xref: /linux/kernel/events/core.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892 	struct perf_event *sibling, *tmp;
1893 	struct perf_event_context *ctx = event->ctx;
1894 
1895 	lockdep_assert_held(&ctx->lock);
1896 
1897 	/*
1898 	 * We can have double detach due to exit/hot-unplug + close.
1899 	 */
1900 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 		return;
1902 
1903 	event->attach_state &= ~PERF_ATTACH_GROUP;
1904 
1905 	/*
1906 	 * If this is a sibling, remove it from its group.
1907 	 */
1908 	if (event->group_leader != event) {
1909 		list_del_init(&event->sibling_list);
1910 		event->group_leader->nr_siblings--;
1911 		goto out;
1912 	}
1913 
1914 	/*
1915 	 * If this was a group event with sibling events then
1916 	 * upgrade the siblings to singleton events by adding them
1917 	 * to whatever list we are on.
1918 	 */
1919 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920 
1921 		sibling->group_leader = sibling;
1922 		list_del_init(&sibling->sibling_list);
1923 
1924 		/* Inherit group flags from the previous leader */
1925 		sibling->group_caps = event->group_caps;
1926 
1927 		if (!RB_EMPTY_NODE(&event->group_node)) {
1928 			add_event_to_groups(sibling, event->ctx);
1929 
1930 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 				struct list_head *list = sibling->attr.pinned ?
1932 					&ctx->pinned_active : &ctx->flexible_active;
1933 
1934 				list_add_tail(&sibling->active_list, list);
1935 			}
1936 		}
1937 
1938 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 	}
1940 
1941 out:
1942 	perf_event__header_size(event->group_leader);
1943 
1944 	for_each_sibling_event(tmp, event->group_leader)
1945 		perf_event__header_size(tmp);
1946 }
1947 
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950 	return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952 
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955 	struct pmu *pmu = event->pmu;
1956 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958 
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967 	struct perf_event *sibling;
1968 
1969 	if (!__pmu_filter_match(event))
1970 		return 0;
1971 
1972 	for_each_sibling_event(sibling, event) {
1973 		if (!__pmu_filter_match(sibling))
1974 			return 0;
1975 	}
1976 
1977 	return 1;
1978 }
1979 
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 	       perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986 
1987 static void
1988 event_sched_out(struct perf_event *event,
1989 		  struct perf_cpu_context *cpuctx,
1990 		  struct perf_event_context *ctx)
1991 {
1992 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993 
1994 	WARN_ON_ONCE(event->ctx != ctx);
1995 	lockdep_assert_held(&ctx->lock);
1996 
1997 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1998 		return;
1999 
2000 	/*
2001 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 	 * we can schedule events _OUT_ individually through things like
2003 	 * __perf_remove_from_context().
2004 	 */
2005 	list_del_init(&event->active_list);
2006 
2007 	perf_pmu_disable(event->pmu);
2008 
2009 	event->pmu->del(event, 0);
2010 	event->oncpu = -1;
2011 
2012 	if (READ_ONCE(event->pending_disable) >= 0) {
2013 		WRITE_ONCE(event->pending_disable, -1);
2014 		state = PERF_EVENT_STATE_OFF;
2015 	}
2016 	perf_event_set_state(event, state);
2017 
2018 	if (!is_software_event(event))
2019 		cpuctx->active_oncpu--;
2020 	if (!--ctx->nr_active)
2021 		perf_event_ctx_deactivate(ctx);
2022 	if (event->attr.freq && event->attr.sample_freq)
2023 		ctx->nr_freq--;
2024 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 		cpuctx->exclusive = 0;
2026 
2027 	perf_pmu_enable(event->pmu);
2028 }
2029 
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032 		struct perf_cpu_context *cpuctx,
2033 		struct perf_event_context *ctx)
2034 {
2035 	struct perf_event *event;
2036 
2037 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 		return;
2039 
2040 	perf_pmu_disable(ctx->pmu);
2041 
2042 	event_sched_out(group_event, cpuctx, ctx);
2043 
2044 	/*
2045 	 * Schedule out siblings (if any):
2046 	 */
2047 	for_each_sibling_event(event, group_event)
2048 		event_sched_out(event, cpuctx, ctx);
2049 
2050 	perf_pmu_enable(ctx->pmu);
2051 
2052 	if (group_event->attr.exclusive)
2053 		cpuctx->exclusive = 0;
2054 }
2055 
2056 #define DETACH_GROUP	0x01UL
2057 
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066 			   struct perf_cpu_context *cpuctx,
2067 			   struct perf_event_context *ctx,
2068 			   void *info)
2069 {
2070 	unsigned long flags = (unsigned long)info;
2071 
2072 	if (ctx->is_active & EVENT_TIME) {
2073 		update_context_time(ctx);
2074 		update_cgrp_time_from_cpuctx(cpuctx);
2075 	}
2076 
2077 	event_sched_out(event, cpuctx, ctx);
2078 	if (flags & DETACH_GROUP)
2079 		perf_group_detach(event);
2080 	list_del_event(event, ctx);
2081 
2082 	if (!ctx->nr_events && ctx->is_active) {
2083 		ctx->is_active = 0;
2084 		if (ctx->task) {
2085 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 			cpuctx->task_ctx = NULL;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103 	struct perf_event_context *ctx = event->ctx;
2104 
2105 	lockdep_assert_held(&ctx->mutex);
2106 
2107 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 
2109 	/*
2110 	 * The above event_function_call() can NO-OP when it hits
2111 	 * TASK_TOMBSTONE. In that case we must already have been detached
2112 	 * from the context (by perf_event_exit_event()) but the grouping
2113 	 * might still be in-tact.
2114 	 */
2115 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 	if ((flags & DETACH_GROUP) &&
2117 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2118 		/*
2119 		 * Since in that case we cannot possibly be scheduled, simply
2120 		 * detach now.
2121 		 */
2122 		raw_spin_lock_irq(&ctx->lock);
2123 		perf_group_detach(event);
2124 		raw_spin_unlock_irq(&ctx->lock);
2125 	}
2126 }
2127 
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132 				 struct perf_cpu_context *cpuctx,
2133 				 struct perf_event_context *ctx,
2134 				 void *info)
2135 {
2136 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 		return;
2138 
2139 	if (ctx->is_active & EVENT_TIME) {
2140 		update_context_time(ctx);
2141 		update_cgrp_time_from_event(event);
2142 	}
2143 
2144 	if (event == event->group_leader)
2145 		group_sched_out(event, cpuctx, ctx);
2146 	else
2147 		event_sched_out(event, cpuctx, ctx);
2148 
2149 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151 
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168 	struct perf_event_context *ctx = event->ctx;
2169 
2170 	raw_spin_lock_irq(&ctx->lock);
2171 	if (event->state <= PERF_EVENT_STATE_OFF) {
2172 		raw_spin_unlock_irq(&ctx->lock);
2173 		return;
2174 	}
2175 	raw_spin_unlock_irq(&ctx->lock);
2176 
2177 	event_function_call(event, __perf_event_disable, NULL);
2178 }
2179 
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182 	event_function_local(event, __perf_event_disable, NULL);
2183 }
2184 
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191 	struct perf_event_context *ctx;
2192 
2193 	ctx = perf_event_ctx_lock(event);
2194 	_perf_event_disable(event);
2195 	perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198 
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 	/* can fail, see perf_pending_event_disable() */
2203 	irq_work_queue(&event->pending);
2204 }
2205 
2206 static void perf_set_shadow_time(struct perf_event *event,
2207 				 struct perf_event_context *ctx)
2208 {
2209 	/*
2210 	 * use the correct time source for the time snapshot
2211 	 *
2212 	 * We could get by without this by leveraging the
2213 	 * fact that to get to this function, the caller
2214 	 * has most likely already called update_context_time()
2215 	 * and update_cgrp_time_xx() and thus both timestamp
2216 	 * are identical (or very close). Given that tstamp is,
2217 	 * already adjusted for cgroup, we could say that:
2218 	 *    tstamp - ctx->timestamp
2219 	 * is equivalent to
2220 	 *    tstamp - cgrp->timestamp.
2221 	 *
2222 	 * Then, in perf_output_read(), the calculation would
2223 	 * work with no changes because:
2224 	 * - event is guaranteed scheduled in
2225 	 * - no scheduled out in between
2226 	 * - thus the timestamp would be the same
2227 	 *
2228 	 * But this is a bit hairy.
2229 	 *
2230 	 * So instead, we have an explicit cgroup call to remain
2231 	 * within the time time source all along. We believe it
2232 	 * is cleaner and simpler to understand.
2233 	 */
2234 	if (is_cgroup_event(event))
2235 		perf_cgroup_set_shadow_time(event, event->tstamp);
2236 	else
2237 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239 
2240 #define MAX_INTERRUPTS (~0ULL)
2241 
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244 
2245 static int
2246 event_sched_in(struct perf_event *event,
2247 		 struct perf_cpu_context *cpuctx,
2248 		 struct perf_event_context *ctx)
2249 {
2250 	int ret = 0;
2251 
2252 	lockdep_assert_held(&ctx->lock);
2253 
2254 	if (event->state <= PERF_EVENT_STATE_OFF)
2255 		return 0;
2256 
2257 	WRITE_ONCE(event->oncpu, smp_processor_id());
2258 	/*
2259 	 * Order event::oncpu write to happen before the ACTIVE state is
2260 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 	 * ->oncpu if it sees ACTIVE.
2262 	 */
2263 	smp_wmb();
2264 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265 
2266 	/*
2267 	 * Unthrottle events, since we scheduled we might have missed several
2268 	 * ticks already, also for a heavily scheduling task there is little
2269 	 * guarantee it'll get a tick in a timely manner.
2270 	 */
2271 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 		perf_log_throttle(event, 1);
2273 		event->hw.interrupts = 0;
2274 	}
2275 
2276 	perf_pmu_disable(event->pmu);
2277 
2278 	perf_set_shadow_time(event, ctx);
2279 
2280 	perf_log_itrace_start(event);
2281 
2282 	if (event->pmu->add(event, PERF_EF_START)) {
2283 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284 		event->oncpu = -1;
2285 		ret = -EAGAIN;
2286 		goto out;
2287 	}
2288 
2289 	if (!is_software_event(event))
2290 		cpuctx->active_oncpu++;
2291 	if (!ctx->nr_active++)
2292 		perf_event_ctx_activate(ctx);
2293 	if (event->attr.freq && event->attr.sample_freq)
2294 		ctx->nr_freq++;
2295 
2296 	if (event->attr.exclusive)
2297 		cpuctx->exclusive = 1;
2298 
2299 out:
2300 	perf_pmu_enable(event->pmu);
2301 
2302 	return ret;
2303 }
2304 
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307 	       struct perf_cpu_context *cpuctx,
2308 	       struct perf_event_context *ctx)
2309 {
2310 	struct perf_event *event, *partial_group = NULL;
2311 	struct pmu *pmu = ctx->pmu;
2312 
2313 	if (group_event->state == PERF_EVENT_STATE_OFF)
2314 		return 0;
2315 
2316 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317 
2318 	if (event_sched_in(group_event, cpuctx, ctx)) {
2319 		pmu->cancel_txn(pmu);
2320 		perf_mux_hrtimer_restart(cpuctx);
2321 		return -EAGAIN;
2322 	}
2323 
2324 	/*
2325 	 * Schedule in siblings as one group (if any):
2326 	 */
2327 	for_each_sibling_event(event, group_event) {
2328 		if (event_sched_in(event, cpuctx, ctx)) {
2329 			partial_group = event;
2330 			goto group_error;
2331 		}
2332 	}
2333 
2334 	if (!pmu->commit_txn(pmu))
2335 		return 0;
2336 
2337 group_error:
2338 	/*
2339 	 * Groups can be scheduled in as one unit only, so undo any
2340 	 * partial group before returning:
2341 	 * The events up to the failed event are scheduled out normally.
2342 	 */
2343 	for_each_sibling_event(event, group_event) {
2344 		if (event == partial_group)
2345 			break;
2346 
2347 		event_sched_out(event, cpuctx, ctx);
2348 	}
2349 	event_sched_out(group_event, cpuctx, ctx);
2350 
2351 	pmu->cancel_txn(pmu);
2352 
2353 	perf_mux_hrtimer_restart(cpuctx);
2354 
2355 	return -EAGAIN;
2356 }
2357 
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362 			   struct perf_cpu_context *cpuctx,
2363 			   int can_add_hw)
2364 {
2365 	/*
2366 	 * Groups consisting entirely of software events can always go on.
2367 	 */
2368 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369 		return 1;
2370 	/*
2371 	 * If an exclusive group is already on, no other hardware
2372 	 * events can go on.
2373 	 */
2374 	if (cpuctx->exclusive)
2375 		return 0;
2376 	/*
2377 	 * If this group is exclusive and there are already
2378 	 * events on the CPU, it can't go on.
2379 	 */
2380 	if (event->attr.exclusive && cpuctx->active_oncpu)
2381 		return 0;
2382 	/*
2383 	 * Otherwise, try to add it if all previous groups were able
2384 	 * to go on.
2385 	 */
2386 	return can_add_hw;
2387 }
2388 
2389 static void add_event_to_ctx(struct perf_event *event,
2390 			       struct perf_event_context *ctx)
2391 {
2392 	list_add_event(event, ctx);
2393 	perf_group_attach(event);
2394 }
2395 
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397 			  struct perf_cpu_context *cpuctx,
2398 			  enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401 	     struct perf_cpu_context *cpuctx,
2402 	     enum event_type_t event_type,
2403 	     struct task_struct *task);
2404 
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406 			       struct perf_event_context *ctx,
2407 			       enum event_type_t event_type)
2408 {
2409 	if (!cpuctx->task_ctx)
2410 		return;
2411 
2412 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413 		return;
2414 
2415 	ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417 
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 				struct perf_event_context *ctx,
2420 				struct task_struct *task)
2421 {
2422 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426 	if (ctx)
2427 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429 
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446 			struct perf_event_context *task_ctx,
2447 			enum event_type_t event_type)
2448 {
2449 	enum event_type_t ctx_event_type;
2450 	bool cpu_event = !!(event_type & EVENT_CPU);
2451 
2452 	/*
2453 	 * If pinned groups are involved, flexible groups also need to be
2454 	 * scheduled out.
2455 	 */
2456 	if (event_type & EVENT_PINNED)
2457 		event_type |= EVENT_FLEXIBLE;
2458 
2459 	ctx_event_type = event_type & EVENT_ALL;
2460 
2461 	perf_pmu_disable(cpuctx->ctx.pmu);
2462 	if (task_ctx)
2463 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464 
2465 	/*
2466 	 * Decide which cpu ctx groups to schedule out based on the types
2467 	 * of events that caused rescheduling:
2468 	 *  - EVENT_CPU: schedule out corresponding groups;
2469 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 	 *  - otherwise, do nothing more.
2471 	 */
2472 	if (cpu_event)
2473 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 	else if (ctx_event_type & EVENT_PINNED)
2475 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476 
2477 	perf_event_sched_in(cpuctx, task_ctx, current);
2478 	perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480 
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485 
2486 	perf_ctx_lock(cpuctx, task_ctx);
2487 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488 	perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490 
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499 	struct perf_event *event = info;
2500 	struct perf_event_context *ctx = event->ctx;
2501 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503 	bool reprogram = true;
2504 	int ret = 0;
2505 
2506 	raw_spin_lock(&cpuctx->ctx.lock);
2507 	if (ctx->task) {
2508 		raw_spin_lock(&ctx->lock);
2509 		task_ctx = ctx;
2510 
2511 		reprogram = (ctx->task == current);
2512 
2513 		/*
2514 		 * If the task is running, it must be running on this CPU,
2515 		 * otherwise we cannot reprogram things.
2516 		 *
2517 		 * If its not running, we don't care, ctx->lock will
2518 		 * serialize against it becoming runnable.
2519 		 */
2520 		if (task_curr(ctx->task) && !reprogram) {
2521 			ret = -ESRCH;
2522 			goto unlock;
2523 		}
2524 
2525 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526 	} else if (task_ctx) {
2527 		raw_spin_lock(&task_ctx->lock);
2528 	}
2529 
2530 #ifdef CONFIG_CGROUP_PERF
2531 	if (is_cgroup_event(event)) {
2532 		/*
2533 		 * If the current cgroup doesn't match the event's
2534 		 * cgroup, we should not try to schedule it.
2535 		 */
2536 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538 					event->cgrp->css.cgroup);
2539 	}
2540 #endif
2541 
2542 	if (reprogram) {
2543 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544 		add_event_to_ctx(event, ctx);
2545 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546 	} else {
2547 		add_event_to_ctx(event, ctx);
2548 	}
2549 
2550 unlock:
2551 	perf_ctx_unlock(cpuctx, task_ctx);
2552 
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Attach a performance event to a context.
2558  *
2559  * Very similar to event_function_call, see comment there.
2560  */
2561 static void
2562 perf_install_in_context(struct perf_event_context *ctx,
2563 			struct perf_event *event,
2564 			int cpu)
2565 {
2566 	struct task_struct *task = READ_ONCE(ctx->task);
2567 
2568 	lockdep_assert_held(&ctx->mutex);
2569 
2570 	if (event->cpu != -1)
2571 		event->cpu = cpu;
2572 
2573 	/*
2574 	 * Ensures that if we can observe event->ctx, both the event and ctx
2575 	 * will be 'complete'. See perf_iterate_sb_cpu().
2576 	 */
2577 	smp_store_release(&event->ctx, ctx);
2578 
2579 	if (!task) {
2580 		cpu_function_call(cpu, __perf_install_in_context, event);
2581 		return;
2582 	}
2583 
2584 	/*
2585 	 * Should not happen, we validate the ctx is still alive before calling.
2586 	 */
2587 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588 		return;
2589 
2590 	/*
2591 	 * Installing events is tricky because we cannot rely on ctx->is_active
2592 	 * to be set in case this is the nr_events 0 -> 1 transition.
2593 	 *
2594 	 * Instead we use task_curr(), which tells us if the task is running.
2595 	 * However, since we use task_curr() outside of rq::lock, we can race
2596 	 * against the actual state. This means the result can be wrong.
2597 	 *
2598 	 * If we get a false positive, we retry, this is harmless.
2599 	 *
2600 	 * If we get a false negative, things are complicated. If we are after
2601 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602 	 * value must be correct. If we're before, it doesn't matter since
2603 	 * perf_event_context_sched_in() will program the counter.
2604 	 *
2605 	 * However, this hinges on the remote context switch having observed
2606 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2607 	 * ctx::lock in perf_event_context_sched_in().
2608 	 *
2609 	 * We do this by task_function_call(), if the IPI fails to hit the task
2610 	 * we know any future context switch of task must see the
2611 	 * perf_event_ctpx[] store.
2612 	 */
2613 
2614 	/*
2615 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616 	 * task_cpu() load, such that if the IPI then does not find the task
2617 	 * running, a future context switch of that task must observe the
2618 	 * store.
2619 	 */
2620 	smp_mb();
2621 again:
2622 	if (!task_function_call(task, __perf_install_in_context, event))
2623 		return;
2624 
2625 	raw_spin_lock_irq(&ctx->lock);
2626 	task = ctx->task;
2627 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2628 		/*
2629 		 * Cannot happen because we already checked above (which also
2630 		 * cannot happen), and we hold ctx->mutex, which serializes us
2631 		 * against perf_event_exit_task_context().
2632 		 */
2633 		raw_spin_unlock_irq(&ctx->lock);
2634 		return;
2635 	}
2636 	/*
2637 	 * If the task is not running, ctx->lock will avoid it becoming so,
2638 	 * thus we can safely install the event.
2639 	 */
2640 	if (task_curr(task)) {
2641 		raw_spin_unlock_irq(&ctx->lock);
2642 		goto again;
2643 	}
2644 	add_event_to_ctx(event, ctx);
2645 	raw_spin_unlock_irq(&ctx->lock);
2646 }
2647 
2648 /*
2649  * Cross CPU call to enable a performance event
2650  */
2651 static void __perf_event_enable(struct perf_event *event,
2652 				struct perf_cpu_context *cpuctx,
2653 				struct perf_event_context *ctx,
2654 				void *info)
2655 {
2656 	struct perf_event *leader = event->group_leader;
2657 	struct perf_event_context *task_ctx;
2658 
2659 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660 	    event->state <= PERF_EVENT_STATE_ERROR)
2661 		return;
2662 
2663 	if (ctx->is_active)
2664 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665 
2666 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2667 
2668 	if (!ctx->is_active)
2669 		return;
2670 
2671 	if (!event_filter_match(event)) {
2672 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2673 		return;
2674 	}
2675 
2676 	/*
2677 	 * If the event is in a group and isn't the group leader,
2678 	 * then don't put it on unless the group is on.
2679 	 */
2680 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682 		return;
2683 	}
2684 
2685 	task_ctx = cpuctx->task_ctx;
2686 	if (ctx->task)
2687 		WARN_ON_ONCE(task_ctx != ctx);
2688 
2689 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2690 }
2691 
2692 /*
2693  * Enable an event.
2694  *
2695  * If event->ctx is a cloned context, callers must make sure that
2696  * every task struct that event->ctx->task could possibly point to
2697  * remains valid.  This condition is satisfied when called through
2698  * perf_event_for_each_child or perf_event_for_each as described
2699  * for perf_event_disable.
2700  */
2701 static void _perf_event_enable(struct perf_event *event)
2702 {
2703 	struct perf_event_context *ctx = event->ctx;
2704 
2705 	raw_spin_lock_irq(&ctx->lock);
2706 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707 	    event->state <  PERF_EVENT_STATE_ERROR) {
2708 		raw_spin_unlock_irq(&ctx->lock);
2709 		return;
2710 	}
2711 
2712 	/*
2713 	 * If the event is in error state, clear that first.
2714 	 *
2715 	 * That way, if we see the event in error state below, we know that it
2716 	 * has gone back into error state, as distinct from the task having
2717 	 * been scheduled away before the cross-call arrived.
2718 	 */
2719 	if (event->state == PERF_EVENT_STATE_ERROR)
2720 		event->state = PERF_EVENT_STATE_OFF;
2721 	raw_spin_unlock_irq(&ctx->lock);
2722 
2723 	event_function_call(event, __perf_event_enable, NULL);
2724 }
2725 
2726 /*
2727  * See perf_event_disable();
2728  */
2729 void perf_event_enable(struct perf_event *event)
2730 {
2731 	struct perf_event_context *ctx;
2732 
2733 	ctx = perf_event_ctx_lock(event);
2734 	_perf_event_enable(event);
2735 	perf_event_ctx_unlock(event, ctx);
2736 }
2737 EXPORT_SYMBOL_GPL(perf_event_enable);
2738 
2739 struct stop_event_data {
2740 	struct perf_event	*event;
2741 	unsigned int		restart;
2742 };
2743 
2744 static int __perf_event_stop(void *info)
2745 {
2746 	struct stop_event_data *sd = info;
2747 	struct perf_event *event = sd->event;
2748 
2749 	/* if it's already INACTIVE, do nothing */
2750 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751 		return 0;
2752 
2753 	/* matches smp_wmb() in event_sched_in() */
2754 	smp_rmb();
2755 
2756 	/*
2757 	 * There is a window with interrupts enabled before we get here,
2758 	 * so we need to check again lest we try to stop another CPU's event.
2759 	 */
2760 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2761 		return -EAGAIN;
2762 
2763 	event->pmu->stop(event, PERF_EF_UPDATE);
2764 
2765 	/*
2766 	 * May race with the actual stop (through perf_pmu_output_stop()),
2767 	 * but it is only used for events with AUX ring buffer, and such
2768 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2769 	 * see comments in perf_aux_output_begin().
2770 	 *
2771 	 * Since this is happening on an event-local CPU, no trace is lost
2772 	 * while restarting.
2773 	 */
2774 	if (sd->restart)
2775 		event->pmu->start(event, 0);
2776 
2777 	return 0;
2778 }
2779 
2780 static int perf_event_stop(struct perf_event *event, int restart)
2781 {
2782 	struct stop_event_data sd = {
2783 		.event		= event,
2784 		.restart	= restart,
2785 	};
2786 	int ret = 0;
2787 
2788 	do {
2789 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790 			return 0;
2791 
2792 		/* matches smp_wmb() in event_sched_in() */
2793 		smp_rmb();
2794 
2795 		/*
2796 		 * We only want to restart ACTIVE events, so if the event goes
2797 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2798 		 * fall through with ret==-ENXIO.
2799 		 */
2800 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2801 					__perf_event_stop, &sd);
2802 	} while (ret == -EAGAIN);
2803 
2804 	return ret;
2805 }
2806 
2807 /*
2808  * In order to contain the amount of racy and tricky in the address filter
2809  * configuration management, it is a two part process:
2810  *
2811  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812  *      we update the addresses of corresponding vmas in
2813  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2814  * (p2) when an event is scheduled in (pmu::add), it calls
2815  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816  *      if the generation has changed since the previous call.
2817  *
2818  * If (p1) happens while the event is active, we restart it to force (p2).
2819  *
2820  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2822  *     ioctl;
2823  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2825  *     for reading;
2826  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827  *     of exec.
2828  */
2829 void perf_event_addr_filters_sync(struct perf_event *event)
2830 {
2831 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832 
2833 	if (!has_addr_filter(event))
2834 		return;
2835 
2836 	raw_spin_lock(&ifh->lock);
2837 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838 		event->pmu->addr_filters_sync(event);
2839 		event->hw.addr_filters_gen = event->addr_filters_gen;
2840 	}
2841 	raw_spin_unlock(&ifh->lock);
2842 }
2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844 
2845 static int _perf_event_refresh(struct perf_event *event, int refresh)
2846 {
2847 	/*
2848 	 * not supported on inherited events
2849 	 */
2850 	if (event->attr.inherit || !is_sampling_event(event))
2851 		return -EINVAL;
2852 
2853 	atomic_add(refresh, &event->event_limit);
2854 	_perf_event_enable(event);
2855 
2856 	return 0;
2857 }
2858 
2859 /*
2860  * See perf_event_disable()
2861  */
2862 int perf_event_refresh(struct perf_event *event, int refresh)
2863 {
2864 	struct perf_event_context *ctx;
2865 	int ret;
2866 
2867 	ctx = perf_event_ctx_lock(event);
2868 	ret = _perf_event_refresh(event, refresh);
2869 	perf_event_ctx_unlock(event, ctx);
2870 
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(perf_event_refresh);
2874 
2875 static int perf_event_modify_breakpoint(struct perf_event *bp,
2876 					 struct perf_event_attr *attr)
2877 {
2878 	int err;
2879 
2880 	_perf_event_disable(bp);
2881 
2882 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2883 
2884 	if (!bp->attr.disabled)
2885 		_perf_event_enable(bp);
2886 
2887 	return err;
2888 }
2889 
2890 static int perf_event_modify_attr(struct perf_event *event,
2891 				  struct perf_event_attr *attr)
2892 {
2893 	if (event->attr.type != attr->type)
2894 		return -EINVAL;
2895 
2896 	switch (event->attr.type) {
2897 	case PERF_TYPE_BREAKPOINT:
2898 		return perf_event_modify_breakpoint(event, attr);
2899 	default:
2900 		/* Place holder for future additions. */
2901 		return -EOPNOTSUPP;
2902 	}
2903 }
2904 
2905 static void ctx_sched_out(struct perf_event_context *ctx,
2906 			  struct perf_cpu_context *cpuctx,
2907 			  enum event_type_t event_type)
2908 {
2909 	struct perf_event *event, *tmp;
2910 	int is_active = ctx->is_active;
2911 
2912 	lockdep_assert_held(&ctx->lock);
2913 
2914 	if (likely(!ctx->nr_events)) {
2915 		/*
2916 		 * See __perf_remove_from_context().
2917 		 */
2918 		WARN_ON_ONCE(ctx->is_active);
2919 		if (ctx->task)
2920 			WARN_ON_ONCE(cpuctx->task_ctx);
2921 		return;
2922 	}
2923 
2924 	ctx->is_active &= ~event_type;
2925 	if (!(ctx->is_active & EVENT_ALL))
2926 		ctx->is_active = 0;
2927 
2928 	if (ctx->task) {
2929 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930 		if (!ctx->is_active)
2931 			cpuctx->task_ctx = NULL;
2932 	}
2933 
2934 	/*
2935 	 * Always update time if it was set; not only when it changes.
2936 	 * Otherwise we can 'forget' to update time for any but the last
2937 	 * context we sched out. For example:
2938 	 *
2939 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2941 	 *
2942 	 * would only update time for the pinned events.
2943 	 */
2944 	if (is_active & EVENT_TIME) {
2945 		/* update (and stop) ctx time */
2946 		update_context_time(ctx);
2947 		update_cgrp_time_from_cpuctx(cpuctx);
2948 	}
2949 
2950 	is_active ^= ctx->is_active; /* changed bits */
2951 
2952 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2953 		return;
2954 
2955 	/*
2956 	 * If we had been multiplexing, no rotations are necessary, now no events
2957 	 * are active.
2958 	 */
2959 	ctx->rotate_necessary = 0;
2960 
2961 	perf_pmu_disable(ctx->pmu);
2962 	if (is_active & EVENT_PINNED) {
2963 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2964 			group_sched_out(event, cpuctx, ctx);
2965 	}
2966 
2967 	if (is_active & EVENT_FLEXIBLE) {
2968 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2969 			group_sched_out(event, cpuctx, ctx);
2970 	}
2971 	perf_pmu_enable(ctx->pmu);
2972 }
2973 
2974 /*
2975  * Test whether two contexts are equivalent, i.e. whether they have both been
2976  * cloned from the same version of the same context.
2977  *
2978  * Equivalence is measured using a generation number in the context that is
2979  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2980  * and list_del_event().
2981  */
2982 static int context_equiv(struct perf_event_context *ctx1,
2983 			 struct perf_event_context *ctx2)
2984 {
2985 	lockdep_assert_held(&ctx1->lock);
2986 	lockdep_assert_held(&ctx2->lock);
2987 
2988 	/* Pinning disables the swap optimization */
2989 	if (ctx1->pin_count || ctx2->pin_count)
2990 		return 0;
2991 
2992 	/* If ctx1 is the parent of ctx2 */
2993 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2994 		return 1;
2995 
2996 	/* If ctx2 is the parent of ctx1 */
2997 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2998 		return 1;
2999 
3000 	/*
3001 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3002 	 * hierarchy, see perf_event_init_context().
3003 	 */
3004 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3005 			ctx1->parent_gen == ctx2->parent_gen)
3006 		return 1;
3007 
3008 	/* Unmatched */
3009 	return 0;
3010 }
3011 
3012 static void __perf_event_sync_stat(struct perf_event *event,
3013 				     struct perf_event *next_event)
3014 {
3015 	u64 value;
3016 
3017 	if (!event->attr.inherit_stat)
3018 		return;
3019 
3020 	/*
3021 	 * Update the event value, we cannot use perf_event_read()
3022 	 * because we're in the middle of a context switch and have IRQs
3023 	 * disabled, which upsets smp_call_function_single(), however
3024 	 * we know the event must be on the current CPU, therefore we
3025 	 * don't need to use it.
3026 	 */
3027 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3028 		event->pmu->read(event);
3029 
3030 	perf_event_update_time(event);
3031 
3032 	/*
3033 	 * In order to keep per-task stats reliable we need to flip the event
3034 	 * values when we flip the contexts.
3035 	 */
3036 	value = local64_read(&next_event->count);
3037 	value = local64_xchg(&event->count, value);
3038 	local64_set(&next_event->count, value);
3039 
3040 	swap(event->total_time_enabled, next_event->total_time_enabled);
3041 	swap(event->total_time_running, next_event->total_time_running);
3042 
3043 	/*
3044 	 * Since we swizzled the values, update the user visible data too.
3045 	 */
3046 	perf_event_update_userpage(event);
3047 	perf_event_update_userpage(next_event);
3048 }
3049 
3050 static void perf_event_sync_stat(struct perf_event_context *ctx,
3051 				   struct perf_event_context *next_ctx)
3052 {
3053 	struct perf_event *event, *next_event;
3054 
3055 	if (!ctx->nr_stat)
3056 		return;
3057 
3058 	update_context_time(ctx);
3059 
3060 	event = list_first_entry(&ctx->event_list,
3061 				   struct perf_event, event_entry);
3062 
3063 	next_event = list_first_entry(&next_ctx->event_list,
3064 					struct perf_event, event_entry);
3065 
3066 	while (&event->event_entry != &ctx->event_list &&
3067 	       &next_event->event_entry != &next_ctx->event_list) {
3068 
3069 		__perf_event_sync_stat(event, next_event);
3070 
3071 		event = list_next_entry(event, event_entry);
3072 		next_event = list_next_entry(next_event, event_entry);
3073 	}
3074 }
3075 
3076 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3077 					 struct task_struct *next)
3078 {
3079 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3080 	struct perf_event_context *next_ctx;
3081 	struct perf_event_context *parent, *next_parent;
3082 	struct perf_cpu_context *cpuctx;
3083 	int do_switch = 1;
3084 
3085 	if (likely(!ctx))
3086 		return;
3087 
3088 	cpuctx = __get_cpu_context(ctx);
3089 	if (!cpuctx->task_ctx)
3090 		return;
3091 
3092 	rcu_read_lock();
3093 	next_ctx = next->perf_event_ctxp[ctxn];
3094 	if (!next_ctx)
3095 		goto unlock;
3096 
3097 	parent = rcu_dereference(ctx->parent_ctx);
3098 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3099 
3100 	/* If neither context have a parent context; they cannot be clones. */
3101 	if (!parent && !next_parent)
3102 		goto unlock;
3103 
3104 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3105 		/*
3106 		 * Looks like the two contexts are clones, so we might be
3107 		 * able to optimize the context switch.  We lock both
3108 		 * contexts and check that they are clones under the
3109 		 * lock (including re-checking that neither has been
3110 		 * uncloned in the meantime).  It doesn't matter which
3111 		 * order we take the locks because no other cpu could
3112 		 * be trying to lock both of these tasks.
3113 		 */
3114 		raw_spin_lock(&ctx->lock);
3115 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3116 		if (context_equiv(ctx, next_ctx)) {
3117 			WRITE_ONCE(ctx->task, next);
3118 			WRITE_ONCE(next_ctx->task, task);
3119 
3120 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3121 
3122 			/*
3123 			 * RCU_INIT_POINTER here is safe because we've not
3124 			 * modified the ctx and the above modification of
3125 			 * ctx->task and ctx->task_ctx_data are immaterial
3126 			 * since those values are always verified under
3127 			 * ctx->lock which we're now holding.
3128 			 */
3129 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3130 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3131 
3132 			do_switch = 0;
3133 
3134 			perf_event_sync_stat(ctx, next_ctx);
3135 		}
3136 		raw_spin_unlock(&next_ctx->lock);
3137 		raw_spin_unlock(&ctx->lock);
3138 	}
3139 unlock:
3140 	rcu_read_unlock();
3141 
3142 	if (do_switch) {
3143 		raw_spin_lock(&ctx->lock);
3144 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3145 		raw_spin_unlock(&ctx->lock);
3146 	}
3147 }
3148 
3149 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3150 
3151 void perf_sched_cb_dec(struct pmu *pmu)
3152 {
3153 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3154 
3155 	this_cpu_dec(perf_sched_cb_usages);
3156 
3157 	if (!--cpuctx->sched_cb_usage)
3158 		list_del(&cpuctx->sched_cb_entry);
3159 }
3160 
3161 
3162 void perf_sched_cb_inc(struct pmu *pmu)
3163 {
3164 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3165 
3166 	if (!cpuctx->sched_cb_usage++)
3167 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3168 
3169 	this_cpu_inc(perf_sched_cb_usages);
3170 }
3171 
3172 /*
3173  * This function provides the context switch callback to the lower code
3174  * layer. It is invoked ONLY when the context switch callback is enabled.
3175  *
3176  * This callback is relevant even to per-cpu events; for example multi event
3177  * PEBS requires this to provide PID/TID information. This requires we flush
3178  * all queued PEBS records before we context switch to a new task.
3179  */
3180 static void perf_pmu_sched_task(struct task_struct *prev,
3181 				struct task_struct *next,
3182 				bool sched_in)
3183 {
3184 	struct perf_cpu_context *cpuctx;
3185 	struct pmu *pmu;
3186 
3187 	if (prev == next)
3188 		return;
3189 
3190 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3191 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3192 
3193 		if (WARN_ON_ONCE(!pmu->sched_task))
3194 			continue;
3195 
3196 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3197 		perf_pmu_disable(pmu);
3198 
3199 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3200 
3201 		perf_pmu_enable(pmu);
3202 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3203 	}
3204 }
3205 
3206 static void perf_event_switch(struct task_struct *task,
3207 			      struct task_struct *next_prev, bool sched_in);
3208 
3209 #define for_each_task_context_nr(ctxn)					\
3210 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3211 
3212 /*
3213  * Called from scheduler to remove the events of the current task,
3214  * with interrupts disabled.
3215  *
3216  * We stop each event and update the event value in event->count.
3217  *
3218  * This does not protect us against NMI, but disable()
3219  * sets the disabled bit in the control field of event _before_
3220  * accessing the event control register. If a NMI hits, then it will
3221  * not restart the event.
3222  */
3223 void __perf_event_task_sched_out(struct task_struct *task,
3224 				 struct task_struct *next)
3225 {
3226 	int ctxn;
3227 
3228 	if (__this_cpu_read(perf_sched_cb_usages))
3229 		perf_pmu_sched_task(task, next, false);
3230 
3231 	if (atomic_read(&nr_switch_events))
3232 		perf_event_switch(task, next, false);
3233 
3234 	for_each_task_context_nr(ctxn)
3235 		perf_event_context_sched_out(task, ctxn, next);
3236 
3237 	/*
3238 	 * if cgroup events exist on this CPU, then we need
3239 	 * to check if we have to switch out PMU state.
3240 	 * cgroup event are system-wide mode only
3241 	 */
3242 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3243 		perf_cgroup_sched_out(task, next);
3244 }
3245 
3246 /*
3247  * Called with IRQs disabled
3248  */
3249 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3250 			      enum event_type_t event_type)
3251 {
3252 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3253 }
3254 
3255 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3256 			      int (*func)(struct perf_event *, void *), void *data)
3257 {
3258 	struct perf_event **evt, *evt1, *evt2;
3259 	int ret;
3260 
3261 	evt1 = perf_event_groups_first(groups, -1);
3262 	evt2 = perf_event_groups_first(groups, cpu);
3263 
3264 	while (evt1 || evt2) {
3265 		if (evt1 && evt2) {
3266 			if (evt1->group_index < evt2->group_index)
3267 				evt = &evt1;
3268 			else
3269 				evt = &evt2;
3270 		} else if (evt1) {
3271 			evt = &evt1;
3272 		} else {
3273 			evt = &evt2;
3274 		}
3275 
3276 		ret = func(*evt, data);
3277 		if (ret)
3278 			return ret;
3279 
3280 		*evt = perf_event_groups_next(*evt);
3281 	}
3282 
3283 	return 0;
3284 }
3285 
3286 struct sched_in_data {
3287 	struct perf_event_context *ctx;
3288 	struct perf_cpu_context *cpuctx;
3289 	int can_add_hw;
3290 };
3291 
3292 static int pinned_sched_in(struct perf_event *event, void *data)
3293 {
3294 	struct sched_in_data *sid = data;
3295 
3296 	if (event->state <= PERF_EVENT_STATE_OFF)
3297 		return 0;
3298 
3299 	if (!event_filter_match(event))
3300 		return 0;
3301 
3302 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3303 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3304 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3305 	}
3306 
3307 	/*
3308 	 * If this pinned group hasn't been scheduled,
3309 	 * put it in error state.
3310 	 */
3311 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3312 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3313 
3314 	return 0;
3315 }
3316 
3317 static int flexible_sched_in(struct perf_event *event, void *data)
3318 {
3319 	struct sched_in_data *sid = data;
3320 
3321 	if (event->state <= PERF_EVENT_STATE_OFF)
3322 		return 0;
3323 
3324 	if (!event_filter_match(event))
3325 		return 0;
3326 
3327 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3328 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3329 		if (ret) {
3330 			sid->can_add_hw = 0;
3331 			sid->ctx->rotate_necessary = 1;
3332 			return 0;
3333 		}
3334 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 static void
3341 ctx_pinned_sched_in(struct perf_event_context *ctx,
3342 		    struct perf_cpu_context *cpuctx)
3343 {
3344 	struct sched_in_data sid = {
3345 		.ctx = ctx,
3346 		.cpuctx = cpuctx,
3347 		.can_add_hw = 1,
3348 	};
3349 
3350 	visit_groups_merge(&ctx->pinned_groups,
3351 			   smp_processor_id(),
3352 			   pinned_sched_in, &sid);
3353 }
3354 
3355 static void
3356 ctx_flexible_sched_in(struct perf_event_context *ctx,
3357 		      struct perf_cpu_context *cpuctx)
3358 {
3359 	struct sched_in_data sid = {
3360 		.ctx = ctx,
3361 		.cpuctx = cpuctx,
3362 		.can_add_hw = 1,
3363 	};
3364 
3365 	visit_groups_merge(&ctx->flexible_groups,
3366 			   smp_processor_id(),
3367 			   flexible_sched_in, &sid);
3368 }
3369 
3370 static void
3371 ctx_sched_in(struct perf_event_context *ctx,
3372 	     struct perf_cpu_context *cpuctx,
3373 	     enum event_type_t event_type,
3374 	     struct task_struct *task)
3375 {
3376 	int is_active = ctx->is_active;
3377 	u64 now;
3378 
3379 	lockdep_assert_held(&ctx->lock);
3380 
3381 	if (likely(!ctx->nr_events))
3382 		return;
3383 
3384 	ctx->is_active |= (event_type | EVENT_TIME);
3385 	if (ctx->task) {
3386 		if (!is_active)
3387 			cpuctx->task_ctx = ctx;
3388 		else
3389 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3390 	}
3391 
3392 	is_active ^= ctx->is_active; /* changed bits */
3393 
3394 	if (is_active & EVENT_TIME) {
3395 		/* start ctx time */
3396 		now = perf_clock();
3397 		ctx->timestamp = now;
3398 		perf_cgroup_set_timestamp(task, ctx);
3399 	}
3400 
3401 	/*
3402 	 * First go through the list and put on any pinned groups
3403 	 * in order to give them the best chance of going on.
3404 	 */
3405 	if (is_active & EVENT_PINNED)
3406 		ctx_pinned_sched_in(ctx, cpuctx);
3407 
3408 	/* Then walk through the lower prio flexible groups */
3409 	if (is_active & EVENT_FLEXIBLE)
3410 		ctx_flexible_sched_in(ctx, cpuctx);
3411 }
3412 
3413 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3414 			     enum event_type_t event_type,
3415 			     struct task_struct *task)
3416 {
3417 	struct perf_event_context *ctx = &cpuctx->ctx;
3418 
3419 	ctx_sched_in(ctx, cpuctx, event_type, task);
3420 }
3421 
3422 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3423 					struct task_struct *task)
3424 {
3425 	struct perf_cpu_context *cpuctx;
3426 
3427 	cpuctx = __get_cpu_context(ctx);
3428 	if (cpuctx->task_ctx == ctx)
3429 		return;
3430 
3431 	perf_ctx_lock(cpuctx, ctx);
3432 	/*
3433 	 * We must check ctx->nr_events while holding ctx->lock, such
3434 	 * that we serialize against perf_install_in_context().
3435 	 */
3436 	if (!ctx->nr_events)
3437 		goto unlock;
3438 
3439 	perf_pmu_disable(ctx->pmu);
3440 	/*
3441 	 * We want to keep the following priority order:
3442 	 * cpu pinned (that don't need to move), task pinned,
3443 	 * cpu flexible, task flexible.
3444 	 *
3445 	 * However, if task's ctx is not carrying any pinned
3446 	 * events, no need to flip the cpuctx's events around.
3447 	 */
3448 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3449 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3450 	perf_event_sched_in(cpuctx, ctx, task);
3451 	perf_pmu_enable(ctx->pmu);
3452 
3453 unlock:
3454 	perf_ctx_unlock(cpuctx, ctx);
3455 }
3456 
3457 /*
3458  * Called from scheduler to add the events of the current task
3459  * with interrupts disabled.
3460  *
3461  * We restore the event value and then enable it.
3462  *
3463  * This does not protect us against NMI, but enable()
3464  * sets the enabled bit in the control field of event _before_
3465  * accessing the event control register. If a NMI hits, then it will
3466  * keep the event running.
3467  */
3468 void __perf_event_task_sched_in(struct task_struct *prev,
3469 				struct task_struct *task)
3470 {
3471 	struct perf_event_context *ctx;
3472 	int ctxn;
3473 
3474 	/*
3475 	 * If cgroup events exist on this CPU, then we need to check if we have
3476 	 * to switch in PMU state; cgroup event are system-wide mode only.
3477 	 *
3478 	 * Since cgroup events are CPU events, we must schedule these in before
3479 	 * we schedule in the task events.
3480 	 */
3481 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3482 		perf_cgroup_sched_in(prev, task);
3483 
3484 	for_each_task_context_nr(ctxn) {
3485 		ctx = task->perf_event_ctxp[ctxn];
3486 		if (likely(!ctx))
3487 			continue;
3488 
3489 		perf_event_context_sched_in(ctx, task);
3490 	}
3491 
3492 	if (atomic_read(&nr_switch_events))
3493 		perf_event_switch(task, prev, true);
3494 
3495 	if (__this_cpu_read(perf_sched_cb_usages))
3496 		perf_pmu_sched_task(prev, task, true);
3497 }
3498 
3499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3500 {
3501 	u64 frequency = event->attr.sample_freq;
3502 	u64 sec = NSEC_PER_SEC;
3503 	u64 divisor, dividend;
3504 
3505 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3506 
3507 	count_fls = fls64(count);
3508 	nsec_fls = fls64(nsec);
3509 	frequency_fls = fls64(frequency);
3510 	sec_fls = 30;
3511 
3512 	/*
3513 	 * We got @count in @nsec, with a target of sample_freq HZ
3514 	 * the target period becomes:
3515 	 *
3516 	 *             @count * 10^9
3517 	 * period = -------------------
3518 	 *          @nsec * sample_freq
3519 	 *
3520 	 */
3521 
3522 	/*
3523 	 * Reduce accuracy by one bit such that @a and @b converge
3524 	 * to a similar magnitude.
3525 	 */
3526 #define REDUCE_FLS(a, b)		\
3527 do {					\
3528 	if (a##_fls > b##_fls) {	\
3529 		a >>= 1;		\
3530 		a##_fls--;		\
3531 	} else {			\
3532 		b >>= 1;		\
3533 		b##_fls--;		\
3534 	}				\
3535 } while (0)
3536 
3537 	/*
3538 	 * Reduce accuracy until either term fits in a u64, then proceed with
3539 	 * the other, so that finally we can do a u64/u64 division.
3540 	 */
3541 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3542 		REDUCE_FLS(nsec, frequency);
3543 		REDUCE_FLS(sec, count);
3544 	}
3545 
3546 	if (count_fls + sec_fls > 64) {
3547 		divisor = nsec * frequency;
3548 
3549 		while (count_fls + sec_fls > 64) {
3550 			REDUCE_FLS(count, sec);
3551 			divisor >>= 1;
3552 		}
3553 
3554 		dividend = count * sec;
3555 	} else {
3556 		dividend = count * sec;
3557 
3558 		while (nsec_fls + frequency_fls > 64) {
3559 			REDUCE_FLS(nsec, frequency);
3560 			dividend >>= 1;
3561 		}
3562 
3563 		divisor = nsec * frequency;
3564 	}
3565 
3566 	if (!divisor)
3567 		return dividend;
3568 
3569 	return div64_u64(dividend, divisor);
3570 }
3571 
3572 static DEFINE_PER_CPU(int, perf_throttled_count);
3573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3574 
3575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3576 {
3577 	struct hw_perf_event *hwc = &event->hw;
3578 	s64 period, sample_period;
3579 	s64 delta;
3580 
3581 	period = perf_calculate_period(event, nsec, count);
3582 
3583 	delta = (s64)(period - hwc->sample_period);
3584 	delta = (delta + 7) / 8; /* low pass filter */
3585 
3586 	sample_period = hwc->sample_period + delta;
3587 
3588 	if (!sample_period)
3589 		sample_period = 1;
3590 
3591 	hwc->sample_period = sample_period;
3592 
3593 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3594 		if (disable)
3595 			event->pmu->stop(event, PERF_EF_UPDATE);
3596 
3597 		local64_set(&hwc->period_left, 0);
3598 
3599 		if (disable)
3600 			event->pmu->start(event, PERF_EF_RELOAD);
3601 	}
3602 }
3603 
3604 /*
3605  * combine freq adjustment with unthrottling to avoid two passes over the
3606  * events. At the same time, make sure, having freq events does not change
3607  * the rate of unthrottling as that would introduce bias.
3608  */
3609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3610 					   int needs_unthr)
3611 {
3612 	struct perf_event *event;
3613 	struct hw_perf_event *hwc;
3614 	u64 now, period = TICK_NSEC;
3615 	s64 delta;
3616 
3617 	/*
3618 	 * only need to iterate over all events iff:
3619 	 * - context have events in frequency mode (needs freq adjust)
3620 	 * - there are events to unthrottle on this cpu
3621 	 */
3622 	if (!(ctx->nr_freq || needs_unthr))
3623 		return;
3624 
3625 	raw_spin_lock(&ctx->lock);
3626 	perf_pmu_disable(ctx->pmu);
3627 
3628 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3629 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3630 			continue;
3631 
3632 		if (!event_filter_match(event))
3633 			continue;
3634 
3635 		perf_pmu_disable(event->pmu);
3636 
3637 		hwc = &event->hw;
3638 
3639 		if (hwc->interrupts == MAX_INTERRUPTS) {
3640 			hwc->interrupts = 0;
3641 			perf_log_throttle(event, 1);
3642 			event->pmu->start(event, 0);
3643 		}
3644 
3645 		if (!event->attr.freq || !event->attr.sample_freq)
3646 			goto next;
3647 
3648 		/*
3649 		 * stop the event and update event->count
3650 		 */
3651 		event->pmu->stop(event, PERF_EF_UPDATE);
3652 
3653 		now = local64_read(&event->count);
3654 		delta = now - hwc->freq_count_stamp;
3655 		hwc->freq_count_stamp = now;
3656 
3657 		/*
3658 		 * restart the event
3659 		 * reload only if value has changed
3660 		 * we have stopped the event so tell that
3661 		 * to perf_adjust_period() to avoid stopping it
3662 		 * twice.
3663 		 */
3664 		if (delta > 0)
3665 			perf_adjust_period(event, period, delta, false);
3666 
3667 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3668 	next:
3669 		perf_pmu_enable(event->pmu);
3670 	}
3671 
3672 	perf_pmu_enable(ctx->pmu);
3673 	raw_spin_unlock(&ctx->lock);
3674 }
3675 
3676 /*
3677  * Move @event to the tail of the @ctx's elegible events.
3678  */
3679 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3680 {
3681 	/*
3682 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3683 	 * disabled by the inheritance code.
3684 	 */
3685 	if (ctx->rotate_disable)
3686 		return;
3687 
3688 	perf_event_groups_delete(&ctx->flexible_groups, event);
3689 	perf_event_groups_insert(&ctx->flexible_groups, event);
3690 }
3691 
3692 static inline struct perf_event *
3693 ctx_first_active(struct perf_event_context *ctx)
3694 {
3695 	return list_first_entry_or_null(&ctx->flexible_active,
3696 					struct perf_event, active_list);
3697 }
3698 
3699 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3700 {
3701 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3702 	struct perf_event_context *task_ctx = NULL;
3703 	int cpu_rotate, task_rotate;
3704 
3705 	/*
3706 	 * Since we run this from IRQ context, nobody can install new
3707 	 * events, thus the event count values are stable.
3708 	 */
3709 
3710 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3711 	task_ctx = cpuctx->task_ctx;
3712 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3713 
3714 	if (!(cpu_rotate || task_rotate))
3715 		return false;
3716 
3717 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3718 	perf_pmu_disable(cpuctx->ctx.pmu);
3719 
3720 	if (task_rotate)
3721 		task_event = ctx_first_active(task_ctx);
3722 	if (cpu_rotate)
3723 		cpu_event = ctx_first_active(&cpuctx->ctx);
3724 
3725 	/*
3726 	 * As per the order given at ctx_resched() first 'pop' task flexible
3727 	 * and then, if needed CPU flexible.
3728 	 */
3729 	if (task_event || (task_ctx && cpu_event))
3730 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3731 	if (cpu_event)
3732 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3733 
3734 	if (task_event)
3735 		rotate_ctx(task_ctx, task_event);
3736 	if (cpu_event)
3737 		rotate_ctx(&cpuctx->ctx, cpu_event);
3738 
3739 	perf_event_sched_in(cpuctx, task_ctx, current);
3740 
3741 	perf_pmu_enable(cpuctx->ctx.pmu);
3742 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3743 
3744 	return true;
3745 }
3746 
3747 void perf_event_task_tick(void)
3748 {
3749 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3750 	struct perf_event_context *ctx, *tmp;
3751 	int throttled;
3752 
3753 	lockdep_assert_irqs_disabled();
3754 
3755 	__this_cpu_inc(perf_throttled_seq);
3756 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3757 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3758 
3759 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3760 		perf_adjust_freq_unthr_context(ctx, throttled);
3761 }
3762 
3763 static int event_enable_on_exec(struct perf_event *event,
3764 				struct perf_event_context *ctx)
3765 {
3766 	if (!event->attr.enable_on_exec)
3767 		return 0;
3768 
3769 	event->attr.enable_on_exec = 0;
3770 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3771 		return 0;
3772 
3773 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3774 
3775 	return 1;
3776 }
3777 
3778 /*
3779  * Enable all of a task's events that have been marked enable-on-exec.
3780  * This expects task == current.
3781  */
3782 static void perf_event_enable_on_exec(int ctxn)
3783 {
3784 	struct perf_event_context *ctx, *clone_ctx = NULL;
3785 	enum event_type_t event_type = 0;
3786 	struct perf_cpu_context *cpuctx;
3787 	struct perf_event *event;
3788 	unsigned long flags;
3789 	int enabled = 0;
3790 
3791 	local_irq_save(flags);
3792 	ctx = current->perf_event_ctxp[ctxn];
3793 	if (!ctx || !ctx->nr_events)
3794 		goto out;
3795 
3796 	cpuctx = __get_cpu_context(ctx);
3797 	perf_ctx_lock(cpuctx, ctx);
3798 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3799 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3800 		enabled |= event_enable_on_exec(event, ctx);
3801 		event_type |= get_event_type(event);
3802 	}
3803 
3804 	/*
3805 	 * Unclone and reschedule this context if we enabled any event.
3806 	 */
3807 	if (enabled) {
3808 		clone_ctx = unclone_ctx(ctx);
3809 		ctx_resched(cpuctx, ctx, event_type);
3810 	} else {
3811 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3812 	}
3813 	perf_ctx_unlock(cpuctx, ctx);
3814 
3815 out:
3816 	local_irq_restore(flags);
3817 
3818 	if (clone_ctx)
3819 		put_ctx(clone_ctx);
3820 }
3821 
3822 struct perf_read_data {
3823 	struct perf_event *event;
3824 	bool group;
3825 	int ret;
3826 };
3827 
3828 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3829 {
3830 	u16 local_pkg, event_pkg;
3831 
3832 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3833 		int local_cpu = smp_processor_id();
3834 
3835 		event_pkg = topology_physical_package_id(event_cpu);
3836 		local_pkg = topology_physical_package_id(local_cpu);
3837 
3838 		if (event_pkg == local_pkg)
3839 			return local_cpu;
3840 	}
3841 
3842 	return event_cpu;
3843 }
3844 
3845 /*
3846  * Cross CPU call to read the hardware event
3847  */
3848 static void __perf_event_read(void *info)
3849 {
3850 	struct perf_read_data *data = info;
3851 	struct perf_event *sub, *event = data->event;
3852 	struct perf_event_context *ctx = event->ctx;
3853 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3854 	struct pmu *pmu = event->pmu;
3855 
3856 	/*
3857 	 * If this is a task context, we need to check whether it is
3858 	 * the current task context of this cpu.  If not it has been
3859 	 * scheduled out before the smp call arrived.  In that case
3860 	 * event->count would have been updated to a recent sample
3861 	 * when the event was scheduled out.
3862 	 */
3863 	if (ctx->task && cpuctx->task_ctx != ctx)
3864 		return;
3865 
3866 	raw_spin_lock(&ctx->lock);
3867 	if (ctx->is_active & EVENT_TIME) {
3868 		update_context_time(ctx);
3869 		update_cgrp_time_from_event(event);
3870 	}
3871 
3872 	perf_event_update_time(event);
3873 	if (data->group)
3874 		perf_event_update_sibling_time(event);
3875 
3876 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3877 		goto unlock;
3878 
3879 	if (!data->group) {
3880 		pmu->read(event);
3881 		data->ret = 0;
3882 		goto unlock;
3883 	}
3884 
3885 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3886 
3887 	pmu->read(event);
3888 
3889 	for_each_sibling_event(sub, event) {
3890 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3891 			/*
3892 			 * Use sibling's PMU rather than @event's since
3893 			 * sibling could be on different (eg: software) PMU.
3894 			 */
3895 			sub->pmu->read(sub);
3896 		}
3897 	}
3898 
3899 	data->ret = pmu->commit_txn(pmu);
3900 
3901 unlock:
3902 	raw_spin_unlock(&ctx->lock);
3903 }
3904 
3905 static inline u64 perf_event_count(struct perf_event *event)
3906 {
3907 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3908 }
3909 
3910 /*
3911  * NMI-safe method to read a local event, that is an event that
3912  * is:
3913  *   - either for the current task, or for this CPU
3914  *   - does not have inherit set, for inherited task events
3915  *     will not be local and we cannot read them atomically
3916  *   - must not have a pmu::count method
3917  */
3918 int perf_event_read_local(struct perf_event *event, u64 *value,
3919 			  u64 *enabled, u64 *running)
3920 {
3921 	unsigned long flags;
3922 	int ret = 0;
3923 
3924 	/*
3925 	 * Disabling interrupts avoids all counter scheduling (context
3926 	 * switches, timer based rotation and IPIs).
3927 	 */
3928 	local_irq_save(flags);
3929 
3930 	/*
3931 	 * It must not be an event with inherit set, we cannot read
3932 	 * all child counters from atomic context.
3933 	 */
3934 	if (event->attr.inherit) {
3935 		ret = -EOPNOTSUPP;
3936 		goto out;
3937 	}
3938 
3939 	/* If this is a per-task event, it must be for current */
3940 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3941 	    event->hw.target != current) {
3942 		ret = -EINVAL;
3943 		goto out;
3944 	}
3945 
3946 	/* If this is a per-CPU event, it must be for this CPU */
3947 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3948 	    event->cpu != smp_processor_id()) {
3949 		ret = -EINVAL;
3950 		goto out;
3951 	}
3952 
3953 	/* If this is a pinned event it must be running on this CPU */
3954 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3955 		ret = -EBUSY;
3956 		goto out;
3957 	}
3958 
3959 	/*
3960 	 * If the event is currently on this CPU, its either a per-task event,
3961 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3962 	 * oncpu == -1).
3963 	 */
3964 	if (event->oncpu == smp_processor_id())
3965 		event->pmu->read(event);
3966 
3967 	*value = local64_read(&event->count);
3968 	if (enabled || running) {
3969 		u64 now = event->shadow_ctx_time + perf_clock();
3970 		u64 __enabled, __running;
3971 
3972 		__perf_update_times(event, now, &__enabled, &__running);
3973 		if (enabled)
3974 			*enabled = __enabled;
3975 		if (running)
3976 			*running = __running;
3977 	}
3978 out:
3979 	local_irq_restore(flags);
3980 
3981 	return ret;
3982 }
3983 
3984 static int perf_event_read(struct perf_event *event, bool group)
3985 {
3986 	enum perf_event_state state = READ_ONCE(event->state);
3987 	int event_cpu, ret = 0;
3988 
3989 	/*
3990 	 * If event is enabled and currently active on a CPU, update the
3991 	 * value in the event structure:
3992 	 */
3993 again:
3994 	if (state == PERF_EVENT_STATE_ACTIVE) {
3995 		struct perf_read_data data;
3996 
3997 		/*
3998 		 * Orders the ->state and ->oncpu loads such that if we see
3999 		 * ACTIVE we must also see the right ->oncpu.
4000 		 *
4001 		 * Matches the smp_wmb() from event_sched_in().
4002 		 */
4003 		smp_rmb();
4004 
4005 		event_cpu = READ_ONCE(event->oncpu);
4006 		if ((unsigned)event_cpu >= nr_cpu_ids)
4007 			return 0;
4008 
4009 		data = (struct perf_read_data){
4010 			.event = event,
4011 			.group = group,
4012 			.ret = 0,
4013 		};
4014 
4015 		preempt_disable();
4016 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4017 
4018 		/*
4019 		 * Purposely ignore the smp_call_function_single() return
4020 		 * value.
4021 		 *
4022 		 * If event_cpu isn't a valid CPU it means the event got
4023 		 * scheduled out and that will have updated the event count.
4024 		 *
4025 		 * Therefore, either way, we'll have an up-to-date event count
4026 		 * after this.
4027 		 */
4028 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4029 		preempt_enable();
4030 		ret = data.ret;
4031 
4032 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4033 		struct perf_event_context *ctx = event->ctx;
4034 		unsigned long flags;
4035 
4036 		raw_spin_lock_irqsave(&ctx->lock, flags);
4037 		state = event->state;
4038 		if (state != PERF_EVENT_STATE_INACTIVE) {
4039 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040 			goto again;
4041 		}
4042 
4043 		/*
4044 		 * May read while context is not active (e.g., thread is
4045 		 * blocked), in that case we cannot update context time
4046 		 */
4047 		if (ctx->is_active & EVENT_TIME) {
4048 			update_context_time(ctx);
4049 			update_cgrp_time_from_event(event);
4050 		}
4051 
4052 		perf_event_update_time(event);
4053 		if (group)
4054 			perf_event_update_sibling_time(event);
4055 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4056 	}
4057 
4058 	return ret;
4059 }
4060 
4061 /*
4062  * Initialize the perf_event context in a task_struct:
4063  */
4064 static void __perf_event_init_context(struct perf_event_context *ctx)
4065 {
4066 	raw_spin_lock_init(&ctx->lock);
4067 	mutex_init(&ctx->mutex);
4068 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4069 	perf_event_groups_init(&ctx->pinned_groups);
4070 	perf_event_groups_init(&ctx->flexible_groups);
4071 	INIT_LIST_HEAD(&ctx->event_list);
4072 	INIT_LIST_HEAD(&ctx->pinned_active);
4073 	INIT_LIST_HEAD(&ctx->flexible_active);
4074 	refcount_set(&ctx->refcount, 1);
4075 }
4076 
4077 static struct perf_event_context *
4078 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4079 {
4080 	struct perf_event_context *ctx;
4081 
4082 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4083 	if (!ctx)
4084 		return NULL;
4085 
4086 	__perf_event_init_context(ctx);
4087 	if (task) {
4088 		ctx->task = task;
4089 		get_task_struct(task);
4090 	}
4091 	ctx->pmu = pmu;
4092 
4093 	return ctx;
4094 }
4095 
4096 static struct task_struct *
4097 find_lively_task_by_vpid(pid_t vpid)
4098 {
4099 	struct task_struct *task;
4100 
4101 	rcu_read_lock();
4102 	if (!vpid)
4103 		task = current;
4104 	else
4105 		task = find_task_by_vpid(vpid);
4106 	if (task)
4107 		get_task_struct(task);
4108 	rcu_read_unlock();
4109 
4110 	if (!task)
4111 		return ERR_PTR(-ESRCH);
4112 
4113 	return task;
4114 }
4115 
4116 /*
4117  * Returns a matching context with refcount and pincount.
4118  */
4119 static struct perf_event_context *
4120 find_get_context(struct pmu *pmu, struct task_struct *task,
4121 		struct perf_event *event)
4122 {
4123 	struct perf_event_context *ctx, *clone_ctx = NULL;
4124 	struct perf_cpu_context *cpuctx;
4125 	void *task_ctx_data = NULL;
4126 	unsigned long flags;
4127 	int ctxn, err;
4128 	int cpu = event->cpu;
4129 
4130 	if (!task) {
4131 		/* Must be root to operate on a CPU event: */
4132 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4133 			return ERR_PTR(-EACCES);
4134 
4135 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4136 		ctx = &cpuctx->ctx;
4137 		get_ctx(ctx);
4138 		++ctx->pin_count;
4139 
4140 		return ctx;
4141 	}
4142 
4143 	err = -EINVAL;
4144 	ctxn = pmu->task_ctx_nr;
4145 	if (ctxn < 0)
4146 		goto errout;
4147 
4148 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4149 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4150 		if (!task_ctx_data) {
4151 			err = -ENOMEM;
4152 			goto errout;
4153 		}
4154 	}
4155 
4156 retry:
4157 	ctx = perf_lock_task_context(task, ctxn, &flags);
4158 	if (ctx) {
4159 		clone_ctx = unclone_ctx(ctx);
4160 		++ctx->pin_count;
4161 
4162 		if (task_ctx_data && !ctx->task_ctx_data) {
4163 			ctx->task_ctx_data = task_ctx_data;
4164 			task_ctx_data = NULL;
4165 		}
4166 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4167 
4168 		if (clone_ctx)
4169 			put_ctx(clone_ctx);
4170 	} else {
4171 		ctx = alloc_perf_context(pmu, task);
4172 		err = -ENOMEM;
4173 		if (!ctx)
4174 			goto errout;
4175 
4176 		if (task_ctx_data) {
4177 			ctx->task_ctx_data = task_ctx_data;
4178 			task_ctx_data = NULL;
4179 		}
4180 
4181 		err = 0;
4182 		mutex_lock(&task->perf_event_mutex);
4183 		/*
4184 		 * If it has already passed perf_event_exit_task().
4185 		 * we must see PF_EXITING, it takes this mutex too.
4186 		 */
4187 		if (task->flags & PF_EXITING)
4188 			err = -ESRCH;
4189 		else if (task->perf_event_ctxp[ctxn])
4190 			err = -EAGAIN;
4191 		else {
4192 			get_ctx(ctx);
4193 			++ctx->pin_count;
4194 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4195 		}
4196 		mutex_unlock(&task->perf_event_mutex);
4197 
4198 		if (unlikely(err)) {
4199 			put_ctx(ctx);
4200 
4201 			if (err == -EAGAIN)
4202 				goto retry;
4203 			goto errout;
4204 		}
4205 	}
4206 
4207 	kfree(task_ctx_data);
4208 	return ctx;
4209 
4210 errout:
4211 	kfree(task_ctx_data);
4212 	return ERR_PTR(err);
4213 }
4214 
4215 static void perf_event_free_filter(struct perf_event *event);
4216 static void perf_event_free_bpf_prog(struct perf_event *event);
4217 
4218 static void free_event_rcu(struct rcu_head *head)
4219 {
4220 	struct perf_event *event;
4221 
4222 	event = container_of(head, struct perf_event, rcu_head);
4223 	if (event->ns)
4224 		put_pid_ns(event->ns);
4225 	perf_event_free_filter(event);
4226 	kfree(event);
4227 }
4228 
4229 static void ring_buffer_attach(struct perf_event *event,
4230 			       struct ring_buffer *rb);
4231 
4232 static void detach_sb_event(struct perf_event *event)
4233 {
4234 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4235 
4236 	raw_spin_lock(&pel->lock);
4237 	list_del_rcu(&event->sb_list);
4238 	raw_spin_unlock(&pel->lock);
4239 }
4240 
4241 static bool is_sb_event(struct perf_event *event)
4242 {
4243 	struct perf_event_attr *attr = &event->attr;
4244 
4245 	if (event->parent)
4246 		return false;
4247 
4248 	if (event->attach_state & PERF_ATTACH_TASK)
4249 		return false;
4250 
4251 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4252 	    attr->comm || attr->comm_exec ||
4253 	    attr->task || attr->ksymbol ||
4254 	    attr->context_switch ||
4255 	    attr->bpf_event)
4256 		return true;
4257 	return false;
4258 }
4259 
4260 static void unaccount_pmu_sb_event(struct perf_event *event)
4261 {
4262 	if (is_sb_event(event))
4263 		detach_sb_event(event);
4264 }
4265 
4266 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4267 {
4268 	if (event->parent)
4269 		return;
4270 
4271 	if (is_cgroup_event(event))
4272 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4273 }
4274 
4275 #ifdef CONFIG_NO_HZ_FULL
4276 static DEFINE_SPINLOCK(nr_freq_lock);
4277 #endif
4278 
4279 static void unaccount_freq_event_nohz(void)
4280 {
4281 #ifdef CONFIG_NO_HZ_FULL
4282 	spin_lock(&nr_freq_lock);
4283 	if (atomic_dec_and_test(&nr_freq_events))
4284 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4285 	spin_unlock(&nr_freq_lock);
4286 #endif
4287 }
4288 
4289 static void unaccount_freq_event(void)
4290 {
4291 	if (tick_nohz_full_enabled())
4292 		unaccount_freq_event_nohz();
4293 	else
4294 		atomic_dec(&nr_freq_events);
4295 }
4296 
4297 static void unaccount_event(struct perf_event *event)
4298 {
4299 	bool dec = false;
4300 
4301 	if (event->parent)
4302 		return;
4303 
4304 	if (event->attach_state & PERF_ATTACH_TASK)
4305 		dec = true;
4306 	if (event->attr.mmap || event->attr.mmap_data)
4307 		atomic_dec(&nr_mmap_events);
4308 	if (event->attr.comm)
4309 		atomic_dec(&nr_comm_events);
4310 	if (event->attr.namespaces)
4311 		atomic_dec(&nr_namespaces_events);
4312 	if (event->attr.task)
4313 		atomic_dec(&nr_task_events);
4314 	if (event->attr.freq)
4315 		unaccount_freq_event();
4316 	if (event->attr.context_switch) {
4317 		dec = true;
4318 		atomic_dec(&nr_switch_events);
4319 	}
4320 	if (is_cgroup_event(event))
4321 		dec = true;
4322 	if (has_branch_stack(event))
4323 		dec = true;
4324 	if (event->attr.ksymbol)
4325 		atomic_dec(&nr_ksymbol_events);
4326 	if (event->attr.bpf_event)
4327 		atomic_dec(&nr_bpf_events);
4328 
4329 	if (dec) {
4330 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4331 			schedule_delayed_work(&perf_sched_work, HZ);
4332 	}
4333 
4334 	unaccount_event_cpu(event, event->cpu);
4335 
4336 	unaccount_pmu_sb_event(event);
4337 }
4338 
4339 static void perf_sched_delayed(struct work_struct *work)
4340 {
4341 	mutex_lock(&perf_sched_mutex);
4342 	if (atomic_dec_and_test(&perf_sched_count))
4343 		static_branch_disable(&perf_sched_events);
4344 	mutex_unlock(&perf_sched_mutex);
4345 }
4346 
4347 /*
4348  * The following implement mutual exclusion of events on "exclusive" pmus
4349  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4350  * at a time, so we disallow creating events that might conflict, namely:
4351  *
4352  *  1) cpu-wide events in the presence of per-task events,
4353  *  2) per-task events in the presence of cpu-wide events,
4354  *  3) two matching events on the same context.
4355  *
4356  * The former two cases are handled in the allocation path (perf_event_alloc(),
4357  * _free_event()), the latter -- before the first perf_install_in_context().
4358  */
4359 static int exclusive_event_init(struct perf_event *event)
4360 {
4361 	struct pmu *pmu = event->pmu;
4362 
4363 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4364 		return 0;
4365 
4366 	/*
4367 	 * Prevent co-existence of per-task and cpu-wide events on the
4368 	 * same exclusive pmu.
4369 	 *
4370 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4371 	 * events on this "exclusive" pmu, positive means there are
4372 	 * per-task events.
4373 	 *
4374 	 * Since this is called in perf_event_alloc() path, event::ctx
4375 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4376 	 * to mean "per-task event", because unlike other attach states it
4377 	 * never gets cleared.
4378 	 */
4379 	if (event->attach_state & PERF_ATTACH_TASK) {
4380 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4381 			return -EBUSY;
4382 	} else {
4383 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4384 			return -EBUSY;
4385 	}
4386 
4387 	return 0;
4388 }
4389 
4390 static void exclusive_event_destroy(struct perf_event *event)
4391 {
4392 	struct pmu *pmu = event->pmu;
4393 
4394 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4395 		return;
4396 
4397 	/* see comment in exclusive_event_init() */
4398 	if (event->attach_state & PERF_ATTACH_TASK)
4399 		atomic_dec(&pmu->exclusive_cnt);
4400 	else
4401 		atomic_inc(&pmu->exclusive_cnt);
4402 }
4403 
4404 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4405 {
4406 	if ((e1->pmu == e2->pmu) &&
4407 	    (e1->cpu == e2->cpu ||
4408 	     e1->cpu == -1 ||
4409 	     e2->cpu == -1))
4410 		return true;
4411 	return false;
4412 }
4413 
4414 /* Called under the same ctx::mutex as perf_install_in_context() */
4415 static bool exclusive_event_installable(struct perf_event *event,
4416 					struct perf_event_context *ctx)
4417 {
4418 	struct perf_event *iter_event;
4419 	struct pmu *pmu = event->pmu;
4420 
4421 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4422 		return true;
4423 
4424 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4425 		if (exclusive_event_match(iter_event, event))
4426 			return false;
4427 	}
4428 
4429 	return true;
4430 }
4431 
4432 static void perf_addr_filters_splice(struct perf_event *event,
4433 				       struct list_head *head);
4434 
4435 static void _free_event(struct perf_event *event)
4436 {
4437 	irq_work_sync(&event->pending);
4438 
4439 	unaccount_event(event);
4440 
4441 	if (event->rb) {
4442 		/*
4443 		 * Can happen when we close an event with re-directed output.
4444 		 *
4445 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4446 		 * over us; possibly making our ring_buffer_put() the last.
4447 		 */
4448 		mutex_lock(&event->mmap_mutex);
4449 		ring_buffer_attach(event, NULL);
4450 		mutex_unlock(&event->mmap_mutex);
4451 	}
4452 
4453 	if (is_cgroup_event(event))
4454 		perf_detach_cgroup(event);
4455 
4456 	if (!event->parent) {
4457 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4458 			put_callchain_buffers();
4459 	}
4460 
4461 	perf_event_free_bpf_prog(event);
4462 	perf_addr_filters_splice(event, NULL);
4463 	kfree(event->addr_filter_ranges);
4464 
4465 	if (event->destroy)
4466 		event->destroy(event);
4467 
4468 	if (event->ctx)
4469 		put_ctx(event->ctx);
4470 
4471 	if (event->hw.target)
4472 		put_task_struct(event->hw.target);
4473 
4474 	exclusive_event_destroy(event);
4475 	module_put(event->pmu->module);
4476 
4477 	call_rcu(&event->rcu_head, free_event_rcu);
4478 }
4479 
4480 /*
4481  * Used to free events which have a known refcount of 1, such as in error paths
4482  * where the event isn't exposed yet and inherited events.
4483  */
4484 static void free_event(struct perf_event *event)
4485 {
4486 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4487 				"unexpected event refcount: %ld; ptr=%p\n",
4488 				atomic_long_read(&event->refcount), event)) {
4489 		/* leak to avoid use-after-free */
4490 		return;
4491 	}
4492 
4493 	_free_event(event);
4494 }
4495 
4496 /*
4497  * Remove user event from the owner task.
4498  */
4499 static void perf_remove_from_owner(struct perf_event *event)
4500 {
4501 	struct task_struct *owner;
4502 
4503 	rcu_read_lock();
4504 	/*
4505 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4506 	 * observe !owner it means the list deletion is complete and we can
4507 	 * indeed free this event, otherwise we need to serialize on
4508 	 * owner->perf_event_mutex.
4509 	 */
4510 	owner = READ_ONCE(event->owner);
4511 	if (owner) {
4512 		/*
4513 		 * Since delayed_put_task_struct() also drops the last
4514 		 * task reference we can safely take a new reference
4515 		 * while holding the rcu_read_lock().
4516 		 */
4517 		get_task_struct(owner);
4518 	}
4519 	rcu_read_unlock();
4520 
4521 	if (owner) {
4522 		/*
4523 		 * If we're here through perf_event_exit_task() we're already
4524 		 * holding ctx->mutex which would be an inversion wrt. the
4525 		 * normal lock order.
4526 		 *
4527 		 * However we can safely take this lock because its the child
4528 		 * ctx->mutex.
4529 		 */
4530 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4531 
4532 		/*
4533 		 * We have to re-check the event->owner field, if it is cleared
4534 		 * we raced with perf_event_exit_task(), acquiring the mutex
4535 		 * ensured they're done, and we can proceed with freeing the
4536 		 * event.
4537 		 */
4538 		if (event->owner) {
4539 			list_del_init(&event->owner_entry);
4540 			smp_store_release(&event->owner, NULL);
4541 		}
4542 		mutex_unlock(&owner->perf_event_mutex);
4543 		put_task_struct(owner);
4544 	}
4545 }
4546 
4547 static void put_event(struct perf_event *event)
4548 {
4549 	if (!atomic_long_dec_and_test(&event->refcount))
4550 		return;
4551 
4552 	_free_event(event);
4553 }
4554 
4555 /*
4556  * Kill an event dead; while event:refcount will preserve the event
4557  * object, it will not preserve its functionality. Once the last 'user'
4558  * gives up the object, we'll destroy the thing.
4559  */
4560 int perf_event_release_kernel(struct perf_event *event)
4561 {
4562 	struct perf_event_context *ctx = event->ctx;
4563 	struct perf_event *child, *tmp;
4564 	LIST_HEAD(free_list);
4565 
4566 	/*
4567 	 * If we got here through err_file: fput(event_file); we will not have
4568 	 * attached to a context yet.
4569 	 */
4570 	if (!ctx) {
4571 		WARN_ON_ONCE(event->attach_state &
4572 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4573 		goto no_ctx;
4574 	}
4575 
4576 	if (!is_kernel_event(event))
4577 		perf_remove_from_owner(event);
4578 
4579 	ctx = perf_event_ctx_lock(event);
4580 	WARN_ON_ONCE(ctx->parent_ctx);
4581 	perf_remove_from_context(event, DETACH_GROUP);
4582 
4583 	raw_spin_lock_irq(&ctx->lock);
4584 	/*
4585 	 * Mark this event as STATE_DEAD, there is no external reference to it
4586 	 * anymore.
4587 	 *
4588 	 * Anybody acquiring event->child_mutex after the below loop _must_
4589 	 * also see this, most importantly inherit_event() which will avoid
4590 	 * placing more children on the list.
4591 	 *
4592 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4593 	 * child events.
4594 	 */
4595 	event->state = PERF_EVENT_STATE_DEAD;
4596 	raw_spin_unlock_irq(&ctx->lock);
4597 
4598 	perf_event_ctx_unlock(event, ctx);
4599 
4600 again:
4601 	mutex_lock(&event->child_mutex);
4602 	list_for_each_entry(child, &event->child_list, child_list) {
4603 
4604 		/*
4605 		 * Cannot change, child events are not migrated, see the
4606 		 * comment with perf_event_ctx_lock_nested().
4607 		 */
4608 		ctx = READ_ONCE(child->ctx);
4609 		/*
4610 		 * Since child_mutex nests inside ctx::mutex, we must jump
4611 		 * through hoops. We start by grabbing a reference on the ctx.
4612 		 *
4613 		 * Since the event cannot get freed while we hold the
4614 		 * child_mutex, the context must also exist and have a !0
4615 		 * reference count.
4616 		 */
4617 		get_ctx(ctx);
4618 
4619 		/*
4620 		 * Now that we have a ctx ref, we can drop child_mutex, and
4621 		 * acquire ctx::mutex without fear of it going away. Then we
4622 		 * can re-acquire child_mutex.
4623 		 */
4624 		mutex_unlock(&event->child_mutex);
4625 		mutex_lock(&ctx->mutex);
4626 		mutex_lock(&event->child_mutex);
4627 
4628 		/*
4629 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4630 		 * state, if child is still the first entry, it didn't get freed
4631 		 * and we can continue doing so.
4632 		 */
4633 		tmp = list_first_entry_or_null(&event->child_list,
4634 					       struct perf_event, child_list);
4635 		if (tmp == child) {
4636 			perf_remove_from_context(child, DETACH_GROUP);
4637 			list_move(&child->child_list, &free_list);
4638 			/*
4639 			 * This matches the refcount bump in inherit_event();
4640 			 * this can't be the last reference.
4641 			 */
4642 			put_event(event);
4643 		}
4644 
4645 		mutex_unlock(&event->child_mutex);
4646 		mutex_unlock(&ctx->mutex);
4647 		put_ctx(ctx);
4648 		goto again;
4649 	}
4650 	mutex_unlock(&event->child_mutex);
4651 
4652 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4653 		list_del(&child->child_list);
4654 		free_event(child);
4655 	}
4656 
4657 no_ctx:
4658 	put_event(event); /* Must be the 'last' reference */
4659 	return 0;
4660 }
4661 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4662 
4663 /*
4664  * Called when the last reference to the file is gone.
4665  */
4666 static int perf_release(struct inode *inode, struct file *file)
4667 {
4668 	perf_event_release_kernel(file->private_data);
4669 	return 0;
4670 }
4671 
4672 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4673 {
4674 	struct perf_event *child;
4675 	u64 total = 0;
4676 
4677 	*enabled = 0;
4678 	*running = 0;
4679 
4680 	mutex_lock(&event->child_mutex);
4681 
4682 	(void)perf_event_read(event, false);
4683 	total += perf_event_count(event);
4684 
4685 	*enabled += event->total_time_enabled +
4686 			atomic64_read(&event->child_total_time_enabled);
4687 	*running += event->total_time_running +
4688 			atomic64_read(&event->child_total_time_running);
4689 
4690 	list_for_each_entry(child, &event->child_list, child_list) {
4691 		(void)perf_event_read(child, false);
4692 		total += perf_event_count(child);
4693 		*enabled += child->total_time_enabled;
4694 		*running += child->total_time_running;
4695 	}
4696 	mutex_unlock(&event->child_mutex);
4697 
4698 	return total;
4699 }
4700 
4701 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4702 {
4703 	struct perf_event_context *ctx;
4704 	u64 count;
4705 
4706 	ctx = perf_event_ctx_lock(event);
4707 	count = __perf_event_read_value(event, enabled, running);
4708 	perf_event_ctx_unlock(event, ctx);
4709 
4710 	return count;
4711 }
4712 EXPORT_SYMBOL_GPL(perf_event_read_value);
4713 
4714 static int __perf_read_group_add(struct perf_event *leader,
4715 					u64 read_format, u64 *values)
4716 {
4717 	struct perf_event_context *ctx = leader->ctx;
4718 	struct perf_event *sub;
4719 	unsigned long flags;
4720 	int n = 1; /* skip @nr */
4721 	int ret;
4722 
4723 	ret = perf_event_read(leader, true);
4724 	if (ret)
4725 		return ret;
4726 
4727 	raw_spin_lock_irqsave(&ctx->lock, flags);
4728 
4729 	/*
4730 	 * Since we co-schedule groups, {enabled,running} times of siblings
4731 	 * will be identical to those of the leader, so we only publish one
4732 	 * set.
4733 	 */
4734 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4735 		values[n++] += leader->total_time_enabled +
4736 			atomic64_read(&leader->child_total_time_enabled);
4737 	}
4738 
4739 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4740 		values[n++] += leader->total_time_running +
4741 			atomic64_read(&leader->child_total_time_running);
4742 	}
4743 
4744 	/*
4745 	 * Write {count,id} tuples for every sibling.
4746 	 */
4747 	values[n++] += perf_event_count(leader);
4748 	if (read_format & PERF_FORMAT_ID)
4749 		values[n++] = primary_event_id(leader);
4750 
4751 	for_each_sibling_event(sub, leader) {
4752 		values[n++] += perf_event_count(sub);
4753 		if (read_format & PERF_FORMAT_ID)
4754 			values[n++] = primary_event_id(sub);
4755 	}
4756 
4757 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4758 	return 0;
4759 }
4760 
4761 static int perf_read_group(struct perf_event *event,
4762 				   u64 read_format, char __user *buf)
4763 {
4764 	struct perf_event *leader = event->group_leader, *child;
4765 	struct perf_event_context *ctx = leader->ctx;
4766 	int ret;
4767 	u64 *values;
4768 
4769 	lockdep_assert_held(&ctx->mutex);
4770 
4771 	values = kzalloc(event->read_size, GFP_KERNEL);
4772 	if (!values)
4773 		return -ENOMEM;
4774 
4775 	values[0] = 1 + leader->nr_siblings;
4776 
4777 	/*
4778 	 * By locking the child_mutex of the leader we effectively
4779 	 * lock the child list of all siblings.. XXX explain how.
4780 	 */
4781 	mutex_lock(&leader->child_mutex);
4782 
4783 	ret = __perf_read_group_add(leader, read_format, values);
4784 	if (ret)
4785 		goto unlock;
4786 
4787 	list_for_each_entry(child, &leader->child_list, child_list) {
4788 		ret = __perf_read_group_add(child, read_format, values);
4789 		if (ret)
4790 			goto unlock;
4791 	}
4792 
4793 	mutex_unlock(&leader->child_mutex);
4794 
4795 	ret = event->read_size;
4796 	if (copy_to_user(buf, values, event->read_size))
4797 		ret = -EFAULT;
4798 	goto out;
4799 
4800 unlock:
4801 	mutex_unlock(&leader->child_mutex);
4802 out:
4803 	kfree(values);
4804 	return ret;
4805 }
4806 
4807 static int perf_read_one(struct perf_event *event,
4808 				 u64 read_format, char __user *buf)
4809 {
4810 	u64 enabled, running;
4811 	u64 values[4];
4812 	int n = 0;
4813 
4814 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4815 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4816 		values[n++] = enabled;
4817 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4818 		values[n++] = running;
4819 	if (read_format & PERF_FORMAT_ID)
4820 		values[n++] = primary_event_id(event);
4821 
4822 	if (copy_to_user(buf, values, n * sizeof(u64)))
4823 		return -EFAULT;
4824 
4825 	return n * sizeof(u64);
4826 }
4827 
4828 static bool is_event_hup(struct perf_event *event)
4829 {
4830 	bool no_children;
4831 
4832 	if (event->state > PERF_EVENT_STATE_EXIT)
4833 		return false;
4834 
4835 	mutex_lock(&event->child_mutex);
4836 	no_children = list_empty(&event->child_list);
4837 	mutex_unlock(&event->child_mutex);
4838 	return no_children;
4839 }
4840 
4841 /*
4842  * Read the performance event - simple non blocking version for now
4843  */
4844 static ssize_t
4845 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4846 {
4847 	u64 read_format = event->attr.read_format;
4848 	int ret;
4849 
4850 	/*
4851 	 * Return end-of-file for a read on an event that is in
4852 	 * error state (i.e. because it was pinned but it couldn't be
4853 	 * scheduled on to the CPU at some point).
4854 	 */
4855 	if (event->state == PERF_EVENT_STATE_ERROR)
4856 		return 0;
4857 
4858 	if (count < event->read_size)
4859 		return -ENOSPC;
4860 
4861 	WARN_ON_ONCE(event->ctx->parent_ctx);
4862 	if (read_format & PERF_FORMAT_GROUP)
4863 		ret = perf_read_group(event, read_format, buf);
4864 	else
4865 		ret = perf_read_one(event, read_format, buf);
4866 
4867 	return ret;
4868 }
4869 
4870 static ssize_t
4871 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4872 {
4873 	struct perf_event *event = file->private_data;
4874 	struct perf_event_context *ctx;
4875 	int ret;
4876 
4877 	ctx = perf_event_ctx_lock(event);
4878 	ret = __perf_read(event, buf, count);
4879 	perf_event_ctx_unlock(event, ctx);
4880 
4881 	return ret;
4882 }
4883 
4884 static __poll_t perf_poll(struct file *file, poll_table *wait)
4885 {
4886 	struct perf_event *event = file->private_data;
4887 	struct ring_buffer *rb;
4888 	__poll_t events = EPOLLHUP;
4889 
4890 	poll_wait(file, &event->waitq, wait);
4891 
4892 	if (is_event_hup(event))
4893 		return events;
4894 
4895 	/*
4896 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4897 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4898 	 */
4899 	mutex_lock(&event->mmap_mutex);
4900 	rb = event->rb;
4901 	if (rb)
4902 		events = atomic_xchg(&rb->poll, 0);
4903 	mutex_unlock(&event->mmap_mutex);
4904 	return events;
4905 }
4906 
4907 static void _perf_event_reset(struct perf_event *event)
4908 {
4909 	(void)perf_event_read(event, false);
4910 	local64_set(&event->count, 0);
4911 	perf_event_update_userpage(event);
4912 }
4913 
4914 /*
4915  * Holding the top-level event's child_mutex means that any
4916  * descendant process that has inherited this event will block
4917  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4918  * task existence requirements of perf_event_enable/disable.
4919  */
4920 static void perf_event_for_each_child(struct perf_event *event,
4921 					void (*func)(struct perf_event *))
4922 {
4923 	struct perf_event *child;
4924 
4925 	WARN_ON_ONCE(event->ctx->parent_ctx);
4926 
4927 	mutex_lock(&event->child_mutex);
4928 	func(event);
4929 	list_for_each_entry(child, &event->child_list, child_list)
4930 		func(child);
4931 	mutex_unlock(&event->child_mutex);
4932 }
4933 
4934 static void perf_event_for_each(struct perf_event *event,
4935 				  void (*func)(struct perf_event *))
4936 {
4937 	struct perf_event_context *ctx = event->ctx;
4938 	struct perf_event *sibling;
4939 
4940 	lockdep_assert_held(&ctx->mutex);
4941 
4942 	event = event->group_leader;
4943 
4944 	perf_event_for_each_child(event, func);
4945 	for_each_sibling_event(sibling, event)
4946 		perf_event_for_each_child(sibling, func);
4947 }
4948 
4949 static void __perf_event_period(struct perf_event *event,
4950 				struct perf_cpu_context *cpuctx,
4951 				struct perf_event_context *ctx,
4952 				void *info)
4953 {
4954 	u64 value = *((u64 *)info);
4955 	bool active;
4956 
4957 	if (event->attr.freq) {
4958 		event->attr.sample_freq = value;
4959 	} else {
4960 		event->attr.sample_period = value;
4961 		event->hw.sample_period = value;
4962 	}
4963 
4964 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4965 	if (active) {
4966 		perf_pmu_disable(ctx->pmu);
4967 		/*
4968 		 * We could be throttled; unthrottle now to avoid the tick
4969 		 * trying to unthrottle while we already re-started the event.
4970 		 */
4971 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4972 			event->hw.interrupts = 0;
4973 			perf_log_throttle(event, 1);
4974 		}
4975 		event->pmu->stop(event, PERF_EF_UPDATE);
4976 	}
4977 
4978 	local64_set(&event->hw.period_left, 0);
4979 
4980 	if (active) {
4981 		event->pmu->start(event, PERF_EF_RELOAD);
4982 		perf_pmu_enable(ctx->pmu);
4983 	}
4984 }
4985 
4986 static int perf_event_check_period(struct perf_event *event, u64 value)
4987 {
4988 	return event->pmu->check_period(event, value);
4989 }
4990 
4991 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4992 {
4993 	u64 value;
4994 
4995 	if (!is_sampling_event(event))
4996 		return -EINVAL;
4997 
4998 	if (copy_from_user(&value, arg, sizeof(value)))
4999 		return -EFAULT;
5000 
5001 	if (!value)
5002 		return -EINVAL;
5003 
5004 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5005 		return -EINVAL;
5006 
5007 	if (perf_event_check_period(event, value))
5008 		return -EINVAL;
5009 
5010 	if (!event->attr.freq && (value & (1ULL << 63)))
5011 		return -EINVAL;
5012 
5013 	event_function_call(event, __perf_event_period, &value);
5014 
5015 	return 0;
5016 }
5017 
5018 static const struct file_operations perf_fops;
5019 
5020 static inline int perf_fget_light(int fd, struct fd *p)
5021 {
5022 	struct fd f = fdget(fd);
5023 	if (!f.file)
5024 		return -EBADF;
5025 
5026 	if (f.file->f_op != &perf_fops) {
5027 		fdput(f);
5028 		return -EBADF;
5029 	}
5030 	*p = f;
5031 	return 0;
5032 }
5033 
5034 static int perf_event_set_output(struct perf_event *event,
5035 				 struct perf_event *output_event);
5036 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5037 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5038 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5039 			  struct perf_event_attr *attr);
5040 
5041 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5042 {
5043 	void (*func)(struct perf_event *);
5044 	u32 flags = arg;
5045 
5046 	switch (cmd) {
5047 	case PERF_EVENT_IOC_ENABLE:
5048 		func = _perf_event_enable;
5049 		break;
5050 	case PERF_EVENT_IOC_DISABLE:
5051 		func = _perf_event_disable;
5052 		break;
5053 	case PERF_EVENT_IOC_RESET:
5054 		func = _perf_event_reset;
5055 		break;
5056 
5057 	case PERF_EVENT_IOC_REFRESH:
5058 		return _perf_event_refresh(event, arg);
5059 
5060 	case PERF_EVENT_IOC_PERIOD:
5061 		return perf_event_period(event, (u64 __user *)arg);
5062 
5063 	case PERF_EVENT_IOC_ID:
5064 	{
5065 		u64 id = primary_event_id(event);
5066 
5067 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5068 			return -EFAULT;
5069 		return 0;
5070 	}
5071 
5072 	case PERF_EVENT_IOC_SET_OUTPUT:
5073 	{
5074 		int ret;
5075 		if (arg != -1) {
5076 			struct perf_event *output_event;
5077 			struct fd output;
5078 			ret = perf_fget_light(arg, &output);
5079 			if (ret)
5080 				return ret;
5081 			output_event = output.file->private_data;
5082 			ret = perf_event_set_output(event, output_event);
5083 			fdput(output);
5084 		} else {
5085 			ret = perf_event_set_output(event, NULL);
5086 		}
5087 		return ret;
5088 	}
5089 
5090 	case PERF_EVENT_IOC_SET_FILTER:
5091 		return perf_event_set_filter(event, (void __user *)arg);
5092 
5093 	case PERF_EVENT_IOC_SET_BPF:
5094 		return perf_event_set_bpf_prog(event, arg);
5095 
5096 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5097 		struct ring_buffer *rb;
5098 
5099 		rcu_read_lock();
5100 		rb = rcu_dereference(event->rb);
5101 		if (!rb || !rb->nr_pages) {
5102 			rcu_read_unlock();
5103 			return -EINVAL;
5104 		}
5105 		rb_toggle_paused(rb, !!arg);
5106 		rcu_read_unlock();
5107 		return 0;
5108 	}
5109 
5110 	case PERF_EVENT_IOC_QUERY_BPF:
5111 		return perf_event_query_prog_array(event, (void __user *)arg);
5112 
5113 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5114 		struct perf_event_attr new_attr;
5115 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5116 					 &new_attr);
5117 
5118 		if (err)
5119 			return err;
5120 
5121 		return perf_event_modify_attr(event,  &new_attr);
5122 	}
5123 	default:
5124 		return -ENOTTY;
5125 	}
5126 
5127 	if (flags & PERF_IOC_FLAG_GROUP)
5128 		perf_event_for_each(event, func);
5129 	else
5130 		perf_event_for_each_child(event, func);
5131 
5132 	return 0;
5133 }
5134 
5135 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5136 {
5137 	struct perf_event *event = file->private_data;
5138 	struct perf_event_context *ctx;
5139 	long ret;
5140 
5141 	ctx = perf_event_ctx_lock(event);
5142 	ret = _perf_ioctl(event, cmd, arg);
5143 	perf_event_ctx_unlock(event, ctx);
5144 
5145 	return ret;
5146 }
5147 
5148 #ifdef CONFIG_COMPAT
5149 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5150 				unsigned long arg)
5151 {
5152 	switch (_IOC_NR(cmd)) {
5153 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5154 	case _IOC_NR(PERF_EVENT_IOC_ID):
5155 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5156 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5157 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5158 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5159 			cmd &= ~IOCSIZE_MASK;
5160 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5161 		}
5162 		break;
5163 	}
5164 	return perf_ioctl(file, cmd, arg);
5165 }
5166 #else
5167 # define perf_compat_ioctl NULL
5168 #endif
5169 
5170 int perf_event_task_enable(void)
5171 {
5172 	struct perf_event_context *ctx;
5173 	struct perf_event *event;
5174 
5175 	mutex_lock(&current->perf_event_mutex);
5176 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5177 		ctx = perf_event_ctx_lock(event);
5178 		perf_event_for_each_child(event, _perf_event_enable);
5179 		perf_event_ctx_unlock(event, ctx);
5180 	}
5181 	mutex_unlock(&current->perf_event_mutex);
5182 
5183 	return 0;
5184 }
5185 
5186 int perf_event_task_disable(void)
5187 {
5188 	struct perf_event_context *ctx;
5189 	struct perf_event *event;
5190 
5191 	mutex_lock(&current->perf_event_mutex);
5192 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5193 		ctx = perf_event_ctx_lock(event);
5194 		perf_event_for_each_child(event, _perf_event_disable);
5195 		perf_event_ctx_unlock(event, ctx);
5196 	}
5197 	mutex_unlock(&current->perf_event_mutex);
5198 
5199 	return 0;
5200 }
5201 
5202 static int perf_event_index(struct perf_event *event)
5203 {
5204 	if (event->hw.state & PERF_HES_STOPPED)
5205 		return 0;
5206 
5207 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5208 		return 0;
5209 
5210 	return event->pmu->event_idx(event);
5211 }
5212 
5213 static void calc_timer_values(struct perf_event *event,
5214 				u64 *now,
5215 				u64 *enabled,
5216 				u64 *running)
5217 {
5218 	u64 ctx_time;
5219 
5220 	*now = perf_clock();
5221 	ctx_time = event->shadow_ctx_time + *now;
5222 	__perf_update_times(event, ctx_time, enabled, running);
5223 }
5224 
5225 static void perf_event_init_userpage(struct perf_event *event)
5226 {
5227 	struct perf_event_mmap_page *userpg;
5228 	struct ring_buffer *rb;
5229 
5230 	rcu_read_lock();
5231 	rb = rcu_dereference(event->rb);
5232 	if (!rb)
5233 		goto unlock;
5234 
5235 	userpg = rb->user_page;
5236 
5237 	/* Allow new userspace to detect that bit 0 is deprecated */
5238 	userpg->cap_bit0_is_deprecated = 1;
5239 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5240 	userpg->data_offset = PAGE_SIZE;
5241 	userpg->data_size = perf_data_size(rb);
5242 
5243 unlock:
5244 	rcu_read_unlock();
5245 }
5246 
5247 void __weak arch_perf_update_userpage(
5248 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5249 {
5250 }
5251 
5252 /*
5253  * Callers need to ensure there can be no nesting of this function, otherwise
5254  * the seqlock logic goes bad. We can not serialize this because the arch
5255  * code calls this from NMI context.
5256  */
5257 void perf_event_update_userpage(struct perf_event *event)
5258 {
5259 	struct perf_event_mmap_page *userpg;
5260 	struct ring_buffer *rb;
5261 	u64 enabled, running, now;
5262 
5263 	rcu_read_lock();
5264 	rb = rcu_dereference(event->rb);
5265 	if (!rb)
5266 		goto unlock;
5267 
5268 	/*
5269 	 * compute total_time_enabled, total_time_running
5270 	 * based on snapshot values taken when the event
5271 	 * was last scheduled in.
5272 	 *
5273 	 * we cannot simply called update_context_time()
5274 	 * because of locking issue as we can be called in
5275 	 * NMI context
5276 	 */
5277 	calc_timer_values(event, &now, &enabled, &running);
5278 
5279 	userpg = rb->user_page;
5280 	/*
5281 	 * Disable preemption to guarantee consistent time stamps are stored to
5282 	 * the user page.
5283 	 */
5284 	preempt_disable();
5285 	++userpg->lock;
5286 	barrier();
5287 	userpg->index = perf_event_index(event);
5288 	userpg->offset = perf_event_count(event);
5289 	if (userpg->index)
5290 		userpg->offset -= local64_read(&event->hw.prev_count);
5291 
5292 	userpg->time_enabled = enabled +
5293 			atomic64_read(&event->child_total_time_enabled);
5294 
5295 	userpg->time_running = running +
5296 			atomic64_read(&event->child_total_time_running);
5297 
5298 	arch_perf_update_userpage(event, userpg, now);
5299 
5300 	barrier();
5301 	++userpg->lock;
5302 	preempt_enable();
5303 unlock:
5304 	rcu_read_unlock();
5305 }
5306 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5307 
5308 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5309 {
5310 	struct perf_event *event = vmf->vma->vm_file->private_data;
5311 	struct ring_buffer *rb;
5312 	vm_fault_t ret = VM_FAULT_SIGBUS;
5313 
5314 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5315 		if (vmf->pgoff == 0)
5316 			ret = 0;
5317 		return ret;
5318 	}
5319 
5320 	rcu_read_lock();
5321 	rb = rcu_dereference(event->rb);
5322 	if (!rb)
5323 		goto unlock;
5324 
5325 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5326 		goto unlock;
5327 
5328 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5329 	if (!vmf->page)
5330 		goto unlock;
5331 
5332 	get_page(vmf->page);
5333 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5334 	vmf->page->index   = vmf->pgoff;
5335 
5336 	ret = 0;
5337 unlock:
5338 	rcu_read_unlock();
5339 
5340 	return ret;
5341 }
5342 
5343 static void ring_buffer_attach(struct perf_event *event,
5344 			       struct ring_buffer *rb)
5345 {
5346 	struct ring_buffer *old_rb = NULL;
5347 	unsigned long flags;
5348 
5349 	if (event->rb) {
5350 		/*
5351 		 * Should be impossible, we set this when removing
5352 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5353 		 */
5354 		WARN_ON_ONCE(event->rcu_pending);
5355 
5356 		old_rb = event->rb;
5357 		spin_lock_irqsave(&old_rb->event_lock, flags);
5358 		list_del_rcu(&event->rb_entry);
5359 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5360 
5361 		event->rcu_batches = get_state_synchronize_rcu();
5362 		event->rcu_pending = 1;
5363 	}
5364 
5365 	if (rb) {
5366 		if (event->rcu_pending) {
5367 			cond_synchronize_rcu(event->rcu_batches);
5368 			event->rcu_pending = 0;
5369 		}
5370 
5371 		spin_lock_irqsave(&rb->event_lock, flags);
5372 		list_add_rcu(&event->rb_entry, &rb->event_list);
5373 		spin_unlock_irqrestore(&rb->event_lock, flags);
5374 	}
5375 
5376 	/*
5377 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5378 	 * before swizzling the event::rb pointer; if it's getting
5379 	 * unmapped, its aux_mmap_count will be 0 and it won't
5380 	 * restart. See the comment in __perf_pmu_output_stop().
5381 	 *
5382 	 * Data will inevitably be lost when set_output is done in
5383 	 * mid-air, but then again, whoever does it like this is
5384 	 * not in for the data anyway.
5385 	 */
5386 	if (has_aux(event))
5387 		perf_event_stop(event, 0);
5388 
5389 	rcu_assign_pointer(event->rb, rb);
5390 
5391 	if (old_rb) {
5392 		ring_buffer_put(old_rb);
5393 		/*
5394 		 * Since we detached before setting the new rb, so that we
5395 		 * could attach the new rb, we could have missed a wakeup.
5396 		 * Provide it now.
5397 		 */
5398 		wake_up_all(&event->waitq);
5399 	}
5400 }
5401 
5402 static void ring_buffer_wakeup(struct perf_event *event)
5403 {
5404 	struct ring_buffer *rb;
5405 
5406 	rcu_read_lock();
5407 	rb = rcu_dereference(event->rb);
5408 	if (rb) {
5409 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5410 			wake_up_all(&event->waitq);
5411 	}
5412 	rcu_read_unlock();
5413 }
5414 
5415 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5416 {
5417 	struct ring_buffer *rb;
5418 
5419 	rcu_read_lock();
5420 	rb = rcu_dereference(event->rb);
5421 	if (rb) {
5422 		if (!refcount_inc_not_zero(&rb->refcount))
5423 			rb = NULL;
5424 	}
5425 	rcu_read_unlock();
5426 
5427 	return rb;
5428 }
5429 
5430 void ring_buffer_put(struct ring_buffer *rb)
5431 {
5432 	if (!refcount_dec_and_test(&rb->refcount))
5433 		return;
5434 
5435 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5436 
5437 	call_rcu(&rb->rcu_head, rb_free_rcu);
5438 }
5439 
5440 static void perf_mmap_open(struct vm_area_struct *vma)
5441 {
5442 	struct perf_event *event = vma->vm_file->private_data;
5443 
5444 	atomic_inc(&event->mmap_count);
5445 	atomic_inc(&event->rb->mmap_count);
5446 
5447 	if (vma->vm_pgoff)
5448 		atomic_inc(&event->rb->aux_mmap_count);
5449 
5450 	if (event->pmu->event_mapped)
5451 		event->pmu->event_mapped(event, vma->vm_mm);
5452 }
5453 
5454 static void perf_pmu_output_stop(struct perf_event *event);
5455 
5456 /*
5457  * A buffer can be mmap()ed multiple times; either directly through the same
5458  * event, or through other events by use of perf_event_set_output().
5459  *
5460  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5461  * the buffer here, where we still have a VM context. This means we need
5462  * to detach all events redirecting to us.
5463  */
5464 static void perf_mmap_close(struct vm_area_struct *vma)
5465 {
5466 	struct perf_event *event = vma->vm_file->private_data;
5467 
5468 	struct ring_buffer *rb = ring_buffer_get(event);
5469 	struct user_struct *mmap_user = rb->mmap_user;
5470 	int mmap_locked = rb->mmap_locked;
5471 	unsigned long size = perf_data_size(rb);
5472 
5473 	if (event->pmu->event_unmapped)
5474 		event->pmu->event_unmapped(event, vma->vm_mm);
5475 
5476 	/*
5477 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5478 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5479 	 * serialize with perf_mmap here.
5480 	 */
5481 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5482 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5483 		/*
5484 		 * Stop all AUX events that are writing to this buffer,
5485 		 * so that we can free its AUX pages and corresponding PMU
5486 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5487 		 * they won't start any more (see perf_aux_output_begin()).
5488 		 */
5489 		perf_pmu_output_stop(event);
5490 
5491 		/* now it's safe to free the pages */
5492 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5493 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5494 
5495 		/* this has to be the last one */
5496 		rb_free_aux(rb);
5497 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5498 
5499 		mutex_unlock(&event->mmap_mutex);
5500 	}
5501 
5502 	atomic_dec(&rb->mmap_count);
5503 
5504 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5505 		goto out_put;
5506 
5507 	ring_buffer_attach(event, NULL);
5508 	mutex_unlock(&event->mmap_mutex);
5509 
5510 	/* If there's still other mmap()s of this buffer, we're done. */
5511 	if (atomic_read(&rb->mmap_count))
5512 		goto out_put;
5513 
5514 	/*
5515 	 * No other mmap()s, detach from all other events that might redirect
5516 	 * into the now unreachable buffer. Somewhat complicated by the
5517 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5518 	 */
5519 again:
5520 	rcu_read_lock();
5521 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5522 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5523 			/*
5524 			 * This event is en-route to free_event() which will
5525 			 * detach it and remove it from the list.
5526 			 */
5527 			continue;
5528 		}
5529 		rcu_read_unlock();
5530 
5531 		mutex_lock(&event->mmap_mutex);
5532 		/*
5533 		 * Check we didn't race with perf_event_set_output() which can
5534 		 * swizzle the rb from under us while we were waiting to
5535 		 * acquire mmap_mutex.
5536 		 *
5537 		 * If we find a different rb; ignore this event, a next
5538 		 * iteration will no longer find it on the list. We have to
5539 		 * still restart the iteration to make sure we're not now
5540 		 * iterating the wrong list.
5541 		 */
5542 		if (event->rb == rb)
5543 			ring_buffer_attach(event, NULL);
5544 
5545 		mutex_unlock(&event->mmap_mutex);
5546 		put_event(event);
5547 
5548 		/*
5549 		 * Restart the iteration; either we're on the wrong list or
5550 		 * destroyed its integrity by doing a deletion.
5551 		 */
5552 		goto again;
5553 	}
5554 	rcu_read_unlock();
5555 
5556 	/*
5557 	 * It could be there's still a few 0-ref events on the list; they'll
5558 	 * get cleaned up by free_event() -- they'll also still have their
5559 	 * ref on the rb and will free it whenever they are done with it.
5560 	 *
5561 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5562 	 * undo the VM accounting.
5563 	 */
5564 
5565 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5566 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5567 	free_uid(mmap_user);
5568 
5569 out_put:
5570 	ring_buffer_put(rb); /* could be last */
5571 }
5572 
5573 static const struct vm_operations_struct perf_mmap_vmops = {
5574 	.open		= perf_mmap_open,
5575 	.close		= perf_mmap_close, /* non mergeable */
5576 	.fault		= perf_mmap_fault,
5577 	.page_mkwrite	= perf_mmap_fault,
5578 };
5579 
5580 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5581 {
5582 	struct perf_event *event = file->private_data;
5583 	unsigned long user_locked, user_lock_limit;
5584 	struct user_struct *user = current_user();
5585 	unsigned long locked, lock_limit;
5586 	struct ring_buffer *rb = NULL;
5587 	unsigned long vma_size;
5588 	unsigned long nr_pages;
5589 	long user_extra = 0, extra = 0;
5590 	int ret = 0, flags = 0;
5591 
5592 	/*
5593 	 * Don't allow mmap() of inherited per-task counters. This would
5594 	 * create a performance issue due to all children writing to the
5595 	 * same rb.
5596 	 */
5597 	if (event->cpu == -1 && event->attr.inherit)
5598 		return -EINVAL;
5599 
5600 	if (!(vma->vm_flags & VM_SHARED))
5601 		return -EINVAL;
5602 
5603 	vma_size = vma->vm_end - vma->vm_start;
5604 
5605 	if (vma->vm_pgoff == 0) {
5606 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5607 	} else {
5608 		/*
5609 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5610 		 * mapped, all subsequent mappings should have the same size
5611 		 * and offset. Must be above the normal perf buffer.
5612 		 */
5613 		u64 aux_offset, aux_size;
5614 
5615 		if (!event->rb)
5616 			return -EINVAL;
5617 
5618 		nr_pages = vma_size / PAGE_SIZE;
5619 
5620 		mutex_lock(&event->mmap_mutex);
5621 		ret = -EINVAL;
5622 
5623 		rb = event->rb;
5624 		if (!rb)
5625 			goto aux_unlock;
5626 
5627 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5628 		aux_size = READ_ONCE(rb->user_page->aux_size);
5629 
5630 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5631 			goto aux_unlock;
5632 
5633 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5634 			goto aux_unlock;
5635 
5636 		/* already mapped with a different offset */
5637 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5638 			goto aux_unlock;
5639 
5640 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5641 			goto aux_unlock;
5642 
5643 		/* already mapped with a different size */
5644 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5645 			goto aux_unlock;
5646 
5647 		if (!is_power_of_2(nr_pages))
5648 			goto aux_unlock;
5649 
5650 		if (!atomic_inc_not_zero(&rb->mmap_count))
5651 			goto aux_unlock;
5652 
5653 		if (rb_has_aux(rb)) {
5654 			atomic_inc(&rb->aux_mmap_count);
5655 			ret = 0;
5656 			goto unlock;
5657 		}
5658 
5659 		atomic_set(&rb->aux_mmap_count, 1);
5660 		user_extra = nr_pages;
5661 
5662 		goto accounting;
5663 	}
5664 
5665 	/*
5666 	 * If we have rb pages ensure they're a power-of-two number, so we
5667 	 * can do bitmasks instead of modulo.
5668 	 */
5669 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5670 		return -EINVAL;
5671 
5672 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5673 		return -EINVAL;
5674 
5675 	WARN_ON_ONCE(event->ctx->parent_ctx);
5676 again:
5677 	mutex_lock(&event->mmap_mutex);
5678 	if (event->rb) {
5679 		if (event->rb->nr_pages != nr_pages) {
5680 			ret = -EINVAL;
5681 			goto unlock;
5682 		}
5683 
5684 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5685 			/*
5686 			 * Raced against perf_mmap_close() through
5687 			 * perf_event_set_output(). Try again, hope for better
5688 			 * luck.
5689 			 */
5690 			mutex_unlock(&event->mmap_mutex);
5691 			goto again;
5692 		}
5693 
5694 		goto unlock;
5695 	}
5696 
5697 	user_extra = nr_pages + 1;
5698 
5699 accounting:
5700 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5701 
5702 	/*
5703 	 * Increase the limit linearly with more CPUs:
5704 	 */
5705 	user_lock_limit *= num_online_cpus();
5706 
5707 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5708 
5709 	if (user_locked > user_lock_limit)
5710 		extra = user_locked - user_lock_limit;
5711 
5712 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5713 	lock_limit >>= PAGE_SHIFT;
5714 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5715 
5716 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5717 		!capable(CAP_IPC_LOCK)) {
5718 		ret = -EPERM;
5719 		goto unlock;
5720 	}
5721 
5722 	WARN_ON(!rb && event->rb);
5723 
5724 	if (vma->vm_flags & VM_WRITE)
5725 		flags |= RING_BUFFER_WRITABLE;
5726 
5727 	if (!rb) {
5728 		rb = rb_alloc(nr_pages,
5729 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5730 			      event->cpu, flags);
5731 
5732 		if (!rb) {
5733 			ret = -ENOMEM;
5734 			goto unlock;
5735 		}
5736 
5737 		atomic_set(&rb->mmap_count, 1);
5738 		rb->mmap_user = get_current_user();
5739 		rb->mmap_locked = extra;
5740 
5741 		ring_buffer_attach(event, rb);
5742 
5743 		perf_event_init_userpage(event);
5744 		perf_event_update_userpage(event);
5745 	} else {
5746 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5747 				   event->attr.aux_watermark, flags);
5748 		if (!ret)
5749 			rb->aux_mmap_locked = extra;
5750 	}
5751 
5752 unlock:
5753 	if (!ret) {
5754 		atomic_long_add(user_extra, &user->locked_vm);
5755 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5756 
5757 		atomic_inc(&event->mmap_count);
5758 	} else if (rb) {
5759 		atomic_dec(&rb->mmap_count);
5760 	}
5761 aux_unlock:
5762 	mutex_unlock(&event->mmap_mutex);
5763 
5764 	/*
5765 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5766 	 * vma.
5767 	 */
5768 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5769 	vma->vm_ops = &perf_mmap_vmops;
5770 
5771 	if (event->pmu->event_mapped)
5772 		event->pmu->event_mapped(event, vma->vm_mm);
5773 
5774 	return ret;
5775 }
5776 
5777 static int perf_fasync(int fd, struct file *filp, int on)
5778 {
5779 	struct inode *inode = file_inode(filp);
5780 	struct perf_event *event = filp->private_data;
5781 	int retval;
5782 
5783 	inode_lock(inode);
5784 	retval = fasync_helper(fd, filp, on, &event->fasync);
5785 	inode_unlock(inode);
5786 
5787 	if (retval < 0)
5788 		return retval;
5789 
5790 	return 0;
5791 }
5792 
5793 static const struct file_operations perf_fops = {
5794 	.llseek			= no_llseek,
5795 	.release		= perf_release,
5796 	.read			= perf_read,
5797 	.poll			= perf_poll,
5798 	.unlocked_ioctl		= perf_ioctl,
5799 	.compat_ioctl		= perf_compat_ioctl,
5800 	.mmap			= perf_mmap,
5801 	.fasync			= perf_fasync,
5802 };
5803 
5804 /*
5805  * Perf event wakeup
5806  *
5807  * If there's data, ensure we set the poll() state and publish everything
5808  * to user-space before waking everybody up.
5809  */
5810 
5811 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5812 {
5813 	/* only the parent has fasync state */
5814 	if (event->parent)
5815 		event = event->parent;
5816 	return &event->fasync;
5817 }
5818 
5819 void perf_event_wakeup(struct perf_event *event)
5820 {
5821 	ring_buffer_wakeup(event);
5822 
5823 	if (event->pending_kill) {
5824 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5825 		event->pending_kill = 0;
5826 	}
5827 }
5828 
5829 static void perf_pending_event_disable(struct perf_event *event)
5830 {
5831 	int cpu = READ_ONCE(event->pending_disable);
5832 
5833 	if (cpu < 0)
5834 		return;
5835 
5836 	if (cpu == smp_processor_id()) {
5837 		WRITE_ONCE(event->pending_disable, -1);
5838 		perf_event_disable_local(event);
5839 		return;
5840 	}
5841 
5842 	/*
5843 	 *  CPU-A			CPU-B
5844 	 *
5845 	 *  perf_event_disable_inatomic()
5846 	 *    @pending_disable = CPU-A;
5847 	 *    irq_work_queue();
5848 	 *
5849 	 *  sched-out
5850 	 *    @pending_disable = -1;
5851 	 *
5852 	 *				sched-in
5853 	 *				perf_event_disable_inatomic()
5854 	 *				  @pending_disable = CPU-B;
5855 	 *				  irq_work_queue(); // FAILS
5856 	 *
5857 	 *  irq_work_run()
5858 	 *    perf_pending_event()
5859 	 *
5860 	 * But the event runs on CPU-B and wants disabling there.
5861 	 */
5862 	irq_work_queue_on(&event->pending, cpu);
5863 }
5864 
5865 static void perf_pending_event(struct irq_work *entry)
5866 {
5867 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5868 	int rctx;
5869 
5870 	rctx = perf_swevent_get_recursion_context();
5871 	/*
5872 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5873 	 * and we won't recurse 'further'.
5874 	 */
5875 
5876 	perf_pending_event_disable(event);
5877 
5878 	if (event->pending_wakeup) {
5879 		event->pending_wakeup = 0;
5880 		perf_event_wakeup(event);
5881 	}
5882 
5883 	if (rctx >= 0)
5884 		perf_swevent_put_recursion_context(rctx);
5885 }
5886 
5887 /*
5888  * We assume there is only KVM supporting the callbacks.
5889  * Later on, we might change it to a list if there is
5890  * another virtualization implementation supporting the callbacks.
5891  */
5892 struct perf_guest_info_callbacks *perf_guest_cbs;
5893 
5894 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5895 {
5896 	perf_guest_cbs = cbs;
5897 	return 0;
5898 }
5899 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5900 
5901 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5902 {
5903 	perf_guest_cbs = NULL;
5904 	return 0;
5905 }
5906 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5907 
5908 static void
5909 perf_output_sample_regs(struct perf_output_handle *handle,
5910 			struct pt_regs *regs, u64 mask)
5911 {
5912 	int bit;
5913 	DECLARE_BITMAP(_mask, 64);
5914 
5915 	bitmap_from_u64(_mask, mask);
5916 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5917 		u64 val;
5918 
5919 		val = perf_reg_value(regs, bit);
5920 		perf_output_put(handle, val);
5921 	}
5922 }
5923 
5924 static void perf_sample_regs_user(struct perf_regs *regs_user,
5925 				  struct pt_regs *regs,
5926 				  struct pt_regs *regs_user_copy)
5927 {
5928 	if (user_mode(regs)) {
5929 		regs_user->abi = perf_reg_abi(current);
5930 		regs_user->regs = regs;
5931 	} else if (!(current->flags & PF_KTHREAD)) {
5932 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5933 	} else {
5934 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5935 		regs_user->regs = NULL;
5936 	}
5937 }
5938 
5939 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5940 				  struct pt_regs *regs)
5941 {
5942 	regs_intr->regs = regs;
5943 	regs_intr->abi  = perf_reg_abi(current);
5944 }
5945 
5946 
5947 /*
5948  * Get remaining task size from user stack pointer.
5949  *
5950  * It'd be better to take stack vma map and limit this more
5951  * precisly, but there's no way to get it safely under interrupt,
5952  * so using TASK_SIZE as limit.
5953  */
5954 static u64 perf_ustack_task_size(struct pt_regs *regs)
5955 {
5956 	unsigned long addr = perf_user_stack_pointer(regs);
5957 
5958 	if (!addr || addr >= TASK_SIZE)
5959 		return 0;
5960 
5961 	return TASK_SIZE - addr;
5962 }
5963 
5964 static u16
5965 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5966 			struct pt_regs *regs)
5967 {
5968 	u64 task_size;
5969 
5970 	/* No regs, no stack pointer, no dump. */
5971 	if (!regs)
5972 		return 0;
5973 
5974 	/*
5975 	 * Check if we fit in with the requested stack size into the:
5976 	 * - TASK_SIZE
5977 	 *   If we don't, we limit the size to the TASK_SIZE.
5978 	 *
5979 	 * - remaining sample size
5980 	 *   If we don't, we customize the stack size to
5981 	 *   fit in to the remaining sample size.
5982 	 */
5983 
5984 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5985 	stack_size = min(stack_size, (u16) task_size);
5986 
5987 	/* Current header size plus static size and dynamic size. */
5988 	header_size += 2 * sizeof(u64);
5989 
5990 	/* Do we fit in with the current stack dump size? */
5991 	if ((u16) (header_size + stack_size) < header_size) {
5992 		/*
5993 		 * If we overflow the maximum size for the sample,
5994 		 * we customize the stack dump size to fit in.
5995 		 */
5996 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5997 		stack_size = round_up(stack_size, sizeof(u64));
5998 	}
5999 
6000 	return stack_size;
6001 }
6002 
6003 static void
6004 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6005 			  struct pt_regs *regs)
6006 {
6007 	/* Case of a kernel thread, nothing to dump */
6008 	if (!regs) {
6009 		u64 size = 0;
6010 		perf_output_put(handle, size);
6011 	} else {
6012 		unsigned long sp;
6013 		unsigned int rem;
6014 		u64 dyn_size;
6015 		mm_segment_t fs;
6016 
6017 		/*
6018 		 * We dump:
6019 		 * static size
6020 		 *   - the size requested by user or the best one we can fit
6021 		 *     in to the sample max size
6022 		 * data
6023 		 *   - user stack dump data
6024 		 * dynamic size
6025 		 *   - the actual dumped size
6026 		 */
6027 
6028 		/* Static size. */
6029 		perf_output_put(handle, dump_size);
6030 
6031 		/* Data. */
6032 		sp = perf_user_stack_pointer(regs);
6033 		fs = get_fs();
6034 		set_fs(USER_DS);
6035 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6036 		set_fs(fs);
6037 		dyn_size = dump_size - rem;
6038 
6039 		perf_output_skip(handle, rem);
6040 
6041 		/* Dynamic size. */
6042 		perf_output_put(handle, dyn_size);
6043 	}
6044 }
6045 
6046 static void __perf_event_header__init_id(struct perf_event_header *header,
6047 					 struct perf_sample_data *data,
6048 					 struct perf_event *event)
6049 {
6050 	u64 sample_type = event->attr.sample_type;
6051 
6052 	data->type = sample_type;
6053 	header->size += event->id_header_size;
6054 
6055 	if (sample_type & PERF_SAMPLE_TID) {
6056 		/* namespace issues */
6057 		data->tid_entry.pid = perf_event_pid(event, current);
6058 		data->tid_entry.tid = perf_event_tid(event, current);
6059 	}
6060 
6061 	if (sample_type & PERF_SAMPLE_TIME)
6062 		data->time = perf_event_clock(event);
6063 
6064 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6065 		data->id = primary_event_id(event);
6066 
6067 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6068 		data->stream_id = event->id;
6069 
6070 	if (sample_type & PERF_SAMPLE_CPU) {
6071 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6072 		data->cpu_entry.reserved = 0;
6073 	}
6074 }
6075 
6076 void perf_event_header__init_id(struct perf_event_header *header,
6077 				struct perf_sample_data *data,
6078 				struct perf_event *event)
6079 {
6080 	if (event->attr.sample_id_all)
6081 		__perf_event_header__init_id(header, data, event);
6082 }
6083 
6084 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6085 					   struct perf_sample_data *data)
6086 {
6087 	u64 sample_type = data->type;
6088 
6089 	if (sample_type & PERF_SAMPLE_TID)
6090 		perf_output_put(handle, data->tid_entry);
6091 
6092 	if (sample_type & PERF_SAMPLE_TIME)
6093 		perf_output_put(handle, data->time);
6094 
6095 	if (sample_type & PERF_SAMPLE_ID)
6096 		perf_output_put(handle, data->id);
6097 
6098 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6099 		perf_output_put(handle, data->stream_id);
6100 
6101 	if (sample_type & PERF_SAMPLE_CPU)
6102 		perf_output_put(handle, data->cpu_entry);
6103 
6104 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6105 		perf_output_put(handle, data->id);
6106 }
6107 
6108 void perf_event__output_id_sample(struct perf_event *event,
6109 				  struct perf_output_handle *handle,
6110 				  struct perf_sample_data *sample)
6111 {
6112 	if (event->attr.sample_id_all)
6113 		__perf_event__output_id_sample(handle, sample);
6114 }
6115 
6116 static void perf_output_read_one(struct perf_output_handle *handle,
6117 				 struct perf_event *event,
6118 				 u64 enabled, u64 running)
6119 {
6120 	u64 read_format = event->attr.read_format;
6121 	u64 values[4];
6122 	int n = 0;
6123 
6124 	values[n++] = perf_event_count(event);
6125 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6126 		values[n++] = enabled +
6127 			atomic64_read(&event->child_total_time_enabled);
6128 	}
6129 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6130 		values[n++] = running +
6131 			atomic64_read(&event->child_total_time_running);
6132 	}
6133 	if (read_format & PERF_FORMAT_ID)
6134 		values[n++] = primary_event_id(event);
6135 
6136 	__output_copy(handle, values, n * sizeof(u64));
6137 }
6138 
6139 static void perf_output_read_group(struct perf_output_handle *handle,
6140 			    struct perf_event *event,
6141 			    u64 enabled, u64 running)
6142 {
6143 	struct perf_event *leader = event->group_leader, *sub;
6144 	u64 read_format = event->attr.read_format;
6145 	u64 values[5];
6146 	int n = 0;
6147 
6148 	values[n++] = 1 + leader->nr_siblings;
6149 
6150 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6151 		values[n++] = enabled;
6152 
6153 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6154 		values[n++] = running;
6155 
6156 	if ((leader != event) &&
6157 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6158 		leader->pmu->read(leader);
6159 
6160 	values[n++] = perf_event_count(leader);
6161 	if (read_format & PERF_FORMAT_ID)
6162 		values[n++] = primary_event_id(leader);
6163 
6164 	__output_copy(handle, values, n * sizeof(u64));
6165 
6166 	for_each_sibling_event(sub, leader) {
6167 		n = 0;
6168 
6169 		if ((sub != event) &&
6170 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6171 			sub->pmu->read(sub);
6172 
6173 		values[n++] = perf_event_count(sub);
6174 		if (read_format & PERF_FORMAT_ID)
6175 			values[n++] = primary_event_id(sub);
6176 
6177 		__output_copy(handle, values, n * sizeof(u64));
6178 	}
6179 }
6180 
6181 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6182 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6183 
6184 /*
6185  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6186  *
6187  * The problem is that its both hard and excessively expensive to iterate the
6188  * child list, not to mention that its impossible to IPI the children running
6189  * on another CPU, from interrupt/NMI context.
6190  */
6191 static void perf_output_read(struct perf_output_handle *handle,
6192 			     struct perf_event *event)
6193 {
6194 	u64 enabled = 0, running = 0, now;
6195 	u64 read_format = event->attr.read_format;
6196 
6197 	/*
6198 	 * compute total_time_enabled, total_time_running
6199 	 * based on snapshot values taken when the event
6200 	 * was last scheduled in.
6201 	 *
6202 	 * we cannot simply called update_context_time()
6203 	 * because of locking issue as we are called in
6204 	 * NMI context
6205 	 */
6206 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6207 		calc_timer_values(event, &now, &enabled, &running);
6208 
6209 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6210 		perf_output_read_group(handle, event, enabled, running);
6211 	else
6212 		perf_output_read_one(handle, event, enabled, running);
6213 }
6214 
6215 void perf_output_sample(struct perf_output_handle *handle,
6216 			struct perf_event_header *header,
6217 			struct perf_sample_data *data,
6218 			struct perf_event *event)
6219 {
6220 	u64 sample_type = data->type;
6221 
6222 	perf_output_put(handle, *header);
6223 
6224 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6225 		perf_output_put(handle, data->id);
6226 
6227 	if (sample_type & PERF_SAMPLE_IP)
6228 		perf_output_put(handle, data->ip);
6229 
6230 	if (sample_type & PERF_SAMPLE_TID)
6231 		perf_output_put(handle, data->tid_entry);
6232 
6233 	if (sample_type & PERF_SAMPLE_TIME)
6234 		perf_output_put(handle, data->time);
6235 
6236 	if (sample_type & PERF_SAMPLE_ADDR)
6237 		perf_output_put(handle, data->addr);
6238 
6239 	if (sample_type & PERF_SAMPLE_ID)
6240 		perf_output_put(handle, data->id);
6241 
6242 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6243 		perf_output_put(handle, data->stream_id);
6244 
6245 	if (sample_type & PERF_SAMPLE_CPU)
6246 		perf_output_put(handle, data->cpu_entry);
6247 
6248 	if (sample_type & PERF_SAMPLE_PERIOD)
6249 		perf_output_put(handle, data->period);
6250 
6251 	if (sample_type & PERF_SAMPLE_READ)
6252 		perf_output_read(handle, event);
6253 
6254 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6255 		int size = 1;
6256 
6257 		size += data->callchain->nr;
6258 		size *= sizeof(u64);
6259 		__output_copy(handle, data->callchain, size);
6260 	}
6261 
6262 	if (sample_type & PERF_SAMPLE_RAW) {
6263 		struct perf_raw_record *raw = data->raw;
6264 
6265 		if (raw) {
6266 			struct perf_raw_frag *frag = &raw->frag;
6267 
6268 			perf_output_put(handle, raw->size);
6269 			do {
6270 				if (frag->copy) {
6271 					__output_custom(handle, frag->copy,
6272 							frag->data, frag->size);
6273 				} else {
6274 					__output_copy(handle, frag->data,
6275 						      frag->size);
6276 				}
6277 				if (perf_raw_frag_last(frag))
6278 					break;
6279 				frag = frag->next;
6280 			} while (1);
6281 			if (frag->pad)
6282 				__output_skip(handle, NULL, frag->pad);
6283 		} else {
6284 			struct {
6285 				u32	size;
6286 				u32	data;
6287 			} raw = {
6288 				.size = sizeof(u32),
6289 				.data = 0,
6290 			};
6291 			perf_output_put(handle, raw);
6292 		}
6293 	}
6294 
6295 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6296 		if (data->br_stack) {
6297 			size_t size;
6298 
6299 			size = data->br_stack->nr
6300 			     * sizeof(struct perf_branch_entry);
6301 
6302 			perf_output_put(handle, data->br_stack->nr);
6303 			perf_output_copy(handle, data->br_stack->entries, size);
6304 		} else {
6305 			/*
6306 			 * we always store at least the value of nr
6307 			 */
6308 			u64 nr = 0;
6309 			perf_output_put(handle, nr);
6310 		}
6311 	}
6312 
6313 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6314 		u64 abi = data->regs_user.abi;
6315 
6316 		/*
6317 		 * If there are no regs to dump, notice it through
6318 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6319 		 */
6320 		perf_output_put(handle, abi);
6321 
6322 		if (abi) {
6323 			u64 mask = event->attr.sample_regs_user;
6324 			perf_output_sample_regs(handle,
6325 						data->regs_user.regs,
6326 						mask);
6327 		}
6328 	}
6329 
6330 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6331 		perf_output_sample_ustack(handle,
6332 					  data->stack_user_size,
6333 					  data->regs_user.regs);
6334 	}
6335 
6336 	if (sample_type & PERF_SAMPLE_WEIGHT)
6337 		perf_output_put(handle, data->weight);
6338 
6339 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6340 		perf_output_put(handle, data->data_src.val);
6341 
6342 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6343 		perf_output_put(handle, data->txn);
6344 
6345 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6346 		u64 abi = data->regs_intr.abi;
6347 		/*
6348 		 * If there are no regs to dump, notice it through
6349 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6350 		 */
6351 		perf_output_put(handle, abi);
6352 
6353 		if (abi) {
6354 			u64 mask = event->attr.sample_regs_intr;
6355 
6356 			perf_output_sample_regs(handle,
6357 						data->regs_intr.regs,
6358 						mask);
6359 		}
6360 	}
6361 
6362 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6363 		perf_output_put(handle, data->phys_addr);
6364 
6365 	if (!event->attr.watermark) {
6366 		int wakeup_events = event->attr.wakeup_events;
6367 
6368 		if (wakeup_events) {
6369 			struct ring_buffer *rb = handle->rb;
6370 			int events = local_inc_return(&rb->events);
6371 
6372 			if (events >= wakeup_events) {
6373 				local_sub(wakeup_events, &rb->events);
6374 				local_inc(&rb->wakeup);
6375 			}
6376 		}
6377 	}
6378 }
6379 
6380 static u64 perf_virt_to_phys(u64 virt)
6381 {
6382 	u64 phys_addr = 0;
6383 	struct page *p = NULL;
6384 
6385 	if (!virt)
6386 		return 0;
6387 
6388 	if (virt >= TASK_SIZE) {
6389 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6390 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6391 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6392 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6393 	} else {
6394 		/*
6395 		 * Walking the pages tables for user address.
6396 		 * Interrupts are disabled, so it prevents any tear down
6397 		 * of the page tables.
6398 		 * Try IRQ-safe __get_user_pages_fast first.
6399 		 * If failed, leave phys_addr as 0.
6400 		 */
6401 		if ((current->mm != NULL) &&
6402 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6403 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6404 
6405 		if (p)
6406 			put_page(p);
6407 	}
6408 
6409 	return phys_addr;
6410 }
6411 
6412 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6413 
6414 struct perf_callchain_entry *
6415 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6416 {
6417 	bool kernel = !event->attr.exclude_callchain_kernel;
6418 	bool user   = !event->attr.exclude_callchain_user;
6419 	/* Disallow cross-task user callchains. */
6420 	bool crosstask = event->ctx->task && event->ctx->task != current;
6421 	const u32 max_stack = event->attr.sample_max_stack;
6422 	struct perf_callchain_entry *callchain;
6423 
6424 	if (!kernel && !user)
6425 		return &__empty_callchain;
6426 
6427 	callchain = get_perf_callchain(regs, 0, kernel, user,
6428 				       max_stack, crosstask, true);
6429 	return callchain ?: &__empty_callchain;
6430 }
6431 
6432 void perf_prepare_sample(struct perf_event_header *header,
6433 			 struct perf_sample_data *data,
6434 			 struct perf_event *event,
6435 			 struct pt_regs *regs)
6436 {
6437 	u64 sample_type = event->attr.sample_type;
6438 
6439 	header->type = PERF_RECORD_SAMPLE;
6440 	header->size = sizeof(*header) + event->header_size;
6441 
6442 	header->misc = 0;
6443 	header->misc |= perf_misc_flags(regs);
6444 
6445 	__perf_event_header__init_id(header, data, event);
6446 
6447 	if (sample_type & PERF_SAMPLE_IP)
6448 		data->ip = perf_instruction_pointer(regs);
6449 
6450 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6451 		int size = 1;
6452 
6453 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6454 			data->callchain = perf_callchain(event, regs);
6455 
6456 		size += data->callchain->nr;
6457 
6458 		header->size += size * sizeof(u64);
6459 	}
6460 
6461 	if (sample_type & PERF_SAMPLE_RAW) {
6462 		struct perf_raw_record *raw = data->raw;
6463 		int size;
6464 
6465 		if (raw) {
6466 			struct perf_raw_frag *frag = &raw->frag;
6467 			u32 sum = 0;
6468 
6469 			do {
6470 				sum += frag->size;
6471 				if (perf_raw_frag_last(frag))
6472 					break;
6473 				frag = frag->next;
6474 			} while (1);
6475 
6476 			size = round_up(sum + sizeof(u32), sizeof(u64));
6477 			raw->size = size - sizeof(u32);
6478 			frag->pad = raw->size - sum;
6479 		} else {
6480 			size = sizeof(u64);
6481 		}
6482 
6483 		header->size += size;
6484 	}
6485 
6486 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6487 		int size = sizeof(u64); /* nr */
6488 		if (data->br_stack) {
6489 			size += data->br_stack->nr
6490 			      * sizeof(struct perf_branch_entry);
6491 		}
6492 		header->size += size;
6493 	}
6494 
6495 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6496 		perf_sample_regs_user(&data->regs_user, regs,
6497 				      &data->regs_user_copy);
6498 
6499 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6500 		/* regs dump ABI info */
6501 		int size = sizeof(u64);
6502 
6503 		if (data->regs_user.regs) {
6504 			u64 mask = event->attr.sample_regs_user;
6505 			size += hweight64(mask) * sizeof(u64);
6506 		}
6507 
6508 		header->size += size;
6509 	}
6510 
6511 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6512 		/*
6513 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6514 		 * processed as the last one or have additional check added
6515 		 * in case new sample type is added, because we could eat
6516 		 * up the rest of the sample size.
6517 		 */
6518 		u16 stack_size = event->attr.sample_stack_user;
6519 		u16 size = sizeof(u64);
6520 
6521 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6522 						     data->regs_user.regs);
6523 
6524 		/*
6525 		 * If there is something to dump, add space for the dump
6526 		 * itself and for the field that tells the dynamic size,
6527 		 * which is how many have been actually dumped.
6528 		 */
6529 		if (stack_size)
6530 			size += sizeof(u64) + stack_size;
6531 
6532 		data->stack_user_size = stack_size;
6533 		header->size += size;
6534 	}
6535 
6536 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6537 		/* regs dump ABI info */
6538 		int size = sizeof(u64);
6539 
6540 		perf_sample_regs_intr(&data->regs_intr, regs);
6541 
6542 		if (data->regs_intr.regs) {
6543 			u64 mask = event->attr.sample_regs_intr;
6544 
6545 			size += hweight64(mask) * sizeof(u64);
6546 		}
6547 
6548 		header->size += size;
6549 	}
6550 
6551 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6552 		data->phys_addr = perf_virt_to_phys(data->addr);
6553 }
6554 
6555 static __always_inline int
6556 __perf_event_output(struct perf_event *event,
6557 		    struct perf_sample_data *data,
6558 		    struct pt_regs *regs,
6559 		    int (*output_begin)(struct perf_output_handle *,
6560 					struct perf_event *,
6561 					unsigned int))
6562 {
6563 	struct perf_output_handle handle;
6564 	struct perf_event_header header;
6565 	int err;
6566 
6567 	/* protect the callchain buffers */
6568 	rcu_read_lock();
6569 
6570 	perf_prepare_sample(&header, data, event, regs);
6571 
6572 	err = output_begin(&handle, event, header.size);
6573 	if (err)
6574 		goto exit;
6575 
6576 	perf_output_sample(&handle, &header, data, event);
6577 
6578 	perf_output_end(&handle);
6579 
6580 exit:
6581 	rcu_read_unlock();
6582 	return err;
6583 }
6584 
6585 void
6586 perf_event_output_forward(struct perf_event *event,
6587 			 struct perf_sample_data *data,
6588 			 struct pt_regs *regs)
6589 {
6590 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6591 }
6592 
6593 void
6594 perf_event_output_backward(struct perf_event *event,
6595 			   struct perf_sample_data *data,
6596 			   struct pt_regs *regs)
6597 {
6598 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6599 }
6600 
6601 int
6602 perf_event_output(struct perf_event *event,
6603 		  struct perf_sample_data *data,
6604 		  struct pt_regs *regs)
6605 {
6606 	return __perf_event_output(event, data, regs, perf_output_begin);
6607 }
6608 
6609 /*
6610  * read event_id
6611  */
6612 
6613 struct perf_read_event {
6614 	struct perf_event_header	header;
6615 
6616 	u32				pid;
6617 	u32				tid;
6618 };
6619 
6620 static void
6621 perf_event_read_event(struct perf_event *event,
6622 			struct task_struct *task)
6623 {
6624 	struct perf_output_handle handle;
6625 	struct perf_sample_data sample;
6626 	struct perf_read_event read_event = {
6627 		.header = {
6628 			.type = PERF_RECORD_READ,
6629 			.misc = 0,
6630 			.size = sizeof(read_event) + event->read_size,
6631 		},
6632 		.pid = perf_event_pid(event, task),
6633 		.tid = perf_event_tid(event, task),
6634 	};
6635 	int ret;
6636 
6637 	perf_event_header__init_id(&read_event.header, &sample, event);
6638 	ret = perf_output_begin(&handle, event, read_event.header.size);
6639 	if (ret)
6640 		return;
6641 
6642 	perf_output_put(&handle, read_event);
6643 	perf_output_read(&handle, event);
6644 	perf_event__output_id_sample(event, &handle, &sample);
6645 
6646 	perf_output_end(&handle);
6647 }
6648 
6649 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6650 
6651 static void
6652 perf_iterate_ctx(struct perf_event_context *ctx,
6653 		   perf_iterate_f output,
6654 		   void *data, bool all)
6655 {
6656 	struct perf_event *event;
6657 
6658 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6659 		if (!all) {
6660 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6661 				continue;
6662 			if (!event_filter_match(event))
6663 				continue;
6664 		}
6665 
6666 		output(event, data);
6667 	}
6668 }
6669 
6670 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6671 {
6672 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6673 	struct perf_event *event;
6674 
6675 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6676 		/*
6677 		 * Skip events that are not fully formed yet; ensure that
6678 		 * if we observe event->ctx, both event and ctx will be
6679 		 * complete enough. See perf_install_in_context().
6680 		 */
6681 		if (!smp_load_acquire(&event->ctx))
6682 			continue;
6683 
6684 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6685 			continue;
6686 		if (!event_filter_match(event))
6687 			continue;
6688 		output(event, data);
6689 	}
6690 }
6691 
6692 /*
6693  * Iterate all events that need to receive side-band events.
6694  *
6695  * For new callers; ensure that account_pmu_sb_event() includes
6696  * your event, otherwise it might not get delivered.
6697  */
6698 static void
6699 perf_iterate_sb(perf_iterate_f output, void *data,
6700 	       struct perf_event_context *task_ctx)
6701 {
6702 	struct perf_event_context *ctx;
6703 	int ctxn;
6704 
6705 	rcu_read_lock();
6706 	preempt_disable();
6707 
6708 	/*
6709 	 * If we have task_ctx != NULL we only notify the task context itself.
6710 	 * The task_ctx is set only for EXIT events before releasing task
6711 	 * context.
6712 	 */
6713 	if (task_ctx) {
6714 		perf_iterate_ctx(task_ctx, output, data, false);
6715 		goto done;
6716 	}
6717 
6718 	perf_iterate_sb_cpu(output, data);
6719 
6720 	for_each_task_context_nr(ctxn) {
6721 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6722 		if (ctx)
6723 			perf_iterate_ctx(ctx, output, data, false);
6724 	}
6725 done:
6726 	preempt_enable();
6727 	rcu_read_unlock();
6728 }
6729 
6730 /*
6731  * Clear all file-based filters at exec, they'll have to be
6732  * re-instated when/if these objects are mmapped again.
6733  */
6734 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6735 {
6736 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6737 	struct perf_addr_filter *filter;
6738 	unsigned int restart = 0, count = 0;
6739 	unsigned long flags;
6740 
6741 	if (!has_addr_filter(event))
6742 		return;
6743 
6744 	raw_spin_lock_irqsave(&ifh->lock, flags);
6745 	list_for_each_entry(filter, &ifh->list, entry) {
6746 		if (filter->path.dentry) {
6747 			event->addr_filter_ranges[count].start = 0;
6748 			event->addr_filter_ranges[count].size = 0;
6749 			restart++;
6750 		}
6751 
6752 		count++;
6753 	}
6754 
6755 	if (restart)
6756 		event->addr_filters_gen++;
6757 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6758 
6759 	if (restart)
6760 		perf_event_stop(event, 1);
6761 }
6762 
6763 void perf_event_exec(void)
6764 {
6765 	struct perf_event_context *ctx;
6766 	int ctxn;
6767 
6768 	rcu_read_lock();
6769 	for_each_task_context_nr(ctxn) {
6770 		ctx = current->perf_event_ctxp[ctxn];
6771 		if (!ctx)
6772 			continue;
6773 
6774 		perf_event_enable_on_exec(ctxn);
6775 
6776 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6777 				   true);
6778 	}
6779 	rcu_read_unlock();
6780 }
6781 
6782 struct remote_output {
6783 	struct ring_buffer	*rb;
6784 	int			err;
6785 };
6786 
6787 static void __perf_event_output_stop(struct perf_event *event, void *data)
6788 {
6789 	struct perf_event *parent = event->parent;
6790 	struct remote_output *ro = data;
6791 	struct ring_buffer *rb = ro->rb;
6792 	struct stop_event_data sd = {
6793 		.event	= event,
6794 	};
6795 
6796 	if (!has_aux(event))
6797 		return;
6798 
6799 	if (!parent)
6800 		parent = event;
6801 
6802 	/*
6803 	 * In case of inheritance, it will be the parent that links to the
6804 	 * ring-buffer, but it will be the child that's actually using it.
6805 	 *
6806 	 * We are using event::rb to determine if the event should be stopped,
6807 	 * however this may race with ring_buffer_attach() (through set_output),
6808 	 * which will make us skip the event that actually needs to be stopped.
6809 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6810 	 * its rb pointer.
6811 	 */
6812 	if (rcu_dereference(parent->rb) == rb)
6813 		ro->err = __perf_event_stop(&sd);
6814 }
6815 
6816 static int __perf_pmu_output_stop(void *info)
6817 {
6818 	struct perf_event *event = info;
6819 	struct pmu *pmu = event->pmu;
6820 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6821 	struct remote_output ro = {
6822 		.rb	= event->rb,
6823 	};
6824 
6825 	rcu_read_lock();
6826 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6827 	if (cpuctx->task_ctx)
6828 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6829 				   &ro, false);
6830 	rcu_read_unlock();
6831 
6832 	return ro.err;
6833 }
6834 
6835 static void perf_pmu_output_stop(struct perf_event *event)
6836 {
6837 	struct perf_event *iter;
6838 	int err, cpu;
6839 
6840 restart:
6841 	rcu_read_lock();
6842 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6843 		/*
6844 		 * For per-CPU events, we need to make sure that neither they
6845 		 * nor their children are running; for cpu==-1 events it's
6846 		 * sufficient to stop the event itself if it's active, since
6847 		 * it can't have children.
6848 		 */
6849 		cpu = iter->cpu;
6850 		if (cpu == -1)
6851 			cpu = READ_ONCE(iter->oncpu);
6852 
6853 		if (cpu == -1)
6854 			continue;
6855 
6856 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6857 		if (err == -EAGAIN) {
6858 			rcu_read_unlock();
6859 			goto restart;
6860 		}
6861 	}
6862 	rcu_read_unlock();
6863 }
6864 
6865 /*
6866  * task tracking -- fork/exit
6867  *
6868  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6869  */
6870 
6871 struct perf_task_event {
6872 	struct task_struct		*task;
6873 	struct perf_event_context	*task_ctx;
6874 
6875 	struct {
6876 		struct perf_event_header	header;
6877 
6878 		u32				pid;
6879 		u32				ppid;
6880 		u32				tid;
6881 		u32				ptid;
6882 		u64				time;
6883 	} event_id;
6884 };
6885 
6886 static int perf_event_task_match(struct perf_event *event)
6887 {
6888 	return event->attr.comm  || event->attr.mmap ||
6889 	       event->attr.mmap2 || event->attr.mmap_data ||
6890 	       event->attr.task;
6891 }
6892 
6893 static void perf_event_task_output(struct perf_event *event,
6894 				   void *data)
6895 {
6896 	struct perf_task_event *task_event = data;
6897 	struct perf_output_handle handle;
6898 	struct perf_sample_data	sample;
6899 	struct task_struct *task = task_event->task;
6900 	int ret, size = task_event->event_id.header.size;
6901 
6902 	if (!perf_event_task_match(event))
6903 		return;
6904 
6905 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6906 
6907 	ret = perf_output_begin(&handle, event,
6908 				task_event->event_id.header.size);
6909 	if (ret)
6910 		goto out;
6911 
6912 	task_event->event_id.pid = perf_event_pid(event, task);
6913 	task_event->event_id.ppid = perf_event_pid(event, current);
6914 
6915 	task_event->event_id.tid = perf_event_tid(event, task);
6916 	task_event->event_id.ptid = perf_event_tid(event, current);
6917 
6918 	task_event->event_id.time = perf_event_clock(event);
6919 
6920 	perf_output_put(&handle, task_event->event_id);
6921 
6922 	perf_event__output_id_sample(event, &handle, &sample);
6923 
6924 	perf_output_end(&handle);
6925 out:
6926 	task_event->event_id.header.size = size;
6927 }
6928 
6929 static void perf_event_task(struct task_struct *task,
6930 			      struct perf_event_context *task_ctx,
6931 			      int new)
6932 {
6933 	struct perf_task_event task_event;
6934 
6935 	if (!atomic_read(&nr_comm_events) &&
6936 	    !atomic_read(&nr_mmap_events) &&
6937 	    !atomic_read(&nr_task_events))
6938 		return;
6939 
6940 	task_event = (struct perf_task_event){
6941 		.task	  = task,
6942 		.task_ctx = task_ctx,
6943 		.event_id    = {
6944 			.header = {
6945 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6946 				.misc = 0,
6947 				.size = sizeof(task_event.event_id),
6948 			},
6949 			/* .pid  */
6950 			/* .ppid */
6951 			/* .tid  */
6952 			/* .ptid */
6953 			/* .time */
6954 		},
6955 	};
6956 
6957 	perf_iterate_sb(perf_event_task_output,
6958 		       &task_event,
6959 		       task_ctx);
6960 }
6961 
6962 void perf_event_fork(struct task_struct *task)
6963 {
6964 	perf_event_task(task, NULL, 1);
6965 	perf_event_namespaces(task);
6966 }
6967 
6968 /*
6969  * comm tracking
6970  */
6971 
6972 struct perf_comm_event {
6973 	struct task_struct	*task;
6974 	char			*comm;
6975 	int			comm_size;
6976 
6977 	struct {
6978 		struct perf_event_header	header;
6979 
6980 		u32				pid;
6981 		u32				tid;
6982 	} event_id;
6983 };
6984 
6985 static int perf_event_comm_match(struct perf_event *event)
6986 {
6987 	return event->attr.comm;
6988 }
6989 
6990 static void perf_event_comm_output(struct perf_event *event,
6991 				   void *data)
6992 {
6993 	struct perf_comm_event *comm_event = data;
6994 	struct perf_output_handle handle;
6995 	struct perf_sample_data sample;
6996 	int size = comm_event->event_id.header.size;
6997 	int ret;
6998 
6999 	if (!perf_event_comm_match(event))
7000 		return;
7001 
7002 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7003 	ret = perf_output_begin(&handle, event,
7004 				comm_event->event_id.header.size);
7005 
7006 	if (ret)
7007 		goto out;
7008 
7009 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7010 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7011 
7012 	perf_output_put(&handle, comm_event->event_id);
7013 	__output_copy(&handle, comm_event->comm,
7014 				   comm_event->comm_size);
7015 
7016 	perf_event__output_id_sample(event, &handle, &sample);
7017 
7018 	perf_output_end(&handle);
7019 out:
7020 	comm_event->event_id.header.size = size;
7021 }
7022 
7023 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7024 {
7025 	char comm[TASK_COMM_LEN];
7026 	unsigned int size;
7027 
7028 	memset(comm, 0, sizeof(comm));
7029 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7030 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7031 
7032 	comm_event->comm = comm;
7033 	comm_event->comm_size = size;
7034 
7035 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7036 
7037 	perf_iterate_sb(perf_event_comm_output,
7038 		       comm_event,
7039 		       NULL);
7040 }
7041 
7042 void perf_event_comm(struct task_struct *task, bool exec)
7043 {
7044 	struct perf_comm_event comm_event;
7045 
7046 	if (!atomic_read(&nr_comm_events))
7047 		return;
7048 
7049 	comm_event = (struct perf_comm_event){
7050 		.task	= task,
7051 		/* .comm      */
7052 		/* .comm_size */
7053 		.event_id  = {
7054 			.header = {
7055 				.type = PERF_RECORD_COMM,
7056 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7057 				/* .size */
7058 			},
7059 			/* .pid */
7060 			/* .tid */
7061 		},
7062 	};
7063 
7064 	perf_event_comm_event(&comm_event);
7065 }
7066 
7067 /*
7068  * namespaces tracking
7069  */
7070 
7071 struct perf_namespaces_event {
7072 	struct task_struct		*task;
7073 
7074 	struct {
7075 		struct perf_event_header	header;
7076 
7077 		u32				pid;
7078 		u32				tid;
7079 		u64				nr_namespaces;
7080 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7081 	} event_id;
7082 };
7083 
7084 static int perf_event_namespaces_match(struct perf_event *event)
7085 {
7086 	return event->attr.namespaces;
7087 }
7088 
7089 static void perf_event_namespaces_output(struct perf_event *event,
7090 					 void *data)
7091 {
7092 	struct perf_namespaces_event *namespaces_event = data;
7093 	struct perf_output_handle handle;
7094 	struct perf_sample_data sample;
7095 	u16 header_size = namespaces_event->event_id.header.size;
7096 	int ret;
7097 
7098 	if (!perf_event_namespaces_match(event))
7099 		return;
7100 
7101 	perf_event_header__init_id(&namespaces_event->event_id.header,
7102 				   &sample, event);
7103 	ret = perf_output_begin(&handle, event,
7104 				namespaces_event->event_id.header.size);
7105 	if (ret)
7106 		goto out;
7107 
7108 	namespaces_event->event_id.pid = perf_event_pid(event,
7109 							namespaces_event->task);
7110 	namespaces_event->event_id.tid = perf_event_tid(event,
7111 							namespaces_event->task);
7112 
7113 	perf_output_put(&handle, namespaces_event->event_id);
7114 
7115 	perf_event__output_id_sample(event, &handle, &sample);
7116 
7117 	perf_output_end(&handle);
7118 out:
7119 	namespaces_event->event_id.header.size = header_size;
7120 }
7121 
7122 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7123 				   struct task_struct *task,
7124 				   const struct proc_ns_operations *ns_ops)
7125 {
7126 	struct path ns_path;
7127 	struct inode *ns_inode;
7128 	void *error;
7129 
7130 	error = ns_get_path(&ns_path, task, ns_ops);
7131 	if (!error) {
7132 		ns_inode = ns_path.dentry->d_inode;
7133 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7134 		ns_link_info->ino = ns_inode->i_ino;
7135 		path_put(&ns_path);
7136 	}
7137 }
7138 
7139 void perf_event_namespaces(struct task_struct *task)
7140 {
7141 	struct perf_namespaces_event namespaces_event;
7142 	struct perf_ns_link_info *ns_link_info;
7143 
7144 	if (!atomic_read(&nr_namespaces_events))
7145 		return;
7146 
7147 	namespaces_event = (struct perf_namespaces_event){
7148 		.task	= task,
7149 		.event_id  = {
7150 			.header = {
7151 				.type = PERF_RECORD_NAMESPACES,
7152 				.misc = 0,
7153 				.size = sizeof(namespaces_event.event_id),
7154 			},
7155 			/* .pid */
7156 			/* .tid */
7157 			.nr_namespaces = NR_NAMESPACES,
7158 			/* .link_info[NR_NAMESPACES] */
7159 		},
7160 	};
7161 
7162 	ns_link_info = namespaces_event.event_id.link_info;
7163 
7164 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7165 			       task, &mntns_operations);
7166 
7167 #ifdef CONFIG_USER_NS
7168 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7169 			       task, &userns_operations);
7170 #endif
7171 #ifdef CONFIG_NET_NS
7172 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7173 			       task, &netns_operations);
7174 #endif
7175 #ifdef CONFIG_UTS_NS
7176 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7177 			       task, &utsns_operations);
7178 #endif
7179 #ifdef CONFIG_IPC_NS
7180 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7181 			       task, &ipcns_operations);
7182 #endif
7183 #ifdef CONFIG_PID_NS
7184 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7185 			       task, &pidns_operations);
7186 #endif
7187 #ifdef CONFIG_CGROUPS
7188 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7189 			       task, &cgroupns_operations);
7190 #endif
7191 
7192 	perf_iterate_sb(perf_event_namespaces_output,
7193 			&namespaces_event,
7194 			NULL);
7195 }
7196 
7197 /*
7198  * mmap tracking
7199  */
7200 
7201 struct perf_mmap_event {
7202 	struct vm_area_struct	*vma;
7203 
7204 	const char		*file_name;
7205 	int			file_size;
7206 	int			maj, min;
7207 	u64			ino;
7208 	u64			ino_generation;
7209 	u32			prot, flags;
7210 
7211 	struct {
7212 		struct perf_event_header	header;
7213 
7214 		u32				pid;
7215 		u32				tid;
7216 		u64				start;
7217 		u64				len;
7218 		u64				pgoff;
7219 	} event_id;
7220 };
7221 
7222 static int perf_event_mmap_match(struct perf_event *event,
7223 				 void *data)
7224 {
7225 	struct perf_mmap_event *mmap_event = data;
7226 	struct vm_area_struct *vma = mmap_event->vma;
7227 	int executable = vma->vm_flags & VM_EXEC;
7228 
7229 	return (!executable && event->attr.mmap_data) ||
7230 	       (executable && (event->attr.mmap || event->attr.mmap2));
7231 }
7232 
7233 static void perf_event_mmap_output(struct perf_event *event,
7234 				   void *data)
7235 {
7236 	struct perf_mmap_event *mmap_event = data;
7237 	struct perf_output_handle handle;
7238 	struct perf_sample_data sample;
7239 	int size = mmap_event->event_id.header.size;
7240 	u32 type = mmap_event->event_id.header.type;
7241 	int ret;
7242 
7243 	if (!perf_event_mmap_match(event, data))
7244 		return;
7245 
7246 	if (event->attr.mmap2) {
7247 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7248 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7249 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7250 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7251 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7252 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7253 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7254 	}
7255 
7256 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7257 	ret = perf_output_begin(&handle, event,
7258 				mmap_event->event_id.header.size);
7259 	if (ret)
7260 		goto out;
7261 
7262 	mmap_event->event_id.pid = perf_event_pid(event, current);
7263 	mmap_event->event_id.tid = perf_event_tid(event, current);
7264 
7265 	perf_output_put(&handle, mmap_event->event_id);
7266 
7267 	if (event->attr.mmap2) {
7268 		perf_output_put(&handle, mmap_event->maj);
7269 		perf_output_put(&handle, mmap_event->min);
7270 		perf_output_put(&handle, mmap_event->ino);
7271 		perf_output_put(&handle, mmap_event->ino_generation);
7272 		perf_output_put(&handle, mmap_event->prot);
7273 		perf_output_put(&handle, mmap_event->flags);
7274 	}
7275 
7276 	__output_copy(&handle, mmap_event->file_name,
7277 				   mmap_event->file_size);
7278 
7279 	perf_event__output_id_sample(event, &handle, &sample);
7280 
7281 	perf_output_end(&handle);
7282 out:
7283 	mmap_event->event_id.header.size = size;
7284 	mmap_event->event_id.header.type = type;
7285 }
7286 
7287 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7288 {
7289 	struct vm_area_struct *vma = mmap_event->vma;
7290 	struct file *file = vma->vm_file;
7291 	int maj = 0, min = 0;
7292 	u64 ino = 0, gen = 0;
7293 	u32 prot = 0, flags = 0;
7294 	unsigned int size;
7295 	char tmp[16];
7296 	char *buf = NULL;
7297 	char *name;
7298 
7299 	if (vma->vm_flags & VM_READ)
7300 		prot |= PROT_READ;
7301 	if (vma->vm_flags & VM_WRITE)
7302 		prot |= PROT_WRITE;
7303 	if (vma->vm_flags & VM_EXEC)
7304 		prot |= PROT_EXEC;
7305 
7306 	if (vma->vm_flags & VM_MAYSHARE)
7307 		flags = MAP_SHARED;
7308 	else
7309 		flags = MAP_PRIVATE;
7310 
7311 	if (vma->vm_flags & VM_DENYWRITE)
7312 		flags |= MAP_DENYWRITE;
7313 	if (vma->vm_flags & VM_MAYEXEC)
7314 		flags |= MAP_EXECUTABLE;
7315 	if (vma->vm_flags & VM_LOCKED)
7316 		flags |= MAP_LOCKED;
7317 	if (vma->vm_flags & VM_HUGETLB)
7318 		flags |= MAP_HUGETLB;
7319 
7320 	if (file) {
7321 		struct inode *inode;
7322 		dev_t dev;
7323 
7324 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7325 		if (!buf) {
7326 			name = "//enomem";
7327 			goto cpy_name;
7328 		}
7329 		/*
7330 		 * d_path() works from the end of the rb backwards, so we
7331 		 * need to add enough zero bytes after the string to handle
7332 		 * the 64bit alignment we do later.
7333 		 */
7334 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7335 		if (IS_ERR(name)) {
7336 			name = "//toolong";
7337 			goto cpy_name;
7338 		}
7339 		inode = file_inode(vma->vm_file);
7340 		dev = inode->i_sb->s_dev;
7341 		ino = inode->i_ino;
7342 		gen = inode->i_generation;
7343 		maj = MAJOR(dev);
7344 		min = MINOR(dev);
7345 
7346 		goto got_name;
7347 	} else {
7348 		if (vma->vm_ops && vma->vm_ops->name) {
7349 			name = (char *) vma->vm_ops->name(vma);
7350 			if (name)
7351 				goto cpy_name;
7352 		}
7353 
7354 		name = (char *)arch_vma_name(vma);
7355 		if (name)
7356 			goto cpy_name;
7357 
7358 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7359 				vma->vm_end >= vma->vm_mm->brk) {
7360 			name = "[heap]";
7361 			goto cpy_name;
7362 		}
7363 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7364 				vma->vm_end >= vma->vm_mm->start_stack) {
7365 			name = "[stack]";
7366 			goto cpy_name;
7367 		}
7368 
7369 		name = "//anon";
7370 		goto cpy_name;
7371 	}
7372 
7373 cpy_name:
7374 	strlcpy(tmp, name, sizeof(tmp));
7375 	name = tmp;
7376 got_name:
7377 	/*
7378 	 * Since our buffer works in 8 byte units we need to align our string
7379 	 * size to a multiple of 8. However, we must guarantee the tail end is
7380 	 * zero'd out to avoid leaking random bits to userspace.
7381 	 */
7382 	size = strlen(name)+1;
7383 	while (!IS_ALIGNED(size, sizeof(u64)))
7384 		name[size++] = '\0';
7385 
7386 	mmap_event->file_name = name;
7387 	mmap_event->file_size = size;
7388 	mmap_event->maj = maj;
7389 	mmap_event->min = min;
7390 	mmap_event->ino = ino;
7391 	mmap_event->ino_generation = gen;
7392 	mmap_event->prot = prot;
7393 	mmap_event->flags = flags;
7394 
7395 	if (!(vma->vm_flags & VM_EXEC))
7396 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7397 
7398 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7399 
7400 	perf_iterate_sb(perf_event_mmap_output,
7401 		       mmap_event,
7402 		       NULL);
7403 
7404 	kfree(buf);
7405 }
7406 
7407 /*
7408  * Check whether inode and address range match filter criteria.
7409  */
7410 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7411 				     struct file *file, unsigned long offset,
7412 				     unsigned long size)
7413 {
7414 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7415 	if (!filter->path.dentry)
7416 		return false;
7417 
7418 	if (d_inode(filter->path.dentry) != file_inode(file))
7419 		return false;
7420 
7421 	if (filter->offset > offset + size)
7422 		return false;
7423 
7424 	if (filter->offset + filter->size < offset)
7425 		return false;
7426 
7427 	return true;
7428 }
7429 
7430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7431 					struct vm_area_struct *vma,
7432 					struct perf_addr_filter_range *fr)
7433 {
7434 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7435 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7436 	struct file *file = vma->vm_file;
7437 
7438 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7439 		return false;
7440 
7441 	if (filter->offset < off) {
7442 		fr->start = vma->vm_start;
7443 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7444 	} else {
7445 		fr->start = vma->vm_start + filter->offset - off;
7446 		fr->size = min(vma->vm_end - fr->start, filter->size);
7447 	}
7448 
7449 	return true;
7450 }
7451 
7452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7453 {
7454 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7455 	struct vm_area_struct *vma = data;
7456 	struct perf_addr_filter *filter;
7457 	unsigned int restart = 0, count = 0;
7458 	unsigned long flags;
7459 
7460 	if (!has_addr_filter(event))
7461 		return;
7462 
7463 	if (!vma->vm_file)
7464 		return;
7465 
7466 	raw_spin_lock_irqsave(&ifh->lock, flags);
7467 	list_for_each_entry(filter, &ifh->list, entry) {
7468 		if (perf_addr_filter_vma_adjust(filter, vma,
7469 						&event->addr_filter_ranges[count]))
7470 			restart++;
7471 
7472 		count++;
7473 	}
7474 
7475 	if (restart)
7476 		event->addr_filters_gen++;
7477 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7478 
7479 	if (restart)
7480 		perf_event_stop(event, 1);
7481 }
7482 
7483 /*
7484  * Adjust all task's events' filters to the new vma
7485  */
7486 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7487 {
7488 	struct perf_event_context *ctx;
7489 	int ctxn;
7490 
7491 	/*
7492 	 * Data tracing isn't supported yet and as such there is no need
7493 	 * to keep track of anything that isn't related to executable code:
7494 	 */
7495 	if (!(vma->vm_flags & VM_EXEC))
7496 		return;
7497 
7498 	rcu_read_lock();
7499 	for_each_task_context_nr(ctxn) {
7500 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7501 		if (!ctx)
7502 			continue;
7503 
7504 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7505 	}
7506 	rcu_read_unlock();
7507 }
7508 
7509 void perf_event_mmap(struct vm_area_struct *vma)
7510 {
7511 	struct perf_mmap_event mmap_event;
7512 
7513 	if (!atomic_read(&nr_mmap_events))
7514 		return;
7515 
7516 	mmap_event = (struct perf_mmap_event){
7517 		.vma	= vma,
7518 		/* .file_name */
7519 		/* .file_size */
7520 		.event_id  = {
7521 			.header = {
7522 				.type = PERF_RECORD_MMAP,
7523 				.misc = PERF_RECORD_MISC_USER,
7524 				/* .size */
7525 			},
7526 			/* .pid */
7527 			/* .tid */
7528 			.start  = vma->vm_start,
7529 			.len    = vma->vm_end - vma->vm_start,
7530 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7531 		},
7532 		/* .maj (attr_mmap2 only) */
7533 		/* .min (attr_mmap2 only) */
7534 		/* .ino (attr_mmap2 only) */
7535 		/* .ino_generation (attr_mmap2 only) */
7536 		/* .prot (attr_mmap2 only) */
7537 		/* .flags (attr_mmap2 only) */
7538 	};
7539 
7540 	perf_addr_filters_adjust(vma);
7541 	perf_event_mmap_event(&mmap_event);
7542 }
7543 
7544 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7545 			  unsigned long size, u64 flags)
7546 {
7547 	struct perf_output_handle handle;
7548 	struct perf_sample_data sample;
7549 	struct perf_aux_event {
7550 		struct perf_event_header	header;
7551 		u64				offset;
7552 		u64				size;
7553 		u64				flags;
7554 	} rec = {
7555 		.header = {
7556 			.type = PERF_RECORD_AUX,
7557 			.misc = 0,
7558 			.size = sizeof(rec),
7559 		},
7560 		.offset		= head,
7561 		.size		= size,
7562 		.flags		= flags,
7563 	};
7564 	int ret;
7565 
7566 	perf_event_header__init_id(&rec.header, &sample, event);
7567 	ret = perf_output_begin(&handle, event, rec.header.size);
7568 
7569 	if (ret)
7570 		return;
7571 
7572 	perf_output_put(&handle, rec);
7573 	perf_event__output_id_sample(event, &handle, &sample);
7574 
7575 	perf_output_end(&handle);
7576 }
7577 
7578 /*
7579  * Lost/dropped samples logging
7580  */
7581 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7582 {
7583 	struct perf_output_handle handle;
7584 	struct perf_sample_data sample;
7585 	int ret;
7586 
7587 	struct {
7588 		struct perf_event_header	header;
7589 		u64				lost;
7590 	} lost_samples_event = {
7591 		.header = {
7592 			.type = PERF_RECORD_LOST_SAMPLES,
7593 			.misc = 0,
7594 			.size = sizeof(lost_samples_event),
7595 		},
7596 		.lost		= lost,
7597 	};
7598 
7599 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7600 
7601 	ret = perf_output_begin(&handle, event,
7602 				lost_samples_event.header.size);
7603 	if (ret)
7604 		return;
7605 
7606 	perf_output_put(&handle, lost_samples_event);
7607 	perf_event__output_id_sample(event, &handle, &sample);
7608 	perf_output_end(&handle);
7609 }
7610 
7611 /*
7612  * context_switch tracking
7613  */
7614 
7615 struct perf_switch_event {
7616 	struct task_struct	*task;
7617 	struct task_struct	*next_prev;
7618 
7619 	struct {
7620 		struct perf_event_header	header;
7621 		u32				next_prev_pid;
7622 		u32				next_prev_tid;
7623 	} event_id;
7624 };
7625 
7626 static int perf_event_switch_match(struct perf_event *event)
7627 {
7628 	return event->attr.context_switch;
7629 }
7630 
7631 static void perf_event_switch_output(struct perf_event *event, void *data)
7632 {
7633 	struct perf_switch_event *se = data;
7634 	struct perf_output_handle handle;
7635 	struct perf_sample_data sample;
7636 	int ret;
7637 
7638 	if (!perf_event_switch_match(event))
7639 		return;
7640 
7641 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7642 	if (event->ctx->task) {
7643 		se->event_id.header.type = PERF_RECORD_SWITCH;
7644 		se->event_id.header.size = sizeof(se->event_id.header);
7645 	} else {
7646 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7647 		se->event_id.header.size = sizeof(se->event_id);
7648 		se->event_id.next_prev_pid =
7649 					perf_event_pid(event, se->next_prev);
7650 		se->event_id.next_prev_tid =
7651 					perf_event_tid(event, se->next_prev);
7652 	}
7653 
7654 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7655 
7656 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7657 	if (ret)
7658 		return;
7659 
7660 	if (event->ctx->task)
7661 		perf_output_put(&handle, se->event_id.header);
7662 	else
7663 		perf_output_put(&handle, se->event_id);
7664 
7665 	perf_event__output_id_sample(event, &handle, &sample);
7666 
7667 	perf_output_end(&handle);
7668 }
7669 
7670 static void perf_event_switch(struct task_struct *task,
7671 			      struct task_struct *next_prev, bool sched_in)
7672 {
7673 	struct perf_switch_event switch_event;
7674 
7675 	/* N.B. caller checks nr_switch_events != 0 */
7676 
7677 	switch_event = (struct perf_switch_event){
7678 		.task		= task,
7679 		.next_prev	= next_prev,
7680 		.event_id	= {
7681 			.header = {
7682 				/* .type */
7683 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7684 				/* .size */
7685 			},
7686 			/* .next_prev_pid */
7687 			/* .next_prev_tid */
7688 		},
7689 	};
7690 
7691 	if (!sched_in && task->state == TASK_RUNNING)
7692 		switch_event.event_id.header.misc |=
7693 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7694 
7695 	perf_iterate_sb(perf_event_switch_output,
7696 		       &switch_event,
7697 		       NULL);
7698 }
7699 
7700 /*
7701  * IRQ throttle logging
7702  */
7703 
7704 static void perf_log_throttle(struct perf_event *event, int enable)
7705 {
7706 	struct perf_output_handle handle;
7707 	struct perf_sample_data sample;
7708 	int ret;
7709 
7710 	struct {
7711 		struct perf_event_header	header;
7712 		u64				time;
7713 		u64				id;
7714 		u64				stream_id;
7715 	} throttle_event = {
7716 		.header = {
7717 			.type = PERF_RECORD_THROTTLE,
7718 			.misc = 0,
7719 			.size = sizeof(throttle_event),
7720 		},
7721 		.time		= perf_event_clock(event),
7722 		.id		= primary_event_id(event),
7723 		.stream_id	= event->id,
7724 	};
7725 
7726 	if (enable)
7727 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7728 
7729 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7730 
7731 	ret = perf_output_begin(&handle, event,
7732 				throttle_event.header.size);
7733 	if (ret)
7734 		return;
7735 
7736 	perf_output_put(&handle, throttle_event);
7737 	perf_event__output_id_sample(event, &handle, &sample);
7738 	perf_output_end(&handle);
7739 }
7740 
7741 /*
7742  * ksymbol register/unregister tracking
7743  */
7744 
7745 struct perf_ksymbol_event {
7746 	const char	*name;
7747 	int		name_len;
7748 	struct {
7749 		struct perf_event_header        header;
7750 		u64				addr;
7751 		u32				len;
7752 		u16				ksym_type;
7753 		u16				flags;
7754 	} event_id;
7755 };
7756 
7757 static int perf_event_ksymbol_match(struct perf_event *event)
7758 {
7759 	return event->attr.ksymbol;
7760 }
7761 
7762 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7763 {
7764 	struct perf_ksymbol_event *ksymbol_event = data;
7765 	struct perf_output_handle handle;
7766 	struct perf_sample_data sample;
7767 	int ret;
7768 
7769 	if (!perf_event_ksymbol_match(event))
7770 		return;
7771 
7772 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7773 				   &sample, event);
7774 	ret = perf_output_begin(&handle, event,
7775 				ksymbol_event->event_id.header.size);
7776 	if (ret)
7777 		return;
7778 
7779 	perf_output_put(&handle, ksymbol_event->event_id);
7780 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7781 	perf_event__output_id_sample(event, &handle, &sample);
7782 
7783 	perf_output_end(&handle);
7784 }
7785 
7786 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7787 			const char *sym)
7788 {
7789 	struct perf_ksymbol_event ksymbol_event;
7790 	char name[KSYM_NAME_LEN];
7791 	u16 flags = 0;
7792 	int name_len;
7793 
7794 	if (!atomic_read(&nr_ksymbol_events))
7795 		return;
7796 
7797 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7798 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7799 		goto err;
7800 
7801 	strlcpy(name, sym, KSYM_NAME_LEN);
7802 	name_len = strlen(name) + 1;
7803 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7804 		name[name_len++] = '\0';
7805 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7806 
7807 	if (unregister)
7808 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7809 
7810 	ksymbol_event = (struct perf_ksymbol_event){
7811 		.name = name,
7812 		.name_len = name_len,
7813 		.event_id = {
7814 			.header = {
7815 				.type = PERF_RECORD_KSYMBOL,
7816 				.size = sizeof(ksymbol_event.event_id) +
7817 					name_len,
7818 			},
7819 			.addr = addr,
7820 			.len = len,
7821 			.ksym_type = ksym_type,
7822 			.flags = flags,
7823 		},
7824 	};
7825 
7826 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7827 	return;
7828 err:
7829 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7830 }
7831 
7832 /*
7833  * bpf program load/unload tracking
7834  */
7835 
7836 struct perf_bpf_event {
7837 	struct bpf_prog	*prog;
7838 	struct {
7839 		struct perf_event_header        header;
7840 		u16				type;
7841 		u16				flags;
7842 		u32				id;
7843 		u8				tag[BPF_TAG_SIZE];
7844 	} event_id;
7845 };
7846 
7847 static int perf_event_bpf_match(struct perf_event *event)
7848 {
7849 	return event->attr.bpf_event;
7850 }
7851 
7852 static void perf_event_bpf_output(struct perf_event *event, void *data)
7853 {
7854 	struct perf_bpf_event *bpf_event = data;
7855 	struct perf_output_handle handle;
7856 	struct perf_sample_data sample;
7857 	int ret;
7858 
7859 	if (!perf_event_bpf_match(event))
7860 		return;
7861 
7862 	perf_event_header__init_id(&bpf_event->event_id.header,
7863 				   &sample, event);
7864 	ret = perf_output_begin(&handle, event,
7865 				bpf_event->event_id.header.size);
7866 	if (ret)
7867 		return;
7868 
7869 	perf_output_put(&handle, bpf_event->event_id);
7870 	perf_event__output_id_sample(event, &handle, &sample);
7871 
7872 	perf_output_end(&handle);
7873 }
7874 
7875 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7876 					 enum perf_bpf_event_type type)
7877 {
7878 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7879 	char sym[KSYM_NAME_LEN];
7880 	int i;
7881 
7882 	if (prog->aux->func_cnt == 0) {
7883 		bpf_get_prog_name(prog, sym);
7884 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7885 				   (u64)(unsigned long)prog->bpf_func,
7886 				   prog->jited_len, unregister, sym);
7887 	} else {
7888 		for (i = 0; i < prog->aux->func_cnt; i++) {
7889 			struct bpf_prog *subprog = prog->aux->func[i];
7890 
7891 			bpf_get_prog_name(subprog, sym);
7892 			perf_event_ksymbol(
7893 				PERF_RECORD_KSYMBOL_TYPE_BPF,
7894 				(u64)(unsigned long)subprog->bpf_func,
7895 				subprog->jited_len, unregister, sym);
7896 		}
7897 	}
7898 }
7899 
7900 void perf_event_bpf_event(struct bpf_prog *prog,
7901 			  enum perf_bpf_event_type type,
7902 			  u16 flags)
7903 {
7904 	struct perf_bpf_event bpf_event;
7905 
7906 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
7907 	    type >= PERF_BPF_EVENT_MAX)
7908 		return;
7909 
7910 	switch (type) {
7911 	case PERF_BPF_EVENT_PROG_LOAD:
7912 	case PERF_BPF_EVENT_PROG_UNLOAD:
7913 		if (atomic_read(&nr_ksymbol_events))
7914 			perf_event_bpf_emit_ksymbols(prog, type);
7915 		break;
7916 	default:
7917 		break;
7918 	}
7919 
7920 	if (!atomic_read(&nr_bpf_events))
7921 		return;
7922 
7923 	bpf_event = (struct perf_bpf_event){
7924 		.prog = prog,
7925 		.event_id = {
7926 			.header = {
7927 				.type = PERF_RECORD_BPF_EVENT,
7928 				.size = sizeof(bpf_event.event_id),
7929 			},
7930 			.type = type,
7931 			.flags = flags,
7932 			.id = prog->aux->id,
7933 		},
7934 	};
7935 
7936 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7937 
7938 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7939 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7940 }
7941 
7942 void perf_event_itrace_started(struct perf_event *event)
7943 {
7944 	event->attach_state |= PERF_ATTACH_ITRACE;
7945 }
7946 
7947 static void perf_log_itrace_start(struct perf_event *event)
7948 {
7949 	struct perf_output_handle handle;
7950 	struct perf_sample_data sample;
7951 	struct perf_aux_event {
7952 		struct perf_event_header        header;
7953 		u32				pid;
7954 		u32				tid;
7955 	} rec;
7956 	int ret;
7957 
7958 	if (event->parent)
7959 		event = event->parent;
7960 
7961 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7962 	    event->attach_state & PERF_ATTACH_ITRACE)
7963 		return;
7964 
7965 	rec.header.type	= PERF_RECORD_ITRACE_START;
7966 	rec.header.misc	= 0;
7967 	rec.header.size	= sizeof(rec);
7968 	rec.pid	= perf_event_pid(event, current);
7969 	rec.tid	= perf_event_tid(event, current);
7970 
7971 	perf_event_header__init_id(&rec.header, &sample, event);
7972 	ret = perf_output_begin(&handle, event, rec.header.size);
7973 
7974 	if (ret)
7975 		return;
7976 
7977 	perf_output_put(&handle, rec);
7978 	perf_event__output_id_sample(event, &handle, &sample);
7979 
7980 	perf_output_end(&handle);
7981 }
7982 
7983 static int
7984 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7985 {
7986 	struct hw_perf_event *hwc = &event->hw;
7987 	int ret = 0;
7988 	u64 seq;
7989 
7990 	seq = __this_cpu_read(perf_throttled_seq);
7991 	if (seq != hwc->interrupts_seq) {
7992 		hwc->interrupts_seq = seq;
7993 		hwc->interrupts = 1;
7994 	} else {
7995 		hwc->interrupts++;
7996 		if (unlikely(throttle
7997 			     && hwc->interrupts >= max_samples_per_tick)) {
7998 			__this_cpu_inc(perf_throttled_count);
7999 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8000 			hwc->interrupts = MAX_INTERRUPTS;
8001 			perf_log_throttle(event, 0);
8002 			ret = 1;
8003 		}
8004 	}
8005 
8006 	if (event->attr.freq) {
8007 		u64 now = perf_clock();
8008 		s64 delta = now - hwc->freq_time_stamp;
8009 
8010 		hwc->freq_time_stamp = now;
8011 
8012 		if (delta > 0 && delta < 2*TICK_NSEC)
8013 			perf_adjust_period(event, delta, hwc->last_period, true);
8014 	}
8015 
8016 	return ret;
8017 }
8018 
8019 int perf_event_account_interrupt(struct perf_event *event)
8020 {
8021 	return __perf_event_account_interrupt(event, 1);
8022 }
8023 
8024 /*
8025  * Generic event overflow handling, sampling.
8026  */
8027 
8028 static int __perf_event_overflow(struct perf_event *event,
8029 				   int throttle, struct perf_sample_data *data,
8030 				   struct pt_regs *regs)
8031 {
8032 	int events = atomic_read(&event->event_limit);
8033 	int ret = 0;
8034 
8035 	/*
8036 	 * Non-sampling counters might still use the PMI to fold short
8037 	 * hardware counters, ignore those.
8038 	 */
8039 	if (unlikely(!is_sampling_event(event)))
8040 		return 0;
8041 
8042 	ret = __perf_event_account_interrupt(event, throttle);
8043 
8044 	/*
8045 	 * XXX event_limit might not quite work as expected on inherited
8046 	 * events
8047 	 */
8048 
8049 	event->pending_kill = POLL_IN;
8050 	if (events && atomic_dec_and_test(&event->event_limit)) {
8051 		ret = 1;
8052 		event->pending_kill = POLL_HUP;
8053 
8054 		perf_event_disable_inatomic(event);
8055 	}
8056 
8057 	READ_ONCE(event->overflow_handler)(event, data, regs);
8058 
8059 	if (*perf_event_fasync(event) && event->pending_kill) {
8060 		event->pending_wakeup = 1;
8061 		irq_work_queue(&event->pending);
8062 	}
8063 
8064 	return ret;
8065 }
8066 
8067 int perf_event_overflow(struct perf_event *event,
8068 			  struct perf_sample_data *data,
8069 			  struct pt_regs *regs)
8070 {
8071 	return __perf_event_overflow(event, 1, data, regs);
8072 }
8073 
8074 /*
8075  * Generic software event infrastructure
8076  */
8077 
8078 struct swevent_htable {
8079 	struct swevent_hlist		*swevent_hlist;
8080 	struct mutex			hlist_mutex;
8081 	int				hlist_refcount;
8082 
8083 	/* Recursion avoidance in each contexts */
8084 	int				recursion[PERF_NR_CONTEXTS];
8085 };
8086 
8087 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8088 
8089 /*
8090  * We directly increment event->count and keep a second value in
8091  * event->hw.period_left to count intervals. This period event
8092  * is kept in the range [-sample_period, 0] so that we can use the
8093  * sign as trigger.
8094  */
8095 
8096 u64 perf_swevent_set_period(struct perf_event *event)
8097 {
8098 	struct hw_perf_event *hwc = &event->hw;
8099 	u64 period = hwc->last_period;
8100 	u64 nr, offset;
8101 	s64 old, val;
8102 
8103 	hwc->last_period = hwc->sample_period;
8104 
8105 again:
8106 	old = val = local64_read(&hwc->period_left);
8107 	if (val < 0)
8108 		return 0;
8109 
8110 	nr = div64_u64(period + val, period);
8111 	offset = nr * period;
8112 	val -= offset;
8113 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8114 		goto again;
8115 
8116 	return nr;
8117 }
8118 
8119 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8120 				    struct perf_sample_data *data,
8121 				    struct pt_regs *regs)
8122 {
8123 	struct hw_perf_event *hwc = &event->hw;
8124 	int throttle = 0;
8125 
8126 	if (!overflow)
8127 		overflow = perf_swevent_set_period(event);
8128 
8129 	if (hwc->interrupts == MAX_INTERRUPTS)
8130 		return;
8131 
8132 	for (; overflow; overflow--) {
8133 		if (__perf_event_overflow(event, throttle,
8134 					    data, regs)) {
8135 			/*
8136 			 * We inhibit the overflow from happening when
8137 			 * hwc->interrupts == MAX_INTERRUPTS.
8138 			 */
8139 			break;
8140 		}
8141 		throttle = 1;
8142 	}
8143 }
8144 
8145 static void perf_swevent_event(struct perf_event *event, u64 nr,
8146 			       struct perf_sample_data *data,
8147 			       struct pt_regs *regs)
8148 {
8149 	struct hw_perf_event *hwc = &event->hw;
8150 
8151 	local64_add(nr, &event->count);
8152 
8153 	if (!regs)
8154 		return;
8155 
8156 	if (!is_sampling_event(event))
8157 		return;
8158 
8159 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8160 		data->period = nr;
8161 		return perf_swevent_overflow(event, 1, data, regs);
8162 	} else
8163 		data->period = event->hw.last_period;
8164 
8165 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8166 		return perf_swevent_overflow(event, 1, data, regs);
8167 
8168 	if (local64_add_negative(nr, &hwc->period_left))
8169 		return;
8170 
8171 	perf_swevent_overflow(event, 0, data, regs);
8172 }
8173 
8174 static int perf_exclude_event(struct perf_event *event,
8175 			      struct pt_regs *regs)
8176 {
8177 	if (event->hw.state & PERF_HES_STOPPED)
8178 		return 1;
8179 
8180 	if (regs) {
8181 		if (event->attr.exclude_user && user_mode(regs))
8182 			return 1;
8183 
8184 		if (event->attr.exclude_kernel && !user_mode(regs))
8185 			return 1;
8186 	}
8187 
8188 	return 0;
8189 }
8190 
8191 static int perf_swevent_match(struct perf_event *event,
8192 				enum perf_type_id type,
8193 				u32 event_id,
8194 				struct perf_sample_data *data,
8195 				struct pt_regs *regs)
8196 {
8197 	if (event->attr.type != type)
8198 		return 0;
8199 
8200 	if (event->attr.config != event_id)
8201 		return 0;
8202 
8203 	if (perf_exclude_event(event, regs))
8204 		return 0;
8205 
8206 	return 1;
8207 }
8208 
8209 static inline u64 swevent_hash(u64 type, u32 event_id)
8210 {
8211 	u64 val = event_id | (type << 32);
8212 
8213 	return hash_64(val, SWEVENT_HLIST_BITS);
8214 }
8215 
8216 static inline struct hlist_head *
8217 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8218 {
8219 	u64 hash = swevent_hash(type, event_id);
8220 
8221 	return &hlist->heads[hash];
8222 }
8223 
8224 /* For the read side: events when they trigger */
8225 static inline struct hlist_head *
8226 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8227 {
8228 	struct swevent_hlist *hlist;
8229 
8230 	hlist = rcu_dereference(swhash->swevent_hlist);
8231 	if (!hlist)
8232 		return NULL;
8233 
8234 	return __find_swevent_head(hlist, type, event_id);
8235 }
8236 
8237 /* For the event head insertion and removal in the hlist */
8238 static inline struct hlist_head *
8239 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8240 {
8241 	struct swevent_hlist *hlist;
8242 	u32 event_id = event->attr.config;
8243 	u64 type = event->attr.type;
8244 
8245 	/*
8246 	 * Event scheduling is always serialized against hlist allocation
8247 	 * and release. Which makes the protected version suitable here.
8248 	 * The context lock guarantees that.
8249 	 */
8250 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8251 					  lockdep_is_held(&event->ctx->lock));
8252 	if (!hlist)
8253 		return NULL;
8254 
8255 	return __find_swevent_head(hlist, type, event_id);
8256 }
8257 
8258 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8259 				    u64 nr,
8260 				    struct perf_sample_data *data,
8261 				    struct pt_regs *regs)
8262 {
8263 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8264 	struct perf_event *event;
8265 	struct hlist_head *head;
8266 
8267 	rcu_read_lock();
8268 	head = find_swevent_head_rcu(swhash, type, event_id);
8269 	if (!head)
8270 		goto end;
8271 
8272 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8273 		if (perf_swevent_match(event, type, event_id, data, regs))
8274 			perf_swevent_event(event, nr, data, regs);
8275 	}
8276 end:
8277 	rcu_read_unlock();
8278 }
8279 
8280 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8281 
8282 int perf_swevent_get_recursion_context(void)
8283 {
8284 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8285 
8286 	return get_recursion_context(swhash->recursion);
8287 }
8288 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8289 
8290 void perf_swevent_put_recursion_context(int rctx)
8291 {
8292 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8293 
8294 	put_recursion_context(swhash->recursion, rctx);
8295 }
8296 
8297 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8298 {
8299 	struct perf_sample_data data;
8300 
8301 	if (WARN_ON_ONCE(!regs))
8302 		return;
8303 
8304 	perf_sample_data_init(&data, addr, 0);
8305 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8306 }
8307 
8308 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8309 {
8310 	int rctx;
8311 
8312 	preempt_disable_notrace();
8313 	rctx = perf_swevent_get_recursion_context();
8314 	if (unlikely(rctx < 0))
8315 		goto fail;
8316 
8317 	___perf_sw_event(event_id, nr, regs, addr);
8318 
8319 	perf_swevent_put_recursion_context(rctx);
8320 fail:
8321 	preempt_enable_notrace();
8322 }
8323 
8324 static void perf_swevent_read(struct perf_event *event)
8325 {
8326 }
8327 
8328 static int perf_swevent_add(struct perf_event *event, int flags)
8329 {
8330 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8331 	struct hw_perf_event *hwc = &event->hw;
8332 	struct hlist_head *head;
8333 
8334 	if (is_sampling_event(event)) {
8335 		hwc->last_period = hwc->sample_period;
8336 		perf_swevent_set_period(event);
8337 	}
8338 
8339 	hwc->state = !(flags & PERF_EF_START);
8340 
8341 	head = find_swevent_head(swhash, event);
8342 	if (WARN_ON_ONCE(!head))
8343 		return -EINVAL;
8344 
8345 	hlist_add_head_rcu(&event->hlist_entry, head);
8346 	perf_event_update_userpage(event);
8347 
8348 	return 0;
8349 }
8350 
8351 static void perf_swevent_del(struct perf_event *event, int flags)
8352 {
8353 	hlist_del_rcu(&event->hlist_entry);
8354 }
8355 
8356 static void perf_swevent_start(struct perf_event *event, int flags)
8357 {
8358 	event->hw.state = 0;
8359 }
8360 
8361 static void perf_swevent_stop(struct perf_event *event, int flags)
8362 {
8363 	event->hw.state = PERF_HES_STOPPED;
8364 }
8365 
8366 /* Deref the hlist from the update side */
8367 static inline struct swevent_hlist *
8368 swevent_hlist_deref(struct swevent_htable *swhash)
8369 {
8370 	return rcu_dereference_protected(swhash->swevent_hlist,
8371 					 lockdep_is_held(&swhash->hlist_mutex));
8372 }
8373 
8374 static void swevent_hlist_release(struct swevent_htable *swhash)
8375 {
8376 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8377 
8378 	if (!hlist)
8379 		return;
8380 
8381 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8382 	kfree_rcu(hlist, rcu_head);
8383 }
8384 
8385 static void swevent_hlist_put_cpu(int cpu)
8386 {
8387 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8388 
8389 	mutex_lock(&swhash->hlist_mutex);
8390 
8391 	if (!--swhash->hlist_refcount)
8392 		swevent_hlist_release(swhash);
8393 
8394 	mutex_unlock(&swhash->hlist_mutex);
8395 }
8396 
8397 static void swevent_hlist_put(void)
8398 {
8399 	int cpu;
8400 
8401 	for_each_possible_cpu(cpu)
8402 		swevent_hlist_put_cpu(cpu);
8403 }
8404 
8405 static int swevent_hlist_get_cpu(int cpu)
8406 {
8407 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8408 	int err = 0;
8409 
8410 	mutex_lock(&swhash->hlist_mutex);
8411 	if (!swevent_hlist_deref(swhash) &&
8412 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8413 		struct swevent_hlist *hlist;
8414 
8415 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8416 		if (!hlist) {
8417 			err = -ENOMEM;
8418 			goto exit;
8419 		}
8420 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8421 	}
8422 	swhash->hlist_refcount++;
8423 exit:
8424 	mutex_unlock(&swhash->hlist_mutex);
8425 
8426 	return err;
8427 }
8428 
8429 static int swevent_hlist_get(void)
8430 {
8431 	int err, cpu, failed_cpu;
8432 
8433 	mutex_lock(&pmus_lock);
8434 	for_each_possible_cpu(cpu) {
8435 		err = swevent_hlist_get_cpu(cpu);
8436 		if (err) {
8437 			failed_cpu = cpu;
8438 			goto fail;
8439 		}
8440 	}
8441 	mutex_unlock(&pmus_lock);
8442 	return 0;
8443 fail:
8444 	for_each_possible_cpu(cpu) {
8445 		if (cpu == failed_cpu)
8446 			break;
8447 		swevent_hlist_put_cpu(cpu);
8448 	}
8449 	mutex_unlock(&pmus_lock);
8450 	return err;
8451 }
8452 
8453 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8454 
8455 static void sw_perf_event_destroy(struct perf_event *event)
8456 {
8457 	u64 event_id = event->attr.config;
8458 
8459 	WARN_ON(event->parent);
8460 
8461 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8462 	swevent_hlist_put();
8463 }
8464 
8465 static int perf_swevent_init(struct perf_event *event)
8466 {
8467 	u64 event_id = event->attr.config;
8468 
8469 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8470 		return -ENOENT;
8471 
8472 	/*
8473 	 * no branch sampling for software events
8474 	 */
8475 	if (has_branch_stack(event))
8476 		return -EOPNOTSUPP;
8477 
8478 	switch (event_id) {
8479 	case PERF_COUNT_SW_CPU_CLOCK:
8480 	case PERF_COUNT_SW_TASK_CLOCK:
8481 		return -ENOENT;
8482 
8483 	default:
8484 		break;
8485 	}
8486 
8487 	if (event_id >= PERF_COUNT_SW_MAX)
8488 		return -ENOENT;
8489 
8490 	if (!event->parent) {
8491 		int err;
8492 
8493 		err = swevent_hlist_get();
8494 		if (err)
8495 			return err;
8496 
8497 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8498 		event->destroy = sw_perf_event_destroy;
8499 	}
8500 
8501 	return 0;
8502 }
8503 
8504 static struct pmu perf_swevent = {
8505 	.task_ctx_nr	= perf_sw_context,
8506 
8507 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8508 
8509 	.event_init	= perf_swevent_init,
8510 	.add		= perf_swevent_add,
8511 	.del		= perf_swevent_del,
8512 	.start		= perf_swevent_start,
8513 	.stop		= perf_swevent_stop,
8514 	.read		= perf_swevent_read,
8515 };
8516 
8517 #ifdef CONFIG_EVENT_TRACING
8518 
8519 static int perf_tp_filter_match(struct perf_event *event,
8520 				struct perf_sample_data *data)
8521 {
8522 	void *record = data->raw->frag.data;
8523 
8524 	/* only top level events have filters set */
8525 	if (event->parent)
8526 		event = event->parent;
8527 
8528 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8529 		return 1;
8530 	return 0;
8531 }
8532 
8533 static int perf_tp_event_match(struct perf_event *event,
8534 				struct perf_sample_data *data,
8535 				struct pt_regs *regs)
8536 {
8537 	if (event->hw.state & PERF_HES_STOPPED)
8538 		return 0;
8539 	/*
8540 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8541 	 */
8542 	if (event->attr.exclude_kernel && !user_mode(regs))
8543 		return 0;
8544 
8545 	if (!perf_tp_filter_match(event, data))
8546 		return 0;
8547 
8548 	return 1;
8549 }
8550 
8551 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8552 			       struct trace_event_call *call, u64 count,
8553 			       struct pt_regs *regs, struct hlist_head *head,
8554 			       struct task_struct *task)
8555 {
8556 	if (bpf_prog_array_valid(call)) {
8557 		*(struct pt_regs **)raw_data = regs;
8558 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8559 			perf_swevent_put_recursion_context(rctx);
8560 			return;
8561 		}
8562 	}
8563 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8564 		      rctx, task);
8565 }
8566 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8567 
8568 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8569 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8570 		   struct task_struct *task)
8571 {
8572 	struct perf_sample_data data;
8573 	struct perf_event *event;
8574 
8575 	struct perf_raw_record raw = {
8576 		.frag = {
8577 			.size = entry_size,
8578 			.data = record,
8579 		},
8580 	};
8581 
8582 	perf_sample_data_init(&data, 0, 0);
8583 	data.raw = &raw;
8584 
8585 	perf_trace_buf_update(record, event_type);
8586 
8587 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8588 		if (perf_tp_event_match(event, &data, regs))
8589 			perf_swevent_event(event, count, &data, regs);
8590 	}
8591 
8592 	/*
8593 	 * If we got specified a target task, also iterate its context and
8594 	 * deliver this event there too.
8595 	 */
8596 	if (task && task != current) {
8597 		struct perf_event_context *ctx;
8598 		struct trace_entry *entry = record;
8599 
8600 		rcu_read_lock();
8601 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8602 		if (!ctx)
8603 			goto unlock;
8604 
8605 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8606 			if (event->cpu != smp_processor_id())
8607 				continue;
8608 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8609 				continue;
8610 			if (event->attr.config != entry->type)
8611 				continue;
8612 			if (perf_tp_event_match(event, &data, regs))
8613 				perf_swevent_event(event, count, &data, regs);
8614 		}
8615 unlock:
8616 		rcu_read_unlock();
8617 	}
8618 
8619 	perf_swevent_put_recursion_context(rctx);
8620 }
8621 EXPORT_SYMBOL_GPL(perf_tp_event);
8622 
8623 static void tp_perf_event_destroy(struct perf_event *event)
8624 {
8625 	perf_trace_destroy(event);
8626 }
8627 
8628 static int perf_tp_event_init(struct perf_event *event)
8629 {
8630 	int err;
8631 
8632 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8633 		return -ENOENT;
8634 
8635 	/*
8636 	 * no branch sampling for tracepoint events
8637 	 */
8638 	if (has_branch_stack(event))
8639 		return -EOPNOTSUPP;
8640 
8641 	err = perf_trace_init(event);
8642 	if (err)
8643 		return err;
8644 
8645 	event->destroy = tp_perf_event_destroy;
8646 
8647 	return 0;
8648 }
8649 
8650 static struct pmu perf_tracepoint = {
8651 	.task_ctx_nr	= perf_sw_context,
8652 
8653 	.event_init	= perf_tp_event_init,
8654 	.add		= perf_trace_add,
8655 	.del		= perf_trace_del,
8656 	.start		= perf_swevent_start,
8657 	.stop		= perf_swevent_stop,
8658 	.read		= perf_swevent_read,
8659 };
8660 
8661 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8662 /*
8663  * Flags in config, used by dynamic PMU kprobe and uprobe
8664  * The flags should match following PMU_FORMAT_ATTR().
8665  *
8666  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8667  *                               if not set, create kprobe/uprobe
8668  *
8669  * The following values specify a reference counter (or semaphore in the
8670  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8671  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8672  *
8673  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8674  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8675  */
8676 enum perf_probe_config {
8677 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8678 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8679 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8680 };
8681 
8682 PMU_FORMAT_ATTR(retprobe, "config:0");
8683 #endif
8684 
8685 #ifdef CONFIG_KPROBE_EVENTS
8686 static struct attribute *kprobe_attrs[] = {
8687 	&format_attr_retprobe.attr,
8688 	NULL,
8689 };
8690 
8691 static struct attribute_group kprobe_format_group = {
8692 	.name = "format",
8693 	.attrs = kprobe_attrs,
8694 };
8695 
8696 static const struct attribute_group *kprobe_attr_groups[] = {
8697 	&kprobe_format_group,
8698 	NULL,
8699 };
8700 
8701 static int perf_kprobe_event_init(struct perf_event *event);
8702 static struct pmu perf_kprobe = {
8703 	.task_ctx_nr	= perf_sw_context,
8704 	.event_init	= perf_kprobe_event_init,
8705 	.add		= perf_trace_add,
8706 	.del		= perf_trace_del,
8707 	.start		= perf_swevent_start,
8708 	.stop		= perf_swevent_stop,
8709 	.read		= perf_swevent_read,
8710 	.attr_groups	= kprobe_attr_groups,
8711 };
8712 
8713 static int perf_kprobe_event_init(struct perf_event *event)
8714 {
8715 	int err;
8716 	bool is_retprobe;
8717 
8718 	if (event->attr.type != perf_kprobe.type)
8719 		return -ENOENT;
8720 
8721 	if (!capable(CAP_SYS_ADMIN))
8722 		return -EACCES;
8723 
8724 	/*
8725 	 * no branch sampling for probe events
8726 	 */
8727 	if (has_branch_stack(event))
8728 		return -EOPNOTSUPP;
8729 
8730 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8731 	err = perf_kprobe_init(event, is_retprobe);
8732 	if (err)
8733 		return err;
8734 
8735 	event->destroy = perf_kprobe_destroy;
8736 
8737 	return 0;
8738 }
8739 #endif /* CONFIG_KPROBE_EVENTS */
8740 
8741 #ifdef CONFIG_UPROBE_EVENTS
8742 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8743 
8744 static struct attribute *uprobe_attrs[] = {
8745 	&format_attr_retprobe.attr,
8746 	&format_attr_ref_ctr_offset.attr,
8747 	NULL,
8748 };
8749 
8750 static struct attribute_group uprobe_format_group = {
8751 	.name = "format",
8752 	.attrs = uprobe_attrs,
8753 };
8754 
8755 static const struct attribute_group *uprobe_attr_groups[] = {
8756 	&uprobe_format_group,
8757 	NULL,
8758 };
8759 
8760 static int perf_uprobe_event_init(struct perf_event *event);
8761 static struct pmu perf_uprobe = {
8762 	.task_ctx_nr	= perf_sw_context,
8763 	.event_init	= perf_uprobe_event_init,
8764 	.add		= perf_trace_add,
8765 	.del		= perf_trace_del,
8766 	.start		= perf_swevent_start,
8767 	.stop		= perf_swevent_stop,
8768 	.read		= perf_swevent_read,
8769 	.attr_groups	= uprobe_attr_groups,
8770 };
8771 
8772 static int perf_uprobe_event_init(struct perf_event *event)
8773 {
8774 	int err;
8775 	unsigned long ref_ctr_offset;
8776 	bool is_retprobe;
8777 
8778 	if (event->attr.type != perf_uprobe.type)
8779 		return -ENOENT;
8780 
8781 	if (!capable(CAP_SYS_ADMIN))
8782 		return -EACCES;
8783 
8784 	/*
8785 	 * no branch sampling for probe events
8786 	 */
8787 	if (has_branch_stack(event))
8788 		return -EOPNOTSUPP;
8789 
8790 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8791 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8792 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8793 	if (err)
8794 		return err;
8795 
8796 	event->destroy = perf_uprobe_destroy;
8797 
8798 	return 0;
8799 }
8800 #endif /* CONFIG_UPROBE_EVENTS */
8801 
8802 static inline void perf_tp_register(void)
8803 {
8804 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8805 #ifdef CONFIG_KPROBE_EVENTS
8806 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8807 #endif
8808 #ifdef CONFIG_UPROBE_EVENTS
8809 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8810 #endif
8811 }
8812 
8813 static void perf_event_free_filter(struct perf_event *event)
8814 {
8815 	ftrace_profile_free_filter(event);
8816 }
8817 
8818 #ifdef CONFIG_BPF_SYSCALL
8819 static void bpf_overflow_handler(struct perf_event *event,
8820 				 struct perf_sample_data *data,
8821 				 struct pt_regs *regs)
8822 {
8823 	struct bpf_perf_event_data_kern ctx = {
8824 		.data = data,
8825 		.event = event,
8826 	};
8827 	int ret = 0;
8828 
8829 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8830 	preempt_disable();
8831 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8832 		goto out;
8833 	rcu_read_lock();
8834 	ret = BPF_PROG_RUN(event->prog, &ctx);
8835 	rcu_read_unlock();
8836 out:
8837 	__this_cpu_dec(bpf_prog_active);
8838 	preempt_enable();
8839 	if (!ret)
8840 		return;
8841 
8842 	event->orig_overflow_handler(event, data, regs);
8843 }
8844 
8845 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8846 {
8847 	struct bpf_prog *prog;
8848 
8849 	if (event->overflow_handler_context)
8850 		/* hw breakpoint or kernel counter */
8851 		return -EINVAL;
8852 
8853 	if (event->prog)
8854 		return -EEXIST;
8855 
8856 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8857 	if (IS_ERR(prog))
8858 		return PTR_ERR(prog);
8859 
8860 	event->prog = prog;
8861 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8862 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8863 	return 0;
8864 }
8865 
8866 static void perf_event_free_bpf_handler(struct perf_event *event)
8867 {
8868 	struct bpf_prog *prog = event->prog;
8869 
8870 	if (!prog)
8871 		return;
8872 
8873 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8874 	event->prog = NULL;
8875 	bpf_prog_put(prog);
8876 }
8877 #else
8878 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8879 {
8880 	return -EOPNOTSUPP;
8881 }
8882 static void perf_event_free_bpf_handler(struct perf_event *event)
8883 {
8884 }
8885 #endif
8886 
8887 /*
8888  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8889  * with perf_event_open()
8890  */
8891 static inline bool perf_event_is_tracing(struct perf_event *event)
8892 {
8893 	if (event->pmu == &perf_tracepoint)
8894 		return true;
8895 #ifdef CONFIG_KPROBE_EVENTS
8896 	if (event->pmu == &perf_kprobe)
8897 		return true;
8898 #endif
8899 #ifdef CONFIG_UPROBE_EVENTS
8900 	if (event->pmu == &perf_uprobe)
8901 		return true;
8902 #endif
8903 	return false;
8904 }
8905 
8906 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8907 {
8908 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8909 	struct bpf_prog *prog;
8910 	int ret;
8911 
8912 	if (!perf_event_is_tracing(event))
8913 		return perf_event_set_bpf_handler(event, prog_fd);
8914 
8915 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8916 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8917 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8918 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8919 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8920 		return -EINVAL;
8921 
8922 	prog = bpf_prog_get(prog_fd);
8923 	if (IS_ERR(prog))
8924 		return PTR_ERR(prog);
8925 
8926 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8927 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8928 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8929 		/* valid fd, but invalid bpf program type */
8930 		bpf_prog_put(prog);
8931 		return -EINVAL;
8932 	}
8933 
8934 	/* Kprobe override only works for kprobes, not uprobes. */
8935 	if (prog->kprobe_override &&
8936 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8937 		bpf_prog_put(prog);
8938 		return -EINVAL;
8939 	}
8940 
8941 	if (is_tracepoint || is_syscall_tp) {
8942 		int off = trace_event_get_offsets(event->tp_event);
8943 
8944 		if (prog->aux->max_ctx_offset > off) {
8945 			bpf_prog_put(prog);
8946 			return -EACCES;
8947 		}
8948 	}
8949 
8950 	ret = perf_event_attach_bpf_prog(event, prog);
8951 	if (ret)
8952 		bpf_prog_put(prog);
8953 	return ret;
8954 }
8955 
8956 static void perf_event_free_bpf_prog(struct perf_event *event)
8957 {
8958 	if (!perf_event_is_tracing(event)) {
8959 		perf_event_free_bpf_handler(event);
8960 		return;
8961 	}
8962 	perf_event_detach_bpf_prog(event);
8963 }
8964 
8965 #else
8966 
8967 static inline void perf_tp_register(void)
8968 {
8969 }
8970 
8971 static void perf_event_free_filter(struct perf_event *event)
8972 {
8973 }
8974 
8975 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8976 {
8977 	return -ENOENT;
8978 }
8979 
8980 static void perf_event_free_bpf_prog(struct perf_event *event)
8981 {
8982 }
8983 #endif /* CONFIG_EVENT_TRACING */
8984 
8985 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8986 void perf_bp_event(struct perf_event *bp, void *data)
8987 {
8988 	struct perf_sample_data sample;
8989 	struct pt_regs *regs = data;
8990 
8991 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8992 
8993 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8994 		perf_swevent_event(bp, 1, &sample, regs);
8995 }
8996 #endif
8997 
8998 /*
8999  * Allocate a new address filter
9000  */
9001 static struct perf_addr_filter *
9002 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9003 {
9004 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9005 	struct perf_addr_filter *filter;
9006 
9007 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9008 	if (!filter)
9009 		return NULL;
9010 
9011 	INIT_LIST_HEAD(&filter->entry);
9012 	list_add_tail(&filter->entry, filters);
9013 
9014 	return filter;
9015 }
9016 
9017 static void free_filters_list(struct list_head *filters)
9018 {
9019 	struct perf_addr_filter *filter, *iter;
9020 
9021 	list_for_each_entry_safe(filter, iter, filters, entry) {
9022 		path_put(&filter->path);
9023 		list_del(&filter->entry);
9024 		kfree(filter);
9025 	}
9026 }
9027 
9028 /*
9029  * Free existing address filters and optionally install new ones
9030  */
9031 static void perf_addr_filters_splice(struct perf_event *event,
9032 				     struct list_head *head)
9033 {
9034 	unsigned long flags;
9035 	LIST_HEAD(list);
9036 
9037 	if (!has_addr_filter(event))
9038 		return;
9039 
9040 	/* don't bother with children, they don't have their own filters */
9041 	if (event->parent)
9042 		return;
9043 
9044 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9045 
9046 	list_splice_init(&event->addr_filters.list, &list);
9047 	if (head)
9048 		list_splice(head, &event->addr_filters.list);
9049 
9050 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9051 
9052 	free_filters_list(&list);
9053 }
9054 
9055 /*
9056  * Scan through mm's vmas and see if one of them matches the
9057  * @filter; if so, adjust filter's address range.
9058  * Called with mm::mmap_sem down for reading.
9059  */
9060 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9061 				   struct mm_struct *mm,
9062 				   struct perf_addr_filter_range *fr)
9063 {
9064 	struct vm_area_struct *vma;
9065 
9066 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9067 		if (!vma->vm_file)
9068 			continue;
9069 
9070 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9071 			return;
9072 	}
9073 }
9074 
9075 /*
9076  * Update event's address range filters based on the
9077  * task's existing mappings, if any.
9078  */
9079 static void perf_event_addr_filters_apply(struct perf_event *event)
9080 {
9081 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9082 	struct task_struct *task = READ_ONCE(event->ctx->task);
9083 	struct perf_addr_filter *filter;
9084 	struct mm_struct *mm = NULL;
9085 	unsigned int count = 0;
9086 	unsigned long flags;
9087 
9088 	/*
9089 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9090 	 * will stop on the parent's child_mutex that our caller is also holding
9091 	 */
9092 	if (task == TASK_TOMBSTONE)
9093 		return;
9094 
9095 	if (ifh->nr_file_filters) {
9096 		mm = get_task_mm(event->ctx->task);
9097 		if (!mm)
9098 			goto restart;
9099 
9100 		down_read(&mm->mmap_sem);
9101 	}
9102 
9103 	raw_spin_lock_irqsave(&ifh->lock, flags);
9104 	list_for_each_entry(filter, &ifh->list, entry) {
9105 		if (filter->path.dentry) {
9106 			/*
9107 			 * Adjust base offset if the filter is associated to a
9108 			 * binary that needs to be mapped:
9109 			 */
9110 			event->addr_filter_ranges[count].start = 0;
9111 			event->addr_filter_ranges[count].size = 0;
9112 
9113 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9114 		} else {
9115 			event->addr_filter_ranges[count].start = filter->offset;
9116 			event->addr_filter_ranges[count].size  = filter->size;
9117 		}
9118 
9119 		count++;
9120 	}
9121 
9122 	event->addr_filters_gen++;
9123 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9124 
9125 	if (ifh->nr_file_filters) {
9126 		up_read(&mm->mmap_sem);
9127 
9128 		mmput(mm);
9129 	}
9130 
9131 restart:
9132 	perf_event_stop(event, 1);
9133 }
9134 
9135 /*
9136  * Address range filtering: limiting the data to certain
9137  * instruction address ranges. Filters are ioctl()ed to us from
9138  * userspace as ascii strings.
9139  *
9140  * Filter string format:
9141  *
9142  * ACTION RANGE_SPEC
9143  * where ACTION is one of the
9144  *  * "filter": limit the trace to this region
9145  *  * "start": start tracing from this address
9146  *  * "stop": stop tracing at this address/region;
9147  * RANGE_SPEC is
9148  *  * for kernel addresses: <start address>[/<size>]
9149  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9150  *
9151  * if <size> is not specified or is zero, the range is treated as a single
9152  * address; not valid for ACTION=="filter".
9153  */
9154 enum {
9155 	IF_ACT_NONE = -1,
9156 	IF_ACT_FILTER,
9157 	IF_ACT_START,
9158 	IF_ACT_STOP,
9159 	IF_SRC_FILE,
9160 	IF_SRC_KERNEL,
9161 	IF_SRC_FILEADDR,
9162 	IF_SRC_KERNELADDR,
9163 };
9164 
9165 enum {
9166 	IF_STATE_ACTION = 0,
9167 	IF_STATE_SOURCE,
9168 	IF_STATE_END,
9169 };
9170 
9171 static const match_table_t if_tokens = {
9172 	{ IF_ACT_FILTER,	"filter" },
9173 	{ IF_ACT_START,		"start" },
9174 	{ IF_ACT_STOP,		"stop" },
9175 	{ IF_SRC_FILE,		"%u/%u@%s" },
9176 	{ IF_SRC_KERNEL,	"%u/%u" },
9177 	{ IF_SRC_FILEADDR,	"%u@%s" },
9178 	{ IF_SRC_KERNELADDR,	"%u" },
9179 	{ IF_ACT_NONE,		NULL },
9180 };
9181 
9182 /*
9183  * Address filter string parser
9184  */
9185 static int
9186 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9187 			     struct list_head *filters)
9188 {
9189 	struct perf_addr_filter *filter = NULL;
9190 	char *start, *orig, *filename = NULL;
9191 	substring_t args[MAX_OPT_ARGS];
9192 	int state = IF_STATE_ACTION, token;
9193 	unsigned int kernel = 0;
9194 	int ret = -EINVAL;
9195 
9196 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9197 	if (!fstr)
9198 		return -ENOMEM;
9199 
9200 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9201 		static const enum perf_addr_filter_action_t actions[] = {
9202 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9203 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9204 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9205 		};
9206 		ret = -EINVAL;
9207 
9208 		if (!*start)
9209 			continue;
9210 
9211 		/* filter definition begins */
9212 		if (state == IF_STATE_ACTION) {
9213 			filter = perf_addr_filter_new(event, filters);
9214 			if (!filter)
9215 				goto fail;
9216 		}
9217 
9218 		token = match_token(start, if_tokens, args);
9219 		switch (token) {
9220 		case IF_ACT_FILTER:
9221 		case IF_ACT_START:
9222 		case IF_ACT_STOP:
9223 			if (state != IF_STATE_ACTION)
9224 				goto fail;
9225 
9226 			filter->action = actions[token];
9227 			state = IF_STATE_SOURCE;
9228 			break;
9229 
9230 		case IF_SRC_KERNELADDR:
9231 		case IF_SRC_KERNEL:
9232 			kernel = 1;
9233 			/* fall through */
9234 
9235 		case IF_SRC_FILEADDR:
9236 		case IF_SRC_FILE:
9237 			if (state != IF_STATE_SOURCE)
9238 				goto fail;
9239 
9240 			*args[0].to = 0;
9241 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9242 			if (ret)
9243 				goto fail;
9244 
9245 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9246 				*args[1].to = 0;
9247 				ret = kstrtoul(args[1].from, 0, &filter->size);
9248 				if (ret)
9249 					goto fail;
9250 			}
9251 
9252 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9253 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9254 
9255 				filename = match_strdup(&args[fpos]);
9256 				if (!filename) {
9257 					ret = -ENOMEM;
9258 					goto fail;
9259 				}
9260 			}
9261 
9262 			state = IF_STATE_END;
9263 			break;
9264 
9265 		default:
9266 			goto fail;
9267 		}
9268 
9269 		/*
9270 		 * Filter definition is fully parsed, validate and install it.
9271 		 * Make sure that it doesn't contradict itself or the event's
9272 		 * attribute.
9273 		 */
9274 		if (state == IF_STATE_END) {
9275 			ret = -EINVAL;
9276 			if (kernel && event->attr.exclude_kernel)
9277 				goto fail;
9278 
9279 			/*
9280 			 * ACTION "filter" must have a non-zero length region
9281 			 * specified.
9282 			 */
9283 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9284 			    !filter->size)
9285 				goto fail;
9286 
9287 			if (!kernel) {
9288 				if (!filename)
9289 					goto fail;
9290 
9291 				/*
9292 				 * For now, we only support file-based filters
9293 				 * in per-task events; doing so for CPU-wide
9294 				 * events requires additional context switching
9295 				 * trickery, since same object code will be
9296 				 * mapped at different virtual addresses in
9297 				 * different processes.
9298 				 */
9299 				ret = -EOPNOTSUPP;
9300 				if (!event->ctx->task)
9301 					goto fail_free_name;
9302 
9303 				/* look up the path and grab its inode */
9304 				ret = kern_path(filename, LOOKUP_FOLLOW,
9305 						&filter->path);
9306 				if (ret)
9307 					goto fail_free_name;
9308 
9309 				kfree(filename);
9310 				filename = NULL;
9311 
9312 				ret = -EINVAL;
9313 				if (!filter->path.dentry ||
9314 				    !S_ISREG(d_inode(filter->path.dentry)
9315 					     ->i_mode))
9316 					goto fail;
9317 
9318 				event->addr_filters.nr_file_filters++;
9319 			}
9320 
9321 			/* ready to consume more filters */
9322 			state = IF_STATE_ACTION;
9323 			filter = NULL;
9324 		}
9325 	}
9326 
9327 	if (state != IF_STATE_ACTION)
9328 		goto fail;
9329 
9330 	kfree(orig);
9331 
9332 	return 0;
9333 
9334 fail_free_name:
9335 	kfree(filename);
9336 fail:
9337 	free_filters_list(filters);
9338 	kfree(orig);
9339 
9340 	return ret;
9341 }
9342 
9343 static int
9344 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9345 {
9346 	LIST_HEAD(filters);
9347 	int ret;
9348 
9349 	/*
9350 	 * Since this is called in perf_ioctl() path, we're already holding
9351 	 * ctx::mutex.
9352 	 */
9353 	lockdep_assert_held(&event->ctx->mutex);
9354 
9355 	if (WARN_ON_ONCE(event->parent))
9356 		return -EINVAL;
9357 
9358 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9359 	if (ret)
9360 		goto fail_clear_files;
9361 
9362 	ret = event->pmu->addr_filters_validate(&filters);
9363 	if (ret)
9364 		goto fail_free_filters;
9365 
9366 	/* remove existing filters, if any */
9367 	perf_addr_filters_splice(event, &filters);
9368 
9369 	/* install new filters */
9370 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9371 
9372 	return ret;
9373 
9374 fail_free_filters:
9375 	free_filters_list(&filters);
9376 
9377 fail_clear_files:
9378 	event->addr_filters.nr_file_filters = 0;
9379 
9380 	return ret;
9381 }
9382 
9383 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9384 {
9385 	int ret = -EINVAL;
9386 	char *filter_str;
9387 
9388 	filter_str = strndup_user(arg, PAGE_SIZE);
9389 	if (IS_ERR(filter_str))
9390 		return PTR_ERR(filter_str);
9391 
9392 #ifdef CONFIG_EVENT_TRACING
9393 	if (perf_event_is_tracing(event)) {
9394 		struct perf_event_context *ctx = event->ctx;
9395 
9396 		/*
9397 		 * Beware, here be dragons!!
9398 		 *
9399 		 * the tracepoint muck will deadlock against ctx->mutex, but
9400 		 * the tracepoint stuff does not actually need it. So
9401 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9402 		 * already have a reference on ctx.
9403 		 *
9404 		 * This can result in event getting moved to a different ctx,
9405 		 * but that does not affect the tracepoint state.
9406 		 */
9407 		mutex_unlock(&ctx->mutex);
9408 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9409 		mutex_lock(&ctx->mutex);
9410 	} else
9411 #endif
9412 	if (has_addr_filter(event))
9413 		ret = perf_event_set_addr_filter(event, filter_str);
9414 
9415 	kfree(filter_str);
9416 	return ret;
9417 }
9418 
9419 /*
9420  * hrtimer based swevent callback
9421  */
9422 
9423 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9424 {
9425 	enum hrtimer_restart ret = HRTIMER_RESTART;
9426 	struct perf_sample_data data;
9427 	struct pt_regs *regs;
9428 	struct perf_event *event;
9429 	u64 period;
9430 
9431 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9432 
9433 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9434 		return HRTIMER_NORESTART;
9435 
9436 	event->pmu->read(event);
9437 
9438 	perf_sample_data_init(&data, 0, event->hw.last_period);
9439 	regs = get_irq_regs();
9440 
9441 	if (regs && !perf_exclude_event(event, regs)) {
9442 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9443 			if (__perf_event_overflow(event, 1, &data, regs))
9444 				ret = HRTIMER_NORESTART;
9445 	}
9446 
9447 	period = max_t(u64, 10000, event->hw.sample_period);
9448 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9449 
9450 	return ret;
9451 }
9452 
9453 static void perf_swevent_start_hrtimer(struct perf_event *event)
9454 {
9455 	struct hw_perf_event *hwc = &event->hw;
9456 	s64 period;
9457 
9458 	if (!is_sampling_event(event))
9459 		return;
9460 
9461 	period = local64_read(&hwc->period_left);
9462 	if (period) {
9463 		if (period < 0)
9464 			period = 10000;
9465 
9466 		local64_set(&hwc->period_left, 0);
9467 	} else {
9468 		period = max_t(u64, 10000, hwc->sample_period);
9469 	}
9470 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9471 		      HRTIMER_MODE_REL_PINNED);
9472 }
9473 
9474 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9475 {
9476 	struct hw_perf_event *hwc = &event->hw;
9477 
9478 	if (is_sampling_event(event)) {
9479 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9480 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9481 
9482 		hrtimer_cancel(&hwc->hrtimer);
9483 	}
9484 }
9485 
9486 static void perf_swevent_init_hrtimer(struct perf_event *event)
9487 {
9488 	struct hw_perf_event *hwc = &event->hw;
9489 
9490 	if (!is_sampling_event(event))
9491 		return;
9492 
9493 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9494 	hwc->hrtimer.function = perf_swevent_hrtimer;
9495 
9496 	/*
9497 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9498 	 * mapping and avoid the whole period adjust feedback stuff.
9499 	 */
9500 	if (event->attr.freq) {
9501 		long freq = event->attr.sample_freq;
9502 
9503 		event->attr.sample_period = NSEC_PER_SEC / freq;
9504 		hwc->sample_period = event->attr.sample_period;
9505 		local64_set(&hwc->period_left, hwc->sample_period);
9506 		hwc->last_period = hwc->sample_period;
9507 		event->attr.freq = 0;
9508 	}
9509 }
9510 
9511 /*
9512  * Software event: cpu wall time clock
9513  */
9514 
9515 static void cpu_clock_event_update(struct perf_event *event)
9516 {
9517 	s64 prev;
9518 	u64 now;
9519 
9520 	now = local_clock();
9521 	prev = local64_xchg(&event->hw.prev_count, now);
9522 	local64_add(now - prev, &event->count);
9523 }
9524 
9525 static void cpu_clock_event_start(struct perf_event *event, int flags)
9526 {
9527 	local64_set(&event->hw.prev_count, local_clock());
9528 	perf_swevent_start_hrtimer(event);
9529 }
9530 
9531 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9532 {
9533 	perf_swevent_cancel_hrtimer(event);
9534 	cpu_clock_event_update(event);
9535 }
9536 
9537 static int cpu_clock_event_add(struct perf_event *event, int flags)
9538 {
9539 	if (flags & PERF_EF_START)
9540 		cpu_clock_event_start(event, flags);
9541 	perf_event_update_userpage(event);
9542 
9543 	return 0;
9544 }
9545 
9546 static void cpu_clock_event_del(struct perf_event *event, int flags)
9547 {
9548 	cpu_clock_event_stop(event, flags);
9549 }
9550 
9551 static void cpu_clock_event_read(struct perf_event *event)
9552 {
9553 	cpu_clock_event_update(event);
9554 }
9555 
9556 static int cpu_clock_event_init(struct perf_event *event)
9557 {
9558 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9559 		return -ENOENT;
9560 
9561 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9562 		return -ENOENT;
9563 
9564 	/*
9565 	 * no branch sampling for software events
9566 	 */
9567 	if (has_branch_stack(event))
9568 		return -EOPNOTSUPP;
9569 
9570 	perf_swevent_init_hrtimer(event);
9571 
9572 	return 0;
9573 }
9574 
9575 static struct pmu perf_cpu_clock = {
9576 	.task_ctx_nr	= perf_sw_context,
9577 
9578 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9579 
9580 	.event_init	= cpu_clock_event_init,
9581 	.add		= cpu_clock_event_add,
9582 	.del		= cpu_clock_event_del,
9583 	.start		= cpu_clock_event_start,
9584 	.stop		= cpu_clock_event_stop,
9585 	.read		= cpu_clock_event_read,
9586 };
9587 
9588 /*
9589  * Software event: task time clock
9590  */
9591 
9592 static void task_clock_event_update(struct perf_event *event, u64 now)
9593 {
9594 	u64 prev;
9595 	s64 delta;
9596 
9597 	prev = local64_xchg(&event->hw.prev_count, now);
9598 	delta = now - prev;
9599 	local64_add(delta, &event->count);
9600 }
9601 
9602 static void task_clock_event_start(struct perf_event *event, int flags)
9603 {
9604 	local64_set(&event->hw.prev_count, event->ctx->time);
9605 	perf_swevent_start_hrtimer(event);
9606 }
9607 
9608 static void task_clock_event_stop(struct perf_event *event, int flags)
9609 {
9610 	perf_swevent_cancel_hrtimer(event);
9611 	task_clock_event_update(event, event->ctx->time);
9612 }
9613 
9614 static int task_clock_event_add(struct perf_event *event, int flags)
9615 {
9616 	if (flags & PERF_EF_START)
9617 		task_clock_event_start(event, flags);
9618 	perf_event_update_userpage(event);
9619 
9620 	return 0;
9621 }
9622 
9623 static void task_clock_event_del(struct perf_event *event, int flags)
9624 {
9625 	task_clock_event_stop(event, PERF_EF_UPDATE);
9626 }
9627 
9628 static void task_clock_event_read(struct perf_event *event)
9629 {
9630 	u64 now = perf_clock();
9631 	u64 delta = now - event->ctx->timestamp;
9632 	u64 time = event->ctx->time + delta;
9633 
9634 	task_clock_event_update(event, time);
9635 }
9636 
9637 static int task_clock_event_init(struct perf_event *event)
9638 {
9639 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9640 		return -ENOENT;
9641 
9642 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9643 		return -ENOENT;
9644 
9645 	/*
9646 	 * no branch sampling for software events
9647 	 */
9648 	if (has_branch_stack(event))
9649 		return -EOPNOTSUPP;
9650 
9651 	perf_swevent_init_hrtimer(event);
9652 
9653 	return 0;
9654 }
9655 
9656 static struct pmu perf_task_clock = {
9657 	.task_ctx_nr	= perf_sw_context,
9658 
9659 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9660 
9661 	.event_init	= task_clock_event_init,
9662 	.add		= task_clock_event_add,
9663 	.del		= task_clock_event_del,
9664 	.start		= task_clock_event_start,
9665 	.stop		= task_clock_event_stop,
9666 	.read		= task_clock_event_read,
9667 };
9668 
9669 static void perf_pmu_nop_void(struct pmu *pmu)
9670 {
9671 }
9672 
9673 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9674 {
9675 }
9676 
9677 static int perf_pmu_nop_int(struct pmu *pmu)
9678 {
9679 	return 0;
9680 }
9681 
9682 static int perf_event_nop_int(struct perf_event *event, u64 value)
9683 {
9684 	return 0;
9685 }
9686 
9687 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9688 
9689 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9690 {
9691 	__this_cpu_write(nop_txn_flags, flags);
9692 
9693 	if (flags & ~PERF_PMU_TXN_ADD)
9694 		return;
9695 
9696 	perf_pmu_disable(pmu);
9697 }
9698 
9699 static int perf_pmu_commit_txn(struct pmu *pmu)
9700 {
9701 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9702 
9703 	__this_cpu_write(nop_txn_flags, 0);
9704 
9705 	if (flags & ~PERF_PMU_TXN_ADD)
9706 		return 0;
9707 
9708 	perf_pmu_enable(pmu);
9709 	return 0;
9710 }
9711 
9712 static void perf_pmu_cancel_txn(struct pmu *pmu)
9713 {
9714 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9715 
9716 	__this_cpu_write(nop_txn_flags, 0);
9717 
9718 	if (flags & ~PERF_PMU_TXN_ADD)
9719 		return;
9720 
9721 	perf_pmu_enable(pmu);
9722 }
9723 
9724 static int perf_event_idx_default(struct perf_event *event)
9725 {
9726 	return 0;
9727 }
9728 
9729 /*
9730  * Ensures all contexts with the same task_ctx_nr have the same
9731  * pmu_cpu_context too.
9732  */
9733 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9734 {
9735 	struct pmu *pmu;
9736 
9737 	if (ctxn < 0)
9738 		return NULL;
9739 
9740 	list_for_each_entry(pmu, &pmus, entry) {
9741 		if (pmu->task_ctx_nr == ctxn)
9742 			return pmu->pmu_cpu_context;
9743 	}
9744 
9745 	return NULL;
9746 }
9747 
9748 static void free_pmu_context(struct pmu *pmu)
9749 {
9750 	/*
9751 	 * Static contexts such as perf_sw_context have a global lifetime
9752 	 * and may be shared between different PMUs. Avoid freeing them
9753 	 * when a single PMU is going away.
9754 	 */
9755 	if (pmu->task_ctx_nr > perf_invalid_context)
9756 		return;
9757 
9758 	free_percpu(pmu->pmu_cpu_context);
9759 }
9760 
9761 /*
9762  * Let userspace know that this PMU supports address range filtering:
9763  */
9764 static ssize_t nr_addr_filters_show(struct device *dev,
9765 				    struct device_attribute *attr,
9766 				    char *page)
9767 {
9768 	struct pmu *pmu = dev_get_drvdata(dev);
9769 
9770 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9771 }
9772 DEVICE_ATTR_RO(nr_addr_filters);
9773 
9774 static struct idr pmu_idr;
9775 
9776 static ssize_t
9777 type_show(struct device *dev, struct device_attribute *attr, char *page)
9778 {
9779 	struct pmu *pmu = dev_get_drvdata(dev);
9780 
9781 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9782 }
9783 static DEVICE_ATTR_RO(type);
9784 
9785 static ssize_t
9786 perf_event_mux_interval_ms_show(struct device *dev,
9787 				struct device_attribute *attr,
9788 				char *page)
9789 {
9790 	struct pmu *pmu = dev_get_drvdata(dev);
9791 
9792 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9793 }
9794 
9795 static DEFINE_MUTEX(mux_interval_mutex);
9796 
9797 static ssize_t
9798 perf_event_mux_interval_ms_store(struct device *dev,
9799 				 struct device_attribute *attr,
9800 				 const char *buf, size_t count)
9801 {
9802 	struct pmu *pmu = dev_get_drvdata(dev);
9803 	int timer, cpu, ret;
9804 
9805 	ret = kstrtoint(buf, 0, &timer);
9806 	if (ret)
9807 		return ret;
9808 
9809 	if (timer < 1)
9810 		return -EINVAL;
9811 
9812 	/* same value, noting to do */
9813 	if (timer == pmu->hrtimer_interval_ms)
9814 		return count;
9815 
9816 	mutex_lock(&mux_interval_mutex);
9817 	pmu->hrtimer_interval_ms = timer;
9818 
9819 	/* update all cpuctx for this PMU */
9820 	cpus_read_lock();
9821 	for_each_online_cpu(cpu) {
9822 		struct perf_cpu_context *cpuctx;
9823 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9824 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9825 
9826 		cpu_function_call(cpu,
9827 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9828 	}
9829 	cpus_read_unlock();
9830 	mutex_unlock(&mux_interval_mutex);
9831 
9832 	return count;
9833 }
9834 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9835 
9836 static struct attribute *pmu_dev_attrs[] = {
9837 	&dev_attr_type.attr,
9838 	&dev_attr_perf_event_mux_interval_ms.attr,
9839 	NULL,
9840 };
9841 ATTRIBUTE_GROUPS(pmu_dev);
9842 
9843 static int pmu_bus_running;
9844 static struct bus_type pmu_bus = {
9845 	.name		= "event_source",
9846 	.dev_groups	= pmu_dev_groups,
9847 };
9848 
9849 static void pmu_dev_release(struct device *dev)
9850 {
9851 	kfree(dev);
9852 }
9853 
9854 static int pmu_dev_alloc(struct pmu *pmu)
9855 {
9856 	int ret = -ENOMEM;
9857 
9858 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9859 	if (!pmu->dev)
9860 		goto out;
9861 
9862 	pmu->dev->groups = pmu->attr_groups;
9863 	device_initialize(pmu->dev);
9864 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9865 	if (ret)
9866 		goto free_dev;
9867 
9868 	dev_set_drvdata(pmu->dev, pmu);
9869 	pmu->dev->bus = &pmu_bus;
9870 	pmu->dev->release = pmu_dev_release;
9871 	ret = device_add(pmu->dev);
9872 	if (ret)
9873 		goto free_dev;
9874 
9875 	/* For PMUs with address filters, throw in an extra attribute: */
9876 	if (pmu->nr_addr_filters)
9877 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9878 
9879 	if (ret)
9880 		goto del_dev;
9881 
9882 	if (pmu->attr_update)
9883 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9884 
9885 	if (ret)
9886 		goto del_dev;
9887 
9888 out:
9889 	return ret;
9890 
9891 del_dev:
9892 	device_del(pmu->dev);
9893 
9894 free_dev:
9895 	put_device(pmu->dev);
9896 	goto out;
9897 }
9898 
9899 static struct lock_class_key cpuctx_mutex;
9900 static struct lock_class_key cpuctx_lock;
9901 
9902 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9903 {
9904 	int cpu, ret;
9905 
9906 	mutex_lock(&pmus_lock);
9907 	ret = -ENOMEM;
9908 	pmu->pmu_disable_count = alloc_percpu(int);
9909 	if (!pmu->pmu_disable_count)
9910 		goto unlock;
9911 
9912 	pmu->type = -1;
9913 	if (!name)
9914 		goto skip_type;
9915 	pmu->name = name;
9916 
9917 	if (type < 0) {
9918 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9919 		if (type < 0) {
9920 			ret = type;
9921 			goto free_pdc;
9922 		}
9923 	}
9924 	pmu->type = type;
9925 
9926 	if (pmu_bus_running) {
9927 		ret = pmu_dev_alloc(pmu);
9928 		if (ret)
9929 			goto free_idr;
9930 	}
9931 
9932 skip_type:
9933 	if (pmu->task_ctx_nr == perf_hw_context) {
9934 		static int hw_context_taken = 0;
9935 
9936 		/*
9937 		 * Other than systems with heterogeneous CPUs, it never makes
9938 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9939 		 * uncore must use perf_invalid_context.
9940 		 */
9941 		if (WARN_ON_ONCE(hw_context_taken &&
9942 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9943 			pmu->task_ctx_nr = perf_invalid_context;
9944 
9945 		hw_context_taken = 1;
9946 	}
9947 
9948 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9949 	if (pmu->pmu_cpu_context)
9950 		goto got_cpu_context;
9951 
9952 	ret = -ENOMEM;
9953 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9954 	if (!pmu->pmu_cpu_context)
9955 		goto free_dev;
9956 
9957 	for_each_possible_cpu(cpu) {
9958 		struct perf_cpu_context *cpuctx;
9959 
9960 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9961 		__perf_event_init_context(&cpuctx->ctx);
9962 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9963 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9964 		cpuctx->ctx.pmu = pmu;
9965 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9966 
9967 		__perf_mux_hrtimer_init(cpuctx, cpu);
9968 	}
9969 
9970 got_cpu_context:
9971 	if (!pmu->start_txn) {
9972 		if (pmu->pmu_enable) {
9973 			/*
9974 			 * If we have pmu_enable/pmu_disable calls, install
9975 			 * transaction stubs that use that to try and batch
9976 			 * hardware accesses.
9977 			 */
9978 			pmu->start_txn  = perf_pmu_start_txn;
9979 			pmu->commit_txn = perf_pmu_commit_txn;
9980 			pmu->cancel_txn = perf_pmu_cancel_txn;
9981 		} else {
9982 			pmu->start_txn  = perf_pmu_nop_txn;
9983 			pmu->commit_txn = perf_pmu_nop_int;
9984 			pmu->cancel_txn = perf_pmu_nop_void;
9985 		}
9986 	}
9987 
9988 	if (!pmu->pmu_enable) {
9989 		pmu->pmu_enable  = perf_pmu_nop_void;
9990 		pmu->pmu_disable = perf_pmu_nop_void;
9991 	}
9992 
9993 	if (!pmu->check_period)
9994 		pmu->check_period = perf_event_nop_int;
9995 
9996 	if (!pmu->event_idx)
9997 		pmu->event_idx = perf_event_idx_default;
9998 
9999 	list_add_rcu(&pmu->entry, &pmus);
10000 	atomic_set(&pmu->exclusive_cnt, 0);
10001 	ret = 0;
10002 unlock:
10003 	mutex_unlock(&pmus_lock);
10004 
10005 	return ret;
10006 
10007 free_dev:
10008 	device_del(pmu->dev);
10009 	put_device(pmu->dev);
10010 
10011 free_idr:
10012 	if (pmu->type >= PERF_TYPE_MAX)
10013 		idr_remove(&pmu_idr, pmu->type);
10014 
10015 free_pdc:
10016 	free_percpu(pmu->pmu_disable_count);
10017 	goto unlock;
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_register);
10020 
10021 void perf_pmu_unregister(struct pmu *pmu)
10022 {
10023 	mutex_lock(&pmus_lock);
10024 	list_del_rcu(&pmu->entry);
10025 
10026 	/*
10027 	 * We dereference the pmu list under both SRCU and regular RCU, so
10028 	 * synchronize against both of those.
10029 	 */
10030 	synchronize_srcu(&pmus_srcu);
10031 	synchronize_rcu();
10032 
10033 	free_percpu(pmu->pmu_disable_count);
10034 	if (pmu->type >= PERF_TYPE_MAX)
10035 		idr_remove(&pmu_idr, pmu->type);
10036 	if (pmu_bus_running) {
10037 		if (pmu->nr_addr_filters)
10038 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10039 		device_del(pmu->dev);
10040 		put_device(pmu->dev);
10041 	}
10042 	free_pmu_context(pmu);
10043 	mutex_unlock(&pmus_lock);
10044 }
10045 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10046 
10047 static inline bool has_extended_regs(struct perf_event *event)
10048 {
10049 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10050 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10051 }
10052 
10053 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10054 {
10055 	struct perf_event_context *ctx = NULL;
10056 	int ret;
10057 
10058 	if (!try_module_get(pmu->module))
10059 		return -ENODEV;
10060 
10061 	/*
10062 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10063 	 * for example, validate if the group fits on the PMU. Therefore,
10064 	 * if this is a sibling event, acquire the ctx->mutex to protect
10065 	 * the sibling_list.
10066 	 */
10067 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10068 		/*
10069 		 * This ctx->mutex can nest when we're called through
10070 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10071 		 */
10072 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10073 						 SINGLE_DEPTH_NESTING);
10074 		BUG_ON(!ctx);
10075 	}
10076 
10077 	event->pmu = pmu;
10078 	ret = pmu->event_init(event);
10079 
10080 	if (ctx)
10081 		perf_event_ctx_unlock(event->group_leader, ctx);
10082 
10083 	if (!ret) {
10084 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10085 		    has_extended_regs(event))
10086 			ret = -EOPNOTSUPP;
10087 
10088 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10089 		    event_has_any_exclude_flag(event))
10090 			ret = -EINVAL;
10091 
10092 		if (ret && event->destroy)
10093 			event->destroy(event);
10094 	}
10095 
10096 	if (ret)
10097 		module_put(pmu->module);
10098 
10099 	return ret;
10100 }
10101 
10102 static struct pmu *perf_init_event(struct perf_event *event)
10103 {
10104 	struct pmu *pmu;
10105 	int idx;
10106 	int ret;
10107 
10108 	idx = srcu_read_lock(&pmus_srcu);
10109 
10110 	/* Try parent's PMU first: */
10111 	if (event->parent && event->parent->pmu) {
10112 		pmu = event->parent->pmu;
10113 		ret = perf_try_init_event(pmu, event);
10114 		if (!ret)
10115 			goto unlock;
10116 	}
10117 
10118 	rcu_read_lock();
10119 	pmu = idr_find(&pmu_idr, event->attr.type);
10120 	rcu_read_unlock();
10121 	if (pmu) {
10122 		ret = perf_try_init_event(pmu, event);
10123 		if (ret)
10124 			pmu = ERR_PTR(ret);
10125 		goto unlock;
10126 	}
10127 
10128 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10129 		ret = perf_try_init_event(pmu, event);
10130 		if (!ret)
10131 			goto unlock;
10132 
10133 		if (ret != -ENOENT) {
10134 			pmu = ERR_PTR(ret);
10135 			goto unlock;
10136 		}
10137 	}
10138 	pmu = ERR_PTR(-ENOENT);
10139 unlock:
10140 	srcu_read_unlock(&pmus_srcu, idx);
10141 
10142 	return pmu;
10143 }
10144 
10145 static void attach_sb_event(struct perf_event *event)
10146 {
10147 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10148 
10149 	raw_spin_lock(&pel->lock);
10150 	list_add_rcu(&event->sb_list, &pel->list);
10151 	raw_spin_unlock(&pel->lock);
10152 }
10153 
10154 /*
10155  * We keep a list of all !task (and therefore per-cpu) events
10156  * that need to receive side-band records.
10157  *
10158  * This avoids having to scan all the various PMU per-cpu contexts
10159  * looking for them.
10160  */
10161 static void account_pmu_sb_event(struct perf_event *event)
10162 {
10163 	if (is_sb_event(event))
10164 		attach_sb_event(event);
10165 }
10166 
10167 static void account_event_cpu(struct perf_event *event, int cpu)
10168 {
10169 	if (event->parent)
10170 		return;
10171 
10172 	if (is_cgroup_event(event))
10173 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10174 }
10175 
10176 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10177 static void account_freq_event_nohz(void)
10178 {
10179 #ifdef CONFIG_NO_HZ_FULL
10180 	/* Lock so we don't race with concurrent unaccount */
10181 	spin_lock(&nr_freq_lock);
10182 	if (atomic_inc_return(&nr_freq_events) == 1)
10183 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10184 	spin_unlock(&nr_freq_lock);
10185 #endif
10186 }
10187 
10188 static void account_freq_event(void)
10189 {
10190 	if (tick_nohz_full_enabled())
10191 		account_freq_event_nohz();
10192 	else
10193 		atomic_inc(&nr_freq_events);
10194 }
10195 
10196 
10197 static void account_event(struct perf_event *event)
10198 {
10199 	bool inc = false;
10200 
10201 	if (event->parent)
10202 		return;
10203 
10204 	if (event->attach_state & PERF_ATTACH_TASK)
10205 		inc = true;
10206 	if (event->attr.mmap || event->attr.mmap_data)
10207 		atomic_inc(&nr_mmap_events);
10208 	if (event->attr.comm)
10209 		atomic_inc(&nr_comm_events);
10210 	if (event->attr.namespaces)
10211 		atomic_inc(&nr_namespaces_events);
10212 	if (event->attr.task)
10213 		atomic_inc(&nr_task_events);
10214 	if (event->attr.freq)
10215 		account_freq_event();
10216 	if (event->attr.context_switch) {
10217 		atomic_inc(&nr_switch_events);
10218 		inc = true;
10219 	}
10220 	if (has_branch_stack(event))
10221 		inc = true;
10222 	if (is_cgroup_event(event))
10223 		inc = true;
10224 	if (event->attr.ksymbol)
10225 		atomic_inc(&nr_ksymbol_events);
10226 	if (event->attr.bpf_event)
10227 		atomic_inc(&nr_bpf_events);
10228 
10229 	if (inc) {
10230 		/*
10231 		 * We need the mutex here because static_branch_enable()
10232 		 * must complete *before* the perf_sched_count increment
10233 		 * becomes visible.
10234 		 */
10235 		if (atomic_inc_not_zero(&perf_sched_count))
10236 			goto enabled;
10237 
10238 		mutex_lock(&perf_sched_mutex);
10239 		if (!atomic_read(&perf_sched_count)) {
10240 			static_branch_enable(&perf_sched_events);
10241 			/*
10242 			 * Guarantee that all CPUs observe they key change and
10243 			 * call the perf scheduling hooks before proceeding to
10244 			 * install events that need them.
10245 			 */
10246 			synchronize_rcu();
10247 		}
10248 		/*
10249 		 * Now that we have waited for the sync_sched(), allow further
10250 		 * increments to by-pass the mutex.
10251 		 */
10252 		atomic_inc(&perf_sched_count);
10253 		mutex_unlock(&perf_sched_mutex);
10254 	}
10255 enabled:
10256 
10257 	account_event_cpu(event, event->cpu);
10258 
10259 	account_pmu_sb_event(event);
10260 }
10261 
10262 /*
10263  * Allocate and initialize an event structure
10264  */
10265 static struct perf_event *
10266 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10267 		 struct task_struct *task,
10268 		 struct perf_event *group_leader,
10269 		 struct perf_event *parent_event,
10270 		 perf_overflow_handler_t overflow_handler,
10271 		 void *context, int cgroup_fd)
10272 {
10273 	struct pmu *pmu;
10274 	struct perf_event *event;
10275 	struct hw_perf_event *hwc;
10276 	long err = -EINVAL;
10277 
10278 	if ((unsigned)cpu >= nr_cpu_ids) {
10279 		if (!task || cpu != -1)
10280 			return ERR_PTR(-EINVAL);
10281 	}
10282 
10283 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10284 	if (!event)
10285 		return ERR_PTR(-ENOMEM);
10286 
10287 	/*
10288 	 * Single events are their own group leaders, with an
10289 	 * empty sibling list:
10290 	 */
10291 	if (!group_leader)
10292 		group_leader = event;
10293 
10294 	mutex_init(&event->child_mutex);
10295 	INIT_LIST_HEAD(&event->child_list);
10296 
10297 	INIT_LIST_HEAD(&event->event_entry);
10298 	INIT_LIST_HEAD(&event->sibling_list);
10299 	INIT_LIST_HEAD(&event->active_list);
10300 	init_event_group(event);
10301 	INIT_LIST_HEAD(&event->rb_entry);
10302 	INIT_LIST_HEAD(&event->active_entry);
10303 	INIT_LIST_HEAD(&event->addr_filters.list);
10304 	INIT_HLIST_NODE(&event->hlist_entry);
10305 
10306 
10307 	init_waitqueue_head(&event->waitq);
10308 	event->pending_disable = -1;
10309 	init_irq_work(&event->pending, perf_pending_event);
10310 
10311 	mutex_init(&event->mmap_mutex);
10312 	raw_spin_lock_init(&event->addr_filters.lock);
10313 
10314 	atomic_long_set(&event->refcount, 1);
10315 	event->cpu		= cpu;
10316 	event->attr		= *attr;
10317 	event->group_leader	= group_leader;
10318 	event->pmu		= NULL;
10319 	event->oncpu		= -1;
10320 
10321 	event->parent		= parent_event;
10322 
10323 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10324 	event->id		= atomic64_inc_return(&perf_event_id);
10325 
10326 	event->state		= PERF_EVENT_STATE_INACTIVE;
10327 
10328 	if (task) {
10329 		event->attach_state = PERF_ATTACH_TASK;
10330 		/*
10331 		 * XXX pmu::event_init needs to know what task to account to
10332 		 * and we cannot use the ctx information because we need the
10333 		 * pmu before we get a ctx.
10334 		 */
10335 		get_task_struct(task);
10336 		event->hw.target = task;
10337 	}
10338 
10339 	event->clock = &local_clock;
10340 	if (parent_event)
10341 		event->clock = parent_event->clock;
10342 
10343 	if (!overflow_handler && parent_event) {
10344 		overflow_handler = parent_event->overflow_handler;
10345 		context = parent_event->overflow_handler_context;
10346 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10347 		if (overflow_handler == bpf_overflow_handler) {
10348 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10349 
10350 			if (IS_ERR(prog)) {
10351 				err = PTR_ERR(prog);
10352 				goto err_ns;
10353 			}
10354 			event->prog = prog;
10355 			event->orig_overflow_handler =
10356 				parent_event->orig_overflow_handler;
10357 		}
10358 #endif
10359 	}
10360 
10361 	if (overflow_handler) {
10362 		event->overflow_handler	= overflow_handler;
10363 		event->overflow_handler_context = context;
10364 	} else if (is_write_backward(event)){
10365 		event->overflow_handler = perf_event_output_backward;
10366 		event->overflow_handler_context = NULL;
10367 	} else {
10368 		event->overflow_handler = perf_event_output_forward;
10369 		event->overflow_handler_context = NULL;
10370 	}
10371 
10372 	perf_event__state_init(event);
10373 
10374 	pmu = NULL;
10375 
10376 	hwc = &event->hw;
10377 	hwc->sample_period = attr->sample_period;
10378 	if (attr->freq && attr->sample_freq)
10379 		hwc->sample_period = 1;
10380 	hwc->last_period = hwc->sample_period;
10381 
10382 	local64_set(&hwc->period_left, hwc->sample_period);
10383 
10384 	/*
10385 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10386 	 * See perf_output_read().
10387 	 */
10388 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10389 		goto err_ns;
10390 
10391 	if (!has_branch_stack(event))
10392 		event->attr.branch_sample_type = 0;
10393 
10394 	if (cgroup_fd != -1) {
10395 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10396 		if (err)
10397 			goto err_ns;
10398 	}
10399 
10400 	pmu = perf_init_event(event);
10401 	if (IS_ERR(pmu)) {
10402 		err = PTR_ERR(pmu);
10403 		goto err_ns;
10404 	}
10405 
10406 	err = exclusive_event_init(event);
10407 	if (err)
10408 		goto err_pmu;
10409 
10410 	if (has_addr_filter(event)) {
10411 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10412 						    sizeof(struct perf_addr_filter_range),
10413 						    GFP_KERNEL);
10414 		if (!event->addr_filter_ranges) {
10415 			err = -ENOMEM;
10416 			goto err_per_task;
10417 		}
10418 
10419 		/*
10420 		 * Clone the parent's vma offsets: they are valid until exec()
10421 		 * even if the mm is not shared with the parent.
10422 		 */
10423 		if (event->parent) {
10424 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10425 
10426 			raw_spin_lock_irq(&ifh->lock);
10427 			memcpy(event->addr_filter_ranges,
10428 			       event->parent->addr_filter_ranges,
10429 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10430 			raw_spin_unlock_irq(&ifh->lock);
10431 		}
10432 
10433 		/* force hw sync on the address filters */
10434 		event->addr_filters_gen = 1;
10435 	}
10436 
10437 	if (!event->parent) {
10438 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10439 			err = get_callchain_buffers(attr->sample_max_stack);
10440 			if (err)
10441 				goto err_addr_filters;
10442 		}
10443 	}
10444 
10445 	/* symmetric to unaccount_event() in _free_event() */
10446 	account_event(event);
10447 
10448 	return event;
10449 
10450 err_addr_filters:
10451 	kfree(event->addr_filter_ranges);
10452 
10453 err_per_task:
10454 	exclusive_event_destroy(event);
10455 
10456 err_pmu:
10457 	if (event->destroy)
10458 		event->destroy(event);
10459 	module_put(pmu->module);
10460 err_ns:
10461 	if (is_cgroup_event(event))
10462 		perf_detach_cgroup(event);
10463 	if (event->ns)
10464 		put_pid_ns(event->ns);
10465 	if (event->hw.target)
10466 		put_task_struct(event->hw.target);
10467 	kfree(event);
10468 
10469 	return ERR_PTR(err);
10470 }
10471 
10472 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10473 			  struct perf_event_attr *attr)
10474 {
10475 	u32 size;
10476 	int ret;
10477 
10478 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10479 		return -EFAULT;
10480 
10481 	/*
10482 	 * zero the full structure, so that a short copy will be nice.
10483 	 */
10484 	memset(attr, 0, sizeof(*attr));
10485 
10486 	ret = get_user(size, &uattr->size);
10487 	if (ret)
10488 		return ret;
10489 
10490 	if (size > PAGE_SIZE)	/* silly large */
10491 		goto err_size;
10492 
10493 	if (!size)		/* abi compat */
10494 		size = PERF_ATTR_SIZE_VER0;
10495 
10496 	if (size < PERF_ATTR_SIZE_VER0)
10497 		goto err_size;
10498 
10499 	/*
10500 	 * If we're handed a bigger struct than we know of,
10501 	 * ensure all the unknown bits are 0 - i.e. new
10502 	 * user-space does not rely on any kernel feature
10503 	 * extensions we dont know about yet.
10504 	 */
10505 	if (size > sizeof(*attr)) {
10506 		unsigned char __user *addr;
10507 		unsigned char __user *end;
10508 		unsigned char val;
10509 
10510 		addr = (void __user *)uattr + sizeof(*attr);
10511 		end  = (void __user *)uattr + size;
10512 
10513 		for (; addr < end; addr++) {
10514 			ret = get_user(val, addr);
10515 			if (ret)
10516 				return ret;
10517 			if (val)
10518 				goto err_size;
10519 		}
10520 		size = sizeof(*attr);
10521 	}
10522 
10523 	ret = copy_from_user(attr, uattr, size);
10524 	if (ret)
10525 		return -EFAULT;
10526 
10527 	attr->size = size;
10528 
10529 	if (attr->__reserved_1)
10530 		return -EINVAL;
10531 
10532 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10533 		return -EINVAL;
10534 
10535 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10536 		return -EINVAL;
10537 
10538 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10539 		u64 mask = attr->branch_sample_type;
10540 
10541 		/* only using defined bits */
10542 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10543 			return -EINVAL;
10544 
10545 		/* at least one branch bit must be set */
10546 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10547 			return -EINVAL;
10548 
10549 		/* propagate priv level, when not set for branch */
10550 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10551 
10552 			/* exclude_kernel checked on syscall entry */
10553 			if (!attr->exclude_kernel)
10554 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10555 
10556 			if (!attr->exclude_user)
10557 				mask |= PERF_SAMPLE_BRANCH_USER;
10558 
10559 			if (!attr->exclude_hv)
10560 				mask |= PERF_SAMPLE_BRANCH_HV;
10561 			/*
10562 			 * adjust user setting (for HW filter setup)
10563 			 */
10564 			attr->branch_sample_type = mask;
10565 		}
10566 		/* privileged levels capture (kernel, hv): check permissions */
10567 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10568 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10569 			return -EACCES;
10570 	}
10571 
10572 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10573 		ret = perf_reg_validate(attr->sample_regs_user);
10574 		if (ret)
10575 			return ret;
10576 	}
10577 
10578 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10579 		if (!arch_perf_have_user_stack_dump())
10580 			return -ENOSYS;
10581 
10582 		/*
10583 		 * We have __u32 type for the size, but so far
10584 		 * we can only use __u16 as maximum due to the
10585 		 * __u16 sample size limit.
10586 		 */
10587 		if (attr->sample_stack_user >= USHRT_MAX)
10588 			return -EINVAL;
10589 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10590 			return -EINVAL;
10591 	}
10592 
10593 	if (!attr->sample_max_stack)
10594 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10595 
10596 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10597 		ret = perf_reg_validate(attr->sample_regs_intr);
10598 out:
10599 	return ret;
10600 
10601 err_size:
10602 	put_user(sizeof(*attr), &uattr->size);
10603 	ret = -E2BIG;
10604 	goto out;
10605 }
10606 
10607 static int
10608 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10609 {
10610 	struct ring_buffer *rb = NULL;
10611 	int ret = -EINVAL;
10612 
10613 	if (!output_event)
10614 		goto set;
10615 
10616 	/* don't allow circular references */
10617 	if (event == output_event)
10618 		goto out;
10619 
10620 	/*
10621 	 * Don't allow cross-cpu buffers
10622 	 */
10623 	if (output_event->cpu != event->cpu)
10624 		goto out;
10625 
10626 	/*
10627 	 * If its not a per-cpu rb, it must be the same task.
10628 	 */
10629 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10630 		goto out;
10631 
10632 	/*
10633 	 * Mixing clocks in the same buffer is trouble you don't need.
10634 	 */
10635 	if (output_event->clock != event->clock)
10636 		goto out;
10637 
10638 	/*
10639 	 * Either writing ring buffer from beginning or from end.
10640 	 * Mixing is not allowed.
10641 	 */
10642 	if (is_write_backward(output_event) != is_write_backward(event))
10643 		goto out;
10644 
10645 	/*
10646 	 * If both events generate aux data, they must be on the same PMU
10647 	 */
10648 	if (has_aux(event) && has_aux(output_event) &&
10649 	    event->pmu != output_event->pmu)
10650 		goto out;
10651 
10652 set:
10653 	mutex_lock(&event->mmap_mutex);
10654 	/* Can't redirect output if we've got an active mmap() */
10655 	if (atomic_read(&event->mmap_count))
10656 		goto unlock;
10657 
10658 	if (output_event) {
10659 		/* get the rb we want to redirect to */
10660 		rb = ring_buffer_get(output_event);
10661 		if (!rb)
10662 			goto unlock;
10663 	}
10664 
10665 	ring_buffer_attach(event, rb);
10666 
10667 	ret = 0;
10668 unlock:
10669 	mutex_unlock(&event->mmap_mutex);
10670 
10671 out:
10672 	return ret;
10673 }
10674 
10675 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10676 {
10677 	if (b < a)
10678 		swap(a, b);
10679 
10680 	mutex_lock(a);
10681 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10682 }
10683 
10684 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10685 {
10686 	bool nmi_safe = false;
10687 
10688 	switch (clk_id) {
10689 	case CLOCK_MONOTONIC:
10690 		event->clock = &ktime_get_mono_fast_ns;
10691 		nmi_safe = true;
10692 		break;
10693 
10694 	case CLOCK_MONOTONIC_RAW:
10695 		event->clock = &ktime_get_raw_fast_ns;
10696 		nmi_safe = true;
10697 		break;
10698 
10699 	case CLOCK_REALTIME:
10700 		event->clock = &ktime_get_real_ns;
10701 		break;
10702 
10703 	case CLOCK_BOOTTIME:
10704 		event->clock = &ktime_get_boottime_ns;
10705 		break;
10706 
10707 	case CLOCK_TAI:
10708 		event->clock = &ktime_get_clocktai_ns;
10709 		break;
10710 
10711 	default:
10712 		return -EINVAL;
10713 	}
10714 
10715 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10716 		return -EINVAL;
10717 
10718 	return 0;
10719 }
10720 
10721 /*
10722  * Variation on perf_event_ctx_lock_nested(), except we take two context
10723  * mutexes.
10724  */
10725 static struct perf_event_context *
10726 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10727 			     struct perf_event_context *ctx)
10728 {
10729 	struct perf_event_context *gctx;
10730 
10731 again:
10732 	rcu_read_lock();
10733 	gctx = READ_ONCE(group_leader->ctx);
10734 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10735 		rcu_read_unlock();
10736 		goto again;
10737 	}
10738 	rcu_read_unlock();
10739 
10740 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10741 
10742 	if (group_leader->ctx != gctx) {
10743 		mutex_unlock(&ctx->mutex);
10744 		mutex_unlock(&gctx->mutex);
10745 		put_ctx(gctx);
10746 		goto again;
10747 	}
10748 
10749 	return gctx;
10750 }
10751 
10752 /**
10753  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10754  *
10755  * @attr_uptr:	event_id type attributes for monitoring/sampling
10756  * @pid:		target pid
10757  * @cpu:		target cpu
10758  * @group_fd:		group leader event fd
10759  */
10760 SYSCALL_DEFINE5(perf_event_open,
10761 		struct perf_event_attr __user *, attr_uptr,
10762 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10763 {
10764 	struct perf_event *group_leader = NULL, *output_event = NULL;
10765 	struct perf_event *event, *sibling;
10766 	struct perf_event_attr attr;
10767 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10768 	struct file *event_file = NULL;
10769 	struct fd group = {NULL, 0};
10770 	struct task_struct *task = NULL;
10771 	struct pmu *pmu;
10772 	int event_fd;
10773 	int move_group = 0;
10774 	int err;
10775 	int f_flags = O_RDWR;
10776 	int cgroup_fd = -1;
10777 
10778 	/* for future expandability... */
10779 	if (flags & ~PERF_FLAG_ALL)
10780 		return -EINVAL;
10781 
10782 	err = perf_copy_attr(attr_uptr, &attr);
10783 	if (err)
10784 		return err;
10785 
10786 	if (!attr.exclude_kernel) {
10787 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10788 			return -EACCES;
10789 	}
10790 
10791 	if (attr.namespaces) {
10792 		if (!capable(CAP_SYS_ADMIN))
10793 			return -EACCES;
10794 	}
10795 
10796 	if (attr.freq) {
10797 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10798 			return -EINVAL;
10799 	} else {
10800 		if (attr.sample_period & (1ULL << 63))
10801 			return -EINVAL;
10802 	}
10803 
10804 	/* Only privileged users can get physical addresses */
10805 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10806 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10807 		return -EACCES;
10808 
10809 	/*
10810 	 * In cgroup mode, the pid argument is used to pass the fd
10811 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10812 	 * designates the cpu on which to monitor threads from that
10813 	 * cgroup.
10814 	 */
10815 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10816 		return -EINVAL;
10817 
10818 	if (flags & PERF_FLAG_FD_CLOEXEC)
10819 		f_flags |= O_CLOEXEC;
10820 
10821 	event_fd = get_unused_fd_flags(f_flags);
10822 	if (event_fd < 0)
10823 		return event_fd;
10824 
10825 	if (group_fd != -1) {
10826 		err = perf_fget_light(group_fd, &group);
10827 		if (err)
10828 			goto err_fd;
10829 		group_leader = group.file->private_data;
10830 		if (flags & PERF_FLAG_FD_OUTPUT)
10831 			output_event = group_leader;
10832 		if (flags & PERF_FLAG_FD_NO_GROUP)
10833 			group_leader = NULL;
10834 	}
10835 
10836 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10837 		task = find_lively_task_by_vpid(pid);
10838 		if (IS_ERR(task)) {
10839 			err = PTR_ERR(task);
10840 			goto err_group_fd;
10841 		}
10842 	}
10843 
10844 	if (task && group_leader &&
10845 	    group_leader->attr.inherit != attr.inherit) {
10846 		err = -EINVAL;
10847 		goto err_task;
10848 	}
10849 
10850 	if (task) {
10851 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10852 		if (err)
10853 			goto err_task;
10854 
10855 		/*
10856 		 * Reuse ptrace permission checks for now.
10857 		 *
10858 		 * We must hold cred_guard_mutex across this and any potential
10859 		 * perf_install_in_context() call for this new event to
10860 		 * serialize against exec() altering our credentials (and the
10861 		 * perf_event_exit_task() that could imply).
10862 		 */
10863 		err = -EACCES;
10864 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10865 			goto err_cred;
10866 	}
10867 
10868 	if (flags & PERF_FLAG_PID_CGROUP)
10869 		cgroup_fd = pid;
10870 
10871 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10872 				 NULL, NULL, cgroup_fd);
10873 	if (IS_ERR(event)) {
10874 		err = PTR_ERR(event);
10875 		goto err_cred;
10876 	}
10877 
10878 	if (is_sampling_event(event)) {
10879 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10880 			err = -EOPNOTSUPP;
10881 			goto err_alloc;
10882 		}
10883 	}
10884 
10885 	/*
10886 	 * Special case software events and allow them to be part of
10887 	 * any hardware group.
10888 	 */
10889 	pmu = event->pmu;
10890 
10891 	if (attr.use_clockid) {
10892 		err = perf_event_set_clock(event, attr.clockid);
10893 		if (err)
10894 			goto err_alloc;
10895 	}
10896 
10897 	if (pmu->task_ctx_nr == perf_sw_context)
10898 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10899 
10900 	if (group_leader) {
10901 		if (is_software_event(event) &&
10902 		    !in_software_context(group_leader)) {
10903 			/*
10904 			 * If the event is a sw event, but the group_leader
10905 			 * is on hw context.
10906 			 *
10907 			 * Allow the addition of software events to hw
10908 			 * groups, this is safe because software events
10909 			 * never fail to schedule.
10910 			 */
10911 			pmu = group_leader->ctx->pmu;
10912 		} else if (!is_software_event(event) &&
10913 			   is_software_event(group_leader) &&
10914 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10915 			/*
10916 			 * In case the group is a pure software group, and we
10917 			 * try to add a hardware event, move the whole group to
10918 			 * the hardware context.
10919 			 */
10920 			move_group = 1;
10921 		}
10922 	}
10923 
10924 	/*
10925 	 * Get the target context (task or percpu):
10926 	 */
10927 	ctx = find_get_context(pmu, task, event);
10928 	if (IS_ERR(ctx)) {
10929 		err = PTR_ERR(ctx);
10930 		goto err_alloc;
10931 	}
10932 
10933 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10934 		err = -EBUSY;
10935 		goto err_context;
10936 	}
10937 
10938 	/*
10939 	 * Look up the group leader (we will attach this event to it):
10940 	 */
10941 	if (group_leader) {
10942 		err = -EINVAL;
10943 
10944 		/*
10945 		 * Do not allow a recursive hierarchy (this new sibling
10946 		 * becoming part of another group-sibling):
10947 		 */
10948 		if (group_leader->group_leader != group_leader)
10949 			goto err_context;
10950 
10951 		/* All events in a group should have the same clock */
10952 		if (group_leader->clock != event->clock)
10953 			goto err_context;
10954 
10955 		/*
10956 		 * Make sure we're both events for the same CPU;
10957 		 * grouping events for different CPUs is broken; since
10958 		 * you can never concurrently schedule them anyhow.
10959 		 */
10960 		if (group_leader->cpu != event->cpu)
10961 			goto err_context;
10962 
10963 		/*
10964 		 * Make sure we're both on the same task, or both
10965 		 * per-CPU events.
10966 		 */
10967 		if (group_leader->ctx->task != ctx->task)
10968 			goto err_context;
10969 
10970 		/*
10971 		 * Do not allow to attach to a group in a different task
10972 		 * or CPU context. If we're moving SW events, we'll fix
10973 		 * this up later, so allow that.
10974 		 */
10975 		if (!move_group && group_leader->ctx != ctx)
10976 			goto err_context;
10977 
10978 		/*
10979 		 * Only a group leader can be exclusive or pinned
10980 		 */
10981 		if (attr.exclusive || attr.pinned)
10982 			goto err_context;
10983 	}
10984 
10985 	if (output_event) {
10986 		err = perf_event_set_output(event, output_event);
10987 		if (err)
10988 			goto err_context;
10989 	}
10990 
10991 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10992 					f_flags);
10993 	if (IS_ERR(event_file)) {
10994 		err = PTR_ERR(event_file);
10995 		event_file = NULL;
10996 		goto err_context;
10997 	}
10998 
10999 	if (move_group) {
11000 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11001 
11002 		if (gctx->task == TASK_TOMBSTONE) {
11003 			err = -ESRCH;
11004 			goto err_locked;
11005 		}
11006 
11007 		/*
11008 		 * Check if we raced against another sys_perf_event_open() call
11009 		 * moving the software group underneath us.
11010 		 */
11011 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11012 			/*
11013 			 * If someone moved the group out from under us, check
11014 			 * if this new event wound up on the same ctx, if so
11015 			 * its the regular !move_group case, otherwise fail.
11016 			 */
11017 			if (gctx != ctx) {
11018 				err = -EINVAL;
11019 				goto err_locked;
11020 			} else {
11021 				perf_event_ctx_unlock(group_leader, gctx);
11022 				move_group = 0;
11023 			}
11024 		}
11025 	} else {
11026 		mutex_lock(&ctx->mutex);
11027 	}
11028 
11029 	if (ctx->task == TASK_TOMBSTONE) {
11030 		err = -ESRCH;
11031 		goto err_locked;
11032 	}
11033 
11034 	if (!perf_event_validate_size(event)) {
11035 		err = -E2BIG;
11036 		goto err_locked;
11037 	}
11038 
11039 	if (!task) {
11040 		/*
11041 		 * Check if the @cpu we're creating an event for is online.
11042 		 *
11043 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11044 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11045 		 */
11046 		struct perf_cpu_context *cpuctx =
11047 			container_of(ctx, struct perf_cpu_context, ctx);
11048 
11049 		if (!cpuctx->online) {
11050 			err = -ENODEV;
11051 			goto err_locked;
11052 		}
11053 	}
11054 
11055 
11056 	/*
11057 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11058 	 * because we need to serialize with concurrent event creation.
11059 	 */
11060 	if (!exclusive_event_installable(event, ctx)) {
11061 		/* exclusive and group stuff are assumed mutually exclusive */
11062 		WARN_ON_ONCE(move_group);
11063 
11064 		err = -EBUSY;
11065 		goto err_locked;
11066 	}
11067 
11068 	WARN_ON_ONCE(ctx->parent_ctx);
11069 
11070 	/*
11071 	 * This is the point on no return; we cannot fail hereafter. This is
11072 	 * where we start modifying current state.
11073 	 */
11074 
11075 	if (move_group) {
11076 		/*
11077 		 * See perf_event_ctx_lock() for comments on the details
11078 		 * of swizzling perf_event::ctx.
11079 		 */
11080 		perf_remove_from_context(group_leader, 0);
11081 		put_ctx(gctx);
11082 
11083 		for_each_sibling_event(sibling, group_leader) {
11084 			perf_remove_from_context(sibling, 0);
11085 			put_ctx(gctx);
11086 		}
11087 
11088 		/*
11089 		 * Wait for everybody to stop referencing the events through
11090 		 * the old lists, before installing it on new lists.
11091 		 */
11092 		synchronize_rcu();
11093 
11094 		/*
11095 		 * Install the group siblings before the group leader.
11096 		 *
11097 		 * Because a group leader will try and install the entire group
11098 		 * (through the sibling list, which is still in-tact), we can
11099 		 * end up with siblings installed in the wrong context.
11100 		 *
11101 		 * By installing siblings first we NO-OP because they're not
11102 		 * reachable through the group lists.
11103 		 */
11104 		for_each_sibling_event(sibling, group_leader) {
11105 			perf_event__state_init(sibling);
11106 			perf_install_in_context(ctx, sibling, sibling->cpu);
11107 			get_ctx(ctx);
11108 		}
11109 
11110 		/*
11111 		 * Removing from the context ends up with disabled
11112 		 * event. What we want here is event in the initial
11113 		 * startup state, ready to be add into new context.
11114 		 */
11115 		perf_event__state_init(group_leader);
11116 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11117 		get_ctx(ctx);
11118 	}
11119 
11120 	/*
11121 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11122 	 * that we're serialized against further additions and before
11123 	 * perf_install_in_context() which is the point the event is active and
11124 	 * can use these values.
11125 	 */
11126 	perf_event__header_size(event);
11127 	perf_event__id_header_size(event);
11128 
11129 	event->owner = current;
11130 
11131 	perf_install_in_context(ctx, event, event->cpu);
11132 	perf_unpin_context(ctx);
11133 
11134 	if (move_group)
11135 		perf_event_ctx_unlock(group_leader, gctx);
11136 	mutex_unlock(&ctx->mutex);
11137 
11138 	if (task) {
11139 		mutex_unlock(&task->signal->cred_guard_mutex);
11140 		put_task_struct(task);
11141 	}
11142 
11143 	mutex_lock(&current->perf_event_mutex);
11144 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11145 	mutex_unlock(&current->perf_event_mutex);
11146 
11147 	/*
11148 	 * Drop the reference on the group_event after placing the
11149 	 * new event on the sibling_list. This ensures destruction
11150 	 * of the group leader will find the pointer to itself in
11151 	 * perf_group_detach().
11152 	 */
11153 	fdput(group);
11154 	fd_install(event_fd, event_file);
11155 	return event_fd;
11156 
11157 err_locked:
11158 	if (move_group)
11159 		perf_event_ctx_unlock(group_leader, gctx);
11160 	mutex_unlock(&ctx->mutex);
11161 /* err_file: */
11162 	fput(event_file);
11163 err_context:
11164 	perf_unpin_context(ctx);
11165 	put_ctx(ctx);
11166 err_alloc:
11167 	/*
11168 	 * If event_file is set, the fput() above will have called ->release()
11169 	 * and that will take care of freeing the event.
11170 	 */
11171 	if (!event_file)
11172 		free_event(event);
11173 err_cred:
11174 	if (task)
11175 		mutex_unlock(&task->signal->cred_guard_mutex);
11176 err_task:
11177 	if (task)
11178 		put_task_struct(task);
11179 err_group_fd:
11180 	fdput(group);
11181 err_fd:
11182 	put_unused_fd(event_fd);
11183 	return err;
11184 }
11185 
11186 /**
11187  * perf_event_create_kernel_counter
11188  *
11189  * @attr: attributes of the counter to create
11190  * @cpu: cpu in which the counter is bound
11191  * @task: task to profile (NULL for percpu)
11192  */
11193 struct perf_event *
11194 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11195 				 struct task_struct *task,
11196 				 perf_overflow_handler_t overflow_handler,
11197 				 void *context)
11198 {
11199 	struct perf_event_context *ctx;
11200 	struct perf_event *event;
11201 	int err;
11202 
11203 	/*
11204 	 * Get the target context (task or percpu):
11205 	 */
11206 
11207 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11208 				 overflow_handler, context, -1);
11209 	if (IS_ERR(event)) {
11210 		err = PTR_ERR(event);
11211 		goto err;
11212 	}
11213 
11214 	/* Mark owner so we could distinguish it from user events. */
11215 	event->owner = TASK_TOMBSTONE;
11216 
11217 	ctx = find_get_context(event->pmu, task, event);
11218 	if (IS_ERR(ctx)) {
11219 		err = PTR_ERR(ctx);
11220 		goto err_free;
11221 	}
11222 
11223 	WARN_ON_ONCE(ctx->parent_ctx);
11224 	mutex_lock(&ctx->mutex);
11225 	if (ctx->task == TASK_TOMBSTONE) {
11226 		err = -ESRCH;
11227 		goto err_unlock;
11228 	}
11229 
11230 	if (!task) {
11231 		/*
11232 		 * Check if the @cpu we're creating an event for is online.
11233 		 *
11234 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11235 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11236 		 */
11237 		struct perf_cpu_context *cpuctx =
11238 			container_of(ctx, struct perf_cpu_context, ctx);
11239 		if (!cpuctx->online) {
11240 			err = -ENODEV;
11241 			goto err_unlock;
11242 		}
11243 	}
11244 
11245 	if (!exclusive_event_installable(event, ctx)) {
11246 		err = -EBUSY;
11247 		goto err_unlock;
11248 	}
11249 
11250 	perf_install_in_context(ctx, event, cpu);
11251 	perf_unpin_context(ctx);
11252 	mutex_unlock(&ctx->mutex);
11253 
11254 	return event;
11255 
11256 err_unlock:
11257 	mutex_unlock(&ctx->mutex);
11258 	perf_unpin_context(ctx);
11259 	put_ctx(ctx);
11260 err_free:
11261 	free_event(event);
11262 err:
11263 	return ERR_PTR(err);
11264 }
11265 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11266 
11267 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11268 {
11269 	struct perf_event_context *src_ctx;
11270 	struct perf_event_context *dst_ctx;
11271 	struct perf_event *event, *tmp;
11272 	LIST_HEAD(events);
11273 
11274 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11275 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11276 
11277 	/*
11278 	 * See perf_event_ctx_lock() for comments on the details
11279 	 * of swizzling perf_event::ctx.
11280 	 */
11281 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11282 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11283 				 event_entry) {
11284 		perf_remove_from_context(event, 0);
11285 		unaccount_event_cpu(event, src_cpu);
11286 		put_ctx(src_ctx);
11287 		list_add(&event->migrate_entry, &events);
11288 	}
11289 
11290 	/*
11291 	 * Wait for the events to quiesce before re-instating them.
11292 	 */
11293 	synchronize_rcu();
11294 
11295 	/*
11296 	 * Re-instate events in 2 passes.
11297 	 *
11298 	 * Skip over group leaders and only install siblings on this first
11299 	 * pass, siblings will not get enabled without a leader, however a
11300 	 * leader will enable its siblings, even if those are still on the old
11301 	 * context.
11302 	 */
11303 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11304 		if (event->group_leader == event)
11305 			continue;
11306 
11307 		list_del(&event->migrate_entry);
11308 		if (event->state >= PERF_EVENT_STATE_OFF)
11309 			event->state = PERF_EVENT_STATE_INACTIVE;
11310 		account_event_cpu(event, dst_cpu);
11311 		perf_install_in_context(dst_ctx, event, dst_cpu);
11312 		get_ctx(dst_ctx);
11313 	}
11314 
11315 	/*
11316 	 * Once all the siblings are setup properly, install the group leaders
11317 	 * to make it go.
11318 	 */
11319 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11320 		list_del(&event->migrate_entry);
11321 		if (event->state >= PERF_EVENT_STATE_OFF)
11322 			event->state = PERF_EVENT_STATE_INACTIVE;
11323 		account_event_cpu(event, dst_cpu);
11324 		perf_install_in_context(dst_ctx, event, dst_cpu);
11325 		get_ctx(dst_ctx);
11326 	}
11327 	mutex_unlock(&dst_ctx->mutex);
11328 	mutex_unlock(&src_ctx->mutex);
11329 }
11330 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11331 
11332 static void sync_child_event(struct perf_event *child_event,
11333 			       struct task_struct *child)
11334 {
11335 	struct perf_event *parent_event = child_event->parent;
11336 	u64 child_val;
11337 
11338 	if (child_event->attr.inherit_stat)
11339 		perf_event_read_event(child_event, child);
11340 
11341 	child_val = perf_event_count(child_event);
11342 
11343 	/*
11344 	 * Add back the child's count to the parent's count:
11345 	 */
11346 	atomic64_add(child_val, &parent_event->child_count);
11347 	atomic64_add(child_event->total_time_enabled,
11348 		     &parent_event->child_total_time_enabled);
11349 	atomic64_add(child_event->total_time_running,
11350 		     &parent_event->child_total_time_running);
11351 }
11352 
11353 static void
11354 perf_event_exit_event(struct perf_event *child_event,
11355 		      struct perf_event_context *child_ctx,
11356 		      struct task_struct *child)
11357 {
11358 	struct perf_event *parent_event = child_event->parent;
11359 
11360 	/*
11361 	 * Do not destroy the 'original' grouping; because of the context
11362 	 * switch optimization the original events could've ended up in a
11363 	 * random child task.
11364 	 *
11365 	 * If we were to destroy the original group, all group related
11366 	 * operations would cease to function properly after this random
11367 	 * child dies.
11368 	 *
11369 	 * Do destroy all inherited groups, we don't care about those
11370 	 * and being thorough is better.
11371 	 */
11372 	raw_spin_lock_irq(&child_ctx->lock);
11373 	WARN_ON_ONCE(child_ctx->is_active);
11374 
11375 	if (parent_event)
11376 		perf_group_detach(child_event);
11377 	list_del_event(child_event, child_ctx);
11378 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11379 	raw_spin_unlock_irq(&child_ctx->lock);
11380 
11381 	/*
11382 	 * Parent events are governed by their filedesc, retain them.
11383 	 */
11384 	if (!parent_event) {
11385 		perf_event_wakeup(child_event);
11386 		return;
11387 	}
11388 	/*
11389 	 * Child events can be cleaned up.
11390 	 */
11391 
11392 	sync_child_event(child_event, child);
11393 
11394 	/*
11395 	 * Remove this event from the parent's list
11396 	 */
11397 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11398 	mutex_lock(&parent_event->child_mutex);
11399 	list_del_init(&child_event->child_list);
11400 	mutex_unlock(&parent_event->child_mutex);
11401 
11402 	/*
11403 	 * Kick perf_poll() for is_event_hup().
11404 	 */
11405 	perf_event_wakeup(parent_event);
11406 	free_event(child_event);
11407 	put_event(parent_event);
11408 }
11409 
11410 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11411 {
11412 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11413 	struct perf_event *child_event, *next;
11414 
11415 	WARN_ON_ONCE(child != current);
11416 
11417 	child_ctx = perf_pin_task_context(child, ctxn);
11418 	if (!child_ctx)
11419 		return;
11420 
11421 	/*
11422 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11423 	 * ctx::mutex over the entire thing. This serializes against almost
11424 	 * everything that wants to access the ctx.
11425 	 *
11426 	 * The exception is sys_perf_event_open() /
11427 	 * perf_event_create_kernel_count() which does find_get_context()
11428 	 * without ctx::mutex (it cannot because of the move_group double mutex
11429 	 * lock thing). See the comments in perf_install_in_context().
11430 	 */
11431 	mutex_lock(&child_ctx->mutex);
11432 
11433 	/*
11434 	 * In a single ctx::lock section, de-schedule the events and detach the
11435 	 * context from the task such that we cannot ever get it scheduled back
11436 	 * in.
11437 	 */
11438 	raw_spin_lock_irq(&child_ctx->lock);
11439 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11440 
11441 	/*
11442 	 * Now that the context is inactive, destroy the task <-> ctx relation
11443 	 * and mark the context dead.
11444 	 */
11445 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11446 	put_ctx(child_ctx); /* cannot be last */
11447 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11448 	put_task_struct(current); /* cannot be last */
11449 
11450 	clone_ctx = unclone_ctx(child_ctx);
11451 	raw_spin_unlock_irq(&child_ctx->lock);
11452 
11453 	if (clone_ctx)
11454 		put_ctx(clone_ctx);
11455 
11456 	/*
11457 	 * Report the task dead after unscheduling the events so that we
11458 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11459 	 * get a few PERF_RECORD_READ events.
11460 	 */
11461 	perf_event_task(child, child_ctx, 0);
11462 
11463 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11464 		perf_event_exit_event(child_event, child_ctx, child);
11465 
11466 	mutex_unlock(&child_ctx->mutex);
11467 
11468 	put_ctx(child_ctx);
11469 }
11470 
11471 /*
11472  * When a child task exits, feed back event values to parent events.
11473  *
11474  * Can be called with cred_guard_mutex held when called from
11475  * install_exec_creds().
11476  */
11477 void perf_event_exit_task(struct task_struct *child)
11478 {
11479 	struct perf_event *event, *tmp;
11480 	int ctxn;
11481 
11482 	mutex_lock(&child->perf_event_mutex);
11483 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11484 				 owner_entry) {
11485 		list_del_init(&event->owner_entry);
11486 
11487 		/*
11488 		 * Ensure the list deletion is visible before we clear
11489 		 * the owner, closes a race against perf_release() where
11490 		 * we need to serialize on the owner->perf_event_mutex.
11491 		 */
11492 		smp_store_release(&event->owner, NULL);
11493 	}
11494 	mutex_unlock(&child->perf_event_mutex);
11495 
11496 	for_each_task_context_nr(ctxn)
11497 		perf_event_exit_task_context(child, ctxn);
11498 
11499 	/*
11500 	 * The perf_event_exit_task_context calls perf_event_task
11501 	 * with child's task_ctx, which generates EXIT events for
11502 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11503 	 * At this point we need to send EXIT events to cpu contexts.
11504 	 */
11505 	perf_event_task(child, NULL, 0);
11506 }
11507 
11508 static void perf_free_event(struct perf_event *event,
11509 			    struct perf_event_context *ctx)
11510 {
11511 	struct perf_event *parent = event->parent;
11512 
11513 	if (WARN_ON_ONCE(!parent))
11514 		return;
11515 
11516 	mutex_lock(&parent->child_mutex);
11517 	list_del_init(&event->child_list);
11518 	mutex_unlock(&parent->child_mutex);
11519 
11520 	put_event(parent);
11521 
11522 	raw_spin_lock_irq(&ctx->lock);
11523 	perf_group_detach(event);
11524 	list_del_event(event, ctx);
11525 	raw_spin_unlock_irq(&ctx->lock);
11526 	free_event(event);
11527 }
11528 
11529 /*
11530  * Free an unexposed, unused context as created by inheritance by
11531  * perf_event_init_task below, used by fork() in case of fail.
11532  *
11533  * Not all locks are strictly required, but take them anyway to be nice and
11534  * help out with the lockdep assertions.
11535  */
11536 void perf_event_free_task(struct task_struct *task)
11537 {
11538 	struct perf_event_context *ctx;
11539 	struct perf_event *event, *tmp;
11540 	int ctxn;
11541 
11542 	for_each_task_context_nr(ctxn) {
11543 		ctx = task->perf_event_ctxp[ctxn];
11544 		if (!ctx)
11545 			continue;
11546 
11547 		mutex_lock(&ctx->mutex);
11548 		raw_spin_lock_irq(&ctx->lock);
11549 		/*
11550 		 * Destroy the task <-> ctx relation and mark the context dead.
11551 		 *
11552 		 * This is important because even though the task hasn't been
11553 		 * exposed yet the context has been (through child_list).
11554 		 */
11555 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11556 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11557 		put_task_struct(task); /* cannot be last */
11558 		raw_spin_unlock_irq(&ctx->lock);
11559 
11560 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11561 			perf_free_event(event, ctx);
11562 
11563 		mutex_unlock(&ctx->mutex);
11564 		put_ctx(ctx);
11565 	}
11566 }
11567 
11568 void perf_event_delayed_put(struct task_struct *task)
11569 {
11570 	int ctxn;
11571 
11572 	for_each_task_context_nr(ctxn)
11573 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11574 }
11575 
11576 struct file *perf_event_get(unsigned int fd)
11577 {
11578 	struct file *file;
11579 
11580 	file = fget_raw(fd);
11581 	if (!file)
11582 		return ERR_PTR(-EBADF);
11583 
11584 	if (file->f_op != &perf_fops) {
11585 		fput(file);
11586 		return ERR_PTR(-EBADF);
11587 	}
11588 
11589 	return file;
11590 }
11591 
11592 const struct perf_event *perf_get_event(struct file *file)
11593 {
11594 	if (file->f_op != &perf_fops)
11595 		return ERR_PTR(-EINVAL);
11596 
11597 	return file->private_data;
11598 }
11599 
11600 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11601 {
11602 	if (!event)
11603 		return ERR_PTR(-EINVAL);
11604 
11605 	return &event->attr;
11606 }
11607 
11608 /*
11609  * Inherit an event from parent task to child task.
11610  *
11611  * Returns:
11612  *  - valid pointer on success
11613  *  - NULL for orphaned events
11614  *  - IS_ERR() on error
11615  */
11616 static struct perf_event *
11617 inherit_event(struct perf_event *parent_event,
11618 	      struct task_struct *parent,
11619 	      struct perf_event_context *parent_ctx,
11620 	      struct task_struct *child,
11621 	      struct perf_event *group_leader,
11622 	      struct perf_event_context *child_ctx)
11623 {
11624 	enum perf_event_state parent_state = parent_event->state;
11625 	struct perf_event *child_event;
11626 	unsigned long flags;
11627 
11628 	/*
11629 	 * Instead of creating recursive hierarchies of events,
11630 	 * we link inherited events back to the original parent,
11631 	 * which has a filp for sure, which we use as the reference
11632 	 * count:
11633 	 */
11634 	if (parent_event->parent)
11635 		parent_event = parent_event->parent;
11636 
11637 	child_event = perf_event_alloc(&parent_event->attr,
11638 					   parent_event->cpu,
11639 					   child,
11640 					   group_leader, parent_event,
11641 					   NULL, NULL, -1);
11642 	if (IS_ERR(child_event))
11643 		return child_event;
11644 
11645 
11646 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11647 	    !child_ctx->task_ctx_data) {
11648 		struct pmu *pmu = child_event->pmu;
11649 
11650 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11651 						   GFP_KERNEL);
11652 		if (!child_ctx->task_ctx_data) {
11653 			free_event(child_event);
11654 			return NULL;
11655 		}
11656 	}
11657 
11658 	/*
11659 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11660 	 * must be under the same lock in order to serialize against
11661 	 * perf_event_release_kernel(), such that either we must observe
11662 	 * is_orphaned_event() or they will observe us on the child_list.
11663 	 */
11664 	mutex_lock(&parent_event->child_mutex);
11665 	if (is_orphaned_event(parent_event) ||
11666 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11667 		mutex_unlock(&parent_event->child_mutex);
11668 		/* task_ctx_data is freed with child_ctx */
11669 		free_event(child_event);
11670 		return NULL;
11671 	}
11672 
11673 	get_ctx(child_ctx);
11674 
11675 	/*
11676 	 * Make the child state follow the state of the parent event,
11677 	 * not its attr.disabled bit.  We hold the parent's mutex,
11678 	 * so we won't race with perf_event_{en, dis}able_family.
11679 	 */
11680 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11681 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11682 	else
11683 		child_event->state = PERF_EVENT_STATE_OFF;
11684 
11685 	if (parent_event->attr.freq) {
11686 		u64 sample_period = parent_event->hw.sample_period;
11687 		struct hw_perf_event *hwc = &child_event->hw;
11688 
11689 		hwc->sample_period = sample_period;
11690 		hwc->last_period   = sample_period;
11691 
11692 		local64_set(&hwc->period_left, sample_period);
11693 	}
11694 
11695 	child_event->ctx = child_ctx;
11696 	child_event->overflow_handler = parent_event->overflow_handler;
11697 	child_event->overflow_handler_context
11698 		= parent_event->overflow_handler_context;
11699 
11700 	/*
11701 	 * Precalculate sample_data sizes
11702 	 */
11703 	perf_event__header_size(child_event);
11704 	perf_event__id_header_size(child_event);
11705 
11706 	/*
11707 	 * Link it up in the child's context:
11708 	 */
11709 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11710 	add_event_to_ctx(child_event, child_ctx);
11711 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11712 
11713 	/*
11714 	 * Link this into the parent event's child list
11715 	 */
11716 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11717 	mutex_unlock(&parent_event->child_mutex);
11718 
11719 	return child_event;
11720 }
11721 
11722 /*
11723  * Inherits an event group.
11724  *
11725  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11726  * This matches with perf_event_release_kernel() removing all child events.
11727  *
11728  * Returns:
11729  *  - 0 on success
11730  *  - <0 on error
11731  */
11732 static int inherit_group(struct perf_event *parent_event,
11733 	      struct task_struct *parent,
11734 	      struct perf_event_context *parent_ctx,
11735 	      struct task_struct *child,
11736 	      struct perf_event_context *child_ctx)
11737 {
11738 	struct perf_event *leader;
11739 	struct perf_event *sub;
11740 	struct perf_event *child_ctr;
11741 
11742 	leader = inherit_event(parent_event, parent, parent_ctx,
11743 				 child, NULL, child_ctx);
11744 	if (IS_ERR(leader))
11745 		return PTR_ERR(leader);
11746 	/*
11747 	 * @leader can be NULL here because of is_orphaned_event(). In this
11748 	 * case inherit_event() will create individual events, similar to what
11749 	 * perf_group_detach() would do anyway.
11750 	 */
11751 	for_each_sibling_event(sub, parent_event) {
11752 		child_ctr = inherit_event(sub, parent, parent_ctx,
11753 					    child, leader, child_ctx);
11754 		if (IS_ERR(child_ctr))
11755 			return PTR_ERR(child_ctr);
11756 	}
11757 	return 0;
11758 }
11759 
11760 /*
11761  * Creates the child task context and tries to inherit the event-group.
11762  *
11763  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11764  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11765  * consistent with perf_event_release_kernel() removing all child events.
11766  *
11767  * Returns:
11768  *  - 0 on success
11769  *  - <0 on error
11770  */
11771 static int
11772 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11773 		   struct perf_event_context *parent_ctx,
11774 		   struct task_struct *child, int ctxn,
11775 		   int *inherited_all)
11776 {
11777 	int ret;
11778 	struct perf_event_context *child_ctx;
11779 
11780 	if (!event->attr.inherit) {
11781 		*inherited_all = 0;
11782 		return 0;
11783 	}
11784 
11785 	child_ctx = child->perf_event_ctxp[ctxn];
11786 	if (!child_ctx) {
11787 		/*
11788 		 * This is executed from the parent task context, so
11789 		 * inherit events that have been marked for cloning.
11790 		 * First allocate and initialize a context for the
11791 		 * child.
11792 		 */
11793 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11794 		if (!child_ctx)
11795 			return -ENOMEM;
11796 
11797 		child->perf_event_ctxp[ctxn] = child_ctx;
11798 	}
11799 
11800 	ret = inherit_group(event, parent, parent_ctx,
11801 			    child, child_ctx);
11802 
11803 	if (ret)
11804 		*inherited_all = 0;
11805 
11806 	return ret;
11807 }
11808 
11809 /*
11810  * Initialize the perf_event context in task_struct
11811  */
11812 static int perf_event_init_context(struct task_struct *child, int ctxn)
11813 {
11814 	struct perf_event_context *child_ctx, *parent_ctx;
11815 	struct perf_event_context *cloned_ctx;
11816 	struct perf_event *event;
11817 	struct task_struct *parent = current;
11818 	int inherited_all = 1;
11819 	unsigned long flags;
11820 	int ret = 0;
11821 
11822 	if (likely(!parent->perf_event_ctxp[ctxn]))
11823 		return 0;
11824 
11825 	/*
11826 	 * If the parent's context is a clone, pin it so it won't get
11827 	 * swapped under us.
11828 	 */
11829 	parent_ctx = perf_pin_task_context(parent, ctxn);
11830 	if (!parent_ctx)
11831 		return 0;
11832 
11833 	/*
11834 	 * No need to check if parent_ctx != NULL here; since we saw
11835 	 * it non-NULL earlier, the only reason for it to become NULL
11836 	 * is if we exit, and since we're currently in the middle of
11837 	 * a fork we can't be exiting at the same time.
11838 	 */
11839 
11840 	/*
11841 	 * Lock the parent list. No need to lock the child - not PID
11842 	 * hashed yet and not running, so nobody can access it.
11843 	 */
11844 	mutex_lock(&parent_ctx->mutex);
11845 
11846 	/*
11847 	 * We dont have to disable NMIs - we are only looking at
11848 	 * the list, not manipulating it:
11849 	 */
11850 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11851 		ret = inherit_task_group(event, parent, parent_ctx,
11852 					 child, ctxn, &inherited_all);
11853 		if (ret)
11854 			goto out_unlock;
11855 	}
11856 
11857 	/*
11858 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11859 	 * to allocations, but we need to prevent rotation because
11860 	 * rotate_ctx() will change the list from interrupt context.
11861 	 */
11862 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11863 	parent_ctx->rotate_disable = 1;
11864 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11865 
11866 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11867 		ret = inherit_task_group(event, parent, parent_ctx,
11868 					 child, ctxn, &inherited_all);
11869 		if (ret)
11870 			goto out_unlock;
11871 	}
11872 
11873 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11874 	parent_ctx->rotate_disable = 0;
11875 
11876 	child_ctx = child->perf_event_ctxp[ctxn];
11877 
11878 	if (child_ctx && inherited_all) {
11879 		/*
11880 		 * Mark the child context as a clone of the parent
11881 		 * context, or of whatever the parent is a clone of.
11882 		 *
11883 		 * Note that if the parent is a clone, the holding of
11884 		 * parent_ctx->lock avoids it from being uncloned.
11885 		 */
11886 		cloned_ctx = parent_ctx->parent_ctx;
11887 		if (cloned_ctx) {
11888 			child_ctx->parent_ctx = cloned_ctx;
11889 			child_ctx->parent_gen = parent_ctx->parent_gen;
11890 		} else {
11891 			child_ctx->parent_ctx = parent_ctx;
11892 			child_ctx->parent_gen = parent_ctx->generation;
11893 		}
11894 		get_ctx(child_ctx->parent_ctx);
11895 	}
11896 
11897 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11898 out_unlock:
11899 	mutex_unlock(&parent_ctx->mutex);
11900 
11901 	perf_unpin_context(parent_ctx);
11902 	put_ctx(parent_ctx);
11903 
11904 	return ret;
11905 }
11906 
11907 /*
11908  * Initialize the perf_event context in task_struct
11909  */
11910 int perf_event_init_task(struct task_struct *child)
11911 {
11912 	int ctxn, ret;
11913 
11914 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11915 	mutex_init(&child->perf_event_mutex);
11916 	INIT_LIST_HEAD(&child->perf_event_list);
11917 
11918 	for_each_task_context_nr(ctxn) {
11919 		ret = perf_event_init_context(child, ctxn);
11920 		if (ret) {
11921 			perf_event_free_task(child);
11922 			return ret;
11923 		}
11924 	}
11925 
11926 	return 0;
11927 }
11928 
11929 static void __init perf_event_init_all_cpus(void)
11930 {
11931 	struct swevent_htable *swhash;
11932 	int cpu;
11933 
11934 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11935 
11936 	for_each_possible_cpu(cpu) {
11937 		swhash = &per_cpu(swevent_htable, cpu);
11938 		mutex_init(&swhash->hlist_mutex);
11939 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11940 
11941 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11942 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11943 
11944 #ifdef CONFIG_CGROUP_PERF
11945 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11946 #endif
11947 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11948 	}
11949 }
11950 
11951 static void perf_swevent_init_cpu(unsigned int cpu)
11952 {
11953 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11954 
11955 	mutex_lock(&swhash->hlist_mutex);
11956 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11957 		struct swevent_hlist *hlist;
11958 
11959 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11960 		WARN_ON(!hlist);
11961 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11962 	}
11963 	mutex_unlock(&swhash->hlist_mutex);
11964 }
11965 
11966 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11967 static void __perf_event_exit_context(void *__info)
11968 {
11969 	struct perf_event_context *ctx = __info;
11970 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11971 	struct perf_event *event;
11972 
11973 	raw_spin_lock(&ctx->lock);
11974 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11975 	list_for_each_entry(event, &ctx->event_list, event_entry)
11976 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11977 	raw_spin_unlock(&ctx->lock);
11978 }
11979 
11980 static void perf_event_exit_cpu_context(int cpu)
11981 {
11982 	struct perf_cpu_context *cpuctx;
11983 	struct perf_event_context *ctx;
11984 	struct pmu *pmu;
11985 
11986 	mutex_lock(&pmus_lock);
11987 	list_for_each_entry(pmu, &pmus, entry) {
11988 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11989 		ctx = &cpuctx->ctx;
11990 
11991 		mutex_lock(&ctx->mutex);
11992 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11993 		cpuctx->online = 0;
11994 		mutex_unlock(&ctx->mutex);
11995 	}
11996 	cpumask_clear_cpu(cpu, perf_online_mask);
11997 	mutex_unlock(&pmus_lock);
11998 }
11999 #else
12000 
12001 static void perf_event_exit_cpu_context(int cpu) { }
12002 
12003 #endif
12004 
12005 int perf_event_init_cpu(unsigned int cpu)
12006 {
12007 	struct perf_cpu_context *cpuctx;
12008 	struct perf_event_context *ctx;
12009 	struct pmu *pmu;
12010 
12011 	perf_swevent_init_cpu(cpu);
12012 
12013 	mutex_lock(&pmus_lock);
12014 	cpumask_set_cpu(cpu, perf_online_mask);
12015 	list_for_each_entry(pmu, &pmus, entry) {
12016 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12017 		ctx = &cpuctx->ctx;
12018 
12019 		mutex_lock(&ctx->mutex);
12020 		cpuctx->online = 1;
12021 		mutex_unlock(&ctx->mutex);
12022 	}
12023 	mutex_unlock(&pmus_lock);
12024 
12025 	return 0;
12026 }
12027 
12028 int perf_event_exit_cpu(unsigned int cpu)
12029 {
12030 	perf_event_exit_cpu_context(cpu);
12031 	return 0;
12032 }
12033 
12034 static int
12035 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12036 {
12037 	int cpu;
12038 
12039 	for_each_online_cpu(cpu)
12040 		perf_event_exit_cpu(cpu);
12041 
12042 	return NOTIFY_OK;
12043 }
12044 
12045 /*
12046  * Run the perf reboot notifier at the very last possible moment so that
12047  * the generic watchdog code runs as long as possible.
12048  */
12049 static struct notifier_block perf_reboot_notifier = {
12050 	.notifier_call = perf_reboot,
12051 	.priority = INT_MIN,
12052 };
12053 
12054 void __init perf_event_init(void)
12055 {
12056 	int ret;
12057 
12058 	idr_init(&pmu_idr);
12059 
12060 	perf_event_init_all_cpus();
12061 	init_srcu_struct(&pmus_srcu);
12062 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12063 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12064 	perf_pmu_register(&perf_task_clock, NULL, -1);
12065 	perf_tp_register();
12066 	perf_event_init_cpu(smp_processor_id());
12067 	register_reboot_notifier(&perf_reboot_notifier);
12068 
12069 	ret = init_hw_breakpoint();
12070 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12071 
12072 	/*
12073 	 * Build time assertion that we keep the data_head at the intended
12074 	 * location.  IOW, validation we got the __reserved[] size right.
12075 	 */
12076 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12077 		     != 1024);
12078 }
12079 
12080 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12081 			      char *page)
12082 {
12083 	struct perf_pmu_events_attr *pmu_attr =
12084 		container_of(attr, struct perf_pmu_events_attr, attr);
12085 
12086 	if (pmu_attr->event_str)
12087 		return sprintf(page, "%s\n", pmu_attr->event_str);
12088 
12089 	return 0;
12090 }
12091 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12092 
12093 static int __init perf_event_sysfs_init(void)
12094 {
12095 	struct pmu *pmu;
12096 	int ret;
12097 
12098 	mutex_lock(&pmus_lock);
12099 
12100 	ret = bus_register(&pmu_bus);
12101 	if (ret)
12102 		goto unlock;
12103 
12104 	list_for_each_entry(pmu, &pmus, entry) {
12105 		if (!pmu->name || pmu->type < 0)
12106 			continue;
12107 
12108 		ret = pmu_dev_alloc(pmu);
12109 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12110 	}
12111 	pmu_bus_running = 1;
12112 	ret = 0;
12113 
12114 unlock:
12115 	mutex_unlock(&pmus_lock);
12116 
12117 	return ret;
12118 }
12119 device_initcall(perf_event_sysfs_init);
12120 
12121 #ifdef CONFIG_CGROUP_PERF
12122 static struct cgroup_subsys_state *
12123 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12124 {
12125 	struct perf_cgroup *jc;
12126 
12127 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12128 	if (!jc)
12129 		return ERR_PTR(-ENOMEM);
12130 
12131 	jc->info = alloc_percpu(struct perf_cgroup_info);
12132 	if (!jc->info) {
12133 		kfree(jc);
12134 		return ERR_PTR(-ENOMEM);
12135 	}
12136 
12137 	return &jc->css;
12138 }
12139 
12140 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12141 {
12142 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12143 
12144 	free_percpu(jc->info);
12145 	kfree(jc);
12146 }
12147 
12148 static int __perf_cgroup_move(void *info)
12149 {
12150 	struct task_struct *task = info;
12151 	rcu_read_lock();
12152 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12153 	rcu_read_unlock();
12154 	return 0;
12155 }
12156 
12157 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12158 {
12159 	struct task_struct *task;
12160 	struct cgroup_subsys_state *css;
12161 
12162 	cgroup_taskset_for_each(task, css, tset)
12163 		task_function_call(task, __perf_cgroup_move, task);
12164 }
12165 
12166 struct cgroup_subsys perf_event_cgrp_subsys = {
12167 	.css_alloc	= perf_cgroup_css_alloc,
12168 	.css_free	= perf_cgroup_css_free,
12169 	.attach		= perf_cgroup_attach,
12170 	/*
12171 	 * Implicitly enable on dfl hierarchy so that perf events can
12172 	 * always be filtered by cgroup2 path as long as perf_event
12173 	 * controller is not mounted on a legacy hierarchy.
12174 	 */
12175 	.implicit_on_dfl = true,
12176 	.threaded	= true,
12177 };
12178 #endif /* CONFIG_CGROUP_PERF */
12179