xref: /linux/kernel/events/core.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:	the function to be called
136  * @info:	the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144 	struct remote_function_call data = {
145 		.p	= NULL,
146 		.func	= func,
147 		.info	= info,
148 		.ret	= -ENXIO, /* No such CPU */
149 	};
150 
151 	smp_call_function_single(cpu, remote_function, &data, 1);
152 
153 	return data.ret;
154 }
155 
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161 
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 			  struct perf_event_context *ctx)
164 {
165 	raw_spin_lock(&cpuctx->ctx.lock);
166 	if (ctx)
167 		raw_spin_lock(&ctx->lock);
168 }
169 
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 			    struct perf_event_context *ctx)
172 {
173 	if (ctx)
174 		raw_spin_unlock(&ctx->lock);
175 	raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177 
178 #define TASK_TOMBSTONE ((void *)-1L)
179 
180 static bool is_kernel_event(struct perf_event *event)
181 {
182 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184 
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203 
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 			struct perf_event_context *, void *);
206 
207 struct event_function_struct {
208 	struct perf_event *event;
209 	event_f func;
210 	void *data;
211 };
212 
213 static int event_function(void *info)
214 {
215 	struct event_function_struct *efs = info;
216 	struct perf_event *event = efs->event;
217 	struct perf_event_context *ctx = event->ctx;
218 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
220 	int ret = 0;
221 
222 	lockdep_assert_irqs_disabled();
223 
224 	perf_ctx_lock(cpuctx, task_ctx);
225 	/*
226 	 * Since we do the IPI call without holding ctx->lock things can have
227 	 * changed, double check we hit the task we set out to hit.
228 	 */
229 	if (ctx->task) {
230 		if (ctx->task != current) {
231 			ret = -ESRCH;
232 			goto unlock;
233 		}
234 
235 		/*
236 		 * We only use event_function_call() on established contexts,
237 		 * and event_function() is only ever called when active (or
238 		 * rather, we'll have bailed in task_function_call() or the
239 		 * above ctx->task != current test), therefore we must have
240 		 * ctx->is_active here.
241 		 */
242 		WARN_ON_ONCE(!ctx->is_active);
243 		/*
244 		 * And since we have ctx->is_active, cpuctx->task_ctx must
245 		 * match.
246 		 */
247 		WARN_ON_ONCE(task_ctx != ctx);
248 	} else {
249 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
250 	}
251 
252 	efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254 	perf_ctx_unlock(cpuctx, task_ctx);
255 
256 	return ret;
257 }
258 
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261 	struct perf_event_context *ctx = event->ctx;
262 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263 	struct event_function_struct efs = {
264 		.event = event,
265 		.func = func,
266 		.data = data,
267 	};
268 
269 	if (!event->parent) {
270 		/*
271 		 * If this is a !child event, we must hold ctx::mutex to
272 		 * stabilize the the event->ctx relation. See
273 		 * perf_event_ctx_lock().
274 		 */
275 		lockdep_assert_held(&ctx->mutex);
276 	}
277 
278 	if (!task) {
279 		cpu_function_call(event->cpu, event_function, &efs);
280 		return;
281 	}
282 
283 	if (task == TASK_TOMBSTONE)
284 		return;
285 
286 again:
287 	if (!task_function_call(task, event_function, &efs))
288 		return;
289 
290 	raw_spin_lock_irq(&ctx->lock);
291 	/*
292 	 * Reload the task pointer, it might have been changed by
293 	 * a concurrent perf_event_context_sched_out().
294 	 */
295 	task = ctx->task;
296 	if (task == TASK_TOMBSTONE) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		return;
299 	}
300 	if (ctx->is_active) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		goto again;
303 	}
304 	func(event, NULL, ctx, data);
305 	raw_spin_unlock_irq(&ctx->lock);
306 }
307 
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 	struct task_struct *task = READ_ONCE(ctx->task);
317 	struct perf_event_context *task_ctx = NULL;
318 
319 	lockdep_assert_irqs_disabled();
320 
321 	if (task) {
322 		if (task == TASK_TOMBSTONE)
323 			return;
324 
325 		task_ctx = ctx;
326 	}
327 
328 	perf_ctx_lock(cpuctx, task_ctx);
329 
330 	task = ctx->task;
331 	if (task == TASK_TOMBSTONE)
332 		goto unlock;
333 
334 	if (task) {
335 		/*
336 		 * We must be either inactive or active and the right task,
337 		 * otherwise we're screwed, since we cannot IPI to somewhere
338 		 * else.
339 		 */
340 		if (ctx->is_active) {
341 			if (WARN_ON_ONCE(task != current))
342 				goto unlock;
343 
344 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345 				goto unlock;
346 		}
347 	} else {
348 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
349 	}
350 
351 	func(event, cpuctx, ctx, data);
352 unlock:
353 	perf_ctx_unlock(cpuctx, task_ctx);
354 }
355 
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 		       PERF_FLAG_FD_OUTPUT  |\
358 		       PERF_FLAG_PID_CGROUP |\
359 		       PERF_FLAG_FD_CLOEXEC)
360 
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365 	(PERF_SAMPLE_BRANCH_KERNEL |\
366 	 PERF_SAMPLE_BRANCH_HV)
367 
368 enum event_type_t {
369 	EVENT_FLEXIBLE = 0x1,
370 	EVENT_PINNED = 0x2,
371 	EVENT_TIME = 0x4,
372 	/* see ctx_resched() for details */
373 	EVENT_CPU = 0x8,
374 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376 
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381 
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387 
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
390 
391 static atomic_t nr_mmap_events __read_mostly;
392 static atomic_t nr_comm_events __read_mostly;
393 static atomic_t nr_namespaces_events __read_mostly;
394 static atomic_t nr_task_events __read_mostly;
395 static atomic_t nr_freq_events __read_mostly;
396 static atomic_t nr_switch_events __read_mostly;
397 static atomic_t nr_ksymbol_events __read_mostly;
398 static atomic_t nr_bpf_events __read_mostly;
399 static atomic_t nr_cgroup_events __read_mostly;
400 static atomic_t nr_text_poke_events __read_mostly;
401 static atomic_t nr_build_id_events __read_mostly;
402 
403 static LIST_HEAD(pmus);
404 static DEFINE_MUTEX(pmus_lock);
405 static struct srcu_struct pmus_srcu;
406 static cpumask_var_t perf_online_mask;
407 
408 /*
409  * perf event paranoia level:
410  *  -1 - not paranoid at all
411  *   0 - disallow raw tracepoint access for unpriv
412  *   1 - disallow cpu events for unpriv
413  *   2 - disallow kernel profiling for unpriv
414  */
415 int sysctl_perf_event_paranoid __read_mostly = 2;
416 
417 /* Minimum for 512 kiB + 1 user control page */
418 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
419 
420 /*
421  * max perf event sample rate
422  */
423 #define DEFAULT_MAX_SAMPLE_RATE		100000
424 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
425 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
426 
427 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
428 
429 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
430 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
431 
432 static int perf_sample_allowed_ns __read_mostly =
433 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
434 
435 static void update_perf_cpu_limits(void)
436 {
437 	u64 tmp = perf_sample_period_ns;
438 
439 	tmp *= sysctl_perf_cpu_time_max_percent;
440 	tmp = div_u64(tmp, 100);
441 	if (!tmp)
442 		tmp = 1;
443 
444 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
445 }
446 
447 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
448 
449 int perf_proc_update_handler(struct ctl_table *table, int write,
450 		void *buffer, size_t *lenp, loff_t *ppos)
451 {
452 	int ret;
453 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
454 	/*
455 	 * If throttling is disabled don't allow the write:
456 	 */
457 	if (write && (perf_cpu == 100 || perf_cpu == 0))
458 		return -EINVAL;
459 
460 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
461 	if (ret || !write)
462 		return ret;
463 
464 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
465 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466 	update_perf_cpu_limits();
467 
468 	return 0;
469 }
470 
471 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
472 
473 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
474 		void *buffer, size_t *lenp, loff_t *ppos)
475 {
476 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
477 
478 	if (ret || !write)
479 		return ret;
480 
481 	if (sysctl_perf_cpu_time_max_percent == 100 ||
482 	    sysctl_perf_cpu_time_max_percent == 0) {
483 		printk(KERN_WARNING
484 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
485 		WRITE_ONCE(perf_sample_allowed_ns, 0);
486 	} else {
487 		update_perf_cpu_limits();
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  * perf samples are done in some very critical code paths (NMIs).
495  * If they take too much CPU time, the system can lock up and not
496  * get any real work done.  This will drop the sample rate when
497  * we detect that events are taking too long.
498  */
499 #define NR_ACCUMULATED_SAMPLES 128
500 static DEFINE_PER_CPU(u64, running_sample_length);
501 
502 static u64 __report_avg;
503 static u64 __report_allowed;
504 
505 static void perf_duration_warn(struct irq_work *w)
506 {
507 	printk_ratelimited(KERN_INFO
508 		"perf: interrupt took too long (%lld > %lld), lowering "
509 		"kernel.perf_event_max_sample_rate to %d\n",
510 		__report_avg, __report_allowed,
511 		sysctl_perf_event_sample_rate);
512 }
513 
514 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
515 
516 void perf_sample_event_took(u64 sample_len_ns)
517 {
518 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
519 	u64 running_len;
520 	u64 avg_len;
521 	u32 max;
522 
523 	if (max_len == 0)
524 		return;
525 
526 	/* Decay the counter by 1 average sample. */
527 	running_len = __this_cpu_read(running_sample_length);
528 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
529 	running_len += sample_len_ns;
530 	__this_cpu_write(running_sample_length, running_len);
531 
532 	/*
533 	 * Note: this will be biased artifically low until we have
534 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
535 	 * from having to maintain a count.
536 	 */
537 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
538 	if (avg_len <= max_len)
539 		return;
540 
541 	__report_avg = avg_len;
542 	__report_allowed = max_len;
543 
544 	/*
545 	 * Compute a throttle threshold 25% below the current duration.
546 	 */
547 	avg_len += avg_len / 4;
548 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
549 	if (avg_len < max)
550 		max /= (u32)avg_len;
551 	else
552 		max = 1;
553 
554 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
555 	WRITE_ONCE(max_samples_per_tick, max);
556 
557 	sysctl_perf_event_sample_rate = max * HZ;
558 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
559 
560 	if (!irq_work_queue(&perf_duration_work)) {
561 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
562 			     "kernel.perf_event_max_sample_rate to %d\n",
563 			     __report_avg, __report_allowed,
564 			     sysctl_perf_event_sample_rate);
565 	}
566 }
567 
568 static atomic64_t perf_event_id;
569 
570 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
571 			      enum event_type_t event_type);
572 
573 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
574 			     enum event_type_t event_type,
575 			     struct task_struct *task);
576 
577 static void update_context_time(struct perf_event_context *ctx);
578 static u64 perf_event_time(struct perf_event *event);
579 
580 void __weak perf_event_print_debug(void)	{ }
581 
582 extern __weak const char *perf_pmu_name(void)
583 {
584 	return "pmu";
585 }
586 
587 static inline u64 perf_clock(void)
588 {
589 	return local_clock();
590 }
591 
592 static inline u64 perf_event_clock(struct perf_event *event)
593 {
594 	return event->clock();
595 }
596 
597 /*
598  * State based event timekeeping...
599  *
600  * The basic idea is to use event->state to determine which (if any) time
601  * fields to increment with the current delta. This means we only need to
602  * update timestamps when we change state or when they are explicitly requested
603  * (read).
604  *
605  * Event groups make things a little more complicated, but not terribly so. The
606  * rules for a group are that if the group leader is OFF the entire group is
607  * OFF, irrespecive of what the group member states are. This results in
608  * __perf_effective_state().
609  *
610  * A futher ramification is that when a group leader flips between OFF and
611  * !OFF, we need to update all group member times.
612  *
613  *
614  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
615  * need to make sure the relevant context time is updated before we try and
616  * update our timestamps.
617  */
618 
619 static __always_inline enum perf_event_state
620 __perf_effective_state(struct perf_event *event)
621 {
622 	struct perf_event *leader = event->group_leader;
623 
624 	if (leader->state <= PERF_EVENT_STATE_OFF)
625 		return leader->state;
626 
627 	return event->state;
628 }
629 
630 static __always_inline void
631 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
632 {
633 	enum perf_event_state state = __perf_effective_state(event);
634 	u64 delta = now - event->tstamp;
635 
636 	*enabled = event->total_time_enabled;
637 	if (state >= PERF_EVENT_STATE_INACTIVE)
638 		*enabled += delta;
639 
640 	*running = event->total_time_running;
641 	if (state >= PERF_EVENT_STATE_ACTIVE)
642 		*running += delta;
643 }
644 
645 static void perf_event_update_time(struct perf_event *event)
646 {
647 	u64 now = perf_event_time(event);
648 
649 	__perf_update_times(event, now, &event->total_time_enabled,
650 					&event->total_time_running);
651 	event->tstamp = now;
652 }
653 
654 static void perf_event_update_sibling_time(struct perf_event *leader)
655 {
656 	struct perf_event *sibling;
657 
658 	for_each_sibling_event(sibling, leader)
659 		perf_event_update_time(sibling);
660 }
661 
662 static void
663 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
664 {
665 	if (event->state == state)
666 		return;
667 
668 	perf_event_update_time(event);
669 	/*
670 	 * If a group leader gets enabled/disabled all its siblings
671 	 * are affected too.
672 	 */
673 	if ((event->state < 0) ^ (state < 0))
674 		perf_event_update_sibling_time(event);
675 
676 	WRITE_ONCE(event->state, state);
677 }
678 
679 #ifdef CONFIG_CGROUP_PERF
680 
681 static inline bool
682 perf_cgroup_match(struct perf_event *event)
683 {
684 	struct perf_event_context *ctx = event->ctx;
685 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
686 
687 	/* @event doesn't care about cgroup */
688 	if (!event->cgrp)
689 		return true;
690 
691 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
692 	if (!cpuctx->cgrp)
693 		return false;
694 
695 	/*
696 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
697 	 * also enabled for all its descendant cgroups.  If @cpuctx's
698 	 * cgroup is a descendant of @event's (the test covers identity
699 	 * case), it's a match.
700 	 */
701 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
702 				    event->cgrp->css.cgroup);
703 }
704 
705 static inline void perf_detach_cgroup(struct perf_event *event)
706 {
707 	css_put(&event->cgrp->css);
708 	event->cgrp = NULL;
709 }
710 
711 static inline int is_cgroup_event(struct perf_event *event)
712 {
713 	return event->cgrp != NULL;
714 }
715 
716 static inline u64 perf_cgroup_event_time(struct perf_event *event)
717 {
718 	struct perf_cgroup_info *t;
719 
720 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
721 	return t->time;
722 }
723 
724 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
725 {
726 	struct perf_cgroup_info *info;
727 	u64 now;
728 
729 	now = perf_clock();
730 
731 	info = this_cpu_ptr(cgrp->info);
732 
733 	info->time += now - info->timestamp;
734 	info->timestamp = now;
735 }
736 
737 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
738 {
739 	struct perf_cgroup *cgrp = cpuctx->cgrp;
740 	struct cgroup_subsys_state *css;
741 
742 	if (cgrp) {
743 		for (css = &cgrp->css; css; css = css->parent) {
744 			cgrp = container_of(css, struct perf_cgroup, css);
745 			__update_cgrp_time(cgrp);
746 		}
747 	}
748 }
749 
750 static inline void update_cgrp_time_from_event(struct perf_event *event)
751 {
752 	struct perf_cgroup *cgrp;
753 
754 	/*
755 	 * ensure we access cgroup data only when needed and
756 	 * when we know the cgroup is pinned (css_get)
757 	 */
758 	if (!is_cgroup_event(event))
759 		return;
760 
761 	cgrp = perf_cgroup_from_task(current, event->ctx);
762 	/*
763 	 * Do not update time when cgroup is not active
764 	 */
765 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
766 		__update_cgrp_time(event->cgrp);
767 }
768 
769 static inline void
770 perf_cgroup_set_timestamp(struct task_struct *task,
771 			  struct perf_event_context *ctx)
772 {
773 	struct perf_cgroup *cgrp;
774 	struct perf_cgroup_info *info;
775 	struct cgroup_subsys_state *css;
776 
777 	/*
778 	 * ctx->lock held by caller
779 	 * ensure we do not access cgroup data
780 	 * unless we have the cgroup pinned (css_get)
781 	 */
782 	if (!task || !ctx->nr_cgroups)
783 		return;
784 
785 	cgrp = perf_cgroup_from_task(task, ctx);
786 
787 	for (css = &cgrp->css; css; css = css->parent) {
788 		cgrp = container_of(css, struct perf_cgroup, css);
789 		info = this_cpu_ptr(cgrp->info);
790 		info->timestamp = ctx->timestamp;
791 	}
792 }
793 
794 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
795 
796 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
797 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
798 
799 /*
800  * reschedule events based on the cgroup constraint of task.
801  *
802  * mode SWOUT : schedule out everything
803  * mode SWIN : schedule in based on cgroup for next
804  */
805 static void perf_cgroup_switch(struct task_struct *task, int mode)
806 {
807 	struct perf_cpu_context *cpuctx;
808 	struct list_head *list;
809 	unsigned long flags;
810 
811 	/*
812 	 * Disable interrupts and preemption to avoid this CPU's
813 	 * cgrp_cpuctx_entry to change under us.
814 	 */
815 	local_irq_save(flags);
816 
817 	list = this_cpu_ptr(&cgrp_cpuctx_list);
818 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
819 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
820 
821 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
822 		perf_pmu_disable(cpuctx->ctx.pmu);
823 
824 		if (mode & PERF_CGROUP_SWOUT) {
825 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
826 			/*
827 			 * must not be done before ctxswout due
828 			 * to event_filter_match() in event_sched_out()
829 			 */
830 			cpuctx->cgrp = NULL;
831 		}
832 
833 		if (mode & PERF_CGROUP_SWIN) {
834 			WARN_ON_ONCE(cpuctx->cgrp);
835 			/*
836 			 * set cgrp before ctxsw in to allow
837 			 * event_filter_match() to not have to pass
838 			 * task around
839 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
840 			 * because cgorup events are only per-cpu
841 			 */
842 			cpuctx->cgrp = perf_cgroup_from_task(task,
843 							     &cpuctx->ctx);
844 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
845 		}
846 		perf_pmu_enable(cpuctx->ctx.pmu);
847 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
848 	}
849 
850 	local_irq_restore(flags);
851 }
852 
853 static inline void perf_cgroup_sched_out(struct task_struct *task,
854 					 struct task_struct *next)
855 {
856 	struct perf_cgroup *cgrp1;
857 	struct perf_cgroup *cgrp2 = NULL;
858 
859 	rcu_read_lock();
860 	/*
861 	 * we come here when we know perf_cgroup_events > 0
862 	 * we do not need to pass the ctx here because we know
863 	 * we are holding the rcu lock
864 	 */
865 	cgrp1 = perf_cgroup_from_task(task, NULL);
866 	cgrp2 = perf_cgroup_from_task(next, NULL);
867 
868 	/*
869 	 * only schedule out current cgroup events if we know
870 	 * that we are switching to a different cgroup. Otherwise,
871 	 * do no touch the cgroup events.
872 	 */
873 	if (cgrp1 != cgrp2)
874 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
875 
876 	rcu_read_unlock();
877 }
878 
879 static inline void perf_cgroup_sched_in(struct task_struct *prev,
880 					struct task_struct *task)
881 {
882 	struct perf_cgroup *cgrp1;
883 	struct perf_cgroup *cgrp2 = NULL;
884 
885 	rcu_read_lock();
886 	/*
887 	 * we come here when we know perf_cgroup_events > 0
888 	 * we do not need to pass the ctx here because we know
889 	 * we are holding the rcu lock
890 	 */
891 	cgrp1 = perf_cgroup_from_task(task, NULL);
892 	cgrp2 = perf_cgroup_from_task(prev, NULL);
893 
894 	/*
895 	 * only need to schedule in cgroup events if we are changing
896 	 * cgroup during ctxsw. Cgroup events were not scheduled
897 	 * out of ctxsw out if that was not the case.
898 	 */
899 	if (cgrp1 != cgrp2)
900 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
901 
902 	rcu_read_unlock();
903 }
904 
905 static int perf_cgroup_ensure_storage(struct perf_event *event,
906 				struct cgroup_subsys_state *css)
907 {
908 	struct perf_cpu_context *cpuctx;
909 	struct perf_event **storage;
910 	int cpu, heap_size, ret = 0;
911 
912 	/*
913 	 * Allow storage to have sufficent space for an iterator for each
914 	 * possibly nested cgroup plus an iterator for events with no cgroup.
915 	 */
916 	for (heap_size = 1; css; css = css->parent)
917 		heap_size++;
918 
919 	for_each_possible_cpu(cpu) {
920 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
921 		if (heap_size <= cpuctx->heap_size)
922 			continue;
923 
924 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
925 				       GFP_KERNEL, cpu_to_node(cpu));
926 		if (!storage) {
927 			ret = -ENOMEM;
928 			break;
929 		}
930 
931 		raw_spin_lock_irq(&cpuctx->ctx.lock);
932 		if (cpuctx->heap_size < heap_size) {
933 			swap(cpuctx->heap, storage);
934 			if (storage == cpuctx->heap_default)
935 				storage = NULL;
936 			cpuctx->heap_size = heap_size;
937 		}
938 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
939 
940 		kfree(storage);
941 	}
942 
943 	return ret;
944 }
945 
946 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
947 				      struct perf_event_attr *attr,
948 				      struct perf_event *group_leader)
949 {
950 	struct perf_cgroup *cgrp;
951 	struct cgroup_subsys_state *css;
952 	struct fd f = fdget(fd);
953 	int ret = 0;
954 
955 	if (!f.file)
956 		return -EBADF;
957 
958 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
959 					 &perf_event_cgrp_subsys);
960 	if (IS_ERR(css)) {
961 		ret = PTR_ERR(css);
962 		goto out;
963 	}
964 
965 	ret = perf_cgroup_ensure_storage(event, css);
966 	if (ret)
967 		goto out;
968 
969 	cgrp = container_of(css, struct perf_cgroup, css);
970 	event->cgrp = cgrp;
971 
972 	/*
973 	 * all events in a group must monitor
974 	 * the same cgroup because a task belongs
975 	 * to only one perf cgroup at a time
976 	 */
977 	if (group_leader && group_leader->cgrp != cgrp) {
978 		perf_detach_cgroup(event);
979 		ret = -EINVAL;
980 	}
981 out:
982 	fdput(f);
983 	return ret;
984 }
985 
986 static inline void
987 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
988 {
989 	struct perf_cgroup_info *t;
990 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
991 	event->shadow_ctx_time = now - t->timestamp;
992 }
993 
994 static inline void
995 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
996 {
997 	struct perf_cpu_context *cpuctx;
998 
999 	if (!is_cgroup_event(event))
1000 		return;
1001 
1002 	/*
1003 	 * Because cgroup events are always per-cpu events,
1004 	 * @ctx == &cpuctx->ctx.
1005 	 */
1006 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1007 
1008 	/*
1009 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1010 	 * matching the event's cgroup, we must do this for every new event,
1011 	 * because if the first would mismatch, the second would not try again
1012 	 * and we would leave cpuctx->cgrp unset.
1013 	 */
1014 	if (ctx->is_active && !cpuctx->cgrp) {
1015 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1016 
1017 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1018 			cpuctx->cgrp = cgrp;
1019 	}
1020 
1021 	if (ctx->nr_cgroups++)
1022 		return;
1023 
1024 	list_add(&cpuctx->cgrp_cpuctx_entry,
1025 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1026 }
1027 
1028 static inline void
1029 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1030 {
1031 	struct perf_cpu_context *cpuctx;
1032 
1033 	if (!is_cgroup_event(event))
1034 		return;
1035 
1036 	/*
1037 	 * Because cgroup events are always per-cpu events,
1038 	 * @ctx == &cpuctx->ctx.
1039 	 */
1040 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1041 
1042 	if (--ctx->nr_cgroups)
1043 		return;
1044 
1045 	if (ctx->is_active && cpuctx->cgrp)
1046 		cpuctx->cgrp = NULL;
1047 
1048 	list_del(&cpuctx->cgrp_cpuctx_entry);
1049 }
1050 
1051 #else /* !CONFIG_CGROUP_PERF */
1052 
1053 static inline bool
1054 perf_cgroup_match(struct perf_event *event)
1055 {
1056 	return true;
1057 }
1058 
1059 static inline void perf_detach_cgroup(struct perf_event *event)
1060 {}
1061 
1062 static inline int is_cgroup_event(struct perf_event *event)
1063 {
1064 	return 0;
1065 }
1066 
1067 static inline void update_cgrp_time_from_event(struct perf_event *event)
1068 {
1069 }
1070 
1071 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1072 {
1073 }
1074 
1075 static inline void perf_cgroup_sched_out(struct task_struct *task,
1076 					 struct task_struct *next)
1077 {
1078 }
1079 
1080 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1081 					struct task_struct *task)
1082 {
1083 }
1084 
1085 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1086 				      struct perf_event_attr *attr,
1087 				      struct perf_event *group_leader)
1088 {
1089 	return -EINVAL;
1090 }
1091 
1092 static inline void
1093 perf_cgroup_set_timestamp(struct task_struct *task,
1094 			  struct perf_event_context *ctx)
1095 {
1096 }
1097 
1098 static inline void
1099 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1100 {
1101 }
1102 
1103 static inline void
1104 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1105 {
1106 }
1107 
1108 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1109 {
1110 	return 0;
1111 }
1112 
1113 static inline void
1114 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1115 {
1116 }
1117 
1118 static inline void
1119 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1120 {
1121 }
1122 #endif
1123 
1124 /*
1125  * set default to be dependent on timer tick just
1126  * like original code
1127  */
1128 #define PERF_CPU_HRTIMER (1000 / HZ)
1129 /*
1130  * function must be called with interrupts disabled
1131  */
1132 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1133 {
1134 	struct perf_cpu_context *cpuctx;
1135 	bool rotations;
1136 
1137 	lockdep_assert_irqs_disabled();
1138 
1139 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1140 	rotations = perf_rotate_context(cpuctx);
1141 
1142 	raw_spin_lock(&cpuctx->hrtimer_lock);
1143 	if (rotations)
1144 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1145 	else
1146 		cpuctx->hrtimer_active = 0;
1147 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1148 
1149 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1150 }
1151 
1152 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1153 {
1154 	struct hrtimer *timer = &cpuctx->hrtimer;
1155 	struct pmu *pmu = cpuctx->ctx.pmu;
1156 	u64 interval;
1157 
1158 	/* no multiplexing needed for SW PMU */
1159 	if (pmu->task_ctx_nr == perf_sw_context)
1160 		return;
1161 
1162 	/*
1163 	 * check default is sane, if not set then force to
1164 	 * default interval (1/tick)
1165 	 */
1166 	interval = pmu->hrtimer_interval_ms;
1167 	if (interval < 1)
1168 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1169 
1170 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1171 
1172 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1173 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1174 	timer->function = perf_mux_hrtimer_handler;
1175 }
1176 
1177 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1178 {
1179 	struct hrtimer *timer = &cpuctx->hrtimer;
1180 	struct pmu *pmu = cpuctx->ctx.pmu;
1181 	unsigned long flags;
1182 
1183 	/* not for SW PMU */
1184 	if (pmu->task_ctx_nr == perf_sw_context)
1185 		return 0;
1186 
1187 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1188 	if (!cpuctx->hrtimer_active) {
1189 		cpuctx->hrtimer_active = 1;
1190 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1191 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1192 	}
1193 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1194 
1195 	return 0;
1196 }
1197 
1198 void perf_pmu_disable(struct pmu *pmu)
1199 {
1200 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1201 	if (!(*count)++)
1202 		pmu->pmu_disable(pmu);
1203 }
1204 
1205 void perf_pmu_enable(struct pmu *pmu)
1206 {
1207 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1208 	if (!--(*count))
1209 		pmu->pmu_enable(pmu);
1210 }
1211 
1212 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1213 
1214 /*
1215  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1216  * perf_event_task_tick() are fully serialized because they're strictly cpu
1217  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1218  * disabled, while perf_event_task_tick is called from IRQ context.
1219  */
1220 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1221 {
1222 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1223 
1224 	lockdep_assert_irqs_disabled();
1225 
1226 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1227 
1228 	list_add(&ctx->active_ctx_list, head);
1229 }
1230 
1231 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1232 {
1233 	lockdep_assert_irqs_disabled();
1234 
1235 	WARN_ON(list_empty(&ctx->active_ctx_list));
1236 
1237 	list_del_init(&ctx->active_ctx_list);
1238 }
1239 
1240 static void get_ctx(struct perf_event_context *ctx)
1241 {
1242 	refcount_inc(&ctx->refcount);
1243 }
1244 
1245 static void *alloc_task_ctx_data(struct pmu *pmu)
1246 {
1247 	if (pmu->task_ctx_cache)
1248 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1249 
1250 	return NULL;
1251 }
1252 
1253 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1254 {
1255 	if (pmu->task_ctx_cache && task_ctx_data)
1256 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1257 }
1258 
1259 static void free_ctx(struct rcu_head *head)
1260 {
1261 	struct perf_event_context *ctx;
1262 
1263 	ctx = container_of(head, struct perf_event_context, rcu_head);
1264 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1265 	kfree(ctx);
1266 }
1267 
1268 static void put_ctx(struct perf_event_context *ctx)
1269 {
1270 	if (refcount_dec_and_test(&ctx->refcount)) {
1271 		if (ctx->parent_ctx)
1272 			put_ctx(ctx->parent_ctx);
1273 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1274 			put_task_struct(ctx->task);
1275 		call_rcu(&ctx->rcu_head, free_ctx);
1276 	}
1277 }
1278 
1279 /*
1280  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1281  * perf_pmu_migrate_context() we need some magic.
1282  *
1283  * Those places that change perf_event::ctx will hold both
1284  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1285  *
1286  * Lock ordering is by mutex address. There are two other sites where
1287  * perf_event_context::mutex nests and those are:
1288  *
1289  *  - perf_event_exit_task_context()	[ child , 0 ]
1290  *      perf_event_exit_event()
1291  *        put_event()			[ parent, 1 ]
1292  *
1293  *  - perf_event_init_context()		[ parent, 0 ]
1294  *      inherit_task_group()
1295  *        inherit_group()
1296  *          inherit_event()
1297  *            perf_event_alloc()
1298  *              perf_init_event()
1299  *                perf_try_init_event()	[ child , 1 ]
1300  *
1301  * While it appears there is an obvious deadlock here -- the parent and child
1302  * nesting levels are inverted between the two. This is in fact safe because
1303  * life-time rules separate them. That is an exiting task cannot fork, and a
1304  * spawning task cannot (yet) exit.
1305  *
1306  * But remember that that these are parent<->child context relations, and
1307  * migration does not affect children, therefore these two orderings should not
1308  * interact.
1309  *
1310  * The change in perf_event::ctx does not affect children (as claimed above)
1311  * because the sys_perf_event_open() case will install a new event and break
1312  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1313  * concerned with cpuctx and that doesn't have children.
1314  *
1315  * The places that change perf_event::ctx will issue:
1316  *
1317  *   perf_remove_from_context();
1318  *   synchronize_rcu();
1319  *   perf_install_in_context();
1320  *
1321  * to affect the change. The remove_from_context() + synchronize_rcu() should
1322  * quiesce the event, after which we can install it in the new location. This
1323  * means that only external vectors (perf_fops, prctl) can perturb the event
1324  * while in transit. Therefore all such accessors should also acquire
1325  * perf_event_context::mutex to serialize against this.
1326  *
1327  * However; because event->ctx can change while we're waiting to acquire
1328  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1329  * function.
1330  *
1331  * Lock order:
1332  *    exec_update_lock
1333  *	task_struct::perf_event_mutex
1334  *	  perf_event_context::mutex
1335  *	    perf_event::child_mutex;
1336  *	      perf_event_context::lock
1337  *	    perf_event::mmap_mutex
1338  *	    mmap_lock
1339  *	      perf_addr_filters_head::lock
1340  *
1341  *    cpu_hotplug_lock
1342  *      pmus_lock
1343  *	  cpuctx->mutex / perf_event_context::mutex
1344  */
1345 static struct perf_event_context *
1346 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1347 {
1348 	struct perf_event_context *ctx;
1349 
1350 again:
1351 	rcu_read_lock();
1352 	ctx = READ_ONCE(event->ctx);
1353 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1354 		rcu_read_unlock();
1355 		goto again;
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	mutex_lock_nested(&ctx->mutex, nesting);
1360 	if (event->ctx != ctx) {
1361 		mutex_unlock(&ctx->mutex);
1362 		put_ctx(ctx);
1363 		goto again;
1364 	}
1365 
1366 	return ctx;
1367 }
1368 
1369 static inline struct perf_event_context *
1370 perf_event_ctx_lock(struct perf_event *event)
1371 {
1372 	return perf_event_ctx_lock_nested(event, 0);
1373 }
1374 
1375 static void perf_event_ctx_unlock(struct perf_event *event,
1376 				  struct perf_event_context *ctx)
1377 {
1378 	mutex_unlock(&ctx->mutex);
1379 	put_ctx(ctx);
1380 }
1381 
1382 /*
1383  * This must be done under the ctx->lock, such as to serialize against
1384  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1385  * calling scheduler related locks and ctx->lock nests inside those.
1386  */
1387 static __must_check struct perf_event_context *
1388 unclone_ctx(struct perf_event_context *ctx)
1389 {
1390 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1391 
1392 	lockdep_assert_held(&ctx->lock);
1393 
1394 	if (parent_ctx)
1395 		ctx->parent_ctx = NULL;
1396 	ctx->generation++;
1397 
1398 	return parent_ctx;
1399 }
1400 
1401 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1402 				enum pid_type type)
1403 {
1404 	u32 nr;
1405 	/*
1406 	 * only top level events have the pid namespace they were created in
1407 	 */
1408 	if (event->parent)
1409 		event = event->parent;
1410 
1411 	nr = __task_pid_nr_ns(p, type, event->ns);
1412 	/* avoid -1 if it is idle thread or runs in another ns */
1413 	if (!nr && !pid_alive(p))
1414 		nr = -1;
1415 	return nr;
1416 }
1417 
1418 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1419 {
1420 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1421 }
1422 
1423 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1424 {
1425 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1426 }
1427 
1428 /*
1429  * If we inherit events we want to return the parent event id
1430  * to userspace.
1431  */
1432 static u64 primary_event_id(struct perf_event *event)
1433 {
1434 	u64 id = event->id;
1435 
1436 	if (event->parent)
1437 		id = event->parent->id;
1438 
1439 	return id;
1440 }
1441 
1442 /*
1443  * Get the perf_event_context for a task and lock it.
1444  *
1445  * This has to cope with with the fact that until it is locked,
1446  * the context could get moved to another task.
1447  */
1448 static struct perf_event_context *
1449 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1450 {
1451 	struct perf_event_context *ctx;
1452 
1453 retry:
1454 	/*
1455 	 * One of the few rules of preemptible RCU is that one cannot do
1456 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1457 	 * part of the read side critical section was irqs-enabled -- see
1458 	 * rcu_read_unlock_special().
1459 	 *
1460 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1461 	 * side critical section has interrupts disabled.
1462 	 */
1463 	local_irq_save(*flags);
1464 	rcu_read_lock();
1465 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1466 	if (ctx) {
1467 		/*
1468 		 * If this context is a clone of another, it might
1469 		 * get swapped for another underneath us by
1470 		 * perf_event_task_sched_out, though the
1471 		 * rcu_read_lock() protects us from any context
1472 		 * getting freed.  Lock the context and check if it
1473 		 * got swapped before we could get the lock, and retry
1474 		 * if so.  If we locked the right context, then it
1475 		 * can't get swapped on us any more.
1476 		 */
1477 		raw_spin_lock(&ctx->lock);
1478 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1479 			raw_spin_unlock(&ctx->lock);
1480 			rcu_read_unlock();
1481 			local_irq_restore(*flags);
1482 			goto retry;
1483 		}
1484 
1485 		if (ctx->task == TASK_TOMBSTONE ||
1486 		    !refcount_inc_not_zero(&ctx->refcount)) {
1487 			raw_spin_unlock(&ctx->lock);
1488 			ctx = NULL;
1489 		} else {
1490 			WARN_ON_ONCE(ctx->task != task);
1491 		}
1492 	}
1493 	rcu_read_unlock();
1494 	if (!ctx)
1495 		local_irq_restore(*flags);
1496 	return ctx;
1497 }
1498 
1499 /*
1500  * Get the context for a task and increment its pin_count so it
1501  * can't get swapped to another task.  This also increments its
1502  * reference count so that the context can't get freed.
1503  */
1504 static struct perf_event_context *
1505 perf_pin_task_context(struct task_struct *task, int ctxn)
1506 {
1507 	struct perf_event_context *ctx;
1508 	unsigned long flags;
1509 
1510 	ctx = perf_lock_task_context(task, ctxn, &flags);
1511 	if (ctx) {
1512 		++ctx->pin_count;
1513 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1514 	}
1515 	return ctx;
1516 }
1517 
1518 static void perf_unpin_context(struct perf_event_context *ctx)
1519 {
1520 	unsigned long flags;
1521 
1522 	raw_spin_lock_irqsave(&ctx->lock, flags);
1523 	--ctx->pin_count;
1524 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1525 }
1526 
1527 /*
1528  * Update the record of the current time in a context.
1529  */
1530 static void update_context_time(struct perf_event_context *ctx)
1531 {
1532 	u64 now = perf_clock();
1533 
1534 	ctx->time += now - ctx->timestamp;
1535 	ctx->timestamp = now;
1536 }
1537 
1538 static u64 perf_event_time(struct perf_event *event)
1539 {
1540 	struct perf_event_context *ctx = event->ctx;
1541 
1542 	if (is_cgroup_event(event))
1543 		return perf_cgroup_event_time(event);
1544 
1545 	return ctx ? ctx->time : 0;
1546 }
1547 
1548 static enum event_type_t get_event_type(struct perf_event *event)
1549 {
1550 	struct perf_event_context *ctx = event->ctx;
1551 	enum event_type_t event_type;
1552 
1553 	lockdep_assert_held(&ctx->lock);
1554 
1555 	/*
1556 	 * It's 'group type', really, because if our group leader is
1557 	 * pinned, so are we.
1558 	 */
1559 	if (event->group_leader != event)
1560 		event = event->group_leader;
1561 
1562 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1563 	if (!ctx->task)
1564 		event_type |= EVENT_CPU;
1565 
1566 	return event_type;
1567 }
1568 
1569 /*
1570  * Helper function to initialize event group nodes.
1571  */
1572 static void init_event_group(struct perf_event *event)
1573 {
1574 	RB_CLEAR_NODE(&event->group_node);
1575 	event->group_index = 0;
1576 }
1577 
1578 /*
1579  * Extract pinned or flexible groups from the context
1580  * based on event attrs bits.
1581  */
1582 static struct perf_event_groups *
1583 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1584 {
1585 	if (event->attr.pinned)
1586 		return &ctx->pinned_groups;
1587 	else
1588 		return &ctx->flexible_groups;
1589 }
1590 
1591 /*
1592  * Helper function to initializes perf_event_group trees.
1593  */
1594 static void perf_event_groups_init(struct perf_event_groups *groups)
1595 {
1596 	groups->tree = RB_ROOT;
1597 	groups->index = 0;
1598 }
1599 
1600 /*
1601  * Compare function for event groups;
1602  *
1603  * Implements complex key that first sorts by CPU and then by virtual index
1604  * which provides ordering when rotating groups for the same CPU.
1605  */
1606 static bool
1607 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1608 {
1609 	if (left->cpu < right->cpu)
1610 		return true;
1611 	if (left->cpu > right->cpu)
1612 		return false;
1613 
1614 #ifdef CONFIG_CGROUP_PERF
1615 	if (left->cgrp != right->cgrp) {
1616 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1617 			/*
1618 			 * Left has no cgroup but right does, no cgroups come
1619 			 * first.
1620 			 */
1621 			return true;
1622 		}
1623 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1624 			/*
1625 			 * Right has no cgroup but left does, no cgroups come
1626 			 * first.
1627 			 */
1628 			return false;
1629 		}
1630 		/* Two dissimilar cgroups, order by id. */
1631 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1632 			return true;
1633 
1634 		return false;
1635 	}
1636 #endif
1637 
1638 	if (left->group_index < right->group_index)
1639 		return true;
1640 	if (left->group_index > right->group_index)
1641 		return false;
1642 
1643 	return false;
1644 }
1645 
1646 /*
1647  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1648  * key (see perf_event_groups_less). This places it last inside the CPU
1649  * subtree.
1650  */
1651 static void
1652 perf_event_groups_insert(struct perf_event_groups *groups,
1653 			 struct perf_event *event)
1654 {
1655 	struct perf_event *node_event;
1656 	struct rb_node *parent;
1657 	struct rb_node **node;
1658 
1659 	event->group_index = ++groups->index;
1660 
1661 	node = &groups->tree.rb_node;
1662 	parent = *node;
1663 
1664 	while (*node) {
1665 		parent = *node;
1666 		node_event = container_of(*node, struct perf_event, group_node);
1667 
1668 		if (perf_event_groups_less(event, node_event))
1669 			node = &parent->rb_left;
1670 		else
1671 			node = &parent->rb_right;
1672 	}
1673 
1674 	rb_link_node(&event->group_node, parent, node);
1675 	rb_insert_color(&event->group_node, &groups->tree);
1676 }
1677 
1678 /*
1679  * Helper function to insert event into the pinned or flexible groups.
1680  */
1681 static void
1682 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1683 {
1684 	struct perf_event_groups *groups;
1685 
1686 	groups = get_event_groups(event, ctx);
1687 	perf_event_groups_insert(groups, event);
1688 }
1689 
1690 /*
1691  * Delete a group from a tree.
1692  */
1693 static void
1694 perf_event_groups_delete(struct perf_event_groups *groups,
1695 			 struct perf_event *event)
1696 {
1697 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1698 		     RB_EMPTY_ROOT(&groups->tree));
1699 
1700 	rb_erase(&event->group_node, &groups->tree);
1701 	init_event_group(event);
1702 }
1703 
1704 /*
1705  * Helper function to delete event from its groups.
1706  */
1707 static void
1708 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710 	struct perf_event_groups *groups;
1711 
1712 	groups = get_event_groups(event, ctx);
1713 	perf_event_groups_delete(groups, event);
1714 }
1715 
1716 /*
1717  * Get the leftmost event in the cpu/cgroup subtree.
1718  */
1719 static struct perf_event *
1720 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1721 			struct cgroup *cgrp)
1722 {
1723 	struct perf_event *node_event = NULL, *match = NULL;
1724 	struct rb_node *node = groups->tree.rb_node;
1725 #ifdef CONFIG_CGROUP_PERF
1726 	u64 node_cgrp_id, cgrp_id = 0;
1727 
1728 	if (cgrp)
1729 		cgrp_id = cgrp->kn->id;
1730 #endif
1731 
1732 	while (node) {
1733 		node_event = container_of(node, struct perf_event, group_node);
1734 
1735 		if (cpu < node_event->cpu) {
1736 			node = node->rb_left;
1737 			continue;
1738 		}
1739 		if (cpu > node_event->cpu) {
1740 			node = node->rb_right;
1741 			continue;
1742 		}
1743 #ifdef CONFIG_CGROUP_PERF
1744 		node_cgrp_id = 0;
1745 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1746 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1747 
1748 		if (cgrp_id < node_cgrp_id) {
1749 			node = node->rb_left;
1750 			continue;
1751 		}
1752 		if (cgrp_id > node_cgrp_id) {
1753 			node = node->rb_right;
1754 			continue;
1755 		}
1756 #endif
1757 		match = node_event;
1758 		node = node->rb_left;
1759 	}
1760 
1761 	return match;
1762 }
1763 
1764 /*
1765  * Like rb_entry_next_safe() for the @cpu subtree.
1766  */
1767 static struct perf_event *
1768 perf_event_groups_next(struct perf_event *event)
1769 {
1770 	struct perf_event *next;
1771 #ifdef CONFIG_CGROUP_PERF
1772 	u64 curr_cgrp_id = 0;
1773 	u64 next_cgrp_id = 0;
1774 #endif
1775 
1776 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1777 	if (next == NULL || next->cpu != event->cpu)
1778 		return NULL;
1779 
1780 #ifdef CONFIG_CGROUP_PERF
1781 	if (event->cgrp && event->cgrp->css.cgroup)
1782 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1783 
1784 	if (next->cgrp && next->cgrp->css.cgroup)
1785 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1786 
1787 	if (curr_cgrp_id != next_cgrp_id)
1788 		return NULL;
1789 #endif
1790 	return next;
1791 }
1792 
1793 /*
1794  * Iterate through the whole groups tree.
1795  */
1796 #define perf_event_groups_for_each(event, groups)			\
1797 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1798 				typeof(*event), group_node); event;	\
1799 		event = rb_entry_safe(rb_next(&event->group_node),	\
1800 				typeof(*event), group_node))
1801 
1802 /*
1803  * Add an event from the lists for its context.
1804  * Must be called with ctx->mutex and ctx->lock held.
1805  */
1806 static void
1807 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1808 {
1809 	lockdep_assert_held(&ctx->lock);
1810 
1811 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1812 	event->attach_state |= PERF_ATTACH_CONTEXT;
1813 
1814 	event->tstamp = perf_event_time(event);
1815 
1816 	/*
1817 	 * If we're a stand alone event or group leader, we go to the context
1818 	 * list, group events are kept attached to the group so that
1819 	 * perf_group_detach can, at all times, locate all siblings.
1820 	 */
1821 	if (event->group_leader == event) {
1822 		event->group_caps = event->event_caps;
1823 		add_event_to_groups(event, ctx);
1824 	}
1825 
1826 	list_add_rcu(&event->event_entry, &ctx->event_list);
1827 	ctx->nr_events++;
1828 	if (event->attr.inherit_stat)
1829 		ctx->nr_stat++;
1830 
1831 	if (event->state > PERF_EVENT_STATE_OFF)
1832 		perf_cgroup_event_enable(event, ctx);
1833 
1834 	ctx->generation++;
1835 }
1836 
1837 /*
1838  * Initialize event state based on the perf_event_attr::disabled.
1839  */
1840 static inline void perf_event__state_init(struct perf_event *event)
1841 {
1842 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1843 					      PERF_EVENT_STATE_INACTIVE;
1844 }
1845 
1846 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1847 {
1848 	int entry = sizeof(u64); /* value */
1849 	int size = 0;
1850 	int nr = 1;
1851 
1852 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1853 		size += sizeof(u64);
1854 
1855 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1856 		size += sizeof(u64);
1857 
1858 	if (event->attr.read_format & PERF_FORMAT_ID)
1859 		entry += sizeof(u64);
1860 
1861 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1862 		nr += nr_siblings;
1863 		size += sizeof(u64);
1864 	}
1865 
1866 	size += entry * nr;
1867 	event->read_size = size;
1868 }
1869 
1870 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1871 {
1872 	struct perf_sample_data *data;
1873 	u16 size = 0;
1874 
1875 	if (sample_type & PERF_SAMPLE_IP)
1876 		size += sizeof(data->ip);
1877 
1878 	if (sample_type & PERF_SAMPLE_ADDR)
1879 		size += sizeof(data->addr);
1880 
1881 	if (sample_type & PERF_SAMPLE_PERIOD)
1882 		size += sizeof(data->period);
1883 
1884 	if (sample_type & PERF_SAMPLE_WEIGHT)
1885 		size += sizeof(data->weight);
1886 
1887 	if (sample_type & PERF_SAMPLE_READ)
1888 		size += event->read_size;
1889 
1890 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1891 		size += sizeof(data->data_src.val);
1892 
1893 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1894 		size += sizeof(data->txn);
1895 
1896 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1897 		size += sizeof(data->phys_addr);
1898 
1899 	if (sample_type & PERF_SAMPLE_CGROUP)
1900 		size += sizeof(data->cgroup);
1901 
1902 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1903 		size += sizeof(data->data_page_size);
1904 
1905 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1906 		size += sizeof(data->code_page_size);
1907 
1908 	event->header_size = size;
1909 }
1910 
1911 /*
1912  * Called at perf_event creation and when events are attached/detached from a
1913  * group.
1914  */
1915 static void perf_event__header_size(struct perf_event *event)
1916 {
1917 	__perf_event_read_size(event,
1918 			       event->group_leader->nr_siblings);
1919 	__perf_event_header_size(event, event->attr.sample_type);
1920 }
1921 
1922 static void perf_event__id_header_size(struct perf_event *event)
1923 {
1924 	struct perf_sample_data *data;
1925 	u64 sample_type = event->attr.sample_type;
1926 	u16 size = 0;
1927 
1928 	if (sample_type & PERF_SAMPLE_TID)
1929 		size += sizeof(data->tid_entry);
1930 
1931 	if (sample_type & PERF_SAMPLE_TIME)
1932 		size += sizeof(data->time);
1933 
1934 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1935 		size += sizeof(data->id);
1936 
1937 	if (sample_type & PERF_SAMPLE_ID)
1938 		size += sizeof(data->id);
1939 
1940 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1941 		size += sizeof(data->stream_id);
1942 
1943 	if (sample_type & PERF_SAMPLE_CPU)
1944 		size += sizeof(data->cpu_entry);
1945 
1946 	event->id_header_size = size;
1947 }
1948 
1949 static bool perf_event_validate_size(struct perf_event *event)
1950 {
1951 	/*
1952 	 * The values computed here will be over-written when we actually
1953 	 * attach the event.
1954 	 */
1955 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1956 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1957 	perf_event__id_header_size(event);
1958 
1959 	/*
1960 	 * Sum the lot; should not exceed the 64k limit we have on records.
1961 	 * Conservative limit to allow for callchains and other variable fields.
1962 	 */
1963 	if (event->read_size + event->header_size +
1964 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1965 		return false;
1966 
1967 	return true;
1968 }
1969 
1970 static void perf_group_attach(struct perf_event *event)
1971 {
1972 	struct perf_event *group_leader = event->group_leader, *pos;
1973 
1974 	lockdep_assert_held(&event->ctx->lock);
1975 
1976 	/*
1977 	 * We can have double attach due to group movement in perf_event_open.
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 
1994 	perf_event__header_size(group_leader);
1995 
1996 	for_each_sibling_event(pos, group_leader)
1997 		perf_event__header_size(pos);
1998 }
1999 
2000 /*
2001  * Remove an event from the lists for its context.
2002  * Must be called with ctx->mutex and ctx->lock held.
2003  */
2004 static void
2005 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2006 {
2007 	WARN_ON_ONCE(event->ctx != ctx);
2008 	lockdep_assert_held(&ctx->lock);
2009 
2010 	/*
2011 	 * We can have double detach due to exit/hot-unplug + close.
2012 	 */
2013 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2014 		return;
2015 
2016 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2017 
2018 	ctx->nr_events--;
2019 	if (event->attr.inherit_stat)
2020 		ctx->nr_stat--;
2021 
2022 	list_del_rcu(&event->event_entry);
2023 
2024 	if (event->group_leader == event)
2025 		del_event_from_groups(event, ctx);
2026 
2027 	/*
2028 	 * If event was in error state, then keep it
2029 	 * that way, otherwise bogus counts will be
2030 	 * returned on read(). The only way to get out
2031 	 * of error state is by explicit re-enabling
2032 	 * of the event
2033 	 */
2034 	if (event->state > PERF_EVENT_STATE_OFF) {
2035 		perf_cgroup_event_disable(event, ctx);
2036 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2037 	}
2038 
2039 	ctx->generation++;
2040 }
2041 
2042 static int
2043 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2044 {
2045 	if (!has_aux(aux_event))
2046 		return 0;
2047 
2048 	if (!event->pmu->aux_output_match)
2049 		return 0;
2050 
2051 	return event->pmu->aux_output_match(aux_event);
2052 }
2053 
2054 static void put_event(struct perf_event *event);
2055 static void event_sched_out(struct perf_event *event,
2056 			    struct perf_cpu_context *cpuctx,
2057 			    struct perf_event_context *ctx);
2058 
2059 static void perf_put_aux_event(struct perf_event *event)
2060 {
2061 	struct perf_event_context *ctx = event->ctx;
2062 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2063 	struct perf_event *iter;
2064 
2065 	/*
2066 	 * If event uses aux_event tear down the link
2067 	 */
2068 	if (event->aux_event) {
2069 		iter = event->aux_event;
2070 		event->aux_event = NULL;
2071 		put_event(iter);
2072 		return;
2073 	}
2074 
2075 	/*
2076 	 * If the event is an aux_event, tear down all links to
2077 	 * it from other events.
2078 	 */
2079 	for_each_sibling_event(iter, event->group_leader) {
2080 		if (iter->aux_event != event)
2081 			continue;
2082 
2083 		iter->aux_event = NULL;
2084 		put_event(event);
2085 
2086 		/*
2087 		 * If it's ACTIVE, schedule it out and put it into ERROR
2088 		 * state so that we don't try to schedule it again. Note
2089 		 * that perf_event_enable() will clear the ERROR status.
2090 		 */
2091 		event_sched_out(iter, cpuctx, ctx);
2092 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2093 	}
2094 }
2095 
2096 static bool perf_need_aux_event(struct perf_event *event)
2097 {
2098 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2099 }
2100 
2101 static int perf_get_aux_event(struct perf_event *event,
2102 			      struct perf_event *group_leader)
2103 {
2104 	/*
2105 	 * Our group leader must be an aux event if we want to be
2106 	 * an aux_output. This way, the aux event will precede its
2107 	 * aux_output events in the group, and therefore will always
2108 	 * schedule first.
2109 	 */
2110 	if (!group_leader)
2111 		return 0;
2112 
2113 	/*
2114 	 * aux_output and aux_sample_size are mutually exclusive.
2115 	 */
2116 	if (event->attr.aux_output && event->attr.aux_sample_size)
2117 		return 0;
2118 
2119 	if (event->attr.aux_output &&
2120 	    !perf_aux_output_match(event, group_leader))
2121 		return 0;
2122 
2123 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2124 		return 0;
2125 
2126 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2127 		return 0;
2128 
2129 	/*
2130 	 * Link aux_outputs to their aux event; this is undone in
2131 	 * perf_group_detach() by perf_put_aux_event(). When the
2132 	 * group in torn down, the aux_output events loose their
2133 	 * link to the aux_event and can't schedule any more.
2134 	 */
2135 	event->aux_event = group_leader;
2136 
2137 	return 1;
2138 }
2139 
2140 static inline struct list_head *get_event_list(struct perf_event *event)
2141 {
2142 	struct perf_event_context *ctx = event->ctx;
2143 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2144 }
2145 
2146 /*
2147  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2148  * cannot exist on their own, schedule them out and move them into the ERROR
2149  * state. Also see _perf_event_enable(), it will not be able to recover
2150  * this ERROR state.
2151  */
2152 static inline void perf_remove_sibling_event(struct perf_event *event)
2153 {
2154 	struct perf_event_context *ctx = event->ctx;
2155 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2156 
2157 	event_sched_out(event, cpuctx, ctx);
2158 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2159 }
2160 
2161 static void perf_group_detach(struct perf_event *event)
2162 {
2163 	struct perf_event *leader = event->group_leader;
2164 	struct perf_event *sibling, *tmp;
2165 	struct perf_event_context *ctx = event->ctx;
2166 
2167 	lockdep_assert_held(&ctx->lock);
2168 
2169 	/*
2170 	 * We can have double detach due to exit/hot-unplug + close.
2171 	 */
2172 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2173 		return;
2174 
2175 	event->attach_state &= ~PERF_ATTACH_GROUP;
2176 
2177 	perf_put_aux_event(event);
2178 
2179 	/*
2180 	 * If this is a sibling, remove it from its group.
2181 	 */
2182 	if (leader != event) {
2183 		list_del_init(&event->sibling_list);
2184 		event->group_leader->nr_siblings--;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (!RB_EMPTY_NODE(&event->group_node)) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static bool is_orphaned_event(struct perf_event *event)
2222 {
2223 	return event->state == PERF_EVENT_STATE_DEAD;
2224 }
2225 
2226 static inline int __pmu_filter_match(struct perf_event *event)
2227 {
2228 	struct pmu *pmu = event->pmu;
2229 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2230 }
2231 
2232 /*
2233  * Check whether we should attempt to schedule an event group based on
2234  * PMU-specific filtering. An event group can consist of HW and SW events,
2235  * potentially with a SW leader, so we must check all the filters, to
2236  * determine whether a group is schedulable:
2237  */
2238 static inline int pmu_filter_match(struct perf_event *event)
2239 {
2240 	struct perf_event *sibling;
2241 
2242 	if (!__pmu_filter_match(event))
2243 		return 0;
2244 
2245 	for_each_sibling_event(sibling, event) {
2246 		if (!__pmu_filter_match(sibling))
2247 			return 0;
2248 	}
2249 
2250 	return 1;
2251 }
2252 
2253 static inline int
2254 event_filter_match(struct perf_event *event)
2255 {
2256 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2257 	       perf_cgroup_match(event) && pmu_filter_match(event);
2258 }
2259 
2260 static void
2261 event_sched_out(struct perf_event *event,
2262 		  struct perf_cpu_context *cpuctx,
2263 		  struct perf_event_context *ctx)
2264 {
2265 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2266 
2267 	WARN_ON_ONCE(event->ctx != ctx);
2268 	lockdep_assert_held(&ctx->lock);
2269 
2270 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 		return;
2272 
2273 	/*
2274 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2275 	 * we can schedule events _OUT_ individually through things like
2276 	 * __perf_remove_from_context().
2277 	 */
2278 	list_del_init(&event->active_list);
2279 
2280 	perf_pmu_disable(event->pmu);
2281 
2282 	event->pmu->del(event, 0);
2283 	event->oncpu = -1;
2284 
2285 	if (READ_ONCE(event->pending_disable) >= 0) {
2286 		WRITE_ONCE(event->pending_disable, -1);
2287 		perf_cgroup_event_disable(event, ctx);
2288 		state = PERF_EVENT_STATE_OFF;
2289 	}
2290 	perf_event_set_state(event, state);
2291 
2292 	if (!is_software_event(event))
2293 		cpuctx->active_oncpu--;
2294 	if (!--ctx->nr_active)
2295 		perf_event_ctx_deactivate(ctx);
2296 	if (event->attr.freq && event->attr.sample_freq)
2297 		ctx->nr_freq--;
2298 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2299 		cpuctx->exclusive = 0;
2300 
2301 	perf_pmu_enable(event->pmu);
2302 }
2303 
2304 static void
2305 group_sched_out(struct perf_event *group_event,
2306 		struct perf_cpu_context *cpuctx,
2307 		struct perf_event_context *ctx)
2308 {
2309 	struct perf_event *event;
2310 
2311 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2312 		return;
2313 
2314 	perf_pmu_disable(ctx->pmu);
2315 
2316 	event_sched_out(group_event, cpuctx, ctx);
2317 
2318 	/*
2319 	 * Schedule out siblings (if any):
2320 	 */
2321 	for_each_sibling_event(event, group_event)
2322 		event_sched_out(event, cpuctx, ctx);
2323 
2324 	perf_pmu_enable(ctx->pmu);
2325 }
2326 
2327 #define DETACH_GROUP	0x01UL
2328 
2329 /*
2330  * Cross CPU call to remove a performance event
2331  *
2332  * We disable the event on the hardware level first. After that we
2333  * remove it from the context list.
2334  */
2335 static void
2336 __perf_remove_from_context(struct perf_event *event,
2337 			   struct perf_cpu_context *cpuctx,
2338 			   struct perf_event_context *ctx,
2339 			   void *info)
2340 {
2341 	unsigned long flags = (unsigned long)info;
2342 
2343 	if (ctx->is_active & EVENT_TIME) {
2344 		update_context_time(ctx);
2345 		update_cgrp_time_from_cpuctx(cpuctx);
2346 	}
2347 
2348 	event_sched_out(event, cpuctx, ctx);
2349 	if (flags & DETACH_GROUP)
2350 		perf_group_detach(event);
2351 	list_del_event(event, ctx);
2352 
2353 	if (!ctx->nr_events && ctx->is_active) {
2354 		ctx->is_active = 0;
2355 		ctx->rotate_necessary = 0;
2356 		if (ctx->task) {
2357 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2358 			cpuctx->task_ctx = NULL;
2359 		}
2360 	}
2361 }
2362 
2363 /*
2364  * Remove the event from a task's (or a CPU's) list of events.
2365  *
2366  * If event->ctx is a cloned context, callers must make sure that
2367  * every task struct that event->ctx->task could possibly point to
2368  * remains valid.  This is OK when called from perf_release since
2369  * that only calls us on the top-level context, which can't be a clone.
2370  * When called from perf_event_exit_task, it's OK because the
2371  * context has been detached from its task.
2372  */
2373 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2374 {
2375 	struct perf_event_context *ctx = event->ctx;
2376 
2377 	lockdep_assert_held(&ctx->mutex);
2378 
2379 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2380 
2381 	/*
2382 	 * The above event_function_call() can NO-OP when it hits
2383 	 * TASK_TOMBSTONE. In that case we must already have been detached
2384 	 * from the context (by perf_event_exit_event()) but the grouping
2385 	 * might still be in-tact.
2386 	 */
2387 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2388 	if ((flags & DETACH_GROUP) &&
2389 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2390 		/*
2391 		 * Since in that case we cannot possibly be scheduled, simply
2392 		 * detach now.
2393 		 */
2394 		raw_spin_lock_irq(&ctx->lock);
2395 		perf_group_detach(event);
2396 		raw_spin_unlock_irq(&ctx->lock);
2397 	}
2398 }
2399 
2400 /*
2401  * Cross CPU call to disable a performance event
2402  */
2403 static void __perf_event_disable(struct perf_event *event,
2404 				 struct perf_cpu_context *cpuctx,
2405 				 struct perf_event_context *ctx,
2406 				 void *info)
2407 {
2408 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2409 		return;
2410 
2411 	if (ctx->is_active & EVENT_TIME) {
2412 		update_context_time(ctx);
2413 		update_cgrp_time_from_event(event);
2414 	}
2415 
2416 	if (event == event->group_leader)
2417 		group_sched_out(event, cpuctx, ctx);
2418 	else
2419 		event_sched_out(event, cpuctx, ctx);
2420 
2421 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2422 	perf_cgroup_event_disable(event, ctx);
2423 }
2424 
2425 /*
2426  * Disable an event.
2427  *
2428  * If event->ctx is a cloned context, callers must make sure that
2429  * every task struct that event->ctx->task could possibly point to
2430  * remains valid.  This condition is satisfied when called through
2431  * perf_event_for_each_child or perf_event_for_each because they
2432  * hold the top-level event's child_mutex, so any descendant that
2433  * goes to exit will block in perf_event_exit_event().
2434  *
2435  * When called from perf_pending_event it's OK because event->ctx
2436  * is the current context on this CPU and preemption is disabled,
2437  * hence we can't get into perf_event_task_sched_out for this context.
2438  */
2439 static void _perf_event_disable(struct perf_event *event)
2440 {
2441 	struct perf_event_context *ctx = event->ctx;
2442 
2443 	raw_spin_lock_irq(&ctx->lock);
2444 	if (event->state <= PERF_EVENT_STATE_OFF) {
2445 		raw_spin_unlock_irq(&ctx->lock);
2446 		return;
2447 	}
2448 	raw_spin_unlock_irq(&ctx->lock);
2449 
2450 	event_function_call(event, __perf_event_disable, NULL);
2451 }
2452 
2453 void perf_event_disable_local(struct perf_event *event)
2454 {
2455 	event_function_local(event, __perf_event_disable, NULL);
2456 }
2457 
2458 /*
2459  * Strictly speaking kernel users cannot create groups and therefore this
2460  * interface does not need the perf_event_ctx_lock() magic.
2461  */
2462 void perf_event_disable(struct perf_event *event)
2463 {
2464 	struct perf_event_context *ctx;
2465 
2466 	ctx = perf_event_ctx_lock(event);
2467 	_perf_event_disable(event);
2468 	perf_event_ctx_unlock(event, ctx);
2469 }
2470 EXPORT_SYMBOL_GPL(perf_event_disable);
2471 
2472 void perf_event_disable_inatomic(struct perf_event *event)
2473 {
2474 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2475 	/* can fail, see perf_pending_event_disable() */
2476 	irq_work_queue(&event->pending);
2477 }
2478 
2479 static void perf_set_shadow_time(struct perf_event *event,
2480 				 struct perf_event_context *ctx)
2481 {
2482 	/*
2483 	 * use the correct time source for the time snapshot
2484 	 *
2485 	 * We could get by without this by leveraging the
2486 	 * fact that to get to this function, the caller
2487 	 * has most likely already called update_context_time()
2488 	 * and update_cgrp_time_xx() and thus both timestamp
2489 	 * are identical (or very close). Given that tstamp is,
2490 	 * already adjusted for cgroup, we could say that:
2491 	 *    tstamp - ctx->timestamp
2492 	 * is equivalent to
2493 	 *    tstamp - cgrp->timestamp.
2494 	 *
2495 	 * Then, in perf_output_read(), the calculation would
2496 	 * work with no changes because:
2497 	 * - event is guaranteed scheduled in
2498 	 * - no scheduled out in between
2499 	 * - thus the timestamp would be the same
2500 	 *
2501 	 * But this is a bit hairy.
2502 	 *
2503 	 * So instead, we have an explicit cgroup call to remain
2504 	 * within the time time source all along. We believe it
2505 	 * is cleaner and simpler to understand.
2506 	 */
2507 	if (is_cgroup_event(event))
2508 		perf_cgroup_set_shadow_time(event, event->tstamp);
2509 	else
2510 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2511 }
2512 
2513 #define MAX_INTERRUPTS (~0ULL)
2514 
2515 static void perf_log_throttle(struct perf_event *event, int enable);
2516 static void perf_log_itrace_start(struct perf_event *event);
2517 
2518 static int
2519 event_sched_in(struct perf_event *event,
2520 		 struct perf_cpu_context *cpuctx,
2521 		 struct perf_event_context *ctx)
2522 {
2523 	int ret = 0;
2524 
2525 	WARN_ON_ONCE(event->ctx != ctx);
2526 
2527 	lockdep_assert_held(&ctx->lock);
2528 
2529 	if (event->state <= PERF_EVENT_STATE_OFF)
2530 		return 0;
2531 
2532 	WRITE_ONCE(event->oncpu, smp_processor_id());
2533 	/*
2534 	 * Order event::oncpu write to happen before the ACTIVE state is
2535 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2536 	 * ->oncpu if it sees ACTIVE.
2537 	 */
2538 	smp_wmb();
2539 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2540 
2541 	/*
2542 	 * Unthrottle events, since we scheduled we might have missed several
2543 	 * ticks already, also for a heavily scheduling task there is little
2544 	 * guarantee it'll get a tick in a timely manner.
2545 	 */
2546 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2547 		perf_log_throttle(event, 1);
2548 		event->hw.interrupts = 0;
2549 	}
2550 
2551 	perf_pmu_disable(event->pmu);
2552 
2553 	perf_set_shadow_time(event, ctx);
2554 
2555 	perf_log_itrace_start(event);
2556 
2557 	if (event->pmu->add(event, PERF_EF_START)) {
2558 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2559 		event->oncpu = -1;
2560 		ret = -EAGAIN;
2561 		goto out;
2562 	}
2563 
2564 	if (!is_software_event(event))
2565 		cpuctx->active_oncpu++;
2566 	if (!ctx->nr_active++)
2567 		perf_event_ctx_activate(ctx);
2568 	if (event->attr.freq && event->attr.sample_freq)
2569 		ctx->nr_freq++;
2570 
2571 	if (event->attr.exclusive)
2572 		cpuctx->exclusive = 1;
2573 
2574 out:
2575 	perf_pmu_enable(event->pmu);
2576 
2577 	return ret;
2578 }
2579 
2580 static int
2581 group_sched_in(struct perf_event *group_event,
2582 	       struct perf_cpu_context *cpuctx,
2583 	       struct perf_event_context *ctx)
2584 {
2585 	struct perf_event *event, *partial_group = NULL;
2586 	struct pmu *pmu = ctx->pmu;
2587 
2588 	if (group_event->state == PERF_EVENT_STATE_OFF)
2589 		return 0;
2590 
2591 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2592 
2593 	if (event_sched_in(group_event, cpuctx, ctx))
2594 		goto error;
2595 
2596 	/*
2597 	 * Schedule in siblings as one group (if any):
2598 	 */
2599 	for_each_sibling_event(event, group_event) {
2600 		if (event_sched_in(event, cpuctx, ctx)) {
2601 			partial_group = event;
2602 			goto group_error;
2603 		}
2604 	}
2605 
2606 	if (!pmu->commit_txn(pmu))
2607 		return 0;
2608 
2609 group_error:
2610 	/*
2611 	 * Groups can be scheduled in as one unit only, so undo any
2612 	 * partial group before returning:
2613 	 * The events up to the failed event are scheduled out normally.
2614 	 */
2615 	for_each_sibling_event(event, group_event) {
2616 		if (event == partial_group)
2617 			break;
2618 
2619 		event_sched_out(event, cpuctx, ctx);
2620 	}
2621 	event_sched_out(group_event, cpuctx, ctx);
2622 
2623 error:
2624 	pmu->cancel_txn(pmu);
2625 	return -EAGAIN;
2626 }
2627 
2628 /*
2629  * Work out whether we can put this event group on the CPU now.
2630  */
2631 static int group_can_go_on(struct perf_event *event,
2632 			   struct perf_cpu_context *cpuctx,
2633 			   int can_add_hw)
2634 {
2635 	/*
2636 	 * Groups consisting entirely of software events can always go on.
2637 	 */
2638 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2639 		return 1;
2640 	/*
2641 	 * If an exclusive group is already on, no other hardware
2642 	 * events can go on.
2643 	 */
2644 	if (cpuctx->exclusive)
2645 		return 0;
2646 	/*
2647 	 * If this group is exclusive and there are already
2648 	 * events on the CPU, it can't go on.
2649 	 */
2650 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2651 		return 0;
2652 	/*
2653 	 * Otherwise, try to add it if all previous groups were able
2654 	 * to go on.
2655 	 */
2656 	return can_add_hw;
2657 }
2658 
2659 static void add_event_to_ctx(struct perf_event *event,
2660 			       struct perf_event_context *ctx)
2661 {
2662 	list_add_event(event, ctx);
2663 	perf_group_attach(event);
2664 }
2665 
2666 static void ctx_sched_out(struct perf_event_context *ctx,
2667 			  struct perf_cpu_context *cpuctx,
2668 			  enum event_type_t event_type);
2669 static void
2670 ctx_sched_in(struct perf_event_context *ctx,
2671 	     struct perf_cpu_context *cpuctx,
2672 	     enum event_type_t event_type,
2673 	     struct task_struct *task);
2674 
2675 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2676 			       struct perf_event_context *ctx,
2677 			       enum event_type_t event_type)
2678 {
2679 	if (!cpuctx->task_ctx)
2680 		return;
2681 
2682 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2683 		return;
2684 
2685 	ctx_sched_out(ctx, cpuctx, event_type);
2686 }
2687 
2688 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2689 				struct perf_event_context *ctx,
2690 				struct task_struct *task)
2691 {
2692 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2693 	if (ctx)
2694 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2695 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2696 	if (ctx)
2697 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2698 }
2699 
2700 /*
2701  * We want to maintain the following priority of scheduling:
2702  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2703  *  - task pinned (EVENT_PINNED)
2704  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2705  *  - task flexible (EVENT_FLEXIBLE).
2706  *
2707  * In order to avoid unscheduling and scheduling back in everything every
2708  * time an event is added, only do it for the groups of equal priority and
2709  * below.
2710  *
2711  * This can be called after a batch operation on task events, in which case
2712  * event_type is a bit mask of the types of events involved. For CPU events,
2713  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2714  */
2715 static void ctx_resched(struct perf_cpu_context *cpuctx,
2716 			struct perf_event_context *task_ctx,
2717 			enum event_type_t event_type)
2718 {
2719 	enum event_type_t ctx_event_type;
2720 	bool cpu_event = !!(event_type & EVENT_CPU);
2721 
2722 	/*
2723 	 * If pinned groups are involved, flexible groups also need to be
2724 	 * scheduled out.
2725 	 */
2726 	if (event_type & EVENT_PINNED)
2727 		event_type |= EVENT_FLEXIBLE;
2728 
2729 	ctx_event_type = event_type & EVENT_ALL;
2730 
2731 	perf_pmu_disable(cpuctx->ctx.pmu);
2732 	if (task_ctx)
2733 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2734 
2735 	/*
2736 	 * Decide which cpu ctx groups to schedule out based on the types
2737 	 * of events that caused rescheduling:
2738 	 *  - EVENT_CPU: schedule out corresponding groups;
2739 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2740 	 *  - otherwise, do nothing more.
2741 	 */
2742 	if (cpu_event)
2743 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2744 	else if (ctx_event_type & EVENT_PINNED)
2745 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2746 
2747 	perf_event_sched_in(cpuctx, task_ctx, current);
2748 	perf_pmu_enable(cpuctx->ctx.pmu);
2749 }
2750 
2751 void perf_pmu_resched(struct pmu *pmu)
2752 {
2753 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2754 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2755 
2756 	perf_ctx_lock(cpuctx, task_ctx);
2757 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2758 	perf_ctx_unlock(cpuctx, task_ctx);
2759 }
2760 
2761 /*
2762  * Cross CPU call to install and enable a performance event
2763  *
2764  * Very similar to remote_function() + event_function() but cannot assume that
2765  * things like ctx->is_active and cpuctx->task_ctx are set.
2766  */
2767 static int  __perf_install_in_context(void *info)
2768 {
2769 	struct perf_event *event = info;
2770 	struct perf_event_context *ctx = event->ctx;
2771 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2772 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2773 	bool reprogram = true;
2774 	int ret = 0;
2775 
2776 	raw_spin_lock(&cpuctx->ctx.lock);
2777 	if (ctx->task) {
2778 		raw_spin_lock(&ctx->lock);
2779 		task_ctx = ctx;
2780 
2781 		reprogram = (ctx->task == current);
2782 
2783 		/*
2784 		 * If the task is running, it must be running on this CPU,
2785 		 * otherwise we cannot reprogram things.
2786 		 *
2787 		 * If its not running, we don't care, ctx->lock will
2788 		 * serialize against it becoming runnable.
2789 		 */
2790 		if (task_curr(ctx->task) && !reprogram) {
2791 			ret = -ESRCH;
2792 			goto unlock;
2793 		}
2794 
2795 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2796 	} else if (task_ctx) {
2797 		raw_spin_lock(&task_ctx->lock);
2798 	}
2799 
2800 #ifdef CONFIG_CGROUP_PERF
2801 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2802 		/*
2803 		 * If the current cgroup doesn't match the event's
2804 		 * cgroup, we should not try to schedule it.
2805 		 */
2806 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2807 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2808 					event->cgrp->css.cgroup);
2809 	}
2810 #endif
2811 
2812 	if (reprogram) {
2813 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2814 		add_event_to_ctx(event, ctx);
2815 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2816 	} else {
2817 		add_event_to_ctx(event, ctx);
2818 	}
2819 
2820 unlock:
2821 	perf_ctx_unlock(cpuctx, task_ctx);
2822 
2823 	return ret;
2824 }
2825 
2826 static bool exclusive_event_installable(struct perf_event *event,
2827 					struct perf_event_context *ctx);
2828 
2829 /*
2830  * Attach a performance event to a context.
2831  *
2832  * Very similar to event_function_call, see comment there.
2833  */
2834 static void
2835 perf_install_in_context(struct perf_event_context *ctx,
2836 			struct perf_event *event,
2837 			int cpu)
2838 {
2839 	struct task_struct *task = READ_ONCE(ctx->task);
2840 
2841 	lockdep_assert_held(&ctx->mutex);
2842 
2843 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2844 
2845 	if (event->cpu != -1)
2846 		event->cpu = cpu;
2847 
2848 	/*
2849 	 * Ensures that if we can observe event->ctx, both the event and ctx
2850 	 * will be 'complete'. See perf_iterate_sb_cpu().
2851 	 */
2852 	smp_store_release(&event->ctx, ctx);
2853 
2854 	/*
2855 	 * perf_event_attr::disabled events will not run and can be initialized
2856 	 * without IPI. Except when this is the first event for the context, in
2857 	 * that case we need the magic of the IPI to set ctx->is_active.
2858 	 *
2859 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2860 	 * event will issue the IPI and reprogram the hardware.
2861 	 */
2862 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2863 		raw_spin_lock_irq(&ctx->lock);
2864 		if (ctx->task == TASK_TOMBSTONE) {
2865 			raw_spin_unlock_irq(&ctx->lock);
2866 			return;
2867 		}
2868 		add_event_to_ctx(event, ctx);
2869 		raw_spin_unlock_irq(&ctx->lock);
2870 		return;
2871 	}
2872 
2873 	if (!task) {
2874 		cpu_function_call(cpu, __perf_install_in_context, event);
2875 		return;
2876 	}
2877 
2878 	/*
2879 	 * Should not happen, we validate the ctx is still alive before calling.
2880 	 */
2881 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2882 		return;
2883 
2884 	/*
2885 	 * Installing events is tricky because we cannot rely on ctx->is_active
2886 	 * to be set in case this is the nr_events 0 -> 1 transition.
2887 	 *
2888 	 * Instead we use task_curr(), which tells us if the task is running.
2889 	 * However, since we use task_curr() outside of rq::lock, we can race
2890 	 * against the actual state. This means the result can be wrong.
2891 	 *
2892 	 * If we get a false positive, we retry, this is harmless.
2893 	 *
2894 	 * If we get a false negative, things are complicated. If we are after
2895 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2896 	 * value must be correct. If we're before, it doesn't matter since
2897 	 * perf_event_context_sched_in() will program the counter.
2898 	 *
2899 	 * However, this hinges on the remote context switch having observed
2900 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2901 	 * ctx::lock in perf_event_context_sched_in().
2902 	 *
2903 	 * We do this by task_function_call(), if the IPI fails to hit the task
2904 	 * we know any future context switch of task must see the
2905 	 * perf_event_ctpx[] store.
2906 	 */
2907 
2908 	/*
2909 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2910 	 * task_cpu() load, such that if the IPI then does not find the task
2911 	 * running, a future context switch of that task must observe the
2912 	 * store.
2913 	 */
2914 	smp_mb();
2915 again:
2916 	if (!task_function_call(task, __perf_install_in_context, event))
2917 		return;
2918 
2919 	raw_spin_lock_irq(&ctx->lock);
2920 	task = ctx->task;
2921 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2922 		/*
2923 		 * Cannot happen because we already checked above (which also
2924 		 * cannot happen), and we hold ctx->mutex, which serializes us
2925 		 * against perf_event_exit_task_context().
2926 		 */
2927 		raw_spin_unlock_irq(&ctx->lock);
2928 		return;
2929 	}
2930 	/*
2931 	 * If the task is not running, ctx->lock will avoid it becoming so,
2932 	 * thus we can safely install the event.
2933 	 */
2934 	if (task_curr(task)) {
2935 		raw_spin_unlock_irq(&ctx->lock);
2936 		goto again;
2937 	}
2938 	add_event_to_ctx(event, ctx);
2939 	raw_spin_unlock_irq(&ctx->lock);
2940 }
2941 
2942 /*
2943  * Cross CPU call to enable a performance event
2944  */
2945 static void __perf_event_enable(struct perf_event *event,
2946 				struct perf_cpu_context *cpuctx,
2947 				struct perf_event_context *ctx,
2948 				void *info)
2949 {
2950 	struct perf_event *leader = event->group_leader;
2951 	struct perf_event_context *task_ctx;
2952 
2953 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2954 	    event->state <= PERF_EVENT_STATE_ERROR)
2955 		return;
2956 
2957 	if (ctx->is_active)
2958 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2959 
2960 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2961 	perf_cgroup_event_enable(event, ctx);
2962 
2963 	if (!ctx->is_active)
2964 		return;
2965 
2966 	if (!event_filter_match(event)) {
2967 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2968 		return;
2969 	}
2970 
2971 	/*
2972 	 * If the event is in a group and isn't the group leader,
2973 	 * then don't put it on unless the group is on.
2974 	 */
2975 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2976 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2977 		return;
2978 	}
2979 
2980 	task_ctx = cpuctx->task_ctx;
2981 	if (ctx->task)
2982 		WARN_ON_ONCE(task_ctx != ctx);
2983 
2984 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2985 }
2986 
2987 /*
2988  * Enable an event.
2989  *
2990  * If event->ctx is a cloned context, callers must make sure that
2991  * every task struct that event->ctx->task could possibly point to
2992  * remains valid.  This condition is satisfied when called through
2993  * perf_event_for_each_child or perf_event_for_each as described
2994  * for perf_event_disable.
2995  */
2996 static void _perf_event_enable(struct perf_event *event)
2997 {
2998 	struct perf_event_context *ctx = event->ctx;
2999 
3000 	raw_spin_lock_irq(&ctx->lock);
3001 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3002 	    event->state <  PERF_EVENT_STATE_ERROR) {
3003 out:
3004 		raw_spin_unlock_irq(&ctx->lock);
3005 		return;
3006 	}
3007 
3008 	/*
3009 	 * If the event is in error state, clear that first.
3010 	 *
3011 	 * That way, if we see the event in error state below, we know that it
3012 	 * has gone back into error state, as distinct from the task having
3013 	 * been scheduled away before the cross-call arrived.
3014 	 */
3015 	if (event->state == PERF_EVENT_STATE_ERROR) {
3016 		/*
3017 		 * Detached SIBLING events cannot leave ERROR state.
3018 		 */
3019 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3020 		    event->group_leader == event)
3021 			goto out;
3022 
3023 		event->state = PERF_EVENT_STATE_OFF;
3024 	}
3025 	raw_spin_unlock_irq(&ctx->lock);
3026 
3027 	event_function_call(event, __perf_event_enable, NULL);
3028 }
3029 
3030 /*
3031  * See perf_event_disable();
3032  */
3033 void perf_event_enable(struct perf_event *event)
3034 {
3035 	struct perf_event_context *ctx;
3036 
3037 	ctx = perf_event_ctx_lock(event);
3038 	_perf_event_enable(event);
3039 	perf_event_ctx_unlock(event, ctx);
3040 }
3041 EXPORT_SYMBOL_GPL(perf_event_enable);
3042 
3043 struct stop_event_data {
3044 	struct perf_event	*event;
3045 	unsigned int		restart;
3046 };
3047 
3048 static int __perf_event_stop(void *info)
3049 {
3050 	struct stop_event_data *sd = info;
3051 	struct perf_event *event = sd->event;
3052 
3053 	/* if it's already INACTIVE, do nothing */
3054 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3055 		return 0;
3056 
3057 	/* matches smp_wmb() in event_sched_in() */
3058 	smp_rmb();
3059 
3060 	/*
3061 	 * There is a window with interrupts enabled before we get here,
3062 	 * so we need to check again lest we try to stop another CPU's event.
3063 	 */
3064 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3065 		return -EAGAIN;
3066 
3067 	event->pmu->stop(event, PERF_EF_UPDATE);
3068 
3069 	/*
3070 	 * May race with the actual stop (through perf_pmu_output_stop()),
3071 	 * but it is only used for events with AUX ring buffer, and such
3072 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3073 	 * see comments in perf_aux_output_begin().
3074 	 *
3075 	 * Since this is happening on an event-local CPU, no trace is lost
3076 	 * while restarting.
3077 	 */
3078 	if (sd->restart)
3079 		event->pmu->start(event, 0);
3080 
3081 	return 0;
3082 }
3083 
3084 static int perf_event_stop(struct perf_event *event, int restart)
3085 {
3086 	struct stop_event_data sd = {
3087 		.event		= event,
3088 		.restart	= restart,
3089 	};
3090 	int ret = 0;
3091 
3092 	do {
3093 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3094 			return 0;
3095 
3096 		/* matches smp_wmb() in event_sched_in() */
3097 		smp_rmb();
3098 
3099 		/*
3100 		 * We only want to restart ACTIVE events, so if the event goes
3101 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3102 		 * fall through with ret==-ENXIO.
3103 		 */
3104 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3105 					__perf_event_stop, &sd);
3106 	} while (ret == -EAGAIN);
3107 
3108 	return ret;
3109 }
3110 
3111 /*
3112  * In order to contain the amount of racy and tricky in the address filter
3113  * configuration management, it is a two part process:
3114  *
3115  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3116  *      we update the addresses of corresponding vmas in
3117  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3118  * (p2) when an event is scheduled in (pmu::add), it calls
3119  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3120  *      if the generation has changed since the previous call.
3121  *
3122  * If (p1) happens while the event is active, we restart it to force (p2).
3123  *
3124  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3125  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3126  *     ioctl;
3127  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3128  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3129  *     for reading;
3130  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3131  *     of exec.
3132  */
3133 void perf_event_addr_filters_sync(struct perf_event *event)
3134 {
3135 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3136 
3137 	if (!has_addr_filter(event))
3138 		return;
3139 
3140 	raw_spin_lock(&ifh->lock);
3141 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3142 		event->pmu->addr_filters_sync(event);
3143 		event->hw.addr_filters_gen = event->addr_filters_gen;
3144 	}
3145 	raw_spin_unlock(&ifh->lock);
3146 }
3147 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3148 
3149 static int _perf_event_refresh(struct perf_event *event, int refresh)
3150 {
3151 	/*
3152 	 * not supported on inherited events
3153 	 */
3154 	if (event->attr.inherit || !is_sampling_event(event))
3155 		return -EINVAL;
3156 
3157 	atomic_add(refresh, &event->event_limit);
3158 	_perf_event_enable(event);
3159 
3160 	return 0;
3161 }
3162 
3163 /*
3164  * See perf_event_disable()
3165  */
3166 int perf_event_refresh(struct perf_event *event, int refresh)
3167 {
3168 	struct perf_event_context *ctx;
3169 	int ret;
3170 
3171 	ctx = perf_event_ctx_lock(event);
3172 	ret = _perf_event_refresh(event, refresh);
3173 	perf_event_ctx_unlock(event, ctx);
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(perf_event_refresh);
3178 
3179 static int perf_event_modify_breakpoint(struct perf_event *bp,
3180 					 struct perf_event_attr *attr)
3181 {
3182 	int err;
3183 
3184 	_perf_event_disable(bp);
3185 
3186 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3187 
3188 	if (!bp->attr.disabled)
3189 		_perf_event_enable(bp);
3190 
3191 	return err;
3192 }
3193 
3194 static int perf_event_modify_attr(struct perf_event *event,
3195 				  struct perf_event_attr *attr)
3196 {
3197 	if (event->attr.type != attr->type)
3198 		return -EINVAL;
3199 
3200 	switch (event->attr.type) {
3201 	case PERF_TYPE_BREAKPOINT:
3202 		return perf_event_modify_breakpoint(event, attr);
3203 	default:
3204 		/* Place holder for future additions. */
3205 		return -EOPNOTSUPP;
3206 	}
3207 }
3208 
3209 static void ctx_sched_out(struct perf_event_context *ctx,
3210 			  struct perf_cpu_context *cpuctx,
3211 			  enum event_type_t event_type)
3212 {
3213 	struct perf_event *event, *tmp;
3214 	int is_active = ctx->is_active;
3215 
3216 	lockdep_assert_held(&ctx->lock);
3217 
3218 	if (likely(!ctx->nr_events)) {
3219 		/*
3220 		 * See __perf_remove_from_context().
3221 		 */
3222 		WARN_ON_ONCE(ctx->is_active);
3223 		if (ctx->task)
3224 			WARN_ON_ONCE(cpuctx->task_ctx);
3225 		return;
3226 	}
3227 
3228 	ctx->is_active &= ~event_type;
3229 	if (!(ctx->is_active & EVENT_ALL))
3230 		ctx->is_active = 0;
3231 
3232 	if (ctx->task) {
3233 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3234 		if (!ctx->is_active)
3235 			cpuctx->task_ctx = NULL;
3236 	}
3237 
3238 	/*
3239 	 * Always update time if it was set; not only when it changes.
3240 	 * Otherwise we can 'forget' to update time for any but the last
3241 	 * context we sched out. For example:
3242 	 *
3243 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3244 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3245 	 *
3246 	 * would only update time for the pinned events.
3247 	 */
3248 	if (is_active & EVENT_TIME) {
3249 		/* update (and stop) ctx time */
3250 		update_context_time(ctx);
3251 		update_cgrp_time_from_cpuctx(cpuctx);
3252 	}
3253 
3254 	is_active ^= ctx->is_active; /* changed bits */
3255 
3256 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3257 		return;
3258 
3259 	perf_pmu_disable(ctx->pmu);
3260 	if (is_active & EVENT_PINNED) {
3261 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3262 			group_sched_out(event, cpuctx, ctx);
3263 	}
3264 
3265 	if (is_active & EVENT_FLEXIBLE) {
3266 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3267 			group_sched_out(event, cpuctx, ctx);
3268 
3269 		/*
3270 		 * Since we cleared EVENT_FLEXIBLE, also clear
3271 		 * rotate_necessary, is will be reset by
3272 		 * ctx_flexible_sched_in() when needed.
3273 		 */
3274 		ctx->rotate_necessary = 0;
3275 	}
3276 	perf_pmu_enable(ctx->pmu);
3277 }
3278 
3279 /*
3280  * Test whether two contexts are equivalent, i.e. whether they have both been
3281  * cloned from the same version of the same context.
3282  *
3283  * Equivalence is measured using a generation number in the context that is
3284  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3285  * and list_del_event().
3286  */
3287 static int context_equiv(struct perf_event_context *ctx1,
3288 			 struct perf_event_context *ctx2)
3289 {
3290 	lockdep_assert_held(&ctx1->lock);
3291 	lockdep_assert_held(&ctx2->lock);
3292 
3293 	/* Pinning disables the swap optimization */
3294 	if (ctx1->pin_count || ctx2->pin_count)
3295 		return 0;
3296 
3297 	/* If ctx1 is the parent of ctx2 */
3298 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3299 		return 1;
3300 
3301 	/* If ctx2 is the parent of ctx1 */
3302 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3303 		return 1;
3304 
3305 	/*
3306 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3307 	 * hierarchy, see perf_event_init_context().
3308 	 */
3309 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3310 			ctx1->parent_gen == ctx2->parent_gen)
3311 		return 1;
3312 
3313 	/* Unmatched */
3314 	return 0;
3315 }
3316 
3317 static void __perf_event_sync_stat(struct perf_event *event,
3318 				     struct perf_event *next_event)
3319 {
3320 	u64 value;
3321 
3322 	if (!event->attr.inherit_stat)
3323 		return;
3324 
3325 	/*
3326 	 * Update the event value, we cannot use perf_event_read()
3327 	 * because we're in the middle of a context switch and have IRQs
3328 	 * disabled, which upsets smp_call_function_single(), however
3329 	 * we know the event must be on the current CPU, therefore we
3330 	 * don't need to use it.
3331 	 */
3332 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3333 		event->pmu->read(event);
3334 
3335 	perf_event_update_time(event);
3336 
3337 	/*
3338 	 * In order to keep per-task stats reliable we need to flip the event
3339 	 * values when we flip the contexts.
3340 	 */
3341 	value = local64_read(&next_event->count);
3342 	value = local64_xchg(&event->count, value);
3343 	local64_set(&next_event->count, value);
3344 
3345 	swap(event->total_time_enabled, next_event->total_time_enabled);
3346 	swap(event->total_time_running, next_event->total_time_running);
3347 
3348 	/*
3349 	 * Since we swizzled the values, update the user visible data too.
3350 	 */
3351 	perf_event_update_userpage(event);
3352 	perf_event_update_userpage(next_event);
3353 }
3354 
3355 static void perf_event_sync_stat(struct perf_event_context *ctx,
3356 				   struct perf_event_context *next_ctx)
3357 {
3358 	struct perf_event *event, *next_event;
3359 
3360 	if (!ctx->nr_stat)
3361 		return;
3362 
3363 	update_context_time(ctx);
3364 
3365 	event = list_first_entry(&ctx->event_list,
3366 				   struct perf_event, event_entry);
3367 
3368 	next_event = list_first_entry(&next_ctx->event_list,
3369 					struct perf_event, event_entry);
3370 
3371 	while (&event->event_entry != &ctx->event_list &&
3372 	       &next_event->event_entry != &next_ctx->event_list) {
3373 
3374 		__perf_event_sync_stat(event, next_event);
3375 
3376 		event = list_next_entry(event, event_entry);
3377 		next_event = list_next_entry(next_event, event_entry);
3378 	}
3379 }
3380 
3381 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3382 					 struct task_struct *next)
3383 {
3384 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3385 	struct perf_event_context *next_ctx;
3386 	struct perf_event_context *parent, *next_parent;
3387 	struct perf_cpu_context *cpuctx;
3388 	int do_switch = 1;
3389 	struct pmu *pmu;
3390 
3391 	if (likely(!ctx))
3392 		return;
3393 
3394 	pmu = ctx->pmu;
3395 	cpuctx = __get_cpu_context(ctx);
3396 	if (!cpuctx->task_ctx)
3397 		return;
3398 
3399 	rcu_read_lock();
3400 	next_ctx = next->perf_event_ctxp[ctxn];
3401 	if (!next_ctx)
3402 		goto unlock;
3403 
3404 	parent = rcu_dereference(ctx->parent_ctx);
3405 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3406 
3407 	/* If neither context have a parent context; they cannot be clones. */
3408 	if (!parent && !next_parent)
3409 		goto unlock;
3410 
3411 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3412 		/*
3413 		 * Looks like the two contexts are clones, so we might be
3414 		 * able to optimize the context switch.  We lock both
3415 		 * contexts and check that they are clones under the
3416 		 * lock (including re-checking that neither has been
3417 		 * uncloned in the meantime).  It doesn't matter which
3418 		 * order we take the locks because no other cpu could
3419 		 * be trying to lock both of these tasks.
3420 		 */
3421 		raw_spin_lock(&ctx->lock);
3422 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3423 		if (context_equiv(ctx, next_ctx)) {
3424 
3425 			WRITE_ONCE(ctx->task, next);
3426 			WRITE_ONCE(next_ctx->task, task);
3427 
3428 			perf_pmu_disable(pmu);
3429 
3430 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3431 				pmu->sched_task(ctx, false);
3432 
3433 			/*
3434 			 * PMU specific parts of task perf context can require
3435 			 * additional synchronization. As an example of such
3436 			 * synchronization see implementation details of Intel
3437 			 * LBR call stack data profiling;
3438 			 */
3439 			if (pmu->swap_task_ctx)
3440 				pmu->swap_task_ctx(ctx, next_ctx);
3441 			else
3442 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3443 
3444 			perf_pmu_enable(pmu);
3445 
3446 			/*
3447 			 * RCU_INIT_POINTER here is safe because we've not
3448 			 * modified the ctx and the above modification of
3449 			 * ctx->task and ctx->task_ctx_data are immaterial
3450 			 * since those values are always verified under
3451 			 * ctx->lock which we're now holding.
3452 			 */
3453 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3454 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3455 
3456 			do_switch = 0;
3457 
3458 			perf_event_sync_stat(ctx, next_ctx);
3459 		}
3460 		raw_spin_unlock(&next_ctx->lock);
3461 		raw_spin_unlock(&ctx->lock);
3462 	}
3463 unlock:
3464 	rcu_read_unlock();
3465 
3466 	if (do_switch) {
3467 		raw_spin_lock(&ctx->lock);
3468 		perf_pmu_disable(pmu);
3469 
3470 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3471 			pmu->sched_task(ctx, false);
3472 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3473 
3474 		perf_pmu_enable(pmu);
3475 		raw_spin_unlock(&ctx->lock);
3476 	}
3477 }
3478 
3479 void perf_sched_cb_dec(struct pmu *pmu)
3480 {
3481 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3482 
3483 	--cpuctx->sched_cb_usage;
3484 }
3485 
3486 
3487 void perf_sched_cb_inc(struct pmu *pmu)
3488 {
3489 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3490 
3491 	cpuctx->sched_cb_usage++;
3492 }
3493 
3494 /*
3495  * This function provides the context switch callback to the lower code
3496  * layer. It is invoked ONLY when the context switch callback is enabled.
3497  *
3498  * This callback is relevant even to per-cpu events; for example multi event
3499  * PEBS requires this to provide PID/TID information. This requires we flush
3500  * all queued PEBS records before we context switch to a new task.
3501  */
3502 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3503 {
3504 	struct pmu *pmu;
3505 
3506 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3507 
3508 	if (WARN_ON_ONCE(!pmu->sched_task))
3509 		return;
3510 
3511 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3512 	perf_pmu_disable(pmu);
3513 
3514 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3515 
3516 	perf_pmu_enable(pmu);
3517 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3518 }
3519 
3520 static void perf_event_switch(struct task_struct *task,
3521 			      struct task_struct *next_prev, bool sched_in);
3522 
3523 #define for_each_task_context_nr(ctxn)					\
3524 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3525 
3526 /*
3527  * Called from scheduler to remove the events of the current task,
3528  * with interrupts disabled.
3529  *
3530  * We stop each event and update the event value in event->count.
3531  *
3532  * This does not protect us against NMI, but disable()
3533  * sets the disabled bit in the control field of event _before_
3534  * accessing the event control register. If a NMI hits, then it will
3535  * not restart the event.
3536  */
3537 void __perf_event_task_sched_out(struct task_struct *task,
3538 				 struct task_struct *next)
3539 {
3540 	int ctxn;
3541 
3542 	if (atomic_read(&nr_switch_events))
3543 		perf_event_switch(task, next, false);
3544 
3545 	for_each_task_context_nr(ctxn)
3546 		perf_event_context_sched_out(task, ctxn, next);
3547 
3548 	/*
3549 	 * if cgroup events exist on this CPU, then we need
3550 	 * to check if we have to switch out PMU state.
3551 	 * cgroup event are system-wide mode only
3552 	 */
3553 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3554 		perf_cgroup_sched_out(task, next);
3555 }
3556 
3557 /*
3558  * Called with IRQs disabled
3559  */
3560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3561 			      enum event_type_t event_type)
3562 {
3563 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3564 }
3565 
3566 static bool perf_less_group_idx(const void *l, const void *r)
3567 {
3568 	const struct perf_event *le = *(const struct perf_event **)l;
3569 	const struct perf_event *re = *(const struct perf_event **)r;
3570 
3571 	return le->group_index < re->group_index;
3572 }
3573 
3574 static void swap_ptr(void *l, void *r)
3575 {
3576 	void **lp = l, **rp = r;
3577 
3578 	swap(*lp, *rp);
3579 }
3580 
3581 static const struct min_heap_callbacks perf_min_heap = {
3582 	.elem_size = sizeof(struct perf_event *),
3583 	.less = perf_less_group_idx,
3584 	.swp = swap_ptr,
3585 };
3586 
3587 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3588 {
3589 	struct perf_event **itrs = heap->data;
3590 
3591 	if (event) {
3592 		itrs[heap->nr] = event;
3593 		heap->nr++;
3594 	}
3595 }
3596 
3597 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3598 				struct perf_event_groups *groups, int cpu,
3599 				int (*func)(struct perf_event *, void *),
3600 				void *data)
3601 {
3602 #ifdef CONFIG_CGROUP_PERF
3603 	struct cgroup_subsys_state *css = NULL;
3604 #endif
3605 	/* Space for per CPU and/or any CPU event iterators. */
3606 	struct perf_event *itrs[2];
3607 	struct min_heap event_heap;
3608 	struct perf_event **evt;
3609 	int ret;
3610 
3611 	if (cpuctx) {
3612 		event_heap = (struct min_heap){
3613 			.data = cpuctx->heap,
3614 			.nr = 0,
3615 			.size = cpuctx->heap_size,
3616 		};
3617 
3618 		lockdep_assert_held(&cpuctx->ctx.lock);
3619 
3620 #ifdef CONFIG_CGROUP_PERF
3621 		if (cpuctx->cgrp)
3622 			css = &cpuctx->cgrp->css;
3623 #endif
3624 	} else {
3625 		event_heap = (struct min_heap){
3626 			.data = itrs,
3627 			.nr = 0,
3628 			.size = ARRAY_SIZE(itrs),
3629 		};
3630 		/* Events not within a CPU context may be on any CPU. */
3631 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3632 	}
3633 	evt = event_heap.data;
3634 
3635 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3636 
3637 #ifdef CONFIG_CGROUP_PERF
3638 	for (; css; css = css->parent)
3639 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3640 #endif
3641 
3642 	min_heapify_all(&event_heap, &perf_min_heap);
3643 
3644 	while (event_heap.nr) {
3645 		ret = func(*evt, data);
3646 		if (ret)
3647 			return ret;
3648 
3649 		*evt = perf_event_groups_next(*evt);
3650 		if (*evt)
3651 			min_heapify(&event_heap, 0, &perf_min_heap);
3652 		else
3653 			min_heap_pop(&event_heap, &perf_min_heap);
3654 	}
3655 
3656 	return 0;
3657 }
3658 
3659 static int merge_sched_in(struct perf_event *event, void *data)
3660 {
3661 	struct perf_event_context *ctx = event->ctx;
3662 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3663 	int *can_add_hw = data;
3664 
3665 	if (event->state <= PERF_EVENT_STATE_OFF)
3666 		return 0;
3667 
3668 	if (!event_filter_match(event))
3669 		return 0;
3670 
3671 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3672 		if (!group_sched_in(event, cpuctx, ctx))
3673 			list_add_tail(&event->active_list, get_event_list(event));
3674 	}
3675 
3676 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3677 		if (event->attr.pinned) {
3678 			perf_cgroup_event_disable(event, ctx);
3679 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3680 		}
3681 
3682 		*can_add_hw = 0;
3683 		ctx->rotate_necessary = 1;
3684 		perf_mux_hrtimer_restart(cpuctx);
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 static void
3691 ctx_pinned_sched_in(struct perf_event_context *ctx,
3692 		    struct perf_cpu_context *cpuctx)
3693 {
3694 	int can_add_hw = 1;
3695 
3696 	if (ctx != &cpuctx->ctx)
3697 		cpuctx = NULL;
3698 
3699 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3700 			   smp_processor_id(),
3701 			   merge_sched_in, &can_add_hw);
3702 }
3703 
3704 static void
3705 ctx_flexible_sched_in(struct perf_event_context *ctx,
3706 		      struct perf_cpu_context *cpuctx)
3707 {
3708 	int can_add_hw = 1;
3709 
3710 	if (ctx != &cpuctx->ctx)
3711 		cpuctx = NULL;
3712 
3713 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3714 			   smp_processor_id(),
3715 			   merge_sched_in, &can_add_hw);
3716 }
3717 
3718 static void
3719 ctx_sched_in(struct perf_event_context *ctx,
3720 	     struct perf_cpu_context *cpuctx,
3721 	     enum event_type_t event_type,
3722 	     struct task_struct *task)
3723 {
3724 	int is_active = ctx->is_active;
3725 	u64 now;
3726 
3727 	lockdep_assert_held(&ctx->lock);
3728 
3729 	if (likely(!ctx->nr_events))
3730 		return;
3731 
3732 	ctx->is_active |= (event_type | EVENT_TIME);
3733 	if (ctx->task) {
3734 		if (!is_active)
3735 			cpuctx->task_ctx = ctx;
3736 		else
3737 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3738 	}
3739 
3740 	is_active ^= ctx->is_active; /* changed bits */
3741 
3742 	if (is_active & EVENT_TIME) {
3743 		/* start ctx time */
3744 		now = perf_clock();
3745 		ctx->timestamp = now;
3746 		perf_cgroup_set_timestamp(task, ctx);
3747 	}
3748 
3749 	/*
3750 	 * First go through the list and put on any pinned groups
3751 	 * in order to give them the best chance of going on.
3752 	 */
3753 	if (is_active & EVENT_PINNED)
3754 		ctx_pinned_sched_in(ctx, cpuctx);
3755 
3756 	/* Then walk through the lower prio flexible groups */
3757 	if (is_active & EVENT_FLEXIBLE)
3758 		ctx_flexible_sched_in(ctx, cpuctx);
3759 }
3760 
3761 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3762 			     enum event_type_t event_type,
3763 			     struct task_struct *task)
3764 {
3765 	struct perf_event_context *ctx = &cpuctx->ctx;
3766 
3767 	ctx_sched_in(ctx, cpuctx, event_type, task);
3768 }
3769 
3770 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3771 					struct task_struct *task)
3772 {
3773 	struct perf_cpu_context *cpuctx;
3774 	struct pmu *pmu = ctx->pmu;
3775 
3776 	cpuctx = __get_cpu_context(ctx);
3777 	if (cpuctx->task_ctx == ctx) {
3778 		if (cpuctx->sched_cb_usage)
3779 			__perf_pmu_sched_task(cpuctx, true);
3780 		return;
3781 	}
3782 
3783 	perf_ctx_lock(cpuctx, ctx);
3784 	/*
3785 	 * We must check ctx->nr_events while holding ctx->lock, such
3786 	 * that we serialize against perf_install_in_context().
3787 	 */
3788 	if (!ctx->nr_events)
3789 		goto unlock;
3790 
3791 	perf_pmu_disable(pmu);
3792 	/*
3793 	 * We want to keep the following priority order:
3794 	 * cpu pinned (that don't need to move), task pinned,
3795 	 * cpu flexible, task flexible.
3796 	 *
3797 	 * However, if task's ctx is not carrying any pinned
3798 	 * events, no need to flip the cpuctx's events around.
3799 	 */
3800 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3801 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3802 	perf_event_sched_in(cpuctx, ctx, task);
3803 
3804 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3805 		pmu->sched_task(cpuctx->task_ctx, true);
3806 
3807 	perf_pmu_enable(pmu);
3808 
3809 unlock:
3810 	perf_ctx_unlock(cpuctx, ctx);
3811 }
3812 
3813 /*
3814  * Called from scheduler to add the events of the current task
3815  * with interrupts disabled.
3816  *
3817  * We restore the event value and then enable it.
3818  *
3819  * This does not protect us against NMI, but enable()
3820  * sets the enabled bit in the control field of event _before_
3821  * accessing the event control register. If a NMI hits, then it will
3822  * keep the event running.
3823  */
3824 void __perf_event_task_sched_in(struct task_struct *prev,
3825 				struct task_struct *task)
3826 {
3827 	struct perf_event_context *ctx;
3828 	int ctxn;
3829 
3830 	/*
3831 	 * If cgroup events exist on this CPU, then we need to check if we have
3832 	 * to switch in PMU state; cgroup event are system-wide mode only.
3833 	 *
3834 	 * Since cgroup events are CPU events, we must schedule these in before
3835 	 * we schedule in the task events.
3836 	 */
3837 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3838 		perf_cgroup_sched_in(prev, task);
3839 
3840 	for_each_task_context_nr(ctxn) {
3841 		ctx = task->perf_event_ctxp[ctxn];
3842 		if (likely(!ctx))
3843 			continue;
3844 
3845 		perf_event_context_sched_in(ctx, task);
3846 	}
3847 
3848 	if (atomic_read(&nr_switch_events))
3849 		perf_event_switch(task, prev, true);
3850 }
3851 
3852 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3853 {
3854 	u64 frequency = event->attr.sample_freq;
3855 	u64 sec = NSEC_PER_SEC;
3856 	u64 divisor, dividend;
3857 
3858 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3859 
3860 	count_fls = fls64(count);
3861 	nsec_fls = fls64(nsec);
3862 	frequency_fls = fls64(frequency);
3863 	sec_fls = 30;
3864 
3865 	/*
3866 	 * We got @count in @nsec, with a target of sample_freq HZ
3867 	 * the target period becomes:
3868 	 *
3869 	 *             @count * 10^9
3870 	 * period = -------------------
3871 	 *          @nsec * sample_freq
3872 	 *
3873 	 */
3874 
3875 	/*
3876 	 * Reduce accuracy by one bit such that @a and @b converge
3877 	 * to a similar magnitude.
3878 	 */
3879 #define REDUCE_FLS(a, b)		\
3880 do {					\
3881 	if (a##_fls > b##_fls) {	\
3882 		a >>= 1;		\
3883 		a##_fls--;		\
3884 	} else {			\
3885 		b >>= 1;		\
3886 		b##_fls--;		\
3887 	}				\
3888 } while (0)
3889 
3890 	/*
3891 	 * Reduce accuracy until either term fits in a u64, then proceed with
3892 	 * the other, so that finally we can do a u64/u64 division.
3893 	 */
3894 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3895 		REDUCE_FLS(nsec, frequency);
3896 		REDUCE_FLS(sec, count);
3897 	}
3898 
3899 	if (count_fls + sec_fls > 64) {
3900 		divisor = nsec * frequency;
3901 
3902 		while (count_fls + sec_fls > 64) {
3903 			REDUCE_FLS(count, sec);
3904 			divisor >>= 1;
3905 		}
3906 
3907 		dividend = count * sec;
3908 	} else {
3909 		dividend = count * sec;
3910 
3911 		while (nsec_fls + frequency_fls > 64) {
3912 			REDUCE_FLS(nsec, frequency);
3913 			dividend >>= 1;
3914 		}
3915 
3916 		divisor = nsec * frequency;
3917 	}
3918 
3919 	if (!divisor)
3920 		return dividend;
3921 
3922 	return div64_u64(dividend, divisor);
3923 }
3924 
3925 static DEFINE_PER_CPU(int, perf_throttled_count);
3926 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3927 
3928 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3929 {
3930 	struct hw_perf_event *hwc = &event->hw;
3931 	s64 period, sample_period;
3932 	s64 delta;
3933 
3934 	period = perf_calculate_period(event, nsec, count);
3935 
3936 	delta = (s64)(period - hwc->sample_period);
3937 	delta = (delta + 7) / 8; /* low pass filter */
3938 
3939 	sample_period = hwc->sample_period + delta;
3940 
3941 	if (!sample_period)
3942 		sample_period = 1;
3943 
3944 	hwc->sample_period = sample_period;
3945 
3946 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3947 		if (disable)
3948 			event->pmu->stop(event, PERF_EF_UPDATE);
3949 
3950 		local64_set(&hwc->period_left, 0);
3951 
3952 		if (disable)
3953 			event->pmu->start(event, PERF_EF_RELOAD);
3954 	}
3955 }
3956 
3957 /*
3958  * combine freq adjustment with unthrottling to avoid two passes over the
3959  * events. At the same time, make sure, having freq events does not change
3960  * the rate of unthrottling as that would introduce bias.
3961  */
3962 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3963 					   int needs_unthr)
3964 {
3965 	struct perf_event *event;
3966 	struct hw_perf_event *hwc;
3967 	u64 now, period = TICK_NSEC;
3968 	s64 delta;
3969 
3970 	/*
3971 	 * only need to iterate over all events iff:
3972 	 * - context have events in frequency mode (needs freq adjust)
3973 	 * - there are events to unthrottle on this cpu
3974 	 */
3975 	if (!(ctx->nr_freq || needs_unthr))
3976 		return;
3977 
3978 	raw_spin_lock(&ctx->lock);
3979 	perf_pmu_disable(ctx->pmu);
3980 
3981 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3982 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3983 			continue;
3984 
3985 		if (!event_filter_match(event))
3986 			continue;
3987 
3988 		perf_pmu_disable(event->pmu);
3989 
3990 		hwc = &event->hw;
3991 
3992 		if (hwc->interrupts == MAX_INTERRUPTS) {
3993 			hwc->interrupts = 0;
3994 			perf_log_throttle(event, 1);
3995 			event->pmu->start(event, 0);
3996 		}
3997 
3998 		if (!event->attr.freq || !event->attr.sample_freq)
3999 			goto next;
4000 
4001 		/*
4002 		 * stop the event and update event->count
4003 		 */
4004 		event->pmu->stop(event, PERF_EF_UPDATE);
4005 
4006 		now = local64_read(&event->count);
4007 		delta = now - hwc->freq_count_stamp;
4008 		hwc->freq_count_stamp = now;
4009 
4010 		/*
4011 		 * restart the event
4012 		 * reload only if value has changed
4013 		 * we have stopped the event so tell that
4014 		 * to perf_adjust_period() to avoid stopping it
4015 		 * twice.
4016 		 */
4017 		if (delta > 0)
4018 			perf_adjust_period(event, period, delta, false);
4019 
4020 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4021 	next:
4022 		perf_pmu_enable(event->pmu);
4023 	}
4024 
4025 	perf_pmu_enable(ctx->pmu);
4026 	raw_spin_unlock(&ctx->lock);
4027 }
4028 
4029 /*
4030  * Move @event to the tail of the @ctx's elegible events.
4031  */
4032 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4033 {
4034 	/*
4035 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4036 	 * disabled by the inheritance code.
4037 	 */
4038 	if (ctx->rotate_disable)
4039 		return;
4040 
4041 	perf_event_groups_delete(&ctx->flexible_groups, event);
4042 	perf_event_groups_insert(&ctx->flexible_groups, event);
4043 }
4044 
4045 /* pick an event from the flexible_groups to rotate */
4046 static inline struct perf_event *
4047 ctx_event_to_rotate(struct perf_event_context *ctx)
4048 {
4049 	struct perf_event *event;
4050 
4051 	/* pick the first active flexible event */
4052 	event = list_first_entry_or_null(&ctx->flexible_active,
4053 					 struct perf_event, active_list);
4054 
4055 	/* if no active flexible event, pick the first event */
4056 	if (!event) {
4057 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4058 				      typeof(*event), group_node);
4059 	}
4060 
4061 	/*
4062 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4063 	 * finds there are unschedulable events, it will set it again.
4064 	 */
4065 	ctx->rotate_necessary = 0;
4066 
4067 	return event;
4068 }
4069 
4070 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4071 {
4072 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4073 	struct perf_event_context *task_ctx = NULL;
4074 	int cpu_rotate, task_rotate;
4075 
4076 	/*
4077 	 * Since we run this from IRQ context, nobody can install new
4078 	 * events, thus the event count values are stable.
4079 	 */
4080 
4081 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4082 	task_ctx = cpuctx->task_ctx;
4083 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4084 
4085 	if (!(cpu_rotate || task_rotate))
4086 		return false;
4087 
4088 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4089 	perf_pmu_disable(cpuctx->ctx.pmu);
4090 
4091 	if (task_rotate)
4092 		task_event = ctx_event_to_rotate(task_ctx);
4093 	if (cpu_rotate)
4094 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4095 
4096 	/*
4097 	 * As per the order given at ctx_resched() first 'pop' task flexible
4098 	 * and then, if needed CPU flexible.
4099 	 */
4100 	if (task_event || (task_ctx && cpu_event))
4101 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4102 	if (cpu_event)
4103 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4104 
4105 	if (task_event)
4106 		rotate_ctx(task_ctx, task_event);
4107 	if (cpu_event)
4108 		rotate_ctx(&cpuctx->ctx, cpu_event);
4109 
4110 	perf_event_sched_in(cpuctx, task_ctx, current);
4111 
4112 	perf_pmu_enable(cpuctx->ctx.pmu);
4113 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4114 
4115 	return true;
4116 }
4117 
4118 void perf_event_task_tick(void)
4119 {
4120 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4121 	struct perf_event_context *ctx, *tmp;
4122 	int throttled;
4123 
4124 	lockdep_assert_irqs_disabled();
4125 
4126 	__this_cpu_inc(perf_throttled_seq);
4127 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4128 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4129 
4130 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4131 		perf_adjust_freq_unthr_context(ctx, throttled);
4132 }
4133 
4134 static int event_enable_on_exec(struct perf_event *event,
4135 				struct perf_event_context *ctx)
4136 {
4137 	if (!event->attr.enable_on_exec)
4138 		return 0;
4139 
4140 	event->attr.enable_on_exec = 0;
4141 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4142 		return 0;
4143 
4144 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4145 
4146 	return 1;
4147 }
4148 
4149 /*
4150  * Enable all of a task's events that have been marked enable-on-exec.
4151  * This expects task == current.
4152  */
4153 static void perf_event_enable_on_exec(int ctxn)
4154 {
4155 	struct perf_event_context *ctx, *clone_ctx = NULL;
4156 	enum event_type_t event_type = 0;
4157 	struct perf_cpu_context *cpuctx;
4158 	struct perf_event *event;
4159 	unsigned long flags;
4160 	int enabled = 0;
4161 
4162 	local_irq_save(flags);
4163 	ctx = current->perf_event_ctxp[ctxn];
4164 	if (!ctx || !ctx->nr_events)
4165 		goto out;
4166 
4167 	cpuctx = __get_cpu_context(ctx);
4168 	perf_ctx_lock(cpuctx, ctx);
4169 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4170 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4171 		enabled |= event_enable_on_exec(event, ctx);
4172 		event_type |= get_event_type(event);
4173 	}
4174 
4175 	/*
4176 	 * Unclone and reschedule this context if we enabled any event.
4177 	 */
4178 	if (enabled) {
4179 		clone_ctx = unclone_ctx(ctx);
4180 		ctx_resched(cpuctx, ctx, event_type);
4181 	} else {
4182 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4183 	}
4184 	perf_ctx_unlock(cpuctx, ctx);
4185 
4186 out:
4187 	local_irq_restore(flags);
4188 
4189 	if (clone_ctx)
4190 		put_ctx(clone_ctx);
4191 }
4192 
4193 struct perf_read_data {
4194 	struct perf_event *event;
4195 	bool group;
4196 	int ret;
4197 };
4198 
4199 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4200 {
4201 	u16 local_pkg, event_pkg;
4202 
4203 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4204 		int local_cpu = smp_processor_id();
4205 
4206 		event_pkg = topology_physical_package_id(event_cpu);
4207 		local_pkg = topology_physical_package_id(local_cpu);
4208 
4209 		if (event_pkg == local_pkg)
4210 			return local_cpu;
4211 	}
4212 
4213 	return event_cpu;
4214 }
4215 
4216 /*
4217  * Cross CPU call to read the hardware event
4218  */
4219 static void __perf_event_read(void *info)
4220 {
4221 	struct perf_read_data *data = info;
4222 	struct perf_event *sub, *event = data->event;
4223 	struct perf_event_context *ctx = event->ctx;
4224 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4225 	struct pmu *pmu = event->pmu;
4226 
4227 	/*
4228 	 * If this is a task context, we need to check whether it is
4229 	 * the current task context of this cpu.  If not it has been
4230 	 * scheduled out before the smp call arrived.  In that case
4231 	 * event->count would have been updated to a recent sample
4232 	 * when the event was scheduled out.
4233 	 */
4234 	if (ctx->task && cpuctx->task_ctx != ctx)
4235 		return;
4236 
4237 	raw_spin_lock(&ctx->lock);
4238 	if (ctx->is_active & EVENT_TIME) {
4239 		update_context_time(ctx);
4240 		update_cgrp_time_from_event(event);
4241 	}
4242 
4243 	perf_event_update_time(event);
4244 	if (data->group)
4245 		perf_event_update_sibling_time(event);
4246 
4247 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4248 		goto unlock;
4249 
4250 	if (!data->group) {
4251 		pmu->read(event);
4252 		data->ret = 0;
4253 		goto unlock;
4254 	}
4255 
4256 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4257 
4258 	pmu->read(event);
4259 
4260 	for_each_sibling_event(sub, event) {
4261 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4262 			/*
4263 			 * Use sibling's PMU rather than @event's since
4264 			 * sibling could be on different (eg: software) PMU.
4265 			 */
4266 			sub->pmu->read(sub);
4267 		}
4268 	}
4269 
4270 	data->ret = pmu->commit_txn(pmu);
4271 
4272 unlock:
4273 	raw_spin_unlock(&ctx->lock);
4274 }
4275 
4276 static inline u64 perf_event_count(struct perf_event *event)
4277 {
4278 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4279 }
4280 
4281 /*
4282  * NMI-safe method to read a local event, that is an event that
4283  * is:
4284  *   - either for the current task, or for this CPU
4285  *   - does not have inherit set, for inherited task events
4286  *     will not be local and we cannot read them atomically
4287  *   - must not have a pmu::count method
4288  */
4289 int perf_event_read_local(struct perf_event *event, u64 *value,
4290 			  u64 *enabled, u64 *running)
4291 {
4292 	unsigned long flags;
4293 	int ret = 0;
4294 
4295 	/*
4296 	 * Disabling interrupts avoids all counter scheduling (context
4297 	 * switches, timer based rotation and IPIs).
4298 	 */
4299 	local_irq_save(flags);
4300 
4301 	/*
4302 	 * It must not be an event with inherit set, we cannot read
4303 	 * all child counters from atomic context.
4304 	 */
4305 	if (event->attr.inherit) {
4306 		ret = -EOPNOTSUPP;
4307 		goto out;
4308 	}
4309 
4310 	/* If this is a per-task event, it must be for current */
4311 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4312 	    event->hw.target != current) {
4313 		ret = -EINVAL;
4314 		goto out;
4315 	}
4316 
4317 	/* If this is a per-CPU event, it must be for this CPU */
4318 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4319 	    event->cpu != smp_processor_id()) {
4320 		ret = -EINVAL;
4321 		goto out;
4322 	}
4323 
4324 	/* If this is a pinned event it must be running on this CPU */
4325 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4326 		ret = -EBUSY;
4327 		goto out;
4328 	}
4329 
4330 	/*
4331 	 * If the event is currently on this CPU, its either a per-task event,
4332 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4333 	 * oncpu == -1).
4334 	 */
4335 	if (event->oncpu == smp_processor_id())
4336 		event->pmu->read(event);
4337 
4338 	*value = local64_read(&event->count);
4339 	if (enabled || running) {
4340 		u64 now = event->shadow_ctx_time + perf_clock();
4341 		u64 __enabled, __running;
4342 
4343 		__perf_update_times(event, now, &__enabled, &__running);
4344 		if (enabled)
4345 			*enabled = __enabled;
4346 		if (running)
4347 			*running = __running;
4348 	}
4349 out:
4350 	local_irq_restore(flags);
4351 
4352 	return ret;
4353 }
4354 
4355 static int perf_event_read(struct perf_event *event, bool group)
4356 {
4357 	enum perf_event_state state = READ_ONCE(event->state);
4358 	int event_cpu, ret = 0;
4359 
4360 	/*
4361 	 * If event is enabled and currently active on a CPU, update the
4362 	 * value in the event structure:
4363 	 */
4364 again:
4365 	if (state == PERF_EVENT_STATE_ACTIVE) {
4366 		struct perf_read_data data;
4367 
4368 		/*
4369 		 * Orders the ->state and ->oncpu loads such that if we see
4370 		 * ACTIVE we must also see the right ->oncpu.
4371 		 *
4372 		 * Matches the smp_wmb() from event_sched_in().
4373 		 */
4374 		smp_rmb();
4375 
4376 		event_cpu = READ_ONCE(event->oncpu);
4377 		if ((unsigned)event_cpu >= nr_cpu_ids)
4378 			return 0;
4379 
4380 		data = (struct perf_read_data){
4381 			.event = event,
4382 			.group = group,
4383 			.ret = 0,
4384 		};
4385 
4386 		preempt_disable();
4387 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4388 
4389 		/*
4390 		 * Purposely ignore the smp_call_function_single() return
4391 		 * value.
4392 		 *
4393 		 * If event_cpu isn't a valid CPU it means the event got
4394 		 * scheduled out and that will have updated the event count.
4395 		 *
4396 		 * Therefore, either way, we'll have an up-to-date event count
4397 		 * after this.
4398 		 */
4399 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4400 		preempt_enable();
4401 		ret = data.ret;
4402 
4403 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4404 		struct perf_event_context *ctx = event->ctx;
4405 		unsigned long flags;
4406 
4407 		raw_spin_lock_irqsave(&ctx->lock, flags);
4408 		state = event->state;
4409 		if (state != PERF_EVENT_STATE_INACTIVE) {
4410 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4411 			goto again;
4412 		}
4413 
4414 		/*
4415 		 * May read while context is not active (e.g., thread is
4416 		 * blocked), in that case we cannot update context time
4417 		 */
4418 		if (ctx->is_active & EVENT_TIME) {
4419 			update_context_time(ctx);
4420 			update_cgrp_time_from_event(event);
4421 		}
4422 
4423 		perf_event_update_time(event);
4424 		if (group)
4425 			perf_event_update_sibling_time(event);
4426 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4427 	}
4428 
4429 	return ret;
4430 }
4431 
4432 /*
4433  * Initialize the perf_event context in a task_struct:
4434  */
4435 static void __perf_event_init_context(struct perf_event_context *ctx)
4436 {
4437 	raw_spin_lock_init(&ctx->lock);
4438 	mutex_init(&ctx->mutex);
4439 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4440 	perf_event_groups_init(&ctx->pinned_groups);
4441 	perf_event_groups_init(&ctx->flexible_groups);
4442 	INIT_LIST_HEAD(&ctx->event_list);
4443 	INIT_LIST_HEAD(&ctx->pinned_active);
4444 	INIT_LIST_HEAD(&ctx->flexible_active);
4445 	refcount_set(&ctx->refcount, 1);
4446 }
4447 
4448 static struct perf_event_context *
4449 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4450 {
4451 	struct perf_event_context *ctx;
4452 
4453 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4454 	if (!ctx)
4455 		return NULL;
4456 
4457 	__perf_event_init_context(ctx);
4458 	if (task)
4459 		ctx->task = get_task_struct(task);
4460 	ctx->pmu = pmu;
4461 
4462 	return ctx;
4463 }
4464 
4465 static struct task_struct *
4466 find_lively_task_by_vpid(pid_t vpid)
4467 {
4468 	struct task_struct *task;
4469 
4470 	rcu_read_lock();
4471 	if (!vpid)
4472 		task = current;
4473 	else
4474 		task = find_task_by_vpid(vpid);
4475 	if (task)
4476 		get_task_struct(task);
4477 	rcu_read_unlock();
4478 
4479 	if (!task)
4480 		return ERR_PTR(-ESRCH);
4481 
4482 	return task;
4483 }
4484 
4485 /*
4486  * Returns a matching context with refcount and pincount.
4487  */
4488 static struct perf_event_context *
4489 find_get_context(struct pmu *pmu, struct task_struct *task,
4490 		struct perf_event *event)
4491 {
4492 	struct perf_event_context *ctx, *clone_ctx = NULL;
4493 	struct perf_cpu_context *cpuctx;
4494 	void *task_ctx_data = NULL;
4495 	unsigned long flags;
4496 	int ctxn, err;
4497 	int cpu = event->cpu;
4498 
4499 	if (!task) {
4500 		/* Must be root to operate on a CPU event: */
4501 		err = perf_allow_cpu(&event->attr);
4502 		if (err)
4503 			return ERR_PTR(err);
4504 
4505 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4506 		ctx = &cpuctx->ctx;
4507 		get_ctx(ctx);
4508 		++ctx->pin_count;
4509 
4510 		return ctx;
4511 	}
4512 
4513 	err = -EINVAL;
4514 	ctxn = pmu->task_ctx_nr;
4515 	if (ctxn < 0)
4516 		goto errout;
4517 
4518 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4519 		task_ctx_data = alloc_task_ctx_data(pmu);
4520 		if (!task_ctx_data) {
4521 			err = -ENOMEM;
4522 			goto errout;
4523 		}
4524 	}
4525 
4526 retry:
4527 	ctx = perf_lock_task_context(task, ctxn, &flags);
4528 	if (ctx) {
4529 		clone_ctx = unclone_ctx(ctx);
4530 		++ctx->pin_count;
4531 
4532 		if (task_ctx_data && !ctx->task_ctx_data) {
4533 			ctx->task_ctx_data = task_ctx_data;
4534 			task_ctx_data = NULL;
4535 		}
4536 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4537 
4538 		if (clone_ctx)
4539 			put_ctx(clone_ctx);
4540 	} else {
4541 		ctx = alloc_perf_context(pmu, task);
4542 		err = -ENOMEM;
4543 		if (!ctx)
4544 			goto errout;
4545 
4546 		if (task_ctx_data) {
4547 			ctx->task_ctx_data = task_ctx_data;
4548 			task_ctx_data = NULL;
4549 		}
4550 
4551 		err = 0;
4552 		mutex_lock(&task->perf_event_mutex);
4553 		/*
4554 		 * If it has already passed perf_event_exit_task().
4555 		 * we must see PF_EXITING, it takes this mutex too.
4556 		 */
4557 		if (task->flags & PF_EXITING)
4558 			err = -ESRCH;
4559 		else if (task->perf_event_ctxp[ctxn])
4560 			err = -EAGAIN;
4561 		else {
4562 			get_ctx(ctx);
4563 			++ctx->pin_count;
4564 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4565 		}
4566 		mutex_unlock(&task->perf_event_mutex);
4567 
4568 		if (unlikely(err)) {
4569 			put_ctx(ctx);
4570 
4571 			if (err == -EAGAIN)
4572 				goto retry;
4573 			goto errout;
4574 		}
4575 	}
4576 
4577 	free_task_ctx_data(pmu, task_ctx_data);
4578 	return ctx;
4579 
4580 errout:
4581 	free_task_ctx_data(pmu, task_ctx_data);
4582 	return ERR_PTR(err);
4583 }
4584 
4585 static void perf_event_free_filter(struct perf_event *event);
4586 static void perf_event_free_bpf_prog(struct perf_event *event);
4587 
4588 static void free_event_rcu(struct rcu_head *head)
4589 {
4590 	struct perf_event *event;
4591 
4592 	event = container_of(head, struct perf_event, rcu_head);
4593 	if (event->ns)
4594 		put_pid_ns(event->ns);
4595 	perf_event_free_filter(event);
4596 	kfree(event);
4597 }
4598 
4599 static void ring_buffer_attach(struct perf_event *event,
4600 			       struct perf_buffer *rb);
4601 
4602 static void detach_sb_event(struct perf_event *event)
4603 {
4604 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4605 
4606 	raw_spin_lock(&pel->lock);
4607 	list_del_rcu(&event->sb_list);
4608 	raw_spin_unlock(&pel->lock);
4609 }
4610 
4611 static bool is_sb_event(struct perf_event *event)
4612 {
4613 	struct perf_event_attr *attr = &event->attr;
4614 
4615 	if (event->parent)
4616 		return false;
4617 
4618 	if (event->attach_state & PERF_ATTACH_TASK)
4619 		return false;
4620 
4621 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4622 	    attr->comm || attr->comm_exec ||
4623 	    attr->task || attr->ksymbol ||
4624 	    attr->context_switch || attr->text_poke ||
4625 	    attr->bpf_event)
4626 		return true;
4627 	return false;
4628 }
4629 
4630 static void unaccount_pmu_sb_event(struct perf_event *event)
4631 {
4632 	if (is_sb_event(event))
4633 		detach_sb_event(event);
4634 }
4635 
4636 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4637 {
4638 	if (event->parent)
4639 		return;
4640 
4641 	if (is_cgroup_event(event))
4642 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4643 }
4644 
4645 #ifdef CONFIG_NO_HZ_FULL
4646 static DEFINE_SPINLOCK(nr_freq_lock);
4647 #endif
4648 
4649 static void unaccount_freq_event_nohz(void)
4650 {
4651 #ifdef CONFIG_NO_HZ_FULL
4652 	spin_lock(&nr_freq_lock);
4653 	if (atomic_dec_and_test(&nr_freq_events))
4654 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4655 	spin_unlock(&nr_freq_lock);
4656 #endif
4657 }
4658 
4659 static void unaccount_freq_event(void)
4660 {
4661 	if (tick_nohz_full_enabled())
4662 		unaccount_freq_event_nohz();
4663 	else
4664 		atomic_dec(&nr_freq_events);
4665 }
4666 
4667 static void unaccount_event(struct perf_event *event)
4668 {
4669 	bool dec = false;
4670 
4671 	if (event->parent)
4672 		return;
4673 
4674 	if (event->attach_state & PERF_ATTACH_TASK)
4675 		dec = true;
4676 	if (event->attr.mmap || event->attr.mmap_data)
4677 		atomic_dec(&nr_mmap_events);
4678 	if (event->attr.build_id)
4679 		atomic_dec(&nr_build_id_events);
4680 	if (event->attr.comm)
4681 		atomic_dec(&nr_comm_events);
4682 	if (event->attr.namespaces)
4683 		atomic_dec(&nr_namespaces_events);
4684 	if (event->attr.cgroup)
4685 		atomic_dec(&nr_cgroup_events);
4686 	if (event->attr.task)
4687 		atomic_dec(&nr_task_events);
4688 	if (event->attr.freq)
4689 		unaccount_freq_event();
4690 	if (event->attr.context_switch) {
4691 		dec = true;
4692 		atomic_dec(&nr_switch_events);
4693 	}
4694 	if (is_cgroup_event(event))
4695 		dec = true;
4696 	if (has_branch_stack(event))
4697 		dec = true;
4698 	if (event->attr.ksymbol)
4699 		atomic_dec(&nr_ksymbol_events);
4700 	if (event->attr.bpf_event)
4701 		atomic_dec(&nr_bpf_events);
4702 	if (event->attr.text_poke)
4703 		atomic_dec(&nr_text_poke_events);
4704 
4705 	if (dec) {
4706 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4707 			schedule_delayed_work(&perf_sched_work, HZ);
4708 	}
4709 
4710 	unaccount_event_cpu(event, event->cpu);
4711 
4712 	unaccount_pmu_sb_event(event);
4713 }
4714 
4715 static void perf_sched_delayed(struct work_struct *work)
4716 {
4717 	mutex_lock(&perf_sched_mutex);
4718 	if (atomic_dec_and_test(&perf_sched_count))
4719 		static_branch_disable(&perf_sched_events);
4720 	mutex_unlock(&perf_sched_mutex);
4721 }
4722 
4723 /*
4724  * The following implement mutual exclusion of events on "exclusive" pmus
4725  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4726  * at a time, so we disallow creating events that might conflict, namely:
4727  *
4728  *  1) cpu-wide events in the presence of per-task events,
4729  *  2) per-task events in the presence of cpu-wide events,
4730  *  3) two matching events on the same context.
4731  *
4732  * The former two cases are handled in the allocation path (perf_event_alloc(),
4733  * _free_event()), the latter -- before the first perf_install_in_context().
4734  */
4735 static int exclusive_event_init(struct perf_event *event)
4736 {
4737 	struct pmu *pmu = event->pmu;
4738 
4739 	if (!is_exclusive_pmu(pmu))
4740 		return 0;
4741 
4742 	/*
4743 	 * Prevent co-existence of per-task and cpu-wide events on the
4744 	 * same exclusive pmu.
4745 	 *
4746 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4747 	 * events on this "exclusive" pmu, positive means there are
4748 	 * per-task events.
4749 	 *
4750 	 * Since this is called in perf_event_alloc() path, event::ctx
4751 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4752 	 * to mean "per-task event", because unlike other attach states it
4753 	 * never gets cleared.
4754 	 */
4755 	if (event->attach_state & PERF_ATTACH_TASK) {
4756 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4757 			return -EBUSY;
4758 	} else {
4759 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4760 			return -EBUSY;
4761 	}
4762 
4763 	return 0;
4764 }
4765 
4766 static void exclusive_event_destroy(struct perf_event *event)
4767 {
4768 	struct pmu *pmu = event->pmu;
4769 
4770 	if (!is_exclusive_pmu(pmu))
4771 		return;
4772 
4773 	/* see comment in exclusive_event_init() */
4774 	if (event->attach_state & PERF_ATTACH_TASK)
4775 		atomic_dec(&pmu->exclusive_cnt);
4776 	else
4777 		atomic_inc(&pmu->exclusive_cnt);
4778 }
4779 
4780 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4781 {
4782 	if ((e1->pmu == e2->pmu) &&
4783 	    (e1->cpu == e2->cpu ||
4784 	     e1->cpu == -1 ||
4785 	     e2->cpu == -1))
4786 		return true;
4787 	return false;
4788 }
4789 
4790 static bool exclusive_event_installable(struct perf_event *event,
4791 					struct perf_event_context *ctx)
4792 {
4793 	struct perf_event *iter_event;
4794 	struct pmu *pmu = event->pmu;
4795 
4796 	lockdep_assert_held(&ctx->mutex);
4797 
4798 	if (!is_exclusive_pmu(pmu))
4799 		return true;
4800 
4801 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4802 		if (exclusive_event_match(iter_event, event))
4803 			return false;
4804 	}
4805 
4806 	return true;
4807 }
4808 
4809 static void perf_addr_filters_splice(struct perf_event *event,
4810 				       struct list_head *head);
4811 
4812 static void _free_event(struct perf_event *event)
4813 {
4814 	irq_work_sync(&event->pending);
4815 
4816 	unaccount_event(event);
4817 
4818 	security_perf_event_free(event);
4819 
4820 	if (event->rb) {
4821 		/*
4822 		 * Can happen when we close an event with re-directed output.
4823 		 *
4824 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4825 		 * over us; possibly making our ring_buffer_put() the last.
4826 		 */
4827 		mutex_lock(&event->mmap_mutex);
4828 		ring_buffer_attach(event, NULL);
4829 		mutex_unlock(&event->mmap_mutex);
4830 	}
4831 
4832 	if (is_cgroup_event(event))
4833 		perf_detach_cgroup(event);
4834 
4835 	if (!event->parent) {
4836 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4837 			put_callchain_buffers();
4838 	}
4839 
4840 	perf_event_free_bpf_prog(event);
4841 	perf_addr_filters_splice(event, NULL);
4842 	kfree(event->addr_filter_ranges);
4843 
4844 	if (event->destroy)
4845 		event->destroy(event);
4846 
4847 	/*
4848 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4849 	 * hw.target.
4850 	 */
4851 	if (event->hw.target)
4852 		put_task_struct(event->hw.target);
4853 
4854 	/*
4855 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4856 	 * all task references must be cleaned up.
4857 	 */
4858 	if (event->ctx)
4859 		put_ctx(event->ctx);
4860 
4861 	exclusive_event_destroy(event);
4862 	module_put(event->pmu->module);
4863 
4864 	call_rcu(&event->rcu_head, free_event_rcu);
4865 }
4866 
4867 /*
4868  * Used to free events which have a known refcount of 1, such as in error paths
4869  * where the event isn't exposed yet and inherited events.
4870  */
4871 static void free_event(struct perf_event *event)
4872 {
4873 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4874 				"unexpected event refcount: %ld; ptr=%p\n",
4875 				atomic_long_read(&event->refcount), event)) {
4876 		/* leak to avoid use-after-free */
4877 		return;
4878 	}
4879 
4880 	_free_event(event);
4881 }
4882 
4883 /*
4884  * Remove user event from the owner task.
4885  */
4886 static void perf_remove_from_owner(struct perf_event *event)
4887 {
4888 	struct task_struct *owner;
4889 
4890 	rcu_read_lock();
4891 	/*
4892 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4893 	 * observe !owner it means the list deletion is complete and we can
4894 	 * indeed free this event, otherwise we need to serialize on
4895 	 * owner->perf_event_mutex.
4896 	 */
4897 	owner = READ_ONCE(event->owner);
4898 	if (owner) {
4899 		/*
4900 		 * Since delayed_put_task_struct() also drops the last
4901 		 * task reference we can safely take a new reference
4902 		 * while holding the rcu_read_lock().
4903 		 */
4904 		get_task_struct(owner);
4905 	}
4906 	rcu_read_unlock();
4907 
4908 	if (owner) {
4909 		/*
4910 		 * If we're here through perf_event_exit_task() we're already
4911 		 * holding ctx->mutex which would be an inversion wrt. the
4912 		 * normal lock order.
4913 		 *
4914 		 * However we can safely take this lock because its the child
4915 		 * ctx->mutex.
4916 		 */
4917 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4918 
4919 		/*
4920 		 * We have to re-check the event->owner field, if it is cleared
4921 		 * we raced with perf_event_exit_task(), acquiring the mutex
4922 		 * ensured they're done, and we can proceed with freeing the
4923 		 * event.
4924 		 */
4925 		if (event->owner) {
4926 			list_del_init(&event->owner_entry);
4927 			smp_store_release(&event->owner, NULL);
4928 		}
4929 		mutex_unlock(&owner->perf_event_mutex);
4930 		put_task_struct(owner);
4931 	}
4932 }
4933 
4934 static void put_event(struct perf_event *event)
4935 {
4936 	if (!atomic_long_dec_and_test(&event->refcount))
4937 		return;
4938 
4939 	_free_event(event);
4940 }
4941 
4942 /*
4943  * Kill an event dead; while event:refcount will preserve the event
4944  * object, it will not preserve its functionality. Once the last 'user'
4945  * gives up the object, we'll destroy the thing.
4946  */
4947 int perf_event_release_kernel(struct perf_event *event)
4948 {
4949 	struct perf_event_context *ctx = event->ctx;
4950 	struct perf_event *child, *tmp;
4951 	LIST_HEAD(free_list);
4952 
4953 	/*
4954 	 * If we got here through err_file: fput(event_file); we will not have
4955 	 * attached to a context yet.
4956 	 */
4957 	if (!ctx) {
4958 		WARN_ON_ONCE(event->attach_state &
4959 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4960 		goto no_ctx;
4961 	}
4962 
4963 	if (!is_kernel_event(event))
4964 		perf_remove_from_owner(event);
4965 
4966 	ctx = perf_event_ctx_lock(event);
4967 	WARN_ON_ONCE(ctx->parent_ctx);
4968 	perf_remove_from_context(event, DETACH_GROUP);
4969 
4970 	raw_spin_lock_irq(&ctx->lock);
4971 	/*
4972 	 * Mark this event as STATE_DEAD, there is no external reference to it
4973 	 * anymore.
4974 	 *
4975 	 * Anybody acquiring event->child_mutex after the below loop _must_
4976 	 * also see this, most importantly inherit_event() which will avoid
4977 	 * placing more children on the list.
4978 	 *
4979 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4980 	 * child events.
4981 	 */
4982 	event->state = PERF_EVENT_STATE_DEAD;
4983 	raw_spin_unlock_irq(&ctx->lock);
4984 
4985 	perf_event_ctx_unlock(event, ctx);
4986 
4987 again:
4988 	mutex_lock(&event->child_mutex);
4989 	list_for_each_entry(child, &event->child_list, child_list) {
4990 
4991 		/*
4992 		 * Cannot change, child events are not migrated, see the
4993 		 * comment with perf_event_ctx_lock_nested().
4994 		 */
4995 		ctx = READ_ONCE(child->ctx);
4996 		/*
4997 		 * Since child_mutex nests inside ctx::mutex, we must jump
4998 		 * through hoops. We start by grabbing a reference on the ctx.
4999 		 *
5000 		 * Since the event cannot get freed while we hold the
5001 		 * child_mutex, the context must also exist and have a !0
5002 		 * reference count.
5003 		 */
5004 		get_ctx(ctx);
5005 
5006 		/*
5007 		 * Now that we have a ctx ref, we can drop child_mutex, and
5008 		 * acquire ctx::mutex without fear of it going away. Then we
5009 		 * can re-acquire child_mutex.
5010 		 */
5011 		mutex_unlock(&event->child_mutex);
5012 		mutex_lock(&ctx->mutex);
5013 		mutex_lock(&event->child_mutex);
5014 
5015 		/*
5016 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5017 		 * state, if child is still the first entry, it didn't get freed
5018 		 * and we can continue doing so.
5019 		 */
5020 		tmp = list_first_entry_or_null(&event->child_list,
5021 					       struct perf_event, child_list);
5022 		if (tmp == child) {
5023 			perf_remove_from_context(child, DETACH_GROUP);
5024 			list_move(&child->child_list, &free_list);
5025 			/*
5026 			 * This matches the refcount bump in inherit_event();
5027 			 * this can't be the last reference.
5028 			 */
5029 			put_event(event);
5030 		}
5031 
5032 		mutex_unlock(&event->child_mutex);
5033 		mutex_unlock(&ctx->mutex);
5034 		put_ctx(ctx);
5035 		goto again;
5036 	}
5037 	mutex_unlock(&event->child_mutex);
5038 
5039 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5040 		void *var = &child->ctx->refcount;
5041 
5042 		list_del(&child->child_list);
5043 		free_event(child);
5044 
5045 		/*
5046 		 * Wake any perf_event_free_task() waiting for this event to be
5047 		 * freed.
5048 		 */
5049 		smp_mb(); /* pairs with wait_var_event() */
5050 		wake_up_var(var);
5051 	}
5052 
5053 no_ctx:
5054 	put_event(event); /* Must be the 'last' reference */
5055 	return 0;
5056 }
5057 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5058 
5059 /*
5060  * Called when the last reference to the file is gone.
5061  */
5062 static int perf_release(struct inode *inode, struct file *file)
5063 {
5064 	perf_event_release_kernel(file->private_data);
5065 	return 0;
5066 }
5067 
5068 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5069 {
5070 	struct perf_event *child;
5071 	u64 total = 0;
5072 
5073 	*enabled = 0;
5074 	*running = 0;
5075 
5076 	mutex_lock(&event->child_mutex);
5077 
5078 	(void)perf_event_read(event, false);
5079 	total += perf_event_count(event);
5080 
5081 	*enabled += event->total_time_enabled +
5082 			atomic64_read(&event->child_total_time_enabled);
5083 	*running += event->total_time_running +
5084 			atomic64_read(&event->child_total_time_running);
5085 
5086 	list_for_each_entry(child, &event->child_list, child_list) {
5087 		(void)perf_event_read(child, false);
5088 		total += perf_event_count(child);
5089 		*enabled += child->total_time_enabled;
5090 		*running += child->total_time_running;
5091 	}
5092 	mutex_unlock(&event->child_mutex);
5093 
5094 	return total;
5095 }
5096 
5097 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5098 {
5099 	struct perf_event_context *ctx;
5100 	u64 count;
5101 
5102 	ctx = perf_event_ctx_lock(event);
5103 	count = __perf_event_read_value(event, enabled, running);
5104 	perf_event_ctx_unlock(event, ctx);
5105 
5106 	return count;
5107 }
5108 EXPORT_SYMBOL_GPL(perf_event_read_value);
5109 
5110 static int __perf_read_group_add(struct perf_event *leader,
5111 					u64 read_format, u64 *values)
5112 {
5113 	struct perf_event_context *ctx = leader->ctx;
5114 	struct perf_event *sub;
5115 	unsigned long flags;
5116 	int n = 1; /* skip @nr */
5117 	int ret;
5118 
5119 	ret = perf_event_read(leader, true);
5120 	if (ret)
5121 		return ret;
5122 
5123 	raw_spin_lock_irqsave(&ctx->lock, flags);
5124 
5125 	/*
5126 	 * Since we co-schedule groups, {enabled,running} times of siblings
5127 	 * will be identical to those of the leader, so we only publish one
5128 	 * set.
5129 	 */
5130 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5131 		values[n++] += leader->total_time_enabled +
5132 			atomic64_read(&leader->child_total_time_enabled);
5133 	}
5134 
5135 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5136 		values[n++] += leader->total_time_running +
5137 			atomic64_read(&leader->child_total_time_running);
5138 	}
5139 
5140 	/*
5141 	 * Write {count,id} tuples for every sibling.
5142 	 */
5143 	values[n++] += perf_event_count(leader);
5144 	if (read_format & PERF_FORMAT_ID)
5145 		values[n++] = primary_event_id(leader);
5146 
5147 	for_each_sibling_event(sub, leader) {
5148 		values[n++] += perf_event_count(sub);
5149 		if (read_format & PERF_FORMAT_ID)
5150 			values[n++] = primary_event_id(sub);
5151 	}
5152 
5153 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5154 	return 0;
5155 }
5156 
5157 static int perf_read_group(struct perf_event *event,
5158 				   u64 read_format, char __user *buf)
5159 {
5160 	struct perf_event *leader = event->group_leader, *child;
5161 	struct perf_event_context *ctx = leader->ctx;
5162 	int ret;
5163 	u64 *values;
5164 
5165 	lockdep_assert_held(&ctx->mutex);
5166 
5167 	values = kzalloc(event->read_size, GFP_KERNEL);
5168 	if (!values)
5169 		return -ENOMEM;
5170 
5171 	values[0] = 1 + leader->nr_siblings;
5172 
5173 	/*
5174 	 * By locking the child_mutex of the leader we effectively
5175 	 * lock the child list of all siblings.. XXX explain how.
5176 	 */
5177 	mutex_lock(&leader->child_mutex);
5178 
5179 	ret = __perf_read_group_add(leader, read_format, values);
5180 	if (ret)
5181 		goto unlock;
5182 
5183 	list_for_each_entry(child, &leader->child_list, child_list) {
5184 		ret = __perf_read_group_add(child, read_format, values);
5185 		if (ret)
5186 			goto unlock;
5187 	}
5188 
5189 	mutex_unlock(&leader->child_mutex);
5190 
5191 	ret = event->read_size;
5192 	if (copy_to_user(buf, values, event->read_size))
5193 		ret = -EFAULT;
5194 	goto out;
5195 
5196 unlock:
5197 	mutex_unlock(&leader->child_mutex);
5198 out:
5199 	kfree(values);
5200 	return ret;
5201 }
5202 
5203 static int perf_read_one(struct perf_event *event,
5204 				 u64 read_format, char __user *buf)
5205 {
5206 	u64 enabled, running;
5207 	u64 values[4];
5208 	int n = 0;
5209 
5210 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5211 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5212 		values[n++] = enabled;
5213 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5214 		values[n++] = running;
5215 	if (read_format & PERF_FORMAT_ID)
5216 		values[n++] = primary_event_id(event);
5217 
5218 	if (copy_to_user(buf, values, n * sizeof(u64)))
5219 		return -EFAULT;
5220 
5221 	return n * sizeof(u64);
5222 }
5223 
5224 static bool is_event_hup(struct perf_event *event)
5225 {
5226 	bool no_children;
5227 
5228 	if (event->state > PERF_EVENT_STATE_EXIT)
5229 		return false;
5230 
5231 	mutex_lock(&event->child_mutex);
5232 	no_children = list_empty(&event->child_list);
5233 	mutex_unlock(&event->child_mutex);
5234 	return no_children;
5235 }
5236 
5237 /*
5238  * Read the performance event - simple non blocking version for now
5239  */
5240 static ssize_t
5241 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5242 {
5243 	u64 read_format = event->attr.read_format;
5244 	int ret;
5245 
5246 	/*
5247 	 * Return end-of-file for a read on an event that is in
5248 	 * error state (i.e. because it was pinned but it couldn't be
5249 	 * scheduled on to the CPU at some point).
5250 	 */
5251 	if (event->state == PERF_EVENT_STATE_ERROR)
5252 		return 0;
5253 
5254 	if (count < event->read_size)
5255 		return -ENOSPC;
5256 
5257 	WARN_ON_ONCE(event->ctx->parent_ctx);
5258 	if (read_format & PERF_FORMAT_GROUP)
5259 		ret = perf_read_group(event, read_format, buf);
5260 	else
5261 		ret = perf_read_one(event, read_format, buf);
5262 
5263 	return ret;
5264 }
5265 
5266 static ssize_t
5267 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5268 {
5269 	struct perf_event *event = file->private_data;
5270 	struct perf_event_context *ctx;
5271 	int ret;
5272 
5273 	ret = security_perf_event_read(event);
5274 	if (ret)
5275 		return ret;
5276 
5277 	ctx = perf_event_ctx_lock(event);
5278 	ret = __perf_read(event, buf, count);
5279 	perf_event_ctx_unlock(event, ctx);
5280 
5281 	return ret;
5282 }
5283 
5284 static __poll_t perf_poll(struct file *file, poll_table *wait)
5285 {
5286 	struct perf_event *event = file->private_data;
5287 	struct perf_buffer *rb;
5288 	__poll_t events = EPOLLHUP;
5289 
5290 	poll_wait(file, &event->waitq, wait);
5291 
5292 	if (is_event_hup(event))
5293 		return events;
5294 
5295 	/*
5296 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5297 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5298 	 */
5299 	mutex_lock(&event->mmap_mutex);
5300 	rb = event->rb;
5301 	if (rb)
5302 		events = atomic_xchg(&rb->poll, 0);
5303 	mutex_unlock(&event->mmap_mutex);
5304 	return events;
5305 }
5306 
5307 static void _perf_event_reset(struct perf_event *event)
5308 {
5309 	(void)perf_event_read(event, false);
5310 	local64_set(&event->count, 0);
5311 	perf_event_update_userpage(event);
5312 }
5313 
5314 /* Assume it's not an event with inherit set. */
5315 u64 perf_event_pause(struct perf_event *event, bool reset)
5316 {
5317 	struct perf_event_context *ctx;
5318 	u64 count;
5319 
5320 	ctx = perf_event_ctx_lock(event);
5321 	WARN_ON_ONCE(event->attr.inherit);
5322 	_perf_event_disable(event);
5323 	count = local64_read(&event->count);
5324 	if (reset)
5325 		local64_set(&event->count, 0);
5326 	perf_event_ctx_unlock(event, ctx);
5327 
5328 	return count;
5329 }
5330 EXPORT_SYMBOL_GPL(perf_event_pause);
5331 
5332 /*
5333  * Holding the top-level event's child_mutex means that any
5334  * descendant process that has inherited this event will block
5335  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5336  * task existence requirements of perf_event_enable/disable.
5337  */
5338 static void perf_event_for_each_child(struct perf_event *event,
5339 					void (*func)(struct perf_event *))
5340 {
5341 	struct perf_event *child;
5342 
5343 	WARN_ON_ONCE(event->ctx->parent_ctx);
5344 
5345 	mutex_lock(&event->child_mutex);
5346 	func(event);
5347 	list_for_each_entry(child, &event->child_list, child_list)
5348 		func(child);
5349 	mutex_unlock(&event->child_mutex);
5350 }
5351 
5352 static void perf_event_for_each(struct perf_event *event,
5353 				  void (*func)(struct perf_event *))
5354 {
5355 	struct perf_event_context *ctx = event->ctx;
5356 	struct perf_event *sibling;
5357 
5358 	lockdep_assert_held(&ctx->mutex);
5359 
5360 	event = event->group_leader;
5361 
5362 	perf_event_for_each_child(event, func);
5363 	for_each_sibling_event(sibling, event)
5364 		perf_event_for_each_child(sibling, func);
5365 }
5366 
5367 static void __perf_event_period(struct perf_event *event,
5368 				struct perf_cpu_context *cpuctx,
5369 				struct perf_event_context *ctx,
5370 				void *info)
5371 {
5372 	u64 value = *((u64 *)info);
5373 	bool active;
5374 
5375 	if (event->attr.freq) {
5376 		event->attr.sample_freq = value;
5377 	} else {
5378 		event->attr.sample_period = value;
5379 		event->hw.sample_period = value;
5380 	}
5381 
5382 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5383 	if (active) {
5384 		perf_pmu_disable(ctx->pmu);
5385 		/*
5386 		 * We could be throttled; unthrottle now to avoid the tick
5387 		 * trying to unthrottle while we already re-started the event.
5388 		 */
5389 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5390 			event->hw.interrupts = 0;
5391 			perf_log_throttle(event, 1);
5392 		}
5393 		event->pmu->stop(event, PERF_EF_UPDATE);
5394 	}
5395 
5396 	local64_set(&event->hw.period_left, 0);
5397 
5398 	if (active) {
5399 		event->pmu->start(event, PERF_EF_RELOAD);
5400 		perf_pmu_enable(ctx->pmu);
5401 	}
5402 }
5403 
5404 static int perf_event_check_period(struct perf_event *event, u64 value)
5405 {
5406 	return event->pmu->check_period(event, value);
5407 }
5408 
5409 static int _perf_event_period(struct perf_event *event, u64 value)
5410 {
5411 	if (!is_sampling_event(event))
5412 		return -EINVAL;
5413 
5414 	if (!value)
5415 		return -EINVAL;
5416 
5417 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5418 		return -EINVAL;
5419 
5420 	if (perf_event_check_period(event, value))
5421 		return -EINVAL;
5422 
5423 	if (!event->attr.freq && (value & (1ULL << 63)))
5424 		return -EINVAL;
5425 
5426 	event_function_call(event, __perf_event_period, &value);
5427 
5428 	return 0;
5429 }
5430 
5431 int perf_event_period(struct perf_event *event, u64 value)
5432 {
5433 	struct perf_event_context *ctx;
5434 	int ret;
5435 
5436 	ctx = perf_event_ctx_lock(event);
5437 	ret = _perf_event_period(event, value);
5438 	perf_event_ctx_unlock(event, ctx);
5439 
5440 	return ret;
5441 }
5442 EXPORT_SYMBOL_GPL(perf_event_period);
5443 
5444 static const struct file_operations perf_fops;
5445 
5446 static inline int perf_fget_light(int fd, struct fd *p)
5447 {
5448 	struct fd f = fdget(fd);
5449 	if (!f.file)
5450 		return -EBADF;
5451 
5452 	if (f.file->f_op != &perf_fops) {
5453 		fdput(f);
5454 		return -EBADF;
5455 	}
5456 	*p = f;
5457 	return 0;
5458 }
5459 
5460 static int perf_event_set_output(struct perf_event *event,
5461 				 struct perf_event *output_event);
5462 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5463 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5464 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5465 			  struct perf_event_attr *attr);
5466 
5467 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5468 {
5469 	void (*func)(struct perf_event *);
5470 	u32 flags = arg;
5471 
5472 	switch (cmd) {
5473 	case PERF_EVENT_IOC_ENABLE:
5474 		func = _perf_event_enable;
5475 		break;
5476 	case PERF_EVENT_IOC_DISABLE:
5477 		func = _perf_event_disable;
5478 		break;
5479 	case PERF_EVENT_IOC_RESET:
5480 		func = _perf_event_reset;
5481 		break;
5482 
5483 	case PERF_EVENT_IOC_REFRESH:
5484 		return _perf_event_refresh(event, arg);
5485 
5486 	case PERF_EVENT_IOC_PERIOD:
5487 	{
5488 		u64 value;
5489 
5490 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5491 			return -EFAULT;
5492 
5493 		return _perf_event_period(event, value);
5494 	}
5495 	case PERF_EVENT_IOC_ID:
5496 	{
5497 		u64 id = primary_event_id(event);
5498 
5499 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5500 			return -EFAULT;
5501 		return 0;
5502 	}
5503 
5504 	case PERF_EVENT_IOC_SET_OUTPUT:
5505 	{
5506 		int ret;
5507 		if (arg != -1) {
5508 			struct perf_event *output_event;
5509 			struct fd output;
5510 			ret = perf_fget_light(arg, &output);
5511 			if (ret)
5512 				return ret;
5513 			output_event = output.file->private_data;
5514 			ret = perf_event_set_output(event, output_event);
5515 			fdput(output);
5516 		} else {
5517 			ret = perf_event_set_output(event, NULL);
5518 		}
5519 		return ret;
5520 	}
5521 
5522 	case PERF_EVENT_IOC_SET_FILTER:
5523 		return perf_event_set_filter(event, (void __user *)arg);
5524 
5525 	case PERF_EVENT_IOC_SET_BPF:
5526 		return perf_event_set_bpf_prog(event, arg);
5527 
5528 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5529 		struct perf_buffer *rb;
5530 
5531 		rcu_read_lock();
5532 		rb = rcu_dereference(event->rb);
5533 		if (!rb || !rb->nr_pages) {
5534 			rcu_read_unlock();
5535 			return -EINVAL;
5536 		}
5537 		rb_toggle_paused(rb, !!arg);
5538 		rcu_read_unlock();
5539 		return 0;
5540 	}
5541 
5542 	case PERF_EVENT_IOC_QUERY_BPF:
5543 		return perf_event_query_prog_array(event, (void __user *)arg);
5544 
5545 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5546 		struct perf_event_attr new_attr;
5547 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5548 					 &new_attr);
5549 
5550 		if (err)
5551 			return err;
5552 
5553 		return perf_event_modify_attr(event,  &new_attr);
5554 	}
5555 	default:
5556 		return -ENOTTY;
5557 	}
5558 
5559 	if (flags & PERF_IOC_FLAG_GROUP)
5560 		perf_event_for_each(event, func);
5561 	else
5562 		perf_event_for_each_child(event, func);
5563 
5564 	return 0;
5565 }
5566 
5567 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5568 {
5569 	struct perf_event *event = file->private_data;
5570 	struct perf_event_context *ctx;
5571 	long ret;
5572 
5573 	/* Treat ioctl like writes as it is likely a mutating operation. */
5574 	ret = security_perf_event_write(event);
5575 	if (ret)
5576 		return ret;
5577 
5578 	ctx = perf_event_ctx_lock(event);
5579 	ret = _perf_ioctl(event, cmd, arg);
5580 	perf_event_ctx_unlock(event, ctx);
5581 
5582 	return ret;
5583 }
5584 
5585 #ifdef CONFIG_COMPAT
5586 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5587 				unsigned long arg)
5588 {
5589 	switch (_IOC_NR(cmd)) {
5590 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5591 	case _IOC_NR(PERF_EVENT_IOC_ID):
5592 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5593 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5594 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5595 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5596 			cmd &= ~IOCSIZE_MASK;
5597 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5598 		}
5599 		break;
5600 	}
5601 	return perf_ioctl(file, cmd, arg);
5602 }
5603 #else
5604 # define perf_compat_ioctl NULL
5605 #endif
5606 
5607 int perf_event_task_enable(void)
5608 {
5609 	struct perf_event_context *ctx;
5610 	struct perf_event *event;
5611 
5612 	mutex_lock(&current->perf_event_mutex);
5613 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5614 		ctx = perf_event_ctx_lock(event);
5615 		perf_event_for_each_child(event, _perf_event_enable);
5616 		perf_event_ctx_unlock(event, ctx);
5617 	}
5618 	mutex_unlock(&current->perf_event_mutex);
5619 
5620 	return 0;
5621 }
5622 
5623 int perf_event_task_disable(void)
5624 {
5625 	struct perf_event_context *ctx;
5626 	struct perf_event *event;
5627 
5628 	mutex_lock(&current->perf_event_mutex);
5629 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5630 		ctx = perf_event_ctx_lock(event);
5631 		perf_event_for_each_child(event, _perf_event_disable);
5632 		perf_event_ctx_unlock(event, ctx);
5633 	}
5634 	mutex_unlock(&current->perf_event_mutex);
5635 
5636 	return 0;
5637 }
5638 
5639 static int perf_event_index(struct perf_event *event)
5640 {
5641 	if (event->hw.state & PERF_HES_STOPPED)
5642 		return 0;
5643 
5644 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5645 		return 0;
5646 
5647 	return event->pmu->event_idx(event);
5648 }
5649 
5650 static void calc_timer_values(struct perf_event *event,
5651 				u64 *now,
5652 				u64 *enabled,
5653 				u64 *running)
5654 {
5655 	u64 ctx_time;
5656 
5657 	*now = perf_clock();
5658 	ctx_time = event->shadow_ctx_time + *now;
5659 	__perf_update_times(event, ctx_time, enabled, running);
5660 }
5661 
5662 static void perf_event_init_userpage(struct perf_event *event)
5663 {
5664 	struct perf_event_mmap_page *userpg;
5665 	struct perf_buffer *rb;
5666 
5667 	rcu_read_lock();
5668 	rb = rcu_dereference(event->rb);
5669 	if (!rb)
5670 		goto unlock;
5671 
5672 	userpg = rb->user_page;
5673 
5674 	/* Allow new userspace to detect that bit 0 is deprecated */
5675 	userpg->cap_bit0_is_deprecated = 1;
5676 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5677 	userpg->data_offset = PAGE_SIZE;
5678 	userpg->data_size = perf_data_size(rb);
5679 
5680 unlock:
5681 	rcu_read_unlock();
5682 }
5683 
5684 void __weak arch_perf_update_userpage(
5685 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5686 {
5687 }
5688 
5689 /*
5690  * Callers need to ensure there can be no nesting of this function, otherwise
5691  * the seqlock logic goes bad. We can not serialize this because the arch
5692  * code calls this from NMI context.
5693  */
5694 void perf_event_update_userpage(struct perf_event *event)
5695 {
5696 	struct perf_event_mmap_page *userpg;
5697 	struct perf_buffer *rb;
5698 	u64 enabled, running, now;
5699 
5700 	rcu_read_lock();
5701 	rb = rcu_dereference(event->rb);
5702 	if (!rb)
5703 		goto unlock;
5704 
5705 	/*
5706 	 * compute total_time_enabled, total_time_running
5707 	 * based on snapshot values taken when the event
5708 	 * was last scheduled in.
5709 	 *
5710 	 * we cannot simply called update_context_time()
5711 	 * because of locking issue as we can be called in
5712 	 * NMI context
5713 	 */
5714 	calc_timer_values(event, &now, &enabled, &running);
5715 
5716 	userpg = rb->user_page;
5717 	/*
5718 	 * Disable preemption to guarantee consistent time stamps are stored to
5719 	 * the user page.
5720 	 */
5721 	preempt_disable();
5722 	++userpg->lock;
5723 	barrier();
5724 	userpg->index = perf_event_index(event);
5725 	userpg->offset = perf_event_count(event);
5726 	if (userpg->index)
5727 		userpg->offset -= local64_read(&event->hw.prev_count);
5728 
5729 	userpg->time_enabled = enabled +
5730 			atomic64_read(&event->child_total_time_enabled);
5731 
5732 	userpg->time_running = running +
5733 			atomic64_read(&event->child_total_time_running);
5734 
5735 	arch_perf_update_userpage(event, userpg, now);
5736 
5737 	barrier();
5738 	++userpg->lock;
5739 	preempt_enable();
5740 unlock:
5741 	rcu_read_unlock();
5742 }
5743 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5744 
5745 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5746 {
5747 	struct perf_event *event = vmf->vma->vm_file->private_data;
5748 	struct perf_buffer *rb;
5749 	vm_fault_t ret = VM_FAULT_SIGBUS;
5750 
5751 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5752 		if (vmf->pgoff == 0)
5753 			ret = 0;
5754 		return ret;
5755 	}
5756 
5757 	rcu_read_lock();
5758 	rb = rcu_dereference(event->rb);
5759 	if (!rb)
5760 		goto unlock;
5761 
5762 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5763 		goto unlock;
5764 
5765 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5766 	if (!vmf->page)
5767 		goto unlock;
5768 
5769 	get_page(vmf->page);
5770 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5771 	vmf->page->index   = vmf->pgoff;
5772 
5773 	ret = 0;
5774 unlock:
5775 	rcu_read_unlock();
5776 
5777 	return ret;
5778 }
5779 
5780 static void ring_buffer_attach(struct perf_event *event,
5781 			       struct perf_buffer *rb)
5782 {
5783 	struct perf_buffer *old_rb = NULL;
5784 	unsigned long flags;
5785 
5786 	if (event->rb) {
5787 		/*
5788 		 * Should be impossible, we set this when removing
5789 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5790 		 */
5791 		WARN_ON_ONCE(event->rcu_pending);
5792 
5793 		old_rb = event->rb;
5794 		spin_lock_irqsave(&old_rb->event_lock, flags);
5795 		list_del_rcu(&event->rb_entry);
5796 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5797 
5798 		event->rcu_batches = get_state_synchronize_rcu();
5799 		event->rcu_pending = 1;
5800 	}
5801 
5802 	if (rb) {
5803 		if (event->rcu_pending) {
5804 			cond_synchronize_rcu(event->rcu_batches);
5805 			event->rcu_pending = 0;
5806 		}
5807 
5808 		spin_lock_irqsave(&rb->event_lock, flags);
5809 		list_add_rcu(&event->rb_entry, &rb->event_list);
5810 		spin_unlock_irqrestore(&rb->event_lock, flags);
5811 	}
5812 
5813 	/*
5814 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5815 	 * before swizzling the event::rb pointer; if it's getting
5816 	 * unmapped, its aux_mmap_count will be 0 and it won't
5817 	 * restart. See the comment in __perf_pmu_output_stop().
5818 	 *
5819 	 * Data will inevitably be lost when set_output is done in
5820 	 * mid-air, but then again, whoever does it like this is
5821 	 * not in for the data anyway.
5822 	 */
5823 	if (has_aux(event))
5824 		perf_event_stop(event, 0);
5825 
5826 	rcu_assign_pointer(event->rb, rb);
5827 
5828 	if (old_rb) {
5829 		ring_buffer_put(old_rb);
5830 		/*
5831 		 * Since we detached before setting the new rb, so that we
5832 		 * could attach the new rb, we could have missed a wakeup.
5833 		 * Provide it now.
5834 		 */
5835 		wake_up_all(&event->waitq);
5836 	}
5837 }
5838 
5839 static void ring_buffer_wakeup(struct perf_event *event)
5840 {
5841 	struct perf_buffer *rb;
5842 
5843 	rcu_read_lock();
5844 	rb = rcu_dereference(event->rb);
5845 	if (rb) {
5846 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5847 			wake_up_all(&event->waitq);
5848 	}
5849 	rcu_read_unlock();
5850 }
5851 
5852 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5853 {
5854 	struct perf_buffer *rb;
5855 
5856 	rcu_read_lock();
5857 	rb = rcu_dereference(event->rb);
5858 	if (rb) {
5859 		if (!refcount_inc_not_zero(&rb->refcount))
5860 			rb = NULL;
5861 	}
5862 	rcu_read_unlock();
5863 
5864 	return rb;
5865 }
5866 
5867 void ring_buffer_put(struct perf_buffer *rb)
5868 {
5869 	if (!refcount_dec_and_test(&rb->refcount))
5870 		return;
5871 
5872 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5873 
5874 	call_rcu(&rb->rcu_head, rb_free_rcu);
5875 }
5876 
5877 static void perf_mmap_open(struct vm_area_struct *vma)
5878 {
5879 	struct perf_event *event = vma->vm_file->private_data;
5880 
5881 	atomic_inc(&event->mmap_count);
5882 	atomic_inc(&event->rb->mmap_count);
5883 
5884 	if (vma->vm_pgoff)
5885 		atomic_inc(&event->rb->aux_mmap_count);
5886 
5887 	if (event->pmu->event_mapped)
5888 		event->pmu->event_mapped(event, vma->vm_mm);
5889 }
5890 
5891 static void perf_pmu_output_stop(struct perf_event *event);
5892 
5893 /*
5894  * A buffer can be mmap()ed multiple times; either directly through the same
5895  * event, or through other events by use of perf_event_set_output().
5896  *
5897  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5898  * the buffer here, where we still have a VM context. This means we need
5899  * to detach all events redirecting to us.
5900  */
5901 static void perf_mmap_close(struct vm_area_struct *vma)
5902 {
5903 	struct perf_event *event = vma->vm_file->private_data;
5904 	struct perf_buffer *rb = ring_buffer_get(event);
5905 	struct user_struct *mmap_user = rb->mmap_user;
5906 	int mmap_locked = rb->mmap_locked;
5907 	unsigned long size = perf_data_size(rb);
5908 	bool detach_rest = false;
5909 
5910 	if (event->pmu->event_unmapped)
5911 		event->pmu->event_unmapped(event, vma->vm_mm);
5912 
5913 	/*
5914 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5915 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5916 	 * serialize with perf_mmap here.
5917 	 */
5918 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5919 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5920 		/*
5921 		 * Stop all AUX events that are writing to this buffer,
5922 		 * so that we can free its AUX pages and corresponding PMU
5923 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5924 		 * they won't start any more (see perf_aux_output_begin()).
5925 		 */
5926 		perf_pmu_output_stop(event);
5927 
5928 		/* now it's safe to free the pages */
5929 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5930 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5931 
5932 		/* this has to be the last one */
5933 		rb_free_aux(rb);
5934 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5935 
5936 		mutex_unlock(&event->mmap_mutex);
5937 	}
5938 
5939 	if (atomic_dec_and_test(&rb->mmap_count))
5940 		detach_rest = true;
5941 
5942 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5943 		goto out_put;
5944 
5945 	ring_buffer_attach(event, NULL);
5946 	mutex_unlock(&event->mmap_mutex);
5947 
5948 	/* If there's still other mmap()s of this buffer, we're done. */
5949 	if (!detach_rest)
5950 		goto out_put;
5951 
5952 	/*
5953 	 * No other mmap()s, detach from all other events that might redirect
5954 	 * into the now unreachable buffer. Somewhat complicated by the
5955 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5956 	 */
5957 again:
5958 	rcu_read_lock();
5959 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5960 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5961 			/*
5962 			 * This event is en-route to free_event() which will
5963 			 * detach it and remove it from the list.
5964 			 */
5965 			continue;
5966 		}
5967 		rcu_read_unlock();
5968 
5969 		mutex_lock(&event->mmap_mutex);
5970 		/*
5971 		 * Check we didn't race with perf_event_set_output() which can
5972 		 * swizzle the rb from under us while we were waiting to
5973 		 * acquire mmap_mutex.
5974 		 *
5975 		 * If we find a different rb; ignore this event, a next
5976 		 * iteration will no longer find it on the list. We have to
5977 		 * still restart the iteration to make sure we're not now
5978 		 * iterating the wrong list.
5979 		 */
5980 		if (event->rb == rb)
5981 			ring_buffer_attach(event, NULL);
5982 
5983 		mutex_unlock(&event->mmap_mutex);
5984 		put_event(event);
5985 
5986 		/*
5987 		 * Restart the iteration; either we're on the wrong list or
5988 		 * destroyed its integrity by doing a deletion.
5989 		 */
5990 		goto again;
5991 	}
5992 	rcu_read_unlock();
5993 
5994 	/*
5995 	 * It could be there's still a few 0-ref events on the list; they'll
5996 	 * get cleaned up by free_event() -- they'll also still have their
5997 	 * ref on the rb and will free it whenever they are done with it.
5998 	 *
5999 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6000 	 * undo the VM accounting.
6001 	 */
6002 
6003 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6004 			&mmap_user->locked_vm);
6005 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6006 	free_uid(mmap_user);
6007 
6008 out_put:
6009 	ring_buffer_put(rb); /* could be last */
6010 }
6011 
6012 static const struct vm_operations_struct perf_mmap_vmops = {
6013 	.open		= perf_mmap_open,
6014 	.close		= perf_mmap_close, /* non mergeable */
6015 	.fault		= perf_mmap_fault,
6016 	.page_mkwrite	= perf_mmap_fault,
6017 };
6018 
6019 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6020 {
6021 	struct perf_event *event = file->private_data;
6022 	unsigned long user_locked, user_lock_limit;
6023 	struct user_struct *user = current_user();
6024 	struct perf_buffer *rb = NULL;
6025 	unsigned long locked, lock_limit;
6026 	unsigned long vma_size;
6027 	unsigned long nr_pages;
6028 	long user_extra = 0, extra = 0;
6029 	int ret = 0, flags = 0;
6030 
6031 	/*
6032 	 * Don't allow mmap() of inherited per-task counters. This would
6033 	 * create a performance issue due to all children writing to the
6034 	 * same rb.
6035 	 */
6036 	if (event->cpu == -1 && event->attr.inherit)
6037 		return -EINVAL;
6038 
6039 	if (!(vma->vm_flags & VM_SHARED))
6040 		return -EINVAL;
6041 
6042 	ret = security_perf_event_read(event);
6043 	if (ret)
6044 		return ret;
6045 
6046 	vma_size = vma->vm_end - vma->vm_start;
6047 
6048 	if (vma->vm_pgoff == 0) {
6049 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6050 	} else {
6051 		/*
6052 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6053 		 * mapped, all subsequent mappings should have the same size
6054 		 * and offset. Must be above the normal perf buffer.
6055 		 */
6056 		u64 aux_offset, aux_size;
6057 
6058 		if (!event->rb)
6059 			return -EINVAL;
6060 
6061 		nr_pages = vma_size / PAGE_SIZE;
6062 
6063 		mutex_lock(&event->mmap_mutex);
6064 		ret = -EINVAL;
6065 
6066 		rb = event->rb;
6067 		if (!rb)
6068 			goto aux_unlock;
6069 
6070 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6071 		aux_size = READ_ONCE(rb->user_page->aux_size);
6072 
6073 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6074 			goto aux_unlock;
6075 
6076 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6077 			goto aux_unlock;
6078 
6079 		/* already mapped with a different offset */
6080 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6081 			goto aux_unlock;
6082 
6083 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6084 			goto aux_unlock;
6085 
6086 		/* already mapped with a different size */
6087 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6088 			goto aux_unlock;
6089 
6090 		if (!is_power_of_2(nr_pages))
6091 			goto aux_unlock;
6092 
6093 		if (!atomic_inc_not_zero(&rb->mmap_count))
6094 			goto aux_unlock;
6095 
6096 		if (rb_has_aux(rb)) {
6097 			atomic_inc(&rb->aux_mmap_count);
6098 			ret = 0;
6099 			goto unlock;
6100 		}
6101 
6102 		atomic_set(&rb->aux_mmap_count, 1);
6103 		user_extra = nr_pages;
6104 
6105 		goto accounting;
6106 	}
6107 
6108 	/*
6109 	 * If we have rb pages ensure they're a power-of-two number, so we
6110 	 * can do bitmasks instead of modulo.
6111 	 */
6112 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6113 		return -EINVAL;
6114 
6115 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6116 		return -EINVAL;
6117 
6118 	WARN_ON_ONCE(event->ctx->parent_ctx);
6119 again:
6120 	mutex_lock(&event->mmap_mutex);
6121 	if (event->rb) {
6122 		if (event->rb->nr_pages != nr_pages) {
6123 			ret = -EINVAL;
6124 			goto unlock;
6125 		}
6126 
6127 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6128 			/*
6129 			 * Raced against perf_mmap_close() through
6130 			 * perf_event_set_output(). Try again, hope for better
6131 			 * luck.
6132 			 */
6133 			mutex_unlock(&event->mmap_mutex);
6134 			goto again;
6135 		}
6136 
6137 		goto unlock;
6138 	}
6139 
6140 	user_extra = nr_pages + 1;
6141 
6142 accounting:
6143 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6144 
6145 	/*
6146 	 * Increase the limit linearly with more CPUs:
6147 	 */
6148 	user_lock_limit *= num_online_cpus();
6149 
6150 	user_locked = atomic_long_read(&user->locked_vm);
6151 
6152 	/*
6153 	 * sysctl_perf_event_mlock may have changed, so that
6154 	 *     user->locked_vm > user_lock_limit
6155 	 */
6156 	if (user_locked > user_lock_limit)
6157 		user_locked = user_lock_limit;
6158 	user_locked += user_extra;
6159 
6160 	if (user_locked > user_lock_limit) {
6161 		/*
6162 		 * charge locked_vm until it hits user_lock_limit;
6163 		 * charge the rest from pinned_vm
6164 		 */
6165 		extra = user_locked - user_lock_limit;
6166 		user_extra -= extra;
6167 	}
6168 
6169 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6170 	lock_limit >>= PAGE_SHIFT;
6171 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6172 
6173 	if ((locked > lock_limit) && perf_is_paranoid() &&
6174 		!capable(CAP_IPC_LOCK)) {
6175 		ret = -EPERM;
6176 		goto unlock;
6177 	}
6178 
6179 	WARN_ON(!rb && event->rb);
6180 
6181 	if (vma->vm_flags & VM_WRITE)
6182 		flags |= RING_BUFFER_WRITABLE;
6183 
6184 	if (!rb) {
6185 		rb = rb_alloc(nr_pages,
6186 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6187 			      event->cpu, flags);
6188 
6189 		if (!rb) {
6190 			ret = -ENOMEM;
6191 			goto unlock;
6192 		}
6193 
6194 		atomic_set(&rb->mmap_count, 1);
6195 		rb->mmap_user = get_current_user();
6196 		rb->mmap_locked = extra;
6197 
6198 		ring_buffer_attach(event, rb);
6199 
6200 		perf_event_init_userpage(event);
6201 		perf_event_update_userpage(event);
6202 	} else {
6203 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6204 				   event->attr.aux_watermark, flags);
6205 		if (!ret)
6206 			rb->aux_mmap_locked = extra;
6207 	}
6208 
6209 unlock:
6210 	if (!ret) {
6211 		atomic_long_add(user_extra, &user->locked_vm);
6212 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6213 
6214 		atomic_inc(&event->mmap_count);
6215 	} else if (rb) {
6216 		atomic_dec(&rb->mmap_count);
6217 	}
6218 aux_unlock:
6219 	mutex_unlock(&event->mmap_mutex);
6220 
6221 	/*
6222 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6223 	 * vma.
6224 	 */
6225 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6226 	vma->vm_ops = &perf_mmap_vmops;
6227 
6228 	if (event->pmu->event_mapped)
6229 		event->pmu->event_mapped(event, vma->vm_mm);
6230 
6231 	return ret;
6232 }
6233 
6234 static int perf_fasync(int fd, struct file *filp, int on)
6235 {
6236 	struct inode *inode = file_inode(filp);
6237 	struct perf_event *event = filp->private_data;
6238 	int retval;
6239 
6240 	inode_lock(inode);
6241 	retval = fasync_helper(fd, filp, on, &event->fasync);
6242 	inode_unlock(inode);
6243 
6244 	if (retval < 0)
6245 		return retval;
6246 
6247 	return 0;
6248 }
6249 
6250 static const struct file_operations perf_fops = {
6251 	.llseek			= no_llseek,
6252 	.release		= perf_release,
6253 	.read			= perf_read,
6254 	.poll			= perf_poll,
6255 	.unlocked_ioctl		= perf_ioctl,
6256 	.compat_ioctl		= perf_compat_ioctl,
6257 	.mmap			= perf_mmap,
6258 	.fasync			= perf_fasync,
6259 };
6260 
6261 /*
6262  * Perf event wakeup
6263  *
6264  * If there's data, ensure we set the poll() state and publish everything
6265  * to user-space before waking everybody up.
6266  */
6267 
6268 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6269 {
6270 	/* only the parent has fasync state */
6271 	if (event->parent)
6272 		event = event->parent;
6273 	return &event->fasync;
6274 }
6275 
6276 void perf_event_wakeup(struct perf_event *event)
6277 {
6278 	ring_buffer_wakeup(event);
6279 
6280 	if (event->pending_kill) {
6281 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6282 		event->pending_kill = 0;
6283 	}
6284 }
6285 
6286 static void perf_pending_event_disable(struct perf_event *event)
6287 {
6288 	int cpu = READ_ONCE(event->pending_disable);
6289 
6290 	if (cpu < 0)
6291 		return;
6292 
6293 	if (cpu == smp_processor_id()) {
6294 		WRITE_ONCE(event->pending_disable, -1);
6295 		perf_event_disable_local(event);
6296 		return;
6297 	}
6298 
6299 	/*
6300 	 *  CPU-A			CPU-B
6301 	 *
6302 	 *  perf_event_disable_inatomic()
6303 	 *    @pending_disable = CPU-A;
6304 	 *    irq_work_queue();
6305 	 *
6306 	 *  sched-out
6307 	 *    @pending_disable = -1;
6308 	 *
6309 	 *				sched-in
6310 	 *				perf_event_disable_inatomic()
6311 	 *				  @pending_disable = CPU-B;
6312 	 *				  irq_work_queue(); // FAILS
6313 	 *
6314 	 *  irq_work_run()
6315 	 *    perf_pending_event()
6316 	 *
6317 	 * But the event runs on CPU-B and wants disabling there.
6318 	 */
6319 	irq_work_queue_on(&event->pending, cpu);
6320 }
6321 
6322 static void perf_pending_event(struct irq_work *entry)
6323 {
6324 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6325 	int rctx;
6326 
6327 	rctx = perf_swevent_get_recursion_context();
6328 	/*
6329 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6330 	 * and we won't recurse 'further'.
6331 	 */
6332 
6333 	perf_pending_event_disable(event);
6334 
6335 	if (event->pending_wakeup) {
6336 		event->pending_wakeup = 0;
6337 		perf_event_wakeup(event);
6338 	}
6339 
6340 	if (rctx >= 0)
6341 		perf_swevent_put_recursion_context(rctx);
6342 }
6343 
6344 /*
6345  * We assume there is only KVM supporting the callbacks.
6346  * Later on, we might change it to a list if there is
6347  * another virtualization implementation supporting the callbacks.
6348  */
6349 struct perf_guest_info_callbacks *perf_guest_cbs;
6350 
6351 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6352 {
6353 	perf_guest_cbs = cbs;
6354 	return 0;
6355 }
6356 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6357 
6358 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6359 {
6360 	perf_guest_cbs = NULL;
6361 	return 0;
6362 }
6363 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6364 
6365 static void
6366 perf_output_sample_regs(struct perf_output_handle *handle,
6367 			struct pt_regs *regs, u64 mask)
6368 {
6369 	int bit;
6370 	DECLARE_BITMAP(_mask, 64);
6371 
6372 	bitmap_from_u64(_mask, mask);
6373 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6374 		u64 val;
6375 
6376 		val = perf_reg_value(regs, bit);
6377 		perf_output_put(handle, val);
6378 	}
6379 }
6380 
6381 static void perf_sample_regs_user(struct perf_regs *regs_user,
6382 				  struct pt_regs *regs)
6383 {
6384 	if (user_mode(regs)) {
6385 		regs_user->abi = perf_reg_abi(current);
6386 		regs_user->regs = regs;
6387 	} else if (!(current->flags & PF_KTHREAD)) {
6388 		perf_get_regs_user(regs_user, regs);
6389 	} else {
6390 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6391 		regs_user->regs = NULL;
6392 	}
6393 }
6394 
6395 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6396 				  struct pt_regs *regs)
6397 {
6398 	regs_intr->regs = regs;
6399 	regs_intr->abi  = perf_reg_abi(current);
6400 }
6401 
6402 
6403 /*
6404  * Get remaining task size from user stack pointer.
6405  *
6406  * It'd be better to take stack vma map and limit this more
6407  * precisely, but there's no way to get it safely under interrupt,
6408  * so using TASK_SIZE as limit.
6409  */
6410 static u64 perf_ustack_task_size(struct pt_regs *regs)
6411 {
6412 	unsigned long addr = perf_user_stack_pointer(regs);
6413 
6414 	if (!addr || addr >= TASK_SIZE)
6415 		return 0;
6416 
6417 	return TASK_SIZE - addr;
6418 }
6419 
6420 static u16
6421 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6422 			struct pt_regs *regs)
6423 {
6424 	u64 task_size;
6425 
6426 	/* No regs, no stack pointer, no dump. */
6427 	if (!regs)
6428 		return 0;
6429 
6430 	/*
6431 	 * Check if we fit in with the requested stack size into the:
6432 	 * - TASK_SIZE
6433 	 *   If we don't, we limit the size to the TASK_SIZE.
6434 	 *
6435 	 * - remaining sample size
6436 	 *   If we don't, we customize the stack size to
6437 	 *   fit in to the remaining sample size.
6438 	 */
6439 
6440 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6441 	stack_size = min(stack_size, (u16) task_size);
6442 
6443 	/* Current header size plus static size and dynamic size. */
6444 	header_size += 2 * sizeof(u64);
6445 
6446 	/* Do we fit in with the current stack dump size? */
6447 	if ((u16) (header_size + stack_size) < header_size) {
6448 		/*
6449 		 * If we overflow the maximum size for the sample,
6450 		 * we customize the stack dump size to fit in.
6451 		 */
6452 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6453 		stack_size = round_up(stack_size, sizeof(u64));
6454 	}
6455 
6456 	return stack_size;
6457 }
6458 
6459 static void
6460 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6461 			  struct pt_regs *regs)
6462 {
6463 	/* Case of a kernel thread, nothing to dump */
6464 	if (!regs) {
6465 		u64 size = 0;
6466 		perf_output_put(handle, size);
6467 	} else {
6468 		unsigned long sp;
6469 		unsigned int rem;
6470 		u64 dyn_size;
6471 		mm_segment_t fs;
6472 
6473 		/*
6474 		 * We dump:
6475 		 * static size
6476 		 *   - the size requested by user or the best one we can fit
6477 		 *     in to the sample max size
6478 		 * data
6479 		 *   - user stack dump data
6480 		 * dynamic size
6481 		 *   - the actual dumped size
6482 		 */
6483 
6484 		/* Static size. */
6485 		perf_output_put(handle, dump_size);
6486 
6487 		/* Data. */
6488 		sp = perf_user_stack_pointer(regs);
6489 		fs = force_uaccess_begin();
6490 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6491 		force_uaccess_end(fs);
6492 		dyn_size = dump_size - rem;
6493 
6494 		perf_output_skip(handle, rem);
6495 
6496 		/* Dynamic size. */
6497 		perf_output_put(handle, dyn_size);
6498 	}
6499 }
6500 
6501 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6502 					  struct perf_sample_data *data,
6503 					  size_t size)
6504 {
6505 	struct perf_event *sampler = event->aux_event;
6506 	struct perf_buffer *rb;
6507 
6508 	data->aux_size = 0;
6509 
6510 	if (!sampler)
6511 		goto out;
6512 
6513 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6514 		goto out;
6515 
6516 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6517 		goto out;
6518 
6519 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6520 	if (!rb)
6521 		goto out;
6522 
6523 	/*
6524 	 * If this is an NMI hit inside sampling code, don't take
6525 	 * the sample. See also perf_aux_sample_output().
6526 	 */
6527 	if (READ_ONCE(rb->aux_in_sampling)) {
6528 		data->aux_size = 0;
6529 	} else {
6530 		size = min_t(size_t, size, perf_aux_size(rb));
6531 		data->aux_size = ALIGN(size, sizeof(u64));
6532 	}
6533 	ring_buffer_put(rb);
6534 
6535 out:
6536 	return data->aux_size;
6537 }
6538 
6539 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6540 			   struct perf_event *event,
6541 			   struct perf_output_handle *handle,
6542 			   unsigned long size)
6543 {
6544 	unsigned long flags;
6545 	long ret;
6546 
6547 	/*
6548 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6549 	 * paths. If we start calling them in NMI context, they may race with
6550 	 * the IRQ ones, that is, for example, re-starting an event that's just
6551 	 * been stopped, which is why we're using a separate callback that
6552 	 * doesn't change the event state.
6553 	 *
6554 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6555 	 */
6556 	local_irq_save(flags);
6557 	/*
6558 	 * Guard against NMI hits inside the critical section;
6559 	 * see also perf_prepare_sample_aux().
6560 	 */
6561 	WRITE_ONCE(rb->aux_in_sampling, 1);
6562 	barrier();
6563 
6564 	ret = event->pmu->snapshot_aux(event, handle, size);
6565 
6566 	barrier();
6567 	WRITE_ONCE(rb->aux_in_sampling, 0);
6568 	local_irq_restore(flags);
6569 
6570 	return ret;
6571 }
6572 
6573 static void perf_aux_sample_output(struct perf_event *event,
6574 				   struct perf_output_handle *handle,
6575 				   struct perf_sample_data *data)
6576 {
6577 	struct perf_event *sampler = event->aux_event;
6578 	struct perf_buffer *rb;
6579 	unsigned long pad;
6580 	long size;
6581 
6582 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6583 		return;
6584 
6585 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6586 	if (!rb)
6587 		return;
6588 
6589 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6590 
6591 	/*
6592 	 * An error here means that perf_output_copy() failed (returned a
6593 	 * non-zero surplus that it didn't copy), which in its current
6594 	 * enlightened implementation is not possible. If that changes, we'd
6595 	 * like to know.
6596 	 */
6597 	if (WARN_ON_ONCE(size < 0))
6598 		goto out_put;
6599 
6600 	/*
6601 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6602 	 * perf_prepare_sample_aux(), so should not be more than that.
6603 	 */
6604 	pad = data->aux_size - size;
6605 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6606 		pad = 8;
6607 
6608 	if (pad) {
6609 		u64 zero = 0;
6610 		perf_output_copy(handle, &zero, pad);
6611 	}
6612 
6613 out_put:
6614 	ring_buffer_put(rb);
6615 }
6616 
6617 static void __perf_event_header__init_id(struct perf_event_header *header,
6618 					 struct perf_sample_data *data,
6619 					 struct perf_event *event)
6620 {
6621 	u64 sample_type = event->attr.sample_type;
6622 
6623 	data->type = sample_type;
6624 	header->size += event->id_header_size;
6625 
6626 	if (sample_type & PERF_SAMPLE_TID) {
6627 		/* namespace issues */
6628 		data->tid_entry.pid = perf_event_pid(event, current);
6629 		data->tid_entry.tid = perf_event_tid(event, current);
6630 	}
6631 
6632 	if (sample_type & PERF_SAMPLE_TIME)
6633 		data->time = perf_event_clock(event);
6634 
6635 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6636 		data->id = primary_event_id(event);
6637 
6638 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6639 		data->stream_id = event->id;
6640 
6641 	if (sample_type & PERF_SAMPLE_CPU) {
6642 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6643 		data->cpu_entry.reserved = 0;
6644 	}
6645 }
6646 
6647 void perf_event_header__init_id(struct perf_event_header *header,
6648 				struct perf_sample_data *data,
6649 				struct perf_event *event)
6650 {
6651 	if (event->attr.sample_id_all)
6652 		__perf_event_header__init_id(header, data, event);
6653 }
6654 
6655 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6656 					   struct perf_sample_data *data)
6657 {
6658 	u64 sample_type = data->type;
6659 
6660 	if (sample_type & PERF_SAMPLE_TID)
6661 		perf_output_put(handle, data->tid_entry);
6662 
6663 	if (sample_type & PERF_SAMPLE_TIME)
6664 		perf_output_put(handle, data->time);
6665 
6666 	if (sample_type & PERF_SAMPLE_ID)
6667 		perf_output_put(handle, data->id);
6668 
6669 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6670 		perf_output_put(handle, data->stream_id);
6671 
6672 	if (sample_type & PERF_SAMPLE_CPU)
6673 		perf_output_put(handle, data->cpu_entry);
6674 
6675 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6676 		perf_output_put(handle, data->id);
6677 }
6678 
6679 void perf_event__output_id_sample(struct perf_event *event,
6680 				  struct perf_output_handle *handle,
6681 				  struct perf_sample_data *sample)
6682 {
6683 	if (event->attr.sample_id_all)
6684 		__perf_event__output_id_sample(handle, sample);
6685 }
6686 
6687 static void perf_output_read_one(struct perf_output_handle *handle,
6688 				 struct perf_event *event,
6689 				 u64 enabled, u64 running)
6690 {
6691 	u64 read_format = event->attr.read_format;
6692 	u64 values[4];
6693 	int n = 0;
6694 
6695 	values[n++] = perf_event_count(event);
6696 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6697 		values[n++] = enabled +
6698 			atomic64_read(&event->child_total_time_enabled);
6699 	}
6700 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6701 		values[n++] = running +
6702 			atomic64_read(&event->child_total_time_running);
6703 	}
6704 	if (read_format & PERF_FORMAT_ID)
6705 		values[n++] = primary_event_id(event);
6706 
6707 	__output_copy(handle, values, n * sizeof(u64));
6708 }
6709 
6710 static void perf_output_read_group(struct perf_output_handle *handle,
6711 			    struct perf_event *event,
6712 			    u64 enabled, u64 running)
6713 {
6714 	struct perf_event *leader = event->group_leader, *sub;
6715 	u64 read_format = event->attr.read_format;
6716 	u64 values[5];
6717 	int n = 0;
6718 
6719 	values[n++] = 1 + leader->nr_siblings;
6720 
6721 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6722 		values[n++] = enabled;
6723 
6724 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6725 		values[n++] = running;
6726 
6727 	if ((leader != event) &&
6728 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6729 		leader->pmu->read(leader);
6730 
6731 	values[n++] = perf_event_count(leader);
6732 	if (read_format & PERF_FORMAT_ID)
6733 		values[n++] = primary_event_id(leader);
6734 
6735 	__output_copy(handle, values, n * sizeof(u64));
6736 
6737 	for_each_sibling_event(sub, leader) {
6738 		n = 0;
6739 
6740 		if ((sub != event) &&
6741 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6742 			sub->pmu->read(sub);
6743 
6744 		values[n++] = perf_event_count(sub);
6745 		if (read_format & PERF_FORMAT_ID)
6746 			values[n++] = primary_event_id(sub);
6747 
6748 		__output_copy(handle, values, n * sizeof(u64));
6749 	}
6750 }
6751 
6752 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6753 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6754 
6755 /*
6756  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6757  *
6758  * The problem is that its both hard and excessively expensive to iterate the
6759  * child list, not to mention that its impossible to IPI the children running
6760  * on another CPU, from interrupt/NMI context.
6761  */
6762 static void perf_output_read(struct perf_output_handle *handle,
6763 			     struct perf_event *event)
6764 {
6765 	u64 enabled = 0, running = 0, now;
6766 	u64 read_format = event->attr.read_format;
6767 
6768 	/*
6769 	 * compute total_time_enabled, total_time_running
6770 	 * based on snapshot values taken when the event
6771 	 * was last scheduled in.
6772 	 *
6773 	 * we cannot simply called update_context_time()
6774 	 * because of locking issue as we are called in
6775 	 * NMI context
6776 	 */
6777 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6778 		calc_timer_values(event, &now, &enabled, &running);
6779 
6780 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6781 		perf_output_read_group(handle, event, enabled, running);
6782 	else
6783 		perf_output_read_one(handle, event, enabled, running);
6784 }
6785 
6786 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6787 {
6788 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6789 }
6790 
6791 void perf_output_sample(struct perf_output_handle *handle,
6792 			struct perf_event_header *header,
6793 			struct perf_sample_data *data,
6794 			struct perf_event *event)
6795 {
6796 	u64 sample_type = data->type;
6797 
6798 	perf_output_put(handle, *header);
6799 
6800 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6801 		perf_output_put(handle, data->id);
6802 
6803 	if (sample_type & PERF_SAMPLE_IP)
6804 		perf_output_put(handle, data->ip);
6805 
6806 	if (sample_type & PERF_SAMPLE_TID)
6807 		perf_output_put(handle, data->tid_entry);
6808 
6809 	if (sample_type & PERF_SAMPLE_TIME)
6810 		perf_output_put(handle, data->time);
6811 
6812 	if (sample_type & PERF_SAMPLE_ADDR)
6813 		perf_output_put(handle, data->addr);
6814 
6815 	if (sample_type & PERF_SAMPLE_ID)
6816 		perf_output_put(handle, data->id);
6817 
6818 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6819 		perf_output_put(handle, data->stream_id);
6820 
6821 	if (sample_type & PERF_SAMPLE_CPU)
6822 		perf_output_put(handle, data->cpu_entry);
6823 
6824 	if (sample_type & PERF_SAMPLE_PERIOD)
6825 		perf_output_put(handle, data->period);
6826 
6827 	if (sample_type & PERF_SAMPLE_READ)
6828 		perf_output_read(handle, event);
6829 
6830 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6831 		int size = 1;
6832 
6833 		size += data->callchain->nr;
6834 		size *= sizeof(u64);
6835 		__output_copy(handle, data->callchain, size);
6836 	}
6837 
6838 	if (sample_type & PERF_SAMPLE_RAW) {
6839 		struct perf_raw_record *raw = data->raw;
6840 
6841 		if (raw) {
6842 			struct perf_raw_frag *frag = &raw->frag;
6843 
6844 			perf_output_put(handle, raw->size);
6845 			do {
6846 				if (frag->copy) {
6847 					__output_custom(handle, frag->copy,
6848 							frag->data, frag->size);
6849 				} else {
6850 					__output_copy(handle, frag->data,
6851 						      frag->size);
6852 				}
6853 				if (perf_raw_frag_last(frag))
6854 					break;
6855 				frag = frag->next;
6856 			} while (1);
6857 			if (frag->pad)
6858 				__output_skip(handle, NULL, frag->pad);
6859 		} else {
6860 			struct {
6861 				u32	size;
6862 				u32	data;
6863 			} raw = {
6864 				.size = sizeof(u32),
6865 				.data = 0,
6866 			};
6867 			perf_output_put(handle, raw);
6868 		}
6869 	}
6870 
6871 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6872 		if (data->br_stack) {
6873 			size_t size;
6874 
6875 			size = data->br_stack->nr
6876 			     * sizeof(struct perf_branch_entry);
6877 
6878 			perf_output_put(handle, data->br_stack->nr);
6879 			if (perf_sample_save_hw_index(event))
6880 				perf_output_put(handle, data->br_stack->hw_idx);
6881 			perf_output_copy(handle, data->br_stack->entries, size);
6882 		} else {
6883 			/*
6884 			 * we always store at least the value of nr
6885 			 */
6886 			u64 nr = 0;
6887 			perf_output_put(handle, nr);
6888 		}
6889 	}
6890 
6891 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6892 		u64 abi = data->regs_user.abi;
6893 
6894 		/*
6895 		 * If there are no regs to dump, notice it through
6896 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6897 		 */
6898 		perf_output_put(handle, abi);
6899 
6900 		if (abi) {
6901 			u64 mask = event->attr.sample_regs_user;
6902 			perf_output_sample_regs(handle,
6903 						data->regs_user.regs,
6904 						mask);
6905 		}
6906 	}
6907 
6908 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6909 		perf_output_sample_ustack(handle,
6910 					  data->stack_user_size,
6911 					  data->regs_user.regs);
6912 	}
6913 
6914 	if (sample_type & PERF_SAMPLE_WEIGHT)
6915 		perf_output_put(handle, data->weight);
6916 
6917 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6918 		perf_output_put(handle, data->data_src.val);
6919 
6920 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6921 		perf_output_put(handle, data->txn);
6922 
6923 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6924 		u64 abi = data->regs_intr.abi;
6925 		/*
6926 		 * If there are no regs to dump, notice it through
6927 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6928 		 */
6929 		perf_output_put(handle, abi);
6930 
6931 		if (abi) {
6932 			u64 mask = event->attr.sample_regs_intr;
6933 
6934 			perf_output_sample_regs(handle,
6935 						data->regs_intr.regs,
6936 						mask);
6937 		}
6938 	}
6939 
6940 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6941 		perf_output_put(handle, data->phys_addr);
6942 
6943 	if (sample_type & PERF_SAMPLE_CGROUP)
6944 		perf_output_put(handle, data->cgroup);
6945 
6946 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
6947 		perf_output_put(handle, data->data_page_size);
6948 
6949 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
6950 		perf_output_put(handle, data->code_page_size);
6951 
6952 	if (sample_type & PERF_SAMPLE_AUX) {
6953 		perf_output_put(handle, data->aux_size);
6954 
6955 		if (data->aux_size)
6956 			perf_aux_sample_output(event, handle, data);
6957 	}
6958 
6959 	if (!event->attr.watermark) {
6960 		int wakeup_events = event->attr.wakeup_events;
6961 
6962 		if (wakeup_events) {
6963 			struct perf_buffer *rb = handle->rb;
6964 			int events = local_inc_return(&rb->events);
6965 
6966 			if (events >= wakeup_events) {
6967 				local_sub(wakeup_events, &rb->events);
6968 				local_inc(&rb->wakeup);
6969 			}
6970 		}
6971 	}
6972 }
6973 
6974 static u64 perf_virt_to_phys(u64 virt)
6975 {
6976 	u64 phys_addr = 0;
6977 	struct page *p = NULL;
6978 
6979 	if (!virt)
6980 		return 0;
6981 
6982 	if (virt >= TASK_SIZE) {
6983 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6984 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6985 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6986 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6987 	} else {
6988 		/*
6989 		 * Walking the pages tables for user address.
6990 		 * Interrupts are disabled, so it prevents any tear down
6991 		 * of the page tables.
6992 		 * Try IRQ-safe get_user_page_fast_only first.
6993 		 * If failed, leave phys_addr as 0.
6994 		 */
6995 		if (current->mm != NULL) {
6996 			pagefault_disable();
6997 			if (get_user_page_fast_only(virt, 0, &p))
6998 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6999 			pagefault_enable();
7000 		}
7001 
7002 		if (p)
7003 			put_page(p);
7004 	}
7005 
7006 	return phys_addr;
7007 }
7008 
7009 /*
7010  * Return the pagetable size of a given virtual address.
7011  */
7012 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7013 {
7014 	u64 size = 0;
7015 
7016 #ifdef CONFIG_HAVE_FAST_GUP
7017 	pgd_t *pgdp, pgd;
7018 	p4d_t *p4dp, p4d;
7019 	pud_t *pudp, pud;
7020 	pmd_t *pmdp, pmd;
7021 	pte_t *ptep, pte;
7022 
7023 	pgdp = pgd_offset(mm, addr);
7024 	pgd = READ_ONCE(*pgdp);
7025 	if (pgd_none(pgd))
7026 		return 0;
7027 
7028 	if (pgd_leaf(pgd))
7029 		return pgd_leaf_size(pgd);
7030 
7031 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7032 	p4d = READ_ONCE(*p4dp);
7033 	if (!p4d_present(p4d))
7034 		return 0;
7035 
7036 	if (p4d_leaf(p4d))
7037 		return p4d_leaf_size(p4d);
7038 
7039 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7040 	pud = READ_ONCE(*pudp);
7041 	if (!pud_present(pud))
7042 		return 0;
7043 
7044 	if (pud_leaf(pud))
7045 		return pud_leaf_size(pud);
7046 
7047 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7048 	pmd = READ_ONCE(*pmdp);
7049 	if (!pmd_present(pmd))
7050 		return 0;
7051 
7052 	if (pmd_leaf(pmd))
7053 		return pmd_leaf_size(pmd);
7054 
7055 	ptep = pte_offset_map(&pmd, addr);
7056 	pte = ptep_get_lockless(ptep);
7057 	if (pte_present(pte))
7058 		size = pte_leaf_size(pte);
7059 	pte_unmap(ptep);
7060 #endif /* CONFIG_HAVE_FAST_GUP */
7061 
7062 	return size;
7063 }
7064 
7065 static u64 perf_get_page_size(unsigned long addr)
7066 {
7067 	struct mm_struct *mm;
7068 	unsigned long flags;
7069 	u64 size;
7070 
7071 	if (!addr)
7072 		return 0;
7073 
7074 	/*
7075 	 * Software page-table walkers must disable IRQs,
7076 	 * which prevents any tear down of the page tables.
7077 	 */
7078 	local_irq_save(flags);
7079 
7080 	mm = current->mm;
7081 	if (!mm) {
7082 		/*
7083 		 * For kernel threads and the like, use init_mm so that
7084 		 * we can find kernel memory.
7085 		 */
7086 		mm = &init_mm;
7087 	}
7088 
7089 	size = perf_get_pgtable_size(mm, addr);
7090 
7091 	local_irq_restore(flags);
7092 
7093 	return size;
7094 }
7095 
7096 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7097 
7098 struct perf_callchain_entry *
7099 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7100 {
7101 	bool kernel = !event->attr.exclude_callchain_kernel;
7102 	bool user   = !event->attr.exclude_callchain_user;
7103 	/* Disallow cross-task user callchains. */
7104 	bool crosstask = event->ctx->task && event->ctx->task != current;
7105 	const u32 max_stack = event->attr.sample_max_stack;
7106 	struct perf_callchain_entry *callchain;
7107 
7108 	if (!kernel && !user)
7109 		return &__empty_callchain;
7110 
7111 	callchain = get_perf_callchain(regs, 0, kernel, user,
7112 				       max_stack, crosstask, true);
7113 	return callchain ?: &__empty_callchain;
7114 }
7115 
7116 void perf_prepare_sample(struct perf_event_header *header,
7117 			 struct perf_sample_data *data,
7118 			 struct perf_event *event,
7119 			 struct pt_regs *regs)
7120 {
7121 	u64 sample_type = event->attr.sample_type;
7122 
7123 	header->type = PERF_RECORD_SAMPLE;
7124 	header->size = sizeof(*header) + event->header_size;
7125 
7126 	header->misc = 0;
7127 	header->misc |= perf_misc_flags(regs);
7128 
7129 	__perf_event_header__init_id(header, data, event);
7130 
7131 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7132 		data->ip = perf_instruction_pointer(regs);
7133 
7134 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7135 		int size = 1;
7136 
7137 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7138 			data->callchain = perf_callchain(event, regs);
7139 
7140 		size += data->callchain->nr;
7141 
7142 		header->size += size * sizeof(u64);
7143 	}
7144 
7145 	if (sample_type & PERF_SAMPLE_RAW) {
7146 		struct perf_raw_record *raw = data->raw;
7147 		int size;
7148 
7149 		if (raw) {
7150 			struct perf_raw_frag *frag = &raw->frag;
7151 			u32 sum = 0;
7152 
7153 			do {
7154 				sum += frag->size;
7155 				if (perf_raw_frag_last(frag))
7156 					break;
7157 				frag = frag->next;
7158 			} while (1);
7159 
7160 			size = round_up(sum + sizeof(u32), sizeof(u64));
7161 			raw->size = size - sizeof(u32);
7162 			frag->pad = raw->size - sum;
7163 		} else {
7164 			size = sizeof(u64);
7165 		}
7166 
7167 		header->size += size;
7168 	}
7169 
7170 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7171 		int size = sizeof(u64); /* nr */
7172 		if (data->br_stack) {
7173 			if (perf_sample_save_hw_index(event))
7174 				size += sizeof(u64);
7175 
7176 			size += data->br_stack->nr
7177 			      * sizeof(struct perf_branch_entry);
7178 		}
7179 		header->size += size;
7180 	}
7181 
7182 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7183 		perf_sample_regs_user(&data->regs_user, regs);
7184 
7185 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7186 		/* regs dump ABI info */
7187 		int size = sizeof(u64);
7188 
7189 		if (data->regs_user.regs) {
7190 			u64 mask = event->attr.sample_regs_user;
7191 			size += hweight64(mask) * sizeof(u64);
7192 		}
7193 
7194 		header->size += size;
7195 	}
7196 
7197 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7198 		/*
7199 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7200 		 * processed as the last one or have additional check added
7201 		 * in case new sample type is added, because we could eat
7202 		 * up the rest of the sample size.
7203 		 */
7204 		u16 stack_size = event->attr.sample_stack_user;
7205 		u16 size = sizeof(u64);
7206 
7207 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7208 						     data->regs_user.regs);
7209 
7210 		/*
7211 		 * If there is something to dump, add space for the dump
7212 		 * itself and for the field that tells the dynamic size,
7213 		 * which is how many have been actually dumped.
7214 		 */
7215 		if (stack_size)
7216 			size += sizeof(u64) + stack_size;
7217 
7218 		data->stack_user_size = stack_size;
7219 		header->size += size;
7220 	}
7221 
7222 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7223 		/* regs dump ABI info */
7224 		int size = sizeof(u64);
7225 
7226 		perf_sample_regs_intr(&data->regs_intr, regs);
7227 
7228 		if (data->regs_intr.regs) {
7229 			u64 mask = event->attr.sample_regs_intr;
7230 
7231 			size += hweight64(mask) * sizeof(u64);
7232 		}
7233 
7234 		header->size += size;
7235 	}
7236 
7237 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7238 		data->phys_addr = perf_virt_to_phys(data->addr);
7239 
7240 #ifdef CONFIG_CGROUP_PERF
7241 	if (sample_type & PERF_SAMPLE_CGROUP) {
7242 		struct cgroup *cgrp;
7243 
7244 		/* protected by RCU */
7245 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7246 		data->cgroup = cgroup_id(cgrp);
7247 	}
7248 #endif
7249 
7250 	/*
7251 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7252 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7253 	 * but the value will not dump to the userspace.
7254 	 */
7255 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7256 		data->data_page_size = perf_get_page_size(data->addr);
7257 
7258 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7259 		data->code_page_size = perf_get_page_size(data->ip);
7260 
7261 	if (sample_type & PERF_SAMPLE_AUX) {
7262 		u64 size;
7263 
7264 		header->size += sizeof(u64); /* size */
7265 
7266 		/*
7267 		 * Given the 16bit nature of header::size, an AUX sample can
7268 		 * easily overflow it, what with all the preceding sample bits.
7269 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7270 		 * per sample in total (rounded down to 8 byte boundary).
7271 		 */
7272 		size = min_t(size_t, U16_MAX - header->size,
7273 			     event->attr.aux_sample_size);
7274 		size = rounddown(size, 8);
7275 		size = perf_prepare_sample_aux(event, data, size);
7276 
7277 		WARN_ON_ONCE(size + header->size > U16_MAX);
7278 		header->size += size;
7279 	}
7280 	/*
7281 	 * If you're adding more sample types here, you likely need to do
7282 	 * something about the overflowing header::size, like repurpose the
7283 	 * lowest 3 bits of size, which should be always zero at the moment.
7284 	 * This raises a more important question, do we really need 512k sized
7285 	 * samples and why, so good argumentation is in order for whatever you
7286 	 * do here next.
7287 	 */
7288 	WARN_ON_ONCE(header->size & 7);
7289 }
7290 
7291 static __always_inline int
7292 __perf_event_output(struct perf_event *event,
7293 		    struct perf_sample_data *data,
7294 		    struct pt_regs *regs,
7295 		    int (*output_begin)(struct perf_output_handle *,
7296 					struct perf_sample_data *,
7297 					struct perf_event *,
7298 					unsigned int))
7299 {
7300 	struct perf_output_handle handle;
7301 	struct perf_event_header header;
7302 	int err;
7303 
7304 	/* protect the callchain buffers */
7305 	rcu_read_lock();
7306 
7307 	perf_prepare_sample(&header, data, event, regs);
7308 
7309 	err = output_begin(&handle, data, event, header.size);
7310 	if (err)
7311 		goto exit;
7312 
7313 	perf_output_sample(&handle, &header, data, event);
7314 
7315 	perf_output_end(&handle);
7316 
7317 exit:
7318 	rcu_read_unlock();
7319 	return err;
7320 }
7321 
7322 void
7323 perf_event_output_forward(struct perf_event *event,
7324 			 struct perf_sample_data *data,
7325 			 struct pt_regs *regs)
7326 {
7327 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7328 }
7329 
7330 void
7331 perf_event_output_backward(struct perf_event *event,
7332 			   struct perf_sample_data *data,
7333 			   struct pt_regs *regs)
7334 {
7335 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7336 }
7337 
7338 int
7339 perf_event_output(struct perf_event *event,
7340 		  struct perf_sample_data *data,
7341 		  struct pt_regs *regs)
7342 {
7343 	return __perf_event_output(event, data, regs, perf_output_begin);
7344 }
7345 
7346 /*
7347  * read event_id
7348  */
7349 
7350 struct perf_read_event {
7351 	struct perf_event_header	header;
7352 
7353 	u32				pid;
7354 	u32				tid;
7355 };
7356 
7357 static void
7358 perf_event_read_event(struct perf_event *event,
7359 			struct task_struct *task)
7360 {
7361 	struct perf_output_handle handle;
7362 	struct perf_sample_data sample;
7363 	struct perf_read_event read_event = {
7364 		.header = {
7365 			.type = PERF_RECORD_READ,
7366 			.misc = 0,
7367 			.size = sizeof(read_event) + event->read_size,
7368 		},
7369 		.pid = perf_event_pid(event, task),
7370 		.tid = perf_event_tid(event, task),
7371 	};
7372 	int ret;
7373 
7374 	perf_event_header__init_id(&read_event.header, &sample, event);
7375 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7376 	if (ret)
7377 		return;
7378 
7379 	perf_output_put(&handle, read_event);
7380 	perf_output_read(&handle, event);
7381 	perf_event__output_id_sample(event, &handle, &sample);
7382 
7383 	perf_output_end(&handle);
7384 }
7385 
7386 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7387 
7388 static void
7389 perf_iterate_ctx(struct perf_event_context *ctx,
7390 		   perf_iterate_f output,
7391 		   void *data, bool all)
7392 {
7393 	struct perf_event *event;
7394 
7395 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7396 		if (!all) {
7397 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7398 				continue;
7399 			if (!event_filter_match(event))
7400 				continue;
7401 		}
7402 
7403 		output(event, data);
7404 	}
7405 }
7406 
7407 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7408 {
7409 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7410 	struct perf_event *event;
7411 
7412 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7413 		/*
7414 		 * Skip events that are not fully formed yet; ensure that
7415 		 * if we observe event->ctx, both event and ctx will be
7416 		 * complete enough. See perf_install_in_context().
7417 		 */
7418 		if (!smp_load_acquire(&event->ctx))
7419 			continue;
7420 
7421 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7422 			continue;
7423 		if (!event_filter_match(event))
7424 			continue;
7425 		output(event, data);
7426 	}
7427 }
7428 
7429 /*
7430  * Iterate all events that need to receive side-band events.
7431  *
7432  * For new callers; ensure that account_pmu_sb_event() includes
7433  * your event, otherwise it might not get delivered.
7434  */
7435 static void
7436 perf_iterate_sb(perf_iterate_f output, void *data,
7437 	       struct perf_event_context *task_ctx)
7438 {
7439 	struct perf_event_context *ctx;
7440 	int ctxn;
7441 
7442 	rcu_read_lock();
7443 	preempt_disable();
7444 
7445 	/*
7446 	 * If we have task_ctx != NULL we only notify the task context itself.
7447 	 * The task_ctx is set only for EXIT events before releasing task
7448 	 * context.
7449 	 */
7450 	if (task_ctx) {
7451 		perf_iterate_ctx(task_ctx, output, data, false);
7452 		goto done;
7453 	}
7454 
7455 	perf_iterate_sb_cpu(output, data);
7456 
7457 	for_each_task_context_nr(ctxn) {
7458 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7459 		if (ctx)
7460 			perf_iterate_ctx(ctx, output, data, false);
7461 	}
7462 done:
7463 	preempt_enable();
7464 	rcu_read_unlock();
7465 }
7466 
7467 /*
7468  * Clear all file-based filters at exec, they'll have to be
7469  * re-instated when/if these objects are mmapped again.
7470  */
7471 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7472 {
7473 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7474 	struct perf_addr_filter *filter;
7475 	unsigned int restart = 0, count = 0;
7476 	unsigned long flags;
7477 
7478 	if (!has_addr_filter(event))
7479 		return;
7480 
7481 	raw_spin_lock_irqsave(&ifh->lock, flags);
7482 	list_for_each_entry(filter, &ifh->list, entry) {
7483 		if (filter->path.dentry) {
7484 			event->addr_filter_ranges[count].start = 0;
7485 			event->addr_filter_ranges[count].size = 0;
7486 			restart++;
7487 		}
7488 
7489 		count++;
7490 	}
7491 
7492 	if (restart)
7493 		event->addr_filters_gen++;
7494 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7495 
7496 	if (restart)
7497 		perf_event_stop(event, 1);
7498 }
7499 
7500 void perf_event_exec(void)
7501 {
7502 	struct perf_event_context *ctx;
7503 	int ctxn;
7504 
7505 	rcu_read_lock();
7506 	for_each_task_context_nr(ctxn) {
7507 		ctx = current->perf_event_ctxp[ctxn];
7508 		if (!ctx)
7509 			continue;
7510 
7511 		perf_event_enable_on_exec(ctxn);
7512 
7513 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7514 				   true);
7515 	}
7516 	rcu_read_unlock();
7517 }
7518 
7519 struct remote_output {
7520 	struct perf_buffer	*rb;
7521 	int			err;
7522 };
7523 
7524 static void __perf_event_output_stop(struct perf_event *event, void *data)
7525 {
7526 	struct perf_event *parent = event->parent;
7527 	struct remote_output *ro = data;
7528 	struct perf_buffer *rb = ro->rb;
7529 	struct stop_event_data sd = {
7530 		.event	= event,
7531 	};
7532 
7533 	if (!has_aux(event))
7534 		return;
7535 
7536 	if (!parent)
7537 		parent = event;
7538 
7539 	/*
7540 	 * In case of inheritance, it will be the parent that links to the
7541 	 * ring-buffer, but it will be the child that's actually using it.
7542 	 *
7543 	 * We are using event::rb to determine if the event should be stopped,
7544 	 * however this may race with ring_buffer_attach() (through set_output),
7545 	 * which will make us skip the event that actually needs to be stopped.
7546 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7547 	 * its rb pointer.
7548 	 */
7549 	if (rcu_dereference(parent->rb) == rb)
7550 		ro->err = __perf_event_stop(&sd);
7551 }
7552 
7553 static int __perf_pmu_output_stop(void *info)
7554 {
7555 	struct perf_event *event = info;
7556 	struct pmu *pmu = event->ctx->pmu;
7557 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7558 	struct remote_output ro = {
7559 		.rb	= event->rb,
7560 	};
7561 
7562 	rcu_read_lock();
7563 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7564 	if (cpuctx->task_ctx)
7565 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7566 				   &ro, false);
7567 	rcu_read_unlock();
7568 
7569 	return ro.err;
7570 }
7571 
7572 static void perf_pmu_output_stop(struct perf_event *event)
7573 {
7574 	struct perf_event *iter;
7575 	int err, cpu;
7576 
7577 restart:
7578 	rcu_read_lock();
7579 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7580 		/*
7581 		 * For per-CPU events, we need to make sure that neither they
7582 		 * nor their children are running; for cpu==-1 events it's
7583 		 * sufficient to stop the event itself if it's active, since
7584 		 * it can't have children.
7585 		 */
7586 		cpu = iter->cpu;
7587 		if (cpu == -1)
7588 			cpu = READ_ONCE(iter->oncpu);
7589 
7590 		if (cpu == -1)
7591 			continue;
7592 
7593 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7594 		if (err == -EAGAIN) {
7595 			rcu_read_unlock();
7596 			goto restart;
7597 		}
7598 	}
7599 	rcu_read_unlock();
7600 }
7601 
7602 /*
7603  * task tracking -- fork/exit
7604  *
7605  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7606  */
7607 
7608 struct perf_task_event {
7609 	struct task_struct		*task;
7610 	struct perf_event_context	*task_ctx;
7611 
7612 	struct {
7613 		struct perf_event_header	header;
7614 
7615 		u32				pid;
7616 		u32				ppid;
7617 		u32				tid;
7618 		u32				ptid;
7619 		u64				time;
7620 	} event_id;
7621 };
7622 
7623 static int perf_event_task_match(struct perf_event *event)
7624 {
7625 	return event->attr.comm  || event->attr.mmap ||
7626 	       event->attr.mmap2 || event->attr.mmap_data ||
7627 	       event->attr.task;
7628 }
7629 
7630 static void perf_event_task_output(struct perf_event *event,
7631 				   void *data)
7632 {
7633 	struct perf_task_event *task_event = data;
7634 	struct perf_output_handle handle;
7635 	struct perf_sample_data	sample;
7636 	struct task_struct *task = task_event->task;
7637 	int ret, size = task_event->event_id.header.size;
7638 
7639 	if (!perf_event_task_match(event))
7640 		return;
7641 
7642 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7643 
7644 	ret = perf_output_begin(&handle, &sample, event,
7645 				task_event->event_id.header.size);
7646 	if (ret)
7647 		goto out;
7648 
7649 	task_event->event_id.pid = perf_event_pid(event, task);
7650 	task_event->event_id.tid = perf_event_tid(event, task);
7651 
7652 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7653 		task_event->event_id.ppid = perf_event_pid(event,
7654 							task->real_parent);
7655 		task_event->event_id.ptid = perf_event_pid(event,
7656 							task->real_parent);
7657 	} else {  /* PERF_RECORD_FORK */
7658 		task_event->event_id.ppid = perf_event_pid(event, current);
7659 		task_event->event_id.ptid = perf_event_tid(event, current);
7660 	}
7661 
7662 	task_event->event_id.time = perf_event_clock(event);
7663 
7664 	perf_output_put(&handle, task_event->event_id);
7665 
7666 	perf_event__output_id_sample(event, &handle, &sample);
7667 
7668 	perf_output_end(&handle);
7669 out:
7670 	task_event->event_id.header.size = size;
7671 }
7672 
7673 static void perf_event_task(struct task_struct *task,
7674 			      struct perf_event_context *task_ctx,
7675 			      int new)
7676 {
7677 	struct perf_task_event task_event;
7678 
7679 	if (!atomic_read(&nr_comm_events) &&
7680 	    !atomic_read(&nr_mmap_events) &&
7681 	    !atomic_read(&nr_task_events))
7682 		return;
7683 
7684 	task_event = (struct perf_task_event){
7685 		.task	  = task,
7686 		.task_ctx = task_ctx,
7687 		.event_id    = {
7688 			.header = {
7689 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7690 				.misc = 0,
7691 				.size = sizeof(task_event.event_id),
7692 			},
7693 			/* .pid  */
7694 			/* .ppid */
7695 			/* .tid  */
7696 			/* .ptid */
7697 			/* .time */
7698 		},
7699 	};
7700 
7701 	perf_iterate_sb(perf_event_task_output,
7702 		       &task_event,
7703 		       task_ctx);
7704 }
7705 
7706 void perf_event_fork(struct task_struct *task)
7707 {
7708 	perf_event_task(task, NULL, 1);
7709 	perf_event_namespaces(task);
7710 }
7711 
7712 /*
7713  * comm tracking
7714  */
7715 
7716 struct perf_comm_event {
7717 	struct task_struct	*task;
7718 	char			*comm;
7719 	int			comm_size;
7720 
7721 	struct {
7722 		struct perf_event_header	header;
7723 
7724 		u32				pid;
7725 		u32				tid;
7726 	} event_id;
7727 };
7728 
7729 static int perf_event_comm_match(struct perf_event *event)
7730 {
7731 	return event->attr.comm;
7732 }
7733 
7734 static void perf_event_comm_output(struct perf_event *event,
7735 				   void *data)
7736 {
7737 	struct perf_comm_event *comm_event = data;
7738 	struct perf_output_handle handle;
7739 	struct perf_sample_data sample;
7740 	int size = comm_event->event_id.header.size;
7741 	int ret;
7742 
7743 	if (!perf_event_comm_match(event))
7744 		return;
7745 
7746 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7747 	ret = perf_output_begin(&handle, &sample, event,
7748 				comm_event->event_id.header.size);
7749 
7750 	if (ret)
7751 		goto out;
7752 
7753 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7754 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7755 
7756 	perf_output_put(&handle, comm_event->event_id);
7757 	__output_copy(&handle, comm_event->comm,
7758 				   comm_event->comm_size);
7759 
7760 	perf_event__output_id_sample(event, &handle, &sample);
7761 
7762 	perf_output_end(&handle);
7763 out:
7764 	comm_event->event_id.header.size = size;
7765 }
7766 
7767 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7768 {
7769 	char comm[TASK_COMM_LEN];
7770 	unsigned int size;
7771 
7772 	memset(comm, 0, sizeof(comm));
7773 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7774 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7775 
7776 	comm_event->comm = comm;
7777 	comm_event->comm_size = size;
7778 
7779 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7780 
7781 	perf_iterate_sb(perf_event_comm_output,
7782 		       comm_event,
7783 		       NULL);
7784 }
7785 
7786 void perf_event_comm(struct task_struct *task, bool exec)
7787 {
7788 	struct perf_comm_event comm_event;
7789 
7790 	if (!atomic_read(&nr_comm_events))
7791 		return;
7792 
7793 	comm_event = (struct perf_comm_event){
7794 		.task	= task,
7795 		/* .comm      */
7796 		/* .comm_size */
7797 		.event_id  = {
7798 			.header = {
7799 				.type = PERF_RECORD_COMM,
7800 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7801 				/* .size */
7802 			},
7803 			/* .pid */
7804 			/* .tid */
7805 		},
7806 	};
7807 
7808 	perf_event_comm_event(&comm_event);
7809 }
7810 
7811 /*
7812  * namespaces tracking
7813  */
7814 
7815 struct perf_namespaces_event {
7816 	struct task_struct		*task;
7817 
7818 	struct {
7819 		struct perf_event_header	header;
7820 
7821 		u32				pid;
7822 		u32				tid;
7823 		u64				nr_namespaces;
7824 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7825 	} event_id;
7826 };
7827 
7828 static int perf_event_namespaces_match(struct perf_event *event)
7829 {
7830 	return event->attr.namespaces;
7831 }
7832 
7833 static void perf_event_namespaces_output(struct perf_event *event,
7834 					 void *data)
7835 {
7836 	struct perf_namespaces_event *namespaces_event = data;
7837 	struct perf_output_handle handle;
7838 	struct perf_sample_data sample;
7839 	u16 header_size = namespaces_event->event_id.header.size;
7840 	int ret;
7841 
7842 	if (!perf_event_namespaces_match(event))
7843 		return;
7844 
7845 	perf_event_header__init_id(&namespaces_event->event_id.header,
7846 				   &sample, event);
7847 	ret = perf_output_begin(&handle, &sample, event,
7848 				namespaces_event->event_id.header.size);
7849 	if (ret)
7850 		goto out;
7851 
7852 	namespaces_event->event_id.pid = perf_event_pid(event,
7853 							namespaces_event->task);
7854 	namespaces_event->event_id.tid = perf_event_tid(event,
7855 							namespaces_event->task);
7856 
7857 	perf_output_put(&handle, namespaces_event->event_id);
7858 
7859 	perf_event__output_id_sample(event, &handle, &sample);
7860 
7861 	perf_output_end(&handle);
7862 out:
7863 	namespaces_event->event_id.header.size = header_size;
7864 }
7865 
7866 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7867 				   struct task_struct *task,
7868 				   const struct proc_ns_operations *ns_ops)
7869 {
7870 	struct path ns_path;
7871 	struct inode *ns_inode;
7872 	int error;
7873 
7874 	error = ns_get_path(&ns_path, task, ns_ops);
7875 	if (!error) {
7876 		ns_inode = ns_path.dentry->d_inode;
7877 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7878 		ns_link_info->ino = ns_inode->i_ino;
7879 		path_put(&ns_path);
7880 	}
7881 }
7882 
7883 void perf_event_namespaces(struct task_struct *task)
7884 {
7885 	struct perf_namespaces_event namespaces_event;
7886 	struct perf_ns_link_info *ns_link_info;
7887 
7888 	if (!atomic_read(&nr_namespaces_events))
7889 		return;
7890 
7891 	namespaces_event = (struct perf_namespaces_event){
7892 		.task	= task,
7893 		.event_id  = {
7894 			.header = {
7895 				.type = PERF_RECORD_NAMESPACES,
7896 				.misc = 0,
7897 				.size = sizeof(namespaces_event.event_id),
7898 			},
7899 			/* .pid */
7900 			/* .tid */
7901 			.nr_namespaces = NR_NAMESPACES,
7902 			/* .link_info[NR_NAMESPACES] */
7903 		},
7904 	};
7905 
7906 	ns_link_info = namespaces_event.event_id.link_info;
7907 
7908 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7909 			       task, &mntns_operations);
7910 
7911 #ifdef CONFIG_USER_NS
7912 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7913 			       task, &userns_operations);
7914 #endif
7915 #ifdef CONFIG_NET_NS
7916 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7917 			       task, &netns_operations);
7918 #endif
7919 #ifdef CONFIG_UTS_NS
7920 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7921 			       task, &utsns_operations);
7922 #endif
7923 #ifdef CONFIG_IPC_NS
7924 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7925 			       task, &ipcns_operations);
7926 #endif
7927 #ifdef CONFIG_PID_NS
7928 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7929 			       task, &pidns_operations);
7930 #endif
7931 #ifdef CONFIG_CGROUPS
7932 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7933 			       task, &cgroupns_operations);
7934 #endif
7935 
7936 	perf_iterate_sb(perf_event_namespaces_output,
7937 			&namespaces_event,
7938 			NULL);
7939 }
7940 
7941 /*
7942  * cgroup tracking
7943  */
7944 #ifdef CONFIG_CGROUP_PERF
7945 
7946 struct perf_cgroup_event {
7947 	char				*path;
7948 	int				path_size;
7949 	struct {
7950 		struct perf_event_header	header;
7951 		u64				id;
7952 		char				path[];
7953 	} event_id;
7954 };
7955 
7956 static int perf_event_cgroup_match(struct perf_event *event)
7957 {
7958 	return event->attr.cgroup;
7959 }
7960 
7961 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7962 {
7963 	struct perf_cgroup_event *cgroup_event = data;
7964 	struct perf_output_handle handle;
7965 	struct perf_sample_data sample;
7966 	u16 header_size = cgroup_event->event_id.header.size;
7967 	int ret;
7968 
7969 	if (!perf_event_cgroup_match(event))
7970 		return;
7971 
7972 	perf_event_header__init_id(&cgroup_event->event_id.header,
7973 				   &sample, event);
7974 	ret = perf_output_begin(&handle, &sample, event,
7975 				cgroup_event->event_id.header.size);
7976 	if (ret)
7977 		goto out;
7978 
7979 	perf_output_put(&handle, cgroup_event->event_id);
7980 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7981 
7982 	perf_event__output_id_sample(event, &handle, &sample);
7983 
7984 	perf_output_end(&handle);
7985 out:
7986 	cgroup_event->event_id.header.size = header_size;
7987 }
7988 
7989 static void perf_event_cgroup(struct cgroup *cgrp)
7990 {
7991 	struct perf_cgroup_event cgroup_event;
7992 	char path_enomem[16] = "//enomem";
7993 	char *pathname;
7994 	size_t size;
7995 
7996 	if (!atomic_read(&nr_cgroup_events))
7997 		return;
7998 
7999 	cgroup_event = (struct perf_cgroup_event){
8000 		.event_id  = {
8001 			.header = {
8002 				.type = PERF_RECORD_CGROUP,
8003 				.misc = 0,
8004 				.size = sizeof(cgroup_event.event_id),
8005 			},
8006 			.id = cgroup_id(cgrp),
8007 		},
8008 	};
8009 
8010 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8011 	if (pathname == NULL) {
8012 		cgroup_event.path = path_enomem;
8013 	} else {
8014 		/* just to be sure to have enough space for alignment */
8015 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8016 		cgroup_event.path = pathname;
8017 	}
8018 
8019 	/*
8020 	 * Since our buffer works in 8 byte units we need to align our string
8021 	 * size to a multiple of 8. However, we must guarantee the tail end is
8022 	 * zero'd out to avoid leaking random bits to userspace.
8023 	 */
8024 	size = strlen(cgroup_event.path) + 1;
8025 	while (!IS_ALIGNED(size, sizeof(u64)))
8026 		cgroup_event.path[size++] = '\0';
8027 
8028 	cgroup_event.event_id.header.size += size;
8029 	cgroup_event.path_size = size;
8030 
8031 	perf_iterate_sb(perf_event_cgroup_output,
8032 			&cgroup_event,
8033 			NULL);
8034 
8035 	kfree(pathname);
8036 }
8037 
8038 #endif
8039 
8040 /*
8041  * mmap tracking
8042  */
8043 
8044 struct perf_mmap_event {
8045 	struct vm_area_struct	*vma;
8046 
8047 	const char		*file_name;
8048 	int			file_size;
8049 	int			maj, min;
8050 	u64			ino;
8051 	u64			ino_generation;
8052 	u32			prot, flags;
8053 	u8			build_id[BUILD_ID_SIZE_MAX];
8054 	u32			build_id_size;
8055 
8056 	struct {
8057 		struct perf_event_header	header;
8058 
8059 		u32				pid;
8060 		u32				tid;
8061 		u64				start;
8062 		u64				len;
8063 		u64				pgoff;
8064 	} event_id;
8065 };
8066 
8067 static int perf_event_mmap_match(struct perf_event *event,
8068 				 void *data)
8069 {
8070 	struct perf_mmap_event *mmap_event = data;
8071 	struct vm_area_struct *vma = mmap_event->vma;
8072 	int executable = vma->vm_flags & VM_EXEC;
8073 
8074 	return (!executable && event->attr.mmap_data) ||
8075 	       (executable && (event->attr.mmap || event->attr.mmap2));
8076 }
8077 
8078 static void perf_event_mmap_output(struct perf_event *event,
8079 				   void *data)
8080 {
8081 	struct perf_mmap_event *mmap_event = data;
8082 	struct perf_output_handle handle;
8083 	struct perf_sample_data sample;
8084 	int size = mmap_event->event_id.header.size;
8085 	u32 type = mmap_event->event_id.header.type;
8086 	bool use_build_id;
8087 	int ret;
8088 
8089 	if (!perf_event_mmap_match(event, data))
8090 		return;
8091 
8092 	if (event->attr.mmap2) {
8093 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8094 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8095 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8096 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8097 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8098 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8099 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8100 	}
8101 
8102 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8103 	ret = perf_output_begin(&handle, &sample, event,
8104 				mmap_event->event_id.header.size);
8105 	if (ret)
8106 		goto out;
8107 
8108 	mmap_event->event_id.pid = perf_event_pid(event, current);
8109 	mmap_event->event_id.tid = perf_event_tid(event, current);
8110 
8111 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8112 
8113 	if (event->attr.mmap2 && use_build_id)
8114 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8115 
8116 	perf_output_put(&handle, mmap_event->event_id);
8117 
8118 	if (event->attr.mmap2) {
8119 		if (use_build_id) {
8120 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8121 
8122 			__output_copy(&handle, size, 4);
8123 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8124 		} else {
8125 			perf_output_put(&handle, mmap_event->maj);
8126 			perf_output_put(&handle, mmap_event->min);
8127 			perf_output_put(&handle, mmap_event->ino);
8128 			perf_output_put(&handle, mmap_event->ino_generation);
8129 		}
8130 		perf_output_put(&handle, mmap_event->prot);
8131 		perf_output_put(&handle, mmap_event->flags);
8132 	}
8133 
8134 	__output_copy(&handle, mmap_event->file_name,
8135 				   mmap_event->file_size);
8136 
8137 	perf_event__output_id_sample(event, &handle, &sample);
8138 
8139 	perf_output_end(&handle);
8140 out:
8141 	mmap_event->event_id.header.size = size;
8142 	mmap_event->event_id.header.type = type;
8143 }
8144 
8145 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8146 {
8147 	struct vm_area_struct *vma = mmap_event->vma;
8148 	struct file *file = vma->vm_file;
8149 	int maj = 0, min = 0;
8150 	u64 ino = 0, gen = 0;
8151 	u32 prot = 0, flags = 0;
8152 	unsigned int size;
8153 	char tmp[16];
8154 	char *buf = NULL;
8155 	char *name;
8156 
8157 	if (vma->vm_flags & VM_READ)
8158 		prot |= PROT_READ;
8159 	if (vma->vm_flags & VM_WRITE)
8160 		prot |= PROT_WRITE;
8161 	if (vma->vm_flags & VM_EXEC)
8162 		prot |= PROT_EXEC;
8163 
8164 	if (vma->vm_flags & VM_MAYSHARE)
8165 		flags = MAP_SHARED;
8166 	else
8167 		flags = MAP_PRIVATE;
8168 
8169 	if (vma->vm_flags & VM_DENYWRITE)
8170 		flags |= MAP_DENYWRITE;
8171 	if (vma->vm_flags & VM_MAYEXEC)
8172 		flags |= MAP_EXECUTABLE;
8173 	if (vma->vm_flags & VM_LOCKED)
8174 		flags |= MAP_LOCKED;
8175 	if (is_vm_hugetlb_page(vma))
8176 		flags |= MAP_HUGETLB;
8177 
8178 	if (file) {
8179 		struct inode *inode;
8180 		dev_t dev;
8181 
8182 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8183 		if (!buf) {
8184 			name = "//enomem";
8185 			goto cpy_name;
8186 		}
8187 		/*
8188 		 * d_path() works from the end of the rb backwards, so we
8189 		 * need to add enough zero bytes after the string to handle
8190 		 * the 64bit alignment we do later.
8191 		 */
8192 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8193 		if (IS_ERR(name)) {
8194 			name = "//toolong";
8195 			goto cpy_name;
8196 		}
8197 		inode = file_inode(vma->vm_file);
8198 		dev = inode->i_sb->s_dev;
8199 		ino = inode->i_ino;
8200 		gen = inode->i_generation;
8201 		maj = MAJOR(dev);
8202 		min = MINOR(dev);
8203 
8204 		goto got_name;
8205 	} else {
8206 		if (vma->vm_ops && vma->vm_ops->name) {
8207 			name = (char *) vma->vm_ops->name(vma);
8208 			if (name)
8209 				goto cpy_name;
8210 		}
8211 
8212 		name = (char *)arch_vma_name(vma);
8213 		if (name)
8214 			goto cpy_name;
8215 
8216 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8217 				vma->vm_end >= vma->vm_mm->brk) {
8218 			name = "[heap]";
8219 			goto cpy_name;
8220 		}
8221 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8222 				vma->vm_end >= vma->vm_mm->start_stack) {
8223 			name = "[stack]";
8224 			goto cpy_name;
8225 		}
8226 
8227 		name = "//anon";
8228 		goto cpy_name;
8229 	}
8230 
8231 cpy_name:
8232 	strlcpy(tmp, name, sizeof(tmp));
8233 	name = tmp;
8234 got_name:
8235 	/*
8236 	 * Since our buffer works in 8 byte units we need to align our string
8237 	 * size to a multiple of 8. However, we must guarantee the tail end is
8238 	 * zero'd out to avoid leaking random bits to userspace.
8239 	 */
8240 	size = strlen(name)+1;
8241 	while (!IS_ALIGNED(size, sizeof(u64)))
8242 		name[size++] = '\0';
8243 
8244 	mmap_event->file_name = name;
8245 	mmap_event->file_size = size;
8246 	mmap_event->maj = maj;
8247 	mmap_event->min = min;
8248 	mmap_event->ino = ino;
8249 	mmap_event->ino_generation = gen;
8250 	mmap_event->prot = prot;
8251 	mmap_event->flags = flags;
8252 
8253 	if (!(vma->vm_flags & VM_EXEC))
8254 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8255 
8256 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8257 
8258 	if (atomic_read(&nr_build_id_events))
8259 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8260 
8261 	perf_iterate_sb(perf_event_mmap_output,
8262 		       mmap_event,
8263 		       NULL);
8264 
8265 	kfree(buf);
8266 }
8267 
8268 /*
8269  * Check whether inode and address range match filter criteria.
8270  */
8271 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8272 				     struct file *file, unsigned long offset,
8273 				     unsigned long size)
8274 {
8275 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8276 	if (!filter->path.dentry)
8277 		return false;
8278 
8279 	if (d_inode(filter->path.dentry) != file_inode(file))
8280 		return false;
8281 
8282 	if (filter->offset > offset + size)
8283 		return false;
8284 
8285 	if (filter->offset + filter->size < offset)
8286 		return false;
8287 
8288 	return true;
8289 }
8290 
8291 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8292 					struct vm_area_struct *vma,
8293 					struct perf_addr_filter_range *fr)
8294 {
8295 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8296 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8297 	struct file *file = vma->vm_file;
8298 
8299 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8300 		return false;
8301 
8302 	if (filter->offset < off) {
8303 		fr->start = vma->vm_start;
8304 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8305 	} else {
8306 		fr->start = vma->vm_start + filter->offset - off;
8307 		fr->size = min(vma->vm_end - fr->start, filter->size);
8308 	}
8309 
8310 	return true;
8311 }
8312 
8313 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8314 {
8315 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8316 	struct vm_area_struct *vma = data;
8317 	struct perf_addr_filter *filter;
8318 	unsigned int restart = 0, count = 0;
8319 	unsigned long flags;
8320 
8321 	if (!has_addr_filter(event))
8322 		return;
8323 
8324 	if (!vma->vm_file)
8325 		return;
8326 
8327 	raw_spin_lock_irqsave(&ifh->lock, flags);
8328 	list_for_each_entry(filter, &ifh->list, entry) {
8329 		if (perf_addr_filter_vma_adjust(filter, vma,
8330 						&event->addr_filter_ranges[count]))
8331 			restart++;
8332 
8333 		count++;
8334 	}
8335 
8336 	if (restart)
8337 		event->addr_filters_gen++;
8338 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8339 
8340 	if (restart)
8341 		perf_event_stop(event, 1);
8342 }
8343 
8344 /*
8345  * Adjust all task's events' filters to the new vma
8346  */
8347 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8348 {
8349 	struct perf_event_context *ctx;
8350 	int ctxn;
8351 
8352 	/*
8353 	 * Data tracing isn't supported yet and as such there is no need
8354 	 * to keep track of anything that isn't related to executable code:
8355 	 */
8356 	if (!(vma->vm_flags & VM_EXEC))
8357 		return;
8358 
8359 	rcu_read_lock();
8360 	for_each_task_context_nr(ctxn) {
8361 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8362 		if (!ctx)
8363 			continue;
8364 
8365 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8366 	}
8367 	rcu_read_unlock();
8368 }
8369 
8370 void perf_event_mmap(struct vm_area_struct *vma)
8371 {
8372 	struct perf_mmap_event mmap_event;
8373 
8374 	if (!atomic_read(&nr_mmap_events))
8375 		return;
8376 
8377 	mmap_event = (struct perf_mmap_event){
8378 		.vma	= vma,
8379 		/* .file_name */
8380 		/* .file_size */
8381 		.event_id  = {
8382 			.header = {
8383 				.type = PERF_RECORD_MMAP,
8384 				.misc = PERF_RECORD_MISC_USER,
8385 				/* .size */
8386 			},
8387 			/* .pid */
8388 			/* .tid */
8389 			.start  = vma->vm_start,
8390 			.len    = vma->vm_end - vma->vm_start,
8391 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8392 		},
8393 		/* .maj (attr_mmap2 only) */
8394 		/* .min (attr_mmap2 only) */
8395 		/* .ino (attr_mmap2 only) */
8396 		/* .ino_generation (attr_mmap2 only) */
8397 		/* .prot (attr_mmap2 only) */
8398 		/* .flags (attr_mmap2 only) */
8399 	};
8400 
8401 	perf_addr_filters_adjust(vma);
8402 	perf_event_mmap_event(&mmap_event);
8403 }
8404 
8405 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8406 			  unsigned long size, u64 flags)
8407 {
8408 	struct perf_output_handle handle;
8409 	struct perf_sample_data sample;
8410 	struct perf_aux_event {
8411 		struct perf_event_header	header;
8412 		u64				offset;
8413 		u64				size;
8414 		u64				flags;
8415 	} rec = {
8416 		.header = {
8417 			.type = PERF_RECORD_AUX,
8418 			.misc = 0,
8419 			.size = sizeof(rec),
8420 		},
8421 		.offset		= head,
8422 		.size		= size,
8423 		.flags		= flags,
8424 	};
8425 	int ret;
8426 
8427 	perf_event_header__init_id(&rec.header, &sample, event);
8428 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8429 
8430 	if (ret)
8431 		return;
8432 
8433 	perf_output_put(&handle, rec);
8434 	perf_event__output_id_sample(event, &handle, &sample);
8435 
8436 	perf_output_end(&handle);
8437 }
8438 
8439 /*
8440  * Lost/dropped samples logging
8441  */
8442 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8443 {
8444 	struct perf_output_handle handle;
8445 	struct perf_sample_data sample;
8446 	int ret;
8447 
8448 	struct {
8449 		struct perf_event_header	header;
8450 		u64				lost;
8451 	} lost_samples_event = {
8452 		.header = {
8453 			.type = PERF_RECORD_LOST_SAMPLES,
8454 			.misc = 0,
8455 			.size = sizeof(lost_samples_event),
8456 		},
8457 		.lost		= lost,
8458 	};
8459 
8460 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8461 
8462 	ret = perf_output_begin(&handle, &sample, event,
8463 				lost_samples_event.header.size);
8464 	if (ret)
8465 		return;
8466 
8467 	perf_output_put(&handle, lost_samples_event);
8468 	perf_event__output_id_sample(event, &handle, &sample);
8469 	perf_output_end(&handle);
8470 }
8471 
8472 /*
8473  * context_switch tracking
8474  */
8475 
8476 struct perf_switch_event {
8477 	struct task_struct	*task;
8478 	struct task_struct	*next_prev;
8479 
8480 	struct {
8481 		struct perf_event_header	header;
8482 		u32				next_prev_pid;
8483 		u32				next_prev_tid;
8484 	} event_id;
8485 };
8486 
8487 static int perf_event_switch_match(struct perf_event *event)
8488 {
8489 	return event->attr.context_switch;
8490 }
8491 
8492 static void perf_event_switch_output(struct perf_event *event, void *data)
8493 {
8494 	struct perf_switch_event *se = data;
8495 	struct perf_output_handle handle;
8496 	struct perf_sample_data sample;
8497 	int ret;
8498 
8499 	if (!perf_event_switch_match(event))
8500 		return;
8501 
8502 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8503 	if (event->ctx->task) {
8504 		se->event_id.header.type = PERF_RECORD_SWITCH;
8505 		se->event_id.header.size = sizeof(se->event_id.header);
8506 	} else {
8507 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8508 		se->event_id.header.size = sizeof(se->event_id);
8509 		se->event_id.next_prev_pid =
8510 					perf_event_pid(event, se->next_prev);
8511 		se->event_id.next_prev_tid =
8512 					perf_event_tid(event, se->next_prev);
8513 	}
8514 
8515 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8516 
8517 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8518 	if (ret)
8519 		return;
8520 
8521 	if (event->ctx->task)
8522 		perf_output_put(&handle, se->event_id.header);
8523 	else
8524 		perf_output_put(&handle, se->event_id);
8525 
8526 	perf_event__output_id_sample(event, &handle, &sample);
8527 
8528 	perf_output_end(&handle);
8529 }
8530 
8531 static void perf_event_switch(struct task_struct *task,
8532 			      struct task_struct *next_prev, bool sched_in)
8533 {
8534 	struct perf_switch_event switch_event;
8535 
8536 	/* N.B. caller checks nr_switch_events != 0 */
8537 
8538 	switch_event = (struct perf_switch_event){
8539 		.task		= task,
8540 		.next_prev	= next_prev,
8541 		.event_id	= {
8542 			.header = {
8543 				/* .type */
8544 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8545 				/* .size */
8546 			},
8547 			/* .next_prev_pid */
8548 			/* .next_prev_tid */
8549 		},
8550 	};
8551 
8552 	if (!sched_in && task->state == TASK_RUNNING)
8553 		switch_event.event_id.header.misc |=
8554 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8555 
8556 	perf_iterate_sb(perf_event_switch_output,
8557 		       &switch_event,
8558 		       NULL);
8559 }
8560 
8561 /*
8562  * IRQ throttle logging
8563  */
8564 
8565 static void perf_log_throttle(struct perf_event *event, int enable)
8566 {
8567 	struct perf_output_handle handle;
8568 	struct perf_sample_data sample;
8569 	int ret;
8570 
8571 	struct {
8572 		struct perf_event_header	header;
8573 		u64				time;
8574 		u64				id;
8575 		u64				stream_id;
8576 	} throttle_event = {
8577 		.header = {
8578 			.type = PERF_RECORD_THROTTLE,
8579 			.misc = 0,
8580 			.size = sizeof(throttle_event),
8581 		},
8582 		.time		= perf_event_clock(event),
8583 		.id		= primary_event_id(event),
8584 		.stream_id	= event->id,
8585 	};
8586 
8587 	if (enable)
8588 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8589 
8590 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8591 
8592 	ret = perf_output_begin(&handle, &sample, event,
8593 				throttle_event.header.size);
8594 	if (ret)
8595 		return;
8596 
8597 	perf_output_put(&handle, throttle_event);
8598 	perf_event__output_id_sample(event, &handle, &sample);
8599 	perf_output_end(&handle);
8600 }
8601 
8602 /*
8603  * ksymbol register/unregister tracking
8604  */
8605 
8606 struct perf_ksymbol_event {
8607 	const char	*name;
8608 	int		name_len;
8609 	struct {
8610 		struct perf_event_header        header;
8611 		u64				addr;
8612 		u32				len;
8613 		u16				ksym_type;
8614 		u16				flags;
8615 	} event_id;
8616 };
8617 
8618 static int perf_event_ksymbol_match(struct perf_event *event)
8619 {
8620 	return event->attr.ksymbol;
8621 }
8622 
8623 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8624 {
8625 	struct perf_ksymbol_event *ksymbol_event = data;
8626 	struct perf_output_handle handle;
8627 	struct perf_sample_data sample;
8628 	int ret;
8629 
8630 	if (!perf_event_ksymbol_match(event))
8631 		return;
8632 
8633 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8634 				   &sample, event);
8635 	ret = perf_output_begin(&handle, &sample, event,
8636 				ksymbol_event->event_id.header.size);
8637 	if (ret)
8638 		return;
8639 
8640 	perf_output_put(&handle, ksymbol_event->event_id);
8641 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8642 	perf_event__output_id_sample(event, &handle, &sample);
8643 
8644 	perf_output_end(&handle);
8645 }
8646 
8647 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8648 			const char *sym)
8649 {
8650 	struct perf_ksymbol_event ksymbol_event;
8651 	char name[KSYM_NAME_LEN];
8652 	u16 flags = 0;
8653 	int name_len;
8654 
8655 	if (!atomic_read(&nr_ksymbol_events))
8656 		return;
8657 
8658 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8659 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8660 		goto err;
8661 
8662 	strlcpy(name, sym, KSYM_NAME_LEN);
8663 	name_len = strlen(name) + 1;
8664 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8665 		name[name_len++] = '\0';
8666 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8667 
8668 	if (unregister)
8669 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8670 
8671 	ksymbol_event = (struct perf_ksymbol_event){
8672 		.name = name,
8673 		.name_len = name_len,
8674 		.event_id = {
8675 			.header = {
8676 				.type = PERF_RECORD_KSYMBOL,
8677 				.size = sizeof(ksymbol_event.event_id) +
8678 					name_len,
8679 			},
8680 			.addr = addr,
8681 			.len = len,
8682 			.ksym_type = ksym_type,
8683 			.flags = flags,
8684 		},
8685 	};
8686 
8687 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8688 	return;
8689 err:
8690 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8691 }
8692 
8693 /*
8694  * bpf program load/unload tracking
8695  */
8696 
8697 struct perf_bpf_event {
8698 	struct bpf_prog	*prog;
8699 	struct {
8700 		struct perf_event_header        header;
8701 		u16				type;
8702 		u16				flags;
8703 		u32				id;
8704 		u8				tag[BPF_TAG_SIZE];
8705 	} event_id;
8706 };
8707 
8708 static int perf_event_bpf_match(struct perf_event *event)
8709 {
8710 	return event->attr.bpf_event;
8711 }
8712 
8713 static void perf_event_bpf_output(struct perf_event *event, void *data)
8714 {
8715 	struct perf_bpf_event *bpf_event = data;
8716 	struct perf_output_handle handle;
8717 	struct perf_sample_data sample;
8718 	int ret;
8719 
8720 	if (!perf_event_bpf_match(event))
8721 		return;
8722 
8723 	perf_event_header__init_id(&bpf_event->event_id.header,
8724 				   &sample, event);
8725 	ret = perf_output_begin(&handle, data, event,
8726 				bpf_event->event_id.header.size);
8727 	if (ret)
8728 		return;
8729 
8730 	perf_output_put(&handle, bpf_event->event_id);
8731 	perf_event__output_id_sample(event, &handle, &sample);
8732 
8733 	perf_output_end(&handle);
8734 }
8735 
8736 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8737 					 enum perf_bpf_event_type type)
8738 {
8739 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8740 	int i;
8741 
8742 	if (prog->aux->func_cnt == 0) {
8743 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8744 				   (u64)(unsigned long)prog->bpf_func,
8745 				   prog->jited_len, unregister,
8746 				   prog->aux->ksym.name);
8747 	} else {
8748 		for (i = 0; i < prog->aux->func_cnt; i++) {
8749 			struct bpf_prog *subprog = prog->aux->func[i];
8750 
8751 			perf_event_ksymbol(
8752 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8753 				(u64)(unsigned long)subprog->bpf_func,
8754 				subprog->jited_len, unregister,
8755 				prog->aux->ksym.name);
8756 		}
8757 	}
8758 }
8759 
8760 void perf_event_bpf_event(struct bpf_prog *prog,
8761 			  enum perf_bpf_event_type type,
8762 			  u16 flags)
8763 {
8764 	struct perf_bpf_event bpf_event;
8765 
8766 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8767 	    type >= PERF_BPF_EVENT_MAX)
8768 		return;
8769 
8770 	switch (type) {
8771 	case PERF_BPF_EVENT_PROG_LOAD:
8772 	case PERF_BPF_EVENT_PROG_UNLOAD:
8773 		if (atomic_read(&nr_ksymbol_events))
8774 			perf_event_bpf_emit_ksymbols(prog, type);
8775 		break;
8776 	default:
8777 		break;
8778 	}
8779 
8780 	if (!atomic_read(&nr_bpf_events))
8781 		return;
8782 
8783 	bpf_event = (struct perf_bpf_event){
8784 		.prog = prog,
8785 		.event_id = {
8786 			.header = {
8787 				.type = PERF_RECORD_BPF_EVENT,
8788 				.size = sizeof(bpf_event.event_id),
8789 			},
8790 			.type = type,
8791 			.flags = flags,
8792 			.id = prog->aux->id,
8793 		},
8794 	};
8795 
8796 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8797 
8798 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8799 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8800 }
8801 
8802 struct perf_text_poke_event {
8803 	const void		*old_bytes;
8804 	const void		*new_bytes;
8805 	size_t			pad;
8806 	u16			old_len;
8807 	u16			new_len;
8808 
8809 	struct {
8810 		struct perf_event_header	header;
8811 
8812 		u64				addr;
8813 	} event_id;
8814 };
8815 
8816 static int perf_event_text_poke_match(struct perf_event *event)
8817 {
8818 	return event->attr.text_poke;
8819 }
8820 
8821 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8822 {
8823 	struct perf_text_poke_event *text_poke_event = data;
8824 	struct perf_output_handle handle;
8825 	struct perf_sample_data sample;
8826 	u64 padding = 0;
8827 	int ret;
8828 
8829 	if (!perf_event_text_poke_match(event))
8830 		return;
8831 
8832 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8833 
8834 	ret = perf_output_begin(&handle, &sample, event,
8835 				text_poke_event->event_id.header.size);
8836 	if (ret)
8837 		return;
8838 
8839 	perf_output_put(&handle, text_poke_event->event_id);
8840 	perf_output_put(&handle, text_poke_event->old_len);
8841 	perf_output_put(&handle, text_poke_event->new_len);
8842 
8843 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8844 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8845 
8846 	if (text_poke_event->pad)
8847 		__output_copy(&handle, &padding, text_poke_event->pad);
8848 
8849 	perf_event__output_id_sample(event, &handle, &sample);
8850 
8851 	perf_output_end(&handle);
8852 }
8853 
8854 void perf_event_text_poke(const void *addr, const void *old_bytes,
8855 			  size_t old_len, const void *new_bytes, size_t new_len)
8856 {
8857 	struct perf_text_poke_event text_poke_event;
8858 	size_t tot, pad;
8859 
8860 	if (!atomic_read(&nr_text_poke_events))
8861 		return;
8862 
8863 	tot  = sizeof(text_poke_event.old_len) + old_len;
8864 	tot += sizeof(text_poke_event.new_len) + new_len;
8865 	pad  = ALIGN(tot, sizeof(u64)) - tot;
8866 
8867 	text_poke_event = (struct perf_text_poke_event){
8868 		.old_bytes    = old_bytes,
8869 		.new_bytes    = new_bytes,
8870 		.pad          = pad,
8871 		.old_len      = old_len,
8872 		.new_len      = new_len,
8873 		.event_id  = {
8874 			.header = {
8875 				.type = PERF_RECORD_TEXT_POKE,
8876 				.misc = PERF_RECORD_MISC_KERNEL,
8877 				.size = sizeof(text_poke_event.event_id) + tot + pad,
8878 			},
8879 			.addr = (unsigned long)addr,
8880 		},
8881 	};
8882 
8883 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8884 }
8885 
8886 void perf_event_itrace_started(struct perf_event *event)
8887 {
8888 	event->attach_state |= PERF_ATTACH_ITRACE;
8889 }
8890 
8891 static void perf_log_itrace_start(struct perf_event *event)
8892 {
8893 	struct perf_output_handle handle;
8894 	struct perf_sample_data sample;
8895 	struct perf_aux_event {
8896 		struct perf_event_header        header;
8897 		u32				pid;
8898 		u32				tid;
8899 	} rec;
8900 	int ret;
8901 
8902 	if (event->parent)
8903 		event = event->parent;
8904 
8905 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8906 	    event->attach_state & PERF_ATTACH_ITRACE)
8907 		return;
8908 
8909 	rec.header.type	= PERF_RECORD_ITRACE_START;
8910 	rec.header.misc	= 0;
8911 	rec.header.size	= sizeof(rec);
8912 	rec.pid	= perf_event_pid(event, current);
8913 	rec.tid	= perf_event_tid(event, current);
8914 
8915 	perf_event_header__init_id(&rec.header, &sample, event);
8916 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8917 
8918 	if (ret)
8919 		return;
8920 
8921 	perf_output_put(&handle, rec);
8922 	perf_event__output_id_sample(event, &handle, &sample);
8923 
8924 	perf_output_end(&handle);
8925 }
8926 
8927 static int
8928 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8929 {
8930 	struct hw_perf_event *hwc = &event->hw;
8931 	int ret = 0;
8932 	u64 seq;
8933 
8934 	seq = __this_cpu_read(perf_throttled_seq);
8935 	if (seq != hwc->interrupts_seq) {
8936 		hwc->interrupts_seq = seq;
8937 		hwc->interrupts = 1;
8938 	} else {
8939 		hwc->interrupts++;
8940 		if (unlikely(throttle
8941 			     && hwc->interrupts >= max_samples_per_tick)) {
8942 			__this_cpu_inc(perf_throttled_count);
8943 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8944 			hwc->interrupts = MAX_INTERRUPTS;
8945 			perf_log_throttle(event, 0);
8946 			ret = 1;
8947 		}
8948 	}
8949 
8950 	if (event->attr.freq) {
8951 		u64 now = perf_clock();
8952 		s64 delta = now - hwc->freq_time_stamp;
8953 
8954 		hwc->freq_time_stamp = now;
8955 
8956 		if (delta > 0 && delta < 2*TICK_NSEC)
8957 			perf_adjust_period(event, delta, hwc->last_period, true);
8958 	}
8959 
8960 	return ret;
8961 }
8962 
8963 int perf_event_account_interrupt(struct perf_event *event)
8964 {
8965 	return __perf_event_account_interrupt(event, 1);
8966 }
8967 
8968 /*
8969  * Generic event overflow handling, sampling.
8970  */
8971 
8972 static int __perf_event_overflow(struct perf_event *event,
8973 				   int throttle, struct perf_sample_data *data,
8974 				   struct pt_regs *regs)
8975 {
8976 	int events = atomic_read(&event->event_limit);
8977 	int ret = 0;
8978 
8979 	/*
8980 	 * Non-sampling counters might still use the PMI to fold short
8981 	 * hardware counters, ignore those.
8982 	 */
8983 	if (unlikely(!is_sampling_event(event)))
8984 		return 0;
8985 
8986 	ret = __perf_event_account_interrupt(event, throttle);
8987 
8988 	/*
8989 	 * XXX event_limit might not quite work as expected on inherited
8990 	 * events
8991 	 */
8992 
8993 	event->pending_kill = POLL_IN;
8994 	if (events && atomic_dec_and_test(&event->event_limit)) {
8995 		ret = 1;
8996 		event->pending_kill = POLL_HUP;
8997 
8998 		perf_event_disable_inatomic(event);
8999 	}
9000 
9001 	READ_ONCE(event->overflow_handler)(event, data, regs);
9002 
9003 	if (*perf_event_fasync(event) && event->pending_kill) {
9004 		event->pending_wakeup = 1;
9005 		irq_work_queue(&event->pending);
9006 	}
9007 
9008 	return ret;
9009 }
9010 
9011 int perf_event_overflow(struct perf_event *event,
9012 			  struct perf_sample_data *data,
9013 			  struct pt_regs *regs)
9014 {
9015 	return __perf_event_overflow(event, 1, data, regs);
9016 }
9017 
9018 /*
9019  * Generic software event infrastructure
9020  */
9021 
9022 struct swevent_htable {
9023 	struct swevent_hlist		*swevent_hlist;
9024 	struct mutex			hlist_mutex;
9025 	int				hlist_refcount;
9026 
9027 	/* Recursion avoidance in each contexts */
9028 	int				recursion[PERF_NR_CONTEXTS];
9029 };
9030 
9031 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9032 
9033 /*
9034  * We directly increment event->count and keep a second value in
9035  * event->hw.period_left to count intervals. This period event
9036  * is kept in the range [-sample_period, 0] so that we can use the
9037  * sign as trigger.
9038  */
9039 
9040 u64 perf_swevent_set_period(struct perf_event *event)
9041 {
9042 	struct hw_perf_event *hwc = &event->hw;
9043 	u64 period = hwc->last_period;
9044 	u64 nr, offset;
9045 	s64 old, val;
9046 
9047 	hwc->last_period = hwc->sample_period;
9048 
9049 again:
9050 	old = val = local64_read(&hwc->period_left);
9051 	if (val < 0)
9052 		return 0;
9053 
9054 	nr = div64_u64(period + val, period);
9055 	offset = nr * period;
9056 	val -= offset;
9057 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9058 		goto again;
9059 
9060 	return nr;
9061 }
9062 
9063 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9064 				    struct perf_sample_data *data,
9065 				    struct pt_regs *regs)
9066 {
9067 	struct hw_perf_event *hwc = &event->hw;
9068 	int throttle = 0;
9069 
9070 	if (!overflow)
9071 		overflow = perf_swevent_set_period(event);
9072 
9073 	if (hwc->interrupts == MAX_INTERRUPTS)
9074 		return;
9075 
9076 	for (; overflow; overflow--) {
9077 		if (__perf_event_overflow(event, throttle,
9078 					    data, regs)) {
9079 			/*
9080 			 * We inhibit the overflow from happening when
9081 			 * hwc->interrupts == MAX_INTERRUPTS.
9082 			 */
9083 			break;
9084 		}
9085 		throttle = 1;
9086 	}
9087 }
9088 
9089 static void perf_swevent_event(struct perf_event *event, u64 nr,
9090 			       struct perf_sample_data *data,
9091 			       struct pt_regs *regs)
9092 {
9093 	struct hw_perf_event *hwc = &event->hw;
9094 
9095 	local64_add(nr, &event->count);
9096 
9097 	if (!regs)
9098 		return;
9099 
9100 	if (!is_sampling_event(event))
9101 		return;
9102 
9103 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9104 		data->period = nr;
9105 		return perf_swevent_overflow(event, 1, data, regs);
9106 	} else
9107 		data->period = event->hw.last_period;
9108 
9109 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9110 		return perf_swevent_overflow(event, 1, data, regs);
9111 
9112 	if (local64_add_negative(nr, &hwc->period_left))
9113 		return;
9114 
9115 	perf_swevent_overflow(event, 0, data, regs);
9116 }
9117 
9118 static int perf_exclude_event(struct perf_event *event,
9119 			      struct pt_regs *regs)
9120 {
9121 	if (event->hw.state & PERF_HES_STOPPED)
9122 		return 1;
9123 
9124 	if (regs) {
9125 		if (event->attr.exclude_user && user_mode(regs))
9126 			return 1;
9127 
9128 		if (event->attr.exclude_kernel && !user_mode(regs))
9129 			return 1;
9130 	}
9131 
9132 	return 0;
9133 }
9134 
9135 static int perf_swevent_match(struct perf_event *event,
9136 				enum perf_type_id type,
9137 				u32 event_id,
9138 				struct perf_sample_data *data,
9139 				struct pt_regs *regs)
9140 {
9141 	if (event->attr.type != type)
9142 		return 0;
9143 
9144 	if (event->attr.config != event_id)
9145 		return 0;
9146 
9147 	if (perf_exclude_event(event, regs))
9148 		return 0;
9149 
9150 	return 1;
9151 }
9152 
9153 static inline u64 swevent_hash(u64 type, u32 event_id)
9154 {
9155 	u64 val = event_id | (type << 32);
9156 
9157 	return hash_64(val, SWEVENT_HLIST_BITS);
9158 }
9159 
9160 static inline struct hlist_head *
9161 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9162 {
9163 	u64 hash = swevent_hash(type, event_id);
9164 
9165 	return &hlist->heads[hash];
9166 }
9167 
9168 /* For the read side: events when they trigger */
9169 static inline struct hlist_head *
9170 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9171 {
9172 	struct swevent_hlist *hlist;
9173 
9174 	hlist = rcu_dereference(swhash->swevent_hlist);
9175 	if (!hlist)
9176 		return NULL;
9177 
9178 	return __find_swevent_head(hlist, type, event_id);
9179 }
9180 
9181 /* For the event head insertion and removal in the hlist */
9182 static inline struct hlist_head *
9183 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9184 {
9185 	struct swevent_hlist *hlist;
9186 	u32 event_id = event->attr.config;
9187 	u64 type = event->attr.type;
9188 
9189 	/*
9190 	 * Event scheduling is always serialized against hlist allocation
9191 	 * and release. Which makes the protected version suitable here.
9192 	 * The context lock guarantees that.
9193 	 */
9194 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9195 					  lockdep_is_held(&event->ctx->lock));
9196 	if (!hlist)
9197 		return NULL;
9198 
9199 	return __find_swevent_head(hlist, type, event_id);
9200 }
9201 
9202 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9203 				    u64 nr,
9204 				    struct perf_sample_data *data,
9205 				    struct pt_regs *regs)
9206 {
9207 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9208 	struct perf_event *event;
9209 	struct hlist_head *head;
9210 
9211 	rcu_read_lock();
9212 	head = find_swevent_head_rcu(swhash, type, event_id);
9213 	if (!head)
9214 		goto end;
9215 
9216 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9217 		if (perf_swevent_match(event, type, event_id, data, regs))
9218 			perf_swevent_event(event, nr, data, regs);
9219 	}
9220 end:
9221 	rcu_read_unlock();
9222 }
9223 
9224 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9225 
9226 int perf_swevent_get_recursion_context(void)
9227 {
9228 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9229 
9230 	return get_recursion_context(swhash->recursion);
9231 }
9232 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9233 
9234 void perf_swevent_put_recursion_context(int rctx)
9235 {
9236 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9237 
9238 	put_recursion_context(swhash->recursion, rctx);
9239 }
9240 
9241 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9242 {
9243 	struct perf_sample_data data;
9244 
9245 	if (WARN_ON_ONCE(!regs))
9246 		return;
9247 
9248 	perf_sample_data_init(&data, addr, 0);
9249 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9250 }
9251 
9252 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9253 {
9254 	int rctx;
9255 
9256 	preempt_disable_notrace();
9257 	rctx = perf_swevent_get_recursion_context();
9258 	if (unlikely(rctx < 0))
9259 		goto fail;
9260 
9261 	___perf_sw_event(event_id, nr, regs, addr);
9262 
9263 	perf_swevent_put_recursion_context(rctx);
9264 fail:
9265 	preempt_enable_notrace();
9266 }
9267 
9268 static void perf_swevent_read(struct perf_event *event)
9269 {
9270 }
9271 
9272 static int perf_swevent_add(struct perf_event *event, int flags)
9273 {
9274 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9275 	struct hw_perf_event *hwc = &event->hw;
9276 	struct hlist_head *head;
9277 
9278 	if (is_sampling_event(event)) {
9279 		hwc->last_period = hwc->sample_period;
9280 		perf_swevent_set_period(event);
9281 	}
9282 
9283 	hwc->state = !(flags & PERF_EF_START);
9284 
9285 	head = find_swevent_head(swhash, event);
9286 	if (WARN_ON_ONCE(!head))
9287 		return -EINVAL;
9288 
9289 	hlist_add_head_rcu(&event->hlist_entry, head);
9290 	perf_event_update_userpage(event);
9291 
9292 	return 0;
9293 }
9294 
9295 static void perf_swevent_del(struct perf_event *event, int flags)
9296 {
9297 	hlist_del_rcu(&event->hlist_entry);
9298 }
9299 
9300 static void perf_swevent_start(struct perf_event *event, int flags)
9301 {
9302 	event->hw.state = 0;
9303 }
9304 
9305 static void perf_swevent_stop(struct perf_event *event, int flags)
9306 {
9307 	event->hw.state = PERF_HES_STOPPED;
9308 }
9309 
9310 /* Deref the hlist from the update side */
9311 static inline struct swevent_hlist *
9312 swevent_hlist_deref(struct swevent_htable *swhash)
9313 {
9314 	return rcu_dereference_protected(swhash->swevent_hlist,
9315 					 lockdep_is_held(&swhash->hlist_mutex));
9316 }
9317 
9318 static void swevent_hlist_release(struct swevent_htable *swhash)
9319 {
9320 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9321 
9322 	if (!hlist)
9323 		return;
9324 
9325 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9326 	kfree_rcu(hlist, rcu_head);
9327 }
9328 
9329 static void swevent_hlist_put_cpu(int cpu)
9330 {
9331 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9332 
9333 	mutex_lock(&swhash->hlist_mutex);
9334 
9335 	if (!--swhash->hlist_refcount)
9336 		swevent_hlist_release(swhash);
9337 
9338 	mutex_unlock(&swhash->hlist_mutex);
9339 }
9340 
9341 static void swevent_hlist_put(void)
9342 {
9343 	int cpu;
9344 
9345 	for_each_possible_cpu(cpu)
9346 		swevent_hlist_put_cpu(cpu);
9347 }
9348 
9349 static int swevent_hlist_get_cpu(int cpu)
9350 {
9351 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9352 	int err = 0;
9353 
9354 	mutex_lock(&swhash->hlist_mutex);
9355 	if (!swevent_hlist_deref(swhash) &&
9356 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9357 		struct swevent_hlist *hlist;
9358 
9359 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9360 		if (!hlist) {
9361 			err = -ENOMEM;
9362 			goto exit;
9363 		}
9364 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9365 	}
9366 	swhash->hlist_refcount++;
9367 exit:
9368 	mutex_unlock(&swhash->hlist_mutex);
9369 
9370 	return err;
9371 }
9372 
9373 static int swevent_hlist_get(void)
9374 {
9375 	int err, cpu, failed_cpu;
9376 
9377 	mutex_lock(&pmus_lock);
9378 	for_each_possible_cpu(cpu) {
9379 		err = swevent_hlist_get_cpu(cpu);
9380 		if (err) {
9381 			failed_cpu = cpu;
9382 			goto fail;
9383 		}
9384 	}
9385 	mutex_unlock(&pmus_lock);
9386 	return 0;
9387 fail:
9388 	for_each_possible_cpu(cpu) {
9389 		if (cpu == failed_cpu)
9390 			break;
9391 		swevent_hlist_put_cpu(cpu);
9392 	}
9393 	mutex_unlock(&pmus_lock);
9394 	return err;
9395 }
9396 
9397 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9398 
9399 static void sw_perf_event_destroy(struct perf_event *event)
9400 {
9401 	u64 event_id = event->attr.config;
9402 
9403 	WARN_ON(event->parent);
9404 
9405 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9406 	swevent_hlist_put();
9407 }
9408 
9409 static int perf_swevent_init(struct perf_event *event)
9410 {
9411 	u64 event_id = event->attr.config;
9412 
9413 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9414 		return -ENOENT;
9415 
9416 	/*
9417 	 * no branch sampling for software events
9418 	 */
9419 	if (has_branch_stack(event))
9420 		return -EOPNOTSUPP;
9421 
9422 	switch (event_id) {
9423 	case PERF_COUNT_SW_CPU_CLOCK:
9424 	case PERF_COUNT_SW_TASK_CLOCK:
9425 		return -ENOENT;
9426 
9427 	default:
9428 		break;
9429 	}
9430 
9431 	if (event_id >= PERF_COUNT_SW_MAX)
9432 		return -ENOENT;
9433 
9434 	if (!event->parent) {
9435 		int err;
9436 
9437 		err = swevent_hlist_get();
9438 		if (err)
9439 			return err;
9440 
9441 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9442 		event->destroy = sw_perf_event_destroy;
9443 	}
9444 
9445 	return 0;
9446 }
9447 
9448 static struct pmu perf_swevent = {
9449 	.task_ctx_nr	= perf_sw_context,
9450 
9451 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9452 
9453 	.event_init	= perf_swevent_init,
9454 	.add		= perf_swevent_add,
9455 	.del		= perf_swevent_del,
9456 	.start		= perf_swevent_start,
9457 	.stop		= perf_swevent_stop,
9458 	.read		= perf_swevent_read,
9459 };
9460 
9461 #ifdef CONFIG_EVENT_TRACING
9462 
9463 static int perf_tp_filter_match(struct perf_event *event,
9464 				struct perf_sample_data *data)
9465 {
9466 	void *record = data->raw->frag.data;
9467 
9468 	/* only top level events have filters set */
9469 	if (event->parent)
9470 		event = event->parent;
9471 
9472 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9473 		return 1;
9474 	return 0;
9475 }
9476 
9477 static int perf_tp_event_match(struct perf_event *event,
9478 				struct perf_sample_data *data,
9479 				struct pt_regs *regs)
9480 {
9481 	if (event->hw.state & PERF_HES_STOPPED)
9482 		return 0;
9483 	/*
9484 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9485 	 */
9486 	if (event->attr.exclude_kernel && !user_mode(regs))
9487 		return 0;
9488 
9489 	if (!perf_tp_filter_match(event, data))
9490 		return 0;
9491 
9492 	return 1;
9493 }
9494 
9495 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9496 			       struct trace_event_call *call, u64 count,
9497 			       struct pt_regs *regs, struct hlist_head *head,
9498 			       struct task_struct *task)
9499 {
9500 	if (bpf_prog_array_valid(call)) {
9501 		*(struct pt_regs **)raw_data = regs;
9502 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9503 			perf_swevent_put_recursion_context(rctx);
9504 			return;
9505 		}
9506 	}
9507 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9508 		      rctx, task);
9509 }
9510 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9511 
9512 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9513 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9514 		   struct task_struct *task)
9515 {
9516 	struct perf_sample_data data;
9517 	struct perf_event *event;
9518 
9519 	struct perf_raw_record raw = {
9520 		.frag = {
9521 			.size = entry_size,
9522 			.data = record,
9523 		},
9524 	};
9525 
9526 	perf_sample_data_init(&data, 0, 0);
9527 	data.raw = &raw;
9528 
9529 	perf_trace_buf_update(record, event_type);
9530 
9531 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9532 		if (perf_tp_event_match(event, &data, regs))
9533 			perf_swevent_event(event, count, &data, regs);
9534 	}
9535 
9536 	/*
9537 	 * If we got specified a target task, also iterate its context and
9538 	 * deliver this event there too.
9539 	 */
9540 	if (task && task != current) {
9541 		struct perf_event_context *ctx;
9542 		struct trace_entry *entry = record;
9543 
9544 		rcu_read_lock();
9545 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9546 		if (!ctx)
9547 			goto unlock;
9548 
9549 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9550 			if (event->cpu != smp_processor_id())
9551 				continue;
9552 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9553 				continue;
9554 			if (event->attr.config != entry->type)
9555 				continue;
9556 			if (perf_tp_event_match(event, &data, regs))
9557 				perf_swevent_event(event, count, &data, regs);
9558 		}
9559 unlock:
9560 		rcu_read_unlock();
9561 	}
9562 
9563 	perf_swevent_put_recursion_context(rctx);
9564 }
9565 EXPORT_SYMBOL_GPL(perf_tp_event);
9566 
9567 static void tp_perf_event_destroy(struct perf_event *event)
9568 {
9569 	perf_trace_destroy(event);
9570 }
9571 
9572 static int perf_tp_event_init(struct perf_event *event)
9573 {
9574 	int err;
9575 
9576 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9577 		return -ENOENT;
9578 
9579 	/*
9580 	 * no branch sampling for tracepoint events
9581 	 */
9582 	if (has_branch_stack(event))
9583 		return -EOPNOTSUPP;
9584 
9585 	err = perf_trace_init(event);
9586 	if (err)
9587 		return err;
9588 
9589 	event->destroy = tp_perf_event_destroy;
9590 
9591 	return 0;
9592 }
9593 
9594 static struct pmu perf_tracepoint = {
9595 	.task_ctx_nr	= perf_sw_context,
9596 
9597 	.event_init	= perf_tp_event_init,
9598 	.add		= perf_trace_add,
9599 	.del		= perf_trace_del,
9600 	.start		= perf_swevent_start,
9601 	.stop		= perf_swevent_stop,
9602 	.read		= perf_swevent_read,
9603 };
9604 
9605 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9606 /*
9607  * Flags in config, used by dynamic PMU kprobe and uprobe
9608  * The flags should match following PMU_FORMAT_ATTR().
9609  *
9610  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9611  *                               if not set, create kprobe/uprobe
9612  *
9613  * The following values specify a reference counter (or semaphore in the
9614  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9615  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9616  *
9617  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9618  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9619  */
9620 enum perf_probe_config {
9621 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9622 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9623 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9624 };
9625 
9626 PMU_FORMAT_ATTR(retprobe, "config:0");
9627 #endif
9628 
9629 #ifdef CONFIG_KPROBE_EVENTS
9630 static struct attribute *kprobe_attrs[] = {
9631 	&format_attr_retprobe.attr,
9632 	NULL,
9633 };
9634 
9635 static struct attribute_group kprobe_format_group = {
9636 	.name = "format",
9637 	.attrs = kprobe_attrs,
9638 };
9639 
9640 static const struct attribute_group *kprobe_attr_groups[] = {
9641 	&kprobe_format_group,
9642 	NULL,
9643 };
9644 
9645 static int perf_kprobe_event_init(struct perf_event *event);
9646 static struct pmu perf_kprobe = {
9647 	.task_ctx_nr	= perf_sw_context,
9648 	.event_init	= perf_kprobe_event_init,
9649 	.add		= perf_trace_add,
9650 	.del		= perf_trace_del,
9651 	.start		= perf_swevent_start,
9652 	.stop		= perf_swevent_stop,
9653 	.read		= perf_swevent_read,
9654 	.attr_groups	= kprobe_attr_groups,
9655 };
9656 
9657 static int perf_kprobe_event_init(struct perf_event *event)
9658 {
9659 	int err;
9660 	bool is_retprobe;
9661 
9662 	if (event->attr.type != perf_kprobe.type)
9663 		return -ENOENT;
9664 
9665 	if (!perfmon_capable())
9666 		return -EACCES;
9667 
9668 	/*
9669 	 * no branch sampling for probe events
9670 	 */
9671 	if (has_branch_stack(event))
9672 		return -EOPNOTSUPP;
9673 
9674 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9675 	err = perf_kprobe_init(event, is_retprobe);
9676 	if (err)
9677 		return err;
9678 
9679 	event->destroy = perf_kprobe_destroy;
9680 
9681 	return 0;
9682 }
9683 #endif /* CONFIG_KPROBE_EVENTS */
9684 
9685 #ifdef CONFIG_UPROBE_EVENTS
9686 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9687 
9688 static struct attribute *uprobe_attrs[] = {
9689 	&format_attr_retprobe.attr,
9690 	&format_attr_ref_ctr_offset.attr,
9691 	NULL,
9692 };
9693 
9694 static struct attribute_group uprobe_format_group = {
9695 	.name = "format",
9696 	.attrs = uprobe_attrs,
9697 };
9698 
9699 static const struct attribute_group *uprobe_attr_groups[] = {
9700 	&uprobe_format_group,
9701 	NULL,
9702 };
9703 
9704 static int perf_uprobe_event_init(struct perf_event *event);
9705 static struct pmu perf_uprobe = {
9706 	.task_ctx_nr	= perf_sw_context,
9707 	.event_init	= perf_uprobe_event_init,
9708 	.add		= perf_trace_add,
9709 	.del		= perf_trace_del,
9710 	.start		= perf_swevent_start,
9711 	.stop		= perf_swevent_stop,
9712 	.read		= perf_swevent_read,
9713 	.attr_groups	= uprobe_attr_groups,
9714 };
9715 
9716 static int perf_uprobe_event_init(struct perf_event *event)
9717 {
9718 	int err;
9719 	unsigned long ref_ctr_offset;
9720 	bool is_retprobe;
9721 
9722 	if (event->attr.type != perf_uprobe.type)
9723 		return -ENOENT;
9724 
9725 	if (!perfmon_capable())
9726 		return -EACCES;
9727 
9728 	/*
9729 	 * no branch sampling for probe events
9730 	 */
9731 	if (has_branch_stack(event))
9732 		return -EOPNOTSUPP;
9733 
9734 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9735 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9736 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9737 	if (err)
9738 		return err;
9739 
9740 	event->destroy = perf_uprobe_destroy;
9741 
9742 	return 0;
9743 }
9744 #endif /* CONFIG_UPROBE_EVENTS */
9745 
9746 static inline void perf_tp_register(void)
9747 {
9748 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9749 #ifdef CONFIG_KPROBE_EVENTS
9750 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9751 #endif
9752 #ifdef CONFIG_UPROBE_EVENTS
9753 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9754 #endif
9755 }
9756 
9757 static void perf_event_free_filter(struct perf_event *event)
9758 {
9759 	ftrace_profile_free_filter(event);
9760 }
9761 
9762 #ifdef CONFIG_BPF_SYSCALL
9763 static void bpf_overflow_handler(struct perf_event *event,
9764 				 struct perf_sample_data *data,
9765 				 struct pt_regs *regs)
9766 {
9767 	struct bpf_perf_event_data_kern ctx = {
9768 		.data = data,
9769 		.event = event,
9770 	};
9771 	int ret = 0;
9772 
9773 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9774 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9775 		goto out;
9776 	rcu_read_lock();
9777 	ret = BPF_PROG_RUN(event->prog, &ctx);
9778 	rcu_read_unlock();
9779 out:
9780 	__this_cpu_dec(bpf_prog_active);
9781 	if (!ret)
9782 		return;
9783 
9784 	event->orig_overflow_handler(event, data, regs);
9785 }
9786 
9787 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9788 {
9789 	struct bpf_prog *prog;
9790 
9791 	if (event->overflow_handler_context)
9792 		/* hw breakpoint or kernel counter */
9793 		return -EINVAL;
9794 
9795 	if (event->prog)
9796 		return -EEXIST;
9797 
9798 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9799 	if (IS_ERR(prog))
9800 		return PTR_ERR(prog);
9801 
9802 	if (event->attr.precise_ip &&
9803 	    prog->call_get_stack &&
9804 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9805 	     event->attr.exclude_callchain_kernel ||
9806 	     event->attr.exclude_callchain_user)) {
9807 		/*
9808 		 * On perf_event with precise_ip, calling bpf_get_stack()
9809 		 * may trigger unwinder warnings and occasional crashes.
9810 		 * bpf_get_[stack|stackid] works around this issue by using
9811 		 * callchain attached to perf_sample_data. If the
9812 		 * perf_event does not full (kernel and user) callchain
9813 		 * attached to perf_sample_data, do not allow attaching BPF
9814 		 * program that calls bpf_get_[stack|stackid].
9815 		 */
9816 		bpf_prog_put(prog);
9817 		return -EPROTO;
9818 	}
9819 
9820 	event->prog = prog;
9821 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9822 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9823 	return 0;
9824 }
9825 
9826 static void perf_event_free_bpf_handler(struct perf_event *event)
9827 {
9828 	struct bpf_prog *prog = event->prog;
9829 
9830 	if (!prog)
9831 		return;
9832 
9833 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9834 	event->prog = NULL;
9835 	bpf_prog_put(prog);
9836 }
9837 #else
9838 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9839 {
9840 	return -EOPNOTSUPP;
9841 }
9842 static void perf_event_free_bpf_handler(struct perf_event *event)
9843 {
9844 }
9845 #endif
9846 
9847 /*
9848  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9849  * with perf_event_open()
9850  */
9851 static inline bool perf_event_is_tracing(struct perf_event *event)
9852 {
9853 	if (event->pmu == &perf_tracepoint)
9854 		return true;
9855 #ifdef CONFIG_KPROBE_EVENTS
9856 	if (event->pmu == &perf_kprobe)
9857 		return true;
9858 #endif
9859 #ifdef CONFIG_UPROBE_EVENTS
9860 	if (event->pmu == &perf_uprobe)
9861 		return true;
9862 #endif
9863 	return false;
9864 }
9865 
9866 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9867 {
9868 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9869 	struct bpf_prog *prog;
9870 	int ret;
9871 
9872 	if (!perf_event_is_tracing(event))
9873 		return perf_event_set_bpf_handler(event, prog_fd);
9874 
9875 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9876 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9877 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9878 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9879 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9880 		return -EINVAL;
9881 
9882 	prog = bpf_prog_get(prog_fd);
9883 	if (IS_ERR(prog))
9884 		return PTR_ERR(prog);
9885 
9886 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9887 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9888 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9889 		/* valid fd, but invalid bpf program type */
9890 		bpf_prog_put(prog);
9891 		return -EINVAL;
9892 	}
9893 
9894 	/* Kprobe override only works for kprobes, not uprobes. */
9895 	if (prog->kprobe_override &&
9896 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9897 		bpf_prog_put(prog);
9898 		return -EINVAL;
9899 	}
9900 
9901 	if (is_tracepoint || is_syscall_tp) {
9902 		int off = trace_event_get_offsets(event->tp_event);
9903 
9904 		if (prog->aux->max_ctx_offset > off) {
9905 			bpf_prog_put(prog);
9906 			return -EACCES;
9907 		}
9908 	}
9909 
9910 	ret = perf_event_attach_bpf_prog(event, prog);
9911 	if (ret)
9912 		bpf_prog_put(prog);
9913 	return ret;
9914 }
9915 
9916 static void perf_event_free_bpf_prog(struct perf_event *event)
9917 {
9918 	if (!perf_event_is_tracing(event)) {
9919 		perf_event_free_bpf_handler(event);
9920 		return;
9921 	}
9922 	perf_event_detach_bpf_prog(event);
9923 }
9924 
9925 #else
9926 
9927 static inline void perf_tp_register(void)
9928 {
9929 }
9930 
9931 static void perf_event_free_filter(struct perf_event *event)
9932 {
9933 }
9934 
9935 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9936 {
9937 	return -ENOENT;
9938 }
9939 
9940 static void perf_event_free_bpf_prog(struct perf_event *event)
9941 {
9942 }
9943 #endif /* CONFIG_EVENT_TRACING */
9944 
9945 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9946 void perf_bp_event(struct perf_event *bp, void *data)
9947 {
9948 	struct perf_sample_data sample;
9949 	struct pt_regs *regs = data;
9950 
9951 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9952 
9953 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9954 		perf_swevent_event(bp, 1, &sample, regs);
9955 }
9956 #endif
9957 
9958 /*
9959  * Allocate a new address filter
9960  */
9961 static struct perf_addr_filter *
9962 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9963 {
9964 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9965 	struct perf_addr_filter *filter;
9966 
9967 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9968 	if (!filter)
9969 		return NULL;
9970 
9971 	INIT_LIST_HEAD(&filter->entry);
9972 	list_add_tail(&filter->entry, filters);
9973 
9974 	return filter;
9975 }
9976 
9977 static void free_filters_list(struct list_head *filters)
9978 {
9979 	struct perf_addr_filter *filter, *iter;
9980 
9981 	list_for_each_entry_safe(filter, iter, filters, entry) {
9982 		path_put(&filter->path);
9983 		list_del(&filter->entry);
9984 		kfree(filter);
9985 	}
9986 }
9987 
9988 /*
9989  * Free existing address filters and optionally install new ones
9990  */
9991 static void perf_addr_filters_splice(struct perf_event *event,
9992 				     struct list_head *head)
9993 {
9994 	unsigned long flags;
9995 	LIST_HEAD(list);
9996 
9997 	if (!has_addr_filter(event))
9998 		return;
9999 
10000 	/* don't bother with children, they don't have their own filters */
10001 	if (event->parent)
10002 		return;
10003 
10004 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10005 
10006 	list_splice_init(&event->addr_filters.list, &list);
10007 	if (head)
10008 		list_splice(head, &event->addr_filters.list);
10009 
10010 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10011 
10012 	free_filters_list(&list);
10013 }
10014 
10015 /*
10016  * Scan through mm's vmas and see if one of them matches the
10017  * @filter; if so, adjust filter's address range.
10018  * Called with mm::mmap_lock down for reading.
10019  */
10020 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10021 				   struct mm_struct *mm,
10022 				   struct perf_addr_filter_range *fr)
10023 {
10024 	struct vm_area_struct *vma;
10025 
10026 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10027 		if (!vma->vm_file)
10028 			continue;
10029 
10030 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10031 			return;
10032 	}
10033 }
10034 
10035 /*
10036  * Update event's address range filters based on the
10037  * task's existing mappings, if any.
10038  */
10039 static void perf_event_addr_filters_apply(struct perf_event *event)
10040 {
10041 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10042 	struct task_struct *task = READ_ONCE(event->ctx->task);
10043 	struct perf_addr_filter *filter;
10044 	struct mm_struct *mm = NULL;
10045 	unsigned int count = 0;
10046 	unsigned long flags;
10047 
10048 	/*
10049 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10050 	 * will stop on the parent's child_mutex that our caller is also holding
10051 	 */
10052 	if (task == TASK_TOMBSTONE)
10053 		return;
10054 
10055 	if (ifh->nr_file_filters) {
10056 		mm = get_task_mm(event->ctx->task);
10057 		if (!mm)
10058 			goto restart;
10059 
10060 		mmap_read_lock(mm);
10061 	}
10062 
10063 	raw_spin_lock_irqsave(&ifh->lock, flags);
10064 	list_for_each_entry(filter, &ifh->list, entry) {
10065 		if (filter->path.dentry) {
10066 			/*
10067 			 * Adjust base offset if the filter is associated to a
10068 			 * binary that needs to be mapped:
10069 			 */
10070 			event->addr_filter_ranges[count].start = 0;
10071 			event->addr_filter_ranges[count].size = 0;
10072 
10073 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10074 		} else {
10075 			event->addr_filter_ranges[count].start = filter->offset;
10076 			event->addr_filter_ranges[count].size  = filter->size;
10077 		}
10078 
10079 		count++;
10080 	}
10081 
10082 	event->addr_filters_gen++;
10083 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10084 
10085 	if (ifh->nr_file_filters) {
10086 		mmap_read_unlock(mm);
10087 
10088 		mmput(mm);
10089 	}
10090 
10091 restart:
10092 	perf_event_stop(event, 1);
10093 }
10094 
10095 /*
10096  * Address range filtering: limiting the data to certain
10097  * instruction address ranges. Filters are ioctl()ed to us from
10098  * userspace as ascii strings.
10099  *
10100  * Filter string format:
10101  *
10102  * ACTION RANGE_SPEC
10103  * where ACTION is one of the
10104  *  * "filter": limit the trace to this region
10105  *  * "start": start tracing from this address
10106  *  * "stop": stop tracing at this address/region;
10107  * RANGE_SPEC is
10108  *  * for kernel addresses: <start address>[/<size>]
10109  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10110  *
10111  * if <size> is not specified or is zero, the range is treated as a single
10112  * address; not valid for ACTION=="filter".
10113  */
10114 enum {
10115 	IF_ACT_NONE = -1,
10116 	IF_ACT_FILTER,
10117 	IF_ACT_START,
10118 	IF_ACT_STOP,
10119 	IF_SRC_FILE,
10120 	IF_SRC_KERNEL,
10121 	IF_SRC_FILEADDR,
10122 	IF_SRC_KERNELADDR,
10123 };
10124 
10125 enum {
10126 	IF_STATE_ACTION = 0,
10127 	IF_STATE_SOURCE,
10128 	IF_STATE_END,
10129 };
10130 
10131 static const match_table_t if_tokens = {
10132 	{ IF_ACT_FILTER,	"filter" },
10133 	{ IF_ACT_START,		"start" },
10134 	{ IF_ACT_STOP,		"stop" },
10135 	{ IF_SRC_FILE,		"%u/%u@%s" },
10136 	{ IF_SRC_KERNEL,	"%u/%u" },
10137 	{ IF_SRC_FILEADDR,	"%u@%s" },
10138 	{ IF_SRC_KERNELADDR,	"%u" },
10139 	{ IF_ACT_NONE,		NULL },
10140 };
10141 
10142 /*
10143  * Address filter string parser
10144  */
10145 static int
10146 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10147 			     struct list_head *filters)
10148 {
10149 	struct perf_addr_filter *filter = NULL;
10150 	char *start, *orig, *filename = NULL;
10151 	substring_t args[MAX_OPT_ARGS];
10152 	int state = IF_STATE_ACTION, token;
10153 	unsigned int kernel = 0;
10154 	int ret = -EINVAL;
10155 
10156 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10157 	if (!fstr)
10158 		return -ENOMEM;
10159 
10160 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10161 		static const enum perf_addr_filter_action_t actions[] = {
10162 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10163 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10164 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10165 		};
10166 		ret = -EINVAL;
10167 
10168 		if (!*start)
10169 			continue;
10170 
10171 		/* filter definition begins */
10172 		if (state == IF_STATE_ACTION) {
10173 			filter = perf_addr_filter_new(event, filters);
10174 			if (!filter)
10175 				goto fail;
10176 		}
10177 
10178 		token = match_token(start, if_tokens, args);
10179 		switch (token) {
10180 		case IF_ACT_FILTER:
10181 		case IF_ACT_START:
10182 		case IF_ACT_STOP:
10183 			if (state != IF_STATE_ACTION)
10184 				goto fail;
10185 
10186 			filter->action = actions[token];
10187 			state = IF_STATE_SOURCE;
10188 			break;
10189 
10190 		case IF_SRC_KERNELADDR:
10191 		case IF_SRC_KERNEL:
10192 			kernel = 1;
10193 			fallthrough;
10194 
10195 		case IF_SRC_FILEADDR:
10196 		case IF_SRC_FILE:
10197 			if (state != IF_STATE_SOURCE)
10198 				goto fail;
10199 
10200 			*args[0].to = 0;
10201 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10202 			if (ret)
10203 				goto fail;
10204 
10205 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10206 				*args[1].to = 0;
10207 				ret = kstrtoul(args[1].from, 0, &filter->size);
10208 				if (ret)
10209 					goto fail;
10210 			}
10211 
10212 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10213 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10214 
10215 				kfree(filename);
10216 				filename = match_strdup(&args[fpos]);
10217 				if (!filename) {
10218 					ret = -ENOMEM;
10219 					goto fail;
10220 				}
10221 			}
10222 
10223 			state = IF_STATE_END;
10224 			break;
10225 
10226 		default:
10227 			goto fail;
10228 		}
10229 
10230 		/*
10231 		 * Filter definition is fully parsed, validate and install it.
10232 		 * Make sure that it doesn't contradict itself or the event's
10233 		 * attribute.
10234 		 */
10235 		if (state == IF_STATE_END) {
10236 			ret = -EINVAL;
10237 			if (kernel && event->attr.exclude_kernel)
10238 				goto fail;
10239 
10240 			/*
10241 			 * ACTION "filter" must have a non-zero length region
10242 			 * specified.
10243 			 */
10244 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10245 			    !filter->size)
10246 				goto fail;
10247 
10248 			if (!kernel) {
10249 				if (!filename)
10250 					goto fail;
10251 
10252 				/*
10253 				 * For now, we only support file-based filters
10254 				 * in per-task events; doing so for CPU-wide
10255 				 * events requires additional context switching
10256 				 * trickery, since same object code will be
10257 				 * mapped at different virtual addresses in
10258 				 * different processes.
10259 				 */
10260 				ret = -EOPNOTSUPP;
10261 				if (!event->ctx->task)
10262 					goto fail;
10263 
10264 				/* look up the path and grab its inode */
10265 				ret = kern_path(filename, LOOKUP_FOLLOW,
10266 						&filter->path);
10267 				if (ret)
10268 					goto fail;
10269 
10270 				ret = -EINVAL;
10271 				if (!filter->path.dentry ||
10272 				    !S_ISREG(d_inode(filter->path.dentry)
10273 					     ->i_mode))
10274 					goto fail;
10275 
10276 				event->addr_filters.nr_file_filters++;
10277 			}
10278 
10279 			/* ready to consume more filters */
10280 			state = IF_STATE_ACTION;
10281 			filter = NULL;
10282 		}
10283 	}
10284 
10285 	if (state != IF_STATE_ACTION)
10286 		goto fail;
10287 
10288 	kfree(filename);
10289 	kfree(orig);
10290 
10291 	return 0;
10292 
10293 fail:
10294 	kfree(filename);
10295 	free_filters_list(filters);
10296 	kfree(orig);
10297 
10298 	return ret;
10299 }
10300 
10301 static int
10302 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10303 {
10304 	LIST_HEAD(filters);
10305 	int ret;
10306 
10307 	/*
10308 	 * Since this is called in perf_ioctl() path, we're already holding
10309 	 * ctx::mutex.
10310 	 */
10311 	lockdep_assert_held(&event->ctx->mutex);
10312 
10313 	if (WARN_ON_ONCE(event->parent))
10314 		return -EINVAL;
10315 
10316 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10317 	if (ret)
10318 		goto fail_clear_files;
10319 
10320 	ret = event->pmu->addr_filters_validate(&filters);
10321 	if (ret)
10322 		goto fail_free_filters;
10323 
10324 	/* remove existing filters, if any */
10325 	perf_addr_filters_splice(event, &filters);
10326 
10327 	/* install new filters */
10328 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10329 
10330 	return ret;
10331 
10332 fail_free_filters:
10333 	free_filters_list(&filters);
10334 
10335 fail_clear_files:
10336 	event->addr_filters.nr_file_filters = 0;
10337 
10338 	return ret;
10339 }
10340 
10341 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10342 {
10343 	int ret = -EINVAL;
10344 	char *filter_str;
10345 
10346 	filter_str = strndup_user(arg, PAGE_SIZE);
10347 	if (IS_ERR(filter_str))
10348 		return PTR_ERR(filter_str);
10349 
10350 #ifdef CONFIG_EVENT_TRACING
10351 	if (perf_event_is_tracing(event)) {
10352 		struct perf_event_context *ctx = event->ctx;
10353 
10354 		/*
10355 		 * Beware, here be dragons!!
10356 		 *
10357 		 * the tracepoint muck will deadlock against ctx->mutex, but
10358 		 * the tracepoint stuff does not actually need it. So
10359 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10360 		 * already have a reference on ctx.
10361 		 *
10362 		 * This can result in event getting moved to a different ctx,
10363 		 * but that does not affect the tracepoint state.
10364 		 */
10365 		mutex_unlock(&ctx->mutex);
10366 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10367 		mutex_lock(&ctx->mutex);
10368 	} else
10369 #endif
10370 	if (has_addr_filter(event))
10371 		ret = perf_event_set_addr_filter(event, filter_str);
10372 
10373 	kfree(filter_str);
10374 	return ret;
10375 }
10376 
10377 /*
10378  * hrtimer based swevent callback
10379  */
10380 
10381 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10382 {
10383 	enum hrtimer_restart ret = HRTIMER_RESTART;
10384 	struct perf_sample_data data;
10385 	struct pt_regs *regs;
10386 	struct perf_event *event;
10387 	u64 period;
10388 
10389 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10390 
10391 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10392 		return HRTIMER_NORESTART;
10393 
10394 	event->pmu->read(event);
10395 
10396 	perf_sample_data_init(&data, 0, event->hw.last_period);
10397 	regs = get_irq_regs();
10398 
10399 	if (regs && !perf_exclude_event(event, regs)) {
10400 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10401 			if (__perf_event_overflow(event, 1, &data, regs))
10402 				ret = HRTIMER_NORESTART;
10403 	}
10404 
10405 	period = max_t(u64, 10000, event->hw.sample_period);
10406 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10407 
10408 	return ret;
10409 }
10410 
10411 static void perf_swevent_start_hrtimer(struct perf_event *event)
10412 {
10413 	struct hw_perf_event *hwc = &event->hw;
10414 	s64 period;
10415 
10416 	if (!is_sampling_event(event))
10417 		return;
10418 
10419 	period = local64_read(&hwc->period_left);
10420 	if (period) {
10421 		if (period < 0)
10422 			period = 10000;
10423 
10424 		local64_set(&hwc->period_left, 0);
10425 	} else {
10426 		period = max_t(u64, 10000, hwc->sample_period);
10427 	}
10428 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10429 		      HRTIMER_MODE_REL_PINNED_HARD);
10430 }
10431 
10432 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10433 {
10434 	struct hw_perf_event *hwc = &event->hw;
10435 
10436 	if (is_sampling_event(event)) {
10437 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10438 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10439 
10440 		hrtimer_cancel(&hwc->hrtimer);
10441 	}
10442 }
10443 
10444 static void perf_swevent_init_hrtimer(struct perf_event *event)
10445 {
10446 	struct hw_perf_event *hwc = &event->hw;
10447 
10448 	if (!is_sampling_event(event))
10449 		return;
10450 
10451 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10452 	hwc->hrtimer.function = perf_swevent_hrtimer;
10453 
10454 	/*
10455 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10456 	 * mapping and avoid the whole period adjust feedback stuff.
10457 	 */
10458 	if (event->attr.freq) {
10459 		long freq = event->attr.sample_freq;
10460 
10461 		event->attr.sample_period = NSEC_PER_SEC / freq;
10462 		hwc->sample_period = event->attr.sample_period;
10463 		local64_set(&hwc->period_left, hwc->sample_period);
10464 		hwc->last_period = hwc->sample_period;
10465 		event->attr.freq = 0;
10466 	}
10467 }
10468 
10469 /*
10470  * Software event: cpu wall time clock
10471  */
10472 
10473 static void cpu_clock_event_update(struct perf_event *event)
10474 {
10475 	s64 prev;
10476 	u64 now;
10477 
10478 	now = local_clock();
10479 	prev = local64_xchg(&event->hw.prev_count, now);
10480 	local64_add(now - prev, &event->count);
10481 }
10482 
10483 static void cpu_clock_event_start(struct perf_event *event, int flags)
10484 {
10485 	local64_set(&event->hw.prev_count, local_clock());
10486 	perf_swevent_start_hrtimer(event);
10487 }
10488 
10489 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10490 {
10491 	perf_swevent_cancel_hrtimer(event);
10492 	cpu_clock_event_update(event);
10493 }
10494 
10495 static int cpu_clock_event_add(struct perf_event *event, int flags)
10496 {
10497 	if (flags & PERF_EF_START)
10498 		cpu_clock_event_start(event, flags);
10499 	perf_event_update_userpage(event);
10500 
10501 	return 0;
10502 }
10503 
10504 static void cpu_clock_event_del(struct perf_event *event, int flags)
10505 {
10506 	cpu_clock_event_stop(event, flags);
10507 }
10508 
10509 static void cpu_clock_event_read(struct perf_event *event)
10510 {
10511 	cpu_clock_event_update(event);
10512 }
10513 
10514 static int cpu_clock_event_init(struct perf_event *event)
10515 {
10516 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10517 		return -ENOENT;
10518 
10519 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10520 		return -ENOENT;
10521 
10522 	/*
10523 	 * no branch sampling for software events
10524 	 */
10525 	if (has_branch_stack(event))
10526 		return -EOPNOTSUPP;
10527 
10528 	perf_swevent_init_hrtimer(event);
10529 
10530 	return 0;
10531 }
10532 
10533 static struct pmu perf_cpu_clock = {
10534 	.task_ctx_nr	= perf_sw_context,
10535 
10536 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10537 
10538 	.event_init	= cpu_clock_event_init,
10539 	.add		= cpu_clock_event_add,
10540 	.del		= cpu_clock_event_del,
10541 	.start		= cpu_clock_event_start,
10542 	.stop		= cpu_clock_event_stop,
10543 	.read		= cpu_clock_event_read,
10544 };
10545 
10546 /*
10547  * Software event: task time clock
10548  */
10549 
10550 static void task_clock_event_update(struct perf_event *event, u64 now)
10551 {
10552 	u64 prev;
10553 	s64 delta;
10554 
10555 	prev = local64_xchg(&event->hw.prev_count, now);
10556 	delta = now - prev;
10557 	local64_add(delta, &event->count);
10558 }
10559 
10560 static void task_clock_event_start(struct perf_event *event, int flags)
10561 {
10562 	local64_set(&event->hw.prev_count, event->ctx->time);
10563 	perf_swevent_start_hrtimer(event);
10564 }
10565 
10566 static void task_clock_event_stop(struct perf_event *event, int flags)
10567 {
10568 	perf_swevent_cancel_hrtimer(event);
10569 	task_clock_event_update(event, event->ctx->time);
10570 }
10571 
10572 static int task_clock_event_add(struct perf_event *event, int flags)
10573 {
10574 	if (flags & PERF_EF_START)
10575 		task_clock_event_start(event, flags);
10576 	perf_event_update_userpage(event);
10577 
10578 	return 0;
10579 }
10580 
10581 static void task_clock_event_del(struct perf_event *event, int flags)
10582 {
10583 	task_clock_event_stop(event, PERF_EF_UPDATE);
10584 }
10585 
10586 static void task_clock_event_read(struct perf_event *event)
10587 {
10588 	u64 now = perf_clock();
10589 	u64 delta = now - event->ctx->timestamp;
10590 	u64 time = event->ctx->time + delta;
10591 
10592 	task_clock_event_update(event, time);
10593 }
10594 
10595 static int task_clock_event_init(struct perf_event *event)
10596 {
10597 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10598 		return -ENOENT;
10599 
10600 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10601 		return -ENOENT;
10602 
10603 	/*
10604 	 * no branch sampling for software events
10605 	 */
10606 	if (has_branch_stack(event))
10607 		return -EOPNOTSUPP;
10608 
10609 	perf_swevent_init_hrtimer(event);
10610 
10611 	return 0;
10612 }
10613 
10614 static struct pmu perf_task_clock = {
10615 	.task_ctx_nr	= perf_sw_context,
10616 
10617 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10618 
10619 	.event_init	= task_clock_event_init,
10620 	.add		= task_clock_event_add,
10621 	.del		= task_clock_event_del,
10622 	.start		= task_clock_event_start,
10623 	.stop		= task_clock_event_stop,
10624 	.read		= task_clock_event_read,
10625 };
10626 
10627 static void perf_pmu_nop_void(struct pmu *pmu)
10628 {
10629 }
10630 
10631 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10632 {
10633 }
10634 
10635 static int perf_pmu_nop_int(struct pmu *pmu)
10636 {
10637 	return 0;
10638 }
10639 
10640 static int perf_event_nop_int(struct perf_event *event, u64 value)
10641 {
10642 	return 0;
10643 }
10644 
10645 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10646 
10647 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10648 {
10649 	__this_cpu_write(nop_txn_flags, flags);
10650 
10651 	if (flags & ~PERF_PMU_TXN_ADD)
10652 		return;
10653 
10654 	perf_pmu_disable(pmu);
10655 }
10656 
10657 static int perf_pmu_commit_txn(struct pmu *pmu)
10658 {
10659 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10660 
10661 	__this_cpu_write(nop_txn_flags, 0);
10662 
10663 	if (flags & ~PERF_PMU_TXN_ADD)
10664 		return 0;
10665 
10666 	perf_pmu_enable(pmu);
10667 	return 0;
10668 }
10669 
10670 static void perf_pmu_cancel_txn(struct pmu *pmu)
10671 {
10672 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10673 
10674 	__this_cpu_write(nop_txn_flags, 0);
10675 
10676 	if (flags & ~PERF_PMU_TXN_ADD)
10677 		return;
10678 
10679 	perf_pmu_enable(pmu);
10680 }
10681 
10682 static int perf_event_idx_default(struct perf_event *event)
10683 {
10684 	return 0;
10685 }
10686 
10687 /*
10688  * Ensures all contexts with the same task_ctx_nr have the same
10689  * pmu_cpu_context too.
10690  */
10691 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10692 {
10693 	struct pmu *pmu;
10694 
10695 	if (ctxn < 0)
10696 		return NULL;
10697 
10698 	list_for_each_entry(pmu, &pmus, entry) {
10699 		if (pmu->task_ctx_nr == ctxn)
10700 			return pmu->pmu_cpu_context;
10701 	}
10702 
10703 	return NULL;
10704 }
10705 
10706 static void free_pmu_context(struct pmu *pmu)
10707 {
10708 	/*
10709 	 * Static contexts such as perf_sw_context have a global lifetime
10710 	 * and may be shared between different PMUs. Avoid freeing them
10711 	 * when a single PMU is going away.
10712 	 */
10713 	if (pmu->task_ctx_nr > perf_invalid_context)
10714 		return;
10715 
10716 	free_percpu(pmu->pmu_cpu_context);
10717 }
10718 
10719 /*
10720  * Let userspace know that this PMU supports address range filtering:
10721  */
10722 static ssize_t nr_addr_filters_show(struct device *dev,
10723 				    struct device_attribute *attr,
10724 				    char *page)
10725 {
10726 	struct pmu *pmu = dev_get_drvdata(dev);
10727 
10728 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10729 }
10730 DEVICE_ATTR_RO(nr_addr_filters);
10731 
10732 static struct idr pmu_idr;
10733 
10734 static ssize_t
10735 type_show(struct device *dev, struct device_attribute *attr, char *page)
10736 {
10737 	struct pmu *pmu = dev_get_drvdata(dev);
10738 
10739 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10740 }
10741 static DEVICE_ATTR_RO(type);
10742 
10743 static ssize_t
10744 perf_event_mux_interval_ms_show(struct device *dev,
10745 				struct device_attribute *attr,
10746 				char *page)
10747 {
10748 	struct pmu *pmu = dev_get_drvdata(dev);
10749 
10750 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10751 }
10752 
10753 static DEFINE_MUTEX(mux_interval_mutex);
10754 
10755 static ssize_t
10756 perf_event_mux_interval_ms_store(struct device *dev,
10757 				 struct device_attribute *attr,
10758 				 const char *buf, size_t count)
10759 {
10760 	struct pmu *pmu = dev_get_drvdata(dev);
10761 	int timer, cpu, ret;
10762 
10763 	ret = kstrtoint(buf, 0, &timer);
10764 	if (ret)
10765 		return ret;
10766 
10767 	if (timer < 1)
10768 		return -EINVAL;
10769 
10770 	/* same value, noting to do */
10771 	if (timer == pmu->hrtimer_interval_ms)
10772 		return count;
10773 
10774 	mutex_lock(&mux_interval_mutex);
10775 	pmu->hrtimer_interval_ms = timer;
10776 
10777 	/* update all cpuctx for this PMU */
10778 	cpus_read_lock();
10779 	for_each_online_cpu(cpu) {
10780 		struct perf_cpu_context *cpuctx;
10781 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10782 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10783 
10784 		cpu_function_call(cpu,
10785 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10786 	}
10787 	cpus_read_unlock();
10788 	mutex_unlock(&mux_interval_mutex);
10789 
10790 	return count;
10791 }
10792 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10793 
10794 static struct attribute *pmu_dev_attrs[] = {
10795 	&dev_attr_type.attr,
10796 	&dev_attr_perf_event_mux_interval_ms.attr,
10797 	NULL,
10798 };
10799 ATTRIBUTE_GROUPS(pmu_dev);
10800 
10801 static int pmu_bus_running;
10802 static struct bus_type pmu_bus = {
10803 	.name		= "event_source",
10804 	.dev_groups	= pmu_dev_groups,
10805 };
10806 
10807 static void pmu_dev_release(struct device *dev)
10808 {
10809 	kfree(dev);
10810 }
10811 
10812 static int pmu_dev_alloc(struct pmu *pmu)
10813 {
10814 	int ret = -ENOMEM;
10815 
10816 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10817 	if (!pmu->dev)
10818 		goto out;
10819 
10820 	pmu->dev->groups = pmu->attr_groups;
10821 	device_initialize(pmu->dev);
10822 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10823 	if (ret)
10824 		goto free_dev;
10825 
10826 	dev_set_drvdata(pmu->dev, pmu);
10827 	pmu->dev->bus = &pmu_bus;
10828 	pmu->dev->release = pmu_dev_release;
10829 	ret = device_add(pmu->dev);
10830 	if (ret)
10831 		goto free_dev;
10832 
10833 	/* For PMUs with address filters, throw in an extra attribute: */
10834 	if (pmu->nr_addr_filters)
10835 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10836 
10837 	if (ret)
10838 		goto del_dev;
10839 
10840 	if (pmu->attr_update)
10841 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10842 
10843 	if (ret)
10844 		goto del_dev;
10845 
10846 out:
10847 	return ret;
10848 
10849 del_dev:
10850 	device_del(pmu->dev);
10851 
10852 free_dev:
10853 	put_device(pmu->dev);
10854 	goto out;
10855 }
10856 
10857 static struct lock_class_key cpuctx_mutex;
10858 static struct lock_class_key cpuctx_lock;
10859 
10860 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10861 {
10862 	int cpu, ret, max = PERF_TYPE_MAX;
10863 
10864 	mutex_lock(&pmus_lock);
10865 	ret = -ENOMEM;
10866 	pmu->pmu_disable_count = alloc_percpu(int);
10867 	if (!pmu->pmu_disable_count)
10868 		goto unlock;
10869 
10870 	pmu->type = -1;
10871 	if (!name)
10872 		goto skip_type;
10873 	pmu->name = name;
10874 
10875 	if (type != PERF_TYPE_SOFTWARE) {
10876 		if (type >= 0)
10877 			max = type;
10878 
10879 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10880 		if (ret < 0)
10881 			goto free_pdc;
10882 
10883 		WARN_ON(type >= 0 && ret != type);
10884 
10885 		type = ret;
10886 	}
10887 	pmu->type = type;
10888 
10889 	if (pmu_bus_running) {
10890 		ret = pmu_dev_alloc(pmu);
10891 		if (ret)
10892 			goto free_idr;
10893 	}
10894 
10895 skip_type:
10896 	if (pmu->task_ctx_nr == perf_hw_context) {
10897 		static int hw_context_taken = 0;
10898 
10899 		/*
10900 		 * Other than systems with heterogeneous CPUs, it never makes
10901 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10902 		 * uncore must use perf_invalid_context.
10903 		 */
10904 		if (WARN_ON_ONCE(hw_context_taken &&
10905 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10906 			pmu->task_ctx_nr = perf_invalid_context;
10907 
10908 		hw_context_taken = 1;
10909 	}
10910 
10911 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10912 	if (pmu->pmu_cpu_context)
10913 		goto got_cpu_context;
10914 
10915 	ret = -ENOMEM;
10916 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10917 	if (!pmu->pmu_cpu_context)
10918 		goto free_dev;
10919 
10920 	for_each_possible_cpu(cpu) {
10921 		struct perf_cpu_context *cpuctx;
10922 
10923 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10924 		__perf_event_init_context(&cpuctx->ctx);
10925 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10926 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10927 		cpuctx->ctx.pmu = pmu;
10928 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10929 
10930 		__perf_mux_hrtimer_init(cpuctx, cpu);
10931 
10932 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10933 		cpuctx->heap = cpuctx->heap_default;
10934 	}
10935 
10936 got_cpu_context:
10937 	if (!pmu->start_txn) {
10938 		if (pmu->pmu_enable) {
10939 			/*
10940 			 * If we have pmu_enable/pmu_disable calls, install
10941 			 * transaction stubs that use that to try and batch
10942 			 * hardware accesses.
10943 			 */
10944 			pmu->start_txn  = perf_pmu_start_txn;
10945 			pmu->commit_txn = perf_pmu_commit_txn;
10946 			pmu->cancel_txn = perf_pmu_cancel_txn;
10947 		} else {
10948 			pmu->start_txn  = perf_pmu_nop_txn;
10949 			pmu->commit_txn = perf_pmu_nop_int;
10950 			pmu->cancel_txn = perf_pmu_nop_void;
10951 		}
10952 	}
10953 
10954 	if (!pmu->pmu_enable) {
10955 		pmu->pmu_enable  = perf_pmu_nop_void;
10956 		pmu->pmu_disable = perf_pmu_nop_void;
10957 	}
10958 
10959 	if (!pmu->check_period)
10960 		pmu->check_period = perf_event_nop_int;
10961 
10962 	if (!pmu->event_idx)
10963 		pmu->event_idx = perf_event_idx_default;
10964 
10965 	/*
10966 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10967 	 * since these cannot be in the IDR. This way the linear search
10968 	 * is fast, provided a valid software event is provided.
10969 	 */
10970 	if (type == PERF_TYPE_SOFTWARE || !name)
10971 		list_add_rcu(&pmu->entry, &pmus);
10972 	else
10973 		list_add_tail_rcu(&pmu->entry, &pmus);
10974 
10975 	atomic_set(&pmu->exclusive_cnt, 0);
10976 	ret = 0;
10977 unlock:
10978 	mutex_unlock(&pmus_lock);
10979 
10980 	return ret;
10981 
10982 free_dev:
10983 	device_del(pmu->dev);
10984 	put_device(pmu->dev);
10985 
10986 free_idr:
10987 	if (pmu->type != PERF_TYPE_SOFTWARE)
10988 		idr_remove(&pmu_idr, pmu->type);
10989 
10990 free_pdc:
10991 	free_percpu(pmu->pmu_disable_count);
10992 	goto unlock;
10993 }
10994 EXPORT_SYMBOL_GPL(perf_pmu_register);
10995 
10996 void perf_pmu_unregister(struct pmu *pmu)
10997 {
10998 	mutex_lock(&pmus_lock);
10999 	list_del_rcu(&pmu->entry);
11000 
11001 	/*
11002 	 * We dereference the pmu list under both SRCU and regular RCU, so
11003 	 * synchronize against both of those.
11004 	 */
11005 	synchronize_srcu(&pmus_srcu);
11006 	synchronize_rcu();
11007 
11008 	free_percpu(pmu->pmu_disable_count);
11009 	if (pmu->type != PERF_TYPE_SOFTWARE)
11010 		idr_remove(&pmu_idr, pmu->type);
11011 	if (pmu_bus_running) {
11012 		if (pmu->nr_addr_filters)
11013 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11014 		device_del(pmu->dev);
11015 		put_device(pmu->dev);
11016 	}
11017 	free_pmu_context(pmu);
11018 	mutex_unlock(&pmus_lock);
11019 }
11020 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11021 
11022 static inline bool has_extended_regs(struct perf_event *event)
11023 {
11024 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11025 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11026 }
11027 
11028 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11029 {
11030 	struct perf_event_context *ctx = NULL;
11031 	int ret;
11032 
11033 	if (!try_module_get(pmu->module))
11034 		return -ENODEV;
11035 
11036 	/*
11037 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11038 	 * for example, validate if the group fits on the PMU. Therefore,
11039 	 * if this is a sibling event, acquire the ctx->mutex to protect
11040 	 * the sibling_list.
11041 	 */
11042 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11043 		/*
11044 		 * This ctx->mutex can nest when we're called through
11045 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11046 		 */
11047 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11048 						 SINGLE_DEPTH_NESTING);
11049 		BUG_ON(!ctx);
11050 	}
11051 
11052 	event->pmu = pmu;
11053 	ret = pmu->event_init(event);
11054 
11055 	if (ctx)
11056 		perf_event_ctx_unlock(event->group_leader, ctx);
11057 
11058 	if (!ret) {
11059 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11060 		    has_extended_regs(event))
11061 			ret = -EOPNOTSUPP;
11062 
11063 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11064 		    event_has_any_exclude_flag(event))
11065 			ret = -EINVAL;
11066 
11067 		if (ret && event->destroy)
11068 			event->destroy(event);
11069 	}
11070 
11071 	if (ret)
11072 		module_put(pmu->module);
11073 
11074 	return ret;
11075 }
11076 
11077 static struct pmu *perf_init_event(struct perf_event *event)
11078 {
11079 	int idx, type, ret;
11080 	struct pmu *pmu;
11081 
11082 	idx = srcu_read_lock(&pmus_srcu);
11083 
11084 	/* Try parent's PMU first: */
11085 	if (event->parent && event->parent->pmu) {
11086 		pmu = event->parent->pmu;
11087 		ret = perf_try_init_event(pmu, event);
11088 		if (!ret)
11089 			goto unlock;
11090 	}
11091 
11092 	/*
11093 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11094 	 * are often aliases for PERF_TYPE_RAW.
11095 	 */
11096 	type = event->attr.type;
11097 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11098 		type = PERF_TYPE_RAW;
11099 
11100 again:
11101 	rcu_read_lock();
11102 	pmu = idr_find(&pmu_idr, type);
11103 	rcu_read_unlock();
11104 	if (pmu) {
11105 		ret = perf_try_init_event(pmu, event);
11106 		if (ret == -ENOENT && event->attr.type != type) {
11107 			type = event->attr.type;
11108 			goto again;
11109 		}
11110 
11111 		if (ret)
11112 			pmu = ERR_PTR(ret);
11113 
11114 		goto unlock;
11115 	}
11116 
11117 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11118 		ret = perf_try_init_event(pmu, event);
11119 		if (!ret)
11120 			goto unlock;
11121 
11122 		if (ret != -ENOENT) {
11123 			pmu = ERR_PTR(ret);
11124 			goto unlock;
11125 		}
11126 	}
11127 	pmu = ERR_PTR(-ENOENT);
11128 unlock:
11129 	srcu_read_unlock(&pmus_srcu, idx);
11130 
11131 	return pmu;
11132 }
11133 
11134 static void attach_sb_event(struct perf_event *event)
11135 {
11136 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11137 
11138 	raw_spin_lock(&pel->lock);
11139 	list_add_rcu(&event->sb_list, &pel->list);
11140 	raw_spin_unlock(&pel->lock);
11141 }
11142 
11143 /*
11144  * We keep a list of all !task (and therefore per-cpu) events
11145  * that need to receive side-band records.
11146  *
11147  * This avoids having to scan all the various PMU per-cpu contexts
11148  * looking for them.
11149  */
11150 static void account_pmu_sb_event(struct perf_event *event)
11151 {
11152 	if (is_sb_event(event))
11153 		attach_sb_event(event);
11154 }
11155 
11156 static void account_event_cpu(struct perf_event *event, int cpu)
11157 {
11158 	if (event->parent)
11159 		return;
11160 
11161 	if (is_cgroup_event(event))
11162 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11163 }
11164 
11165 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11166 static void account_freq_event_nohz(void)
11167 {
11168 #ifdef CONFIG_NO_HZ_FULL
11169 	/* Lock so we don't race with concurrent unaccount */
11170 	spin_lock(&nr_freq_lock);
11171 	if (atomic_inc_return(&nr_freq_events) == 1)
11172 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11173 	spin_unlock(&nr_freq_lock);
11174 #endif
11175 }
11176 
11177 static void account_freq_event(void)
11178 {
11179 	if (tick_nohz_full_enabled())
11180 		account_freq_event_nohz();
11181 	else
11182 		atomic_inc(&nr_freq_events);
11183 }
11184 
11185 
11186 static void account_event(struct perf_event *event)
11187 {
11188 	bool inc = false;
11189 
11190 	if (event->parent)
11191 		return;
11192 
11193 	if (event->attach_state & PERF_ATTACH_TASK)
11194 		inc = true;
11195 	if (event->attr.mmap || event->attr.mmap_data)
11196 		atomic_inc(&nr_mmap_events);
11197 	if (event->attr.build_id)
11198 		atomic_inc(&nr_build_id_events);
11199 	if (event->attr.comm)
11200 		atomic_inc(&nr_comm_events);
11201 	if (event->attr.namespaces)
11202 		atomic_inc(&nr_namespaces_events);
11203 	if (event->attr.cgroup)
11204 		atomic_inc(&nr_cgroup_events);
11205 	if (event->attr.task)
11206 		atomic_inc(&nr_task_events);
11207 	if (event->attr.freq)
11208 		account_freq_event();
11209 	if (event->attr.context_switch) {
11210 		atomic_inc(&nr_switch_events);
11211 		inc = true;
11212 	}
11213 	if (has_branch_stack(event))
11214 		inc = true;
11215 	if (is_cgroup_event(event))
11216 		inc = true;
11217 	if (event->attr.ksymbol)
11218 		atomic_inc(&nr_ksymbol_events);
11219 	if (event->attr.bpf_event)
11220 		atomic_inc(&nr_bpf_events);
11221 	if (event->attr.text_poke)
11222 		atomic_inc(&nr_text_poke_events);
11223 
11224 	if (inc) {
11225 		/*
11226 		 * We need the mutex here because static_branch_enable()
11227 		 * must complete *before* the perf_sched_count increment
11228 		 * becomes visible.
11229 		 */
11230 		if (atomic_inc_not_zero(&perf_sched_count))
11231 			goto enabled;
11232 
11233 		mutex_lock(&perf_sched_mutex);
11234 		if (!atomic_read(&perf_sched_count)) {
11235 			static_branch_enable(&perf_sched_events);
11236 			/*
11237 			 * Guarantee that all CPUs observe they key change and
11238 			 * call the perf scheduling hooks before proceeding to
11239 			 * install events that need them.
11240 			 */
11241 			synchronize_rcu();
11242 		}
11243 		/*
11244 		 * Now that we have waited for the sync_sched(), allow further
11245 		 * increments to by-pass the mutex.
11246 		 */
11247 		atomic_inc(&perf_sched_count);
11248 		mutex_unlock(&perf_sched_mutex);
11249 	}
11250 enabled:
11251 
11252 	account_event_cpu(event, event->cpu);
11253 
11254 	account_pmu_sb_event(event);
11255 }
11256 
11257 /*
11258  * Allocate and initialize an event structure
11259  */
11260 static struct perf_event *
11261 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11262 		 struct task_struct *task,
11263 		 struct perf_event *group_leader,
11264 		 struct perf_event *parent_event,
11265 		 perf_overflow_handler_t overflow_handler,
11266 		 void *context, int cgroup_fd)
11267 {
11268 	struct pmu *pmu;
11269 	struct perf_event *event;
11270 	struct hw_perf_event *hwc;
11271 	long err = -EINVAL;
11272 
11273 	if ((unsigned)cpu >= nr_cpu_ids) {
11274 		if (!task || cpu != -1)
11275 			return ERR_PTR(-EINVAL);
11276 	}
11277 
11278 	event = kzalloc(sizeof(*event), GFP_KERNEL);
11279 	if (!event)
11280 		return ERR_PTR(-ENOMEM);
11281 
11282 	/*
11283 	 * Single events are their own group leaders, with an
11284 	 * empty sibling list:
11285 	 */
11286 	if (!group_leader)
11287 		group_leader = event;
11288 
11289 	mutex_init(&event->child_mutex);
11290 	INIT_LIST_HEAD(&event->child_list);
11291 
11292 	INIT_LIST_HEAD(&event->event_entry);
11293 	INIT_LIST_HEAD(&event->sibling_list);
11294 	INIT_LIST_HEAD(&event->active_list);
11295 	init_event_group(event);
11296 	INIT_LIST_HEAD(&event->rb_entry);
11297 	INIT_LIST_HEAD(&event->active_entry);
11298 	INIT_LIST_HEAD(&event->addr_filters.list);
11299 	INIT_HLIST_NODE(&event->hlist_entry);
11300 
11301 
11302 	init_waitqueue_head(&event->waitq);
11303 	event->pending_disable = -1;
11304 	init_irq_work(&event->pending, perf_pending_event);
11305 
11306 	mutex_init(&event->mmap_mutex);
11307 	raw_spin_lock_init(&event->addr_filters.lock);
11308 
11309 	atomic_long_set(&event->refcount, 1);
11310 	event->cpu		= cpu;
11311 	event->attr		= *attr;
11312 	event->group_leader	= group_leader;
11313 	event->pmu		= NULL;
11314 	event->oncpu		= -1;
11315 
11316 	event->parent		= parent_event;
11317 
11318 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11319 	event->id		= atomic64_inc_return(&perf_event_id);
11320 
11321 	event->state		= PERF_EVENT_STATE_INACTIVE;
11322 
11323 	if (task) {
11324 		event->attach_state = PERF_ATTACH_TASK;
11325 		/*
11326 		 * XXX pmu::event_init needs to know what task to account to
11327 		 * and we cannot use the ctx information because we need the
11328 		 * pmu before we get a ctx.
11329 		 */
11330 		event->hw.target = get_task_struct(task);
11331 	}
11332 
11333 	event->clock = &local_clock;
11334 	if (parent_event)
11335 		event->clock = parent_event->clock;
11336 
11337 	if (!overflow_handler && parent_event) {
11338 		overflow_handler = parent_event->overflow_handler;
11339 		context = parent_event->overflow_handler_context;
11340 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11341 		if (overflow_handler == bpf_overflow_handler) {
11342 			struct bpf_prog *prog = parent_event->prog;
11343 
11344 			bpf_prog_inc(prog);
11345 			event->prog = prog;
11346 			event->orig_overflow_handler =
11347 				parent_event->orig_overflow_handler;
11348 		}
11349 #endif
11350 	}
11351 
11352 	if (overflow_handler) {
11353 		event->overflow_handler	= overflow_handler;
11354 		event->overflow_handler_context = context;
11355 	} else if (is_write_backward(event)){
11356 		event->overflow_handler = perf_event_output_backward;
11357 		event->overflow_handler_context = NULL;
11358 	} else {
11359 		event->overflow_handler = perf_event_output_forward;
11360 		event->overflow_handler_context = NULL;
11361 	}
11362 
11363 	perf_event__state_init(event);
11364 
11365 	pmu = NULL;
11366 
11367 	hwc = &event->hw;
11368 	hwc->sample_period = attr->sample_period;
11369 	if (attr->freq && attr->sample_freq)
11370 		hwc->sample_period = 1;
11371 	hwc->last_period = hwc->sample_period;
11372 
11373 	local64_set(&hwc->period_left, hwc->sample_period);
11374 
11375 	/*
11376 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11377 	 * See perf_output_read().
11378 	 */
11379 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11380 		goto err_ns;
11381 
11382 	if (!has_branch_stack(event))
11383 		event->attr.branch_sample_type = 0;
11384 
11385 	pmu = perf_init_event(event);
11386 	if (IS_ERR(pmu)) {
11387 		err = PTR_ERR(pmu);
11388 		goto err_ns;
11389 	}
11390 
11391 	/*
11392 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11393 	 * be different on other CPUs in the uncore mask.
11394 	 */
11395 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11396 		err = -EINVAL;
11397 		goto err_pmu;
11398 	}
11399 
11400 	if (event->attr.aux_output &&
11401 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11402 		err = -EOPNOTSUPP;
11403 		goto err_pmu;
11404 	}
11405 
11406 	if (cgroup_fd != -1) {
11407 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11408 		if (err)
11409 			goto err_pmu;
11410 	}
11411 
11412 	err = exclusive_event_init(event);
11413 	if (err)
11414 		goto err_pmu;
11415 
11416 	if (has_addr_filter(event)) {
11417 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11418 						    sizeof(struct perf_addr_filter_range),
11419 						    GFP_KERNEL);
11420 		if (!event->addr_filter_ranges) {
11421 			err = -ENOMEM;
11422 			goto err_per_task;
11423 		}
11424 
11425 		/*
11426 		 * Clone the parent's vma offsets: they are valid until exec()
11427 		 * even if the mm is not shared with the parent.
11428 		 */
11429 		if (event->parent) {
11430 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11431 
11432 			raw_spin_lock_irq(&ifh->lock);
11433 			memcpy(event->addr_filter_ranges,
11434 			       event->parent->addr_filter_ranges,
11435 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11436 			raw_spin_unlock_irq(&ifh->lock);
11437 		}
11438 
11439 		/* force hw sync on the address filters */
11440 		event->addr_filters_gen = 1;
11441 	}
11442 
11443 	if (!event->parent) {
11444 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11445 			err = get_callchain_buffers(attr->sample_max_stack);
11446 			if (err)
11447 				goto err_addr_filters;
11448 		}
11449 	}
11450 
11451 	err = security_perf_event_alloc(event);
11452 	if (err)
11453 		goto err_callchain_buffer;
11454 
11455 	/* symmetric to unaccount_event() in _free_event() */
11456 	account_event(event);
11457 
11458 	return event;
11459 
11460 err_callchain_buffer:
11461 	if (!event->parent) {
11462 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11463 			put_callchain_buffers();
11464 	}
11465 err_addr_filters:
11466 	kfree(event->addr_filter_ranges);
11467 
11468 err_per_task:
11469 	exclusive_event_destroy(event);
11470 
11471 err_pmu:
11472 	if (is_cgroup_event(event))
11473 		perf_detach_cgroup(event);
11474 	if (event->destroy)
11475 		event->destroy(event);
11476 	module_put(pmu->module);
11477 err_ns:
11478 	if (event->ns)
11479 		put_pid_ns(event->ns);
11480 	if (event->hw.target)
11481 		put_task_struct(event->hw.target);
11482 	kfree(event);
11483 
11484 	return ERR_PTR(err);
11485 }
11486 
11487 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11488 			  struct perf_event_attr *attr)
11489 {
11490 	u32 size;
11491 	int ret;
11492 
11493 	/* Zero the full structure, so that a short copy will be nice. */
11494 	memset(attr, 0, sizeof(*attr));
11495 
11496 	ret = get_user(size, &uattr->size);
11497 	if (ret)
11498 		return ret;
11499 
11500 	/* ABI compatibility quirk: */
11501 	if (!size)
11502 		size = PERF_ATTR_SIZE_VER0;
11503 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11504 		goto err_size;
11505 
11506 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11507 	if (ret) {
11508 		if (ret == -E2BIG)
11509 			goto err_size;
11510 		return ret;
11511 	}
11512 
11513 	attr->size = size;
11514 
11515 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11516 		return -EINVAL;
11517 
11518 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11519 		return -EINVAL;
11520 
11521 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11522 		return -EINVAL;
11523 
11524 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11525 		u64 mask = attr->branch_sample_type;
11526 
11527 		/* only using defined bits */
11528 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11529 			return -EINVAL;
11530 
11531 		/* at least one branch bit must be set */
11532 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11533 			return -EINVAL;
11534 
11535 		/* propagate priv level, when not set for branch */
11536 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11537 
11538 			/* exclude_kernel checked on syscall entry */
11539 			if (!attr->exclude_kernel)
11540 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11541 
11542 			if (!attr->exclude_user)
11543 				mask |= PERF_SAMPLE_BRANCH_USER;
11544 
11545 			if (!attr->exclude_hv)
11546 				mask |= PERF_SAMPLE_BRANCH_HV;
11547 			/*
11548 			 * adjust user setting (for HW filter setup)
11549 			 */
11550 			attr->branch_sample_type = mask;
11551 		}
11552 		/* privileged levels capture (kernel, hv): check permissions */
11553 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11554 			ret = perf_allow_kernel(attr);
11555 			if (ret)
11556 				return ret;
11557 		}
11558 	}
11559 
11560 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11561 		ret = perf_reg_validate(attr->sample_regs_user);
11562 		if (ret)
11563 			return ret;
11564 	}
11565 
11566 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11567 		if (!arch_perf_have_user_stack_dump())
11568 			return -ENOSYS;
11569 
11570 		/*
11571 		 * We have __u32 type for the size, but so far
11572 		 * we can only use __u16 as maximum due to the
11573 		 * __u16 sample size limit.
11574 		 */
11575 		if (attr->sample_stack_user >= USHRT_MAX)
11576 			return -EINVAL;
11577 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11578 			return -EINVAL;
11579 	}
11580 
11581 	if (!attr->sample_max_stack)
11582 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11583 
11584 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11585 		ret = perf_reg_validate(attr->sample_regs_intr);
11586 
11587 #ifndef CONFIG_CGROUP_PERF
11588 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11589 		return -EINVAL;
11590 #endif
11591 
11592 out:
11593 	return ret;
11594 
11595 err_size:
11596 	put_user(sizeof(*attr), &uattr->size);
11597 	ret = -E2BIG;
11598 	goto out;
11599 }
11600 
11601 static int
11602 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11603 {
11604 	struct perf_buffer *rb = NULL;
11605 	int ret = -EINVAL;
11606 
11607 	if (!output_event)
11608 		goto set;
11609 
11610 	/* don't allow circular references */
11611 	if (event == output_event)
11612 		goto out;
11613 
11614 	/*
11615 	 * Don't allow cross-cpu buffers
11616 	 */
11617 	if (output_event->cpu != event->cpu)
11618 		goto out;
11619 
11620 	/*
11621 	 * If its not a per-cpu rb, it must be the same task.
11622 	 */
11623 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11624 		goto out;
11625 
11626 	/*
11627 	 * Mixing clocks in the same buffer is trouble you don't need.
11628 	 */
11629 	if (output_event->clock != event->clock)
11630 		goto out;
11631 
11632 	/*
11633 	 * Either writing ring buffer from beginning or from end.
11634 	 * Mixing is not allowed.
11635 	 */
11636 	if (is_write_backward(output_event) != is_write_backward(event))
11637 		goto out;
11638 
11639 	/*
11640 	 * If both events generate aux data, they must be on the same PMU
11641 	 */
11642 	if (has_aux(event) && has_aux(output_event) &&
11643 	    event->pmu != output_event->pmu)
11644 		goto out;
11645 
11646 set:
11647 	mutex_lock(&event->mmap_mutex);
11648 	/* Can't redirect output if we've got an active mmap() */
11649 	if (atomic_read(&event->mmap_count))
11650 		goto unlock;
11651 
11652 	if (output_event) {
11653 		/* get the rb we want to redirect to */
11654 		rb = ring_buffer_get(output_event);
11655 		if (!rb)
11656 			goto unlock;
11657 	}
11658 
11659 	ring_buffer_attach(event, rb);
11660 
11661 	ret = 0;
11662 unlock:
11663 	mutex_unlock(&event->mmap_mutex);
11664 
11665 out:
11666 	return ret;
11667 }
11668 
11669 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11670 {
11671 	if (b < a)
11672 		swap(a, b);
11673 
11674 	mutex_lock(a);
11675 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11676 }
11677 
11678 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11679 {
11680 	bool nmi_safe = false;
11681 
11682 	switch (clk_id) {
11683 	case CLOCK_MONOTONIC:
11684 		event->clock = &ktime_get_mono_fast_ns;
11685 		nmi_safe = true;
11686 		break;
11687 
11688 	case CLOCK_MONOTONIC_RAW:
11689 		event->clock = &ktime_get_raw_fast_ns;
11690 		nmi_safe = true;
11691 		break;
11692 
11693 	case CLOCK_REALTIME:
11694 		event->clock = &ktime_get_real_ns;
11695 		break;
11696 
11697 	case CLOCK_BOOTTIME:
11698 		event->clock = &ktime_get_boottime_ns;
11699 		break;
11700 
11701 	case CLOCK_TAI:
11702 		event->clock = &ktime_get_clocktai_ns;
11703 		break;
11704 
11705 	default:
11706 		return -EINVAL;
11707 	}
11708 
11709 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11710 		return -EINVAL;
11711 
11712 	return 0;
11713 }
11714 
11715 /*
11716  * Variation on perf_event_ctx_lock_nested(), except we take two context
11717  * mutexes.
11718  */
11719 static struct perf_event_context *
11720 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11721 			     struct perf_event_context *ctx)
11722 {
11723 	struct perf_event_context *gctx;
11724 
11725 again:
11726 	rcu_read_lock();
11727 	gctx = READ_ONCE(group_leader->ctx);
11728 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11729 		rcu_read_unlock();
11730 		goto again;
11731 	}
11732 	rcu_read_unlock();
11733 
11734 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11735 
11736 	if (group_leader->ctx != gctx) {
11737 		mutex_unlock(&ctx->mutex);
11738 		mutex_unlock(&gctx->mutex);
11739 		put_ctx(gctx);
11740 		goto again;
11741 	}
11742 
11743 	return gctx;
11744 }
11745 
11746 /**
11747  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11748  *
11749  * @attr_uptr:	event_id type attributes for monitoring/sampling
11750  * @pid:		target pid
11751  * @cpu:		target cpu
11752  * @group_fd:		group leader event fd
11753  */
11754 SYSCALL_DEFINE5(perf_event_open,
11755 		struct perf_event_attr __user *, attr_uptr,
11756 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11757 {
11758 	struct perf_event *group_leader = NULL, *output_event = NULL;
11759 	struct perf_event *event, *sibling;
11760 	struct perf_event_attr attr;
11761 	struct perf_event_context *ctx, *gctx;
11762 	struct file *event_file = NULL;
11763 	struct fd group = {NULL, 0};
11764 	struct task_struct *task = NULL;
11765 	struct pmu *pmu;
11766 	int event_fd;
11767 	int move_group = 0;
11768 	int err;
11769 	int f_flags = O_RDWR;
11770 	int cgroup_fd = -1;
11771 
11772 	/* for future expandability... */
11773 	if (flags & ~PERF_FLAG_ALL)
11774 		return -EINVAL;
11775 
11776 	/* Do we allow access to perf_event_open(2) ? */
11777 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11778 	if (err)
11779 		return err;
11780 
11781 	err = perf_copy_attr(attr_uptr, &attr);
11782 	if (err)
11783 		return err;
11784 
11785 	if (!attr.exclude_kernel) {
11786 		err = perf_allow_kernel(&attr);
11787 		if (err)
11788 			return err;
11789 	}
11790 
11791 	if (attr.namespaces) {
11792 		if (!perfmon_capable())
11793 			return -EACCES;
11794 	}
11795 
11796 	if (attr.freq) {
11797 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11798 			return -EINVAL;
11799 	} else {
11800 		if (attr.sample_period & (1ULL << 63))
11801 			return -EINVAL;
11802 	}
11803 
11804 	/* Only privileged users can get physical addresses */
11805 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11806 		err = perf_allow_kernel(&attr);
11807 		if (err)
11808 			return err;
11809 	}
11810 
11811 	err = security_locked_down(LOCKDOWN_PERF);
11812 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11813 		/* REGS_INTR can leak data, lockdown must prevent this */
11814 		return err;
11815 
11816 	err = 0;
11817 
11818 	/*
11819 	 * In cgroup mode, the pid argument is used to pass the fd
11820 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11821 	 * designates the cpu on which to monitor threads from that
11822 	 * cgroup.
11823 	 */
11824 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11825 		return -EINVAL;
11826 
11827 	if (flags & PERF_FLAG_FD_CLOEXEC)
11828 		f_flags |= O_CLOEXEC;
11829 
11830 	event_fd = get_unused_fd_flags(f_flags);
11831 	if (event_fd < 0)
11832 		return event_fd;
11833 
11834 	if (group_fd != -1) {
11835 		err = perf_fget_light(group_fd, &group);
11836 		if (err)
11837 			goto err_fd;
11838 		group_leader = group.file->private_data;
11839 		if (flags & PERF_FLAG_FD_OUTPUT)
11840 			output_event = group_leader;
11841 		if (flags & PERF_FLAG_FD_NO_GROUP)
11842 			group_leader = NULL;
11843 	}
11844 
11845 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11846 		task = find_lively_task_by_vpid(pid);
11847 		if (IS_ERR(task)) {
11848 			err = PTR_ERR(task);
11849 			goto err_group_fd;
11850 		}
11851 	}
11852 
11853 	if (task && group_leader &&
11854 	    group_leader->attr.inherit != attr.inherit) {
11855 		err = -EINVAL;
11856 		goto err_task;
11857 	}
11858 
11859 	if (flags & PERF_FLAG_PID_CGROUP)
11860 		cgroup_fd = pid;
11861 
11862 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11863 				 NULL, NULL, cgroup_fd);
11864 	if (IS_ERR(event)) {
11865 		err = PTR_ERR(event);
11866 		goto err_task;
11867 	}
11868 
11869 	if (is_sampling_event(event)) {
11870 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11871 			err = -EOPNOTSUPP;
11872 			goto err_alloc;
11873 		}
11874 	}
11875 
11876 	/*
11877 	 * Special case software events and allow them to be part of
11878 	 * any hardware group.
11879 	 */
11880 	pmu = event->pmu;
11881 
11882 	if (attr.use_clockid) {
11883 		err = perf_event_set_clock(event, attr.clockid);
11884 		if (err)
11885 			goto err_alloc;
11886 	}
11887 
11888 	if (pmu->task_ctx_nr == perf_sw_context)
11889 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11890 
11891 	if (group_leader) {
11892 		if (is_software_event(event) &&
11893 		    !in_software_context(group_leader)) {
11894 			/*
11895 			 * If the event is a sw event, but the group_leader
11896 			 * is on hw context.
11897 			 *
11898 			 * Allow the addition of software events to hw
11899 			 * groups, this is safe because software events
11900 			 * never fail to schedule.
11901 			 */
11902 			pmu = group_leader->ctx->pmu;
11903 		} else if (!is_software_event(event) &&
11904 			   is_software_event(group_leader) &&
11905 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11906 			/*
11907 			 * In case the group is a pure software group, and we
11908 			 * try to add a hardware event, move the whole group to
11909 			 * the hardware context.
11910 			 */
11911 			move_group = 1;
11912 		}
11913 	}
11914 
11915 	/*
11916 	 * Get the target context (task or percpu):
11917 	 */
11918 	ctx = find_get_context(pmu, task, event);
11919 	if (IS_ERR(ctx)) {
11920 		err = PTR_ERR(ctx);
11921 		goto err_alloc;
11922 	}
11923 
11924 	/*
11925 	 * Look up the group leader (we will attach this event to it):
11926 	 */
11927 	if (group_leader) {
11928 		err = -EINVAL;
11929 
11930 		/*
11931 		 * Do not allow a recursive hierarchy (this new sibling
11932 		 * becoming part of another group-sibling):
11933 		 */
11934 		if (group_leader->group_leader != group_leader)
11935 			goto err_context;
11936 
11937 		/* All events in a group should have the same clock */
11938 		if (group_leader->clock != event->clock)
11939 			goto err_context;
11940 
11941 		/*
11942 		 * Make sure we're both events for the same CPU;
11943 		 * grouping events for different CPUs is broken; since
11944 		 * you can never concurrently schedule them anyhow.
11945 		 */
11946 		if (group_leader->cpu != event->cpu)
11947 			goto err_context;
11948 
11949 		/*
11950 		 * Make sure we're both on the same task, or both
11951 		 * per-CPU events.
11952 		 */
11953 		if (group_leader->ctx->task != ctx->task)
11954 			goto err_context;
11955 
11956 		/*
11957 		 * Do not allow to attach to a group in a different task
11958 		 * or CPU context. If we're moving SW events, we'll fix
11959 		 * this up later, so allow that.
11960 		 */
11961 		if (!move_group && group_leader->ctx != ctx)
11962 			goto err_context;
11963 
11964 		/*
11965 		 * Only a group leader can be exclusive or pinned
11966 		 */
11967 		if (attr.exclusive || attr.pinned)
11968 			goto err_context;
11969 	}
11970 
11971 	if (output_event) {
11972 		err = perf_event_set_output(event, output_event);
11973 		if (err)
11974 			goto err_context;
11975 	}
11976 
11977 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11978 					f_flags);
11979 	if (IS_ERR(event_file)) {
11980 		err = PTR_ERR(event_file);
11981 		event_file = NULL;
11982 		goto err_context;
11983 	}
11984 
11985 	if (task) {
11986 		err = down_read_interruptible(&task->signal->exec_update_lock);
11987 		if (err)
11988 			goto err_file;
11989 
11990 		/*
11991 		 * Preserve ptrace permission check for backwards compatibility.
11992 		 *
11993 		 * We must hold exec_update_lock across this and any potential
11994 		 * perf_install_in_context() call for this new event to
11995 		 * serialize against exec() altering our credentials (and the
11996 		 * perf_event_exit_task() that could imply).
11997 		 */
11998 		err = -EACCES;
11999 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12000 			goto err_cred;
12001 	}
12002 
12003 	if (move_group) {
12004 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12005 
12006 		if (gctx->task == TASK_TOMBSTONE) {
12007 			err = -ESRCH;
12008 			goto err_locked;
12009 		}
12010 
12011 		/*
12012 		 * Check if we raced against another sys_perf_event_open() call
12013 		 * moving the software group underneath us.
12014 		 */
12015 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12016 			/*
12017 			 * If someone moved the group out from under us, check
12018 			 * if this new event wound up on the same ctx, if so
12019 			 * its the regular !move_group case, otherwise fail.
12020 			 */
12021 			if (gctx != ctx) {
12022 				err = -EINVAL;
12023 				goto err_locked;
12024 			} else {
12025 				perf_event_ctx_unlock(group_leader, gctx);
12026 				move_group = 0;
12027 			}
12028 		}
12029 
12030 		/*
12031 		 * Failure to create exclusive events returns -EBUSY.
12032 		 */
12033 		err = -EBUSY;
12034 		if (!exclusive_event_installable(group_leader, ctx))
12035 			goto err_locked;
12036 
12037 		for_each_sibling_event(sibling, group_leader) {
12038 			if (!exclusive_event_installable(sibling, ctx))
12039 				goto err_locked;
12040 		}
12041 	} else {
12042 		mutex_lock(&ctx->mutex);
12043 	}
12044 
12045 	if (ctx->task == TASK_TOMBSTONE) {
12046 		err = -ESRCH;
12047 		goto err_locked;
12048 	}
12049 
12050 	if (!perf_event_validate_size(event)) {
12051 		err = -E2BIG;
12052 		goto err_locked;
12053 	}
12054 
12055 	if (!task) {
12056 		/*
12057 		 * Check if the @cpu we're creating an event for is online.
12058 		 *
12059 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12060 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12061 		 */
12062 		struct perf_cpu_context *cpuctx =
12063 			container_of(ctx, struct perf_cpu_context, ctx);
12064 
12065 		if (!cpuctx->online) {
12066 			err = -ENODEV;
12067 			goto err_locked;
12068 		}
12069 	}
12070 
12071 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12072 		err = -EINVAL;
12073 		goto err_locked;
12074 	}
12075 
12076 	/*
12077 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12078 	 * because we need to serialize with concurrent event creation.
12079 	 */
12080 	if (!exclusive_event_installable(event, ctx)) {
12081 		err = -EBUSY;
12082 		goto err_locked;
12083 	}
12084 
12085 	WARN_ON_ONCE(ctx->parent_ctx);
12086 
12087 	/*
12088 	 * This is the point on no return; we cannot fail hereafter. This is
12089 	 * where we start modifying current state.
12090 	 */
12091 
12092 	if (move_group) {
12093 		/*
12094 		 * See perf_event_ctx_lock() for comments on the details
12095 		 * of swizzling perf_event::ctx.
12096 		 */
12097 		perf_remove_from_context(group_leader, 0);
12098 		put_ctx(gctx);
12099 
12100 		for_each_sibling_event(sibling, group_leader) {
12101 			perf_remove_from_context(sibling, 0);
12102 			put_ctx(gctx);
12103 		}
12104 
12105 		/*
12106 		 * Wait for everybody to stop referencing the events through
12107 		 * the old lists, before installing it on new lists.
12108 		 */
12109 		synchronize_rcu();
12110 
12111 		/*
12112 		 * Install the group siblings before the group leader.
12113 		 *
12114 		 * Because a group leader will try and install the entire group
12115 		 * (through the sibling list, which is still in-tact), we can
12116 		 * end up with siblings installed in the wrong context.
12117 		 *
12118 		 * By installing siblings first we NO-OP because they're not
12119 		 * reachable through the group lists.
12120 		 */
12121 		for_each_sibling_event(sibling, group_leader) {
12122 			perf_event__state_init(sibling);
12123 			perf_install_in_context(ctx, sibling, sibling->cpu);
12124 			get_ctx(ctx);
12125 		}
12126 
12127 		/*
12128 		 * Removing from the context ends up with disabled
12129 		 * event. What we want here is event in the initial
12130 		 * startup state, ready to be add into new context.
12131 		 */
12132 		perf_event__state_init(group_leader);
12133 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12134 		get_ctx(ctx);
12135 	}
12136 
12137 	/*
12138 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12139 	 * that we're serialized against further additions and before
12140 	 * perf_install_in_context() which is the point the event is active and
12141 	 * can use these values.
12142 	 */
12143 	perf_event__header_size(event);
12144 	perf_event__id_header_size(event);
12145 
12146 	event->owner = current;
12147 
12148 	perf_install_in_context(ctx, event, event->cpu);
12149 	perf_unpin_context(ctx);
12150 
12151 	if (move_group)
12152 		perf_event_ctx_unlock(group_leader, gctx);
12153 	mutex_unlock(&ctx->mutex);
12154 
12155 	if (task) {
12156 		up_read(&task->signal->exec_update_lock);
12157 		put_task_struct(task);
12158 	}
12159 
12160 	mutex_lock(&current->perf_event_mutex);
12161 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12162 	mutex_unlock(&current->perf_event_mutex);
12163 
12164 	/*
12165 	 * Drop the reference on the group_event after placing the
12166 	 * new event on the sibling_list. This ensures destruction
12167 	 * of the group leader will find the pointer to itself in
12168 	 * perf_group_detach().
12169 	 */
12170 	fdput(group);
12171 	fd_install(event_fd, event_file);
12172 	return event_fd;
12173 
12174 err_locked:
12175 	if (move_group)
12176 		perf_event_ctx_unlock(group_leader, gctx);
12177 	mutex_unlock(&ctx->mutex);
12178 err_cred:
12179 	if (task)
12180 		up_read(&task->signal->exec_update_lock);
12181 err_file:
12182 	fput(event_file);
12183 err_context:
12184 	perf_unpin_context(ctx);
12185 	put_ctx(ctx);
12186 err_alloc:
12187 	/*
12188 	 * If event_file is set, the fput() above will have called ->release()
12189 	 * and that will take care of freeing the event.
12190 	 */
12191 	if (!event_file)
12192 		free_event(event);
12193 err_task:
12194 	if (task)
12195 		put_task_struct(task);
12196 err_group_fd:
12197 	fdput(group);
12198 err_fd:
12199 	put_unused_fd(event_fd);
12200 	return err;
12201 }
12202 
12203 /**
12204  * perf_event_create_kernel_counter
12205  *
12206  * @attr: attributes of the counter to create
12207  * @cpu: cpu in which the counter is bound
12208  * @task: task to profile (NULL for percpu)
12209  */
12210 struct perf_event *
12211 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12212 				 struct task_struct *task,
12213 				 perf_overflow_handler_t overflow_handler,
12214 				 void *context)
12215 {
12216 	struct perf_event_context *ctx;
12217 	struct perf_event *event;
12218 	int err;
12219 
12220 	/*
12221 	 * Grouping is not supported for kernel events, neither is 'AUX',
12222 	 * make sure the caller's intentions are adjusted.
12223 	 */
12224 	if (attr->aux_output)
12225 		return ERR_PTR(-EINVAL);
12226 
12227 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12228 				 overflow_handler, context, -1);
12229 	if (IS_ERR(event)) {
12230 		err = PTR_ERR(event);
12231 		goto err;
12232 	}
12233 
12234 	/* Mark owner so we could distinguish it from user events. */
12235 	event->owner = TASK_TOMBSTONE;
12236 
12237 	/*
12238 	 * Get the target context (task or percpu):
12239 	 */
12240 	ctx = find_get_context(event->pmu, task, event);
12241 	if (IS_ERR(ctx)) {
12242 		err = PTR_ERR(ctx);
12243 		goto err_free;
12244 	}
12245 
12246 	WARN_ON_ONCE(ctx->parent_ctx);
12247 	mutex_lock(&ctx->mutex);
12248 	if (ctx->task == TASK_TOMBSTONE) {
12249 		err = -ESRCH;
12250 		goto err_unlock;
12251 	}
12252 
12253 	if (!task) {
12254 		/*
12255 		 * Check if the @cpu we're creating an event for is online.
12256 		 *
12257 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12258 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12259 		 */
12260 		struct perf_cpu_context *cpuctx =
12261 			container_of(ctx, struct perf_cpu_context, ctx);
12262 		if (!cpuctx->online) {
12263 			err = -ENODEV;
12264 			goto err_unlock;
12265 		}
12266 	}
12267 
12268 	if (!exclusive_event_installable(event, ctx)) {
12269 		err = -EBUSY;
12270 		goto err_unlock;
12271 	}
12272 
12273 	perf_install_in_context(ctx, event, event->cpu);
12274 	perf_unpin_context(ctx);
12275 	mutex_unlock(&ctx->mutex);
12276 
12277 	return event;
12278 
12279 err_unlock:
12280 	mutex_unlock(&ctx->mutex);
12281 	perf_unpin_context(ctx);
12282 	put_ctx(ctx);
12283 err_free:
12284 	free_event(event);
12285 err:
12286 	return ERR_PTR(err);
12287 }
12288 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12289 
12290 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12291 {
12292 	struct perf_event_context *src_ctx;
12293 	struct perf_event_context *dst_ctx;
12294 	struct perf_event *event, *tmp;
12295 	LIST_HEAD(events);
12296 
12297 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12298 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12299 
12300 	/*
12301 	 * See perf_event_ctx_lock() for comments on the details
12302 	 * of swizzling perf_event::ctx.
12303 	 */
12304 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12305 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12306 				 event_entry) {
12307 		perf_remove_from_context(event, 0);
12308 		unaccount_event_cpu(event, src_cpu);
12309 		put_ctx(src_ctx);
12310 		list_add(&event->migrate_entry, &events);
12311 	}
12312 
12313 	/*
12314 	 * Wait for the events to quiesce before re-instating them.
12315 	 */
12316 	synchronize_rcu();
12317 
12318 	/*
12319 	 * Re-instate events in 2 passes.
12320 	 *
12321 	 * Skip over group leaders and only install siblings on this first
12322 	 * pass, siblings will not get enabled without a leader, however a
12323 	 * leader will enable its siblings, even if those are still on the old
12324 	 * context.
12325 	 */
12326 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12327 		if (event->group_leader == event)
12328 			continue;
12329 
12330 		list_del(&event->migrate_entry);
12331 		if (event->state >= PERF_EVENT_STATE_OFF)
12332 			event->state = PERF_EVENT_STATE_INACTIVE;
12333 		account_event_cpu(event, dst_cpu);
12334 		perf_install_in_context(dst_ctx, event, dst_cpu);
12335 		get_ctx(dst_ctx);
12336 	}
12337 
12338 	/*
12339 	 * Once all the siblings are setup properly, install the group leaders
12340 	 * to make it go.
12341 	 */
12342 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12343 		list_del(&event->migrate_entry);
12344 		if (event->state >= PERF_EVENT_STATE_OFF)
12345 			event->state = PERF_EVENT_STATE_INACTIVE;
12346 		account_event_cpu(event, dst_cpu);
12347 		perf_install_in_context(dst_ctx, event, dst_cpu);
12348 		get_ctx(dst_ctx);
12349 	}
12350 	mutex_unlock(&dst_ctx->mutex);
12351 	mutex_unlock(&src_ctx->mutex);
12352 }
12353 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12354 
12355 static void sync_child_event(struct perf_event *child_event,
12356 			       struct task_struct *child)
12357 {
12358 	struct perf_event *parent_event = child_event->parent;
12359 	u64 child_val;
12360 
12361 	if (child_event->attr.inherit_stat)
12362 		perf_event_read_event(child_event, child);
12363 
12364 	child_val = perf_event_count(child_event);
12365 
12366 	/*
12367 	 * Add back the child's count to the parent's count:
12368 	 */
12369 	atomic64_add(child_val, &parent_event->child_count);
12370 	atomic64_add(child_event->total_time_enabled,
12371 		     &parent_event->child_total_time_enabled);
12372 	atomic64_add(child_event->total_time_running,
12373 		     &parent_event->child_total_time_running);
12374 }
12375 
12376 static void
12377 perf_event_exit_event(struct perf_event *child_event,
12378 		      struct perf_event_context *child_ctx,
12379 		      struct task_struct *child)
12380 {
12381 	struct perf_event *parent_event = child_event->parent;
12382 
12383 	/*
12384 	 * Do not destroy the 'original' grouping; because of the context
12385 	 * switch optimization the original events could've ended up in a
12386 	 * random child task.
12387 	 *
12388 	 * If we were to destroy the original group, all group related
12389 	 * operations would cease to function properly after this random
12390 	 * child dies.
12391 	 *
12392 	 * Do destroy all inherited groups, we don't care about those
12393 	 * and being thorough is better.
12394 	 */
12395 	raw_spin_lock_irq(&child_ctx->lock);
12396 	WARN_ON_ONCE(child_ctx->is_active);
12397 
12398 	if (parent_event)
12399 		perf_group_detach(child_event);
12400 	list_del_event(child_event, child_ctx);
12401 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12402 	raw_spin_unlock_irq(&child_ctx->lock);
12403 
12404 	/*
12405 	 * Parent events are governed by their filedesc, retain them.
12406 	 */
12407 	if (!parent_event) {
12408 		perf_event_wakeup(child_event);
12409 		return;
12410 	}
12411 	/*
12412 	 * Child events can be cleaned up.
12413 	 */
12414 
12415 	sync_child_event(child_event, child);
12416 
12417 	/*
12418 	 * Remove this event from the parent's list
12419 	 */
12420 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12421 	mutex_lock(&parent_event->child_mutex);
12422 	list_del_init(&child_event->child_list);
12423 	mutex_unlock(&parent_event->child_mutex);
12424 
12425 	/*
12426 	 * Kick perf_poll() for is_event_hup().
12427 	 */
12428 	perf_event_wakeup(parent_event);
12429 	free_event(child_event);
12430 	put_event(parent_event);
12431 }
12432 
12433 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12434 {
12435 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12436 	struct perf_event *child_event, *next;
12437 
12438 	WARN_ON_ONCE(child != current);
12439 
12440 	child_ctx = perf_pin_task_context(child, ctxn);
12441 	if (!child_ctx)
12442 		return;
12443 
12444 	/*
12445 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12446 	 * ctx::mutex over the entire thing. This serializes against almost
12447 	 * everything that wants to access the ctx.
12448 	 *
12449 	 * The exception is sys_perf_event_open() /
12450 	 * perf_event_create_kernel_count() which does find_get_context()
12451 	 * without ctx::mutex (it cannot because of the move_group double mutex
12452 	 * lock thing). See the comments in perf_install_in_context().
12453 	 */
12454 	mutex_lock(&child_ctx->mutex);
12455 
12456 	/*
12457 	 * In a single ctx::lock section, de-schedule the events and detach the
12458 	 * context from the task such that we cannot ever get it scheduled back
12459 	 * in.
12460 	 */
12461 	raw_spin_lock_irq(&child_ctx->lock);
12462 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12463 
12464 	/*
12465 	 * Now that the context is inactive, destroy the task <-> ctx relation
12466 	 * and mark the context dead.
12467 	 */
12468 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12469 	put_ctx(child_ctx); /* cannot be last */
12470 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12471 	put_task_struct(current); /* cannot be last */
12472 
12473 	clone_ctx = unclone_ctx(child_ctx);
12474 	raw_spin_unlock_irq(&child_ctx->lock);
12475 
12476 	if (clone_ctx)
12477 		put_ctx(clone_ctx);
12478 
12479 	/*
12480 	 * Report the task dead after unscheduling the events so that we
12481 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12482 	 * get a few PERF_RECORD_READ events.
12483 	 */
12484 	perf_event_task(child, child_ctx, 0);
12485 
12486 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12487 		perf_event_exit_event(child_event, child_ctx, child);
12488 
12489 	mutex_unlock(&child_ctx->mutex);
12490 
12491 	put_ctx(child_ctx);
12492 }
12493 
12494 /*
12495  * When a child task exits, feed back event values to parent events.
12496  *
12497  * Can be called with exec_update_lock held when called from
12498  * setup_new_exec().
12499  */
12500 void perf_event_exit_task(struct task_struct *child)
12501 {
12502 	struct perf_event *event, *tmp;
12503 	int ctxn;
12504 
12505 	mutex_lock(&child->perf_event_mutex);
12506 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12507 				 owner_entry) {
12508 		list_del_init(&event->owner_entry);
12509 
12510 		/*
12511 		 * Ensure the list deletion is visible before we clear
12512 		 * the owner, closes a race against perf_release() where
12513 		 * we need to serialize on the owner->perf_event_mutex.
12514 		 */
12515 		smp_store_release(&event->owner, NULL);
12516 	}
12517 	mutex_unlock(&child->perf_event_mutex);
12518 
12519 	for_each_task_context_nr(ctxn)
12520 		perf_event_exit_task_context(child, ctxn);
12521 
12522 	/*
12523 	 * The perf_event_exit_task_context calls perf_event_task
12524 	 * with child's task_ctx, which generates EXIT events for
12525 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12526 	 * At this point we need to send EXIT events to cpu contexts.
12527 	 */
12528 	perf_event_task(child, NULL, 0);
12529 }
12530 
12531 static void perf_free_event(struct perf_event *event,
12532 			    struct perf_event_context *ctx)
12533 {
12534 	struct perf_event *parent = event->parent;
12535 
12536 	if (WARN_ON_ONCE(!parent))
12537 		return;
12538 
12539 	mutex_lock(&parent->child_mutex);
12540 	list_del_init(&event->child_list);
12541 	mutex_unlock(&parent->child_mutex);
12542 
12543 	put_event(parent);
12544 
12545 	raw_spin_lock_irq(&ctx->lock);
12546 	perf_group_detach(event);
12547 	list_del_event(event, ctx);
12548 	raw_spin_unlock_irq(&ctx->lock);
12549 	free_event(event);
12550 }
12551 
12552 /*
12553  * Free a context as created by inheritance by perf_event_init_task() below,
12554  * used by fork() in case of fail.
12555  *
12556  * Even though the task has never lived, the context and events have been
12557  * exposed through the child_list, so we must take care tearing it all down.
12558  */
12559 void perf_event_free_task(struct task_struct *task)
12560 {
12561 	struct perf_event_context *ctx;
12562 	struct perf_event *event, *tmp;
12563 	int ctxn;
12564 
12565 	for_each_task_context_nr(ctxn) {
12566 		ctx = task->perf_event_ctxp[ctxn];
12567 		if (!ctx)
12568 			continue;
12569 
12570 		mutex_lock(&ctx->mutex);
12571 		raw_spin_lock_irq(&ctx->lock);
12572 		/*
12573 		 * Destroy the task <-> ctx relation and mark the context dead.
12574 		 *
12575 		 * This is important because even though the task hasn't been
12576 		 * exposed yet the context has been (through child_list).
12577 		 */
12578 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12579 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12580 		put_task_struct(task); /* cannot be last */
12581 		raw_spin_unlock_irq(&ctx->lock);
12582 
12583 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12584 			perf_free_event(event, ctx);
12585 
12586 		mutex_unlock(&ctx->mutex);
12587 
12588 		/*
12589 		 * perf_event_release_kernel() could've stolen some of our
12590 		 * child events and still have them on its free_list. In that
12591 		 * case we must wait for these events to have been freed (in
12592 		 * particular all their references to this task must've been
12593 		 * dropped).
12594 		 *
12595 		 * Without this copy_process() will unconditionally free this
12596 		 * task (irrespective of its reference count) and
12597 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12598 		 * use-after-free.
12599 		 *
12600 		 * Wait for all events to drop their context reference.
12601 		 */
12602 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12603 		put_ctx(ctx); /* must be last */
12604 	}
12605 }
12606 
12607 void perf_event_delayed_put(struct task_struct *task)
12608 {
12609 	int ctxn;
12610 
12611 	for_each_task_context_nr(ctxn)
12612 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12613 }
12614 
12615 struct file *perf_event_get(unsigned int fd)
12616 {
12617 	struct file *file = fget(fd);
12618 	if (!file)
12619 		return ERR_PTR(-EBADF);
12620 
12621 	if (file->f_op != &perf_fops) {
12622 		fput(file);
12623 		return ERR_PTR(-EBADF);
12624 	}
12625 
12626 	return file;
12627 }
12628 
12629 const struct perf_event *perf_get_event(struct file *file)
12630 {
12631 	if (file->f_op != &perf_fops)
12632 		return ERR_PTR(-EINVAL);
12633 
12634 	return file->private_data;
12635 }
12636 
12637 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12638 {
12639 	if (!event)
12640 		return ERR_PTR(-EINVAL);
12641 
12642 	return &event->attr;
12643 }
12644 
12645 /*
12646  * Inherit an event from parent task to child task.
12647  *
12648  * Returns:
12649  *  - valid pointer on success
12650  *  - NULL for orphaned events
12651  *  - IS_ERR() on error
12652  */
12653 static struct perf_event *
12654 inherit_event(struct perf_event *parent_event,
12655 	      struct task_struct *parent,
12656 	      struct perf_event_context *parent_ctx,
12657 	      struct task_struct *child,
12658 	      struct perf_event *group_leader,
12659 	      struct perf_event_context *child_ctx)
12660 {
12661 	enum perf_event_state parent_state = parent_event->state;
12662 	struct perf_event *child_event;
12663 	unsigned long flags;
12664 
12665 	/*
12666 	 * Instead of creating recursive hierarchies of events,
12667 	 * we link inherited events back to the original parent,
12668 	 * which has a filp for sure, which we use as the reference
12669 	 * count:
12670 	 */
12671 	if (parent_event->parent)
12672 		parent_event = parent_event->parent;
12673 
12674 	child_event = perf_event_alloc(&parent_event->attr,
12675 					   parent_event->cpu,
12676 					   child,
12677 					   group_leader, parent_event,
12678 					   NULL, NULL, -1);
12679 	if (IS_ERR(child_event))
12680 		return child_event;
12681 
12682 
12683 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12684 	    !child_ctx->task_ctx_data) {
12685 		struct pmu *pmu = child_event->pmu;
12686 
12687 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12688 		if (!child_ctx->task_ctx_data) {
12689 			free_event(child_event);
12690 			return ERR_PTR(-ENOMEM);
12691 		}
12692 	}
12693 
12694 	/*
12695 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12696 	 * must be under the same lock in order to serialize against
12697 	 * perf_event_release_kernel(), such that either we must observe
12698 	 * is_orphaned_event() or they will observe us on the child_list.
12699 	 */
12700 	mutex_lock(&parent_event->child_mutex);
12701 	if (is_orphaned_event(parent_event) ||
12702 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12703 		mutex_unlock(&parent_event->child_mutex);
12704 		/* task_ctx_data is freed with child_ctx */
12705 		free_event(child_event);
12706 		return NULL;
12707 	}
12708 
12709 	get_ctx(child_ctx);
12710 
12711 	/*
12712 	 * Make the child state follow the state of the parent event,
12713 	 * not its attr.disabled bit.  We hold the parent's mutex,
12714 	 * so we won't race with perf_event_{en, dis}able_family.
12715 	 */
12716 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12717 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12718 	else
12719 		child_event->state = PERF_EVENT_STATE_OFF;
12720 
12721 	if (parent_event->attr.freq) {
12722 		u64 sample_period = parent_event->hw.sample_period;
12723 		struct hw_perf_event *hwc = &child_event->hw;
12724 
12725 		hwc->sample_period = sample_period;
12726 		hwc->last_period   = sample_period;
12727 
12728 		local64_set(&hwc->period_left, sample_period);
12729 	}
12730 
12731 	child_event->ctx = child_ctx;
12732 	child_event->overflow_handler = parent_event->overflow_handler;
12733 	child_event->overflow_handler_context
12734 		= parent_event->overflow_handler_context;
12735 
12736 	/*
12737 	 * Precalculate sample_data sizes
12738 	 */
12739 	perf_event__header_size(child_event);
12740 	perf_event__id_header_size(child_event);
12741 
12742 	/*
12743 	 * Link it up in the child's context:
12744 	 */
12745 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12746 	add_event_to_ctx(child_event, child_ctx);
12747 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12748 
12749 	/*
12750 	 * Link this into the parent event's child list
12751 	 */
12752 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12753 	mutex_unlock(&parent_event->child_mutex);
12754 
12755 	return child_event;
12756 }
12757 
12758 /*
12759  * Inherits an event group.
12760  *
12761  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12762  * This matches with perf_event_release_kernel() removing all child events.
12763  *
12764  * Returns:
12765  *  - 0 on success
12766  *  - <0 on error
12767  */
12768 static int inherit_group(struct perf_event *parent_event,
12769 	      struct task_struct *parent,
12770 	      struct perf_event_context *parent_ctx,
12771 	      struct task_struct *child,
12772 	      struct perf_event_context *child_ctx)
12773 {
12774 	struct perf_event *leader;
12775 	struct perf_event *sub;
12776 	struct perf_event *child_ctr;
12777 
12778 	leader = inherit_event(parent_event, parent, parent_ctx,
12779 				 child, NULL, child_ctx);
12780 	if (IS_ERR(leader))
12781 		return PTR_ERR(leader);
12782 	/*
12783 	 * @leader can be NULL here because of is_orphaned_event(). In this
12784 	 * case inherit_event() will create individual events, similar to what
12785 	 * perf_group_detach() would do anyway.
12786 	 */
12787 	for_each_sibling_event(sub, parent_event) {
12788 		child_ctr = inherit_event(sub, parent, parent_ctx,
12789 					    child, leader, child_ctx);
12790 		if (IS_ERR(child_ctr))
12791 			return PTR_ERR(child_ctr);
12792 
12793 		if (sub->aux_event == parent_event && child_ctr &&
12794 		    !perf_get_aux_event(child_ctr, leader))
12795 			return -EINVAL;
12796 	}
12797 	return 0;
12798 }
12799 
12800 /*
12801  * Creates the child task context and tries to inherit the event-group.
12802  *
12803  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12804  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12805  * consistent with perf_event_release_kernel() removing all child events.
12806  *
12807  * Returns:
12808  *  - 0 on success
12809  *  - <0 on error
12810  */
12811 static int
12812 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12813 		   struct perf_event_context *parent_ctx,
12814 		   struct task_struct *child, int ctxn,
12815 		   int *inherited_all)
12816 {
12817 	int ret;
12818 	struct perf_event_context *child_ctx;
12819 
12820 	if (!event->attr.inherit) {
12821 		*inherited_all = 0;
12822 		return 0;
12823 	}
12824 
12825 	child_ctx = child->perf_event_ctxp[ctxn];
12826 	if (!child_ctx) {
12827 		/*
12828 		 * This is executed from the parent task context, so
12829 		 * inherit events that have been marked for cloning.
12830 		 * First allocate and initialize a context for the
12831 		 * child.
12832 		 */
12833 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12834 		if (!child_ctx)
12835 			return -ENOMEM;
12836 
12837 		child->perf_event_ctxp[ctxn] = child_ctx;
12838 	}
12839 
12840 	ret = inherit_group(event, parent, parent_ctx,
12841 			    child, child_ctx);
12842 
12843 	if (ret)
12844 		*inherited_all = 0;
12845 
12846 	return ret;
12847 }
12848 
12849 /*
12850  * Initialize the perf_event context in task_struct
12851  */
12852 static int perf_event_init_context(struct task_struct *child, int ctxn)
12853 {
12854 	struct perf_event_context *child_ctx, *parent_ctx;
12855 	struct perf_event_context *cloned_ctx;
12856 	struct perf_event *event;
12857 	struct task_struct *parent = current;
12858 	int inherited_all = 1;
12859 	unsigned long flags;
12860 	int ret = 0;
12861 
12862 	if (likely(!parent->perf_event_ctxp[ctxn]))
12863 		return 0;
12864 
12865 	/*
12866 	 * If the parent's context is a clone, pin it so it won't get
12867 	 * swapped under us.
12868 	 */
12869 	parent_ctx = perf_pin_task_context(parent, ctxn);
12870 	if (!parent_ctx)
12871 		return 0;
12872 
12873 	/*
12874 	 * No need to check if parent_ctx != NULL here; since we saw
12875 	 * it non-NULL earlier, the only reason for it to become NULL
12876 	 * is if we exit, and since we're currently in the middle of
12877 	 * a fork we can't be exiting at the same time.
12878 	 */
12879 
12880 	/*
12881 	 * Lock the parent list. No need to lock the child - not PID
12882 	 * hashed yet and not running, so nobody can access it.
12883 	 */
12884 	mutex_lock(&parent_ctx->mutex);
12885 
12886 	/*
12887 	 * We dont have to disable NMIs - we are only looking at
12888 	 * the list, not manipulating it:
12889 	 */
12890 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12891 		ret = inherit_task_group(event, parent, parent_ctx,
12892 					 child, ctxn, &inherited_all);
12893 		if (ret)
12894 			goto out_unlock;
12895 	}
12896 
12897 	/*
12898 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12899 	 * to allocations, but we need to prevent rotation because
12900 	 * rotate_ctx() will change the list from interrupt context.
12901 	 */
12902 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12903 	parent_ctx->rotate_disable = 1;
12904 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12905 
12906 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12907 		ret = inherit_task_group(event, parent, parent_ctx,
12908 					 child, ctxn, &inherited_all);
12909 		if (ret)
12910 			goto out_unlock;
12911 	}
12912 
12913 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12914 	parent_ctx->rotate_disable = 0;
12915 
12916 	child_ctx = child->perf_event_ctxp[ctxn];
12917 
12918 	if (child_ctx && inherited_all) {
12919 		/*
12920 		 * Mark the child context as a clone of the parent
12921 		 * context, or of whatever the parent is a clone of.
12922 		 *
12923 		 * Note that if the parent is a clone, the holding of
12924 		 * parent_ctx->lock avoids it from being uncloned.
12925 		 */
12926 		cloned_ctx = parent_ctx->parent_ctx;
12927 		if (cloned_ctx) {
12928 			child_ctx->parent_ctx = cloned_ctx;
12929 			child_ctx->parent_gen = parent_ctx->parent_gen;
12930 		} else {
12931 			child_ctx->parent_ctx = parent_ctx;
12932 			child_ctx->parent_gen = parent_ctx->generation;
12933 		}
12934 		get_ctx(child_ctx->parent_ctx);
12935 	}
12936 
12937 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12938 out_unlock:
12939 	mutex_unlock(&parent_ctx->mutex);
12940 
12941 	perf_unpin_context(parent_ctx);
12942 	put_ctx(parent_ctx);
12943 
12944 	return ret;
12945 }
12946 
12947 /*
12948  * Initialize the perf_event context in task_struct
12949  */
12950 int perf_event_init_task(struct task_struct *child)
12951 {
12952 	int ctxn, ret;
12953 
12954 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12955 	mutex_init(&child->perf_event_mutex);
12956 	INIT_LIST_HEAD(&child->perf_event_list);
12957 
12958 	for_each_task_context_nr(ctxn) {
12959 		ret = perf_event_init_context(child, ctxn);
12960 		if (ret) {
12961 			perf_event_free_task(child);
12962 			return ret;
12963 		}
12964 	}
12965 
12966 	return 0;
12967 }
12968 
12969 static void __init perf_event_init_all_cpus(void)
12970 {
12971 	struct swevent_htable *swhash;
12972 	int cpu;
12973 
12974 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12975 
12976 	for_each_possible_cpu(cpu) {
12977 		swhash = &per_cpu(swevent_htable, cpu);
12978 		mutex_init(&swhash->hlist_mutex);
12979 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12980 
12981 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12982 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12983 
12984 #ifdef CONFIG_CGROUP_PERF
12985 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12986 #endif
12987 	}
12988 }
12989 
12990 static void perf_swevent_init_cpu(unsigned int cpu)
12991 {
12992 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12993 
12994 	mutex_lock(&swhash->hlist_mutex);
12995 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12996 		struct swevent_hlist *hlist;
12997 
12998 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12999 		WARN_ON(!hlist);
13000 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13001 	}
13002 	mutex_unlock(&swhash->hlist_mutex);
13003 }
13004 
13005 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13006 static void __perf_event_exit_context(void *__info)
13007 {
13008 	struct perf_event_context *ctx = __info;
13009 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13010 	struct perf_event *event;
13011 
13012 	raw_spin_lock(&ctx->lock);
13013 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13014 	list_for_each_entry(event, &ctx->event_list, event_entry)
13015 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13016 	raw_spin_unlock(&ctx->lock);
13017 }
13018 
13019 static void perf_event_exit_cpu_context(int cpu)
13020 {
13021 	struct perf_cpu_context *cpuctx;
13022 	struct perf_event_context *ctx;
13023 	struct pmu *pmu;
13024 
13025 	mutex_lock(&pmus_lock);
13026 	list_for_each_entry(pmu, &pmus, entry) {
13027 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13028 		ctx = &cpuctx->ctx;
13029 
13030 		mutex_lock(&ctx->mutex);
13031 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13032 		cpuctx->online = 0;
13033 		mutex_unlock(&ctx->mutex);
13034 	}
13035 	cpumask_clear_cpu(cpu, perf_online_mask);
13036 	mutex_unlock(&pmus_lock);
13037 }
13038 #else
13039 
13040 static void perf_event_exit_cpu_context(int cpu) { }
13041 
13042 #endif
13043 
13044 int perf_event_init_cpu(unsigned int cpu)
13045 {
13046 	struct perf_cpu_context *cpuctx;
13047 	struct perf_event_context *ctx;
13048 	struct pmu *pmu;
13049 
13050 	perf_swevent_init_cpu(cpu);
13051 
13052 	mutex_lock(&pmus_lock);
13053 	cpumask_set_cpu(cpu, perf_online_mask);
13054 	list_for_each_entry(pmu, &pmus, entry) {
13055 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13056 		ctx = &cpuctx->ctx;
13057 
13058 		mutex_lock(&ctx->mutex);
13059 		cpuctx->online = 1;
13060 		mutex_unlock(&ctx->mutex);
13061 	}
13062 	mutex_unlock(&pmus_lock);
13063 
13064 	return 0;
13065 }
13066 
13067 int perf_event_exit_cpu(unsigned int cpu)
13068 {
13069 	perf_event_exit_cpu_context(cpu);
13070 	return 0;
13071 }
13072 
13073 static int
13074 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13075 {
13076 	int cpu;
13077 
13078 	for_each_online_cpu(cpu)
13079 		perf_event_exit_cpu(cpu);
13080 
13081 	return NOTIFY_OK;
13082 }
13083 
13084 /*
13085  * Run the perf reboot notifier at the very last possible moment so that
13086  * the generic watchdog code runs as long as possible.
13087  */
13088 static struct notifier_block perf_reboot_notifier = {
13089 	.notifier_call = perf_reboot,
13090 	.priority = INT_MIN,
13091 };
13092 
13093 void __init perf_event_init(void)
13094 {
13095 	int ret;
13096 
13097 	idr_init(&pmu_idr);
13098 
13099 	perf_event_init_all_cpus();
13100 	init_srcu_struct(&pmus_srcu);
13101 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13102 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13103 	perf_pmu_register(&perf_task_clock, NULL, -1);
13104 	perf_tp_register();
13105 	perf_event_init_cpu(smp_processor_id());
13106 	register_reboot_notifier(&perf_reboot_notifier);
13107 
13108 	ret = init_hw_breakpoint();
13109 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13110 
13111 	/*
13112 	 * Build time assertion that we keep the data_head at the intended
13113 	 * location.  IOW, validation we got the __reserved[] size right.
13114 	 */
13115 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13116 		     != 1024);
13117 }
13118 
13119 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13120 			      char *page)
13121 {
13122 	struct perf_pmu_events_attr *pmu_attr =
13123 		container_of(attr, struct perf_pmu_events_attr, attr);
13124 
13125 	if (pmu_attr->event_str)
13126 		return sprintf(page, "%s\n", pmu_attr->event_str);
13127 
13128 	return 0;
13129 }
13130 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13131 
13132 static int __init perf_event_sysfs_init(void)
13133 {
13134 	struct pmu *pmu;
13135 	int ret;
13136 
13137 	mutex_lock(&pmus_lock);
13138 
13139 	ret = bus_register(&pmu_bus);
13140 	if (ret)
13141 		goto unlock;
13142 
13143 	list_for_each_entry(pmu, &pmus, entry) {
13144 		if (!pmu->name || pmu->type < 0)
13145 			continue;
13146 
13147 		ret = pmu_dev_alloc(pmu);
13148 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13149 	}
13150 	pmu_bus_running = 1;
13151 	ret = 0;
13152 
13153 unlock:
13154 	mutex_unlock(&pmus_lock);
13155 
13156 	return ret;
13157 }
13158 device_initcall(perf_event_sysfs_init);
13159 
13160 #ifdef CONFIG_CGROUP_PERF
13161 static struct cgroup_subsys_state *
13162 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13163 {
13164 	struct perf_cgroup *jc;
13165 
13166 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13167 	if (!jc)
13168 		return ERR_PTR(-ENOMEM);
13169 
13170 	jc->info = alloc_percpu(struct perf_cgroup_info);
13171 	if (!jc->info) {
13172 		kfree(jc);
13173 		return ERR_PTR(-ENOMEM);
13174 	}
13175 
13176 	return &jc->css;
13177 }
13178 
13179 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13180 {
13181 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13182 
13183 	free_percpu(jc->info);
13184 	kfree(jc);
13185 }
13186 
13187 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13188 {
13189 	perf_event_cgroup(css->cgroup);
13190 	return 0;
13191 }
13192 
13193 static int __perf_cgroup_move(void *info)
13194 {
13195 	struct task_struct *task = info;
13196 	rcu_read_lock();
13197 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13198 	rcu_read_unlock();
13199 	return 0;
13200 }
13201 
13202 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13203 {
13204 	struct task_struct *task;
13205 	struct cgroup_subsys_state *css;
13206 
13207 	cgroup_taskset_for_each(task, css, tset)
13208 		task_function_call(task, __perf_cgroup_move, task);
13209 }
13210 
13211 struct cgroup_subsys perf_event_cgrp_subsys = {
13212 	.css_alloc	= perf_cgroup_css_alloc,
13213 	.css_free	= perf_cgroup_css_free,
13214 	.css_online	= perf_cgroup_css_online,
13215 	.attach		= perf_cgroup_attach,
13216 	/*
13217 	 * Implicitly enable on dfl hierarchy so that perf events can
13218 	 * always be filtered by cgroup2 path as long as perf_event
13219 	 * controller is not mounted on a legacy hierarchy.
13220 	 */
13221 	.implicit_on_dfl = true,
13222 	.threaded	= true,
13223 };
13224 #endif /* CONFIG_CGROUP_PERF */
13225