1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 void perf_pmu_resched(struct pmu *pmu) 2482 { 2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2484 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2485 2486 perf_ctx_lock(cpuctx, task_ctx); 2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2488 perf_ctx_unlock(cpuctx, task_ctx); 2489 } 2490 2491 /* 2492 * Cross CPU call to install and enable a performance event 2493 * 2494 * Very similar to remote_function() + event_function() but cannot assume that 2495 * things like ctx->is_active and cpuctx->task_ctx are set. 2496 */ 2497 static int __perf_install_in_context(void *info) 2498 { 2499 struct perf_event *event = info; 2500 struct perf_event_context *ctx = event->ctx; 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2503 bool reprogram = true; 2504 int ret = 0; 2505 2506 raw_spin_lock(&cpuctx->ctx.lock); 2507 if (ctx->task) { 2508 raw_spin_lock(&ctx->lock); 2509 task_ctx = ctx; 2510 2511 reprogram = (ctx->task == current); 2512 2513 /* 2514 * If the task is running, it must be running on this CPU, 2515 * otherwise we cannot reprogram things. 2516 * 2517 * If its not running, we don't care, ctx->lock will 2518 * serialize against it becoming runnable. 2519 */ 2520 if (task_curr(ctx->task) && !reprogram) { 2521 ret = -ESRCH; 2522 goto unlock; 2523 } 2524 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2526 } else if (task_ctx) { 2527 raw_spin_lock(&task_ctx->lock); 2528 } 2529 2530 #ifdef CONFIG_CGROUP_PERF 2531 if (is_cgroup_event(event)) { 2532 /* 2533 * If the current cgroup doesn't match the event's 2534 * cgroup, we should not try to schedule it. 2535 */ 2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2538 event->cgrp->css.cgroup); 2539 } 2540 #endif 2541 2542 if (reprogram) { 2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2544 add_event_to_ctx(event, ctx); 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2546 } else { 2547 add_event_to_ctx(event, ctx); 2548 } 2549 2550 unlock: 2551 perf_ctx_unlock(cpuctx, task_ctx); 2552 2553 return ret; 2554 } 2555 2556 /* 2557 * Attach a performance event to a context. 2558 * 2559 * Very similar to event_function_call, see comment there. 2560 */ 2561 static void 2562 perf_install_in_context(struct perf_event_context *ctx, 2563 struct perf_event *event, 2564 int cpu) 2565 { 2566 struct task_struct *task = READ_ONCE(ctx->task); 2567 2568 lockdep_assert_held(&ctx->mutex); 2569 2570 if (event->cpu != -1) 2571 event->cpu = cpu; 2572 2573 /* 2574 * Ensures that if we can observe event->ctx, both the event and ctx 2575 * will be 'complete'. See perf_iterate_sb_cpu(). 2576 */ 2577 smp_store_release(&event->ctx, ctx); 2578 2579 if (!task) { 2580 cpu_function_call(cpu, __perf_install_in_context, event); 2581 return; 2582 } 2583 2584 /* 2585 * Should not happen, we validate the ctx is still alive before calling. 2586 */ 2587 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2588 return; 2589 2590 /* 2591 * Installing events is tricky because we cannot rely on ctx->is_active 2592 * to be set in case this is the nr_events 0 -> 1 transition. 2593 * 2594 * Instead we use task_curr(), which tells us if the task is running. 2595 * However, since we use task_curr() outside of rq::lock, we can race 2596 * against the actual state. This means the result can be wrong. 2597 * 2598 * If we get a false positive, we retry, this is harmless. 2599 * 2600 * If we get a false negative, things are complicated. If we are after 2601 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2602 * value must be correct. If we're before, it doesn't matter since 2603 * perf_event_context_sched_in() will program the counter. 2604 * 2605 * However, this hinges on the remote context switch having observed 2606 * our task->perf_event_ctxp[] store, such that it will in fact take 2607 * ctx::lock in perf_event_context_sched_in(). 2608 * 2609 * We do this by task_function_call(), if the IPI fails to hit the task 2610 * we know any future context switch of task must see the 2611 * perf_event_ctpx[] store. 2612 */ 2613 2614 /* 2615 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2616 * task_cpu() load, such that if the IPI then does not find the task 2617 * running, a future context switch of that task must observe the 2618 * store. 2619 */ 2620 smp_mb(); 2621 again: 2622 if (!task_function_call(task, __perf_install_in_context, event)) 2623 return; 2624 2625 raw_spin_lock_irq(&ctx->lock); 2626 task = ctx->task; 2627 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2628 /* 2629 * Cannot happen because we already checked above (which also 2630 * cannot happen), and we hold ctx->mutex, which serializes us 2631 * against perf_event_exit_task_context(). 2632 */ 2633 raw_spin_unlock_irq(&ctx->lock); 2634 return; 2635 } 2636 /* 2637 * If the task is not running, ctx->lock will avoid it becoming so, 2638 * thus we can safely install the event. 2639 */ 2640 if (task_curr(task)) { 2641 raw_spin_unlock_irq(&ctx->lock); 2642 goto again; 2643 } 2644 add_event_to_ctx(event, ctx); 2645 raw_spin_unlock_irq(&ctx->lock); 2646 } 2647 2648 /* 2649 * Cross CPU call to enable a performance event 2650 */ 2651 static void __perf_event_enable(struct perf_event *event, 2652 struct perf_cpu_context *cpuctx, 2653 struct perf_event_context *ctx, 2654 void *info) 2655 { 2656 struct perf_event *leader = event->group_leader; 2657 struct perf_event_context *task_ctx; 2658 2659 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2660 event->state <= PERF_EVENT_STATE_ERROR) 2661 return; 2662 2663 if (ctx->is_active) 2664 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2665 2666 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2667 2668 if (!ctx->is_active) 2669 return; 2670 2671 if (!event_filter_match(event)) { 2672 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2673 return; 2674 } 2675 2676 /* 2677 * If the event is in a group and isn't the group leader, 2678 * then don't put it on unless the group is on. 2679 */ 2680 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2681 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2682 return; 2683 } 2684 2685 task_ctx = cpuctx->task_ctx; 2686 if (ctx->task) 2687 WARN_ON_ONCE(task_ctx != ctx); 2688 2689 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2690 } 2691 2692 /* 2693 * Enable an event. 2694 * 2695 * If event->ctx is a cloned context, callers must make sure that 2696 * every task struct that event->ctx->task could possibly point to 2697 * remains valid. This condition is satisfied when called through 2698 * perf_event_for_each_child or perf_event_for_each as described 2699 * for perf_event_disable. 2700 */ 2701 static void _perf_event_enable(struct perf_event *event) 2702 { 2703 struct perf_event_context *ctx = event->ctx; 2704 2705 raw_spin_lock_irq(&ctx->lock); 2706 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2707 event->state < PERF_EVENT_STATE_ERROR) { 2708 raw_spin_unlock_irq(&ctx->lock); 2709 return; 2710 } 2711 2712 /* 2713 * If the event is in error state, clear that first. 2714 * 2715 * That way, if we see the event in error state below, we know that it 2716 * has gone back into error state, as distinct from the task having 2717 * been scheduled away before the cross-call arrived. 2718 */ 2719 if (event->state == PERF_EVENT_STATE_ERROR) 2720 event->state = PERF_EVENT_STATE_OFF; 2721 raw_spin_unlock_irq(&ctx->lock); 2722 2723 event_function_call(event, __perf_event_enable, NULL); 2724 } 2725 2726 /* 2727 * See perf_event_disable(); 2728 */ 2729 void perf_event_enable(struct perf_event *event) 2730 { 2731 struct perf_event_context *ctx; 2732 2733 ctx = perf_event_ctx_lock(event); 2734 _perf_event_enable(event); 2735 perf_event_ctx_unlock(event, ctx); 2736 } 2737 EXPORT_SYMBOL_GPL(perf_event_enable); 2738 2739 struct stop_event_data { 2740 struct perf_event *event; 2741 unsigned int restart; 2742 }; 2743 2744 static int __perf_event_stop(void *info) 2745 { 2746 struct stop_event_data *sd = info; 2747 struct perf_event *event = sd->event; 2748 2749 /* if it's already INACTIVE, do nothing */ 2750 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2751 return 0; 2752 2753 /* matches smp_wmb() in event_sched_in() */ 2754 smp_rmb(); 2755 2756 /* 2757 * There is a window with interrupts enabled before we get here, 2758 * so we need to check again lest we try to stop another CPU's event. 2759 */ 2760 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2761 return -EAGAIN; 2762 2763 event->pmu->stop(event, PERF_EF_UPDATE); 2764 2765 /* 2766 * May race with the actual stop (through perf_pmu_output_stop()), 2767 * but it is only used for events with AUX ring buffer, and such 2768 * events will refuse to restart because of rb::aux_mmap_count==0, 2769 * see comments in perf_aux_output_begin(). 2770 * 2771 * Since this is happening on an event-local CPU, no trace is lost 2772 * while restarting. 2773 */ 2774 if (sd->restart) 2775 event->pmu->start(event, 0); 2776 2777 return 0; 2778 } 2779 2780 static int perf_event_stop(struct perf_event *event, int restart) 2781 { 2782 struct stop_event_data sd = { 2783 .event = event, 2784 .restart = restart, 2785 }; 2786 int ret = 0; 2787 2788 do { 2789 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2790 return 0; 2791 2792 /* matches smp_wmb() in event_sched_in() */ 2793 smp_rmb(); 2794 2795 /* 2796 * We only want to restart ACTIVE events, so if the event goes 2797 * inactive here (event->oncpu==-1), there's nothing more to do; 2798 * fall through with ret==-ENXIO. 2799 */ 2800 ret = cpu_function_call(READ_ONCE(event->oncpu), 2801 __perf_event_stop, &sd); 2802 } while (ret == -EAGAIN); 2803 2804 return ret; 2805 } 2806 2807 /* 2808 * In order to contain the amount of racy and tricky in the address filter 2809 * configuration management, it is a two part process: 2810 * 2811 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2812 * we update the addresses of corresponding vmas in 2813 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2814 * (p2) when an event is scheduled in (pmu::add), it calls 2815 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2816 * if the generation has changed since the previous call. 2817 * 2818 * If (p1) happens while the event is active, we restart it to force (p2). 2819 * 2820 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2821 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2822 * ioctl; 2823 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2824 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2825 * for reading; 2826 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2827 * of exec. 2828 */ 2829 void perf_event_addr_filters_sync(struct perf_event *event) 2830 { 2831 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2832 2833 if (!has_addr_filter(event)) 2834 return; 2835 2836 raw_spin_lock(&ifh->lock); 2837 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2838 event->pmu->addr_filters_sync(event); 2839 event->hw.addr_filters_gen = event->addr_filters_gen; 2840 } 2841 raw_spin_unlock(&ifh->lock); 2842 } 2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2844 2845 static int _perf_event_refresh(struct perf_event *event, int refresh) 2846 { 2847 /* 2848 * not supported on inherited events 2849 */ 2850 if (event->attr.inherit || !is_sampling_event(event)) 2851 return -EINVAL; 2852 2853 atomic_add(refresh, &event->event_limit); 2854 _perf_event_enable(event); 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * See perf_event_disable() 2861 */ 2862 int perf_event_refresh(struct perf_event *event, int refresh) 2863 { 2864 struct perf_event_context *ctx; 2865 int ret; 2866 2867 ctx = perf_event_ctx_lock(event); 2868 ret = _perf_event_refresh(event, refresh); 2869 perf_event_ctx_unlock(event, ctx); 2870 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(perf_event_refresh); 2874 2875 static int perf_event_modify_breakpoint(struct perf_event *bp, 2876 struct perf_event_attr *attr) 2877 { 2878 int err; 2879 2880 _perf_event_disable(bp); 2881 2882 err = modify_user_hw_breakpoint_check(bp, attr, true); 2883 2884 if (!bp->attr.disabled) 2885 _perf_event_enable(bp); 2886 2887 return err; 2888 } 2889 2890 static int perf_event_modify_attr(struct perf_event *event, 2891 struct perf_event_attr *attr) 2892 { 2893 if (event->attr.type != attr->type) 2894 return -EINVAL; 2895 2896 switch (event->attr.type) { 2897 case PERF_TYPE_BREAKPOINT: 2898 return perf_event_modify_breakpoint(event, attr); 2899 default: 2900 /* Place holder for future additions. */ 2901 return -EOPNOTSUPP; 2902 } 2903 } 2904 2905 static void ctx_sched_out(struct perf_event_context *ctx, 2906 struct perf_cpu_context *cpuctx, 2907 enum event_type_t event_type) 2908 { 2909 struct perf_event *event, *tmp; 2910 int is_active = ctx->is_active; 2911 2912 lockdep_assert_held(&ctx->lock); 2913 2914 if (likely(!ctx->nr_events)) { 2915 /* 2916 * See __perf_remove_from_context(). 2917 */ 2918 WARN_ON_ONCE(ctx->is_active); 2919 if (ctx->task) 2920 WARN_ON_ONCE(cpuctx->task_ctx); 2921 return; 2922 } 2923 2924 ctx->is_active &= ~event_type; 2925 if (!(ctx->is_active & EVENT_ALL)) 2926 ctx->is_active = 0; 2927 2928 if (ctx->task) { 2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2930 if (!ctx->is_active) 2931 cpuctx->task_ctx = NULL; 2932 } 2933 2934 /* 2935 * Always update time if it was set; not only when it changes. 2936 * Otherwise we can 'forget' to update time for any but the last 2937 * context we sched out. For example: 2938 * 2939 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2940 * ctx_sched_out(.event_type = EVENT_PINNED) 2941 * 2942 * would only update time for the pinned events. 2943 */ 2944 if (is_active & EVENT_TIME) { 2945 /* update (and stop) ctx time */ 2946 update_context_time(ctx); 2947 update_cgrp_time_from_cpuctx(cpuctx); 2948 } 2949 2950 is_active ^= ctx->is_active; /* changed bits */ 2951 2952 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2953 return; 2954 2955 /* 2956 * If we had been multiplexing, no rotations are necessary, now no events 2957 * are active. 2958 */ 2959 ctx->rotate_necessary = 0; 2960 2961 perf_pmu_disable(ctx->pmu); 2962 if (is_active & EVENT_PINNED) { 2963 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2964 group_sched_out(event, cpuctx, ctx); 2965 } 2966 2967 if (is_active & EVENT_FLEXIBLE) { 2968 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2969 group_sched_out(event, cpuctx, ctx); 2970 } 2971 perf_pmu_enable(ctx->pmu); 2972 } 2973 2974 /* 2975 * Test whether two contexts are equivalent, i.e. whether they have both been 2976 * cloned from the same version of the same context. 2977 * 2978 * Equivalence is measured using a generation number in the context that is 2979 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2980 * and list_del_event(). 2981 */ 2982 static int context_equiv(struct perf_event_context *ctx1, 2983 struct perf_event_context *ctx2) 2984 { 2985 lockdep_assert_held(&ctx1->lock); 2986 lockdep_assert_held(&ctx2->lock); 2987 2988 /* Pinning disables the swap optimization */ 2989 if (ctx1->pin_count || ctx2->pin_count) 2990 return 0; 2991 2992 /* If ctx1 is the parent of ctx2 */ 2993 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2994 return 1; 2995 2996 /* If ctx2 is the parent of ctx1 */ 2997 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2998 return 1; 2999 3000 /* 3001 * If ctx1 and ctx2 have the same parent; we flatten the parent 3002 * hierarchy, see perf_event_init_context(). 3003 */ 3004 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3005 ctx1->parent_gen == ctx2->parent_gen) 3006 return 1; 3007 3008 /* Unmatched */ 3009 return 0; 3010 } 3011 3012 static void __perf_event_sync_stat(struct perf_event *event, 3013 struct perf_event *next_event) 3014 { 3015 u64 value; 3016 3017 if (!event->attr.inherit_stat) 3018 return; 3019 3020 /* 3021 * Update the event value, we cannot use perf_event_read() 3022 * because we're in the middle of a context switch and have IRQs 3023 * disabled, which upsets smp_call_function_single(), however 3024 * we know the event must be on the current CPU, therefore we 3025 * don't need to use it. 3026 */ 3027 if (event->state == PERF_EVENT_STATE_ACTIVE) 3028 event->pmu->read(event); 3029 3030 perf_event_update_time(event); 3031 3032 /* 3033 * In order to keep per-task stats reliable we need to flip the event 3034 * values when we flip the contexts. 3035 */ 3036 value = local64_read(&next_event->count); 3037 value = local64_xchg(&event->count, value); 3038 local64_set(&next_event->count, value); 3039 3040 swap(event->total_time_enabled, next_event->total_time_enabled); 3041 swap(event->total_time_running, next_event->total_time_running); 3042 3043 /* 3044 * Since we swizzled the values, update the user visible data too. 3045 */ 3046 perf_event_update_userpage(event); 3047 perf_event_update_userpage(next_event); 3048 } 3049 3050 static void perf_event_sync_stat(struct perf_event_context *ctx, 3051 struct perf_event_context *next_ctx) 3052 { 3053 struct perf_event *event, *next_event; 3054 3055 if (!ctx->nr_stat) 3056 return; 3057 3058 update_context_time(ctx); 3059 3060 event = list_first_entry(&ctx->event_list, 3061 struct perf_event, event_entry); 3062 3063 next_event = list_first_entry(&next_ctx->event_list, 3064 struct perf_event, event_entry); 3065 3066 while (&event->event_entry != &ctx->event_list && 3067 &next_event->event_entry != &next_ctx->event_list) { 3068 3069 __perf_event_sync_stat(event, next_event); 3070 3071 event = list_next_entry(event, event_entry); 3072 next_event = list_next_entry(next_event, event_entry); 3073 } 3074 } 3075 3076 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3077 struct task_struct *next) 3078 { 3079 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3080 struct perf_event_context *next_ctx; 3081 struct perf_event_context *parent, *next_parent; 3082 struct perf_cpu_context *cpuctx; 3083 int do_switch = 1; 3084 3085 if (likely(!ctx)) 3086 return; 3087 3088 cpuctx = __get_cpu_context(ctx); 3089 if (!cpuctx->task_ctx) 3090 return; 3091 3092 rcu_read_lock(); 3093 next_ctx = next->perf_event_ctxp[ctxn]; 3094 if (!next_ctx) 3095 goto unlock; 3096 3097 parent = rcu_dereference(ctx->parent_ctx); 3098 next_parent = rcu_dereference(next_ctx->parent_ctx); 3099 3100 /* If neither context have a parent context; they cannot be clones. */ 3101 if (!parent && !next_parent) 3102 goto unlock; 3103 3104 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3105 /* 3106 * Looks like the two contexts are clones, so we might be 3107 * able to optimize the context switch. We lock both 3108 * contexts and check that they are clones under the 3109 * lock (including re-checking that neither has been 3110 * uncloned in the meantime). It doesn't matter which 3111 * order we take the locks because no other cpu could 3112 * be trying to lock both of these tasks. 3113 */ 3114 raw_spin_lock(&ctx->lock); 3115 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3116 if (context_equiv(ctx, next_ctx)) { 3117 WRITE_ONCE(ctx->task, next); 3118 WRITE_ONCE(next_ctx->task, task); 3119 3120 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3121 3122 /* 3123 * RCU_INIT_POINTER here is safe because we've not 3124 * modified the ctx and the above modification of 3125 * ctx->task and ctx->task_ctx_data are immaterial 3126 * since those values are always verified under 3127 * ctx->lock which we're now holding. 3128 */ 3129 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3130 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3131 3132 do_switch = 0; 3133 3134 perf_event_sync_stat(ctx, next_ctx); 3135 } 3136 raw_spin_unlock(&next_ctx->lock); 3137 raw_spin_unlock(&ctx->lock); 3138 } 3139 unlock: 3140 rcu_read_unlock(); 3141 3142 if (do_switch) { 3143 raw_spin_lock(&ctx->lock); 3144 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3145 raw_spin_unlock(&ctx->lock); 3146 } 3147 } 3148 3149 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3150 3151 void perf_sched_cb_dec(struct pmu *pmu) 3152 { 3153 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3154 3155 this_cpu_dec(perf_sched_cb_usages); 3156 3157 if (!--cpuctx->sched_cb_usage) 3158 list_del(&cpuctx->sched_cb_entry); 3159 } 3160 3161 3162 void perf_sched_cb_inc(struct pmu *pmu) 3163 { 3164 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3165 3166 if (!cpuctx->sched_cb_usage++) 3167 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3168 3169 this_cpu_inc(perf_sched_cb_usages); 3170 } 3171 3172 /* 3173 * This function provides the context switch callback to the lower code 3174 * layer. It is invoked ONLY when the context switch callback is enabled. 3175 * 3176 * This callback is relevant even to per-cpu events; for example multi event 3177 * PEBS requires this to provide PID/TID information. This requires we flush 3178 * all queued PEBS records before we context switch to a new task. 3179 */ 3180 static void perf_pmu_sched_task(struct task_struct *prev, 3181 struct task_struct *next, 3182 bool sched_in) 3183 { 3184 struct perf_cpu_context *cpuctx; 3185 struct pmu *pmu; 3186 3187 if (prev == next) 3188 return; 3189 3190 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3191 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3192 3193 if (WARN_ON_ONCE(!pmu->sched_task)) 3194 continue; 3195 3196 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3197 perf_pmu_disable(pmu); 3198 3199 pmu->sched_task(cpuctx->task_ctx, sched_in); 3200 3201 perf_pmu_enable(pmu); 3202 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3203 } 3204 } 3205 3206 static void perf_event_switch(struct task_struct *task, 3207 struct task_struct *next_prev, bool sched_in); 3208 3209 #define for_each_task_context_nr(ctxn) \ 3210 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3211 3212 /* 3213 * Called from scheduler to remove the events of the current task, 3214 * with interrupts disabled. 3215 * 3216 * We stop each event and update the event value in event->count. 3217 * 3218 * This does not protect us against NMI, but disable() 3219 * sets the disabled bit in the control field of event _before_ 3220 * accessing the event control register. If a NMI hits, then it will 3221 * not restart the event. 3222 */ 3223 void __perf_event_task_sched_out(struct task_struct *task, 3224 struct task_struct *next) 3225 { 3226 int ctxn; 3227 3228 if (__this_cpu_read(perf_sched_cb_usages)) 3229 perf_pmu_sched_task(task, next, false); 3230 3231 if (atomic_read(&nr_switch_events)) 3232 perf_event_switch(task, next, false); 3233 3234 for_each_task_context_nr(ctxn) 3235 perf_event_context_sched_out(task, ctxn, next); 3236 3237 /* 3238 * if cgroup events exist on this CPU, then we need 3239 * to check if we have to switch out PMU state. 3240 * cgroup event are system-wide mode only 3241 */ 3242 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3243 perf_cgroup_sched_out(task, next); 3244 } 3245 3246 /* 3247 * Called with IRQs disabled 3248 */ 3249 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3250 enum event_type_t event_type) 3251 { 3252 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3253 } 3254 3255 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3256 int (*func)(struct perf_event *, void *), void *data) 3257 { 3258 struct perf_event **evt, *evt1, *evt2; 3259 int ret; 3260 3261 evt1 = perf_event_groups_first(groups, -1); 3262 evt2 = perf_event_groups_first(groups, cpu); 3263 3264 while (evt1 || evt2) { 3265 if (evt1 && evt2) { 3266 if (evt1->group_index < evt2->group_index) 3267 evt = &evt1; 3268 else 3269 evt = &evt2; 3270 } else if (evt1) { 3271 evt = &evt1; 3272 } else { 3273 evt = &evt2; 3274 } 3275 3276 ret = func(*evt, data); 3277 if (ret) 3278 return ret; 3279 3280 *evt = perf_event_groups_next(*evt); 3281 } 3282 3283 return 0; 3284 } 3285 3286 struct sched_in_data { 3287 struct perf_event_context *ctx; 3288 struct perf_cpu_context *cpuctx; 3289 int can_add_hw; 3290 }; 3291 3292 static int pinned_sched_in(struct perf_event *event, void *data) 3293 { 3294 struct sched_in_data *sid = data; 3295 3296 if (event->state <= PERF_EVENT_STATE_OFF) 3297 return 0; 3298 3299 if (!event_filter_match(event)) 3300 return 0; 3301 3302 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3303 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3304 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3305 } 3306 3307 /* 3308 * If this pinned group hasn't been scheduled, 3309 * put it in error state. 3310 */ 3311 if (event->state == PERF_EVENT_STATE_INACTIVE) 3312 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3313 3314 return 0; 3315 } 3316 3317 static int flexible_sched_in(struct perf_event *event, void *data) 3318 { 3319 struct sched_in_data *sid = data; 3320 3321 if (event->state <= PERF_EVENT_STATE_OFF) 3322 return 0; 3323 3324 if (!event_filter_match(event)) 3325 return 0; 3326 3327 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3328 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3329 if (ret) { 3330 sid->can_add_hw = 0; 3331 sid->ctx->rotate_necessary = 1; 3332 return 0; 3333 } 3334 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3335 } 3336 3337 return 0; 3338 } 3339 3340 static void 3341 ctx_pinned_sched_in(struct perf_event_context *ctx, 3342 struct perf_cpu_context *cpuctx) 3343 { 3344 struct sched_in_data sid = { 3345 .ctx = ctx, 3346 .cpuctx = cpuctx, 3347 .can_add_hw = 1, 3348 }; 3349 3350 visit_groups_merge(&ctx->pinned_groups, 3351 smp_processor_id(), 3352 pinned_sched_in, &sid); 3353 } 3354 3355 static void 3356 ctx_flexible_sched_in(struct perf_event_context *ctx, 3357 struct perf_cpu_context *cpuctx) 3358 { 3359 struct sched_in_data sid = { 3360 .ctx = ctx, 3361 .cpuctx = cpuctx, 3362 .can_add_hw = 1, 3363 }; 3364 3365 visit_groups_merge(&ctx->flexible_groups, 3366 smp_processor_id(), 3367 flexible_sched_in, &sid); 3368 } 3369 3370 static void 3371 ctx_sched_in(struct perf_event_context *ctx, 3372 struct perf_cpu_context *cpuctx, 3373 enum event_type_t event_type, 3374 struct task_struct *task) 3375 { 3376 int is_active = ctx->is_active; 3377 u64 now; 3378 3379 lockdep_assert_held(&ctx->lock); 3380 3381 if (likely(!ctx->nr_events)) 3382 return; 3383 3384 ctx->is_active |= (event_type | EVENT_TIME); 3385 if (ctx->task) { 3386 if (!is_active) 3387 cpuctx->task_ctx = ctx; 3388 else 3389 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3390 } 3391 3392 is_active ^= ctx->is_active; /* changed bits */ 3393 3394 if (is_active & EVENT_TIME) { 3395 /* start ctx time */ 3396 now = perf_clock(); 3397 ctx->timestamp = now; 3398 perf_cgroup_set_timestamp(task, ctx); 3399 } 3400 3401 /* 3402 * First go through the list and put on any pinned groups 3403 * in order to give them the best chance of going on. 3404 */ 3405 if (is_active & EVENT_PINNED) 3406 ctx_pinned_sched_in(ctx, cpuctx); 3407 3408 /* Then walk through the lower prio flexible groups */ 3409 if (is_active & EVENT_FLEXIBLE) 3410 ctx_flexible_sched_in(ctx, cpuctx); 3411 } 3412 3413 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3414 enum event_type_t event_type, 3415 struct task_struct *task) 3416 { 3417 struct perf_event_context *ctx = &cpuctx->ctx; 3418 3419 ctx_sched_in(ctx, cpuctx, event_type, task); 3420 } 3421 3422 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3423 struct task_struct *task) 3424 { 3425 struct perf_cpu_context *cpuctx; 3426 3427 cpuctx = __get_cpu_context(ctx); 3428 if (cpuctx->task_ctx == ctx) 3429 return; 3430 3431 perf_ctx_lock(cpuctx, ctx); 3432 /* 3433 * We must check ctx->nr_events while holding ctx->lock, such 3434 * that we serialize against perf_install_in_context(). 3435 */ 3436 if (!ctx->nr_events) 3437 goto unlock; 3438 3439 perf_pmu_disable(ctx->pmu); 3440 /* 3441 * We want to keep the following priority order: 3442 * cpu pinned (that don't need to move), task pinned, 3443 * cpu flexible, task flexible. 3444 * 3445 * However, if task's ctx is not carrying any pinned 3446 * events, no need to flip the cpuctx's events around. 3447 */ 3448 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3449 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3450 perf_event_sched_in(cpuctx, ctx, task); 3451 perf_pmu_enable(ctx->pmu); 3452 3453 unlock: 3454 perf_ctx_unlock(cpuctx, ctx); 3455 } 3456 3457 /* 3458 * Called from scheduler to add the events of the current task 3459 * with interrupts disabled. 3460 * 3461 * We restore the event value and then enable it. 3462 * 3463 * This does not protect us against NMI, but enable() 3464 * sets the enabled bit in the control field of event _before_ 3465 * accessing the event control register. If a NMI hits, then it will 3466 * keep the event running. 3467 */ 3468 void __perf_event_task_sched_in(struct task_struct *prev, 3469 struct task_struct *task) 3470 { 3471 struct perf_event_context *ctx; 3472 int ctxn; 3473 3474 /* 3475 * If cgroup events exist on this CPU, then we need to check if we have 3476 * to switch in PMU state; cgroup event are system-wide mode only. 3477 * 3478 * Since cgroup events are CPU events, we must schedule these in before 3479 * we schedule in the task events. 3480 */ 3481 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3482 perf_cgroup_sched_in(prev, task); 3483 3484 for_each_task_context_nr(ctxn) { 3485 ctx = task->perf_event_ctxp[ctxn]; 3486 if (likely(!ctx)) 3487 continue; 3488 3489 perf_event_context_sched_in(ctx, task); 3490 } 3491 3492 if (atomic_read(&nr_switch_events)) 3493 perf_event_switch(task, prev, true); 3494 3495 if (__this_cpu_read(perf_sched_cb_usages)) 3496 perf_pmu_sched_task(prev, task, true); 3497 } 3498 3499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3500 { 3501 u64 frequency = event->attr.sample_freq; 3502 u64 sec = NSEC_PER_SEC; 3503 u64 divisor, dividend; 3504 3505 int count_fls, nsec_fls, frequency_fls, sec_fls; 3506 3507 count_fls = fls64(count); 3508 nsec_fls = fls64(nsec); 3509 frequency_fls = fls64(frequency); 3510 sec_fls = 30; 3511 3512 /* 3513 * We got @count in @nsec, with a target of sample_freq HZ 3514 * the target period becomes: 3515 * 3516 * @count * 10^9 3517 * period = ------------------- 3518 * @nsec * sample_freq 3519 * 3520 */ 3521 3522 /* 3523 * Reduce accuracy by one bit such that @a and @b converge 3524 * to a similar magnitude. 3525 */ 3526 #define REDUCE_FLS(a, b) \ 3527 do { \ 3528 if (a##_fls > b##_fls) { \ 3529 a >>= 1; \ 3530 a##_fls--; \ 3531 } else { \ 3532 b >>= 1; \ 3533 b##_fls--; \ 3534 } \ 3535 } while (0) 3536 3537 /* 3538 * Reduce accuracy until either term fits in a u64, then proceed with 3539 * the other, so that finally we can do a u64/u64 division. 3540 */ 3541 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3542 REDUCE_FLS(nsec, frequency); 3543 REDUCE_FLS(sec, count); 3544 } 3545 3546 if (count_fls + sec_fls > 64) { 3547 divisor = nsec * frequency; 3548 3549 while (count_fls + sec_fls > 64) { 3550 REDUCE_FLS(count, sec); 3551 divisor >>= 1; 3552 } 3553 3554 dividend = count * sec; 3555 } else { 3556 dividend = count * sec; 3557 3558 while (nsec_fls + frequency_fls > 64) { 3559 REDUCE_FLS(nsec, frequency); 3560 dividend >>= 1; 3561 } 3562 3563 divisor = nsec * frequency; 3564 } 3565 3566 if (!divisor) 3567 return dividend; 3568 3569 return div64_u64(dividend, divisor); 3570 } 3571 3572 static DEFINE_PER_CPU(int, perf_throttled_count); 3573 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3574 3575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3576 { 3577 struct hw_perf_event *hwc = &event->hw; 3578 s64 period, sample_period; 3579 s64 delta; 3580 3581 period = perf_calculate_period(event, nsec, count); 3582 3583 delta = (s64)(period - hwc->sample_period); 3584 delta = (delta + 7) / 8; /* low pass filter */ 3585 3586 sample_period = hwc->sample_period + delta; 3587 3588 if (!sample_period) 3589 sample_period = 1; 3590 3591 hwc->sample_period = sample_period; 3592 3593 if (local64_read(&hwc->period_left) > 8*sample_period) { 3594 if (disable) 3595 event->pmu->stop(event, PERF_EF_UPDATE); 3596 3597 local64_set(&hwc->period_left, 0); 3598 3599 if (disable) 3600 event->pmu->start(event, PERF_EF_RELOAD); 3601 } 3602 } 3603 3604 /* 3605 * combine freq adjustment with unthrottling to avoid two passes over the 3606 * events. At the same time, make sure, having freq events does not change 3607 * the rate of unthrottling as that would introduce bias. 3608 */ 3609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3610 int needs_unthr) 3611 { 3612 struct perf_event *event; 3613 struct hw_perf_event *hwc; 3614 u64 now, period = TICK_NSEC; 3615 s64 delta; 3616 3617 /* 3618 * only need to iterate over all events iff: 3619 * - context have events in frequency mode (needs freq adjust) 3620 * - there are events to unthrottle on this cpu 3621 */ 3622 if (!(ctx->nr_freq || needs_unthr)) 3623 return; 3624 3625 raw_spin_lock(&ctx->lock); 3626 perf_pmu_disable(ctx->pmu); 3627 3628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3629 if (event->state != PERF_EVENT_STATE_ACTIVE) 3630 continue; 3631 3632 if (!event_filter_match(event)) 3633 continue; 3634 3635 perf_pmu_disable(event->pmu); 3636 3637 hwc = &event->hw; 3638 3639 if (hwc->interrupts == MAX_INTERRUPTS) { 3640 hwc->interrupts = 0; 3641 perf_log_throttle(event, 1); 3642 event->pmu->start(event, 0); 3643 } 3644 3645 if (!event->attr.freq || !event->attr.sample_freq) 3646 goto next; 3647 3648 /* 3649 * stop the event and update event->count 3650 */ 3651 event->pmu->stop(event, PERF_EF_UPDATE); 3652 3653 now = local64_read(&event->count); 3654 delta = now - hwc->freq_count_stamp; 3655 hwc->freq_count_stamp = now; 3656 3657 /* 3658 * restart the event 3659 * reload only if value has changed 3660 * we have stopped the event so tell that 3661 * to perf_adjust_period() to avoid stopping it 3662 * twice. 3663 */ 3664 if (delta > 0) 3665 perf_adjust_period(event, period, delta, false); 3666 3667 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3668 next: 3669 perf_pmu_enable(event->pmu); 3670 } 3671 3672 perf_pmu_enable(ctx->pmu); 3673 raw_spin_unlock(&ctx->lock); 3674 } 3675 3676 /* 3677 * Move @event to the tail of the @ctx's elegible events. 3678 */ 3679 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3680 { 3681 /* 3682 * Rotate the first entry last of non-pinned groups. Rotation might be 3683 * disabled by the inheritance code. 3684 */ 3685 if (ctx->rotate_disable) 3686 return; 3687 3688 perf_event_groups_delete(&ctx->flexible_groups, event); 3689 perf_event_groups_insert(&ctx->flexible_groups, event); 3690 } 3691 3692 static inline struct perf_event * 3693 ctx_first_active(struct perf_event_context *ctx) 3694 { 3695 return list_first_entry_or_null(&ctx->flexible_active, 3696 struct perf_event, active_list); 3697 } 3698 3699 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3700 { 3701 struct perf_event *cpu_event = NULL, *task_event = NULL; 3702 struct perf_event_context *task_ctx = NULL; 3703 int cpu_rotate, task_rotate; 3704 3705 /* 3706 * Since we run this from IRQ context, nobody can install new 3707 * events, thus the event count values are stable. 3708 */ 3709 3710 cpu_rotate = cpuctx->ctx.rotate_necessary; 3711 task_ctx = cpuctx->task_ctx; 3712 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3713 3714 if (!(cpu_rotate || task_rotate)) 3715 return false; 3716 3717 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3718 perf_pmu_disable(cpuctx->ctx.pmu); 3719 3720 if (task_rotate) 3721 task_event = ctx_first_active(task_ctx); 3722 if (cpu_rotate) 3723 cpu_event = ctx_first_active(&cpuctx->ctx); 3724 3725 /* 3726 * As per the order given at ctx_resched() first 'pop' task flexible 3727 * and then, if needed CPU flexible. 3728 */ 3729 if (task_event || (task_ctx && cpu_event)) 3730 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3731 if (cpu_event) 3732 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3733 3734 if (task_event) 3735 rotate_ctx(task_ctx, task_event); 3736 if (cpu_event) 3737 rotate_ctx(&cpuctx->ctx, cpu_event); 3738 3739 perf_event_sched_in(cpuctx, task_ctx, current); 3740 3741 perf_pmu_enable(cpuctx->ctx.pmu); 3742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3743 3744 return true; 3745 } 3746 3747 void perf_event_task_tick(void) 3748 { 3749 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3750 struct perf_event_context *ctx, *tmp; 3751 int throttled; 3752 3753 lockdep_assert_irqs_disabled(); 3754 3755 __this_cpu_inc(perf_throttled_seq); 3756 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3757 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3758 3759 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3760 perf_adjust_freq_unthr_context(ctx, throttled); 3761 } 3762 3763 static int event_enable_on_exec(struct perf_event *event, 3764 struct perf_event_context *ctx) 3765 { 3766 if (!event->attr.enable_on_exec) 3767 return 0; 3768 3769 event->attr.enable_on_exec = 0; 3770 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3771 return 0; 3772 3773 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3774 3775 return 1; 3776 } 3777 3778 /* 3779 * Enable all of a task's events that have been marked enable-on-exec. 3780 * This expects task == current. 3781 */ 3782 static void perf_event_enable_on_exec(int ctxn) 3783 { 3784 struct perf_event_context *ctx, *clone_ctx = NULL; 3785 enum event_type_t event_type = 0; 3786 struct perf_cpu_context *cpuctx; 3787 struct perf_event *event; 3788 unsigned long flags; 3789 int enabled = 0; 3790 3791 local_irq_save(flags); 3792 ctx = current->perf_event_ctxp[ctxn]; 3793 if (!ctx || !ctx->nr_events) 3794 goto out; 3795 3796 cpuctx = __get_cpu_context(ctx); 3797 perf_ctx_lock(cpuctx, ctx); 3798 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3799 list_for_each_entry(event, &ctx->event_list, event_entry) { 3800 enabled |= event_enable_on_exec(event, ctx); 3801 event_type |= get_event_type(event); 3802 } 3803 3804 /* 3805 * Unclone and reschedule this context if we enabled any event. 3806 */ 3807 if (enabled) { 3808 clone_ctx = unclone_ctx(ctx); 3809 ctx_resched(cpuctx, ctx, event_type); 3810 } else { 3811 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3812 } 3813 perf_ctx_unlock(cpuctx, ctx); 3814 3815 out: 3816 local_irq_restore(flags); 3817 3818 if (clone_ctx) 3819 put_ctx(clone_ctx); 3820 } 3821 3822 struct perf_read_data { 3823 struct perf_event *event; 3824 bool group; 3825 int ret; 3826 }; 3827 3828 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3829 { 3830 u16 local_pkg, event_pkg; 3831 3832 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3833 int local_cpu = smp_processor_id(); 3834 3835 event_pkg = topology_physical_package_id(event_cpu); 3836 local_pkg = topology_physical_package_id(local_cpu); 3837 3838 if (event_pkg == local_pkg) 3839 return local_cpu; 3840 } 3841 3842 return event_cpu; 3843 } 3844 3845 /* 3846 * Cross CPU call to read the hardware event 3847 */ 3848 static void __perf_event_read(void *info) 3849 { 3850 struct perf_read_data *data = info; 3851 struct perf_event *sub, *event = data->event; 3852 struct perf_event_context *ctx = event->ctx; 3853 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3854 struct pmu *pmu = event->pmu; 3855 3856 /* 3857 * If this is a task context, we need to check whether it is 3858 * the current task context of this cpu. If not it has been 3859 * scheduled out before the smp call arrived. In that case 3860 * event->count would have been updated to a recent sample 3861 * when the event was scheduled out. 3862 */ 3863 if (ctx->task && cpuctx->task_ctx != ctx) 3864 return; 3865 3866 raw_spin_lock(&ctx->lock); 3867 if (ctx->is_active & EVENT_TIME) { 3868 update_context_time(ctx); 3869 update_cgrp_time_from_event(event); 3870 } 3871 3872 perf_event_update_time(event); 3873 if (data->group) 3874 perf_event_update_sibling_time(event); 3875 3876 if (event->state != PERF_EVENT_STATE_ACTIVE) 3877 goto unlock; 3878 3879 if (!data->group) { 3880 pmu->read(event); 3881 data->ret = 0; 3882 goto unlock; 3883 } 3884 3885 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3886 3887 pmu->read(event); 3888 3889 for_each_sibling_event(sub, event) { 3890 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3891 /* 3892 * Use sibling's PMU rather than @event's since 3893 * sibling could be on different (eg: software) PMU. 3894 */ 3895 sub->pmu->read(sub); 3896 } 3897 } 3898 3899 data->ret = pmu->commit_txn(pmu); 3900 3901 unlock: 3902 raw_spin_unlock(&ctx->lock); 3903 } 3904 3905 static inline u64 perf_event_count(struct perf_event *event) 3906 { 3907 return local64_read(&event->count) + atomic64_read(&event->child_count); 3908 } 3909 3910 /* 3911 * NMI-safe method to read a local event, that is an event that 3912 * is: 3913 * - either for the current task, or for this CPU 3914 * - does not have inherit set, for inherited task events 3915 * will not be local and we cannot read them atomically 3916 * - must not have a pmu::count method 3917 */ 3918 int perf_event_read_local(struct perf_event *event, u64 *value, 3919 u64 *enabled, u64 *running) 3920 { 3921 unsigned long flags; 3922 int ret = 0; 3923 3924 /* 3925 * Disabling interrupts avoids all counter scheduling (context 3926 * switches, timer based rotation and IPIs). 3927 */ 3928 local_irq_save(flags); 3929 3930 /* 3931 * It must not be an event with inherit set, we cannot read 3932 * all child counters from atomic context. 3933 */ 3934 if (event->attr.inherit) { 3935 ret = -EOPNOTSUPP; 3936 goto out; 3937 } 3938 3939 /* If this is a per-task event, it must be for current */ 3940 if ((event->attach_state & PERF_ATTACH_TASK) && 3941 event->hw.target != current) { 3942 ret = -EINVAL; 3943 goto out; 3944 } 3945 3946 /* If this is a per-CPU event, it must be for this CPU */ 3947 if (!(event->attach_state & PERF_ATTACH_TASK) && 3948 event->cpu != smp_processor_id()) { 3949 ret = -EINVAL; 3950 goto out; 3951 } 3952 3953 /* If this is a pinned event it must be running on this CPU */ 3954 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3955 ret = -EBUSY; 3956 goto out; 3957 } 3958 3959 /* 3960 * If the event is currently on this CPU, its either a per-task event, 3961 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3962 * oncpu == -1). 3963 */ 3964 if (event->oncpu == smp_processor_id()) 3965 event->pmu->read(event); 3966 3967 *value = local64_read(&event->count); 3968 if (enabled || running) { 3969 u64 now = event->shadow_ctx_time + perf_clock(); 3970 u64 __enabled, __running; 3971 3972 __perf_update_times(event, now, &__enabled, &__running); 3973 if (enabled) 3974 *enabled = __enabled; 3975 if (running) 3976 *running = __running; 3977 } 3978 out: 3979 local_irq_restore(flags); 3980 3981 return ret; 3982 } 3983 3984 static int perf_event_read(struct perf_event *event, bool group) 3985 { 3986 enum perf_event_state state = READ_ONCE(event->state); 3987 int event_cpu, ret = 0; 3988 3989 /* 3990 * If event is enabled and currently active on a CPU, update the 3991 * value in the event structure: 3992 */ 3993 again: 3994 if (state == PERF_EVENT_STATE_ACTIVE) { 3995 struct perf_read_data data; 3996 3997 /* 3998 * Orders the ->state and ->oncpu loads such that if we see 3999 * ACTIVE we must also see the right ->oncpu. 4000 * 4001 * Matches the smp_wmb() from event_sched_in(). 4002 */ 4003 smp_rmb(); 4004 4005 event_cpu = READ_ONCE(event->oncpu); 4006 if ((unsigned)event_cpu >= nr_cpu_ids) 4007 return 0; 4008 4009 data = (struct perf_read_data){ 4010 .event = event, 4011 .group = group, 4012 .ret = 0, 4013 }; 4014 4015 preempt_disable(); 4016 event_cpu = __perf_event_read_cpu(event, event_cpu); 4017 4018 /* 4019 * Purposely ignore the smp_call_function_single() return 4020 * value. 4021 * 4022 * If event_cpu isn't a valid CPU it means the event got 4023 * scheduled out and that will have updated the event count. 4024 * 4025 * Therefore, either way, we'll have an up-to-date event count 4026 * after this. 4027 */ 4028 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4029 preempt_enable(); 4030 ret = data.ret; 4031 4032 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4033 struct perf_event_context *ctx = event->ctx; 4034 unsigned long flags; 4035 4036 raw_spin_lock_irqsave(&ctx->lock, flags); 4037 state = event->state; 4038 if (state != PERF_EVENT_STATE_INACTIVE) { 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4040 goto again; 4041 } 4042 4043 /* 4044 * May read while context is not active (e.g., thread is 4045 * blocked), in that case we cannot update context time 4046 */ 4047 if (ctx->is_active & EVENT_TIME) { 4048 update_context_time(ctx); 4049 update_cgrp_time_from_event(event); 4050 } 4051 4052 perf_event_update_time(event); 4053 if (group) 4054 perf_event_update_sibling_time(event); 4055 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4056 } 4057 4058 return ret; 4059 } 4060 4061 /* 4062 * Initialize the perf_event context in a task_struct: 4063 */ 4064 static void __perf_event_init_context(struct perf_event_context *ctx) 4065 { 4066 raw_spin_lock_init(&ctx->lock); 4067 mutex_init(&ctx->mutex); 4068 INIT_LIST_HEAD(&ctx->active_ctx_list); 4069 perf_event_groups_init(&ctx->pinned_groups); 4070 perf_event_groups_init(&ctx->flexible_groups); 4071 INIT_LIST_HEAD(&ctx->event_list); 4072 INIT_LIST_HEAD(&ctx->pinned_active); 4073 INIT_LIST_HEAD(&ctx->flexible_active); 4074 refcount_set(&ctx->refcount, 1); 4075 } 4076 4077 static struct perf_event_context * 4078 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4079 { 4080 struct perf_event_context *ctx; 4081 4082 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4083 if (!ctx) 4084 return NULL; 4085 4086 __perf_event_init_context(ctx); 4087 if (task) { 4088 ctx->task = task; 4089 get_task_struct(task); 4090 } 4091 ctx->pmu = pmu; 4092 4093 return ctx; 4094 } 4095 4096 static struct task_struct * 4097 find_lively_task_by_vpid(pid_t vpid) 4098 { 4099 struct task_struct *task; 4100 4101 rcu_read_lock(); 4102 if (!vpid) 4103 task = current; 4104 else 4105 task = find_task_by_vpid(vpid); 4106 if (task) 4107 get_task_struct(task); 4108 rcu_read_unlock(); 4109 4110 if (!task) 4111 return ERR_PTR(-ESRCH); 4112 4113 return task; 4114 } 4115 4116 /* 4117 * Returns a matching context with refcount and pincount. 4118 */ 4119 static struct perf_event_context * 4120 find_get_context(struct pmu *pmu, struct task_struct *task, 4121 struct perf_event *event) 4122 { 4123 struct perf_event_context *ctx, *clone_ctx = NULL; 4124 struct perf_cpu_context *cpuctx; 4125 void *task_ctx_data = NULL; 4126 unsigned long flags; 4127 int ctxn, err; 4128 int cpu = event->cpu; 4129 4130 if (!task) { 4131 /* Must be root to operate on a CPU event: */ 4132 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4133 return ERR_PTR(-EACCES); 4134 4135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4136 ctx = &cpuctx->ctx; 4137 get_ctx(ctx); 4138 ++ctx->pin_count; 4139 4140 return ctx; 4141 } 4142 4143 err = -EINVAL; 4144 ctxn = pmu->task_ctx_nr; 4145 if (ctxn < 0) 4146 goto errout; 4147 4148 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4149 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4150 if (!task_ctx_data) { 4151 err = -ENOMEM; 4152 goto errout; 4153 } 4154 } 4155 4156 retry: 4157 ctx = perf_lock_task_context(task, ctxn, &flags); 4158 if (ctx) { 4159 clone_ctx = unclone_ctx(ctx); 4160 ++ctx->pin_count; 4161 4162 if (task_ctx_data && !ctx->task_ctx_data) { 4163 ctx->task_ctx_data = task_ctx_data; 4164 task_ctx_data = NULL; 4165 } 4166 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4167 4168 if (clone_ctx) 4169 put_ctx(clone_ctx); 4170 } else { 4171 ctx = alloc_perf_context(pmu, task); 4172 err = -ENOMEM; 4173 if (!ctx) 4174 goto errout; 4175 4176 if (task_ctx_data) { 4177 ctx->task_ctx_data = task_ctx_data; 4178 task_ctx_data = NULL; 4179 } 4180 4181 err = 0; 4182 mutex_lock(&task->perf_event_mutex); 4183 /* 4184 * If it has already passed perf_event_exit_task(). 4185 * we must see PF_EXITING, it takes this mutex too. 4186 */ 4187 if (task->flags & PF_EXITING) 4188 err = -ESRCH; 4189 else if (task->perf_event_ctxp[ctxn]) 4190 err = -EAGAIN; 4191 else { 4192 get_ctx(ctx); 4193 ++ctx->pin_count; 4194 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4195 } 4196 mutex_unlock(&task->perf_event_mutex); 4197 4198 if (unlikely(err)) { 4199 put_ctx(ctx); 4200 4201 if (err == -EAGAIN) 4202 goto retry; 4203 goto errout; 4204 } 4205 } 4206 4207 kfree(task_ctx_data); 4208 return ctx; 4209 4210 errout: 4211 kfree(task_ctx_data); 4212 return ERR_PTR(err); 4213 } 4214 4215 static void perf_event_free_filter(struct perf_event *event); 4216 static void perf_event_free_bpf_prog(struct perf_event *event); 4217 4218 static void free_event_rcu(struct rcu_head *head) 4219 { 4220 struct perf_event *event; 4221 4222 event = container_of(head, struct perf_event, rcu_head); 4223 if (event->ns) 4224 put_pid_ns(event->ns); 4225 perf_event_free_filter(event); 4226 kfree(event); 4227 } 4228 4229 static void ring_buffer_attach(struct perf_event *event, 4230 struct ring_buffer *rb); 4231 4232 static void detach_sb_event(struct perf_event *event) 4233 { 4234 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4235 4236 raw_spin_lock(&pel->lock); 4237 list_del_rcu(&event->sb_list); 4238 raw_spin_unlock(&pel->lock); 4239 } 4240 4241 static bool is_sb_event(struct perf_event *event) 4242 { 4243 struct perf_event_attr *attr = &event->attr; 4244 4245 if (event->parent) 4246 return false; 4247 4248 if (event->attach_state & PERF_ATTACH_TASK) 4249 return false; 4250 4251 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4252 attr->comm || attr->comm_exec || 4253 attr->task || attr->ksymbol || 4254 attr->context_switch || 4255 attr->bpf_event) 4256 return true; 4257 return false; 4258 } 4259 4260 static void unaccount_pmu_sb_event(struct perf_event *event) 4261 { 4262 if (is_sb_event(event)) 4263 detach_sb_event(event); 4264 } 4265 4266 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4267 { 4268 if (event->parent) 4269 return; 4270 4271 if (is_cgroup_event(event)) 4272 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4273 } 4274 4275 #ifdef CONFIG_NO_HZ_FULL 4276 static DEFINE_SPINLOCK(nr_freq_lock); 4277 #endif 4278 4279 static void unaccount_freq_event_nohz(void) 4280 { 4281 #ifdef CONFIG_NO_HZ_FULL 4282 spin_lock(&nr_freq_lock); 4283 if (atomic_dec_and_test(&nr_freq_events)) 4284 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4285 spin_unlock(&nr_freq_lock); 4286 #endif 4287 } 4288 4289 static void unaccount_freq_event(void) 4290 { 4291 if (tick_nohz_full_enabled()) 4292 unaccount_freq_event_nohz(); 4293 else 4294 atomic_dec(&nr_freq_events); 4295 } 4296 4297 static void unaccount_event(struct perf_event *event) 4298 { 4299 bool dec = false; 4300 4301 if (event->parent) 4302 return; 4303 4304 if (event->attach_state & PERF_ATTACH_TASK) 4305 dec = true; 4306 if (event->attr.mmap || event->attr.mmap_data) 4307 atomic_dec(&nr_mmap_events); 4308 if (event->attr.comm) 4309 atomic_dec(&nr_comm_events); 4310 if (event->attr.namespaces) 4311 atomic_dec(&nr_namespaces_events); 4312 if (event->attr.task) 4313 atomic_dec(&nr_task_events); 4314 if (event->attr.freq) 4315 unaccount_freq_event(); 4316 if (event->attr.context_switch) { 4317 dec = true; 4318 atomic_dec(&nr_switch_events); 4319 } 4320 if (is_cgroup_event(event)) 4321 dec = true; 4322 if (has_branch_stack(event)) 4323 dec = true; 4324 if (event->attr.ksymbol) 4325 atomic_dec(&nr_ksymbol_events); 4326 if (event->attr.bpf_event) 4327 atomic_dec(&nr_bpf_events); 4328 4329 if (dec) { 4330 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4331 schedule_delayed_work(&perf_sched_work, HZ); 4332 } 4333 4334 unaccount_event_cpu(event, event->cpu); 4335 4336 unaccount_pmu_sb_event(event); 4337 } 4338 4339 static void perf_sched_delayed(struct work_struct *work) 4340 { 4341 mutex_lock(&perf_sched_mutex); 4342 if (atomic_dec_and_test(&perf_sched_count)) 4343 static_branch_disable(&perf_sched_events); 4344 mutex_unlock(&perf_sched_mutex); 4345 } 4346 4347 /* 4348 * The following implement mutual exclusion of events on "exclusive" pmus 4349 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4350 * at a time, so we disallow creating events that might conflict, namely: 4351 * 4352 * 1) cpu-wide events in the presence of per-task events, 4353 * 2) per-task events in the presence of cpu-wide events, 4354 * 3) two matching events on the same context. 4355 * 4356 * The former two cases are handled in the allocation path (perf_event_alloc(), 4357 * _free_event()), the latter -- before the first perf_install_in_context(). 4358 */ 4359 static int exclusive_event_init(struct perf_event *event) 4360 { 4361 struct pmu *pmu = event->pmu; 4362 4363 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4364 return 0; 4365 4366 /* 4367 * Prevent co-existence of per-task and cpu-wide events on the 4368 * same exclusive pmu. 4369 * 4370 * Negative pmu::exclusive_cnt means there are cpu-wide 4371 * events on this "exclusive" pmu, positive means there are 4372 * per-task events. 4373 * 4374 * Since this is called in perf_event_alloc() path, event::ctx 4375 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4376 * to mean "per-task event", because unlike other attach states it 4377 * never gets cleared. 4378 */ 4379 if (event->attach_state & PERF_ATTACH_TASK) { 4380 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4381 return -EBUSY; 4382 } else { 4383 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4384 return -EBUSY; 4385 } 4386 4387 return 0; 4388 } 4389 4390 static void exclusive_event_destroy(struct perf_event *event) 4391 { 4392 struct pmu *pmu = event->pmu; 4393 4394 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4395 return; 4396 4397 /* see comment in exclusive_event_init() */ 4398 if (event->attach_state & PERF_ATTACH_TASK) 4399 atomic_dec(&pmu->exclusive_cnt); 4400 else 4401 atomic_inc(&pmu->exclusive_cnt); 4402 } 4403 4404 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4405 { 4406 if ((e1->pmu == e2->pmu) && 4407 (e1->cpu == e2->cpu || 4408 e1->cpu == -1 || 4409 e2->cpu == -1)) 4410 return true; 4411 return false; 4412 } 4413 4414 /* Called under the same ctx::mutex as perf_install_in_context() */ 4415 static bool exclusive_event_installable(struct perf_event *event, 4416 struct perf_event_context *ctx) 4417 { 4418 struct perf_event *iter_event; 4419 struct pmu *pmu = event->pmu; 4420 4421 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4422 return true; 4423 4424 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4425 if (exclusive_event_match(iter_event, event)) 4426 return false; 4427 } 4428 4429 return true; 4430 } 4431 4432 static void perf_addr_filters_splice(struct perf_event *event, 4433 struct list_head *head); 4434 4435 static void _free_event(struct perf_event *event) 4436 { 4437 irq_work_sync(&event->pending); 4438 4439 unaccount_event(event); 4440 4441 if (event->rb) { 4442 /* 4443 * Can happen when we close an event with re-directed output. 4444 * 4445 * Since we have a 0 refcount, perf_mmap_close() will skip 4446 * over us; possibly making our ring_buffer_put() the last. 4447 */ 4448 mutex_lock(&event->mmap_mutex); 4449 ring_buffer_attach(event, NULL); 4450 mutex_unlock(&event->mmap_mutex); 4451 } 4452 4453 if (is_cgroup_event(event)) 4454 perf_detach_cgroup(event); 4455 4456 if (!event->parent) { 4457 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4458 put_callchain_buffers(); 4459 } 4460 4461 perf_event_free_bpf_prog(event); 4462 perf_addr_filters_splice(event, NULL); 4463 kfree(event->addr_filter_ranges); 4464 4465 if (event->destroy) 4466 event->destroy(event); 4467 4468 if (event->ctx) 4469 put_ctx(event->ctx); 4470 4471 if (event->hw.target) 4472 put_task_struct(event->hw.target); 4473 4474 exclusive_event_destroy(event); 4475 module_put(event->pmu->module); 4476 4477 call_rcu(&event->rcu_head, free_event_rcu); 4478 } 4479 4480 /* 4481 * Used to free events which have a known refcount of 1, such as in error paths 4482 * where the event isn't exposed yet and inherited events. 4483 */ 4484 static void free_event(struct perf_event *event) 4485 { 4486 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4487 "unexpected event refcount: %ld; ptr=%p\n", 4488 atomic_long_read(&event->refcount), event)) { 4489 /* leak to avoid use-after-free */ 4490 return; 4491 } 4492 4493 _free_event(event); 4494 } 4495 4496 /* 4497 * Remove user event from the owner task. 4498 */ 4499 static void perf_remove_from_owner(struct perf_event *event) 4500 { 4501 struct task_struct *owner; 4502 4503 rcu_read_lock(); 4504 /* 4505 * Matches the smp_store_release() in perf_event_exit_task(). If we 4506 * observe !owner it means the list deletion is complete and we can 4507 * indeed free this event, otherwise we need to serialize on 4508 * owner->perf_event_mutex. 4509 */ 4510 owner = READ_ONCE(event->owner); 4511 if (owner) { 4512 /* 4513 * Since delayed_put_task_struct() also drops the last 4514 * task reference we can safely take a new reference 4515 * while holding the rcu_read_lock(). 4516 */ 4517 get_task_struct(owner); 4518 } 4519 rcu_read_unlock(); 4520 4521 if (owner) { 4522 /* 4523 * If we're here through perf_event_exit_task() we're already 4524 * holding ctx->mutex which would be an inversion wrt. the 4525 * normal lock order. 4526 * 4527 * However we can safely take this lock because its the child 4528 * ctx->mutex. 4529 */ 4530 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4531 4532 /* 4533 * We have to re-check the event->owner field, if it is cleared 4534 * we raced with perf_event_exit_task(), acquiring the mutex 4535 * ensured they're done, and we can proceed with freeing the 4536 * event. 4537 */ 4538 if (event->owner) { 4539 list_del_init(&event->owner_entry); 4540 smp_store_release(&event->owner, NULL); 4541 } 4542 mutex_unlock(&owner->perf_event_mutex); 4543 put_task_struct(owner); 4544 } 4545 } 4546 4547 static void put_event(struct perf_event *event) 4548 { 4549 if (!atomic_long_dec_and_test(&event->refcount)) 4550 return; 4551 4552 _free_event(event); 4553 } 4554 4555 /* 4556 * Kill an event dead; while event:refcount will preserve the event 4557 * object, it will not preserve its functionality. Once the last 'user' 4558 * gives up the object, we'll destroy the thing. 4559 */ 4560 int perf_event_release_kernel(struct perf_event *event) 4561 { 4562 struct perf_event_context *ctx = event->ctx; 4563 struct perf_event *child, *tmp; 4564 LIST_HEAD(free_list); 4565 4566 /* 4567 * If we got here through err_file: fput(event_file); we will not have 4568 * attached to a context yet. 4569 */ 4570 if (!ctx) { 4571 WARN_ON_ONCE(event->attach_state & 4572 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4573 goto no_ctx; 4574 } 4575 4576 if (!is_kernel_event(event)) 4577 perf_remove_from_owner(event); 4578 4579 ctx = perf_event_ctx_lock(event); 4580 WARN_ON_ONCE(ctx->parent_ctx); 4581 perf_remove_from_context(event, DETACH_GROUP); 4582 4583 raw_spin_lock_irq(&ctx->lock); 4584 /* 4585 * Mark this event as STATE_DEAD, there is no external reference to it 4586 * anymore. 4587 * 4588 * Anybody acquiring event->child_mutex after the below loop _must_ 4589 * also see this, most importantly inherit_event() which will avoid 4590 * placing more children on the list. 4591 * 4592 * Thus this guarantees that we will in fact observe and kill _ALL_ 4593 * child events. 4594 */ 4595 event->state = PERF_EVENT_STATE_DEAD; 4596 raw_spin_unlock_irq(&ctx->lock); 4597 4598 perf_event_ctx_unlock(event, ctx); 4599 4600 again: 4601 mutex_lock(&event->child_mutex); 4602 list_for_each_entry(child, &event->child_list, child_list) { 4603 4604 /* 4605 * Cannot change, child events are not migrated, see the 4606 * comment with perf_event_ctx_lock_nested(). 4607 */ 4608 ctx = READ_ONCE(child->ctx); 4609 /* 4610 * Since child_mutex nests inside ctx::mutex, we must jump 4611 * through hoops. We start by grabbing a reference on the ctx. 4612 * 4613 * Since the event cannot get freed while we hold the 4614 * child_mutex, the context must also exist and have a !0 4615 * reference count. 4616 */ 4617 get_ctx(ctx); 4618 4619 /* 4620 * Now that we have a ctx ref, we can drop child_mutex, and 4621 * acquire ctx::mutex without fear of it going away. Then we 4622 * can re-acquire child_mutex. 4623 */ 4624 mutex_unlock(&event->child_mutex); 4625 mutex_lock(&ctx->mutex); 4626 mutex_lock(&event->child_mutex); 4627 4628 /* 4629 * Now that we hold ctx::mutex and child_mutex, revalidate our 4630 * state, if child is still the first entry, it didn't get freed 4631 * and we can continue doing so. 4632 */ 4633 tmp = list_first_entry_or_null(&event->child_list, 4634 struct perf_event, child_list); 4635 if (tmp == child) { 4636 perf_remove_from_context(child, DETACH_GROUP); 4637 list_move(&child->child_list, &free_list); 4638 /* 4639 * This matches the refcount bump in inherit_event(); 4640 * this can't be the last reference. 4641 */ 4642 put_event(event); 4643 } 4644 4645 mutex_unlock(&event->child_mutex); 4646 mutex_unlock(&ctx->mutex); 4647 put_ctx(ctx); 4648 goto again; 4649 } 4650 mutex_unlock(&event->child_mutex); 4651 4652 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4653 list_del(&child->child_list); 4654 free_event(child); 4655 } 4656 4657 no_ctx: 4658 put_event(event); /* Must be the 'last' reference */ 4659 return 0; 4660 } 4661 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4662 4663 /* 4664 * Called when the last reference to the file is gone. 4665 */ 4666 static int perf_release(struct inode *inode, struct file *file) 4667 { 4668 perf_event_release_kernel(file->private_data); 4669 return 0; 4670 } 4671 4672 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4673 { 4674 struct perf_event *child; 4675 u64 total = 0; 4676 4677 *enabled = 0; 4678 *running = 0; 4679 4680 mutex_lock(&event->child_mutex); 4681 4682 (void)perf_event_read(event, false); 4683 total += perf_event_count(event); 4684 4685 *enabled += event->total_time_enabled + 4686 atomic64_read(&event->child_total_time_enabled); 4687 *running += event->total_time_running + 4688 atomic64_read(&event->child_total_time_running); 4689 4690 list_for_each_entry(child, &event->child_list, child_list) { 4691 (void)perf_event_read(child, false); 4692 total += perf_event_count(child); 4693 *enabled += child->total_time_enabled; 4694 *running += child->total_time_running; 4695 } 4696 mutex_unlock(&event->child_mutex); 4697 4698 return total; 4699 } 4700 4701 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4702 { 4703 struct perf_event_context *ctx; 4704 u64 count; 4705 4706 ctx = perf_event_ctx_lock(event); 4707 count = __perf_event_read_value(event, enabled, running); 4708 perf_event_ctx_unlock(event, ctx); 4709 4710 return count; 4711 } 4712 EXPORT_SYMBOL_GPL(perf_event_read_value); 4713 4714 static int __perf_read_group_add(struct perf_event *leader, 4715 u64 read_format, u64 *values) 4716 { 4717 struct perf_event_context *ctx = leader->ctx; 4718 struct perf_event *sub; 4719 unsigned long flags; 4720 int n = 1; /* skip @nr */ 4721 int ret; 4722 4723 ret = perf_event_read(leader, true); 4724 if (ret) 4725 return ret; 4726 4727 raw_spin_lock_irqsave(&ctx->lock, flags); 4728 4729 /* 4730 * Since we co-schedule groups, {enabled,running} times of siblings 4731 * will be identical to those of the leader, so we only publish one 4732 * set. 4733 */ 4734 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4735 values[n++] += leader->total_time_enabled + 4736 atomic64_read(&leader->child_total_time_enabled); 4737 } 4738 4739 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4740 values[n++] += leader->total_time_running + 4741 atomic64_read(&leader->child_total_time_running); 4742 } 4743 4744 /* 4745 * Write {count,id} tuples for every sibling. 4746 */ 4747 values[n++] += perf_event_count(leader); 4748 if (read_format & PERF_FORMAT_ID) 4749 values[n++] = primary_event_id(leader); 4750 4751 for_each_sibling_event(sub, leader) { 4752 values[n++] += perf_event_count(sub); 4753 if (read_format & PERF_FORMAT_ID) 4754 values[n++] = primary_event_id(sub); 4755 } 4756 4757 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4758 return 0; 4759 } 4760 4761 static int perf_read_group(struct perf_event *event, 4762 u64 read_format, char __user *buf) 4763 { 4764 struct perf_event *leader = event->group_leader, *child; 4765 struct perf_event_context *ctx = leader->ctx; 4766 int ret; 4767 u64 *values; 4768 4769 lockdep_assert_held(&ctx->mutex); 4770 4771 values = kzalloc(event->read_size, GFP_KERNEL); 4772 if (!values) 4773 return -ENOMEM; 4774 4775 values[0] = 1 + leader->nr_siblings; 4776 4777 /* 4778 * By locking the child_mutex of the leader we effectively 4779 * lock the child list of all siblings.. XXX explain how. 4780 */ 4781 mutex_lock(&leader->child_mutex); 4782 4783 ret = __perf_read_group_add(leader, read_format, values); 4784 if (ret) 4785 goto unlock; 4786 4787 list_for_each_entry(child, &leader->child_list, child_list) { 4788 ret = __perf_read_group_add(child, read_format, values); 4789 if (ret) 4790 goto unlock; 4791 } 4792 4793 mutex_unlock(&leader->child_mutex); 4794 4795 ret = event->read_size; 4796 if (copy_to_user(buf, values, event->read_size)) 4797 ret = -EFAULT; 4798 goto out; 4799 4800 unlock: 4801 mutex_unlock(&leader->child_mutex); 4802 out: 4803 kfree(values); 4804 return ret; 4805 } 4806 4807 static int perf_read_one(struct perf_event *event, 4808 u64 read_format, char __user *buf) 4809 { 4810 u64 enabled, running; 4811 u64 values[4]; 4812 int n = 0; 4813 4814 values[n++] = __perf_event_read_value(event, &enabled, &running); 4815 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4816 values[n++] = enabled; 4817 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4818 values[n++] = running; 4819 if (read_format & PERF_FORMAT_ID) 4820 values[n++] = primary_event_id(event); 4821 4822 if (copy_to_user(buf, values, n * sizeof(u64))) 4823 return -EFAULT; 4824 4825 return n * sizeof(u64); 4826 } 4827 4828 static bool is_event_hup(struct perf_event *event) 4829 { 4830 bool no_children; 4831 4832 if (event->state > PERF_EVENT_STATE_EXIT) 4833 return false; 4834 4835 mutex_lock(&event->child_mutex); 4836 no_children = list_empty(&event->child_list); 4837 mutex_unlock(&event->child_mutex); 4838 return no_children; 4839 } 4840 4841 /* 4842 * Read the performance event - simple non blocking version for now 4843 */ 4844 static ssize_t 4845 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4846 { 4847 u64 read_format = event->attr.read_format; 4848 int ret; 4849 4850 /* 4851 * Return end-of-file for a read on an event that is in 4852 * error state (i.e. because it was pinned but it couldn't be 4853 * scheduled on to the CPU at some point). 4854 */ 4855 if (event->state == PERF_EVENT_STATE_ERROR) 4856 return 0; 4857 4858 if (count < event->read_size) 4859 return -ENOSPC; 4860 4861 WARN_ON_ONCE(event->ctx->parent_ctx); 4862 if (read_format & PERF_FORMAT_GROUP) 4863 ret = perf_read_group(event, read_format, buf); 4864 else 4865 ret = perf_read_one(event, read_format, buf); 4866 4867 return ret; 4868 } 4869 4870 static ssize_t 4871 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4872 { 4873 struct perf_event *event = file->private_data; 4874 struct perf_event_context *ctx; 4875 int ret; 4876 4877 ctx = perf_event_ctx_lock(event); 4878 ret = __perf_read(event, buf, count); 4879 perf_event_ctx_unlock(event, ctx); 4880 4881 return ret; 4882 } 4883 4884 static __poll_t perf_poll(struct file *file, poll_table *wait) 4885 { 4886 struct perf_event *event = file->private_data; 4887 struct ring_buffer *rb; 4888 __poll_t events = EPOLLHUP; 4889 4890 poll_wait(file, &event->waitq, wait); 4891 4892 if (is_event_hup(event)) 4893 return events; 4894 4895 /* 4896 * Pin the event->rb by taking event->mmap_mutex; otherwise 4897 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4898 */ 4899 mutex_lock(&event->mmap_mutex); 4900 rb = event->rb; 4901 if (rb) 4902 events = atomic_xchg(&rb->poll, 0); 4903 mutex_unlock(&event->mmap_mutex); 4904 return events; 4905 } 4906 4907 static void _perf_event_reset(struct perf_event *event) 4908 { 4909 (void)perf_event_read(event, false); 4910 local64_set(&event->count, 0); 4911 perf_event_update_userpage(event); 4912 } 4913 4914 /* 4915 * Holding the top-level event's child_mutex means that any 4916 * descendant process that has inherited this event will block 4917 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4918 * task existence requirements of perf_event_enable/disable. 4919 */ 4920 static void perf_event_for_each_child(struct perf_event *event, 4921 void (*func)(struct perf_event *)) 4922 { 4923 struct perf_event *child; 4924 4925 WARN_ON_ONCE(event->ctx->parent_ctx); 4926 4927 mutex_lock(&event->child_mutex); 4928 func(event); 4929 list_for_each_entry(child, &event->child_list, child_list) 4930 func(child); 4931 mutex_unlock(&event->child_mutex); 4932 } 4933 4934 static void perf_event_for_each(struct perf_event *event, 4935 void (*func)(struct perf_event *)) 4936 { 4937 struct perf_event_context *ctx = event->ctx; 4938 struct perf_event *sibling; 4939 4940 lockdep_assert_held(&ctx->mutex); 4941 4942 event = event->group_leader; 4943 4944 perf_event_for_each_child(event, func); 4945 for_each_sibling_event(sibling, event) 4946 perf_event_for_each_child(sibling, func); 4947 } 4948 4949 static void __perf_event_period(struct perf_event *event, 4950 struct perf_cpu_context *cpuctx, 4951 struct perf_event_context *ctx, 4952 void *info) 4953 { 4954 u64 value = *((u64 *)info); 4955 bool active; 4956 4957 if (event->attr.freq) { 4958 event->attr.sample_freq = value; 4959 } else { 4960 event->attr.sample_period = value; 4961 event->hw.sample_period = value; 4962 } 4963 4964 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4965 if (active) { 4966 perf_pmu_disable(ctx->pmu); 4967 /* 4968 * We could be throttled; unthrottle now to avoid the tick 4969 * trying to unthrottle while we already re-started the event. 4970 */ 4971 if (event->hw.interrupts == MAX_INTERRUPTS) { 4972 event->hw.interrupts = 0; 4973 perf_log_throttle(event, 1); 4974 } 4975 event->pmu->stop(event, PERF_EF_UPDATE); 4976 } 4977 4978 local64_set(&event->hw.period_left, 0); 4979 4980 if (active) { 4981 event->pmu->start(event, PERF_EF_RELOAD); 4982 perf_pmu_enable(ctx->pmu); 4983 } 4984 } 4985 4986 static int perf_event_check_period(struct perf_event *event, u64 value) 4987 { 4988 return event->pmu->check_period(event, value); 4989 } 4990 4991 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4992 { 4993 u64 value; 4994 4995 if (!is_sampling_event(event)) 4996 return -EINVAL; 4997 4998 if (copy_from_user(&value, arg, sizeof(value))) 4999 return -EFAULT; 5000 5001 if (!value) 5002 return -EINVAL; 5003 5004 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5005 return -EINVAL; 5006 5007 if (perf_event_check_period(event, value)) 5008 return -EINVAL; 5009 5010 if (!event->attr.freq && (value & (1ULL << 63))) 5011 return -EINVAL; 5012 5013 event_function_call(event, __perf_event_period, &value); 5014 5015 return 0; 5016 } 5017 5018 static const struct file_operations perf_fops; 5019 5020 static inline int perf_fget_light(int fd, struct fd *p) 5021 { 5022 struct fd f = fdget(fd); 5023 if (!f.file) 5024 return -EBADF; 5025 5026 if (f.file->f_op != &perf_fops) { 5027 fdput(f); 5028 return -EBADF; 5029 } 5030 *p = f; 5031 return 0; 5032 } 5033 5034 static int perf_event_set_output(struct perf_event *event, 5035 struct perf_event *output_event); 5036 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5037 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5038 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5039 struct perf_event_attr *attr); 5040 5041 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5042 { 5043 void (*func)(struct perf_event *); 5044 u32 flags = arg; 5045 5046 switch (cmd) { 5047 case PERF_EVENT_IOC_ENABLE: 5048 func = _perf_event_enable; 5049 break; 5050 case PERF_EVENT_IOC_DISABLE: 5051 func = _perf_event_disable; 5052 break; 5053 case PERF_EVENT_IOC_RESET: 5054 func = _perf_event_reset; 5055 break; 5056 5057 case PERF_EVENT_IOC_REFRESH: 5058 return _perf_event_refresh(event, arg); 5059 5060 case PERF_EVENT_IOC_PERIOD: 5061 return perf_event_period(event, (u64 __user *)arg); 5062 5063 case PERF_EVENT_IOC_ID: 5064 { 5065 u64 id = primary_event_id(event); 5066 5067 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5068 return -EFAULT; 5069 return 0; 5070 } 5071 5072 case PERF_EVENT_IOC_SET_OUTPUT: 5073 { 5074 int ret; 5075 if (arg != -1) { 5076 struct perf_event *output_event; 5077 struct fd output; 5078 ret = perf_fget_light(arg, &output); 5079 if (ret) 5080 return ret; 5081 output_event = output.file->private_data; 5082 ret = perf_event_set_output(event, output_event); 5083 fdput(output); 5084 } else { 5085 ret = perf_event_set_output(event, NULL); 5086 } 5087 return ret; 5088 } 5089 5090 case PERF_EVENT_IOC_SET_FILTER: 5091 return perf_event_set_filter(event, (void __user *)arg); 5092 5093 case PERF_EVENT_IOC_SET_BPF: 5094 return perf_event_set_bpf_prog(event, arg); 5095 5096 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5097 struct ring_buffer *rb; 5098 5099 rcu_read_lock(); 5100 rb = rcu_dereference(event->rb); 5101 if (!rb || !rb->nr_pages) { 5102 rcu_read_unlock(); 5103 return -EINVAL; 5104 } 5105 rb_toggle_paused(rb, !!arg); 5106 rcu_read_unlock(); 5107 return 0; 5108 } 5109 5110 case PERF_EVENT_IOC_QUERY_BPF: 5111 return perf_event_query_prog_array(event, (void __user *)arg); 5112 5113 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5114 struct perf_event_attr new_attr; 5115 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5116 &new_attr); 5117 5118 if (err) 5119 return err; 5120 5121 return perf_event_modify_attr(event, &new_attr); 5122 } 5123 default: 5124 return -ENOTTY; 5125 } 5126 5127 if (flags & PERF_IOC_FLAG_GROUP) 5128 perf_event_for_each(event, func); 5129 else 5130 perf_event_for_each_child(event, func); 5131 5132 return 0; 5133 } 5134 5135 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5136 { 5137 struct perf_event *event = file->private_data; 5138 struct perf_event_context *ctx; 5139 long ret; 5140 5141 ctx = perf_event_ctx_lock(event); 5142 ret = _perf_ioctl(event, cmd, arg); 5143 perf_event_ctx_unlock(event, ctx); 5144 5145 return ret; 5146 } 5147 5148 #ifdef CONFIG_COMPAT 5149 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5150 unsigned long arg) 5151 { 5152 switch (_IOC_NR(cmd)) { 5153 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5154 case _IOC_NR(PERF_EVENT_IOC_ID): 5155 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5156 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5157 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5158 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5159 cmd &= ~IOCSIZE_MASK; 5160 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5161 } 5162 break; 5163 } 5164 return perf_ioctl(file, cmd, arg); 5165 } 5166 #else 5167 # define perf_compat_ioctl NULL 5168 #endif 5169 5170 int perf_event_task_enable(void) 5171 { 5172 struct perf_event_context *ctx; 5173 struct perf_event *event; 5174 5175 mutex_lock(¤t->perf_event_mutex); 5176 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5177 ctx = perf_event_ctx_lock(event); 5178 perf_event_for_each_child(event, _perf_event_enable); 5179 perf_event_ctx_unlock(event, ctx); 5180 } 5181 mutex_unlock(¤t->perf_event_mutex); 5182 5183 return 0; 5184 } 5185 5186 int perf_event_task_disable(void) 5187 { 5188 struct perf_event_context *ctx; 5189 struct perf_event *event; 5190 5191 mutex_lock(¤t->perf_event_mutex); 5192 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5193 ctx = perf_event_ctx_lock(event); 5194 perf_event_for_each_child(event, _perf_event_disable); 5195 perf_event_ctx_unlock(event, ctx); 5196 } 5197 mutex_unlock(¤t->perf_event_mutex); 5198 5199 return 0; 5200 } 5201 5202 static int perf_event_index(struct perf_event *event) 5203 { 5204 if (event->hw.state & PERF_HES_STOPPED) 5205 return 0; 5206 5207 if (event->state != PERF_EVENT_STATE_ACTIVE) 5208 return 0; 5209 5210 return event->pmu->event_idx(event); 5211 } 5212 5213 static void calc_timer_values(struct perf_event *event, 5214 u64 *now, 5215 u64 *enabled, 5216 u64 *running) 5217 { 5218 u64 ctx_time; 5219 5220 *now = perf_clock(); 5221 ctx_time = event->shadow_ctx_time + *now; 5222 __perf_update_times(event, ctx_time, enabled, running); 5223 } 5224 5225 static void perf_event_init_userpage(struct perf_event *event) 5226 { 5227 struct perf_event_mmap_page *userpg; 5228 struct ring_buffer *rb; 5229 5230 rcu_read_lock(); 5231 rb = rcu_dereference(event->rb); 5232 if (!rb) 5233 goto unlock; 5234 5235 userpg = rb->user_page; 5236 5237 /* Allow new userspace to detect that bit 0 is deprecated */ 5238 userpg->cap_bit0_is_deprecated = 1; 5239 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5240 userpg->data_offset = PAGE_SIZE; 5241 userpg->data_size = perf_data_size(rb); 5242 5243 unlock: 5244 rcu_read_unlock(); 5245 } 5246 5247 void __weak arch_perf_update_userpage( 5248 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5249 { 5250 } 5251 5252 /* 5253 * Callers need to ensure there can be no nesting of this function, otherwise 5254 * the seqlock logic goes bad. We can not serialize this because the arch 5255 * code calls this from NMI context. 5256 */ 5257 void perf_event_update_userpage(struct perf_event *event) 5258 { 5259 struct perf_event_mmap_page *userpg; 5260 struct ring_buffer *rb; 5261 u64 enabled, running, now; 5262 5263 rcu_read_lock(); 5264 rb = rcu_dereference(event->rb); 5265 if (!rb) 5266 goto unlock; 5267 5268 /* 5269 * compute total_time_enabled, total_time_running 5270 * based on snapshot values taken when the event 5271 * was last scheduled in. 5272 * 5273 * we cannot simply called update_context_time() 5274 * because of locking issue as we can be called in 5275 * NMI context 5276 */ 5277 calc_timer_values(event, &now, &enabled, &running); 5278 5279 userpg = rb->user_page; 5280 /* 5281 * Disable preemption to guarantee consistent time stamps are stored to 5282 * the user page. 5283 */ 5284 preempt_disable(); 5285 ++userpg->lock; 5286 barrier(); 5287 userpg->index = perf_event_index(event); 5288 userpg->offset = perf_event_count(event); 5289 if (userpg->index) 5290 userpg->offset -= local64_read(&event->hw.prev_count); 5291 5292 userpg->time_enabled = enabled + 5293 atomic64_read(&event->child_total_time_enabled); 5294 5295 userpg->time_running = running + 5296 atomic64_read(&event->child_total_time_running); 5297 5298 arch_perf_update_userpage(event, userpg, now); 5299 5300 barrier(); 5301 ++userpg->lock; 5302 preempt_enable(); 5303 unlock: 5304 rcu_read_unlock(); 5305 } 5306 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5307 5308 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5309 { 5310 struct perf_event *event = vmf->vma->vm_file->private_data; 5311 struct ring_buffer *rb; 5312 vm_fault_t ret = VM_FAULT_SIGBUS; 5313 5314 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5315 if (vmf->pgoff == 0) 5316 ret = 0; 5317 return ret; 5318 } 5319 5320 rcu_read_lock(); 5321 rb = rcu_dereference(event->rb); 5322 if (!rb) 5323 goto unlock; 5324 5325 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5326 goto unlock; 5327 5328 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5329 if (!vmf->page) 5330 goto unlock; 5331 5332 get_page(vmf->page); 5333 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5334 vmf->page->index = vmf->pgoff; 5335 5336 ret = 0; 5337 unlock: 5338 rcu_read_unlock(); 5339 5340 return ret; 5341 } 5342 5343 static void ring_buffer_attach(struct perf_event *event, 5344 struct ring_buffer *rb) 5345 { 5346 struct ring_buffer *old_rb = NULL; 5347 unsigned long flags; 5348 5349 if (event->rb) { 5350 /* 5351 * Should be impossible, we set this when removing 5352 * event->rb_entry and wait/clear when adding event->rb_entry. 5353 */ 5354 WARN_ON_ONCE(event->rcu_pending); 5355 5356 old_rb = event->rb; 5357 spin_lock_irqsave(&old_rb->event_lock, flags); 5358 list_del_rcu(&event->rb_entry); 5359 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5360 5361 event->rcu_batches = get_state_synchronize_rcu(); 5362 event->rcu_pending = 1; 5363 } 5364 5365 if (rb) { 5366 if (event->rcu_pending) { 5367 cond_synchronize_rcu(event->rcu_batches); 5368 event->rcu_pending = 0; 5369 } 5370 5371 spin_lock_irqsave(&rb->event_lock, flags); 5372 list_add_rcu(&event->rb_entry, &rb->event_list); 5373 spin_unlock_irqrestore(&rb->event_lock, flags); 5374 } 5375 5376 /* 5377 * Avoid racing with perf_mmap_close(AUX): stop the event 5378 * before swizzling the event::rb pointer; if it's getting 5379 * unmapped, its aux_mmap_count will be 0 and it won't 5380 * restart. See the comment in __perf_pmu_output_stop(). 5381 * 5382 * Data will inevitably be lost when set_output is done in 5383 * mid-air, but then again, whoever does it like this is 5384 * not in for the data anyway. 5385 */ 5386 if (has_aux(event)) 5387 perf_event_stop(event, 0); 5388 5389 rcu_assign_pointer(event->rb, rb); 5390 5391 if (old_rb) { 5392 ring_buffer_put(old_rb); 5393 /* 5394 * Since we detached before setting the new rb, so that we 5395 * could attach the new rb, we could have missed a wakeup. 5396 * Provide it now. 5397 */ 5398 wake_up_all(&event->waitq); 5399 } 5400 } 5401 5402 static void ring_buffer_wakeup(struct perf_event *event) 5403 { 5404 struct ring_buffer *rb; 5405 5406 rcu_read_lock(); 5407 rb = rcu_dereference(event->rb); 5408 if (rb) { 5409 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5410 wake_up_all(&event->waitq); 5411 } 5412 rcu_read_unlock(); 5413 } 5414 5415 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5416 { 5417 struct ring_buffer *rb; 5418 5419 rcu_read_lock(); 5420 rb = rcu_dereference(event->rb); 5421 if (rb) { 5422 if (!refcount_inc_not_zero(&rb->refcount)) 5423 rb = NULL; 5424 } 5425 rcu_read_unlock(); 5426 5427 return rb; 5428 } 5429 5430 void ring_buffer_put(struct ring_buffer *rb) 5431 { 5432 if (!refcount_dec_and_test(&rb->refcount)) 5433 return; 5434 5435 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5436 5437 call_rcu(&rb->rcu_head, rb_free_rcu); 5438 } 5439 5440 static void perf_mmap_open(struct vm_area_struct *vma) 5441 { 5442 struct perf_event *event = vma->vm_file->private_data; 5443 5444 atomic_inc(&event->mmap_count); 5445 atomic_inc(&event->rb->mmap_count); 5446 5447 if (vma->vm_pgoff) 5448 atomic_inc(&event->rb->aux_mmap_count); 5449 5450 if (event->pmu->event_mapped) 5451 event->pmu->event_mapped(event, vma->vm_mm); 5452 } 5453 5454 static void perf_pmu_output_stop(struct perf_event *event); 5455 5456 /* 5457 * A buffer can be mmap()ed multiple times; either directly through the same 5458 * event, or through other events by use of perf_event_set_output(). 5459 * 5460 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5461 * the buffer here, where we still have a VM context. This means we need 5462 * to detach all events redirecting to us. 5463 */ 5464 static void perf_mmap_close(struct vm_area_struct *vma) 5465 { 5466 struct perf_event *event = vma->vm_file->private_data; 5467 5468 struct ring_buffer *rb = ring_buffer_get(event); 5469 struct user_struct *mmap_user = rb->mmap_user; 5470 int mmap_locked = rb->mmap_locked; 5471 unsigned long size = perf_data_size(rb); 5472 5473 if (event->pmu->event_unmapped) 5474 event->pmu->event_unmapped(event, vma->vm_mm); 5475 5476 /* 5477 * rb->aux_mmap_count will always drop before rb->mmap_count and 5478 * event->mmap_count, so it is ok to use event->mmap_mutex to 5479 * serialize with perf_mmap here. 5480 */ 5481 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5482 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5483 /* 5484 * Stop all AUX events that are writing to this buffer, 5485 * so that we can free its AUX pages and corresponding PMU 5486 * data. Note that after rb::aux_mmap_count dropped to zero, 5487 * they won't start any more (see perf_aux_output_begin()). 5488 */ 5489 perf_pmu_output_stop(event); 5490 5491 /* now it's safe to free the pages */ 5492 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5493 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5494 5495 /* this has to be the last one */ 5496 rb_free_aux(rb); 5497 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5498 5499 mutex_unlock(&event->mmap_mutex); 5500 } 5501 5502 atomic_dec(&rb->mmap_count); 5503 5504 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5505 goto out_put; 5506 5507 ring_buffer_attach(event, NULL); 5508 mutex_unlock(&event->mmap_mutex); 5509 5510 /* If there's still other mmap()s of this buffer, we're done. */ 5511 if (atomic_read(&rb->mmap_count)) 5512 goto out_put; 5513 5514 /* 5515 * No other mmap()s, detach from all other events that might redirect 5516 * into the now unreachable buffer. Somewhat complicated by the 5517 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5518 */ 5519 again: 5520 rcu_read_lock(); 5521 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5522 if (!atomic_long_inc_not_zero(&event->refcount)) { 5523 /* 5524 * This event is en-route to free_event() which will 5525 * detach it and remove it from the list. 5526 */ 5527 continue; 5528 } 5529 rcu_read_unlock(); 5530 5531 mutex_lock(&event->mmap_mutex); 5532 /* 5533 * Check we didn't race with perf_event_set_output() which can 5534 * swizzle the rb from under us while we were waiting to 5535 * acquire mmap_mutex. 5536 * 5537 * If we find a different rb; ignore this event, a next 5538 * iteration will no longer find it on the list. We have to 5539 * still restart the iteration to make sure we're not now 5540 * iterating the wrong list. 5541 */ 5542 if (event->rb == rb) 5543 ring_buffer_attach(event, NULL); 5544 5545 mutex_unlock(&event->mmap_mutex); 5546 put_event(event); 5547 5548 /* 5549 * Restart the iteration; either we're on the wrong list or 5550 * destroyed its integrity by doing a deletion. 5551 */ 5552 goto again; 5553 } 5554 rcu_read_unlock(); 5555 5556 /* 5557 * It could be there's still a few 0-ref events on the list; they'll 5558 * get cleaned up by free_event() -- they'll also still have their 5559 * ref on the rb and will free it whenever they are done with it. 5560 * 5561 * Aside from that, this buffer is 'fully' detached and unmapped, 5562 * undo the VM accounting. 5563 */ 5564 5565 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5566 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5567 free_uid(mmap_user); 5568 5569 out_put: 5570 ring_buffer_put(rb); /* could be last */ 5571 } 5572 5573 static const struct vm_operations_struct perf_mmap_vmops = { 5574 .open = perf_mmap_open, 5575 .close = perf_mmap_close, /* non mergeable */ 5576 .fault = perf_mmap_fault, 5577 .page_mkwrite = perf_mmap_fault, 5578 }; 5579 5580 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5581 { 5582 struct perf_event *event = file->private_data; 5583 unsigned long user_locked, user_lock_limit; 5584 struct user_struct *user = current_user(); 5585 unsigned long locked, lock_limit; 5586 struct ring_buffer *rb = NULL; 5587 unsigned long vma_size; 5588 unsigned long nr_pages; 5589 long user_extra = 0, extra = 0; 5590 int ret = 0, flags = 0; 5591 5592 /* 5593 * Don't allow mmap() of inherited per-task counters. This would 5594 * create a performance issue due to all children writing to the 5595 * same rb. 5596 */ 5597 if (event->cpu == -1 && event->attr.inherit) 5598 return -EINVAL; 5599 5600 if (!(vma->vm_flags & VM_SHARED)) 5601 return -EINVAL; 5602 5603 vma_size = vma->vm_end - vma->vm_start; 5604 5605 if (vma->vm_pgoff == 0) { 5606 nr_pages = (vma_size / PAGE_SIZE) - 1; 5607 } else { 5608 /* 5609 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5610 * mapped, all subsequent mappings should have the same size 5611 * and offset. Must be above the normal perf buffer. 5612 */ 5613 u64 aux_offset, aux_size; 5614 5615 if (!event->rb) 5616 return -EINVAL; 5617 5618 nr_pages = vma_size / PAGE_SIZE; 5619 5620 mutex_lock(&event->mmap_mutex); 5621 ret = -EINVAL; 5622 5623 rb = event->rb; 5624 if (!rb) 5625 goto aux_unlock; 5626 5627 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5628 aux_size = READ_ONCE(rb->user_page->aux_size); 5629 5630 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5631 goto aux_unlock; 5632 5633 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5634 goto aux_unlock; 5635 5636 /* already mapped with a different offset */ 5637 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5638 goto aux_unlock; 5639 5640 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5641 goto aux_unlock; 5642 5643 /* already mapped with a different size */ 5644 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5645 goto aux_unlock; 5646 5647 if (!is_power_of_2(nr_pages)) 5648 goto aux_unlock; 5649 5650 if (!atomic_inc_not_zero(&rb->mmap_count)) 5651 goto aux_unlock; 5652 5653 if (rb_has_aux(rb)) { 5654 atomic_inc(&rb->aux_mmap_count); 5655 ret = 0; 5656 goto unlock; 5657 } 5658 5659 atomic_set(&rb->aux_mmap_count, 1); 5660 user_extra = nr_pages; 5661 5662 goto accounting; 5663 } 5664 5665 /* 5666 * If we have rb pages ensure they're a power-of-two number, so we 5667 * can do bitmasks instead of modulo. 5668 */ 5669 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5670 return -EINVAL; 5671 5672 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5673 return -EINVAL; 5674 5675 WARN_ON_ONCE(event->ctx->parent_ctx); 5676 again: 5677 mutex_lock(&event->mmap_mutex); 5678 if (event->rb) { 5679 if (event->rb->nr_pages != nr_pages) { 5680 ret = -EINVAL; 5681 goto unlock; 5682 } 5683 5684 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5685 /* 5686 * Raced against perf_mmap_close() through 5687 * perf_event_set_output(). Try again, hope for better 5688 * luck. 5689 */ 5690 mutex_unlock(&event->mmap_mutex); 5691 goto again; 5692 } 5693 5694 goto unlock; 5695 } 5696 5697 user_extra = nr_pages + 1; 5698 5699 accounting: 5700 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5701 5702 /* 5703 * Increase the limit linearly with more CPUs: 5704 */ 5705 user_lock_limit *= num_online_cpus(); 5706 5707 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5708 5709 if (user_locked > user_lock_limit) 5710 extra = user_locked - user_lock_limit; 5711 5712 lock_limit = rlimit(RLIMIT_MEMLOCK); 5713 lock_limit >>= PAGE_SHIFT; 5714 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5715 5716 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5717 !capable(CAP_IPC_LOCK)) { 5718 ret = -EPERM; 5719 goto unlock; 5720 } 5721 5722 WARN_ON(!rb && event->rb); 5723 5724 if (vma->vm_flags & VM_WRITE) 5725 flags |= RING_BUFFER_WRITABLE; 5726 5727 if (!rb) { 5728 rb = rb_alloc(nr_pages, 5729 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5730 event->cpu, flags); 5731 5732 if (!rb) { 5733 ret = -ENOMEM; 5734 goto unlock; 5735 } 5736 5737 atomic_set(&rb->mmap_count, 1); 5738 rb->mmap_user = get_current_user(); 5739 rb->mmap_locked = extra; 5740 5741 ring_buffer_attach(event, rb); 5742 5743 perf_event_init_userpage(event); 5744 perf_event_update_userpage(event); 5745 } else { 5746 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5747 event->attr.aux_watermark, flags); 5748 if (!ret) 5749 rb->aux_mmap_locked = extra; 5750 } 5751 5752 unlock: 5753 if (!ret) { 5754 atomic_long_add(user_extra, &user->locked_vm); 5755 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5756 5757 atomic_inc(&event->mmap_count); 5758 } else if (rb) { 5759 atomic_dec(&rb->mmap_count); 5760 } 5761 aux_unlock: 5762 mutex_unlock(&event->mmap_mutex); 5763 5764 /* 5765 * Since pinned accounting is per vm we cannot allow fork() to copy our 5766 * vma. 5767 */ 5768 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5769 vma->vm_ops = &perf_mmap_vmops; 5770 5771 if (event->pmu->event_mapped) 5772 event->pmu->event_mapped(event, vma->vm_mm); 5773 5774 return ret; 5775 } 5776 5777 static int perf_fasync(int fd, struct file *filp, int on) 5778 { 5779 struct inode *inode = file_inode(filp); 5780 struct perf_event *event = filp->private_data; 5781 int retval; 5782 5783 inode_lock(inode); 5784 retval = fasync_helper(fd, filp, on, &event->fasync); 5785 inode_unlock(inode); 5786 5787 if (retval < 0) 5788 return retval; 5789 5790 return 0; 5791 } 5792 5793 static const struct file_operations perf_fops = { 5794 .llseek = no_llseek, 5795 .release = perf_release, 5796 .read = perf_read, 5797 .poll = perf_poll, 5798 .unlocked_ioctl = perf_ioctl, 5799 .compat_ioctl = perf_compat_ioctl, 5800 .mmap = perf_mmap, 5801 .fasync = perf_fasync, 5802 }; 5803 5804 /* 5805 * Perf event wakeup 5806 * 5807 * If there's data, ensure we set the poll() state and publish everything 5808 * to user-space before waking everybody up. 5809 */ 5810 5811 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5812 { 5813 /* only the parent has fasync state */ 5814 if (event->parent) 5815 event = event->parent; 5816 return &event->fasync; 5817 } 5818 5819 void perf_event_wakeup(struct perf_event *event) 5820 { 5821 ring_buffer_wakeup(event); 5822 5823 if (event->pending_kill) { 5824 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5825 event->pending_kill = 0; 5826 } 5827 } 5828 5829 static void perf_pending_event_disable(struct perf_event *event) 5830 { 5831 int cpu = READ_ONCE(event->pending_disable); 5832 5833 if (cpu < 0) 5834 return; 5835 5836 if (cpu == smp_processor_id()) { 5837 WRITE_ONCE(event->pending_disable, -1); 5838 perf_event_disable_local(event); 5839 return; 5840 } 5841 5842 /* 5843 * CPU-A CPU-B 5844 * 5845 * perf_event_disable_inatomic() 5846 * @pending_disable = CPU-A; 5847 * irq_work_queue(); 5848 * 5849 * sched-out 5850 * @pending_disable = -1; 5851 * 5852 * sched-in 5853 * perf_event_disable_inatomic() 5854 * @pending_disable = CPU-B; 5855 * irq_work_queue(); // FAILS 5856 * 5857 * irq_work_run() 5858 * perf_pending_event() 5859 * 5860 * But the event runs on CPU-B and wants disabling there. 5861 */ 5862 irq_work_queue_on(&event->pending, cpu); 5863 } 5864 5865 static void perf_pending_event(struct irq_work *entry) 5866 { 5867 struct perf_event *event = container_of(entry, struct perf_event, pending); 5868 int rctx; 5869 5870 rctx = perf_swevent_get_recursion_context(); 5871 /* 5872 * If we 'fail' here, that's OK, it means recursion is already disabled 5873 * and we won't recurse 'further'. 5874 */ 5875 5876 perf_pending_event_disable(event); 5877 5878 if (event->pending_wakeup) { 5879 event->pending_wakeup = 0; 5880 perf_event_wakeup(event); 5881 } 5882 5883 if (rctx >= 0) 5884 perf_swevent_put_recursion_context(rctx); 5885 } 5886 5887 /* 5888 * We assume there is only KVM supporting the callbacks. 5889 * Later on, we might change it to a list if there is 5890 * another virtualization implementation supporting the callbacks. 5891 */ 5892 struct perf_guest_info_callbacks *perf_guest_cbs; 5893 5894 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5895 { 5896 perf_guest_cbs = cbs; 5897 return 0; 5898 } 5899 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5900 5901 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5902 { 5903 perf_guest_cbs = NULL; 5904 return 0; 5905 } 5906 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5907 5908 static void 5909 perf_output_sample_regs(struct perf_output_handle *handle, 5910 struct pt_regs *regs, u64 mask) 5911 { 5912 int bit; 5913 DECLARE_BITMAP(_mask, 64); 5914 5915 bitmap_from_u64(_mask, mask); 5916 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5917 u64 val; 5918 5919 val = perf_reg_value(regs, bit); 5920 perf_output_put(handle, val); 5921 } 5922 } 5923 5924 static void perf_sample_regs_user(struct perf_regs *regs_user, 5925 struct pt_regs *regs, 5926 struct pt_regs *regs_user_copy) 5927 { 5928 if (user_mode(regs)) { 5929 regs_user->abi = perf_reg_abi(current); 5930 regs_user->regs = regs; 5931 } else if (!(current->flags & PF_KTHREAD)) { 5932 perf_get_regs_user(regs_user, regs, regs_user_copy); 5933 } else { 5934 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5935 regs_user->regs = NULL; 5936 } 5937 } 5938 5939 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5940 struct pt_regs *regs) 5941 { 5942 regs_intr->regs = regs; 5943 regs_intr->abi = perf_reg_abi(current); 5944 } 5945 5946 5947 /* 5948 * Get remaining task size from user stack pointer. 5949 * 5950 * It'd be better to take stack vma map and limit this more 5951 * precisly, but there's no way to get it safely under interrupt, 5952 * so using TASK_SIZE as limit. 5953 */ 5954 static u64 perf_ustack_task_size(struct pt_regs *regs) 5955 { 5956 unsigned long addr = perf_user_stack_pointer(regs); 5957 5958 if (!addr || addr >= TASK_SIZE) 5959 return 0; 5960 5961 return TASK_SIZE - addr; 5962 } 5963 5964 static u16 5965 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5966 struct pt_regs *regs) 5967 { 5968 u64 task_size; 5969 5970 /* No regs, no stack pointer, no dump. */ 5971 if (!regs) 5972 return 0; 5973 5974 /* 5975 * Check if we fit in with the requested stack size into the: 5976 * - TASK_SIZE 5977 * If we don't, we limit the size to the TASK_SIZE. 5978 * 5979 * - remaining sample size 5980 * If we don't, we customize the stack size to 5981 * fit in to the remaining sample size. 5982 */ 5983 5984 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5985 stack_size = min(stack_size, (u16) task_size); 5986 5987 /* Current header size plus static size and dynamic size. */ 5988 header_size += 2 * sizeof(u64); 5989 5990 /* Do we fit in with the current stack dump size? */ 5991 if ((u16) (header_size + stack_size) < header_size) { 5992 /* 5993 * If we overflow the maximum size for the sample, 5994 * we customize the stack dump size to fit in. 5995 */ 5996 stack_size = USHRT_MAX - header_size - sizeof(u64); 5997 stack_size = round_up(stack_size, sizeof(u64)); 5998 } 5999 6000 return stack_size; 6001 } 6002 6003 static void 6004 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6005 struct pt_regs *regs) 6006 { 6007 /* Case of a kernel thread, nothing to dump */ 6008 if (!regs) { 6009 u64 size = 0; 6010 perf_output_put(handle, size); 6011 } else { 6012 unsigned long sp; 6013 unsigned int rem; 6014 u64 dyn_size; 6015 mm_segment_t fs; 6016 6017 /* 6018 * We dump: 6019 * static size 6020 * - the size requested by user or the best one we can fit 6021 * in to the sample max size 6022 * data 6023 * - user stack dump data 6024 * dynamic size 6025 * - the actual dumped size 6026 */ 6027 6028 /* Static size. */ 6029 perf_output_put(handle, dump_size); 6030 6031 /* Data. */ 6032 sp = perf_user_stack_pointer(regs); 6033 fs = get_fs(); 6034 set_fs(USER_DS); 6035 rem = __output_copy_user(handle, (void *) sp, dump_size); 6036 set_fs(fs); 6037 dyn_size = dump_size - rem; 6038 6039 perf_output_skip(handle, rem); 6040 6041 /* Dynamic size. */ 6042 perf_output_put(handle, dyn_size); 6043 } 6044 } 6045 6046 static void __perf_event_header__init_id(struct perf_event_header *header, 6047 struct perf_sample_data *data, 6048 struct perf_event *event) 6049 { 6050 u64 sample_type = event->attr.sample_type; 6051 6052 data->type = sample_type; 6053 header->size += event->id_header_size; 6054 6055 if (sample_type & PERF_SAMPLE_TID) { 6056 /* namespace issues */ 6057 data->tid_entry.pid = perf_event_pid(event, current); 6058 data->tid_entry.tid = perf_event_tid(event, current); 6059 } 6060 6061 if (sample_type & PERF_SAMPLE_TIME) 6062 data->time = perf_event_clock(event); 6063 6064 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6065 data->id = primary_event_id(event); 6066 6067 if (sample_type & PERF_SAMPLE_STREAM_ID) 6068 data->stream_id = event->id; 6069 6070 if (sample_type & PERF_SAMPLE_CPU) { 6071 data->cpu_entry.cpu = raw_smp_processor_id(); 6072 data->cpu_entry.reserved = 0; 6073 } 6074 } 6075 6076 void perf_event_header__init_id(struct perf_event_header *header, 6077 struct perf_sample_data *data, 6078 struct perf_event *event) 6079 { 6080 if (event->attr.sample_id_all) 6081 __perf_event_header__init_id(header, data, event); 6082 } 6083 6084 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6085 struct perf_sample_data *data) 6086 { 6087 u64 sample_type = data->type; 6088 6089 if (sample_type & PERF_SAMPLE_TID) 6090 perf_output_put(handle, data->tid_entry); 6091 6092 if (sample_type & PERF_SAMPLE_TIME) 6093 perf_output_put(handle, data->time); 6094 6095 if (sample_type & PERF_SAMPLE_ID) 6096 perf_output_put(handle, data->id); 6097 6098 if (sample_type & PERF_SAMPLE_STREAM_ID) 6099 perf_output_put(handle, data->stream_id); 6100 6101 if (sample_type & PERF_SAMPLE_CPU) 6102 perf_output_put(handle, data->cpu_entry); 6103 6104 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6105 perf_output_put(handle, data->id); 6106 } 6107 6108 void perf_event__output_id_sample(struct perf_event *event, 6109 struct perf_output_handle *handle, 6110 struct perf_sample_data *sample) 6111 { 6112 if (event->attr.sample_id_all) 6113 __perf_event__output_id_sample(handle, sample); 6114 } 6115 6116 static void perf_output_read_one(struct perf_output_handle *handle, 6117 struct perf_event *event, 6118 u64 enabled, u64 running) 6119 { 6120 u64 read_format = event->attr.read_format; 6121 u64 values[4]; 6122 int n = 0; 6123 6124 values[n++] = perf_event_count(event); 6125 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6126 values[n++] = enabled + 6127 atomic64_read(&event->child_total_time_enabled); 6128 } 6129 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6130 values[n++] = running + 6131 atomic64_read(&event->child_total_time_running); 6132 } 6133 if (read_format & PERF_FORMAT_ID) 6134 values[n++] = primary_event_id(event); 6135 6136 __output_copy(handle, values, n * sizeof(u64)); 6137 } 6138 6139 static void perf_output_read_group(struct perf_output_handle *handle, 6140 struct perf_event *event, 6141 u64 enabled, u64 running) 6142 { 6143 struct perf_event *leader = event->group_leader, *sub; 6144 u64 read_format = event->attr.read_format; 6145 u64 values[5]; 6146 int n = 0; 6147 6148 values[n++] = 1 + leader->nr_siblings; 6149 6150 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6151 values[n++] = enabled; 6152 6153 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6154 values[n++] = running; 6155 6156 if ((leader != event) && 6157 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6158 leader->pmu->read(leader); 6159 6160 values[n++] = perf_event_count(leader); 6161 if (read_format & PERF_FORMAT_ID) 6162 values[n++] = primary_event_id(leader); 6163 6164 __output_copy(handle, values, n * sizeof(u64)); 6165 6166 for_each_sibling_event(sub, leader) { 6167 n = 0; 6168 6169 if ((sub != event) && 6170 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6171 sub->pmu->read(sub); 6172 6173 values[n++] = perf_event_count(sub); 6174 if (read_format & PERF_FORMAT_ID) 6175 values[n++] = primary_event_id(sub); 6176 6177 __output_copy(handle, values, n * sizeof(u64)); 6178 } 6179 } 6180 6181 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6182 PERF_FORMAT_TOTAL_TIME_RUNNING) 6183 6184 /* 6185 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6186 * 6187 * The problem is that its both hard and excessively expensive to iterate the 6188 * child list, not to mention that its impossible to IPI the children running 6189 * on another CPU, from interrupt/NMI context. 6190 */ 6191 static void perf_output_read(struct perf_output_handle *handle, 6192 struct perf_event *event) 6193 { 6194 u64 enabled = 0, running = 0, now; 6195 u64 read_format = event->attr.read_format; 6196 6197 /* 6198 * compute total_time_enabled, total_time_running 6199 * based on snapshot values taken when the event 6200 * was last scheduled in. 6201 * 6202 * we cannot simply called update_context_time() 6203 * because of locking issue as we are called in 6204 * NMI context 6205 */ 6206 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6207 calc_timer_values(event, &now, &enabled, &running); 6208 6209 if (event->attr.read_format & PERF_FORMAT_GROUP) 6210 perf_output_read_group(handle, event, enabled, running); 6211 else 6212 perf_output_read_one(handle, event, enabled, running); 6213 } 6214 6215 void perf_output_sample(struct perf_output_handle *handle, 6216 struct perf_event_header *header, 6217 struct perf_sample_data *data, 6218 struct perf_event *event) 6219 { 6220 u64 sample_type = data->type; 6221 6222 perf_output_put(handle, *header); 6223 6224 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6225 perf_output_put(handle, data->id); 6226 6227 if (sample_type & PERF_SAMPLE_IP) 6228 perf_output_put(handle, data->ip); 6229 6230 if (sample_type & PERF_SAMPLE_TID) 6231 perf_output_put(handle, data->tid_entry); 6232 6233 if (sample_type & PERF_SAMPLE_TIME) 6234 perf_output_put(handle, data->time); 6235 6236 if (sample_type & PERF_SAMPLE_ADDR) 6237 perf_output_put(handle, data->addr); 6238 6239 if (sample_type & PERF_SAMPLE_ID) 6240 perf_output_put(handle, data->id); 6241 6242 if (sample_type & PERF_SAMPLE_STREAM_ID) 6243 perf_output_put(handle, data->stream_id); 6244 6245 if (sample_type & PERF_SAMPLE_CPU) 6246 perf_output_put(handle, data->cpu_entry); 6247 6248 if (sample_type & PERF_SAMPLE_PERIOD) 6249 perf_output_put(handle, data->period); 6250 6251 if (sample_type & PERF_SAMPLE_READ) 6252 perf_output_read(handle, event); 6253 6254 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6255 int size = 1; 6256 6257 size += data->callchain->nr; 6258 size *= sizeof(u64); 6259 __output_copy(handle, data->callchain, size); 6260 } 6261 6262 if (sample_type & PERF_SAMPLE_RAW) { 6263 struct perf_raw_record *raw = data->raw; 6264 6265 if (raw) { 6266 struct perf_raw_frag *frag = &raw->frag; 6267 6268 perf_output_put(handle, raw->size); 6269 do { 6270 if (frag->copy) { 6271 __output_custom(handle, frag->copy, 6272 frag->data, frag->size); 6273 } else { 6274 __output_copy(handle, frag->data, 6275 frag->size); 6276 } 6277 if (perf_raw_frag_last(frag)) 6278 break; 6279 frag = frag->next; 6280 } while (1); 6281 if (frag->pad) 6282 __output_skip(handle, NULL, frag->pad); 6283 } else { 6284 struct { 6285 u32 size; 6286 u32 data; 6287 } raw = { 6288 .size = sizeof(u32), 6289 .data = 0, 6290 }; 6291 perf_output_put(handle, raw); 6292 } 6293 } 6294 6295 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6296 if (data->br_stack) { 6297 size_t size; 6298 6299 size = data->br_stack->nr 6300 * sizeof(struct perf_branch_entry); 6301 6302 perf_output_put(handle, data->br_stack->nr); 6303 perf_output_copy(handle, data->br_stack->entries, size); 6304 } else { 6305 /* 6306 * we always store at least the value of nr 6307 */ 6308 u64 nr = 0; 6309 perf_output_put(handle, nr); 6310 } 6311 } 6312 6313 if (sample_type & PERF_SAMPLE_REGS_USER) { 6314 u64 abi = data->regs_user.abi; 6315 6316 /* 6317 * If there are no regs to dump, notice it through 6318 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6319 */ 6320 perf_output_put(handle, abi); 6321 6322 if (abi) { 6323 u64 mask = event->attr.sample_regs_user; 6324 perf_output_sample_regs(handle, 6325 data->regs_user.regs, 6326 mask); 6327 } 6328 } 6329 6330 if (sample_type & PERF_SAMPLE_STACK_USER) { 6331 perf_output_sample_ustack(handle, 6332 data->stack_user_size, 6333 data->regs_user.regs); 6334 } 6335 6336 if (sample_type & PERF_SAMPLE_WEIGHT) 6337 perf_output_put(handle, data->weight); 6338 6339 if (sample_type & PERF_SAMPLE_DATA_SRC) 6340 perf_output_put(handle, data->data_src.val); 6341 6342 if (sample_type & PERF_SAMPLE_TRANSACTION) 6343 perf_output_put(handle, data->txn); 6344 6345 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6346 u64 abi = data->regs_intr.abi; 6347 /* 6348 * If there are no regs to dump, notice it through 6349 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6350 */ 6351 perf_output_put(handle, abi); 6352 6353 if (abi) { 6354 u64 mask = event->attr.sample_regs_intr; 6355 6356 perf_output_sample_regs(handle, 6357 data->regs_intr.regs, 6358 mask); 6359 } 6360 } 6361 6362 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6363 perf_output_put(handle, data->phys_addr); 6364 6365 if (!event->attr.watermark) { 6366 int wakeup_events = event->attr.wakeup_events; 6367 6368 if (wakeup_events) { 6369 struct ring_buffer *rb = handle->rb; 6370 int events = local_inc_return(&rb->events); 6371 6372 if (events >= wakeup_events) { 6373 local_sub(wakeup_events, &rb->events); 6374 local_inc(&rb->wakeup); 6375 } 6376 } 6377 } 6378 } 6379 6380 static u64 perf_virt_to_phys(u64 virt) 6381 { 6382 u64 phys_addr = 0; 6383 struct page *p = NULL; 6384 6385 if (!virt) 6386 return 0; 6387 6388 if (virt >= TASK_SIZE) { 6389 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6390 if (virt_addr_valid((void *)(uintptr_t)virt) && 6391 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6392 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6393 } else { 6394 /* 6395 * Walking the pages tables for user address. 6396 * Interrupts are disabled, so it prevents any tear down 6397 * of the page tables. 6398 * Try IRQ-safe __get_user_pages_fast first. 6399 * If failed, leave phys_addr as 0. 6400 */ 6401 if ((current->mm != NULL) && 6402 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6403 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6404 6405 if (p) 6406 put_page(p); 6407 } 6408 6409 return phys_addr; 6410 } 6411 6412 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6413 6414 struct perf_callchain_entry * 6415 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6416 { 6417 bool kernel = !event->attr.exclude_callchain_kernel; 6418 bool user = !event->attr.exclude_callchain_user; 6419 /* Disallow cross-task user callchains. */ 6420 bool crosstask = event->ctx->task && event->ctx->task != current; 6421 const u32 max_stack = event->attr.sample_max_stack; 6422 struct perf_callchain_entry *callchain; 6423 6424 if (!kernel && !user) 6425 return &__empty_callchain; 6426 6427 callchain = get_perf_callchain(regs, 0, kernel, user, 6428 max_stack, crosstask, true); 6429 return callchain ?: &__empty_callchain; 6430 } 6431 6432 void perf_prepare_sample(struct perf_event_header *header, 6433 struct perf_sample_data *data, 6434 struct perf_event *event, 6435 struct pt_regs *regs) 6436 { 6437 u64 sample_type = event->attr.sample_type; 6438 6439 header->type = PERF_RECORD_SAMPLE; 6440 header->size = sizeof(*header) + event->header_size; 6441 6442 header->misc = 0; 6443 header->misc |= perf_misc_flags(regs); 6444 6445 __perf_event_header__init_id(header, data, event); 6446 6447 if (sample_type & PERF_SAMPLE_IP) 6448 data->ip = perf_instruction_pointer(regs); 6449 6450 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6451 int size = 1; 6452 6453 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6454 data->callchain = perf_callchain(event, regs); 6455 6456 size += data->callchain->nr; 6457 6458 header->size += size * sizeof(u64); 6459 } 6460 6461 if (sample_type & PERF_SAMPLE_RAW) { 6462 struct perf_raw_record *raw = data->raw; 6463 int size; 6464 6465 if (raw) { 6466 struct perf_raw_frag *frag = &raw->frag; 6467 u32 sum = 0; 6468 6469 do { 6470 sum += frag->size; 6471 if (perf_raw_frag_last(frag)) 6472 break; 6473 frag = frag->next; 6474 } while (1); 6475 6476 size = round_up(sum + sizeof(u32), sizeof(u64)); 6477 raw->size = size - sizeof(u32); 6478 frag->pad = raw->size - sum; 6479 } else { 6480 size = sizeof(u64); 6481 } 6482 6483 header->size += size; 6484 } 6485 6486 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6487 int size = sizeof(u64); /* nr */ 6488 if (data->br_stack) { 6489 size += data->br_stack->nr 6490 * sizeof(struct perf_branch_entry); 6491 } 6492 header->size += size; 6493 } 6494 6495 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6496 perf_sample_regs_user(&data->regs_user, regs, 6497 &data->regs_user_copy); 6498 6499 if (sample_type & PERF_SAMPLE_REGS_USER) { 6500 /* regs dump ABI info */ 6501 int size = sizeof(u64); 6502 6503 if (data->regs_user.regs) { 6504 u64 mask = event->attr.sample_regs_user; 6505 size += hweight64(mask) * sizeof(u64); 6506 } 6507 6508 header->size += size; 6509 } 6510 6511 if (sample_type & PERF_SAMPLE_STACK_USER) { 6512 /* 6513 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6514 * processed as the last one or have additional check added 6515 * in case new sample type is added, because we could eat 6516 * up the rest of the sample size. 6517 */ 6518 u16 stack_size = event->attr.sample_stack_user; 6519 u16 size = sizeof(u64); 6520 6521 stack_size = perf_sample_ustack_size(stack_size, header->size, 6522 data->regs_user.regs); 6523 6524 /* 6525 * If there is something to dump, add space for the dump 6526 * itself and for the field that tells the dynamic size, 6527 * which is how many have been actually dumped. 6528 */ 6529 if (stack_size) 6530 size += sizeof(u64) + stack_size; 6531 6532 data->stack_user_size = stack_size; 6533 header->size += size; 6534 } 6535 6536 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6537 /* regs dump ABI info */ 6538 int size = sizeof(u64); 6539 6540 perf_sample_regs_intr(&data->regs_intr, regs); 6541 6542 if (data->regs_intr.regs) { 6543 u64 mask = event->attr.sample_regs_intr; 6544 6545 size += hweight64(mask) * sizeof(u64); 6546 } 6547 6548 header->size += size; 6549 } 6550 6551 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6552 data->phys_addr = perf_virt_to_phys(data->addr); 6553 } 6554 6555 static __always_inline int 6556 __perf_event_output(struct perf_event *event, 6557 struct perf_sample_data *data, 6558 struct pt_regs *regs, 6559 int (*output_begin)(struct perf_output_handle *, 6560 struct perf_event *, 6561 unsigned int)) 6562 { 6563 struct perf_output_handle handle; 6564 struct perf_event_header header; 6565 int err; 6566 6567 /* protect the callchain buffers */ 6568 rcu_read_lock(); 6569 6570 perf_prepare_sample(&header, data, event, regs); 6571 6572 err = output_begin(&handle, event, header.size); 6573 if (err) 6574 goto exit; 6575 6576 perf_output_sample(&handle, &header, data, event); 6577 6578 perf_output_end(&handle); 6579 6580 exit: 6581 rcu_read_unlock(); 6582 return err; 6583 } 6584 6585 void 6586 perf_event_output_forward(struct perf_event *event, 6587 struct perf_sample_data *data, 6588 struct pt_regs *regs) 6589 { 6590 __perf_event_output(event, data, regs, perf_output_begin_forward); 6591 } 6592 6593 void 6594 perf_event_output_backward(struct perf_event *event, 6595 struct perf_sample_data *data, 6596 struct pt_regs *regs) 6597 { 6598 __perf_event_output(event, data, regs, perf_output_begin_backward); 6599 } 6600 6601 int 6602 perf_event_output(struct perf_event *event, 6603 struct perf_sample_data *data, 6604 struct pt_regs *regs) 6605 { 6606 return __perf_event_output(event, data, regs, perf_output_begin); 6607 } 6608 6609 /* 6610 * read event_id 6611 */ 6612 6613 struct perf_read_event { 6614 struct perf_event_header header; 6615 6616 u32 pid; 6617 u32 tid; 6618 }; 6619 6620 static void 6621 perf_event_read_event(struct perf_event *event, 6622 struct task_struct *task) 6623 { 6624 struct perf_output_handle handle; 6625 struct perf_sample_data sample; 6626 struct perf_read_event read_event = { 6627 .header = { 6628 .type = PERF_RECORD_READ, 6629 .misc = 0, 6630 .size = sizeof(read_event) + event->read_size, 6631 }, 6632 .pid = perf_event_pid(event, task), 6633 .tid = perf_event_tid(event, task), 6634 }; 6635 int ret; 6636 6637 perf_event_header__init_id(&read_event.header, &sample, event); 6638 ret = perf_output_begin(&handle, event, read_event.header.size); 6639 if (ret) 6640 return; 6641 6642 perf_output_put(&handle, read_event); 6643 perf_output_read(&handle, event); 6644 perf_event__output_id_sample(event, &handle, &sample); 6645 6646 perf_output_end(&handle); 6647 } 6648 6649 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6650 6651 static void 6652 perf_iterate_ctx(struct perf_event_context *ctx, 6653 perf_iterate_f output, 6654 void *data, bool all) 6655 { 6656 struct perf_event *event; 6657 6658 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6659 if (!all) { 6660 if (event->state < PERF_EVENT_STATE_INACTIVE) 6661 continue; 6662 if (!event_filter_match(event)) 6663 continue; 6664 } 6665 6666 output(event, data); 6667 } 6668 } 6669 6670 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6671 { 6672 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6673 struct perf_event *event; 6674 6675 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6676 /* 6677 * Skip events that are not fully formed yet; ensure that 6678 * if we observe event->ctx, both event and ctx will be 6679 * complete enough. See perf_install_in_context(). 6680 */ 6681 if (!smp_load_acquire(&event->ctx)) 6682 continue; 6683 6684 if (event->state < PERF_EVENT_STATE_INACTIVE) 6685 continue; 6686 if (!event_filter_match(event)) 6687 continue; 6688 output(event, data); 6689 } 6690 } 6691 6692 /* 6693 * Iterate all events that need to receive side-band events. 6694 * 6695 * For new callers; ensure that account_pmu_sb_event() includes 6696 * your event, otherwise it might not get delivered. 6697 */ 6698 static void 6699 perf_iterate_sb(perf_iterate_f output, void *data, 6700 struct perf_event_context *task_ctx) 6701 { 6702 struct perf_event_context *ctx; 6703 int ctxn; 6704 6705 rcu_read_lock(); 6706 preempt_disable(); 6707 6708 /* 6709 * If we have task_ctx != NULL we only notify the task context itself. 6710 * The task_ctx is set only for EXIT events before releasing task 6711 * context. 6712 */ 6713 if (task_ctx) { 6714 perf_iterate_ctx(task_ctx, output, data, false); 6715 goto done; 6716 } 6717 6718 perf_iterate_sb_cpu(output, data); 6719 6720 for_each_task_context_nr(ctxn) { 6721 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6722 if (ctx) 6723 perf_iterate_ctx(ctx, output, data, false); 6724 } 6725 done: 6726 preempt_enable(); 6727 rcu_read_unlock(); 6728 } 6729 6730 /* 6731 * Clear all file-based filters at exec, they'll have to be 6732 * re-instated when/if these objects are mmapped again. 6733 */ 6734 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6735 { 6736 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6737 struct perf_addr_filter *filter; 6738 unsigned int restart = 0, count = 0; 6739 unsigned long flags; 6740 6741 if (!has_addr_filter(event)) 6742 return; 6743 6744 raw_spin_lock_irqsave(&ifh->lock, flags); 6745 list_for_each_entry(filter, &ifh->list, entry) { 6746 if (filter->path.dentry) { 6747 event->addr_filter_ranges[count].start = 0; 6748 event->addr_filter_ranges[count].size = 0; 6749 restart++; 6750 } 6751 6752 count++; 6753 } 6754 6755 if (restart) 6756 event->addr_filters_gen++; 6757 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6758 6759 if (restart) 6760 perf_event_stop(event, 1); 6761 } 6762 6763 void perf_event_exec(void) 6764 { 6765 struct perf_event_context *ctx; 6766 int ctxn; 6767 6768 rcu_read_lock(); 6769 for_each_task_context_nr(ctxn) { 6770 ctx = current->perf_event_ctxp[ctxn]; 6771 if (!ctx) 6772 continue; 6773 6774 perf_event_enable_on_exec(ctxn); 6775 6776 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6777 true); 6778 } 6779 rcu_read_unlock(); 6780 } 6781 6782 struct remote_output { 6783 struct ring_buffer *rb; 6784 int err; 6785 }; 6786 6787 static void __perf_event_output_stop(struct perf_event *event, void *data) 6788 { 6789 struct perf_event *parent = event->parent; 6790 struct remote_output *ro = data; 6791 struct ring_buffer *rb = ro->rb; 6792 struct stop_event_data sd = { 6793 .event = event, 6794 }; 6795 6796 if (!has_aux(event)) 6797 return; 6798 6799 if (!parent) 6800 parent = event; 6801 6802 /* 6803 * In case of inheritance, it will be the parent that links to the 6804 * ring-buffer, but it will be the child that's actually using it. 6805 * 6806 * We are using event::rb to determine if the event should be stopped, 6807 * however this may race with ring_buffer_attach() (through set_output), 6808 * which will make us skip the event that actually needs to be stopped. 6809 * So ring_buffer_attach() has to stop an aux event before re-assigning 6810 * its rb pointer. 6811 */ 6812 if (rcu_dereference(parent->rb) == rb) 6813 ro->err = __perf_event_stop(&sd); 6814 } 6815 6816 static int __perf_pmu_output_stop(void *info) 6817 { 6818 struct perf_event *event = info; 6819 struct pmu *pmu = event->pmu; 6820 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6821 struct remote_output ro = { 6822 .rb = event->rb, 6823 }; 6824 6825 rcu_read_lock(); 6826 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6827 if (cpuctx->task_ctx) 6828 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6829 &ro, false); 6830 rcu_read_unlock(); 6831 6832 return ro.err; 6833 } 6834 6835 static void perf_pmu_output_stop(struct perf_event *event) 6836 { 6837 struct perf_event *iter; 6838 int err, cpu; 6839 6840 restart: 6841 rcu_read_lock(); 6842 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6843 /* 6844 * For per-CPU events, we need to make sure that neither they 6845 * nor their children are running; for cpu==-1 events it's 6846 * sufficient to stop the event itself if it's active, since 6847 * it can't have children. 6848 */ 6849 cpu = iter->cpu; 6850 if (cpu == -1) 6851 cpu = READ_ONCE(iter->oncpu); 6852 6853 if (cpu == -1) 6854 continue; 6855 6856 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6857 if (err == -EAGAIN) { 6858 rcu_read_unlock(); 6859 goto restart; 6860 } 6861 } 6862 rcu_read_unlock(); 6863 } 6864 6865 /* 6866 * task tracking -- fork/exit 6867 * 6868 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6869 */ 6870 6871 struct perf_task_event { 6872 struct task_struct *task; 6873 struct perf_event_context *task_ctx; 6874 6875 struct { 6876 struct perf_event_header header; 6877 6878 u32 pid; 6879 u32 ppid; 6880 u32 tid; 6881 u32 ptid; 6882 u64 time; 6883 } event_id; 6884 }; 6885 6886 static int perf_event_task_match(struct perf_event *event) 6887 { 6888 return event->attr.comm || event->attr.mmap || 6889 event->attr.mmap2 || event->attr.mmap_data || 6890 event->attr.task; 6891 } 6892 6893 static void perf_event_task_output(struct perf_event *event, 6894 void *data) 6895 { 6896 struct perf_task_event *task_event = data; 6897 struct perf_output_handle handle; 6898 struct perf_sample_data sample; 6899 struct task_struct *task = task_event->task; 6900 int ret, size = task_event->event_id.header.size; 6901 6902 if (!perf_event_task_match(event)) 6903 return; 6904 6905 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6906 6907 ret = perf_output_begin(&handle, event, 6908 task_event->event_id.header.size); 6909 if (ret) 6910 goto out; 6911 6912 task_event->event_id.pid = perf_event_pid(event, task); 6913 task_event->event_id.ppid = perf_event_pid(event, current); 6914 6915 task_event->event_id.tid = perf_event_tid(event, task); 6916 task_event->event_id.ptid = perf_event_tid(event, current); 6917 6918 task_event->event_id.time = perf_event_clock(event); 6919 6920 perf_output_put(&handle, task_event->event_id); 6921 6922 perf_event__output_id_sample(event, &handle, &sample); 6923 6924 perf_output_end(&handle); 6925 out: 6926 task_event->event_id.header.size = size; 6927 } 6928 6929 static void perf_event_task(struct task_struct *task, 6930 struct perf_event_context *task_ctx, 6931 int new) 6932 { 6933 struct perf_task_event task_event; 6934 6935 if (!atomic_read(&nr_comm_events) && 6936 !atomic_read(&nr_mmap_events) && 6937 !atomic_read(&nr_task_events)) 6938 return; 6939 6940 task_event = (struct perf_task_event){ 6941 .task = task, 6942 .task_ctx = task_ctx, 6943 .event_id = { 6944 .header = { 6945 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6946 .misc = 0, 6947 .size = sizeof(task_event.event_id), 6948 }, 6949 /* .pid */ 6950 /* .ppid */ 6951 /* .tid */ 6952 /* .ptid */ 6953 /* .time */ 6954 }, 6955 }; 6956 6957 perf_iterate_sb(perf_event_task_output, 6958 &task_event, 6959 task_ctx); 6960 } 6961 6962 void perf_event_fork(struct task_struct *task) 6963 { 6964 perf_event_task(task, NULL, 1); 6965 perf_event_namespaces(task); 6966 } 6967 6968 /* 6969 * comm tracking 6970 */ 6971 6972 struct perf_comm_event { 6973 struct task_struct *task; 6974 char *comm; 6975 int comm_size; 6976 6977 struct { 6978 struct perf_event_header header; 6979 6980 u32 pid; 6981 u32 tid; 6982 } event_id; 6983 }; 6984 6985 static int perf_event_comm_match(struct perf_event *event) 6986 { 6987 return event->attr.comm; 6988 } 6989 6990 static void perf_event_comm_output(struct perf_event *event, 6991 void *data) 6992 { 6993 struct perf_comm_event *comm_event = data; 6994 struct perf_output_handle handle; 6995 struct perf_sample_data sample; 6996 int size = comm_event->event_id.header.size; 6997 int ret; 6998 6999 if (!perf_event_comm_match(event)) 7000 return; 7001 7002 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7003 ret = perf_output_begin(&handle, event, 7004 comm_event->event_id.header.size); 7005 7006 if (ret) 7007 goto out; 7008 7009 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7010 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7011 7012 perf_output_put(&handle, comm_event->event_id); 7013 __output_copy(&handle, comm_event->comm, 7014 comm_event->comm_size); 7015 7016 perf_event__output_id_sample(event, &handle, &sample); 7017 7018 perf_output_end(&handle); 7019 out: 7020 comm_event->event_id.header.size = size; 7021 } 7022 7023 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7024 { 7025 char comm[TASK_COMM_LEN]; 7026 unsigned int size; 7027 7028 memset(comm, 0, sizeof(comm)); 7029 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7030 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7031 7032 comm_event->comm = comm; 7033 comm_event->comm_size = size; 7034 7035 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7036 7037 perf_iterate_sb(perf_event_comm_output, 7038 comm_event, 7039 NULL); 7040 } 7041 7042 void perf_event_comm(struct task_struct *task, bool exec) 7043 { 7044 struct perf_comm_event comm_event; 7045 7046 if (!atomic_read(&nr_comm_events)) 7047 return; 7048 7049 comm_event = (struct perf_comm_event){ 7050 .task = task, 7051 /* .comm */ 7052 /* .comm_size */ 7053 .event_id = { 7054 .header = { 7055 .type = PERF_RECORD_COMM, 7056 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7057 /* .size */ 7058 }, 7059 /* .pid */ 7060 /* .tid */ 7061 }, 7062 }; 7063 7064 perf_event_comm_event(&comm_event); 7065 } 7066 7067 /* 7068 * namespaces tracking 7069 */ 7070 7071 struct perf_namespaces_event { 7072 struct task_struct *task; 7073 7074 struct { 7075 struct perf_event_header header; 7076 7077 u32 pid; 7078 u32 tid; 7079 u64 nr_namespaces; 7080 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7081 } event_id; 7082 }; 7083 7084 static int perf_event_namespaces_match(struct perf_event *event) 7085 { 7086 return event->attr.namespaces; 7087 } 7088 7089 static void perf_event_namespaces_output(struct perf_event *event, 7090 void *data) 7091 { 7092 struct perf_namespaces_event *namespaces_event = data; 7093 struct perf_output_handle handle; 7094 struct perf_sample_data sample; 7095 u16 header_size = namespaces_event->event_id.header.size; 7096 int ret; 7097 7098 if (!perf_event_namespaces_match(event)) 7099 return; 7100 7101 perf_event_header__init_id(&namespaces_event->event_id.header, 7102 &sample, event); 7103 ret = perf_output_begin(&handle, event, 7104 namespaces_event->event_id.header.size); 7105 if (ret) 7106 goto out; 7107 7108 namespaces_event->event_id.pid = perf_event_pid(event, 7109 namespaces_event->task); 7110 namespaces_event->event_id.tid = perf_event_tid(event, 7111 namespaces_event->task); 7112 7113 perf_output_put(&handle, namespaces_event->event_id); 7114 7115 perf_event__output_id_sample(event, &handle, &sample); 7116 7117 perf_output_end(&handle); 7118 out: 7119 namespaces_event->event_id.header.size = header_size; 7120 } 7121 7122 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7123 struct task_struct *task, 7124 const struct proc_ns_operations *ns_ops) 7125 { 7126 struct path ns_path; 7127 struct inode *ns_inode; 7128 void *error; 7129 7130 error = ns_get_path(&ns_path, task, ns_ops); 7131 if (!error) { 7132 ns_inode = ns_path.dentry->d_inode; 7133 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7134 ns_link_info->ino = ns_inode->i_ino; 7135 path_put(&ns_path); 7136 } 7137 } 7138 7139 void perf_event_namespaces(struct task_struct *task) 7140 { 7141 struct perf_namespaces_event namespaces_event; 7142 struct perf_ns_link_info *ns_link_info; 7143 7144 if (!atomic_read(&nr_namespaces_events)) 7145 return; 7146 7147 namespaces_event = (struct perf_namespaces_event){ 7148 .task = task, 7149 .event_id = { 7150 .header = { 7151 .type = PERF_RECORD_NAMESPACES, 7152 .misc = 0, 7153 .size = sizeof(namespaces_event.event_id), 7154 }, 7155 /* .pid */ 7156 /* .tid */ 7157 .nr_namespaces = NR_NAMESPACES, 7158 /* .link_info[NR_NAMESPACES] */ 7159 }, 7160 }; 7161 7162 ns_link_info = namespaces_event.event_id.link_info; 7163 7164 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7165 task, &mntns_operations); 7166 7167 #ifdef CONFIG_USER_NS 7168 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7169 task, &userns_operations); 7170 #endif 7171 #ifdef CONFIG_NET_NS 7172 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7173 task, &netns_operations); 7174 #endif 7175 #ifdef CONFIG_UTS_NS 7176 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7177 task, &utsns_operations); 7178 #endif 7179 #ifdef CONFIG_IPC_NS 7180 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7181 task, &ipcns_operations); 7182 #endif 7183 #ifdef CONFIG_PID_NS 7184 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7185 task, &pidns_operations); 7186 #endif 7187 #ifdef CONFIG_CGROUPS 7188 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7189 task, &cgroupns_operations); 7190 #endif 7191 7192 perf_iterate_sb(perf_event_namespaces_output, 7193 &namespaces_event, 7194 NULL); 7195 } 7196 7197 /* 7198 * mmap tracking 7199 */ 7200 7201 struct perf_mmap_event { 7202 struct vm_area_struct *vma; 7203 7204 const char *file_name; 7205 int file_size; 7206 int maj, min; 7207 u64 ino; 7208 u64 ino_generation; 7209 u32 prot, flags; 7210 7211 struct { 7212 struct perf_event_header header; 7213 7214 u32 pid; 7215 u32 tid; 7216 u64 start; 7217 u64 len; 7218 u64 pgoff; 7219 } event_id; 7220 }; 7221 7222 static int perf_event_mmap_match(struct perf_event *event, 7223 void *data) 7224 { 7225 struct perf_mmap_event *mmap_event = data; 7226 struct vm_area_struct *vma = mmap_event->vma; 7227 int executable = vma->vm_flags & VM_EXEC; 7228 7229 return (!executable && event->attr.mmap_data) || 7230 (executable && (event->attr.mmap || event->attr.mmap2)); 7231 } 7232 7233 static void perf_event_mmap_output(struct perf_event *event, 7234 void *data) 7235 { 7236 struct perf_mmap_event *mmap_event = data; 7237 struct perf_output_handle handle; 7238 struct perf_sample_data sample; 7239 int size = mmap_event->event_id.header.size; 7240 u32 type = mmap_event->event_id.header.type; 7241 int ret; 7242 7243 if (!perf_event_mmap_match(event, data)) 7244 return; 7245 7246 if (event->attr.mmap2) { 7247 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7248 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7249 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7250 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7251 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7252 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7253 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7254 } 7255 7256 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7257 ret = perf_output_begin(&handle, event, 7258 mmap_event->event_id.header.size); 7259 if (ret) 7260 goto out; 7261 7262 mmap_event->event_id.pid = perf_event_pid(event, current); 7263 mmap_event->event_id.tid = perf_event_tid(event, current); 7264 7265 perf_output_put(&handle, mmap_event->event_id); 7266 7267 if (event->attr.mmap2) { 7268 perf_output_put(&handle, mmap_event->maj); 7269 perf_output_put(&handle, mmap_event->min); 7270 perf_output_put(&handle, mmap_event->ino); 7271 perf_output_put(&handle, mmap_event->ino_generation); 7272 perf_output_put(&handle, mmap_event->prot); 7273 perf_output_put(&handle, mmap_event->flags); 7274 } 7275 7276 __output_copy(&handle, mmap_event->file_name, 7277 mmap_event->file_size); 7278 7279 perf_event__output_id_sample(event, &handle, &sample); 7280 7281 perf_output_end(&handle); 7282 out: 7283 mmap_event->event_id.header.size = size; 7284 mmap_event->event_id.header.type = type; 7285 } 7286 7287 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7288 { 7289 struct vm_area_struct *vma = mmap_event->vma; 7290 struct file *file = vma->vm_file; 7291 int maj = 0, min = 0; 7292 u64 ino = 0, gen = 0; 7293 u32 prot = 0, flags = 0; 7294 unsigned int size; 7295 char tmp[16]; 7296 char *buf = NULL; 7297 char *name; 7298 7299 if (vma->vm_flags & VM_READ) 7300 prot |= PROT_READ; 7301 if (vma->vm_flags & VM_WRITE) 7302 prot |= PROT_WRITE; 7303 if (vma->vm_flags & VM_EXEC) 7304 prot |= PROT_EXEC; 7305 7306 if (vma->vm_flags & VM_MAYSHARE) 7307 flags = MAP_SHARED; 7308 else 7309 flags = MAP_PRIVATE; 7310 7311 if (vma->vm_flags & VM_DENYWRITE) 7312 flags |= MAP_DENYWRITE; 7313 if (vma->vm_flags & VM_MAYEXEC) 7314 flags |= MAP_EXECUTABLE; 7315 if (vma->vm_flags & VM_LOCKED) 7316 flags |= MAP_LOCKED; 7317 if (vma->vm_flags & VM_HUGETLB) 7318 flags |= MAP_HUGETLB; 7319 7320 if (file) { 7321 struct inode *inode; 7322 dev_t dev; 7323 7324 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7325 if (!buf) { 7326 name = "//enomem"; 7327 goto cpy_name; 7328 } 7329 /* 7330 * d_path() works from the end of the rb backwards, so we 7331 * need to add enough zero bytes after the string to handle 7332 * the 64bit alignment we do later. 7333 */ 7334 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7335 if (IS_ERR(name)) { 7336 name = "//toolong"; 7337 goto cpy_name; 7338 } 7339 inode = file_inode(vma->vm_file); 7340 dev = inode->i_sb->s_dev; 7341 ino = inode->i_ino; 7342 gen = inode->i_generation; 7343 maj = MAJOR(dev); 7344 min = MINOR(dev); 7345 7346 goto got_name; 7347 } else { 7348 if (vma->vm_ops && vma->vm_ops->name) { 7349 name = (char *) vma->vm_ops->name(vma); 7350 if (name) 7351 goto cpy_name; 7352 } 7353 7354 name = (char *)arch_vma_name(vma); 7355 if (name) 7356 goto cpy_name; 7357 7358 if (vma->vm_start <= vma->vm_mm->start_brk && 7359 vma->vm_end >= vma->vm_mm->brk) { 7360 name = "[heap]"; 7361 goto cpy_name; 7362 } 7363 if (vma->vm_start <= vma->vm_mm->start_stack && 7364 vma->vm_end >= vma->vm_mm->start_stack) { 7365 name = "[stack]"; 7366 goto cpy_name; 7367 } 7368 7369 name = "//anon"; 7370 goto cpy_name; 7371 } 7372 7373 cpy_name: 7374 strlcpy(tmp, name, sizeof(tmp)); 7375 name = tmp; 7376 got_name: 7377 /* 7378 * Since our buffer works in 8 byte units we need to align our string 7379 * size to a multiple of 8. However, we must guarantee the tail end is 7380 * zero'd out to avoid leaking random bits to userspace. 7381 */ 7382 size = strlen(name)+1; 7383 while (!IS_ALIGNED(size, sizeof(u64))) 7384 name[size++] = '\0'; 7385 7386 mmap_event->file_name = name; 7387 mmap_event->file_size = size; 7388 mmap_event->maj = maj; 7389 mmap_event->min = min; 7390 mmap_event->ino = ino; 7391 mmap_event->ino_generation = gen; 7392 mmap_event->prot = prot; 7393 mmap_event->flags = flags; 7394 7395 if (!(vma->vm_flags & VM_EXEC)) 7396 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7397 7398 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7399 7400 perf_iterate_sb(perf_event_mmap_output, 7401 mmap_event, 7402 NULL); 7403 7404 kfree(buf); 7405 } 7406 7407 /* 7408 * Check whether inode and address range match filter criteria. 7409 */ 7410 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7411 struct file *file, unsigned long offset, 7412 unsigned long size) 7413 { 7414 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7415 if (!filter->path.dentry) 7416 return false; 7417 7418 if (d_inode(filter->path.dentry) != file_inode(file)) 7419 return false; 7420 7421 if (filter->offset > offset + size) 7422 return false; 7423 7424 if (filter->offset + filter->size < offset) 7425 return false; 7426 7427 return true; 7428 } 7429 7430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7431 struct vm_area_struct *vma, 7432 struct perf_addr_filter_range *fr) 7433 { 7434 unsigned long vma_size = vma->vm_end - vma->vm_start; 7435 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7436 struct file *file = vma->vm_file; 7437 7438 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7439 return false; 7440 7441 if (filter->offset < off) { 7442 fr->start = vma->vm_start; 7443 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7444 } else { 7445 fr->start = vma->vm_start + filter->offset - off; 7446 fr->size = min(vma->vm_end - fr->start, filter->size); 7447 } 7448 7449 return true; 7450 } 7451 7452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7453 { 7454 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7455 struct vm_area_struct *vma = data; 7456 struct perf_addr_filter *filter; 7457 unsigned int restart = 0, count = 0; 7458 unsigned long flags; 7459 7460 if (!has_addr_filter(event)) 7461 return; 7462 7463 if (!vma->vm_file) 7464 return; 7465 7466 raw_spin_lock_irqsave(&ifh->lock, flags); 7467 list_for_each_entry(filter, &ifh->list, entry) { 7468 if (perf_addr_filter_vma_adjust(filter, vma, 7469 &event->addr_filter_ranges[count])) 7470 restart++; 7471 7472 count++; 7473 } 7474 7475 if (restart) 7476 event->addr_filters_gen++; 7477 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7478 7479 if (restart) 7480 perf_event_stop(event, 1); 7481 } 7482 7483 /* 7484 * Adjust all task's events' filters to the new vma 7485 */ 7486 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7487 { 7488 struct perf_event_context *ctx; 7489 int ctxn; 7490 7491 /* 7492 * Data tracing isn't supported yet and as such there is no need 7493 * to keep track of anything that isn't related to executable code: 7494 */ 7495 if (!(vma->vm_flags & VM_EXEC)) 7496 return; 7497 7498 rcu_read_lock(); 7499 for_each_task_context_nr(ctxn) { 7500 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7501 if (!ctx) 7502 continue; 7503 7504 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7505 } 7506 rcu_read_unlock(); 7507 } 7508 7509 void perf_event_mmap(struct vm_area_struct *vma) 7510 { 7511 struct perf_mmap_event mmap_event; 7512 7513 if (!atomic_read(&nr_mmap_events)) 7514 return; 7515 7516 mmap_event = (struct perf_mmap_event){ 7517 .vma = vma, 7518 /* .file_name */ 7519 /* .file_size */ 7520 .event_id = { 7521 .header = { 7522 .type = PERF_RECORD_MMAP, 7523 .misc = PERF_RECORD_MISC_USER, 7524 /* .size */ 7525 }, 7526 /* .pid */ 7527 /* .tid */ 7528 .start = vma->vm_start, 7529 .len = vma->vm_end - vma->vm_start, 7530 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7531 }, 7532 /* .maj (attr_mmap2 only) */ 7533 /* .min (attr_mmap2 only) */ 7534 /* .ino (attr_mmap2 only) */ 7535 /* .ino_generation (attr_mmap2 only) */ 7536 /* .prot (attr_mmap2 only) */ 7537 /* .flags (attr_mmap2 only) */ 7538 }; 7539 7540 perf_addr_filters_adjust(vma); 7541 perf_event_mmap_event(&mmap_event); 7542 } 7543 7544 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7545 unsigned long size, u64 flags) 7546 { 7547 struct perf_output_handle handle; 7548 struct perf_sample_data sample; 7549 struct perf_aux_event { 7550 struct perf_event_header header; 7551 u64 offset; 7552 u64 size; 7553 u64 flags; 7554 } rec = { 7555 .header = { 7556 .type = PERF_RECORD_AUX, 7557 .misc = 0, 7558 .size = sizeof(rec), 7559 }, 7560 .offset = head, 7561 .size = size, 7562 .flags = flags, 7563 }; 7564 int ret; 7565 7566 perf_event_header__init_id(&rec.header, &sample, event); 7567 ret = perf_output_begin(&handle, event, rec.header.size); 7568 7569 if (ret) 7570 return; 7571 7572 perf_output_put(&handle, rec); 7573 perf_event__output_id_sample(event, &handle, &sample); 7574 7575 perf_output_end(&handle); 7576 } 7577 7578 /* 7579 * Lost/dropped samples logging 7580 */ 7581 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7582 { 7583 struct perf_output_handle handle; 7584 struct perf_sample_data sample; 7585 int ret; 7586 7587 struct { 7588 struct perf_event_header header; 7589 u64 lost; 7590 } lost_samples_event = { 7591 .header = { 7592 .type = PERF_RECORD_LOST_SAMPLES, 7593 .misc = 0, 7594 .size = sizeof(lost_samples_event), 7595 }, 7596 .lost = lost, 7597 }; 7598 7599 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7600 7601 ret = perf_output_begin(&handle, event, 7602 lost_samples_event.header.size); 7603 if (ret) 7604 return; 7605 7606 perf_output_put(&handle, lost_samples_event); 7607 perf_event__output_id_sample(event, &handle, &sample); 7608 perf_output_end(&handle); 7609 } 7610 7611 /* 7612 * context_switch tracking 7613 */ 7614 7615 struct perf_switch_event { 7616 struct task_struct *task; 7617 struct task_struct *next_prev; 7618 7619 struct { 7620 struct perf_event_header header; 7621 u32 next_prev_pid; 7622 u32 next_prev_tid; 7623 } event_id; 7624 }; 7625 7626 static int perf_event_switch_match(struct perf_event *event) 7627 { 7628 return event->attr.context_switch; 7629 } 7630 7631 static void perf_event_switch_output(struct perf_event *event, void *data) 7632 { 7633 struct perf_switch_event *se = data; 7634 struct perf_output_handle handle; 7635 struct perf_sample_data sample; 7636 int ret; 7637 7638 if (!perf_event_switch_match(event)) 7639 return; 7640 7641 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7642 if (event->ctx->task) { 7643 se->event_id.header.type = PERF_RECORD_SWITCH; 7644 se->event_id.header.size = sizeof(se->event_id.header); 7645 } else { 7646 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7647 se->event_id.header.size = sizeof(se->event_id); 7648 se->event_id.next_prev_pid = 7649 perf_event_pid(event, se->next_prev); 7650 se->event_id.next_prev_tid = 7651 perf_event_tid(event, se->next_prev); 7652 } 7653 7654 perf_event_header__init_id(&se->event_id.header, &sample, event); 7655 7656 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7657 if (ret) 7658 return; 7659 7660 if (event->ctx->task) 7661 perf_output_put(&handle, se->event_id.header); 7662 else 7663 perf_output_put(&handle, se->event_id); 7664 7665 perf_event__output_id_sample(event, &handle, &sample); 7666 7667 perf_output_end(&handle); 7668 } 7669 7670 static void perf_event_switch(struct task_struct *task, 7671 struct task_struct *next_prev, bool sched_in) 7672 { 7673 struct perf_switch_event switch_event; 7674 7675 /* N.B. caller checks nr_switch_events != 0 */ 7676 7677 switch_event = (struct perf_switch_event){ 7678 .task = task, 7679 .next_prev = next_prev, 7680 .event_id = { 7681 .header = { 7682 /* .type */ 7683 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7684 /* .size */ 7685 }, 7686 /* .next_prev_pid */ 7687 /* .next_prev_tid */ 7688 }, 7689 }; 7690 7691 if (!sched_in && task->state == TASK_RUNNING) 7692 switch_event.event_id.header.misc |= 7693 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7694 7695 perf_iterate_sb(perf_event_switch_output, 7696 &switch_event, 7697 NULL); 7698 } 7699 7700 /* 7701 * IRQ throttle logging 7702 */ 7703 7704 static void perf_log_throttle(struct perf_event *event, int enable) 7705 { 7706 struct perf_output_handle handle; 7707 struct perf_sample_data sample; 7708 int ret; 7709 7710 struct { 7711 struct perf_event_header header; 7712 u64 time; 7713 u64 id; 7714 u64 stream_id; 7715 } throttle_event = { 7716 .header = { 7717 .type = PERF_RECORD_THROTTLE, 7718 .misc = 0, 7719 .size = sizeof(throttle_event), 7720 }, 7721 .time = perf_event_clock(event), 7722 .id = primary_event_id(event), 7723 .stream_id = event->id, 7724 }; 7725 7726 if (enable) 7727 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7728 7729 perf_event_header__init_id(&throttle_event.header, &sample, event); 7730 7731 ret = perf_output_begin(&handle, event, 7732 throttle_event.header.size); 7733 if (ret) 7734 return; 7735 7736 perf_output_put(&handle, throttle_event); 7737 perf_event__output_id_sample(event, &handle, &sample); 7738 perf_output_end(&handle); 7739 } 7740 7741 /* 7742 * ksymbol register/unregister tracking 7743 */ 7744 7745 struct perf_ksymbol_event { 7746 const char *name; 7747 int name_len; 7748 struct { 7749 struct perf_event_header header; 7750 u64 addr; 7751 u32 len; 7752 u16 ksym_type; 7753 u16 flags; 7754 } event_id; 7755 }; 7756 7757 static int perf_event_ksymbol_match(struct perf_event *event) 7758 { 7759 return event->attr.ksymbol; 7760 } 7761 7762 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7763 { 7764 struct perf_ksymbol_event *ksymbol_event = data; 7765 struct perf_output_handle handle; 7766 struct perf_sample_data sample; 7767 int ret; 7768 7769 if (!perf_event_ksymbol_match(event)) 7770 return; 7771 7772 perf_event_header__init_id(&ksymbol_event->event_id.header, 7773 &sample, event); 7774 ret = perf_output_begin(&handle, event, 7775 ksymbol_event->event_id.header.size); 7776 if (ret) 7777 return; 7778 7779 perf_output_put(&handle, ksymbol_event->event_id); 7780 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7781 perf_event__output_id_sample(event, &handle, &sample); 7782 7783 perf_output_end(&handle); 7784 } 7785 7786 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7787 const char *sym) 7788 { 7789 struct perf_ksymbol_event ksymbol_event; 7790 char name[KSYM_NAME_LEN]; 7791 u16 flags = 0; 7792 int name_len; 7793 7794 if (!atomic_read(&nr_ksymbol_events)) 7795 return; 7796 7797 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7798 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7799 goto err; 7800 7801 strlcpy(name, sym, KSYM_NAME_LEN); 7802 name_len = strlen(name) + 1; 7803 while (!IS_ALIGNED(name_len, sizeof(u64))) 7804 name[name_len++] = '\0'; 7805 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7806 7807 if (unregister) 7808 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7809 7810 ksymbol_event = (struct perf_ksymbol_event){ 7811 .name = name, 7812 .name_len = name_len, 7813 .event_id = { 7814 .header = { 7815 .type = PERF_RECORD_KSYMBOL, 7816 .size = sizeof(ksymbol_event.event_id) + 7817 name_len, 7818 }, 7819 .addr = addr, 7820 .len = len, 7821 .ksym_type = ksym_type, 7822 .flags = flags, 7823 }, 7824 }; 7825 7826 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7827 return; 7828 err: 7829 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7830 } 7831 7832 /* 7833 * bpf program load/unload tracking 7834 */ 7835 7836 struct perf_bpf_event { 7837 struct bpf_prog *prog; 7838 struct { 7839 struct perf_event_header header; 7840 u16 type; 7841 u16 flags; 7842 u32 id; 7843 u8 tag[BPF_TAG_SIZE]; 7844 } event_id; 7845 }; 7846 7847 static int perf_event_bpf_match(struct perf_event *event) 7848 { 7849 return event->attr.bpf_event; 7850 } 7851 7852 static void perf_event_bpf_output(struct perf_event *event, void *data) 7853 { 7854 struct perf_bpf_event *bpf_event = data; 7855 struct perf_output_handle handle; 7856 struct perf_sample_data sample; 7857 int ret; 7858 7859 if (!perf_event_bpf_match(event)) 7860 return; 7861 7862 perf_event_header__init_id(&bpf_event->event_id.header, 7863 &sample, event); 7864 ret = perf_output_begin(&handle, event, 7865 bpf_event->event_id.header.size); 7866 if (ret) 7867 return; 7868 7869 perf_output_put(&handle, bpf_event->event_id); 7870 perf_event__output_id_sample(event, &handle, &sample); 7871 7872 perf_output_end(&handle); 7873 } 7874 7875 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7876 enum perf_bpf_event_type type) 7877 { 7878 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7879 char sym[KSYM_NAME_LEN]; 7880 int i; 7881 7882 if (prog->aux->func_cnt == 0) { 7883 bpf_get_prog_name(prog, sym); 7884 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7885 (u64)(unsigned long)prog->bpf_func, 7886 prog->jited_len, unregister, sym); 7887 } else { 7888 for (i = 0; i < prog->aux->func_cnt; i++) { 7889 struct bpf_prog *subprog = prog->aux->func[i]; 7890 7891 bpf_get_prog_name(subprog, sym); 7892 perf_event_ksymbol( 7893 PERF_RECORD_KSYMBOL_TYPE_BPF, 7894 (u64)(unsigned long)subprog->bpf_func, 7895 subprog->jited_len, unregister, sym); 7896 } 7897 } 7898 } 7899 7900 void perf_event_bpf_event(struct bpf_prog *prog, 7901 enum perf_bpf_event_type type, 7902 u16 flags) 7903 { 7904 struct perf_bpf_event bpf_event; 7905 7906 if (type <= PERF_BPF_EVENT_UNKNOWN || 7907 type >= PERF_BPF_EVENT_MAX) 7908 return; 7909 7910 switch (type) { 7911 case PERF_BPF_EVENT_PROG_LOAD: 7912 case PERF_BPF_EVENT_PROG_UNLOAD: 7913 if (atomic_read(&nr_ksymbol_events)) 7914 perf_event_bpf_emit_ksymbols(prog, type); 7915 break; 7916 default: 7917 break; 7918 } 7919 7920 if (!atomic_read(&nr_bpf_events)) 7921 return; 7922 7923 bpf_event = (struct perf_bpf_event){ 7924 .prog = prog, 7925 .event_id = { 7926 .header = { 7927 .type = PERF_RECORD_BPF_EVENT, 7928 .size = sizeof(bpf_event.event_id), 7929 }, 7930 .type = type, 7931 .flags = flags, 7932 .id = prog->aux->id, 7933 }, 7934 }; 7935 7936 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7937 7938 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7939 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7940 } 7941 7942 void perf_event_itrace_started(struct perf_event *event) 7943 { 7944 event->attach_state |= PERF_ATTACH_ITRACE; 7945 } 7946 7947 static void perf_log_itrace_start(struct perf_event *event) 7948 { 7949 struct perf_output_handle handle; 7950 struct perf_sample_data sample; 7951 struct perf_aux_event { 7952 struct perf_event_header header; 7953 u32 pid; 7954 u32 tid; 7955 } rec; 7956 int ret; 7957 7958 if (event->parent) 7959 event = event->parent; 7960 7961 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7962 event->attach_state & PERF_ATTACH_ITRACE) 7963 return; 7964 7965 rec.header.type = PERF_RECORD_ITRACE_START; 7966 rec.header.misc = 0; 7967 rec.header.size = sizeof(rec); 7968 rec.pid = perf_event_pid(event, current); 7969 rec.tid = perf_event_tid(event, current); 7970 7971 perf_event_header__init_id(&rec.header, &sample, event); 7972 ret = perf_output_begin(&handle, event, rec.header.size); 7973 7974 if (ret) 7975 return; 7976 7977 perf_output_put(&handle, rec); 7978 perf_event__output_id_sample(event, &handle, &sample); 7979 7980 perf_output_end(&handle); 7981 } 7982 7983 static int 7984 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7985 { 7986 struct hw_perf_event *hwc = &event->hw; 7987 int ret = 0; 7988 u64 seq; 7989 7990 seq = __this_cpu_read(perf_throttled_seq); 7991 if (seq != hwc->interrupts_seq) { 7992 hwc->interrupts_seq = seq; 7993 hwc->interrupts = 1; 7994 } else { 7995 hwc->interrupts++; 7996 if (unlikely(throttle 7997 && hwc->interrupts >= max_samples_per_tick)) { 7998 __this_cpu_inc(perf_throttled_count); 7999 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8000 hwc->interrupts = MAX_INTERRUPTS; 8001 perf_log_throttle(event, 0); 8002 ret = 1; 8003 } 8004 } 8005 8006 if (event->attr.freq) { 8007 u64 now = perf_clock(); 8008 s64 delta = now - hwc->freq_time_stamp; 8009 8010 hwc->freq_time_stamp = now; 8011 8012 if (delta > 0 && delta < 2*TICK_NSEC) 8013 perf_adjust_period(event, delta, hwc->last_period, true); 8014 } 8015 8016 return ret; 8017 } 8018 8019 int perf_event_account_interrupt(struct perf_event *event) 8020 { 8021 return __perf_event_account_interrupt(event, 1); 8022 } 8023 8024 /* 8025 * Generic event overflow handling, sampling. 8026 */ 8027 8028 static int __perf_event_overflow(struct perf_event *event, 8029 int throttle, struct perf_sample_data *data, 8030 struct pt_regs *regs) 8031 { 8032 int events = atomic_read(&event->event_limit); 8033 int ret = 0; 8034 8035 /* 8036 * Non-sampling counters might still use the PMI to fold short 8037 * hardware counters, ignore those. 8038 */ 8039 if (unlikely(!is_sampling_event(event))) 8040 return 0; 8041 8042 ret = __perf_event_account_interrupt(event, throttle); 8043 8044 /* 8045 * XXX event_limit might not quite work as expected on inherited 8046 * events 8047 */ 8048 8049 event->pending_kill = POLL_IN; 8050 if (events && atomic_dec_and_test(&event->event_limit)) { 8051 ret = 1; 8052 event->pending_kill = POLL_HUP; 8053 8054 perf_event_disable_inatomic(event); 8055 } 8056 8057 READ_ONCE(event->overflow_handler)(event, data, regs); 8058 8059 if (*perf_event_fasync(event) && event->pending_kill) { 8060 event->pending_wakeup = 1; 8061 irq_work_queue(&event->pending); 8062 } 8063 8064 return ret; 8065 } 8066 8067 int perf_event_overflow(struct perf_event *event, 8068 struct perf_sample_data *data, 8069 struct pt_regs *regs) 8070 { 8071 return __perf_event_overflow(event, 1, data, regs); 8072 } 8073 8074 /* 8075 * Generic software event infrastructure 8076 */ 8077 8078 struct swevent_htable { 8079 struct swevent_hlist *swevent_hlist; 8080 struct mutex hlist_mutex; 8081 int hlist_refcount; 8082 8083 /* Recursion avoidance in each contexts */ 8084 int recursion[PERF_NR_CONTEXTS]; 8085 }; 8086 8087 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8088 8089 /* 8090 * We directly increment event->count and keep a second value in 8091 * event->hw.period_left to count intervals. This period event 8092 * is kept in the range [-sample_period, 0] so that we can use the 8093 * sign as trigger. 8094 */ 8095 8096 u64 perf_swevent_set_period(struct perf_event *event) 8097 { 8098 struct hw_perf_event *hwc = &event->hw; 8099 u64 period = hwc->last_period; 8100 u64 nr, offset; 8101 s64 old, val; 8102 8103 hwc->last_period = hwc->sample_period; 8104 8105 again: 8106 old = val = local64_read(&hwc->period_left); 8107 if (val < 0) 8108 return 0; 8109 8110 nr = div64_u64(period + val, period); 8111 offset = nr * period; 8112 val -= offset; 8113 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8114 goto again; 8115 8116 return nr; 8117 } 8118 8119 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8120 struct perf_sample_data *data, 8121 struct pt_regs *regs) 8122 { 8123 struct hw_perf_event *hwc = &event->hw; 8124 int throttle = 0; 8125 8126 if (!overflow) 8127 overflow = perf_swevent_set_period(event); 8128 8129 if (hwc->interrupts == MAX_INTERRUPTS) 8130 return; 8131 8132 for (; overflow; overflow--) { 8133 if (__perf_event_overflow(event, throttle, 8134 data, regs)) { 8135 /* 8136 * We inhibit the overflow from happening when 8137 * hwc->interrupts == MAX_INTERRUPTS. 8138 */ 8139 break; 8140 } 8141 throttle = 1; 8142 } 8143 } 8144 8145 static void perf_swevent_event(struct perf_event *event, u64 nr, 8146 struct perf_sample_data *data, 8147 struct pt_regs *regs) 8148 { 8149 struct hw_perf_event *hwc = &event->hw; 8150 8151 local64_add(nr, &event->count); 8152 8153 if (!regs) 8154 return; 8155 8156 if (!is_sampling_event(event)) 8157 return; 8158 8159 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8160 data->period = nr; 8161 return perf_swevent_overflow(event, 1, data, regs); 8162 } else 8163 data->period = event->hw.last_period; 8164 8165 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8166 return perf_swevent_overflow(event, 1, data, regs); 8167 8168 if (local64_add_negative(nr, &hwc->period_left)) 8169 return; 8170 8171 perf_swevent_overflow(event, 0, data, regs); 8172 } 8173 8174 static int perf_exclude_event(struct perf_event *event, 8175 struct pt_regs *regs) 8176 { 8177 if (event->hw.state & PERF_HES_STOPPED) 8178 return 1; 8179 8180 if (regs) { 8181 if (event->attr.exclude_user && user_mode(regs)) 8182 return 1; 8183 8184 if (event->attr.exclude_kernel && !user_mode(regs)) 8185 return 1; 8186 } 8187 8188 return 0; 8189 } 8190 8191 static int perf_swevent_match(struct perf_event *event, 8192 enum perf_type_id type, 8193 u32 event_id, 8194 struct perf_sample_data *data, 8195 struct pt_regs *regs) 8196 { 8197 if (event->attr.type != type) 8198 return 0; 8199 8200 if (event->attr.config != event_id) 8201 return 0; 8202 8203 if (perf_exclude_event(event, regs)) 8204 return 0; 8205 8206 return 1; 8207 } 8208 8209 static inline u64 swevent_hash(u64 type, u32 event_id) 8210 { 8211 u64 val = event_id | (type << 32); 8212 8213 return hash_64(val, SWEVENT_HLIST_BITS); 8214 } 8215 8216 static inline struct hlist_head * 8217 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8218 { 8219 u64 hash = swevent_hash(type, event_id); 8220 8221 return &hlist->heads[hash]; 8222 } 8223 8224 /* For the read side: events when they trigger */ 8225 static inline struct hlist_head * 8226 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8227 { 8228 struct swevent_hlist *hlist; 8229 8230 hlist = rcu_dereference(swhash->swevent_hlist); 8231 if (!hlist) 8232 return NULL; 8233 8234 return __find_swevent_head(hlist, type, event_id); 8235 } 8236 8237 /* For the event head insertion and removal in the hlist */ 8238 static inline struct hlist_head * 8239 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8240 { 8241 struct swevent_hlist *hlist; 8242 u32 event_id = event->attr.config; 8243 u64 type = event->attr.type; 8244 8245 /* 8246 * Event scheduling is always serialized against hlist allocation 8247 * and release. Which makes the protected version suitable here. 8248 * The context lock guarantees that. 8249 */ 8250 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8251 lockdep_is_held(&event->ctx->lock)); 8252 if (!hlist) 8253 return NULL; 8254 8255 return __find_swevent_head(hlist, type, event_id); 8256 } 8257 8258 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8259 u64 nr, 8260 struct perf_sample_data *data, 8261 struct pt_regs *regs) 8262 { 8263 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8264 struct perf_event *event; 8265 struct hlist_head *head; 8266 8267 rcu_read_lock(); 8268 head = find_swevent_head_rcu(swhash, type, event_id); 8269 if (!head) 8270 goto end; 8271 8272 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8273 if (perf_swevent_match(event, type, event_id, data, regs)) 8274 perf_swevent_event(event, nr, data, regs); 8275 } 8276 end: 8277 rcu_read_unlock(); 8278 } 8279 8280 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8281 8282 int perf_swevent_get_recursion_context(void) 8283 { 8284 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8285 8286 return get_recursion_context(swhash->recursion); 8287 } 8288 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8289 8290 void perf_swevent_put_recursion_context(int rctx) 8291 { 8292 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8293 8294 put_recursion_context(swhash->recursion, rctx); 8295 } 8296 8297 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8298 { 8299 struct perf_sample_data data; 8300 8301 if (WARN_ON_ONCE(!regs)) 8302 return; 8303 8304 perf_sample_data_init(&data, addr, 0); 8305 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8306 } 8307 8308 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8309 { 8310 int rctx; 8311 8312 preempt_disable_notrace(); 8313 rctx = perf_swevent_get_recursion_context(); 8314 if (unlikely(rctx < 0)) 8315 goto fail; 8316 8317 ___perf_sw_event(event_id, nr, regs, addr); 8318 8319 perf_swevent_put_recursion_context(rctx); 8320 fail: 8321 preempt_enable_notrace(); 8322 } 8323 8324 static void perf_swevent_read(struct perf_event *event) 8325 { 8326 } 8327 8328 static int perf_swevent_add(struct perf_event *event, int flags) 8329 { 8330 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8331 struct hw_perf_event *hwc = &event->hw; 8332 struct hlist_head *head; 8333 8334 if (is_sampling_event(event)) { 8335 hwc->last_period = hwc->sample_period; 8336 perf_swevent_set_period(event); 8337 } 8338 8339 hwc->state = !(flags & PERF_EF_START); 8340 8341 head = find_swevent_head(swhash, event); 8342 if (WARN_ON_ONCE(!head)) 8343 return -EINVAL; 8344 8345 hlist_add_head_rcu(&event->hlist_entry, head); 8346 perf_event_update_userpage(event); 8347 8348 return 0; 8349 } 8350 8351 static void perf_swevent_del(struct perf_event *event, int flags) 8352 { 8353 hlist_del_rcu(&event->hlist_entry); 8354 } 8355 8356 static void perf_swevent_start(struct perf_event *event, int flags) 8357 { 8358 event->hw.state = 0; 8359 } 8360 8361 static void perf_swevent_stop(struct perf_event *event, int flags) 8362 { 8363 event->hw.state = PERF_HES_STOPPED; 8364 } 8365 8366 /* Deref the hlist from the update side */ 8367 static inline struct swevent_hlist * 8368 swevent_hlist_deref(struct swevent_htable *swhash) 8369 { 8370 return rcu_dereference_protected(swhash->swevent_hlist, 8371 lockdep_is_held(&swhash->hlist_mutex)); 8372 } 8373 8374 static void swevent_hlist_release(struct swevent_htable *swhash) 8375 { 8376 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8377 8378 if (!hlist) 8379 return; 8380 8381 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8382 kfree_rcu(hlist, rcu_head); 8383 } 8384 8385 static void swevent_hlist_put_cpu(int cpu) 8386 { 8387 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8388 8389 mutex_lock(&swhash->hlist_mutex); 8390 8391 if (!--swhash->hlist_refcount) 8392 swevent_hlist_release(swhash); 8393 8394 mutex_unlock(&swhash->hlist_mutex); 8395 } 8396 8397 static void swevent_hlist_put(void) 8398 { 8399 int cpu; 8400 8401 for_each_possible_cpu(cpu) 8402 swevent_hlist_put_cpu(cpu); 8403 } 8404 8405 static int swevent_hlist_get_cpu(int cpu) 8406 { 8407 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8408 int err = 0; 8409 8410 mutex_lock(&swhash->hlist_mutex); 8411 if (!swevent_hlist_deref(swhash) && 8412 cpumask_test_cpu(cpu, perf_online_mask)) { 8413 struct swevent_hlist *hlist; 8414 8415 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8416 if (!hlist) { 8417 err = -ENOMEM; 8418 goto exit; 8419 } 8420 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8421 } 8422 swhash->hlist_refcount++; 8423 exit: 8424 mutex_unlock(&swhash->hlist_mutex); 8425 8426 return err; 8427 } 8428 8429 static int swevent_hlist_get(void) 8430 { 8431 int err, cpu, failed_cpu; 8432 8433 mutex_lock(&pmus_lock); 8434 for_each_possible_cpu(cpu) { 8435 err = swevent_hlist_get_cpu(cpu); 8436 if (err) { 8437 failed_cpu = cpu; 8438 goto fail; 8439 } 8440 } 8441 mutex_unlock(&pmus_lock); 8442 return 0; 8443 fail: 8444 for_each_possible_cpu(cpu) { 8445 if (cpu == failed_cpu) 8446 break; 8447 swevent_hlist_put_cpu(cpu); 8448 } 8449 mutex_unlock(&pmus_lock); 8450 return err; 8451 } 8452 8453 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8454 8455 static void sw_perf_event_destroy(struct perf_event *event) 8456 { 8457 u64 event_id = event->attr.config; 8458 8459 WARN_ON(event->parent); 8460 8461 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8462 swevent_hlist_put(); 8463 } 8464 8465 static int perf_swevent_init(struct perf_event *event) 8466 { 8467 u64 event_id = event->attr.config; 8468 8469 if (event->attr.type != PERF_TYPE_SOFTWARE) 8470 return -ENOENT; 8471 8472 /* 8473 * no branch sampling for software events 8474 */ 8475 if (has_branch_stack(event)) 8476 return -EOPNOTSUPP; 8477 8478 switch (event_id) { 8479 case PERF_COUNT_SW_CPU_CLOCK: 8480 case PERF_COUNT_SW_TASK_CLOCK: 8481 return -ENOENT; 8482 8483 default: 8484 break; 8485 } 8486 8487 if (event_id >= PERF_COUNT_SW_MAX) 8488 return -ENOENT; 8489 8490 if (!event->parent) { 8491 int err; 8492 8493 err = swevent_hlist_get(); 8494 if (err) 8495 return err; 8496 8497 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8498 event->destroy = sw_perf_event_destroy; 8499 } 8500 8501 return 0; 8502 } 8503 8504 static struct pmu perf_swevent = { 8505 .task_ctx_nr = perf_sw_context, 8506 8507 .capabilities = PERF_PMU_CAP_NO_NMI, 8508 8509 .event_init = perf_swevent_init, 8510 .add = perf_swevent_add, 8511 .del = perf_swevent_del, 8512 .start = perf_swevent_start, 8513 .stop = perf_swevent_stop, 8514 .read = perf_swevent_read, 8515 }; 8516 8517 #ifdef CONFIG_EVENT_TRACING 8518 8519 static int perf_tp_filter_match(struct perf_event *event, 8520 struct perf_sample_data *data) 8521 { 8522 void *record = data->raw->frag.data; 8523 8524 /* only top level events have filters set */ 8525 if (event->parent) 8526 event = event->parent; 8527 8528 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8529 return 1; 8530 return 0; 8531 } 8532 8533 static int perf_tp_event_match(struct perf_event *event, 8534 struct perf_sample_data *data, 8535 struct pt_regs *regs) 8536 { 8537 if (event->hw.state & PERF_HES_STOPPED) 8538 return 0; 8539 /* 8540 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8541 */ 8542 if (event->attr.exclude_kernel && !user_mode(regs)) 8543 return 0; 8544 8545 if (!perf_tp_filter_match(event, data)) 8546 return 0; 8547 8548 return 1; 8549 } 8550 8551 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8552 struct trace_event_call *call, u64 count, 8553 struct pt_regs *regs, struct hlist_head *head, 8554 struct task_struct *task) 8555 { 8556 if (bpf_prog_array_valid(call)) { 8557 *(struct pt_regs **)raw_data = regs; 8558 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8559 perf_swevent_put_recursion_context(rctx); 8560 return; 8561 } 8562 } 8563 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8564 rctx, task); 8565 } 8566 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8567 8568 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8569 struct pt_regs *regs, struct hlist_head *head, int rctx, 8570 struct task_struct *task) 8571 { 8572 struct perf_sample_data data; 8573 struct perf_event *event; 8574 8575 struct perf_raw_record raw = { 8576 .frag = { 8577 .size = entry_size, 8578 .data = record, 8579 }, 8580 }; 8581 8582 perf_sample_data_init(&data, 0, 0); 8583 data.raw = &raw; 8584 8585 perf_trace_buf_update(record, event_type); 8586 8587 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8588 if (perf_tp_event_match(event, &data, regs)) 8589 perf_swevent_event(event, count, &data, regs); 8590 } 8591 8592 /* 8593 * If we got specified a target task, also iterate its context and 8594 * deliver this event there too. 8595 */ 8596 if (task && task != current) { 8597 struct perf_event_context *ctx; 8598 struct trace_entry *entry = record; 8599 8600 rcu_read_lock(); 8601 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8602 if (!ctx) 8603 goto unlock; 8604 8605 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8606 if (event->cpu != smp_processor_id()) 8607 continue; 8608 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8609 continue; 8610 if (event->attr.config != entry->type) 8611 continue; 8612 if (perf_tp_event_match(event, &data, regs)) 8613 perf_swevent_event(event, count, &data, regs); 8614 } 8615 unlock: 8616 rcu_read_unlock(); 8617 } 8618 8619 perf_swevent_put_recursion_context(rctx); 8620 } 8621 EXPORT_SYMBOL_GPL(perf_tp_event); 8622 8623 static void tp_perf_event_destroy(struct perf_event *event) 8624 { 8625 perf_trace_destroy(event); 8626 } 8627 8628 static int perf_tp_event_init(struct perf_event *event) 8629 { 8630 int err; 8631 8632 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8633 return -ENOENT; 8634 8635 /* 8636 * no branch sampling for tracepoint events 8637 */ 8638 if (has_branch_stack(event)) 8639 return -EOPNOTSUPP; 8640 8641 err = perf_trace_init(event); 8642 if (err) 8643 return err; 8644 8645 event->destroy = tp_perf_event_destroy; 8646 8647 return 0; 8648 } 8649 8650 static struct pmu perf_tracepoint = { 8651 .task_ctx_nr = perf_sw_context, 8652 8653 .event_init = perf_tp_event_init, 8654 .add = perf_trace_add, 8655 .del = perf_trace_del, 8656 .start = perf_swevent_start, 8657 .stop = perf_swevent_stop, 8658 .read = perf_swevent_read, 8659 }; 8660 8661 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8662 /* 8663 * Flags in config, used by dynamic PMU kprobe and uprobe 8664 * The flags should match following PMU_FORMAT_ATTR(). 8665 * 8666 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8667 * if not set, create kprobe/uprobe 8668 * 8669 * The following values specify a reference counter (or semaphore in the 8670 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8671 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8672 * 8673 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8674 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8675 */ 8676 enum perf_probe_config { 8677 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8678 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8679 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8680 }; 8681 8682 PMU_FORMAT_ATTR(retprobe, "config:0"); 8683 #endif 8684 8685 #ifdef CONFIG_KPROBE_EVENTS 8686 static struct attribute *kprobe_attrs[] = { 8687 &format_attr_retprobe.attr, 8688 NULL, 8689 }; 8690 8691 static struct attribute_group kprobe_format_group = { 8692 .name = "format", 8693 .attrs = kprobe_attrs, 8694 }; 8695 8696 static const struct attribute_group *kprobe_attr_groups[] = { 8697 &kprobe_format_group, 8698 NULL, 8699 }; 8700 8701 static int perf_kprobe_event_init(struct perf_event *event); 8702 static struct pmu perf_kprobe = { 8703 .task_ctx_nr = perf_sw_context, 8704 .event_init = perf_kprobe_event_init, 8705 .add = perf_trace_add, 8706 .del = perf_trace_del, 8707 .start = perf_swevent_start, 8708 .stop = perf_swevent_stop, 8709 .read = perf_swevent_read, 8710 .attr_groups = kprobe_attr_groups, 8711 }; 8712 8713 static int perf_kprobe_event_init(struct perf_event *event) 8714 { 8715 int err; 8716 bool is_retprobe; 8717 8718 if (event->attr.type != perf_kprobe.type) 8719 return -ENOENT; 8720 8721 if (!capable(CAP_SYS_ADMIN)) 8722 return -EACCES; 8723 8724 /* 8725 * no branch sampling for probe events 8726 */ 8727 if (has_branch_stack(event)) 8728 return -EOPNOTSUPP; 8729 8730 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8731 err = perf_kprobe_init(event, is_retprobe); 8732 if (err) 8733 return err; 8734 8735 event->destroy = perf_kprobe_destroy; 8736 8737 return 0; 8738 } 8739 #endif /* CONFIG_KPROBE_EVENTS */ 8740 8741 #ifdef CONFIG_UPROBE_EVENTS 8742 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8743 8744 static struct attribute *uprobe_attrs[] = { 8745 &format_attr_retprobe.attr, 8746 &format_attr_ref_ctr_offset.attr, 8747 NULL, 8748 }; 8749 8750 static struct attribute_group uprobe_format_group = { 8751 .name = "format", 8752 .attrs = uprobe_attrs, 8753 }; 8754 8755 static const struct attribute_group *uprobe_attr_groups[] = { 8756 &uprobe_format_group, 8757 NULL, 8758 }; 8759 8760 static int perf_uprobe_event_init(struct perf_event *event); 8761 static struct pmu perf_uprobe = { 8762 .task_ctx_nr = perf_sw_context, 8763 .event_init = perf_uprobe_event_init, 8764 .add = perf_trace_add, 8765 .del = perf_trace_del, 8766 .start = perf_swevent_start, 8767 .stop = perf_swevent_stop, 8768 .read = perf_swevent_read, 8769 .attr_groups = uprobe_attr_groups, 8770 }; 8771 8772 static int perf_uprobe_event_init(struct perf_event *event) 8773 { 8774 int err; 8775 unsigned long ref_ctr_offset; 8776 bool is_retprobe; 8777 8778 if (event->attr.type != perf_uprobe.type) 8779 return -ENOENT; 8780 8781 if (!capable(CAP_SYS_ADMIN)) 8782 return -EACCES; 8783 8784 /* 8785 * no branch sampling for probe events 8786 */ 8787 if (has_branch_stack(event)) 8788 return -EOPNOTSUPP; 8789 8790 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8791 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8792 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8793 if (err) 8794 return err; 8795 8796 event->destroy = perf_uprobe_destroy; 8797 8798 return 0; 8799 } 8800 #endif /* CONFIG_UPROBE_EVENTS */ 8801 8802 static inline void perf_tp_register(void) 8803 { 8804 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8805 #ifdef CONFIG_KPROBE_EVENTS 8806 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8807 #endif 8808 #ifdef CONFIG_UPROBE_EVENTS 8809 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8810 #endif 8811 } 8812 8813 static void perf_event_free_filter(struct perf_event *event) 8814 { 8815 ftrace_profile_free_filter(event); 8816 } 8817 8818 #ifdef CONFIG_BPF_SYSCALL 8819 static void bpf_overflow_handler(struct perf_event *event, 8820 struct perf_sample_data *data, 8821 struct pt_regs *regs) 8822 { 8823 struct bpf_perf_event_data_kern ctx = { 8824 .data = data, 8825 .event = event, 8826 }; 8827 int ret = 0; 8828 8829 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8830 preempt_disable(); 8831 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8832 goto out; 8833 rcu_read_lock(); 8834 ret = BPF_PROG_RUN(event->prog, &ctx); 8835 rcu_read_unlock(); 8836 out: 8837 __this_cpu_dec(bpf_prog_active); 8838 preempt_enable(); 8839 if (!ret) 8840 return; 8841 8842 event->orig_overflow_handler(event, data, regs); 8843 } 8844 8845 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8846 { 8847 struct bpf_prog *prog; 8848 8849 if (event->overflow_handler_context) 8850 /* hw breakpoint or kernel counter */ 8851 return -EINVAL; 8852 8853 if (event->prog) 8854 return -EEXIST; 8855 8856 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8857 if (IS_ERR(prog)) 8858 return PTR_ERR(prog); 8859 8860 event->prog = prog; 8861 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8862 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8863 return 0; 8864 } 8865 8866 static void perf_event_free_bpf_handler(struct perf_event *event) 8867 { 8868 struct bpf_prog *prog = event->prog; 8869 8870 if (!prog) 8871 return; 8872 8873 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8874 event->prog = NULL; 8875 bpf_prog_put(prog); 8876 } 8877 #else 8878 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8879 { 8880 return -EOPNOTSUPP; 8881 } 8882 static void perf_event_free_bpf_handler(struct perf_event *event) 8883 { 8884 } 8885 #endif 8886 8887 /* 8888 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8889 * with perf_event_open() 8890 */ 8891 static inline bool perf_event_is_tracing(struct perf_event *event) 8892 { 8893 if (event->pmu == &perf_tracepoint) 8894 return true; 8895 #ifdef CONFIG_KPROBE_EVENTS 8896 if (event->pmu == &perf_kprobe) 8897 return true; 8898 #endif 8899 #ifdef CONFIG_UPROBE_EVENTS 8900 if (event->pmu == &perf_uprobe) 8901 return true; 8902 #endif 8903 return false; 8904 } 8905 8906 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8907 { 8908 bool is_kprobe, is_tracepoint, is_syscall_tp; 8909 struct bpf_prog *prog; 8910 int ret; 8911 8912 if (!perf_event_is_tracing(event)) 8913 return perf_event_set_bpf_handler(event, prog_fd); 8914 8915 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8916 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8917 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8918 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8919 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8920 return -EINVAL; 8921 8922 prog = bpf_prog_get(prog_fd); 8923 if (IS_ERR(prog)) 8924 return PTR_ERR(prog); 8925 8926 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8927 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8928 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8929 /* valid fd, but invalid bpf program type */ 8930 bpf_prog_put(prog); 8931 return -EINVAL; 8932 } 8933 8934 /* Kprobe override only works for kprobes, not uprobes. */ 8935 if (prog->kprobe_override && 8936 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8937 bpf_prog_put(prog); 8938 return -EINVAL; 8939 } 8940 8941 if (is_tracepoint || is_syscall_tp) { 8942 int off = trace_event_get_offsets(event->tp_event); 8943 8944 if (prog->aux->max_ctx_offset > off) { 8945 bpf_prog_put(prog); 8946 return -EACCES; 8947 } 8948 } 8949 8950 ret = perf_event_attach_bpf_prog(event, prog); 8951 if (ret) 8952 bpf_prog_put(prog); 8953 return ret; 8954 } 8955 8956 static void perf_event_free_bpf_prog(struct perf_event *event) 8957 { 8958 if (!perf_event_is_tracing(event)) { 8959 perf_event_free_bpf_handler(event); 8960 return; 8961 } 8962 perf_event_detach_bpf_prog(event); 8963 } 8964 8965 #else 8966 8967 static inline void perf_tp_register(void) 8968 { 8969 } 8970 8971 static void perf_event_free_filter(struct perf_event *event) 8972 { 8973 } 8974 8975 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8976 { 8977 return -ENOENT; 8978 } 8979 8980 static void perf_event_free_bpf_prog(struct perf_event *event) 8981 { 8982 } 8983 #endif /* CONFIG_EVENT_TRACING */ 8984 8985 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8986 void perf_bp_event(struct perf_event *bp, void *data) 8987 { 8988 struct perf_sample_data sample; 8989 struct pt_regs *regs = data; 8990 8991 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8992 8993 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8994 perf_swevent_event(bp, 1, &sample, regs); 8995 } 8996 #endif 8997 8998 /* 8999 * Allocate a new address filter 9000 */ 9001 static struct perf_addr_filter * 9002 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9003 { 9004 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9005 struct perf_addr_filter *filter; 9006 9007 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9008 if (!filter) 9009 return NULL; 9010 9011 INIT_LIST_HEAD(&filter->entry); 9012 list_add_tail(&filter->entry, filters); 9013 9014 return filter; 9015 } 9016 9017 static void free_filters_list(struct list_head *filters) 9018 { 9019 struct perf_addr_filter *filter, *iter; 9020 9021 list_for_each_entry_safe(filter, iter, filters, entry) { 9022 path_put(&filter->path); 9023 list_del(&filter->entry); 9024 kfree(filter); 9025 } 9026 } 9027 9028 /* 9029 * Free existing address filters and optionally install new ones 9030 */ 9031 static void perf_addr_filters_splice(struct perf_event *event, 9032 struct list_head *head) 9033 { 9034 unsigned long flags; 9035 LIST_HEAD(list); 9036 9037 if (!has_addr_filter(event)) 9038 return; 9039 9040 /* don't bother with children, they don't have their own filters */ 9041 if (event->parent) 9042 return; 9043 9044 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9045 9046 list_splice_init(&event->addr_filters.list, &list); 9047 if (head) 9048 list_splice(head, &event->addr_filters.list); 9049 9050 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9051 9052 free_filters_list(&list); 9053 } 9054 9055 /* 9056 * Scan through mm's vmas and see if one of them matches the 9057 * @filter; if so, adjust filter's address range. 9058 * Called with mm::mmap_sem down for reading. 9059 */ 9060 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9061 struct mm_struct *mm, 9062 struct perf_addr_filter_range *fr) 9063 { 9064 struct vm_area_struct *vma; 9065 9066 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9067 if (!vma->vm_file) 9068 continue; 9069 9070 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9071 return; 9072 } 9073 } 9074 9075 /* 9076 * Update event's address range filters based on the 9077 * task's existing mappings, if any. 9078 */ 9079 static void perf_event_addr_filters_apply(struct perf_event *event) 9080 { 9081 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9082 struct task_struct *task = READ_ONCE(event->ctx->task); 9083 struct perf_addr_filter *filter; 9084 struct mm_struct *mm = NULL; 9085 unsigned int count = 0; 9086 unsigned long flags; 9087 9088 /* 9089 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9090 * will stop on the parent's child_mutex that our caller is also holding 9091 */ 9092 if (task == TASK_TOMBSTONE) 9093 return; 9094 9095 if (ifh->nr_file_filters) { 9096 mm = get_task_mm(event->ctx->task); 9097 if (!mm) 9098 goto restart; 9099 9100 down_read(&mm->mmap_sem); 9101 } 9102 9103 raw_spin_lock_irqsave(&ifh->lock, flags); 9104 list_for_each_entry(filter, &ifh->list, entry) { 9105 if (filter->path.dentry) { 9106 /* 9107 * Adjust base offset if the filter is associated to a 9108 * binary that needs to be mapped: 9109 */ 9110 event->addr_filter_ranges[count].start = 0; 9111 event->addr_filter_ranges[count].size = 0; 9112 9113 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9114 } else { 9115 event->addr_filter_ranges[count].start = filter->offset; 9116 event->addr_filter_ranges[count].size = filter->size; 9117 } 9118 9119 count++; 9120 } 9121 9122 event->addr_filters_gen++; 9123 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9124 9125 if (ifh->nr_file_filters) { 9126 up_read(&mm->mmap_sem); 9127 9128 mmput(mm); 9129 } 9130 9131 restart: 9132 perf_event_stop(event, 1); 9133 } 9134 9135 /* 9136 * Address range filtering: limiting the data to certain 9137 * instruction address ranges. Filters are ioctl()ed to us from 9138 * userspace as ascii strings. 9139 * 9140 * Filter string format: 9141 * 9142 * ACTION RANGE_SPEC 9143 * where ACTION is one of the 9144 * * "filter": limit the trace to this region 9145 * * "start": start tracing from this address 9146 * * "stop": stop tracing at this address/region; 9147 * RANGE_SPEC is 9148 * * for kernel addresses: <start address>[/<size>] 9149 * * for object files: <start address>[/<size>]@</path/to/object/file> 9150 * 9151 * if <size> is not specified or is zero, the range is treated as a single 9152 * address; not valid for ACTION=="filter". 9153 */ 9154 enum { 9155 IF_ACT_NONE = -1, 9156 IF_ACT_FILTER, 9157 IF_ACT_START, 9158 IF_ACT_STOP, 9159 IF_SRC_FILE, 9160 IF_SRC_KERNEL, 9161 IF_SRC_FILEADDR, 9162 IF_SRC_KERNELADDR, 9163 }; 9164 9165 enum { 9166 IF_STATE_ACTION = 0, 9167 IF_STATE_SOURCE, 9168 IF_STATE_END, 9169 }; 9170 9171 static const match_table_t if_tokens = { 9172 { IF_ACT_FILTER, "filter" }, 9173 { IF_ACT_START, "start" }, 9174 { IF_ACT_STOP, "stop" }, 9175 { IF_SRC_FILE, "%u/%u@%s" }, 9176 { IF_SRC_KERNEL, "%u/%u" }, 9177 { IF_SRC_FILEADDR, "%u@%s" }, 9178 { IF_SRC_KERNELADDR, "%u" }, 9179 { IF_ACT_NONE, NULL }, 9180 }; 9181 9182 /* 9183 * Address filter string parser 9184 */ 9185 static int 9186 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9187 struct list_head *filters) 9188 { 9189 struct perf_addr_filter *filter = NULL; 9190 char *start, *orig, *filename = NULL; 9191 substring_t args[MAX_OPT_ARGS]; 9192 int state = IF_STATE_ACTION, token; 9193 unsigned int kernel = 0; 9194 int ret = -EINVAL; 9195 9196 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9197 if (!fstr) 9198 return -ENOMEM; 9199 9200 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9201 static const enum perf_addr_filter_action_t actions[] = { 9202 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9203 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9204 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9205 }; 9206 ret = -EINVAL; 9207 9208 if (!*start) 9209 continue; 9210 9211 /* filter definition begins */ 9212 if (state == IF_STATE_ACTION) { 9213 filter = perf_addr_filter_new(event, filters); 9214 if (!filter) 9215 goto fail; 9216 } 9217 9218 token = match_token(start, if_tokens, args); 9219 switch (token) { 9220 case IF_ACT_FILTER: 9221 case IF_ACT_START: 9222 case IF_ACT_STOP: 9223 if (state != IF_STATE_ACTION) 9224 goto fail; 9225 9226 filter->action = actions[token]; 9227 state = IF_STATE_SOURCE; 9228 break; 9229 9230 case IF_SRC_KERNELADDR: 9231 case IF_SRC_KERNEL: 9232 kernel = 1; 9233 /* fall through */ 9234 9235 case IF_SRC_FILEADDR: 9236 case IF_SRC_FILE: 9237 if (state != IF_STATE_SOURCE) 9238 goto fail; 9239 9240 *args[0].to = 0; 9241 ret = kstrtoul(args[0].from, 0, &filter->offset); 9242 if (ret) 9243 goto fail; 9244 9245 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9246 *args[1].to = 0; 9247 ret = kstrtoul(args[1].from, 0, &filter->size); 9248 if (ret) 9249 goto fail; 9250 } 9251 9252 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9253 int fpos = token == IF_SRC_FILE ? 2 : 1; 9254 9255 filename = match_strdup(&args[fpos]); 9256 if (!filename) { 9257 ret = -ENOMEM; 9258 goto fail; 9259 } 9260 } 9261 9262 state = IF_STATE_END; 9263 break; 9264 9265 default: 9266 goto fail; 9267 } 9268 9269 /* 9270 * Filter definition is fully parsed, validate and install it. 9271 * Make sure that it doesn't contradict itself or the event's 9272 * attribute. 9273 */ 9274 if (state == IF_STATE_END) { 9275 ret = -EINVAL; 9276 if (kernel && event->attr.exclude_kernel) 9277 goto fail; 9278 9279 /* 9280 * ACTION "filter" must have a non-zero length region 9281 * specified. 9282 */ 9283 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9284 !filter->size) 9285 goto fail; 9286 9287 if (!kernel) { 9288 if (!filename) 9289 goto fail; 9290 9291 /* 9292 * For now, we only support file-based filters 9293 * in per-task events; doing so for CPU-wide 9294 * events requires additional context switching 9295 * trickery, since same object code will be 9296 * mapped at different virtual addresses in 9297 * different processes. 9298 */ 9299 ret = -EOPNOTSUPP; 9300 if (!event->ctx->task) 9301 goto fail_free_name; 9302 9303 /* look up the path and grab its inode */ 9304 ret = kern_path(filename, LOOKUP_FOLLOW, 9305 &filter->path); 9306 if (ret) 9307 goto fail_free_name; 9308 9309 kfree(filename); 9310 filename = NULL; 9311 9312 ret = -EINVAL; 9313 if (!filter->path.dentry || 9314 !S_ISREG(d_inode(filter->path.dentry) 9315 ->i_mode)) 9316 goto fail; 9317 9318 event->addr_filters.nr_file_filters++; 9319 } 9320 9321 /* ready to consume more filters */ 9322 state = IF_STATE_ACTION; 9323 filter = NULL; 9324 } 9325 } 9326 9327 if (state != IF_STATE_ACTION) 9328 goto fail; 9329 9330 kfree(orig); 9331 9332 return 0; 9333 9334 fail_free_name: 9335 kfree(filename); 9336 fail: 9337 free_filters_list(filters); 9338 kfree(orig); 9339 9340 return ret; 9341 } 9342 9343 static int 9344 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9345 { 9346 LIST_HEAD(filters); 9347 int ret; 9348 9349 /* 9350 * Since this is called in perf_ioctl() path, we're already holding 9351 * ctx::mutex. 9352 */ 9353 lockdep_assert_held(&event->ctx->mutex); 9354 9355 if (WARN_ON_ONCE(event->parent)) 9356 return -EINVAL; 9357 9358 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9359 if (ret) 9360 goto fail_clear_files; 9361 9362 ret = event->pmu->addr_filters_validate(&filters); 9363 if (ret) 9364 goto fail_free_filters; 9365 9366 /* remove existing filters, if any */ 9367 perf_addr_filters_splice(event, &filters); 9368 9369 /* install new filters */ 9370 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9371 9372 return ret; 9373 9374 fail_free_filters: 9375 free_filters_list(&filters); 9376 9377 fail_clear_files: 9378 event->addr_filters.nr_file_filters = 0; 9379 9380 return ret; 9381 } 9382 9383 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9384 { 9385 int ret = -EINVAL; 9386 char *filter_str; 9387 9388 filter_str = strndup_user(arg, PAGE_SIZE); 9389 if (IS_ERR(filter_str)) 9390 return PTR_ERR(filter_str); 9391 9392 #ifdef CONFIG_EVENT_TRACING 9393 if (perf_event_is_tracing(event)) { 9394 struct perf_event_context *ctx = event->ctx; 9395 9396 /* 9397 * Beware, here be dragons!! 9398 * 9399 * the tracepoint muck will deadlock against ctx->mutex, but 9400 * the tracepoint stuff does not actually need it. So 9401 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9402 * already have a reference on ctx. 9403 * 9404 * This can result in event getting moved to a different ctx, 9405 * but that does not affect the tracepoint state. 9406 */ 9407 mutex_unlock(&ctx->mutex); 9408 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9409 mutex_lock(&ctx->mutex); 9410 } else 9411 #endif 9412 if (has_addr_filter(event)) 9413 ret = perf_event_set_addr_filter(event, filter_str); 9414 9415 kfree(filter_str); 9416 return ret; 9417 } 9418 9419 /* 9420 * hrtimer based swevent callback 9421 */ 9422 9423 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9424 { 9425 enum hrtimer_restart ret = HRTIMER_RESTART; 9426 struct perf_sample_data data; 9427 struct pt_regs *regs; 9428 struct perf_event *event; 9429 u64 period; 9430 9431 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9432 9433 if (event->state != PERF_EVENT_STATE_ACTIVE) 9434 return HRTIMER_NORESTART; 9435 9436 event->pmu->read(event); 9437 9438 perf_sample_data_init(&data, 0, event->hw.last_period); 9439 regs = get_irq_regs(); 9440 9441 if (regs && !perf_exclude_event(event, regs)) { 9442 if (!(event->attr.exclude_idle && is_idle_task(current))) 9443 if (__perf_event_overflow(event, 1, &data, regs)) 9444 ret = HRTIMER_NORESTART; 9445 } 9446 9447 period = max_t(u64, 10000, event->hw.sample_period); 9448 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9449 9450 return ret; 9451 } 9452 9453 static void perf_swevent_start_hrtimer(struct perf_event *event) 9454 { 9455 struct hw_perf_event *hwc = &event->hw; 9456 s64 period; 9457 9458 if (!is_sampling_event(event)) 9459 return; 9460 9461 period = local64_read(&hwc->period_left); 9462 if (period) { 9463 if (period < 0) 9464 period = 10000; 9465 9466 local64_set(&hwc->period_left, 0); 9467 } else { 9468 period = max_t(u64, 10000, hwc->sample_period); 9469 } 9470 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9471 HRTIMER_MODE_REL_PINNED); 9472 } 9473 9474 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9475 { 9476 struct hw_perf_event *hwc = &event->hw; 9477 9478 if (is_sampling_event(event)) { 9479 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9480 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9481 9482 hrtimer_cancel(&hwc->hrtimer); 9483 } 9484 } 9485 9486 static void perf_swevent_init_hrtimer(struct perf_event *event) 9487 { 9488 struct hw_perf_event *hwc = &event->hw; 9489 9490 if (!is_sampling_event(event)) 9491 return; 9492 9493 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9494 hwc->hrtimer.function = perf_swevent_hrtimer; 9495 9496 /* 9497 * Since hrtimers have a fixed rate, we can do a static freq->period 9498 * mapping and avoid the whole period adjust feedback stuff. 9499 */ 9500 if (event->attr.freq) { 9501 long freq = event->attr.sample_freq; 9502 9503 event->attr.sample_period = NSEC_PER_SEC / freq; 9504 hwc->sample_period = event->attr.sample_period; 9505 local64_set(&hwc->period_left, hwc->sample_period); 9506 hwc->last_period = hwc->sample_period; 9507 event->attr.freq = 0; 9508 } 9509 } 9510 9511 /* 9512 * Software event: cpu wall time clock 9513 */ 9514 9515 static void cpu_clock_event_update(struct perf_event *event) 9516 { 9517 s64 prev; 9518 u64 now; 9519 9520 now = local_clock(); 9521 prev = local64_xchg(&event->hw.prev_count, now); 9522 local64_add(now - prev, &event->count); 9523 } 9524 9525 static void cpu_clock_event_start(struct perf_event *event, int flags) 9526 { 9527 local64_set(&event->hw.prev_count, local_clock()); 9528 perf_swevent_start_hrtimer(event); 9529 } 9530 9531 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9532 { 9533 perf_swevent_cancel_hrtimer(event); 9534 cpu_clock_event_update(event); 9535 } 9536 9537 static int cpu_clock_event_add(struct perf_event *event, int flags) 9538 { 9539 if (flags & PERF_EF_START) 9540 cpu_clock_event_start(event, flags); 9541 perf_event_update_userpage(event); 9542 9543 return 0; 9544 } 9545 9546 static void cpu_clock_event_del(struct perf_event *event, int flags) 9547 { 9548 cpu_clock_event_stop(event, flags); 9549 } 9550 9551 static void cpu_clock_event_read(struct perf_event *event) 9552 { 9553 cpu_clock_event_update(event); 9554 } 9555 9556 static int cpu_clock_event_init(struct perf_event *event) 9557 { 9558 if (event->attr.type != PERF_TYPE_SOFTWARE) 9559 return -ENOENT; 9560 9561 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9562 return -ENOENT; 9563 9564 /* 9565 * no branch sampling for software events 9566 */ 9567 if (has_branch_stack(event)) 9568 return -EOPNOTSUPP; 9569 9570 perf_swevent_init_hrtimer(event); 9571 9572 return 0; 9573 } 9574 9575 static struct pmu perf_cpu_clock = { 9576 .task_ctx_nr = perf_sw_context, 9577 9578 .capabilities = PERF_PMU_CAP_NO_NMI, 9579 9580 .event_init = cpu_clock_event_init, 9581 .add = cpu_clock_event_add, 9582 .del = cpu_clock_event_del, 9583 .start = cpu_clock_event_start, 9584 .stop = cpu_clock_event_stop, 9585 .read = cpu_clock_event_read, 9586 }; 9587 9588 /* 9589 * Software event: task time clock 9590 */ 9591 9592 static void task_clock_event_update(struct perf_event *event, u64 now) 9593 { 9594 u64 prev; 9595 s64 delta; 9596 9597 prev = local64_xchg(&event->hw.prev_count, now); 9598 delta = now - prev; 9599 local64_add(delta, &event->count); 9600 } 9601 9602 static void task_clock_event_start(struct perf_event *event, int flags) 9603 { 9604 local64_set(&event->hw.prev_count, event->ctx->time); 9605 perf_swevent_start_hrtimer(event); 9606 } 9607 9608 static void task_clock_event_stop(struct perf_event *event, int flags) 9609 { 9610 perf_swevent_cancel_hrtimer(event); 9611 task_clock_event_update(event, event->ctx->time); 9612 } 9613 9614 static int task_clock_event_add(struct perf_event *event, int flags) 9615 { 9616 if (flags & PERF_EF_START) 9617 task_clock_event_start(event, flags); 9618 perf_event_update_userpage(event); 9619 9620 return 0; 9621 } 9622 9623 static void task_clock_event_del(struct perf_event *event, int flags) 9624 { 9625 task_clock_event_stop(event, PERF_EF_UPDATE); 9626 } 9627 9628 static void task_clock_event_read(struct perf_event *event) 9629 { 9630 u64 now = perf_clock(); 9631 u64 delta = now - event->ctx->timestamp; 9632 u64 time = event->ctx->time + delta; 9633 9634 task_clock_event_update(event, time); 9635 } 9636 9637 static int task_clock_event_init(struct perf_event *event) 9638 { 9639 if (event->attr.type != PERF_TYPE_SOFTWARE) 9640 return -ENOENT; 9641 9642 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9643 return -ENOENT; 9644 9645 /* 9646 * no branch sampling for software events 9647 */ 9648 if (has_branch_stack(event)) 9649 return -EOPNOTSUPP; 9650 9651 perf_swevent_init_hrtimer(event); 9652 9653 return 0; 9654 } 9655 9656 static struct pmu perf_task_clock = { 9657 .task_ctx_nr = perf_sw_context, 9658 9659 .capabilities = PERF_PMU_CAP_NO_NMI, 9660 9661 .event_init = task_clock_event_init, 9662 .add = task_clock_event_add, 9663 .del = task_clock_event_del, 9664 .start = task_clock_event_start, 9665 .stop = task_clock_event_stop, 9666 .read = task_clock_event_read, 9667 }; 9668 9669 static void perf_pmu_nop_void(struct pmu *pmu) 9670 { 9671 } 9672 9673 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9674 { 9675 } 9676 9677 static int perf_pmu_nop_int(struct pmu *pmu) 9678 { 9679 return 0; 9680 } 9681 9682 static int perf_event_nop_int(struct perf_event *event, u64 value) 9683 { 9684 return 0; 9685 } 9686 9687 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9688 9689 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9690 { 9691 __this_cpu_write(nop_txn_flags, flags); 9692 9693 if (flags & ~PERF_PMU_TXN_ADD) 9694 return; 9695 9696 perf_pmu_disable(pmu); 9697 } 9698 9699 static int perf_pmu_commit_txn(struct pmu *pmu) 9700 { 9701 unsigned int flags = __this_cpu_read(nop_txn_flags); 9702 9703 __this_cpu_write(nop_txn_flags, 0); 9704 9705 if (flags & ~PERF_PMU_TXN_ADD) 9706 return 0; 9707 9708 perf_pmu_enable(pmu); 9709 return 0; 9710 } 9711 9712 static void perf_pmu_cancel_txn(struct pmu *pmu) 9713 { 9714 unsigned int flags = __this_cpu_read(nop_txn_flags); 9715 9716 __this_cpu_write(nop_txn_flags, 0); 9717 9718 if (flags & ~PERF_PMU_TXN_ADD) 9719 return; 9720 9721 perf_pmu_enable(pmu); 9722 } 9723 9724 static int perf_event_idx_default(struct perf_event *event) 9725 { 9726 return 0; 9727 } 9728 9729 /* 9730 * Ensures all contexts with the same task_ctx_nr have the same 9731 * pmu_cpu_context too. 9732 */ 9733 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9734 { 9735 struct pmu *pmu; 9736 9737 if (ctxn < 0) 9738 return NULL; 9739 9740 list_for_each_entry(pmu, &pmus, entry) { 9741 if (pmu->task_ctx_nr == ctxn) 9742 return pmu->pmu_cpu_context; 9743 } 9744 9745 return NULL; 9746 } 9747 9748 static void free_pmu_context(struct pmu *pmu) 9749 { 9750 /* 9751 * Static contexts such as perf_sw_context have a global lifetime 9752 * and may be shared between different PMUs. Avoid freeing them 9753 * when a single PMU is going away. 9754 */ 9755 if (pmu->task_ctx_nr > perf_invalid_context) 9756 return; 9757 9758 free_percpu(pmu->pmu_cpu_context); 9759 } 9760 9761 /* 9762 * Let userspace know that this PMU supports address range filtering: 9763 */ 9764 static ssize_t nr_addr_filters_show(struct device *dev, 9765 struct device_attribute *attr, 9766 char *page) 9767 { 9768 struct pmu *pmu = dev_get_drvdata(dev); 9769 9770 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9771 } 9772 DEVICE_ATTR_RO(nr_addr_filters); 9773 9774 static struct idr pmu_idr; 9775 9776 static ssize_t 9777 type_show(struct device *dev, struct device_attribute *attr, char *page) 9778 { 9779 struct pmu *pmu = dev_get_drvdata(dev); 9780 9781 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9782 } 9783 static DEVICE_ATTR_RO(type); 9784 9785 static ssize_t 9786 perf_event_mux_interval_ms_show(struct device *dev, 9787 struct device_attribute *attr, 9788 char *page) 9789 { 9790 struct pmu *pmu = dev_get_drvdata(dev); 9791 9792 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9793 } 9794 9795 static DEFINE_MUTEX(mux_interval_mutex); 9796 9797 static ssize_t 9798 perf_event_mux_interval_ms_store(struct device *dev, 9799 struct device_attribute *attr, 9800 const char *buf, size_t count) 9801 { 9802 struct pmu *pmu = dev_get_drvdata(dev); 9803 int timer, cpu, ret; 9804 9805 ret = kstrtoint(buf, 0, &timer); 9806 if (ret) 9807 return ret; 9808 9809 if (timer < 1) 9810 return -EINVAL; 9811 9812 /* same value, noting to do */ 9813 if (timer == pmu->hrtimer_interval_ms) 9814 return count; 9815 9816 mutex_lock(&mux_interval_mutex); 9817 pmu->hrtimer_interval_ms = timer; 9818 9819 /* update all cpuctx for this PMU */ 9820 cpus_read_lock(); 9821 for_each_online_cpu(cpu) { 9822 struct perf_cpu_context *cpuctx; 9823 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9824 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9825 9826 cpu_function_call(cpu, 9827 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9828 } 9829 cpus_read_unlock(); 9830 mutex_unlock(&mux_interval_mutex); 9831 9832 return count; 9833 } 9834 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9835 9836 static struct attribute *pmu_dev_attrs[] = { 9837 &dev_attr_type.attr, 9838 &dev_attr_perf_event_mux_interval_ms.attr, 9839 NULL, 9840 }; 9841 ATTRIBUTE_GROUPS(pmu_dev); 9842 9843 static int pmu_bus_running; 9844 static struct bus_type pmu_bus = { 9845 .name = "event_source", 9846 .dev_groups = pmu_dev_groups, 9847 }; 9848 9849 static void pmu_dev_release(struct device *dev) 9850 { 9851 kfree(dev); 9852 } 9853 9854 static int pmu_dev_alloc(struct pmu *pmu) 9855 { 9856 int ret = -ENOMEM; 9857 9858 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9859 if (!pmu->dev) 9860 goto out; 9861 9862 pmu->dev->groups = pmu->attr_groups; 9863 device_initialize(pmu->dev); 9864 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9865 if (ret) 9866 goto free_dev; 9867 9868 dev_set_drvdata(pmu->dev, pmu); 9869 pmu->dev->bus = &pmu_bus; 9870 pmu->dev->release = pmu_dev_release; 9871 ret = device_add(pmu->dev); 9872 if (ret) 9873 goto free_dev; 9874 9875 /* For PMUs with address filters, throw in an extra attribute: */ 9876 if (pmu->nr_addr_filters) 9877 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9878 9879 if (ret) 9880 goto del_dev; 9881 9882 if (pmu->attr_update) 9883 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 9884 9885 if (ret) 9886 goto del_dev; 9887 9888 out: 9889 return ret; 9890 9891 del_dev: 9892 device_del(pmu->dev); 9893 9894 free_dev: 9895 put_device(pmu->dev); 9896 goto out; 9897 } 9898 9899 static struct lock_class_key cpuctx_mutex; 9900 static struct lock_class_key cpuctx_lock; 9901 9902 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9903 { 9904 int cpu, ret; 9905 9906 mutex_lock(&pmus_lock); 9907 ret = -ENOMEM; 9908 pmu->pmu_disable_count = alloc_percpu(int); 9909 if (!pmu->pmu_disable_count) 9910 goto unlock; 9911 9912 pmu->type = -1; 9913 if (!name) 9914 goto skip_type; 9915 pmu->name = name; 9916 9917 if (type < 0) { 9918 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9919 if (type < 0) { 9920 ret = type; 9921 goto free_pdc; 9922 } 9923 } 9924 pmu->type = type; 9925 9926 if (pmu_bus_running) { 9927 ret = pmu_dev_alloc(pmu); 9928 if (ret) 9929 goto free_idr; 9930 } 9931 9932 skip_type: 9933 if (pmu->task_ctx_nr == perf_hw_context) { 9934 static int hw_context_taken = 0; 9935 9936 /* 9937 * Other than systems with heterogeneous CPUs, it never makes 9938 * sense for two PMUs to share perf_hw_context. PMUs which are 9939 * uncore must use perf_invalid_context. 9940 */ 9941 if (WARN_ON_ONCE(hw_context_taken && 9942 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9943 pmu->task_ctx_nr = perf_invalid_context; 9944 9945 hw_context_taken = 1; 9946 } 9947 9948 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9949 if (pmu->pmu_cpu_context) 9950 goto got_cpu_context; 9951 9952 ret = -ENOMEM; 9953 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9954 if (!pmu->pmu_cpu_context) 9955 goto free_dev; 9956 9957 for_each_possible_cpu(cpu) { 9958 struct perf_cpu_context *cpuctx; 9959 9960 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9961 __perf_event_init_context(&cpuctx->ctx); 9962 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9963 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9964 cpuctx->ctx.pmu = pmu; 9965 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9966 9967 __perf_mux_hrtimer_init(cpuctx, cpu); 9968 } 9969 9970 got_cpu_context: 9971 if (!pmu->start_txn) { 9972 if (pmu->pmu_enable) { 9973 /* 9974 * If we have pmu_enable/pmu_disable calls, install 9975 * transaction stubs that use that to try and batch 9976 * hardware accesses. 9977 */ 9978 pmu->start_txn = perf_pmu_start_txn; 9979 pmu->commit_txn = perf_pmu_commit_txn; 9980 pmu->cancel_txn = perf_pmu_cancel_txn; 9981 } else { 9982 pmu->start_txn = perf_pmu_nop_txn; 9983 pmu->commit_txn = perf_pmu_nop_int; 9984 pmu->cancel_txn = perf_pmu_nop_void; 9985 } 9986 } 9987 9988 if (!pmu->pmu_enable) { 9989 pmu->pmu_enable = perf_pmu_nop_void; 9990 pmu->pmu_disable = perf_pmu_nop_void; 9991 } 9992 9993 if (!pmu->check_period) 9994 pmu->check_period = perf_event_nop_int; 9995 9996 if (!pmu->event_idx) 9997 pmu->event_idx = perf_event_idx_default; 9998 9999 list_add_rcu(&pmu->entry, &pmus); 10000 atomic_set(&pmu->exclusive_cnt, 0); 10001 ret = 0; 10002 unlock: 10003 mutex_unlock(&pmus_lock); 10004 10005 return ret; 10006 10007 free_dev: 10008 device_del(pmu->dev); 10009 put_device(pmu->dev); 10010 10011 free_idr: 10012 if (pmu->type >= PERF_TYPE_MAX) 10013 idr_remove(&pmu_idr, pmu->type); 10014 10015 free_pdc: 10016 free_percpu(pmu->pmu_disable_count); 10017 goto unlock; 10018 } 10019 EXPORT_SYMBOL_GPL(perf_pmu_register); 10020 10021 void perf_pmu_unregister(struct pmu *pmu) 10022 { 10023 mutex_lock(&pmus_lock); 10024 list_del_rcu(&pmu->entry); 10025 10026 /* 10027 * We dereference the pmu list under both SRCU and regular RCU, so 10028 * synchronize against both of those. 10029 */ 10030 synchronize_srcu(&pmus_srcu); 10031 synchronize_rcu(); 10032 10033 free_percpu(pmu->pmu_disable_count); 10034 if (pmu->type >= PERF_TYPE_MAX) 10035 idr_remove(&pmu_idr, pmu->type); 10036 if (pmu_bus_running) { 10037 if (pmu->nr_addr_filters) 10038 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10039 device_del(pmu->dev); 10040 put_device(pmu->dev); 10041 } 10042 free_pmu_context(pmu); 10043 mutex_unlock(&pmus_lock); 10044 } 10045 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10046 10047 static inline bool has_extended_regs(struct perf_event *event) 10048 { 10049 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10050 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10051 } 10052 10053 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10054 { 10055 struct perf_event_context *ctx = NULL; 10056 int ret; 10057 10058 if (!try_module_get(pmu->module)) 10059 return -ENODEV; 10060 10061 /* 10062 * A number of pmu->event_init() methods iterate the sibling_list to, 10063 * for example, validate if the group fits on the PMU. Therefore, 10064 * if this is a sibling event, acquire the ctx->mutex to protect 10065 * the sibling_list. 10066 */ 10067 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10068 /* 10069 * This ctx->mutex can nest when we're called through 10070 * inheritance. See the perf_event_ctx_lock_nested() comment. 10071 */ 10072 ctx = perf_event_ctx_lock_nested(event->group_leader, 10073 SINGLE_DEPTH_NESTING); 10074 BUG_ON(!ctx); 10075 } 10076 10077 event->pmu = pmu; 10078 ret = pmu->event_init(event); 10079 10080 if (ctx) 10081 perf_event_ctx_unlock(event->group_leader, ctx); 10082 10083 if (!ret) { 10084 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10085 has_extended_regs(event)) 10086 ret = -EOPNOTSUPP; 10087 10088 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10089 event_has_any_exclude_flag(event)) 10090 ret = -EINVAL; 10091 10092 if (ret && event->destroy) 10093 event->destroy(event); 10094 } 10095 10096 if (ret) 10097 module_put(pmu->module); 10098 10099 return ret; 10100 } 10101 10102 static struct pmu *perf_init_event(struct perf_event *event) 10103 { 10104 struct pmu *pmu; 10105 int idx; 10106 int ret; 10107 10108 idx = srcu_read_lock(&pmus_srcu); 10109 10110 /* Try parent's PMU first: */ 10111 if (event->parent && event->parent->pmu) { 10112 pmu = event->parent->pmu; 10113 ret = perf_try_init_event(pmu, event); 10114 if (!ret) 10115 goto unlock; 10116 } 10117 10118 rcu_read_lock(); 10119 pmu = idr_find(&pmu_idr, event->attr.type); 10120 rcu_read_unlock(); 10121 if (pmu) { 10122 ret = perf_try_init_event(pmu, event); 10123 if (ret) 10124 pmu = ERR_PTR(ret); 10125 goto unlock; 10126 } 10127 10128 list_for_each_entry_rcu(pmu, &pmus, entry) { 10129 ret = perf_try_init_event(pmu, event); 10130 if (!ret) 10131 goto unlock; 10132 10133 if (ret != -ENOENT) { 10134 pmu = ERR_PTR(ret); 10135 goto unlock; 10136 } 10137 } 10138 pmu = ERR_PTR(-ENOENT); 10139 unlock: 10140 srcu_read_unlock(&pmus_srcu, idx); 10141 10142 return pmu; 10143 } 10144 10145 static void attach_sb_event(struct perf_event *event) 10146 { 10147 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10148 10149 raw_spin_lock(&pel->lock); 10150 list_add_rcu(&event->sb_list, &pel->list); 10151 raw_spin_unlock(&pel->lock); 10152 } 10153 10154 /* 10155 * We keep a list of all !task (and therefore per-cpu) events 10156 * that need to receive side-band records. 10157 * 10158 * This avoids having to scan all the various PMU per-cpu contexts 10159 * looking for them. 10160 */ 10161 static void account_pmu_sb_event(struct perf_event *event) 10162 { 10163 if (is_sb_event(event)) 10164 attach_sb_event(event); 10165 } 10166 10167 static void account_event_cpu(struct perf_event *event, int cpu) 10168 { 10169 if (event->parent) 10170 return; 10171 10172 if (is_cgroup_event(event)) 10173 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10174 } 10175 10176 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10177 static void account_freq_event_nohz(void) 10178 { 10179 #ifdef CONFIG_NO_HZ_FULL 10180 /* Lock so we don't race with concurrent unaccount */ 10181 spin_lock(&nr_freq_lock); 10182 if (atomic_inc_return(&nr_freq_events) == 1) 10183 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10184 spin_unlock(&nr_freq_lock); 10185 #endif 10186 } 10187 10188 static void account_freq_event(void) 10189 { 10190 if (tick_nohz_full_enabled()) 10191 account_freq_event_nohz(); 10192 else 10193 atomic_inc(&nr_freq_events); 10194 } 10195 10196 10197 static void account_event(struct perf_event *event) 10198 { 10199 bool inc = false; 10200 10201 if (event->parent) 10202 return; 10203 10204 if (event->attach_state & PERF_ATTACH_TASK) 10205 inc = true; 10206 if (event->attr.mmap || event->attr.mmap_data) 10207 atomic_inc(&nr_mmap_events); 10208 if (event->attr.comm) 10209 atomic_inc(&nr_comm_events); 10210 if (event->attr.namespaces) 10211 atomic_inc(&nr_namespaces_events); 10212 if (event->attr.task) 10213 atomic_inc(&nr_task_events); 10214 if (event->attr.freq) 10215 account_freq_event(); 10216 if (event->attr.context_switch) { 10217 atomic_inc(&nr_switch_events); 10218 inc = true; 10219 } 10220 if (has_branch_stack(event)) 10221 inc = true; 10222 if (is_cgroup_event(event)) 10223 inc = true; 10224 if (event->attr.ksymbol) 10225 atomic_inc(&nr_ksymbol_events); 10226 if (event->attr.bpf_event) 10227 atomic_inc(&nr_bpf_events); 10228 10229 if (inc) { 10230 /* 10231 * We need the mutex here because static_branch_enable() 10232 * must complete *before* the perf_sched_count increment 10233 * becomes visible. 10234 */ 10235 if (atomic_inc_not_zero(&perf_sched_count)) 10236 goto enabled; 10237 10238 mutex_lock(&perf_sched_mutex); 10239 if (!atomic_read(&perf_sched_count)) { 10240 static_branch_enable(&perf_sched_events); 10241 /* 10242 * Guarantee that all CPUs observe they key change and 10243 * call the perf scheduling hooks before proceeding to 10244 * install events that need them. 10245 */ 10246 synchronize_rcu(); 10247 } 10248 /* 10249 * Now that we have waited for the sync_sched(), allow further 10250 * increments to by-pass the mutex. 10251 */ 10252 atomic_inc(&perf_sched_count); 10253 mutex_unlock(&perf_sched_mutex); 10254 } 10255 enabled: 10256 10257 account_event_cpu(event, event->cpu); 10258 10259 account_pmu_sb_event(event); 10260 } 10261 10262 /* 10263 * Allocate and initialize an event structure 10264 */ 10265 static struct perf_event * 10266 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10267 struct task_struct *task, 10268 struct perf_event *group_leader, 10269 struct perf_event *parent_event, 10270 perf_overflow_handler_t overflow_handler, 10271 void *context, int cgroup_fd) 10272 { 10273 struct pmu *pmu; 10274 struct perf_event *event; 10275 struct hw_perf_event *hwc; 10276 long err = -EINVAL; 10277 10278 if ((unsigned)cpu >= nr_cpu_ids) { 10279 if (!task || cpu != -1) 10280 return ERR_PTR(-EINVAL); 10281 } 10282 10283 event = kzalloc(sizeof(*event), GFP_KERNEL); 10284 if (!event) 10285 return ERR_PTR(-ENOMEM); 10286 10287 /* 10288 * Single events are their own group leaders, with an 10289 * empty sibling list: 10290 */ 10291 if (!group_leader) 10292 group_leader = event; 10293 10294 mutex_init(&event->child_mutex); 10295 INIT_LIST_HEAD(&event->child_list); 10296 10297 INIT_LIST_HEAD(&event->event_entry); 10298 INIT_LIST_HEAD(&event->sibling_list); 10299 INIT_LIST_HEAD(&event->active_list); 10300 init_event_group(event); 10301 INIT_LIST_HEAD(&event->rb_entry); 10302 INIT_LIST_HEAD(&event->active_entry); 10303 INIT_LIST_HEAD(&event->addr_filters.list); 10304 INIT_HLIST_NODE(&event->hlist_entry); 10305 10306 10307 init_waitqueue_head(&event->waitq); 10308 event->pending_disable = -1; 10309 init_irq_work(&event->pending, perf_pending_event); 10310 10311 mutex_init(&event->mmap_mutex); 10312 raw_spin_lock_init(&event->addr_filters.lock); 10313 10314 atomic_long_set(&event->refcount, 1); 10315 event->cpu = cpu; 10316 event->attr = *attr; 10317 event->group_leader = group_leader; 10318 event->pmu = NULL; 10319 event->oncpu = -1; 10320 10321 event->parent = parent_event; 10322 10323 event->ns = get_pid_ns(task_active_pid_ns(current)); 10324 event->id = atomic64_inc_return(&perf_event_id); 10325 10326 event->state = PERF_EVENT_STATE_INACTIVE; 10327 10328 if (task) { 10329 event->attach_state = PERF_ATTACH_TASK; 10330 /* 10331 * XXX pmu::event_init needs to know what task to account to 10332 * and we cannot use the ctx information because we need the 10333 * pmu before we get a ctx. 10334 */ 10335 get_task_struct(task); 10336 event->hw.target = task; 10337 } 10338 10339 event->clock = &local_clock; 10340 if (parent_event) 10341 event->clock = parent_event->clock; 10342 10343 if (!overflow_handler && parent_event) { 10344 overflow_handler = parent_event->overflow_handler; 10345 context = parent_event->overflow_handler_context; 10346 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10347 if (overflow_handler == bpf_overflow_handler) { 10348 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10349 10350 if (IS_ERR(prog)) { 10351 err = PTR_ERR(prog); 10352 goto err_ns; 10353 } 10354 event->prog = prog; 10355 event->orig_overflow_handler = 10356 parent_event->orig_overflow_handler; 10357 } 10358 #endif 10359 } 10360 10361 if (overflow_handler) { 10362 event->overflow_handler = overflow_handler; 10363 event->overflow_handler_context = context; 10364 } else if (is_write_backward(event)){ 10365 event->overflow_handler = perf_event_output_backward; 10366 event->overflow_handler_context = NULL; 10367 } else { 10368 event->overflow_handler = perf_event_output_forward; 10369 event->overflow_handler_context = NULL; 10370 } 10371 10372 perf_event__state_init(event); 10373 10374 pmu = NULL; 10375 10376 hwc = &event->hw; 10377 hwc->sample_period = attr->sample_period; 10378 if (attr->freq && attr->sample_freq) 10379 hwc->sample_period = 1; 10380 hwc->last_period = hwc->sample_period; 10381 10382 local64_set(&hwc->period_left, hwc->sample_period); 10383 10384 /* 10385 * We currently do not support PERF_SAMPLE_READ on inherited events. 10386 * See perf_output_read(). 10387 */ 10388 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10389 goto err_ns; 10390 10391 if (!has_branch_stack(event)) 10392 event->attr.branch_sample_type = 0; 10393 10394 if (cgroup_fd != -1) { 10395 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10396 if (err) 10397 goto err_ns; 10398 } 10399 10400 pmu = perf_init_event(event); 10401 if (IS_ERR(pmu)) { 10402 err = PTR_ERR(pmu); 10403 goto err_ns; 10404 } 10405 10406 err = exclusive_event_init(event); 10407 if (err) 10408 goto err_pmu; 10409 10410 if (has_addr_filter(event)) { 10411 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10412 sizeof(struct perf_addr_filter_range), 10413 GFP_KERNEL); 10414 if (!event->addr_filter_ranges) { 10415 err = -ENOMEM; 10416 goto err_per_task; 10417 } 10418 10419 /* 10420 * Clone the parent's vma offsets: they are valid until exec() 10421 * even if the mm is not shared with the parent. 10422 */ 10423 if (event->parent) { 10424 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10425 10426 raw_spin_lock_irq(&ifh->lock); 10427 memcpy(event->addr_filter_ranges, 10428 event->parent->addr_filter_ranges, 10429 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10430 raw_spin_unlock_irq(&ifh->lock); 10431 } 10432 10433 /* force hw sync on the address filters */ 10434 event->addr_filters_gen = 1; 10435 } 10436 10437 if (!event->parent) { 10438 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10439 err = get_callchain_buffers(attr->sample_max_stack); 10440 if (err) 10441 goto err_addr_filters; 10442 } 10443 } 10444 10445 /* symmetric to unaccount_event() in _free_event() */ 10446 account_event(event); 10447 10448 return event; 10449 10450 err_addr_filters: 10451 kfree(event->addr_filter_ranges); 10452 10453 err_per_task: 10454 exclusive_event_destroy(event); 10455 10456 err_pmu: 10457 if (event->destroy) 10458 event->destroy(event); 10459 module_put(pmu->module); 10460 err_ns: 10461 if (is_cgroup_event(event)) 10462 perf_detach_cgroup(event); 10463 if (event->ns) 10464 put_pid_ns(event->ns); 10465 if (event->hw.target) 10466 put_task_struct(event->hw.target); 10467 kfree(event); 10468 10469 return ERR_PTR(err); 10470 } 10471 10472 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10473 struct perf_event_attr *attr) 10474 { 10475 u32 size; 10476 int ret; 10477 10478 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10479 return -EFAULT; 10480 10481 /* 10482 * zero the full structure, so that a short copy will be nice. 10483 */ 10484 memset(attr, 0, sizeof(*attr)); 10485 10486 ret = get_user(size, &uattr->size); 10487 if (ret) 10488 return ret; 10489 10490 if (size > PAGE_SIZE) /* silly large */ 10491 goto err_size; 10492 10493 if (!size) /* abi compat */ 10494 size = PERF_ATTR_SIZE_VER0; 10495 10496 if (size < PERF_ATTR_SIZE_VER0) 10497 goto err_size; 10498 10499 /* 10500 * If we're handed a bigger struct than we know of, 10501 * ensure all the unknown bits are 0 - i.e. new 10502 * user-space does not rely on any kernel feature 10503 * extensions we dont know about yet. 10504 */ 10505 if (size > sizeof(*attr)) { 10506 unsigned char __user *addr; 10507 unsigned char __user *end; 10508 unsigned char val; 10509 10510 addr = (void __user *)uattr + sizeof(*attr); 10511 end = (void __user *)uattr + size; 10512 10513 for (; addr < end; addr++) { 10514 ret = get_user(val, addr); 10515 if (ret) 10516 return ret; 10517 if (val) 10518 goto err_size; 10519 } 10520 size = sizeof(*attr); 10521 } 10522 10523 ret = copy_from_user(attr, uattr, size); 10524 if (ret) 10525 return -EFAULT; 10526 10527 attr->size = size; 10528 10529 if (attr->__reserved_1) 10530 return -EINVAL; 10531 10532 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10533 return -EINVAL; 10534 10535 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10536 return -EINVAL; 10537 10538 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10539 u64 mask = attr->branch_sample_type; 10540 10541 /* only using defined bits */ 10542 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10543 return -EINVAL; 10544 10545 /* at least one branch bit must be set */ 10546 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10547 return -EINVAL; 10548 10549 /* propagate priv level, when not set for branch */ 10550 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10551 10552 /* exclude_kernel checked on syscall entry */ 10553 if (!attr->exclude_kernel) 10554 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10555 10556 if (!attr->exclude_user) 10557 mask |= PERF_SAMPLE_BRANCH_USER; 10558 10559 if (!attr->exclude_hv) 10560 mask |= PERF_SAMPLE_BRANCH_HV; 10561 /* 10562 * adjust user setting (for HW filter setup) 10563 */ 10564 attr->branch_sample_type = mask; 10565 } 10566 /* privileged levels capture (kernel, hv): check permissions */ 10567 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10568 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10569 return -EACCES; 10570 } 10571 10572 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10573 ret = perf_reg_validate(attr->sample_regs_user); 10574 if (ret) 10575 return ret; 10576 } 10577 10578 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10579 if (!arch_perf_have_user_stack_dump()) 10580 return -ENOSYS; 10581 10582 /* 10583 * We have __u32 type for the size, but so far 10584 * we can only use __u16 as maximum due to the 10585 * __u16 sample size limit. 10586 */ 10587 if (attr->sample_stack_user >= USHRT_MAX) 10588 return -EINVAL; 10589 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10590 return -EINVAL; 10591 } 10592 10593 if (!attr->sample_max_stack) 10594 attr->sample_max_stack = sysctl_perf_event_max_stack; 10595 10596 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10597 ret = perf_reg_validate(attr->sample_regs_intr); 10598 out: 10599 return ret; 10600 10601 err_size: 10602 put_user(sizeof(*attr), &uattr->size); 10603 ret = -E2BIG; 10604 goto out; 10605 } 10606 10607 static int 10608 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10609 { 10610 struct ring_buffer *rb = NULL; 10611 int ret = -EINVAL; 10612 10613 if (!output_event) 10614 goto set; 10615 10616 /* don't allow circular references */ 10617 if (event == output_event) 10618 goto out; 10619 10620 /* 10621 * Don't allow cross-cpu buffers 10622 */ 10623 if (output_event->cpu != event->cpu) 10624 goto out; 10625 10626 /* 10627 * If its not a per-cpu rb, it must be the same task. 10628 */ 10629 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10630 goto out; 10631 10632 /* 10633 * Mixing clocks in the same buffer is trouble you don't need. 10634 */ 10635 if (output_event->clock != event->clock) 10636 goto out; 10637 10638 /* 10639 * Either writing ring buffer from beginning or from end. 10640 * Mixing is not allowed. 10641 */ 10642 if (is_write_backward(output_event) != is_write_backward(event)) 10643 goto out; 10644 10645 /* 10646 * If both events generate aux data, they must be on the same PMU 10647 */ 10648 if (has_aux(event) && has_aux(output_event) && 10649 event->pmu != output_event->pmu) 10650 goto out; 10651 10652 set: 10653 mutex_lock(&event->mmap_mutex); 10654 /* Can't redirect output if we've got an active mmap() */ 10655 if (atomic_read(&event->mmap_count)) 10656 goto unlock; 10657 10658 if (output_event) { 10659 /* get the rb we want to redirect to */ 10660 rb = ring_buffer_get(output_event); 10661 if (!rb) 10662 goto unlock; 10663 } 10664 10665 ring_buffer_attach(event, rb); 10666 10667 ret = 0; 10668 unlock: 10669 mutex_unlock(&event->mmap_mutex); 10670 10671 out: 10672 return ret; 10673 } 10674 10675 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10676 { 10677 if (b < a) 10678 swap(a, b); 10679 10680 mutex_lock(a); 10681 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10682 } 10683 10684 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10685 { 10686 bool nmi_safe = false; 10687 10688 switch (clk_id) { 10689 case CLOCK_MONOTONIC: 10690 event->clock = &ktime_get_mono_fast_ns; 10691 nmi_safe = true; 10692 break; 10693 10694 case CLOCK_MONOTONIC_RAW: 10695 event->clock = &ktime_get_raw_fast_ns; 10696 nmi_safe = true; 10697 break; 10698 10699 case CLOCK_REALTIME: 10700 event->clock = &ktime_get_real_ns; 10701 break; 10702 10703 case CLOCK_BOOTTIME: 10704 event->clock = &ktime_get_boottime_ns; 10705 break; 10706 10707 case CLOCK_TAI: 10708 event->clock = &ktime_get_clocktai_ns; 10709 break; 10710 10711 default: 10712 return -EINVAL; 10713 } 10714 10715 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10716 return -EINVAL; 10717 10718 return 0; 10719 } 10720 10721 /* 10722 * Variation on perf_event_ctx_lock_nested(), except we take two context 10723 * mutexes. 10724 */ 10725 static struct perf_event_context * 10726 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10727 struct perf_event_context *ctx) 10728 { 10729 struct perf_event_context *gctx; 10730 10731 again: 10732 rcu_read_lock(); 10733 gctx = READ_ONCE(group_leader->ctx); 10734 if (!refcount_inc_not_zero(&gctx->refcount)) { 10735 rcu_read_unlock(); 10736 goto again; 10737 } 10738 rcu_read_unlock(); 10739 10740 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10741 10742 if (group_leader->ctx != gctx) { 10743 mutex_unlock(&ctx->mutex); 10744 mutex_unlock(&gctx->mutex); 10745 put_ctx(gctx); 10746 goto again; 10747 } 10748 10749 return gctx; 10750 } 10751 10752 /** 10753 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10754 * 10755 * @attr_uptr: event_id type attributes for monitoring/sampling 10756 * @pid: target pid 10757 * @cpu: target cpu 10758 * @group_fd: group leader event fd 10759 */ 10760 SYSCALL_DEFINE5(perf_event_open, 10761 struct perf_event_attr __user *, attr_uptr, 10762 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10763 { 10764 struct perf_event *group_leader = NULL, *output_event = NULL; 10765 struct perf_event *event, *sibling; 10766 struct perf_event_attr attr; 10767 struct perf_event_context *ctx, *uninitialized_var(gctx); 10768 struct file *event_file = NULL; 10769 struct fd group = {NULL, 0}; 10770 struct task_struct *task = NULL; 10771 struct pmu *pmu; 10772 int event_fd; 10773 int move_group = 0; 10774 int err; 10775 int f_flags = O_RDWR; 10776 int cgroup_fd = -1; 10777 10778 /* for future expandability... */ 10779 if (flags & ~PERF_FLAG_ALL) 10780 return -EINVAL; 10781 10782 err = perf_copy_attr(attr_uptr, &attr); 10783 if (err) 10784 return err; 10785 10786 if (!attr.exclude_kernel) { 10787 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10788 return -EACCES; 10789 } 10790 10791 if (attr.namespaces) { 10792 if (!capable(CAP_SYS_ADMIN)) 10793 return -EACCES; 10794 } 10795 10796 if (attr.freq) { 10797 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10798 return -EINVAL; 10799 } else { 10800 if (attr.sample_period & (1ULL << 63)) 10801 return -EINVAL; 10802 } 10803 10804 /* Only privileged users can get physical addresses */ 10805 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10806 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10807 return -EACCES; 10808 10809 /* 10810 * In cgroup mode, the pid argument is used to pass the fd 10811 * opened to the cgroup directory in cgroupfs. The cpu argument 10812 * designates the cpu on which to monitor threads from that 10813 * cgroup. 10814 */ 10815 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10816 return -EINVAL; 10817 10818 if (flags & PERF_FLAG_FD_CLOEXEC) 10819 f_flags |= O_CLOEXEC; 10820 10821 event_fd = get_unused_fd_flags(f_flags); 10822 if (event_fd < 0) 10823 return event_fd; 10824 10825 if (group_fd != -1) { 10826 err = perf_fget_light(group_fd, &group); 10827 if (err) 10828 goto err_fd; 10829 group_leader = group.file->private_data; 10830 if (flags & PERF_FLAG_FD_OUTPUT) 10831 output_event = group_leader; 10832 if (flags & PERF_FLAG_FD_NO_GROUP) 10833 group_leader = NULL; 10834 } 10835 10836 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10837 task = find_lively_task_by_vpid(pid); 10838 if (IS_ERR(task)) { 10839 err = PTR_ERR(task); 10840 goto err_group_fd; 10841 } 10842 } 10843 10844 if (task && group_leader && 10845 group_leader->attr.inherit != attr.inherit) { 10846 err = -EINVAL; 10847 goto err_task; 10848 } 10849 10850 if (task) { 10851 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10852 if (err) 10853 goto err_task; 10854 10855 /* 10856 * Reuse ptrace permission checks for now. 10857 * 10858 * We must hold cred_guard_mutex across this and any potential 10859 * perf_install_in_context() call for this new event to 10860 * serialize against exec() altering our credentials (and the 10861 * perf_event_exit_task() that could imply). 10862 */ 10863 err = -EACCES; 10864 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10865 goto err_cred; 10866 } 10867 10868 if (flags & PERF_FLAG_PID_CGROUP) 10869 cgroup_fd = pid; 10870 10871 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10872 NULL, NULL, cgroup_fd); 10873 if (IS_ERR(event)) { 10874 err = PTR_ERR(event); 10875 goto err_cred; 10876 } 10877 10878 if (is_sampling_event(event)) { 10879 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10880 err = -EOPNOTSUPP; 10881 goto err_alloc; 10882 } 10883 } 10884 10885 /* 10886 * Special case software events and allow them to be part of 10887 * any hardware group. 10888 */ 10889 pmu = event->pmu; 10890 10891 if (attr.use_clockid) { 10892 err = perf_event_set_clock(event, attr.clockid); 10893 if (err) 10894 goto err_alloc; 10895 } 10896 10897 if (pmu->task_ctx_nr == perf_sw_context) 10898 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10899 10900 if (group_leader) { 10901 if (is_software_event(event) && 10902 !in_software_context(group_leader)) { 10903 /* 10904 * If the event is a sw event, but the group_leader 10905 * is on hw context. 10906 * 10907 * Allow the addition of software events to hw 10908 * groups, this is safe because software events 10909 * never fail to schedule. 10910 */ 10911 pmu = group_leader->ctx->pmu; 10912 } else if (!is_software_event(event) && 10913 is_software_event(group_leader) && 10914 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10915 /* 10916 * In case the group is a pure software group, and we 10917 * try to add a hardware event, move the whole group to 10918 * the hardware context. 10919 */ 10920 move_group = 1; 10921 } 10922 } 10923 10924 /* 10925 * Get the target context (task or percpu): 10926 */ 10927 ctx = find_get_context(pmu, task, event); 10928 if (IS_ERR(ctx)) { 10929 err = PTR_ERR(ctx); 10930 goto err_alloc; 10931 } 10932 10933 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10934 err = -EBUSY; 10935 goto err_context; 10936 } 10937 10938 /* 10939 * Look up the group leader (we will attach this event to it): 10940 */ 10941 if (group_leader) { 10942 err = -EINVAL; 10943 10944 /* 10945 * Do not allow a recursive hierarchy (this new sibling 10946 * becoming part of another group-sibling): 10947 */ 10948 if (group_leader->group_leader != group_leader) 10949 goto err_context; 10950 10951 /* All events in a group should have the same clock */ 10952 if (group_leader->clock != event->clock) 10953 goto err_context; 10954 10955 /* 10956 * Make sure we're both events for the same CPU; 10957 * grouping events for different CPUs is broken; since 10958 * you can never concurrently schedule them anyhow. 10959 */ 10960 if (group_leader->cpu != event->cpu) 10961 goto err_context; 10962 10963 /* 10964 * Make sure we're both on the same task, or both 10965 * per-CPU events. 10966 */ 10967 if (group_leader->ctx->task != ctx->task) 10968 goto err_context; 10969 10970 /* 10971 * Do not allow to attach to a group in a different task 10972 * or CPU context. If we're moving SW events, we'll fix 10973 * this up later, so allow that. 10974 */ 10975 if (!move_group && group_leader->ctx != ctx) 10976 goto err_context; 10977 10978 /* 10979 * Only a group leader can be exclusive or pinned 10980 */ 10981 if (attr.exclusive || attr.pinned) 10982 goto err_context; 10983 } 10984 10985 if (output_event) { 10986 err = perf_event_set_output(event, output_event); 10987 if (err) 10988 goto err_context; 10989 } 10990 10991 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10992 f_flags); 10993 if (IS_ERR(event_file)) { 10994 err = PTR_ERR(event_file); 10995 event_file = NULL; 10996 goto err_context; 10997 } 10998 10999 if (move_group) { 11000 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11001 11002 if (gctx->task == TASK_TOMBSTONE) { 11003 err = -ESRCH; 11004 goto err_locked; 11005 } 11006 11007 /* 11008 * Check if we raced against another sys_perf_event_open() call 11009 * moving the software group underneath us. 11010 */ 11011 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11012 /* 11013 * If someone moved the group out from under us, check 11014 * if this new event wound up on the same ctx, if so 11015 * its the regular !move_group case, otherwise fail. 11016 */ 11017 if (gctx != ctx) { 11018 err = -EINVAL; 11019 goto err_locked; 11020 } else { 11021 perf_event_ctx_unlock(group_leader, gctx); 11022 move_group = 0; 11023 } 11024 } 11025 } else { 11026 mutex_lock(&ctx->mutex); 11027 } 11028 11029 if (ctx->task == TASK_TOMBSTONE) { 11030 err = -ESRCH; 11031 goto err_locked; 11032 } 11033 11034 if (!perf_event_validate_size(event)) { 11035 err = -E2BIG; 11036 goto err_locked; 11037 } 11038 11039 if (!task) { 11040 /* 11041 * Check if the @cpu we're creating an event for is online. 11042 * 11043 * We use the perf_cpu_context::ctx::mutex to serialize against 11044 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11045 */ 11046 struct perf_cpu_context *cpuctx = 11047 container_of(ctx, struct perf_cpu_context, ctx); 11048 11049 if (!cpuctx->online) { 11050 err = -ENODEV; 11051 goto err_locked; 11052 } 11053 } 11054 11055 11056 /* 11057 * Must be under the same ctx::mutex as perf_install_in_context(), 11058 * because we need to serialize with concurrent event creation. 11059 */ 11060 if (!exclusive_event_installable(event, ctx)) { 11061 /* exclusive and group stuff are assumed mutually exclusive */ 11062 WARN_ON_ONCE(move_group); 11063 11064 err = -EBUSY; 11065 goto err_locked; 11066 } 11067 11068 WARN_ON_ONCE(ctx->parent_ctx); 11069 11070 /* 11071 * This is the point on no return; we cannot fail hereafter. This is 11072 * where we start modifying current state. 11073 */ 11074 11075 if (move_group) { 11076 /* 11077 * See perf_event_ctx_lock() for comments on the details 11078 * of swizzling perf_event::ctx. 11079 */ 11080 perf_remove_from_context(group_leader, 0); 11081 put_ctx(gctx); 11082 11083 for_each_sibling_event(sibling, group_leader) { 11084 perf_remove_from_context(sibling, 0); 11085 put_ctx(gctx); 11086 } 11087 11088 /* 11089 * Wait for everybody to stop referencing the events through 11090 * the old lists, before installing it on new lists. 11091 */ 11092 synchronize_rcu(); 11093 11094 /* 11095 * Install the group siblings before the group leader. 11096 * 11097 * Because a group leader will try and install the entire group 11098 * (through the sibling list, which is still in-tact), we can 11099 * end up with siblings installed in the wrong context. 11100 * 11101 * By installing siblings first we NO-OP because they're not 11102 * reachable through the group lists. 11103 */ 11104 for_each_sibling_event(sibling, group_leader) { 11105 perf_event__state_init(sibling); 11106 perf_install_in_context(ctx, sibling, sibling->cpu); 11107 get_ctx(ctx); 11108 } 11109 11110 /* 11111 * Removing from the context ends up with disabled 11112 * event. What we want here is event in the initial 11113 * startup state, ready to be add into new context. 11114 */ 11115 perf_event__state_init(group_leader); 11116 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11117 get_ctx(ctx); 11118 } 11119 11120 /* 11121 * Precalculate sample_data sizes; do while holding ctx::mutex such 11122 * that we're serialized against further additions and before 11123 * perf_install_in_context() which is the point the event is active and 11124 * can use these values. 11125 */ 11126 perf_event__header_size(event); 11127 perf_event__id_header_size(event); 11128 11129 event->owner = current; 11130 11131 perf_install_in_context(ctx, event, event->cpu); 11132 perf_unpin_context(ctx); 11133 11134 if (move_group) 11135 perf_event_ctx_unlock(group_leader, gctx); 11136 mutex_unlock(&ctx->mutex); 11137 11138 if (task) { 11139 mutex_unlock(&task->signal->cred_guard_mutex); 11140 put_task_struct(task); 11141 } 11142 11143 mutex_lock(¤t->perf_event_mutex); 11144 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11145 mutex_unlock(¤t->perf_event_mutex); 11146 11147 /* 11148 * Drop the reference on the group_event after placing the 11149 * new event on the sibling_list. This ensures destruction 11150 * of the group leader will find the pointer to itself in 11151 * perf_group_detach(). 11152 */ 11153 fdput(group); 11154 fd_install(event_fd, event_file); 11155 return event_fd; 11156 11157 err_locked: 11158 if (move_group) 11159 perf_event_ctx_unlock(group_leader, gctx); 11160 mutex_unlock(&ctx->mutex); 11161 /* err_file: */ 11162 fput(event_file); 11163 err_context: 11164 perf_unpin_context(ctx); 11165 put_ctx(ctx); 11166 err_alloc: 11167 /* 11168 * If event_file is set, the fput() above will have called ->release() 11169 * and that will take care of freeing the event. 11170 */ 11171 if (!event_file) 11172 free_event(event); 11173 err_cred: 11174 if (task) 11175 mutex_unlock(&task->signal->cred_guard_mutex); 11176 err_task: 11177 if (task) 11178 put_task_struct(task); 11179 err_group_fd: 11180 fdput(group); 11181 err_fd: 11182 put_unused_fd(event_fd); 11183 return err; 11184 } 11185 11186 /** 11187 * perf_event_create_kernel_counter 11188 * 11189 * @attr: attributes of the counter to create 11190 * @cpu: cpu in which the counter is bound 11191 * @task: task to profile (NULL for percpu) 11192 */ 11193 struct perf_event * 11194 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11195 struct task_struct *task, 11196 perf_overflow_handler_t overflow_handler, 11197 void *context) 11198 { 11199 struct perf_event_context *ctx; 11200 struct perf_event *event; 11201 int err; 11202 11203 /* 11204 * Get the target context (task or percpu): 11205 */ 11206 11207 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11208 overflow_handler, context, -1); 11209 if (IS_ERR(event)) { 11210 err = PTR_ERR(event); 11211 goto err; 11212 } 11213 11214 /* Mark owner so we could distinguish it from user events. */ 11215 event->owner = TASK_TOMBSTONE; 11216 11217 ctx = find_get_context(event->pmu, task, event); 11218 if (IS_ERR(ctx)) { 11219 err = PTR_ERR(ctx); 11220 goto err_free; 11221 } 11222 11223 WARN_ON_ONCE(ctx->parent_ctx); 11224 mutex_lock(&ctx->mutex); 11225 if (ctx->task == TASK_TOMBSTONE) { 11226 err = -ESRCH; 11227 goto err_unlock; 11228 } 11229 11230 if (!task) { 11231 /* 11232 * Check if the @cpu we're creating an event for is online. 11233 * 11234 * We use the perf_cpu_context::ctx::mutex to serialize against 11235 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11236 */ 11237 struct perf_cpu_context *cpuctx = 11238 container_of(ctx, struct perf_cpu_context, ctx); 11239 if (!cpuctx->online) { 11240 err = -ENODEV; 11241 goto err_unlock; 11242 } 11243 } 11244 11245 if (!exclusive_event_installable(event, ctx)) { 11246 err = -EBUSY; 11247 goto err_unlock; 11248 } 11249 11250 perf_install_in_context(ctx, event, cpu); 11251 perf_unpin_context(ctx); 11252 mutex_unlock(&ctx->mutex); 11253 11254 return event; 11255 11256 err_unlock: 11257 mutex_unlock(&ctx->mutex); 11258 perf_unpin_context(ctx); 11259 put_ctx(ctx); 11260 err_free: 11261 free_event(event); 11262 err: 11263 return ERR_PTR(err); 11264 } 11265 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11266 11267 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11268 { 11269 struct perf_event_context *src_ctx; 11270 struct perf_event_context *dst_ctx; 11271 struct perf_event *event, *tmp; 11272 LIST_HEAD(events); 11273 11274 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11275 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11276 11277 /* 11278 * See perf_event_ctx_lock() for comments on the details 11279 * of swizzling perf_event::ctx. 11280 */ 11281 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11282 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11283 event_entry) { 11284 perf_remove_from_context(event, 0); 11285 unaccount_event_cpu(event, src_cpu); 11286 put_ctx(src_ctx); 11287 list_add(&event->migrate_entry, &events); 11288 } 11289 11290 /* 11291 * Wait for the events to quiesce before re-instating them. 11292 */ 11293 synchronize_rcu(); 11294 11295 /* 11296 * Re-instate events in 2 passes. 11297 * 11298 * Skip over group leaders and only install siblings on this first 11299 * pass, siblings will not get enabled without a leader, however a 11300 * leader will enable its siblings, even if those are still on the old 11301 * context. 11302 */ 11303 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11304 if (event->group_leader == event) 11305 continue; 11306 11307 list_del(&event->migrate_entry); 11308 if (event->state >= PERF_EVENT_STATE_OFF) 11309 event->state = PERF_EVENT_STATE_INACTIVE; 11310 account_event_cpu(event, dst_cpu); 11311 perf_install_in_context(dst_ctx, event, dst_cpu); 11312 get_ctx(dst_ctx); 11313 } 11314 11315 /* 11316 * Once all the siblings are setup properly, install the group leaders 11317 * to make it go. 11318 */ 11319 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11320 list_del(&event->migrate_entry); 11321 if (event->state >= PERF_EVENT_STATE_OFF) 11322 event->state = PERF_EVENT_STATE_INACTIVE; 11323 account_event_cpu(event, dst_cpu); 11324 perf_install_in_context(dst_ctx, event, dst_cpu); 11325 get_ctx(dst_ctx); 11326 } 11327 mutex_unlock(&dst_ctx->mutex); 11328 mutex_unlock(&src_ctx->mutex); 11329 } 11330 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11331 11332 static void sync_child_event(struct perf_event *child_event, 11333 struct task_struct *child) 11334 { 11335 struct perf_event *parent_event = child_event->parent; 11336 u64 child_val; 11337 11338 if (child_event->attr.inherit_stat) 11339 perf_event_read_event(child_event, child); 11340 11341 child_val = perf_event_count(child_event); 11342 11343 /* 11344 * Add back the child's count to the parent's count: 11345 */ 11346 atomic64_add(child_val, &parent_event->child_count); 11347 atomic64_add(child_event->total_time_enabled, 11348 &parent_event->child_total_time_enabled); 11349 atomic64_add(child_event->total_time_running, 11350 &parent_event->child_total_time_running); 11351 } 11352 11353 static void 11354 perf_event_exit_event(struct perf_event *child_event, 11355 struct perf_event_context *child_ctx, 11356 struct task_struct *child) 11357 { 11358 struct perf_event *parent_event = child_event->parent; 11359 11360 /* 11361 * Do not destroy the 'original' grouping; because of the context 11362 * switch optimization the original events could've ended up in a 11363 * random child task. 11364 * 11365 * If we were to destroy the original group, all group related 11366 * operations would cease to function properly after this random 11367 * child dies. 11368 * 11369 * Do destroy all inherited groups, we don't care about those 11370 * and being thorough is better. 11371 */ 11372 raw_spin_lock_irq(&child_ctx->lock); 11373 WARN_ON_ONCE(child_ctx->is_active); 11374 11375 if (parent_event) 11376 perf_group_detach(child_event); 11377 list_del_event(child_event, child_ctx); 11378 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11379 raw_spin_unlock_irq(&child_ctx->lock); 11380 11381 /* 11382 * Parent events are governed by their filedesc, retain them. 11383 */ 11384 if (!parent_event) { 11385 perf_event_wakeup(child_event); 11386 return; 11387 } 11388 /* 11389 * Child events can be cleaned up. 11390 */ 11391 11392 sync_child_event(child_event, child); 11393 11394 /* 11395 * Remove this event from the parent's list 11396 */ 11397 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11398 mutex_lock(&parent_event->child_mutex); 11399 list_del_init(&child_event->child_list); 11400 mutex_unlock(&parent_event->child_mutex); 11401 11402 /* 11403 * Kick perf_poll() for is_event_hup(). 11404 */ 11405 perf_event_wakeup(parent_event); 11406 free_event(child_event); 11407 put_event(parent_event); 11408 } 11409 11410 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11411 { 11412 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11413 struct perf_event *child_event, *next; 11414 11415 WARN_ON_ONCE(child != current); 11416 11417 child_ctx = perf_pin_task_context(child, ctxn); 11418 if (!child_ctx) 11419 return; 11420 11421 /* 11422 * In order to reduce the amount of tricky in ctx tear-down, we hold 11423 * ctx::mutex over the entire thing. This serializes against almost 11424 * everything that wants to access the ctx. 11425 * 11426 * The exception is sys_perf_event_open() / 11427 * perf_event_create_kernel_count() which does find_get_context() 11428 * without ctx::mutex (it cannot because of the move_group double mutex 11429 * lock thing). See the comments in perf_install_in_context(). 11430 */ 11431 mutex_lock(&child_ctx->mutex); 11432 11433 /* 11434 * In a single ctx::lock section, de-schedule the events and detach the 11435 * context from the task such that we cannot ever get it scheduled back 11436 * in. 11437 */ 11438 raw_spin_lock_irq(&child_ctx->lock); 11439 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11440 11441 /* 11442 * Now that the context is inactive, destroy the task <-> ctx relation 11443 * and mark the context dead. 11444 */ 11445 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11446 put_ctx(child_ctx); /* cannot be last */ 11447 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11448 put_task_struct(current); /* cannot be last */ 11449 11450 clone_ctx = unclone_ctx(child_ctx); 11451 raw_spin_unlock_irq(&child_ctx->lock); 11452 11453 if (clone_ctx) 11454 put_ctx(clone_ctx); 11455 11456 /* 11457 * Report the task dead after unscheduling the events so that we 11458 * won't get any samples after PERF_RECORD_EXIT. We can however still 11459 * get a few PERF_RECORD_READ events. 11460 */ 11461 perf_event_task(child, child_ctx, 0); 11462 11463 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11464 perf_event_exit_event(child_event, child_ctx, child); 11465 11466 mutex_unlock(&child_ctx->mutex); 11467 11468 put_ctx(child_ctx); 11469 } 11470 11471 /* 11472 * When a child task exits, feed back event values to parent events. 11473 * 11474 * Can be called with cred_guard_mutex held when called from 11475 * install_exec_creds(). 11476 */ 11477 void perf_event_exit_task(struct task_struct *child) 11478 { 11479 struct perf_event *event, *tmp; 11480 int ctxn; 11481 11482 mutex_lock(&child->perf_event_mutex); 11483 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11484 owner_entry) { 11485 list_del_init(&event->owner_entry); 11486 11487 /* 11488 * Ensure the list deletion is visible before we clear 11489 * the owner, closes a race against perf_release() where 11490 * we need to serialize on the owner->perf_event_mutex. 11491 */ 11492 smp_store_release(&event->owner, NULL); 11493 } 11494 mutex_unlock(&child->perf_event_mutex); 11495 11496 for_each_task_context_nr(ctxn) 11497 perf_event_exit_task_context(child, ctxn); 11498 11499 /* 11500 * The perf_event_exit_task_context calls perf_event_task 11501 * with child's task_ctx, which generates EXIT events for 11502 * child contexts and sets child->perf_event_ctxp[] to NULL. 11503 * At this point we need to send EXIT events to cpu contexts. 11504 */ 11505 perf_event_task(child, NULL, 0); 11506 } 11507 11508 static void perf_free_event(struct perf_event *event, 11509 struct perf_event_context *ctx) 11510 { 11511 struct perf_event *parent = event->parent; 11512 11513 if (WARN_ON_ONCE(!parent)) 11514 return; 11515 11516 mutex_lock(&parent->child_mutex); 11517 list_del_init(&event->child_list); 11518 mutex_unlock(&parent->child_mutex); 11519 11520 put_event(parent); 11521 11522 raw_spin_lock_irq(&ctx->lock); 11523 perf_group_detach(event); 11524 list_del_event(event, ctx); 11525 raw_spin_unlock_irq(&ctx->lock); 11526 free_event(event); 11527 } 11528 11529 /* 11530 * Free an unexposed, unused context as created by inheritance by 11531 * perf_event_init_task below, used by fork() in case of fail. 11532 * 11533 * Not all locks are strictly required, but take them anyway to be nice and 11534 * help out with the lockdep assertions. 11535 */ 11536 void perf_event_free_task(struct task_struct *task) 11537 { 11538 struct perf_event_context *ctx; 11539 struct perf_event *event, *tmp; 11540 int ctxn; 11541 11542 for_each_task_context_nr(ctxn) { 11543 ctx = task->perf_event_ctxp[ctxn]; 11544 if (!ctx) 11545 continue; 11546 11547 mutex_lock(&ctx->mutex); 11548 raw_spin_lock_irq(&ctx->lock); 11549 /* 11550 * Destroy the task <-> ctx relation and mark the context dead. 11551 * 11552 * This is important because even though the task hasn't been 11553 * exposed yet the context has been (through child_list). 11554 */ 11555 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11556 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11557 put_task_struct(task); /* cannot be last */ 11558 raw_spin_unlock_irq(&ctx->lock); 11559 11560 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11561 perf_free_event(event, ctx); 11562 11563 mutex_unlock(&ctx->mutex); 11564 put_ctx(ctx); 11565 } 11566 } 11567 11568 void perf_event_delayed_put(struct task_struct *task) 11569 { 11570 int ctxn; 11571 11572 for_each_task_context_nr(ctxn) 11573 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11574 } 11575 11576 struct file *perf_event_get(unsigned int fd) 11577 { 11578 struct file *file; 11579 11580 file = fget_raw(fd); 11581 if (!file) 11582 return ERR_PTR(-EBADF); 11583 11584 if (file->f_op != &perf_fops) { 11585 fput(file); 11586 return ERR_PTR(-EBADF); 11587 } 11588 11589 return file; 11590 } 11591 11592 const struct perf_event *perf_get_event(struct file *file) 11593 { 11594 if (file->f_op != &perf_fops) 11595 return ERR_PTR(-EINVAL); 11596 11597 return file->private_data; 11598 } 11599 11600 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11601 { 11602 if (!event) 11603 return ERR_PTR(-EINVAL); 11604 11605 return &event->attr; 11606 } 11607 11608 /* 11609 * Inherit an event from parent task to child task. 11610 * 11611 * Returns: 11612 * - valid pointer on success 11613 * - NULL for orphaned events 11614 * - IS_ERR() on error 11615 */ 11616 static struct perf_event * 11617 inherit_event(struct perf_event *parent_event, 11618 struct task_struct *parent, 11619 struct perf_event_context *parent_ctx, 11620 struct task_struct *child, 11621 struct perf_event *group_leader, 11622 struct perf_event_context *child_ctx) 11623 { 11624 enum perf_event_state parent_state = parent_event->state; 11625 struct perf_event *child_event; 11626 unsigned long flags; 11627 11628 /* 11629 * Instead of creating recursive hierarchies of events, 11630 * we link inherited events back to the original parent, 11631 * which has a filp for sure, which we use as the reference 11632 * count: 11633 */ 11634 if (parent_event->parent) 11635 parent_event = parent_event->parent; 11636 11637 child_event = perf_event_alloc(&parent_event->attr, 11638 parent_event->cpu, 11639 child, 11640 group_leader, parent_event, 11641 NULL, NULL, -1); 11642 if (IS_ERR(child_event)) 11643 return child_event; 11644 11645 11646 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11647 !child_ctx->task_ctx_data) { 11648 struct pmu *pmu = child_event->pmu; 11649 11650 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11651 GFP_KERNEL); 11652 if (!child_ctx->task_ctx_data) { 11653 free_event(child_event); 11654 return NULL; 11655 } 11656 } 11657 11658 /* 11659 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11660 * must be under the same lock in order to serialize against 11661 * perf_event_release_kernel(), such that either we must observe 11662 * is_orphaned_event() or they will observe us on the child_list. 11663 */ 11664 mutex_lock(&parent_event->child_mutex); 11665 if (is_orphaned_event(parent_event) || 11666 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11667 mutex_unlock(&parent_event->child_mutex); 11668 /* task_ctx_data is freed with child_ctx */ 11669 free_event(child_event); 11670 return NULL; 11671 } 11672 11673 get_ctx(child_ctx); 11674 11675 /* 11676 * Make the child state follow the state of the parent event, 11677 * not its attr.disabled bit. We hold the parent's mutex, 11678 * so we won't race with perf_event_{en, dis}able_family. 11679 */ 11680 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11681 child_event->state = PERF_EVENT_STATE_INACTIVE; 11682 else 11683 child_event->state = PERF_EVENT_STATE_OFF; 11684 11685 if (parent_event->attr.freq) { 11686 u64 sample_period = parent_event->hw.sample_period; 11687 struct hw_perf_event *hwc = &child_event->hw; 11688 11689 hwc->sample_period = sample_period; 11690 hwc->last_period = sample_period; 11691 11692 local64_set(&hwc->period_left, sample_period); 11693 } 11694 11695 child_event->ctx = child_ctx; 11696 child_event->overflow_handler = parent_event->overflow_handler; 11697 child_event->overflow_handler_context 11698 = parent_event->overflow_handler_context; 11699 11700 /* 11701 * Precalculate sample_data sizes 11702 */ 11703 perf_event__header_size(child_event); 11704 perf_event__id_header_size(child_event); 11705 11706 /* 11707 * Link it up in the child's context: 11708 */ 11709 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11710 add_event_to_ctx(child_event, child_ctx); 11711 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11712 11713 /* 11714 * Link this into the parent event's child list 11715 */ 11716 list_add_tail(&child_event->child_list, &parent_event->child_list); 11717 mutex_unlock(&parent_event->child_mutex); 11718 11719 return child_event; 11720 } 11721 11722 /* 11723 * Inherits an event group. 11724 * 11725 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11726 * This matches with perf_event_release_kernel() removing all child events. 11727 * 11728 * Returns: 11729 * - 0 on success 11730 * - <0 on error 11731 */ 11732 static int inherit_group(struct perf_event *parent_event, 11733 struct task_struct *parent, 11734 struct perf_event_context *parent_ctx, 11735 struct task_struct *child, 11736 struct perf_event_context *child_ctx) 11737 { 11738 struct perf_event *leader; 11739 struct perf_event *sub; 11740 struct perf_event *child_ctr; 11741 11742 leader = inherit_event(parent_event, parent, parent_ctx, 11743 child, NULL, child_ctx); 11744 if (IS_ERR(leader)) 11745 return PTR_ERR(leader); 11746 /* 11747 * @leader can be NULL here because of is_orphaned_event(). In this 11748 * case inherit_event() will create individual events, similar to what 11749 * perf_group_detach() would do anyway. 11750 */ 11751 for_each_sibling_event(sub, parent_event) { 11752 child_ctr = inherit_event(sub, parent, parent_ctx, 11753 child, leader, child_ctx); 11754 if (IS_ERR(child_ctr)) 11755 return PTR_ERR(child_ctr); 11756 } 11757 return 0; 11758 } 11759 11760 /* 11761 * Creates the child task context and tries to inherit the event-group. 11762 * 11763 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11764 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11765 * consistent with perf_event_release_kernel() removing all child events. 11766 * 11767 * Returns: 11768 * - 0 on success 11769 * - <0 on error 11770 */ 11771 static int 11772 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11773 struct perf_event_context *parent_ctx, 11774 struct task_struct *child, int ctxn, 11775 int *inherited_all) 11776 { 11777 int ret; 11778 struct perf_event_context *child_ctx; 11779 11780 if (!event->attr.inherit) { 11781 *inherited_all = 0; 11782 return 0; 11783 } 11784 11785 child_ctx = child->perf_event_ctxp[ctxn]; 11786 if (!child_ctx) { 11787 /* 11788 * This is executed from the parent task context, so 11789 * inherit events that have been marked for cloning. 11790 * First allocate and initialize a context for the 11791 * child. 11792 */ 11793 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11794 if (!child_ctx) 11795 return -ENOMEM; 11796 11797 child->perf_event_ctxp[ctxn] = child_ctx; 11798 } 11799 11800 ret = inherit_group(event, parent, parent_ctx, 11801 child, child_ctx); 11802 11803 if (ret) 11804 *inherited_all = 0; 11805 11806 return ret; 11807 } 11808 11809 /* 11810 * Initialize the perf_event context in task_struct 11811 */ 11812 static int perf_event_init_context(struct task_struct *child, int ctxn) 11813 { 11814 struct perf_event_context *child_ctx, *parent_ctx; 11815 struct perf_event_context *cloned_ctx; 11816 struct perf_event *event; 11817 struct task_struct *parent = current; 11818 int inherited_all = 1; 11819 unsigned long flags; 11820 int ret = 0; 11821 11822 if (likely(!parent->perf_event_ctxp[ctxn])) 11823 return 0; 11824 11825 /* 11826 * If the parent's context is a clone, pin it so it won't get 11827 * swapped under us. 11828 */ 11829 parent_ctx = perf_pin_task_context(parent, ctxn); 11830 if (!parent_ctx) 11831 return 0; 11832 11833 /* 11834 * No need to check if parent_ctx != NULL here; since we saw 11835 * it non-NULL earlier, the only reason for it to become NULL 11836 * is if we exit, and since we're currently in the middle of 11837 * a fork we can't be exiting at the same time. 11838 */ 11839 11840 /* 11841 * Lock the parent list. No need to lock the child - not PID 11842 * hashed yet and not running, so nobody can access it. 11843 */ 11844 mutex_lock(&parent_ctx->mutex); 11845 11846 /* 11847 * We dont have to disable NMIs - we are only looking at 11848 * the list, not manipulating it: 11849 */ 11850 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11851 ret = inherit_task_group(event, parent, parent_ctx, 11852 child, ctxn, &inherited_all); 11853 if (ret) 11854 goto out_unlock; 11855 } 11856 11857 /* 11858 * We can't hold ctx->lock when iterating the ->flexible_group list due 11859 * to allocations, but we need to prevent rotation because 11860 * rotate_ctx() will change the list from interrupt context. 11861 */ 11862 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11863 parent_ctx->rotate_disable = 1; 11864 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11865 11866 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11867 ret = inherit_task_group(event, parent, parent_ctx, 11868 child, ctxn, &inherited_all); 11869 if (ret) 11870 goto out_unlock; 11871 } 11872 11873 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11874 parent_ctx->rotate_disable = 0; 11875 11876 child_ctx = child->perf_event_ctxp[ctxn]; 11877 11878 if (child_ctx && inherited_all) { 11879 /* 11880 * Mark the child context as a clone of the parent 11881 * context, or of whatever the parent is a clone of. 11882 * 11883 * Note that if the parent is a clone, the holding of 11884 * parent_ctx->lock avoids it from being uncloned. 11885 */ 11886 cloned_ctx = parent_ctx->parent_ctx; 11887 if (cloned_ctx) { 11888 child_ctx->parent_ctx = cloned_ctx; 11889 child_ctx->parent_gen = parent_ctx->parent_gen; 11890 } else { 11891 child_ctx->parent_ctx = parent_ctx; 11892 child_ctx->parent_gen = parent_ctx->generation; 11893 } 11894 get_ctx(child_ctx->parent_ctx); 11895 } 11896 11897 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11898 out_unlock: 11899 mutex_unlock(&parent_ctx->mutex); 11900 11901 perf_unpin_context(parent_ctx); 11902 put_ctx(parent_ctx); 11903 11904 return ret; 11905 } 11906 11907 /* 11908 * Initialize the perf_event context in task_struct 11909 */ 11910 int perf_event_init_task(struct task_struct *child) 11911 { 11912 int ctxn, ret; 11913 11914 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11915 mutex_init(&child->perf_event_mutex); 11916 INIT_LIST_HEAD(&child->perf_event_list); 11917 11918 for_each_task_context_nr(ctxn) { 11919 ret = perf_event_init_context(child, ctxn); 11920 if (ret) { 11921 perf_event_free_task(child); 11922 return ret; 11923 } 11924 } 11925 11926 return 0; 11927 } 11928 11929 static void __init perf_event_init_all_cpus(void) 11930 { 11931 struct swevent_htable *swhash; 11932 int cpu; 11933 11934 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11935 11936 for_each_possible_cpu(cpu) { 11937 swhash = &per_cpu(swevent_htable, cpu); 11938 mutex_init(&swhash->hlist_mutex); 11939 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11940 11941 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11942 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11943 11944 #ifdef CONFIG_CGROUP_PERF 11945 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11946 #endif 11947 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11948 } 11949 } 11950 11951 static void perf_swevent_init_cpu(unsigned int cpu) 11952 { 11953 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11954 11955 mutex_lock(&swhash->hlist_mutex); 11956 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11957 struct swevent_hlist *hlist; 11958 11959 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11960 WARN_ON(!hlist); 11961 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11962 } 11963 mutex_unlock(&swhash->hlist_mutex); 11964 } 11965 11966 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11967 static void __perf_event_exit_context(void *__info) 11968 { 11969 struct perf_event_context *ctx = __info; 11970 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11971 struct perf_event *event; 11972 11973 raw_spin_lock(&ctx->lock); 11974 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11975 list_for_each_entry(event, &ctx->event_list, event_entry) 11976 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11977 raw_spin_unlock(&ctx->lock); 11978 } 11979 11980 static void perf_event_exit_cpu_context(int cpu) 11981 { 11982 struct perf_cpu_context *cpuctx; 11983 struct perf_event_context *ctx; 11984 struct pmu *pmu; 11985 11986 mutex_lock(&pmus_lock); 11987 list_for_each_entry(pmu, &pmus, entry) { 11988 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11989 ctx = &cpuctx->ctx; 11990 11991 mutex_lock(&ctx->mutex); 11992 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11993 cpuctx->online = 0; 11994 mutex_unlock(&ctx->mutex); 11995 } 11996 cpumask_clear_cpu(cpu, perf_online_mask); 11997 mutex_unlock(&pmus_lock); 11998 } 11999 #else 12000 12001 static void perf_event_exit_cpu_context(int cpu) { } 12002 12003 #endif 12004 12005 int perf_event_init_cpu(unsigned int cpu) 12006 { 12007 struct perf_cpu_context *cpuctx; 12008 struct perf_event_context *ctx; 12009 struct pmu *pmu; 12010 12011 perf_swevent_init_cpu(cpu); 12012 12013 mutex_lock(&pmus_lock); 12014 cpumask_set_cpu(cpu, perf_online_mask); 12015 list_for_each_entry(pmu, &pmus, entry) { 12016 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12017 ctx = &cpuctx->ctx; 12018 12019 mutex_lock(&ctx->mutex); 12020 cpuctx->online = 1; 12021 mutex_unlock(&ctx->mutex); 12022 } 12023 mutex_unlock(&pmus_lock); 12024 12025 return 0; 12026 } 12027 12028 int perf_event_exit_cpu(unsigned int cpu) 12029 { 12030 perf_event_exit_cpu_context(cpu); 12031 return 0; 12032 } 12033 12034 static int 12035 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12036 { 12037 int cpu; 12038 12039 for_each_online_cpu(cpu) 12040 perf_event_exit_cpu(cpu); 12041 12042 return NOTIFY_OK; 12043 } 12044 12045 /* 12046 * Run the perf reboot notifier at the very last possible moment so that 12047 * the generic watchdog code runs as long as possible. 12048 */ 12049 static struct notifier_block perf_reboot_notifier = { 12050 .notifier_call = perf_reboot, 12051 .priority = INT_MIN, 12052 }; 12053 12054 void __init perf_event_init(void) 12055 { 12056 int ret; 12057 12058 idr_init(&pmu_idr); 12059 12060 perf_event_init_all_cpus(); 12061 init_srcu_struct(&pmus_srcu); 12062 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12063 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12064 perf_pmu_register(&perf_task_clock, NULL, -1); 12065 perf_tp_register(); 12066 perf_event_init_cpu(smp_processor_id()); 12067 register_reboot_notifier(&perf_reboot_notifier); 12068 12069 ret = init_hw_breakpoint(); 12070 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12071 12072 /* 12073 * Build time assertion that we keep the data_head at the intended 12074 * location. IOW, validation we got the __reserved[] size right. 12075 */ 12076 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12077 != 1024); 12078 } 12079 12080 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12081 char *page) 12082 { 12083 struct perf_pmu_events_attr *pmu_attr = 12084 container_of(attr, struct perf_pmu_events_attr, attr); 12085 12086 if (pmu_attr->event_str) 12087 return sprintf(page, "%s\n", pmu_attr->event_str); 12088 12089 return 0; 12090 } 12091 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12092 12093 static int __init perf_event_sysfs_init(void) 12094 { 12095 struct pmu *pmu; 12096 int ret; 12097 12098 mutex_lock(&pmus_lock); 12099 12100 ret = bus_register(&pmu_bus); 12101 if (ret) 12102 goto unlock; 12103 12104 list_for_each_entry(pmu, &pmus, entry) { 12105 if (!pmu->name || pmu->type < 0) 12106 continue; 12107 12108 ret = pmu_dev_alloc(pmu); 12109 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12110 } 12111 pmu_bus_running = 1; 12112 ret = 0; 12113 12114 unlock: 12115 mutex_unlock(&pmus_lock); 12116 12117 return ret; 12118 } 12119 device_initcall(perf_event_sysfs_init); 12120 12121 #ifdef CONFIG_CGROUP_PERF 12122 static struct cgroup_subsys_state * 12123 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12124 { 12125 struct perf_cgroup *jc; 12126 12127 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12128 if (!jc) 12129 return ERR_PTR(-ENOMEM); 12130 12131 jc->info = alloc_percpu(struct perf_cgroup_info); 12132 if (!jc->info) { 12133 kfree(jc); 12134 return ERR_PTR(-ENOMEM); 12135 } 12136 12137 return &jc->css; 12138 } 12139 12140 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12141 { 12142 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12143 12144 free_percpu(jc->info); 12145 kfree(jc); 12146 } 12147 12148 static int __perf_cgroup_move(void *info) 12149 { 12150 struct task_struct *task = info; 12151 rcu_read_lock(); 12152 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12153 rcu_read_unlock(); 12154 return 0; 12155 } 12156 12157 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12158 { 12159 struct task_struct *task; 12160 struct cgroup_subsys_state *css; 12161 12162 cgroup_taskset_for_each(task, css, tset) 12163 task_function_call(task, __perf_cgroup_move, task); 12164 } 12165 12166 struct cgroup_subsys perf_event_cgrp_subsys = { 12167 .css_alloc = perf_cgroup_css_alloc, 12168 .css_free = perf_cgroup_css_free, 12169 .attach = perf_cgroup_attach, 12170 /* 12171 * Implicitly enable on dfl hierarchy so that perf events can 12172 * always be filtered by cgroup2 path as long as perf_event 12173 * controller is not mounted on a legacy hierarchy. 12174 */ 12175 .implicit_on_dfl = true, 12176 .threaded = true, 12177 }; 12178 #endif /* CONFIG_CGROUP_PERF */ 12179