARN_ON(!hlist);
13634 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13635 	}
13636 	mutex_unlock(&swhash->hlist_mutex);
13637 }
13638 
13639 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13640 static void __perf_event_exit_context(void *__info)
13641 {
13642 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13643 	struct perf_event_context *ctx = __info;
13644 	struct perf_event *event;
13645 
13646 	raw_spin_lock(&ctx->lock);
13647 	ctx_sched_out(ctx, EVENT_TIME);
13648 	list_for_each_entry(event, &ctx->event_list, event_entry)
13649 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13650 	raw_spin_unlock(&ctx->lock);
13651 }
13652 
13653 static void perf_event_exit_cpu_context(int cpu)
13654 {
13655 	struct perf_cpu_context *cpuctx;
13656 	struct perf_event_context *ctx;
13657 
13658 	// XXX simplify cpuctx->online
13659 	mutex_lock(&pmus_lock);
13660 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13661 	ctx = &cpuctx->ctx;
13662 
13663 	mutex_lock(&ctx->mutex);
13664 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13665 	cpuctx->online = 0;
13666 	mutex_unlock(&ctx->mutex);
13667 	cpumask_clear_cpu(cpu, perf_online_mask);
13668 	mutex_unlock(&pmus_lock);
13669 }
13670 #else
13671 
13672 static void perf_event_exit_cpu_context(int cpu) { }
13673 
13674 #endif
13675 
13676 int perf_event_init_cpu(unsigned int cpu)
13677 {
13678 	struct perf_cpu_context *cpuctx;
13679 	struct perf_event_context *ctx;
13680 
13681 	perf_swevent_init_cpu(cpu);
13682 
13683 	mutex_lock(&pmus_lock);
13684 	cpumask_set_cpu(cpu, perf_online_mask);
13685 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13686 	ctx = &cpuctx->ctx;
13687 
13688 	mutex_lock(&ctx->mutex);
13689 	cpuctx->online = 1;
13690 	mutex_unlock(&ctx->mutex);
13691 	mutex_unlock(&pmus_lock);
13692 
13693 	return 0;
13694 }
13695 
13696 int perf_event_exit_cpu(unsigned int cpu)
13697 {
13698 	perf_event_exit_cpu_context(cpu);
13699 	return 0;
13700 }
13701 
13702 static int
13703 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13704 {
13705 	int cpu;
13706 
13707 	for_each_online_cpu(cpu)
13708 		perf_event_exit_cpu(cpu);
13709 
13710 	return NOTIFY_OK;
13711 }
13712 
13713 /*
13714  * Run the perf reboot notifier at the very last possible moment so that
13715  * the generic watchdog code runs as long as possible.
13716  */
13717 static struct notifier_block perf_reboot_notifier = {
13718 	.notifier_call = perf_reboot,
13719 	.priority = INT_MIN,
13720 };
13721 
13722 void __init perf_event_init(void)
13723 {
13724 	int ret;
13725 
13726 	idr_init(&pmu_idr);
13727 
13728 	perf_event_init_all_cpus();
13729 	init_srcu_struct(&pmus_srcu);
13730 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13731 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13732 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13733 	perf_tp_register();
13734 	perf_event_init_cpu(smp_processor_id());
13735 	register_reboot_notifier(&perf_reboot_notifier);
13736 
13737 	ret = init_hw_breakpoint();
13738 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13739 
13740 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13741 
13742 	/*
13743 	 * Build time assertion that we keep the data_head at the intended
13744 	 * location.  IOW, validation we got the __reserved[] size right.
13745 	 */
13746 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13747 		     != 1024);
13748 }
13749 
13750 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13751 			      char *page)
13752 {
13753 	struct perf_pmu_events_attr *pmu_attr =
13754 		container_of(attr, struct perf_pmu_events_attr, attr);
13755 
13756 	if (pmu_attr->event_str)
13757 		return sprintf(page, "%s\n", pmu_attr->event_str);
13758 
13759 	return 0;
13760 }
13761 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13762 
13763 static int __init perf_event_sysfs_init(void)
13764 {
13765 	struct pmu *pmu;
13766 	int ret;
13767 
13768 	mutex_lock(&pmus_lock);
13769 
13770 	ret = bus_register(&pmu_bus);
13771 	if (ret)
13772 		goto unlock;
13773 
13774 	list_for_each_entry(pmu, &pmus, entry) {
13775 		if (pmu->dev)
13776 			continue;
13777 
13778 		ret = pmu_dev_alloc(pmu);
13779 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13780 	}
13781 	pmu_bus_running = 1;
13782 	ret = 0;
13783 
13784 unlock:
13785 	mutex_unlock(&pmus_lock);
13786 
13787 	return ret;
13788 }
13789 device_initcall(perf_event_sysfs_init);
13790 
13791 #ifdef CONFIG_CGROUP_PERF
13792 static struct cgroup_subsys_state *
13793 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13794 {
13795 	struct perf_cgroup *jc;
13796 
13797 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13798 	if (!jc)
13799 		return ERR_PTR(-ENOMEM);
13800 
13801 	jc->info = alloc_percpu(struct perf_cgroup_info);
13802 	if (!jc->info) {
13803 		kfree(jc);
13804 		return ERR_PTR(-ENOMEM);
13805 	}
13806 
13807 	return &jc->css;
13808 }
13809 
13810 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13811 {
13812 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13813 
13814 	free_percpu(jc->info);
13815 	kfree(jc);
13816 }
13817 
13818 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13819 {
13820 	perf_event_cgroup(css->cgroup);
13821 	return 0;
13822 }
13823 
13824 static int __perf_cgroup_move(void *info)
13825 {
13826 	struct task_struct *task = info;
13827 
13828 	preempt_disable();
13829 	perf_cgroup_switch(task);
13830 	preempt_enable();
13831 
13832 	return 0;
13833 }
13834 
13835 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13836 {
13837 	struct task_struct *task;
13838 	struct cgroup_subsys_state *css;
13839 
13840 	cgroup_taskset_for_each(task, css, tset)
13841 		task_function_call(task, __perf_cgroup_move, task);
13842 }
13843 
13844 struct cgroup_subsys perf_event_cgrp_subsys = {
13845 	.css_alloc	= perf_cgroup_css_alloc,
13846 	.css_free	= perf_cgroup_css_free,
13847 	.css_online	= perf_cgroup_css_online,
13848 	.attach		= perf_cgroup_attach,
13849 	/*
13850 	 * Implicitly enable on dfl hierarchy so that perf events can
13851 	 * always be filtered by cgroup2 path as long as perf_event
13852 	 * controller is not mounted on a legacy hierarchy.
13853 	 */
13854 	.implicit_on_dfl = true,
13855 	.threaded	= true,
13856 };
13857 #endif /* CONFIG_CGROUP_PERF */
13858 
13859 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13860