xref: /linux/kernel/events/core.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 
467 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469 
470 static int perf_sample_allowed_ns __read_mostly =
471 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472 
473 static void update_perf_cpu_limits(void)
474 {
475 	u64 tmp = perf_sample_period_ns;
476 
477 	tmp *= sysctl_perf_cpu_time_max_percent;
478 	tmp = div_u64(tmp, 100);
479 	if (!tmp)
480 		tmp = 1;
481 
482 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484 
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486 
487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 				       void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 	/*
493 	 * If throttling is disabled don't allow the write:
494 	 */
495 	if (write && (perf_cpu == 100 || perf_cpu == 0))
496 		return -EINVAL;
497 
498 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 	if (ret || !write)
500 		return ret;
501 
502 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 	update_perf_cpu_limits();
505 
506 	return 0;
507 }
508 
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510 
511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539 
540 static u64 __report_avg;
541 static u64 __report_allowed;
542 
543 static void perf_duration_warn(struct irq_work *w)
544 {
545 	printk_ratelimited(KERN_INFO
546 		"perf: interrupt took too long (%lld > %lld), lowering "
547 		"kernel.perf_event_max_sample_rate to %d\n",
548 		__report_avg, __report_allowed,
549 		sysctl_perf_event_sample_rate);
550 }
551 
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553 
554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 	u64 running_len;
558 	u64 avg_len;
559 	u32 max;
560 
561 	if (max_len == 0)
562 		return;
563 
564 	/* Decay the counter by 1 average sample. */
565 	running_len = __this_cpu_read(running_sample_length);
566 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 	running_len += sample_len_ns;
568 	__this_cpu_write(running_sample_length, running_len);
569 
570 	/*
571 	 * Note: this will be biased artificially low until we have
572 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 	 * from having to maintain a count.
574 	 */
575 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 	if (avg_len <= max_len)
577 		return;
578 
579 	__report_avg = avg_len;
580 	__report_allowed = max_len;
581 
582 	/*
583 	 * Compute a throttle threshold 25% below the current duration.
584 	 */
585 	avg_len += avg_len / 4;
586 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 	if (avg_len < max)
588 		max /= (u32)avg_len;
589 	else
590 		max = 1;
591 
592 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 	WRITE_ONCE(max_samples_per_tick, max);
594 
595 	sysctl_perf_event_sample_rate = max * HZ;
596 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597 
598 	if (!irq_work_queue(&perf_duration_work)) {
599 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 			     "kernel.perf_event_max_sample_rate to %d\n",
601 			     __report_avg, __report_allowed,
602 			     sysctl_perf_event_sample_rate);
603 	}
604 }
605 
606 static atomic64_t perf_event_id;
607 
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610 
611 void __weak perf_event_print_debug(void)	{ }
612 
613 static inline u64 perf_clock(void)
614 {
615 	return local_clock();
616 }
617 
618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 	return event->clock();
621 }
622 
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644 
645 static __always_inline enum perf_event_state
646 __perf_effective_state(struct perf_event *event)
647 {
648 	struct perf_event *leader = event->group_leader;
649 
650 	if (leader->state <= PERF_EVENT_STATE_OFF)
651 		return leader->state;
652 
653 	return event->state;
654 }
655 
656 static __always_inline void
657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 	enum perf_event_state state = __perf_effective_state(event);
660 	u64 delta = now - event->tstamp;
661 
662 	*enabled = event->total_time_enabled;
663 	if (state >= PERF_EVENT_STATE_INACTIVE)
664 		*enabled += delta;
665 
666 	*running = event->total_time_running;
667 	if (state >= PERF_EVENT_STATE_ACTIVE)
668 		*running += delta;
669 }
670 
671 static void perf_event_update_time(struct perf_event *event)
672 {
673 	u64 now = perf_event_time(event);
674 
675 	__perf_update_times(event, now, &event->total_time_enabled,
676 					&event->total_time_running);
677 	event->tstamp = now;
678 }
679 
680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 	struct perf_event *sibling;
683 
684 	for_each_sibling_event(sibling, leader)
685 		perf_event_update_time(sibling);
686 }
687 
688 static void
689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 	if (event->state == state)
692 		return;
693 
694 	perf_event_update_time(event);
695 	/*
696 	 * If a group leader gets enabled/disabled all its siblings
697 	 * are affected too.
698 	 */
699 	if ((event->state < 0) ^ (state < 0))
700 		perf_event_update_sibling_time(event);
701 
702 	WRITE_ONCE(event->state, state);
703 }
704 
705 /*
706  * UP store-release, load-acquire
707  */
708 
709 #define __store_release(ptr, val)					\
710 do {									\
711 	barrier();							\
712 	WRITE_ONCE(*(ptr), (val));					\
713 } while (0)
714 
715 #define __load_acquire(ptr)						\
716 ({									\
717 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718 	barrier();							\
719 	___p;								\
720 })
721 
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 		if (_cgroup && !_epc->nr_cgroups)			\
725 			continue;					\
726 		else if (_pmu && _epc->pmu != _pmu)			\
727 			continue;					\
728 		else
729 
730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 	struct perf_event_pmu_context *pmu_ctx;
733 
734 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 		perf_pmu_disable(pmu_ctx->pmu);
736 }
737 
738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 	struct perf_event_pmu_context *pmu_ctx;
741 
742 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 		perf_pmu_enable(pmu_ctx->pmu);
744 }
745 
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748 
749 #ifdef CONFIG_CGROUP_PERF
750 
751 static inline bool
752 perf_cgroup_match(struct perf_event *event)
753 {
754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755 
756 	/* @event doesn't care about cgroup */
757 	if (!event->cgrp)
758 		return true;
759 
760 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761 	if (!cpuctx->cgrp)
762 		return false;
763 
764 	/*
765 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766 	 * also enabled for all its descendant cgroups.  If @cpuctx's
767 	 * cgroup is a descendant of @event's (the test covers identity
768 	 * case), it's a match.
769 	 */
770 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 				    event->cgrp->css.cgroup);
772 }
773 
774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 	css_put(&event->cgrp->css);
777 	event->cgrp = NULL;
778 }
779 
780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 	return event->cgrp != NULL;
783 }
784 
785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 	struct perf_cgroup_info *t;
788 
789 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 	return t->time;
791 }
792 
793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 	struct perf_cgroup_info *t;
796 
797 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 	if (!__load_acquire(&t->active))
799 		return t->time;
800 	now += READ_ONCE(t->timeoffset);
801 	return now;
802 }
803 
804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 	if (adv)
807 		info->time += now - info->timestamp;
808 	info->timestamp = now;
809 	/*
810 	 * see update_context_time()
811 	 */
812 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814 
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 	struct perf_cgroup *cgrp = cpuctx->cgrp;
818 	struct cgroup_subsys_state *css;
819 	struct perf_cgroup_info *info;
820 
821 	if (cgrp) {
822 		u64 now = perf_clock();
823 
824 		for (css = &cgrp->css; css; css = css->parent) {
825 			cgrp = container_of(css, struct perf_cgroup, css);
826 			info = this_cpu_ptr(cgrp->info);
827 
828 			__update_cgrp_time(info, now, true);
829 			if (final)
830 				__store_release(&info->active, 0);
831 		}
832 	}
833 }
834 
835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 	struct perf_cgroup_info *info;
838 
839 	/*
840 	 * ensure we access cgroup data only when needed and
841 	 * when we know the cgroup is pinned (css_get)
842 	 */
843 	if (!is_cgroup_event(event))
844 		return;
845 
846 	info = this_cpu_ptr(event->cgrp->info);
847 	/*
848 	 * Do not update time when cgroup is not active
849 	 */
850 	if (info->active)
851 		__update_cgrp_time(info, perf_clock(), true);
852 }
853 
854 static inline void
855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 	struct perf_event_context *ctx = &cpuctx->ctx;
858 	struct perf_cgroup *cgrp = cpuctx->cgrp;
859 	struct perf_cgroup_info *info;
860 	struct cgroup_subsys_state *css;
861 
862 	/*
863 	 * ctx->lock held by caller
864 	 * ensure we do not access cgroup data
865 	 * unless we have the cgroup pinned (css_get)
866 	 */
867 	if (!cgrp)
868 		return;
869 
870 	WARN_ON_ONCE(!ctx->nr_cgroups);
871 
872 	for (css = &cgrp->css; css; css = css->parent) {
873 		cgrp = container_of(css, struct perf_cgroup, css);
874 		info = this_cpu_ptr(cgrp->info);
875 		__update_cgrp_time(info, ctx->timestamp, false);
876 		__store_release(&info->active, 1);
877 	}
878 }
879 
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 	struct perf_cgroup *cgrp;
887 
888 	/*
889 	 * cpuctx->cgrp is set when the first cgroup event enabled,
890 	 * and is cleared when the last cgroup event disabled.
891 	 */
892 	if (READ_ONCE(cpuctx->cgrp) == NULL)
893 		return;
894 
895 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896 
897 	cgrp = perf_cgroup_from_task(task, NULL);
898 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 		return;
900 
901 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 	perf_ctx_disable(&cpuctx->ctx, true);
903 
904 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 	/*
906 	 * must not be done before ctxswout due
907 	 * to update_cgrp_time_from_cpuctx() in
908 	 * ctx_sched_out()
909 	 */
910 	cpuctx->cgrp = cgrp;
911 	/*
912 	 * set cgrp before ctxsw in to allow
913 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 	 * to not have to pass task around
915 	 */
916 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917 
918 	perf_ctx_enable(&cpuctx->ctx, true);
919 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921 
922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 				struct cgroup_subsys_state *css)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	struct perf_event **storage;
927 	int cpu, heap_size, ret = 0;
928 
929 	/*
930 	 * Allow storage to have sufficient space for an iterator for each
931 	 * possibly nested cgroup plus an iterator for events with no cgroup.
932 	 */
933 	for (heap_size = 1; css; css = css->parent)
934 		heap_size++;
935 
936 	for_each_possible_cpu(cpu) {
937 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 		if (heap_size <= cpuctx->heap_size)
939 			continue;
940 
941 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 				       GFP_KERNEL, cpu_to_node(cpu));
943 		if (!storage) {
944 			ret = -ENOMEM;
945 			break;
946 		}
947 
948 		raw_spin_lock_irq(&cpuctx->ctx.lock);
949 		if (cpuctx->heap_size < heap_size) {
950 			swap(cpuctx->heap, storage);
951 			if (storage == cpuctx->heap_default)
952 				storage = NULL;
953 			cpuctx->heap_size = heap_size;
954 		}
955 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956 
957 		kfree(storage);
958 	}
959 
960 	return ret;
961 }
962 
963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 				      struct perf_event_attr *attr,
965 				      struct perf_event *group_leader)
966 {
967 	struct perf_cgroup *cgrp;
968 	struct cgroup_subsys_state *css;
969 	CLASS(fd, f)(fd);
970 	int ret = 0;
971 
972 	if (fd_empty(f))
973 		return -EBADF;
974 
975 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 					 &perf_event_cgrp_subsys);
977 	if (IS_ERR(css))
978 		return PTR_ERR(css);
979 
980 	ret = perf_cgroup_ensure_storage(event, css);
981 	if (ret)
982 		return ret;
983 
984 	cgrp = container_of(css, struct perf_cgroup, css);
985 	event->cgrp = cgrp;
986 
987 	/*
988 	 * all events in a group must monitor
989 	 * the same cgroup because a task belongs
990 	 * to only one perf cgroup at a time
991 	 */
992 	if (group_leader && group_leader->cgrp != cgrp) {
993 		perf_detach_cgroup(event);
994 		ret = -EINVAL;
995 	}
996 	return ret;
997 }
998 
999 static inline void
1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 
1004 	if (!is_cgroup_event(event))
1005 		return;
1006 
1007 	event->pmu_ctx->nr_cgroups++;
1008 
1009 	/*
1010 	 * Because cgroup events are always per-cpu events,
1011 	 * @ctx == &cpuctx->ctx.
1012 	 */
1013 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014 
1015 	if (ctx->nr_cgroups++)
1016 		return;
1017 
1018 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	event->pmu_ctx->nr_cgroups--;
1030 
1031 	/*
1032 	 * Because cgroup events are always per-cpu events,
1033 	 * @ctx == &cpuctx->ctx.
1034 	 */
1035 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036 
1037 	if (--ctx->nr_cgroups)
1038 		return;
1039 
1040 	cpuctx->cgrp = NULL;
1041 }
1042 
1043 #else /* !CONFIG_CGROUP_PERF */
1044 
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 	return true;
1049 }
1050 
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053 
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062 
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 						bool final)
1065 {
1066 }
1067 
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 				      struct perf_event_attr *attr,
1070 				      struct perf_event *group_leader)
1071 {
1072 	return -EINVAL;
1073 }
1074 
1075 static inline void
1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079 
1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082 	return 0;
1083 }
1084 
1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087 	return 0;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099 
1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104 
1105 /*
1106  * set default to be dependent on timer tick just
1107  * like original code
1108  */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111  * function must be called with interrupts disabled
1112  */
1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115 	struct perf_cpu_pmu_context *cpc;
1116 	bool rotations;
1117 
1118 	lockdep_assert_irqs_disabled();
1119 
1120 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 	rotations = perf_rotate_context(cpc);
1122 
1123 	raw_spin_lock(&cpc->hrtimer_lock);
1124 	if (rotations)
1125 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 	else
1127 		cpc->hrtimer_active = 0;
1128 	raw_spin_unlock(&cpc->hrtimer_lock);
1129 
1130 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132 
1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135 	struct hrtimer *timer = &cpc->hrtimer;
1136 	struct pmu *pmu = cpc->epc.pmu;
1137 	u64 interval;
1138 
1139 	/*
1140 	 * check default is sane, if not set then force to
1141 	 * default interval (1/tick)
1142 	 */
1143 	interval = pmu->hrtimer_interval_ms;
1144 	if (interval < 1)
1145 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146 
1147 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148 
1149 	raw_spin_lock_init(&cpc->hrtimer_lock);
1150 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 	timer->function = perf_mux_hrtimer_handler;
1152 }
1153 
1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156 	struct hrtimer *timer = &cpc->hrtimer;
1157 	unsigned long flags;
1158 
1159 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 	if (!cpc->hrtimer_active) {
1161 		cpc->hrtimer_active = 1;
1162 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164 	}
1165 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166 
1167 	return 0;
1168 }
1169 
1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172 	return perf_mux_hrtimer_restart(arg);
1173 }
1174 
1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 	if (!(*count)++)
1179 		pmu->pmu_disable(pmu);
1180 }
1181 
1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 	if (!--(*count))
1186 		pmu->pmu_enable(pmu);
1187 }
1188 
1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193 
1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196 	refcount_inc(&ctx->refcount);
1197 }
1198 
1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201 	if (pmu->task_ctx_cache)
1202 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203 
1204 	return NULL;
1205 }
1206 
1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209 	if (pmu->task_ctx_cache && task_ctx_data)
1210 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212 
1213 static void free_ctx(struct rcu_head *head)
1214 {
1215 	struct perf_event_context *ctx;
1216 
1217 	ctx = container_of(head, struct perf_event_context, rcu_head);
1218 	kfree(ctx);
1219 }
1220 
1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223 	if (refcount_dec_and_test(&ctx->refcount)) {
1224 		if (ctx->parent_ctx)
1225 			put_ctx(ctx->parent_ctx);
1226 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 			put_task_struct(ctx->task);
1228 		call_rcu(&ctx->rcu_head, free_ctx);
1229 	}
1230 }
1231 
1232 /*
1233  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234  * perf_pmu_migrate_context() we need some magic.
1235  *
1236  * Those places that change perf_event::ctx will hold both
1237  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238  *
1239  * Lock ordering is by mutex address. There are two other sites where
1240  * perf_event_context::mutex nests and those are:
1241  *
1242  *  - perf_event_exit_task_context()	[ child , 0 ]
1243  *      perf_event_exit_event()
1244  *        put_event()			[ parent, 1 ]
1245  *
1246  *  - perf_event_init_context()		[ parent, 0 ]
1247  *      inherit_task_group()
1248  *        inherit_group()
1249  *          inherit_event()
1250  *            perf_event_alloc()
1251  *              perf_init_event()
1252  *                perf_try_init_event()	[ child , 1 ]
1253  *
1254  * While it appears there is an obvious deadlock here -- the parent and child
1255  * nesting levels are inverted between the two. This is in fact safe because
1256  * life-time rules separate them. That is an exiting task cannot fork, and a
1257  * spawning task cannot (yet) exit.
1258  *
1259  * But remember that these are parent<->child context relations, and
1260  * migration does not affect children, therefore these two orderings should not
1261  * interact.
1262  *
1263  * The change in perf_event::ctx does not affect children (as claimed above)
1264  * because the sys_perf_event_open() case will install a new event and break
1265  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266  * concerned with cpuctx and that doesn't have children.
1267  *
1268  * The places that change perf_event::ctx will issue:
1269  *
1270  *   perf_remove_from_context();
1271  *   synchronize_rcu();
1272  *   perf_install_in_context();
1273  *
1274  * to affect the change. The remove_from_context() + synchronize_rcu() should
1275  * quiesce the event, after which we can install it in the new location. This
1276  * means that only external vectors (perf_fops, prctl) can perturb the event
1277  * while in transit. Therefore all such accessors should also acquire
1278  * perf_event_context::mutex to serialize against this.
1279  *
1280  * However; because event->ctx can change while we're waiting to acquire
1281  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282  * function.
1283  *
1284  * Lock order:
1285  *    exec_update_lock
1286  *	task_struct::perf_event_mutex
1287  *	  perf_event_context::mutex
1288  *	    perf_event::child_mutex;
1289  *	      perf_event_context::lock
1290  *	    mmap_lock
1291  *	      perf_event::mmap_mutex
1292  *	        perf_buffer::aux_mutex
1293  *	      perf_addr_filters_head::lock
1294  *
1295  *    cpu_hotplug_lock
1296  *      pmus_lock
1297  *	  cpuctx->mutex / perf_event_context::mutex
1298  */
1299 static struct perf_event_context *
1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 again:
1305 	rcu_read_lock();
1306 	ctx = READ_ONCE(event->ctx);
1307 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 		rcu_read_unlock();
1309 		goto again;
1310 	}
1311 	rcu_read_unlock();
1312 
1313 	mutex_lock_nested(&ctx->mutex, nesting);
1314 	if (event->ctx != ctx) {
1315 		mutex_unlock(&ctx->mutex);
1316 		put_ctx(ctx);
1317 		goto again;
1318 	}
1319 
1320 	return ctx;
1321 }
1322 
1323 static inline struct perf_event_context *
1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326 	return perf_event_ctx_lock_nested(event, 0);
1327 }
1328 
1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 				  struct perf_event_context *ctx)
1331 {
1332 	mutex_unlock(&ctx->mutex);
1333 	put_ctx(ctx);
1334 }
1335 
1336 /*
1337  * This must be done under the ctx->lock, such as to serialize against
1338  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339  * calling scheduler related locks and ctx->lock nests inside those.
1340  */
1341 static __must_check struct perf_event_context *
1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345 
1346 	lockdep_assert_held(&ctx->lock);
1347 
1348 	if (parent_ctx)
1349 		ctx->parent_ctx = NULL;
1350 	ctx->generation++;
1351 
1352 	return parent_ctx;
1353 }
1354 
1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 				enum pid_type type)
1357 {
1358 	u32 nr;
1359 	/*
1360 	 * only top level events have the pid namespace they were created in
1361 	 */
1362 	if (event->parent)
1363 		event = event->parent;
1364 
1365 	nr = __task_pid_nr_ns(p, type, event->ns);
1366 	/* avoid -1 if it is idle thread or runs in another ns */
1367 	if (!nr && !pid_alive(p))
1368 		nr = -1;
1369 	return nr;
1370 }
1371 
1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376 
1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381 
1382 /*
1383  * If we inherit events we want to return the parent event id
1384  * to userspace.
1385  */
1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388 	u64 id = event->id;
1389 
1390 	if (event->parent)
1391 		id = event->parent->id;
1392 
1393 	return id;
1394 }
1395 
1396 /*
1397  * Get the perf_event_context for a task and lock it.
1398  *
1399  * This has to cope with the fact that until it is locked,
1400  * the context could get moved to another task.
1401  */
1402 static struct perf_event_context *
1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405 	struct perf_event_context *ctx;
1406 
1407 retry:
1408 	/*
1409 	 * One of the few rules of preemptible RCU is that one cannot do
1410 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 	 * part of the read side critical section was irqs-enabled -- see
1412 	 * rcu_read_unlock_special().
1413 	 *
1414 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 	 * side critical section has interrupts disabled.
1416 	 */
1417 	local_irq_save(*flags);
1418 	rcu_read_lock();
1419 	ctx = rcu_dereference(task->perf_event_ctxp);
1420 	if (ctx) {
1421 		/*
1422 		 * If this context is a clone of another, it might
1423 		 * get swapped for another underneath us by
1424 		 * perf_event_task_sched_out, though the
1425 		 * rcu_read_lock() protects us from any context
1426 		 * getting freed.  Lock the context and check if it
1427 		 * got swapped before we could get the lock, and retry
1428 		 * if so.  If we locked the right context, then it
1429 		 * can't get swapped on us any more.
1430 		 */
1431 		raw_spin_lock(&ctx->lock);
1432 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 			raw_spin_unlock(&ctx->lock);
1434 			rcu_read_unlock();
1435 			local_irq_restore(*flags);
1436 			goto retry;
1437 		}
1438 
1439 		if (ctx->task == TASK_TOMBSTONE ||
1440 		    !refcount_inc_not_zero(&ctx->refcount)) {
1441 			raw_spin_unlock(&ctx->lock);
1442 			ctx = NULL;
1443 		} else {
1444 			WARN_ON_ONCE(ctx->task != task);
1445 		}
1446 	}
1447 	rcu_read_unlock();
1448 	if (!ctx)
1449 		local_irq_restore(*flags);
1450 	return ctx;
1451 }
1452 
1453 /*
1454  * Get the context for a task and increment its pin_count so it
1455  * can't get swapped to another task.  This also increments its
1456  * reference count so that the context can't get freed.
1457  */
1458 static struct perf_event_context *
1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461 	struct perf_event_context *ctx;
1462 	unsigned long flags;
1463 
1464 	ctx = perf_lock_task_context(task, &flags);
1465 	if (ctx) {
1466 		++ctx->pin_count;
1467 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468 	}
1469 	return ctx;
1470 }
1471 
1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474 	unsigned long flags;
1475 
1476 	raw_spin_lock_irqsave(&ctx->lock, flags);
1477 	--ctx->pin_count;
1478 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480 
1481 /*
1482  * Update the record of the current time in a context.
1483  */
1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486 	u64 now = perf_clock();
1487 
1488 	lockdep_assert_held(&ctx->lock);
1489 
1490 	if (adv)
1491 		ctx->time += now - ctx->timestamp;
1492 	ctx->timestamp = now;
1493 
1494 	/*
1495 	 * The above: time' = time + (now - timestamp), can be re-arranged
1496 	 * into: time` = now + (time - timestamp), which gives a single value
1497 	 * offset to compute future time without locks on.
1498 	 *
1499 	 * See perf_event_time_now(), which can be used from NMI context where
1500 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 	 * both the above values in a consistent manner.
1502 	 */
1503 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505 
1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508 	__update_context_time(ctx, true);
1509 }
1510 
1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513 	struct perf_event_context *ctx = event->ctx;
1514 
1515 	if (unlikely(!ctx))
1516 		return 0;
1517 
1518 	if (is_cgroup_event(event))
1519 		return perf_cgroup_event_time(event);
1520 
1521 	return ctx->time;
1522 }
1523 
1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526 	struct perf_event_context *ctx = event->ctx;
1527 
1528 	if (unlikely(!ctx))
1529 		return 0;
1530 
1531 	if (is_cgroup_event(event))
1532 		return perf_cgroup_event_time_now(event, now);
1533 
1534 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 		return ctx->time;
1536 
1537 	now += READ_ONCE(ctx->timeoffset);
1538 	return now;
1539 }
1540 
1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543 	struct perf_event_context *ctx = event->ctx;
1544 	enum event_type_t event_type;
1545 
1546 	lockdep_assert_held(&ctx->lock);
1547 
1548 	/*
1549 	 * It's 'group type', really, because if our group leader is
1550 	 * pinned, so are we.
1551 	 */
1552 	if (event->group_leader != event)
1553 		event = event->group_leader;
1554 
1555 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 	if (!ctx->task)
1557 		event_type |= EVENT_CPU;
1558 
1559 	return event_type;
1560 }
1561 
1562 /*
1563  * Helper function to initialize event group nodes.
1564  */
1565 static void init_event_group(struct perf_event *event)
1566 {
1567 	RB_CLEAR_NODE(&event->group_node);
1568 	event->group_index = 0;
1569 }
1570 
1571 /*
1572  * Extract pinned or flexible groups from the context
1573  * based on event attrs bits.
1574  */
1575 static struct perf_event_groups *
1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 	if (event->attr.pinned)
1579 		return &ctx->pinned_groups;
1580 	else
1581 		return &ctx->flexible_groups;
1582 }
1583 
1584 /*
1585  * Helper function to initializes perf_event_group trees.
1586  */
1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589 	groups->tree = RB_ROOT;
1590 	groups->index = 0;
1591 }
1592 
1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595 	struct cgroup *cgroup = NULL;
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	if (event->cgrp)
1599 		cgroup = event->cgrp->css.cgroup;
1600 #endif
1601 
1602 	return cgroup;
1603 }
1604 
1605 /*
1606  * Compare function for event groups;
1607  *
1608  * Implements complex key that first sorts by CPU and then by virtual index
1609  * which provides ordering when rotating groups for the same CPU.
1610  */
1611 static __always_inline int
1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1614 		      const struct perf_event *right)
1615 {
1616 	if (left_cpu < right->cpu)
1617 		return -1;
1618 	if (left_cpu > right->cpu)
1619 		return 1;
1620 
1621 	if (left_pmu) {
1622 		if (left_pmu < right->pmu_ctx->pmu)
1623 			return -1;
1624 		if (left_pmu > right->pmu_ctx->pmu)
1625 			return 1;
1626 	}
1627 
1628 #ifdef CONFIG_CGROUP_PERF
1629 	{
1630 		const struct cgroup *right_cgroup = event_cgroup(right);
1631 
1632 		if (left_cgroup != right_cgroup) {
1633 			if (!left_cgroup) {
1634 				/*
1635 				 * Left has no cgroup but right does, no
1636 				 * cgroups come first.
1637 				 */
1638 				return -1;
1639 			}
1640 			if (!right_cgroup) {
1641 				/*
1642 				 * Right has no cgroup but left does, no
1643 				 * cgroups come first.
1644 				 */
1645 				return 1;
1646 			}
1647 			/* Two dissimilar cgroups, order by id. */
1648 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 				return -1;
1650 
1651 			return 1;
1652 		}
1653 	}
1654 #endif
1655 
1656 	if (left_group_index < right->group_index)
1657 		return -1;
1658 	if (left_group_index > right->group_index)
1659 		return 1;
1660 
1661 	return 0;
1662 }
1663 
1664 #define __node_2_pe(node) \
1665 	rb_entry((node), struct perf_event, group_node)
1666 
1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669 	struct perf_event *e = __node_2_pe(a);
1670 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 				     e->group_index, __node_2_pe(b)) < 0;
1672 }
1673 
1674 struct __group_key {
1675 	int cpu;
1676 	struct pmu *pmu;
1677 	struct cgroup *cgroup;
1678 };
1679 
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 	const struct __group_key *a = key;
1683 	const struct perf_event *b = __node_2_pe(node);
1684 
1685 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688 
1689 static inline int
1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692 	const struct __group_key *a = key;
1693 	const struct perf_event *b = __node_2_pe(node);
1694 
1695 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 				     b->group_index, b);
1698 }
1699 
1700 /*
1701  * Insert @event into @groups' tree; using
1702  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704  */
1705 static void
1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 			 struct perf_event *event)
1708 {
1709 	event->group_index = ++groups->index;
1710 
1711 	rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713 
1714 /*
1715  * Helper function to insert event into the pinned or flexible groups.
1716  */
1717 static void
1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720 	struct perf_event_groups *groups;
1721 
1722 	groups = get_event_groups(event, ctx);
1723 	perf_event_groups_insert(groups, event);
1724 }
1725 
1726 /*
1727  * Delete a group from a tree.
1728  */
1729 static void
1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 			 struct perf_event *event)
1732 {
1733 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 		     RB_EMPTY_ROOT(&groups->tree));
1735 
1736 	rb_erase(&event->group_node, &groups->tree);
1737 	init_event_group(event);
1738 }
1739 
1740 /*
1741  * Helper function to delete event from its groups.
1742  */
1743 static void
1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746 	struct perf_event_groups *groups;
1747 
1748 	groups = get_event_groups(event, ctx);
1749 	perf_event_groups_delete(groups, event);
1750 }
1751 
1752 /*
1753  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754  */
1755 static struct perf_event *
1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 			struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759 	struct __group_key key = {
1760 		.cpu = cpu,
1761 		.pmu = pmu,
1762 		.cgroup = cgrp,
1763 	};
1764 	struct rb_node *node;
1765 
1766 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 	if (node)
1768 		return __node_2_pe(node);
1769 
1770 	return NULL;
1771 }
1772 
1773 static struct perf_event *
1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776 	struct __group_key key = {
1777 		.cpu = event->cpu,
1778 		.pmu = pmu,
1779 		.cgroup = event_cgroup(event),
1780 	};
1781 	struct rb_node *next;
1782 
1783 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 	if (next)
1785 		return __node_2_pe(next);
1786 
1787 	return NULL;
1788 }
1789 
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1791 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1792 	     event; event = perf_event_groups_next(event, pmu))
1793 
1794 /*
1795  * Iterate through the whole groups tree.
1796  */
1797 #define perf_event_groups_for_each(event, groups)			\
1798 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1799 				typeof(*event), group_node); event;	\
1800 		event = rb_entry_safe(rb_next(&event->group_node),	\
1801 				typeof(*event), group_node))
1802 
1803 /*
1804  * Does the event attribute request inherit with PERF_SAMPLE_READ
1805  */
1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810 
1811 /*
1812  * Add an event from the lists for its context.
1813  * Must be called with ctx->mutex and ctx->lock held.
1814  */
1815 static void
1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 	event->attach_state |= PERF_ATTACH_CONTEXT;
1822 
1823 	event->tstamp = perf_event_time(event);
1824 
1825 	/*
1826 	 * If we're a stand alone event or group leader, we go to the context
1827 	 * list, group events are kept attached to the group so that
1828 	 * perf_group_detach can, at all times, locate all siblings.
1829 	 */
1830 	if (event->group_leader == event) {
1831 		event->group_caps = event->event_caps;
1832 		add_event_to_groups(event, ctx);
1833 	}
1834 
1835 	list_add_rcu(&event->event_entry, &ctx->event_list);
1836 	ctx->nr_events++;
1837 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 		ctx->nr_user++;
1839 	if (event->attr.inherit_stat)
1840 		ctx->nr_stat++;
1841 	if (has_inherit_and_sample_read(&event->attr))
1842 		local_inc(&ctx->nr_no_switch_fast);
1843 
1844 	if (event->state > PERF_EVENT_STATE_OFF)
1845 		perf_cgroup_event_enable(event, ctx);
1846 
1847 	ctx->generation++;
1848 	event->pmu_ctx->nr_events++;
1849 }
1850 
1851 /*
1852  * Initialize event state based on the perf_event_attr::disabled.
1853  */
1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 					      PERF_EVENT_STATE_INACTIVE;
1858 }
1859 
1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862 	int entry = sizeof(u64); /* value */
1863 	int size = 0;
1864 	int nr = 1;
1865 
1866 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 		size += sizeof(u64);
1868 
1869 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 		size += sizeof(u64);
1871 
1872 	if (read_format & PERF_FORMAT_ID)
1873 		entry += sizeof(u64);
1874 
1875 	if (read_format & PERF_FORMAT_LOST)
1876 		entry += sizeof(u64);
1877 
1878 	if (read_format & PERF_FORMAT_GROUP) {
1879 		nr += nr_siblings;
1880 		size += sizeof(u64);
1881 	}
1882 
1883 	/*
1884 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 	 * adding more siblings, this will never overflow.
1886 	 */
1887 	return size + nr * entry;
1888 }
1889 
1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892 	struct perf_sample_data *data;
1893 	u16 size = 0;
1894 
1895 	if (sample_type & PERF_SAMPLE_IP)
1896 		size += sizeof(data->ip);
1897 
1898 	if (sample_type & PERF_SAMPLE_ADDR)
1899 		size += sizeof(data->addr);
1900 
1901 	if (sample_type & PERF_SAMPLE_PERIOD)
1902 		size += sizeof(data->period);
1903 
1904 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 		size += sizeof(data->weight.full);
1906 
1907 	if (sample_type & PERF_SAMPLE_READ)
1908 		size += event->read_size;
1909 
1910 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 		size += sizeof(data->data_src.val);
1912 
1913 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 		size += sizeof(data->txn);
1915 
1916 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 		size += sizeof(data->phys_addr);
1918 
1919 	if (sample_type & PERF_SAMPLE_CGROUP)
1920 		size += sizeof(data->cgroup);
1921 
1922 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 		size += sizeof(data->data_page_size);
1924 
1925 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 		size += sizeof(data->code_page_size);
1927 
1928 	event->header_size = size;
1929 }
1930 
1931 /*
1932  * Called at perf_event creation and when events are attached/detached from a
1933  * group.
1934  */
1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937 	event->read_size =
1938 		__perf_event_read_size(event->attr.read_format,
1939 				       event->group_leader->nr_siblings);
1940 	__perf_event_header_size(event, event->attr.sample_type);
1941 }
1942 
1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945 	struct perf_sample_data *data;
1946 	u64 sample_type = event->attr.sample_type;
1947 	u16 size = 0;
1948 
1949 	if (sample_type & PERF_SAMPLE_TID)
1950 		size += sizeof(data->tid_entry);
1951 
1952 	if (sample_type & PERF_SAMPLE_TIME)
1953 		size += sizeof(data->time);
1954 
1955 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 		size += sizeof(data->id);
1957 
1958 	if (sample_type & PERF_SAMPLE_ID)
1959 		size += sizeof(data->id);
1960 
1961 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 		size += sizeof(data->stream_id);
1963 
1964 	if (sample_type & PERF_SAMPLE_CPU)
1965 		size += sizeof(data->cpu_entry);
1966 
1967 	event->id_header_size = size;
1968 }
1969 
1970 /*
1971  * Check that adding an event to the group does not result in anybody
1972  * overflowing the 64k event limit imposed by the output buffer.
1973  *
1974  * Specifically, check that the read_size for the event does not exceed 16k,
1975  * read_size being the one term that grows with groups size. Since read_size
1976  * depends on per-event read_format, also (re)check the existing events.
1977  *
1978  * This leaves 48k for the constant size fields and things like callchains,
1979  * branch stacks and register sets.
1980  */
1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983 	struct perf_event *sibling, *group_leader = event->group_leader;
1984 
1985 	if (__perf_event_read_size(event->attr.read_format,
1986 				   group_leader->nr_siblings + 1) > 16*1024)
1987 		return false;
1988 
1989 	if (__perf_event_read_size(group_leader->attr.read_format,
1990 				   group_leader->nr_siblings + 1) > 16*1024)
1991 		return false;
1992 
1993 	/*
1994 	 * When creating a new group leader, group_leader->ctx is initialized
1995 	 * after the size has been validated, but we cannot safely use
1996 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 	 * leader cannot have any siblings yet, so we can safely skip checking
1998 	 * the non-existent siblings.
1999 	 */
2000 	if (event == group_leader)
2001 		return true;
2002 
2003 	for_each_sibling_event(sibling, group_leader) {
2004 		if (__perf_event_read_size(sibling->attr.read_format,
2005 					   group_leader->nr_siblings + 1) > 16*1024)
2006 			return false;
2007 	}
2008 
2009 	return true;
2010 }
2011 
2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014 	struct perf_event *group_leader = event->group_leader, *pos;
2015 
2016 	lockdep_assert_held(&event->ctx->lock);
2017 
2018 	/*
2019 	 * We can have double attach due to group movement (move_group) in
2020 	 * perf_event_open().
2021 	 */
2022 	if (event->attach_state & PERF_ATTACH_GROUP)
2023 		return;
2024 
2025 	event->attach_state |= PERF_ATTACH_GROUP;
2026 
2027 	if (group_leader == event)
2028 		return;
2029 
2030 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031 
2032 	group_leader->group_caps &= event->event_caps;
2033 
2034 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 	group_leader->nr_siblings++;
2036 	group_leader->group_generation++;
2037 
2038 	perf_event__header_size(group_leader);
2039 
2040 	for_each_sibling_event(pos, group_leader)
2041 		perf_event__header_size(pos);
2042 }
2043 
2044 /*
2045  * Remove an event from the lists for its context.
2046  * Must be called with ctx->mutex and ctx->lock held.
2047  */
2048 static void
2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051 	WARN_ON_ONCE(event->ctx != ctx);
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	/*
2055 	 * We can have double detach due to exit/hot-unplug + close.
2056 	 */
2057 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 		return;
2059 
2060 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061 
2062 	ctx->nr_events--;
2063 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 		ctx->nr_user--;
2065 	if (event->attr.inherit_stat)
2066 		ctx->nr_stat--;
2067 	if (has_inherit_and_sample_read(&event->attr))
2068 		local_dec(&ctx->nr_no_switch_fast);
2069 
2070 	list_del_rcu(&event->event_entry);
2071 
2072 	if (event->group_leader == event)
2073 		del_event_from_groups(event, ctx);
2074 
2075 	/*
2076 	 * If event was in error state, then keep it
2077 	 * that way, otherwise bogus counts will be
2078 	 * returned on read(). The only way to get out
2079 	 * of error state is by explicit re-enabling
2080 	 * of the event
2081 	 */
2082 	if (event->state > PERF_EVENT_STATE_OFF) {
2083 		perf_cgroup_event_disable(event, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085 	}
2086 
2087 	ctx->generation++;
2088 	event->pmu_ctx->nr_events--;
2089 }
2090 
2091 static int
2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094 	if (!has_aux(aux_event))
2095 		return 0;
2096 
2097 	if (!event->pmu->aux_output_match)
2098 		return 0;
2099 
2100 	return event->pmu->aux_output_match(aux_event);
2101 }
2102 
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 			    struct perf_event_context *ctx);
2106 
2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109 	struct perf_event_context *ctx = event->ctx;
2110 	struct perf_event *iter;
2111 
2112 	/*
2113 	 * If event uses aux_event tear down the link
2114 	 */
2115 	if (event->aux_event) {
2116 		iter = event->aux_event;
2117 		event->aux_event = NULL;
2118 		put_event(iter);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * If the event is an aux_event, tear down all links to
2124 	 * it from other events.
2125 	 */
2126 	for_each_sibling_event(iter, event->group_leader) {
2127 		if (iter->aux_event != event)
2128 			continue;
2129 
2130 		iter->aux_event = NULL;
2131 		put_event(event);
2132 
2133 		/*
2134 		 * If it's ACTIVE, schedule it out and put it into ERROR
2135 		 * state so that we don't try to schedule it again. Note
2136 		 * that perf_event_enable() will clear the ERROR status.
2137 		 */
2138 		event_sched_out(iter, ctx);
2139 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140 	}
2141 }
2142 
2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145 	return event->attr.aux_output || has_aux_action(event);
2146 }
2147 
2148 static int perf_get_aux_event(struct perf_event *event,
2149 			      struct perf_event *group_leader)
2150 {
2151 	/*
2152 	 * Our group leader must be an aux event if we want to be
2153 	 * an aux_output. This way, the aux event will precede its
2154 	 * aux_output events in the group, and therefore will always
2155 	 * schedule first.
2156 	 */
2157 	if (!group_leader)
2158 		return 0;
2159 
2160 	/*
2161 	 * aux_output and aux_sample_size are mutually exclusive.
2162 	 */
2163 	if (event->attr.aux_output && event->attr.aux_sample_size)
2164 		return 0;
2165 
2166 	if (event->attr.aux_output &&
2167 	    !perf_aux_output_match(event, group_leader))
2168 		return 0;
2169 
2170 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 		return 0;
2173 
2174 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 		return 0;
2176 
2177 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 		return 0;
2179 
2180 	/*
2181 	 * Link aux_outputs to their aux event; this is undone in
2182 	 * perf_group_detach() by perf_put_aux_event(). When the
2183 	 * group in torn down, the aux_output events loose their
2184 	 * link to the aux_event and can't schedule any more.
2185 	 */
2186 	event->aux_event = group_leader;
2187 
2188 	return 1;
2189 }
2190 
2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 				    &event->pmu_ctx->flexible_active;
2195 }
2196 
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 	event_sched_out(event, event->ctx);
2206 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208 
2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 	struct perf_event *leader = event->group_leader;
2212 	struct perf_event *sibling, *tmp;
2213 	struct perf_event_context *ctx = event->ctx;
2214 
2215 	lockdep_assert_held(&ctx->lock);
2216 
2217 	/*
2218 	 * We can have double detach due to exit/hot-unplug + close.
2219 	 */
2220 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 		return;
2222 
2223 	event->attach_state &= ~PERF_ATTACH_GROUP;
2224 
2225 	perf_put_aux_event(event);
2226 
2227 	/*
2228 	 * If this is a sibling, remove it from its group.
2229 	 */
2230 	if (leader != event) {
2231 		list_del_init(&event->sibling_list);
2232 		event->group_leader->nr_siblings--;
2233 		event->group_leader->group_generation++;
2234 		goto out;
2235 	}
2236 
2237 	/*
2238 	 * If this was a group event with sibling events then
2239 	 * upgrade the siblings to singleton events by adding them
2240 	 * to whatever list we are on.
2241 	 */
2242 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243 
2244 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 			perf_remove_sibling_event(sibling);
2246 
2247 		sibling->group_leader = sibling;
2248 		list_del_init(&sibling->sibling_list);
2249 
2250 		/* Inherit group flags from the previous leader */
2251 		sibling->group_caps = event->group_caps;
2252 
2253 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 			add_event_to_groups(sibling, event->ctx);
2255 
2256 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 		}
2259 
2260 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 	}
2262 
2263 out:
2264 	for_each_sibling_event(tmp, leader)
2265 		perf_event__header_size(tmp);
2266 
2267 	perf_event__header_size(leader);
2268 }
2269 
2270 static void sync_child_event(struct perf_event *child_event);
2271 
2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 	struct perf_event *parent_event = event->parent;
2275 
2276 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 		return;
2278 
2279 	event->attach_state &= ~PERF_ATTACH_CHILD;
2280 
2281 	if (WARN_ON_ONCE(!parent_event))
2282 		return;
2283 
2284 	lockdep_assert_held(&parent_event->child_mutex);
2285 
2286 	sync_child_event(event);
2287 	list_del_init(&event->child_list);
2288 }
2289 
2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 	return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294 
2295 static inline int
2296 event_filter_match(struct perf_event *event)
2297 {
2298 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 	       perf_cgroup_match(event);
2300 }
2301 
2302 static void
2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308 
2309 	// XXX cpc serialization, probably per-cpu IRQ disabled
2310 
2311 	WARN_ON_ONCE(event->ctx != ctx);
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	/*
2318 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 	 * we can schedule events _OUT_ individually through things like
2320 	 * __perf_remove_from_context().
2321 	 */
2322 	list_del_init(&event->active_list);
2323 
2324 	perf_pmu_disable(event->pmu);
2325 
2326 	event->pmu->del(event, 0);
2327 	event->oncpu = -1;
2328 
2329 	if (event->pending_disable) {
2330 		event->pending_disable = 0;
2331 		perf_cgroup_event_disable(event, ctx);
2332 		state = PERF_EVENT_STATE_OFF;
2333 	}
2334 
2335 	perf_event_set_state(event, state);
2336 
2337 	if (!is_software_event(event))
2338 		cpc->active_oncpu--;
2339 	if (event->attr.freq && event->attr.sample_freq) {
2340 		ctx->nr_freq--;
2341 		epc->nr_freq--;
2342 	}
2343 	if (event->attr.exclusive || !cpc->active_oncpu)
2344 		cpc->exclusive = 0;
2345 
2346 	perf_pmu_enable(event->pmu);
2347 }
2348 
2349 static void
2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 	struct perf_event *event;
2353 
2354 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 		return;
2356 
2357 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358 
2359 	event_sched_out(group_event, ctx);
2360 
2361 	/*
2362 	 * Schedule out siblings (if any):
2363 	 */
2364 	for_each_sibling_event(event, group_event)
2365 		event_sched_out(event, ctx);
2366 }
2367 
2368 static inline void
2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 	if (ctx->is_active & EVENT_TIME) {
2372 		if (ctx->is_active & EVENT_FROZEN)
2373 			return;
2374 		update_context_time(ctx);
2375 		update_cgrp_time_from_cpuctx(cpuctx, final);
2376 	}
2377 }
2378 
2379 static inline void
2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 	__ctx_time_update(cpuctx, ctx, false);
2383 }
2384 
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 	ctx_time_update(cpuctx, ctx);
2392 	if (ctx->is_active & EVENT_TIME)
2393 		ctx->is_active |= EVENT_FROZEN;
2394 }
2395 
2396 static inline void
2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 	if (ctx->is_active & EVENT_TIME) {
2400 		if (ctx->is_active & EVENT_FROZEN)
2401 			return;
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 }
2406 
2407 #define DETACH_GROUP	0x01UL
2408 #define DETACH_CHILD	0x02UL
2409 #define DETACH_DEAD	0x04UL
2410 
2411 /*
2412  * Cross CPU call to remove a performance event
2413  *
2414  * We disable the event on the hardware level first. After that we
2415  * remove it from the context list.
2416  */
2417 static void
2418 __perf_remove_from_context(struct perf_event *event,
2419 			   struct perf_cpu_context *cpuctx,
2420 			   struct perf_event_context *ctx,
2421 			   void *info)
2422 {
2423 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 	unsigned long flags = (unsigned long)info;
2425 
2426 	ctx_time_update(cpuctx, ctx);
2427 
2428 	/*
2429 	 * Ensure event_sched_out() switches to OFF, at the very least
2430 	 * this avoids raising perf_pending_task() at this time.
2431 	 */
2432 	if (flags & DETACH_DEAD)
2433 		event->pending_disable = 1;
2434 	event_sched_out(event, ctx);
2435 	if (flags & DETACH_GROUP)
2436 		perf_group_detach(event);
2437 	if (flags & DETACH_CHILD)
2438 		perf_child_detach(event);
2439 	list_del_event(event, ctx);
2440 	if (flags & DETACH_DEAD)
2441 		event->state = PERF_EVENT_STATE_DEAD;
2442 
2443 	if (!pmu_ctx->nr_events) {
2444 		pmu_ctx->rotate_necessary = 0;
2445 
2446 		if (ctx->task && ctx->is_active) {
2447 			struct perf_cpu_pmu_context *cpc;
2448 
2449 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 			cpc->task_epc = NULL;
2452 		}
2453 	}
2454 
2455 	if (!ctx->nr_events && ctx->is_active) {
2456 		if (ctx == &cpuctx->ctx)
2457 			update_cgrp_time_from_cpuctx(cpuctx, true);
2458 
2459 		ctx->is_active = 0;
2460 		if (ctx->task) {
2461 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 			cpuctx->task_ctx = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 /*
2468  * Remove the event from a task's (or a CPU's) list of events.
2469  *
2470  * If event->ctx is a cloned context, callers must make sure that
2471  * every task struct that event->ctx->task could possibly point to
2472  * remains valid.  This is OK when called from perf_release since
2473  * that only calls us on the top-level context, which can't be a clone.
2474  * When called from perf_event_exit_task, it's OK because the
2475  * context has been detached from its task.
2476  */
2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	lockdep_assert_held(&ctx->mutex);
2482 
2483 	/*
2484 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 	 * event_function_call() user.
2487 	 */
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (!ctx->is_active) {
2490 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 					   ctx, (void *)flags);
2492 		raw_spin_unlock_irq(&ctx->lock);
2493 		return;
2494 	}
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 
2497 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499 
2500 /*
2501  * Cross CPU call to disable a performance event
2502  */
2503 static void __perf_event_disable(struct perf_event *event,
2504 				 struct perf_cpu_context *cpuctx,
2505 				 struct perf_event_context *ctx,
2506 				 void *info)
2507 {
2508 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 		return;
2510 
2511 	perf_pmu_disable(event->pmu_ctx->pmu);
2512 	ctx_time_update_event(ctx, event);
2513 
2514 	if (event == event->group_leader)
2515 		group_sched_out(event, ctx);
2516 	else
2517 		event_sched_out(event, ctx);
2518 
2519 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 	perf_cgroup_event_disable(event, ctx);
2521 
2522 	perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524 
2525 /*
2526  * Disable an event.
2527  *
2528  * If event->ctx is a cloned context, callers must make sure that
2529  * every task struct that event->ctx->task could possibly point to
2530  * remains valid.  This condition is satisfied when called through
2531  * perf_event_for_each_child or perf_event_for_each because they
2532  * hold the top-level event's child_mutex, so any descendant that
2533  * goes to exit will block in perf_event_exit_event().
2534  *
2535  * When called from perf_pending_disable it's OK because event->ctx
2536  * is the current context on this CPU and preemption is disabled,
2537  * hence we can't get into perf_event_task_sched_out for this context.
2538  */
2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 	struct perf_event_context *ctx = event->ctx;
2542 
2543 	raw_spin_lock_irq(&ctx->lock);
2544 	if (event->state <= PERF_EVENT_STATE_OFF) {
2545 		raw_spin_unlock_irq(&ctx->lock);
2546 		return;
2547 	}
2548 	raw_spin_unlock_irq(&ctx->lock);
2549 
2550 	event_function_call(event, __perf_event_disable, NULL);
2551 }
2552 
2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 	event_function_local(event, __perf_event_disable, NULL);
2556 }
2557 
2558 /*
2559  * Strictly speaking kernel users cannot create groups and therefore this
2560  * interface does not need the perf_event_ctx_lock() magic.
2561  */
2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 	struct perf_event_context *ctx;
2565 
2566 	ctx = perf_event_ctx_lock(event);
2567 	_perf_event_disable(event);
2568 	perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571 
2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 	event->pending_disable = 1;
2575 	irq_work_queue(&event->pending_disable_irq);
2576 }
2577 
2578 #define MAX_INTERRUPTS (~0ULL)
2579 
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582 
2583 static int
2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 	int ret = 0;
2589 
2590 	WARN_ON_ONCE(event->ctx != ctx);
2591 
2592 	lockdep_assert_held(&ctx->lock);
2593 
2594 	if (event->state <= PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	WRITE_ONCE(event->oncpu, smp_processor_id());
2598 	/*
2599 	 * Order event::oncpu write to happen before the ACTIVE state is
2600 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 	 * ->oncpu if it sees ACTIVE.
2602 	 */
2603 	smp_wmb();
2604 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605 
2606 	/*
2607 	 * Unthrottle events, since we scheduled we might have missed several
2608 	 * ticks already, also for a heavily scheduling task there is little
2609 	 * guarantee it'll get a tick in a timely manner.
2610 	 */
2611 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 		perf_log_throttle(event, 1);
2613 		event->hw.interrupts = 0;
2614 	}
2615 
2616 	perf_pmu_disable(event->pmu);
2617 
2618 	perf_log_itrace_start(event);
2619 
2620 	if (event->pmu->add(event, PERF_EF_START)) {
2621 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 		event->oncpu = -1;
2623 		ret = -EAGAIN;
2624 		goto out;
2625 	}
2626 
2627 	if (!is_software_event(event))
2628 		cpc->active_oncpu++;
2629 	if (event->attr.freq && event->attr.sample_freq) {
2630 		ctx->nr_freq++;
2631 		epc->nr_freq++;
2632 	}
2633 	if (event->attr.exclusive)
2634 		cpc->exclusive = 1;
2635 
2636 out:
2637 	perf_pmu_enable(event->pmu);
2638 
2639 	return ret;
2640 }
2641 
2642 static int
2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 	struct perf_event *event, *partial_group = NULL;
2646 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2647 
2648 	if (group_event->state == PERF_EVENT_STATE_OFF)
2649 		return 0;
2650 
2651 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652 
2653 	if (event_sched_in(group_event, ctx))
2654 		goto error;
2655 
2656 	/*
2657 	 * Schedule in siblings as one group (if any):
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event_sched_in(event, ctx)) {
2661 			partial_group = event;
2662 			goto group_error;
2663 		}
2664 	}
2665 
2666 	if (!pmu->commit_txn(pmu))
2667 		return 0;
2668 
2669 group_error:
2670 	/*
2671 	 * Groups can be scheduled in as one unit only, so undo any
2672 	 * partial group before returning:
2673 	 * The events up to the failed event are scheduled out normally.
2674 	 */
2675 	for_each_sibling_event(event, group_event) {
2676 		if (event == partial_group)
2677 			break;
2678 
2679 		event_sched_out(event, ctx);
2680 	}
2681 	event_sched_out(group_event, ctx);
2682 
2683 error:
2684 	pmu->cancel_txn(pmu);
2685 	return -EAGAIN;
2686 }
2687 
2688 /*
2689  * Work out whether we can put this event group on the CPU now.
2690  */
2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695 
2696 	/*
2697 	 * Groups consisting entirely of software events can always go on.
2698 	 */
2699 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 		return 1;
2701 	/*
2702 	 * If an exclusive group is already on, no other hardware
2703 	 * events can go on.
2704 	 */
2705 	if (cpc->exclusive)
2706 		return 0;
2707 	/*
2708 	 * If this group is exclusive and there are already
2709 	 * events on the CPU, it can't go on.
2710 	 */
2711 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 		return 0;
2713 	/*
2714 	 * Otherwise, try to add it if all previous groups were able
2715 	 * to go on.
2716 	 */
2717 	return can_add_hw;
2718 }
2719 
2720 static void add_event_to_ctx(struct perf_event *event,
2721 			       struct perf_event_context *ctx)
2722 {
2723 	list_add_event(event, ctx);
2724 	perf_group_attach(event);
2725 }
2726 
2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 			       struct pmu *pmu,
2729 			       enum event_type_t event_type)
2730 {
2731 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732 
2733 	if (!cpuctx->task_ctx)
2734 		return;
2735 
2736 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 		return;
2738 
2739 	ctx_sched_out(ctx, pmu, event_type);
2740 }
2741 
2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				struct pmu *pmu)
2745 {
2746 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 	if (ctx)
2748 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 	if (ctx)
2751 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753 
2754 /*
2755  * We want to maintain the following priority of scheduling:
2756  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757  *  - task pinned (EVENT_PINNED)
2758  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759  *  - task flexible (EVENT_FLEXIBLE).
2760  *
2761  * In order to avoid unscheduling and scheduling back in everything every
2762  * time an event is added, only do it for the groups of equal priority and
2763  * below.
2764  *
2765  * This can be called after a batch operation on task events, in which case
2766  * event_type is a bit mask of the types of events involved. For CPU events,
2767  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768  */
2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 			struct perf_event_context *task_ctx,
2771 			struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 	bool cpu_event = !!(event_type & EVENT_CPU);
2774 	struct perf_event_pmu_context *epc;
2775 
2776 	/*
2777 	 * If pinned groups are involved, flexible groups also need to be
2778 	 * scheduled out.
2779 	 */
2780 	if (event_type & EVENT_PINNED)
2781 		event_type |= EVENT_FLEXIBLE;
2782 
2783 	event_type &= EVENT_ALL;
2784 
2785 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 		perf_pmu_disable(epc->pmu);
2787 
2788 	if (task_ctx) {
2789 		for_each_epc(epc, task_ctx, pmu, false)
2790 			perf_pmu_disable(epc->pmu);
2791 
2792 		task_ctx_sched_out(task_ctx, pmu, event_type);
2793 	}
2794 
2795 	/*
2796 	 * Decide which cpu ctx groups to schedule out based on the types
2797 	 * of events that caused rescheduling:
2798 	 *  - EVENT_CPU: schedule out corresponding groups;
2799 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 	 *  - otherwise, do nothing more.
2801 	 */
2802 	if (cpu_event)
2803 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 	else if (event_type & EVENT_PINNED)
2805 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806 
2807 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2808 
2809 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 		perf_pmu_enable(epc->pmu);
2811 
2812 	if (task_ctx) {
2813 		for_each_epc(epc, task_ctx, pmu, false)
2814 			perf_pmu_enable(epc->pmu);
2815 	}
2816 }
2817 
2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822 
2823 	perf_ctx_lock(cpuctx, task_ctx);
2824 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 	perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827 
2828 /*
2829  * Cross CPU call to install and enable a performance event
2830  *
2831  * Very similar to remote_function() + event_function() but cannot assume that
2832  * things like ctx->is_active and cpuctx->task_ctx are set.
2833  */
2834 static int  __perf_install_in_context(void *info)
2835 {
2836 	struct perf_event *event = info;
2837 	struct perf_event_context *ctx = event->ctx;
2838 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 	bool reprogram = true;
2841 	int ret = 0;
2842 
2843 	raw_spin_lock(&cpuctx->ctx.lock);
2844 	if (ctx->task) {
2845 		raw_spin_lock(&ctx->lock);
2846 		task_ctx = ctx;
2847 
2848 		reprogram = (ctx->task == current);
2849 
2850 		/*
2851 		 * If the task is running, it must be running on this CPU,
2852 		 * otherwise we cannot reprogram things.
2853 		 *
2854 		 * If its not running, we don't care, ctx->lock will
2855 		 * serialize against it becoming runnable.
2856 		 */
2857 		if (task_curr(ctx->task) && !reprogram) {
2858 			ret = -ESRCH;
2859 			goto unlock;
2860 		}
2861 
2862 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 	} else if (task_ctx) {
2864 		raw_spin_lock(&task_ctx->lock);
2865 	}
2866 
2867 #ifdef CONFIG_CGROUP_PERF
2868 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 		/*
2870 		 * If the current cgroup doesn't match the event's
2871 		 * cgroup, we should not try to schedule it.
2872 		 */
2873 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 					event->cgrp->css.cgroup);
2876 	}
2877 #endif
2878 
2879 	if (reprogram) {
2880 		ctx_time_freeze(cpuctx, ctx);
2881 		add_event_to_ctx(event, ctx);
2882 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 			    get_event_type(event));
2884 	} else {
2885 		add_event_to_ctx(event, ctx);
2886 	}
2887 
2888 unlock:
2889 	perf_ctx_unlock(cpuctx, task_ctx);
2890 
2891 	return ret;
2892 }
2893 
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 					struct perf_event_context *ctx);
2896 
2897 /*
2898  * Attach a performance event to a context.
2899  *
2900  * Very similar to event_function_call, see comment there.
2901  */
2902 static void
2903 perf_install_in_context(struct perf_event_context *ctx,
2904 			struct perf_event *event,
2905 			int cpu)
2906 {
2907 	struct task_struct *task = READ_ONCE(ctx->task);
2908 
2909 	lockdep_assert_held(&ctx->mutex);
2910 
2911 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912 
2913 	if (event->cpu != -1)
2914 		WARN_ON_ONCE(event->cpu != cpu);
2915 
2916 	/*
2917 	 * Ensures that if we can observe event->ctx, both the event and ctx
2918 	 * will be 'complete'. See perf_iterate_sb_cpu().
2919 	 */
2920 	smp_store_release(&event->ctx, ctx);
2921 
2922 	/*
2923 	 * perf_event_attr::disabled events will not run and can be initialized
2924 	 * without IPI. Except when this is the first event for the context, in
2925 	 * that case we need the magic of the IPI to set ctx->is_active.
2926 	 *
2927 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 	 * event will issue the IPI and reprogram the hardware.
2929 	 */
2930 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 	    ctx->nr_events && !is_cgroup_event(event)) {
2932 		raw_spin_lock_irq(&ctx->lock);
2933 		if (ctx->task == TASK_TOMBSTONE) {
2934 			raw_spin_unlock_irq(&ctx->lock);
2935 			return;
2936 		}
2937 		add_event_to_ctx(event, ctx);
2938 		raw_spin_unlock_irq(&ctx->lock);
2939 		return;
2940 	}
2941 
2942 	if (!task) {
2943 		cpu_function_call(cpu, __perf_install_in_context, event);
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * Should not happen, we validate the ctx is still alive before calling.
2949 	 */
2950 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 		return;
2952 
2953 	/*
2954 	 * Installing events is tricky because we cannot rely on ctx->is_active
2955 	 * to be set in case this is the nr_events 0 -> 1 transition.
2956 	 *
2957 	 * Instead we use task_curr(), which tells us if the task is running.
2958 	 * However, since we use task_curr() outside of rq::lock, we can race
2959 	 * against the actual state. This means the result can be wrong.
2960 	 *
2961 	 * If we get a false positive, we retry, this is harmless.
2962 	 *
2963 	 * If we get a false negative, things are complicated. If we are after
2964 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 	 * value must be correct. If we're before, it doesn't matter since
2966 	 * perf_event_context_sched_in() will program the counter.
2967 	 *
2968 	 * However, this hinges on the remote context switch having observed
2969 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 	 * ctx::lock in perf_event_context_sched_in().
2971 	 *
2972 	 * We do this by task_function_call(), if the IPI fails to hit the task
2973 	 * we know any future context switch of task must see the
2974 	 * perf_event_ctpx[] store.
2975 	 */
2976 
2977 	/*
2978 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 	 * task_cpu() load, such that if the IPI then does not find the task
2980 	 * running, a future context switch of that task must observe the
2981 	 * store.
2982 	 */
2983 	smp_mb();
2984 again:
2985 	if (!task_function_call(task, __perf_install_in_context, event))
2986 		return;
2987 
2988 	raw_spin_lock_irq(&ctx->lock);
2989 	task = ctx->task;
2990 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 		/*
2992 		 * Cannot happen because we already checked above (which also
2993 		 * cannot happen), and we hold ctx->mutex, which serializes us
2994 		 * against perf_event_exit_task_context().
2995 		 */
2996 		raw_spin_unlock_irq(&ctx->lock);
2997 		return;
2998 	}
2999 	/*
3000 	 * If the task is not running, ctx->lock will avoid it becoming so,
3001 	 * thus we can safely install the event.
3002 	 */
3003 	if (task_curr(task)) {
3004 		raw_spin_unlock_irq(&ctx->lock);
3005 		goto again;
3006 	}
3007 	add_event_to_ctx(event, ctx);
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 }
3010 
3011 /*
3012  * Cross CPU call to enable a performance event
3013  */
3014 static void __perf_event_enable(struct perf_event *event,
3015 				struct perf_cpu_context *cpuctx,
3016 				struct perf_event_context *ctx,
3017 				void *info)
3018 {
3019 	struct perf_event *leader = event->group_leader;
3020 	struct perf_event_context *task_ctx;
3021 
3022 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 	    event->state <= PERF_EVENT_STATE_ERROR)
3024 		return;
3025 
3026 	ctx_time_freeze(cpuctx, ctx);
3027 
3028 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 	perf_cgroup_event_enable(event, ctx);
3030 
3031 	if (!ctx->is_active)
3032 		return;
3033 
3034 	if (!event_filter_match(event))
3035 		return;
3036 
3037 	/*
3038 	 * If the event is in a group and isn't the group leader,
3039 	 * then don't put it on unless the group is on.
3040 	 */
3041 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 		return;
3043 
3044 	task_ctx = cpuctx->task_ctx;
3045 	if (ctx->task)
3046 		WARN_ON_ONCE(task_ctx != ctx);
3047 
3048 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050 
3051 /*
3052  * Enable an event.
3053  *
3054  * If event->ctx is a cloned context, callers must make sure that
3055  * every task struct that event->ctx->task could possibly point to
3056  * remains valid.  This condition is satisfied when called through
3057  * perf_event_for_each_child or perf_event_for_each as described
3058  * for perf_event_disable.
3059  */
3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 	struct perf_event_context *ctx = event->ctx;
3063 
3064 	raw_spin_lock_irq(&ctx->lock);
3065 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 	    event->state <  PERF_EVENT_STATE_ERROR) {
3067 out:
3068 		raw_spin_unlock_irq(&ctx->lock);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * If the event is in error state, clear that first.
3074 	 *
3075 	 * That way, if we see the event in error state below, we know that it
3076 	 * has gone back into error state, as distinct from the task having
3077 	 * been scheduled away before the cross-call arrived.
3078 	 */
3079 	if (event->state == PERF_EVENT_STATE_ERROR) {
3080 		/*
3081 		 * Detached SIBLING events cannot leave ERROR state.
3082 		 */
3083 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 		    event->group_leader == event)
3085 			goto out;
3086 
3087 		event->state = PERF_EVENT_STATE_OFF;
3088 	}
3089 	raw_spin_unlock_irq(&ctx->lock);
3090 
3091 	event_function_call(event, __perf_event_enable, NULL);
3092 }
3093 
3094 /*
3095  * See perf_event_disable();
3096  */
3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 	struct perf_event_context *ctx;
3100 
3101 	ctx = perf_event_ctx_lock(event);
3102 	_perf_event_enable(event);
3103 	perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106 
3107 struct stop_event_data {
3108 	struct perf_event	*event;
3109 	unsigned int		restart;
3110 };
3111 
3112 static int __perf_event_stop(void *info)
3113 {
3114 	struct stop_event_data *sd = info;
3115 	struct perf_event *event = sd->event;
3116 
3117 	/* if it's already INACTIVE, do nothing */
3118 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 		return 0;
3120 
3121 	/* matches smp_wmb() in event_sched_in() */
3122 	smp_rmb();
3123 
3124 	/*
3125 	 * There is a window with interrupts enabled before we get here,
3126 	 * so we need to check again lest we try to stop another CPU's event.
3127 	 */
3128 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 		return -EAGAIN;
3130 
3131 	event->pmu->stop(event, PERF_EF_UPDATE);
3132 
3133 	/*
3134 	 * May race with the actual stop (through perf_pmu_output_stop()),
3135 	 * but it is only used for events with AUX ring buffer, and such
3136 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 	 * see comments in perf_aux_output_begin().
3138 	 *
3139 	 * Since this is happening on an event-local CPU, no trace is lost
3140 	 * while restarting.
3141 	 */
3142 	if (sd->restart)
3143 		event->pmu->start(event, 0);
3144 
3145 	return 0;
3146 }
3147 
3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 	struct stop_event_data sd = {
3151 		.event		= event,
3152 		.restart	= restart,
3153 	};
3154 	int ret = 0;
3155 
3156 	do {
3157 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 			return 0;
3159 
3160 		/* matches smp_wmb() in event_sched_in() */
3161 		smp_rmb();
3162 
3163 		/*
3164 		 * We only want to restart ACTIVE events, so if the event goes
3165 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 		 * fall through with ret==-ENXIO.
3167 		 */
3168 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 					__perf_event_stop, &sd);
3170 	} while (ret == -EAGAIN);
3171 
3172 	return ret;
3173 }
3174 
3175 /*
3176  * In order to contain the amount of racy and tricky in the address filter
3177  * configuration management, it is a two part process:
3178  *
3179  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180  *      we update the addresses of corresponding vmas in
3181  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182  * (p2) when an event is scheduled in (pmu::add), it calls
3183  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184  *      if the generation has changed since the previous call.
3185  *
3186  * If (p1) happens while the event is active, we restart it to force (p2).
3187  *
3188  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190  *     ioctl;
3191  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193  *     for reading;
3194  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195  *     of exec.
3196  */
3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200 
3201 	if (!has_addr_filter(event))
3202 		return;
3203 
3204 	raw_spin_lock(&ifh->lock);
3205 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 		event->pmu->addr_filters_sync(event);
3207 		event->hw.addr_filters_gen = event->addr_filters_gen;
3208 	}
3209 	raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212 
3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	/*
3216 	 * not supported on inherited events
3217 	 */
3218 	if (event->attr.inherit || !is_sampling_event(event))
3219 		return -EINVAL;
3220 
3221 	atomic_add(refresh, &event->event_limit);
3222 	_perf_event_enable(event);
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * See perf_event_disable()
3229  */
3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 	struct perf_event_context *ctx;
3233 	int ret;
3234 
3235 	ctx = perf_event_ctx_lock(event);
3236 	ret = _perf_event_refresh(event, refresh);
3237 	perf_event_ctx_unlock(event, ctx);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242 
3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 					 struct perf_event_attr *attr)
3245 {
3246 	int err;
3247 
3248 	_perf_event_disable(bp);
3249 
3250 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3251 
3252 	if (!bp->attr.disabled)
3253 		_perf_event_enable(bp);
3254 
3255 	return err;
3256 }
3257 
3258 /*
3259  * Copy event-type-independent attributes that may be modified.
3260  */
3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 					const struct perf_event_attr *from)
3263 {
3264 	to->sig_data = from->sig_data;
3265 }
3266 
3267 static int perf_event_modify_attr(struct perf_event *event,
3268 				  struct perf_event_attr *attr)
3269 {
3270 	int (*func)(struct perf_event *, struct perf_event_attr *);
3271 	struct perf_event *child;
3272 	int err;
3273 
3274 	if (event->attr.type != attr->type)
3275 		return -EINVAL;
3276 
3277 	switch (event->attr.type) {
3278 	case PERF_TYPE_BREAKPOINT:
3279 		func = perf_event_modify_breakpoint;
3280 		break;
3281 	default:
3282 		/* Place holder for future additions. */
3283 		return -EOPNOTSUPP;
3284 	}
3285 
3286 	WARN_ON_ONCE(event->ctx->parent_ctx);
3287 
3288 	mutex_lock(&event->child_mutex);
3289 	/*
3290 	 * Event-type-independent attributes must be copied before event-type
3291 	 * modification, which will validate that final attributes match the
3292 	 * source attributes after all relevant attributes have been copied.
3293 	 */
3294 	perf_event_modify_copy_attr(&event->attr, attr);
3295 	err = func(event, attr);
3296 	if (err)
3297 		goto out;
3298 	list_for_each_entry(child, &event->child_list, child_list) {
3299 		perf_event_modify_copy_attr(&child->attr, attr);
3300 		err = func(child, attr);
3301 		if (err)
3302 			goto out;
3303 	}
3304 out:
3305 	mutex_unlock(&event->child_mutex);
3306 	return err;
3307 }
3308 
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 				enum event_type_t event_type)
3311 {
3312 	struct perf_event_context *ctx = pmu_ctx->ctx;
3313 	struct perf_event *event, *tmp;
3314 	struct pmu *pmu = pmu_ctx->pmu;
3315 
3316 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 		struct perf_cpu_pmu_context *cpc;
3318 
3319 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 		cpc->task_epc = NULL;
3322 	}
3323 
3324 	if (!(event_type & EVENT_ALL))
3325 		return;
3326 
3327 	perf_pmu_disable(pmu);
3328 	if (event_type & EVENT_PINNED) {
3329 		list_for_each_entry_safe(event, tmp,
3330 					 &pmu_ctx->pinned_active,
3331 					 active_list)
3332 			group_sched_out(event, ctx);
3333 	}
3334 
3335 	if (event_type & EVENT_FLEXIBLE) {
3336 		list_for_each_entry_safe(event, tmp,
3337 					 &pmu_ctx->flexible_active,
3338 					 active_list)
3339 			group_sched_out(event, ctx);
3340 		/*
3341 		 * Since we cleared EVENT_FLEXIBLE, also clear
3342 		 * rotate_necessary, is will be reset by
3343 		 * ctx_flexible_sched_in() when needed.
3344 		 */
3345 		pmu_ctx->rotate_necessary = 0;
3346 	}
3347 	perf_pmu_enable(pmu);
3348 }
3349 
3350 /*
3351  * Be very careful with the @pmu argument since this will change ctx state.
3352  * The @pmu argument works for ctx_resched(), because that is symmetric in
3353  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354  *
3355  * However, if you were to be asymmetrical, you could end up with messed up
3356  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357  * be active.
3358  */
3359 static void
3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 	struct perf_event_pmu_context *pmu_ctx;
3364 	int is_active = ctx->is_active;
3365 	bool cgroup = event_type & EVENT_CGROUP;
3366 
3367 	event_type &= ~EVENT_CGROUP;
3368 
3369 	lockdep_assert_held(&ctx->lock);
3370 
3371 	if (likely(!ctx->nr_events)) {
3372 		/*
3373 		 * See __perf_remove_from_context().
3374 		 */
3375 		WARN_ON_ONCE(ctx->is_active);
3376 		if (ctx->task)
3377 			WARN_ON_ONCE(cpuctx->task_ctx);
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Always update time if it was set; not only when it changes.
3383 	 * Otherwise we can 'forget' to update time for any but the last
3384 	 * context we sched out. For example:
3385 	 *
3386 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3388 	 *
3389 	 * would only update time for the pinned events.
3390 	 */
3391 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392 
3393 	/*
3394 	 * CPU-release for the below ->is_active store,
3395 	 * see __load_acquire() in perf_event_time_now()
3396 	 */
3397 	barrier();
3398 	ctx->is_active &= ~event_type;
3399 
3400 	if (!(ctx->is_active & EVENT_ALL)) {
3401 		/*
3402 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 		 */
3405 		if (ctx->is_active & EVENT_FROZEN)
3406 			ctx->is_active &= EVENT_TIME_FROZEN;
3407 		else
3408 			ctx->is_active = 0;
3409 	}
3410 
3411 	if (ctx->task) {
3412 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 		if (!(ctx->is_active & EVENT_ALL))
3414 			cpuctx->task_ctx = NULL;
3415 	}
3416 
3417 	is_active ^= ctx->is_active; /* changed bits */
3418 
3419 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422 
3423 /*
3424  * Test whether two contexts are equivalent, i.e. whether they have both been
3425  * cloned from the same version of the same context.
3426  *
3427  * Equivalence is measured using a generation number in the context that is
3428  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429  * and list_del_event().
3430  */
3431 static int context_equiv(struct perf_event_context *ctx1,
3432 			 struct perf_event_context *ctx2)
3433 {
3434 	lockdep_assert_held(&ctx1->lock);
3435 	lockdep_assert_held(&ctx2->lock);
3436 
3437 	/* Pinning disables the swap optimization */
3438 	if (ctx1->pin_count || ctx2->pin_count)
3439 		return 0;
3440 
3441 	/* If ctx1 is the parent of ctx2 */
3442 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 		return 1;
3444 
3445 	/* If ctx2 is the parent of ctx1 */
3446 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 		return 1;
3448 
3449 	/*
3450 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 	 * hierarchy, see perf_event_init_context().
3452 	 */
3453 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 			ctx1->parent_gen == ctx2->parent_gen)
3455 		return 1;
3456 
3457 	/* Unmatched */
3458 	return 0;
3459 }
3460 
3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 				     struct perf_event *next_event)
3463 {
3464 	u64 value;
3465 
3466 	if (!event->attr.inherit_stat)
3467 		return;
3468 
3469 	/*
3470 	 * Update the event value, we cannot use perf_event_read()
3471 	 * because we're in the middle of a context switch and have IRQs
3472 	 * disabled, which upsets smp_call_function_single(), however
3473 	 * we know the event must be on the current CPU, therefore we
3474 	 * don't need to use it.
3475 	 */
3476 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 		event->pmu->read(event);
3478 
3479 	perf_event_update_time(event);
3480 
3481 	/*
3482 	 * In order to keep per-task stats reliable we need to flip the event
3483 	 * values when we flip the contexts.
3484 	 */
3485 	value = local64_read(&next_event->count);
3486 	value = local64_xchg(&event->count, value);
3487 	local64_set(&next_event->count, value);
3488 
3489 	swap(event->total_time_enabled, next_event->total_time_enabled);
3490 	swap(event->total_time_running, next_event->total_time_running);
3491 
3492 	/*
3493 	 * Since we swizzled the values, update the user visible data too.
3494 	 */
3495 	perf_event_update_userpage(event);
3496 	perf_event_update_userpage(next_event);
3497 }
3498 
3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 				   struct perf_event_context *next_ctx)
3501 {
3502 	struct perf_event *event, *next_event;
3503 
3504 	if (!ctx->nr_stat)
3505 		return;
3506 
3507 	update_context_time(ctx);
3508 
3509 	event = list_first_entry(&ctx->event_list,
3510 				   struct perf_event, event_entry);
3511 
3512 	next_event = list_first_entry(&next_ctx->event_list,
3513 					struct perf_event, event_entry);
3514 
3515 	while (&event->event_entry != &ctx->event_list &&
3516 	       &next_event->event_entry != &next_ctx->event_list) {
3517 
3518 		__perf_event_sync_stat(event, next_event);
3519 
3520 		event = list_next_entry(event, event_entry);
3521 		next_event = list_next_entry(next_event, event_entry);
3522 	}
3523 }
3524 
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3526 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3527 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3528 	     !list_entry_is_head(pos1, head1, member) &&		\
3529 	     !list_entry_is_head(pos2, head2, member);			\
3530 	     pos1 = list_next_entry(pos1, member),			\
3531 	     pos2 = list_next_entry(pos2, member))
3532 
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 					  struct perf_event_context *next_ctx)
3535 {
3536 	struct perf_event_pmu_context *prev_epc, *next_epc;
3537 
3538 	if (!prev_ctx->nr_task_data)
3539 		return;
3540 
3541 	double_list_for_each_entry(prev_epc, next_epc,
3542 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 				   pmu_ctx_entry) {
3544 
3545 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 			continue;
3547 
3548 		/*
3549 		 * PMU specific parts of task perf context can require
3550 		 * additional synchronization. As an example of such
3551 		 * synchronization see implementation details of Intel
3552 		 * LBR call stack data profiling;
3553 		 */
3554 		if (prev_epc->pmu->swap_task_ctx)
3555 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 		else
3557 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 	}
3559 }
3560 
3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 	struct perf_event_pmu_context *pmu_ctx;
3564 	struct perf_cpu_pmu_context *cpc;
3565 
3566 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568 
3569 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 	}
3572 }
3573 
3574 static void
3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 	struct perf_event_context *ctx = task->perf_event_ctxp;
3578 	struct perf_event_context *next_ctx;
3579 	struct perf_event_context *parent, *next_parent;
3580 	int do_switch = 1;
3581 
3582 	if (likely(!ctx))
3583 		return;
3584 
3585 	rcu_read_lock();
3586 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 	if (!next_ctx)
3588 		goto unlock;
3589 
3590 	parent = rcu_dereference(ctx->parent_ctx);
3591 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3592 
3593 	/* If neither context have a parent context; they cannot be clones. */
3594 	if (!parent && !next_parent)
3595 		goto unlock;
3596 
3597 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 		/*
3599 		 * Looks like the two contexts are clones, so we might be
3600 		 * able to optimize the context switch.  We lock both
3601 		 * contexts and check that they are clones under the
3602 		 * lock (including re-checking that neither has been
3603 		 * uncloned in the meantime).  It doesn't matter which
3604 		 * order we take the locks because no other cpu could
3605 		 * be trying to lock both of these tasks.
3606 		 */
3607 		raw_spin_lock(&ctx->lock);
3608 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 		if (context_equiv(ctx, next_ctx)) {
3610 
3611 			perf_ctx_disable(ctx, false);
3612 
3613 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 			if (local_read(&ctx->nr_no_switch_fast) ||
3615 			    local_read(&next_ctx->nr_no_switch_fast)) {
3616 				/*
3617 				 * Must not swap out ctx when there's pending
3618 				 * events that rely on the ctx->task relation.
3619 				 *
3620 				 * Likewise, when a context contains inherit +
3621 				 * SAMPLE_READ events they should be switched
3622 				 * out using the slow path so that they are
3623 				 * treated as if they were distinct contexts.
3624 				 */
3625 				raw_spin_unlock(&next_ctx->lock);
3626 				rcu_read_unlock();
3627 				goto inside_switch;
3628 			}
3629 
3630 			WRITE_ONCE(ctx->task, next);
3631 			WRITE_ONCE(next_ctx->task, task);
3632 
3633 			perf_ctx_sched_task_cb(ctx, false);
3634 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3635 
3636 			perf_ctx_enable(ctx, false);
3637 
3638 			/*
3639 			 * RCU_INIT_POINTER here is safe because we've not
3640 			 * modified the ctx and the above modification of
3641 			 * ctx->task and ctx->task_ctx_data are immaterial
3642 			 * since those values are always verified under
3643 			 * ctx->lock which we're now holding.
3644 			 */
3645 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647 
3648 			do_switch = 0;
3649 
3650 			perf_event_sync_stat(ctx, next_ctx);
3651 		}
3652 		raw_spin_unlock(&next_ctx->lock);
3653 		raw_spin_unlock(&ctx->lock);
3654 	}
3655 unlock:
3656 	rcu_read_unlock();
3657 
3658 	if (do_switch) {
3659 		raw_spin_lock(&ctx->lock);
3660 		perf_ctx_disable(ctx, false);
3661 
3662 inside_switch:
3663 		perf_ctx_sched_task_cb(ctx, false);
3664 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665 
3666 		perf_ctx_enable(ctx, false);
3667 		raw_spin_unlock(&ctx->lock);
3668 	}
3669 }
3670 
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673 
3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677 
3678 	this_cpu_dec(perf_sched_cb_usages);
3679 	barrier();
3680 
3681 	if (!--cpc->sched_cb_usage)
3682 		list_del(&cpc->sched_cb_entry);
3683 }
3684 
3685 
3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689 
3690 	if (!cpc->sched_cb_usage++)
3691 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692 
3693 	barrier();
3694 	this_cpu_inc(perf_sched_cb_usages);
3695 }
3696 
3697 /*
3698  * This function provides the context switch callback to the lower code
3699  * layer. It is invoked ONLY when the context switch callback is enabled.
3700  *
3701  * This callback is relevant even to per-cpu events; for example multi event
3702  * PEBS requires this to provide PID/TID information. This requires we flush
3703  * all queued PEBS records before we context switch to a new task.
3704  */
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 	struct pmu *pmu;
3709 
3710 	pmu = cpc->epc.pmu;
3711 
3712 	/* software PMUs will not have sched_task */
3713 	if (WARN_ON_ONCE(!pmu->sched_task))
3714 		return;
3715 
3716 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 	perf_pmu_disable(pmu);
3718 
3719 	pmu->sched_task(cpc->task_epc, sched_in);
3720 
3721 	perf_pmu_enable(pmu);
3722 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724 
3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 				struct task_struct *next,
3727 				bool sched_in)
3728 {
3729 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 	struct perf_cpu_pmu_context *cpc;
3731 
3732 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 	if (prev == next || cpuctx->task_ctx)
3734 		return;
3735 
3736 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 		__perf_pmu_sched_task(cpc, sched_in);
3738 }
3739 
3740 static void perf_event_switch(struct task_struct *task,
3741 			      struct task_struct *next_prev, bool sched_in);
3742 
3743 /*
3744  * Called from scheduler to remove the events of the current task,
3745  * with interrupts disabled.
3746  *
3747  * We stop each event and update the event value in event->count.
3748  *
3749  * This does not protect us against NMI, but disable()
3750  * sets the disabled bit in the control field of event _before_
3751  * accessing the event control register. If a NMI hits, then it will
3752  * not restart the event.
3753  */
3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 				 struct task_struct *next)
3756 {
3757 	if (__this_cpu_read(perf_sched_cb_usages))
3758 		perf_pmu_sched_task(task, next, false);
3759 
3760 	if (atomic_read(&nr_switch_events))
3761 		perf_event_switch(task, next, false);
3762 
3763 	perf_event_context_sched_out(task, next);
3764 
3765 	/*
3766 	 * if cgroup events exist on this CPU, then we need
3767 	 * to check if we have to switch out PMU state.
3768 	 * cgroup event are system-wide mode only
3769 	 */
3770 	perf_cgroup_switch(next);
3771 }
3772 
3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 	const struct perf_event *le = *(const struct perf_event **)l;
3776 	const struct perf_event *re = *(const struct perf_event **)r;
3777 
3778 	return le->group_index < re->group_index;
3779 }
3780 
3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3782 
3783 static const struct min_heap_callbacks perf_min_heap = {
3784 	.less = perf_less_group_idx,
3785 	.swp = NULL,
3786 };
3787 
3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3789 {
3790 	struct perf_event **itrs = heap->data;
3791 
3792 	if (event) {
3793 		itrs[heap->nr] = event;
3794 		heap->nr++;
3795 	}
3796 }
3797 
3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3799 {
3800 	struct perf_cpu_pmu_context *cpc;
3801 
3802 	if (!pmu_ctx->ctx->task)
3803 		return;
3804 
3805 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3806 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3807 	cpc->task_epc = pmu_ctx;
3808 }
3809 
3810 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3811 				struct perf_event_groups *groups, int cpu,
3812 				struct pmu *pmu,
3813 				int (*func)(struct perf_event *, void *),
3814 				void *data)
3815 {
3816 #ifdef CONFIG_CGROUP_PERF
3817 	struct cgroup_subsys_state *css = NULL;
3818 #endif
3819 	struct perf_cpu_context *cpuctx = NULL;
3820 	/* Space for per CPU and/or any CPU event iterators. */
3821 	struct perf_event *itrs[2];
3822 	struct perf_event_min_heap event_heap;
3823 	struct perf_event **evt;
3824 	int ret;
3825 
3826 	if (pmu->filter && pmu->filter(pmu, cpu))
3827 		return 0;
3828 
3829 	if (!ctx->task) {
3830 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3831 		event_heap = (struct perf_event_min_heap){
3832 			.data = cpuctx->heap,
3833 			.nr = 0,
3834 			.size = cpuctx->heap_size,
3835 		};
3836 
3837 		lockdep_assert_held(&cpuctx->ctx.lock);
3838 
3839 #ifdef CONFIG_CGROUP_PERF
3840 		if (cpuctx->cgrp)
3841 			css = &cpuctx->cgrp->css;
3842 #endif
3843 	} else {
3844 		event_heap = (struct perf_event_min_heap){
3845 			.data = itrs,
3846 			.nr = 0,
3847 			.size = ARRAY_SIZE(itrs),
3848 		};
3849 		/* Events not within a CPU context may be on any CPU. */
3850 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3851 	}
3852 	evt = event_heap.data;
3853 
3854 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3855 
3856 #ifdef CONFIG_CGROUP_PERF
3857 	for (; css; css = css->parent)
3858 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3859 #endif
3860 
3861 	if (event_heap.nr) {
3862 		__link_epc((*evt)->pmu_ctx);
3863 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3864 	}
3865 
3866 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3867 
3868 	while (event_heap.nr) {
3869 		ret = func(*evt, data);
3870 		if (ret)
3871 			return ret;
3872 
3873 		*evt = perf_event_groups_next(*evt, pmu);
3874 		if (*evt)
3875 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3876 		else
3877 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3878 	}
3879 
3880 	return 0;
3881 }
3882 
3883 /*
3884  * Because the userpage is strictly per-event (there is no concept of context,
3885  * so there cannot be a context indirection), every userpage must be updated
3886  * when context time starts :-(
3887  *
3888  * IOW, we must not miss EVENT_TIME edges.
3889  */
3890 static inline bool event_update_userpage(struct perf_event *event)
3891 {
3892 	if (likely(!atomic_read(&event->mmap_count)))
3893 		return false;
3894 
3895 	perf_event_update_time(event);
3896 	perf_event_update_userpage(event);
3897 
3898 	return true;
3899 }
3900 
3901 static inline void group_update_userpage(struct perf_event *group_event)
3902 {
3903 	struct perf_event *event;
3904 
3905 	if (!event_update_userpage(group_event))
3906 		return;
3907 
3908 	for_each_sibling_event(event, group_event)
3909 		event_update_userpage(event);
3910 }
3911 
3912 static int merge_sched_in(struct perf_event *event, void *data)
3913 {
3914 	struct perf_event_context *ctx = event->ctx;
3915 	int *can_add_hw = data;
3916 
3917 	if (event->state <= PERF_EVENT_STATE_OFF)
3918 		return 0;
3919 
3920 	if (!event_filter_match(event))
3921 		return 0;
3922 
3923 	if (group_can_go_on(event, *can_add_hw)) {
3924 		if (!group_sched_in(event, ctx))
3925 			list_add_tail(&event->active_list, get_event_list(event));
3926 	}
3927 
3928 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3929 		*can_add_hw = 0;
3930 		if (event->attr.pinned) {
3931 			perf_cgroup_event_disable(event, ctx);
3932 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3933 		} else {
3934 			struct perf_cpu_pmu_context *cpc;
3935 
3936 			event->pmu_ctx->rotate_necessary = 1;
3937 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3938 			perf_mux_hrtimer_restart(cpc);
3939 			group_update_userpage(event);
3940 		}
3941 	}
3942 
3943 	return 0;
3944 }
3945 
3946 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3947 				struct perf_event_groups *groups,
3948 				struct pmu *pmu)
3949 {
3950 	int can_add_hw = 1;
3951 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3952 			   merge_sched_in, &can_add_hw);
3953 }
3954 
3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3956 			       enum event_type_t event_type)
3957 {
3958 	struct perf_event_context *ctx = pmu_ctx->ctx;
3959 
3960 	if (event_type & EVENT_PINNED)
3961 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3962 	if (event_type & EVENT_FLEXIBLE)
3963 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3964 }
3965 
3966 static void
3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3968 {
3969 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3970 	struct perf_event_pmu_context *pmu_ctx;
3971 	int is_active = ctx->is_active;
3972 	bool cgroup = event_type & EVENT_CGROUP;
3973 
3974 	event_type &= ~EVENT_CGROUP;
3975 
3976 	lockdep_assert_held(&ctx->lock);
3977 
3978 	if (likely(!ctx->nr_events))
3979 		return;
3980 
3981 	if (!(is_active & EVENT_TIME)) {
3982 		/* start ctx time */
3983 		__update_context_time(ctx, false);
3984 		perf_cgroup_set_timestamp(cpuctx);
3985 		/*
3986 		 * CPU-release for the below ->is_active store,
3987 		 * see __load_acquire() in perf_event_time_now()
3988 		 */
3989 		barrier();
3990 	}
3991 
3992 	ctx->is_active |= (event_type | EVENT_TIME);
3993 	if (ctx->task) {
3994 		if (!(is_active & EVENT_ALL))
3995 			cpuctx->task_ctx = ctx;
3996 		else
3997 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3998 	}
3999 
4000 	is_active ^= ctx->is_active; /* changed bits */
4001 
4002 	/*
4003 	 * First go through the list and put on any pinned groups
4004 	 * in order to give them the best chance of going on.
4005 	 */
4006 	if (is_active & EVENT_PINNED) {
4007 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4008 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4009 	}
4010 
4011 	/* Then walk through the lower prio flexible groups */
4012 	if (is_active & EVENT_FLEXIBLE) {
4013 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4014 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4015 	}
4016 }
4017 
4018 static void perf_event_context_sched_in(struct task_struct *task)
4019 {
4020 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4021 	struct perf_event_context *ctx;
4022 
4023 	rcu_read_lock();
4024 	ctx = rcu_dereference(task->perf_event_ctxp);
4025 	if (!ctx)
4026 		goto rcu_unlock;
4027 
4028 	if (cpuctx->task_ctx == ctx) {
4029 		perf_ctx_lock(cpuctx, ctx);
4030 		perf_ctx_disable(ctx, false);
4031 
4032 		perf_ctx_sched_task_cb(ctx, true);
4033 
4034 		perf_ctx_enable(ctx, false);
4035 		perf_ctx_unlock(cpuctx, ctx);
4036 		goto rcu_unlock;
4037 	}
4038 
4039 	perf_ctx_lock(cpuctx, ctx);
4040 	/*
4041 	 * We must check ctx->nr_events while holding ctx->lock, such
4042 	 * that we serialize against perf_install_in_context().
4043 	 */
4044 	if (!ctx->nr_events)
4045 		goto unlock;
4046 
4047 	perf_ctx_disable(ctx, false);
4048 	/*
4049 	 * We want to keep the following priority order:
4050 	 * cpu pinned (that don't need to move), task pinned,
4051 	 * cpu flexible, task flexible.
4052 	 *
4053 	 * However, if task's ctx is not carrying any pinned
4054 	 * events, no need to flip the cpuctx's events around.
4055 	 */
4056 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4057 		perf_ctx_disable(&cpuctx->ctx, false);
4058 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4059 	}
4060 
4061 	perf_event_sched_in(cpuctx, ctx, NULL);
4062 
4063 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4064 
4065 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4066 		perf_ctx_enable(&cpuctx->ctx, false);
4067 
4068 	perf_ctx_enable(ctx, false);
4069 
4070 unlock:
4071 	perf_ctx_unlock(cpuctx, ctx);
4072 rcu_unlock:
4073 	rcu_read_unlock();
4074 }
4075 
4076 /*
4077  * Called from scheduler to add the events of the current task
4078  * with interrupts disabled.
4079  *
4080  * We restore the event value and then enable it.
4081  *
4082  * This does not protect us against NMI, but enable()
4083  * sets the enabled bit in the control field of event _before_
4084  * accessing the event control register. If a NMI hits, then it will
4085  * keep the event running.
4086  */
4087 void __perf_event_task_sched_in(struct task_struct *prev,
4088 				struct task_struct *task)
4089 {
4090 	perf_event_context_sched_in(task);
4091 
4092 	if (atomic_read(&nr_switch_events))
4093 		perf_event_switch(task, prev, true);
4094 
4095 	if (__this_cpu_read(perf_sched_cb_usages))
4096 		perf_pmu_sched_task(prev, task, true);
4097 }
4098 
4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4100 {
4101 	u64 frequency = event->attr.sample_freq;
4102 	u64 sec = NSEC_PER_SEC;
4103 	u64 divisor, dividend;
4104 
4105 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4106 
4107 	count_fls = fls64(count);
4108 	nsec_fls = fls64(nsec);
4109 	frequency_fls = fls64(frequency);
4110 	sec_fls = 30;
4111 
4112 	/*
4113 	 * We got @count in @nsec, with a target of sample_freq HZ
4114 	 * the target period becomes:
4115 	 *
4116 	 *             @count * 10^9
4117 	 * period = -------------------
4118 	 *          @nsec * sample_freq
4119 	 *
4120 	 */
4121 
4122 	/*
4123 	 * Reduce accuracy by one bit such that @a and @b converge
4124 	 * to a similar magnitude.
4125 	 */
4126 #define REDUCE_FLS(a, b)		\
4127 do {					\
4128 	if (a##_fls > b##_fls) {	\
4129 		a >>= 1;		\
4130 		a##_fls--;		\
4131 	} else {			\
4132 		b >>= 1;		\
4133 		b##_fls--;		\
4134 	}				\
4135 } while (0)
4136 
4137 	/*
4138 	 * Reduce accuracy until either term fits in a u64, then proceed with
4139 	 * the other, so that finally we can do a u64/u64 division.
4140 	 */
4141 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4142 		REDUCE_FLS(nsec, frequency);
4143 		REDUCE_FLS(sec, count);
4144 	}
4145 
4146 	if (count_fls + sec_fls > 64) {
4147 		divisor = nsec * frequency;
4148 
4149 		while (count_fls + sec_fls > 64) {
4150 			REDUCE_FLS(count, sec);
4151 			divisor >>= 1;
4152 		}
4153 
4154 		dividend = count * sec;
4155 	} else {
4156 		dividend = count * sec;
4157 
4158 		while (nsec_fls + frequency_fls > 64) {
4159 			REDUCE_FLS(nsec, frequency);
4160 			dividend >>= 1;
4161 		}
4162 
4163 		divisor = nsec * frequency;
4164 	}
4165 
4166 	if (!divisor)
4167 		return dividend;
4168 
4169 	return div64_u64(dividend, divisor);
4170 }
4171 
4172 static DEFINE_PER_CPU(int, perf_throttled_count);
4173 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4174 
4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4176 {
4177 	struct hw_perf_event *hwc = &event->hw;
4178 	s64 period, sample_period;
4179 	s64 delta;
4180 
4181 	period = perf_calculate_period(event, nsec, count);
4182 
4183 	delta = (s64)(period - hwc->sample_period);
4184 	if (delta >= 0)
4185 		delta += 7;
4186 	else
4187 		delta -= 7;
4188 	delta /= 8; /* low pass filter */
4189 
4190 	sample_period = hwc->sample_period + delta;
4191 
4192 	if (!sample_period)
4193 		sample_period = 1;
4194 
4195 	hwc->sample_period = sample_period;
4196 
4197 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4198 		if (disable)
4199 			event->pmu->stop(event, PERF_EF_UPDATE);
4200 
4201 		local64_set(&hwc->period_left, 0);
4202 
4203 		if (disable)
4204 			event->pmu->start(event, PERF_EF_RELOAD);
4205 	}
4206 }
4207 
4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4209 {
4210 	struct perf_event *event;
4211 	struct hw_perf_event *hwc;
4212 	u64 now, period = TICK_NSEC;
4213 	s64 delta;
4214 
4215 	list_for_each_entry(event, event_list, active_list) {
4216 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4217 			continue;
4218 
4219 		// XXX use visit thingy to avoid the -1,cpu match
4220 		if (!event_filter_match(event))
4221 			continue;
4222 
4223 		hwc = &event->hw;
4224 
4225 		if (hwc->interrupts == MAX_INTERRUPTS) {
4226 			hwc->interrupts = 0;
4227 			perf_log_throttle(event, 1);
4228 			if (!event->attr.freq || !event->attr.sample_freq)
4229 				event->pmu->start(event, 0);
4230 		}
4231 
4232 		if (!event->attr.freq || !event->attr.sample_freq)
4233 			continue;
4234 
4235 		/*
4236 		 * stop the event and update event->count
4237 		 */
4238 		event->pmu->stop(event, PERF_EF_UPDATE);
4239 
4240 		now = local64_read(&event->count);
4241 		delta = now - hwc->freq_count_stamp;
4242 		hwc->freq_count_stamp = now;
4243 
4244 		/*
4245 		 * restart the event
4246 		 * reload only if value has changed
4247 		 * we have stopped the event so tell that
4248 		 * to perf_adjust_period() to avoid stopping it
4249 		 * twice.
4250 		 */
4251 		if (delta > 0)
4252 			perf_adjust_period(event, period, delta, false);
4253 
4254 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4255 	}
4256 }
4257 
4258 /*
4259  * combine freq adjustment with unthrottling to avoid two passes over the
4260  * events. At the same time, make sure, having freq events does not change
4261  * the rate of unthrottling as that would introduce bias.
4262  */
4263 static void
4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4265 {
4266 	struct perf_event_pmu_context *pmu_ctx;
4267 
4268 	/*
4269 	 * only need to iterate over all events iff:
4270 	 * - context have events in frequency mode (needs freq adjust)
4271 	 * - there are events to unthrottle on this cpu
4272 	 */
4273 	if (!(ctx->nr_freq || unthrottle))
4274 		return;
4275 
4276 	raw_spin_lock(&ctx->lock);
4277 
4278 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4279 		if (!(pmu_ctx->nr_freq || unthrottle))
4280 			continue;
4281 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4282 			continue;
4283 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4284 			continue;
4285 
4286 		perf_pmu_disable(pmu_ctx->pmu);
4287 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4288 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4289 		perf_pmu_enable(pmu_ctx->pmu);
4290 	}
4291 
4292 	raw_spin_unlock(&ctx->lock);
4293 }
4294 
4295 /*
4296  * Move @event to the tail of the @ctx's elegible events.
4297  */
4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4299 {
4300 	/*
4301 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4302 	 * disabled by the inheritance code.
4303 	 */
4304 	if (ctx->rotate_disable)
4305 		return;
4306 
4307 	perf_event_groups_delete(&ctx->flexible_groups, event);
4308 	perf_event_groups_insert(&ctx->flexible_groups, event);
4309 }
4310 
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event *
4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4314 {
4315 	struct perf_event *event;
4316 	struct rb_node *node;
4317 	struct rb_root *tree;
4318 	struct __group_key key = {
4319 		.pmu = pmu_ctx->pmu,
4320 	};
4321 
4322 	/* pick the first active flexible event */
4323 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4324 					 struct perf_event, active_list);
4325 	if (event)
4326 		goto out;
4327 
4328 	/* if no active flexible event, pick the first event */
4329 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4330 
4331 	if (!pmu_ctx->ctx->task) {
4332 		key.cpu = smp_processor_id();
4333 
4334 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4335 		if (node)
4336 			event = __node_2_pe(node);
4337 		goto out;
4338 	}
4339 
4340 	key.cpu = -1;
4341 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 	if (node) {
4343 		event = __node_2_pe(node);
4344 		goto out;
4345 	}
4346 
4347 	key.cpu = smp_processor_id();
4348 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 	if (node)
4350 		event = __node_2_pe(node);
4351 
4352 out:
4353 	/*
4354 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355 	 * finds there are unschedulable events, it will set it again.
4356 	 */
4357 	pmu_ctx->rotate_necessary = 0;
4358 
4359 	return event;
4360 }
4361 
4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4363 {
4364 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4365 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4366 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4367 	int cpu_rotate, task_rotate;
4368 	struct pmu *pmu;
4369 
4370 	/*
4371 	 * Since we run this from IRQ context, nobody can install new
4372 	 * events, thus the event count values are stable.
4373 	 */
4374 
4375 	cpu_epc = &cpc->epc;
4376 	pmu = cpu_epc->pmu;
4377 	task_epc = cpc->task_epc;
4378 
4379 	cpu_rotate = cpu_epc->rotate_necessary;
4380 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4381 
4382 	if (!(cpu_rotate || task_rotate))
4383 		return false;
4384 
4385 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4386 	perf_pmu_disable(pmu);
4387 
4388 	if (task_rotate)
4389 		task_event = ctx_event_to_rotate(task_epc);
4390 	if (cpu_rotate)
4391 		cpu_event = ctx_event_to_rotate(cpu_epc);
4392 
4393 	/*
4394 	 * As per the order given at ctx_resched() first 'pop' task flexible
4395 	 * and then, if needed CPU flexible.
4396 	 */
4397 	if (task_event || (task_epc && cpu_event)) {
4398 		update_context_time(task_epc->ctx);
4399 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4400 	}
4401 
4402 	if (cpu_event) {
4403 		update_context_time(&cpuctx->ctx);
4404 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4405 		rotate_ctx(&cpuctx->ctx, cpu_event);
4406 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4407 	}
4408 
4409 	if (task_event)
4410 		rotate_ctx(task_epc->ctx, task_event);
4411 
4412 	if (task_event || (task_epc && cpu_event))
4413 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4414 
4415 	perf_pmu_enable(pmu);
4416 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4417 
4418 	return true;
4419 }
4420 
4421 void perf_event_task_tick(void)
4422 {
4423 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4424 	struct perf_event_context *ctx;
4425 	int throttled;
4426 
4427 	lockdep_assert_irqs_disabled();
4428 
4429 	__this_cpu_inc(perf_throttled_seq);
4430 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4431 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4432 
4433 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4434 
4435 	rcu_read_lock();
4436 	ctx = rcu_dereference(current->perf_event_ctxp);
4437 	if (ctx)
4438 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4439 	rcu_read_unlock();
4440 }
4441 
4442 static int event_enable_on_exec(struct perf_event *event,
4443 				struct perf_event_context *ctx)
4444 {
4445 	if (!event->attr.enable_on_exec)
4446 		return 0;
4447 
4448 	event->attr.enable_on_exec = 0;
4449 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4450 		return 0;
4451 
4452 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4453 
4454 	return 1;
4455 }
4456 
4457 /*
4458  * Enable all of a task's events that have been marked enable-on-exec.
4459  * This expects task == current.
4460  */
4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4462 {
4463 	struct perf_event_context *clone_ctx = NULL;
4464 	enum event_type_t event_type = 0;
4465 	struct perf_cpu_context *cpuctx;
4466 	struct perf_event *event;
4467 	unsigned long flags;
4468 	int enabled = 0;
4469 
4470 	local_irq_save(flags);
4471 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4472 		goto out;
4473 
4474 	if (!ctx->nr_events)
4475 		goto out;
4476 
4477 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4478 	perf_ctx_lock(cpuctx, ctx);
4479 	ctx_time_freeze(cpuctx, ctx);
4480 
4481 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4482 		enabled |= event_enable_on_exec(event, ctx);
4483 		event_type |= get_event_type(event);
4484 	}
4485 
4486 	/*
4487 	 * Unclone and reschedule this context if we enabled any event.
4488 	 */
4489 	if (enabled) {
4490 		clone_ctx = unclone_ctx(ctx);
4491 		ctx_resched(cpuctx, ctx, NULL, event_type);
4492 	}
4493 	perf_ctx_unlock(cpuctx, ctx);
4494 
4495 out:
4496 	local_irq_restore(flags);
4497 
4498 	if (clone_ctx)
4499 		put_ctx(clone_ctx);
4500 }
4501 
4502 static void perf_remove_from_owner(struct perf_event *event);
4503 static void perf_event_exit_event(struct perf_event *event,
4504 				  struct perf_event_context *ctx);
4505 
4506 /*
4507  * Removes all events from the current task that have been marked
4508  * remove-on-exec, and feeds their values back to parent events.
4509  */
4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4511 {
4512 	struct perf_event_context *clone_ctx = NULL;
4513 	struct perf_event *event, *next;
4514 	unsigned long flags;
4515 	bool modified = false;
4516 
4517 	mutex_lock(&ctx->mutex);
4518 
4519 	if (WARN_ON_ONCE(ctx->task != current))
4520 		goto unlock;
4521 
4522 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4523 		if (!event->attr.remove_on_exec)
4524 			continue;
4525 
4526 		if (!is_kernel_event(event))
4527 			perf_remove_from_owner(event);
4528 
4529 		modified = true;
4530 
4531 		perf_event_exit_event(event, ctx);
4532 	}
4533 
4534 	raw_spin_lock_irqsave(&ctx->lock, flags);
4535 	if (modified)
4536 		clone_ctx = unclone_ctx(ctx);
4537 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4538 
4539 unlock:
4540 	mutex_unlock(&ctx->mutex);
4541 
4542 	if (clone_ctx)
4543 		put_ctx(clone_ctx);
4544 }
4545 
4546 struct perf_read_data {
4547 	struct perf_event *event;
4548 	bool group;
4549 	int ret;
4550 };
4551 
4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4553 
4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4555 {
4556 	int local_cpu = smp_processor_id();
4557 	u16 local_pkg, event_pkg;
4558 
4559 	if ((unsigned)event_cpu >= nr_cpu_ids)
4560 		return event_cpu;
4561 
4562 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4563 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4564 
4565 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4566 			return local_cpu;
4567 	}
4568 
4569 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4570 		event_pkg = topology_physical_package_id(event_cpu);
4571 		local_pkg = topology_physical_package_id(local_cpu);
4572 
4573 		if (event_pkg == local_pkg)
4574 			return local_cpu;
4575 	}
4576 
4577 	return event_cpu;
4578 }
4579 
4580 /*
4581  * Cross CPU call to read the hardware event
4582  */
4583 static void __perf_event_read(void *info)
4584 {
4585 	struct perf_read_data *data = info;
4586 	struct perf_event *sub, *event = data->event;
4587 	struct perf_event_context *ctx = event->ctx;
4588 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589 	struct pmu *pmu = event->pmu;
4590 
4591 	/*
4592 	 * If this is a task context, we need to check whether it is
4593 	 * the current task context of this cpu.  If not it has been
4594 	 * scheduled out before the smp call arrived.  In that case
4595 	 * event->count would have been updated to a recent sample
4596 	 * when the event was scheduled out.
4597 	 */
4598 	if (ctx->task && cpuctx->task_ctx != ctx)
4599 		return;
4600 
4601 	raw_spin_lock(&ctx->lock);
4602 	ctx_time_update_event(ctx, event);
4603 
4604 	perf_event_update_time(event);
4605 	if (data->group)
4606 		perf_event_update_sibling_time(event);
4607 
4608 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4609 		goto unlock;
4610 
4611 	if (!data->group) {
4612 		pmu->read(event);
4613 		data->ret = 0;
4614 		goto unlock;
4615 	}
4616 
4617 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4618 
4619 	pmu->read(event);
4620 
4621 	for_each_sibling_event(sub, event) {
4622 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4623 			/*
4624 			 * Use sibling's PMU rather than @event's since
4625 			 * sibling could be on different (eg: software) PMU.
4626 			 */
4627 			sub->pmu->read(sub);
4628 		}
4629 	}
4630 
4631 	data->ret = pmu->commit_txn(pmu);
4632 
4633 unlock:
4634 	raw_spin_unlock(&ctx->lock);
4635 }
4636 
4637 static inline u64 perf_event_count(struct perf_event *event, bool self)
4638 {
4639 	if (self)
4640 		return local64_read(&event->count);
4641 
4642 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4643 }
4644 
4645 static void calc_timer_values(struct perf_event *event,
4646 				u64 *now,
4647 				u64 *enabled,
4648 				u64 *running)
4649 {
4650 	u64 ctx_time;
4651 
4652 	*now = perf_clock();
4653 	ctx_time = perf_event_time_now(event, *now);
4654 	__perf_update_times(event, ctx_time, enabled, running);
4655 }
4656 
4657 /*
4658  * NMI-safe method to read a local event, that is an event that
4659  * is:
4660  *   - either for the current task, or for this CPU
4661  *   - does not have inherit set, for inherited task events
4662  *     will not be local and we cannot read them atomically
4663  *   - must not have a pmu::count method
4664  */
4665 int perf_event_read_local(struct perf_event *event, u64 *value,
4666 			  u64 *enabled, u64 *running)
4667 {
4668 	unsigned long flags;
4669 	int event_oncpu;
4670 	int event_cpu;
4671 	int ret = 0;
4672 
4673 	/*
4674 	 * Disabling interrupts avoids all counter scheduling (context
4675 	 * switches, timer based rotation and IPIs).
4676 	 */
4677 	local_irq_save(flags);
4678 
4679 	/*
4680 	 * It must not be an event with inherit set, we cannot read
4681 	 * all child counters from atomic context.
4682 	 */
4683 	if (event->attr.inherit) {
4684 		ret = -EOPNOTSUPP;
4685 		goto out;
4686 	}
4687 
4688 	/* If this is a per-task event, it must be for current */
4689 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4690 	    event->hw.target != current) {
4691 		ret = -EINVAL;
4692 		goto out;
4693 	}
4694 
4695 	/*
4696 	 * Get the event CPU numbers, and adjust them to local if the event is
4697 	 * a per-package event that can be read locally
4698 	 */
4699 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4700 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4701 
4702 	/* If this is a per-CPU event, it must be for this CPU */
4703 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4704 	    event_cpu != smp_processor_id()) {
4705 		ret = -EINVAL;
4706 		goto out;
4707 	}
4708 
4709 	/* If this is a pinned event it must be running on this CPU */
4710 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4711 		ret = -EBUSY;
4712 		goto out;
4713 	}
4714 
4715 	/*
4716 	 * If the event is currently on this CPU, its either a per-task event,
4717 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4718 	 * oncpu == -1).
4719 	 */
4720 	if (event_oncpu == smp_processor_id())
4721 		event->pmu->read(event);
4722 
4723 	*value = local64_read(&event->count);
4724 	if (enabled || running) {
4725 		u64 __enabled, __running, __now;
4726 
4727 		calc_timer_values(event, &__now, &__enabled, &__running);
4728 		if (enabled)
4729 			*enabled = __enabled;
4730 		if (running)
4731 			*running = __running;
4732 	}
4733 out:
4734 	local_irq_restore(flags);
4735 
4736 	return ret;
4737 }
4738 
4739 static int perf_event_read(struct perf_event *event, bool group)
4740 {
4741 	enum perf_event_state state = READ_ONCE(event->state);
4742 	int event_cpu, ret = 0;
4743 
4744 	/*
4745 	 * If event is enabled and currently active on a CPU, update the
4746 	 * value in the event structure:
4747 	 */
4748 again:
4749 	if (state == PERF_EVENT_STATE_ACTIVE) {
4750 		struct perf_read_data data;
4751 
4752 		/*
4753 		 * Orders the ->state and ->oncpu loads such that if we see
4754 		 * ACTIVE we must also see the right ->oncpu.
4755 		 *
4756 		 * Matches the smp_wmb() from event_sched_in().
4757 		 */
4758 		smp_rmb();
4759 
4760 		event_cpu = READ_ONCE(event->oncpu);
4761 		if ((unsigned)event_cpu >= nr_cpu_ids)
4762 			return 0;
4763 
4764 		data = (struct perf_read_data){
4765 			.event = event,
4766 			.group = group,
4767 			.ret = 0,
4768 		};
4769 
4770 		preempt_disable();
4771 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4772 
4773 		/*
4774 		 * Purposely ignore the smp_call_function_single() return
4775 		 * value.
4776 		 *
4777 		 * If event_cpu isn't a valid CPU it means the event got
4778 		 * scheduled out and that will have updated the event count.
4779 		 *
4780 		 * Therefore, either way, we'll have an up-to-date event count
4781 		 * after this.
4782 		 */
4783 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4784 		preempt_enable();
4785 		ret = data.ret;
4786 
4787 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4788 		struct perf_event_context *ctx = event->ctx;
4789 		unsigned long flags;
4790 
4791 		raw_spin_lock_irqsave(&ctx->lock, flags);
4792 		state = event->state;
4793 		if (state != PERF_EVENT_STATE_INACTIVE) {
4794 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795 			goto again;
4796 		}
4797 
4798 		/*
4799 		 * May read while context is not active (e.g., thread is
4800 		 * blocked), in that case we cannot update context time
4801 		 */
4802 		ctx_time_update_event(ctx, event);
4803 
4804 		perf_event_update_time(event);
4805 		if (group)
4806 			perf_event_update_sibling_time(event);
4807 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4808 	}
4809 
4810 	return ret;
4811 }
4812 
4813 /*
4814  * Initialize the perf_event context in a task_struct:
4815  */
4816 static void __perf_event_init_context(struct perf_event_context *ctx)
4817 {
4818 	raw_spin_lock_init(&ctx->lock);
4819 	mutex_init(&ctx->mutex);
4820 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4821 	perf_event_groups_init(&ctx->pinned_groups);
4822 	perf_event_groups_init(&ctx->flexible_groups);
4823 	INIT_LIST_HEAD(&ctx->event_list);
4824 	refcount_set(&ctx->refcount, 1);
4825 }
4826 
4827 static void
4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4829 {
4830 	epc->pmu = pmu;
4831 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4832 	INIT_LIST_HEAD(&epc->pinned_active);
4833 	INIT_LIST_HEAD(&epc->flexible_active);
4834 	atomic_set(&epc->refcount, 1);
4835 }
4836 
4837 static struct perf_event_context *
4838 alloc_perf_context(struct task_struct *task)
4839 {
4840 	struct perf_event_context *ctx;
4841 
4842 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4843 	if (!ctx)
4844 		return NULL;
4845 
4846 	__perf_event_init_context(ctx);
4847 	if (task)
4848 		ctx->task = get_task_struct(task);
4849 
4850 	return ctx;
4851 }
4852 
4853 static struct task_struct *
4854 find_lively_task_by_vpid(pid_t vpid)
4855 {
4856 	struct task_struct *task;
4857 
4858 	rcu_read_lock();
4859 	if (!vpid)
4860 		task = current;
4861 	else
4862 		task = find_task_by_vpid(vpid);
4863 	if (task)
4864 		get_task_struct(task);
4865 	rcu_read_unlock();
4866 
4867 	if (!task)
4868 		return ERR_PTR(-ESRCH);
4869 
4870 	return task;
4871 }
4872 
4873 /*
4874  * Returns a matching context with refcount and pincount.
4875  */
4876 static struct perf_event_context *
4877 find_get_context(struct task_struct *task, struct perf_event *event)
4878 {
4879 	struct perf_event_context *ctx, *clone_ctx = NULL;
4880 	struct perf_cpu_context *cpuctx;
4881 	unsigned long flags;
4882 	int err;
4883 
4884 	if (!task) {
4885 		/* Must be root to operate on a CPU event: */
4886 		err = perf_allow_cpu(&event->attr);
4887 		if (err)
4888 			return ERR_PTR(err);
4889 
4890 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4891 		ctx = &cpuctx->ctx;
4892 		get_ctx(ctx);
4893 		raw_spin_lock_irqsave(&ctx->lock, flags);
4894 		++ctx->pin_count;
4895 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4896 
4897 		return ctx;
4898 	}
4899 
4900 	err = -EINVAL;
4901 retry:
4902 	ctx = perf_lock_task_context(task, &flags);
4903 	if (ctx) {
4904 		clone_ctx = unclone_ctx(ctx);
4905 		++ctx->pin_count;
4906 
4907 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4908 
4909 		if (clone_ctx)
4910 			put_ctx(clone_ctx);
4911 	} else {
4912 		ctx = alloc_perf_context(task);
4913 		err = -ENOMEM;
4914 		if (!ctx)
4915 			goto errout;
4916 
4917 		err = 0;
4918 		mutex_lock(&task->perf_event_mutex);
4919 		/*
4920 		 * If it has already passed perf_event_exit_task().
4921 		 * we must see PF_EXITING, it takes this mutex too.
4922 		 */
4923 		if (task->flags & PF_EXITING)
4924 			err = -ESRCH;
4925 		else if (task->perf_event_ctxp)
4926 			err = -EAGAIN;
4927 		else {
4928 			get_ctx(ctx);
4929 			++ctx->pin_count;
4930 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4931 		}
4932 		mutex_unlock(&task->perf_event_mutex);
4933 
4934 		if (unlikely(err)) {
4935 			put_ctx(ctx);
4936 
4937 			if (err == -EAGAIN)
4938 				goto retry;
4939 			goto errout;
4940 		}
4941 	}
4942 
4943 	return ctx;
4944 
4945 errout:
4946 	return ERR_PTR(err);
4947 }
4948 
4949 static struct perf_event_pmu_context *
4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4951 		     struct perf_event *event)
4952 {
4953 	struct perf_event_pmu_context *new = NULL, *epc;
4954 	void *task_ctx_data = NULL;
4955 
4956 	if (!ctx->task) {
4957 		/*
4958 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959 		 * relies on the fact that find_get_pmu_context() cannot fail
4960 		 * for CPU contexts.
4961 		 */
4962 		struct perf_cpu_pmu_context *cpc;
4963 
4964 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4965 		epc = &cpc->epc;
4966 		raw_spin_lock_irq(&ctx->lock);
4967 		if (!epc->ctx) {
4968 			atomic_set(&epc->refcount, 1);
4969 			epc->embedded = 1;
4970 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4971 			epc->ctx = ctx;
4972 		} else {
4973 			WARN_ON_ONCE(epc->ctx != ctx);
4974 			atomic_inc(&epc->refcount);
4975 		}
4976 		raw_spin_unlock_irq(&ctx->lock);
4977 		return epc;
4978 	}
4979 
4980 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4981 	if (!new)
4982 		return ERR_PTR(-ENOMEM);
4983 
4984 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4985 		task_ctx_data = alloc_task_ctx_data(pmu);
4986 		if (!task_ctx_data) {
4987 			kfree(new);
4988 			return ERR_PTR(-ENOMEM);
4989 		}
4990 	}
4991 
4992 	__perf_init_event_pmu_context(new, pmu);
4993 
4994 	/*
4995 	 * XXX
4996 	 *
4997 	 * lockdep_assert_held(&ctx->mutex);
4998 	 *
4999 	 * can't because perf_event_init_task() doesn't actually hold the
5000 	 * child_ctx->mutex.
5001 	 */
5002 
5003 	raw_spin_lock_irq(&ctx->lock);
5004 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5005 		if (epc->pmu == pmu) {
5006 			WARN_ON_ONCE(epc->ctx != ctx);
5007 			atomic_inc(&epc->refcount);
5008 			goto found_epc;
5009 		}
5010 	}
5011 
5012 	epc = new;
5013 	new = NULL;
5014 
5015 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5016 	epc->ctx = ctx;
5017 
5018 found_epc:
5019 	if (task_ctx_data && !epc->task_ctx_data) {
5020 		epc->task_ctx_data = task_ctx_data;
5021 		task_ctx_data = NULL;
5022 		ctx->nr_task_data++;
5023 	}
5024 	raw_spin_unlock_irq(&ctx->lock);
5025 
5026 	free_task_ctx_data(pmu, task_ctx_data);
5027 	kfree(new);
5028 
5029 	return epc;
5030 }
5031 
5032 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5033 {
5034 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5035 }
5036 
5037 static void free_epc_rcu(struct rcu_head *head)
5038 {
5039 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5040 
5041 	kfree(epc->task_ctx_data);
5042 	kfree(epc);
5043 }
5044 
5045 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5046 {
5047 	struct perf_event_context *ctx = epc->ctx;
5048 	unsigned long flags;
5049 
5050 	/*
5051 	 * XXX
5052 	 *
5053 	 * lockdep_assert_held(&ctx->mutex);
5054 	 *
5055 	 * can't because of the call-site in _free_event()/put_event()
5056 	 * which isn't always called under ctx->mutex.
5057 	 */
5058 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5059 		return;
5060 
5061 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5062 
5063 	list_del_init(&epc->pmu_ctx_entry);
5064 	epc->ctx = NULL;
5065 
5066 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5067 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5068 
5069 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5070 
5071 	if (epc->embedded)
5072 		return;
5073 
5074 	call_rcu(&epc->rcu_head, free_epc_rcu);
5075 }
5076 
5077 static void perf_event_free_filter(struct perf_event *event);
5078 
5079 static void free_event_rcu(struct rcu_head *head)
5080 {
5081 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5082 
5083 	if (event->ns)
5084 		put_pid_ns(event->ns);
5085 	perf_event_free_filter(event);
5086 	kmem_cache_free(perf_event_cache, event);
5087 }
5088 
5089 static void ring_buffer_attach(struct perf_event *event,
5090 			       struct perf_buffer *rb);
5091 
5092 static void detach_sb_event(struct perf_event *event)
5093 {
5094 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5095 
5096 	raw_spin_lock(&pel->lock);
5097 	list_del_rcu(&event->sb_list);
5098 	raw_spin_unlock(&pel->lock);
5099 }
5100 
5101 static bool is_sb_event(struct perf_event *event)
5102 {
5103 	struct perf_event_attr *attr = &event->attr;
5104 
5105 	if (event->parent)
5106 		return false;
5107 
5108 	if (event->attach_state & PERF_ATTACH_TASK)
5109 		return false;
5110 
5111 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5112 	    attr->comm || attr->comm_exec ||
5113 	    attr->task || attr->ksymbol ||
5114 	    attr->context_switch || attr->text_poke ||
5115 	    attr->bpf_event)
5116 		return true;
5117 	return false;
5118 }
5119 
5120 static void unaccount_pmu_sb_event(struct perf_event *event)
5121 {
5122 	if (is_sb_event(event))
5123 		detach_sb_event(event);
5124 }
5125 
5126 #ifdef CONFIG_NO_HZ_FULL
5127 static DEFINE_SPINLOCK(nr_freq_lock);
5128 #endif
5129 
5130 static void unaccount_freq_event_nohz(void)
5131 {
5132 #ifdef CONFIG_NO_HZ_FULL
5133 	spin_lock(&nr_freq_lock);
5134 	if (atomic_dec_and_test(&nr_freq_events))
5135 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5136 	spin_unlock(&nr_freq_lock);
5137 #endif
5138 }
5139 
5140 static void unaccount_freq_event(void)
5141 {
5142 	if (tick_nohz_full_enabled())
5143 		unaccount_freq_event_nohz();
5144 	else
5145 		atomic_dec(&nr_freq_events);
5146 }
5147 
5148 static void unaccount_event(struct perf_event *event)
5149 {
5150 	bool dec = false;
5151 
5152 	if (event->parent)
5153 		return;
5154 
5155 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5156 		dec = true;
5157 	if (event->attr.mmap || event->attr.mmap_data)
5158 		atomic_dec(&nr_mmap_events);
5159 	if (event->attr.build_id)
5160 		atomic_dec(&nr_build_id_events);
5161 	if (event->attr.comm)
5162 		atomic_dec(&nr_comm_events);
5163 	if (event->attr.namespaces)
5164 		atomic_dec(&nr_namespaces_events);
5165 	if (event->attr.cgroup)
5166 		atomic_dec(&nr_cgroup_events);
5167 	if (event->attr.task)
5168 		atomic_dec(&nr_task_events);
5169 	if (event->attr.freq)
5170 		unaccount_freq_event();
5171 	if (event->attr.context_switch) {
5172 		dec = true;
5173 		atomic_dec(&nr_switch_events);
5174 	}
5175 	if (is_cgroup_event(event))
5176 		dec = true;
5177 	if (has_branch_stack(event))
5178 		dec = true;
5179 	if (event->attr.ksymbol)
5180 		atomic_dec(&nr_ksymbol_events);
5181 	if (event->attr.bpf_event)
5182 		atomic_dec(&nr_bpf_events);
5183 	if (event->attr.text_poke)
5184 		atomic_dec(&nr_text_poke_events);
5185 
5186 	if (dec) {
5187 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5188 			schedule_delayed_work(&perf_sched_work, HZ);
5189 	}
5190 
5191 	unaccount_pmu_sb_event(event);
5192 }
5193 
5194 static void perf_sched_delayed(struct work_struct *work)
5195 {
5196 	mutex_lock(&perf_sched_mutex);
5197 	if (atomic_dec_and_test(&perf_sched_count))
5198 		static_branch_disable(&perf_sched_events);
5199 	mutex_unlock(&perf_sched_mutex);
5200 }
5201 
5202 /*
5203  * The following implement mutual exclusion of events on "exclusive" pmus
5204  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5205  * at a time, so we disallow creating events that might conflict, namely:
5206  *
5207  *  1) cpu-wide events in the presence of per-task events,
5208  *  2) per-task events in the presence of cpu-wide events,
5209  *  3) two matching events on the same perf_event_context.
5210  *
5211  * The former two cases are handled in the allocation path (perf_event_alloc(),
5212  * _free_event()), the latter -- before the first perf_install_in_context().
5213  */
5214 static int exclusive_event_init(struct perf_event *event)
5215 {
5216 	struct pmu *pmu = event->pmu;
5217 
5218 	if (!is_exclusive_pmu(pmu))
5219 		return 0;
5220 
5221 	/*
5222 	 * Prevent co-existence of per-task and cpu-wide events on the
5223 	 * same exclusive pmu.
5224 	 *
5225 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5226 	 * events on this "exclusive" pmu, positive means there are
5227 	 * per-task events.
5228 	 *
5229 	 * Since this is called in perf_event_alloc() path, event::ctx
5230 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5231 	 * to mean "per-task event", because unlike other attach states it
5232 	 * never gets cleared.
5233 	 */
5234 	if (event->attach_state & PERF_ATTACH_TASK) {
5235 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5236 			return -EBUSY;
5237 	} else {
5238 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5239 			return -EBUSY;
5240 	}
5241 
5242 	return 0;
5243 }
5244 
5245 static void exclusive_event_destroy(struct perf_event *event)
5246 {
5247 	struct pmu *pmu = event->pmu;
5248 
5249 	if (!is_exclusive_pmu(pmu))
5250 		return;
5251 
5252 	/* see comment in exclusive_event_init() */
5253 	if (event->attach_state & PERF_ATTACH_TASK)
5254 		atomic_dec(&pmu->exclusive_cnt);
5255 	else
5256 		atomic_inc(&pmu->exclusive_cnt);
5257 }
5258 
5259 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5260 {
5261 	if ((e1->pmu == e2->pmu) &&
5262 	    (e1->cpu == e2->cpu ||
5263 	     e1->cpu == -1 ||
5264 	     e2->cpu == -1))
5265 		return true;
5266 	return false;
5267 }
5268 
5269 static bool exclusive_event_installable(struct perf_event *event,
5270 					struct perf_event_context *ctx)
5271 {
5272 	struct perf_event *iter_event;
5273 	struct pmu *pmu = event->pmu;
5274 
5275 	lockdep_assert_held(&ctx->mutex);
5276 
5277 	if (!is_exclusive_pmu(pmu))
5278 		return true;
5279 
5280 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5281 		if (exclusive_event_match(iter_event, event))
5282 			return false;
5283 	}
5284 
5285 	return true;
5286 }
5287 
5288 static void perf_addr_filters_splice(struct perf_event *event,
5289 				       struct list_head *head);
5290 
5291 static void perf_pending_task_sync(struct perf_event *event)
5292 {
5293 	struct callback_head *head = &event->pending_task;
5294 
5295 	if (!event->pending_work)
5296 		return;
5297 	/*
5298 	 * If the task is queued to the current task's queue, we
5299 	 * obviously can't wait for it to complete. Simply cancel it.
5300 	 */
5301 	if (task_work_cancel(current, head)) {
5302 		event->pending_work = 0;
5303 		local_dec(&event->ctx->nr_no_switch_fast);
5304 		return;
5305 	}
5306 
5307 	/*
5308 	 * All accesses related to the event are within the same RCU section in
5309 	 * perf_pending_task(). The RCU grace period before the event is freed
5310 	 * will make sure all those accesses are complete by then.
5311 	 */
5312 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5313 }
5314 
5315 static void _free_event(struct perf_event *event)
5316 {
5317 	irq_work_sync(&event->pending_irq);
5318 	irq_work_sync(&event->pending_disable_irq);
5319 	perf_pending_task_sync(event);
5320 
5321 	unaccount_event(event);
5322 
5323 	security_perf_event_free(event);
5324 
5325 	if (event->rb) {
5326 		/*
5327 		 * Can happen when we close an event with re-directed output.
5328 		 *
5329 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5330 		 * over us; possibly making our ring_buffer_put() the last.
5331 		 */
5332 		mutex_lock(&event->mmap_mutex);
5333 		ring_buffer_attach(event, NULL);
5334 		mutex_unlock(&event->mmap_mutex);
5335 	}
5336 
5337 	if (is_cgroup_event(event))
5338 		perf_detach_cgroup(event);
5339 
5340 	if (!event->parent) {
5341 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5342 			put_callchain_buffers();
5343 	}
5344 
5345 	perf_event_free_bpf_prog(event);
5346 	perf_addr_filters_splice(event, NULL);
5347 	kfree(event->addr_filter_ranges);
5348 
5349 	if (event->destroy)
5350 		event->destroy(event);
5351 
5352 	/*
5353 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5354 	 * hw.target.
5355 	 */
5356 	if (event->hw.target)
5357 		put_task_struct(event->hw.target);
5358 
5359 	if (event->pmu_ctx)
5360 		put_pmu_ctx(event->pmu_ctx);
5361 
5362 	/*
5363 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5364 	 * all task references must be cleaned up.
5365 	 */
5366 	if (event->ctx)
5367 		put_ctx(event->ctx);
5368 
5369 	exclusive_event_destroy(event);
5370 	module_put(event->pmu->module);
5371 
5372 	call_rcu(&event->rcu_head, free_event_rcu);
5373 }
5374 
5375 /*
5376  * Used to free events which have a known refcount of 1, such as in error paths
5377  * where the event isn't exposed yet and inherited events.
5378  */
5379 static void free_event(struct perf_event *event)
5380 {
5381 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5382 				"unexpected event refcount: %ld; ptr=%p\n",
5383 				atomic_long_read(&event->refcount), event)) {
5384 		/* leak to avoid use-after-free */
5385 		return;
5386 	}
5387 
5388 	_free_event(event);
5389 }
5390 
5391 /*
5392  * Remove user event from the owner task.
5393  */
5394 static void perf_remove_from_owner(struct perf_event *event)
5395 {
5396 	struct task_struct *owner;
5397 
5398 	rcu_read_lock();
5399 	/*
5400 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5401 	 * observe !owner it means the list deletion is complete and we can
5402 	 * indeed free this event, otherwise we need to serialize on
5403 	 * owner->perf_event_mutex.
5404 	 */
5405 	owner = READ_ONCE(event->owner);
5406 	if (owner) {
5407 		/*
5408 		 * Since delayed_put_task_struct() also drops the last
5409 		 * task reference we can safely take a new reference
5410 		 * while holding the rcu_read_lock().
5411 		 */
5412 		get_task_struct(owner);
5413 	}
5414 	rcu_read_unlock();
5415 
5416 	if (owner) {
5417 		/*
5418 		 * If we're here through perf_event_exit_task() we're already
5419 		 * holding ctx->mutex which would be an inversion wrt. the
5420 		 * normal lock order.
5421 		 *
5422 		 * However we can safely take this lock because its the child
5423 		 * ctx->mutex.
5424 		 */
5425 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5426 
5427 		/*
5428 		 * We have to re-check the event->owner field, if it is cleared
5429 		 * we raced with perf_event_exit_task(), acquiring the mutex
5430 		 * ensured they're done, and we can proceed with freeing the
5431 		 * event.
5432 		 */
5433 		if (event->owner) {
5434 			list_del_init(&event->owner_entry);
5435 			smp_store_release(&event->owner, NULL);
5436 		}
5437 		mutex_unlock(&owner->perf_event_mutex);
5438 		put_task_struct(owner);
5439 	}
5440 }
5441 
5442 static void put_event(struct perf_event *event)
5443 {
5444 	if (!atomic_long_dec_and_test(&event->refcount))
5445 		return;
5446 
5447 	_free_event(event);
5448 }
5449 
5450 /*
5451  * Kill an event dead; while event:refcount will preserve the event
5452  * object, it will not preserve its functionality. Once the last 'user'
5453  * gives up the object, we'll destroy the thing.
5454  */
5455 int perf_event_release_kernel(struct perf_event *event)
5456 {
5457 	struct perf_event_context *ctx = event->ctx;
5458 	struct perf_event *child, *tmp;
5459 	LIST_HEAD(free_list);
5460 
5461 	/*
5462 	 * If we got here through err_alloc: free_event(event); we will not
5463 	 * have attached to a context yet.
5464 	 */
5465 	if (!ctx) {
5466 		WARN_ON_ONCE(event->attach_state &
5467 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5468 		goto no_ctx;
5469 	}
5470 
5471 	if (!is_kernel_event(event))
5472 		perf_remove_from_owner(event);
5473 
5474 	ctx = perf_event_ctx_lock(event);
5475 	WARN_ON_ONCE(ctx->parent_ctx);
5476 
5477 	/*
5478 	 * Mark this event as STATE_DEAD, there is no external reference to it
5479 	 * anymore.
5480 	 *
5481 	 * Anybody acquiring event->child_mutex after the below loop _must_
5482 	 * also see this, most importantly inherit_event() which will avoid
5483 	 * placing more children on the list.
5484 	 *
5485 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5486 	 * child events.
5487 	 */
5488 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5489 
5490 	perf_event_ctx_unlock(event, ctx);
5491 
5492 again:
5493 	mutex_lock(&event->child_mutex);
5494 	list_for_each_entry(child, &event->child_list, child_list) {
5495 		void *var = NULL;
5496 
5497 		/*
5498 		 * Cannot change, child events are not migrated, see the
5499 		 * comment with perf_event_ctx_lock_nested().
5500 		 */
5501 		ctx = READ_ONCE(child->ctx);
5502 		/*
5503 		 * Since child_mutex nests inside ctx::mutex, we must jump
5504 		 * through hoops. We start by grabbing a reference on the ctx.
5505 		 *
5506 		 * Since the event cannot get freed while we hold the
5507 		 * child_mutex, the context must also exist and have a !0
5508 		 * reference count.
5509 		 */
5510 		get_ctx(ctx);
5511 
5512 		/*
5513 		 * Now that we have a ctx ref, we can drop child_mutex, and
5514 		 * acquire ctx::mutex without fear of it going away. Then we
5515 		 * can re-acquire child_mutex.
5516 		 */
5517 		mutex_unlock(&event->child_mutex);
5518 		mutex_lock(&ctx->mutex);
5519 		mutex_lock(&event->child_mutex);
5520 
5521 		/*
5522 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5523 		 * state, if child is still the first entry, it didn't get freed
5524 		 * and we can continue doing so.
5525 		 */
5526 		tmp = list_first_entry_or_null(&event->child_list,
5527 					       struct perf_event, child_list);
5528 		if (tmp == child) {
5529 			perf_remove_from_context(child, DETACH_GROUP);
5530 			list_move(&child->child_list, &free_list);
5531 			/*
5532 			 * This matches the refcount bump in inherit_event();
5533 			 * this can't be the last reference.
5534 			 */
5535 			put_event(event);
5536 		} else {
5537 			var = &ctx->refcount;
5538 		}
5539 
5540 		mutex_unlock(&event->child_mutex);
5541 		mutex_unlock(&ctx->mutex);
5542 		put_ctx(ctx);
5543 
5544 		if (var) {
5545 			/*
5546 			 * If perf_event_free_task() has deleted all events from the
5547 			 * ctx while the child_mutex got released above, make sure to
5548 			 * notify about the preceding put_ctx().
5549 			 */
5550 			smp_mb(); /* pairs with wait_var_event() */
5551 			wake_up_var(var);
5552 		}
5553 		goto again;
5554 	}
5555 	mutex_unlock(&event->child_mutex);
5556 
5557 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5558 		void *var = &child->ctx->refcount;
5559 
5560 		list_del(&child->child_list);
5561 		free_event(child);
5562 
5563 		/*
5564 		 * Wake any perf_event_free_task() waiting for this event to be
5565 		 * freed.
5566 		 */
5567 		smp_mb(); /* pairs with wait_var_event() */
5568 		wake_up_var(var);
5569 	}
5570 
5571 no_ctx:
5572 	put_event(event); /* Must be the 'last' reference */
5573 	return 0;
5574 }
5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5576 
5577 /*
5578  * Called when the last reference to the file is gone.
5579  */
5580 static int perf_release(struct inode *inode, struct file *file)
5581 {
5582 	perf_event_release_kernel(file->private_data);
5583 	return 0;
5584 }
5585 
5586 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5587 {
5588 	struct perf_event *child;
5589 	u64 total = 0;
5590 
5591 	*enabled = 0;
5592 	*running = 0;
5593 
5594 	mutex_lock(&event->child_mutex);
5595 
5596 	(void)perf_event_read(event, false);
5597 	total += perf_event_count(event, false);
5598 
5599 	*enabled += event->total_time_enabled +
5600 			atomic64_read(&event->child_total_time_enabled);
5601 	*running += event->total_time_running +
5602 			atomic64_read(&event->child_total_time_running);
5603 
5604 	list_for_each_entry(child, &event->child_list, child_list) {
5605 		(void)perf_event_read(child, false);
5606 		total += perf_event_count(child, false);
5607 		*enabled += child->total_time_enabled;
5608 		*running += child->total_time_running;
5609 	}
5610 	mutex_unlock(&event->child_mutex);
5611 
5612 	return total;
5613 }
5614 
5615 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5616 {
5617 	struct perf_event_context *ctx;
5618 	u64 count;
5619 
5620 	ctx = perf_event_ctx_lock(event);
5621 	count = __perf_event_read_value(event, enabled, running);
5622 	perf_event_ctx_unlock(event, ctx);
5623 
5624 	return count;
5625 }
5626 EXPORT_SYMBOL_GPL(perf_event_read_value);
5627 
5628 static int __perf_read_group_add(struct perf_event *leader,
5629 					u64 read_format, u64 *values)
5630 {
5631 	struct perf_event_context *ctx = leader->ctx;
5632 	struct perf_event *sub, *parent;
5633 	unsigned long flags;
5634 	int n = 1; /* skip @nr */
5635 	int ret;
5636 
5637 	ret = perf_event_read(leader, true);
5638 	if (ret)
5639 		return ret;
5640 
5641 	raw_spin_lock_irqsave(&ctx->lock, flags);
5642 	/*
5643 	 * Verify the grouping between the parent and child (inherited)
5644 	 * events is still in tact.
5645 	 *
5646 	 * Specifically:
5647 	 *  - leader->ctx->lock pins leader->sibling_list
5648 	 *  - parent->child_mutex pins parent->child_list
5649 	 *  - parent->ctx->mutex pins parent->sibling_list
5650 	 *
5651 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5652 	 * ctx->mutex), group destruction is not atomic between children, also
5653 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5654 	 * group.
5655 	 *
5656 	 * Therefore it is possible to have parent and child groups in a
5657 	 * different configuration and summing over such a beast makes no sense
5658 	 * what so ever.
5659 	 *
5660 	 * Reject this.
5661 	 */
5662 	parent = leader->parent;
5663 	if (parent &&
5664 	    (parent->group_generation != leader->group_generation ||
5665 	     parent->nr_siblings != leader->nr_siblings)) {
5666 		ret = -ECHILD;
5667 		goto unlock;
5668 	}
5669 
5670 	/*
5671 	 * Since we co-schedule groups, {enabled,running} times of siblings
5672 	 * will be identical to those of the leader, so we only publish one
5673 	 * set.
5674 	 */
5675 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5676 		values[n++] += leader->total_time_enabled +
5677 			atomic64_read(&leader->child_total_time_enabled);
5678 	}
5679 
5680 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5681 		values[n++] += leader->total_time_running +
5682 			atomic64_read(&leader->child_total_time_running);
5683 	}
5684 
5685 	/*
5686 	 * Write {count,id} tuples for every sibling.
5687 	 */
5688 	values[n++] += perf_event_count(leader, false);
5689 	if (read_format & PERF_FORMAT_ID)
5690 		values[n++] = primary_event_id(leader);
5691 	if (read_format & PERF_FORMAT_LOST)
5692 		values[n++] = atomic64_read(&leader->lost_samples);
5693 
5694 	for_each_sibling_event(sub, leader) {
5695 		values[n++] += perf_event_count(sub, false);
5696 		if (read_format & PERF_FORMAT_ID)
5697 			values[n++] = primary_event_id(sub);
5698 		if (read_format & PERF_FORMAT_LOST)
5699 			values[n++] = atomic64_read(&sub->lost_samples);
5700 	}
5701 
5702 unlock:
5703 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5704 	return ret;
5705 }
5706 
5707 static int perf_read_group(struct perf_event *event,
5708 				   u64 read_format, char __user *buf)
5709 {
5710 	struct perf_event *leader = event->group_leader, *child;
5711 	struct perf_event_context *ctx = leader->ctx;
5712 	int ret;
5713 	u64 *values;
5714 
5715 	lockdep_assert_held(&ctx->mutex);
5716 
5717 	values = kzalloc(event->read_size, GFP_KERNEL);
5718 	if (!values)
5719 		return -ENOMEM;
5720 
5721 	values[0] = 1 + leader->nr_siblings;
5722 
5723 	mutex_lock(&leader->child_mutex);
5724 
5725 	ret = __perf_read_group_add(leader, read_format, values);
5726 	if (ret)
5727 		goto unlock;
5728 
5729 	list_for_each_entry(child, &leader->child_list, child_list) {
5730 		ret = __perf_read_group_add(child, read_format, values);
5731 		if (ret)
5732 			goto unlock;
5733 	}
5734 
5735 	mutex_unlock(&leader->child_mutex);
5736 
5737 	ret = event->read_size;
5738 	if (copy_to_user(buf, values, event->read_size))
5739 		ret = -EFAULT;
5740 	goto out;
5741 
5742 unlock:
5743 	mutex_unlock(&leader->child_mutex);
5744 out:
5745 	kfree(values);
5746 	return ret;
5747 }
5748 
5749 static int perf_read_one(struct perf_event *event,
5750 				 u64 read_format, char __user *buf)
5751 {
5752 	u64 enabled, running;
5753 	u64 values[5];
5754 	int n = 0;
5755 
5756 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5757 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5758 		values[n++] = enabled;
5759 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5760 		values[n++] = running;
5761 	if (read_format & PERF_FORMAT_ID)
5762 		values[n++] = primary_event_id(event);
5763 	if (read_format & PERF_FORMAT_LOST)
5764 		values[n++] = atomic64_read(&event->lost_samples);
5765 
5766 	if (copy_to_user(buf, values, n * sizeof(u64)))
5767 		return -EFAULT;
5768 
5769 	return n * sizeof(u64);
5770 }
5771 
5772 static bool is_event_hup(struct perf_event *event)
5773 {
5774 	bool no_children;
5775 
5776 	if (event->state > PERF_EVENT_STATE_EXIT)
5777 		return false;
5778 
5779 	mutex_lock(&event->child_mutex);
5780 	no_children = list_empty(&event->child_list);
5781 	mutex_unlock(&event->child_mutex);
5782 	return no_children;
5783 }
5784 
5785 /*
5786  * Read the performance event - simple non blocking version for now
5787  */
5788 static ssize_t
5789 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5790 {
5791 	u64 read_format = event->attr.read_format;
5792 	int ret;
5793 
5794 	/*
5795 	 * Return end-of-file for a read on an event that is in
5796 	 * error state (i.e. because it was pinned but it couldn't be
5797 	 * scheduled on to the CPU at some point).
5798 	 */
5799 	if (event->state == PERF_EVENT_STATE_ERROR)
5800 		return 0;
5801 
5802 	if (count < event->read_size)
5803 		return -ENOSPC;
5804 
5805 	WARN_ON_ONCE(event->ctx->parent_ctx);
5806 	if (read_format & PERF_FORMAT_GROUP)
5807 		ret = perf_read_group(event, read_format, buf);
5808 	else
5809 		ret = perf_read_one(event, read_format, buf);
5810 
5811 	return ret;
5812 }
5813 
5814 static ssize_t
5815 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5816 {
5817 	struct perf_event *event = file->private_data;
5818 	struct perf_event_context *ctx;
5819 	int ret;
5820 
5821 	ret = security_perf_event_read(event);
5822 	if (ret)
5823 		return ret;
5824 
5825 	ctx = perf_event_ctx_lock(event);
5826 	ret = __perf_read(event, buf, count);
5827 	perf_event_ctx_unlock(event, ctx);
5828 
5829 	return ret;
5830 }
5831 
5832 static __poll_t perf_poll(struct file *file, poll_table *wait)
5833 {
5834 	struct perf_event *event = file->private_data;
5835 	struct perf_buffer *rb;
5836 	__poll_t events = EPOLLHUP;
5837 
5838 	poll_wait(file, &event->waitq, wait);
5839 
5840 	if (is_event_hup(event))
5841 		return events;
5842 
5843 	/*
5844 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5845 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5846 	 */
5847 	mutex_lock(&event->mmap_mutex);
5848 	rb = event->rb;
5849 	if (rb)
5850 		events = atomic_xchg(&rb->poll, 0);
5851 	mutex_unlock(&event->mmap_mutex);
5852 	return events;
5853 }
5854 
5855 static void _perf_event_reset(struct perf_event *event)
5856 {
5857 	(void)perf_event_read(event, false);
5858 	local64_set(&event->count, 0);
5859 	perf_event_update_userpage(event);
5860 }
5861 
5862 /* Assume it's not an event with inherit set. */
5863 u64 perf_event_pause(struct perf_event *event, bool reset)
5864 {
5865 	struct perf_event_context *ctx;
5866 	u64 count;
5867 
5868 	ctx = perf_event_ctx_lock(event);
5869 	WARN_ON_ONCE(event->attr.inherit);
5870 	_perf_event_disable(event);
5871 	count = local64_read(&event->count);
5872 	if (reset)
5873 		local64_set(&event->count, 0);
5874 	perf_event_ctx_unlock(event, ctx);
5875 
5876 	return count;
5877 }
5878 EXPORT_SYMBOL_GPL(perf_event_pause);
5879 
5880 /*
5881  * Holding the top-level event's child_mutex means that any
5882  * descendant process that has inherited this event will block
5883  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5884  * task existence requirements of perf_event_enable/disable.
5885  */
5886 static void perf_event_for_each_child(struct perf_event *event,
5887 					void (*func)(struct perf_event *))
5888 {
5889 	struct perf_event *child;
5890 
5891 	WARN_ON_ONCE(event->ctx->parent_ctx);
5892 
5893 	mutex_lock(&event->child_mutex);
5894 	func(event);
5895 	list_for_each_entry(child, &event->child_list, child_list)
5896 		func(child);
5897 	mutex_unlock(&event->child_mutex);
5898 }
5899 
5900 static void perf_event_for_each(struct perf_event *event,
5901 				  void (*func)(struct perf_event *))
5902 {
5903 	struct perf_event_context *ctx = event->ctx;
5904 	struct perf_event *sibling;
5905 
5906 	lockdep_assert_held(&ctx->mutex);
5907 
5908 	event = event->group_leader;
5909 
5910 	perf_event_for_each_child(event, func);
5911 	for_each_sibling_event(sibling, event)
5912 		perf_event_for_each_child(sibling, func);
5913 }
5914 
5915 static void __perf_event_period(struct perf_event *event,
5916 				struct perf_cpu_context *cpuctx,
5917 				struct perf_event_context *ctx,
5918 				void *info)
5919 {
5920 	u64 value = *((u64 *)info);
5921 	bool active;
5922 
5923 	if (event->attr.freq) {
5924 		event->attr.sample_freq = value;
5925 	} else {
5926 		event->attr.sample_period = value;
5927 		event->hw.sample_period = value;
5928 	}
5929 
5930 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5931 	if (active) {
5932 		perf_pmu_disable(event->pmu);
5933 		/*
5934 		 * We could be throttled; unthrottle now to avoid the tick
5935 		 * trying to unthrottle while we already re-started the event.
5936 		 */
5937 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5938 			event->hw.interrupts = 0;
5939 			perf_log_throttle(event, 1);
5940 		}
5941 		event->pmu->stop(event, PERF_EF_UPDATE);
5942 	}
5943 
5944 	local64_set(&event->hw.period_left, 0);
5945 
5946 	if (active) {
5947 		event->pmu->start(event, PERF_EF_RELOAD);
5948 		perf_pmu_enable(event->pmu);
5949 	}
5950 }
5951 
5952 static int perf_event_check_period(struct perf_event *event, u64 value)
5953 {
5954 	return event->pmu->check_period(event, value);
5955 }
5956 
5957 static int _perf_event_period(struct perf_event *event, u64 value)
5958 {
5959 	if (!is_sampling_event(event))
5960 		return -EINVAL;
5961 
5962 	if (!value)
5963 		return -EINVAL;
5964 
5965 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5966 		return -EINVAL;
5967 
5968 	if (perf_event_check_period(event, value))
5969 		return -EINVAL;
5970 
5971 	if (!event->attr.freq && (value & (1ULL << 63)))
5972 		return -EINVAL;
5973 
5974 	event_function_call(event, __perf_event_period, &value);
5975 
5976 	return 0;
5977 }
5978 
5979 int perf_event_period(struct perf_event *event, u64 value)
5980 {
5981 	struct perf_event_context *ctx;
5982 	int ret;
5983 
5984 	ctx = perf_event_ctx_lock(event);
5985 	ret = _perf_event_period(event, value);
5986 	perf_event_ctx_unlock(event, ctx);
5987 
5988 	return ret;
5989 }
5990 EXPORT_SYMBOL_GPL(perf_event_period);
5991 
5992 static const struct file_operations perf_fops;
5993 
5994 static inline bool is_perf_file(struct fd f)
5995 {
5996 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
5997 }
5998 
5999 static int perf_event_set_output(struct perf_event *event,
6000 				 struct perf_event *output_event);
6001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6002 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6003 			  struct perf_event_attr *attr);
6004 
6005 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6006 {
6007 	void (*func)(struct perf_event *);
6008 	u32 flags = arg;
6009 
6010 	switch (cmd) {
6011 	case PERF_EVENT_IOC_ENABLE:
6012 		func = _perf_event_enable;
6013 		break;
6014 	case PERF_EVENT_IOC_DISABLE:
6015 		func = _perf_event_disable;
6016 		break;
6017 	case PERF_EVENT_IOC_RESET:
6018 		func = _perf_event_reset;
6019 		break;
6020 
6021 	case PERF_EVENT_IOC_REFRESH:
6022 		return _perf_event_refresh(event, arg);
6023 
6024 	case PERF_EVENT_IOC_PERIOD:
6025 	{
6026 		u64 value;
6027 
6028 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6029 			return -EFAULT;
6030 
6031 		return _perf_event_period(event, value);
6032 	}
6033 	case PERF_EVENT_IOC_ID:
6034 	{
6035 		u64 id = primary_event_id(event);
6036 
6037 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6038 			return -EFAULT;
6039 		return 0;
6040 	}
6041 
6042 	case PERF_EVENT_IOC_SET_OUTPUT:
6043 	{
6044 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6045 		struct perf_event *output_event = NULL;
6046 		if (arg != -1) {
6047 			if (!is_perf_file(output))
6048 				return -EBADF;
6049 			output_event = fd_file(output)->private_data;
6050 		}
6051 		return perf_event_set_output(event, output_event);
6052 	}
6053 
6054 	case PERF_EVENT_IOC_SET_FILTER:
6055 		return perf_event_set_filter(event, (void __user *)arg);
6056 
6057 	case PERF_EVENT_IOC_SET_BPF:
6058 	{
6059 		struct bpf_prog *prog;
6060 		int err;
6061 
6062 		prog = bpf_prog_get(arg);
6063 		if (IS_ERR(prog))
6064 			return PTR_ERR(prog);
6065 
6066 		err = perf_event_set_bpf_prog(event, prog, 0);
6067 		if (err) {
6068 			bpf_prog_put(prog);
6069 			return err;
6070 		}
6071 
6072 		return 0;
6073 	}
6074 
6075 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6076 		struct perf_buffer *rb;
6077 
6078 		rcu_read_lock();
6079 		rb = rcu_dereference(event->rb);
6080 		if (!rb || !rb->nr_pages) {
6081 			rcu_read_unlock();
6082 			return -EINVAL;
6083 		}
6084 		rb_toggle_paused(rb, !!arg);
6085 		rcu_read_unlock();
6086 		return 0;
6087 	}
6088 
6089 	case PERF_EVENT_IOC_QUERY_BPF:
6090 		return perf_event_query_prog_array(event, (void __user *)arg);
6091 
6092 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6093 		struct perf_event_attr new_attr;
6094 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6095 					 &new_attr);
6096 
6097 		if (err)
6098 			return err;
6099 
6100 		return perf_event_modify_attr(event,  &new_attr);
6101 	}
6102 	default:
6103 		return -ENOTTY;
6104 	}
6105 
6106 	if (flags & PERF_IOC_FLAG_GROUP)
6107 		perf_event_for_each(event, func);
6108 	else
6109 		perf_event_for_each_child(event, func);
6110 
6111 	return 0;
6112 }
6113 
6114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6115 {
6116 	struct perf_event *event = file->private_data;
6117 	struct perf_event_context *ctx;
6118 	long ret;
6119 
6120 	/* Treat ioctl like writes as it is likely a mutating operation. */
6121 	ret = security_perf_event_write(event);
6122 	if (ret)
6123 		return ret;
6124 
6125 	ctx = perf_event_ctx_lock(event);
6126 	ret = _perf_ioctl(event, cmd, arg);
6127 	perf_event_ctx_unlock(event, ctx);
6128 
6129 	return ret;
6130 }
6131 
6132 #ifdef CONFIG_COMPAT
6133 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6134 				unsigned long arg)
6135 {
6136 	switch (_IOC_NR(cmd)) {
6137 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6138 	case _IOC_NR(PERF_EVENT_IOC_ID):
6139 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6140 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6141 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6142 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6143 			cmd &= ~IOCSIZE_MASK;
6144 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6145 		}
6146 		break;
6147 	}
6148 	return perf_ioctl(file, cmd, arg);
6149 }
6150 #else
6151 # define perf_compat_ioctl NULL
6152 #endif
6153 
6154 int perf_event_task_enable(void)
6155 {
6156 	struct perf_event_context *ctx;
6157 	struct perf_event *event;
6158 
6159 	mutex_lock(&current->perf_event_mutex);
6160 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6161 		ctx = perf_event_ctx_lock(event);
6162 		perf_event_for_each_child(event, _perf_event_enable);
6163 		perf_event_ctx_unlock(event, ctx);
6164 	}
6165 	mutex_unlock(&current->perf_event_mutex);
6166 
6167 	return 0;
6168 }
6169 
6170 int perf_event_task_disable(void)
6171 {
6172 	struct perf_event_context *ctx;
6173 	struct perf_event *event;
6174 
6175 	mutex_lock(&current->perf_event_mutex);
6176 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6177 		ctx = perf_event_ctx_lock(event);
6178 		perf_event_for_each_child(event, _perf_event_disable);
6179 		perf_event_ctx_unlock(event, ctx);
6180 	}
6181 	mutex_unlock(&current->perf_event_mutex);
6182 
6183 	return 0;
6184 }
6185 
6186 static int perf_event_index(struct perf_event *event)
6187 {
6188 	if (event->hw.state & PERF_HES_STOPPED)
6189 		return 0;
6190 
6191 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6192 		return 0;
6193 
6194 	return event->pmu->event_idx(event);
6195 }
6196 
6197 static void perf_event_init_userpage(struct perf_event *event)
6198 {
6199 	struct perf_event_mmap_page *userpg;
6200 	struct perf_buffer *rb;
6201 
6202 	rcu_read_lock();
6203 	rb = rcu_dereference(event->rb);
6204 	if (!rb)
6205 		goto unlock;
6206 
6207 	userpg = rb->user_page;
6208 
6209 	/* Allow new userspace to detect that bit 0 is deprecated */
6210 	userpg->cap_bit0_is_deprecated = 1;
6211 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6212 	userpg->data_offset = PAGE_SIZE;
6213 	userpg->data_size = perf_data_size(rb);
6214 
6215 unlock:
6216 	rcu_read_unlock();
6217 }
6218 
6219 void __weak arch_perf_update_userpage(
6220 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6221 {
6222 }
6223 
6224 /*
6225  * Callers need to ensure there can be no nesting of this function, otherwise
6226  * the seqlock logic goes bad. We can not serialize this because the arch
6227  * code calls this from NMI context.
6228  */
6229 void perf_event_update_userpage(struct perf_event *event)
6230 {
6231 	struct perf_event_mmap_page *userpg;
6232 	struct perf_buffer *rb;
6233 	u64 enabled, running, now;
6234 
6235 	rcu_read_lock();
6236 	rb = rcu_dereference(event->rb);
6237 	if (!rb)
6238 		goto unlock;
6239 
6240 	/*
6241 	 * compute total_time_enabled, total_time_running
6242 	 * based on snapshot values taken when the event
6243 	 * was last scheduled in.
6244 	 *
6245 	 * we cannot simply called update_context_time()
6246 	 * because of locking issue as we can be called in
6247 	 * NMI context
6248 	 */
6249 	calc_timer_values(event, &now, &enabled, &running);
6250 
6251 	userpg = rb->user_page;
6252 	/*
6253 	 * Disable preemption to guarantee consistent time stamps are stored to
6254 	 * the user page.
6255 	 */
6256 	preempt_disable();
6257 	++userpg->lock;
6258 	barrier();
6259 	userpg->index = perf_event_index(event);
6260 	userpg->offset = perf_event_count(event, false);
6261 	if (userpg->index)
6262 		userpg->offset -= local64_read(&event->hw.prev_count);
6263 
6264 	userpg->time_enabled = enabled +
6265 			atomic64_read(&event->child_total_time_enabled);
6266 
6267 	userpg->time_running = running +
6268 			atomic64_read(&event->child_total_time_running);
6269 
6270 	arch_perf_update_userpage(event, userpg, now);
6271 
6272 	barrier();
6273 	++userpg->lock;
6274 	preempt_enable();
6275 unlock:
6276 	rcu_read_unlock();
6277 }
6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6279 
6280 static void ring_buffer_attach(struct perf_event *event,
6281 			       struct perf_buffer *rb)
6282 {
6283 	struct perf_buffer *old_rb = NULL;
6284 	unsigned long flags;
6285 
6286 	WARN_ON_ONCE(event->parent);
6287 
6288 	if (event->rb) {
6289 		/*
6290 		 * Should be impossible, we set this when removing
6291 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6292 		 */
6293 		WARN_ON_ONCE(event->rcu_pending);
6294 
6295 		old_rb = event->rb;
6296 		spin_lock_irqsave(&old_rb->event_lock, flags);
6297 		list_del_rcu(&event->rb_entry);
6298 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6299 
6300 		event->rcu_batches = get_state_synchronize_rcu();
6301 		event->rcu_pending = 1;
6302 	}
6303 
6304 	if (rb) {
6305 		if (event->rcu_pending) {
6306 			cond_synchronize_rcu(event->rcu_batches);
6307 			event->rcu_pending = 0;
6308 		}
6309 
6310 		spin_lock_irqsave(&rb->event_lock, flags);
6311 		list_add_rcu(&event->rb_entry, &rb->event_list);
6312 		spin_unlock_irqrestore(&rb->event_lock, flags);
6313 	}
6314 
6315 	/*
6316 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6317 	 * before swizzling the event::rb pointer; if it's getting
6318 	 * unmapped, its aux_mmap_count will be 0 and it won't
6319 	 * restart. See the comment in __perf_pmu_output_stop().
6320 	 *
6321 	 * Data will inevitably be lost when set_output is done in
6322 	 * mid-air, but then again, whoever does it like this is
6323 	 * not in for the data anyway.
6324 	 */
6325 	if (has_aux(event))
6326 		perf_event_stop(event, 0);
6327 
6328 	rcu_assign_pointer(event->rb, rb);
6329 
6330 	if (old_rb) {
6331 		ring_buffer_put(old_rb);
6332 		/*
6333 		 * Since we detached before setting the new rb, so that we
6334 		 * could attach the new rb, we could have missed a wakeup.
6335 		 * Provide it now.
6336 		 */
6337 		wake_up_all(&event->waitq);
6338 	}
6339 }
6340 
6341 static void ring_buffer_wakeup(struct perf_event *event)
6342 {
6343 	struct perf_buffer *rb;
6344 
6345 	if (event->parent)
6346 		event = event->parent;
6347 
6348 	rcu_read_lock();
6349 	rb = rcu_dereference(event->rb);
6350 	if (rb) {
6351 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6352 			wake_up_all(&event->waitq);
6353 	}
6354 	rcu_read_unlock();
6355 }
6356 
6357 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6358 {
6359 	struct perf_buffer *rb;
6360 
6361 	if (event->parent)
6362 		event = event->parent;
6363 
6364 	rcu_read_lock();
6365 	rb = rcu_dereference(event->rb);
6366 	if (rb) {
6367 		if (!refcount_inc_not_zero(&rb->refcount))
6368 			rb = NULL;
6369 	}
6370 	rcu_read_unlock();
6371 
6372 	return rb;
6373 }
6374 
6375 void ring_buffer_put(struct perf_buffer *rb)
6376 {
6377 	if (!refcount_dec_and_test(&rb->refcount))
6378 		return;
6379 
6380 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6381 
6382 	call_rcu(&rb->rcu_head, rb_free_rcu);
6383 }
6384 
6385 static void perf_mmap_open(struct vm_area_struct *vma)
6386 {
6387 	struct perf_event *event = vma->vm_file->private_data;
6388 
6389 	atomic_inc(&event->mmap_count);
6390 	atomic_inc(&event->rb->mmap_count);
6391 
6392 	if (vma->vm_pgoff)
6393 		atomic_inc(&event->rb->aux_mmap_count);
6394 
6395 	if (event->pmu->event_mapped)
6396 		event->pmu->event_mapped(event, vma->vm_mm);
6397 }
6398 
6399 static void perf_pmu_output_stop(struct perf_event *event);
6400 
6401 /*
6402  * A buffer can be mmap()ed multiple times; either directly through the same
6403  * event, or through other events by use of perf_event_set_output().
6404  *
6405  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6406  * the buffer here, where we still have a VM context. This means we need
6407  * to detach all events redirecting to us.
6408  */
6409 static void perf_mmap_close(struct vm_area_struct *vma)
6410 {
6411 	struct perf_event *event = vma->vm_file->private_data;
6412 	struct perf_buffer *rb = ring_buffer_get(event);
6413 	struct user_struct *mmap_user = rb->mmap_user;
6414 	int mmap_locked = rb->mmap_locked;
6415 	unsigned long size = perf_data_size(rb);
6416 	bool detach_rest = false;
6417 
6418 	if (event->pmu->event_unmapped)
6419 		event->pmu->event_unmapped(event, vma->vm_mm);
6420 
6421 	/*
6422 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6423 	 * to avoid complications.
6424 	 */
6425 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6426 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6427 		/*
6428 		 * Stop all AUX events that are writing to this buffer,
6429 		 * so that we can free its AUX pages and corresponding PMU
6430 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6431 		 * they won't start any more (see perf_aux_output_begin()).
6432 		 */
6433 		perf_pmu_output_stop(event);
6434 
6435 		/* now it's safe to free the pages */
6436 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6437 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6438 
6439 		/* this has to be the last one */
6440 		rb_free_aux(rb);
6441 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6442 
6443 		mutex_unlock(&rb->aux_mutex);
6444 	}
6445 
6446 	if (atomic_dec_and_test(&rb->mmap_count))
6447 		detach_rest = true;
6448 
6449 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6450 		goto out_put;
6451 
6452 	ring_buffer_attach(event, NULL);
6453 	mutex_unlock(&event->mmap_mutex);
6454 
6455 	/* If there's still other mmap()s of this buffer, we're done. */
6456 	if (!detach_rest)
6457 		goto out_put;
6458 
6459 	/*
6460 	 * No other mmap()s, detach from all other events that might redirect
6461 	 * into the now unreachable buffer. Somewhat complicated by the
6462 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6463 	 */
6464 again:
6465 	rcu_read_lock();
6466 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6467 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6468 			/*
6469 			 * This event is en-route to free_event() which will
6470 			 * detach it and remove it from the list.
6471 			 */
6472 			continue;
6473 		}
6474 		rcu_read_unlock();
6475 
6476 		mutex_lock(&event->mmap_mutex);
6477 		/*
6478 		 * Check we didn't race with perf_event_set_output() which can
6479 		 * swizzle the rb from under us while we were waiting to
6480 		 * acquire mmap_mutex.
6481 		 *
6482 		 * If we find a different rb; ignore this event, a next
6483 		 * iteration will no longer find it on the list. We have to
6484 		 * still restart the iteration to make sure we're not now
6485 		 * iterating the wrong list.
6486 		 */
6487 		if (event->rb == rb)
6488 			ring_buffer_attach(event, NULL);
6489 
6490 		mutex_unlock(&event->mmap_mutex);
6491 		put_event(event);
6492 
6493 		/*
6494 		 * Restart the iteration; either we're on the wrong list or
6495 		 * destroyed its integrity by doing a deletion.
6496 		 */
6497 		goto again;
6498 	}
6499 	rcu_read_unlock();
6500 
6501 	/*
6502 	 * It could be there's still a few 0-ref events on the list; they'll
6503 	 * get cleaned up by free_event() -- they'll also still have their
6504 	 * ref on the rb and will free it whenever they are done with it.
6505 	 *
6506 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6507 	 * undo the VM accounting.
6508 	 */
6509 
6510 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6511 			&mmap_user->locked_vm);
6512 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6513 	free_uid(mmap_user);
6514 
6515 out_put:
6516 	ring_buffer_put(rb); /* could be last */
6517 }
6518 
6519 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6520 {
6521 	/* The first page is the user control page, others are read-only. */
6522 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6523 }
6524 
6525 static const struct vm_operations_struct perf_mmap_vmops = {
6526 	.open		= perf_mmap_open,
6527 	.close		= perf_mmap_close, /* non mergeable */
6528 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6529 };
6530 
6531 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6532 {
6533 	unsigned long nr_pages = vma_pages(vma);
6534 	int err = 0;
6535 	unsigned long pagenum;
6536 
6537 	/*
6538 	 * We map this as a VM_PFNMAP VMA.
6539 	 *
6540 	 * This is not ideal as this is designed broadly for mappings of PFNs
6541 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6542 	 * !pfn_valid(pfn).
6543 	 *
6544 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6545 	 * which would more ideally be mapped using vm_insert_page() or a
6546 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6547 	 *
6548 	 * However this won't work here, because:
6549 	 *
6550 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6551 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6552 	 *    indicate that this should be mapped CoW in order that the
6553 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6554 	 *    rest R/O as desired.
6555 	 *
6556 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6557 	 *    vm_normal_page() returning a struct page * pointer, which means
6558 	 *    vm_ops->page_mkwrite() will be invoked rather than
6559 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6560 	 *    to work around retry logic in the fault handler, however this
6561 	 *    field is no longer allowed to be used within struct page.
6562 	 *
6563 	 * 3. Having a struct page * made available in the fault logic also
6564 	 *    means that the page gets put on the rmap and becomes
6565 	 *    inappropriately accessible and subject to map and ref counting.
6566 	 *
6567 	 * Ideally we would have a mechanism that could explicitly express our
6568 	 * desires, but this is not currently the case, so we instead use
6569 	 * VM_PFNMAP.
6570 	 *
6571 	 * We manage the lifetime of these mappings with internal refcounts (see
6572 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6573 	 * this mapping is maintained correctly.
6574 	 */
6575 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6576 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6577 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6578 
6579 		if (page == NULL) {
6580 			err = -EINVAL;
6581 			break;
6582 		}
6583 
6584 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6585 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6586 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6587 		if (err)
6588 			break;
6589 	}
6590 
6591 #ifdef CONFIG_MMU
6592 	/* Clear any partial mappings on error. */
6593 	if (err)
6594 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6595 #endif
6596 
6597 	return err;
6598 }
6599 
6600 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6601 {
6602 	struct perf_event *event = file->private_data;
6603 	unsigned long user_locked, user_lock_limit;
6604 	struct user_struct *user = current_user();
6605 	struct mutex *aux_mutex = NULL;
6606 	struct perf_buffer *rb = NULL;
6607 	unsigned long locked, lock_limit;
6608 	unsigned long vma_size;
6609 	unsigned long nr_pages;
6610 	long user_extra = 0, extra = 0;
6611 	int ret = 0, flags = 0;
6612 
6613 	/*
6614 	 * Don't allow mmap() of inherited per-task counters. This would
6615 	 * create a performance issue due to all children writing to the
6616 	 * same rb.
6617 	 */
6618 	if (event->cpu == -1 && event->attr.inherit)
6619 		return -EINVAL;
6620 
6621 	if (!(vma->vm_flags & VM_SHARED))
6622 		return -EINVAL;
6623 
6624 	ret = security_perf_event_read(event);
6625 	if (ret)
6626 		return ret;
6627 
6628 	vma_size = vma->vm_end - vma->vm_start;
6629 
6630 	if (vma->vm_pgoff == 0) {
6631 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6632 	} else {
6633 		/*
6634 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6635 		 * mapped, all subsequent mappings should have the same size
6636 		 * and offset. Must be above the normal perf buffer.
6637 		 */
6638 		u64 aux_offset, aux_size;
6639 
6640 		if (!event->rb)
6641 			return -EINVAL;
6642 
6643 		nr_pages = vma_size / PAGE_SIZE;
6644 		if (nr_pages > INT_MAX)
6645 			return -ENOMEM;
6646 
6647 		mutex_lock(&event->mmap_mutex);
6648 		ret = -EINVAL;
6649 
6650 		rb = event->rb;
6651 		if (!rb)
6652 			goto aux_unlock;
6653 
6654 		aux_mutex = &rb->aux_mutex;
6655 		mutex_lock(aux_mutex);
6656 
6657 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6658 		aux_size = READ_ONCE(rb->user_page->aux_size);
6659 
6660 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6661 			goto aux_unlock;
6662 
6663 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6664 			goto aux_unlock;
6665 
6666 		/* already mapped with a different offset */
6667 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6668 			goto aux_unlock;
6669 
6670 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6671 			goto aux_unlock;
6672 
6673 		/* already mapped with a different size */
6674 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6675 			goto aux_unlock;
6676 
6677 		if (!is_power_of_2(nr_pages))
6678 			goto aux_unlock;
6679 
6680 		if (!atomic_inc_not_zero(&rb->mmap_count))
6681 			goto aux_unlock;
6682 
6683 		if (rb_has_aux(rb)) {
6684 			atomic_inc(&rb->aux_mmap_count);
6685 			ret = 0;
6686 			goto unlock;
6687 		}
6688 
6689 		atomic_set(&rb->aux_mmap_count, 1);
6690 		user_extra = nr_pages;
6691 
6692 		goto accounting;
6693 	}
6694 
6695 	/*
6696 	 * If we have rb pages ensure they're a power-of-two number, so we
6697 	 * can do bitmasks instead of modulo.
6698 	 */
6699 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6700 		return -EINVAL;
6701 
6702 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6703 		return -EINVAL;
6704 
6705 	WARN_ON_ONCE(event->ctx->parent_ctx);
6706 again:
6707 	mutex_lock(&event->mmap_mutex);
6708 	if (event->rb) {
6709 		if (data_page_nr(event->rb) != nr_pages) {
6710 			ret = -EINVAL;
6711 			goto unlock;
6712 		}
6713 
6714 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6715 			/*
6716 			 * Raced against perf_mmap_close(); remove the
6717 			 * event and try again.
6718 			 */
6719 			ring_buffer_attach(event, NULL);
6720 			mutex_unlock(&event->mmap_mutex);
6721 			goto again;
6722 		}
6723 
6724 		/* We need the rb to map pages. */
6725 		rb = event->rb;
6726 		goto unlock;
6727 	}
6728 
6729 	user_extra = nr_pages + 1;
6730 
6731 accounting:
6732 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6733 
6734 	/*
6735 	 * Increase the limit linearly with more CPUs:
6736 	 */
6737 	user_lock_limit *= num_online_cpus();
6738 
6739 	user_locked = atomic_long_read(&user->locked_vm);
6740 
6741 	/*
6742 	 * sysctl_perf_event_mlock may have changed, so that
6743 	 *     user->locked_vm > user_lock_limit
6744 	 */
6745 	if (user_locked > user_lock_limit)
6746 		user_locked = user_lock_limit;
6747 	user_locked += user_extra;
6748 
6749 	if (user_locked > user_lock_limit) {
6750 		/*
6751 		 * charge locked_vm until it hits user_lock_limit;
6752 		 * charge the rest from pinned_vm
6753 		 */
6754 		extra = user_locked - user_lock_limit;
6755 		user_extra -= extra;
6756 	}
6757 
6758 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6759 	lock_limit >>= PAGE_SHIFT;
6760 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6761 
6762 	if ((locked > lock_limit) && perf_is_paranoid() &&
6763 		!capable(CAP_IPC_LOCK)) {
6764 		ret = -EPERM;
6765 		goto unlock;
6766 	}
6767 
6768 	WARN_ON(!rb && event->rb);
6769 
6770 	if (vma->vm_flags & VM_WRITE)
6771 		flags |= RING_BUFFER_WRITABLE;
6772 
6773 	if (!rb) {
6774 		rb = rb_alloc(nr_pages,
6775 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6776 			      event->cpu, flags);
6777 
6778 		if (!rb) {
6779 			ret = -ENOMEM;
6780 			goto unlock;
6781 		}
6782 
6783 		atomic_set(&rb->mmap_count, 1);
6784 		rb->mmap_user = get_current_user();
6785 		rb->mmap_locked = extra;
6786 
6787 		ring_buffer_attach(event, rb);
6788 
6789 		perf_event_update_time(event);
6790 		perf_event_init_userpage(event);
6791 		perf_event_update_userpage(event);
6792 	} else {
6793 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6794 				   event->attr.aux_watermark, flags);
6795 		if (!ret)
6796 			rb->aux_mmap_locked = extra;
6797 	}
6798 
6799 unlock:
6800 	if (!ret) {
6801 		atomic_long_add(user_extra, &user->locked_vm);
6802 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6803 
6804 		atomic_inc(&event->mmap_count);
6805 	} else if (rb) {
6806 		atomic_dec(&rb->mmap_count);
6807 	}
6808 aux_unlock:
6809 	if (aux_mutex)
6810 		mutex_unlock(aux_mutex);
6811 	mutex_unlock(&event->mmap_mutex);
6812 
6813 	/*
6814 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6815 	 * vma.
6816 	 */
6817 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6818 	vma->vm_ops = &perf_mmap_vmops;
6819 
6820 	if (!ret)
6821 		ret = map_range(rb, vma);
6822 
6823 	if (event->pmu->event_mapped)
6824 		event->pmu->event_mapped(event, vma->vm_mm);
6825 
6826 	return ret;
6827 }
6828 
6829 static int perf_fasync(int fd, struct file *filp, int on)
6830 {
6831 	struct inode *inode = file_inode(filp);
6832 	struct perf_event *event = filp->private_data;
6833 	int retval;
6834 
6835 	inode_lock(inode);
6836 	retval = fasync_helper(fd, filp, on, &event->fasync);
6837 	inode_unlock(inode);
6838 
6839 	if (retval < 0)
6840 		return retval;
6841 
6842 	return 0;
6843 }
6844 
6845 static const struct file_operations perf_fops = {
6846 	.release		= perf_release,
6847 	.read			= perf_read,
6848 	.poll			= perf_poll,
6849 	.unlocked_ioctl		= perf_ioctl,
6850 	.compat_ioctl		= perf_compat_ioctl,
6851 	.mmap			= perf_mmap,
6852 	.fasync			= perf_fasync,
6853 };
6854 
6855 /*
6856  * Perf event wakeup
6857  *
6858  * If there's data, ensure we set the poll() state and publish everything
6859  * to user-space before waking everybody up.
6860  */
6861 
6862 void perf_event_wakeup(struct perf_event *event)
6863 {
6864 	ring_buffer_wakeup(event);
6865 
6866 	if (event->pending_kill) {
6867 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6868 		event->pending_kill = 0;
6869 	}
6870 }
6871 
6872 static void perf_sigtrap(struct perf_event *event)
6873 {
6874 	/*
6875 	 * We'd expect this to only occur if the irq_work is delayed and either
6876 	 * ctx->task or current has changed in the meantime. This can be the
6877 	 * case on architectures that do not implement arch_irq_work_raise().
6878 	 */
6879 	if (WARN_ON_ONCE(event->ctx->task != current))
6880 		return;
6881 
6882 	/*
6883 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6884 	 * task exiting.
6885 	 */
6886 	if (current->flags & PF_EXITING)
6887 		return;
6888 
6889 	send_sig_perf((void __user *)event->pending_addr,
6890 		      event->orig_type, event->attr.sig_data);
6891 }
6892 
6893 /*
6894  * Deliver the pending work in-event-context or follow the context.
6895  */
6896 static void __perf_pending_disable(struct perf_event *event)
6897 {
6898 	int cpu = READ_ONCE(event->oncpu);
6899 
6900 	/*
6901 	 * If the event isn't running; we done. event_sched_out() will have
6902 	 * taken care of things.
6903 	 */
6904 	if (cpu < 0)
6905 		return;
6906 
6907 	/*
6908 	 * Yay, we hit home and are in the context of the event.
6909 	 */
6910 	if (cpu == smp_processor_id()) {
6911 		if (event->pending_disable) {
6912 			event->pending_disable = 0;
6913 			perf_event_disable_local(event);
6914 		}
6915 		return;
6916 	}
6917 
6918 	/*
6919 	 *  CPU-A			CPU-B
6920 	 *
6921 	 *  perf_event_disable_inatomic()
6922 	 *    @pending_disable = CPU-A;
6923 	 *    irq_work_queue();
6924 	 *
6925 	 *  sched-out
6926 	 *    @pending_disable = -1;
6927 	 *
6928 	 *				sched-in
6929 	 *				perf_event_disable_inatomic()
6930 	 *				  @pending_disable = CPU-B;
6931 	 *				  irq_work_queue(); // FAILS
6932 	 *
6933 	 *  irq_work_run()
6934 	 *    perf_pending_disable()
6935 	 *
6936 	 * But the event runs on CPU-B and wants disabling there.
6937 	 */
6938 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6939 }
6940 
6941 static void perf_pending_disable(struct irq_work *entry)
6942 {
6943 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6944 	int rctx;
6945 
6946 	/*
6947 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6948 	 * and we won't recurse 'further'.
6949 	 */
6950 	rctx = perf_swevent_get_recursion_context();
6951 	__perf_pending_disable(event);
6952 	if (rctx >= 0)
6953 		perf_swevent_put_recursion_context(rctx);
6954 }
6955 
6956 static void perf_pending_irq(struct irq_work *entry)
6957 {
6958 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6959 	int rctx;
6960 
6961 	/*
6962 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6963 	 * and we won't recurse 'further'.
6964 	 */
6965 	rctx = perf_swevent_get_recursion_context();
6966 
6967 	/*
6968 	 * The wakeup isn't bound to the context of the event -- it can happen
6969 	 * irrespective of where the event is.
6970 	 */
6971 	if (event->pending_wakeup) {
6972 		event->pending_wakeup = 0;
6973 		perf_event_wakeup(event);
6974 	}
6975 
6976 	if (rctx >= 0)
6977 		perf_swevent_put_recursion_context(rctx);
6978 }
6979 
6980 static void perf_pending_task(struct callback_head *head)
6981 {
6982 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6983 	int rctx;
6984 
6985 	/*
6986 	 * All accesses to the event must belong to the same implicit RCU read-side
6987 	 * critical section as the ->pending_work reset. See comment in
6988 	 * perf_pending_task_sync().
6989 	 */
6990 	rcu_read_lock();
6991 	/*
6992 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6993 	 * and we won't recurse 'further'.
6994 	 */
6995 	rctx = perf_swevent_get_recursion_context();
6996 
6997 	if (event->pending_work) {
6998 		event->pending_work = 0;
6999 		perf_sigtrap(event);
7000 		local_dec(&event->ctx->nr_no_switch_fast);
7001 		rcuwait_wake_up(&event->pending_work_wait);
7002 	}
7003 	rcu_read_unlock();
7004 
7005 	if (rctx >= 0)
7006 		perf_swevent_put_recursion_context(rctx);
7007 }
7008 
7009 #ifdef CONFIG_GUEST_PERF_EVENTS
7010 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7011 
7012 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7013 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7014 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7015 
7016 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7017 {
7018 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7019 		return;
7020 
7021 	rcu_assign_pointer(perf_guest_cbs, cbs);
7022 	static_call_update(__perf_guest_state, cbs->state);
7023 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7024 
7025 	/* Implementing ->handle_intel_pt_intr is optional. */
7026 	if (cbs->handle_intel_pt_intr)
7027 		static_call_update(__perf_guest_handle_intel_pt_intr,
7028 				   cbs->handle_intel_pt_intr);
7029 }
7030 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7031 
7032 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7033 {
7034 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7035 		return;
7036 
7037 	rcu_assign_pointer(perf_guest_cbs, NULL);
7038 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7039 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7040 	static_call_update(__perf_guest_handle_intel_pt_intr,
7041 			   (void *)&__static_call_return0);
7042 	synchronize_rcu();
7043 }
7044 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7045 #endif
7046 
7047 static bool should_sample_guest(struct perf_event *event)
7048 {
7049 	return !event->attr.exclude_guest && perf_guest_state();
7050 }
7051 
7052 unsigned long perf_misc_flags(struct perf_event *event,
7053 			      struct pt_regs *regs)
7054 {
7055 	if (should_sample_guest(event))
7056 		return perf_arch_guest_misc_flags(regs);
7057 
7058 	return perf_arch_misc_flags(regs);
7059 }
7060 
7061 unsigned long perf_instruction_pointer(struct perf_event *event,
7062 				       struct pt_regs *regs)
7063 {
7064 	if (should_sample_guest(event))
7065 		return perf_guest_get_ip();
7066 
7067 	return perf_arch_instruction_pointer(regs);
7068 }
7069 
7070 static void
7071 perf_output_sample_regs(struct perf_output_handle *handle,
7072 			struct pt_regs *regs, u64 mask)
7073 {
7074 	int bit;
7075 	DECLARE_BITMAP(_mask, 64);
7076 
7077 	bitmap_from_u64(_mask, mask);
7078 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7079 		u64 val;
7080 
7081 		val = perf_reg_value(regs, bit);
7082 		perf_output_put(handle, val);
7083 	}
7084 }
7085 
7086 static void perf_sample_regs_user(struct perf_regs *regs_user,
7087 				  struct pt_regs *regs)
7088 {
7089 	if (user_mode(regs)) {
7090 		regs_user->abi = perf_reg_abi(current);
7091 		regs_user->regs = regs;
7092 	} else if (!(current->flags & PF_KTHREAD)) {
7093 		perf_get_regs_user(regs_user, regs);
7094 	} else {
7095 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7096 		regs_user->regs = NULL;
7097 	}
7098 }
7099 
7100 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7101 				  struct pt_regs *regs)
7102 {
7103 	regs_intr->regs = regs;
7104 	regs_intr->abi  = perf_reg_abi(current);
7105 }
7106 
7107 
7108 /*
7109  * Get remaining task size from user stack pointer.
7110  *
7111  * It'd be better to take stack vma map and limit this more
7112  * precisely, but there's no way to get it safely under interrupt,
7113  * so using TASK_SIZE as limit.
7114  */
7115 static u64 perf_ustack_task_size(struct pt_regs *regs)
7116 {
7117 	unsigned long addr = perf_user_stack_pointer(regs);
7118 
7119 	if (!addr || addr >= TASK_SIZE)
7120 		return 0;
7121 
7122 	return TASK_SIZE - addr;
7123 }
7124 
7125 static u16
7126 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7127 			struct pt_regs *regs)
7128 {
7129 	u64 task_size;
7130 
7131 	/* No regs, no stack pointer, no dump. */
7132 	if (!regs)
7133 		return 0;
7134 
7135 	/*
7136 	 * Check if we fit in with the requested stack size into the:
7137 	 * - TASK_SIZE
7138 	 *   If we don't, we limit the size to the TASK_SIZE.
7139 	 *
7140 	 * - remaining sample size
7141 	 *   If we don't, we customize the stack size to
7142 	 *   fit in to the remaining sample size.
7143 	 */
7144 
7145 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7146 	stack_size = min(stack_size, (u16) task_size);
7147 
7148 	/* Current header size plus static size and dynamic size. */
7149 	header_size += 2 * sizeof(u64);
7150 
7151 	/* Do we fit in with the current stack dump size? */
7152 	if ((u16) (header_size + stack_size) < header_size) {
7153 		/*
7154 		 * If we overflow the maximum size for the sample,
7155 		 * we customize the stack dump size to fit in.
7156 		 */
7157 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7158 		stack_size = round_up(stack_size, sizeof(u64));
7159 	}
7160 
7161 	return stack_size;
7162 }
7163 
7164 static void
7165 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7166 			  struct pt_regs *regs)
7167 {
7168 	/* Case of a kernel thread, nothing to dump */
7169 	if (!regs) {
7170 		u64 size = 0;
7171 		perf_output_put(handle, size);
7172 	} else {
7173 		unsigned long sp;
7174 		unsigned int rem;
7175 		u64 dyn_size;
7176 
7177 		/*
7178 		 * We dump:
7179 		 * static size
7180 		 *   - the size requested by user or the best one we can fit
7181 		 *     in to the sample max size
7182 		 * data
7183 		 *   - user stack dump data
7184 		 * dynamic size
7185 		 *   - the actual dumped size
7186 		 */
7187 
7188 		/* Static size. */
7189 		perf_output_put(handle, dump_size);
7190 
7191 		/* Data. */
7192 		sp = perf_user_stack_pointer(regs);
7193 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7194 		dyn_size = dump_size - rem;
7195 
7196 		perf_output_skip(handle, rem);
7197 
7198 		/* Dynamic size. */
7199 		perf_output_put(handle, dyn_size);
7200 	}
7201 }
7202 
7203 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7204 					  struct perf_sample_data *data,
7205 					  size_t size)
7206 {
7207 	struct perf_event *sampler = event->aux_event;
7208 	struct perf_buffer *rb;
7209 
7210 	data->aux_size = 0;
7211 
7212 	if (!sampler)
7213 		goto out;
7214 
7215 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7216 		goto out;
7217 
7218 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7219 		goto out;
7220 
7221 	rb = ring_buffer_get(sampler);
7222 	if (!rb)
7223 		goto out;
7224 
7225 	/*
7226 	 * If this is an NMI hit inside sampling code, don't take
7227 	 * the sample. See also perf_aux_sample_output().
7228 	 */
7229 	if (READ_ONCE(rb->aux_in_sampling)) {
7230 		data->aux_size = 0;
7231 	} else {
7232 		size = min_t(size_t, size, perf_aux_size(rb));
7233 		data->aux_size = ALIGN(size, sizeof(u64));
7234 	}
7235 	ring_buffer_put(rb);
7236 
7237 out:
7238 	return data->aux_size;
7239 }
7240 
7241 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7242                                  struct perf_event *event,
7243                                  struct perf_output_handle *handle,
7244                                  unsigned long size)
7245 {
7246 	unsigned long flags;
7247 	long ret;
7248 
7249 	/*
7250 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7251 	 * paths. If we start calling them in NMI context, they may race with
7252 	 * the IRQ ones, that is, for example, re-starting an event that's just
7253 	 * been stopped, which is why we're using a separate callback that
7254 	 * doesn't change the event state.
7255 	 *
7256 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7257 	 */
7258 	local_irq_save(flags);
7259 	/*
7260 	 * Guard against NMI hits inside the critical section;
7261 	 * see also perf_prepare_sample_aux().
7262 	 */
7263 	WRITE_ONCE(rb->aux_in_sampling, 1);
7264 	barrier();
7265 
7266 	ret = event->pmu->snapshot_aux(event, handle, size);
7267 
7268 	barrier();
7269 	WRITE_ONCE(rb->aux_in_sampling, 0);
7270 	local_irq_restore(flags);
7271 
7272 	return ret;
7273 }
7274 
7275 static void perf_aux_sample_output(struct perf_event *event,
7276 				   struct perf_output_handle *handle,
7277 				   struct perf_sample_data *data)
7278 {
7279 	struct perf_event *sampler = event->aux_event;
7280 	struct perf_buffer *rb;
7281 	unsigned long pad;
7282 	long size;
7283 
7284 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7285 		return;
7286 
7287 	rb = ring_buffer_get(sampler);
7288 	if (!rb)
7289 		return;
7290 
7291 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7292 
7293 	/*
7294 	 * An error here means that perf_output_copy() failed (returned a
7295 	 * non-zero surplus that it didn't copy), which in its current
7296 	 * enlightened implementation is not possible. If that changes, we'd
7297 	 * like to know.
7298 	 */
7299 	if (WARN_ON_ONCE(size < 0))
7300 		goto out_put;
7301 
7302 	/*
7303 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7304 	 * perf_prepare_sample_aux(), so should not be more than that.
7305 	 */
7306 	pad = data->aux_size - size;
7307 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7308 		pad = 8;
7309 
7310 	if (pad) {
7311 		u64 zero = 0;
7312 		perf_output_copy(handle, &zero, pad);
7313 	}
7314 
7315 out_put:
7316 	ring_buffer_put(rb);
7317 }
7318 
7319 /*
7320  * A set of common sample data types saved even for non-sample records
7321  * when event->attr.sample_id_all is set.
7322  */
7323 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7324 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7325 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7326 
7327 static void __perf_event_header__init_id(struct perf_sample_data *data,
7328 					 struct perf_event *event,
7329 					 u64 sample_type)
7330 {
7331 	data->type = event->attr.sample_type;
7332 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7333 
7334 	if (sample_type & PERF_SAMPLE_TID) {
7335 		/* namespace issues */
7336 		data->tid_entry.pid = perf_event_pid(event, current);
7337 		data->tid_entry.tid = perf_event_tid(event, current);
7338 	}
7339 
7340 	if (sample_type & PERF_SAMPLE_TIME)
7341 		data->time = perf_event_clock(event);
7342 
7343 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7344 		data->id = primary_event_id(event);
7345 
7346 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7347 		data->stream_id = event->id;
7348 
7349 	if (sample_type & PERF_SAMPLE_CPU) {
7350 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7351 		data->cpu_entry.reserved = 0;
7352 	}
7353 }
7354 
7355 void perf_event_header__init_id(struct perf_event_header *header,
7356 				struct perf_sample_data *data,
7357 				struct perf_event *event)
7358 {
7359 	if (event->attr.sample_id_all) {
7360 		header->size += event->id_header_size;
7361 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7362 	}
7363 }
7364 
7365 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7366 					   struct perf_sample_data *data)
7367 {
7368 	u64 sample_type = data->type;
7369 
7370 	if (sample_type & PERF_SAMPLE_TID)
7371 		perf_output_put(handle, data->tid_entry);
7372 
7373 	if (sample_type & PERF_SAMPLE_TIME)
7374 		perf_output_put(handle, data->time);
7375 
7376 	if (sample_type & PERF_SAMPLE_ID)
7377 		perf_output_put(handle, data->id);
7378 
7379 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7380 		perf_output_put(handle, data->stream_id);
7381 
7382 	if (sample_type & PERF_SAMPLE_CPU)
7383 		perf_output_put(handle, data->cpu_entry);
7384 
7385 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7386 		perf_output_put(handle, data->id);
7387 }
7388 
7389 void perf_event__output_id_sample(struct perf_event *event,
7390 				  struct perf_output_handle *handle,
7391 				  struct perf_sample_data *sample)
7392 {
7393 	if (event->attr.sample_id_all)
7394 		__perf_event__output_id_sample(handle, sample);
7395 }
7396 
7397 static void perf_output_read_one(struct perf_output_handle *handle,
7398 				 struct perf_event *event,
7399 				 u64 enabled, u64 running)
7400 {
7401 	u64 read_format = event->attr.read_format;
7402 	u64 values[5];
7403 	int n = 0;
7404 
7405 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7406 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7407 		values[n++] = enabled +
7408 			atomic64_read(&event->child_total_time_enabled);
7409 	}
7410 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7411 		values[n++] = running +
7412 			atomic64_read(&event->child_total_time_running);
7413 	}
7414 	if (read_format & PERF_FORMAT_ID)
7415 		values[n++] = primary_event_id(event);
7416 	if (read_format & PERF_FORMAT_LOST)
7417 		values[n++] = atomic64_read(&event->lost_samples);
7418 
7419 	__output_copy(handle, values, n * sizeof(u64));
7420 }
7421 
7422 static void perf_output_read_group(struct perf_output_handle *handle,
7423 				   struct perf_event *event,
7424 				   u64 enabled, u64 running)
7425 {
7426 	struct perf_event *leader = event->group_leader, *sub;
7427 	u64 read_format = event->attr.read_format;
7428 	unsigned long flags;
7429 	u64 values[6];
7430 	int n = 0;
7431 	bool self = has_inherit_and_sample_read(&event->attr);
7432 
7433 	/*
7434 	 * Disabling interrupts avoids all counter scheduling
7435 	 * (context switches, timer based rotation and IPIs).
7436 	 */
7437 	local_irq_save(flags);
7438 
7439 	values[n++] = 1 + leader->nr_siblings;
7440 
7441 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7442 		values[n++] = enabled;
7443 
7444 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7445 		values[n++] = running;
7446 
7447 	if ((leader != event) &&
7448 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7449 		leader->pmu->read(leader);
7450 
7451 	values[n++] = perf_event_count(leader, self);
7452 	if (read_format & PERF_FORMAT_ID)
7453 		values[n++] = primary_event_id(leader);
7454 	if (read_format & PERF_FORMAT_LOST)
7455 		values[n++] = atomic64_read(&leader->lost_samples);
7456 
7457 	__output_copy(handle, values, n * sizeof(u64));
7458 
7459 	for_each_sibling_event(sub, leader) {
7460 		n = 0;
7461 
7462 		if ((sub != event) &&
7463 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7464 			sub->pmu->read(sub);
7465 
7466 		values[n++] = perf_event_count(sub, self);
7467 		if (read_format & PERF_FORMAT_ID)
7468 			values[n++] = primary_event_id(sub);
7469 		if (read_format & PERF_FORMAT_LOST)
7470 			values[n++] = atomic64_read(&sub->lost_samples);
7471 
7472 		__output_copy(handle, values, n * sizeof(u64));
7473 	}
7474 
7475 	local_irq_restore(flags);
7476 }
7477 
7478 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7479 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7480 
7481 /*
7482  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7483  *
7484  * The problem is that its both hard and excessively expensive to iterate the
7485  * child list, not to mention that its impossible to IPI the children running
7486  * on another CPU, from interrupt/NMI context.
7487  *
7488  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7489  * counts rather than attempting to accumulate some value across all children on
7490  * all cores.
7491  */
7492 static void perf_output_read(struct perf_output_handle *handle,
7493 			     struct perf_event *event)
7494 {
7495 	u64 enabled = 0, running = 0, now;
7496 	u64 read_format = event->attr.read_format;
7497 
7498 	/*
7499 	 * compute total_time_enabled, total_time_running
7500 	 * based on snapshot values taken when the event
7501 	 * was last scheduled in.
7502 	 *
7503 	 * we cannot simply called update_context_time()
7504 	 * because of locking issue as we are called in
7505 	 * NMI context
7506 	 */
7507 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7508 		calc_timer_values(event, &now, &enabled, &running);
7509 
7510 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7511 		perf_output_read_group(handle, event, enabled, running);
7512 	else
7513 		perf_output_read_one(handle, event, enabled, running);
7514 }
7515 
7516 void perf_output_sample(struct perf_output_handle *handle,
7517 			struct perf_event_header *header,
7518 			struct perf_sample_data *data,
7519 			struct perf_event *event)
7520 {
7521 	u64 sample_type = data->type;
7522 
7523 	perf_output_put(handle, *header);
7524 
7525 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7526 		perf_output_put(handle, data->id);
7527 
7528 	if (sample_type & PERF_SAMPLE_IP)
7529 		perf_output_put(handle, data->ip);
7530 
7531 	if (sample_type & PERF_SAMPLE_TID)
7532 		perf_output_put(handle, data->tid_entry);
7533 
7534 	if (sample_type & PERF_SAMPLE_TIME)
7535 		perf_output_put(handle, data->time);
7536 
7537 	if (sample_type & PERF_SAMPLE_ADDR)
7538 		perf_output_put(handle, data->addr);
7539 
7540 	if (sample_type & PERF_SAMPLE_ID)
7541 		perf_output_put(handle, data->id);
7542 
7543 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7544 		perf_output_put(handle, data->stream_id);
7545 
7546 	if (sample_type & PERF_SAMPLE_CPU)
7547 		perf_output_put(handle, data->cpu_entry);
7548 
7549 	if (sample_type & PERF_SAMPLE_PERIOD)
7550 		perf_output_put(handle, data->period);
7551 
7552 	if (sample_type & PERF_SAMPLE_READ)
7553 		perf_output_read(handle, event);
7554 
7555 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7556 		int size = 1;
7557 
7558 		size += data->callchain->nr;
7559 		size *= sizeof(u64);
7560 		__output_copy(handle, data->callchain, size);
7561 	}
7562 
7563 	if (sample_type & PERF_SAMPLE_RAW) {
7564 		struct perf_raw_record *raw = data->raw;
7565 
7566 		if (raw) {
7567 			struct perf_raw_frag *frag = &raw->frag;
7568 
7569 			perf_output_put(handle, raw->size);
7570 			do {
7571 				if (frag->copy) {
7572 					__output_custom(handle, frag->copy,
7573 							frag->data, frag->size);
7574 				} else {
7575 					__output_copy(handle, frag->data,
7576 						      frag->size);
7577 				}
7578 				if (perf_raw_frag_last(frag))
7579 					break;
7580 				frag = frag->next;
7581 			} while (1);
7582 			if (frag->pad)
7583 				__output_skip(handle, NULL, frag->pad);
7584 		} else {
7585 			struct {
7586 				u32	size;
7587 				u32	data;
7588 			} raw = {
7589 				.size = sizeof(u32),
7590 				.data = 0,
7591 			};
7592 			perf_output_put(handle, raw);
7593 		}
7594 	}
7595 
7596 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7597 		if (data->br_stack) {
7598 			size_t size;
7599 
7600 			size = data->br_stack->nr
7601 			     * sizeof(struct perf_branch_entry);
7602 
7603 			perf_output_put(handle, data->br_stack->nr);
7604 			if (branch_sample_hw_index(event))
7605 				perf_output_put(handle, data->br_stack->hw_idx);
7606 			perf_output_copy(handle, data->br_stack->entries, size);
7607 			/*
7608 			 * Add the extension space which is appended
7609 			 * right after the struct perf_branch_stack.
7610 			 */
7611 			if (data->br_stack_cntr) {
7612 				size = data->br_stack->nr * sizeof(u64);
7613 				perf_output_copy(handle, data->br_stack_cntr, size);
7614 			}
7615 		} else {
7616 			/*
7617 			 * we always store at least the value of nr
7618 			 */
7619 			u64 nr = 0;
7620 			perf_output_put(handle, nr);
7621 		}
7622 	}
7623 
7624 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7625 		u64 abi = data->regs_user.abi;
7626 
7627 		/*
7628 		 * If there are no regs to dump, notice it through
7629 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7630 		 */
7631 		perf_output_put(handle, abi);
7632 
7633 		if (abi) {
7634 			u64 mask = event->attr.sample_regs_user;
7635 			perf_output_sample_regs(handle,
7636 						data->regs_user.regs,
7637 						mask);
7638 		}
7639 	}
7640 
7641 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7642 		perf_output_sample_ustack(handle,
7643 					  data->stack_user_size,
7644 					  data->regs_user.regs);
7645 	}
7646 
7647 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7648 		perf_output_put(handle, data->weight.full);
7649 
7650 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7651 		perf_output_put(handle, data->data_src.val);
7652 
7653 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7654 		perf_output_put(handle, data->txn);
7655 
7656 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7657 		u64 abi = data->regs_intr.abi;
7658 		/*
7659 		 * If there are no regs to dump, notice it through
7660 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7661 		 */
7662 		perf_output_put(handle, abi);
7663 
7664 		if (abi) {
7665 			u64 mask = event->attr.sample_regs_intr;
7666 
7667 			perf_output_sample_regs(handle,
7668 						data->regs_intr.regs,
7669 						mask);
7670 		}
7671 	}
7672 
7673 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7674 		perf_output_put(handle, data->phys_addr);
7675 
7676 	if (sample_type & PERF_SAMPLE_CGROUP)
7677 		perf_output_put(handle, data->cgroup);
7678 
7679 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7680 		perf_output_put(handle, data->data_page_size);
7681 
7682 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7683 		perf_output_put(handle, data->code_page_size);
7684 
7685 	if (sample_type & PERF_SAMPLE_AUX) {
7686 		perf_output_put(handle, data->aux_size);
7687 
7688 		if (data->aux_size)
7689 			perf_aux_sample_output(event, handle, data);
7690 	}
7691 
7692 	if (!event->attr.watermark) {
7693 		int wakeup_events = event->attr.wakeup_events;
7694 
7695 		if (wakeup_events) {
7696 			struct perf_buffer *rb = handle->rb;
7697 			int events = local_inc_return(&rb->events);
7698 
7699 			if (events >= wakeup_events) {
7700 				local_sub(wakeup_events, &rb->events);
7701 				local_inc(&rb->wakeup);
7702 			}
7703 		}
7704 	}
7705 }
7706 
7707 static u64 perf_virt_to_phys(u64 virt)
7708 {
7709 	u64 phys_addr = 0;
7710 
7711 	if (!virt)
7712 		return 0;
7713 
7714 	if (virt >= TASK_SIZE) {
7715 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7716 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7717 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7718 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7719 	} else {
7720 		/*
7721 		 * Walking the pages tables for user address.
7722 		 * Interrupts are disabled, so it prevents any tear down
7723 		 * of the page tables.
7724 		 * Try IRQ-safe get_user_page_fast_only first.
7725 		 * If failed, leave phys_addr as 0.
7726 		 */
7727 		if (current->mm != NULL) {
7728 			struct page *p;
7729 
7730 			pagefault_disable();
7731 			if (get_user_page_fast_only(virt, 0, &p)) {
7732 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7733 				put_page(p);
7734 			}
7735 			pagefault_enable();
7736 		}
7737 	}
7738 
7739 	return phys_addr;
7740 }
7741 
7742 /*
7743  * Return the pagetable size of a given virtual address.
7744  */
7745 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7746 {
7747 	u64 size = 0;
7748 
7749 #ifdef CONFIG_HAVE_GUP_FAST
7750 	pgd_t *pgdp, pgd;
7751 	p4d_t *p4dp, p4d;
7752 	pud_t *pudp, pud;
7753 	pmd_t *pmdp, pmd;
7754 	pte_t *ptep, pte;
7755 
7756 	pgdp = pgd_offset(mm, addr);
7757 	pgd = READ_ONCE(*pgdp);
7758 	if (pgd_none(pgd))
7759 		return 0;
7760 
7761 	if (pgd_leaf(pgd))
7762 		return pgd_leaf_size(pgd);
7763 
7764 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7765 	p4d = READ_ONCE(*p4dp);
7766 	if (!p4d_present(p4d))
7767 		return 0;
7768 
7769 	if (p4d_leaf(p4d))
7770 		return p4d_leaf_size(p4d);
7771 
7772 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7773 	pud = READ_ONCE(*pudp);
7774 	if (!pud_present(pud))
7775 		return 0;
7776 
7777 	if (pud_leaf(pud))
7778 		return pud_leaf_size(pud);
7779 
7780 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7781 again:
7782 	pmd = pmdp_get_lockless(pmdp);
7783 	if (!pmd_present(pmd))
7784 		return 0;
7785 
7786 	if (pmd_leaf(pmd))
7787 		return pmd_leaf_size(pmd);
7788 
7789 	ptep = pte_offset_map(&pmd, addr);
7790 	if (!ptep)
7791 		goto again;
7792 
7793 	pte = ptep_get_lockless(ptep);
7794 	if (pte_present(pte))
7795 		size = __pte_leaf_size(pmd, pte);
7796 	pte_unmap(ptep);
7797 #endif /* CONFIG_HAVE_GUP_FAST */
7798 
7799 	return size;
7800 }
7801 
7802 static u64 perf_get_page_size(unsigned long addr)
7803 {
7804 	struct mm_struct *mm;
7805 	unsigned long flags;
7806 	u64 size;
7807 
7808 	if (!addr)
7809 		return 0;
7810 
7811 	/*
7812 	 * Software page-table walkers must disable IRQs,
7813 	 * which prevents any tear down of the page tables.
7814 	 */
7815 	local_irq_save(flags);
7816 
7817 	mm = current->mm;
7818 	if (!mm) {
7819 		/*
7820 		 * For kernel threads and the like, use init_mm so that
7821 		 * we can find kernel memory.
7822 		 */
7823 		mm = &init_mm;
7824 	}
7825 
7826 	size = perf_get_pgtable_size(mm, addr);
7827 
7828 	local_irq_restore(flags);
7829 
7830 	return size;
7831 }
7832 
7833 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7834 
7835 struct perf_callchain_entry *
7836 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7837 {
7838 	bool kernel = !event->attr.exclude_callchain_kernel;
7839 	bool user   = !event->attr.exclude_callchain_user;
7840 	/* Disallow cross-task user callchains. */
7841 	bool crosstask = event->ctx->task && event->ctx->task != current;
7842 	const u32 max_stack = event->attr.sample_max_stack;
7843 	struct perf_callchain_entry *callchain;
7844 
7845 	if (!kernel && !user)
7846 		return &__empty_callchain;
7847 
7848 	callchain = get_perf_callchain(regs, 0, kernel, user,
7849 				       max_stack, crosstask, true);
7850 	return callchain ?: &__empty_callchain;
7851 }
7852 
7853 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7854 {
7855 	return d * !!(flags & s);
7856 }
7857 
7858 void perf_prepare_sample(struct perf_sample_data *data,
7859 			 struct perf_event *event,
7860 			 struct pt_regs *regs)
7861 {
7862 	u64 sample_type = event->attr.sample_type;
7863 	u64 filtered_sample_type;
7864 
7865 	/*
7866 	 * Add the sample flags that are dependent to others.  And clear the
7867 	 * sample flags that have already been done by the PMU driver.
7868 	 */
7869 	filtered_sample_type = sample_type;
7870 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7871 					   PERF_SAMPLE_IP);
7872 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7873 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7874 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7875 					   PERF_SAMPLE_REGS_USER);
7876 	filtered_sample_type &= ~data->sample_flags;
7877 
7878 	if (filtered_sample_type == 0) {
7879 		/* Make sure it has the correct data->type for output */
7880 		data->type = event->attr.sample_type;
7881 		return;
7882 	}
7883 
7884 	__perf_event_header__init_id(data, event, filtered_sample_type);
7885 
7886 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7887 		data->ip = perf_instruction_pointer(event, regs);
7888 		data->sample_flags |= PERF_SAMPLE_IP;
7889 	}
7890 
7891 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7892 		perf_sample_save_callchain(data, event, regs);
7893 
7894 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7895 		data->raw = NULL;
7896 		data->dyn_size += sizeof(u64);
7897 		data->sample_flags |= PERF_SAMPLE_RAW;
7898 	}
7899 
7900 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7901 		data->br_stack = NULL;
7902 		data->dyn_size += sizeof(u64);
7903 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7904 	}
7905 
7906 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7907 		perf_sample_regs_user(&data->regs_user, regs);
7908 
7909 	/*
7910 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7911 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7912 	 * the dyn_size if it's not requested by users.
7913 	 */
7914 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7915 		/* regs dump ABI info */
7916 		int size = sizeof(u64);
7917 
7918 		if (data->regs_user.regs) {
7919 			u64 mask = event->attr.sample_regs_user;
7920 			size += hweight64(mask) * sizeof(u64);
7921 		}
7922 
7923 		data->dyn_size += size;
7924 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7925 	}
7926 
7927 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7928 		/*
7929 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7930 		 * processed as the last one or have additional check added
7931 		 * in case new sample type is added, because we could eat
7932 		 * up the rest of the sample size.
7933 		 */
7934 		u16 stack_size = event->attr.sample_stack_user;
7935 		u16 header_size = perf_sample_data_size(data, event);
7936 		u16 size = sizeof(u64);
7937 
7938 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7939 						     data->regs_user.regs);
7940 
7941 		/*
7942 		 * If there is something to dump, add space for the dump
7943 		 * itself and for the field that tells the dynamic size,
7944 		 * which is how many have been actually dumped.
7945 		 */
7946 		if (stack_size)
7947 			size += sizeof(u64) + stack_size;
7948 
7949 		data->stack_user_size = stack_size;
7950 		data->dyn_size += size;
7951 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7952 	}
7953 
7954 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7955 		data->weight.full = 0;
7956 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7957 	}
7958 
7959 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7960 		data->data_src.val = PERF_MEM_NA;
7961 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7962 	}
7963 
7964 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7965 		data->txn = 0;
7966 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7967 	}
7968 
7969 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7970 		data->addr = 0;
7971 		data->sample_flags |= PERF_SAMPLE_ADDR;
7972 	}
7973 
7974 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7975 		/* regs dump ABI info */
7976 		int size = sizeof(u64);
7977 
7978 		perf_sample_regs_intr(&data->regs_intr, regs);
7979 
7980 		if (data->regs_intr.regs) {
7981 			u64 mask = event->attr.sample_regs_intr;
7982 
7983 			size += hweight64(mask) * sizeof(u64);
7984 		}
7985 
7986 		data->dyn_size += size;
7987 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7988 	}
7989 
7990 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7991 		data->phys_addr = perf_virt_to_phys(data->addr);
7992 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7993 	}
7994 
7995 #ifdef CONFIG_CGROUP_PERF
7996 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7997 		struct cgroup *cgrp;
7998 
7999 		/* protected by RCU */
8000 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8001 		data->cgroup = cgroup_id(cgrp);
8002 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8003 	}
8004 #endif
8005 
8006 	/*
8007 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8008 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8009 	 * but the value will not dump to the userspace.
8010 	 */
8011 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8012 		data->data_page_size = perf_get_page_size(data->addr);
8013 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8014 	}
8015 
8016 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8017 		data->code_page_size = perf_get_page_size(data->ip);
8018 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8019 	}
8020 
8021 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8022 		u64 size;
8023 		u16 header_size = perf_sample_data_size(data, event);
8024 
8025 		header_size += sizeof(u64); /* size */
8026 
8027 		/*
8028 		 * Given the 16bit nature of header::size, an AUX sample can
8029 		 * easily overflow it, what with all the preceding sample bits.
8030 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8031 		 * per sample in total (rounded down to 8 byte boundary).
8032 		 */
8033 		size = min_t(size_t, U16_MAX - header_size,
8034 			     event->attr.aux_sample_size);
8035 		size = rounddown(size, 8);
8036 		size = perf_prepare_sample_aux(event, data, size);
8037 
8038 		WARN_ON_ONCE(size + header_size > U16_MAX);
8039 		data->dyn_size += size + sizeof(u64); /* size above */
8040 		data->sample_flags |= PERF_SAMPLE_AUX;
8041 	}
8042 }
8043 
8044 void perf_prepare_header(struct perf_event_header *header,
8045 			 struct perf_sample_data *data,
8046 			 struct perf_event *event,
8047 			 struct pt_regs *regs)
8048 {
8049 	header->type = PERF_RECORD_SAMPLE;
8050 	header->size = perf_sample_data_size(data, event);
8051 	header->misc = perf_misc_flags(event, regs);
8052 
8053 	/*
8054 	 * If you're adding more sample types here, you likely need to do
8055 	 * something about the overflowing header::size, like repurpose the
8056 	 * lowest 3 bits of size, which should be always zero at the moment.
8057 	 * This raises a more important question, do we really need 512k sized
8058 	 * samples and why, so good argumentation is in order for whatever you
8059 	 * do here next.
8060 	 */
8061 	WARN_ON_ONCE(header->size & 7);
8062 }
8063 
8064 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8065 {
8066 	if (pause) {
8067 		if (!event->hw.aux_paused) {
8068 			event->hw.aux_paused = 1;
8069 			event->pmu->stop(event, PERF_EF_PAUSE);
8070 		}
8071 	} else {
8072 		if (event->hw.aux_paused) {
8073 			event->hw.aux_paused = 0;
8074 			event->pmu->start(event, PERF_EF_RESUME);
8075 		}
8076 	}
8077 }
8078 
8079 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8080 {
8081 	struct perf_buffer *rb;
8082 
8083 	if (WARN_ON_ONCE(!event))
8084 		return;
8085 
8086 	rb = ring_buffer_get(event);
8087 	if (!rb)
8088 		return;
8089 
8090 	scoped_guard (irqsave) {
8091 		/*
8092 		 * Guard against self-recursion here. Another event could trip
8093 		 * this same from NMI context.
8094 		 */
8095 		if (READ_ONCE(rb->aux_in_pause_resume))
8096 			break;
8097 
8098 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8099 		barrier();
8100 		__perf_event_aux_pause(event, pause);
8101 		barrier();
8102 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8103 	}
8104 	ring_buffer_put(rb);
8105 }
8106 
8107 static __always_inline int
8108 __perf_event_output(struct perf_event *event,
8109 		    struct perf_sample_data *data,
8110 		    struct pt_regs *regs,
8111 		    int (*output_begin)(struct perf_output_handle *,
8112 					struct perf_sample_data *,
8113 					struct perf_event *,
8114 					unsigned int))
8115 {
8116 	struct perf_output_handle handle;
8117 	struct perf_event_header header;
8118 	int err;
8119 
8120 	/* protect the callchain buffers */
8121 	rcu_read_lock();
8122 
8123 	perf_prepare_sample(data, event, regs);
8124 	perf_prepare_header(&header, data, event, regs);
8125 
8126 	err = output_begin(&handle, data, event, header.size);
8127 	if (err)
8128 		goto exit;
8129 
8130 	perf_output_sample(&handle, &header, data, event);
8131 
8132 	perf_output_end(&handle);
8133 
8134 exit:
8135 	rcu_read_unlock();
8136 	return err;
8137 }
8138 
8139 void
8140 perf_event_output_forward(struct perf_event *event,
8141 			 struct perf_sample_data *data,
8142 			 struct pt_regs *regs)
8143 {
8144 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8145 }
8146 
8147 void
8148 perf_event_output_backward(struct perf_event *event,
8149 			   struct perf_sample_data *data,
8150 			   struct pt_regs *regs)
8151 {
8152 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8153 }
8154 
8155 int
8156 perf_event_output(struct perf_event *event,
8157 		  struct perf_sample_data *data,
8158 		  struct pt_regs *regs)
8159 {
8160 	return __perf_event_output(event, data, regs, perf_output_begin);
8161 }
8162 
8163 /*
8164  * read event_id
8165  */
8166 
8167 struct perf_read_event {
8168 	struct perf_event_header	header;
8169 
8170 	u32				pid;
8171 	u32				tid;
8172 };
8173 
8174 static void
8175 perf_event_read_event(struct perf_event *event,
8176 			struct task_struct *task)
8177 {
8178 	struct perf_output_handle handle;
8179 	struct perf_sample_data sample;
8180 	struct perf_read_event read_event = {
8181 		.header = {
8182 			.type = PERF_RECORD_READ,
8183 			.misc = 0,
8184 			.size = sizeof(read_event) + event->read_size,
8185 		},
8186 		.pid = perf_event_pid(event, task),
8187 		.tid = perf_event_tid(event, task),
8188 	};
8189 	int ret;
8190 
8191 	perf_event_header__init_id(&read_event.header, &sample, event);
8192 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8193 	if (ret)
8194 		return;
8195 
8196 	perf_output_put(&handle, read_event);
8197 	perf_output_read(&handle, event);
8198 	perf_event__output_id_sample(event, &handle, &sample);
8199 
8200 	perf_output_end(&handle);
8201 }
8202 
8203 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8204 
8205 static void
8206 perf_iterate_ctx(struct perf_event_context *ctx,
8207 		   perf_iterate_f output,
8208 		   void *data, bool all)
8209 {
8210 	struct perf_event *event;
8211 
8212 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8213 		if (!all) {
8214 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8215 				continue;
8216 			if (!event_filter_match(event))
8217 				continue;
8218 		}
8219 
8220 		output(event, data);
8221 	}
8222 }
8223 
8224 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8225 {
8226 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8227 	struct perf_event *event;
8228 
8229 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8230 		/*
8231 		 * Skip events that are not fully formed yet; ensure that
8232 		 * if we observe event->ctx, both event and ctx will be
8233 		 * complete enough. See perf_install_in_context().
8234 		 */
8235 		if (!smp_load_acquire(&event->ctx))
8236 			continue;
8237 
8238 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8239 			continue;
8240 		if (!event_filter_match(event))
8241 			continue;
8242 		output(event, data);
8243 	}
8244 }
8245 
8246 /*
8247  * Iterate all events that need to receive side-band events.
8248  *
8249  * For new callers; ensure that account_pmu_sb_event() includes
8250  * your event, otherwise it might not get delivered.
8251  */
8252 static void
8253 perf_iterate_sb(perf_iterate_f output, void *data,
8254 	       struct perf_event_context *task_ctx)
8255 {
8256 	struct perf_event_context *ctx;
8257 
8258 	rcu_read_lock();
8259 	preempt_disable();
8260 
8261 	/*
8262 	 * If we have task_ctx != NULL we only notify the task context itself.
8263 	 * The task_ctx is set only for EXIT events before releasing task
8264 	 * context.
8265 	 */
8266 	if (task_ctx) {
8267 		perf_iterate_ctx(task_ctx, output, data, false);
8268 		goto done;
8269 	}
8270 
8271 	perf_iterate_sb_cpu(output, data);
8272 
8273 	ctx = rcu_dereference(current->perf_event_ctxp);
8274 	if (ctx)
8275 		perf_iterate_ctx(ctx, output, data, false);
8276 done:
8277 	preempt_enable();
8278 	rcu_read_unlock();
8279 }
8280 
8281 /*
8282  * Clear all file-based filters at exec, they'll have to be
8283  * re-instated when/if these objects are mmapped again.
8284  */
8285 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8286 {
8287 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8288 	struct perf_addr_filter *filter;
8289 	unsigned int restart = 0, count = 0;
8290 	unsigned long flags;
8291 
8292 	if (!has_addr_filter(event))
8293 		return;
8294 
8295 	raw_spin_lock_irqsave(&ifh->lock, flags);
8296 	list_for_each_entry(filter, &ifh->list, entry) {
8297 		if (filter->path.dentry) {
8298 			event->addr_filter_ranges[count].start = 0;
8299 			event->addr_filter_ranges[count].size = 0;
8300 			restart++;
8301 		}
8302 
8303 		count++;
8304 	}
8305 
8306 	if (restart)
8307 		event->addr_filters_gen++;
8308 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8309 
8310 	if (restart)
8311 		perf_event_stop(event, 1);
8312 }
8313 
8314 void perf_event_exec(void)
8315 {
8316 	struct perf_event_context *ctx;
8317 
8318 	ctx = perf_pin_task_context(current);
8319 	if (!ctx)
8320 		return;
8321 
8322 	perf_event_enable_on_exec(ctx);
8323 	perf_event_remove_on_exec(ctx);
8324 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8325 
8326 	perf_unpin_context(ctx);
8327 	put_ctx(ctx);
8328 }
8329 
8330 struct remote_output {
8331 	struct perf_buffer	*rb;
8332 	int			err;
8333 };
8334 
8335 static void __perf_event_output_stop(struct perf_event *event, void *data)
8336 {
8337 	struct perf_event *parent = event->parent;
8338 	struct remote_output *ro = data;
8339 	struct perf_buffer *rb = ro->rb;
8340 	struct stop_event_data sd = {
8341 		.event	= event,
8342 	};
8343 
8344 	if (!has_aux(event))
8345 		return;
8346 
8347 	if (!parent)
8348 		parent = event;
8349 
8350 	/*
8351 	 * In case of inheritance, it will be the parent that links to the
8352 	 * ring-buffer, but it will be the child that's actually using it.
8353 	 *
8354 	 * We are using event::rb to determine if the event should be stopped,
8355 	 * however this may race with ring_buffer_attach() (through set_output),
8356 	 * which will make us skip the event that actually needs to be stopped.
8357 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8358 	 * its rb pointer.
8359 	 */
8360 	if (rcu_dereference(parent->rb) == rb)
8361 		ro->err = __perf_event_stop(&sd);
8362 }
8363 
8364 static int __perf_pmu_output_stop(void *info)
8365 {
8366 	struct perf_event *event = info;
8367 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8368 	struct remote_output ro = {
8369 		.rb	= event->rb,
8370 	};
8371 
8372 	rcu_read_lock();
8373 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8374 	if (cpuctx->task_ctx)
8375 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8376 				   &ro, false);
8377 	rcu_read_unlock();
8378 
8379 	return ro.err;
8380 }
8381 
8382 static void perf_pmu_output_stop(struct perf_event *event)
8383 {
8384 	struct perf_event *iter;
8385 	int err, cpu;
8386 
8387 restart:
8388 	rcu_read_lock();
8389 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8390 		/*
8391 		 * For per-CPU events, we need to make sure that neither they
8392 		 * nor their children are running; for cpu==-1 events it's
8393 		 * sufficient to stop the event itself if it's active, since
8394 		 * it can't have children.
8395 		 */
8396 		cpu = iter->cpu;
8397 		if (cpu == -1)
8398 			cpu = READ_ONCE(iter->oncpu);
8399 
8400 		if (cpu == -1)
8401 			continue;
8402 
8403 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8404 		if (err == -EAGAIN) {
8405 			rcu_read_unlock();
8406 			goto restart;
8407 		}
8408 	}
8409 	rcu_read_unlock();
8410 }
8411 
8412 /*
8413  * task tracking -- fork/exit
8414  *
8415  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8416  */
8417 
8418 struct perf_task_event {
8419 	struct task_struct		*task;
8420 	struct perf_event_context	*task_ctx;
8421 
8422 	struct {
8423 		struct perf_event_header	header;
8424 
8425 		u32				pid;
8426 		u32				ppid;
8427 		u32				tid;
8428 		u32				ptid;
8429 		u64				time;
8430 	} event_id;
8431 };
8432 
8433 static int perf_event_task_match(struct perf_event *event)
8434 {
8435 	return event->attr.comm  || event->attr.mmap ||
8436 	       event->attr.mmap2 || event->attr.mmap_data ||
8437 	       event->attr.task;
8438 }
8439 
8440 static void perf_event_task_output(struct perf_event *event,
8441 				   void *data)
8442 {
8443 	struct perf_task_event *task_event = data;
8444 	struct perf_output_handle handle;
8445 	struct perf_sample_data	sample;
8446 	struct task_struct *task = task_event->task;
8447 	int ret, size = task_event->event_id.header.size;
8448 
8449 	if (!perf_event_task_match(event))
8450 		return;
8451 
8452 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8453 
8454 	ret = perf_output_begin(&handle, &sample, event,
8455 				task_event->event_id.header.size);
8456 	if (ret)
8457 		goto out;
8458 
8459 	task_event->event_id.pid = perf_event_pid(event, task);
8460 	task_event->event_id.tid = perf_event_tid(event, task);
8461 
8462 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8463 		task_event->event_id.ppid = perf_event_pid(event,
8464 							task->real_parent);
8465 		task_event->event_id.ptid = perf_event_pid(event,
8466 							task->real_parent);
8467 	} else {  /* PERF_RECORD_FORK */
8468 		task_event->event_id.ppid = perf_event_pid(event, current);
8469 		task_event->event_id.ptid = perf_event_tid(event, current);
8470 	}
8471 
8472 	task_event->event_id.time = perf_event_clock(event);
8473 
8474 	perf_output_put(&handle, task_event->event_id);
8475 
8476 	perf_event__output_id_sample(event, &handle, &sample);
8477 
8478 	perf_output_end(&handle);
8479 out:
8480 	task_event->event_id.header.size = size;
8481 }
8482 
8483 static void perf_event_task(struct task_struct *task,
8484 			      struct perf_event_context *task_ctx,
8485 			      int new)
8486 {
8487 	struct perf_task_event task_event;
8488 
8489 	if (!atomic_read(&nr_comm_events) &&
8490 	    !atomic_read(&nr_mmap_events) &&
8491 	    !atomic_read(&nr_task_events))
8492 		return;
8493 
8494 	task_event = (struct perf_task_event){
8495 		.task	  = task,
8496 		.task_ctx = task_ctx,
8497 		.event_id    = {
8498 			.header = {
8499 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8500 				.misc = 0,
8501 				.size = sizeof(task_event.event_id),
8502 			},
8503 			/* .pid  */
8504 			/* .ppid */
8505 			/* .tid  */
8506 			/* .ptid */
8507 			/* .time */
8508 		},
8509 	};
8510 
8511 	perf_iterate_sb(perf_event_task_output,
8512 		       &task_event,
8513 		       task_ctx);
8514 }
8515 
8516 void perf_event_fork(struct task_struct *task)
8517 {
8518 	perf_event_task(task, NULL, 1);
8519 	perf_event_namespaces(task);
8520 }
8521 
8522 /*
8523  * comm tracking
8524  */
8525 
8526 struct perf_comm_event {
8527 	struct task_struct	*task;
8528 	char			*comm;
8529 	int			comm_size;
8530 
8531 	struct {
8532 		struct perf_event_header	header;
8533 
8534 		u32				pid;
8535 		u32				tid;
8536 	} event_id;
8537 };
8538 
8539 static int perf_event_comm_match(struct perf_event *event)
8540 {
8541 	return event->attr.comm;
8542 }
8543 
8544 static void perf_event_comm_output(struct perf_event *event,
8545 				   void *data)
8546 {
8547 	struct perf_comm_event *comm_event = data;
8548 	struct perf_output_handle handle;
8549 	struct perf_sample_data sample;
8550 	int size = comm_event->event_id.header.size;
8551 	int ret;
8552 
8553 	if (!perf_event_comm_match(event))
8554 		return;
8555 
8556 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8557 	ret = perf_output_begin(&handle, &sample, event,
8558 				comm_event->event_id.header.size);
8559 
8560 	if (ret)
8561 		goto out;
8562 
8563 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8564 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8565 
8566 	perf_output_put(&handle, comm_event->event_id);
8567 	__output_copy(&handle, comm_event->comm,
8568 				   comm_event->comm_size);
8569 
8570 	perf_event__output_id_sample(event, &handle, &sample);
8571 
8572 	perf_output_end(&handle);
8573 out:
8574 	comm_event->event_id.header.size = size;
8575 }
8576 
8577 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8578 {
8579 	char comm[TASK_COMM_LEN];
8580 	unsigned int size;
8581 
8582 	memset(comm, 0, sizeof(comm));
8583 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8584 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8585 
8586 	comm_event->comm = comm;
8587 	comm_event->comm_size = size;
8588 
8589 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8590 
8591 	perf_iterate_sb(perf_event_comm_output,
8592 		       comm_event,
8593 		       NULL);
8594 }
8595 
8596 void perf_event_comm(struct task_struct *task, bool exec)
8597 {
8598 	struct perf_comm_event comm_event;
8599 
8600 	if (!atomic_read(&nr_comm_events))
8601 		return;
8602 
8603 	comm_event = (struct perf_comm_event){
8604 		.task	= task,
8605 		/* .comm      */
8606 		/* .comm_size */
8607 		.event_id  = {
8608 			.header = {
8609 				.type = PERF_RECORD_COMM,
8610 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8611 				/* .size */
8612 			},
8613 			/* .pid */
8614 			/* .tid */
8615 		},
8616 	};
8617 
8618 	perf_event_comm_event(&comm_event);
8619 }
8620 
8621 /*
8622  * namespaces tracking
8623  */
8624 
8625 struct perf_namespaces_event {
8626 	struct task_struct		*task;
8627 
8628 	struct {
8629 		struct perf_event_header	header;
8630 
8631 		u32				pid;
8632 		u32				tid;
8633 		u64				nr_namespaces;
8634 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8635 	} event_id;
8636 };
8637 
8638 static int perf_event_namespaces_match(struct perf_event *event)
8639 {
8640 	return event->attr.namespaces;
8641 }
8642 
8643 static void perf_event_namespaces_output(struct perf_event *event,
8644 					 void *data)
8645 {
8646 	struct perf_namespaces_event *namespaces_event = data;
8647 	struct perf_output_handle handle;
8648 	struct perf_sample_data sample;
8649 	u16 header_size = namespaces_event->event_id.header.size;
8650 	int ret;
8651 
8652 	if (!perf_event_namespaces_match(event))
8653 		return;
8654 
8655 	perf_event_header__init_id(&namespaces_event->event_id.header,
8656 				   &sample, event);
8657 	ret = perf_output_begin(&handle, &sample, event,
8658 				namespaces_event->event_id.header.size);
8659 	if (ret)
8660 		goto out;
8661 
8662 	namespaces_event->event_id.pid = perf_event_pid(event,
8663 							namespaces_event->task);
8664 	namespaces_event->event_id.tid = perf_event_tid(event,
8665 							namespaces_event->task);
8666 
8667 	perf_output_put(&handle, namespaces_event->event_id);
8668 
8669 	perf_event__output_id_sample(event, &handle, &sample);
8670 
8671 	perf_output_end(&handle);
8672 out:
8673 	namespaces_event->event_id.header.size = header_size;
8674 }
8675 
8676 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8677 				   struct task_struct *task,
8678 				   const struct proc_ns_operations *ns_ops)
8679 {
8680 	struct path ns_path;
8681 	struct inode *ns_inode;
8682 	int error;
8683 
8684 	error = ns_get_path(&ns_path, task, ns_ops);
8685 	if (!error) {
8686 		ns_inode = ns_path.dentry->d_inode;
8687 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8688 		ns_link_info->ino = ns_inode->i_ino;
8689 		path_put(&ns_path);
8690 	}
8691 }
8692 
8693 void perf_event_namespaces(struct task_struct *task)
8694 {
8695 	struct perf_namespaces_event namespaces_event;
8696 	struct perf_ns_link_info *ns_link_info;
8697 
8698 	if (!atomic_read(&nr_namespaces_events))
8699 		return;
8700 
8701 	namespaces_event = (struct perf_namespaces_event){
8702 		.task	= task,
8703 		.event_id  = {
8704 			.header = {
8705 				.type = PERF_RECORD_NAMESPACES,
8706 				.misc = 0,
8707 				.size = sizeof(namespaces_event.event_id),
8708 			},
8709 			/* .pid */
8710 			/* .tid */
8711 			.nr_namespaces = NR_NAMESPACES,
8712 			/* .link_info[NR_NAMESPACES] */
8713 		},
8714 	};
8715 
8716 	ns_link_info = namespaces_event.event_id.link_info;
8717 
8718 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8719 			       task, &mntns_operations);
8720 
8721 #ifdef CONFIG_USER_NS
8722 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8723 			       task, &userns_operations);
8724 #endif
8725 #ifdef CONFIG_NET_NS
8726 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8727 			       task, &netns_operations);
8728 #endif
8729 #ifdef CONFIG_UTS_NS
8730 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8731 			       task, &utsns_operations);
8732 #endif
8733 #ifdef CONFIG_IPC_NS
8734 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8735 			       task, &ipcns_operations);
8736 #endif
8737 #ifdef CONFIG_PID_NS
8738 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8739 			       task, &pidns_operations);
8740 #endif
8741 #ifdef CONFIG_CGROUPS
8742 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8743 			       task, &cgroupns_operations);
8744 #endif
8745 
8746 	perf_iterate_sb(perf_event_namespaces_output,
8747 			&namespaces_event,
8748 			NULL);
8749 }
8750 
8751 /*
8752  * cgroup tracking
8753  */
8754 #ifdef CONFIG_CGROUP_PERF
8755 
8756 struct perf_cgroup_event {
8757 	char				*path;
8758 	int				path_size;
8759 	struct {
8760 		struct perf_event_header	header;
8761 		u64				id;
8762 		char				path[];
8763 	} event_id;
8764 };
8765 
8766 static int perf_event_cgroup_match(struct perf_event *event)
8767 {
8768 	return event->attr.cgroup;
8769 }
8770 
8771 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8772 {
8773 	struct perf_cgroup_event *cgroup_event = data;
8774 	struct perf_output_handle handle;
8775 	struct perf_sample_data sample;
8776 	u16 header_size = cgroup_event->event_id.header.size;
8777 	int ret;
8778 
8779 	if (!perf_event_cgroup_match(event))
8780 		return;
8781 
8782 	perf_event_header__init_id(&cgroup_event->event_id.header,
8783 				   &sample, event);
8784 	ret = perf_output_begin(&handle, &sample, event,
8785 				cgroup_event->event_id.header.size);
8786 	if (ret)
8787 		goto out;
8788 
8789 	perf_output_put(&handle, cgroup_event->event_id);
8790 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8791 
8792 	perf_event__output_id_sample(event, &handle, &sample);
8793 
8794 	perf_output_end(&handle);
8795 out:
8796 	cgroup_event->event_id.header.size = header_size;
8797 }
8798 
8799 static void perf_event_cgroup(struct cgroup *cgrp)
8800 {
8801 	struct perf_cgroup_event cgroup_event;
8802 	char path_enomem[16] = "//enomem";
8803 	char *pathname;
8804 	size_t size;
8805 
8806 	if (!atomic_read(&nr_cgroup_events))
8807 		return;
8808 
8809 	cgroup_event = (struct perf_cgroup_event){
8810 		.event_id  = {
8811 			.header = {
8812 				.type = PERF_RECORD_CGROUP,
8813 				.misc = 0,
8814 				.size = sizeof(cgroup_event.event_id),
8815 			},
8816 			.id = cgroup_id(cgrp),
8817 		},
8818 	};
8819 
8820 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8821 	if (pathname == NULL) {
8822 		cgroup_event.path = path_enomem;
8823 	} else {
8824 		/* just to be sure to have enough space for alignment */
8825 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8826 		cgroup_event.path = pathname;
8827 	}
8828 
8829 	/*
8830 	 * Since our buffer works in 8 byte units we need to align our string
8831 	 * size to a multiple of 8. However, we must guarantee the tail end is
8832 	 * zero'd out to avoid leaking random bits to userspace.
8833 	 */
8834 	size = strlen(cgroup_event.path) + 1;
8835 	while (!IS_ALIGNED(size, sizeof(u64)))
8836 		cgroup_event.path[size++] = '\0';
8837 
8838 	cgroup_event.event_id.header.size += size;
8839 	cgroup_event.path_size = size;
8840 
8841 	perf_iterate_sb(perf_event_cgroup_output,
8842 			&cgroup_event,
8843 			NULL);
8844 
8845 	kfree(pathname);
8846 }
8847 
8848 #endif
8849 
8850 /*
8851  * mmap tracking
8852  */
8853 
8854 struct perf_mmap_event {
8855 	struct vm_area_struct	*vma;
8856 
8857 	const char		*file_name;
8858 	int			file_size;
8859 	int			maj, min;
8860 	u64			ino;
8861 	u64			ino_generation;
8862 	u32			prot, flags;
8863 	u8			build_id[BUILD_ID_SIZE_MAX];
8864 	u32			build_id_size;
8865 
8866 	struct {
8867 		struct perf_event_header	header;
8868 
8869 		u32				pid;
8870 		u32				tid;
8871 		u64				start;
8872 		u64				len;
8873 		u64				pgoff;
8874 	} event_id;
8875 };
8876 
8877 static int perf_event_mmap_match(struct perf_event *event,
8878 				 void *data)
8879 {
8880 	struct perf_mmap_event *mmap_event = data;
8881 	struct vm_area_struct *vma = mmap_event->vma;
8882 	int executable = vma->vm_flags & VM_EXEC;
8883 
8884 	return (!executable && event->attr.mmap_data) ||
8885 	       (executable && (event->attr.mmap || event->attr.mmap2));
8886 }
8887 
8888 static void perf_event_mmap_output(struct perf_event *event,
8889 				   void *data)
8890 {
8891 	struct perf_mmap_event *mmap_event = data;
8892 	struct perf_output_handle handle;
8893 	struct perf_sample_data sample;
8894 	int size = mmap_event->event_id.header.size;
8895 	u32 type = mmap_event->event_id.header.type;
8896 	bool use_build_id;
8897 	int ret;
8898 
8899 	if (!perf_event_mmap_match(event, data))
8900 		return;
8901 
8902 	if (event->attr.mmap2) {
8903 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8904 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8905 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8906 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8907 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8908 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8909 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8910 	}
8911 
8912 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8913 	ret = perf_output_begin(&handle, &sample, event,
8914 				mmap_event->event_id.header.size);
8915 	if (ret)
8916 		goto out;
8917 
8918 	mmap_event->event_id.pid = perf_event_pid(event, current);
8919 	mmap_event->event_id.tid = perf_event_tid(event, current);
8920 
8921 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8922 
8923 	if (event->attr.mmap2 && use_build_id)
8924 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8925 
8926 	perf_output_put(&handle, mmap_event->event_id);
8927 
8928 	if (event->attr.mmap2) {
8929 		if (use_build_id) {
8930 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8931 
8932 			__output_copy(&handle, size, 4);
8933 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8934 		} else {
8935 			perf_output_put(&handle, mmap_event->maj);
8936 			perf_output_put(&handle, mmap_event->min);
8937 			perf_output_put(&handle, mmap_event->ino);
8938 			perf_output_put(&handle, mmap_event->ino_generation);
8939 		}
8940 		perf_output_put(&handle, mmap_event->prot);
8941 		perf_output_put(&handle, mmap_event->flags);
8942 	}
8943 
8944 	__output_copy(&handle, mmap_event->file_name,
8945 				   mmap_event->file_size);
8946 
8947 	perf_event__output_id_sample(event, &handle, &sample);
8948 
8949 	perf_output_end(&handle);
8950 out:
8951 	mmap_event->event_id.header.size = size;
8952 	mmap_event->event_id.header.type = type;
8953 }
8954 
8955 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8956 {
8957 	struct vm_area_struct *vma = mmap_event->vma;
8958 	struct file *file = vma->vm_file;
8959 	int maj = 0, min = 0;
8960 	u64 ino = 0, gen = 0;
8961 	u32 prot = 0, flags = 0;
8962 	unsigned int size;
8963 	char tmp[16];
8964 	char *buf = NULL;
8965 	char *name = NULL;
8966 
8967 	if (vma->vm_flags & VM_READ)
8968 		prot |= PROT_READ;
8969 	if (vma->vm_flags & VM_WRITE)
8970 		prot |= PROT_WRITE;
8971 	if (vma->vm_flags & VM_EXEC)
8972 		prot |= PROT_EXEC;
8973 
8974 	if (vma->vm_flags & VM_MAYSHARE)
8975 		flags = MAP_SHARED;
8976 	else
8977 		flags = MAP_PRIVATE;
8978 
8979 	if (vma->vm_flags & VM_LOCKED)
8980 		flags |= MAP_LOCKED;
8981 	if (is_vm_hugetlb_page(vma))
8982 		flags |= MAP_HUGETLB;
8983 
8984 	if (file) {
8985 		struct inode *inode;
8986 		dev_t dev;
8987 
8988 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8989 		if (!buf) {
8990 			name = "//enomem";
8991 			goto cpy_name;
8992 		}
8993 		/*
8994 		 * d_path() works from the end of the rb backwards, so we
8995 		 * need to add enough zero bytes after the string to handle
8996 		 * the 64bit alignment we do later.
8997 		 */
8998 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8999 		if (IS_ERR(name)) {
9000 			name = "//toolong";
9001 			goto cpy_name;
9002 		}
9003 		inode = file_inode(vma->vm_file);
9004 		dev = inode->i_sb->s_dev;
9005 		ino = inode->i_ino;
9006 		gen = inode->i_generation;
9007 		maj = MAJOR(dev);
9008 		min = MINOR(dev);
9009 
9010 		goto got_name;
9011 	} else {
9012 		if (vma->vm_ops && vma->vm_ops->name)
9013 			name = (char *) vma->vm_ops->name(vma);
9014 		if (!name)
9015 			name = (char *)arch_vma_name(vma);
9016 		if (!name) {
9017 			if (vma_is_initial_heap(vma))
9018 				name = "[heap]";
9019 			else if (vma_is_initial_stack(vma))
9020 				name = "[stack]";
9021 			else
9022 				name = "//anon";
9023 		}
9024 	}
9025 
9026 cpy_name:
9027 	strscpy(tmp, name, sizeof(tmp));
9028 	name = tmp;
9029 got_name:
9030 	/*
9031 	 * Since our buffer works in 8 byte units we need to align our string
9032 	 * size to a multiple of 8. However, we must guarantee the tail end is
9033 	 * zero'd out to avoid leaking random bits to userspace.
9034 	 */
9035 	size = strlen(name)+1;
9036 	while (!IS_ALIGNED(size, sizeof(u64)))
9037 		name[size++] = '\0';
9038 
9039 	mmap_event->file_name = name;
9040 	mmap_event->file_size = size;
9041 	mmap_event->maj = maj;
9042 	mmap_event->min = min;
9043 	mmap_event->ino = ino;
9044 	mmap_event->ino_generation = gen;
9045 	mmap_event->prot = prot;
9046 	mmap_event->flags = flags;
9047 
9048 	if (!(vma->vm_flags & VM_EXEC))
9049 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9050 
9051 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9052 
9053 	if (atomic_read(&nr_build_id_events))
9054 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9055 
9056 	perf_iterate_sb(perf_event_mmap_output,
9057 		       mmap_event,
9058 		       NULL);
9059 
9060 	kfree(buf);
9061 }
9062 
9063 /*
9064  * Check whether inode and address range match filter criteria.
9065  */
9066 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9067 				     struct file *file, unsigned long offset,
9068 				     unsigned long size)
9069 {
9070 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9071 	if (!filter->path.dentry)
9072 		return false;
9073 
9074 	if (d_inode(filter->path.dentry) != file_inode(file))
9075 		return false;
9076 
9077 	if (filter->offset > offset + size)
9078 		return false;
9079 
9080 	if (filter->offset + filter->size < offset)
9081 		return false;
9082 
9083 	return true;
9084 }
9085 
9086 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9087 					struct vm_area_struct *vma,
9088 					struct perf_addr_filter_range *fr)
9089 {
9090 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9091 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9092 	struct file *file = vma->vm_file;
9093 
9094 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9095 		return false;
9096 
9097 	if (filter->offset < off) {
9098 		fr->start = vma->vm_start;
9099 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9100 	} else {
9101 		fr->start = vma->vm_start + filter->offset - off;
9102 		fr->size = min(vma->vm_end - fr->start, filter->size);
9103 	}
9104 
9105 	return true;
9106 }
9107 
9108 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9109 {
9110 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9111 	struct vm_area_struct *vma = data;
9112 	struct perf_addr_filter *filter;
9113 	unsigned int restart = 0, count = 0;
9114 	unsigned long flags;
9115 
9116 	if (!has_addr_filter(event))
9117 		return;
9118 
9119 	if (!vma->vm_file)
9120 		return;
9121 
9122 	raw_spin_lock_irqsave(&ifh->lock, flags);
9123 	list_for_each_entry(filter, &ifh->list, entry) {
9124 		if (perf_addr_filter_vma_adjust(filter, vma,
9125 						&event->addr_filter_ranges[count]))
9126 			restart++;
9127 
9128 		count++;
9129 	}
9130 
9131 	if (restart)
9132 		event->addr_filters_gen++;
9133 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9134 
9135 	if (restart)
9136 		perf_event_stop(event, 1);
9137 }
9138 
9139 /*
9140  * Adjust all task's events' filters to the new vma
9141  */
9142 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9143 {
9144 	struct perf_event_context *ctx;
9145 
9146 	/*
9147 	 * Data tracing isn't supported yet and as such there is no need
9148 	 * to keep track of anything that isn't related to executable code:
9149 	 */
9150 	if (!(vma->vm_flags & VM_EXEC))
9151 		return;
9152 
9153 	rcu_read_lock();
9154 	ctx = rcu_dereference(current->perf_event_ctxp);
9155 	if (ctx)
9156 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9157 	rcu_read_unlock();
9158 }
9159 
9160 void perf_event_mmap(struct vm_area_struct *vma)
9161 {
9162 	struct perf_mmap_event mmap_event;
9163 
9164 	if (!atomic_read(&nr_mmap_events))
9165 		return;
9166 
9167 	mmap_event = (struct perf_mmap_event){
9168 		.vma	= vma,
9169 		/* .file_name */
9170 		/* .file_size */
9171 		.event_id  = {
9172 			.header = {
9173 				.type = PERF_RECORD_MMAP,
9174 				.misc = PERF_RECORD_MISC_USER,
9175 				/* .size */
9176 			},
9177 			/* .pid */
9178 			/* .tid */
9179 			.start  = vma->vm_start,
9180 			.len    = vma->vm_end - vma->vm_start,
9181 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9182 		},
9183 		/* .maj (attr_mmap2 only) */
9184 		/* .min (attr_mmap2 only) */
9185 		/* .ino (attr_mmap2 only) */
9186 		/* .ino_generation (attr_mmap2 only) */
9187 		/* .prot (attr_mmap2 only) */
9188 		/* .flags (attr_mmap2 only) */
9189 	};
9190 
9191 	perf_addr_filters_adjust(vma);
9192 	perf_event_mmap_event(&mmap_event);
9193 }
9194 
9195 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9196 			  unsigned long size, u64 flags)
9197 {
9198 	struct perf_output_handle handle;
9199 	struct perf_sample_data sample;
9200 	struct perf_aux_event {
9201 		struct perf_event_header	header;
9202 		u64				offset;
9203 		u64				size;
9204 		u64				flags;
9205 	} rec = {
9206 		.header = {
9207 			.type = PERF_RECORD_AUX,
9208 			.misc = 0,
9209 			.size = sizeof(rec),
9210 		},
9211 		.offset		= head,
9212 		.size		= size,
9213 		.flags		= flags,
9214 	};
9215 	int ret;
9216 
9217 	perf_event_header__init_id(&rec.header, &sample, event);
9218 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9219 
9220 	if (ret)
9221 		return;
9222 
9223 	perf_output_put(&handle, rec);
9224 	perf_event__output_id_sample(event, &handle, &sample);
9225 
9226 	perf_output_end(&handle);
9227 }
9228 
9229 /*
9230  * Lost/dropped samples logging
9231  */
9232 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9233 {
9234 	struct perf_output_handle handle;
9235 	struct perf_sample_data sample;
9236 	int ret;
9237 
9238 	struct {
9239 		struct perf_event_header	header;
9240 		u64				lost;
9241 	} lost_samples_event = {
9242 		.header = {
9243 			.type = PERF_RECORD_LOST_SAMPLES,
9244 			.misc = 0,
9245 			.size = sizeof(lost_samples_event),
9246 		},
9247 		.lost		= lost,
9248 	};
9249 
9250 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9251 
9252 	ret = perf_output_begin(&handle, &sample, event,
9253 				lost_samples_event.header.size);
9254 	if (ret)
9255 		return;
9256 
9257 	perf_output_put(&handle, lost_samples_event);
9258 	perf_event__output_id_sample(event, &handle, &sample);
9259 	perf_output_end(&handle);
9260 }
9261 
9262 /*
9263  * context_switch tracking
9264  */
9265 
9266 struct perf_switch_event {
9267 	struct task_struct	*task;
9268 	struct task_struct	*next_prev;
9269 
9270 	struct {
9271 		struct perf_event_header	header;
9272 		u32				next_prev_pid;
9273 		u32				next_prev_tid;
9274 	} event_id;
9275 };
9276 
9277 static int perf_event_switch_match(struct perf_event *event)
9278 {
9279 	return event->attr.context_switch;
9280 }
9281 
9282 static void perf_event_switch_output(struct perf_event *event, void *data)
9283 {
9284 	struct perf_switch_event *se = data;
9285 	struct perf_output_handle handle;
9286 	struct perf_sample_data sample;
9287 	int ret;
9288 
9289 	if (!perf_event_switch_match(event))
9290 		return;
9291 
9292 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9293 	if (event->ctx->task) {
9294 		se->event_id.header.type = PERF_RECORD_SWITCH;
9295 		se->event_id.header.size = sizeof(se->event_id.header);
9296 	} else {
9297 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9298 		se->event_id.header.size = sizeof(se->event_id);
9299 		se->event_id.next_prev_pid =
9300 					perf_event_pid(event, se->next_prev);
9301 		se->event_id.next_prev_tid =
9302 					perf_event_tid(event, se->next_prev);
9303 	}
9304 
9305 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9306 
9307 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9308 	if (ret)
9309 		return;
9310 
9311 	if (event->ctx->task)
9312 		perf_output_put(&handle, se->event_id.header);
9313 	else
9314 		perf_output_put(&handle, se->event_id);
9315 
9316 	perf_event__output_id_sample(event, &handle, &sample);
9317 
9318 	perf_output_end(&handle);
9319 }
9320 
9321 static void perf_event_switch(struct task_struct *task,
9322 			      struct task_struct *next_prev, bool sched_in)
9323 {
9324 	struct perf_switch_event switch_event;
9325 
9326 	/* N.B. caller checks nr_switch_events != 0 */
9327 
9328 	switch_event = (struct perf_switch_event){
9329 		.task		= task,
9330 		.next_prev	= next_prev,
9331 		.event_id	= {
9332 			.header = {
9333 				/* .type */
9334 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9335 				/* .size */
9336 			},
9337 			/* .next_prev_pid */
9338 			/* .next_prev_tid */
9339 		},
9340 	};
9341 
9342 	if (!sched_in && task_is_runnable(task)) {
9343 		switch_event.event_id.header.misc |=
9344 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9345 	}
9346 
9347 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9348 }
9349 
9350 /*
9351  * IRQ throttle logging
9352  */
9353 
9354 static void perf_log_throttle(struct perf_event *event, int enable)
9355 {
9356 	struct perf_output_handle handle;
9357 	struct perf_sample_data sample;
9358 	int ret;
9359 
9360 	struct {
9361 		struct perf_event_header	header;
9362 		u64				time;
9363 		u64				id;
9364 		u64				stream_id;
9365 	} throttle_event = {
9366 		.header = {
9367 			.type = PERF_RECORD_THROTTLE,
9368 			.misc = 0,
9369 			.size = sizeof(throttle_event),
9370 		},
9371 		.time		= perf_event_clock(event),
9372 		.id		= primary_event_id(event),
9373 		.stream_id	= event->id,
9374 	};
9375 
9376 	if (enable)
9377 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9378 
9379 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9380 
9381 	ret = perf_output_begin(&handle, &sample, event,
9382 				throttle_event.header.size);
9383 	if (ret)
9384 		return;
9385 
9386 	perf_output_put(&handle, throttle_event);
9387 	perf_event__output_id_sample(event, &handle, &sample);
9388 	perf_output_end(&handle);
9389 }
9390 
9391 /*
9392  * ksymbol register/unregister tracking
9393  */
9394 
9395 struct perf_ksymbol_event {
9396 	const char	*name;
9397 	int		name_len;
9398 	struct {
9399 		struct perf_event_header        header;
9400 		u64				addr;
9401 		u32				len;
9402 		u16				ksym_type;
9403 		u16				flags;
9404 	} event_id;
9405 };
9406 
9407 static int perf_event_ksymbol_match(struct perf_event *event)
9408 {
9409 	return event->attr.ksymbol;
9410 }
9411 
9412 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9413 {
9414 	struct perf_ksymbol_event *ksymbol_event = data;
9415 	struct perf_output_handle handle;
9416 	struct perf_sample_data sample;
9417 	int ret;
9418 
9419 	if (!perf_event_ksymbol_match(event))
9420 		return;
9421 
9422 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9423 				   &sample, event);
9424 	ret = perf_output_begin(&handle, &sample, event,
9425 				ksymbol_event->event_id.header.size);
9426 	if (ret)
9427 		return;
9428 
9429 	perf_output_put(&handle, ksymbol_event->event_id);
9430 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9431 	perf_event__output_id_sample(event, &handle, &sample);
9432 
9433 	perf_output_end(&handle);
9434 }
9435 
9436 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9437 			const char *sym)
9438 {
9439 	struct perf_ksymbol_event ksymbol_event;
9440 	char name[KSYM_NAME_LEN];
9441 	u16 flags = 0;
9442 	int name_len;
9443 
9444 	if (!atomic_read(&nr_ksymbol_events))
9445 		return;
9446 
9447 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9448 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9449 		goto err;
9450 
9451 	strscpy(name, sym, KSYM_NAME_LEN);
9452 	name_len = strlen(name) + 1;
9453 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9454 		name[name_len++] = '\0';
9455 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9456 
9457 	if (unregister)
9458 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9459 
9460 	ksymbol_event = (struct perf_ksymbol_event){
9461 		.name = name,
9462 		.name_len = name_len,
9463 		.event_id = {
9464 			.header = {
9465 				.type = PERF_RECORD_KSYMBOL,
9466 				.size = sizeof(ksymbol_event.event_id) +
9467 					name_len,
9468 			},
9469 			.addr = addr,
9470 			.len = len,
9471 			.ksym_type = ksym_type,
9472 			.flags = flags,
9473 		},
9474 	};
9475 
9476 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9477 	return;
9478 err:
9479 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9480 }
9481 
9482 /*
9483  * bpf program load/unload tracking
9484  */
9485 
9486 struct perf_bpf_event {
9487 	struct bpf_prog	*prog;
9488 	struct {
9489 		struct perf_event_header        header;
9490 		u16				type;
9491 		u16				flags;
9492 		u32				id;
9493 		u8				tag[BPF_TAG_SIZE];
9494 	} event_id;
9495 };
9496 
9497 static int perf_event_bpf_match(struct perf_event *event)
9498 {
9499 	return event->attr.bpf_event;
9500 }
9501 
9502 static void perf_event_bpf_output(struct perf_event *event, void *data)
9503 {
9504 	struct perf_bpf_event *bpf_event = data;
9505 	struct perf_output_handle handle;
9506 	struct perf_sample_data sample;
9507 	int ret;
9508 
9509 	if (!perf_event_bpf_match(event))
9510 		return;
9511 
9512 	perf_event_header__init_id(&bpf_event->event_id.header,
9513 				   &sample, event);
9514 	ret = perf_output_begin(&handle, &sample, event,
9515 				bpf_event->event_id.header.size);
9516 	if (ret)
9517 		return;
9518 
9519 	perf_output_put(&handle, bpf_event->event_id);
9520 	perf_event__output_id_sample(event, &handle, &sample);
9521 
9522 	perf_output_end(&handle);
9523 }
9524 
9525 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9526 					 enum perf_bpf_event_type type)
9527 {
9528 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9529 	int i;
9530 
9531 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9532 			   (u64)(unsigned long)prog->bpf_func,
9533 			   prog->jited_len, unregister,
9534 			   prog->aux->ksym.name);
9535 
9536 	for (i = 1; i < prog->aux->func_cnt; i++) {
9537 		struct bpf_prog *subprog = prog->aux->func[i];
9538 
9539 		perf_event_ksymbol(
9540 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9541 			(u64)(unsigned long)subprog->bpf_func,
9542 			subprog->jited_len, unregister,
9543 			subprog->aux->ksym.name);
9544 	}
9545 }
9546 
9547 void perf_event_bpf_event(struct bpf_prog *prog,
9548 			  enum perf_bpf_event_type type,
9549 			  u16 flags)
9550 {
9551 	struct perf_bpf_event bpf_event;
9552 
9553 	switch (type) {
9554 	case PERF_BPF_EVENT_PROG_LOAD:
9555 	case PERF_BPF_EVENT_PROG_UNLOAD:
9556 		if (atomic_read(&nr_ksymbol_events))
9557 			perf_event_bpf_emit_ksymbols(prog, type);
9558 		break;
9559 	default:
9560 		return;
9561 	}
9562 
9563 	if (!atomic_read(&nr_bpf_events))
9564 		return;
9565 
9566 	bpf_event = (struct perf_bpf_event){
9567 		.prog = prog,
9568 		.event_id = {
9569 			.header = {
9570 				.type = PERF_RECORD_BPF_EVENT,
9571 				.size = sizeof(bpf_event.event_id),
9572 			},
9573 			.type = type,
9574 			.flags = flags,
9575 			.id = prog->aux->id,
9576 		},
9577 	};
9578 
9579 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9580 
9581 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9582 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9583 }
9584 
9585 struct perf_text_poke_event {
9586 	const void		*old_bytes;
9587 	const void		*new_bytes;
9588 	size_t			pad;
9589 	u16			old_len;
9590 	u16			new_len;
9591 
9592 	struct {
9593 		struct perf_event_header	header;
9594 
9595 		u64				addr;
9596 	} event_id;
9597 };
9598 
9599 static int perf_event_text_poke_match(struct perf_event *event)
9600 {
9601 	return event->attr.text_poke;
9602 }
9603 
9604 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9605 {
9606 	struct perf_text_poke_event *text_poke_event = data;
9607 	struct perf_output_handle handle;
9608 	struct perf_sample_data sample;
9609 	u64 padding = 0;
9610 	int ret;
9611 
9612 	if (!perf_event_text_poke_match(event))
9613 		return;
9614 
9615 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9616 
9617 	ret = perf_output_begin(&handle, &sample, event,
9618 				text_poke_event->event_id.header.size);
9619 	if (ret)
9620 		return;
9621 
9622 	perf_output_put(&handle, text_poke_event->event_id);
9623 	perf_output_put(&handle, text_poke_event->old_len);
9624 	perf_output_put(&handle, text_poke_event->new_len);
9625 
9626 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9627 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9628 
9629 	if (text_poke_event->pad)
9630 		__output_copy(&handle, &padding, text_poke_event->pad);
9631 
9632 	perf_event__output_id_sample(event, &handle, &sample);
9633 
9634 	perf_output_end(&handle);
9635 }
9636 
9637 void perf_event_text_poke(const void *addr, const void *old_bytes,
9638 			  size_t old_len, const void *new_bytes, size_t new_len)
9639 {
9640 	struct perf_text_poke_event text_poke_event;
9641 	size_t tot, pad;
9642 
9643 	if (!atomic_read(&nr_text_poke_events))
9644 		return;
9645 
9646 	tot  = sizeof(text_poke_event.old_len) + old_len;
9647 	tot += sizeof(text_poke_event.new_len) + new_len;
9648 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9649 
9650 	text_poke_event = (struct perf_text_poke_event){
9651 		.old_bytes    = old_bytes,
9652 		.new_bytes    = new_bytes,
9653 		.pad          = pad,
9654 		.old_len      = old_len,
9655 		.new_len      = new_len,
9656 		.event_id  = {
9657 			.header = {
9658 				.type = PERF_RECORD_TEXT_POKE,
9659 				.misc = PERF_RECORD_MISC_KERNEL,
9660 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9661 			},
9662 			.addr = (unsigned long)addr,
9663 		},
9664 	};
9665 
9666 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9667 }
9668 
9669 void perf_event_itrace_started(struct perf_event *event)
9670 {
9671 	event->attach_state |= PERF_ATTACH_ITRACE;
9672 }
9673 
9674 static void perf_log_itrace_start(struct perf_event *event)
9675 {
9676 	struct perf_output_handle handle;
9677 	struct perf_sample_data sample;
9678 	struct perf_aux_event {
9679 		struct perf_event_header        header;
9680 		u32				pid;
9681 		u32				tid;
9682 	} rec;
9683 	int ret;
9684 
9685 	if (event->parent)
9686 		event = event->parent;
9687 
9688 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9689 	    event->attach_state & PERF_ATTACH_ITRACE)
9690 		return;
9691 
9692 	rec.header.type	= PERF_RECORD_ITRACE_START;
9693 	rec.header.misc	= 0;
9694 	rec.header.size	= sizeof(rec);
9695 	rec.pid	= perf_event_pid(event, current);
9696 	rec.tid	= perf_event_tid(event, current);
9697 
9698 	perf_event_header__init_id(&rec.header, &sample, event);
9699 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9700 
9701 	if (ret)
9702 		return;
9703 
9704 	perf_output_put(&handle, rec);
9705 	perf_event__output_id_sample(event, &handle, &sample);
9706 
9707 	perf_output_end(&handle);
9708 }
9709 
9710 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9711 {
9712 	struct perf_output_handle handle;
9713 	struct perf_sample_data sample;
9714 	struct perf_aux_event {
9715 		struct perf_event_header        header;
9716 		u64				hw_id;
9717 	} rec;
9718 	int ret;
9719 
9720 	if (event->parent)
9721 		event = event->parent;
9722 
9723 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9724 	rec.header.misc	= 0;
9725 	rec.header.size	= sizeof(rec);
9726 	rec.hw_id	= hw_id;
9727 
9728 	perf_event_header__init_id(&rec.header, &sample, event);
9729 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9730 
9731 	if (ret)
9732 		return;
9733 
9734 	perf_output_put(&handle, rec);
9735 	perf_event__output_id_sample(event, &handle, &sample);
9736 
9737 	perf_output_end(&handle);
9738 }
9739 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9740 
9741 static int
9742 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9743 {
9744 	struct hw_perf_event *hwc = &event->hw;
9745 	int ret = 0;
9746 	u64 seq;
9747 
9748 	seq = __this_cpu_read(perf_throttled_seq);
9749 	if (seq != hwc->interrupts_seq) {
9750 		hwc->interrupts_seq = seq;
9751 		hwc->interrupts = 1;
9752 	} else {
9753 		hwc->interrupts++;
9754 		if (unlikely(throttle &&
9755 			     hwc->interrupts > max_samples_per_tick)) {
9756 			__this_cpu_inc(perf_throttled_count);
9757 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9758 			hwc->interrupts = MAX_INTERRUPTS;
9759 			perf_log_throttle(event, 0);
9760 			ret = 1;
9761 		}
9762 	}
9763 
9764 	if (event->attr.freq) {
9765 		u64 now = perf_clock();
9766 		s64 delta = now - hwc->freq_time_stamp;
9767 
9768 		hwc->freq_time_stamp = now;
9769 
9770 		if (delta > 0 && delta < 2*TICK_NSEC)
9771 			perf_adjust_period(event, delta, hwc->last_period, true);
9772 	}
9773 
9774 	return ret;
9775 }
9776 
9777 int perf_event_account_interrupt(struct perf_event *event)
9778 {
9779 	return __perf_event_account_interrupt(event, 1);
9780 }
9781 
9782 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9783 {
9784 	/*
9785 	 * Due to interrupt latency (AKA "skid"), we may enter the
9786 	 * kernel before taking an overflow, even if the PMU is only
9787 	 * counting user events.
9788 	 */
9789 	if (event->attr.exclude_kernel && !user_mode(regs))
9790 		return false;
9791 
9792 	return true;
9793 }
9794 
9795 #ifdef CONFIG_BPF_SYSCALL
9796 static int bpf_overflow_handler(struct perf_event *event,
9797 				struct perf_sample_data *data,
9798 				struct pt_regs *regs)
9799 {
9800 	struct bpf_perf_event_data_kern ctx = {
9801 		.data = data,
9802 		.event = event,
9803 	};
9804 	struct bpf_prog *prog;
9805 	int ret = 0;
9806 
9807 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9808 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9809 		goto out;
9810 	rcu_read_lock();
9811 	prog = READ_ONCE(event->prog);
9812 	if (prog) {
9813 		perf_prepare_sample(data, event, regs);
9814 		ret = bpf_prog_run(prog, &ctx);
9815 	}
9816 	rcu_read_unlock();
9817 out:
9818 	__this_cpu_dec(bpf_prog_active);
9819 
9820 	return ret;
9821 }
9822 
9823 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9824 					     struct bpf_prog *prog,
9825 					     u64 bpf_cookie)
9826 {
9827 	if (event->overflow_handler_context)
9828 		/* hw breakpoint or kernel counter */
9829 		return -EINVAL;
9830 
9831 	if (event->prog)
9832 		return -EEXIST;
9833 
9834 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9835 		return -EINVAL;
9836 
9837 	if (event->attr.precise_ip &&
9838 	    prog->call_get_stack &&
9839 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9840 	     event->attr.exclude_callchain_kernel ||
9841 	     event->attr.exclude_callchain_user)) {
9842 		/*
9843 		 * On perf_event with precise_ip, calling bpf_get_stack()
9844 		 * may trigger unwinder warnings and occasional crashes.
9845 		 * bpf_get_[stack|stackid] works around this issue by using
9846 		 * callchain attached to perf_sample_data. If the
9847 		 * perf_event does not full (kernel and user) callchain
9848 		 * attached to perf_sample_data, do not allow attaching BPF
9849 		 * program that calls bpf_get_[stack|stackid].
9850 		 */
9851 		return -EPROTO;
9852 	}
9853 
9854 	event->prog = prog;
9855 	event->bpf_cookie = bpf_cookie;
9856 	return 0;
9857 }
9858 
9859 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9860 {
9861 	struct bpf_prog *prog = event->prog;
9862 
9863 	if (!prog)
9864 		return;
9865 
9866 	event->prog = NULL;
9867 	bpf_prog_put(prog);
9868 }
9869 #else
9870 static inline int bpf_overflow_handler(struct perf_event *event,
9871 				       struct perf_sample_data *data,
9872 				       struct pt_regs *regs)
9873 {
9874 	return 1;
9875 }
9876 
9877 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9878 					     struct bpf_prog *prog,
9879 					     u64 bpf_cookie)
9880 {
9881 	return -EOPNOTSUPP;
9882 }
9883 
9884 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9885 {
9886 }
9887 #endif
9888 
9889 /*
9890  * Generic event overflow handling, sampling.
9891  */
9892 
9893 static int __perf_event_overflow(struct perf_event *event,
9894 				 int throttle, struct perf_sample_data *data,
9895 				 struct pt_regs *regs)
9896 {
9897 	int events = atomic_read(&event->event_limit);
9898 	int ret = 0;
9899 
9900 	/*
9901 	 * Non-sampling counters might still use the PMI to fold short
9902 	 * hardware counters, ignore those.
9903 	 */
9904 	if (unlikely(!is_sampling_event(event)))
9905 		return 0;
9906 
9907 	ret = __perf_event_account_interrupt(event, throttle);
9908 
9909 	if (event->attr.aux_pause)
9910 		perf_event_aux_pause(event->aux_event, true);
9911 
9912 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9913 	    !bpf_overflow_handler(event, data, regs))
9914 		goto out;
9915 
9916 	/*
9917 	 * XXX event_limit might not quite work as expected on inherited
9918 	 * events
9919 	 */
9920 
9921 	event->pending_kill = POLL_IN;
9922 	if (events && atomic_dec_and_test(&event->event_limit)) {
9923 		ret = 1;
9924 		event->pending_kill = POLL_HUP;
9925 		perf_event_disable_inatomic(event);
9926 	}
9927 
9928 	if (event->attr.sigtrap) {
9929 		/*
9930 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9931 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9932 		 * it is the first event, on the other hand, we should also not
9933 		 * trigger the WARN or override the data address.
9934 		 */
9935 		bool valid_sample = sample_is_allowed(event, regs);
9936 		unsigned int pending_id = 1;
9937 		enum task_work_notify_mode notify_mode;
9938 
9939 		if (regs)
9940 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9941 
9942 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9943 
9944 		if (!event->pending_work &&
9945 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9946 			event->pending_work = pending_id;
9947 			local_inc(&event->ctx->nr_no_switch_fast);
9948 
9949 			event->pending_addr = 0;
9950 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9951 				event->pending_addr = data->addr;
9952 
9953 		} else if (event->attr.exclude_kernel && valid_sample) {
9954 			/*
9955 			 * Should not be able to return to user space without
9956 			 * consuming pending_work; with exceptions:
9957 			 *
9958 			 *  1. Where !exclude_kernel, events can overflow again
9959 			 *     in the kernel without returning to user space.
9960 			 *
9961 			 *  2. Events that can overflow again before the IRQ-
9962 			 *     work without user space progress (e.g. hrtimer).
9963 			 *     To approximate progress (with false negatives),
9964 			 *     check 32-bit hash of the current IP.
9965 			 */
9966 			WARN_ON_ONCE(event->pending_work != pending_id);
9967 		}
9968 	}
9969 
9970 	READ_ONCE(event->overflow_handler)(event, data, regs);
9971 
9972 	if (*perf_event_fasync(event) && event->pending_kill) {
9973 		event->pending_wakeup = 1;
9974 		irq_work_queue(&event->pending_irq);
9975 	}
9976 out:
9977 	if (event->attr.aux_resume)
9978 		perf_event_aux_pause(event->aux_event, false);
9979 
9980 	return ret;
9981 }
9982 
9983 int perf_event_overflow(struct perf_event *event,
9984 			struct perf_sample_data *data,
9985 			struct pt_regs *regs)
9986 {
9987 	return __perf_event_overflow(event, 1, data, regs);
9988 }
9989 
9990 /*
9991  * Generic software event infrastructure
9992  */
9993 
9994 struct swevent_htable {
9995 	struct swevent_hlist		*swevent_hlist;
9996 	struct mutex			hlist_mutex;
9997 	int				hlist_refcount;
9998 };
9999 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10000 
10001 /*
10002  * We directly increment event->count and keep a second value in
10003  * event->hw.period_left to count intervals. This period event
10004  * is kept in the range [-sample_period, 0] so that we can use the
10005  * sign as trigger.
10006  */
10007 
10008 u64 perf_swevent_set_period(struct perf_event *event)
10009 {
10010 	struct hw_perf_event *hwc = &event->hw;
10011 	u64 period = hwc->last_period;
10012 	u64 nr, offset;
10013 	s64 old, val;
10014 
10015 	hwc->last_period = hwc->sample_period;
10016 
10017 	old = local64_read(&hwc->period_left);
10018 	do {
10019 		val = old;
10020 		if (val < 0)
10021 			return 0;
10022 
10023 		nr = div64_u64(period + val, period);
10024 		offset = nr * period;
10025 		val -= offset;
10026 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10027 
10028 	return nr;
10029 }
10030 
10031 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10032 				    struct perf_sample_data *data,
10033 				    struct pt_regs *regs)
10034 {
10035 	struct hw_perf_event *hwc = &event->hw;
10036 	int throttle = 0;
10037 
10038 	if (!overflow)
10039 		overflow = perf_swevent_set_period(event);
10040 
10041 	if (hwc->interrupts == MAX_INTERRUPTS)
10042 		return;
10043 
10044 	for (; overflow; overflow--) {
10045 		if (__perf_event_overflow(event, throttle,
10046 					    data, regs)) {
10047 			/*
10048 			 * We inhibit the overflow from happening when
10049 			 * hwc->interrupts == MAX_INTERRUPTS.
10050 			 */
10051 			break;
10052 		}
10053 		throttle = 1;
10054 	}
10055 }
10056 
10057 static void perf_swevent_event(struct perf_event *event, u64 nr,
10058 			       struct perf_sample_data *data,
10059 			       struct pt_regs *regs)
10060 {
10061 	struct hw_perf_event *hwc = &event->hw;
10062 
10063 	local64_add(nr, &event->count);
10064 
10065 	if (!regs)
10066 		return;
10067 
10068 	if (!is_sampling_event(event))
10069 		return;
10070 
10071 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10072 		data->period = nr;
10073 		return perf_swevent_overflow(event, 1, data, regs);
10074 	} else
10075 		data->period = event->hw.last_period;
10076 
10077 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10078 		return perf_swevent_overflow(event, 1, data, regs);
10079 
10080 	if (local64_add_negative(nr, &hwc->period_left))
10081 		return;
10082 
10083 	perf_swevent_overflow(event, 0, data, regs);
10084 }
10085 
10086 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10087 {
10088 	if (event->hw.state & PERF_HES_STOPPED)
10089 		return 1;
10090 
10091 	if (regs) {
10092 		if (event->attr.exclude_user && user_mode(regs))
10093 			return 1;
10094 
10095 		if (event->attr.exclude_kernel && !user_mode(regs))
10096 			return 1;
10097 	}
10098 
10099 	return 0;
10100 }
10101 
10102 static int perf_swevent_match(struct perf_event *event,
10103 				enum perf_type_id type,
10104 				u32 event_id,
10105 				struct perf_sample_data *data,
10106 				struct pt_regs *regs)
10107 {
10108 	if (event->attr.type != type)
10109 		return 0;
10110 
10111 	if (event->attr.config != event_id)
10112 		return 0;
10113 
10114 	if (perf_exclude_event(event, regs))
10115 		return 0;
10116 
10117 	return 1;
10118 }
10119 
10120 static inline u64 swevent_hash(u64 type, u32 event_id)
10121 {
10122 	u64 val = event_id | (type << 32);
10123 
10124 	return hash_64(val, SWEVENT_HLIST_BITS);
10125 }
10126 
10127 static inline struct hlist_head *
10128 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10129 {
10130 	u64 hash = swevent_hash(type, event_id);
10131 
10132 	return &hlist->heads[hash];
10133 }
10134 
10135 /* For the read side: events when they trigger */
10136 static inline struct hlist_head *
10137 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10138 {
10139 	struct swevent_hlist *hlist;
10140 
10141 	hlist = rcu_dereference(swhash->swevent_hlist);
10142 	if (!hlist)
10143 		return NULL;
10144 
10145 	return __find_swevent_head(hlist, type, event_id);
10146 }
10147 
10148 /* For the event head insertion and removal in the hlist */
10149 static inline struct hlist_head *
10150 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10151 {
10152 	struct swevent_hlist *hlist;
10153 	u32 event_id = event->attr.config;
10154 	u64 type = event->attr.type;
10155 
10156 	/*
10157 	 * Event scheduling is always serialized against hlist allocation
10158 	 * and release. Which makes the protected version suitable here.
10159 	 * The context lock guarantees that.
10160 	 */
10161 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10162 					  lockdep_is_held(&event->ctx->lock));
10163 	if (!hlist)
10164 		return NULL;
10165 
10166 	return __find_swevent_head(hlist, type, event_id);
10167 }
10168 
10169 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10170 				    u64 nr,
10171 				    struct perf_sample_data *data,
10172 				    struct pt_regs *regs)
10173 {
10174 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10175 	struct perf_event *event;
10176 	struct hlist_head *head;
10177 
10178 	rcu_read_lock();
10179 	head = find_swevent_head_rcu(swhash, type, event_id);
10180 	if (!head)
10181 		goto end;
10182 
10183 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10184 		if (perf_swevent_match(event, type, event_id, data, regs))
10185 			perf_swevent_event(event, nr, data, regs);
10186 	}
10187 end:
10188 	rcu_read_unlock();
10189 }
10190 
10191 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10192 
10193 int perf_swevent_get_recursion_context(void)
10194 {
10195 	return get_recursion_context(current->perf_recursion);
10196 }
10197 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10198 
10199 void perf_swevent_put_recursion_context(int rctx)
10200 {
10201 	put_recursion_context(current->perf_recursion, rctx);
10202 }
10203 
10204 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10205 {
10206 	struct perf_sample_data data;
10207 
10208 	if (WARN_ON_ONCE(!regs))
10209 		return;
10210 
10211 	perf_sample_data_init(&data, addr, 0);
10212 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10213 }
10214 
10215 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10216 {
10217 	int rctx;
10218 
10219 	preempt_disable_notrace();
10220 	rctx = perf_swevent_get_recursion_context();
10221 	if (unlikely(rctx < 0))
10222 		goto fail;
10223 
10224 	___perf_sw_event(event_id, nr, regs, addr);
10225 
10226 	perf_swevent_put_recursion_context(rctx);
10227 fail:
10228 	preempt_enable_notrace();
10229 }
10230 
10231 static void perf_swevent_read(struct perf_event *event)
10232 {
10233 }
10234 
10235 static int perf_swevent_add(struct perf_event *event, int flags)
10236 {
10237 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10238 	struct hw_perf_event *hwc = &event->hw;
10239 	struct hlist_head *head;
10240 
10241 	if (is_sampling_event(event)) {
10242 		hwc->last_period = hwc->sample_period;
10243 		perf_swevent_set_period(event);
10244 	}
10245 
10246 	hwc->state = !(flags & PERF_EF_START);
10247 
10248 	head = find_swevent_head(swhash, event);
10249 	if (WARN_ON_ONCE(!head))
10250 		return -EINVAL;
10251 
10252 	hlist_add_head_rcu(&event->hlist_entry, head);
10253 	perf_event_update_userpage(event);
10254 
10255 	return 0;
10256 }
10257 
10258 static void perf_swevent_del(struct perf_event *event, int flags)
10259 {
10260 	hlist_del_rcu(&event->hlist_entry);
10261 }
10262 
10263 static void perf_swevent_start(struct perf_event *event, int flags)
10264 {
10265 	event->hw.state = 0;
10266 }
10267 
10268 static void perf_swevent_stop(struct perf_event *event, int flags)
10269 {
10270 	event->hw.state = PERF_HES_STOPPED;
10271 }
10272 
10273 /* Deref the hlist from the update side */
10274 static inline struct swevent_hlist *
10275 swevent_hlist_deref(struct swevent_htable *swhash)
10276 {
10277 	return rcu_dereference_protected(swhash->swevent_hlist,
10278 					 lockdep_is_held(&swhash->hlist_mutex));
10279 }
10280 
10281 static void swevent_hlist_release(struct swevent_htable *swhash)
10282 {
10283 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10284 
10285 	if (!hlist)
10286 		return;
10287 
10288 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10289 	kfree_rcu(hlist, rcu_head);
10290 }
10291 
10292 static void swevent_hlist_put_cpu(int cpu)
10293 {
10294 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10295 
10296 	mutex_lock(&swhash->hlist_mutex);
10297 
10298 	if (!--swhash->hlist_refcount)
10299 		swevent_hlist_release(swhash);
10300 
10301 	mutex_unlock(&swhash->hlist_mutex);
10302 }
10303 
10304 static void swevent_hlist_put(void)
10305 {
10306 	int cpu;
10307 
10308 	for_each_possible_cpu(cpu)
10309 		swevent_hlist_put_cpu(cpu);
10310 }
10311 
10312 static int swevent_hlist_get_cpu(int cpu)
10313 {
10314 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10315 	int err = 0;
10316 
10317 	mutex_lock(&swhash->hlist_mutex);
10318 	if (!swevent_hlist_deref(swhash) &&
10319 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10320 		struct swevent_hlist *hlist;
10321 
10322 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10323 		if (!hlist) {
10324 			err = -ENOMEM;
10325 			goto exit;
10326 		}
10327 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10328 	}
10329 	swhash->hlist_refcount++;
10330 exit:
10331 	mutex_unlock(&swhash->hlist_mutex);
10332 
10333 	return err;
10334 }
10335 
10336 static int swevent_hlist_get(void)
10337 {
10338 	int err, cpu, failed_cpu;
10339 
10340 	mutex_lock(&pmus_lock);
10341 	for_each_possible_cpu(cpu) {
10342 		err = swevent_hlist_get_cpu(cpu);
10343 		if (err) {
10344 			failed_cpu = cpu;
10345 			goto fail;
10346 		}
10347 	}
10348 	mutex_unlock(&pmus_lock);
10349 	return 0;
10350 fail:
10351 	for_each_possible_cpu(cpu) {
10352 		if (cpu == failed_cpu)
10353 			break;
10354 		swevent_hlist_put_cpu(cpu);
10355 	}
10356 	mutex_unlock(&pmus_lock);
10357 	return err;
10358 }
10359 
10360 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10361 
10362 static void sw_perf_event_destroy(struct perf_event *event)
10363 {
10364 	u64 event_id = event->attr.config;
10365 
10366 	WARN_ON(event->parent);
10367 
10368 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10369 	swevent_hlist_put();
10370 }
10371 
10372 static struct pmu perf_cpu_clock; /* fwd declaration */
10373 static struct pmu perf_task_clock;
10374 
10375 static int perf_swevent_init(struct perf_event *event)
10376 {
10377 	u64 event_id = event->attr.config;
10378 
10379 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10380 		return -ENOENT;
10381 
10382 	/*
10383 	 * no branch sampling for software events
10384 	 */
10385 	if (has_branch_stack(event))
10386 		return -EOPNOTSUPP;
10387 
10388 	switch (event_id) {
10389 	case PERF_COUNT_SW_CPU_CLOCK:
10390 		event->attr.type = perf_cpu_clock.type;
10391 		return -ENOENT;
10392 	case PERF_COUNT_SW_TASK_CLOCK:
10393 		event->attr.type = perf_task_clock.type;
10394 		return -ENOENT;
10395 
10396 	default:
10397 		break;
10398 	}
10399 
10400 	if (event_id >= PERF_COUNT_SW_MAX)
10401 		return -ENOENT;
10402 
10403 	if (!event->parent) {
10404 		int err;
10405 
10406 		err = swevent_hlist_get();
10407 		if (err)
10408 			return err;
10409 
10410 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10411 		event->destroy = sw_perf_event_destroy;
10412 	}
10413 
10414 	return 0;
10415 }
10416 
10417 static struct pmu perf_swevent = {
10418 	.task_ctx_nr	= perf_sw_context,
10419 
10420 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10421 
10422 	.event_init	= perf_swevent_init,
10423 	.add		= perf_swevent_add,
10424 	.del		= perf_swevent_del,
10425 	.start		= perf_swevent_start,
10426 	.stop		= perf_swevent_stop,
10427 	.read		= perf_swevent_read,
10428 };
10429 
10430 #ifdef CONFIG_EVENT_TRACING
10431 
10432 static void tp_perf_event_destroy(struct perf_event *event)
10433 {
10434 	perf_trace_destroy(event);
10435 }
10436 
10437 static int perf_tp_event_init(struct perf_event *event)
10438 {
10439 	int err;
10440 
10441 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10442 		return -ENOENT;
10443 
10444 	/*
10445 	 * no branch sampling for tracepoint events
10446 	 */
10447 	if (has_branch_stack(event))
10448 		return -EOPNOTSUPP;
10449 
10450 	err = perf_trace_init(event);
10451 	if (err)
10452 		return err;
10453 
10454 	event->destroy = tp_perf_event_destroy;
10455 
10456 	return 0;
10457 }
10458 
10459 static struct pmu perf_tracepoint = {
10460 	.task_ctx_nr	= perf_sw_context,
10461 
10462 	.event_init	= perf_tp_event_init,
10463 	.add		= perf_trace_add,
10464 	.del		= perf_trace_del,
10465 	.start		= perf_swevent_start,
10466 	.stop		= perf_swevent_stop,
10467 	.read		= perf_swevent_read,
10468 };
10469 
10470 static int perf_tp_filter_match(struct perf_event *event,
10471 				struct perf_raw_record *raw)
10472 {
10473 	void *record = raw->frag.data;
10474 
10475 	/* only top level events have filters set */
10476 	if (event->parent)
10477 		event = event->parent;
10478 
10479 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10480 		return 1;
10481 	return 0;
10482 }
10483 
10484 static int perf_tp_event_match(struct perf_event *event,
10485 				struct perf_raw_record *raw,
10486 				struct pt_regs *regs)
10487 {
10488 	if (event->hw.state & PERF_HES_STOPPED)
10489 		return 0;
10490 	/*
10491 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10492 	 */
10493 	if (event->attr.exclude_kernel && !user_mode(regs))
10494 		return 0;
10495 
10496 	if (!perf_tp_filter_match(event, raw))
10497 		return 0;
10498 
10499 	return 1;
10500 }
10501 
10502 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10503 			       struct trace_event_call *call, u64 count,
10504 			       struct pt_regs *regs, struct hlist_head *head,
10505 			       struct task_struct *task)
10506 {
10507 	if (bpf_prog_array_valid(call)) {
10508 		*(struct pt_regs **)raw_data = regs;
10509 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10510 			perf_swevent_put_recursion_context(rctx);
10511 			return;
10512 		}
10513 	}
10514 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10515 		      rctx, task);
10516 }
10517 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10518 
10519 static void __perf_tp_event_target_task(u64 count, void *record,
10520 					struct pt_regs *regs,
10521 					struct perf_sample_data *data,
10522 					struct perf_raw_record *raw,
10523 					struct perf_event *event)
10524 {
10525 	struct trace_entry *entry = record;
10526 
10527 	if (event->attr.config != entry->type)
10528 		return;
10529 	/* Cannot deliver synchronous signal to other task. */
10530 	if (event->attr.sigtrap)
10531 		return;
10532 	if (perf_tp_event_match(event, raw, regs)) {
10533 		perf_sample_data_init(data, 0, 0);
10534 		perf_sample_save_raw_data(data, event, raw);
10535 		perf_swevent_event(event, count, data, regs);
10536 	}
10537 }
10538 
10539 static void perf_tp_event_target_task(u64 count, void *record,
10540 				      struct pt_regs *regs,
10541 				      struct perf_sample_data *data,
10542 				      struct perf_raw_record *raw,
10543 				      struct perf_event_context *ctx)
10544 {
10545 	unsigned int cpu = smp_processor_id();
10546 	struct pmu *pmu = &perf_tracepoint;
10547 	struct perf_event *event, *sibling;
10548 
10549 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10550 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10551 		for_each_sibling_event(sibling, event)
10552 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10553 	}
10554 
10555 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10556 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10557 		for_each_sibling_event(sibling, event)
10558 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10559 	}
10560 }
10561 
10562 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10563 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10564 		   struct task_struct *task)
10565 {
10566 	struct perf_sample_data data;
10567 	struct perf_event *event;
10568 
10569 	struct perf_raw_record raw = {
10570 		.frag = {
10571 			.size = entry_size,
10572 			.data = record,
10573 		},
10574 	};
10575 
10576 	perf_trace_buf_update(record, event_type);
10577 
10578 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10579 		if (perf_tp_event_match(event, &raw, regs)) {
10580 			/*
10581 			 * Here use the same on-stack perf_sample_data,
10582 			 * some members in data are event-specific and
10583 			 * need to be re-computed for different sweveents.
10584 			 * Re-initialize data->sample_flags safely to avoid
10585 			 * the problem that next event skips preparing data
10586 			 * because data->sample_flags is set.
10587 			 */
10588 			perf_sample_data_init(&data, 0, 0);
10589 			perf_sample_save_raw_data(&data, event, &raw);
10590 			perf_swevent_event(event, count, &data, regs);
10591 		}
10592 	}
10593 
10594 	/*
10595 	 * If we got specified a target task, also iterate its context and
10596 	 * deliver this event there too.
10597 	 */
10598 	if (task && task != current) {
10599 		struct perf_event_context *ctx;
10600 
10601 		rcu_read_lock();
10602 		ctx = rcu_dereference(task->perf_event_ctxp);
10603 		if (!ctx)
10604 			goto unlock;
10605 
10606 		raw_spin_lock(&ctx->lock);
10607 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10608 		raw_spin_unlock(&ctx->lock);
10609 unlock:
10610 		rcu_read_unlock();
10611 	}
10612 
10613 	perf_swevent_put_recursion_context(rctx);
10614 }
10615 EXPORT_SYMBOL_GPL(perf_tp_event);
10616 
10617 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10618 /*
10619  * Flags in config, used by dynamic PMU kprobe and uprobe
10620  * The flags should match following PMU_FORMAT_ATTR().
10621  *
10622  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10623  *                               if not set, create kprobe/uprobe
10624  *
10625  * The following values specify a reference counter (or semaphore in the
10626  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10627  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10628  *
10629  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10630  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10631  */
10632 enum perf_probe_config {
10633 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10634 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10635 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10636 };
10637 
10638 PMU_FORMAT_ATTR(retprobe, "config:0");
10639 #endif
10640 
10641 #ifdef CONFIG_KPROBE_EVENTS
10642 static struct attribute *kprobe_attrs[] = {
10643 	&format_attr_retprobe.attr,
10644 	NULL,
10645 };
10646 
10647 static struct attribute_group kprobe_format_group = {
10648 	.name = "format",
10649 	.attrs = kprobe_attrs,
10650 };
10651 
10652 static const struct attribute_group *kprobe_attr_groups[] = {
10653 	&kprobe_format_group,
10654 	NULL,
10655 };
10656 
10657 static int perf_kprobe_event_init(struct perf_event *event);
10658 static struct pmu perf_kprobe = {
10659 	.task_ctx_nr	= perf_sw_context,
10660 	.event_init	= perf_kprobe_event_init,
10661 	.add		= perf_trace_add,
10662 	.del		= perf_trace_del,
10663 	.start		= perf_swevent_start,
10664 	.stop		= perf_swevent_stop,
10665 	.read		= perf_swevent_read,
10666 	.attr_groups	= kprobe_attr_groups,
10667 };
10668 
10669 static int perf_kprobe_event_init(struct perf_event *event)
10670 {
10671 	int err;
10672 	bool is_retprobe;
10673 
10674 	if (event->attr.type != perf_kprobe.type)
10675 		return -ENOENT;
10676 
10677 	if (!perfmon_capable())
10678 		return -EACCES;
10679 
10680 	/*
10681 	 * no branch sampling for probe events
10682 	 */
10683 	if (has_branch_stack(event))
10684 		return -EOPNOTSUPP;
10685 
10686 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10687 	err = perf_kprobe_init(event, is_retprobe);
10688 	if (err)
10689 		return err;
10690 
10691 	event->destroy = perf_kprobe_destroy;
10692 
10693 	return 0;
10694 }
10695 #endif /* CONFIG_KPROBE_EVENTS */
10696 
10697 #ifdef CONFIG_UPROBE_EVENTS
10698 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10699 
10700 static struct attribute *uprobe_attrs[] = {
10701 	&format_attr_retprobe.attr,
10702 	&format_attr_ref_ctr_offset.attr,
10703 	NULL,
10704 };
10705 
10706 static struct attribute_group uprobe_format_group = {
10707 	.name = "format",
10708 	.attrs = uprobe_attrs,
10709 };
10710 
10711 static const struct attribute_group *uprobe_attr_groups[] = {
10712 	&uprobe_format_group,
10713 	NULL,
10714 };
10715 
10716 static int perf_uprobe_event_init(struct perf_event *event);
10717 static struct pmu perf_uprobe = {
10718 	.task_ctx_nr	= perf_sw_context,
10719 	.event_init	= perf_uprobe_event_init,
10720 	.add		= perf_trace_add,
10721 	.del		= perf_trace_del,
10722 	.start		= perf_swevent_start,
10723 	.stop		= perf_swevent_stop,
10724 	.read		= perf_swevent_read,
10725 	.attr_groups	= uprobe_attr_groups,
10726 };
10727 
10728 static int perf_uprobe_event_init(struct perf_event *event)
10729 {
10730 	int err;
10731 	unsigned long ref_ctr_offset;
10732 	bool is_retprobe;
10733 
10734 	if (event->attr.type != perf_uprobe.type)
10735 		return -ENOENT;
10736 
10737 	if (!perfmon_capable())
10738 		return -EACCES;
10739 
10740 	/*
10741 	 * no branch sampling for probe events
10742 	 */
10743 	if (has_branch_stack(event))
10744 		return -EOPNOTSUPP;
10745 
10746 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10747 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10748 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10749 	if (err)
10750 		return err;
10751 
10752 	event->destroy = perf_uprobe_destroy;
10753 
10754 	return 0;
10755 }
10756 #endif /* CONFIG_UPROBE_EVENTS */
10757 
10758 static inline void perf_tp_register(void)
10759 {
10760 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10761 #ifdef CONFIG_KPROBE_EVENTS
10762 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10763 #endif
10764 #ifdef CONFIG_UPROBE_EVENTS
10765 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10766 #endif
10767 }
10768 
10769 static void perf_event_free_filter(struct perf_event *event)
10770 {
10771 	ftrace_profile_free_filter(event);
10772 }
10773 
10774 /*
10775  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10776  * with perf_event_open()
10777  */
10778 static inline bool perf_event_is_tracing(struct perf_event *event)
10779 {
10780 	if (event->pmu == &perf_tracepoint)
10781 		return true;
10782 #ifdef CONFIG_KPROBE_EVENTS
10783 	if (event->pmu == &perf_kprobe)
10784 		return true;
10785 #endif
10786 #ifdef CONFIG_UPROBE_EVENTS
10787 	if (event->pmu == &perf_uprobe)
10788 		return true;
10789 #endif
10790 	return false;
10791 }
10792 
10793 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10794 			    u64 bpf_cookie)
10795 {
10796 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10797 
10798 	if (!perf_event_is_tracing(event))
10799 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10800 
10801 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10802 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10803 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10804 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10805 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10806 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10807 		return -EINVAL;
10808 
10809 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10810 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10811 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10812 		return -EINVAL;
10813 
10814 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10815 		/* only uprobe programs are allowed to be sleepable */
10816 		return -EINVAL;
10817 
10818 	/* Kprobe override only works for kprobes, not uprobes. */
10819 	if (prog->kprobe_override && !is_kprobe)
10820 		return -EINVAL;
10821 
10822 	if (is_tracepoint || is_syscall_tp) {
10823 		int off = trace_event_get_offsets(event->tp_event);
10824 
10825 		if (prog->aux->max_ctx_offset > off)
10826 			return -EACCES;
10827 	}
10828 
10829 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10830 }
10831 
10832 void perf_event_free_bpf_prog(struct perf_event *event)
10833 {
10834 	if (!perf_event_is_tracing(event)) {
10835 		perf_event_free_bpf_handler(event);
10836 		return;
10837 	}
10838 	perf_event_detach_bpf_prog(event);
10839 }
10840 
10841 #else
10842 
10843 static inline void perf_tp_register(void)
10844 {
10845 }
10846 
10847 static void perf_event_free_filter(struct perf_event *event)
10848 {
10849 }
10850 
10851 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10852 			    u64 bpf_cookie)
10853 {
10854 	return -ENOENT;
10855 }
10856 
10857 void perf_event_free_bpf_prog(struct perf_event *event)
10858 {
10859 }
10860 #endif /* CONFIG_EVENT_TRACING */
10861 
10862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10863 void perf_bp_event(struct perf_event *bp, void *data)
10864 {
10865 	struct perf_sample_data sample;
10866 	struct pt_regs *regs = data;
10867 
10868 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10869 
10870 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10871 		perf_swevent_event(bp, 1, &sample, regs);
10872 }
10873 #endif
10874 
10875 /*
10876  * Allocate a new address filter
10877  */
10878 static struct perf_addr_filter *
10879 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10880 {
10881 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10882 	struct perf_addr_filter *filter;
10883 
10884 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10885 	if (!filter)
10886 		return NULL;
10887 
10888 	INIT_LIST_HEAD(&filter->entry);
10889 	list_add_tail(&filter->entry, filters);
10890 
10891 	return filter;
10892 }
10893 
10894 static void free_filters_list(struct list_head *filters)
10895 {
10896 	struct perf_addr_filter *filter, *iter;
10897 
10898 	list_for_each_entry_safe(filter, iter, filters, entry) {
10899 		path_put(&filter->path);
10900 		list_del(&filter->entry);
10901 		kfree(filter);
10902 	}
10903 }
10904 
10905 /*
10906  * Free existing address filters and optionally install new ones
10907  */
10908 static void perf_addr_filters_splice(struct perf_event *event,
10909 				     struct list_head *head)
10910 {
10911 	unsigned long flags;
10912 	LIST_HEAD(list);
10913 
10914 	if (!has_addr_filter(event))
10915 		return;
10916 
10917 	/* don't bother with children, they don't have their own filters */
10918 	if (event->parent)
10919 		return;
10920 
10921 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10922 
10923 	list_splice_init(&event->addr_filters.list, &list);
10924 	if (head)
10925 		list_splice(head, &event->addr_filters.list);
10926 
10927 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10928 
10929 	free_filters_list(&list);
10930 }
10931 
10932 /*
10933  * Scan through mm's vmas and see if one of them matches the
10934  * @filter; if so, adjust filter's address range.
10935  * Called with mm::mmap_lock down for reading.
10936  */
10937 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10938 				   struct mm_struct *mm,
10939 				   struct perf_addr_filter_range *fr)
10940 {
10941 	struct vm_area_struct *vma;
10942 	VMA_ITERATOR(vmi, mm, 0);
10943 
10944 	for_each_vma(vmi, vma) {
10945 		if (!vma->vm_file)
10946 			continue;
10947 
10948 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10949 			return;
10950 	}
10951 }
10952 
10953 /*
10954  * Update event's address range filters based on the
10955  * task's existing mappings, if any.
10956  */
10957 static void perf_event_addr_filters_apply(struct perf_event *event)
10958 {
10959 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10960 	struct task_struct *task = READ_ONCE(event->ctx->task);
10961 	struct perf_addr_filter *filter;
10962 	struct mm_struct *mm = NULL;
10963 	unsigned int count = 0;
10964 	unsigned long flags;
10965 
10966 	/*
10967 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10968 	 * will stop on the parent's child_mutex that our caller is also holding
10969 	 */
10970 	if (task == TASK_TOMBSTONE)
10971 		return;
10972 
10973 	if (ifh->nr_file_filters) {
10974 		mm = get_task_mm(task);
10975 		if (!mm)
10976 			goto restart;
10977 
10978 		mmap_read_lock(mm);
10979 	}
10980 
10981 	raw_spin_lock_irqsave(&ifh->lock, flags);
10982 	list_for_each_entry(filter, &ifh->list, entry) {
10983 		if (filter->path.dentry) {
10984 			/*
10985 			 * Adjust base offset if the filter is associated to a
10986 			 * binary that needs to be mapped:
10987 			 */
10988 			event->addr_filter_ranges[count].start = 0;
10989 			event->addr_filter_ranges[count].size = 0;
10990 
10991 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10992 		} else {
10993 			event->addr_filter_ranges[count].start = filter->offset;
10994 			event->addr_filter_ranges[count].size  = filter->size;
10995 		}
10996 
10997 		count++;
10998 	}
10999 
11000 	event->addr_filters_gen++;
11001 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11002 
11003 	if (ifh->nr_file_filters) {
11004 		mmap_read_unlock(mm);
11005 
11006 		mmput(mm);
11007 	}
11008 
11009 restart:
11010 	perf_event_stop(event, 1);
11011 }
11012 
11013 /*
11014  * Address range filtering: limiting the data to certain
11015  * instruction address ranges. Filters are ioctl()ed to us from
11016  * userspace as ascii strings.
11017  *
11018  * Filter string format:
11019  *
11020  * ACTION RANGE_SPEC
11021  * where ACTION is one of the
11022  *  * "filter": limit the trace to this region
11023  *  * "start": start tracing from this address
11024  *  * "stop": stop tracing at this address/region;
11025  * RANGE_SPEC is
11026  *  * for kernel addresses: <start address>[/<size>]
11027  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11028  *
11029  * if <size> is not specified or is zero, the range is treated as a single
11030  * address; not valid for ACTION=="filter".
11031  */
11032 enum {
11033 	IF_ACT_NONE = -1,
11034 	IF_ACT_FILTER,
11035 	IF_ACT_START,
11036 	IF_ACT_STOP,
11037 	IF_SRC_FILE,
11038 	IF_SRC_KERNEL,
11039 	IF_SRC_FILEADDR,
11040 	IF_SRC_KERNELADDR,
11041 };
11042 
11043 enum {
11044 	IF_STATE_ACTION = 0,
11045 	IF_STATE_SOURCE,
11046 	IF_STATE_END,
11047 };
11048 
11049 static const match_table_t if_tokens = {
11050 	{ IF_ACT_FILTER,	"filter" },
11051 	{ IF_ACT_START,		"start" },
11052 	{ IF_ACT_STOP,		"stop" },
11053 	{ IF_SRC_FILE,		"%u/%u@%s" },
11054 	{ IF_SRC_KERNEL,	"%u/%u" },
11055 	{ IF_SRC_FILEADDR,	"%u@%s" },
11056 	{ IF_SRC_KERNELADDR,	"%u" },
11057 	{ IF_ACT_NONE,		NULL },
11058 };
11059 
11060 /*
11061  * Address filter string parser
11062  */
11063 static int
11064 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11065 			     struct list_head *filters)
11066 {
11067 	struct perf_addr_filter *filter = NULL;
11068 	char *start, *orig, *filename = NULL;
11069 	substring_t args[MAX_OPT_ARGS];
11070 	int state = IF_STATE_ACTION, token;
11071 	unsigned int kernel = 0;
11072 	int ret = -EINVAL;
11073 
11074 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11075 	if (!fstr)
11076 		return -ENOMEM;
11077 
11078 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11079 		static const enum perf_addr_filter_action_t actions[] = {
11080 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11081 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11082 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11083 		};
11084 		ret = -EINVAL;
11085 
11086 		if (!*start)
11087 			continue;
11088 
11089 		/* filter definition begins */
11090 		if (state == IF_STATE_ACTION) {
11091 			filter = perf_addr_filter_new(event, filters);
11092 			if (!filter)
11093 				goto fail;
11094 		}
11095 
11096 		token = match_token(start, if_tokens, args);
11097 		switch (token) {
11098 		case IF_ACT_FILTER:
11099 		case IF_ACT_START:
11100 		case IF_ACT_STOP:
11101 			if (state != IF_STATE_ACTION)
11102 				goto fail;
11103 
11104 			filter->action = actions[token];
11105 			state = IF_STATE_SOURCE;
11106 			break;
11107 
11108 		case IF_SRC_KERNELADDR:
11109 		case IF_SRC_KERNEL:
11110 			kernel = 1;
11111 			fallthrough;
11112 
11113 		case IF_SRC_FILEADDR:
11114 		case IF_SRC_FILE:
11115 			if (state != IF_STATE_SOURCE)
11116 				goto fail;
11117 
11118 			*args[0].to = 0;
11119 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11120 			if (ret)
11121 				goto fail;
11122 
11123 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11124 				*args[1].to = 0;
11125 				ret = kstrtoul(args[1].from, 0, &filter->size);
11126 				if (ret)
11127 					goto fail;
11128 			}
11129 
11130 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11131 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11132 
11133 				kfree(filename);
11134 				filename = match_strdup(&args[fpos]);
11135 				if (!filename) {
11136 					ret = -ENOMEM;
11137 					goto fail;
11138 				}
11139 			}
11140 
11141 			state = IF_STATE_END;
11142 			break;
11143 
11144 		default:
11145 			goto fail;
11146 		}
11147 
11148 		/*
11149 		 * Filter definition is fully parsed, validate and install it.
11150 		 * Make sure that it doesn't contradict itself or the event's
11151 		 * attribute.
11152 		 */
11153 		if (state == IF_STATE_END) {
11154 			ret = -EINVAL;
11155 
11156 			/*
11157 			 * ACTION "filter" must have a non-zero length region
11158 			 * specified.
11159 			 */
11160 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11161 			    !filter->size)
11162 				goto fail;
11163 
11164 			if (!kernel) {
11165 				if (!filename)
11166 					goto fail;
11167 
11168 				/*
11169 				 * For now, we only support file-based filters
11170 				 * in per-task events; doing so for CPU-wide
11171 				 * events requires additional context switching
11172 				 * trickery, since same object code will be
11173 				 * mapped at different virtual addresses in
11174 				 * different processes.
11175 				 */
11176 				ret = -EOPNOTSUPP;
11177 				if (!event->ctx->task)
11178 					goto fail;
11179 
11180 				/* look up the path and grab its inode */
11181 				ret = kern_path(filename, LOOKUP_FOLLOW,
11182 						&filter->path);
11183 				if (ret)
11184 					goto fail;
11185 
11186 				ret = -EINVAL;
11187 				if (!filter->path.dentry ||
11188 				    !S_ISREG(d_inode(filter->path.dentry)
11189 					     ->i_mode))
11190 					goto fail;
11191 
11192 				event->addr_filters.nr_file_filters++;
11193 			}
11194 
11195 			/* ready to consume more filters */
11196 			kfree(filename);
11197 			filename = NULL;
11198 			state = IF_STATE_ACTION;
11199 			filter = NULL;
11200 			kernel = 0;
11201 		}
11202 	}
11203 
11204 	if (state != IF_STATE_ACTION)
11205 		goto fail;
11206 
11207 	kfree(filename);
11208 	kfree(orig);
11209 
11210 	return 0;
11211 
11212 fail:
11213 	kfree(filename);
11214 	free_filters_list(filters);
11215 	kfree(orig);
11216 
11217 	return ret;
11218 }
11219 
11220 static int
11221 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11222 {
11223 	LIST_HEAD(filters);
11224 	int ret;
11225 
11226 	/*
11227 	 * Since this is called in perf_ioctl() path, we're already holding
11228 	 * ctx::mutex.
11229 	 */
11230 	lockdep_assert_held(&event->ctx->mutex);
11231 
11232 	if (WARN_ON_ONCE(event->parent))
11233 		return -EINVAL;
11234 
11235 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11236 	if (ret)
11237 		goto fail_clear_files;
11238 
11239 	ret = event->pmu->addr_filters_validate(&filters);
11240 	if (ret)
11241 		goto fail_free_filters;
11242 
11243 	/* remove existing filters, if any */
11244 	perf_addr_filters_splice(event, &filters);
11245 
11246 	/* install new filters */
11247 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11248 
11249 	return ret;
11250 
11251 fail_free_filters:
11252 	free_filters_list(&filters);
11253 
11254 fail_clear_files:
11255 	event->addr_filters.nr_file_filters = 0;
11256 
11257 	return ret;
11258 }
11259 
11260 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11261 {
11262 	int ret = -EINVAL;
11263 	char *filter_str;
11264 
11265 	filter_str = strndup_user(arg, PAGE_SIZE);
11266 	if (IS_ERR(filter_str))
11267 		return PTR_ERR(filter_str);
11268 
11269 #ifdef CONFIG_EVENT_TRACING
11270 	if (perf_event_is_tracing(event)) {
11271 		struct perf_event_context *ctx = event->ctx;
11272 
11273 		/*
11274 		 * Beware, here be dragons!!
11275 		 *
11276 		 * the tracepoint muck will deadlock against ctx->mutex, but
11277 		 * the tracepoint stuff does not actually need it. So
11278 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11279 		 * already have a reference on ctx.
11280 		 *
11281 		 * This can result in event getting moved to a different ctx,
11282 		 * but that does not affect the tracepoint state.
11283 		 */
11284 		mutex_unlock(&ctx->mutex);
11285 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11286 		mutex_lock(&ctx->mutex);
11287 	} else
11288 #endif
11289 	if (has_addr_filter(event))
11290 		ret = perf_event_set_addr_filter(event, filter_str);
11291 
11292 	kfree(filter_str);
11293 	return ret;
11294 }
11295 
11296 /*
11297  * hrtimer based swevent callback
11298  */
11299 
11300 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11301 {
11302 	enum hrtimer_restart ret = HRTIMER_RESTART;
11303 	struct perf_sample_data data;
11304 	struct pt_regs *regs;
11305 	struct perf_event *event;
11306 	u64 period;
11307 
11308 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11309 
11310 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11311 		return HRTIMER_NORESTART;
11312 
11313 	event->pmu->read(event);
11314 
11315 	perf_sample_data_init(&data, 0, event->hw.last_period);
11316 	regs = get_irq_regs();
11317 
11318 	if (regs && !perf_exclude_event(event, regs)) {
11319 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11320 			if (__perf_event_overflow(event, 1, &data, regs))
11321 				ret = HRTIMER_NORESTART;
11322 	}
11323 
11324 	period = max_t(u64, 10000, event->hw.sample_period);
11325 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11326 
11327 	return ret;
11328 }
11329 
11330 static void perf_swevent_start_hrtimer(struct perf_event *event)
11331 {
11332 	struct hw_perf_event *hwc = &event->hw;
11333 	s64 period;
11334 
11335 	if (!is_sampling_event(event))
11336 		return;
11337 
11338 	period = local64_read(&hwc->period_left);
11339 	if (period) {
11340 		if (period < 0)
11341 			period = 10000;
11342 
11343 		local64_set(&hwc->period_left, 0);
11344 	} else {
11345 		period = max_t(u64, 10000, hwc->sample_period);
11346 	}
11347 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11348 		      HRTIMER_MODE_REL_PINNED_HARD);
11349 }
11350 
11351 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11352 {
11353 	struct hw_perf_event *hwc = &event->hw;
11354 
11355 	if (is_sampling_event(event)) {
11356 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11357 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11358 
11359 		hrtimer_cancel(&hwc->hrtimer);
11360 	}
11361 }
11362 
11363 static void perf_swevent_init_hrtimer(struct perf_event *event)
11364 {
11365 	struct hw_perf_event *hwc = &event->hw;
11366 
11367 	if (!is_sampling_event(event))
11368 		return;
11369 
11370 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11371 	hwc->hrtimer.function = perf_swevent_hrtimer;
11372 
11373 	/*
11374 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11375 	 * mapping and avoid the whole period adjust feedback stuff.
11376 	 */
11377 	if (event->attr.freq) {
11378 		long freq = event->attr.sample_freq;
11379 
11380 		event->attr.sample_period = NSEC_PER_SEC / freq;
11381 		hwc->sample_period = event->attr.sample_period;
11382 		local64_set(&hwc->period_left, hwc->sample_period);
11383 		hwc->last_period = hwc->sample_period;
11384 		event->attr.freq = 0;
11385 	}
11386 }
11387 
11388 /*
11389  * Software event: cpu wall time clock
11390  */
11391 
11392 static void cpu_clock_event_update(struct perf_event *event)
11393 {
11394 	s64 prev;
11395 	u64 now;
11396 
11397 	now = local_clock();
11398 	prev = local64_xchg(&event->hw.prev_count, now);
11399 	local64_add(now - prev, &event->count);
11400 }
11401 
11402 static void cpu_clock_event_start(struct perf_event *event, int flags)
11403 {
11404 	local64_set(&event->hw.prev_count, local_clock());
11405 	perf_swevent_start_hrtimer(event);
11406 }
11407 
11408 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11409 {
11410 	perf_swevent_cancel_hrtimer(event);
11411 	cpu_clock_event_update(event);
11412 }
11413 
11414 static int cpu_clock_event_add(struct perf_event *event, int flags)
11415 {
11416 	if (flags & PERF_EF_START)
11417 		cpu_clock_event_start(event, flags);
11418 	perf_event_update_userpage(event);
11419 
11420 	return 0;
11421 }
11422 
11423 static void cpu_clock_event_del(struct perf_event *event, int flags)
11424 {
11425 	cpu_clock_event_stop(event, flags);
11426 }
11427 
11428 static void cpu_clock_event_read(struct perf_event *event)
11429 {
11430 	cpu_clock_event_update(event);
11431 }
11432 
11433 static int cpu_clock_event_init(struct perf_event *event)
11434 {
11435 	if (event->attr.type != perf_cpu_clock.type)
11436 		return -ENOENT;
11437 
11438 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11439 		return -ENOENT;
11440 
11441 	/*
11442 	 * no branch sampling for software events
11443 	 */
11444 	if (has_branch_stack(event))
11445 		return -EOPNOTSUPP;
11446 
11447 	perf_swevent_init_hrtimer(event);
11448 
11449 	return 0;
11450 }
11451 
11452 static struct pmu perf_cpu_clock = {
11453 	.task_ctx_nr	= perf_sw_context,
11454 
11455 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11456 	.dev		= PMU_NULL_DEV,
11457 
11458 	.event_init	= cpu_clock_event_init,
11459 	.add		= cpu_clock_event_add,
11460 	.del		= cpu_clock_event_del,
11461 	.start		= cpu_clock_event_start,
11462 	.stop		= cpu_clock_event_stop,
11463 	.read		= cpu_clock_event_read,
11464 };
11465 
11466 /*
11467  * Software event: task time clock
11468  */
11469 
11470 static void task_clock_event_update(struct perf_event *event, u64 now)
11471 {
11472 	u64 prev;
11473 	s64 delta;
11474 
11475 	prev = local64_xchg(&event->hw.prev_count, now);
11476 	delta = now - prev;
11477 	local64_add(delta, &event->count);
11478 }
11479 
11480 static void task_clock_event_start(struct perf_event *event, int flags)
11481 {
11482 	local64_set(&event->hw.prev_count, event->ctx->time);
11483 	perf_swevent_start_hrtimer(event);
11484 }
11485 
11486 static void task_clock_event_stop(struct perf_event *event, int flags)
11487 {
11488 	perf_swevent_cancel_hrtimer(event);
11489 	task_clock_event_update(event, event->ctx->time);
11490 }
11491 
11492 static int task_clock_event_add(struct perf_event *event, int flags)
11493 {
11494 	if (flags & PERF_EF_START)
11495 		task_clock_event_start(event, flags);
11496 	perf_event_update_userpage(event);
11497 
11498 	return 0;
11499 }
11500 
11501 static void task_clock_event_del(struct perf_event *event, int flags)
11502 {
11503 	task_clock_event_stop(event, PERF_EF_UPDATE);
11504 }
11505 
11506 static void task_clock_event_read(struct perf_event *event)
11507 {
11508 	u64 now = perf_clock();
11509 	u64 delta = now - event->ctx->timestamp;
11510 	u64 time = event->ctx->time + delta;
11511 
11512 	task_clock_event_update(event, time);
11513 }
11514 
11515 static int task_clock_event_init(struct perf_event *event)
11516 {
11517 	if (event->attr.type != perf_task_clock.type)
11518 		return -ENOENT;
11519 
11520 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11521 		return -ENOENT;
11522 
11523 	/*
11524 	 * no branch sampling for software events
11525 	 */
11526 	if (has_branch_stack(event))
11527 		return -EOPNOTSUPP;
11528 
11529 	perf_swevent_init_hrtimer(event);
11530 
11531 	return 0;
11532 }
11533 
11534 static struct pmu perf_task_clock = {
11535 	.task_ctx_nr	= perf_sw_context,
11536 
11537 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11538 	.dev		= PMU_NULL_DEV,
11539 
11540 	.event_init	= task_clock_event_init,
11541 	.add		= task_clock_event_add,
11542 	.del		= task_clock_event_del,
11543 	.start		= task_clock_event_start,
11544 	.stop		= task_clock_event_stop,
11545 	.read		= task_clock_event_read,
11546 };
11547 
11548 static void perf_pmu_nop_void(struct pmu *pmu)
11549 {
11550 }
11551 
11552 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11553 {
11554 }
11555 
11556 static int perf_pmu_nop_int(struct pmu *pmu)
11557 {
11558 	return 0;
11559 }
11560 
11561 static int perf_event_nop_int(struct perf_event *event, u64 value)
11562 {
11563 	return 0;
11564 }
11565 
11566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11567 
11568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11569 {
11570 	__this_cpu_write(nop_txn_flags, flags);
11571 
11572 	if (flags & ~PERF_PMU_TXN_ADD)
11573 		return;
11574 
11575 	perf_pmu_disable(pmu);
11576 }
11577 
11578 static int perf_pmu_commit_txn(struct pmu *pmu)
11579 {
11580 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11581 
11582 	__this_cpu_write(nop_txn_flags, 0);
11583 
11584 	if (flags & ~PERF_PMU_TXN_ADD)
11585 		return 0;
11586 
11587 	perf_pmu_enable(pmu);
11588 	return 0;
11589 }
11590 
11591 static void perf_pmu_cancel_txn(struct pmu *pmu)
11592 {
11593 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11594 
11595 	__this_cpu_write(nop_txn_flags, 0);
11596 
11597 	if (flags & ~PERF_PMU_TXN_ADD)
11598 		return;
11599 
11600 	perf_pmu_enable(pmu);
11601 }
11602 
11603 static int perf_event_idx_default(struct perf_event *event)
11604 {
11605 	return 0;
11606 }
11607 
11608 static void free_pmu_context(struct pmu *pmu)
11609 {
11610 	free_percpu(pmu->cpu_pmu_context);
11611 }
11612 
11613 /*
11614  * Let userspace know that this PMU supports address range filtering:
11615  */
11616 static ssize_t nr_addr_filters_show(struct device *dev,
11617 				    struct device_attribute *attr,
11618 				    char *page)
11619 {
11620 	struct pmu *pmu = dev_get_drvdata(dev);
11621 
11622 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11623 }
11624 DEVICE_ATTR_RO(nr_addr_filters);
11625 
11626 static struct idr pmu_idr;
11627 
11628 static ssize_t
11629 type_show(struct device *dev, struct device_attribute *attr, char *page)
11630 {
11631 	struct pmu *pmu = dev_get_drvdata(dev);
11632 
11633 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11634 }
11635 static DEVICE_ATTR_RO(type);
11636 
11637 static ssize_t
11638 perf_event_mux_interval_ms_show(struct device *dev,
11639 				struct device_attribute *attr,
11640 				char *page)
11641 {
11642 	struct pmu *pmu = dev_get_drvdata(dev);
11643 
11644 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11645 }
11646 
11647 static DEFINE_MUTEX(mux_interval_mutex);
11648 
11649 static ssize_t
11650 perf_event_mux_interval_ms_store(struct device *dev,
11651 				 struct device_attribute *attr,
11652 				 const char *buf, size_t count)
11653 {
11654 	struct pmu *pmu = dev_get_drvdata(dev);
11655 	int timer, cpu, ret;
11656 
11657 	ret = kstrtoint(buf, 0, &timer);
11658 	if (ret)
11659 		return ret;
11660 
11661 	if (timer < 1)
11662 		return -EINVAL;
11663 
11664 	/* same value, noting to do */
11665 	if (timer == pmu->hrtimer_interval_ms)
11666 		return count;
11667 
11668 	mutex_lock(&mux_interval_mutex);
11669 	pmu->hrtimer_interval_ms = timer;
11670 
11671 	/* update all cpuctx for this PMU */
11672 	cpus_read_lock();
11673 	for_each_online_cpu(cpu) {
11674 		struct perf_cpu_pmu_context *cpc;
11675 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11676 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11677 
11678 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11679 	}
11680 	cpus_read_unlock();
11681 	mutex_unlock(&mux_interval_mutex);
11682 
11683 	return count;
11684 }
11685 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11686 
11687 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11688 {
11689 	switch (scope) {
11690 	case PERF_PMU_SCOPE_CORE:
11691 		return topology_sibling_cpumask(cpu);
11692 	case PERF_PMU_SCOPE_DIE:
11693 		return topology_die_cpumask(cpu);
11694 	case PERF_PMU_SCOPE_CLUSTER:
11695 		return topology_cluster_cpumask(cpu);
11696 	case PERF_PMU_SCOPE_PKG:
11697 		return topology_core_cpumask(cpu);
11698 	case PERF_PMU_SCOPE_SYS_WIDE:
11699 		return cpu_online_mask;
11700 	}
11701 
11702 	return NULL;
11703 }
11704 
11705 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11706 {
11707 	switch (scope) {
11708 	case PERF_PMU_SCOPE_CORE:
11709 		return perf_online_core_mask;
11710 	case PERF_PMU_SCOPE_DIE:
11711 		return perf_online_die_mask;
11712 	case PERF_PMU_SCOPE_CLUSTER:
11713 		return perf_online_cluster_mask;
11714 	case PERF_PMU_SCOPE_PKG:
11715 		return perf_online_pkg_mask;
11716 	case PERF_PMU_SCOPE_SYS_WIDE:
11717 		return perf_online_sys_mask;
11718 	}
11719 
11720 	return NULL;
11721 }
11722 
11723 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11724 			    char *buf)
11725 {
11726 	struct pmu *pmu = dev_get_drvdata(dev);
11727 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11728 
11729 	if (mask)
11730 		return cpumap_print_to_pagebuf(true, buf, mask);
11731 	return 0;
11732 }
11733 
11734 static DEVICE_ATTR_RO(cpumask);
11735 
11736 static struct attribute *pmu_dev_attrs[] = {
11737 	&dev_attr_type.attr,
11738 	&dev_attr_perf_event_mux_interval_ms.attr,
11739 	&dev_attr_nr_addr_filters.attr,
11740 	&dev_attr_cpumask.attr,
11741 	NULL,
11742 };
11743 
11744 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11745 {
11746 	struct device *dev = kobj_to_dev(kobj);
11747 	struct pmu *pmu = dev_get_drvdata(dev);
11748 
11749 	if (n == 2 && !pmu->nr_addr_filters)
11750 		return 0;
11751 
11752 	/* cpumask */
11753 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11754 		return 0;
11755 
11756 	return a->mode;
11757 }
11758 
11759 static struct attribute_group pmu_dev_attr_group = {
11760 	.is_visible = pmu_dev_is_visible,
11761 	.attrs = pmu_dev_attrs,
11762 };
11763 
11764 static const struct attribute_group *pmu_dev_groups[] = {
11765 	&pmu_dev_attr_group,
11766 	NULL,
11767 };
11768 
11769 static int pmu_bus_running;
11770 static struct bus_type pmu_bus = {
11771 	.name		= "event_source",
11772 	.dev_groups	= pmu_dev_groups,
11773 };
11774 
11775 static void pmu_dev_release(struct device *dev)
11776 {
11777 	kfree(dev);
11778 }
11779 
11780 static int pmu_dev_alloc(struct pmu *pmu)
11781 {
11782 	int ret = -ENOMEM;
11783 
11784 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11785 	if (!pmu->dev)
11786 		goto out;
11787 
11788 	pmu->dev->groups = pmu->attr_groups;
11789 	device_initialize(pmu->dev);
11790 
11791 	dev_set_drvdata(pmu->dev, pmu);
11792 	pmu->dev->bus = &pmu_bus;
11793 	pmu->dev->parent = pmu->parent;
11794 	pmu->dev->release = pmu_dev_release;
11795 
11796 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11797 	if (ret)
11798 		goto free_dev;
11799 
11800 	ret = device_add(pmu->dev);
11801 	if (ret)
11802 		goto free_dev;
11803 
11804 	if (pmu->attr_update) {
11805 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11806 		if (ret)
11807 			goto del_dev;
11808 	}
11809 
11810 out:
11811 	return ret;
11812 
11813 del_dev:
11814 	device_del(pmu->dev);
11815 
11816 free_dev:
11817 	put_device(pmu->dev);
11818 	goto out;
11819 }
11820 
11821 static struct lock_class_key cpuctx_mutex;
11822 static struct lock_class_key cpuctx_lock;
11823 
11824 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11825 {
11826 	int cpu, ret, max = PERF_TYPE_MAX;
11827 
11828 	mutex_lock(&pmus_lock);
11829 	ret = -ENOMEM;
11830 	pmu->pmu_disable_count = alloc_percpu(int);
11831 	if (!pmu->pmu_disable_count)
11832 		goto unlock;
11833 
11834 	pmu->type = -1;
11835 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11836 		ret = -EINVAL;
11837 		goto free_pdc;
11838 	}
11839 
11840 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11841 		ret = -EINVAL;
11842 		goto free_pdc;
11843 	}
11844 
11845 	pmu->name = name;
11846 
11847 	if (type >= 0)
11848 		max = type;
11849 
11850 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11851 	if (ret < 0)
11852 		goto free_pdc;
11853 
11854 	WARN_ON(type >= 0 && ret != type);
11855 
11856 	type = ret;
11857 	pmu->type = type;
11858 
11859 	if (pmu_bus_running && !pmu->dev) {
11860 		ret = pmu_dev_alloc(pmu);
11861 		if (ret)
11862 			goto free_idr;
11863 	}
11864 
11865 	ret = -ENOMEM;
11866 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11867 	if (!pmu->cpu_pmu_context)
11868 		goto free_dev;
11869 
11870 	for_each_possible_cpu(cpu) {
11871 		struct perf_cpu_pmu_context *cpc;
11872 
11873 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11874 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11875 		__perf_mux_hrtimer_init(cpc, cpu);
11876 	}
11877 
11878 	if (!pmu->start_txn) {
11879 		if (pmu->pmu_enable) {
11880 			/*
11881 			 * If we have pmu_enable/pmu_disable calls, install
11882 			 * transaction stubs that use that to try and batch
11883 			 * hardware accesses.
11884 			 */
11885 			pmu->start_txn  = perf_pmu_start_txn;
11886 			pmu->commit_txn = perf_pmu_commit_txn;
11887 			pmu->cancel_txn = perf_pmu_cancel_txn;
11888 		} else {
11889 			pmu->start_txn  = perf_pmu_nop_txn;
11890 			pmu->commit_txn = perf_pmu_nop_int;
11891 			pmu->cancel_txn = perf_pmu_nop_void;
11892 		}
11893 	}
11894 
11895 	if (!pmu->pmu_enable) {
11896 		pmu->pmu_enable  = perf_pmu_nop_void;
11897 		pmu->pmu_disable = perf_pmu_nop_void;
11898 	}
11899 
11900 	if (!pmu->check_period)
11901 		pmu->check_period = perf_event_nop_int;
11902 
11903 	if (!pmu->event_idx)
11904 		pmu->event_idx = perf_event_idx_default;
11905 
11906 	list_add_rcu(&pmu->entry, &pmus);
11907 	atomic_set(&pmu->exclusive_cnt, 0);
11908 	ret = 0;
11909 unlock:
11910 	mutex_unlock(&pmus_lock);
11911 
11912 	return ret;
11913 
11914 free_dev:
11915 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11916 		device_del(pmu->dev);
11917 		put_device(pmu->dev);
11918 	}
11919 
11920 free_idr:
11921 	idr_remove(&pmu_idr, pmu->type);
11922 
11923 free_pdc:
11924 	free_percpu(pmu->pmu_disable_count);
11925 	goto unlock;
11926 }
11927 EXPORT_SYMBOL_GPL(perf_pmu_register);
11928 
11929 void perf_pmu_unregister(struct pmu *pmu)
11930 {
11931 	mutex_lock(&pmus_lock);
11932 	list_del_rcu(&pmu->entry);
11933 
11934 	/*
11935 	 * We dereference the pmu list under both SRCU and regular RCU, so
11936 	 * synchronize against both of those.
11937 	 */
11938 	synchronize_srcu(&pmus_srcu);
11939 	synchronize_rcu();
11940 
11941 	free_percpu(pmu->pmu_disable_count);
11942 	idr_remove(&pmu_idr, pmu->type);
11943 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11944 		if (pmu->nr_addr_filters)
11945 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11946 		device_del(pmu->dev);
11947 		put_device(pmu->dev);
11948 	}
11949 	free_pmu_context(pmu);
11950 	mutex_unlock(&pmus_lock);
11951 }
11952 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11953 
11954 static inline bool has_extended_regs(struct perf_event *event)
11955 {
11956 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11957 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11958 }
11959 
11960 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11961 {
11962 	struct perf_event_context *ctx = NULL;
11963 	int ret;
11964 
11965 	if (!try_module_get(pmu->module))
11966 		return -ENODEV;
11967 
11968 	/*
11969 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11970 	 * for example, validate if the group fits on the PMU. Therefore,
11971 	 * if this is a sibling event, acquire the ctx->mutex to protect
11972 	 * the sibling_list.
11973 	 */
11974 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11975 		/*
11976 		 * This ctx->mutex can nest when we're called through
11977 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11978 		 */
11979 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11980 						 SINGLE_DEPTH_NESTING);
11981 		BUG_ON(!ctx);
11982 	}
11983 
11984 	event->pmu = pmu;
11985 	ret = pmu->event_init(event);
11986 
11987 	if (ctx)
11988 		perf_event_ctx_unlock(event->group_leader, ctx);
11989 
11990 	if (!ret) {
11991 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11992 		    has_extended_regs(event))
11993 			ret = -EOPNOTSUPP;
11994 
11995 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11996 		    event_has_any_exclude_flag(event))
11997 			ret = -EINVAL;
11998 
11999 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12000 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12001 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
12002 			int cpu;
12003 
12004 			if (pmu_cpumask && cpumask) {
12005 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
12006 				if (cpu >= nr_cpu_ids)
12007 					ret = -ENODEV;
12008 				else
12009 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12010 			} else {
12011 				ret = -ENODEV;
12012 			}
12013 		}
12014 
12015 		if (ret && event->destroy)
12016 			event->destroy(event);
12017 	}
12018 
12019 	if (ret)
12020 		module_put(pmu->module);
12021 
12022 	return ret;
12023 }
12024 
12025 static struct pmu *perf_init_event(struct perf_event *event)
12026 {
12027 	bool extended_type = false;
12028 	int idx, type, ret;
12029 	struct pmu *pmu;
12030 
12031 	idx = srcu_read_lock(&pmus_srcu);
12032 
12033 	/*
12034 	 * Save original type before calling pmu->event_init() since certain
12035 	 * pmus overwrites event->attr.type to forward event to another pmu.
12036 	 */
12037 	event->orig_type = event->attr.type;
12038 
12039 	/* Try parent's PMU first: */
12040 	if (event->parent && event->parent->pmu) {
12041 		pmu = event->parent->pmu;
12042 		ret = perf_try_init_event(pmu, event);
12043 		if (!ret)
12044 			goto unlock;
12045 	}
12046 
12047 	/*
12048 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12049 	 * are often aliases for PERF_TYPE_RAW.
12050 	 */
12051 	type = event->attr.type;
12052 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12053 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12054 		if (!type) {
12055 			type = PERF_TYPE_RAW;
12056 		} else {
12057 			extended_type = true;
12058 			event->attr.config &= PERF_HW_EVENT_MASK;
12059 		}
12060 	}
12061 
12062 again:
12063 	rcu_read_lock();
12064 	pmu = idr_find(&pmu_idr, type);
12065 	rcu_read_unlock();
12066 	if (pmu) {
12067 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12068 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12069 			goto fail;
12070 
12071 		ret = perf_try_init_event(pmu, event);
12072 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12073 			type = event->attr.type;
12074 			goto again;
12075 		}
12076 
12077 		if (ret)
12078 			pmu = ERR_PTR(ret);
12079 
12080 		goto unlock;
12081 	}
12082 
12083 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12084 		ret = perf_try_init_event(pmu, event);
12085 		if (!ret)
12086 			goto unlock;
12087 
12088 		if (ret != -ENOENT) {
12089 			pmu = ERR_PTR(ret);
12090 			goto unlock;
12091 		}
12092 	}
12093 fail:
12094 	pmu = ERR_PTR(-ENOENT);
12095 unlock:
12096 	srcu_read_unlock(&pmus_srcu, idx);
12097 
12098 	return pmu;
12099 }
12100 
12101 static void attach_sb_event(struct perf_event *event)
12102 {
12103 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12104 
12105 	raw_spin_lock(&pel->lock);
12106 	list_add_rcu(&event->sb_list, &pel->list);
12107 	raw_spin_unlock(&pel->lock);
12108 }
12109 
12110 /*
12111  * We keep a list of all !task (and therefore per-cpu) events
12112  * that need to receive side-band records.
12113  *
12114  * This avoids having to scan all the various PMU per-cpu contexts
12115  * looking for them.
12116  */
12117 static void account_pmu_sb_event(struct perf_event *event)
12118 {
12119 	if (is_sb_event(event))
12120 		attach_sb_event(event);
12121 }
12122 
12123 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12124 static void account_freq_event_nohz(void)
12125 {
12126 #ifdef CONFIG_NO_HZ_FULL
12127 	/* Lock so we don't race with concurrent unaccount */
12128 	spin_lock(&nr_freq_lock);
12129 	if (atomic_inc_return(&nr_freq_events) == 1)
12130 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12131 	spin_unlock(&nr_freq_lock);
12132 #endif
12133 }
12134 
12135 static void account_freq_event(void)
12136 {
12137 	if (tick_nohz_full_enabled())
12138 		account_freq_event_nohz();
12139 	else
12140 		atomic_inc(&nr_freq_events);
12141 }
12142 
12143 
12144 static void account_event(struct perf_event *event)
12145 {
12146 	bool inc = false;
12147 
12148 	if (event->parent)
12149 		return;
12150 
12151 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12152 		inc = true;
12153 	if (event->attr.mmap || event->attr.mmap_data)
12154 		atomic_inc(&nr_mmap_events);
12155 	if (event->attr.build_id)
12156 		atomic_inc(&nr_build_id_events);
12157 	if (event->attr.comm)
12158 		atomic_inc(&nr_comm_events);
12159 	if (event->attr.namespaces)
12160 		atomic_inc(&nr_namespaces_events);
12161 	if (event->attr.cgroup)
12162 		atomic_inc(&nr_cgroup_events);
12163 	if (event->attr.task)
12164 		atomic_inc(&nr_task_events);
12165 	if (event->attr.freq)
12166 		account_freq_event();
12167 	if (event->attr.context_switch) {
12168 		atomic_inc(&nr_switch_events);
12169 		inc = true;
12170 	}
12171 	if (has_branch_stack(event))
12172 		inc = true;
12173 	if (is_cgroup_event(event))
12174 		inc = true;
12175 	if (event->attr.ksymbol)
12176 		atomic_inc(&nr_ksymbol_events);
12177 	if (event->attr.bpf_event)
12178 		atomic_inc(&nr_bpf_events);
12179 	if (event->attr.text_poke)
12180 		atomic_inc(&nr_text_poke_events);
12181 
12182 	if (inc) {
12183 		/*
12184 		 * We need the mutex here because static_branch_enable()
12185 		 * must complete *before* the perf_sched_count increment
12186 		 * becomes visible.
12187 		 */
12188 		if (atomic_inc_not_zero(&perf_sched_count))
12189 			goto enabled;
12190 
12191 		mutex_lock(&perf_sched_mutex);
12192 		if (!atomic_read(&perf_sched_count)) {
12193 			static_branch_enable(&perf_sched_events);
12194 			/*
12195 			 * Guarantee that all CPUs observe they key change and
12196 			 * call the perf scheduling hooks before proceeding to
12197 			 * install events that need them.
12198 			 */
12199 			synchronize_rcu();
12200 		}
12201 		/*
12202 		 * Now that we have waited for the sync_sched(), allow further
12203 		 * increments to by-pass the mutex.
12204 		 */
12205 		atomic_inc(&perf_sched_count);
12206 		mutex_unlock(&perf_sched_mutex);
12207 	}
12208 enabled:
12209 
12210 	account_pmu_sb_event(event);
12211 }
12212 
12213 /*
12214  * Allocate and initialize an event structure
12215  */
12216 static struct perf_event *
12217 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12218 		 struct task_struct *task,
12219 		 struct perf_event *group_leader,
12220 		 struct perf_event *parent_event,
12221 		 perf_overflow_handler_t overflow_handler,
12222 		 void *context, int cgroup_fd)
12223 {
12224 	struct pmu *pmu;
12225 	struct perf_event *event;
12226 	struct hw_perf_event *hwc;
12227 	long err = -EINVAL;
12228 	int node;
12229 
12230 	if ((unsigned)cpu >= nr_cpu_ids) {
12231 		if (!task || cpu != -1)
12232 			return ERR_PTR(-EINVAL);
12233 	}
12234 	if (attr->sigtrap && !task) {
12235 		/* Requires a task: avoid signalling random tasks. */
12236 		return ERR_PTR(-EINVAL);
12237 	}
12238 
12239 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12240 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12241 				      node);
12242 	if (!event)
12243 		return ERR_PTR(-ENOMEM);
12244 
12245 	/*
12246 	 * Single events are their own group leaders, with an
12247 	 * empty sibling list:
12248 	 */
12249 	if (!group_leader)
12250 		group_leader = event;
12251 
12252 	mutex_init(&event->child_mutex);
12253 	INIT_LIST_HEAD(&event->child_list);
12254 
12255 	INIT_LIST_HEAD(&event->event_entry);
12256 	INIT_LIST_HEAD(&event->sibling_list);
12257 	INIT_LIST_HEAD(&event->active_list);
12258 	init_event_group(event);
12259 	INIT_LIST_HEAD(&event->rb_entry);
12260 	INIT_LIST_HEAD(&event->active_entry);
12261 	INIT_LIST_HEAD(&event->addr_filters.list);
12262 	INIT_HLIST_NODE(&event->hlist_entry);
12263 
12264 
12265 	init_waitqueue_head(&event->waitq);
12266 	init_irq_work(&event->pending_irq, perf_pending_irq);
12267 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12268 	init_task_work(&event->pending_task, perf_pending_task);
12269 	rcuwait_init(&event->pending_work_wait);
12270 
12271 	mutex_init(&event->mmap_mutex);
12272 	raw_spin_lock_init(&event->addr_filters.lock);
12273 
12274 	atomic_long_set(&event->refcount, 1);
12275 	event->cpu		= cpu;
12276 	event->attr		= *attr;
12277 	event->group_leader	= group_leader;
12278 	event->pmu		= NULL;
12279 	event->oncpu		= -1;
12280 
12281 	event->parent		= parent_event;
12282 
12283 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12284 	event->id		= atomic64_inc_return(&perf_event_id);
12285 
12286 	event->state		= PERF_EVENT_STATE_INACTIVE;
12287 
12288 	if (parent_event)
12289 		event->event_caps = parent_event->event_caps;
12290 
12291 	if (task) {
12292 		event->attach_state = PERF_ATTACH_TASK;
12293 		/*
12294 		 * XXX pmu::event_init needs to know what task to account to
12295 		 * and we cannot use the ctx information because we need the
12296 		 * pmu before we get a ctx.
12297 		 */
12298 		event->hw.target = get_task_struct(task);
12299 	}
12300 
12301 	event->clock = &local_clock;
12302 	if (parent_event)
12303 		event->clock = parent_event->clock;
12304 
12305 	if (!overflow_handler && parent_event) {
12306 		overflow_handler = parent_event->overflow_handler;
12307 		context = parent_event->overflow_handler_context;
12308 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12309 		if (parent_event->prog) {
12310 			struct bpf_prog *prog = parent_event->prog;
12311 
12312 			bpf_prog_inc(prog);
12313 			event->prog = prog;
12314 		}
12315 #endif
12316 	}
12317 
12318 	if (overflow_handler) {
12319 		event->overflow_handler	= overflow_handler;
12320 		event->overflow_handler_context = context;
12321 	} else if (is_write_backward(event)){
12322 		event->overflow_handler = perf_event_output_backward;
12323 		event->overflow_handler_context = NULL;
12324 	} else {
12325 		event->overflow_handler = perf_event_output_forward;
12326 		event->overflow_handler_context = NULL;
12327 	}
12328 
12329 	perf_event__state_init(event);
12330 
12331 	pmu = NULL;
12332 
12333 	hwc = &event->hw;
12334 	hwc->sample_period = attr->sample_period;
12335 	if (attr->freq && attr->sample_freq)
12336 		hwc->sample_period = 1;
12337 	hwc->last_period = hwc->sample_period;
12338 
12339 	local64_set(&hwc->period_left, hwc->sample_period);
12340 
12341 	/*
12342 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12343 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12344 	 * collect per-thread samples.
12345 	 * See perf_output_read().
12346 	 */
12347 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12348 		goto err_ns;
12349 
12350 	if (!has_branch_stack(event))
12351 		event->attr.branch_sample_type = 0;
12352 
12353 	pmu = perf_init_event(event);
12354 	if (IS_ERR(pmu)) {
12355 		err = PTR_ERR(pmu);
12356 		goto err_ns;
12357 	}
12358 
12359 	/*
12360 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12361 	 * events (they don't make sense as the cgroup will be different
12362 	 * on other CPUs in the uncore mask).
12363 	 */
12364 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12365 		err = -EINVAL;
12366 		goto err_pmu;
12367 	}
12368 
12369 	if (event->attr.aux_output &&
12370 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12371 	     event->attr.aux_pause || event->attr.aux_resume)) {
12372 		err = -EOPNOTSUPP;
12373 		goto err_pmu;
12374 	}
12375 
12376 	if (event->attr.aux_pause && event->attr.aux_resume) {
12377 		err = -EINVAL;
12378 		goto err_pmu;
12379 	}
12380 
12381 	if (event->attr.aux_start_paused) {
12382 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12383 			err = -EOPNOTSUPP;
12384 			goto err_pmu;
12385 		}
12386 		event->hw.aux_paused = 1;
12387 	}
12388 
12389 	if (cgroup_fd != -1) {
12390 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12391 		if (err)
12392 			goto err_pmu;
12393 	}
12394 
12395 	err = exclusive_event_init(event);
12396 	if (err)
12397 		goto err_pmu;
12398 
12399 	if (has_addr_filter(event)) {
12400 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12401 						    sizeof(struct perf_addr_filter_range),
12402 						    GFP_KERNEL);
12403 		if (!event->addr_filter_ranges) {
12404 			err = -ENOMEM;
12405 			goto err_per_task;
12406 		}
12407 
12408 		/*
12409 		 * Clone the parent's vma offsets: they are valid until exec()
12410 		 * even if the mm is not shared with the parent.
12411 		 */
12412 		if (event->parent) {
12413 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12414 
12415 			raw_spin_lock_irq(&ifh->lock);
12416 			memcpy(event->addr_filter_ranges,
12417 			       event->parent->addr_filter_ranges,
12418 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12419 			raw_spin_unlock_irq(&ifh->lock);
12420 		}
12421 
12422 		/* force hw sync on the address filters */
12423 		event->addr_filters_gen = 1;
12424 	}
12425 
12426 	if (!event->parent) {
12427 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12428 			err = get_callchain_buffers(attr->sample_max_stack);
12429 			if (err)
12430 				goto err_addr_filters;
12431 		}
12432 	}
12433 
12434 	err = security_perf_event_alloc(event);
12435 	if (err)
12436 		goto err_callchain_buffer;
12437 
12438 	/* symmetric to unaccount_event() in _free_event() */
12439 	account_event(event);
12440 
12441 	return event;
12442 
12443 err_callchain_buffer:
12444 	if (!event->parent) {
12445 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12446 			put_callchain_buffers();
12447 	}
12448 err_addr_filters:
12449 	kfree(event->addr_filter_ranges);
12450 
12451 err_per_task:
12452 	exclusive_event_destroy(event);
12453 
12454 err_pmu:
12455 	if (is_cgroup_event(event))
12456 		perf_detach_cgroup(event);
12457 	if (event->destroy)
12458 		event->destroy(event);
12459 	module_put(pmu->module);
12460 err_ns:
12461 	if (event->hw.target)
12462 		put_task_struct(event->hw.target);
12463 	call_rcu(&event->rcu_head, free_event_rcu);
12464 
12465 	return ERR_PTR(err);
12466 }
12467 
12468 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12469 			  struct perf_event_attr *attr)
12470 {
12471 	u32 size;
12472 	int ret;
12473 
12474 	/* Zero the full structure, so that a short copy will be nice. */
12475 	memset(attr, 0, sizeof(*attr));
12476 
12477 	ret = get_user(size, &uattr->size);
12478 	if (ret)
12479 		return ret;
12480 
12481 	/* ABI compatibility quirk: */
12482 	if (!size)
12483 		size = PERF_ATTR_SIZE_VER0;
12484 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12485 		goto err_size;
12486 
12487 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12488 	if (ret) {
12489 		if (ret == -E2BIG)
12490 			goto err_size;
12491 		return ret;
12492 	}
12493 
12494 	attr->size = size;
12495 
12496 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12497 		return -EINVAL;
12498 
12499 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12500 		return -EINVAL;
12501 
12502 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12503 		return -EINVAL;
12504 
12505 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12506 		u64 mask = attr->branch_sample_type;
12507 
12508 		/* only using defined bits */
12509 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12510 			return -EINVAL;
12511 
12512 		/* at least one branch bit must be set */
12513 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12514 			return -EINVAL;
12515 
12516 		/* propagate priv level, when not set for branch */
12517 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12518 
12519 			/* exclude_kernel checked on syscall entry */
12520 			if (!attr->exclude_kernel)
12521 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12522 
12523 			if (!attr->exclude_user)
12524 				mask |= PERF_SAMPLE_BRANCH_USER;
12525 
12526 			if (!attr->exclude_hv)
12527 				mask |= PERF_SAMPLE_BRANCH_HV;
12528 			/*
12529 			 * adjust user setting (for HW filter setup)
12530 			 */
12531 			attr->branch_sample_type = mask;
12532 		}
12533 		/* privileged levels capture (kernel, hv): check permissions */
12534 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12535 			ret = perf_allow_kernel(attr);
12536 			if (ret)
12537 				return ret;
12538 		}
12539 	}
12540 
12541 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12542 		ret = perf_reg_validate(attr->sample_regs_user);
12543 		if (ret)
12544 			return ret;
12545 	}
12546 
12547 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12548 		if (!arch_perf_have_user_stack_dump())
12549 			return -ENOSYS;
12550 
12551 		/*
12552 		 * We have __u32 type for the size, but so far
12553 		 * we can only use __u16 as maximum due to the
12554 		 * __u16 sample size limit.
12555 		 */
12556 		if (attr->sample_stack_user >= USHRT_MAX)
12557 			return -EINVAL;
12558 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12559 			return -EINVAL;
12560 	}
12561 
12562 	if (!attr->sample_max_stack)
12563 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12564 
12565 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12566 		ret = perf_reg_validate(attr->sample_regs_intr);
12567 
12568 #ifndef CONFIG_CGROUP_PERF
12569 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12570 		return -EINVAL;
12571 #endif
12572 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12573 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12574 		return -EINVAL;
12575 
12576 	if (!attr->inherit && attr->inherit_thread)
12577 		return -EINVAL;
12578 
12579 	if (attr->remove_on_exec && attr->enable_on_exec)
12580 		return -EINVAL;
12581 
12582 	if (attr->sigtrap && !attr->remove_on_exec)
12583 		return -EINVAL;
12584 
12585 out:
12586 	return ret;
12587 
12588 err_size:
12589 	put_user(sizeof(*attr), &uattr->size);
12590 	ret = -E2BIG;
12591 	goto out;
12592 }
12593 
12594 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12595 {
12596 	if (b < a)
12597 		swap(a, b);
12598 
12599 	mutex_lock(a);
12600 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12601 }
12602 
12603 static int
12604 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12605 {
12606 	struct perf_buffer *rb = NULL;
12607 	int ret = -EINVAL;
12608 
12609 	if (!output_event) {
12610 		mutex_lock(&event->mmap_mutex);
12611 		goto set;
12612 	}
12613 
12614 	/* don't allow circular references */
12615 	if (event == output_event)
12616 		goto out;
12617 
12618 	/*
12619 	 * Don't allow cross-cpu buffers
12620 	 */
12621 	if (output_event->cpu != event->cpu)
12622 		goto out;
12623 
12624 	/*
12625 	 * If its not a per-cpu rb, it must be the same task.
12626 	 */
12627 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12628 		goto out;
12629 
12630 	/*
12631 	 * Mixing clocks in the same buffer is trouble you don't need.
12632 	 */
12633 	if (output_event->clock != event->clock)
12634 		goto out;
12635 
12636 	/*
12637 	 * Either writing ring buffer from beginning or from end.
12638 	 * Mixing is not allowed.
12639 	 */
12640 	if (is_write_backward(output_event) != is_write_backward(event))
12641 		goto out;
12642 
12643 	/*
12644 	 * If both events generate aux data, they must be on the same PMU
12645 	 */
12646 	if (has_aux(event) && has_aux(output_event) &&
12647 	    event->pmu != output_event->pmu)
12648 		goto out;
12649 
12650 	/*
12651 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12652 	 * output_event is already on rb->event_list, and the list iteration
12653 	 * restarts after every removal, it is guaranteed this new event is
12654 	 * observed *OR* if output_event is already removed, it's guaranteed we
12655 	 * observe !rb->mmap_count.
12656 	 */
12657 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12658 set:
12659 	/* Can't redirect output if we've got an active mmap() */
12660 	if (atomic_read(&event->mmap_count))
12661 		goto unlock;
12662 
12663 	if (output_event) {
12664 		/* get the rb we want to redirect to */
12665 		rb = ring_buffer_get(output_event);
12666 		if (!rb)
12667 			goto unlock;
12668 
12669 		/* did we race against perf_mmap_close() */
12670 		if (!atomic_read(&rb->mmap_count)) {
12671 			ring_buffer_put(rb);
12672 			goto unlock;
12673 		}
12674 	}
12675 
12676 	ring_buffer_attach(event, rb);
12677 
12678 	ret = 0;
12679 unlock:
12680 	mutex_unlock(&event->mmap_mutex);
12681 	if (output_event)
12682 		mutex_unlock(&output_event->mmap_mutex);
12683 
12684 out:
12685 	return ret;
12686 }
12687 
12688 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12689 {
12690 	bool nmi_safe = false;
12691 
12692 	switch (clk_id) {
12693 	case CLOCK_MONOTONIC:
12694 		event->clock = &ktime_get_mono_fast_ns;
12695 		nmi_safe = true;
12696 		break;
12697 
12698 	case CLOCK_MONOTONIC_RAW:
12699 		event->clock = &ktime_get_raw_fast_ns;
12700 		nmi_safe = true;
12701 		break;
12702 
12703 	case CLOCK_REALTIME:
12704 		event->clock = &ktime_get_real_ns;
12705 		break;
12706 
12707 	case CLOCK_BOOTTIME:
12708 		event->clock = &ktime_get_boottime_ns;
12709 		break;
12710 
12711 	case CLOCK_TAI:
12712 		event->clock = &ktime_get_clocktai_ns;
12713 		break;
12714 
12715 	default:
12716 		return -EINVAL;
12717 	}
12718 
12719 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12720 		return -EINVAL;
12721 
12722 	return 0;
12723 }
12724 
12725 static bool
12726 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12727 {
12728 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12729 	bool is_capable = perfmon_capable();
12730 
12731 	if (attr->sigtrap) {
12732 		/*
12733 		 * perf_event_attr::sigtrap sends signals to the other task.
12734 		 * Require the current task to also have CAP_KILL.
12735 		 */
12736 		rcu_read_lock();
12737 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12738 		rcu_read_unlock();
12739 
12740 		/*
12741 		 * If the required capabilities aren't available, checks for
12742 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12743 		 * can effectively change the target task.
12744 		 */
12745 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12746 	}
12747 
12748 	/*
12749 	 * Preserve ptrace permission check for backwards compatibility. The
12750 	 * ptrace check also includes checks that the current task and other
12751 	 * task have matching uids, and is therefore not done here explicitly.
12752 	 */
12753 	return is_capable || ptrace_may_access(task, ptrace_mode);
12754 }
12755 
12756 /**
12757  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12758  *
12759  * @attr_uptr:	event_id type attributes for monitoring/sampling
12760  * @pid:		target pid
12761  * @cpu:		target cpu
12762  * @group_fd:		group leader event fd
12763  * @flags:		perf event open flags
12764  */
12765 SYSCALL_DEFINE5(perf_event_open,
12766 		struct perf_event_attr __user *, attr_uptr,
12767 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12768 {
12769 	struct perf_event *group_leader = NULL, *output_event = NULL;
12770 	struct perf_event_pmu_context *pmu_ctx;
12771 	struct perf_event *event, *sibling;
12772 	struct perf_event_attr attr;
12773 	struct perf_event_context *ctx;
12774 	struct file *event_file = NULL;
12775 	struct task_struct *task = NULL;
12776 	struct pmu *pmu;
12777 	int event_fd;
12778 	int move_group = 0;
12779 	int err;
12780 	int f_flags = O_RDWR;
12781 	int cgroup_fd = -1;
12782 
12783 	/* for future expandability... */
12784 	if (flags & ~PERF_FLAG_ALL)
12785 		return -EINVAL;
12786 
12787 	err = perf_copy_attr(attr_uptr, &attr);
12788 	if (err)
12789 		return err;
12790 
12791 	/* Do we allow access to perf_event_open(2) ? */
12792 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12793 	if (err)
12794 		return err;
12795 
12796 	if (!attr.exclude_kernel) {
12797 		err = perf_allow_kernel(&attr);
12798 		if (err)
12799 			return err;
12800 	}
12801 
12802 	if (attr.namespaces) {
12803 		if (!perfmon_capable())
12804 			return -EACCES;
12805 	}
12806 
12807 	if (attr.freq) {
12808 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12809 			return -EINVAL;
12810 	} else {
12811 		if (attr.sample_period & (1ULL << 63))
12812 			return -EINVAL;
12813 	}
12814 
12815 	/* Only privileged users can get physical addresses */
12816 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12817 		err = perf_allow_kernel(&attr);
12818 		if (err)
12819 			return err;
12820 	}
12821 
12822 	/* REGS_INTR can leak data, lockdown must prevent this */
12823 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12824 		err = security_locked_down(LOCKDOWN_PERF);
12825 		if (err)
12826 			return err;
12827 	}
12828 
12829 	/*
12830 	 * In cgroup mode, the pid argument is used to pass the fd
12831 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12832 	 * designates the cpu on which to monitor threads from that
12833 	 * cgroup.
12834 	 */
12835 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12836 		return -EINVAL;
12837 
12838 	if (flags & PERF_FLAG_FD_CLOEXEC)
12839 		f_flags |= O_CLOEXEC;
12840 
12841 	event_fd = get_unused_fd_flags(f_flags);
12842 	if (event_fd < 0)
12843 		return event_fd;
12844 
12845 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12846 	if (group_fd != -1) {
12847 		if (!is_perf_file(group)) {
12848 			err = -EBADF;
12849 			goto err_fd;
12850 		}
12851 		group_leader = fd_file(group)->private_data;
12852 		if (flags & PERF_FLAG_FD_OUTPUT)
12853 			output_event = group_leader;
12854 		if (flags & PERF_FLAG_FD_NO_GROUP)
12855 			group_leader = NULL;
12856 	}
12857 
12858 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12859 		task = find_lively_task_by_vpid(pid);
12860 		if (IS_ERR(task)) {
12861 			err = PTR_ERR(task);
12862 			goto err_fd;
12863 		}
12864 	}
12865 
12866 	if (task && group_leader &&
12867 	    group_leader->attr.inherit != attr.inherit) {
12868 		err = -EINVAL;
12869 		goto err_task;
12870 	}
12871 
12872 	if (flags & PERF_FLAG_PID_CGROUP)
12873 		cgroup_fd = pid;
12874 
12875 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12876 				 NULL, NULL, cgroup_fd);
12877 	if (IS_ERR(event)) {
12878 		err = PTR_ERR(event);
12879 		goto err_task;
12880 	}
12881 
12882 	if (is_sampling_event(event)) {
12883 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12884 			err = -EOPNOTSUPP;
12885 			goto err_alloc;
12886 		}
12887 	}
12888 
12889 	/*
12890 	 * Special case software events and allow them to be part of
12891 	 * any hardware group.
12892 	 */
12893 	pmu = event->pmu;
12894 
12895 	if (attr.use_clockid) {
12896 		err = perf_event_set_clock(event, attr.clockid);
12897 		if (err)
12898 			goto err_alloc;
12899 	}
12900 
12901 	if (pmu->task_ctx_nr == perf_sw_context)
12902 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12903 
12904 	if (task) {
12905 		err = down_read_interruptible(&task->signal->exec_update_lock);
12906 		if (err)
12907 			goto err_alloc;
12908 
12909 		/*
12910 		 * We must hold exec_update_lock across this and any potential
12911 		 * perf_install_in_context() call for this new event to
12912 		 * serialize against exec() altering our credentials (and the
12913 		 * perf_event_exit_task() that could imply).
12914 		 */
12915 		err = -EACCES;
12916 		if (!perf_check_permission(&attr, task))
12917 			goto err_cred;
12918 	}
12919 
12920 	/*
12921 	 * Get the target context (task or percpu):
12922 	 */
12923 	ctx = find_get_context(task, event);
12924 	if (IS_ERR(ctx)) {
12925 		err = PTR_ERR(ctx);
12926 		goto err_cred;
12927 	}
12928 
12929 	mutex_lock(&ctx->mutex);
12930 
12931 	if (ctx->task == TASK_TOMBSTONE) {
12932 		err = -ESRCH;
12933 		goto err_locked;
12934 	}
12935 
12936 	if (!task) {
12937 		/*
12938 		 * Check if the @cpu we're creating an event for is online.
12939 		 *
12940 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12941 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12942 		 */
12943 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12944 
12945 		if (!cpuctx->online) {
12946 			err = -ENODEV;
12947 			goto err_locked;
12948 		}
12949 	}
12950 
12951 	if (group_leader) {
12952 		err = -EINVAL;
12953 
12954 		/*
12955 		 * Do not allow a recursive hierarchy (this new sibling
12956 		 * becoming part of another group-sibling):
12957 		 */
12958 		if (group_leader->group_leader != group_leader)
12959 			goto err_locked;
12960 
12961 		/* All events in a group should have the same clock */
12962 		if (group_leader->clock != event->clock)
12963 			goto err_locked;
12964 
12965 		/*
12966 		 * Make sure we're both events for the same CPU;
12967 		 * grouping events for different CPUs is broken; since
12968 		 * you can never concurrently schedule them anyhow.
12969 		 */
12970 		if (group_leader->cpu != event->cpu)
12971 			goto err_locked;
12972 
12973 		/*
12974 		 * Make sure we're both on the same context; either task or cpu.
12975 		 */
12976 		if (group_leader->ctx != ctx)
12977 			goto err_locked;
12978 
12979 		/*
12980 		 * Only a group leader can be exclusive or pinned
12981 		 */
12982 		if (attr.exclusive || attr.pinned)
12983 			goto err_locked;
12984 
12985 		if (is_software_event(event) &&
12986 		    !in_software_context(group_leader)) {
12987 			/*
12988 			 * If the event is a sw event, but the group_leader
12989 			 * is on hw context.
12990 			 *
12991 			 * Allow the addition of software events to hw
12992 			 * groups, this is safe because software events
12993 			 * never fail to schedule.
12994 			 *
12995 			 * Note the comment that goes with struct
12996 			 * perf_event_pmu_context.
12997 			 */
12998 			pmu = group_leader->pmu_ctx->pmu;
12999 		} else if (!is_software_event(event)) {
13000 			if (is_software_event(group_leader) &&
13001 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13002 				/*
13003 				 * In case the group is a pure software group, and we
13004 				 * try to add a hardware event, move the whole group to
13005 				 * the hardware context.
13006 				 */
13007 				move_group = 1;
13008 			}
13009 
13010 			/* Don't allow group of multiple hw events from different pmus */
13011 			if (!in_software_context(group_leader) &&
13012 			    group_leader->pmu_ctx->pmu != pmu)
13013 				goto err_locked;
13014 		}
13015 	}
13016 
13017 	/*
13018 	 * Now that we're certain of the pmu; find the pmu_ctx.
13019 	 */
13020 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13021 	if (IS_ERR(pmu_ctx)) {
13022 		err = PTR_ERR(pmu_ctx);
13023 		goto err_locked;
13024 	}
13025 	event->pmu_ctx = pmu_ctx;
13026 
13027 	if (output_event) {
13028 		err = perf_event_set_output(event, output_event);
13029 		if (err)
13030 			goto err_context;
13031 	}
13032 
13033 	if (!perf_event_validate_size(event)) {
13034 		err = -E2BIG;
13035 		goto err_context;
13036 	}
13037 
13038 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13039 		err = -EINVAL;
13040 		goto err_context;
13041 	}
13042 
13043 	/*
13044 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13045 	 * because we need to serialize with concurrent event creation.
13046 	 */
13047 	if (!exclusive_event_installable(event, ctx)) {
13048 		err = -EBUSY;
13049 		goto err_context;
13050 	}
13051 
13052 	WARN_ON_ONCE(ctx->parent_ctx);
13053 
13054 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13055 	if (IS_ERR(event_file)) {
13056 		err = PTR_ERR(event_file);
13057 		event_file = NULL;
13058 		goto err_context;
13059 	}
13060 
13061 	/*
13062 	 * This is the point on no return; we cannot fail hereafter. This is
13063 	 * where we start modifying current state.
13064 	 */
13065 
13066 	if (move_group) {
13067 		perf_remove_from_context(group_leader, 0);
13068 		put_pmu_ctx(group_leader->pmu_ctx);
13069 
13070 		for_each_sibling_event(sibling, group_leader) {
13071 			perf_remove_from_context(sibling, 0);
13072 			put_pmu_ctx(sibling->pmu_ctx);
13073 		}
13074 
13075 		/*
13076 		 * Install the group siblings before the group leader.
13077 		 *
13078 		 * Because a group leader will try and install the entire group
13079 		 * (through the sibling list, which is still in-tact), we can
13080 		 * end up with siblings installed in the wrong context.
13081 		 *
13082 		 * By installing siblings first we NO-OP because they're not
13083 		 * reachable through the group lists.
13084 		 */
13085 		for_each_sibling_event(sibling, group_leader) {
13086 			sibling->pmu_ctx = pmu_ctx;
13087 			get_pmu_ctx(pmu_ctx);
13088 			perf_event__state_init(sibling);
13089 			perf_install_in_context(ctx, sibling, sibling->cpu);
13090 		}
13091 
13092 		/*
13093 		 * Removing from the context ends up with disabled
13094 		 * event. What we want here is event in the initial
13095 		 * startup state, ready to be add into new context.
13096 		 */
13097 		group_leader->pmu_ctx = pmu_ctx;
13098 		get_pmu_ctx(pmu_ctx);
13099 		perf_event__state_init(group_leader);
13100 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13101 	}
13102 
13103 	/*
13104 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13105 	 * that we're serialized against further additions and before
13106 	 * perf_install_in_context() which is the point the event is active and
13107 	 * can use these values.
13108 	 */
13109 	perf_event__header_size(event);
13110 	perf_event__id_header_size(event);
13111 
13112 	event->owner = current;
13113 
13114 	perf_install_in_context(ctx, event, event->cpu);
13115 	perf_unpin_context(ctx);
13116 
13117 	mutex_unlock(&ctx->mutex);
13118 
13119 	if (task) {
13120 		up_read(&task->signal->exec_update_lock);
13121 		put_task_struct(task);
13122 	}
13123 
13124 	mutex_lock(&current->perf_event_mutex);
13125 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13126 	mutex_unlock(&current->perf_event_mutex);
13127 
13128 	/*
13129 	 * File reference in group guarantees that group_leader has been
13130 	 * kept alive until we place the new event on the sibling_list.
13131 	 * This ensures destruction of the group leader will find
13132 	 * the pointer to itself in perf_group_detach().
13133 	 */
13134 	fd_install(event_fd, event_file);
13135 	return event_fd;
13136 
13137 err_context:
13138 	put_pmu_ctx(event->pmu_ctx);
13139 	event->pmu_ctx = NULL; /* _free_event() */
13140 err_locked:
13141 	mutex_unlock(&ctx->mutex);
13142 	perf_unpin_context(ctx);
13143 	put_ctx(ctx);
13144 err_cred:
13145 	if (task)
13146 		up_read(&task->signal->exec_update_lock);
13147 err_alloc:
13148 	free_event(event);
13149 err_task:
13150 	if (task)
13151 		put_task_struct(task);
13152 err_fd:
13153 	put_unused_fd(event_fd);
13154 	return err;
13155 }
13156 
13157 /**
13158  * perf_event_create_kernel_counter
13159  *
13160  * @attr: attributes of the counter to create
13161  * @cpu: cpu in which the counter is bound
13162  * @task: task to profile (NULL for percpu)
13163  * @overflow_handler: callback to trigger when we hit the event
13164  * @context: context data could be used in overflow_handler callback
13165  */
13166 struct perf_event *
13167 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13168 				 struct task_struct *task,
13169 				 perf_overflow_handler_t overflow_handler,
13170 				 void *context)
13171 {
13172 	struct perf_event_pmu_context *pmu_ctx;
13173 	struct perf_event_context *ctx;
13174 	struct perf_event *event;
13175 	struct pmu *pmu;
13176 	int err;
13177 
13178 	/*
13179 	 * Grouping is not supported for kernel events, neither is 'AUX',
13180 	 * make sure the caller's intentions are adjusted.
13181 	 */
13182 	if (attr->aux_output || attr->aux_action)
13183 		return ERR_PTR(-EINVAL);
13184 
13185 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13186 				 overflow_handler, context, -1);
13187 	if (IS_ERR(event)) {
13188 		err = PTR_ERR(event);
13189 		goto err;
13190 	}
13191 
13192 	/* Mark owner so we could distinguish it from user events. */
13193 	event->owner = TASK_TOMBSTONE;
13194 	pmu = event->pmu;
13195 
13196 	if (pmu->task_ctx_nr == perf_sw_context)
13197 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13198 
13199 	/*
13200 	 * Get the target context (task or percpu):
13201 	 */
13202 	ctx = find_get_context(task, event);
13203 	if (IS_ERR(ctx)) {
13204 		err = PTR_ERR(ctx);
13205 		goto err_alloc;
13206 	}
13207 
13208 	WARN_ON_ONCE(ctx->parent_ctx);
13209 	mutex_lock(&ctx->mutex);
13210 	if (ctx->task == TASK_TOMBSTONE) {
13211 		err = -ESRCH;
13212 		goto err_unlock;
13213 	}
13214 
13215 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13216 	if (IS_ERR(pmu_ctx)) {
13217 		err = PTR_ERR(pmu_ctx);
13218 		goto err_unlock;
13219 	}
13220 	event->pmu_ctx = pmu_ctx;
13221 
13222 	if (!task) {
13223 		/*
13224 		 * Check if the @cpu we're creating an event for is online.
13225 		 *
13226 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13227 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13228 		 */
13229 		struct perf_cpu_context *cpuctx =
13230 			container_of(ctx, struct perf_cpu_context, ctx);
13231 		if (!cpuctx->online) {
13232 			err = -ENODEV;
13233 			goto err_pmu_ctx;
13234 		}
13235 	}
13236 
13237 	if (!exclusive_event_installable(event, ctx)) {
13238 		err = -EBUSY;
13239 		goto err_pmu_ctx;
13240 	}
13241 
13242 	perf_install_in_context(ctx, event, event->cpu);
13243 	perf_unpin_context(ctx);
13244 	mutex_unlock(&ctx->mutex);
13245 
13246 	return event;
13247 
13248 err_pmu_ctx:
13249 	put_pmu_ctx(pmu_ctx);
13250 	event->pmu_ctx = NULL; /* _free_event() */
13251 err_unlock:
13252 	mutex_unlock(&ctx->mutex);
13253 	perf_unpin_context(ctx);
13254 	put_ctx(ctx);
13255 err_alloc:
13256 	free_event(event);
13257 err:
13258 	return ERR_PTR(err);
13259 }
13260 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13261 
13262 static void __perf_pmu_remove(struct perf_event_context *ctx,
13263 			      int cpu, struct pmu *pmu,
13264 			      struct perf_event_groups *groups,
13265 			      struct list_head *events)
13266 {
13267 	struct perf_event *event, *sibling;
13268 
13269 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13270 		perf_remove_from_context(event, 0);
13271 		put_pmu_ctx(event->pmu_ctx);
13272 		list_add(&event->migrate_entry, events);
13273 
13274 		for_each_sibling_event(sibling, event) {
13275 			perf_remove_from_context(sibling, 0);
13276 			put_pmu_ctx(sibling->pmu_ctx);
13277 			list_add(&sibling->migrate_entry, events);
13278 		}
13279 	}
13280 }
13281 
13282 static void __perf_pmu_install_event(struct pmu *pmu,
13283 				     struct perf_event_context *ctx,
13284 				     int cpu, struct perf_event *event)
13285 {
13286 	struct perf_event_pmu_context *epc;
13287 	struct perf_event_context *old_ctx = event->ctx;
13288 
13289 	get_ctx(ctx); /* normally find_get_context() */
13290 
13291 	event->cpu = cpu;
13292 	epc = find_get_pmu_context(pmu, ctx, event);
13293 	event->pmu_ctx = epc;
13294 
13295 	if (event->state >= PERF_EVENT_STATE_OFF)
13296 		event->state = PERF_EVENT_STATE_INACTIVE;
13297 	perf_install_in_context(ctx, event, cpu);
13298 
13299 	/*
13300 	 * Now that event->ctx is updated and visible, put the old ctx.
13301 	 */
13302 	put_ctx(old_ctx);
13303 }
13304 
13305 static void __perf_pmu_install(struct perf_event_context *ctx,
13306 			       int cpu, struct pmu *pmu, struct list_head *events)
13307 {
13308 	struct perf_event *event, *tmp;
13309 
13310 	/*
13311 	 * Re-instate events in 2 passes.
13312 	 *
13313 	 * Skip over group leaders and only install siblings on this first
13314 	 * pass, siblings will not get enabled without a leader, however a
13315 	 * leader will enable its siblings, even if those are still on the old
13316 	 * context.
13317 	 */
13318 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13319 		if (event->group_leader == event)
13320 			continue;
13321 
13322 		list_del(&event->migrate_entry);
13323 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13324 	}
13325 
13326 	/*
13327 	 * Once all the siblings are setup properly, install the group leaders
13328 	 * to make it go.
13329 	 */
13330 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13331 		list_del(&event->migrate_entry);
13332 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13333 	}
13334 }
13335 
13336 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13337 {
13338 	struct perf_event_context *src_ctx, *dst_ctx;
13339 	LIST_HEAD(events);
13340 
13341 	/*
13342 	 * Since per-cpu context is persistent, no need to grab an extra
13343 	 * reference.
13344 	 */
13345 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13346 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13347 
13348 	/*
13349 	 * See perf_event_ctx_lock() for comments on the details
13350 	 * of swizzling perf_event::ctx.
13351 	 */
13352 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13353 
13354 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13355 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13356 
13357 	if (!list_empty(&events)) {
13358 		/*
13359 		 * Wait for the events to quiesce before re-instating them.
13360 		 */
13361 		synchronize_rcu();
13362 
13363 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13364 	}
13365 
13366 	mutex_unlock(&dst_ctx->mutex);
13367 	mutex_unlock(&src_ctx->mutex);
13368 }
13369 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13370 
13371 static void sync_child_event(struct perf_event *child_event)
13372 {
13373 	struct perf_event *parent_event = child_event->parent;
13374 	u64 child_val;
13375 
13376 	if (child_event->attr.inherit_stat) {
13377 		struct task_struct *task = child_event->ctx->task;
13378 
13379 		if (task && task != TASK_TOMBSTONE)
13380 			perf_event_read_event(child_event, task);
13381 	}
13382 
13383 	child_val = perf_event_count(child_event, false);
13384 
13385 	/*
13386 	 * Add back the child's count to the parent's count:
13387 	 */
13388 	atomic64_add(child_val, &parent_event->child_count);
13389 	atomic64_add(child_event->total_time_enabled,
13390 		     &parent_event->child_total_time_enabled);
13391 	atomic64_add(child_event->total_time_running,
13392 		     &parent_event->child_total_time_running);
13393 }
13394 
13395 static void
13396 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13397 {
13398 	struct perf_event *parent_event = event->parent;
13399 	unsigned long detach_flags = 0;
13400 
13401 	if (parent_event) {
13402 		/*
13403 		 * Do not destroy the 'original' grouping; because of the
13404 		 * context switch optimization the original events could've
13405 		 * ended up in a random child task.
13406 		 *
13407 		 * If we were to destroy the original group, all group related
13408 		 * operations would cease to function properly after this
13409 		 * random child dies.
13410 		 *
13411 		 * Do destroy all inherited groups, we don't care about those
13412 		 * and being thorough is better.
13413 		 */
13414 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13415 		mutex_lock(&parent_event->child_mutex);
13416 	}
13417 
13418 	perf_remove_from_context(event, detach_flags);
13419 
13420 	raw_spin_lock_irq(&ctx->lock);
13421 	if (event->state > PERF_EVENT_STATE_EXIT)
13422 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13423 	raw_spin_unlock_irq(&ctx->lock);
13424 
13425 	/*
13426 	 * Child events can be freed.
13427 	 */
13428 	if (parent_event) {
13429 		mutex_unlock(&parent_event->child_mutex);
13430 		/*
13431 		 * Kick perf_poll() for is_event_hup();
13432 		 */
13433 		perf_event_wakeup(parent_event);
13434 		free_event(event);
13435 		put_event(parent_event);
13436 		return;
13437 	}
13438 
13439 	/*
13440 	 * Parent events are governed by their filedesc, retain them.
13441 	 */
13442 	perf_event_wakeup(event);
13443 }
13444 
13445 static void perf_event_exit_task_context(struct task_struct *child)
13446 {
13447 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13448 	struct perf_event *child_event, *next;
13449 
13450 	WARN_ON_ONCE(child != current);
13451 
13452 	child_ctx = perf_pin_task_context(child);
13453 	if (!child_ctx)
13454 		return;
13455 
13456 	/*
13457 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13458 	 * ctx::mutex over the entire thing. This serializes against almost
13459 	 * everything that wants to access the ctx.
13460 	 *
13461 	 * The exception is sys_perf_event_open() /
13462 	 * perf_event_create_kernel_count() which does find_get_context()
13463 	 * without ctx::mutex (it cannot because of the move_group double mutex
13464 	 * lock thing). See the comments in perf_install_in_context().
13465 	 */
13466 	mutex_lock(&child_ctx->mutex);
13467 
13468 	/*
13469 	 * In a single ctx::lock section, de-schedule the events and detach the
13470 	 * context from the task such that we cannot ever get it scheduled back
13471 	 * in.
13472 	 */
13473 	raw_spin_lock_irq(&child_ctx->lock);
13474 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13475 
13476 	/*
13477 	 * Now that the context is inactive, destroy the task <-> ctx relation
13478 	 * and mark the context dead.
13479 	 */
13480 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13481 	put_ctx(child_ctx); /* cannot be last */
13482 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13483 	put_task_struct(current); /* cannot be last */
13484 
13485 	clone_ctx = unclone_ctx(child_ctx);
13486 	raw_spin_unlock_irq(&child_ctx->lock);
13487 
13488 	if (clone_ctx)
13489 		put_ctx(clone_ctx);
13490 
13491 	/*
13492 	 * Report the task dead after unscheduling the events so that we
13493 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13494 	 * get a few PERF_RECORD_READ events.
13495 	 */
13496 	perf_event_task(child, child_ctx, 0);
13497 
13498 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13499 		perf_event_exit_event(child_event, child_ctx);
13500 
13501 	mutex_unlock(&child_ctx->mutex);
13502 
13503 	put_ctx(child_ctx);
13504 }
13505 
13506 /*
13507  * When a child task exits, feed back event values to parent events.
13508  *
13509  * Can be called with exec_update_lock held when called from
13510  * setup_new_exec().
13511  */
13512 void perf_event_exit_task(struct task_struct *child)
13513 {
13514 	struct perf_event *event, *tmp;
13515 
13516 	mutex_lock(&child->perf_event_mutex);
13517 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13518 				 owner_entry) {
13519 		list_del_init(&event->owner_entry);
13520 
13521 		/*
13522 		 * Ensure the list deletion is visible before we clear
13523 		 * the owner, closes a race against perf_release() where
13524 		 * we need to serialize on the owner->perf_event_mutex.
13525 		 */
13526 		smp_store_release(&event->owner, NULL);
13527 	}
13528 	mutex_unlock(&child->perf_event_mutex);
13529 
13530 	perf_event_exit_task_context(child);
13531 
13532 	/*
13533 	 * The perf_event_exit_task_context calls perf_event_task
13534 	 * with child's task_ctx, which generates EXIT events for
13535 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13536 	 * At this point we need to send EXIT events to cpu contexts.
13537 	 */
13538 	perf_event_task(child, NULL, 0);
13539 }
13540 
13541 static void perf_free_event(struct perf_event *event,
13542 			    struct perf_event_context *ctx)
13543 {
13544 	struct perf_event *parent = event->parent;
13545 
13546 	if (WARN_ON_ONCE(!parent))
13547 		return;
13548 
13549 	mutex_lock(&parent->child_mutex);
13550 	list_del_init(&event->child_list);
13551 	mutex_unlock(&parent->child_mutex);
13552 
13553 	put_event(parent);
13554 
13555 	raw_spin_lock_irq(&ctx->lock);
13556 	perf_group_detach(event);
13557 	list_del_event(event, ctx);
13558 	raw_spin_unlock_irq(&ctx->lock);
13559 	free_event(event);
13560 }
13561 
13562 /*
13563  * Free a context as created by inheritance by perf_event_init_task() below,
13564  * used by fork() in case of fail.
13565  *
13566  * Even though the task has never lived, the context and events have been
13567  * exposed through the child_list, so we must take care tearing it all down.
13568  */
13569 void perf_event_free_task(struct task_struct *task)
13570 {
13571 	struct perf_event_context *ctx;
13572 	struct perf_event *event, *tmp;
13573 
13574 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13575 	if (!ctx)
13576 		return;
13577 
13578 	mutex_lock(&ctx->mutex);
13579 	raw_spin_lock_irq(&ctx->lock);
13580 	/*
13581 	 * Destroy the task <-> ctx relation and mark the context dead.
13582 	 *
13583 	 * This is important because even though the task hasn't been
13584 	 * exposed yet the context has been (through child_list).
13585 	 */
13586 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13587 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13588 	put_task_struct(task); /* cannot be last */
13589 	raw_spin_unlock_irq(&ctx->lock);
13590 
13591 
13592 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13593 		perf_free_event(event, ctx);
13594 
13595 	mutex_unlock(&ctx->mutex);
13596 
13597 	/*
13598 	 * perf_event_release_kernel() could've stolen some of our
13599 	 * child events and still have them on its free_list. In that
13600 	 * case we must wait for these events to have been freed (in
13601 	 * particular all their references to this task must've been
13602 	 * dropped).
13603 	 *
13604 	 * Without this copy_process() will unconditionally free this
13605 	 * task (irrespective of its reference count) and
13606 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13607 	 * use-after-free.
13608 	 *
13609 	 * Wait for all events to drop their context reference.
13610 	 */
13611 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13612 	put_ctx(ctx); /* must be last */
13613 }
13614 
13615 void perf_event_delayed_put(struct task_struct *task)
13616 {
13617 	WARN_ON_ONCE(task->perf_event_ctxp);
13618 }
13619 
13620 struct file *perf_event_get(unsigned int fd)
13621 {
13622 	struct file *file = fget(fd);
13623 	if (!file)
13624 		return ERR_PTR(-EBADF);
13625 
13626 	if (file->f_op != &perf_fops) {
13627 		fput(file);
13628 		return ERR_PTR(-EBADF);
13629 	}
13630 
13631 	return file;
13632 }
13633 
13634 const struct perf_event *perf_get_event(struct file *file)
13635 {
13636 	if (file->f_op != &perf_fops)
13637 		return ERR_PTR(-EINVAL);
13638 
13639 	return file->private_data;
13640 }
13641 
13642 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13643 {
13644 	if (!event)
13645 		return ERR_PTR(-EINVAL);
13646 
13647 	return &event->attr;
13648 }
13649 
13650 int perf_allow_kernel(struct perf_event_attr *attr)
13651 {
13652 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13653 		return -EACCES;
13654 
13655 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13656 }
13657 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13658 
13659 /*
13660  * Inherit an event from parent task to child task.
13661  *
13662  * Returns:
13663  *  - valid pointer on success
13664  *  - NULL for orphaned events
13665  *  - IS_ERR() on error
13666  */
13667 static struct perf_event *
13668 inherit_event(struct perf_event *parent_event,
13669 	      struct task_struct *parent,
13670 	      struct perf_event_context *parent_ctx,
13671 	      struct task_struct *child,
13672 	      struct perf_event *group_leader,
13673 	      struct perf_event_context *child_ctx)
13674 {
13675 	enum perf_event_state parent_state = parent_event->state;
13676 	struct perf_event_pmu_context *pmu_ctx;
13677 	struct perf_event *child_event;
13678 	unsigned long flags;
13679 
13680 	/*
13681 	 * Instead of creating recursive hierarchies of events,
13682 	 * we link inherited events back to the original parent,
13683 	 * which has a filp for sure, which we use as the reference
13684 	 * count:
13685 	 */
13686 	if (parent_event->parent)
13687 		parent_event = parent_event->parent;
13688 
13689 	child_event = perf_event_alloc(&parent_event->attr,
13690 					   parent_event->cpu,
13691 					   child,
13692 					   group_leader, parent_event,
13693 					   NULL, NULL, -1);
13694 	if (IS_ERR(child_event))
13695 		return child_event;
13696 
13697 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13698 	if (IS_ERR(pmu_ctx)) {
13699 		free_event(child_event);
13700 		return ERR_CAST(pmu_ctx);
13701 	}
13702 	child_event->pmu_ctx = pmu_ctx;
13703 
13704 	/*
13705 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13706 	 * must be under the same lock in order to serialize against
13707 	 * perf_event_release_kernel(), such that either we must observe
13708 	 * is_orphaned_event() or they will observe us on the child_list.
13709 	 */
13710 	mutex_lock(&parent_event->child_mutex);
13711 	if (is_orphaned_event(parent_event) ||
13712 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13713 		mutex_unlock(&parent_event->child_mutex);
13714 		/* task_ctx_data is freed with child_ctx */
13715 		free_event(child_event);
13716 		return NULL;
13717 	}
13718 
13719 	get_ctx(child_ctx);
13720 
13721 	/*
13722 	 * Make the child state follow the state of the parent event,
13723 	 * not its attr.disabled bit.  We hold the parent's mutex,
13724 	 * so we won't race with perf_event_{en, dis}able_family.
13725 	 */
13726 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13727 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13728 	else
13729 		child_event->state = PERF_EVENT_STATE_OFF;
13730 
13731 	if (parent_event->attr.freq) {
13732 		u64 sample_period = parent_event->hw.sample_period;
13733 		struct hw_perf_event *hwc = &child_event->hw;
13734 
13735 		hwc->sample_period = sample_period;
13736 		hwc->last_period   = sample_period;
13737 
13738 		local64_set(&hwc->period_left, sample_period);
13739 	}
13740 
13741 	child_event->ctx = child_ctx;
13742 	child_event->overflow_handler = parent_event->overflow_handler;
13743 	child_event->overflow_handler_context
13744 		= parent_event->overflow_handler_context;
13745 
13746 	/*
13747 	 * Precalculate sample_data sizes
13748 	 */
13749 	perf_event__header_size(child_event);
13750 	perf_event__id_header_size(child_event);
13751 
13752 	/*
13753 	 * Link it up in the child's context:
13754 	 */
13755 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13756 	add_event_to_ctx(child_event, child_ctx);
13757 	child_event->attach_state |= PERF_ATTACH_CHILD;
13758 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13759 
13760 	/*
13761 	 * Link this into the parent event's child list
13762 	 */
13763 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13764 	mutex_unlock(&parent_event->child_mutex);
13765 
13766 	return child_event;
13767 }
13768 
13769 /*
13770  * Inherits an event group.
13771  *
13772  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13773  * This matches with perf_event_release_kernel() removing all child events.
13774  *
13775  * Returns:
13776  *  - 0 on success
13777  *  - <0 on error
13778  */
13779 static int inherit_group(struct perf_event *parent_event,
13780 	      struct task_struct *parent,
13781 	      struct perf_event_context *parent_ctx,
13782 	      struct task_struct *child,
13783 	      struct perf_event_context *child_ctx)
13784 {
13785 	struct perf_event *leader;
13786 	struct perf_event *sub;
13787 	struct perf_event *child_ctr;
13788 
13789 	leader = inherit_event(parent_event, parent, parent_ctx,
13790 				 child, NULL, child_ctx);
13791 	if (IS_ERR(leader))
13792 		return PTR_ERR(leader);
13793 	/*
13794 	 * @leader can be NULL here because of is_orphaned_event(). In this
13795 	 * case inherit_event() will create individual events, similar to what
13796 	 * perf_group_detach() would do anyway.
13797 	 */
13798 	for_each_sibling_event(sub, parent_event) {
13799 		child_ctr = inherit_event(sub, parent, parent_ctx,
13800 					    child, leader, child_ctx);
13801 		if (IS_ERR(child_ctr))
13802 			return PTR_ERR(child_ctr);
13803 
13804 		if (sub->aux_event == parent_event && child_ctr &&
13805 		    !perf_get_aux_event(child_ctr, leader))
13806 			return -EINVAL;
13807 	}
13808 	if (leader)
13809 		leader->group_generation = parent_event->group_generation;
13810 	return 0;
13811 }
13812 
13813 /*
13814  * Creates the child task context and tries to inherit the event-group.
13815  *
13816  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13817  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13818  * consistent with perf_event_release_kernel() removing all child events.
13819  *
13820  * Returns:
13821  *  - 0 on success
13822  *  - <0 on error
13823  */
13824 static int
13825 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13826 		   struct perf_event_context *parent_ctx,
13827 		   struct task_struct *child,
13828 		   u64 clone_flags, int *inherited_all)
13829 {
13830 	struct perf_event_context *child_ctx;
13831 	int ret;
13832 
13833 	if (!event->attr.inherit ||
13834 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13835 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13836 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13837 		*inherited_all = 0;
13838 		return 0;
13839 	}
13840 
13841 	child_ctx = child->perf_event_ctxp;
13842 	if (!child_ctx) {
13843 		/*
13844 		 * This is executed from the parent task context, so
13845 		 * inherit events that have been marked for cloning.
13846 		 * First allocate and initialize a context for the
13847 		 * child.
13848 		 */
13849 		child_ctx = alloc_perf_context(child);
13850 		if (!child_ctx)
13851 			return -ENOMEM;
13852 
13853 		child->perf_event_ctxp = child_ctx;
13854 	}
13855 
13856 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13857 	if (ret)
13858 		*inherited_all = 0;
13859 
13860 	return ret;
13861 }
13862 
13863 /*
13864  * Initialize the perf_event context in task_struct
13865  */
13866 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13867 {
13868 	struct perf_event_context *child_ctx, *parent_ctx;
13869 	struct perf_event_context *cloned_ctx;
13870 	struct perf_event *event;
13871 	struct task_struct *parent = current;
13872 	int inherited_all = 1;
13873 	unsigned long flags;
13874 	int ret = 0;
13875 
13876 	if (likely(!parent->perf_event_ctxp))
13877 		return 0;
13878 
13879 	/*
13880 	 * If the parent's context is a clone, pin it so it won't get
13881 	 * swapped under us.
13882 	 */
13883 	parent_ctx = perf_pin_task_context(parent);
13884 	if (!parent_ctx)
13885 		return 0;
13886 
13887 	/*
13888 	 * No need to check if parent_ctx != NULL here; since we saw
13889 	 * it non-NULL earlier, the only reason for it to become NULL
13890 	 * is if we exit, and since we're currently in the middle of
13891 	 * a fork we can't be exiting at the same time.
13892 	 */
13893 
13894 	/*
13895 	 * Lock the parent list. No need to lock the child - not PID
13896 	 * hashed yet and not running, so nobody can access it.
13897 	 */
13898 	mutex_lock(&parent_ctx->mutex);
13899 
13900 	/*
13901 	 * We dont have to disable NMIs - we are only looking at
13902 	 * the list, not manipulating it:
13903 	 */
13904 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13905 		ret = inherit_task_group(event, parent, parent_ctx,
13906 					 child, clone_flags, &inherited_all);
13907 		if (ret)
13908 			goto out_unlock;
13909 	}
13910 
13911 	/*
13912 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13913 	 * to allocations, but we need to prevent rotation because
13914 	 * rotate_ctx() will change the list from interrupt context.
13915 	 */
13916 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13917 	parent_ctx->rotate_disable = 1;
13918 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13919 
13920 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13921 		ret = inherit_task_group(event, parent, parent_ctx,
13922 					 child, clone_flags, &inherited_all);
13923 		if (ret)
13924 			goto out_unlock;
13925 	}
13926 
13927 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13928 	parent_ctx->rotate_disable = 0;
13929 
13930 	child_ctx = child->perf_event_ctxp;
13931 
13932 	if (child_ctx && inherited_all) {
13933 		/*
13934 		 * Mark the child context as a clone of the parent
13935 		 * context, or of whatever the parent is a clone of.
13936 		 *
13937 		 * Note that if the parent is a clone, the holding of
13938 		 * parent_ctx->lock avoids it from being uncloned.
13939 		 */
13940 		cloned_ctx = parent_ctx->parent_ctx;
13941 		if (cloned_ctx) {
13942 			child_ctx->parent_ctx = cloned_ctx;
13943 			child_ctx->parent_gen = parent_ctx->parent_gen;
13944 		} else {
13945 			child_ctx->parent_ctx = parent_ctx;
13946 			child_ctx->parent_gen = parent_ctx->generation;
13947 		}
13948 		get_ctx(child_ctx->parent_ctx);
13949 	}
13950 
13951 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13952 out_unlock:
13953 	mutex_unlock(&parent_ctx->mutex);
13954 
13955 	perf_unpin_context(parent_ctx);
13956 	put_ctx(parent_ctx);
13957 
13958 	return ret;
13959 }
13960 
13961 /*
13962  * Initialize the perf_event context in task_struct
13963  */
13964 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13965 {
13966 	int ret;
13967 
13968 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13969 	child->perf_event_ctxp = NULL;
13970 	mutex_init(&child->perf_event_mutex);
13971 	INIT_LIST_HEAD(&child->perf_event_list);
13972 
13973 	ret = perf_event_init_context(child, clone_flags);
13974 	if (ret) {
13975 		perf_event_free_task(child);
13976 		return ret;
13977 	}
13978 
13979 	return 0;
13980 }
13981 
13982 static void __init perf_event_init_all_cpus(void)
13983 {
13984 	struct swevent_htable *swhash;
13985 	struct perf_cpu_context *cpuctx;
13986 	int cpu;
13987 
13988 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13989 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13990 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13991 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13992 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13993 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13994 
13995 
13996 	for_each_possible_cpu(cpu) {
13997 		swhash = &per_cpu(swevent_htable, cpu);
13998 		mutex_init(&swhash->hlist_mutex);
13999 
14000 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14001 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14002 
14003 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14004 
14005 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14006 		__perf_event_init_context(&cpuctx->ctx);
14007 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14008 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14009 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14010 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14011 		cpuctx->heap = cpuctx->heap_default;
14012 	}
14013 }
14014 
14015 static void perf_swevent_init_cpu(unsigned int cpu)
14016 {
14017 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14018 
14019 	mutex_lock(&swhash->hlist_mutex);
14020 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14021 		struct swevent_hlist *hlist;
14022 
14023 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14024 		WARN_ON(!hlist);
14025 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14026 	}
14027 	mutex_unlock(&swhash->hlist_mutex);
14028 }
14029 
14030 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14031 static void __perf_event_exit_context(void *__info)
14032 {
14033 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14034 	struct perf_event_context *ctx = __info;
14035 	struct perf_event *event;
14036 
14037 	raw_spin_lock(&ctx->lock);
14038 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14039 	list_for_each_entry(event, &ctx->event_list, event_entry)
14040 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14041 	raw_spin_unlock(&ctx->lock);
14042 }
14043 
14044 static void perf_event_clear_cpumask(unsigned int cpu)
14045 {
14046 	int target[PERF_PMU_MAX_SCOPE];
14047 	unsigned int scope;
14048 	struct pmu *pmu;
14049 
14050 	cpumask_clear_cpu(cpu, perf_online_mask);
14051 
14052 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14053 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14054 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14055 
14056 		target[scope] = -1;
14057 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14058 			continue;
14059 
14060 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14061 			continue;
14062 		target[scope] = cpumask_any_but(cpumask, cpu);
14063 		if (target[scope] < nr_cpu_ids)
14064 			cpumask_set_cpu(target[scope], pmu_cpumask);
14065 	}
14066 
14067 	/* migrate */
14068 	list_for_each_entry(pmu, &pmus, entry) {
14069 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14070 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14071 			continue;
14072 
14073 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14074 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14075 	}
14076 }
14077 
14078 static void perf_event_exit_cpu_context(int cpu)
14079 {
14080 	struct perf_cpu_context *cpuctx;
14081 	struct perf_event_context *ctx;
14082 
14083 	// XXX simplify cpuctx->online
14084 	mutex_lock(&pmus_lock);
14085 	/*
14086 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14087 	 * Must be invoked before the __perf_event_exit_context.
14088 	 */
14089 	perf_event_clear_cpumask(cpu);
14090 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14091 	ctx = &cpuctx->ctx;
14092 
14093 	mutex_lock(&ctx->mutex);
14094 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14095 	cpuctx->online = 0;
14096 	mutex_unlock(&ctx->mutex);
14097 	mutex_unlock(&pmus_lock);
14098 }
14099 #else
14100 
14101 static void perf_event_exit_cpu_context(int cpu) { }
14102 
14103 #endif
14104 
14105 static void perf_event_setup_cpumask(unsigned int cpu)
14106 {
14107 	struct cpumask *pmu_cpumask;
14108 	unsigned int scope;
14109 
14110 	/*
14111 	 * Early boot stage, the cpumask hasn't been set yet.
14112 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14113 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14114 	 */
14115 	if (cpumask_empty(perf_online_mask)) {
14116 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14117 			pmu_cpumask = perf_scope_cpumask(scope);
14118 			if (WARN_ON_ONCE(!pmu_cpumask))
14119 				continue;
14120 			cpumask_set_cpu(cpu, pmu_cpumask);
14121 		}
14122 		goto end;
14123 	}
14124 
14125 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14126 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14127 
14128 		pmu_cpumask = perf_scope_cpumask(scope);
14129 
14130 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14131 			continue;
14132 
14133 		if (!cpumask_empty(cpumask) &&
14134 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14135 			cpumask_set_cpu(cpu, pmu_cpumask);
14136 	}
14137 end:
14138 	cpumask_set_cpu(cpu, perf_online_mask);
14139 }
14140 
14141 int perf_event_init_cpu(unsigned int cpu)
14142 {
14143 	struct perf_cpu_context *cpuctx;
14144 	struct perf_event_context *ctx;
14145 
14146 	perf_swevent_init_cpu(cpu);
14147 
14148 	mutex_lock(&pmus_lock);
14149 	perf_event_setup_cpumask(cpu);
14150 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14151 	ctx = &cpuctx->ctx;
14152 
14153 	mutex_lock(&ctx->mutex);
14154 	cpuctx->online = 1;
14155 	mutex_unlock(&ctx->mutex);
14156 	mutex_unlock(&pmus_lock);
14157 
14158 	return 0;
14159 }
14160 
14161 int perf_event_exit_cpu(unsigned int cpu)
14162 {
14163 	perf_event_exit_cpu_context(cpu);
14164 	return 0;
14165 }
14166 
14167 static int
14168 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14169 {
14170 	int cpu;
14171 
14172 	for_each_online_cpu(cpu)
14173 		perf_event_exit_cpu(cpu);
14174 
14175 	return NOTIFY_OK;
14176 }
14177 
14178 /*
14179  * Run the perf reboot notifier at the very last possible moment so that
14180  * the generic watchdog code runs as long as possible.
14181  */
14182 static struct notifier_block perf_reboot_notifier = {
14183 	.notifier_call = perf_reboot,
14184 	.priority = INT_MIN,
14185 };
14186 
14187 void __init perf_event_init(void)
14188 {
14189 	int ret;
14190 
14191 	idr_init(&pmu_idr);
14192 
14193 	perf_event_init_all_cpus();
14194 	init_srcu_struct(&pmus_srcu);
14195 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14196 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14197 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14198 	perf_tp_register();
14199 	perf_event_init_cpu(smp_processor_id());
14200 	register_reboot_notifier(&perf_reboot_notifier);
14201 
14202 	ret = init_hw_breakpoint();
14203 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14204 
14205 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14206 
14207 	/*
14208 	 * Build time assertion that we keep the data_head at the intended
14209 	 * location.  IOW, validation we got the __reserved[] size right.
14210 	 */
14211 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14212 		     != 1024);
14213 }
14214 
14215 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14216 			      char *page)
14217 {
14218 	struct perf_pmu_events_attr *pmu_attr =
14219 		container_of(attr, struct perf_pmu_events_attr, attr);
14220 
14221 	if (pmu_attr->event_str)
14222 		return sprintf(page, "%s\n", pmu_attr->event_str);
14223 
14224 	return 0;
14225 }
14226 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14227 
14228 static int __init perf_event_sysfs_init(void)
14229 {
14230 	struct pmu *pmu;
14231 	int ret;
14232 
14233 	mutex_lock(&pmus_lock);
14234 
14235 	ret = bus_register(&pmu_bus);
14236 	if (ret)
14237 		goto unlock;
14238 
14239 	list_for_each_entry(pmu, &pmus, entry) {
14240 		if (pmu->dev)
14241 			continue;
14242 
14243 		ret = pmu_dev_alloc(pmu);
14244 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14245 	}
14246 	pmu_bus_running = 1;
14247 	ret = 0;
14248 
14249 unlock:
14250 	mutex_unlock(&pmus_lock);
14251 
14252 	return ret;
14253 }
14254 device_initcall(perf_event_sysfs_init);
14255 
14256 #ifdef CONFIG_CGROUP_PERF
14257 static struct cgroup_subsys_state *
14258 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14259 {
14260 	struct perf_cgroup *jc;
14261 
14262 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14263 	if (!jc)
14264 		return ERR_PTR(-ENOMEM);
14265 
14266 	jc->info = alloc_percpu(struct perf_cgroup_info);
14267 	if (!jc->info) {
14268 		kfree(jc);
14269 		return ERR_PTR(-ENOMEM);
14270 	}
14271 
14272 	return &jc->css;
14273 }
14274 
14275 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14276 {
14277 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14278 
14279 	free_percpu(jc->info);
14280 	kfree(jc);
14281 }
14282 
14283 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14284 {
14285 	perf_event_cgroup(css->cgroup);
14286 	return 0;
14287 }
14288 
14289 static int __perf_cgroup_move(void *info)
14290 {
14291 	struct task_struct *task = info;
14292 
14293 	preempt_disable();
14294 	perf_cgroup_switch(task);
14295 	preempt_enable();
14296 
14297 	return 0;
14298 }
14299 
14300 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14301 {
14302 	struct task_struct *task;
14303 	struct cgroup_subsys_state *css;
14304 
14305 	cgroup_taskset_for_each(task, css, tset)
14306 		task_function_call(task, __perf_cgroup_move, task);
14307 }
14308 
14309 struct cgroup_subsys perf_event_cgrp_subsys = {
14310 	.css_alloc	= perf_cgroup_css_alloc,
14311 	.css_free	= perf_cgroup_css_free,
14312 	.css_online	= perf_cgroup_css_online,
14313 	.attach		= perf_cgroup_attach,
14314 	/*
14315 	 * Implicitly enable on dfl hierarchy so that perf events can
14316 	 * always be filtered by cgroup2 path as long as perf_event
14317 	 * controller is not mounted on a legacy hierarchy.
14318 	 */
14319 	.implicit_on_dfl = true,
14320 	.threaded	= true,
14321 };
14322 #endif /* CONFIG_CGROUP_PERF */
14323 
14324 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14325