xref: /linux/kernel/events/core.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	/*
941 	 * Because cgroup events are always per-cpu events,
942 	 * this will always be called from the right CPU.
943 	 */
944 	cpuctx = __get_cpu_context(ctx);
945 
946 	/*
947 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
948 	 * matching the event's cgroup, we must do this for every new event,
949 	 * because if the first would mismatch, the second would not try again
950 	 * and we would leave cpuctx->cgrp unset.
951 	 */
952 	if (add && !cpuctx->cgrp) {
953 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
954 
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	}
958 
959 	if (add && ctx->nr_cgroups++)
960 		return;
961 	else if (!add && --ctx->nr_cgroups)
962 		return;
963 
964 	/* no cgroup running */
965 	if (!add)
966 		cpuctx->cgrp = NULL;
967 
968 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
969 	if (add)
970 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
971 	else
972 		list_del(cpuctx_entry);
973 }
974 
975 #else /* !CONFIG_CGROUP_PERF */
976 
977 static inline bool
978 perf_cgroup_match(struct perf_event *event)
979 {
980 	return true;
981 }
982 
983 static inline void perf_detach_cgroup(struct perf_event *event)
984 {}
985 
986 static inline int is_cgroup_event(struct perf_event *event)
987 {
988 	return 0;
989 }
990 
991 static inline void update_cgrp_time_from_event(struct perf_event *event)
992 {
993 }
994 
995 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
996 {
997 }
998 
999 static inline void perf_cgroup_sched_out(struct task_struct *task,
1000 					 struct task_struct *next)
1001 {
1002 }
1003 
1004 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1005 					struct task_struct *task)
1006 {
1007 }
1008 
1009 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1010 				      struct perf_event_attr *attr,
1011 				      struct perf_event *group_leader)
1012 {
1013 	return -EINVAL;
1014 }
1015 
1016 static inline void
1017 perf_cgroup_set_timestamp(struct task_struct *task,
1018 			  struct perf_event_context *ctx)
1019 {
1020 }
1021 
1022 void
1023 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1024 {
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1029 {
1030 }
1031 
1032 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1033 {
1034 	return 0;
1035 }
1036 
1037 static inline void
1038 list_update_cgroup_event(struct perf_event *event,
1039 			 struct perf_event_context *ctx, bool add)
1040 {
1041 }
1042 
1043 #endif
1044 
1045 /*
1046  * set default to be dependent on timer tick just
1047  * like original code
1048  */
1049 #define PERF_CPU_HRTIMER (1000 / HZ)
1050 /*
1051  * function must be called with interrupts disabled
1052  */
1053 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1054 {
1055 	struct perf_cpu_context *cpuctx;
1056 	bool rotations;
1057 
1058 	lockdep_assert_irqs_disabled();
1059 
1060 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1061 	rotations = perf_rotate_context(cpuctx);
1062 
1063 	raw_spin_lock(&cpuctx->hrtimer_lock);
1064 	if (rotations)
1065 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1066 	else
1067 		cpuctx->hrtimer_active = 0;
1068 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1069 
1070 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1071 }
1072 
1073 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1074 {
1075 	struct hrtimer *timer = &cpuctx->hrtimer;
1076 	struct pmu *pmu = cpuctx->ctx.pmu;
1077 	u64 interval;
1078 
1079 	/* no multiplexing needed for SW PMU */
1080 	if (pmu->task_ctx_nr == perf_sw_context)
1081 		return;
1082 
1083 	/*
1084 	 * check default is sane, if not set then force to
1085 	 * default interval (1/tick)
1086 	 */
1087 	interval = pmu->hrtimer_interval_ms;
1088 	if (interval < 1)
1089 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1090 
1091 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1092 
1093 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1094 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1095 	timer->function = perf_mux_hrtimer_handler;
1096 }
1097 
1098 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1099 {
1100 	struct hrtimer *timer = &cpuctx->hrtimer;
1101 	struct pmu *pmu = cpuctx->ctx.pmu;
1102 	unsigned long flags;
1103 
1104 	/* not for SW PMU */
1105 	if (pmu->task_ctx_nr == perf_sw_context)
1106 		return 0;
1107 
1108 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1109 	if (!cpuctx->hrtimer_active) {
1110 		cpuctx->hrtimer_active = 1;
1111 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1112 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1113 	}
1114 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1115 
1116 	return 0;
1117 }
1118 
1119 void perf_pmu_disable(struct pmu *pmu)
1120 {
1121 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1122 	if (!(*count)++)
1123 		pmu->pmu_disable(pmu);
1124 }
1125 
1126 void perf_pmu_enable(struct pmu *pmu)
1127 {
1128 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1129 	if (!--(*count))
1130 		pmu->pmu_enable(pmu);
1131 }
1132 
1133 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1134 
1135 /*
1136  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1137  * perf_event_task_tick() are fully serialized because they're strictly cpu
1138  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1139  * disabled, while perf_event_task_tick is called from IRQ context.
1140  */
1141 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1142 {
1143 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1144 
1145 	lockdep_assert_irqs_disabled();
1146 
1147 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1148 
1149 	list_add(&ctx->active_ctx_list, head);
1150 }
1151 
1152 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1153 {
1154 	lockdep_assert_irqs_disabled();
1155 
1156 	WARN_ON(list_empty(&ctx->active_ctx_list));
1157 
1158 	list_del_init(&ctx->active_ctx_list);
1159 }
1160 
1161 static void get_ctx(struct perf_event_context *ctx)
1162 {
1163 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1164 }
1165 
1166 static void free_ctx(struct rcu_head *head)
1167 {
1168 	struct perf_event_context *ctx;
1169 
1170 	ctx = container_of(head, struct perf_event_context, rcu_head);
1171 	kfree(ctx->task_ctx_data);
1172 	kfree(ctx);
1173 }
1174 
1175 static void put_ctx(struct perf_event_context *ctx)
1176 {
1177 	if (atomic_dec_and_test(&ctx->refcount)) {
1178 		if (ctx->parent_ctx)
1179 			put_ctx(ctx->parent_ctx);
1180 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1181 			put_task_struct(ctx->task);
1182 		call_rcu(&ctx->rcu_head, free_ctx);
1183 	}
1184 }
1185 
1186 /*
1187  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1188  * perf_pmu_migrate_context() we need some magic.
1189  *
1190  * Those places that change perf_event::ctx will hold both
1191  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1192  *
1193  * Lock ordering is by mutex address. There are two other sites where
1194  * perf_event_context::mutex nests and those are:
1195  *
1196  *  - perf_event_exit_task_context()	[ child , 0 ]
1197  *      perf_event_exit_event()
1198  *        put_event()			[ parent, 1 ]
1199  *
1200  *  - perf_event_init_context()		[ parent, 0 ]
1201  *      inherit_task_group()
1202  *        inherit_group()
1203  *          inherit_event()
1204  *            perf_event_alloc()
1205  *              perf_init_event()
1206  *                perf_try_init_event()	[ child , 1 ]
1207  *
1208  * While it appears there is an obvious deadlock here -- the parent and child
1209  * nesting levels are inverted between the two. This is in fact safe because
1210  * life-time rules separate them. That is an exiting task cannot fork, and a
1211  * spawning task cannot (yet) exit.
1212  *
1213  * But remember that that these are parent<->child context relations, and
1214  * migration does not affect children, therefore these two orderings should not
1215  * interact.
1216  *
1217  * The change in perf_event::ctx does not affect children (as claimed above)
1218  * because the sys_perf_event_open() case will install a new event and break
1219  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1220  * concerned with cpuctx and that doesn't have children.
1221  *
1222  * The places that change perf_event::ctx will issue:
1223  *
1224  *   perf_remove_from_context();
1225  *   synchronize_rcu();
1226  *   perf_install_in_context();
1227  *
1228  * to affect the change. The remove_from_context() + synchronize_rcu() should
1229  * quiesce the event, after which we can install it in the new location. This
1230  * means that only external vectors (perf_fops, prctl) can perturb the event
1231  * while in transit. Therefore all such accessors should also acquire
1232  * perf_event_context::mutex to serialize against this.
1233  *
1234  * However; because event->ctx can change while we're waiting to acquire
1235  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1236  * function.
1237  *
1238  * Lock order:
1239  *    cred_guard_mutex
1240  *	task_struct::perf_event_mutex
1241  *	  perf_event_context::mutex
1242  *	    perf_event::child_mutex;
1243  *	      perf_event_context::lock
1244  *	    perf_event::mmap_mutex
1245  *	    mmap_sem
1246  *
1247  *    cpu_hotplug_lock
1248  *      pmus_lock
1249  *	  cpuctx->mutex / perf_event_context::mutex
1250  */
1251 static struct perf_event_context *
1252 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1253 {
1254 	struct perf_event_context *ctx;
1255 
1256 again:
1257 	rcu_read_lock();
1258 	ctx = READ_ONCE(event->ctx);
1259 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1260 		rcu_read_unlock();
1261 		goto again;
1262 	}
1263 	rcu_read_unlock();
1264 
1265 	mutex_lock_nested(&ctx->mutex, nesting);
1266 	if (event->ctx != ctx) {
1267 		mutex_unlock(&ctx->mutex);
1268 		put_ctx(ctx);
1269 		goto again;
1270 	}
1271 
1272 	return ctx;
1273 }
1274 
1275 static inline struct perf_event_context *
1276 perf_event_ctx_lock(struct perf_event *event)
1277 {
1278 	return perf_event_ctx_lock_nested(event, 0);
1279 }
1280 
1281 static void perf_event_ctx_unlock(struct perf_event *event,
1282 				  struct perf_event_context *ctx)
1283 {
1284 	mutex_unlock(&ctx->mutex);
1285 	put_ctx(ctx);
1286 }
1287 
1288 /*
1289  * This must be done under the ctx->lock, such as to serialize against
1290  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1291  * calling scheduler related locks and ctx->lock nests inside those.
1292  */
1293 static __must_check struct perf_event_context *
1294 unclone_ctx(struct perf_event_context *ctx)
1295 {
1296 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1297 
1298 	lockdep_assert_held(&ctx->lock);
1299 
1300 	if (parent_ctx)
1301 		ctx->parent_ctx = NULL;
1302 	ctx->generation++;
1303 
1304 	return parent_ctx;
1305 }
1306 
1307 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1308 				enum pid_type type)
1309 {
1310 	u32 nr;
1311 	/*
1312 	 * only top level events have the pid namespace they were created in
1313 	 */
1314 	if (event->parent)
1315 		event = event->parent;
1316 
1317 	nr = __task_pid_nr_ns(p, type, event->ns);
1318 	/* avoid -1 if it is idle thread or runs in another ns */
1319 	if (!nr && !pid_alive(p))
1320 		nr = -1;
1321 	return nr;
1322 }
1323 
1324 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1325 {
1326 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1327 }
1328 
1329 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1330 {
1331 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1332 }
1333 
1334 /*
1335  * If we inherit events we want to return the parent event id
1336  * to userspace.
1337  */
1338 static u64 primary_event_id(struct perf_event *event)
1339 {
1340 	u64 id = event->id;
1341 
1342 	if (event->parent)
1343 		id = event->parent->id;
1344 
1345 	return id;
1346 }
1347 
1348 /*
1349  * Get the perf_event_context for a task and lock it.
1350  *
1351  * This has to cope with with the fact that until it is locked,
1352  * the context could get moved to another task.
1353  */
1354 static struct perf_event_context *
1355 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1356 {
1357 	struct perf_event_context *ctx;
1358 
1359 retry:
1360 	/*
1361 	 * One of the few rules of preemptible RCU is that one cannot do
1362 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1363 	 * part of the read side critical section was irqs-enabled -- see
1364 	 * rcu_read_unlock_special().
1365 	 *
1366 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1367 	 * side critical section has interrupts disabled.
1368 	 */
1369 	local_irq_save(*flags);
1370 	rcu_read_lock();
1371 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1372 	if (ctx) {
1373 		/*
1374 		 * If this context is a clone of another, it might
1375 		 * get swapped for another underneath us by
1376 		 * perf_event_task_sched_out, though the
1377 		 * rcu_read_lock() protects us from any context
1378 		 * getting freed.  Lock the context and check if it
1379 		 * got swapped before we could get the lock, and retry
1380 		 * if so.  If we locked the right context, then it
1381 		 * can't get swapped on us any more.
1382 		 */
1383 		raw_spin_lock(&ctx->lock);
1384 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1385 			raw_spin_unlock(&ctx->lock);
1386 			rcu_read_unlock();
1387 			local_irq_restore(*flags);
1388 			goto retry;
1389 		}
1390 
1391 		if (ctx->task == TASK_TOMBSTONE ||
1392 		    !atomic_inc_not_zero(&ctx->refcount)) {
1393 			raw_spin_unlock(&ctx->lock);
1394 			ctx = NULL;
1395 		} else {
1396 			WARN_ON_ONCE(ctx->task != task);
1397 		}
1398 	}
1399 	rcu_read_unlock();
1400 	if (!ctx)
1401 		local_irq_restore(*flags);
1402 	return ctx;
1403 }
1404 
1405 /*
1406  * Get the context for a task and increment its pin_count so it
1407  * can't get swapped to another task.  This also increments its
1408  * reference count so that the context can't get freed.
1409  */
1410 static struct perf_event_context *
1411 perf_pin_task_context(struct task_struct *task, int ctxn)
1412 {
1413 	struct perf_event_context *ctx;
1414 	unsigned long flags;
1415 
1416 	ctx = perf_lock_task_context(task, ctxn, &flags);
1417 	if (ctx) {
1418 		++ctx->pin_count;
1419 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1420 	}
1421 	return ctx;
1422 }
1423 
1424 static void perf_unpin_context(struct perf_event_context *ctx)
1425 {
1426 	unsigned long flags;
1427 
1428 	raw_spin_lock_irqsave(&ctx->lock, flags);
1429 	--ctx->pin_count;
1430 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 }
1432 
1433 /*
1434  * Update the record of the current time in a context.
1435  */
1436 static void update_context_time(struct perf_event_context *ctx)
1437 {
1438 	u64 now = perf_clock();
1439 
1440 	ctx->time += now - ctx->timestamp;
1441 	ctx->timestamp = now;
1442 }
1443 
1444 static u64 perf_event_time(struct perf_event *event)
1445 {
1446 	struct perf_event_context *ctx = event->ctx;
1447 
1448 	if (is_cgroup_event(event))
1449 		return perf_cgroup_event_time(event);
1450 
1451 	return ctx ? ctx->time : 0;
1452 }
1453 
1454 static enum event_type_t get_event_type(struct perf_event *event)
1455 {
1456 	struct perf_event_context *ctx = event->ctx;
1457 	enum event_type_t event_type;
1458 
1459 	lockdep_assert_held(&ctx->lock);
1460 
1461 	/*
1462 	 * It's 'group type', really, because if our group leader is
1463 	 * pinned, so are we.
1464 	 */
1465 	if (event->group_leader != event)
1466 		event = event->group_leader;
1467 
1468 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1469 	if (!ctx->task)
1470 		event_type |= EVENT_CPU;
1471 
1472 	return event_type;
1473 }
1474 
1475 /*
1476  * Helper function to initialize event group nodes.
1477  */
1478 static void init_event_group(struct perf_event *event)
1479 {
1480 	RB_CLEAR_NODE(&event->group_node);
1481 	event->group_index = 0;
1482 }
1483 
1484 /*
1485  * Extract pinned or flexible groups from the context
1486  * based on event attrs bits.
1487  */
1488 static struct perf_event_groups *
1489 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1490 {
1491 	if (event->attr.pinned)
1492 		return &ctx->pinned_groups;
1493 	else
1494 		return &ctx->flexible_groups;
1495 }
1496 
1497 /*
1498  * Helper function to initializes perf_event_group trees.
1499  */
1500 static void perf_event_groups_init(struct perf_event_groups *groups)
1501 {
1502 	groups->tree = RB_ROOT;
1503 	groups->index = 0;
1504 }
1505 
1506 /*
1507  * Compare function for event groups;
1508  *
1509  * Implements complex key that first sorts by CPU and then by virtual index
1510  * which provides ordering when rotating groups for the same CPU.
1511  */
1512 static bool
1513 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1514 {
1515 	if (left->cpu < right->cpu)
1516 		return true;
1517 	if (left->cpu > right->cpu)
1518 		return false;
1519 
1520 	if (left->group_index < right->group_index)
1521 		return true;
1522 	if (left->group_index > right->group_index)
1523 		return false;
1524 
1525 	return false;
1526 }
1527 
1528 /*
1529  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1530  * key (see perf_event_groups_less). This places it last inside the CPU
1531  * subtree.
1532  */
1533 static void
1534 perf_event_groups_insert(struct perf_event_groups *groups,
1535 			 struct perf_event *event)
1536 {
1537 	struct perf_event *node_event;
1538 	struct rb_node *parent;
1539 	struct rb_node **node;
1540 
1541 	event->group_index = ++groups->index;
1542 
1543 	node = &groups->tree.rb_node;
1544 	parent = *node;
1545 
1546 	while (*node) {
1547 		parent = *node;
1548 		node_event = container_of(*node, struct perf_event, group_node);
1549 
1550 		if (perf_event_groups_less(event, node_event))
1551 			node = &parent->rb_left;
1552 		else
1553 			node = &parent->rb_right;
1554 	}
1555 
1556 	rb_link_node(&event->group_node, parent, node);
1557 	rb_insert_color(&event->group_node, &groups->tree);
1558 }
1559 
1560 /*
1561  * Helper function to insert event into the pinned or flexible groups.
1562  */
1563 static void
1564 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1565 {
1566 	struct perf_event_groups *groups;
1567 
1568 	groups = get_event_groups(event, ctx);
1569 	perf_event_groups_insert(groups, event);
1570 }
1571 
1572 /*
1573  * Delete a group from a tree.
1574  */
1575 static void
1576 perf_event_groups_delete(struct perf_event_groups *groups,
1577 			 struct perf_event *event)
1578 {
1579 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1580 		     RB_EMPTY_ROOT(&groups->tree));
1581 
1582 	rb_erase(&event->group_node, &groups->tree);
1583 	init_event_group(event);
1584 }
1585 
1586 /*
1587  * Helper function to delete event from its groups.
1588  */
1589 static void
1590 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1591 {
1592 	struct perf_event_groups *groups;
1593 
1594 	groups = get_event_groups(event, ctx);
1595 	perf_event_groups_delete(groups, event);
1596 }
1597 
1598 /*
1599  * Get the leftmost event in the @cpu subtree.
1600  */
1601 static struct perf_event *
1602 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1603 {
1604 	struct perf_event *node_event = NULL, *match = NULL;
1605 	struct rb_node *node = groups->tree.rb_node;
1606 
1607 	while (node) {
1608 		node_event = container_of(node, struct perf_event, group_node);
1609 
1610 		if (cpu < node_event->cpu) {
1611 			node = node->rb_left;
1612 		} else if (cpu > node_event->cpu) {
1613 			node = node->rb_right;
1614 		} else {
1615 			match = node_event;
1616 			node = node->rb_left;
1617 		}
1618 	}
1619 
1620 	return match;
1621 }
1622 
1623 /*
1624  * Like rb_entry_next_safe() for the @cpu subtree.
1625  */
1626 static struct perf_event *
1627 perf_event_groups_next(struct perf_event *event)
1628 {
1629 	struct perf_event *next;
1630 
1631 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1632 	if (next && next->cpu == event->cpu)
1633 		return next;
1634 
1635 	return NULL;
1636 }
1637 
1638 /*
1639  * Iterate through the whole groups tree.
1640  */
1641 #define perf_event_groups_for_each(event, groups)			\
1642 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1643 				typeof(*event), group_node); event;	\
1644 		event = rb_entry_safe(rb_next(&event->group_node),	\
1645 				typeof(*event), group_node))
1646 
1647 /*
1648  * Add a event from the lists for its context.
1649  * Must be called with ctx->mutex and ctx->lock held.
1650  */
1651 static void
1652 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1653 {
1654 	lockdep_assert_held(&ctx->lock);
1655 
1656 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1657 	event->attach_state |= PERF_ATTACH_CONTEXT;
1658 
1659 	event->tstamp = perf_event_time(event);
1660 
1661 	/*
1662 	 * If we're a stand alone event or group leader, we go to the context
1663 	 * list, group events are kept attached to the group so that
1664 	 * perf_group_detach can, at all times, locate all siblings.
1665 	 */
1666 	if (event->group_leader == event) {
1667 		event->group_caps = event->event_caps;
1668 		add_event_to_groups(event, ctx);
1669 	}
1670 
1671 	list_update_cgroup_event(event, ctx, true);
1672 
1673 	list_add_rcu(&event->event_entry, &ctx->event_list);
1674 	ctx->nr_events++;
1675 	if (event->attr.inherit_stat)
1676 		ctx->nr_stat++;
1677 
1678 	ctx->generation++;
1679 }
1680 
1681 /*
1682  * Initialize event state based on the perf_event_attr::disabled.
1683  */
1684 static inline void perf_event__state_init(struct perf_event *event)
1685 {
1686 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1687 					      PERF_EVENT_STATE_INACTIVE;
1688 }
1689 
1690 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1691 {
1692 	int entry = sizeof(u64); /* value */
1693 	int size = 0;
1694 	int nr = 1;
1695 
1696 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1697 		size += sizeof(u64);
1698 
1699 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1700 		size += sizeof(u64);
1701 
1702 	if (event->attr.read_format & PERF_FORMAT_ID)
1703 		entry += sizeof(u64);
1704 
1705 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1706 		nr += nr_siblings;
1707 		size += sizeof(u64);
1708 	}
1709 
1710 	size += entry * nr;
1711 	event->read_size = size;
1712 }
1713 
1714 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1715 {
1716 	struct perf_sample_data *data;
1717 	u16 size = 0;
1718 
1719 	if (sample_type & PERF_SAMPLE_IP)
1720 		size += sizeof(data->ip);
1721 
1722 	if (sample_type & PERF_SAMPLE_ADDR)
1723 		size += sizeof(data->addr);
1724 
1725 	if (sample_type & PERF_SAMPLE_PERIOD)
1726 		size += sizeof(data->period);
1727 
1728 	if (sample_type & PERF_SAMPLE_WEIGHT)
1729 		size += sizeof(data->weight);
1730 
1731 	if (sample_type & PERF_SAMPLE_READ)
1732 		size += event->read_size;
1733 
1734 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1735 		size += sizeof(data->data_src.val);
1736 
1737 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1738 		size += sizeof(data->txn);
1739 
1740 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1741 		size += sizeof(data->phys_addr);
1742 
1743 	event->header_size = size;
1744 }
1745 
1746 /*
1747  * Called at perf_event creation and when events are attached/detached from a
1748  * group.
1749  */
1750 static void perf_event__header_size(struct perf_event *event)
1751 {
1752 	__perf_event_read_size(event,
1753 			       event->group_leader->nr_siblings);
1754 	__perf_event_header_size(event, event->attr.sample_type);
1755 }
1756 
1757 static void perf_event__id_header_size(struct perf_event *event)
1758 {
1759 	struct perf_sample_data *data;
1760 	u64 sample_type = event->attr.sample_type;
1761 	u16 size = 0;
1762 
1763 	if (sample_type & PERF_SAMPLE_TID)
1764 		size += sizeof(data->tid_entry);
1765 
1766 	if (sample_type & PERF_SAMPLE_TIME)
1767 		size += sizeof(data->time);
1768 
1769 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1770 		size += sizeof(data->id);
1771 
1772 	if (sample_type & PERF_SAMPLE_ID)
1773 		size += sizeof(data->id);
1774 
1775 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1776 		size += sizeof(data->stream_id);
1777 
1778 	if (sample_type & PERF_SAMPLE_CPU)
1779 		size += sizeof(data->cpu_entry);
1780 
1781 	event->id_header_size = size;
1782 }
1783 
1784 static bool perf_event_validate_size(struct perf_event *event)
1785 {
1786 	/*
1787 	 * The values computed here will be over-written when we actually
1788 	 * attach the event.
1789 	 */
1790 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1791 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1792 	perf_event__id_header_size(event);
1793 
1794 	/*
1795 	 * Sum the lot; should not exceed the 64k limit we have on records.
1796 	 * Conservative limit to allow for callchains and other variable fields.
1797 	 */
1798 	if (event->read_size + event->header_size +
1799 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1800 		return false;
1801 
1802 	return true;
1803 }
1804 
1805 static void perf_group_attach(struct perf_event *event)
1806 {
1807 	struct perf_event *group_leader = event->group_leader, *pos;
1808 
1809 	lockdep_assert_held(&event->ctx->lock);
1810 
1811 	/*
1812 	 * We can have double attach due to group movement in perf_event_open.
1813 	 */
1814 	if (event->attach_state & PERF_ATTACH_GROUP)
1815 		return;
1816 
1817 	event->attach_state |= PERF_ATTACH_GROUP;
1818 
1819 	if (group_leader == event)
1820 		return;
1821 
1822 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1823 
1824 	group_leader->group_caps &= event->event_caps;
1825 
1826 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1827 	group_leader->nr_siblings++;
1828 
1829 	perf_event__header_size(group_leader);
1830 
1831 	for_each_sibling_event(pos, group_leader)
1832 		perf_event__header_size(pos);
1833 }
1834 
1835 /*
1836  * Remove a event from the lists for its context.
1837  * Must be called with ctx->mutex and ctx->lock held.
1838  */
1839 static void
1840 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1841 {
1842 	WARN_ON_ONCE(event->ctx != ctx);
1843 	lockdep_assert_held(&ctx->lock);
1844 
1845 	/*
1846 	 * We can have double detach due to exit/hot-unplug + close.
1847 	 */
1848 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1849 		return;
1850 
1851 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1852 
1853 	list_update_cgroup_event(event, ctx, false);
1854 
1855 	ctx->nr_events--;
1856 	if (event->attr.inherit_stat)
1857 		ctx->nr_stat--;
1858 
1859 	list_del_rcu(&event->event_entry);
1860 
1861 	if (event->group_leader == event)
1862 		del_event_from_groups(event, ctx);
1863 
1864 	/*
1865 	 * If event was in error state, then keep it
1866 	 * that way, otherwise bogus counts will be
1867 	 * returned on read(). The only way to get out
1868 	 * of error state is by explicit re-enabling
1869 	 * of the event
1870 	 */
1871 	if (event->state > PERF_EVENT_STATE_OFF)
1872 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1873 
1874 	ctx->generation++;
1875 }
1876 
1877 static void perf_group_detach(struct perf_event *event)
1878 {
1879 	struct perf_event *sibling, *tmp;
1880 	struct perf_event_context *ctx = event->ctx;
1881 
1882 	lockdep_assert_held(&ctx->lock);
1883 
1884 	/*
1885 	 * We can have double detach due to exit/hot-unplug + close.
1886 	 */
1887 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1888 		return;
1889 
1890 	event->attach_state &= ~PERF_ATTACH_GROUP;
1891 
1892 	/*
1893 	 * If this is a sibling, remove it from its group.
1894 	 */
1895 	if (event->group_leader != event) {
1896 		list_del_init(&event->sibling_list);
1897 		event->group_leader->nr_siblings--;
1898 		goto out;
1899 	}
1900 
1901 	/*
1902 	 * If this was a group event with sibling events then
1903 	 * upgrade the siblings to singleton events by adding them
1904 	 * to whatever list we are on.
1905 	 */
1906 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1907 
1908 		sibling->group_leader = sibling;
1909 		list_del_init(&sibling->sibling_list);
1910 
1911 		/* Inherit group flags from the previous leader */
1912 		sibling->group_caps = event->group_caps;
1913 
1914 		if (!RB_EMPTY_NODE(&event->group_node)) {
1915 			add_event_to_groups(sibling, event->ctx);
1916 
1917 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1918 				struct list_head *list = sibling->attr.pinned ?
1919 					&ctx->pinned_active : &ctx->flexible_active;
1920 
1921 				list_add_tail(&sibling->active_list, list);
1922 			}
1923 		}
1924 
1925 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1926 	}
1927 
1928 out:
1929 	perf_event__header_size(event->group_leader);
1930 
1931 	for_each_sibling_event(tmp, event->group_leader)
1932 		perf_event__header_size(tmp);
1933 }
1934 
1935 static bool is_orphaned_event(struct perf_event *event)
1936 {
1937 	return event->state == PERF_EVENT_STATE_DEAD;
1938 }
1939 
1940 static inline int __pmu_filter_match(struct perf_event *event)
1941 {
1942 	struct pmu *pmu = event->pmu;
1943 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1944 }
1945 
1946 /*
1947  * Check whether we should attempt to schedule an event group based on
1948  * PMU-specific filtering. An event group can consist of HW and SW events,
1949  * potentially with a SW leader, so we must check all the filters, to
1950  * determine whether a group is schedulable:
1951  */
1952 static inline int pmu_filter_match(struct perf_event *event)
1953 {
1954 	struct perf_event *sibling;
1955 
1956 	if (!__pmu_filter_match(event))
1957 		return 0;
1958 
1959 	for_each_sibling_event(sibling, event) {
1960 		if (!__pmu_filter_match(sibling))
1961 			return 0;
1962 	}
1963 
1964 	return 1;
1965 }
1966 
1967 static inline int
1968 event_filter_match(struct perf_event *event)
1969 {
1970 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1971 	       perf_cgroup_match(event) && pmu_filter_match(event);
1972 }
1973 
1974 static void
1975 event_sched_out(struct perf_event *event,
1976 		  struct perf_cpu_context *cpuctx,
1977 		  struct perf_event_context *ctx)
1978 {
1979 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1980 
1981 	WARN_ON_ONCE(event->ctx != ctx);
1982 	lockdep_assert_held(&ctx->lock);
1983 
1984 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1985 		return;
1986 
1987 	/*
1988 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
1989 	 * we can schedule events _OUT_ individually through things like
1990 	 * __perf_remove_from_context().
1991 	 */
1992 	list_del_init(&event->active_list);
1993 
1994 	perf_pmu_disable(event->pmu);
1995 
1996 	event->pmu->del(event, 0);
1997 	event->oncpu = -1;
1998 
1999 	if (event->pending_disable) {
2000 		event->pending_disable = 0;
2001 		state = PERF_EVENT_STATE_OFF;
2002 	}
2003 	perf_event_set_state(event, state);
2004 
2005 	if (!is_software_event(event))
2006 		cpuctx->active_oncpu--;
2007 	if (!--ctx->nr_active)
2008 		perf_event_ctx_deactivate(ctx);
2009 	if (event->attr.freq && event->attr.sample_freq)
2010 		ctx->nr_freq--;
2011 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2012 		cpuctx->exclusive = 0;
2013 
2014 	perf_pmu_enable(event->pmu);
2015 }
2016 
2017 static void
2018 group_sched_out(struct perf_event *group_event,
2019 		struct perf_cpu_context *cpuctx,
2020 		struct perf_event_context *ctx)
2021 {
2022 	struct perf_event *event;
2023 
2024 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2025 		return;
2026 
2027 	perf_pmu_disable(ctx->pmu);
2028 
2029 	event_sched_out(group_event, cpuctx, ctx);
2030 
2031 	/*
2032 	 * Schedule out siblings (if any):
2033 	 */
2034 	for_each_sibling_event(event, group_event)
2035 		event_sched_out(event, cpuctx, ctx);
2036 
2037 	perf_pmu_enable(ctx->pmu);
2038 
2039 	if (group_event->attr.exclusive)
2040 		cpuctx->exclusive = 0;
2041 }
2042 
2043 #define DETACH_GROUP	0x01UL
2044 
2045 /*
2046  * Cross CPU call to remove a performance event
2047  *
2048  * We disable the event on the hardware level first. After that we
2049  * remove it from the context list.
2050  */
2051 static void
2052 __perf_remove_from_context(struct perf_event *event,
2053 			   struct perf_cpu_context *cpuctx,
2054 			   struct perf_event_context *ctx,
2055 			   void *info)
2056 {
2057 	unsigned long flags = (unsigned long)info;
2058 
2059 	if (ctx->is_active & EVENT_TIME) {
2060 		update_context_time(ctx);
2061 		update_cgrp_time_from_cpuctx(cpuctx);
2062 	}
2063 
2064 	event_sched_out(event, cpuctx, ctx);
2065 	if (flags & DETACH_GROUP)
2066 		perf_group_detach(event);
2067 	list_del_event(event, ctx);
2068 
2069 	if (!ctx->nr_events && ctx->is_active) {
2070 		ctx->is_active = 0;
2071 		if (ctx->task) {
2072 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2073 			cpuctx->task_ctx = NULL;
2074 		}
2075 	}
2076 }
2077 
2078 /*
2079  * Remove the event from a task's (or a CPU's) list of events.
2080  *
2081  * If event->ctx is a cloned context, callers must make sure that
2082  * every task struct that event->ctx->task could possibly point to
2083  * remains valid.  This is OK when called from perf_release since
2084  * that only calls us on the top-level context, which can't be a clone.
2085  * When called from perf_event_exit_task, it's OK because the
2086  * context has been detached from its task.
2087  */
2088 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2089 {
2090 	struct perf_event_context *ctx = event->ctx;
2091 
2092 	lockdep_assert_held(&ctx->mutex);
2093 
2094 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2095 
2096 	/*
2097 	 * The above event_function_call() can NO-OP when it hits
2098 	 * TASK_TOMBSTONE. In that case we must already have been detached
2099 	 * from the context (by perf_event_exit_event()) but the grouping
2100 	 * might still be in-tact.
2101 	 */
2102 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2103 	if ((flags & DETACH_GROUP) &&
2104 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2105 		/*
2106 		 * Since in that case we cannot possibly be scheduled, simply
2107 		 * detach now.
2108 		 */
2109 		raw_spin_lock_irq(&ctx->lock);
2110 		perf_group_detach(event);
2111 		raw_spin_unlock_irq(&ctx->lock);
2112 	}
2113 }
2114 
2115 /*
2116  * Cross CPU call to disable a performance event
2117  */
2118 static void __perf_event_disable(struct perf_event *event,
2119 				 struct perf_cpu_context *cpuctx,
2120 				 struct perf_event_context *ctx,
2121 				 void *info)
2122 {
2123 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2124 		return;
2125 
2126 	if (ctx->is_active & EVENT_TIME) {
2127 		update_context_time(ctx);
2128 		update_cgrp_time_from_event(event);
2129 	}
2130 
2131 	if (event == event->group_leader)
2132 		group_sched_out(event, cpuctx, ctx);
2133 	else
2134 		event_sched_out(event, cpuctx, ctx);
2135 
2136 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2137 }
2138 
2139 /*
2140  * Disable a event.
2141  *
2142  * If event->ctx is a cloned context, callers must make sure that
2143  * every task struct that event->ctx->task could possibly point to
2144  * remains valid.  This condition is satisifed when called through
2145  * perf_event_for_each_child or perf_event_for_each because they
2146  * hold the top-level event's child_mutex, so any descendant that
2147  * goes to exit will block in perf_event_exit_event().
2148  *
2149  * When called from perf_pending_event it's OK because event->ctx
2150  * is the current context on this CPU and preemption is disabled,
2151  * hence we can't get into perf_event_task_sched_out for this context.
2152  */
2153 static void _perf_event_disable(struct perf_event *event)
2154 {
2155 	struct perf_event_context *ctx = event->ctx;
2156 
2157 	raw_spin_lock_irq(&ctx->lock);
2158 	if (event->state <= PERF_EVENT_STATE_OFF) {
2159 		raw_spin_unlock_irq(&ctx->lock);
2160 		return;
2161 	}
2162 	raw_spin_unlock_irq(&ctx->lock);
2163 
2164 	event_function_call(event, __perf_event_disable, NULL);
2165 }
2166 
2167 void perf_event_disable_local(struct perf_event *event)
2168 {
2169 	event_function_local(event, __perf_event_disable, NULL);
2170 }
2171 
2172 /*
2173  * Strictly speaking kernel users cannot create groups and therefore this
2174  * interface does not need the perf_event_ctx_lock() magic.
2175  */
2176 void perf_event_disable(struct perf_event *event)
2177 {
2178 	struct perf_event_context *ctx;
2179 
2180 	ctx = perf_event_ctx_lock(event);
2181 	_perf_event_disable(event);
2182 	perf_event_ctx_unlock(event, ctx);
2183 }
2184 EXPORT_SYMBOL_GPL(perf_event_disable);
2185 
2186 void perf_event_disable_inatomic(struct perf_event *event)
2187 {
2188 	event->pending_disable = 1;
2189 	irq_work_queue(&event->pending);
2190 }
2191 
2192 static void perf_set_shadow_time(struct perf_event *event,
2193 				 struct perf_event_context *ctx)
2194 {
2195 	/*
2196 	 * use the correct time source for the time snapshot
2197 	 *
2198 	 * We could get by without this by leveraging the
2199 	 * fact that to get to this function, the caller
2200 	 * has most likely already called update_context_time()
2201 	 * and update_cgrp_time_xx() and thus both timestamp
2202 	 * are identical (or very close). Given that tstamp is,
2203 	 * already adjusted for cgroup, we could say that:
2204 	 *    tstamp - ctx->timestamp
2205 	 * is equivalent to
2206 	 *    tstamp - cgrp->timestamp.
2207 	 *
2208 	 * Then, in perf_output_read(), the calculation would
2209 	 * work with no changes because:
2210 	 * - event is guaranteed scheduled in
2211 	 * - no scheduled out in between
2212 	 * - thus the timestamp would be the same
2213 	 *
2214 	 * But this is a bit hairy.
2215 	 *
2216 	 * So instead, we have an explicit cgroup call to remain
2217 	 * within the time time source all along. We believe it
2218 	 * is cleaner and simpler to understand.
2219 	 */
2220 	if (is_cgroup_event(event))
2221 		perf_cgroup_set_shadow_time(event, event->tstamp);
2222 	else
2223 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2224 }
2225 
2226 #define MAX_INTERRUPTS (~0ULL)
2227 
2228 static void perf_log_throttle(struct perf_event *event, int enable);
2229 static void perf_log_itrace_start(struct perf_event *event);
2230 
2231 static int
2232 event_sched_in(struct perf_event *event,
2233 		 struct perf_cpu_context *cpuctx,
2234 		 struct perf_event_context *ctx)
2235 {
2236 	int ret = 0;
2237 
2238 	lockdep_assert_held(&ctx->lock);
2239 
2240 	if (event->state <= PERF_EVENT_STATE_OFF)
2241 		return 0;
2242 
2243 	WRITE_ONCE(event->oncpu, smp_processor_id());
2244 	/*
2245 	 * Order event::oncpu write to happen before the ACTIVE state is
2246 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2247 	 * ->oncpu if it sees ACTIVE.
2248 	 */
2249 	smp_wmb();
2250 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2251 
2252 	/*
2253 	 * Unthrottle events, since we scheduled we might have missed several
2254 	 * ticks already, also for a heavily scheduling task there is little
2255 	 * guarantee it'll get a tick in a timely manner.
2256 	 */
2257 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2258 		perf_log_throttle(event, 1);
2259 		event->hw.interrupts = 0;
2260 	}
2261 
2262 	perf_pmu_disable(event->pmu);
2263 
2264 	perf_set_shadow_time(event, ctx);
2265 
2266 	perf_log_itrace_start(event);
2267 
2268 	if (event->pmu->add(event, PERF_EF_START)) {
2269 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2270 		event->oncpu = -1;
2271 		ret = -EAGAIN;
2272 		goto out;
2273 	}
2274 
2275 	if (!is_software_event(event))
2276 		cpuctx->active_oncpu++;
2277 	if (!ctx->nr_active++)
2278 		perf_event_ctx_activate(ctx);
2279 	if (event->attr.freq && event->attr.sample_freq)
2280 		ctx->nr_freq++;
2281 
2282 	if (event->attr.exclusive)
2283 		cpuctx->exclusive = 1;
2284 
2285 out:
2286 	perf_pmu_enable(event->pmu);
2287 
2288 	return ret;
2289 }
2290 
2291 static int
2292 group_sched_in(struct perf_event *group_event,
2293 	       struct perf_cpu_context *cpuctx,
2294 	       struct perf_event_context *ctx)
2295 {
2296 	struct perf_event *event, *partial_group = NULL;
2297 	struct pmu *pmu = ctx->pmu;
2298 
2299 	if (group_event->state == PERF_EVENT_STATE_OFF)
2300 		return 0;
2301 
2302 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2303 
2304 	if (event_sched_in(group_event, cpuctx, ctx)) {
2305 		pmu->cancel_txn(pmu);
2306 		perf_mux_hrtimer_restart(cpuctx);
2307 		return -EAGAIN;
2308 	}
2309 
2310 	/*
2311 	 * Schedule in siblings as one group (if any):
2312 	 */
2313 	for_each_sibling_event(event, group_event) {
2314 		if (event_sched_in(event, cpuctx, ctx)) {
2315 			partial_group = event;
2316 			goto group_error;
2317 		}
2318 	}
2319 
2320 	if (!pmu->commit_txn(pmu))
2321 		return 0;
2322 
2323 group_error:
2324 	/*
2325 	 * Groups can be scheduled in as one unit only, so undo any
2326 	 * partial group before returning:
2327 	 * The events up to the failed event are scheduled out normally.
2328 	 */
2329 	for_each_sibling_event(event, group_event) {
2330 		if (event == partial_group)
2331 			break;
2332 
2333 		event_sched_out(event, cpuctx, ctx);
2334 	}
2335 	event_sched_out(group_event, cpuctx, ctx);
2336 
2337 	pmu->cancel_txn(pmu);
2338 
2339 	perf_mux_hrtimer_restart(cpuctx);
2340 
2341 	return -EAGAIN;
2342 }
2343 
2344 /*
2345  * Work out whether we can put this event group on the CPU now.
2346  */
2347 static int group_can_go_on(struct perf_event *event,
2348 			   struct perf_cpu_context *cpuctx,
2349 			   int can_add_hw)
2350 {
2351 	/*
2352 	 * Groups consisting entirely of software events can always go on.
2353 	 */
2354 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2355 		return 1;
2356 	/*
2357 	 * If an exclusive group is already on, no other hardware
2358 	 * events can go on.
2359 	 */
2360 	if (cpuctx->exclusive)
2361 		return 0;
2362 	/*
2363 	 * If this group is exclusive and there are already
2364 	 * events on the CPU, it can't go on.
2365 	 */
2366 	if (event->attr.exclusive && cpuctx->active_oncpu)
2367 		return 0;
2368 	/*
2369 	 * Otherwise, try to add it if all previous groups were able
2370 	 * to go on.
2371 	 */
2372 	return can_add_hw;
2373 }
2374 
2375 static void add_event_to_ctx(struct perf_event *event,
2376 			       struct perf_event_context *ctx)
2377 {
2378 	list_add_event(event, ctx);
2379 	perf_group_attach(event);
2380 }
2381 
2382 static void ctx_sched_out(struct perf_event_context *ctx,
2383 			  struct perf_cpu_context *cpuctx,
2384 			  enum event_type_t event_type);
2385 static void
2386 ctx_sched_in(struct perf_event_context *ctx,
2387 	     struct perf_cpu_context *cpuctx,
2388 	     enum event_type_t event_type,
2389 	     struct task_struct *task);
2390 
2391 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2392 			       struct perf_event_context *ctx,
2393 			       enum event_type_t event_type)
2394 {
2395 	if (!cpuctx->task_ctx)
2396 		return;
2397 
2398 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399 		return;
2400 
2401 	ctx_sched_out(ctx, cpuctx, event_type);
2402 }
2403 
2404 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2405 				struct perf_event_context *ctx,
2406 				struct task_struct *task)
2407 {
2408 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2409 	if (ctx)
2410 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2411 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2412 	if (ctx)
2413 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2414 }
2415 
2416 /*
2417  * We want to maintain the following priority of scheduling:
2418  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2419  *  - task pinned (EVENT_PINNED)
2420  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2421  *  - task flexible (EVENT_FLEXIBLE).
2422  *
2423  * In order to avoid unscheduling and scheduling back in everything every
2424  * time an event is added, only do it for the groups of equal priority and
2425  * below.
2426  *
2427  * This can be called after a batch operation on task events, in which case
2428  * event_type is a bit mask of the types of events involved. For CPU events,
2429  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2430  */
2431 static void ctx_resched(struct perf_cpu_context *cpuctx,
2432 			struct perf_event_context *task_ctx,
2433 			enum event_type_t event_type)
2434 {
2435 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2436 	bool cpu_event = !!(event_type & EVENT_CPU);
2437 
2438 	/*
2439 	 * If pinned groups are involved, flexible groups also need to be
2440 	 * scheduled out.
2441 	 */
2442 	if (event_type & EVENT_PINNED)
2443 		event_type |= EVENT_FLEXIBLE;
2444 
2445 	perf_pmu_disable(cpuctx->ctx.pmu);
2446 	if (task_ctx)
2447 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2448 
2449 	/*
2450 	 * Decide which cpu ctx groups to schedule out based on the types
2451 	 * of events that caused rescheduling:
2452 	 *  - EVENT_CPU: schedule out corresponding groups;
2453 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2454 	 *  - otherwise, do nothing more.
2455 	 */
2456 	if (cpu_event)
2457 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2458 	else if (ctx_event_type & EVENT_PINNED)
2459 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2460 
2461 	perf_event_sched_in(cpuctx, task_ctx, current);
2462 	perf_pmu_enable(cpuctx->ctx.pmu);
2463 }
2464 
2465 /*
2466  * Cross CPU call to install and enable a performance event
2467  *
2468  * Very similar to remote_function() + event_function() but cannot assume that
2469  * things like ctx->is_active and cpuctx->task_ctx are set.
2470  */
2471 static int  __perf_install_in_context(void *info)
2472 {
2473 	struct perf_event *event = info;
2474 	struct perf_event_context *ctx = event->ctx;
2475 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2476 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2477 	bool reprogram = true;
2478 	int ret = 0;
2479 
2480 	raw_spin_lock(&cpuctx->ctx.lock);
2481 	if (ctx->task) {
2482 		raw_spin_lock(&ctx->lock);
2483 		task_ctx = ctx;
2484 
2485 		reprogram = (ctx->task == current);
2486 
2487 		/*
2488 		 * If the task is running, it must be running on this CPU,
2489 		 * otherwise we cannot reprogram things.
2490 		 *
2491 		 * If its not running, we don't care, ctx->lock will
2492 		 * serialize against it becoming runnable.
2493 		 */
2494 		if (task_curr(ctx->task) && !reprogram) {
2495 			ret = -ESRCH;
2496 			goto unlock;
2497 		}
2498 
2499 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2500 	} else if (task_ctx) {
2501 		raw_spin_lock(&task_ctx->lock);
2502 	}
2503 
2504 #ifdef CONFIG_CGROUP_PERF
2505 	if (is_cgroup_event(event)) {
2506 		/*
2507 		 * If the current cgroup doesn't match the event's
2508 		 * cgroup, we should not try to schedule it.
2509 		 */
2510 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2511 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2512 					event->cgrp->css.cgroup);
2513 	}
2514 #endif
2515 
2516 	if (reprogram) {
2517 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2518 		add_event_to_ctx(event, ctx);
2519 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2520 	} else {
2521 		add_event_to_ctx(event, ctx);
2522 	}
2523 
2524 unlock:
2525 	perf_ctx_unlock(cpuctx, task_ctx);
2526 
2527 	return ret;
2528 }
2529 
2530 /*
2531  * Attach a performance event to a context.
2532  *
2533  * Very similar to event_function_call, see comment there.
2534  */
2535 static void
2536 perf_install_in_context(struct perf_event_context *ctx,
2537 			struct perf_event *event,
2538 			int cpu)
2539 {
2540 	struct task_struct *task = READ_ONCE(ctx->task);
2541 
2542 	lockdep_assert_held(&ctx->mutex);
2543 
2544 	if (event->cpu != -1)
2545 		event->cpu = cpu;
2546 
2547 	/*
2548 	 * Ensures that if we can observe event->ctx, both the event and ctx
2549 	 * will be 'complete'. See perf_iterate_sb_cpu().
2550 	 */
2551 	smp_store_release(&event->ctx, ctx);
2552 
2553 	if (!task) {
2554 		cpu_function_call(cpu, __perf_install_in_context, event);
2555 		return;
2556 	}
2557 
2558 	/*
2559 	 * Should not happen, we validate the ctx is still alive before calling.
2560 	 */
2561 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2562 		return;
2563 
2564 	/*
2565 	 * Installing events is tricky because we cannot rely on ctx->is_active
2566 	 * to be set in case this is the nr_events 0 -> 1 transition.
2567 	 *
2568 	 * Instead we use task_curr(), which tells us if the task is running.
2569 	 * However, since we use task_curr() outside of rq::lock, we can race
2570 	 * against the actual state. This means the result can be wrong.
2571 	 *
2572 	 * If we get a false positive, we retry, this is harmless.
2573 	 *
2574 	 * If we get a false negative, things are complicated. If we are after
2575 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2576 	 * value must be correct. If we're before, it doesn't matter since
2577 	 * perf_event_context_sched_in() will program the counter.
2578 	 *
2579 	 * However, this hinges on the remote context switch having observed
2580 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2581 	 * ctx::lock in perf_event_context_sched_in().
2582 	 *
2583 	 * We do this by task_function_call(), if the IPI fails to hit the task
2584 	 * we know any future context switch of task must see the
2585 	 * perf_event_ctpx[] store.
2586 	 */
2587 
2588 	/*
2589 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2590 	 * task_cpu() load, such that if the IPI then does not find the task
2591 	 * running, a future context switch of that task must observe the
2592 	 * store.
2593 	 */
2594 	smp_mb();
2595 again:
2596 	if (!task_function_call(task, __perf_install_in_context, event))
2597 		return;
2598 
2599 	raw_spin_lock_irq(&ctx->lock);
2600 	task = ctx->task;
2601 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2602 		/*
2603 		 * Cannot happen because we already checked above (which also
2604 		 * cannot happen), and we hold ctx->mutex, which serializes us
2605 		 * against perf_event_exit_task_context().
2606 		 */
2607 		raw_spin_unlock_irq(&ctx->lock);
2608 		return;
2609 	}
2610 	/*
2611 	 * If the task is not running, ctx->lock will avoid it becoming so,
2612 	 * thus we can safely install the event.
2613 	 */
2614 	if (task_curr(task)) {
2615 		raw_spin_unlock_irq(&ctx->lock);
2616 		goto again;
2617 	}
2618 	add_event_to_ctx(event, ctx);
2619 	raw_spin_unlock_irq(&ctx->lock);
2620 }
2621 
2622 /*
2623  * Cross CPU call to enable a performance event
2624  */
2625 static void __perf_event_enable(struct perf_event *event,
2626 				struct perf_cpu_context *cpuctx,
2627 				struct perf_event_context *ctx,
2628 				void *info)
2629 {
2630 	struct perf_event *leader = event->group_leader;
2631 	struct perf_event_context *task_ctx;
2632 
2633 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2634 	    event->state <= PERF_EVENT_STATE_ERROR)
2635 		return;
2636 
2637 	if (ctx->is_active)
2638 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2639 
2640 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2641 
2642 	if (!ctx->is_active)
2643 		return;
2644 
2645 	if (!event_filter_match(event)) {
2646 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2647 		return;
2648 	}
2649 
2650 	/*
2651 	 * If the event is in a group and isn't the group leader,
2652 	 * then don't put it on unless the group is on.
2653 	 */
2654 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2655 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2656 		return;
2657 	}
2658 
2659 	task_ctx = cpuctx->task_ctx;
2660 	if (ctx->task)
2661 		WARN_ON_ONCE(task_ctx != ctx);
2662 
2663 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2664 }
2665 
2666 /*
2667  * Enable a event.
2668  *
2669  * If event->ctx is a cloned context, callers must make sure that
2670  * every task struct that event->ctx->task could possibly point to
2671  * remains valid.  This condition is satisfied when called through
2672  * perf_event_for_each_child or perf_event_for_each as described
2673  * for perf_event_disable.
2674  */
2675 static void _perf_event_enable(struct perf_event *event)
2676 {
2677 	struct perf_event_context *ctx = event->ctx;
2678 
2679 	raw_spin_lock_irq(&ctx->lock);
2680 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2681 	    event->state <  PERF_EVENT_STATE_ERROR) {
2682 		raw_spin_unlock_irq(&ctx->lock);
2683 		return;
2684 	}
2685 
2686 	/*
2687 	 * If the event is in error state, clear that first.
2688 	 *
2689 	 * That way, if we see the event in error state below, we know that it
2690 	 * has gone back into error state, as distinct from the task having
2691 	 * been scheduled away before the cross-call arrived.
2692 	 */
2693 	if (event->state == PERF_EVENT_STATE_ERROR)
2694 		event->state = PERF_EVENT_STATE_OFF;
2695 	raw_spin_unlock_irq(&ctx->lock);
2696 
2697 	event_function_call(event, __perf_event_enable, NULL);
2698 }
2699 
2700 /*
2701  * See perf_event_disable();
2702  */
2703 void perf_event_enable(struct perf_event *event)
2704 {
2705 	struct perf_event_context *ctx;
2706 
2707 	ctx = perf_event_ctx_lock(event);
2708 	_perf_event_enable(event);
2709 	perf_event_ctx_unlock(event, ctx);
2710 }
2711 EXPORT_SYMBOL_GPL(perf_event_enable);
2712 
2713 struct stop_event_data {
2714 	struct perf_event	*event;
2715 	unsigned int		restart;
2716 };
2717 
2718 static int __perf_event_stop(void *info)
2719 {
2720 	struct stop_event_data *sd = info;
2721 	struct perf_event *event = sd->event;
2722 
2723 	/* if it's already INACTIVE, do nothing */
2724 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2725 		return 0;
2726 
2727 	/* matches smp_wmb() in event_sched_in() */
2728 	smp_rmb();
2729 
2730 	/*
2731 	 * There is a window with interrupts enabled before we get here,
2732 	 * so we need to check again lest we try to stop another CPU's event.
2733 	 */
2734 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2735 		return -EAGAIN;
2736 
2737 	event->pmu->stop(event, PERF_EF_UPDATE);
2738 
2739 	/*
2740 	 * May race with the actual stop (through perf_pmu_output_stop()),
2741 	 * but it is only used for events with AUX ring buffer, and such
2742 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2743 	 * see comments in perf_aux_output_begin().
2744 	 *
2745 	 * Since this is happening on a event-local CPU, no trace is lost
2746 	 * while restarting.
2747 	 */
2748 	if (sd->restart)
2749 		event->pmu->start(event, 0);
2750 
2751 	return 0;
2752 }
2753 
2754 static int perf_event_stop(struct perf_event *event, int restart)
2755 {
2756 	struct stop_event_data sd = {
2757 		.event		= event,
2758 		.restart	= restart,
2759 	};
2760 	int ret = 0;
2761 
2762 	do {
2763 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2764 			return 0;
2765 
2766 		/* matches smp_wmb() in event_sched_in() */
2767 		smp_rmb();
2768 
2769 		/*
2770 		 * We only want to restart ACTIVE events, so if the event goes
2771 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2772 		 * fall through with ret==-ENXIO.
2773 		 */
2774 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2775 					__perf_event_stop, &sd);
2776 	} while (ret == -EAGAIN);
2777 
2778 	return ret;
2779 }
2780 
2781 /*
2782  * In order to contain the amount of racy and tricky in the address filter
2783  * configuration management, it is a two part process:
2784  *
2785  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2786  *      we update the addresses of corresponding vmas in
2787  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2788  * (p2) when an event is scheduled in (pmu::add), it calls
2789  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2790  *      if the generation has changed since the previous call.
2791  *
2792  * If (p1) happens while the event is active, we restart it to force (p2).
2793  *
2794  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2795  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2796  *     ioctl;
2797  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2798  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2799  *     for reading;
2800  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2801  *     of exec.
2802  */
2803 void perf_event_addr_filters_sync(struct perf_event *event)
2804 {
2805 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2806 
2807 	if (!has_addr_filter(event))
2808 		return;
2809 
2810 	raw_spin_lock(&ifh->lock);
2811 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2812 		event->pmu->addr_filters_sync(event);
2813 		event->hw.addr_filters_gen = event->addr_filters_gen;
2814 	}
2815 	raw_spin_unlock(&ifh->lock);
2816 }
2817 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2818 
2819 static int _perf_event_refresh(struct perf_event *event, int refresh)
2820 {
2821 	/*
2822 	 * not supported on inherited events
2823 	 */
2824 	if (event->attr.inherit || !is_sampling_event(event))
2825 		return -EINVAL;
2826 
2827 	atomic_add(refresh, &event->event_limit);
2828 	_perf_event_enable(event);
2829 
2830 	return 0;
2831 }
2832 
2833 /*
2834  * See perf_event_disable()
2835  */
2836 int perf_event_refresh(struct perf_event *event, int refresh)
2837 {
2838 	struct perf_event_context *ctx;
2839 	int ret;
2840 
2841 	ctx = perf_event_ctx_lock(event);
2842 	ret = _perf_event_refresh(event, refresh);
2843 	perf_event_ctx_unlock(event, ctx);
2844 
2845 	return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(perf_event_refresh);
2848 
2849 static int perf_event_modify_breakpoint(struct perf_event *bp,
2850 					 struct perf_event_attr *attr)
2851 {
2852 	int err;
2853 
2854 	_perf_event_disable(bp);
2855 
2856 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2857 	if (err) {
2858 		if (!bp->attr.disabled)
2859 			_perf_event_enable(bp);
2860 
2861 		return err;
2862 	}
2863 
2864 	if (!attr->disabled)
2865 		_perf_event_enable(bp);
2866 	return 0;
2867 }
2868 
2869 static int perf_event_modify_attr(struct perf_event *event,
2870 				  struct perf_event_attr *attr)
2871 {
2872 	if (event->attr.type != attr->type)
2873 		return -EINVAL;
2874 
2875 	switch (event->attr.type) {
2876 	case PERF_TYPE_BREAKPOINT:
2877 		return perf_event_modify_breakpoint(event, attr);
2878 	default:
2879 		/* Place holder for future additions. */
2880 		return -EOPNOTSUPP;
2881 	}
2882 }
2883 
2884 static void ctx_sched_out(struct perf_event_context *ctx,
2885 			  struct perf_cpu_context *cpuctx,
2886 			  enum event_type_t event_type)
2887 {
2888 	struct perf_event *event, *tmp;
2889 	int is_active = ctx->is_active;
2890 
2891 	lockdep_assert_held(&ctx->lock);
2892 
2893 	if (likely(!ctx->nr_events)) {
2894 		/*
2895 		 * See __perf_remove_from_context().
2896 		 */
2897 		WARN_ON_ONCE(ctx->is_active);
2898 		if (ctx->task)
2899 			WARN_ON_ONCE(cpuctx->task_ctx);
2900 		return;
2901 	}
2902 
2903 	ctx->is_active &= ~event_type;
2904 	if (!(ctx->is_active & EVENT_ALL))
2905 		ctx->is_active = 0;
2906 
2907 	if (ctx->task) {
2908 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2909 		if (!ctx->is_active)
2910 			cpuctx->task_ctx = NULL;
2911 	}
2912 
2913 	/*
2914 	 * Always update time if it was set; not only when it changes.
2915 	 * Otherwise we can 'forget' to update time for any but the last
2916 	 * context we sched out. For example:
2917 	 *
2918 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2919 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2920 	 *
2921 	 * would only update time for the pinned events.
2922 	 */
2923 	if (is_active & EVENT_TIME) {
2924 		/* update (and stop) ctx time */
2925 		update_context_time(ctx);
2926 		update_cgrp_time_from_cpuctx(cpuctx);
2927 	}
2928 
2929 	is_active ^= ctx->is_active; /* changed bits */
2930 
2931 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2932 		return;
2933 
2934 	perf_pmu_disable(ctx->pmu);
2935 	if (is_active & EVENT_PINNED) {
2936 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2937 			group_sched_out(event, cpuctx, ctx);
2938 	}
2939 
2940 	if (is_active & EVENT_FLEXIBLE) {
2941 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2942 			group_sched_out(event, cpuctx, ctx);
2943 	}
2944 	perf_pmu_enable(ctx->pmu);
2945 }
2946 
2947 /*
2948  * Test whether two contexts are equivalent, i.e. whether they have both been
2949  * cloned from the same version of the same context.
2950  *
2951  * Equivalence is measured using a generation number in the context that is
2952  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2953  * and list_del_event().
2954  */
2955 static int context_equiv(struct perf_event_context *ctx1,
2956 			 struct perf_event_context *ctx2)
2957 {
2958 	lockdep_assert_held(&ctx1->lock);
2959 	lockdep_assert_held(&ctx2->lock);
2960 
2961 	/* Pinning disables the swap optimization */
2962 	if (ctx1->pin_count || ctx2->pin_count)
2963 		return 0;
2964 
2965 	/* If ctx1 is the parent of ctx2 */
2966 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2967 		return 1;
2968 
2969 	/* If ctx2 is the parent of ctx1 */
2970 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2971 		return 1;
2972 
2973 	/*
2974 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2975 	 * hierarchy, see perf_event_init_context().
2976 	 */
2977 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2978 			ctx1->parent_gen == ctx2->parent_gen)
2979 		return 1;
2980 
2981 	/* Unmatched */
2982 	return 0;
2983 }
2984 
2985 static void __perf_event_sync_stat(struct perf_event *event,
2986 				     struct perf_event *next_event)
2987 {
2988 	u64 value;
2989 
2990 	if (!event->attr.inherit_stat)
2991 		return;
2992 
2993 	/*
2994 	 * Update the event value, we cannot use perf_event_read()
2995 	 * because we're in the middle of a context switch and have IRQs
2996 	 * disabled, which upsets smp_call_function_single(), however
2997 	 * we know the event must be on the current CPU, therefore we
2998 	 * don't need to use it.
2999 	 */
3000 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3001 		event->pmu->read(event);
3002 
3003 	perf_event_update_time(event);
3004 
3005 	/*
3006 	 * In order to keep per-task stats reliable we need to flip the event
3007 	 * values when we flip the contexts.
3008 	 */
3009 	value = local64_read(&next_event->count);
3010 	value = local64_xchg(&event->count, value);
3011 	local64_set(&next_event->count, value);
3012 
3013 	swap(event->total_time_enabled, next_event->total_time_enabled);
3014 	swap(event->total_time_running, next_event->total_time_running);
3015 
3016 	/*
3017 	 * Since we swizzled the values, update the user visible data too.
3018 	 */
3019 	perf_event_update_userpage(event);
3020 	perf_event_update_userpage(next_event);
3021 }
3022 
3023 static void perf_event_sync_stat(struct perf_event_context *ctx,
3024 				   struct perf_event_context *next_ctx)
3025 {
3026 	struct perf_event *event, *next_event;
3027 
3028 	if (!ctx->nr_stat)
3029 		return;
3030 
3031 	update_context_time(ctx);
3032 
3033 	event = list_first_entry(&ctx->event_list,
3034 				   struct perf_event, event_entry);
3035 
3036 	next_event = list_first_entry(&next_ctx->event_list,
3037 					struct perf_event, event_entry);
3038 
3039 	while (&event->event_entry != &ctx->event_list &&
3040 	       &next_event->event_entry != &next_ctx->event_list) {
3041 
3042 		__perf_event_sync_stat(event, next_event);
3043 
3044 		event = list_next_entry(event, event_entry);
3045 		next_event = list_next_entry(next_event, event_entry);
3046 	}
3047 }
3048 
3049 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3050 					 struct task_struct *next)
3051 {
3052 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3053 	struct perf_event_context *next_ctx;
3054 	struct perf_event_context *parent, *next_parent;
3055 	struct perf_cpu_context *cpuctx;
3056 	int do_switch = 1;
3057 
3058 	if (likely(!ctx))
3059 		return;
3060 
3061 	cpuctx = __get_cpu_context(ctx);
3062 	if (!cpuctx->task_ctx)
3063 		return;
3064 
3065 	rcu_read_lock();
3066 	next_ctx = next->perf_event_ctxp[ctxn];
3067 	if (!next_ctx)
3068 		goto unlock;
3069 
3070 	parent = rcu_dereference(ctx->parent_ctx);
3071 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3072 
3073 	/* If neither context have a parent context; they cannot be clones. */
3074 	if (!parent && !next_parent)
3075 		goto unlock;
3076 
3077 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3078 		/*
3079 		 * Looks like the two contexts are clones, so we might be
3080 		 * able to optimize the context switch.  We lock both
3081 		 * contexts and check that they are clones under the
3082 		 * lock (including re-checking that neither has been
3083 		 * uncloned in the meantime).  It doesn't matter which
3084 		 * order we take the locks because no other cpu could
3085 		 * be trying to lock both of these tasks.
3086 		 */
3087 		raw_spin_lock(&ctx->lock);
3088 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3089 		if (context_equiv(ctx, next_ctx)) {
3090 			WRITE_ONCE(ctx->task, next);
3091 			WRITE_ONCE(next_ctx->task, task);
3092 
3093 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3094 
3095 			/*
3096 			 * RCU_INIT_POINTER here is safe because we've not
3097 			 * modified the ctx and the above modification of
3098 			 * ctx->task and ctx->task_ctx_data are immaterial
3099 			 * since those values are always verified under
3100 			 * ctx->lock which we're now holding.
3101 			 */
3102 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3103 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3104 
3105 			do_switch = 0;
3106 
3107 			perf_event_sync_stat(ctx, next_ctx);
3108 		}
3109 		raw_spin_unlock(&next_ctx->lock);
3110 		raw_spin_unlock(&ctx->lock);
3111 	}
3112 unlock:
3113 	rcu_read_unlock();
3114 
3115 	if (do_switch) {
3116 		raw_spin_lock(&ctx->lock);
3117 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3118 		raw_spin_unlock(&ctx->lock);
3119 	}
3120 }
3121 
3122 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3123 
3124 void perf_sched_cb_dec(struct pmu *pmu)
3125 {
3126 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3127 
3128 	this_cpu_dec(perf_sched_cb_usages);
3129 
3130 	if (!--cpuctx->sched_cb_usage)
3131 		list_del(&cpuctx->sched_cb_entry);
3132 }
3133 
3134 
3135 void perf_sched_cb_inc(struct pmu *pmu)
3136 {
3137 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3138 
3139 	if (!cpuctx->sched_cb_usage++)
3140 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3141 
3142 	this_cpu_inc(perf_sched_cb_usages);
3143 }
3144 
3145 /*
3146  * This function provides the context switch callback to the lower code
3147  * layer. It is invoked ONLY when the context switch callback is enabled.
3148  *
3149  * This callback is relevant even to per-cpu events; for example multi event
3150  * PEBS requires this to provide PID/TID information. This requires we flush
3151  * all queued PEBS records before we context switch to a new task.
3152  */
3153 static void perf_pmu_sched_task(struct task_struct *prev,
3154 				struct task_struct *next,
3155 				bool sched_in)
3156 {
3157 	struct perf_cpu_context *cpuctx;
3158 	struct pmu *pmu;
3159 
3160 	if (prev == next)
3161 		return;
3162 
3163 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3164 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3165 
3166 		if (WARN_ON_ONCE(!pmu->sched_task))
3167 			continue;
3168 
3169 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3170 		perf_pmu_disable(pmu);
3171 
3172 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3173 
3174 		perf_pmu_enable(pmu);
3175 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3176 	}
3177 }
3178 
3179 static void perf_event_switch(struct task_struct *task,
3180 			      struct task_struct *next_prev, bool sched_in);
3181 
3182 #define for_each_task_context_nr(ctxn)					\
3183 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3184 
3185 /*
3186  * Called from scheduler to remove the events of the current task,
3187  * with interrupts disabled.
3188  *
3189  * We stop each event and update the event value in event->count.
3190  *
3191  * This does not protect us against NMI, but disable()
3192  * sets the disabled bit in the control field of event _before_
3193  * accessing the event control register. If a NMI hits, then it will
3194  * not restart the event.
3195  */
3196 void __perf_event_task_sched_out(struct task_struct *task,
3197 				 struct task_struct *next)
3198 {
3199 	int ctxn;
3200 
3201 	if (__this_cpu_read(perf_sched_cb_usages))
3202 		perf_pmu_sched_task(task, next, false);
3203 
3204 	if (atomic_read(&nr_switch_events))
3205 		perf_event_switch(task, next, false);
3206 
3207 	for_each_task_context_nr(ctxn)
3208 		perf_event_context_sched_out(task, ctxn, next);
3209 
3210 	/*
3211 	 * if cgroup events exist on this CPU, then we need
3212 	 * to check if we have to switch out PMU state.
3213 	 * cgroup event are system-wide mode only
3214 	 */
3215 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 		perf_cgroup_sched_out(task, next);
3217 }
3218 
3219 /*
3220  * Called with IRQs disabled
3221  */
3222 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3223 			      enum event_type_t event_type)
3224 {
3225 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3226 }
3227 
3228 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3229 			      int (*func)(struct perf_event *, void *), void *data)
3230 {
3231 	struct perf_event **evt, *evt1, *evt2;
3232 	int ret;
3233 
3234 	evt1 = perf_event_groups_first(groups, -1);
3235 	evt2 = perf_event_groups_first(groups, cpu);
3236 
3237 	while (evt1 || evt2) {
3238 		if (evt1 && evt2) {
3239 			if (evt1->group_index < evt2->group_index)
3240 				evt = &evt1;
3241 			else
3242 				evt = &evt2;
3243 		} else if (evt1) {
3244 			evt = &evt1;
3245 		} else {
3246 			evt = &evt2;
3247 		}
3248 
3249 		ret = func(*evt, data);
3250 		if (ret)
3251 			return ret;
3252 
3253 		*evt = perf_event_groups_next(*evt);
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 struct sched_in_data {
3260 	struct perf_event_context *ctx;
3261 	struct perf_cpu_context *cpuctx;
3262 	int can_add_hw;
3263 };
3264 
3265 static int pinned_sched_in(struct perf_event *event, void *data)
3266 {
3267 	struct sched_in_data *sid = data;
3268 
3269 	if (event->state <= PERF_EVENT_STATE_OFF)
3270 		return 0;
3271 
3272 	if (!event_filter_match(event))
3273 		return 0;
3274 
3275 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3276 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3277 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3278 	}
3279 
3280 	/*
3281 	 * If this pinned group hasn't been scheduled,
3282 	 * put it in error state.
3283 	 */
3284 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3285 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3286 
3287 	return 0;
3288 }
3289 
3290 static int flexible_sched_in(struct perf_event *event, void *data)
3291 {
3292 	struct sched_in_data *sid = data;
3293 
3294 	if (event->state <= PERF_EVENT_STATE_OFF)
3295 		return 0;
3296 
3297 	if (!event_filter_match(event))
3298 		return 0;
3299 
3300 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3301 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3302 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3303 		else
3304 			sid->can_add_hw = 0;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 static void
3311 ctx_pinned_sched_in(struct perf_event_context *ctx,
3312 		    struct perf_cpu_context *cpuctx)
3313 {
3314 	struct sched_in_data sid = {
3315 		.ctx = ctx,
3316 		.cpuctx = cpuctx,
3317 		.can_add_hw = 1,
3318 	};
3319 
3320 	visit_groups_merge(&ctx->pinned_groups,
3321 			   smp_processor_id(),
3322 			   pinned_sched_in, &sid);
3323 }
3324 
3325 static void
3326 ctx_flexible_sched_in(struct perf_event_context *ctx,
3327 		      struct perf_cpu_context *cpuctx)
3328 {
3329 	struct sched_in_data sid = {
3330 		.ctx = ctx,
3331 		.cpuctx = cpuctx,
3332 		.can_add_hw = 1,
3333 	};
3334 
3335 	visit_groups_merge(&ctx->flexible_groups,
3336 			   smp_processor_id(),
3337 			   flexible_sched_in, &sid);
3338 }
3339 
3340 static void
3341 ctx_sched_in(struct perf_event_context *ctx,
3342 	     struct perf_cpu_context *cpuctx,
3343 	     enum event_type_t event_type,
3344 	     struct task_struct *task)
3345 {
3346 	int is_active = ctx->is_active;
3347 	u64 now;
3348 
3349 	lockdep_assert_held(&ctx->lock);
3350 
3351 	if (likely(!ctx->nr_events))
3352 		return;
3353 
3354 	ctx->is_active |= (event_type | EVENT_TIME);
3355 	if (ctx->task) {
3356 		if (!is_active)
3357 			cpuctx->task_ctx = ctx;
3358 		else
3359 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3360 	}
3361 
3362 	is_active ^= ctx->is_active; /* changed bits */
3363 
3364 	if (is_active & EVENT_TIME) {
3365 		/* start ctx time */
3366 		now = perf_clock();
3367 		ctx->timestamp = now;
3368 		perf_cgroup_set_timestamp(task, ctx);
3369 	}
3370 
3371 	/*
3372 	 * First go through the list and put on any pinned groups
3373 	 * in order to give them the best chance of going on.
3374 	 */
3375 	if (is_active & EVENT_PINNED)
3376 		ctx_pinned_sched_in(ctx, cpuctx);
3377 
3378 	/* Then walk through the lower prio flexible groups */
3379 	if (is_active & EVENT_FLEXIBLE)
3380 		ctx_flexible_sched_in(ctx, cpuctx);
3381 }
3382 
3383 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3384 			     enum event_type_t event_type,
3385 			     struct task_struct *task)
3386 {
3387 	struct perf_event_context *ctx = &cpuctx->ctx;
3388 
3389 	ctx_sched_in(ctx, cpuctx, event_type, task);
3390 }
3391 
3392 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3393 					struct task_struct *task)
3394 {
3395 	struct perf_cpu_context *cpuctx;
3396 
3397 	cpuctx = __get_cpu_context(ctx);
3398 	if (cpuctx->task_ctx == ctx)
3399 		return;
3400 
3401 	perf_ctx_lock(cpuctx, ctx);
3402 	/*
3403 	 * We must check ctx->nr_events while holding ctx->lock, such
3404 	 * that we serialize against perf_install_in_context().
3405 	 */
3406 	if (!ctx->nr_events)
3407 		goto unlock;
3408 
3409 	perf_pmu_disable(ctx->pmu);
3410 	/*
3411 	 * We want to keep the following priority order:
3412 	 * cpu pinned (that don't need to move), task pinned,
3413 	 * cpu flexible, task flexible.
3414 	 *
3415 	 * However, if task's ctx is not carrying any pinned
3416 	 * events, no need to flip the cpuctx's events around.
3417 	 */
3418 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3419 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3420 	perf_event_sched_in(cpuctx, ctx, task);
3421 	perf_pmu_enable(ctx->pmu);
3422 
3423 unlock:
3424 	perf_ctx_unlock(cpuctx, ctx);
3425 }
3426 
3427 /*
3428  * Called from scheduler to add the events of the current task
3429  * with interrupts disabled.
3430  *
3431  * We restore the event value and then enable it.
3432  *
3433  * This does not protect us against NMI, but enable()
3434  * sets the enabled bit in the control field of event _before_
3435  * accessing the event control register. If a NMI hits, then it will
3436  * keep the event running.
3437  */
3438 void __perf_event_task_sched_in(struct task_struct *prev,
3439 				struct task_struct *task)
3440 {
3441 	struct perf_event_context *ctx;
3442 	int ctxn;
3443 
3444 	/*
3445 	 * If cgroup events exist on this CPU, then we need to check if we have
3446 	 * to switch in PMU state; cgroup event are system-wide mode only.
3447 	 *
3448 	 * Since cgroup events are CPU events, we must schedule these in before
3449 	 * we schedule in the task events.
3450 	 */
3451 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3452 		perf_cgroup_sched_in(prev, task);
3453 
3454 	for_each_task_context_nr(ctxn) {
3455 		ctx = task->perf_event_ctxp[ctxn];
3456 		if (likely(!ctx))
3457 			continue;
3458 
3459 		perf_event_context_sched_in(ctx, task);
3460 	}
3461 
3462 	if (atomic_read(&nr_switch_events))
3463 		perf_event_switch(task, prev, true);
3464 
3465 	if (__this_cpu_read(perf_sched_cb_usages))
3466 		perf_pmu_sched_task(prev, task, true);
3467 }
3468 
3469 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3470 {
3471 	u64 frequency = event->attr.sample_freq;
3472 	u64 sec = NSEC_PER_SEC;
3473 	u64 divisor, dividend;
3474 
3475 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3476 
3477 	count_fls = fls64(count);
3478 	nsec_fls = fls64(nsec);
3479 	frequency_fls = fls64(frequency);
3480 	sec_fls = 30;
3481 
3482 	/*
3483 	 * We got @count in @nsec, with a target of sample_freq HZ
3484 	 * the target period becomes:
3485 	 *
3486 	 *             @count * 10^9
3487 	 * period = -------------------
3488 	 *          @nsec * sample_freq
3489 	 *
3490 	 */
3491 
3492 	/*
3493 	 * Reduce accuracy by one bit such that @a and @b converge
3494 	 * to a similar magnitude.
3495 	 */
3496 #define REDUCE_FLS(a, b)		\
3497 do {					\
3498 	if (a##_fls > b##_fls) {	\
3499 		a >>= 1;		\
3500 		a##_fls--;		\
3501 	} else {			\
3502 		b >>= 1;		\
3503 		b##_fls--;		\
3504 	}				\
3505 } while (0)
3506 
3507 	/*
3508 	 * Reduce accuracy until either term fits in a u64, then proceed with
3509 	 * the other, so that finally we can do a u64/u64 division.
3510 	 */
3511 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3512 		REDUCE_FLS(nsec, frequency);
3513 		REDUCE_FLS(sec, count);
3514 	}
3515 
3516 	if (count_fls + sec_fls > 64) {
3517 		divisor = nsec * frequency;
3518 
3519 		while (count_fls + sec_fls > 64) {
3520 			REDUCE_FLS(count, sec);
3521 			divisor >>= 1;
3522 		}
3523 
3524 		dividend = count * sec;
3525 	} else {
3526 		dividend = count * sec;
3527 
3528 		while (nsec_fls + frequency_fls > 64) {
3529 			REDUCE_FLS(nsec, frequency);
3530 			dividend >>= 1;
3531 		}
3532 
3533 		divisor = nsec * frequency;
3534 	}
3535 
3536 	if (!divisor)
3537 		return dividend;
3538 
3539 	return div64_u64(dividend, divisor);
3540 }
3541 
3542 static DEFINE_PER_CPU(int, perf_throttled_count);
3543 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3544 
3545 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3546 {
3547 	struct hw_perf_event *hwc = &event->hw;
3548 	s64 period, sample_period;
3549 	s64 delta;
3550 
3551 	period = perf_calculate_period(event, nsec, count);
3552 
3553 	delta = (s64)(period - hwc->sample_period);
3554 	delta = (delta + 7) / 8; /* low pass filter */
3555 
3556 	sample_period = hwc->sample_period + delta;
3557 
3558 	if (!sample_period)
3559 		sample_period = 1;
3560 
3561 	hwc->sample_period = sample_period;
3562 
3563 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3564 		if (disable)
3565 			event->pmu->stop(event, PERF_EF_UPDATE);
3566 
3567 		local64_set(&hwc->period_left, 0);
3568 
3569 		if (disable)
3570 			event->pmu->start(event, PERF_EF_RELOAD);
3571 	}
3572 }
3573 
3574 /*
3575  * combine freq adjustment with unthrottling to avoid two passes over the
3576  * events. At the same time, make sure, having freq events does not change
3577  * the rate of unthrottling as that would introduce bias.
3578  */
3579 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3580 					   int needs_unthr)
3581 {
3582 	struct perf_event *event;
3583 	struct hw_perf_event *hwc;
3584 	u64 now, period = TICK_NSEC;
3585 	s64 delta;
3586 
3587 	/*
3588 	 * only need to iterate over all events iff:
3589 	 * - context have events in frequency mode (needs freq adjust)
3590 	 * - there are events to unthrottle on this cpu
3591 	 */
3592 	if (!(ctx->nr_freq || needs_unthr))
3593 		return;
3594 
3595 	raw_spin_lock(&ctx->lock);
3596 	perf_pmu_disable(ctx->pmu);
3597 
3598 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3599 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3600 			continue;
3601 
3602 		if (!event_filter_match(event))
3603 			continue;
3604 
3605 		perf_pmu_disable(event->pmu);
3606 
3607 		hwc = &event->hw;
3608 
3609 		if (hwc->interrupts == MAX_INTERRUPTS) {
3610 			hwc->interrupts = 0;
3611 			perf_log_throttle(event, 1);
3612 			event->pmu->start(event, 0);
3613 		}
3614 
3615 		if (!event->attr.freq || !event->attr.sample_freq)
3616 			goto next;
3617 
3618 		/*
3619 		 * stop the event and update event->count
3620 		 */
3621 		event->pmu->stop(event, PERF_EF_UPDATE);
3622 
3623 		now = local64_read(&event->count);
3624 		delta = now - hwc->freq_count_stamp;
3625 		hwc->freq_count_stamp = now;
3626 
3627 		/*
3628 		 * restart the event
3629 		 * reload only if value has changed
3630 		 * we have stopped the event so tell that
3631 		 * to perf_adjust_period() to avoid stopping it
3632 		 * twice.
3633 		 */
3634 		if (delta > 0)
3635 			perf_adjust_period(event, period, delta, false);
3636 
3637 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3638 	next:
3639 		perf_pmu_enable(event->pmu);
3640 	}
3641 
3642 	perf_pmu_enable(ctx->pmu);
3643 	raw_spin_unlock(&ctx->lock);
3644 }
3645 
3646 /*
3647  * Move @event to the tail of the @ctx's elegible events.
3648  */
3649 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3650 {
3651 	/*
3652 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3653 	 * disabled by the inheritance code.
3654 	 */
3655 	if (ctx->rotate_disable)
3656 		return;
3657 
3658 	perf_event_groups_delete(&ctx->flexible_groups, event);
3659 	perf_event_groups_insert(&ctx->flexible_groups, event);
3660 }
3661 
3662 static inline struct perf_event *
3663 ctx_first_active(struct perf_event_context *ctx)
3664 {
3665 	return list_first_entry_or_null(&ctx->flexible_active,
3666 					struct perf_event, active_list);
3667 }
3668 
3669 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3670 {
3671 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3672 	bool cpu_rotate = false, task_rotate = false;
3673 	struct perf_event_context *ctx = NULL;
3674 
3675 	/*
3676 	 * Since we run this from IRQ context, nobody can install new
3677 	 * events, thus the event count values are stable.
3678 	 */
3679 
3680 	if (cpuctx->ctx.nr_events) {
3681 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3682 			cpu_rotate = true;
3683 	}
3684 
3685 	ctx = cpuctx->task_ctx;
3686 	if (ctx && ctx->nr_events) {
3687 		if (ctx->nr_events != ctx->nr_active)
3688 			task_rotate = true;
3689 	}
3690 
3691 	if (!(cpu_rotate || task_rotate))
3692 		return false;
3693 
3694 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3695 	perf_pmu_disable(cpuctx->ctx.pmu);
3696 
3697 	if (task_rotate)
3698 		task_event = ctx_first_active(ctx);
3699 	if (cpu_rotate)
3700 		cpu_event = ctx_first_active(&cpuctx->ctx);
3701 
3702 	/*
3703 	 * As per the order given at ctx_resched() first 'pop' task flexible
3704 	 * and then, if needed CPU flexible.
3705 	 */
3706 	if (task_event || (ctx && cpu_event))
3707 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3708 	if (cpu_event)
3709 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3710 
3711 	if (task_event)
3712 		rotate_ctx(ctx, task_event);
3713 	if (cpu_event)
3714 		rotate_ctx(&cpuctx->ctx, cpu_event);
3715 
3716 	perf_event_sched_in(cpuctx, ctx, current);
3717 
3718 	perf_pmu_enable(cpuctx->ctx.pmu);
3719 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3720 
3721 	return true;
3722 }
3723 
3724 void perf_event_task_tick(void)
3725 {
3726 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3727 	struct perf_event_context *ctx, *tmp;
3728 	int throttled;
3729 
3730 	lockdep_assert_irqs_disabled();
3731 
3732 	__this_cpu_inc(perf_throttled_seq);
3733 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3734 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3735 
3736 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3737 		perf_adjust_freq_unthr_context(ctx, throttled);
3738 }
3739 
3740 static int event_enable_on_exec(struct perf_event *event,
3741 				struct perf_event_context *ctx)
3742 {
3743 	if (!event->attr.enable_on_exec)
3744 		return 0;
3745 
3746 	event->attr.enable_on_exec = 0;
3747 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3748 		return 0;
3749 
3750 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3751 
3752 	return 1;
3753 }
3754 
3755 /*
3756  * Enable all of a task's events that have been marked enable-on-exec.
3757  * This expects task == current.
3758  */
3759 static void perf_event_enable_on_exec(int ctxn)
3760 {
3761 	struct perf_event_context *ctx, *clone_ctx = NULL;
3762 	enum event_type_t event_type = 0;
3763 	struct perf_cpu_context *cpuctx;
3764 	struct perf_event *event;
3765 	unsigned long flags;
3766 	int enabled = 0;
3767 
3768 	local_irq_save(flags);
3769 	ctx = current->perf_event_ctxp[ctxn];
3770 	if (!ctx || !ctx->nr_events)
3771 		goto out;
3772 
3773 	cpuctx = __get_cpu_context(ctx);
3774 	perf_ctx_lock(cpuctx, ctx);
3775 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3776 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3777 		enabled |= event_enable_on_exec(event, ctx);
3778 		event_type |= get_event_type(event);
3779 	}
3780 
3781 	/*
3782 	 * Unclone and reschedule this context if we enabled any event.
3783 	 */
3784 	if (enabled) {
3785 		clone_ctx = unclone_ctx(ctx);
3786 		ctx_resched(cpuctx, ctx, event_type);
3787 	} else {
3788 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3789 	}
3790 	perf_ctx_unlock(cpuctx, ctx);
3791 
3792 out:
3793 	local_irq_restore(flags);
3794 
3795 	if (clone_ctx)
3796 		put_ctx(clone_ctx);
3797 }
3798 
3799 struct perf_read_data {
3800 	struct perf_event *event;
3801 	bool group;
3802 	int ret;
3803 };
3804 
3805 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3806 {
3807 	u16 local_pkg, event_pkg;
3808 
3809 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3810 		int local_cpu = smp_processor_id();
3811 
3812 		event_pkg = topology_physical_package_id(event_cpu);
3813 		local_pkg = topology_physical_package_id(local_cpu);
3814 
3815 		if (event_pkg == local_pkg)
3816 			return local_cpu;
3817 	}
3818 
3819 	return event_cpu;
3820 }
3821 
3822 /*
3823  * Cross CPU call to read the hardware event
3824  */
3825 static void __perf_event_read(void *info)
3826 {
3827 	struct perf_read_data *data = info;
3828 	struct perf_event *sub, *event = data->event;
3829 	struct perf_event_context *ctx = event->ctx;
3830 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3831 	struct pmu *pmu = event->pmu;
3832 
3833 	/*
3834 	 * If this is a task context, we need to check whether it is
3835 	 * the current task context of this cpu.  If not it has been
3836 	 * scheduled out before the smp call arrived.  In that case
3837 	 * event->count would have been updated to a recent sample
3838 	 * when the event was scheduled out.
3839 	 */
3840 	if (ctx->task && cpuctx->task_ctx != ctx)
3841 		return;
3842 
3843 	raw_spin_lock(&ctx->lock);
3844 	if (ctx->is_active & EVENT_TIME) {
3845 		update_context_time(ctx);
3846 		update_cgrp_time_from_event(event);
3847 	}
3848 
3849 	perf_event_update_time(event);
3850 	if (data->group)
3851 		perf_event_update_sibling_time(event);
3852 
3853 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3854 		goto unlock;
3855 
3856 	if (!data->group) {
3857 		pmu->read(event);
3858 		data->ret = 0;
3859 		goto unlock;
3860 	}
3861 
3862 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3863 
3864 	pmu->read(event);
3865 
3866 	for_each_sibling_event(sub, event) {
3867 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3868 			/*
3869 			 * Use sibling's PMU rather than @event's since
3870 			 * sibling could be on different (eg: software) PMU.
3871 			 */
3872 			sub->pmu->read(sub);
3873 		}
3874 	}
3875 
3876 	data->ret = pmu->commit_txn(pmu);
3877 
3878 unlock:
3879 	raw_spin_unlock(&ctx->lock);
3880 }
3881 
3882 static inline u64 perf_event_count(struct perf_event *event)
3883 {
3884 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3885 }
3886 
3887 /*
3888  * NMI-safe method to read a local event, that is an event that
3889  * is:
3890  *   - either for the current task, or for this CPU
3891  *   - does not have inherit set, for inherited task events
3892  *     will not be local and we cannot read them atomically
3893  *   - must not have a pmu::count method
3894  */
3895 int perf_event_read_local(struct perf_event *event, u64 *value,
3896 			  u64 *enabled, u64 *running)
3897 {
3898 	unsigned long flags;
3899 	int ret = 0;
3900 
3901 	/*
3902 	 * Disabling interrupts avoids all counter scheduling (context
3903 	 * switches, timer based rotation and IPIs).
3904 	 */
3905 	local_irq_save(flags);
3906 
3907 	/*
3908 	 * It must not be an event with inherit set, we cannot read
3909 	 * all child counters from atomic context.
3910 	 */
3911 	if (event->attr.inherit) {
3912 		ret = -EOPNOTSUPP;
3913 		goto out;
3914 	}
3915 
3916 	/* If this is a per-task event, it must be for current */
3917 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3918 	    event->hw.target != current) {
3919 		ret = -EINVAL;
3920 		goto out;
3921 	}
3922 
3923 	/* If this is a per-CPU event, it must be for this CPU */
3924 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3925 	    event->cpu != smp_processor_id()) {
3926 		ret = -EINVAL;
3927 		goto out;
3928 	}
3929 
3930 	/*
3931 	 * If the event is currently on this CPU, its either a per-task event,
3932 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3933 	 * oncpu == -1).
3934 	 */
3935 	if (event->oncpu == smp_processor_id())
3936 		event->pmu->read(event);
3937 
3938 	*value = local64_read(&event->count);
3939 	if (enabled || running) {
3940 		u64 now = event->shadow_ctx_time + perf_clock();
3941 		u64 __enabled, __running;
3942 
3943 		__perf_update_times(event, now, &__enabled, &__running);
3944 		if (enabled)
3945 			*enabled = __enabled;
3946 		if (running)
3947 			*running = __running;
3948 	}
3949 out:
3950 	local_irq_restore(flags);
3951 
3952 	return ret;
3953 }
3954 
3955 static int perf_event_read(struct perf_event *event, bool group)
3956 {
3957 	enum perf_event_state state = READ_ONCE(event->state);
3958 	int event_cpu, ret = 0;
3959 
3960 	/*
3961 	 * If event is enabled and currently active on a CPU, update the
3962 	 * value in the event structure:
3963 	 */
3964 again:
3965 	if (state == PERF_EVENT_STATE_ACTIVE) {
3966 		struct perf_read_data data;
3967 
3968 		/*
3969 		 * Orders the ->state and ->oncpu loads such that if we see
3970 		 * ACTIVE we must also see the right ->oncpu.
3971 		 *
3972 		 * Matches the smp_wmb() from event_sched_in().
3973 		 */
3974 		smp_rmb();
3975 
3976 		event_cpu = READ_ONCE(event->oncpu);
3977 		if ((unsigned)event_cpu >= nr_cpu_ids)
3978 			return 0;
3979 
3980 		data = (struct perf_read_data){
3981 			.event = event,
3982 			.group = group,
3983 			.ret = 0,
3984 		};
3985 
3986 		preempt_disable();
3987 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3988 
3989 		/*
3990 		 * Purposely ignore the smp_call_function_single() return
3991 		 * value.
3992 		 *
3993 		 * If event_cpu isn't a valid CPU it means the event got
3994 		 * scheduled out and that will have updated the event count.
3995 		 *
3996 		 * Therefore, either way, we'll have an up-to-date event count
3997 		 * after this.
3998 		 */
3999 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4000 		preempt_enable();
4001 		ret = data.ret;
4002 
4003 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4004 		struct perf_event_context *ctx = event->ctx;
4005 		unsigned long flags;
4006 
4007 		raw_spin_lock_irqsave(&ctx->lock, flags);
4008 		state = event->state;
4009 		if (state != PERF_EVENT_STATE_INACTIVE) {
4010 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4011 			goto again;
4012 		}
4013 
4014 		/*
4015 		 * May read while context is not active (e.g., thread is
4016 		 * blocked), in that case we cannot update context time
4017 		 */
4018 		if (ctx->is_active & EVENT_TIME) {
4019 			update_context_time(ctx);
4020 			update_cgrp_time_from_event(event);
4021 		}
4022 
4023 		perf_event_update_time(event);
4024 		if (group)
4025 			perf_event_update_sibling_time(event);
4026 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027 	}
4028 
4029 	return ret;
4030 }
4031 
4032 /*
4033  * Initialize the perf_event context in a task_struct:
4034  */
4035 static void __perf_event_init_context(struct perf_event_context *ctx)
4036 {
4037 	raw_spin_lock_init(&ctx->lock);
4038 	mutex_init(&ctx->mutex);
4039 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4040 	perf_event_groups_init(&ctx->pinned_groups);
4041 	perf_event_groups_init(&ctx->flexible_groups);
4042 	INIT_LIST_HEAD(&ctx->event_list);
4043 	INIT_LIST_HEAD(&ctx->pinned_active);
4044 	INIT_LIST_HEAD(&ctx->flexible_active);
4045 	atomic_set(&ctx->refcount, 1);
4046 }
4047 
4048 static struct perf_event_context *
4049 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4050 {
4051 	struct perf_event_context *ctx;
4052 
4053 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4054 	if (!ctx)
4055 		return NULL;
4056 
4057 	__perf_event_init_context(ctx);
4058 	if (task) {
4059 		ctx->task = task;
4060 		get_task_struct(task);
4061 	}
4062 	ctx->pmu = pmu;
4063 
4064 	return ctx;
4065 }
4066 
4067 static struct task_struct *
4068 find_lively_task_by_vpid(pid_t vpid)
4069 {
4070 	struct task_struct *task;
4071 
4072 	rcu_read_lock();
4073 	if (!vpid)
4074 		task = current;
4075 	else
4076 		task = find_task_by_vpid(vpid);
4077 	if (task)
4078 		get_task_struct(task);
4079 	rcu_read_unlock();
4080 
4081 	if (!task)
4082 		return ERR_PTR(-ESRCH);
4083 
4084 	return task;
4085 }
4086 
4087 /*
4088  * Returns a matching context with refcount and pincount.
4089  */
4090 static struct perf_event_context *
4091 find_get_context(struct pmu *pmu, struct task_struct *task,
4092 		struct perf_event *event)
4093 {
4094 	struct perf_event_context *ctx, *clone_ctx = NULL;
4095 	struct perf_cpu_context *cpuctx;
4096 	void *task_ctx_data = NULL;
4097 	unsigned long flags;
4098 	int ctxn, err;
4099 	int cpu = event->cpu;
4100 
4101 	if (!task) {
4102 		/* Must be root to operate on a CPU event: */
4103 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4104 			return ERR_PTR(-EACCES);
4105 
4106 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4107 		ctx = &cpuctx->ctx;
4108 		get_ctx(ctx);
4109 		++ctx->pin_count;
4110 
4111 		return ctx;
4112 	}
4113 
4114 	err = -EINVAL;
4115 	ctxn = pmu->task_ctx_nr;
4116 	if (ctxn < 0)
4117 		goto errout;
4118 
4119 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4120 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4121 		if (!task_ctx_data) {
4122 			err = -ENOMEM;
4123 			goto errout;
4124 		}
4125 	}
4126 
4127 retry:
4128 	ctx = perf_lock_task_context(task, ctxn, &flags);
4129 	if (ctx) {
4130 		clone_ctx = unclone_ctx(ctx);
4131 		++ctx->pin_count;
4132 
4133 		if (task_ctx_data && !ctx->task_ctx_data) {
4134 			ctx->task_ctx_data = task_ctx_data;
4135 			task_ctx_data = NULL;
4136 		}
4137 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4138 
4139 		if (clone_ctx)
4140 			put_ctx(clone_ctx);
4141 	} else {
4142 		ctx = alloc_perf_context(pmu, task);
4143 		err = -ENOMEM;
4144 		if (!ctx)
4145 			goto errout;
4146 
4147 		if (task_ctx_data) {
4148 			ctx->task_ctx_data = task_ctx_data;
4149 			task_ctx_data = NULL;
4150 		}
4151 
4152 		err = 0;
4153 		mutex_lock(&task->perf_event_mutex);
4154 		/*
4155 		 * If it has already passed perf_event_exit_task().
4156 		 * we must see PF_EXITING, it takes this mutex too.
4157 		 */
4158 		if (task->flags & PF_EXITING)
4159 			err = -ESRCH;
4160 		else if (task->perf_event_ctxp[ctxn])
4161 			err = -EAGAIN;
4162 		else {
4163 			get_ctx(ctx);
4164 			++ctx->pin_count;
4165 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4166 		}
4167 		mutex_unlock(&task->perf_event_mutex);
4168 
4169 		if (unlikely(err)) {
4170 			put_ctx(ctx);
4171 
4172 			if (err == -EAGAIN)
4173 				goto retry;
4174 			goto errout;
4175 		}
4176 	}
4177 
4178 	kfree(task_ctx_data);
4179 	return ctx;
4180 
4181 errout:
4182 	kfree(task_ctx_data);
4183 	return ERR_PTR(err);
4184 }
4185 
4186 static void perf_event_free_filter(struct perf_event *event);
4187 static void perf_event_free_bpf_prog(struct perf_event *event);
4188 
4189 static void free_event_rcu(struct rcu_head *head)
4190 {
4191 	struct perf_event *event;
4192 
4193 	event = container_of(head, struct perf_event, rcu_head);
4194 	if (event->ns)
4195 		put_pid_ns(event->ns);
4196 	perf_event_free_filter(event);
4197 	kfree(event);
4198 }
4199 
4200 static void ring_buffer_attach(struct perf_event *event,
4201 			       struct ring_buffer *rb);
4202 
4203 static void detach_sb_event(struct perf_event *event)
4204 {
4205 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4206 
4207 	raw_spin_lock(&pel->lock);
4208 	list_del_rcu(&event->sb_list);
4209 	raw_spin_unlock(&pel->lock);
4210 }
4211 
4212 static bool is_sb_event(struct perf_event *event)
4213 {
4214 	struct perf_event_attr *attr = &event->attr;
4215 
4216 	if (event->parent)
4217 		return false;
4218 
4219 	if (event->attach_state & PERF_ATTACH_TASK)
4220 		return false;
4221 
4222 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4223 	    attr->comm || attr->comm_exec ||
4224 	    attr->task ||
4225 	    attr->context_switch)
4226 		return true;
4227 	return false;
4228 }
4229 
4230 static void unaccount_pmu_sb_event(struct perf_event *event)
4231 {
4232 	if (is_sb_event(event))
4233 		detach_sb_event(event);
4234 }
4235 
4236 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4237 {
4238 	if (event->parent)
4239 		return;
4240 
4241 	if (is_cgroup_event(event))
4242 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4243 }
4244 
4245 #ifdef CONFIG_NO_HZ_FULL
4246 static DEFINE_SPINLOCK(nr_freq_lock);
4247 #endif
4248 
4249 static void unaccount_freq_event_nohz(void)
4250 {
4251 #ifdef CONFIG_NO_HZ_FULL
4252 	spin_lock(&nr_freq_lock);
4253 	if (atomic_dec_and_test(&nr_freq_events))
4254 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4255 	spin_unlock(&nr_freq_lock);
4256 #endif
4257 }
4258 
4259 static void unaccount_freq_event(void)
4260 {
4261 	if (tick_nohz_full_enabled())
4262 		unaccount_freq_event_nohz();
4263 	else
4264 		atomic_dec(&nr_freq_events);
4265 }
4266 
4267 static void unaccount_event(struct perf_event *event)
4268 {
4269 	bool dec = false;
4270 
4271 	if (event->parent)
4272 		return;
4273 
4274 	if (event->attach_state & PERF_ATTACH_TASK)
4275 		dec = true;
4276 	if (event->attr.mmap || event->attr.mmap_data)
4277 		atomic_dec(&nr_mmap_events);
4278 	if (event->attr.comm)
4279 		atomic_dec(&nr_comm_events);
4280 	if (event->attr.namespaces)
4281 		atomic_dec(&nr_namespaces_events);
4282 	if (event->attr.task)
4283 		atomic_dec(&nr_task_events);
4284 	if (event->attr.freq)
4285 		unaccount_freq_event();
4286 	if (event->attr.context_switch) {
4287 		dec = true;
4288 		atomic_dec(&nr_switch_events);
4289 	}
4290 	if (is_cgroup_event(event))
4291 		dec = true;
4292 	if (has_branch_stack(event))
4293 		dec = true;
4294 
4295 	if (dec) {
4296 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4297 			schedule_delayed_work(&perf_sched_work, HZ);
4298 	}
4299 
4300 	unaccount_event_cpu(event, event->cpu);
4301 
4302 	unaccount_pmu_sb_event(event);
4303 }
4304 
4305 static void perf_sched_delayed(struct work_struct *work)
4306 {
4307 	mutex_lock(&perf_sched_mutex);
4308 	if (atomic_dec_and_test(&perf_sched_count))
4309 		static_branch_disable(&perf_sched_events);
4310 	mutex_unlock(&perf_sched_mutex);
4311 }
4312 
4313 /*
4314  * The following implement mutual exclusion of events on "exclusive" pmus
4315  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4316  * at a time, so we disallow creating events that might conflict, namely:
4317  *
4318  *  1) cpu-wide events in the presence of per-task events,
4319  *  2) per-task events in the presence of cpu-wide events,
4320  *  3) two matching events on the same context.
4321  *
4322  * The former two cases are handled in the allocation path (perf_event_alloc(),
4323  * _free_event()), the latter -- before the first perf_install_in_context().
4324  */
4325 static int exclusive_event_init(struct perf_event *event)
4326 {
4327 	struct pmu *pmu = event->pmu;
4328 
4329 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4330 		return 0;
4331 
4332 	/*
4333 	 * Prevent co-existence of per-task and cpu-wide events on the
4334 	 * same exclusive pmu.
4335 	 *
4336 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4337 	 * events on this "exclusive" pmu, positive means there are
4338 	 * per-task events.
4339 	 *
4340 	 * Since this is called in perf_event_alloc() path, event::ctx
4341 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4342 	 * to mean "per-task event", because unlike other attach states it
4343 	 * never gets cleared.
4344 	 */
4345 	if (event->attach_state & PERF_ATTACH_TASK) {
4346 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4347 			return -EBUSY;
4348 	} else {
4349 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4350 			return -EBUSY;
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 static void exclusive_event_destroy(struct perf_event *event)
4357 {
4358 	struct pmu *pmu = event->pmu;
4359 
4360 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4361 		return;
4362 
4363 	/* see comment in exclusive_event_init() */
4364 	if (event->attach_state & PERF_ATTACH_TASK)
4365 		atomic_dec(&pmu->exclusive_cnt);
4366 	else
4367 		atomic_inc(&pmu->exclusive_cnt);
4368 }
4369 
4370 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4371 {
4372 	if ((e1->pmu == e2->pmu) &&
4373 	    (e1->cpu == e2->cpu ||
4374 	     e1->cpu == -1 ||
4375 	     e2->cpu == -1))
4376 		return true;
4377 	return false;
4378 }
4379 
4380 /* Called under the same ctx::mutex as perf_install_in_context() */
4381 static bool exclusive_event_installable(struct perf_event *event,
4382 					struct perf_event_context *ctx)
4383 {
4384 	struct perf_event *iter_event;
4385 	struct pmu *pmu = event->pmu;
4386 
4387 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4388 		return true;
4389 
4390 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4391 		if (exclusive_event_match(iter_event, event))
4392 			return false;
4393 	}
4394 
4395 	return true;
4396 }
4397 
4398 static void perf_addr_filters_splice(struct perf_event *event,
4399 				       struct list_head *head);
4400 
4401 static void _free_event(struct perf_event *event)
4402 {
4403 	irq_work_sync(&event->pending);
4404 
4405 	unaccount_event(event);
4406 
4407 	if (event->rb) {
4408 		/*
4409 		 * Can happen when we close an event with re-directed output.
4410 		 *
4411 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4412 		 * over us; possibly making our ring_buffer_put() the last.
4413 		 */
4414 		mutex_lock(&event->mmap_mutex);
4415 		ring_buffer_attach(event, NULL);
4416 		mutex_unlock(&event->mmap_mutex);
4417 	}
4418 
4419 	if (is_cgroup_event(event))
4420 		perf_detach_cgroup(event);
4421 
4422 	if (!event->parent) {
4423 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4424 			put_callchain_buffers();
4425 	}
4426 
4427 	perf_event_free_bpf_prog(event);
4428 	perf_addr_filters_splice(event, NULL);
4429 	kfree(event->addr_filters_offs);
4430 
4431 	if (event->destroy)
4432 		event->destroy(event);
4433 
4434 	if (event->ctx)
4435 		put_ctx(event->ctx);
4436 
4437 	exclusive_event_destroy(event);
4438 	module_put(event->pmu->module);
4439 
4440 	call_rcu(&event->rcu_head, free_event_rcu);
4441 }
4442 
4443 /*
4444  * Used to free events which have a known refcount of 1, such as in error paths
4445  * where the event isn't exposed yet and inherited events.
4446  */
4447 static void free_event(struct perf_event *event)
4448 {
4449 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4450 				"unexpected event refcount: %ld; ptr=%p\n",
4451 				atomic_long_read(&event->refcount), event)) {
4452 		/* leak to avoid use-after-free */
4453 		return;
4454 	}
4455 
4456 	_free_event(event);
4457 }
4458 
4459 /*
4460  * Remove user event from the owner task.
4461  */
4462 static void perf_remove_from_owner(struct perf_event *event)
4463 {
4464 	struct task_struct *owner;
4465 
4466 	rcu_read_lock();
4467 	/*
4468 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4469 	 * observe !owner it means the list deletion is complete and we can
4470 	 * indeed free this event, otherwise we need to serialize on
4471 	 * owner->perf_event_mutex.
4472 	 */
4473 	owner = READ_ONCE(event->owner);
4474 	if (owner) {
4475 		/*
4476 		 * Since delayed_put_task_struct() also drops the last
4477 		 * task reference we can safely take a new reference
4478 		 * while holding the rcu_read_lock().
4479 		 */
4480 		get_task_struct(owner);
4481 	}
4482 	rcu_read_unlock();
4483 
4484 	if (owner) {
4485 		/*
4486 		 * If we're here through perf_event_exit_task() we're already
4487 		 * holding ctx->mutex which would be an inversion wrt. the
4488 		 * normal lock order.
4489 		 *
4490 		 * However we can safely take this lock because its the child
4491 		 * ctx->mutex.
4492 		 */
4493 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4494 
4495 		/*
4496 		 * We have to re-check the event->owner field, if it is cleared
4497 		 * we raced with perf_event_exit_task(), acquiring the mutex
4498 		 * ensured they're done, and we can proceed with freeing the
4499 		 * event.
4500 		 */
4501 		if (event->owner) {
4502 			list_del_init(&event->owner_entry);
4503 			smp_store_release(&event->owner, NULL);
4504 		}
4505 		mutex_unlock(&owner->perf_event_mutex);
4506 		put_task_struct(owner);
4507 	}
4508 }
4509 
4510 static void put_event(struct perf_event *event)
4511 {
4512 	if (!atomic_long_dec_and_test(&event->refcount))
4513 		return;
4514 
4515 	_free_event(event);
4516 }
4517 
4518 /*
4519  * Kill an event dead; while event:refcount will preserve the event
4520  * object, it will not preserve its functionality. Once the last 'user'
4521  * gives up the object, we'll destroy the thing.
4522  */
4523 int perf_event_release_kernel(struct perf_event *event)
4524 {
4525 	struct perf_event_context *ctx = event->ctx;
4526 	struct perf_event *child, *tmp;
4527 	LIST_HEAD(free_list);
4528 
4529 	/*
4530 	 * If we got here through err_file: fput(event_file); we will not have
4531 	 * attached to a context yet.
4532 	 */
4533 	if (!ctx) {
4534 		WARN_ON_ONCE(event->attach_state &
4535 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4536 		goto no_ctx;
4537 	}
4538 
4539 	if (!is_kernel_event(event))
4540 		perf_remove_from_owner(event);
4541 
4542 	ctx = perf_event_ctx_lock(event);
4543 	WARN_ON_ONCE(ctx->parent_ctx);
4544 	perf_remove_from_context(event, DETACH_GROUP);
4545 
4546 	raw_spin_lock_irq(&ctx->lock);
4547 	/*
4548 	 * Mark this event as STATE_DEAD, there is no external reference to it
4549 	 * anymore.
4550 	 *
4551 	 * Anybody acquiring event->child_mutex after the below loop _must_
4552 	 * also see this, most importantly inherit_event() which will avoid
4553 	 * placing more children on the list.
4554 	 *
4555 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4556 	 * child events.
4557 	 */
4558 	event->state = PERF_EVENT_STATE_DEAD;
4559 	raw_spin_unlock_irq(&ctx->lock);
4560 
4561 	perf_event_ctx_unlock(event, ctx);
4562 
4563 again:
4564 	mutex_lock(&event->child_mutex);
4565 	list_for_each_entry(child, &event->child_list, child_list) {
4566 
4567 		/*
4568 		 * Cannot change, child events are not migrated, see the
4569 		 * comment with perf_event_ctx_lock_nested().
4570 		 */
4571 		ctx = READ_ONCE(child->ctx);
4572 		/*
4573 		 * Since child_mutex nests inside ctx::mutex, we must jump
4574 		 * through hoops. We start by grabbing a reference on the ctx.
4575 		 *
4576 		 * Since the event cannot get freed while we hold the
4577 		 * child_mutex, the context must also exist and have a !0
4578 		 * reference count.
4579 		 */
4580 		get_ctx(ctx);
4581 
4582 		/*
4583 		 * Now that we have a ctx ref, we can drop child_mutex, and
4584 		 * acquire ctx::mutex without fear of it going away. Then we
4585 		 * can re-acquire child_mutex.
4586 		 */
4587 		mutex_unlock(&event->child_mutex);
4588 		mutex_lock(&ctx->mutex);
4589 		mutex_lock(&event->child_mutex);
4590 
4591 		/*
4592 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4593 		 * state, if child is still the first entry, it didn't get freed
4594 		 * and we can continue doing so.
4595 		 */
4596 		tmp = list_first_entry_or_null(&event->child_list,
4597 					       struct perf_event, child_list);
4598 		if (tmp == child) {
4599 			perf_remove_from_context(child, DETACH_GROUP);
4600 			list_move(&child->child_list, &free_list);
4601 			/*
4602 			 * This matches the refcount bump in inherit_event();
4603 			 * this can't be the last reference.
4604 			 */
4605 			put_event(event);
4606 		}
4607 
4608 		mutex_unlock(&event->child_mutex);
4609 		mutex_unlock(&ctx->mutex);
4610 		put_ctx(ctx);
4611 		goto again;
4612 	}
4613 	mutex_unlock(&event->child_mutex);
4614 
4615 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4616 		list_del(&child->child_list);
4617 		free_event(child);
4618 	}
4619 
4620 no_ctx:
4621 	put_event(event); /* Must be the 'last' reference */
4622 	return 0;
4623 }
4624 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4625 
4626 /*
4627  * Called when the last reference to the file is gone.
4628  */
4629 static int perf_release(struct inode *inode, struct file *file)
4630 {
4631 	perf_event_release_kernel(file->private_data);
4632 	return 0;
4633 }
4634 
4635 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4636 {
4637 	struct perf_event *child;
4638 	u64 total = 0;
4639 
4640 	*enabled = 0;
4641 	*running = 0;
4642 
4643 	mutex_lock(&event->child_mutex);
4644 
4645 	(void)perf_event_read(event, false);
4646 	total += perf_event_count(event);
4647 
4648 	*enabled += event->total_time_enabled +
4649 			atomic64_read(&event->child_total_time_enabled);
4650 	*running += event->total_time_running +
4651 			atomic64_read(&event->child_total_time_running);
4652 
4653 	list_for_each_entry(child, &event->child_list, child_list) {
4654 		(void)perf_event_read(child, false);
4655 		total += perf_event_count(child);
4656 		*enabled += child->total_time_enabled;
4657 		*running += child->total_time_running;
4658 	}
4659 	mutex_unlock(&event->child_mutex);
4660 
4661 	return total;
4662 }
4663 
4664 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4665 {
4666 	struct perf_event_context *ctx;
4667 	u64 count;
4668 
4669 	ctx = perf_event_ctx_lock(event);
4670 	count = __perf_event_read_value(event, enabled, running);
4671 	perf_event_ctx_unlock(event, ctx);
4672 
4673 	return count;
4674 }
4675 EXPORT_SYMBOL_GPL(perf_event_read_value);
4676 
4677 static int __perf_read_group_add(struct perf_event *leader,
4678 					u64 read_format, u64 *values)
4679 {
4680 	struct perf_event_context *ctx = leader->ctx;
4681 	struct perf_event *sub;
4682 	unsigned long flags;
4683 	int n = 1; /* skip @nr */
4684 	int ret;
4685 
4686 	ret = perf_event_read(leader, true);
4687 	if (ret)
4688 		return ret;
4689 
4690 	raw_spin_lock_irqsave(&ctx->lock, flags);
4691 
4692 	/*
4693 	 * Since we co-schedule groups, {enabled,running} times of siblings
4694 	 * will be identical to those of the leader, so we only publish one
4695 	 * set.
4696 	 */
4697 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4698 		values[n++] += leader->total_time_enabled +
4699 			atomic64_read(&leader->child_total_time_enabled);
4700 	}
4701 
4702 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4703 		values[n++] += leader->total_time_running +
4704 			atomic64_read(&leader->child_total_time_running);
4705 	}
4706 
4707 	/*
4708 	 * Write {count,id} tuples for every sibling.
4709 	 */
4710 	values[n++] += perf_event_count(leader);
4711 	if (read_format & PERF_FORMAT_ID)
4712 		values[n++] = primary_event_id(leader);
4713 
4714 	for_each_sibling_event(sub, leader) {
4715 		values[n++] += perf_event_count(sub);
4716 		if (read_format & PERF_FORMAT_ID)
4717 			values[n++] = primary_event_id(sub);
4718 	}
4719 
4720 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4721 	return 0;
4722 }
4723 
4724 static int perf_read_group(struct perf_event *event,
4725 				   u64 read_format, char __user *buf)
4726 {
4727 	struct perf_event *leader = event->group_leader, *child;
4728 	struct perf_event_context *ctx = leader->ctx;
4729 	int ret;
4730 	u64 *values;
4731 
4732 	lockdep_assert_held(&ctx->mutex);
4733 
4734 	values = kzalloc(event->read_size, GFP_KERNEL);
4735 	if (!values)
4736 		return -ENOMEM;
4737 
4738 	values[0] = 1 + leader->nr_siblings;
4739 
4740 	/*
4741 	 * By locking the child_mutex of the leader we effectively
4742 	 * lock the child list of all siblings.. XXX explain how.
4743 	 */
4744 	mutex_lock(&leader->child_mutex);
4745 
4746 	ret = __perf_read_group_add(leader, read_format, values);
4747 	if (ret)
4748 		goto unlock;
4749 
4750 	list_for_each_entry(child, &leader->child_list, child_list) {
4751 		ret = __perf_read_group_add(child, read_format, values);
4752 		if (ret)
4753 			goto unlock;
4754 	}
4755 
4756 	mutex_unlock(&leader->child_mutex);
4757 
4758 	ret = event->read_size;
4759 	if (copy_to_user(buf, values, event->read_size))
4760 		ret = -EFAULT;
4761 	goto out;
4762 
4763 unlock:
4764 	mutex_unlock(&leader->child_mutex);
4765 out:
4766 	kfree(values);
4767 	return ret;
4768 }
4769 
4770 static int perf_read_one(struct perf_event *event,
4771 				 u64 read_format, char __user *buf)
4772 {
4773 	u64 enabled, running;
4774 	u64 values[4];
4775 	int n = 0;
4776 
4777 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4778 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4779 		values[n++] = enabled;
4780 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4781 		values[n++] = running;
4782 	if (read_format & PERF_FORMAT_ID)
4783 		values[n++] = primary_event_id(event);
4784 
4785 	if (copy_to_user(buf, values, n * sizeof(u64)))
4786 		return -EFAULT;
4787 
4788 	return n * sizeof(u64);
4789 }
4790 
4791 static bool is_event_hup(struct perf_event *event)
4792 {
4793 	bool no_children;
4794 
4795 	if (event->state > PERF_EVENT_STATE_EXIT)
4796 		return false;
4797 
4798 	mutex_lock(&event->child_mutex);
4799 	no_children = list_empty(&event->child_list);
4800 	mutex_unlock(&event->child_mutex);
4801 	return no_children;
4802 }
4803 
4804 /*
4805  * Read the performance event - simple non blocking version for now
4806  */
4807 static ssize_t
4808 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4809 {
4810 	u64 read_format = event->attr.read_format;
4811 	int ret;
4812 
4813 	/*
4814 	 * Return end-of-file for a read on a event that is in
4815 	 * error state (i.e. because it was pinned but it couldn't be
4816 	 * scheduled on to the CPU at some point).
4817 	 */
4818 	if (event->state == PERF_EVENT_STATE_ERROR)
4819 		return 0;
4820 
4821 	if (count < event->read_size)
4822 		return -ENOSPC;
4823 
4824 	WARN_ON_ONCE(event->ctx->parent_ctx);
4825 	if (read_format & PERF_FORMAT_GROUP)
4826 		ret = perf_read_group(event, read_format, buf);
4827 	else
4828 		ret = perf_read_one(event, read_format, buf);
4829 
4830 	return ret;
4831 }
4832 
4833 static ssize_t
4834 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4835 {
4836 	struct perf_event *event = file->private_data;
4837 	struct perf_event_context *ctx;
4838 	int ret;
4839 
4840 	ctx = perf_event_ctx_lock(event);
4841 	ret = __perf_read(event, buf, count);
4842 	perf_event_ctx_unlock(event, ctx);
4843 
4844 	return ret;
4845 }
4846 
4847 static __poll_t perf_poll(struct file *file, poll_table *wait)
4848 {
4849 	struct perf_event *event = file->private_data;
4850 	struct ring_buffer *rb;
4851 	__poll_t events = EPOLLHUP;
4852 
4853 	poll_wait(file, &event->waitq, wait);
4854 
4855 	if (is_event_hup(event))
4856 		return events;
4857 
4858 	/*
4859 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4860 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4861 	 */
4862 	mutex_lock(&event->mmap_mutex);
4863 	rb = event->rb;
4864 	if (rb)
4865 		events = atomic_xchg(&rb->poll, 0);
4866 	mutex_unlock(&event->mmap_mutex);
4867 	return events;
4868 }
4869 
4870 static void _perf_event_reset(struct perf_event *event)
4871 {
4872 	(void)perf_event_read(event, false);
4873 	local64_set(&event->count, 0);
4874 	perf_event_update_userpage(event);
4875 }
4876 
4877 /*
4878  * Holding the top-level event's child_mutex means that any
4879  * descendant process that has inherited this event will block
4880  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4881  * task existence requirements of perf_event_enable/disable.
4882  */
4883 static void perf_event_for_each_child(struct perf_event *event,
4884 					void (*func)(struct perf_event *))
4885 {
4886 	struct perf_event *child;
4887 
4888 	WARN_ON_ONCE(event->ctx->parent_ctx);
4889 
4890 	mutex_lock(&event->child_mutex);
4891 	func(event);
4892 	list_for_each_entry(child, &event->child_list, child_list)
4893 		func(child);
4894 	mutex_unlock(&event->child_mutex);
4895 }
4896 
4897 static void perf_event_for_each(struct perf_event *event,
4898 				  void (*func)(struct perf_event *))
4899 {
4900 	struct perf_event_context *ctx = event->ctx;
4901 	struct perf_event *sibling;
4902 
4903 	lockdep_assert_held(&ctx->mutex);
4904 
4905 	event = event->group_leader;
4906 
4907 	perf_event_for_each_child(event, func);
4908 	for_each_sibling_event(sibling, event)
4909 		perf_event_for_each_child(sibling, func);
4910 }
4911 
4912 static void __perf_event_period(struct perf_event *event,
4913 				struct perf_cpu_context *cpuctx,
4914 				struct perf_event_context *ctx,
4915 				void *info)
4916 {
4917 	u64 value = *((u64 *)info);
4918 	bool active;
4919 
4920 	if (event->attr.freq) {
4921 		event->attr.sample_freq = value;
4922 	} else {
4923 		event->attr.sample_period = value;
4924 		event->hw.sample_period = value;
4925 	}
4926 
4927 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4928 	if (active) {
4929 		perf_pmu_disable(ctx->pmu);
4930 		/*
4931 		 * We could be throttled; unthrottle now to avoid the tick
4932 		 * trying to unthrottle while we already re-started the event.
4933 		 */
4934 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4935 			event->hw.interrupts = 0;
4936 			perf_log_throttle(event, 1);
4937 		}
4938 		event->pmu->stop(event, PERF_EF_UPDATE);
4939 	}
4940 
4941 	local64_set(&event->hw.period_left, 0);
4942 
4943 	if (active) {
4944 		event->pmu->start(event, PERF_EF_RELOAD);
4945 		perf_pmu_enable(ctx->pmu);
4946 	}
4947 }
4948 
4949 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4950 {
4951 	u64 value;
4952 
4953 	if (!is_sampling_event(event))
4954 		return -EINVAL;
4955 
4956 	if (copy_from_user(&value, arg, sizeof(value)))
4957 		return -EFAULT;
4958 
4959 	if (!value)
4960 		return -EINVAL;
4961 
4962 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4963 		return -EINVAL;
4964 
4965 	event_function_call(event, __perf_event_period, &value);
4966 
4967 	return 0;
4968 }
4969 
4970 static const struct file_operations perf_fops;
4971 
4972 static inline int perf_fget_light(int fd, struct fd *p)
4973 {
4974 	struct fd f = fdget(fd);
4975 	if (!f.file)
4976 		return -EBADF;
4977 
4978 	if (f.file->f_op != &perf_fops) {
4979 		fdput(f);
4980 		return -EBADF;
4981 	}
4982 	*p = f;
4983 	return 0;
4984 }
4985 
4986 static int perf_event_set_output(struct perf_event *event,
4987 				 struct perf_event *output_event);
4988 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4989 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4990 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4991 			  struct perf_event_attr *attr);
4992 
4993 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4994 {
4995 	void (*func)(struct perf_event *);
4996 	u32 flags = arg;
4997 
4998 	switch (cmd) {
4999 	case PERF_EVENT_IOC_ENABLE:
5000 		func = _perf_event_enable;
5001 		break;
5002 	case PERF_EVENT_IOC_DISABLE:
5003 		func = _perf_event_disable;
5004 		break;
5005 	case PERF_EVENT_IOC_RESET:
5006 		func = _perf_event_reset;
5007 		break;
5008 
5009 	case PERF_EVENT_IOC_REFRESH:
5010 		return _perf_event_refresh(event, arg);
5011 
5012 	case PERF_EVENT_IOC_PERIOD:
5013 		return perf_event_period(event, (u64 __user *)arg);
5014 
5015 	case PERF_EVENT_IOC_ID:
5016 	{
5017 		u64 id = primary_event_id(event);
5018 
5019 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5020 			return -EFAULT;
5021 		return 0;
5022 	}
5023 
5024 	case PERF_EVENT_IOC_SET_OUTPUT:
5025 	{
5026 		int ret;
5027 		if (arg != -1) {
5028 			struct perf_event *output_event;
5029 			struct fd output;
5030 			ret = perf_fget_light(arg, &output);
5031 			if (ret)
5032 				return ret;
5033 			output_event = output.file->private_data;
5034 			ret = perf_event_set_output(event, output_event);
5035 			fdput(output);
5036 		} else {
5037 			ret = perf_event_set_output(event, NULL);
5038 		}
5039 		return ret;
5040 	}
5041 
5042 	case PERF_EVENT_IOC_SET_FILTER:
5043 		return perf_event_set_filter(event, (void __user *)arg);
5044 
5045 	case PERF_EVENT_IOC_SET_BPF:
5046 		return perf_event_set_bpf_prog(event, arg);
5047 
5048 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5049 		struct ring_buffer *rb;
5050 
5051 		rcu_read_lock();
5052 		rb = rcu_dereference(event->rb);
5053 		if (!rb || !rb->nr_pages) {
5054 			rcu_read_unlock();
5055 			return -EINVAL;
5056 		}
5057 		rb_toggle_paused(rb, !!arg);
5058 		rcu_read_unlock();
5059 		return 0;
5060 	}
5061 
5062 	case PERF_EVENT_IOC_QUERY_BPF:
5063 		return perf_event_query_prog_array(event, (void __user *)arg);
5064 
5065 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5066 		struct perf_event_attr new_attr;
5067 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5068 					 &new_attr);
5069 
5070 		if (err)
5071 			return err;
5072 
5073 		return perf_event_modify_attr(event,  &new_attr);
5074 	}
5075 	default:
5076 		return -ENOTTY;
5077 	}
5078 
5079 	if (flags & PERF_IOC_FLAG_GROUP)
5080 		perf_event_for_each(event, func);
5081 	else
5082 		perf_event_for_each_child(event, func);
5083 
5084 	return 0;
5085 }
5086 
5087 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5088 {
5089 	struct perf_event *event = file->private_data;
5090 	struct perf_event_context *ctx;
5091 	long ret;
5092 
5093 	ctx = perf_event_ctx_lock(event);
5094 	ret = _perf_ioctl(event, cmd, arg);
5095 	perf_event_ctx_unlock(event, ctx);
5096 
5097 	return ret;
5098 }
5099 
5100 #ifdef CONFIG_COMPAT
5101 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5102 				unsigned long arg)
5103 {
5104 	switch (_IOC_NR(cmd)) {
5105 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5106 	case _IOC_NR(PERF_EVENT_IOC_ID):
5107 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5108 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5109 			cmd &= ~IOCSIZE_MASK;
5110 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5111 		}
5112 		break;
5113 	}
5114 	return perf_ioctl(file, cmd, arg);
5115 }
5116 #else
5117 # define perf_compat_ioctl NULL
5118 #endif
5119 
5120 int perf_event_task_enable(void)
5121 {
5122 	struct perf_event_context *ctx;
5123 	struct perf_event *event;
5124 
5125 	mutex_lock(&current->perf_event_mutex);
5126 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5127 		ctx = perf_event_ctx_lock(event);
5128 		perf_event_for_each_child(event, _perf_event_enable);
5129 		perf_event_ctx_unlock(event, ctx);
5130 	}
5131 	mutex_unlock(&current->perf_event_mutex);
5132 
5133 	return 0;
5134 }
5135 
5136 int perf_event_task_disable(void)
5137 {
5138 	struct perf_event_context *ctx;
5139 	struct perf_event *event;
5140 
5141 	mutex_lock(&current->perf_event_mutex);
5142 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5143 		ctx = perf_event_ctx_lock(event);
5144 		perf_event_for_each_child(event, _perf_event_disable);
5145 		perf_event_ctx_unlock(event, ctx);
5146 	}
5147 	mutex_unlock(&current->perf_event_mutex);
5148 
5149 	return 0;
5150 }
5151 
5152 static int perf_event_index(struct perf_event *event)
5153 {
5154 	if (event->hw.state & PERF_HES_STOPPED)
5155 		return 0;
5156 
5157 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5158 		return 0;
5159 
5160 	return event->pmu->event_idx(event);
5161 }
5162 
5163 static void calc_timer_values(struct perf_event *event,
5164 				u64 *now,
5165 				u64 *enabled,
5166 				u64 *running)
5167 {
5168 	u64 ctx_time;
5169 
5170 	*now = perf_clock();
5171 	ctx_time = event->shadow_ctx_time + *now;
5172 	__perf_update_times(event, ctx_time, enabled, running);
5173 }
5174 
5175 static void perf_event_init_userpage(struct perf_event *event)
5176 {
5177 	struct perf_event_mmap_page *userpg;
5178 	struct ring_buffer *rb;
5179 
5180 	rcu_read_lock();
5181 	rb = rcu_dereference(event->rb);
5182 	if (!rb)
5183 		goto unlock;
5184 
5185 	userpg = rb->user_page;
5186 
5187 	/* Allow new userspace to detect that bit 0 is deprecated */
5188 	userpg->cap_bit0_is_deprecated = 1;
5189 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5190 	userpg->data_offset = PAGE_SIZE;
5191 	userpg->data_size = perf_data_size(rb);
5192 
5193 unlock:
5194 	rcu_read_unlock();
5195 }
5196 
5197 void __weak arch_perf_update_userpage(
5198 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5199 {
5200 }
5201 
5202 /*
5203  * Callers need to ensure there can be no nesting of this function, otherwise
5204  * the seqlock logic goes bad. We can not serialize this because the arch
5205  * code calls this from NMI context.
5206  */
5207 void perf_event_update_userpage(struct perf_event *event)
5208 {
5209 	struct perf_event_mmap_page *userpg;
5210 	struct ring_buffer *rb;
5211 	u64 enabled, running, now;
5212 
5213 	rcu_read_lock();
5214 	rb = rcu_dereference(event->rb);
5215 	if (!rb)
5216 		goto unlock;
5217 
5218 	/*
5219 	 * compute total_time_enabled, total_time_running
5220 	 * based on snapshot values taken when the event
5221 	 * was last scheduled in.
5222 	 *
5223 	 * we cannot simply called update_context_time()
5224 	 * because of locking issue as we can be called in
5225 	 * NMI context
5226 	 */
5227 	calc_timer_values(event, &now, &enabled, &running);
5228 
5229 	userpg = rb->user_page;
5230 	/*
5231 	 * Disable preemption so as to not let the corresponding user-space
5232 	 * spin too long if we get preempted.
5233 	 */
5234 	preempt_disable();
5235 	++userpg->lock;
5236 	barrier();
5237 	userpg->index = perf_event_index(event);
5238 	userpg->offset = perf_event_count(event);
5239 	if (userpg->index)
5240 		userpg->offset -= local64_read(&event->hw.prev_count);
5241 
5242 	userpg->time_enabled = enabled +
5243 			atomic64_read(&event->child_total_time_enabled);
5244 
5245 	userpg->time_running = running +
5246 			atomic64_read(&event->child_total_time_running);
5247 
5248 	arch_perf_update_userpage(event, userpg, now);
5249 
5250 	barrier();
5251 	++userpg->lock;
5252 	preempt_enable();
5253 unlock:
5254 	rcu_read_unlock();
5255 }
5256 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5257 
5258 static int perf_mmap_fault(struct vm_fault *vmf)
5259 {
5260 	struct perf_event *event = vmf->vma->vm_file->private_data;
5261 	struct ring_buffer *rb;
5262 	int ret = VM_FAULT_SIGBUS;
5263 
5264 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5265 		if (vmf->pgoff == 0)
5266 			ret = 0;
5267 		return ret;
5268 	}
5269 
5270 	rcu_read_lock();
5271 	rb = rcu_dereference(event->rb);
5272 	if (!rb)
5273 		goto unlock;
5274 
5275 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5276 		goto unlock;
5277 
5278 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5279 	if (!vmf->page)
5280 		goto unlock;
5281 
5282 	get_page(vmf->page);
5283 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5284 	vmf->page->index   = vmf->pgoff;
5285 
5286 	ret = 0;
5287 unlock:
5288 	rcu_read_unlock();
5289 
5290 	return ret;
5291 }
5292 
5293 static void ring_buffer_attach(struct perf_event *event,
5294 			       struct ring_buffer *rb)
5295 {
5296 	struct ring_buffer *old_rb = NULL;
5297 	unsigned long flags;
5298 
5299 	if (event->rb) {
5300 		/*
5301 		 * Should be impossible, we set this when removing
5302 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5303 		 */
5304 		WARN_ON_ONCE(event->rcu_pending);
5305 
5306 		old_rb = event->rb;
5307 		spin_lock_irqsave(&old_rb->event_lock, flags);
5308 		list_del_rcu(&event->rb_entry);
5309 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5310 
5311 		event->rcu_batches = get_state_synchronize_rcu();
5312 		event->rcu_pending = 1;
5313 	}
5314 
5315 	if (rb) {
5316 		if (event->rcu_pending) {
5317 			cond_synchronize_rcu(event->rcu_batches);
5318 			event->rcu_pending = 0;
5319 		}
5320 
5321 		spin_lock_irqsave(&rb->event_lock, flags);
5322 		list_add_rcu(&event->rb_entry, &rb->event_list);
5323 		spin_unlock_irqrestore(&rb->event_lock, flags);
5324 	}
5325 
5326 	/*
5327 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5328 	 * before swizzling the event::rb pointer; if it's getting
5329 	 * unmapped, its aux_mmap_count will be 0 and it won't
5330 	 * restart. See the comment in __perf_pmu_output_stop().
5331 	 *
5332 	 * Data will inevitably be lost when set_output is done in
5333 	 * mid-air, but then again, whoever does it like this is
5334 	 * not in for the data anyway.
5335 	 */
5336 	if (has_aux(event))
5337 		perf_event_stop(event, 0);
5338 
5339 	rcu_assign_pointer(event->rb, rb);
5340 
5341 	if (old_rb) {
5342 		ring_buffer_put(old_rb);
5343 		/*
5344 		 * Since we detached before setting the new rb, so that we
5345 		 * could attach the new rb, we could have missed a wakeup.
5346 		 * Provide it now.
5347 		 */
5348 		wake_up_all(&event->waitq);
5349 	}
5350 }
5351 
5352 static void ring_buffer_wakeup(struct perf_event *event)
5353 {
5354 	struct ring_buffer *rb;
5355 
5356 	rcu_read_lock();
5357 	rb = rcu_dereference(event->rb);
5358 	if (rb) {
5359 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5360 			wake_up_all(&event->waitq);
5361 	}
5362 	rcu_read_unlock();
5363 }
5364 
5365 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5366 {
5367 	struct ring_buffer *rb;
5368 
5369 	rcu_read_lock();
5370 	rb = rcu_dereference(event->rb);
5371 	if (rb) {
5372 		if (!atomic_inc_not_zero(&rb->refcount))
5373 			rb = NULL;
5374 	}
5375 	rcu_read_unlock();
5376 
5377 	return rb;
5378 }
5379 
5380 void ring_buffer_put(struct ring_buffer *rb)
5381 {
5382 	if (!atomic_dec_and_test(&rb->refcount))
5383 		return;
5384 
5385 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5386 
5387 	call_rcu(&rb->rcu_head, rb_free_rcu);
5388 }
5389 
5390 static void perf_mmap_open(struct vm_area_struct *vma)
5391 {
5392 	struct perf_event *event = vma->vm_file->private_data;
5393 
5394 	atomic_inc(&event->mmap_count);
5395 	atomic_inc(&event->rb->mmap_count);
5396 
5397 	if (vma->vm_pgoff)
5398 		atomic_inc(&event->rb->aux_mmap_count);
5399 
5400 	if (event->pmu->event_mapped)
5401 		event->pmu->event_mapped(event, vma->vm_mm);
5402 }
5403 
5404 static void perf_pmu_output_stop(struct perf_event *event);
5405 
5406 /*
5407  * A buffer can be mmap()ed multiple times; either directly through the same
5408  * event, or through other events by use of perf_event_set_output().
5409  *
5410  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5411  * the buffer here, where we still have a VM context. This means we need
5412  * to detach all events redirecting to us.
5413  */
5414 static void perf_mmap_close(struct vm_area_struct *vma)
5415 {
5416 	struct perf_event *event = vma->vm_file->private_data;
5417 
5418 	struct ring_buffer *rb = ring_buffer_get(event);
5419 	struct user_struct *mmap_user = rb->mmap_user;
5420 	int mmap_locked = rb->mmap_locked;
5421 	unsigned long size = perf_data_size(rb);
5422 
5423 	if (event->pmu->event_unmapped)
5424 		event->pmu->event_unmapped(event, vma->vm_mm);
5425 
5426 	/*
5427 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5428 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5429 	 * serialize with perf_mmap here.
5430 	 */
5431 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5432 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5433 		/*
5434 		 * Stop all AUX events that are writing to this buffer,
5435 		 * so that we can free its AUX pages and corresponding PMU
5436 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5437 		 * they won't start any more (see perf_aux_output_begin()).
5438 		 */
5439 		perf_pmu_output_stop(event);
5440 
5441 		/* now it's safe to free the pages */
5442 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5443 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5444 
5445 		/* this has to be the last one */
5446 		rb_free_aux(rb);
5447 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5448 
5449 		mutex_unlock(&event->mmap_mutex);
5450 	}
5451 
5452 	atomic_dec(&rb->mmap_count);
5453 
5454 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5455 		goto out_put;
5456 
5457 	ring_buffer_attach(event, NULL);
5458 	mutex_unlock(&event->mmap_mutex);
5459 
5460 	/* If there's still other mmap()s of this buffer, we're done. */
5461 	if (atomic_read(&rb->mmap_count))
5462 		goto out_put;
5463 
5464 	/*
5465 	 * No other mmap()s, detach from all other events that might redirect
5466 	 * into the now unreachable buffer. Somewhat complicated by the
5467 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5468 	 */
5469 again:
5470 	rcu_read_lock();
5471 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5472 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5473 			/*
5474 			 * This event is en-route to free_event() which will
5475 			 * detach it and remove it from the list.
5476 			 */
5477 			continue;
5478 		}
5479 		rcu_read_unlock();
5480 
5481 		mutex_lock(&event->mmap_mutex);
5482 		/*
5483 		 * Check we didn't race with perf_event_set_output() which can
5484 		 * swizzle the rb from under us while we were waiting to
5485 		 * acquire mmap_mutex.
5486 		 *
5487 		 * If we find a different rb; ignore this event, a next
5488 		 * iteration will no longer find it on the list. We have to
5489 		 * still restart the iteration to make sure we're not now
5490 		 * iterating the wrong list.
5491 		 */
5492 		if (event->rb == rb)
5493 			ring_buffer_attach(event, NULL);
5494 
5495 		mutex_unlock(&event->mmap_mutex);
5496 		put_event(event);
5497 
5498 		/*
5499 		 * Restart the iteration; either we're on the wrong list or
5500 		 * destroyed its integrity by doing a deletion.
5501 		 */
5502 		goto again;
5503 	}
5504 	rcu_read_unlock();
5505 
5506 	/*
5507 	 * It could be there's still a few 0-ref events on the list; they'll
5508 	 * get cleaned up by free_event() -- they'll also still have their
5509 	 * ref on the rb and will free it whenever they are done with it.
5510 	 *
5511 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5512 	 * undo the VM accounting.
5513 	 */
5514 
5515 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5516 	vma->vm_mm->pinned_vm -= mmap_locked;
5517 	free_uid(mmap_user);
5518 
5519 out_put:
5520 	ring_buffer_put(rb); /* could be last */
5521 }
5522 
5523 static const struct vm_operations_struct perf_mmap_vmops = {
5524 	.open		= perf_mmap_open,
5525 	.close		= perf_mmap_close, /* non mergable */
5526 	.fault		= perf_mmap_fault,
5527 	.page_mkwrite	= perf_mmap_fault,
5528 };
5529 
5530 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5531 {
5532 	struct perf_event *event = file->private_data;
5533 	unsigned long user_locked, user_lock_limit;
5534 	struct user_struct *user = current_user();
5535 	unsigned long locked, lock_limit;
5536 	struct ring_buffer *rb = NULL;
5537 	unsigned long vma_size;
5538 	unsigned long nr_pages;
5539 	long user_extra = 0, extra = 0;
5540 	int ret = 0, flags = 0;
5541 
5542 	/*
5543 	 * Don't allow mmap() of inherited per-task counters. This would
5544 	 * create a performance issue due to all children writing to the
5545 	 * same rb.
5546 	 */
5547 	if (event->cpu == -1 && event->attr.inherit)
5548 		return -EINVAL;
5549 
5550 	if (!(vma->vm_flags & VM_SHARED))
5551 		return -EINVAL;
5552 
5553 	vma_size = vma->vm_end - vma->vm_start;
5554 
5555 	if (vma->vm_pgoff == 0) {
5556 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5557 	} else {
5558 		/*
5559 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5560 		 * mapped, all subsequent mappings should have the same size
5561 		 * and offset. Must be above the normal perf buffer.
5562 		 */
5563 		u64 aux_offset, aux_size;
5564 
5565 		if (!event->rb)
5566 			return -EINVAL;
5567 
5568 		nr_pages = vma_size / PAGE_SIZE;
5569 
5570 		mutex_lock(&event->mmap_mutex);
5571 		ret = -EINVAL;
5572 
5573 		rb = event->rb;
5574 		if (!rb)
5575 			goto aux_unlock;
5576 
5577 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5578 		aux_size = READ_ONCE(rb->user_page->aux_size);
5579 
5580 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5581 			goto aux_unlock;
5582 
5583 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5584 			goto aux_unlock;
5585 
5586 		/* already mapped with a different offset */
5587 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5588 			goto aux_unlock;
5589 
5590 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5591 			goto aux_unlock;
5592 
5593 		/* already mapped with a different size */
5594 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5595 			goto aux_unlock;
5596 
5597 		if (!is_power_of_2(nr_pages))
5598 			goto aux_unlock;
5599 
5600 		if (!atomic_inc_not_zero(&rb->mmap_count))
5601 			goto aux_unlock;
5602 
5603 		if (rb_has_aux(rb)) {
5604 			atomic_inc(&rb->aux_mmap_count);
5605 			ret = 0;
5606 			goto unlock;
5607 		}
5608 
5609 		atomic_set(&rb->aux_mmap_count, 1);
5610 		user_extra = nr_pages;
5611 
5612 		goto accounting;
5613 	}
5614 
5615 	/*
5616 	 * If we have rb pages ensure they're a power-of-two number, so we
5617 	 * can do bitmasks instead of modulo.
5618 	 */
5619 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5620 		return -EINVAL;
5621 
5622 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5623 		return -EINVAL;
5624 
5625 	WARN_ON_ONCE(event->ctx->parent_ctx);
5626 again:
5627 	mutex_lock(&event->mmap_mutex);
5628 	if (event->rb) {
5629 		if (event->rb->nr_pages != nr_pages) {
5630 			ret = -EINVAL;
5631 			goto unlock;
5632 		}
5633 
5634 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5635 			/*
5636 			 * Raced against perf_mmap_close() through
5637 			 * perf_event_set_output(). Try again, hope for better
5638 			 * luck.
5639 			 */
5640 			mutex_unlock(&event->mmap_mutex);
5641 			goto again;
5642 		}
5643 
5644 		goto unlock;
5645 	}
5646 
5647 	user_extra = nr_pages + 1;
5648 
5649 accounting:
5650 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5651 
5652 	/*
5653 	 * Increase the limit linearly with more CPUs:
5654 	 */
5655 	user_lock_limit *= num_online_cpus();
5656 
5657 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5658 
5659 	if (user_locked > user_lock_limit)
5660 		extra = user_locked - user_lock_limit;
5661 
5662 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5663 	lock_limit >>= PAGE_SHIFT;
5664 	locked = vma->vm_mm->pinned_vm + extra;
5665 
5666 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5667 		!capable(CAP_IPC_LOCK)) {
5668 		ret = -EPERM;
5669 		goto unlock;
5670 	}
5671 
5672 	WARN_ON(!rb && event->rb);
5673 
5674 	if (vma->vm_flags & VM_WRITE)
5675 		flags |= RING_BUFFER_WRITABLE;
5676 
5677 	if (!rb) {
5678 		rb = rb_alloc(nr_pages,
5679 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5680 			      event->cpu, flags);
5681 
5682 		if (!rb) {
5683 			ret = -ENOMEM;
5684 			goto unlock;
5685 		}
5686 
5687 		atomic_set(&rb->mmap_count, 1);
5688 		rb->mmap_user = get_current_user();
5689 		rb->mmap_locked = extra;
5690 
5691 		ring_buffer_attach(event, rb);
5692 
5693 		perf_event_init_userpage(event);
5694 		perf_event_update_userpage(event);
5695 	} else {
5696 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5697 				   event->attr.aux_watermark, flags);
5698 		if (!ret)
5699 			rb->aux_mmap_locked = extra;
5700 	}
5701 
5702 unlock:
5703 	if (!ret) {
5704 		atomic_long_add(user_extra, &user->locked_vm);
5705 		vma->vm_mm->pinned_vm += extra;
5706 
5707 		atomic_inc(&event->mmap_count);
5708 	} else if (rb) {
5709 		atomic_dec(&rb->mmap_count);
5710 	}
5711 aux_unlock:
5712 	mutex_unlock(&event->mmap_mutex);
5713 
5714 	/*
5715 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5716 	 * vma.
5717 	 */
5718 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5719 	vma->vm_ops = &perf_mmap_vmops;
5720 
5721 	if (event->pmu->event_mapped)
5722 		event->pmu->event_mapped(event, vma->vm_mm);
5723 
5724 	return ret;
5725 }
5726 
5727 static int perf_fasync(int fd, struct file *filp, int on)
5728 {
5729 	struct inode *inode = file_inode(filp);
5730 	struct perf_event *event = filp->private_data;
5731 	int retval;
5732 
5733 	inode_lock(inode);
5734 	retval = fasync_helper(fd, filp, on, &event->fasync);
5735 	inode_unlock(inode);
5736 
5737 	if (retval < 0)
5738 		return retval;
5739 
5740 	return 0;
5741 }
5742 
5743 static const struct file_operations perf_fops = {
5744 	.llseek			= no_llseek,
5745 	.release		= perf_release,
5746 	.read			= perf_read,
5747 	.poll			= perf_poll,
5748 	.unlocked_ioctl		= perf_ioctl,
5749 	.compat_ioctl		= perf_compat_ioctl,
5750 	.mmap			= perf_mmap,
5751 	.fasync			= perf_fasync,
5752 };
5753 
5754 /*
5755  * Perf event wakeup
5756  *
5757  * If there's data, ensure we set the poll() state and publish everything
5758  * to user-space before waking everybody up.
5759  */
5760 
5761 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5762 {
5763 	/* only the parent has fasync state */
5764 	if (event->parent)
5765 		event = event->parent;
5766 	return &event->fasync;
5767 }
5768 
5769 void perf_event_wakeup(struct perf_event *event)
5770 {
5771 	ring_buffer_wakeup(event);
5772 
5773 	if (event->pending_kill) {
5774 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5775 		event->pending_kill = 0;
5776 	}
5777 }
5778 
5779 static void perf_pending_event(struct irq_work *entry)
5780 {
5781 	struct perf_event *event = container_of(entry,
5782 			struct perf_event, pending);
5783 	int rctx;
5784 
5785 	rctx = perf_swevent_get_recursion_context();
5786 	/*
5787 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5788 	 * and we won't recurse 'further'.
5789 	 */
5790 
5791 	if (event->pending_disable) {
5792 		event->pending_disable = 0;
5793 		perf_event_disable_local(event);
5794 	}
5795 
5796 	if (event->pending_wakeup) {
5797 		event->pending_wakeup = 0;
5798 		perf_event_wakeup(event);
5799 	}
5800 
5801 	if (rctx >= 0)
5802 		perf_swevent_put_recursion_context(rctx);
5803 }
5804 
5805 /*
5806  * We assume there is only KVM supporting the callbacks.
5807  * Later on, we might change it to a list if there is
5808  * another virtualization implementation supporting the callbacks.
5809  */
5810 struct perf_guest_info_callbacks *perf_guest_cbs;
5811 
5812 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5813 {
5814 	perf_guest_cbs = cbs;
5815 	return 0;
5816 }
5817 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5818 
5819 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5820 {
5821 	perf_guest_cbs = NULL;
5822 	return 0;
5823 }
5824 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5825 
5826 static void
5827 perf_output_sample_regs(struct perf_output_handle *handle,
5828 			struct pt_regs *regs, u64 mask)
5829 {
5830 	int bit;
5831 	DECLARE_BITMAP(_mask, 64);
5832 
5833 	bitmap_from_u64(_mask, mask);
5834 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5835 		u64 val;
5836 
5837 		val = perf_reg_value(regs, bit);
5838 		perf_output_put(handle, val);
5839 	}
5840 }
5841 
5842 static void perf_sample_regs_user(struct perf_regs *regs_user,
5843 				  struct pt_regs *regs,
5844 				  struct pt_regs *regs_user_copy)
5845 {
5846 	if (user_mode(regs)) {
5847 		regs_user->abi = perf_reg_abi(current);
5848 		regs_user->regs = regs;
5849 	} else if (current->mm) {
5850 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5851 	} else {
5852 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5853 		regs_user->regs = NULL;
5854 	}
5855 }
5856 
5857 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5858 				  struct pt_regs *regs)
5859 {
5860 	regs_intr->regs = regs;
5861 	regs_intr->abi  = perf_reg_abi(current);
5862 }
5863 
5864 
5865 /*
5866  * Get remaining task size from user stack pointer.
5867  *
5868  * It'd be better to take stack vma map and limit this more
5869  * precisly, but there's no way to get it safely under interrupt,
5870  * so using TASK_SIZE as limit.
5871  */
5872 static u64 perf_ustack_task_size(struct pt_regs *regs)
5873 {
5874 	unsigned long addr = perf_user_stack_pointer(regs);
5875 
5876 	if (!addr || addr >= TASK_SIZE)
5877 		return 0;
5878 
5879 	return TASK_SIZE - addr;
5880 }
5881 
5882 static u16
5883 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5884 			struct pt_regs *regs)
5885 {
5886 	u64 task_size;
5887 
5888 	/* No regs, no stack pointer, no dump. */
5889 	if (!regs)
5890 		return 0;
5891 
5892 	/*
5893 	 * Check if we fit in with the requested stack size into the:
5894 	 * - TASK_SIZE
5895 	 *   If we don't, we limit the size to the TASK_SIZE.
5896 	 *
5897 	 * - remaining sample size
5898 	 *   If we don't, we customize the stack size to
5899 	 *   fit in to the remaining sample size.
5900 	 */
5901 
5902 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5903 	stack_size = min(stack_size, (u16) task_size);
5904 
5905 	/* Current header size plus static size and dynamic size. */
5906 	header_size += 2 * sizeof(u64);
5907 
5908 	/* Do we fit in with the current stack dump size? */
5909 	if ((u16) (header_size + stack_size) < header_size) {
5910 		/*
5911 		 * If we overflow the maximum size for the sample,
5912 		 * we customize the stack dump size to fit in.
5913 		 */
5914 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5915 		stack_size = round_up(stack_size, sizeof(u64));
5916 	}
5917 
5918 	return stack_size;
5919 }
5920 
5921 static void
5922 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5923 			  struct pt_regs *regs)
5924 {
5925 	/* Case of a kernel thread, nothing to dump */
5926 	if (!regs) {
5927 		u64 size = 0;
5928 		perf_output_put(handle, size);
5929 	} else {
5930 		unsigned long sp;
5931 		unsigned int rem;
5932 		u64 dyn_size;
5933 
5934 		/*
5935 		 * We dump:
5936 		 * static size
5937 		 *   - the size requested by user or the best one we can fit
5938 		 *     in to the sample max size
5939 		 * data
5940 		 *   - user stack dump data
5941 		 * dynamic size
5942 		 *   - the actual dumped size
5943 		 */
5944 
5945 		/* Static size. */
5946 		perf_output_put(handle, dump_size);
5947 
5948 		/* Data. */
5949 		sp = perf_user_stack_pointer(regs);
5950 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5951 		dyn_size = dump_size - rem;
5952 
5953 		perf_output_skip(handle, rem);
5954 
5955 		/* Dynamic size. */
5956 		perf_output_put(handle, dyn_size);
5957 	}
5958 }
5959 
5960 static void __perf_event_header__init_id(struct perf_event_header *header,
5961 					 struct perf_sample_data *data,
5962 					 struct perf_event *event)
5963 {
5964 	u64 sample_type = event->attr.sample_type;
5965 
5966 	data->type = sample_type;
5967 	header->size += event->id_header_size;
5968 
5969 	if (sample_type & PERF_SAMPLE_TID) {
5970 		/* namespace issues */
5971 		data->tid_entry.pid = perf_event_pid(event, current);
5972 		data->tid_entry.tid = perf_event_tid(event, current);
5973 	}
5974 
5975 	if (sample_type & PERF_SAMPLE_TIME)
5976 		data->time = perf_event_clock(event);
5977 
5978 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5979 		data->id = primary_event_id(event);
5980 
5981 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5982 		data->stream_id = event->id;
5983 
5984 	if (sample_type & PERF_SAMPLE_CPU) {
5985 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5986 		data->cpu_entry.reserved = 0;
5987 	}
5988 }
5989 
5990 void perf_event_header__init_id(struct perf_event_header *header,
5991 				struct perf_sample_data *data,
5992 				struct perf_event *event)
5993 {
5994 	if (event->attr.sample_id_all)
5995 		__perf_event_header__init_id(header, data, event);
5996 }
5997 
5998 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5999 					   struct perf_sample_data *data)
6000 {
6001 	u64 sample_type = data->type;
6002 
6003 	if (sample_type & PERF_SAMPLE_TID)
6004 		perf_output_put(handle, data->tid_entry);
6005 
6006 	if (sample_type & PERF_SAMPLE_TIME)
6007 		perf_output_put(handle, data->time);
6008 
6009 	if (sample_type & PERF_SAMPLE_ID)
6010 		perf_output_put(handle, data->id);
6011 
6012 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6013 		perf_output_put(handle, data->stream_id);
6014 
6015 	if (sample_type & PERF_SAMPLE_CPU)
6016 		perf_output_put(handle, data->cpu_entry);
6017 
6018 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6019 		perf_output_put(handle, data->id);
6020 }
6021 
6022 void perf_event__output_id_sample(struct perf_event *event,
6023 				  struct perf_output_handle *handle,
6024 				  struct perf_sample_data *sample)
6025 {
6026 	if (event->attr.sample_id_all)
6027 		__perf_event__output_id_sample(handle, sample);
6028 }
6029 
6030 static void perf_output_read_one(struct perf_output_handle *handle,
6031 				 struct perf_event *event,
6032 				 u64 enabled, u64 running)
6033 {
6034 	u64 read_format = event->attr.read_format;
6035 	u64 values[4];
6036 	int n = 0;
6037 
6038 	values[n++] = perf_event_count(event);
6039 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6040 		values[n++] = enabled +
6041 			atomic64_read(&event->child_total_time_enabled);
6042 	}
6043 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6044 		values[n++] = running +
6045 			atomic64_read(&event->child_total_time_running);
6046 	}
6047 	if (read_format & PERF_FORMAT_ID)
6048 		values[n++] = primary_event_id(event);
6049 
6050 	__output_copy(handle, values, n * sizeof(u64));
6051 }
6052 
6053 static void perf_output_read_group(struct perf_output_handle *handle,
6054 			    struct perf_event *event,
6055 			    u64 enabled, u64 running)
6056 {
6057 	struct perf_event *leader = event->group_leader, *sub;
6058 	u64 read_format = event->attr.read_format;
6059 	u64 values[5];
6060 	int n = 0;
6061 
6062 	values[n++] = 1 + leader->nr_siblings;
6063 
6064 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6065 		values[n++] = enabled;
6066 
6067 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6068 		values[n++] = running;
6069 
6070 	if ((leader != event) &&
6071 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6072 		leader->pmu->read(leader);
6073 
6074 	values[n++] = perf_event_count(leader);
6075 	if (read_format & PERF_FORMAT_ID)
6076 		values[n++] = primary_event_id(leader);
6077 
6078 	__output_copy(handle, values, n * sizeof(u64));
6079 
6080 	for_each_sibling_event(sub, leader) {
6081 		n = 0;
6082 
6083 		if ((sub != event) &&
6084 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6085 			sub->pmu->read(sub);
6086 
6087 		values[n++] = perf_event_count(sub);
6088 		if (read_format & PERF_FORMAT_ID)
6089 			values[n++] = primary_event_id(sub);
6090 
6091 		__output_copy(handle, values, n * sizeof(u64));
6092 	}
6093 }
6094 
6095 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6096 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6097 
6098 /*
6099  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6100  *
6101  * The problem is that its both hard and excessively expensive to iterate the
6102  * child list, not to mention that its impossible to IPI the children running
6103  * on another CPU, from interrupt/NMI context.
6104  */
6105 static void perf_output_read(struct perf_output_handle *handle,
6106 			     struct perf_event *event)
6107 {
6108 	u64 enabled = 0, running = 0, now;
6109 	u64 read_format = event->attr.read_format;
6110 
6111 	/*
6112 	 * compute total_time_enabled, total_time_running
6113 	 * based on snapshot values taken when the event
6114 	 * was last scheduled in.
6115 	 *
6116 	 * we cannot simply called update_context_time()
6117 	 * because of locking issue as we are called in
6118 	 * NMI context
6119 	 */
6120 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6121 		calc_timer_values(event, &now, &enabled, &running);
6122 
6123 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6124 		perf_output_read_group(handle, event, enabled, running);
6125 	else
6126 		perf_output_read_one(handle, event, enabled, running);
6127 }
6128 
6129 void perf_output_sample(struct perf_output_handle *handle,
6130 			struct perf_event_header *header,
6131 			struct perf_sample_data *data,
6132 			struct perf_event *event)
6133 {
6134 	u64 sample_type = data->type;
6135 
6136 	perf_output_put(handle, *header);
6137 
6138 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6139 		perf_output_put(handle, data->id);
6140 
6141 	if (sample_type & PERF_SAMPLE_IP)
6142 		perf_output_put(handle, data->ip);
6143 
6144 	if (sample_type & PERF_SAMPLE_TID)
6145 		perf_output_put(handle, data->tid_entry);
6146 
6147 	if (sample_type & PERF_SAMPLE_TIME)
6148 		perf_output_put(handle, data->time);
6149 
6150 	if (sample_type & PERF_SAMPLE_ADDR)
6151 		perf_output_put(handle, data->addr);
6152 
6153 	if (sample_type & PERF_SAMPLE_ID)
6154 		perf_output_put(handle, data->id);
6155 
6156 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6157 		perf_output_put(handle, data->stream_id);
6158 
6159 	if (sample_type & PERF_SAMPLE_CPU)
6160 		perf_output_put(handle, data->cpu_entry);
6161 
6162 	if (sample_type & PERF_SAMPLE_PERIOD)
6163 		perf_output_put(handle, data->period);
6164 
6165 	if (sample_type & PERF_SAMPLE_READ)
6166 		perf_output_read(handle, event);
6167 
6168 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6169 		int size = 1;
6170 
6171 		size += data->callchain->nr;
6172 		size *= sizeof(u64);
6173 		__output_copy(handle, data->callchain, size);
6174 	}
6175 
6176 	if (sample_type & PERF_SAMPLE_RAW) {
6177 		struct perf_raw_record *raw = data->raw;
6178 
6179 		if (raw) {
6180 			struct perf_raw_frag *frag = &raw->frag;
6181 
6182 			perf_output_put(handle, raw->size);
6183 			do {
6184 				if (frag->copy) {
6185 					__output_custom(handle, frag->copy,
6186 							frag->data, frag->size);
6187 				} else {
6188 					__output_copy(handle, frag->data,
6189 						      frag->size);
6190 				}
6191 				if (perf_raw_frag_last(frag))
6192 					break;
6193 				frag = frag->next;
6194 			} while (1);
6195 			if (frag->pad)
6196 				__output_skip(handle, NULL, frag->pad);
6197 		} else {
6198 			struct {
6199 				u32	size;
6200 				u32	data;
6201 			} raw = {
6202 				.size = sizeof(u32),
6203 				.data = 0,
6204 			};
6205 			perf_output_put(handle, raw);
6206 		}
6207 	}
6208 
6209 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6210 		if (data->br_stack) {
6211 			size_t size;
6212 
6213 			size = data->br_stack->nr
6214 			     * sizeof(struct perf_branch_entry);
6215 
6216 			perf_output_put(handle, data->br_stack->nr);
6217 			perf_output_copy(handle, data->br_stack->entries, size);
6218 		} else {
6219 			/*
6220 			 * we always store at least the value of nr
6221 			 */
6222 			u64 nr = 0;
6223 			perf_output_put(handle, nr);
6224 		}
6225 	}
6226 
6227 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6228 		u64 abi = data->regs_user.abi;
6229 
6230 		/*
6231 		 * If there are no regs to dump, notice it through
6232 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6233 		 */
6234 		perf_output_put(handle, abi);
6235 
6236 		if (abi) {
6237 			u64 mask = event->attr.sample_regs_user;
6238 			perf_output_sample_regs(handle,
6239 						data->regs_user.regs,
6240 						mask);
6241 		}
6242 	}
6243 
6244 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6245 		perf_output_sample_ustack(handle,
6246 					  data->stack_user_size,
6247 					  data->regs_user.regs);
6248 	}
6249 
6250 	if (sample_type & PERF_SAMPLE_WEIGHT)
6251 		perf_output_put(handle, data->weight);
6252 
6253 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6254 		perf_output_put(handle, data->data_src.val);
6255 
6256 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6257 		perf_output_put(handle, data->txn);
6258 
6259 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6260 		u64 abi = data->regs_intr.abi;
6261 		/*
6262 		 * If there are no regs to dump, notice it through
6263 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6264 		 */
6265 		perf_output_put(handle, abi);
6266 
6267 		if (abi) {
6268 			u64 mask = event->attr.sample_regs_intr;
6269 
6270 			perf_output_sample_regs(handle,
6271 						data->regs_intr.regs,
6272 						mask);
6273 		}
6274 	}
6275 
6276 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6277 		perf_output_put(handle, data->phys_addr);
6278 
6279 	if (!event->attr.watermark) {
6280 		int wakeup_events = event->attr.wakeup_events;
6281 
6282 		if (wakeup_events) {
6283 			struct ring_buffer *rb = handle->rb;
6284 			int events = local_inc_return(&rb->events);
6285 
6286 			if (events >= wakeup_events) {
6287 				local_sub(wakeup_events, &rb->events);
6288 				local_inc(&rb->wakeup);
6289 			}
6290 		}
6291 	}
6292 }
6293 
6294 static u64 perf_virt_to_phys(u64 virt)
6295 {
6296 	u64 phys_addr = 0;
6297 	struct page *p = NULL;
6298 
6299 	if (!virt)
6300 		return 0;
6301 
6302 	if (virt >= TASK_SIZE) {
6303 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6304 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6305 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6306 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6307 	} else {
6308 		/*
6309 		 * Walking the pages tables for user address.
6310 		 * Interrupts are disabled, so it prevents any tear down
6311 		 * of the page tables.
6312 		 * Try IRQ-safe __get_user_pages_fast first.
6313 		 * If failed, leave phys_addr as 0.
6314 		 */
6315 		if ((current->mm != NULL) &&
6316 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6317 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6318 
6319 		if (p)
6320 			put_page(p);
6321 	}
6322 
6323 	return phys_addr;
6324 }
6325 
6326 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6327 
6328 static struct perf_callchain_entry *
6329 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6330 {
6331 	bool kernel = !event->attr.exclude_callchain_kernel;
6332 	bool user   = !event->attr.exclude_callchain_user;
6333 	/* Disallow cross-task user callchains. */
6334 	bool crosstask = event->ctx->task && event->ctx->task != current;
6335 	const u32 max_stack = event->attr.sample_max_stack;
6336 	struct perf_callchain_entry *callchain;
6337 
6338 	if (!kernel && !user)
6339 		return &__empty_callchain;
6340 
6341 	callchain = get_perf_callchain(regs, 0, kernel, user,
6342 				       max_stack, crosstask, true);
6343 	return callchain ?: &__empty_callchain;
6344 }
6345 
6346 void perf_prepare_sample(struct perf_event_header *header,
6347 			 struct perf_sample_data *data,
6348 			 struct perf_event *event,
6349 			 struct pt_regs *regs)
6350 {
6351 	u64 sample_type = event->attr.sample_type;
6352 
6353 	header->type = PERF_RECORD_SAMPLE;
6354 	header->size = sizeof(*header) + event->header_size;
6355 
6356 	header->misc = 0;
6357 	header->misc |= perf_misc_flags(regs);
6358 
6359 	__perf_event_header__init_id(header, data, event);
6360 
6361 	if (sample_type & PERF_SAMPLE_IP)
6362 		data->ip = perf_instruction_pointer(regs);
6363 
6364 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6365 		int size = 1;
6366 
6367 		data->callchain = perf_callchain(event, regs);
6368 		size += data->callchain->nr;
6369 
6370 		header->size += size * sizeof(u64);
6371 	}
6372 
6373 	if (sample_type & PERF_SAMPLE_RAW) {
6374 		struct perf_raw_record *raw = data->raw;
6375 		int size;
6376 
6377 		if (raw) {
6378 			struct perf_raw_frag *frag = &raw->frag;
6379 			u32 sum = 0;
6380 
6381 			do {
6382 				sum += frag->size;
6383 				if (perf_raw_frag_last(frag))
6384 					break;
6385 				frag = frag->next;
6386 			} while (1);
6387 
6388 			size = round_up(sum + sizeof(u32), sizeof(u64));
6389 			raw->size = size - sizeof(u32);
6390 			frag->pad = raw->size - sum;
6391 		} else {
6392 			size = sizeof(u64);
6393 		}
6394 
6395 		header->size += size;
6396 	}
6397 
6398 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6399 		int size = sizeof(u64); /* nr */
6400 		if (data->br_stack) {
6401 			size += data->br_stack->nr
6402 			      * sizeof(struct perf_branch_entry);
6403 		}
6404 		header->size += size;
6405 	}
6406 
6407 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6408 		perf_sample_regs_user(&data->regs_user, regs,
6409 				      &data->regs_user_copy);
6410 
6411 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6412 		/* regs dump ABI info */
6413 		int size = sizeof(u64);
6414 
6415 		if (data->regs_user.regs) {
6416 			u64 mask = event->attr.sample_regs_user;
6417 			size += hweight64(mask) * sizeof(u64);
6418 		}
6419 
6420 		header->size += size;
6421 	}
6422 
6423 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6424 		/*
6425 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6426 		 * processed as the last one or have additional check added
6427 		 * in case new sample type is added, because we could eat
6428 		 * up the rest of the sample size.
6429 		 */
6430 		u16 stack_size = event->attr.sample_stack_user;
6431 		u16 size = sizeof(u64);
6432 
6433 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6434 						     data->regs_user.regs);
6435 
6436 		/*
6437 		 * If there is something to dump, add space for the dump
6438 		 * itself and for the field that tells the dynamic size,
6439 		 * which is how many have been actually dumped.
6440 		 */
6441 		if (stack_size)
6442 			size += sizeof(u64) + stack_size;
6443 
6444 		data->stack_user_size = stack_size;
6445 		header->size += size;
6446 	}
6447 
6448 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6449 		/* regs dump ABI info */
6450 		int size = sizeof(u64);
6451 
6452 		perf_sample_regs_intr(&data->regs_intr, regs);
6453 
6454 		if (data->regs_intr.regs) {
6455 			u64 mask = event->attr.sample_regs_intr;
6456 
6457 			size += hweight64(mask) * sizeof(u64);
6458 		}
6459 
6460 		header->size += size;
6461 	}
6462 
6463 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6464 		data->phys_addr = perf_virt_to_phys(data->addr);
6465 }
6466 
6467 static void __always_inline
6468 __perf_event_output(struct perf_event *event,
6469 		    struct perf_sample_data *data,
6470 		    struct pt_regs *regs,
6471 		    int (*output_begin)(struct perf_output_handle *,
6472 					struct perf_event *,
6473 					unsigned int))
6474 {
6475 	struct perf_output_handle handle;
6476 	struct perf_event_header header;
6477 
6478 	/* protect the callchain buffers */
6479 	rcu_read_lock();
6480 
6481 	perf_prepare_sample(&header, data, event, regs);
6482 
6483 	if (output_begin(&handle, event, header.size))
6484 		goto exit;
6485 
6486 	perf_output_sample(&handle, &header, data, event);
6487 
6488 	perf_output_end(&handle);
6489 
6490 exit:
6491 	rcu_read_unlock();
6492 }
6493 
6494 void
6495 perf_event_output_forward(struct perf_event *event,
6496 			 struct perf_sample_data *data,
6497 			 struct pt_regs *regs)
6498 {
6499 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6500 }
6501 
6502 void
6503 perf_event_output_backward(struct perf_event *event,
6504 			   struct perf_sample_data *data,
6505 			   struct pt_regs *regs)
6506 {
6507 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6508 }
6509 
6510 void
6511 perf_event_output(struct perf_event *event,
6512 		  struct perf_sample_data *data,
6513 		  struct pt_regs *regs)
6514 {
6515 	__perf_event_output(event, data, regs, perf_output_begin);
6516 }
6517 
6518 /*
6519  * read event_id
6520  */
6521 
6522 struct perf_read_event {
6523 	struct perf_event_header	header;
6524 
6525 	u32				pid;
6526 	u32				tid;
6527 };
6528 
6529 static void
6530 perf_event_read_event(struct perf_event *event,
6531 			struct task_struct *task)
6532 {
6533 	struct perf_output_handle handle;
6534 	struct perf_sample_data sample;
6535 	struct perf_read_event read_event = {
6536 		.header = {
6537 			.type = PERF_RECORD_READ,
6538 			.misc = 0,
6539 			.size = sizeof(read_event) + event->read_size,
6540 		},
6541 		.pid = perf_event_pid(event, task),
6542 		.tid = perf_event_tid(event, task),
6543 	};
6544 	int ret;
6545 
6546 	perf_event_header__init_id(&read_event.header, &sample, event);
6547 	ret = perf_output_begin(&handle, event, read_event.header.size);
6548 	if (ret)
6549 		return;
6550 
6551 	perf_output_put(&handle, read_event);
6552 	perf_output_read(&handle, event);
6553 	perf_event__output_id_sample(event, &handle, &sample);
6554 
6555 	perf_output_end(&handle);
6556 }
6557 
6558 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6559 
6560 static void
6561 perf_iterate_ctx(struct perf_event_context *ctx,
6562 		   perf_iterate_f output,
6563 		   void *data, bool all)
6564 {
6565 	struct perf_event *event;
6566 
6567 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6568 		if (!all) {
6569 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6570 				continue;
6571 			if (!event_filter_match(event))
6572 				continue;
6573 		}
6574 
6575 		output(event, data);
6576 	}
6577 }
6578 
6579 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6580 {
6581 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6582 	struct perf_event *event;
6583 
6584 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6585 		/*
6586 		 * Skip events that are not fully formed yet; ensure that
6587 		 * if we observe event->ctx, both event and ctx will be
6588 		 * complete enough. See perf_install_in_context().
6589 		 */
6590 		if (!smp_load_acquire(&event->ctx))
6591 			continue;
6592 
6593 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6594 			continue;
6595 		if (!event_filter_match(event))
6596 			continue;
6597 		output(event, data);
6598 	}
6599 }
6600 
6601 /*
6602  * Iterate all events that need to receive side-band events.
6603  *
6604  * For new callers; ensure that account_pmu_sb_event() includes
6605  * your event, otherwise it might not get delivered.
6606  */
6607 static void
6608 perf_iterate_sb(perf_iterate_f output, void *data,
6609 	       struct perf_event_context *task_ctx)
6610 {
6611 	struct perf_event_context *ctx;
6612 	int ctxn;
6613 
6614 	rcu_read_lock();
6615 	preempt_disable();
6616 
6617 	/*
6618 	 * If we have task_ctx != NULL we only notify the task context itself.
6619 	 * The task_ctx is set only for EXIT events before releasing task
6620 	 * context.
6621 	 */
6622 	if (task_ctx) {
6623 		perf_iterate_ctx(task_ctx, output, data, false);
6624 		goto done;
6625 	}
6626 
6627 	perf_iterate_sb_cpu(output, data);
6628 
6629 	for_each_task_context_nr(ctxn) {
6630 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6631 		if (ctx)
6632 			perf_iterate_ctx(ctx, output, data, false);
6633 	}
6634 done:
6635 	preempt_enable();
6636 	rcu_read_unlock();
6637 }
6638 
6639 /*
6640  * Clear all file-based filters at exec, they'll have to be
6641  * re-instated when/if these objects are mmapped again.
6642  */
6643 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6644 {
6645 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6646 	struct perf_addr_filter *filter;
6647 	unsigned int restart = 0, count = 0;
6648 	unsigned long flags;
6649 
6650 	if (!has_addr_filter(event))
6651 		return;
6652 
6653 	raw_spin_lock_irqsave(&ifh->lock, flags);
6654 	list_for_each_entry(filter, &ifh->list, entry) {
6655 		if (filter->inode) {
6656 			event->addr_filters_offs[count] = 0;
6657 			restart++;
6658 		}
6659 
6660 		count++;
6661 	}
6662 
6663 	if (restart)
6664 		event->addr_filters_gen++;
6665 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6666 
6667 	if (restart)
6668 		perf_event_stop(event, 1);
6669 }
6670 
6671 void perf_event_exec(void)
6672 {
6673 	struct perf_event_context *ctx;
6674 	int ctxn;
6675 
6676 	rcu_read_lock();
6677 	for_each_task_context_nr(ctxn) {
6678 		ctx = current->perf_event_ctxp[ctxn];
6679 		if (!ctx)
6680 			continue;
6681 
6682 		perf_event_enable_on_exec(ctxn);
6683 
6684 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6685 				   true);
6686 	}
6687 	rcu_read_unlock();
6688 }
6689 
6690 struct remote_output {
6691 	struct ring_buffer	*rb;
6692 	int			err;
6693 };
6694 
6695 static void __perf_event_output_stop(struct perf_event *event, void *data)
6696 {
6697 	struct perf_event *parent = event->parent;
6698 	struct remote_output *ro = data;
6699 	struct ring_buffer *rb = ro->rb;
6700 	struct stop_event_data sd = {
6701 		.event	= event,
6702 	};
6703 
6704 	if (!has_aux(event))
6705 		return;
6706 
6707 	if (!parent)
6708 		parent = event;
6709 
6710 	/*
6711 	 * In case of inheritance, it will be the parent that links to the
6712 	 * ring-buffer, but it will be the child that's actually using it.
6713 	 *
6714 	 * We are using event::rb to determine if the event should be stopped,
6715 	 * however this may race with ring_buffer_attach() (through set_output),
6716 	 * which will make us skip the event that actually needs to be stopped.
6717 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6718 	 * its rb pointer.
6719 	 */
6720 	if (rcu_dereference(parent->rb) == rb)
6721 		ro->err = __perf_event_stop(&sd);
6722 }
6723 
6724 static int __perf_pmu_output_stop(void *info)
6725 {
6726 	struct perf_event *event = info;
6727 	struct pmu *pmu = event->pmu;
6728 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6729 	struct remote_output ro = {
6730 		.rb	= event->rb,
6731 	};
6732 
6733 	rcu_read_lock();
6734 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6735 	if (cpuctx->task_ctx)
6736 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6737 				   &ro, false);
6738 	rcu_read_unlock();
6739 
6740 	return ro.err;
6741 }
6742 
6743 static void perf_pmu_output_stop(struct perf_event *event)
6744 {
6745 	struct perf_event *iter;
6746 	int err, cpu;
6747 
6748 restart:
6749 	rcu_read_lock();
6750 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6751 		/*
6752 		 * For per-CPU events, we need to make sure that neither they
6753 		 * nor their children are running; for cpu==-1 events it's
6754 		 * sufficient to stop the event itself if it's active, since
6755 		 * it can't have children.
6756 		 */
6757 		cpu = iter->cpu;
6758 		if (cpu == -1)
6759 			cpu = READ_ONCE(iter->oncpu);
6760 
6761 		if (cpu == -1)
6762 			continue;
6763 
6764 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6765 		if (err == -EAGAIN) {
6766 			rcu_read_unlock();
6767 			goto restart;
6768 		}
6769 	}
6770 	rcu_read_unlock();
6771 }
6772 
6773 /*
6774  * task tracking -- fork/exit
6775  *
6776  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6777  */
6778 
6779 struct perf_task_event {
6780 	struct task_struct		*task;
6781 	struct perf_event_context	*task_ctx;
6782 
6783 	struct {
6784 		struct perf_event_header	header;
6785 
6786 		u32				pid;
6787 		u32				ppid;
6788 		u32				tid;
6789 		u32				ptid;
6790 		u64				time;
6791 	} event_id;
6792 };
6793 
6794 static int perf_event_task_match(struct perf_event *event)
6795 {
6796 	return event->attr.comm  || event->attr.mmap ||
6797 	       event->attr.mmap2 || event->attr.mmap_data ||
6798 	       event->attr.task;
6799 }
6800 
6801 static void perf_event_task_output(struct perf_event *event,
6802 				   void *data)
6803 {
6804 	struct perf_task_event *task_event = data;
6805 	struct perf_output_handle handle;
6806 	struct perf_sample_data	sample;
6807 	struct task_struct *task = task_event->task;
6808 	int ret, size = task_event->event_id.header.size;
6809 
6810 	if (!perf_event_task_match(event))
6811 		return;
6812 
6813 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6814 
6815 	ret = perf_output_begin(&handle, event,
6816 				task_event->event_id.header.size);
6817 	if (ret)
6818 		goto out;
6819 
6820 	task_event->event_id.pid = perf_event_pid(event, task);
6821 	task_event->event_id.ppid = perf_event_pid(event, current);
6822 
6823 	task_event->event_id.tid = perf_event_tid(event, task);
6824 	task_event->event_id.ptid = perf_event_tid(event, current);
6825 
6826 	task_event->event_id.time = perf_event_clock(event);
6827 
6828 	perf_output_put(&handle, task_event->event_id);
6829 
6830 	perf_event__output_id_sample(event, &handle, &sample);
6831 
6832 	perf_output_end(&handle);
6833 out:
6834 	task_event->event_id.header.size = size;
6835 }
6836 
6837 static void perf_event_task(struct task_struct *task,
6838 			      struct perf_event_context *task_ctx,
6839 			      int new)
6840 {
6841 	struct perf_task_event task_event;
6842 
6843 	if (!atomic_read(&nr_comm_events) &&
6844 	    !atomic_read(&nr_mmap_events) &&
6845 	    !atomic_read(&nr_task_events))
6846 		return;
6847 
6848 	task_event = (struct perf_task_event){
6849 		.task	  = task,
6850 		.task_ctx = task_ctx,
6851 		.event_id    = {
6852 			.header = {
6853 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6854 				.misc = 0,
6855 				.size = sizeof(task_event.event_id),
6856 			},
6857 			/* .pid  */
6858 			/* .ppid */
6859 			/* .tid  */
6860 			/* .ptid */
6861 			/* .time */
6862 		},
6863 	};
6864 
6865 	perf_iterate_sb(perf_event_task_output,
6866 		       &task_event,
6867 		       task_ctx);
6868 }
6869 
6870 void perf_event_fork(struct task_struct *task)
6871 {
6872 	perf_event_task(task, NULL, 1);
6873 	perf_event_namespaces(task);
6874 }
6875 
6876 /*
6877  * comm tracking
6878  */
6879 
6880 struct perf_comm_event {
6881 	struct task_struct	*task;
6882 	char			*comm;
6883 	int			comm_size;
6884 
6885 	struct {
6886 		struct perf_event_header	header;
6887 
6888 		u32				pid;
6889 		u32				tid;
6890 	} event_id;
6891 };
6892 
6893 static int perf_event_comm_match(struct perf_event *event)
6894 {
6895 	return event->attr.comm;
6896 }
6897 
6898 static void perf_event_comm_output(struct perf_event *event,
6899 				   void *data)
6900 {
6901 	struct perf_comm_event *comm_event = data;
6902 	struct perf_output_handle handle;
6903 	struct perf_sample_data sample;
6904 	int size = comm_event->event_id.header.size;
6905 	int ret;
6906 
6907 	if (!perf_event_comm_match(event))
6908 		return;
6909 
6910 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6911 	ret = perf_output_begin(&handle, event,
6912 				comm_event->event_id.header.size);
6913 
6914 	if (ret)
6915 		goto out;
6916 
6917 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6918 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6919 
6920 	perf_output_put(&handle, comm_event->event_id);
6921 	__output_copy(&handle, comm_event->comm,
6922 				   comm_event->comm_size);
6923 
6924 	perf_event__output_id_sample(event, &handle, &sample);
6925 
6926 	perf_output_end(&handle);
6927 out:
6928 	comm_event->event_id.header.size = size;
6929 }
6930 
6931 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6932 {
6933 	char comm[TASK_COMM_LEN];
6934 	unsigned int size;
6935 
6936 	memset(comm, 0, sizeof(comm));
6937 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6938 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6939 
6940 	comm_event->comm = comm;
6941 	comm_event->comm_size = size;
6942 
6943 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6944 
6945 	perf_iterate_sb(perf_event_comm_output,
6946 		       comm_event,
6947 		       NULL);
6948 }
6949 
6950 void perf_event_comm(struct task_struct *task, bool exec)
6951 {
6952 	struct perf_comm_event comm_event;
6953 
6954 	if (!atomic_read(&nr_comm_events))
6955 		return;
6956 
6957 	comm_event = (struct perf_comm_event){
6958 		.task	= task,
6959 		/* .comm      */
6960 		/* .comm_size */
6961 		.event_id  = {
6962 			.header = {
6963 				.type = PERF_RECORD_COMM,
6964 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6965 				/* .size */
6966 			},
6967 			/* .pid */
6968 			/* .tid */
6969 		},
6970 	};
6971 
6972 	perf_event_comm_event(&comm_event);
6973 }
6974 
6975 /*
6976  * namespaces tracking
6977  */
6978 
6979 struct perf_namespaces_event {
6980 	struct task_struct		*task;
6981 
6982 	struct {
6983 		struct perf_event_header	header;
6984 
6985 		u32				pid;
6986 		u32				tid;
6987 		u64				nr_namespaces;
6988 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6989 	} event_id;
6990 };
6991 
6992 static int perf_event_namespaces_match(struct perf_event *event)
6993 {
6994 	return event->attr.namespaces;
6995 }
6996 
6997 static void perf_event_namespaces_output(struct perf_event *event,
6998 					 void *data)
6999 {
7000 	struct perf_namespaces_event *namespaces_event = data;
7001 	struct perf_output_handle handle;
7002 	struct perf_sample_data sample;
7003 	u16 header_size = namespaces_event->event_id.header.size;
7004 	int ret;
7005 
7006 	if (!perf_event_namespaces_match(event))
7007 		return;
7008 
7009 	perf_event_header__init_id(&namespaces_event->event_id.header,
7010 				   &sample, event);
7011 	ret = perf_output_begin(&handle, event,
7012 				namespaces_event->event_id.header.size);
7013 	if (ret)
7014 		goto out;
7015 
7016 	namespaces_event->event_id.pid = perf_event_pid(event,
7017 							namespaces_event->task);
7018 	namespaces_event->event_id.tid = perf_event_tid(event,
7019 							namespaces_event->task);
7020 
7021 	perf_output_put(&handle, namespaces_event->event_id);
7022 
7023 	perf_event__output_id_sample(event, &handle, &sample);
7024 
7025 	perf_output_end(&handle);
7026 out:
7027 	namespaces_event->event_id.header.size = header_size;
7028 }
7029 
7030 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7031 				   struct task_struct *task,
7032 				   const struct proc_ns_operations *ns_ops)
7033 {
7034 	struct path ns_path;
7035 	struct inode *ns_inode;
7036 	void *error;
7037 
7038 	error = ns_get_path(&ns_path, task, ns_ops);
7039 	if (!error) {
7040 		ns_inode = ns_path.dentry->d_inode;
7041 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7042 		ns_link_info->ino = ns_inode->i_ino;
7043 		path_put(&ns_path);
7044 	}
7045 }
7046 
7047 void perf_event_namespaces(struct task_struct *task)
7048 {
7049 	struct perf_namespaces_event namespaces_event;
7050 	struct perf_ns_link_info *ns_link_info;
7051 
7052 	if (!atomic_read(&nr_namespaces_events))
7053 		return;
7054 
7055 	namespaces_event = (struct perf_namespaces_event){
7056 		.task	= task,
7057 		.event_id  = {
7058 			.header = {
7059 				.type = PERF_RECORD_NAMESPACES,
7060 				.misc = 0,
7061 				.size = sizeof(namespaces_event.event_id),
7062 			},
7063 			/* .pid */
7064 			/* .tid */
7065 			.nr_namespaces = NR_NAMESPACES,
7066 			/* .link_info[NR_NAMESPACES] */
7067 		},
7068 	};
7069 
7070 	ns_link_info = namespaces_event.event_id.link_info;
7071 
7072 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7073 			       task, &mntns_operations);
7074 
7075 #ifdef CONFIG_USER_NS
7076 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7077 			       task, &userns_operations);
7078 #endif
7079 #ifdef CONFIG_NET_NS
7080 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7081 			       task, &netns_operations);
7082 #endif
7083 #ifdef CONFIG_UTS_NS
7084 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7085 			       task, &utsns_operations);
7086 #endif
7087 #ifdef CONFIG_IPC_NS
7088 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7089 			       task, &ipcns_operations);
7090 #endif
7091 #ifdef CONFIG_PID_NS
7092 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7093 			       task, &pidns_operations);
7094 #endif
7095 #ifdef CONFIG_CGROUPS
7096 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7097 			       task, &cgroupns_operations);
7098 #endif
7099 
7100 	perf_iterate_sb(perf_event_namespaces_output,
7101 			&namespaces_event,
7102 			NULL);
7103 }
7104 
7105 /*
7106  * mmap tracking
7107  */
7108 
7109 struct perf_mmap_event {
7110 	struct vm_area_struct	*vma;
7111 
7112 	const char		*file_name;
7113 	int			file_size;
7114 	int			maj, min;
7115 	u64			ino;
7116 	u64			ino_generation;
7117 	u32			prot, flags;
7118 
7119 	struct {
7120 		struct perf_event_header	header;
7121 
7122 		u32				pid;
7123 		u32				tid;
7124 		u64				start;
7125 		u64				len;
7126 		u64				pgoff;
7127 	} event_id;
7128 };
7129 
7130 static int perf_event_mmap_match(struct perf_event *event,
7131 				 void *data)
7132 {
7133 	struct perf_mmap_event *mmap_event = data;
7134 	struct vm_area_struct *vma = mmap_event->vma;
7135 	int executable = vma->vm_flags & VM_EXEC;
7136 
7137 	return (!executable && event->attr.mmap_data) ||
7138 	       (executable && (event->attr.mmap || event->attr.mmap2));
7139 }
7140 
7141 static void perf_event_mmap_output(struct perf_event *event,
7142 				   void *data)
7143 {
7144 	struct perf_mmap_event *mmap_event = data;
7145 	struct perf_output_handle handle;
7146 	struct perf_sample_data sample;
7147 	int size = mmap_event->event_id.header.size;
7148 	int ret;
7149 
7150 	if (!perf_event_mmap_match(event, data))
7151 		return;
7152 
7153 	if (event->attr.mmap2) {
7154 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7155 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7156 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7157 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7158 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7159 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7160 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7161 	}
7162 
7163 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7164 	ret = perf_output_begin(&handle, event,
7165 				mmap_event->event_id.header.size);
7166 	if (ret)
7167 		goto out;
7168 
7169 	mmap_event->event_id.pid = perf_event_pid(event, current);
7170 	mmap_event->event_id.tid = perf_event_tid(event, current);
7171 
7172 	perf_output_put(&handle, mmap_event->event_id);
7173 
7174 	if (event->attr.mmap2) {
7175 		perf_output_put(&handle, mmap_event->maj);
7176 		perf_output_put(&handle, mmap_event->min);
7177 		perf_output_put(&handle, mmap_event->ino);
7178 		perf_output_put(&handle, mmap_event->ino_generation);
7179 		perf_output_put(&handle, mmap_event->prot);
7180 		perf_output_put(&handle, mmap_event->flags);
7181 	}
7182 
7183 	__output_copy(&handle, mmap_event->file_name,
7184 				   mmap_event->file_size);
7185 
7186 	perf_event__output_id_sample(event, &handle, &sample);
7187 
7188 	perf_output_end(&handle);
7189 out:
7190 	mmap_event->event_id.header.size = size;
7191 }
7192 
7193 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7194 {
7195 	struct vm_area_struct *vma = mmap_event->vma;
7196 	struct file *file = vma->vm_file;
7197 	int maj = 0, min = 0;
7198 	u64 ino = 0, gen = 0;
7199 	u32 prot = 0, flags = 0;
7200 	unsigned int size;
7201 	char tmp[16];
7202 	char *buf = NULL;
7203 	char *name;
7204 
7205 	if (vma->vm_flags & VM_READ)
7206 		prot |= PROT_READ;
7207 	if (vma->vm_flags & VM_WRITE)
7208 		prot |= PROT_WRITE;
7209 	if (vma->vm_flags & VM_EXEC)
7210 		prot |= PROT_EXEC;
7211 
7212 	if (vma->vm_flags & VM_MAYSHARE)
7213 		flags = MAP_SHARED;
7214 	else
7215 		flags = MAP_PRIVATE;
7216 
7217 	if (vma->vm_flags & VM_DENYWRITE)
7218 		flags |= MAP_DENYWRITE;
7219 	if (vma->vm_flags & VM_MAYEXEC)
7220 		flags |= MAP_EXECUTABLE;
7221 	if (vma->vm_flags & VM_LOCKED)
7222 		flags |= MAP_LOCKED;
7223 	if (vma->vm_flags & VM_HUGETLB)
7224 		flags |= MAP_HUGETLB;
7225 
7226 	if (file) {
7227 		struct inode *inode;
7228 		dev_t dev;
7229 
7230 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7231 		if (!buf) {
7232 			name = "//enomem";
7233 			goto cpy_name;
7234 		}
7235 		/*
7236 		 * d_path() works from the end of the rb backwards, so we
7237 		 * need to add enough zero bytes after the string to handle
7238 		 * the 64bit alignment we do later.
7239 		 */
7240 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7241 		if (IS_ERR(name)) {
7242 			name = "//toolong";
7243 			goto cpy_name;
7244 		}
7245 		inode = file_inode(vma->vm_file);
7246 		dev = inode->i_sb->s_dev;
7247 		ino = inode->i_ino;
7248 		gen = inode->i_generation;
7249 		maj = MAJOR(dev);
7250 		min = MINOR(dev);
7251 
7252 		goto got_name;
7253 	} else {
7254 		if (vma->vm_ops && vma->vm_ops->name) {
7255 			name = (char *) vma->vm_ops->name(vma);
7256 			if (name)
7257 				goto cpy_name;
7258 		}
7259 
7260 		name = (char *)arch_vma_name(vma);
7261 		if (name)
7262 			goto cpy_name;
7263 
7264 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7265 				vma->vm_end >= vma->vm_mm->brk) {
7266 			name = "[heap]";
7267 			goto cpy_name;
7268 		}
7269 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7270 				vma->vm_end >= vma->vm_mm->start_stack) {
7271 			name = "[stack]";
7272 			goto cpy_name;
7273 		}
7274 
7275 		name = "//anon";
7276 		goto cpy_name;
7277 	}
7278 
7279 cpy_name:
7280 	strlcpy(tmp, name, sizeof(tmp));
7281 	name = tmp;
7282 got_name:
7283 	/*
7284 	 * Since our buffer works in 8 byte units we need to align our string
7285 	 * size to a multiple of 8. However, we must guarantee the tail end is
7286 	 * zero'd out to avoid leaking random bits to userspace.
7287 	 */
7288 	size = strlen(name)+1;
7289 	while (!IS_ALIGNED(size, sizeof(u64)))
7290 		name[size++] = '\0';
7291 
7292 	mmap_event->file_name = name;
7293 	mmap_event->file_size = size;
7294 	mmap_event->maj = maj;
7295 	mmap_event->min = min;
7296 	mmap_event->ino = ino;
7297 	mmap_event->ino_generation = gen;
7298 	mmap_event->prot = prot;
7299 	mmap_event->flags = flags;
7300 
7301 	if (!(vma->vm_flags & VM_EXEC))
7302 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7303 
7304 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7305 
7306 	perf_iterate_sb(perf_event_mmap_output,
7307 		       mmap_event,
7308 		       NULL);
7309 
7310 	kfree(buf);
7311 }
7312 
7313 /*
7314  * Check whether inode and address range match filter criteria.
7315  */
7316 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7317 				     struct file *file, unsigned long offset,
7318 				     unsigned long size)
7319 {
7320 	if (filter->inode != file_inode(file))
7321 		return false;
7322 
7323 	if (filter->offset > offset + size)
7324 		return false;
7325 
7326 	if (filter->offset + filter->size < offset)
7327 		return false;
7328 
7329 	return true;
7330 }
7331 
7332 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7333 {
7334 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7335 	struct vm_area_struct *vma = data;
7336 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7337 	struct file *file = vma->vm_file;
7338 	struct perf_addr_filter *filter;
7339 	unsigned int restart = 0, count = 0;
7340 
7341 	if (!has_addr_filter(event))
7342 		return;
7343 
7344 	if (!file)
7345 		return;
7346 
7347 	raw_spin_lock_irqsave(&ifh->lock, flags);
7348 	list_for_each_entry(filter, &ifh->list, entry) {
7349 		if (perf_addr_filter_match(filter, file, off,
7350 					     vma->vm_end - vma->vm_start)) {
7351 			event->addr_filters_offs[count] = vma->vm_start;
7352 			restart++;
7353 		}
7354 
7355 		count++;
7356 	}
7357 
7358 	if (restart)
7359 		event->addr_filters_gen++;
7360 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7361 
7362 	if (restart)
7363 		perf_event_stop(event, 1);
7364 }
7365 
7366 /*
7367  * Adjust all task's events' filters to the new vma
7368  */
7369 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7370 {
7371 	struct perf_event_context *ctx;
7372 	int ctxn;
7373 
7374 	/*
7375 	 * Data tracing isn't supported yet and as such there is no need
7376 	 * to keep track of anything that isn't related to executable code:
7377 	 */
7378 	if (!(vma->vm_flags & VM_EXEC))
7379 		return;
7380 
7381 	rcu_read_lock();
7382 	for_each_task_context_nr(ctxn) {
7383 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7384 		if (!ctx)
7385 			continue;
7386 
7387 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7388 	}
7389 	rcu_read_unlock();
7390 }
7391 
7392 void perf_event_mmap(struct vm_area_struct *vma)
7393 {
7394 	struct perf_mmap_event mmap_event;
7395 
7396 	if (!atomic_read(&nr_mmap_events))
7397 		return;
7398 
7399 	mmap_event = (struct perf_mmap_event){
7400 		.vma	= vma,
7401 		/* .file_name */
7402 		/* .file_size */
7403 		.event_id  = {
7404 			.header = {
7405 				.type = PERF_RECORD_MMAP,
7406 				.misc = PERF_RECORD_MISC_USER,
7407 				/* .size */
7408 			},
7409 			/* .pid */
7410 			/* .tid */
7411 			.start  = vma->vm_start,
7412 			.len    = vma->vm_end - vma->vm_start,
7413 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7414 		},
7415 		/* .maj (attr_mmap2 only) */
7416 		/* .min (attr_mmap2 only) */
7417 		/* .ino (attr_mmap2 only) */
7418 		/* .ino_generation (attr_mmap2 only) */
7419 		/* .prot (attr_mmap2 only) */
7420 		/* .flags (attr_mmap2 only) */
7421 	};
7422 
7423 	perf_addr_filters_adjust(vma);
7424 	perf_event_mmap_event(&mmap_event);
7425 }
7426 
7427 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7428 			  unsigned long size, u64 flags)
7429 {
7430 	struct perf_output_handle handle;
7431 	struct perf_sample_data sample;
7432 	struct perf_aux_event {
7433 		struct perf_event_header	header;
7434 		u64				offset;
7435 		u64				size;
7436 		u64				flags;
7437 	} rec = {
7438 		.header = {
7439 			.type = PERF_RECORD_AUX,
7440 			.misc = 0,
7441 			.size = sizeof(rec),
7442 		},
7443 		.offset		= head,
7444 		.size		= size,
7445 		.flags		= flags,
7446 	};
7447 	int ret;
7448 
7449 	perf_event_header__init_id(&rec.header, &sample, event);
7450 	ret = perf_output_begin(&handle, event, rec.header.size);
7451 
7452 	if (ret)
7453 		return;
7454 
7455 	perf_output_put(&handle, rec);
7456 	perf_event__output_id_sample(event, &handle, &sample);
7457 
7458 	perf_output_end(&handle);
7459 }
7460 
7461 /*
7462  * Lost/dropped samples logging
7463  */
7464 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7465 {
7466 	struct perf_output_handle handle;
7467 	struct perf_sample_data sample;
7468 	int ret;
7469 
7470 	struct {
7471 		struct perf_event_header	header;
7472 		u64				lost;
7473 	} lost_samples_event = {
7474 		.header = {
7475 			.type = PERF_RECORD_LOST_SAMPLES,
7476 			.misc = 0,
7477 			.size = sizeof(lost_samples_event),
7478 		},
7479 		.lost		= lost,
7480 	};
7481 
7482 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7483 
7484 	ret = perf_output_begin(&handle, event,
7485 				lost_samples_event.header.size);
7486 	if (ret)
7487 		return;
7488 
7489 	perf_output_put(&handle, lost_samples_event);
7490 	perf_event__output_id_sample(event, &handle, &sample);
7491 	perf_output_end(&handle);
7492 }
7493 
7494 /*
7495  * context_switch tracking
7496  */
7497 
7498 struct perf_switch_event {
7499 	struct task_struct	*task;
7500 	struct task_struct	*next_prev;
7501 
7502 	struct {
7503 		struct perf_event_header	header;
7504 		u32				next_prev_pid;
7505 		u32				next_prev_tid;
7506 	} event_id;
7507 };
7508 
7509 static int perf_event_switch_match(struct perf_event *event)
7510 {
7511 	return event->attr.context_switch;
7512 }
7513 
7514 static void perf_event_switch_output(struct perf_event *event, void *data)
7515 {
7516 	struct perf_switch_event *se = data;
7517 	struct perf_output_handle handle;
7518 	struct perf_sample_data sample;
7519 	int ret;
7520 
7521 	if (!perf_event_switch_match(event))
7522 		return;
7523 
7524 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7525 	if (event->ctx->task) {
7526 		se->event_id.header.type = PERF_RECORD_SWITCH;
7527 		se->event_id.header.size = sizeof(se->event_id.header);
7528 	} else {
7529 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7530 		se->event_id.header.size = sizeof(se->event_id);
7531 		se->event_id.next_prev_pid =
7532 					perf_event_pid(event, se->next_prev);
7533 		se->event_id.next_prev_tid =
7534 					perf_event_tid(event, se->next_prev);
7535 	}
7536 
7537 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7538 
7539 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7540 	if (ret)
7541 		return;
7542 
7543 	if (event->ctx->task)
7544 		perf_output_put(&handle, se->event_id.header);
7545 	else
7546 		perf_output_put(&handle, se->event_id);
7547 
7548 	perf_event__output_id_sample(event, &handle, &sample);
7549 
7550 	perf_output_end(&handle);
7551 }
7552 
7553 static void perf_event_switch(struct task_struct *task,
7554 			      struct task_struct *next_prev, bool sched_in)
7555 {
7556 	struct perf_switch_event switch_event;
7557 
7558 	/* N.B. caller checks nr_switch_events != 0 */
7559 
7560 	switch_event = (struct perf_switch_event){
7561 		.task		= task,
7562 		.next_prev	= next_prev,
7563 		.event_id	= {
7564 			.header = {
7565 				/* .type */
7566 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7567 				/* .size */
7568 			},
7569 			/* .next_prev_pid */
7570 			/* .next_prev_tid */
7571 		},
7572 	};
7573 
7574 	perf_iterate_sb(perf_event_switch_output,
7575 		       &switch_event,
7576 		       NULL);
7577 }
7578 
7579 /*
7580  * IRQ throttle logging
7581  */
7582 
7583 static void perf_log_throttle(struct perf_event *event, int enable)
7584 {
7585 	struct perf_output_handle handle;
7586 	struct perf_sample_data sample;
7587 	int ret;
7588 
7589 	struct {
7590 		struct perf_event_header	header;
7591 		u64				time;
7592 		u64				id;
7593 		u64				stream_id;
7594 	} throttle_event = {
7595 		.header = {
7596 			.type = PERF_RECORD_THROTTLE,
7597 			.misc = 0,
7598 			.size = sizeof(throttle_event),
7599 		},
7600 		.time		= perf_event_clock(event),
7601 		.id		= primary_event_id(event),
7602 		.stream_id	= event->id,
7603 	};
7604 
7605 	if (enable)
7606 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7607 
7608 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7609 
7610 	ret = perf_output_begin(&handle, event,
7611 				throttle_event.header.size);
7612 	if (ret)
7613 		return;
7614 
7615 	perf_output_put(&handle, throttle_event);
7616 	perf_event__output_id_sample(event, &handle, &sample);
7617 	perf_output_end(&handle);
7618 }
7619 
7620 void perf_event_itrace_started(struct perf_event *event)
7621 {
7622 	event->attach_state |= PERF_ATTACH_ITRACE;
7623 }
7624 
7625 static void perf_log_itrace_start(struct perf_event *event)
7626 {
7627 	struct perf_output_handle handle;
7628 	struct perf_sample_data sample;
7629 	struct perf_aux_event {
7630 		struct perf_event_header        header;
7631 		u32				pid;
7632 		u32				tid;
7633 	} rec;
7634 	int ret;
7635 
7636 	if (event->parent)
7637 		event = event->parent;
7638 
7639 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7640 	    event->attach_state & PERF_ATTACH_ITRACE)
7641 		return;
7642 
7643 	rec.header.type	= PERF_RECORD_ITRACE_START;
7644 	rec.header.misc	= 0;
7645 	rec.header.size	= sizeof(rec);
7646 	rec.pid	= perf_event_pid(event, current);
7647 	rec.tid	= perf_event_tid(event, current);
7648 
7649 	perf_event_header__init_id(&rec.header, &sample, event);
7650 	ret = perf_output_begin(&handle, event, rec.header.size);
7651 
7652 	if (ret)
7653 		return;
7654 
7655 	perf_output_put(&handle, rec);
7656 	perf_event__output_id_sample(event, &handle, &sample);
7657 
7658 	perf_output_end(&handle);
7659 }
7660 
7661 static int
7662 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7663 {
7664 	struct hw_perf_event *hwc = &event->hw;
7665 	int ret = 0;
7666 	u64 seq;
7667 
7668 	seq = __this_cpu_read(perf_throttled_seq);
7669 	if (seq != hwc->interrupts_seq) {
7670 		hwc->interrupts_seq = seq;
7671 		hwc->interrupts = 1;
7672 	} else {
7673 		hwc->interrupts++;
7674 		if (unlikely(throttle
7675 			     && hwc->interrupts >= max_samples_per_tick)) {
7676 			__this_cpu_inc(perf_throttled_count);
7677 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7678 			hwc->interrupts = MAX_INTERRUPTS;
7679 			perf_log_throttle(event, 0);
7680 			ret = 1;
7681 		}
7682 	}
7683 
7684 	if (event->attr.freq) {
7685 		u64 now = perf_clock();
7686 		s64 delta = now - hwc->freq_time_stamp;
7687 
7688 		hwc->freq_time_stamp = now;
7689 
7690 		if (delta > 0 && delta < 2*TICK_NSEC)
7691 			perf_adjust_period(event, delta, hwc->last_period, true);
7692 	}
7693 
7694 	return ret;
7695 }
7696 
7697 int perf_event_account_interrupt(struct perf_event *event)
7698 {
7699 	return __perf_event_account_interrupt(event, 1);
7700 }
7701 
7702 /*
7703  * Generic event overflow handling, sampling.
7704  */
7705 
7706 static int __perf_event_overflow(struct perf_event *event,
7707 				   int throttle, struct perf_sample_data *data,
7708 				   struct pt_regs *regs)
7709 {
7710 	int events = atomic_read(&event->event_limit);
7711 	int ret = 0;
7712 
7713 	/*
7714 	 * Non-sampling counters might still use the PMI to fold short
7715 	 * hardware counters, ignore those.
7716 	 */
7717 	if (unlikely(!is_sampling_event(event)))
7718 		return 0;
7719 
7720 	ret = __perf_event_account_interrupt(event, throttle);
7721 
7722 	/*
7723 	 * XXX event_limit might not quite work as expected on inherited
7724 	 * events
7725 	 */
7726 
7727 	event->pending_kill = POLL_IN;
7728 	if (events && atomic_dec_and_test(&event->event_limit)) {
7729 		ret = 1;
7730 		event->pending_kill = POLL_HUP;
7731 
7732 		perf_event_disable_inatomic(event);
7733 	}
7734 
7735 	READ_ONCE(event->overflow_handler)(event, data, regs);
7736 
7737 	if (*perf_event_fasync(event) && event->pending_kill) {
7738 		event->pending_wakeup = 1;
7739 		irq_work_queue(&event->pending);
7740 	}
7741 
7742 	return ret;
7743 }
7744 
7745 int perf_event_overflow(struct perf_event *event,
7746 			  struct perf_sample_data *data,
7747 			  struct pt_regs *regs)
7748 {
7749 	return __perf_event_overflow(event, 1, data, regs);
7750 }
7751 
7752 /*
7753  * Generic software event infrastructure
7754  */
7755 
7756 struct swevent_htable {
7757 	struct swevent_hlist		*swevent_hlist;
7758 	struct mutex			hlist_mutex;
7759 	int				hlist_refcount;
7760 
7761 	/* Recursion avoidance in each contexts */
7762 	int				recursion[PERF_NR_CONTEXTS];
7763 };
7764 
7765 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7766 
7767 /*
7768  * We directly increment event->count and keep a second value in
7769  * event->hw.period_left to count intervals. This period event
7770  * is kept in the range [-sample_period, 0] so that we can use the
7771  * sign as trigger.
7772  */
7773 
7774 u64 perf_swevent_set_period(struct perf_event *event)
7775 {
7776 	struct hw_perf_event *hwc = &event->hw;
7777 	u64 period = hwc->last_period;
7778 	u64 nr, offset;
7779 	s64 old, val;
7780 
7781 	hwc->last_period = hwc->sample_period;
7782 
7783 again:
7784 	old = val = local64_read(&hwc->period_left);
7785 	if (val < 0)
7786 		return 0;
7787 
7788 	nr = div64_u64(period + val, period);
7789 	offset = nr * period;
7790 	val -= offset;
7791 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7792 		goto again;
7793 
7794 	return nr;
7795 }
7796 
7797 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7798 				    struct perf_sample_data *data,
7799 				    struct pt_regs *regs)
7800 {
7801 	struct hw_perf_event *hwc = &event->hw;
7802 	int throttle = 0;
7803 
7804 	if (!overflow)
7805 		overflow = perf_swevent_set_period(event);
7806 
7807 	if (hwc->interrupts == MAX_INTERRUPTS)
7808 		return;
7809 
7810 	for (; overflow; overflow--) {
7811 		if (__perf_event_overflow(event, throttle,
7812 					    data, regs)) {
7813 			/*
7814 			 * We inhibit the overflow from happening when
7815 			 * hwc->interrupts == MAX_INTERRUPTS.
7816 			 */
7817 			break;
7818 		}
7819 		throttle = 1;
7820 	}
7821 }
7822 
7823 static void perf_swevent_event(struct perf_event *event, u64 nr,
7824 			       struct perf_sample_data *data,
7825 			       struct pt_regs *regs)
7826 {
7827 	struct hw_perf_event *hwc = &event->hw;
7828 
7829 	local64_add(nr, &event->count);
7830 
7831 	if (!regs)
7832 		return;
7833 
7834 	if (!is_sampling_event(event))
7835 		return;
7836 
7837 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7838 		data->period = nr;
7839 		return perf_swevent_overflow(event, 1, data, regs);
7840 	} else
7841 		data->period = event->hw.last_period;
7842 
7843 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7844 		return perf_swevent_overflow(event, 1, data, regs);
7845 
7846 	if (local64_add_negative(nr, &hwc->period_left))
7847 		return;
7848 
7849 	perf_swevent_overflow(event, 0, data, regs);
7850 }
7851 
7852 static int perf_exclude_event(struct perf_event *event,
7853 			      struct pt_regs *regs)
7854 {
7855 	if (event->hw.state & PERF_HES_STOPPED)
7856 		return 1;
7857 
7858 	if (regs) {
7859 		if (event->attr.exclude_user && user_mode(regs))
7860 			return 1;
7861 
7862 		if (event->attr.exclude_kernel && !user_mode(regs))
7863 			return 1;
7864 	}
7865 
7866 	return 0;
7867 }
7868 
7869 static int perf_swevent_match(struct perf_event *event,
7870 				enum perf_type_id type,
7871 				u32 event_id,
7872 				struct perf_sample_data *data,
7873 				struct pt_regs *regs)
7874 {
7875 	if (event->attr.type != type)
7876 		return 0;
7877 
7878 	if (event->attr.config != event_id)
7879 		return 0;
7880 
7881 	if (perf_exclude_event(event, regs))
7882 		return 0;
7883 
7884 	return 1;
7885 }
7886 
7887 static inline u64 swevent_hash(u64 type, u32 event_id)
7888 {
7889 	u64 val = event_id | (type << 32);
7890 
7891 	return hash_64(val, SWEVENT_HLIST_BITS);
7892 }
7893 
7894 static inline struct hlist_head *
7895 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7896 {
7897 	u64 hash = swevent_hash(type, event_id);
7898 
7899 	return &hlist->heads[hash];
7900 }
7901 
7902 /* For the read side: events when they trigger */
7903 static inline struct hlist_head *
7904 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7905 {
7906 	struct swevent_hlist *hlist;
7907 
7908 	hlist = rcu_dereference(swhash->swevent_hlist);
7909 	if (!hlist)
7910 		return NULL;
7911 
7912 	return __find_swevent_head(hlist, type, event_id);
7913 }
7914 
7915 /* For the event head insertion and removal in the hlist */
7916 static inline struct hlist_head *
7917 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7918 {
7919 	struct swevent_hlist *hlist;
7920 	u32 event_id = event->attr.config;
7921 	u64 type = event->attr.type;
7922 
7923 	/*
7924 	 * Event scheduling is always serialized against hlist allocation
7925 	 * and release. Which makes the protected version suitable here.
7926 	 * The context lock guarantees that.
7927 	 */
7928 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7929 					  lockdep_is_held(&event->ctx->lock));
7930 	if (!hlist)
7931 		return NULL;
7932 
7933 	return __find_swevent_head(hlist, type, event_id);
7934 }
7935 
7936 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7937 				    u64 nr,
7938 				    struct perf_sample_data *data,
7939 				    struct pt_regs *regs)
7940 {
7941 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7942 	struct perf_event *event;
7943 	struct hlist_head *head;
7944 
7945 	rcu_read_lock();
7946 	head = find_swevent_head_rcu(swhash, type, event_id);
7947 	if (!head)
7948 		goto end;
7949 
7950 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7951 		if (perf_swevent_match(event, type, event_id, data, regs))
7952 			perf_swevent_event(event, nr, data, regs);
7953 	}
7954 end:
7955 	rcu_read_unlock();
7956 }
7957 
7958 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7959 
7960 int perf_swevent_get_recursion_context(void)
7961 {
7962 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7963 
7964 	return get_recursion_context(swhash->recursion);
7965 }
7966 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7967 
7968 void perf_swevent_put_recursion_context(int rctx)
7969 {
7970 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7971 
7972 	put_recursion_context(swhash->recursion, rctx);
7973 }
7974 
7975 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7976 {
7977 	struct perf_sample_data data;
7978 
7979 	if (WARN_ON_ONCE(!regs))
7980 		return;
7981 
7982 	perf_sample_data_init(&data, addr, 0);
7983 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7984 }
7985 
7986 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7987 {
7988 	int rctx;
7989 
7990 	preempt_disable_notrace();
7991 	rctx = perf_swevent_get_recursion_context();
7992 	if (unlikely(rctx < 0))
7993 		goto fail;
7994 
7995 	___perf_sw_event(event_id, nr, regs, addr);
7996 
7997 	perf_swevent_put_recursion_context(rctx);
7998 fail:
7999 	preempt_enable_notrace();
8000 }
8001 
8002 static void perf_swevent_read(struct perf_event *event)
8003 {
8004 }
8005 
8006 static int perf_swevent_add(struct perf_event *event, int flags)
8007 {
8008 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8009 	struct hw_perf_event *hwc = &event->hw;
8010 	struct hlist_head *head;
8011 
8012 	if (is_sampling_event(event)) {
8013 		hwc->last_period = hwc->sample_period;
8014 		perf_swevent_set_period(event);
8015 	}
8016 
8017 	hwc->state = !(flags & PERF_EF_START);
8018 
8019 	head = find_swevent_head(swhash, event);
8020 	if (WARN_ON_ONCE(!head))
8021 		return -EINVAL;
8022 
8023 	hlist_add_head_rcu(&event->hlist_entry, head);
8024 	perf_event_update_userpage(event);
8025 
8026 	return 0;
8027 }
8028 
8029 static void perf_swevent_del(struct perf_event *event, int flags)
8030 {
8031 	hlist_del_rcu(&event->hlist_entry);
8032 }
8033 
8034 static void perf_swevent_start(struct perf_event *event, int flags)
8035 {
8036 	event->hw.state = 0;
8037 }
8038 
8039 static void perf_swevent_stop(struct perf_event *event, int flags)
8040 {
8041 	event->hw.state = PERF_HES_STOPPED;
8042 }
8043 
8044 /* Deref the hlist from the update side */
8045 static inline struct swevent_hlist *
8046 swevent_hlist_deref(struct swevent_htable *swhash)
8047 {
8048 	return rcu_dereference_protected(swhash->swevent_hlist,
8049 					 lockdep_is_held(&swhash->hlist_mutex));
8050 }
8051 
8052 static void swevent_hlist_release(struct swevent_htable *swhash)
8053 {
8054 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8055 
8056 	if (!hlist)
8057 		return;
8058 
8059 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8060 	kfree_rcu(hlist, rcu_head);
8061 }
8062 
8063 static void swevent_hlist_put_cpu(int cpu)
8064 {
8065 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8066 
8067 	mutex_lock(&swhash->hlist_mutex);
8068 
8069 	if (!--swhash->hlist_refcount)
8070 		swevent_hlist_release(swhash);
8071 
8072 	mutex_unlock(&swhash->hlist_mutex);
8073 }
8074 
8075 static void swevent_hlist_put(void)
8076 {
8077 	int cpu;
8078 
8079 	for_each_possible_cpu(cpu)
8080 		swevent_hlist_put_cpu(cpu);
8081 }
8082 
8083 static int swevent_hlist_get_cpu(int cpu)
8084 {
8085 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8086 	int err = 0;
8087 
8088 	mutex_lock(&swhash->hlist_mutex);
8089 	if (!swevent_hlist_deref(swhash) &&
8090 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8091 		struct swevent_hlist *hlist;
8092 
8093 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8094 		if (!hlist) {
8095 			err = -ENOMEM;
8096 			goto exit;
8097 		}
8098 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8099 	}
8100 	swhash->hlist_refcount++;
8101 exit:
8102 	mutex_unlock(&swhash->hlist_mutex);
8103 
8104 	return err;
8105 }
8106 
8107 static int swevent_hlist_get(void)
8108 {
8109 	int err, cpu, failed_cpu;
8110 
8111 	mutex_lock(&pmus_lock);
8112 	for_each_possible_cpu(cpu) {
8113 		err = swevent_hlist_get_cpu(cpu);
8114 		if (err) {
8115 			failed_cpu = cpu;
8116 			goto fail;
8117 		}
8118 	}
8119 	mutex_unlock(&pmus_lock);
8120 	return 0;
8121 fail:
8122 	for_each_possible_cpu(cpu) {
8123 		if (cpu == failed_cpu)
8124 			break;
8125 		swevent_hlist_put_cpu(cpu);
8126 	}
8127 	mutex_unlock(&pmus_lock);
8128 	return err;
8129 }
8130 
8131 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8132 
8133 static void sw_perf_event_destroy(struct perf_event *event)
8134 {
8135 	u64 event_id = event->attr.config;
8136 
8137 	WARN_ON(event->parent);
8138 
8139 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8140 	swevent_hlist_put();
8141 }
8142 
8143 static int perf_swevent_init(struct perf_event *event)
8144 {
8145 	u64 event_id = event->attr.config;
8146 
8147 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8148 		return -ENOENT;
8149 
8150 	/*
8151 	 * no branch sampling for software events
8152 	 */
8153 	if (has_branch_stack(event))
8154 		return -EOPNOTSUPP;
8155 
8156 	switch (event_id) {
8157 	case PERF_COUNT_SW_CPU_CLOCK:
8158 	case PERF_COUNT_SW_TASK_CLOCK:
8159 		return -ENOENT;
8160 
8161 	default:
8162 		break;
8163 	}
8164 
8165 	if (event_id >= PERF_COUNT_SW_MAX)
8166 		return -ENOENT;
8167 
8168 	if (!event->parent) {
8169 		int err;
8170 
8171 		err = swevent_hlist_get();
8172 		if (err)
8173 			return err;
8174 
8175 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8176 		event->destroy = sw_perf_event_destroy;
8177 	}
8178 
8179 	return 0;
8180 }
8181 
8182 static struct pmu perf_swevent = {
8183 	.task_ctx_nr	= perf_sw_context,
8184 
8185 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8186 
8187 	.event_init	= perf_swevent_init,
8188 	.add		= perf_swevent_add,
8189 	.del		= perf_swevent_del,
8190 	.start		= perf_swevent_start,
8191 	.stop		= perf_swevent_stop,
8192 	.read		= perf_swevent_read,
8193 };
8194 
8195 #ifdef CONFIG_EVENT_TRACING
8196 
8197 static int perf_tp_filter_match(struct perf_event *event,
8198 				struct perf_sample_data *data)
8199 {
8200 	void *record = data->raw->frag.data;
8201 
8202 	/* only top level events have filters set */
8203 	if (event->parent)
8204 		event = event->parent;
8205 
8206 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8207 		return 1;
8208 	return 0;
8209 }
8210 
8211 static int perf_tp_event_match(struct perf_event *event,
8212 				struct perf_sample_data *data,
8213 				struct pt_regs *regs)
8214 {
8215 	if (event->hw.state & PERF_HES_STOPPED)
8216 		return 0;
8217 	/*
8218 	 * All tracepoints are from kernel-space.
8219 	 */
8220 	if (event->attr.exclude_kernel)
8221 		return 0;
8222 
8223 	if (!perf_tp_filter_match(event, data))
8224 		return 0;
8225 
8226 	return 1;
8227 }
8228 
8229 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8230 			       struct trace_event_call *call, u64 count,
8231 			       struct pt_regs *regs, struct hlist_head *head,
8232 			       struct task_struct *task)
8233 {
8234 	if (bpf_prog_array_valid(call)) {
8235 		*(struct pt_regs **)raw_data = regs;
8236 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8237 			perf_swevent_put_recursion_context(rctx);
8238 			return;
8239 		}
8240 	}
8241 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8242 		      rctx, task);
8243 }
8244 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8245 
8246 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8247 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8248 		   struct task_struct *task)
8249 {
8250 	struct perf_sample_data data;
8251 	struct perf_event *event;
8252 
8253 	struct perf_raw_record raw = {
8254 		.frag = {
8255 			.size = entry_size,
8256 			.data = record,
8257 		},
8258 	};
8259 
8260 	perf_sample_data_init(&data, 0, 0);
8261 	data.raw = &raw;
8262 
8263 	perf_trace_buf_update(record, event_type);
8264 
8265 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8266 		if (perf_tp_event_match(event, &data, regs))
8267 			perf_swevent_event(event, count, &data, regs);
8268 	}
8269 
8270 	/*
8271 	 * If we got specified a target task, also iterate its context and
8272 	 * deliver this event there too.
8273 	 */
8274 	if (task && task != current) {
8275 		struct perf_event_context *ctx;
8276 		struct trace_entry *entry = record;
8277 
8278 		rcu_read_lock();
8279 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8280 		if (!ctx)
8281 			goto unlock;
8282 
8283 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8284 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8285 				continue;
8286 			if (event->attr.config != entry->type)
8287 				continue;
8288 			if (perf_tp_event_match(event, &data, regs))
8289 				perf_swevent_event(event, count, &data, regs);
8290 		}
8291 unlock:
8292 		rcu_read_unlock();
8293 	}
8294 
8295 	perf_swevent_put_recursion_context(rctx);
8296 }
8297 EXPORT_SYMBOL_GPL(perf_tp_event);
8298 
8299 static void tp_perf_event_destroy(struct perf_event *event)
8300 {
8301 	perf_trace_destroy(event);
8302 }
8303 
8304 static int perf_tp_event_init(struct perf_event *event)
8305 {
8306 	int err;
8307 
8308 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8309 		return -ENOENT;
8310 
8311 	/*
8312 	 * no branch sampling for tracepoint events
8313 	 */
8314 	if (has_branch_stack(event))
8315 		return -EOPNOTSUPP;
8316 
8317 	err = perf_trace_init(event);
8318 	if (err)
8319 		return err;
8320 
8321 	event->destroy = tp_perf_event_destroy;
8322 
8323 	return 0;
8324 }
8325 
8326 static struct pmu perf_tracepoint = {
8327 	.task_ctx_nr	= perf_sw_context,
8328 
8329 	.event_init	= perf_tp_event_init,
8330 	.add		= perf_trace_add,
8331 	.del		= perf_trace_del,
8332 	.start		= perf_swevent_start,
8333 	.stop		= perf_swevent_stop,
8334 	.read		= perf_swevent_read,
8335 };
8336 
8337 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8338 /*
8339  * Flags in config, used by dynamic PMU kprobe and uprobe
8340  * The flags should match following PMU_FORMAT_ATTR().
8341  *
8342  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8343  *                               if not set, create kprobe/uprobe
8344  */
8345 enum perf_probe_config {
8346 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8347 };
8348 
8349 PMU_FORMAT_ATTR(retprobe, "config:0");
8350 
8351 static struct attribute *probe_attrs[] = {
8352 	&format_attr_retprobe.attr,
8353 	NULL,
8354 };
8355 
8356 static struct attribute_group probe_format_group = {
8357 	.name = "format",
8358 	.attrs = probe_attrs,
8359 };
8360 
8361 static const struct attribute_group *probe_attr_groups[] = {
8362 	&probe_format_group,
8363 	NULL,
8364 };
8365 #endif
8366 
8367 #ifdef CONFIG_KPROBE_EVENTS
8368 static int perf_kprobe_event_init(struct perf_event *event);
8369 static struct pmu perf_kprobe = {
8370 	.task_ctx_nr	= perf_sw_context,
8371 	.event_init	= perf_kprobe_event_init,
8372 	.add		= perf_trace_add,
8373 	.del		= perf_trace_del,
8374 	.start		= perf_swevent_start,
8375 	.stop		= perf_swevent_stop,
8376 	.read		= perf_swevent_read,
8377 	.attr_groups	= probe_attr_groups,
8378 };
8379 
8380 static int perf_kprobe_event_init(struct perf_event *event)
8381 {
8382 	int err;
8383 	bool is_retprobe;
8384 
8385 	if (event->attr.type != perf_kprobe.type)
8386 		return -ENOENT;
8387 	/*
8388 	 * no branch sampling for probe events
8389 	 */
8390 	if (has_branch_stack(event))
8391 		return -EOPNOTSUPP;
8392 
8393 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8394 	err = perf_kprobe_init(event, is_retprobe);
8395 	if (err)
8396 		return err;
8397 
8398 	event->destroy = perf_kprobe_destroy;
8399 
8400 	return 0;
8401 }
8402 #endif /* CONFIG_KPROBE_EVENTS */
8403 
8404 #ifdef CONFIG_UPROBE_EVENTS
8405 static int perf_uprobe_event_init(struct perf_event *event);
8406 static struct pmu perf_uprobe = {
8407 	.task_ctx_nr	= perf_sw_context,
8408 	.event_init	= perf_uprobe_event_init,
8409 	.add		= perf_trace_add,
8410 	.del		= perf_trace_del,
8411 	.start		= perf_swevent_start,
8412 	.stop		= perf_swevent_stop,
8413 	.read		= perf_swevent_read,
8414 	.attr_groups	= probe_attr_groups,
8415 };
8416 
8417 static int perf_uprobe_event_init(struct perf_event *event)
8418 {
8419 	int err;
8420 	bool is_retprobe;
8421 
8422 	if (event->attr.type != perf_uprobe.type)
8423 		return -ENOENT;
8424 	/*
8425 	 * no branch sampling for probe events
8426 	 */
8427 	if (has_branch_stack(event))
8428 		return -EOPNOTSUPP;
8429 
8430 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8431 	err = perf_uprobe_init(event, is_retprobe);
8432 	if (err)
8433 		return err;
8434 
8435 	event->destroy = perf_uprobe_destroy;
8436 
8437 	return 0;
8438 }
8439 #endif /* CONFIG_UPROBE_EVENTS */
8440 
8441 static inline void perf_tp_register(void)
8442 {
8443 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8444 #ifdef CONFIG_KPROBE_EVENTS
8445 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8446 #endif
8447 #ifdef CONFIG_UPROBE_EVENTS
8448 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8449 #endif
8450 }
8451 
8452 static void perf_event_free_filter(struct perf_event *event)
8453 {
8454 	ftrace_profile_free_filter(event);
8455 }
8456 
8457 #ifdef CONFIG_BPF_SYSCALL
8458 static void bpf_overflow_handler(struct perf_event *event,
8459 				 struct perf_sample_data *data,
8460 				 struct pt_regs *regs)
8461 {
8462 	struct bpf_perf_event_data_kern ctx = {
8463 		.data = data,
8464 		.event = event,
8465 	};
8466 	int ret = 0;
8467 
8468 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8469 	preempt_disable();
8470 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8471 		goto out;
8472 	rcu_read_lock();
8473 	ret = BPF_PROG_RUN(event->prog, &ctx);
8474 	rcu_read_unlock();
8475 out:
8476 	__this_cpu_dec(bpf_prog_active);
8477 	preempt_enable();
8478 	if (!ret)
8479 		return;
8480 
8481 	event->orig_overflow_handler(event, data, regs);
8482 }
8483 
8484 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8485 {
8486 	struct bpf_prog *prog;
8487 
8488 	if (event->overflow_handler_context)
8489 		/* hw breakpoint or kernel counter */
8490 		return -EINVAL;
8491 
8492 	if (event->prog)
8493 		return -EEXIST;
8494 
8495 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8496 	if (IS_ERR(prog))
8497 		return PTR_ERR(prog);
8498 
8499 	event->prog = prog;
8500 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8501 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8502 	return 0;
8503 }
8504 
8505 static void perf_event_free_bpf_handler(struct perf_event *event)
8506 {
8507 	struct bpf_prog *prog = event->prog;
8508 
8509 	if (!prog)
8510 		return;
8511 
8512 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8513 	event->prog = NULL;
8514 	bpf_prog_put(prog);
8515 }
8516 #else
8517 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8518 {
8519 	return -EOPNOTSUPP;
8520 }
8521 static void perf_event_free_bpf_handler(struct perf_event *event)
8522 {
8523 }
8524 #endif
8525 
8526 /*
8527  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8528  * with perf_event_open()
8529  */
8530 static inline bool perf_event_is_tracing(struct perf_event *event)
8531 {
8532 	if (event->pmu == &perf_tracepoint)
8533 		return true;
8534 #ifdef CONFIG_KPROBE_EVENTS
8535 	if (event->pmu == &perf_kprobe)
8536 		return true;
8537 #endif
8538 #ifdef CONFIG_UPROBE_EVENTS
8539 	if (event->pmu == &perf_uprobe)
8540 		return true;
8541 #endif
8542 	return false;
8543 }
8544 
8545 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8546 {
8547 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8548 	struct bpf_prog *prog;
8549 	int ret;
8550 
8551 	if (!perf_event_is_tracing(event))
8552 		return perf_event_set_bpf_handler(event, prog_fd);
8553 
8554 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8555 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8556 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8557 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8558 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8559 		return -EINVAL;
8560 
8561 	prog = bpf_prog_get(prog_fd);
8562 	if (IS_ERR(prog))
8563 		return PTR_ERR(prog);
8564 
8565 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8566 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8567 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8568 		/* valid fd, but invalid bpf program type */
8569 		bpf_prog_put(prog);
8570 		return -EINVAL;
8571 	}
8572 
8573 	/* Kprobe override only works for kprobes, not uprobes. */
8574 	if (prog->kprobe_override &&
8575 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8576 		bpf_prog_put(prog);
8577 		return -EINVAL;
8578 	}
8579 
8580 	if (is_tracepoint || is_syscall_tp) {
8581 		int off = trace_event_get_offsets(event->tp_event);
8582 
8583 		if (prog->aux->max_ctx_offset > off) {
8584 			bpf_prog_put(prog);
8585 			return -EACCES;
8586 		}
8587 	}
8588 
8589 	ret = perf_event_attach_bpf_prog(event, prog);
8590 	if (ret)
8591 		bpf_prog_put(prog);
8592 	return ret;
8593 }
8594 
8595 static void perf_event_free_bpf_prog(struct perf_event *event)
8596 {
8597 	if (!perf_event_is_tracing(event)) {
8598 		perf_event_free_bpf_handler(event);
8599 		return;
8600 	}
8601 	perf_event_detach_bpf_prog(event);
8602 }
8603 
8604 #else
8605 
8606 static inline void perf_tp_register(void)
8607 {
8608 }
8609 
8610 static void perf_event_free_filter(struct perf_event *event)
8611 {
8612 }
8613 
8614 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8615 {
8616 	return -ENOENT;
8617 }
8618 
8619 static void perf_event_free_bpf_prog(struct perf_event *event)
8620 {
8621 }
8622 #endif /* CONFIG_EVENT_TRACING */
8623 
8624 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8625 void perf_bp_event(struct perf_event *bp, void *data)
8626 {
8627 	struct perf_sample_data sample;
8628 	struct pt_regs *regs = data;
8629 
8630 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8631 
8632 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8633 		perf_swevent_event(bp, 1, &sample, regs);
8634 }
8635 #endif
8636 
8637 /*
8638  * Allocate a new address filter
8639  */
8640 static struct perf_addr_filter *
8641 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8642 {
8643 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8644 	struct perf_addr_filter *filter;
8645 
8646 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8647 	if (!filter)
8648 		return NULL;
8649 
8650 	INIT_LIST_HEAD(&filter->entry);
8651 	list_add_tail(&filter->entry, filters);
8652 
8653 	return filter;
8654 }
8655 
8656 static void free_filters_list(struct list_head *filters)
8657 {
8658 	struct perf_addr_filter *filter, *iter;
8659 
8660 	list_for_each_entry_safe(filter, iter, filters, entry) {
8661 		if (filter->inode)
8662 			iput(filter->inode);
8663 		list_del(&filter->entry);
8664 		kfree(filter);
8665 	}
8666 }
8667 
8668 /*
8669  * Free existing address filters and optionally install new ones
8670  */
8671 static void perf_addr_filters_splice(struct perf_event *event,
8672 				     struct list_head *head)
8673 {
8674 	unsigned long flags;
8675 	LIST_HEAD(list);
8676 
8677 	if (!has_addr_filter(event))
8678 		return;
8679 
8680 	/* don't bother with children, they don't have their own filters */
8681 	if (event->parent)
8682 		return;
8683 
8684 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8685 
8686 	list_splice_init(&event->addr_filters.list, &list);
8687 	if (head)
8688 		list_splice(head, &event->addr_filters.list);
8689 
8690 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8691 
8692 	free_filters_list(&list);
8693 }
8694 
8695 /*
8696  * Scan through mm's vmas and see if one of them matches the
8697  * @filter; if so, adjust filter's address range.
8698  * Called with mm::mmap_sem down for reading.
8699  */
8700 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8701 					    struct mm_struct *mm)
8702 {
8703 	struct vm_area_struct *vma;
8704 
8705 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8706 		struct file *file = vma->vm_file;
8707 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8708 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8709 
8710 		if (!file)
8711 			continue;
8712 
8713 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8714 			continue;
8715 
8716 		return vma->vm_start;
8717 	}
8718 
8719 	return 0;
8720 }
8721 
8722 /*
8723  * Update event's address range filters based on the
8724  * task's existing mappings, if any.
8725  */
8726 static void perf_event_addr_filters_apply(struct perf_event *event)
8727 {
8728 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8729 	struct task_struct *task = READ_ONCE(event->ctx->task);
8730 	struct perf_addr_filter *filter;
8731 	struct mm_struct *mm = NULL;
8732 	unsigned int count = 0;
8733 	unsigned long flags;
8734 
8735 	/*
8736 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8737 	 * will stop on the parent's child_mutex that our caller is also holding
8738 	 */
8739 	if (task == TASK_TOMBSTONE)
8740 		return;
8741 
8742 	if (!ifh->nr_file_filters)
8743 		return;
8744 
8745 	mm = get_task_mm(event->ctx->task);
8746 	if (!mm)
8747 		goto restart;
8748 
8749 	down_read(&mm->mmap_sem);
8750 
8751 	raw_spin_lock_irqsave(&ifh->lock, flags);
8752 	list_for_each_entry(filter, &ifh->list, entry) {
8753 		event->addr_filters_offs[count] = 0;
8754 
8755 		/*
8756 		 * Adjust base offset if the filter is associated to a binary
8757 		 * that needs to be mapped:
8758 		 */
8759 		if (filter->inode)
8760 			event->addr_filters_offs[count] =
8761 				perf_addr_filter_apply(filter, mm);
8762 
8763 		count++;
8764 	}
8765 
8766 	event->addr_filters_gen++;
8767 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8768 
8769 	up_read(&mm->mmap_sem);
8770 
8771 	mmput(mm);
8772 
8773 restart:
8774 	perf_event_stop(event, 1);
8775 }
8776 
8777 /*
8778  * Address range filtering: limiting the data to certain
8779  * instruction address ranges. Filters are ioctl()ed to us from
8780  * userspace as ascii strings.
8781  *
8782  * Filter string format:
8783  *
8784  * ACTION RANGE_SPEC
8785  * where ACTION is one of the
8786  *  * "filter": limit the trace to this region
8787  *  * "start": start tracing from this address
8788  *  * "stop": stop tracing at this address/region;
8789  * RANGE_SPEC is
8790  *  * for kernel addresses: <start address>[/<size>]
8791  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8792  *
8793  * if <size> is not specified, the range is treated as a single address.
8794  */
8795 enum {
8796 	IF_ACT_NONE = -1,
8797 	IF_ACT_FILTER,
8798 	IF_ACT_START,
8799 	IF_ACT_STOP,
8800 	IF_SRC_FILE,
8801 	IF_SRC_KERNEL,
8802 	IF_SRC_FILEADDR,
8803 	IF_SRC_KERNELADDR,
8804 };
8805 
8806 enum {
8807 	IF_STATE_ACTION = 0,
8808 	IF_STATE_SOURCE,
8809 	IF_STATE_END,
8810 };
8811 
8812 static const match_table_t if_tokens = {
8813 	{ IF_ACT_FILTER,	"filter" },
8814 	{ IF_ACT_START,		"start" },
8815 	{ IF_ACT_STOP,		"stop" },
8816 	{ IF_SRC_FILE,		"%u/%u@%s" },
8817 	{ IF_SRC_KERNEL,	"%u/%u" },
8818 	{ IF_SRC_FILEADDR,	"%u@%s" },
8819 	{ IF_SRC_KERNELADDR,	"%u" },
8820 	{ IF_ACT_NONE,		NULL },
8821 };
8822 
8823 /*
8824  * Address filter string parser
8825  */
8826 static int
8827 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8828 			     struct list_head *filters)
8829 {
8830 	struct perf_addr_filter *filter = NULL;
8831 	char *start, *orig, *filename = NULL;
8832 	struct path path;
8833 	substring_t args[MAX_OPT_ARGS];
8834 	int state = IF_STATE_ACTION, token;
8835 	unsigned int kernel = 0;
8836 	int ret = -EINVAL;
8837 
8838 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8839 	if (!fstr)
8840 		return -ENOMEM;
8841 
8842 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8843 		ret = -EINVAL;
8844 
8845 		if (!*start)
8846 			continue;
8847 
8848 		/* filter definition begins */
8849 		if (state == IF_STATE_ACTION) {
8850 			filter = perf_addr_filter_new(event, filters);
8851 			if (!filter)
8852 				goto fail;
8853 		}
8854 
8855 		token = match_token(start, if_tokens, args);
8856 		switch (token) {
8857 		case IF_ACT_FILTER:
8858 		case IF_ACT_START:
8859 			filter->filter = 1;
8860 
8861 		case IF_ACT_STOP:
8862 			if (state != IF_STATE_ACTION)
8863 				goto fail;
8864 
8865 			state = IF_STATE_SOURCE;
8866 			break;
8867 
8868 		case IF_SRC_KERNELADDR:
8869 		case IF_SRC_KERNEL:
8870 			kernel = 1;
8871 
8872 		case IF_SRC_FILEADDR:
8873 		case IF_SRC_FILE:
8874 			if (state != IF_STATE_SOURCE)
8875 				goto fail;
8876 
8877 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8878 				filter->range = 1;
8879 
8880 			*args[0].to = 0;
8881 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8882 			if (ret)
8883 				goto fail;
8884 
8885 			if (filter->range) {
8886 				*args[1].to = 0;
8887 				ret = kstrtoul(args[1].from, 0, &filter->size);
8888 				if (ret)
8889 					goto fail;
8890 			}
8891 
8892 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8893 				int fpos = filter->range ? 2 : 1;
8894 
8895 				filename = match_strdup(&args[fpos]);
8896 				if (!filename) {
8897 					ret = -ENOMEM;
8898 					goto fail;
8899 				}
8900 			}
8901 
8902 			state = IF_STATE_END;
8903 			break;
8904 
8905 		default:
8906 			goto fail;
8907 		}
8908 
8909 		/*
8910 		 * Filter definition is fully parsed, validate and install it.
8911 		 * Make sure that it doesn't contradict itself or the event's
8912 		 * attribute.
8913 		 */
8914 		if (state == IF_STATE_END) {
8915 			ret = -EINVAL;
8916 			if (kernel && event->attr.exclude_kernel)
8917 				goto fail;
8918 
8919 			if (!kernel) {
8920 				if (!filename)
8921 					goto fail;
8922 
8923 				/*
8924 				 * For now, we only support file-based filters
8925 				 * in per-task events; doing so for CPU-wide
8926 				 * events requires additional context switching
8927 				 * trickery, since same object code will be
8928 				 * mapped at different virtual addresses in
8929 				 * different processes.
8930 				 */
8931 				ret = -EOPNOTSUPP;
8932 				if (!event->ctx->task)
8933 					goto fail_free_name;
8934 
8935 				/* look up the path and grab its inode */
8936 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8937 				if (ret)
8938 					goto fail_free_name;
8939 
8940 				filter->inode = igrab(d_inode(path.dentry));
8941 				path_put(&path);
8942 				kfree(filename);
8943 				filename = NULL;
8944 
8945 				ret = -EINVAL;
8946 				if (!filter->inode ||
8947 				    !S_ISREG(filter->inode->i_mode))
8948 					/* free_filters_list() will iput() */
8949 					goto fail;
8950 
8951 				event->addr_filters.nr_file_filters++;
8952 			}
8953 
8954 			/* ready to consume more filters */
8955 			state = IF_STATE_ACTION;
8956 			filter = NULL;
8957 		}
8958 	}
8959 
8960 	if (state != IF_STATE_ACTION)
8961 		goto fail;
8962 
8963 	kfree(orig);
8964 
8965 	return 0;
8966 
8967 fail_free_name:
8968 	kfree(filename);
8969 fail:
8970 	free_filters_list(filters);
8971 	kfree(orig);
8972 
8973 	return ret;
8974 }
8975 
8976 static int
8977 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8978 {
8979 	LIST_HEAD(filters);
8980 	int ret;
8981 
8982 	/*
8983 	 * Since this is called in perf_ioctl() path, we're already holding
8984 	 * ctx::mutex.
8985 	 */
8986 	lockdep_assert_held(&event->ctx->mutex);
8987 
8988 	if (WARN_ON_ONCE(event->parent))
8989 		return -EINVAL;
8990 
8991 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8992 	if (ret)
8993 		goto fail_clear_files;
8994 
8995 	ret = event->pmu->addr_filters_validate(&filters);
8996 	if (ret)
8997 		goto fail_free_filters;
8998 
8999 	/* remove existing filters, if any */
9000 	perf_addr_filters_splice(event, &filters);
9001 
9002 	/* install new filters */
9003 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9004 
9005 	return ret;
9006 
9007 fail_free_filters:
9008 	free_filters_list(&filters);
9009 
9010 fail_clear_files:
9011 	event->addr_filters.nr_file_filters = 0;
9012 
9013 	return ret;
9014 }
9015 
9016 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9017 {
9018 	int ret = -EINVAL;
9019 	char *filter_str;
9020 
9021 	filter_str = strndup_user(arg, PAGE_SIZE);
9022 	if (IS_ERR(filter_str))
9023 		return PTR_ERR(filter_str);
9024 
9025 #ifdef CONFIG_EVENT_TRACING
9026 	if (perf_event_is_tracing(event)) {
9027 		struct perf_event_context *ctx = event->ctx;
9028 
9029 		/*
9030 		 * Beware, here be dragons!!
9031 		 *
9032 		 * the tracepoint muck will deadlock against ctx->mutex, but
9033 		 * the tracepoint stuff does not actually need it. So
9034 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9035 		 * already have a reference on ctx.
9036 		 *
9037 		 * This can result in event getting moved to a different ctx,
9038 		 * but that does not affect the tracepoint state.
9039 		 */
9040 		mutex_unlock(&ctx->mutex);
9041 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9042 		mutex_lock(&ctx->mutex);
9043 	} else
9044 #endif
9045 	if (has_addr_filter(event))
9046 		ret = perf_event_set_addr_filter(event, filter_str);
9047 
9048 	kfree(filter_str);
9049 	return ret;
9050 }
9051 
9052 /*
9053  * hrtimer based swevent callback
9054  */
9055 
9056 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9057 {
9058 	enum hrtimer_restart ret = HRTIMER_RESTART;
9059 	struct perf_sample_data data;
9060 	struct pt_regs *regs;
9061 	struct perf_event *event;
9062 	u64 period;
9063 
9064 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9065 
9066 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9067 		return HRTIMER_NORESTART;
9068 
9069 	event->pmu->read(event);
9070 
9071 	perf_sample_data_init(&data, 0, event->hw.last_period);
9072 	regs = get_irq_regs();
9073 
9074 	if (regs && !perf_exclude_event(event, regs)) {
9075 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9076 			if (__perf_event_overflow(event, 1, &data, regs))
9077 				ret = HRTIMER_NORESTART;
9078 	}
9079 
9080 	period = max_t(u64, 10000, event->hw.sample_period);
9081 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9082 
9083 	return ret;
9084 }
9085 
9086 static void perf_swevent_start_hrtimer(struct perf_event *event)
9087 {
9088 	struct hw_perf_event *hwc = &event->hw;
9089 	s64 period;
9090 
9091 	if (!is_sampling_event(event))
9092 		return;
9093 
9094 	period = local64_read(&hwc->period_left);
9095 	if (period) {
9096 		if (period < 0)
9097 			period = 10000;
9098 
9099 		local64_set(&hwc->period_left, 0);
9100 	} else {
9101 		period = max_t(u64, 10000, hwc->sample_period);
9102 	}
9103 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9104 		      HRTIMER_MODE_REL_PINNED);
9105 }
9106 
9107 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9108 {
9109 	struct hw_perf_event *hwc = &event->hw;
9110 
9111 	if (is_sampling_event(event)) {
9112 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9113 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9114 
9115 		hrtimer_cancel(&hwc->hrtimer);
9116 	}
9117 }
9118 
9119 static void perf_swevent_init_hrtimer(struct perf_event *event)
9120 {
9121 	struct hw_perf_event *hwc = &event->hw;
9122 
9123 	if (!is_sampling_event(event))
9124 		return;
9125 
9126 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9127 	hwc->hrtimer.function = perf_swevent_hrtimer;
9128 
9129 	/*
9130 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9131 	 * mapping and avoid the whole period adjust feedback stuff.
9132 	 */
9133 	if (event->attr.freq) {
9134 		long freq = event->attr.sample_freq;
9135 
9136 		event->attr.sample_period = NSEC_PER_SEC / freq;
9137 		hwc->sample_period = event->attr.sample_period;
9138 		local64_set(&hwc->period_left, hwc->sample_period);
9139 		hwc->last_period = hwc->sample_period;
9140 		event->attr.freq = 0;
9141 	}
9142 }
9143 
9144 /*
9145  * Software event: cpu wall time clock
9146  */
9147 
9148 static void cpu_clock_event_update(struct perf_event *event)
9149 {
9150 	s64 prev;
9151 	u64 now;
9152 
9153 	now = local_clock();
9154 	prev = local64_xchg(&event->hw.prev_count, now);
9155 	local64_add(now - prev, &event->count);
9156 }
9157 
9158 static void cpu_clock_event_start(struct perf_event *event, int flags)
9159 {
9160 	local64_set(&event->hw.prev_count, local_clock());
9161 	perf_swevent_start_hrtimer(event);
9162 }
9163 
9164 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9165 {
9166 	perf_swevent_cancel_hrtimer(event);
9167 	cpu_clock_event_update(event);
9168 }
9169 
9170 static int cpu_clock_event_add(struct perf_event *event, int flags)
9171 {
9172 	if (flags & PERF_EF_START)
9173 		cpu_clock_event_start(event, flags);
9174 	perf_event_update_userpage(event);
9175 
9176 	return 0;
9177 }
9178 
9179 static void cpu_clock_event_del(struct perf_event *event, int flags)
9180 {
9181 	cpu_clock_event_stop(event, flags);
9182 }
9183 
9184 static void cpu_clock_event_read(struct perf_event *event)
9185 {
9186 	cpu_clock_event_update(event);
9187 }
9188 
9189 static int cpu_clock_event_init(struct perf_event *event)
9190 {
9191 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9192 		return -ENOENT;
9193 
9194 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9195 		return -ENOENT;
9196 
9197 	/*
9198 	 * no branch sampling for software events
9199 	 */
9200 	if (has_branch_stack(event))
9201 		return -EOPNOTSUPP;
9202 
9203 	perf_swevent_init_hrtimer(event);
9204 
9205 	return 0;
9206 }
9207 
9208 static struct pmu perf_cpu_clock = {
9209 	.task_ctx_nr	= perf_sw_context,
9210 
9211 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9212 
9213 	.event_init	= cpu_clock_event_init,
9214 	.add		= cpu_clock_event_add,
9215 	.del		= cpu_clock_event_del,
9216 	.start		= cpu_clock_event_start,
9217 	.stop		= cpu_clock_event_stop,
9218 	.read		= cpu_clock_event_read,
9219 };
9220 
9221 /*
9222  * Software event: task time clock
9223  */
9224 
9225 static void task_clock_event_update(struct perf_event *event, u64 now)
9226 {
9227 	u64 prev;
9228 	s64 delta;
9229 
9230 	prev = local64_xchg(&event->hw.prev_count, now);
9231 	delta = now - prev;
9232 	local64_add(delta, &event->count);
9233 }
9234 
9235 static void task_clock_event_start(struct perf_event *event, int flags)
9236 {
9237 	local64_set(&event->hw.prev_count, event->ctx->time);
9238 	perf_swevent_start_hrtimer(event);
9239 }
9240 
9241 static void task_clock_event_stop(struct perf_event *event, int flags)
9242 {
9243 	perf_swevent_cancel_hrtimer(event);
9244 	task_clock_event_update(event, event->ctx->time);
9245 }
9246 
9247 static int task_clock_event_add(struct perf_event *event, int flags)
9248 {
9249 	if (flags & PERF_EF_START)
9250 		task_clock_event_start(event, flags);
9251 	perf_event_update_userpage(event);
9252 
9253 	return 0;
9254 }
9255 
9256 static void task_clock_event_del(struct perf_event *event, int flags)
9257 {
9258 	task_clock_event_stop(event, PERF_EF_UPDATE);
9259 }
9260 
9261 static void task_clock_event_read(struct perf_event *event)
9262 {
9263 	u64 now = perf_clock();
9264 	u64 delta = now - event->ctx->timestamp;
9265 	u64 time = event->ctx->time + delta;
9266 
9267 	task_clock_event_update(event, time);
9268 }
9269 
9270 static int task_clock_event_init(struct perf_event *event)
9271 {
9272 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9273 		return -ENOENT;
9274 
9275 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9276 		return -ENOENT;
9277 
9278 	/*
9279 	 * no branch sampling for software events
9280 	 */
9281 	if (has_branch_stack(event))
9282 		return -EOPNOTSUPP;
9283 
9284 	perf_swevent_init_hrtimer(event);
9285 
9286 	return 0;
9287 }
9288 
9289 static struct pmu perf_task_clock = {
9290 	.task_ctx_nr	= perf_sw_context,
9291 
9292 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9293 
9294 	.event_init	= task_clock_event_init,
9295 	.add		= task_clock_event_add,
9296 	.del		= task_clock_event_del,
9297 	.start		= task_clock_event_start,
9298 	.stop		= task_clock_event_stop,
9299 	.read		= task_clock_event_read,
9300 };
9301 
9302 static void perf_pmu_nop_void(struct pmu *pmu)
9303 {
9304 }
9305 
9306 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9307 {
9308 }
9309 
9310 static int perf_pmu_nop_int(struct pmu *pmu)
9311 {
9312 	return 0;
9313 }
9314 
9315 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9316 
9317 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9318 {
9319 	__this_cpu_write(nop_txn_flags, flags);
9320 
9321 	if (flags & ~PERF_PMU_TXN_ADD)
9322 		return;
9323 
9324 	perf_pmu_disable(pmu);
9325 }
9326 
9327 static int perf_pmu_commit_txn(struct pmu *pmu)
9328 {
9329 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9330 
9331 	__this_cpu_write(nop_txn_flags, 0);
9332 
9333 	if (flags & ~PERF_PMU_TXN_ADD)
9334 		return 0;
9335 
9336 	perf_pmu_enable(pmu);
9337 	return 0;
9338 }
9339 
9340 static void perf_pmu_cancel_txn(struct pmu *pmu)
9341 {
9342 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9343 
9344 	__this_cpu_write(nop_txn_flags, 0);
9345 
9346 	if (flags & ~PERF_PMU_TXN_ADD)
9347 		return;
9348 
9349 	perf_pmu_enable(pmu);
9350 }
9351 
9352 static int perf_event_idx_default(struct perf_event *event)
9353 {
9354 	return 0;
9355 }
9356 
9357 /*
9358  * Ensures all contexts with the same task_ctx_nr have the same
9359  * pmu_cpu_context too.
9360  */
9361 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9362 {
9363 	struct pmu *pmu;
9364 
9365 	if (ctxn < 0)
9366 		return NULL;
9367 
9368 	list_for_each_entry(pmu, &pmus, entry) {
9369 		if (pmu->task_ctx_nr == ctxn)
9370 			return pmu->pmu_cpu_context;
9371 	}
9372 
9373 	return NULL;
9374 }
9375 
9376 static void free_pmu_context(struct pmu *pmu)
9377 {
9378 	/*
9379 	 * Static contexts such as perf_sw_context have a global lifetime
9380 	 * and may be shared between different PMUs. Avoid freeing them
9381 	 * when a single PMU is going away.
9382 	 */
9383 	if (pmu->task_ctx_nr > perf_invalid_context)
9384 		return;
9385 
9386 	mutex_lock(&pmus_lock);
9387 	free_percpu(pmu->pmu_cpu_context);
9388 	mutex_unlock(&pmus_lock);
9389 }
9390 
9391 /*
9392  * Let userspace know that this PMU supports address range filtering:
9393  */
9394 static ssize_t nr_addr_filters_show(struct device *dev,
9395 				    struct device_attribute *attr,
9396 				    char *page)
9397 {
9398 	struct pmu *pmu = dev_get_drvdata(dev);
9399 
9400 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9401 }
9402 DEVICE_ATTR_RO(nr_addr_filters);
9403 
9404 static struct idr pmu_idr;
9405 
9406 static ssize_t
9407 type_show(struct device *dev, struct device_attribute *attr, char *page)
9408 {
9409 	struct pmu *pmu = dev_get_drvdata(dev);
9410 
9411 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9412 }
9413 static DEVICE_ATTR_RO(type);
9414 
9415 static ssize_t
9416 perf_event_mux_interval_ms_show(struct device *dev,
9417 				struct device_attribute *attr,
9418 				char *page)
9419 {
9420 	struct pmu *pmu = dev_get_drvdata(dev);
9421 
9422 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9423 }
9424 
9425 static DEFINE_MUTEX(mux_interval_mutex);
9426 
9427 static ssize_t
9428 perf_event_mux_interval_ms_store(struct device *dev,
9429 				 struct device_attribute *attr,
9430 				 const char *buf, size_t count)
9431 {
9432 	struct pmu *pmu = dev_get_drvdata(dev);
9433 	int timer, cpu, ret;
9434 
9435 	ret = kstrtoint(buf, 0, &timer);
9436 	if (ret)
9437 		return ret;
9438 
9439 	if (timer < 1)
9440 		return -EINVAL;
9441 
9442 	/* same value, noting to do */
9443 	if (timer == pmu->hrtimer_interval_ms)
9444 		return count;
9445 
9446 	mutex_lock(&mux_interval_mutex);
9447 	pmu->hrtimer_interval_ms = timer;
9448 
9449 	/* update all cpuctx for this PMU */
9450 	cpus_read_lock();
9451 	for_each_online_cpu(cpu) {
9452 		struct perf_cpu_context *cpuctx;
9453 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9454 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9455 
9456 		cpu_function_call(cpu,
9457 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9458 	}
9459 	cpus_read_unlock();
9460 	mutex_unlock(&mux_interval_mutex);
9461 
9462 	return count;
9463 }
9464 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9465 
9466 static struct attribute *pmu_dev_attrs[] = {
9467 	&dev_attr_type.attr,
9468 	&dev_attr_perf_event_mux_interval_ms.attr,
9469 	NULL,
9470 };
9471 ATTRIBUTE_GROUPS(pmu_dev);
9472 
9473 static int pmu_bus_running;
9474 static struct bus_type pmu_bus = {
9475 	.name		= "event_source",
9476 	.dev_groups	= pmu_dev_groups,
9477 };
9478 
9479 static void pmu_dev_release(struct device *dev)
9480 {
9481 	kfree(dev);
9482 }
9483 
9484 static int pmu_dev_alloc(struct pmu *pmu)
9485 {
9486 	int ret = -ENOMEM;
9487 
9488 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9489 	if (!pmu->dev)
9490 		goto out;
9491 
9492 	pmu->dev->groups = pmu->attr_groups;
9493 	device_initialize(pmu->dev);
9494 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9495 	if (ret)
9496 		goto free_dev;
9497 
9498 	dev_set_drvdata(pmu->dev, pmu);
9499 	pmu->dev->bus = &pmu_bus;
9500 	pmu->dev->release = pmu_dev_release;
9501 	ret = device_add(pmu->dev);
9502 	if (ret)
9503 		goto free_dev;
9504 
9505 	/* For PMUs with address filters, throw in an extra attribute: */
9506 	if (pmu->nr_addr_filters)
9507 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9508 
9509 	if (ret)
9510 		goto del_dev;
9511 
9512 out:
9513 	return ret;
9514 
9515 del_dev:
9516 	device_del(pmu->dev);
9517 
9518 free_dev:
9519 	put_device(pmu->dev);
9520 	goto out;
9521 }
9522 
9523 static struct lock_class_key cpuctx_mutex;
9524 static struct lock_class_key cpuctx_lock;
9525 
9526 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9527 {
9528 	int cpu, ret;
9529 
9530 	mutex_lock(&pmus_lock);
9531 	ret = -ENOMEM;
9532 	pmu->pmu_disable_count = alloc_percpu(int);
9533 	if (!pmu->pmu_disable_count)
9534 		goto unlock;
9535 
9536 	pmu->type = -1;
9537 	if (!name)
9538 		goto skip_type;
9539 	pmu->name = name;
9540 
9541 	if (type < 0) {
9542 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9543 		if (type < 0) {
9544 			ret = type;
9545 			goto free_pdc;
9546 		}
9547 	}
9548 	pmu->type = type;
9549 
9550 	if (pmu_bus_running) {
9551 		ret = pmu_dev_alloc(pmu);
9552 		if (ret)
9553 			goto free_idr;
9554 	}
9555 
9556 skip_type:
9557 	if (pmu->task_ctx_nr == perf_hw_context) {
9558 		static int hw_context_taken = 0;
9559 
9560 		/*
9561 		 * Other than systems with heterogeneous CPUs, it never makes
9562 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9563 		 * uncore must use perf_invalid_context.
9564 		 */
9565 		if (WARN_ON_ONCE(hw_context_taken &&
9566 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9567 			pmu->task_ctx_nr = perf_invalid_context;
9568 
9569 		hw_context_taken = 1;
9570 	}
9571 
9572 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9573 	if (pmu->pmu_cpu_context)
9574 		goto got_cpu_context;
9575 
9576 	ret = -ENOMEM;
9577 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9578 	if (!pmu->pmu_cpu_context)
9579 		goto free_dev;
9580 
9581 	for_each_possible_cpu(cpu) {
9582 		struct perf_cpu_context *cpuctx;
9583 
9584 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9585 		__perf_event_init_context(&cpuctx->ctx);
9586 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9587 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9588 		cpuctx->ctx.pmu = pmu;
9589 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9590 
9591 		__perf_mux_hrtimer_init(cpuctx, cpu);
9592 	}
9593 
9594 got_cpu_context:
9595 	if (!pmu->start_txn) {
9596 		if (pmu->pmu_enable) {
9597 			/*
9598 			 * If we have pmu_enable/pmu_disable calls, install
9599 			 * transaction stubs that use that to try and batch
9600 			 * hardware accesses.
9601 			 */
9602 			pmu->start_txn  = perf_pmu_start_txn;
9603 			pmu->commit_txn = perf_pmu_commit_txn;
9604 			pmu->cancel_txn = perf_pmu_cancel_txn;
9605 		} else {
9606 			pmu->start_txn  = perf_pmu_nop_txn;
9607 			pmu->commit_txn = perf_pmu_nop_int;
9608 			pmu->cancel_txn = perf_pmu_nop_void;
9609 		}
9610 	}
9611 
9612 	if (!pmu->pmu_enable) {
9613 		pmu->pmu_enable  = perf_pmu_nop_void;
9614 		pmu->pmu_disable = perf_pmu_nop_void;
9615 	}
9616 
9617 	if (!pmu->event_idx)
9618 		pmu->event_idx = perf_event_idx_default;
9619 
9620 	list_add_rcu(&pmu->entry, &pmus);
9621 	atomic_set(&pmu->exclusive_cnt, 0);
9622 	ret = 0;
9623 unlock:
9624 	mutex_unlock(&pmus_lock);
9625 
9626 	return ret;
9627 
9628 free_dev:
9629 	device_del(pmu->dev);
9630 	put_device(pmu->dev);
9631 
9632 free_idr:
9633 	if (pmu->type >= PERF_TYPE_MAX)
9634 		idr_remove(&pmu_idr, pmu->type);
9635 
9636 free_pdc:
9637 	free_percpu(pmu->pmu_disable_count);
9638 	goto unlock;
9639 }
9640 EXPORT_SYMBOL_GPL(perf_pmu_register);
9641 
9642 void perf_pmu_unregister(struct pmu *pmu)
9643 {
9644 	int remove_device;
9645 
9646 	mutex_lock(&pmus_lock);
9647 	remove_device = pmu_bus_running;
9648 	list_del_rcu(&pmu->entry);
9649 	mutex_unlock(&pmus_lock);
9650 
9651 	/*
9652 	 * We dereference the pmu list under both SRCU and regular RCU, so
9653 	 * synchronize against both of those.
9654 	 */
9655 	synchronize_srcu(&pmus_srcu);
9656 	synchronize_rcu();
9657 
9658 	free_percpu(pmu->pmu_disable_count);
9659 	if (pmu->type >= PERF_TYPE_MAX)
9660 		idr_remove(&pmu_idr, pmu->type);
9661 	if (remove_device) {
9662 		if (pmu->nr_addr_filters)
9663 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9664 		device_del(pmu->dev);
9665 		put_device(pmu->dev);
9666 	}
9667 	free_pmu_context(pmu);
9668 }
9669 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9670 
9671 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9672 {
9673 	struct perf_event_context *ctx = NULL;
9674 	int ret;
9675 
9676 	if (!try_module_get(pmu->module))
9677 		return -ENODEV;
9678 
9679 	/*
9680 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9681 	 * for example, validate if the group fits on the PMU. Therefore,
9682 	 * if this is a sibling event, acquire the ctx->mutex to protect
9683 	 * the sibling_list.
9684 	 */
9685 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9686 		/*
9687 		 * This ctx->mutex can nest when we're called through
9688 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9689 		 */
9690 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9691 						 SINGLE_DEPTH_NESTING);
9692 		BUG_ON(!ctx);
9693 	}
9694 
9695 	event->pmu = pmu;
9696 	ret = pmu->event_init(event);
9697 
9698 	if (ctx)
9699 		perf_event_ctx_unlock(event->group_leader, ctx);
9700 
9701 	if (ret)
9702 		module_put(pmu->module);
9703 
9704 	return ret;
9705 }
9706 
9707 static struct pmu *perf_init_event(struct perf_event *event)
9708 {
9709 	struct pmu *pmu;
9710 	int idx;
9711 	int ret;
9712 
9713 	idx = srcu_read_lock(&pmus_srcu);
9714 
9715 	/* Try parent's PMU first: */
9716 	if (event->parent && event->parent->pmu) {
9717 		pmu = event->parent->pmu;
9718 		ret = perf_try_init_event(pmu, event);
9719 		if (!ret)
9720 			goto unlock;
9721 	}
9722 
9723 	rcu_read_lock();
9724 	pmu = idr_find(&pmu_idr, event->attr.type);
9725 	rcu_read_unlock();
9726 	if (pmu) {
9727 		ret = perf_try_init_event(pmu, event);
9728 		if (ret)
9729 			pmu = ERR_PTR(ret);
9730 		goto unlock;
9731 	}
9732 
9733 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9734 		ret = perf_try_init_event(pmu, event);
9735 		if (!ret)
9736 			goto unlock;
9737 
9738 		if (ret != -ENOENT) {
9739 			pmu = ERR_PTR(ret);
9740 			goto unlock;
9741 		}
9742 	}
9743 	pmu = ERR_PTR(-ENOENT);
9744 unlock:
9745 	srcu_read_unlock(&pmus_srcu, idx);
9746 
9747 	return pmu;
9748 }
9749 
9750 static void attach_sb_event(struct perf_event *event)
9751 {
9752 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9753 
9754 	raw_spin_lock(&pel->lock);
9755 	list_add_rcu(&event->sb_list, &pel->list);
9756 	raw_spin_unlock(&pel->lock);
9757 }
9758 
9759 /*
9760  * We keep a list of all !task (and therefore per-cpu) events
9761  * that need to receive side-band records.
9762  *
9763  * This avoids having to scan all the various PMU per-cpu contexts
9764  * looking for them.
9765  */
9766 static void account_pmu_sb_event(struct perf_event *event)
9767 {
9768 	if (is_sb_event(event))
9769 		attach_sb_event(event);
9770 }
9771 
9772 static void account_event_cpu(struct perf_event *event, int cpu)
9773 {
9774 	if (event->parent)
9775 		return;
9776 
9777 	if (is_cgroup_event(event))
9778 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9779 }
9780 
9781 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9782 static void account_freq_event_nohz(void)
9783 {
9784 #ifdef CONFIG_NO_HZ_FULL
9785 	/* Lock so we don't race with concurrent unaccount */
9786 	spin_lock(&nr_freq_lock);
9787 	if (atomic_inc_return(&nr_freq_events) == 1)
9788 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9789 	spin_unlock(&nr_freq_lock);
9790 #endif
9791 }
9792 
9793 static void account_freq_event(void)
9794 {
9795 	if (tick_nohz_full_enabled())
9796 		account_freq_event_nohz();
9797 	else
9798 		atomic_inc(&nr_freq_events);
9799 }
9800 
9801 
9802 static void account_event(struct perf_event *event)
9803 {
9804 	bool inc = false;
9805 
9806 	if (event->parent)
9807 		return;
9808 
9809 	if (event->attach_state & PERF_ATTACH_TASK)
9810 		inc = true;
9811 	if (event->attr.mmap || event->attr.mmap_data)
9812 		atomic_inc(&nr_mmap_events);
9813 	if (event->attr.comm)
9814 		atomic_inc(&nr_comm_events);
9815 	if (event->attr.namespaces)
9816 		atomic_inc(&nr_namespaces_events);
9817 	if (event->attr.task)
9818 		atomic_inc(&nr_task_events);
9819 	if (event->attr.freq)
9820 		account_freq_event();
9821 	if (event->attr.context_switch) {
9822 		atomic_inc(&nr_switch_events);
9823 		inc = true;
9824 	}
9825 	if (has_branch_stack(event))
9826 		inc = true;
9827 	if (is_cgroup_event(event))
9828 		inc = true;
9829 
9830 	if (inc) {
9831 		/*
9832 		 * We need the mutex here because static_branch_enable()
9833 		 * must complete *before* the perf_sched_count increment
9834 		 * becomes visible.
9835 		 */
9836 		if (atomic_inc_not_zero(&perf_sched_count))
9837 			goto enabled;
9838 
9839 		mutex_lock(&perf_sched_mutex);
9840 		if (!atomic_read(&perf_sched_count)) {
9841 			static_branch_enable(&perf_sched_events);
9842 			/*
9843 			 * Guarantee that all CPUs observe they key change and
9844 			 * call the perf scheduling hooks before proceeding to
9845 			 * install events that need them.
9846 			 */
9847 			synchronize_sched();
9848 		}
9849 		/*
9850 		 * Now that we have waited for the sync_sched(), allow further
9851 		 * increments to by-pass the mutex.
9852 		 */
9853 		atomic_inc(&perf_sched_count);
9854 		mutex_unlock(&perf_sched_mutex);
9855 	}
9856 enabled:
9857 
9858 	account_event_cpu(event, event->cpu);
9859 
9860 	account_pmu_sb_event(event);
9861 }
9862 
9863 /*
9864  * Allocate and initialize a event structure
9865  */
9866 static struct perf_event *
9867 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9868 		 struct task_struct *task,
9869 		 struct perf_event *group_leader,
9870 		 struct perf_event *parent_event,
9871 		 perf_overflow_handler_t overflow_handler,
9872 		 void *context, int cgroup_fd)
9873 {
9874 	struct pmu *pmu;
9875 	struct perf_event *event;
9876 	struct hw_perf_event *hwc;
9877 	long err = -EINVAL;
9878 
9879 	if ((unsigned)cpu >= nr_cpu_ids) {
9880 		if (!task || cpu != -1)
9881 			return ERR_PTR(-EINVAL);
9882 	}
9883 
9884 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9885 	if (!event)
9886 		return ERR_PTR(-ENOMEM);
9887 
9888 	/*
9889 	 * Single events are their own group leaders, with an
9890 	 * empty sibling list:
9891 	 */
9892 	if (!group_leader)
9893 		group_leader = event;
9894 
9895 	mutex_init(&event->child_mutex);
9896 	INIT_LIST_HEAD(&event->child_list);
9897 
9898 	INIT_LIST_HEAD(&event->event_entry);
9899 	INIT_LIST_HEAD(&event->sibling_list);
9900 	INIT_LIST_HEAD(&event->active_list);
9901 	init_event_group(event);
9902 	INIT_LIST_HEAD(&event->rb_entry);
9903 	INIT_LIST_HEAD(&event->active_entry);
9904 	INIT_LIST_HEAD(&event->addr_filters.list);
9905 	INIT_HLIST_NODE(&event->hlist_entry);
9906 
9907 
9908 	init_waitqueue_head(&event->waitq);
9909 	init_irq_work(&event->pending, perf_pending_event);
9910 
9911 	mutex_init(&event->mmap_mutex);
9912 	raw_spin_lock_init(&event->addr_filters.lock);
9913 
9914 	atomic_long_set(&event->refcount, 1);
9915 	event->cpu		= cpu;
9916 	event->attr		= *attr;
9917 	event->group_leader	= group_leader;
9918 	event->pmu		= NULL;
9919 	event->oncpu		= -1;
9920 
9921 	event->parent		= parent_event;
9922 
9923 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9924 	event->id		= atomic64_inc_return(&perf_event_id);
9925 
9926 	event->state		= PERF_EVENT_STATE_INACTIVE;
9927 
9928 	if (task) {
9929 		event->attach_state = PERF_ATTACH_TASK;
9930 		/*
9931 		 * XXX pmu::event_init needs to know what task to account to
9932 		 * and we cannot use the ctx information because we need the
9933 		 * pmu before we get a ctx.
9934 		 */
9935 		event->hw.target = task;
9936 	}
9937 
9938 	event->clock = &local_clock;
9939 	if (parent_event)
9940 		event->clock = parent_event->clock;
9941 
9942 	if (!overflow_handler && parent_event) {
9943 		overflow_handler = parent_event->overflow_handler;
9944 		context = parent_event->overflow_handler_context;
9945 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9946 		if (overflow_handler == bpf_overflow_handler) {
9947 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9948 
9949 			if (IS_ERR(prog)) {
9950 				err = PTR_ERR(prog);
9951 				goto err_ns;
9952 			}
9953 			event->prog = prog;
9954 			event->orig_overflow_handler =
9955 				parent_event->orig_overflow_handler;
9956 		}
9957 #endif
9958 	}
9959 
9960 	if (overflow_handler) {
9961 		event->overflow_handler	= overflow_handler;
9962 		event->overflow_handler_context = context;
9963 	} else if (is_write_backward(event)){
9964 		event->overflow_handler = perf_event_output_backward;
9965 		event->overflow_handler_context = NULL;
9966 	} else {
9967 		event->overflow_handler = perf_event_output_forward;
9968 		event->overflow_handler_context = NULL;
9969 	}
9970 
9971 	perf_event__state_init(event);
9972 
9973 	pmu = NULL;
9974 
9975 	hwc = &event->hw;
9976 	hwc->sample_period = attr->sample_period;
9977 	if (attr->freq && attr->sample_freq)
9978 		hwc->sample_period = 1;
9979 	hwc->last_period = hwc->sample_period;
9980 
9981 	local64_set(&hwc->period_left, hwc->sample_period);
9982 
9983 	/*
9984 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9985 	 * See perf_output_read().
9986 	 */
9987 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9988 		goto err_ns;
9989 
9990 	if (!has_branch_stack(event))
9991 		event->attr.branch_sample_type = 0;
9992 
9993 	if (cgroup_fd != -1) {
9994 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9995 		if (err)
9996 			goto err_ns;
9997 	}
9998 
9999 	pmu = perf_init_event(event);
10000 	if (IS_ERR(pmu)) {
10001 		err = PTR_ERR(pmu);
10002 		goto err_ns;
10003 	}
10004 
10005 	err = exclusive_event_init(event);
10006 	if (err)
10007 		goto err_pmu;
10008 
10009 	if (has_addr_filter(event)) {
10010 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10011 						   sizeof(unsigned long),
10012 						   GFP_KERNEL);
10013 		if (!event->addr_filters_offs) {
10014 			err = -ENOMEM;
10015 			goto err_per_task;
10016 		}
10017 
10018 		/* force hw sync on the address filters */
10019 		event->addr_filters_gen = 1;
10020 	}
10021 
10022 	if (!event->parent) {
10023 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10024 			err = get_callchain_buffers(attr->sample_max_stack);
10025 			if (err)
10026 				goto err_addr_filters;
10027 		}
10028 	}
10029 
10030 	/* symmetric to unaccount_event() in _free_event() */
10031 	account_event(event);
10032 
10033 	return event;
10034 
10035 err_addr_filters:
10036 	kfree(event->addr_filters_offs);
10037 
10038 err_per_task:
10039 	exclusive_event_destroy(event);
10040 
10041 err_pmu:
10042 	if (event->destroy)
10043 		event->destroy(event);
10044 	module_put(pmu->module);
10045 err_ns:
10046 	if (is_cgroup_event(event))
10047 		perf_detach_cgroup(event);
10048 	if (event->ns)
10049 		put_pid_ns(event->ns);
10050 	kfree(event);
10051 
10052 	return ERR_PTR(err);
10053 }
10054 
10055 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10056 			  struct perf_event_attr *attr)
10057 {
10058 	u32 size;
10059 	int ret;
10060 
10061 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10062 		return -EFAULT;
10063 
10064 	/*
10065 	 * zero the full structure, so that a short copy will be nice.
10066 	 */
10067 	memset(attr, 0, sizeof(*attr));
10068 
10069 	ret = get_user(size, &uattr->size);
10070 	if (ret)
10071 		return ret;
10072 
10073 	if (size > PAGE_SIZE)	/* silly large */
10074 		goto err_size;
10075 
10076 	if (!size)		/* abi compat */
10077 		size = PERF_ATTR_SIZE_VER0;
10078 
10079 	if (size < PERF_ATTR_SIZE_VER0)
10080 		goto err_size;
10081 
10082 	/*
10083 	 * If we're handed a bigger struct than we know of,
10084 	 * ensure all the unknown bits are 0 - i.e. new
10085 	 * user-space does not rely on any kernel feature
10086 	 * extensions we dont know about yet.
10087 	 */
10088 	if (size > sizeof(*attr)) {
10089 		unsigned char __user *addr;
10090 		unsigned char __user *end;
10091 		unsigned char val;
10092 
10093 		addr = (void __user *)uattr + sizeof(*attr);
10094 		end  = (void __user *)uattr + size;
10095 
10096 		for (; addr < end; addr++) {
10097 			ret = get_user(val, addr);
10098 			if (ret)
10099 				return ret;
10100 			if (val)
10101 				goto err_size;
10102 		}
10103 		size = sizeof(*attr);
10104 	}
10105 
10106 	ret = copy_from_user(attr, uattr, size);
10107 	if (ret)
10108 		return -EFAULT;
10109 
10110 	attr->size = size;
10111 
10112 	if (attr->__reserved_1)
10113 		return -EINVAL;
10114 
10115 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10116 		return -EINVAL;
10117 
10118 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10119 		return -EINVAL;
10120 
10121 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10122 		u64 mask = attr->branch_sample_type;
10123 
10124 		/* only using defined bits */
10125 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10126 			return -EINVAL;
10127 
10128 		/* at least one branch bit must be set */
10129 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10130 			return -EINVAL;
10131 
10132 		/* propagate priv level, when not set for branch */
10133 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10134 
10135 			/* exclude_kernel checked on syscall entry */
10136 			if (!attr->exclude_kernel)
10137 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10138 
10139 			if (!attr->exclude_user)
10140 				mask |= PERF_SAMPLE_BRANCH_USER;
10141 
10142 			if (!attr->exclude_hv)
10143 				mask |= PERF_SAMPLE_BRANCH_HV;
10144 			/*
10145 			 * adjust user setting (for HW filter setup)
10146 			 */
10147 			attr->branch_sample_type = mask;
10148 		}
10149 		/* privileged levels capture (kernel, hv): check permissions */
10150 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10151 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10152 			return -EACCES;
10153 	}
10154 
10155 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10156 		ret = perf_reg_validate(attr->sample_regs_user);
10157 		if (ret)
10158 			return ret;
10159 	}
10160 
10161 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10162 		if (!arch_perf_have_user_stack_dump())
10163 			return -ENOSYS;
10164 
10165 		/*
10166 		 * We have __u32 type for the size, but so far
10167 		 * we can only use __u16 as maximum due to the
10168 		 * __u16 sample size limit.
10169 		 */
10170 		if (attr->sample_stack_user >= USHRT_MAX)
10171 			ret = -EINVAL;
10172 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10173 			ret = -EINVAL;
10174 	}
10175 
10176 	if (!attr->sample_max_stack)
10177 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10178 
10179 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10180 		ret = perf_reg_validate(attr->sample_regs_intr);
10181 out:
10182 	return ret;
10183 
10184 err_size:
10185 	put_user(sizeof(*attr), &uattr->size);
10186 	ret = -E2BIG;
10187 	goto out;
10188 }
10189 
10190 static int
10191 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10192 {
10193 	struct ring_buffer *rb = NULL;
10194 	int ret = -EINVAL;
10195 
10196 	if (!output_event)
10197 		goto set;
10198 
10199 	/* don't allow circular references */
10200 	if (event == output_event)
10201 		goto out;
10202 
10203 	/*
10204 	 * Don't allow cross-cpu buffers
10205 	 */
10206 	if (output_event->cpu != event->cpu)
10207 		goto out;
10208 
10209 	/*
10210 	 * If its not a per-cpu rb, it must be the same task.
10211 	 */
10212 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10213 		goto out;
10214 
10215 	/*
10216 	 * Mixing clocks in the same buffer is trouble you don't need.
10217 	 */
10218 	if (output_event->clock != event->clock)
10219 		goto out;
10220 
10221 	/*
10222 	 * Either writing ring buffer from beginning or from end.
10223 	 * Mixing is not allowed.
10224 	 */
10225 	if (is_write_backward(output_event) != is_write_backward(event))
10226 		goto out;
10227 
10228 	/*
10229 	 * If both events generate aux data, they must be on the same PMU
10230 	 */
10231 	if (has_aux(event) && has_aux(output_event) &&
10232 	    event->pmu != output_event->pmu)
10233 		goto out;
10234 
10235 set:
10236 	mutex_lock(&event->mmap_mutex);
10237 	/* Can't redirect output if we've got an active mmap() */
10238 	if (atomic_read(&event->mmap_count))
10239 		goto unlock;
10240 
10241 	if (output_event) {
10242 		/* get the rb we want to redirect to */
10243 		rb = ring_buffer_get(output_event);
10244 		if (!rb)
10245 			goto unlock;
10246 	}
10247 
10248 	ring_buffer_attach(event, rb);
10249 
10250 	ret = 0;
10251 unlock:
10252 	mutex_unlock(&event->mmap_mutex);
10253 
10254 out:
10255 	return ret;
10256 }
10257 
10258 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10259 {
10260 	if (b < a)
10261 		swap(a, b);
10262 
10263 	mutex_lock(a);
10264 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10265 }
10266 
10267 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10268 {
10269 	bool nmi_safe = false;
10270 
10271 	switch (clk_id) {
10272 	case CLOCK_MONOTONIC:
10273 		event->clock = &ktime_get_mono_fast_ns;
10274 		nmi_safe = true;
10275 		break;
10276 
10277 	case CLOCK_MONOTONIC_RAW:
10278 		event->clock = &ktime_get_raw_fast_ns;
10279 		nmi_safe = true;
10280 		break;
10281 
10282 	case CLOCK_REALTIME:
10283 		event->clock = &ktime_get_real_ns;
10284 		break;
10285 
10286 	case CLOCK_BOOTTIME:
10287 		event->clock = &ktime_get_boot_ns;
10288 		break;
10289 
10290 	case CLOCK_TAI:
10291 		event->clock = &ktime_get_tai_ns;
10292 		break;
10293 
10294 	default:
10295 		return -EINVAL;
10296 	}
10297 
10298 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10299 		return -EINVAL;
10300 
10301 	return 0;
10302 }
10303 
10304 /*
10305  * Variation on perf_event_ctx_lock_nested(), except we take two context
10306  * mutexes.
10307  */
10308 static struct perf_event_context *
10309 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10310 			     struct perf_event_context *ctx)
10311 {
10312 	struct perf_event_context *gctx;
10313 
10314 again:
10315 	rcu_read_lock();
10316 	gctx = READ_ONCE(group_leader->ctx);
10317 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10318 		rcu_read_unlock();
10319 		goto again;
10320 	}
10321 	rcu_read_unlock();
10322 
10323 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10324 
10325 	if (group_leader->ctx != gctx) {
10326 		mutex_unlock(&ctx->mutex);
10327 		mutex_unlock(&gctx->mutex);
10328 		put_ctx(gctx);
10329 		goto again;
10330 	}
10331 
10332 	return gctx;
10333 }
10334 
10335 /**
10336  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10337  *
10338  * @attr_uptr:	event_id type attributes for monitoring/sampling
10339  * @pid:		target pid
10340  * @cpu:		target cpu
10341  * @group_fd:		group leader event fd
10342  */
10343 SYSCALL_DEFINE5(perf_event_open,
10344 		struct perf_event_attr __user *, attr_uptr,
10345 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10346 {
10347 	struct perf_event *group_leader = NULL, *output_event = NULL;
10348 	struct perf_event *event, *sibling;
10349 	struct perf_event_attr attr;
10350 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10351 	struct file *event_file = NULL;
10352 	struct fd group = {NULL, 0};
10353 	struct task_struct *task = NULL;
10354 	struct pmu *pmu;
10355 	int event_fd;
10356 	int move_group = 0;
10357 	int err;
10358 	int f_flags = O_RDWR;
10359 	int cgroup_fd = -1;
10360 
10361 	/* for future expandability... */
10362 	if (flags & ~PERF_FLAG_ALL)
10363 		return -EINVAL;
10364 
10365 	err = perf_copy_attr(attr_uptr, &attr);
10366 	if (err)
10367 		return err;
10368 
10369 	if (!attr.exclude_kernel) {
10370 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10371 			return -EACCES;
10372 	}
10373 
10374 	if (attr.namespaces) {
10375 		if (!capable(CAP_SYS_ADMIN))
10376 			return -EACCES;
10377 	}
10378 
10379 	if (attr.freq) {
10380 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10381 			return -EINVAL;
10382 	} else {
10383 		if (attr.sample_period & (1ULL << 63))
10384 			return -EINVAL;
10385 	}
10386 
10387 	/* Only privileged users can get physical addresses */
10388 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10389 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10390 		return -EACCES;
10391 
10392 	/*
10393 	 * In cgroup mode, the pid argument is used to pass the fd
10394 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10395 	 * designates the cpu on which to monitor threads from that
10396 	 * cgroup.
10397 	 */
10398 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10399 		return -EINVAL;
10400 
10401 	if (flags & PERF_FLAG_FD_CLOEXEC)
10402 		f_flags |= O_CLOEXEC;
10403 
10404 	event_fd = get_unused_fd_flags(f_flags);
10405 	if (event_fd < 0)
10406 		return event_fd;
10407 
10408 	if (group_fd != -1) {
10409 		err = perf_fget_light(group_fd, &group);
10410 		if (err)
10411 			goto err_fd;
10412 		group_leader = group.file->private_data;
10413 		if (flags & PERF_FLAG_FD_OUTPUT)
10414 			output_event = group_leader;
10415 		if (flags & PERF_FLAG_FD_NO_GROUP)
10416 			group_leader = NULL;
10417 	}
10418 
10419 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10420 		task = find_lively_task_by_vpid(pid);
10421 		if (IS_ERR(task)) {
10422 			err = PTR_ERR(task);
10423 			goto err_group_fd;
10424 		}
10425 	}
10426 
10427 	if (task && group_leader &&
10428 	    group_leader->attr.inherit != attr.inherit) {
10429 		err = -EINVAL;
10430 		goto err_task;
10431 	}
10432 
10433 	if (task) {
10434 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10435 		if (err)
10436 			goto err_task;
10437 
10438 		/*
10439 		 * Reuse ptrace permission checks for now.
10440 		 *
10441 		 * We must hold cred_guard_mutex across this and any potential
10442 		 * perf_install_in_context() call for this new event to
10443 		 * serialize against exec() altering our credentials (and the
10444 		 * perf_event_exit_task() that could imply).
10445 		 */
10446 		err = -EACCES;
10447 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10448 			goto err_cred;
10449 	}
10450 
10451 	if (flags & PERF_FLAG_PID_CGROUP)
10452 		cgroup_fd = pid;
10453 
10454 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10455 				 NULL, NULL, cgroup_fd);
10456 	if (IS_ERR(event)) {
10457 		err = PTR_ERR(event);
10458 		goto err_cred;
10459 	}
10460 
10461 	if (is_sampling_event(event)) {
10462 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10463 			err = -EOPNOTSUPP;
10464 			goto err_alloc;
10465 		}
10466 	}
10467 
10468 	/*
10469 	 * Special case software events and allow them to be part of
10470 	 * any hardware group.
10471 	 */
10472 	pmu = event->pmu;
10473 
10474 	if (attr.use_clockid) {
10475 		err = perf_event_set_clock(event, attr.clockid);
10476 		if (err)
10477 			goto err_alloc;
10478 	}
10479 
10480 	if (pmu->task_ctx_nr == perf_sw_context)
10481 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10482 
10483 	if (group_leader &&
10484 	    (is_software_event(event) != is_software_event(group_leader))) {
10485 		if (is_software_event(event)) {
10486 			/*
10487 			 * If event and group_leader are not both a software
10488 			 * event, and event is, then group leader is not.
10489 			 *
10490 			 * Allow the addition of software events to !software
10491 			 * groups, this is safe because software events never
10492 			 * fail to schedule.
10493 			 */
10494 			pmu = group_leader->pmu;
10495 		} else if (is_software_event(group_leader) &&
10496 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10497 			/*
10498 			 * In case the group is a pure software group, and we
10499 			 * try to add a hardware event, move the whole group to
10500 			 * the hardware context.
10501 			 */
10502 			move_group = 1;
10503 		}
10504 	}
10505 
10506 	/*
10507 	 * Get the target context (task or percpu):
10508 	 */
10509 	ctx = find_get_context(pmu, task, event);
10510 	if (IS_ERR(ctx)) {
10511 		err = PTR_ERR(ctx);
10512 		goto err_alloc;
10513 	}
10514 
10515 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10516 		err = -EBUSY;
10517 		goto err_context;
10518 	}
10519 
10520 	/*
10521 	 * Look up the group leader (we will attach this event to it):
10522 	 */
10523 	if (group_leader) {
10524 		err = -EINVAL;
10525 
10526 		/*
10527 		 * Do not allow a recursive hierarchy (this new sibling
10528 		 * becoming part of another group-sibling):
10529 		 */
10530 		if (group_leader->group_leader != group_leader)
10531 			goto err_context;
10532 
10533 		/* All events in a group should have the same clock */
10534 		if (group_leader->clock != event->clock)
10535 			goto err_context;
10536 
10537 		/*
10538 		 * Make sure we're both events for the same CPU;
10539 		 * grouping events for different CPUs is broken; since
10540 		 * you can never concurrently schedule them anyhow.
10541 		 */
10542 		if (group_leader->cpu != event->cpu)
10543 			goto err_context;
10544 
10545 		/*
10546 		 * Make sure we're both on the same task, or both
10547 		 * per-CPU events.
10548 		 */
10549 		if (group_leader->ctx->task != ctx->task)
10550 			goto err_context;
10551 
10552 		/*
10553 		 * Do not allow to attach to a group in a different task
10554 		 * or CPU context. If we're moving SW events, we'll fix
10555 		 * this up later, so allow that.
10556 		 */
10557 		if (!move_group && group_leader->ctx != ctx)
10558 			goto err_context;
10559 
10560 		/*
10561 		 * Only a group leader can be exclusive or pinned
10562 		 */
10563 		if (attr.exclusive || attr.pinned)
10564 			goto err_context;
10565 	}
10566 
10567 	if (output_event) {
10568 		err = perf_event_set_output(event, output_event);
10569 		if (err)
10570 			goto err_context;
10571 	}
10572 
10573 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10574 					f_flags);
10575 	if (IS_ERR(event_file)) {
10576 		err = PTR_ERR(event_file);
10577 		event_file = NULL;
10578 		goto err_context;
10579 	}
10580 
10581 	if (move_group) {
10582 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10583 
10584 		if (gctx->task == TASK_TOMBSTONE) {
10585 			err = -ESRCH;
10586 			goto err_locked;
10587 		}
10588 
10589 		/*
10590 		 * Check if we raced against another sys_perf_event_open() call
10591 		 * moving the software group underneath us.
10592 		 */
10593 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10594 			/*
10595 			 * If someone moved the group out from under us, check
10596 			 * if this new event wound up on the same ctx, if so
10597 			 * its the regular !move_group case, otherwise fail.
10598 			 */
10599 			if (gctx != ctx) {
10600 				err = -EINVAL;
10601 				goto err_locked;
10602 			} else {
10603 				perf_event_ctx_unlock(group_leader, gctx);
10604 				move_group = 0;
10605 			}
10606 		}
10607 	} else {
10608 		mutex_lock(&ctx->mutex);
10609 	}
10610 
10611 	if (ctx->task == TASK_TOMBSTONE) {
10612 		err = -ESRCH;
10613 		goto err_locked;
10614 	}
10615 
10616 	if (!perf_event_validate_size(event)) {
10617 		err = -E2BIG;
10618 		goto err_locked;
10619 	}
10620 
10621 	if (!task) {
10622 		/*
10623 		 * Check if the @cpu we're creating an event for is online.
10624 		 *
10625 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10626 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10627 		 */
10628 		struct perf_cpu_context *cpuctx =
10629 			container_of(ctx, struct perf_cpu_context, ctx);
10630 
10631 		if (!cpuctx->online) {
10632 			err = -ENODEV;
10633 			goto err_locked;
10634 		}
10635 	}
10636 
10637 
10638 	/*
10639 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10640 	 * because we need to serialize with concurrent event creation.
10641 	 */
10642 	if (!exclusive_event_installable(event, ctx)) {
10643 		/* exclusive and group stuff are assumed mutually exclusive */
10644 		WARN_ON_ONCE(move_group);
10645 
10646 		err = -EBUSY;
10647 		goto err_locked;
10648 	}
10649 
10650 	WARN_ON_ONCE(ctx->parent_ctx);
10651 
10652 	/*
10653 	 * This is the point on no return; we cannot fail hereafter. This is
10654 	 * where we start modifying current state.
10655 	 */
10656 
10657 	if (move_group) {
10658 		/*
10659 		 * See perf_event_ctx_lock() for comments on the details
10660 		 * of swizzling perf_event::ctx.
10661 		 */
10662 		perf_remove_from_context(group_leader, 0);
10663 		put_ctx(gctx);
10664 
10665 		for_each_sibling_event(sibling, group_leader) {
10666 			perf_remove_from_context(sibling, 0);
10667 			put_ctx(gctx);
10668 		}
10669 
10670 		/*
10671 		 * Wait for everybody to stop referencing the events through
10672 		 * the old lists, before installing it on new lists.
10673 		 */
10674 		synchronize_rcu();
10675 
10676 		/*
10677 		 * Install the group siblings before the group leader.
10678 		 *
10679 		 * Because a group leader will try and install the entire group
10680 		 * (through the sibling list, which is still in-tact), we can
10681 		 * end up with siblings installed in the wrong context.
10682 		 *
10683 		 * By installing siblings first we NO-OP because they're not
10684 		 * reachable through the group lists.
10685 		 */
10686 		for_each_sibling_event(sibling, group_leader) {
10687 			perf_event__state_init(sibling);
10688 			perf_install_in_context(ctx, sibling, sibling->cpu);
10689 			get_ctx(ctx);
10690 		}
10691 
10692 		/*
10693 		 * Removing from the context ends up with disabled
10694 		 * event. What we want here is event in the initial
10695 		 * startup state, ready to be add into new context.
10696 		 */
10697 		perf_event__state_init(group_leader);
10698 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10699 		get_ctx(ctx);
10700 	}
10701 
10702 	/*
10703 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10704 	 * that we're serialized against further additions and before
10705 	 * perf_install_in_context() which is the point the event is active and
10706 	 * can use these values.
10707 	 */
10708 	perf_event__header_size(event);
10709 	perf_event__id_header_size(event);
10710 
10711 	event->owner = current;
10712 
10713 	perf_install_in_context(ctx, event, event->cpu);
10714 	perf_unpin_context(ctx);
10715 
10716 	if (move_group)
10717 		perf_event_ctx_unlock(group_leader, gctx);
10718 	mutex_unlock(&ctx->mutex);
10719 
10720 	if (task) {
10721 		mutex_unlock(&task->signal->cred_guard_mutex);
10722 		put_task_struct(task);
10723 	}
10724 
10725 	mutex_lock(&current->perf_event_mutex);
10726 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10727 	mutex_unlock(&current->perf_event_mutex);
10728 
10729 	/*
10730 	 * Drop the reference on the group_event after placing the
10731 	 * new event on the sibling_list. This ensures destruction
10732 	 * of the group leader will find the pointer to itself in
10733 	 * perf_group_detach().
10734 	 */
10735 	fdput(group);
10736 	fd_install(event_fd, event_file);
10737 	return event_fd;
10738 
10739 err_locked:
10740 	if (move_group)
10741 		perf_event_ctx_unlock(group_leader, gctx);
10742 	mutex_unlock(&ctx->mutex);
10743 /* err_file: */
10744 	fput(event_file);
10745 err_context:
10746 	perf_unpin_context(ctx);
10747 	put_ctx(ctx);
10748 err_alloc:
10749 	/*
10750 	 * If event_file is set, the fput() above will have called ->release()
10751 	 * and that will take care of freeing the event.
10752 	 */
10753 	if (!event_file)
10754 		free_event(event);
10755 err_cred:
10756 	if (task)
10757 		mutex_unlock(&task->signal->cred_guard_mutex);
10758 err_task:
10759 	if (task)
10760 		put_task_struct(task);
10761 err_group_fd:
10762 	fdput(group);
10763 err_fd:
10764 	put_unused_fd(event_fd);
10765 	return err;
10766 }
10767 
10768 /**
10769  * perf_event_create_kernel_counter
10770  *
10771  * @attr: attributes of the counter to create
10772  * @cpu: cpu in which the counter is bound
10773  * @task: task to profile (NULL for percpu)
10774  */
10775 struct perf_event *
10776 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10777 				 struct task_struct *task,
10778 				 perf_overflow_handler_t overflow_handler,
10779 				 void *context)
10780 {
10781 	struct perf_event_context *ctx;
10782 	struct perf_event *event;
10783 	int err;
10784 
10785 	/*
10786 	 * Get the target context (task or percpu):
10787 	 */
10788 
10789 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10790 				 overflow_handler, context, -1);
10791 	if (IS_ERR(event)) {
10792 		err = PTR_ERR(event);
10793 		goto err;
10794 	}
10795 
10796 	/* Mark owner so we could distinguish it from user events. */
10797 	event->owner = TASK_TOMBSTONE;
10798 
10799 	ctx = find_get_context(event->pmu, task, event);
10800 	if (IS_ERR(ctx)) {
10801 		err = PTR_ERR(ctx);
10802 		goto err_free;
10803 	}
10804 
10805 	WARN_ON_ONCE(ctx->parent_ctx);
10806 	mutex_lock(&ctx->mutex);
10807 	if (ctx->task == TASK_TOMBSTONE) {
10808 		err = -ESRCH;
10809 		goto err_unlock;
10810 	}
10811 
10812 	if (!task) {
10813 		/*
10814 		 * Check if the @cpu we're creating an event for is online.
10815 		 *
10816 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10817 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10818 		 */
10819 		struct perf_cpu_context *cpuctx =
10820 			container_of(ctx, struct perf_cpu_context, ctx);
10821 		if (!cpuctx->online) {
10822 			err = -ENODEV;
10823 			goto err_unlock;
10824 		}
10825 	}
10826 
10827 	if (!exclusive_event_installable(event, ctx)) {
10828 		err = -EBUSY;
10829 		goto err_unlock;
10830 	}
10831 
10832 	perf_install_in_context(ctx, event, cpu);
10833 	perf_unpin_context(ctx);
10834 	mutex_unlock(&ctx->mutex);
10835 
10836 	return event;
10837 
10838 err_unlock:
10839 	mutex_unlock(&ctx->mutex);
10840 	perf_unpin_context(ctx);
10841 	put_ctx(ctx);
10842 err_free:
10843 	free_event(event);
10844 err:
10845 	return ERR_PTR(err);
10846 }
10847 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10848 
10849 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10850 {
10851 	struct perf_event_context *src_ctx;
10852 	struct perf_event_context *dst_ctx;
10853 	struct perf_event *event, *tmp;
10854 	LIST_HEAD(events);
10855 
10856 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10857 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10858 
10859 	/*
10860 	 * See perf_event_ctx_lock() for comments on the details
10861 	 * of swizzling perf_event::ctx.
10862 	 */
10863 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10864 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10865 				 event_entry) {
10866 		perf_remove_from_context(event, 0);
10867 		unaccount_event_cpu(event, src_cpu);
10868 		put_ctx(src_ctx);
10869 		list_add(&event->migrate_entry, &events);
10870 	}
10871 
10872 	/*
10873 	 * Wait for the events to quiesce before re-instating them.
10874 	 */
10875 	synchronize_rcu();
10876 
10877 	/*
10878 	 * Re-instate events in 2 passes.
10879 	 *
10880 	 * Skip over group leaders and only install siblings on this first
10881 	 * pass, siblings will not get enabled without a leader, however a
10882 	 * leader will enable its siblings, even if those are still on the old
10883 	 * context.
10884 	 */
10885 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10886 		if (event->group_leader == event)
10887 			continue;
10888 
10889 		list_del(&event->migrate_entry);
10890 		if (event->state >= PERF_EVENT_STATE_OFF)
10891 			event->state = PERF_EVENT_STATE_INACTIVE;
10892 		account_event_cpu(event, dst_cpu);
10893 		perf_install_in_context(dst_ctx, event, dst_cpu);
10894 		get_ctx(dst_ctx);
10895 	}
10896 
10897 	/*
10898 	 * Once all the siblings are setup properly, install the group leaders
10899 	 * to make it go.
10900 	 */
10901 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10902 		list_del(&event->migrate_entry);
10903 		if (event->state >= PERF_EVENT_STATE_OFF)
10904 			event->state = PERF_EVENT_STATE_INACTIVE;
10905 		account_event_cpu(event, dst_cpu);
10906 		perf_install_in_context(dst_ctx, event, dst_cpu);
10907 		get_ctx(dst_ctx);
10908 	}
10909 	mutex_unlock(&dst_ctx->mutex);
10910 	mutex_unlock(&src_ctx->mutex);
10911 }
10912 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10913 
10914 static void sync_child_event(struct perf_event *child_event,
10915 			       struct task_struct *child)
10916 {
10917 	struct perf_event *parent_event = child_event->parent;
10918 	u64 child_val;
10919 
10920 	if (child_event->attr.inherit_stat)
10921 		perf_event_read_event(child_event, child);
10922 
10923 	child_val = perf_event_count(child_event);
10924 
10925 	/*
10926 	 * Add back the child's count to the parent's count:
10927 	 */
10928 	atomic64_add(child_val, &parent_event->child_count);
10929 	atomic64_add(child_event->total_time_enabled,
10930 		     &parent_event->child_total_time_enabled);
10931 	atomic64_add(child_event->total_time_running,
10932 		     &parent_event->child_total_time_running);
10933 }
10934 
10935 static void
10936 perf_event_exit_event(struct perf_event *child_event,
10937 		      struct perf_event_context *child_ctx,
10938 		      struct task_struct *child)
10939 {
10940 	struct perf_event *parent_event = child_event->parent;
10941 
10942 	/*
10943 	 * Do not destroy the 'original' grouping; because of the context
10944 	 * switch optimization the original events could've ended up in a
10945 	 * random child task.
10946 	 *
10947 	 * If we were to destroy the original group, all group related
10948 	 * operations would cease to function properly after this random
10949 	 * child dies.
10950 	 *
10951 	 * Do destroy all inherited groups, we don't care about those
10952 	 * and being thorough is better.
10953 	 */
10954 	raw_spin_lock_irq(&child_ctx->lock);
10955 	WARN_ON_ONCE(child_ctx->is_active);
10956 
10957 	if (parent_event)
10958 		perf_group_detach(child_event);
10959 	list_del_event(child_event, child_ctx);
10960 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10961 	raw_spin_unlock_irq(&child_ctx->lock);
10962 
10963 	/*
10964 	 * Parent events are governed by their filedesc, retain them.
10965 	 */
10966 	if (!parent_event) {
10967 		perf_event_wakeup(child_event);
10968 		return;
10969 	}
10970 	/*
10971 	 * Child events can be cleaned up.
10972 	 */
10973 
10974 	sync_child_event(child_event, child);
10975 
10976 	/*
10977 	 * Remove this event from the parent's list
10978 	 */
10979 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10980 	mutex_lock(&parent_event->child_mutex);
10981 	list_del_init(&child_event->child_list);
10982 	mutex_unlock(&parent_event->child_mutex);
10983 
10984 	/*
10985 	 * Kick perf_poll() for is_event_hup().
10986 	 */
10987 	perf_event_wakeup(parent_event);
10988 	free_event(child_event);
10989 	put_event(parent_event);
10990 }
10991 
10992 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10993 {
10994 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10995 	struct perf_event *child_event, *next;
10996 
10997 	WARN_ON_ONCE(child != current);
10998 
10999 	child_ctx = perf_pin_task_context(child, ctxn);
11000 	if (!child_ctx)
11001 		return;
11002 
11003 	/*
11004 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11005 	 * ctx::mutex over the entire thing. This serializes against almost
11006 	 * everything that wants to access the ctx.
11007 	 *
11008 	 * The exception is sys_perf_event_open() /
11009 	 * perf_event_create_kernel_count() which does find_get_context()
11010 	 * without ctx::mutex (it cannot because of the move_group double mutex
11011 	 * lock thing). See the comments in perf_install_in_context().
11012 	 */
11013 	mutex_lock(&child_ctx->mutex);
11014 
11015 	/*
11016 	 * In a single ctx::lock section, de-schedule the events and detach the
11017 	 * context from the task such that we cannot ever get it scheduled back
11018 	 * in.
11019 	 */
11020 	raw_spin_lock_irq(&child_ctx->lock);
11021 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11022 
11023 	/*
11024 	 * Now that the context is inactive, destroy the task <-> ctx relation
11025 	 * and mark the context dead.
11026 	 */
11027 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11028 	put_ctx(child_ctx); /* cannot be last */
11029 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11030 	put_task_struct(current); /* cannot be last */
11031 
11032 	clone_ctx = unclone_ctx(child_ctx);
11033 	raw_spin_unlock_irq(&child_ctx->lock);
11034 
11035 	if (clone_ctx)
11036 		put_ctx(clone_ctx);
11037 
11038 	/*
11039 	 * Report the task dead after unscheduling the events so that we
11040 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11041 	 * get a few PERF_RECORD_READ events.
11042 	 */
11043 	perf_event_task(child, child_ctx, 0);
11044 
11045 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11046 		perf_event_exit_event(child_event, child_ctx, child);
11047 
11048 	mutex_unlock(&child_ctx->mutex);
11049 
11050 	put_ctx(child_ctx);
11051 }
11052 
11053 /*
11054  * When a child task exits, feed back event values to parent events.
11055  *
11056  * Can be called with cred_guard_mutex held when called from
11057  * install_exec_creds().
11058  */
11059 void perf_event_exit_task(struct task_struct *child)
11060 {
11061 	struct perf_event *event, *tmp;
11062 	int ctxn;
11063 
11064 	mutex_lock(&child->perf_event_mutex);
11065 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11066 				 owner_entry) {
11067 		list_del_init(&event->owner_entry);
11068 
11069 		/*
11070 		 * Ensure the list deletion is visible before we clear
11071 		 * the owner, closes a race against perf_release() where
11072 		 * we need to serialize on the owner->perf_event_mutex.
11073 		 */
11074 		smp_store_release(&event->owner, NULL);
11075 	}
11076 	mutex_unlock(&child->perf_event_mutex);
11077 
11078 	for_each_task_context_nr(ctxn)
11079 		perf_event_exit_task_context(child, ctxn);
11080 
11081 	/*
11082 	 * The perf_event_exit_task_context calls perf_event_task
11083 	 * with child's task_ctx, which generates EXIT events for
11084 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11085 	 * At this point we need to send EXIT events to cpu contexts.
11086 	 */
11087 	perf_event_task(child, NULL, 0);
11088 }
11089 
11090 static void perf_free_event(struct perf_event *event,
11091 			    struct perf_event_context *ctx)
11092 {
11093 	struct perf_event *parent = event->parent;
11094 
11095 	if (WARN_ON_ONCE(!parent))
11096 		return;
11097 
11098 	mutex_lock(&parent->child_mutex);
11099 	list_del_init(&event->child_list);
11100 	mutex_unlock(&parent->child_mutex);
11101 
11102 	put_event(parent);
11103 
11104 	raw_spin_lock_irq(&ctx->lock);
11105 	perf_group_detach(event);
11106 	list_del_event(event, ctx);
11107 	raw_spin_unlock_irq(&ctx->lock);
11108 	free_event(event);
11109 }
11110 
11111 /*
11112  * Free an unexposed, unused context as created by inheritance by
11113  * perf_event_init_task below, used by fork() in case of fail.
11114  *
11115  * Not all locks are strictly required, but take them anyway to be nice and
11116  * help out with the lockdep assertions.
11117  */
11118 void perf_event_free_task(struct task_struct *task)
11119 {
11120 	struct perf_event_context *ctx;
11121 	struct perf_event *event, *tmp;
11122 	int ctxn;
11123 
11124 	for_each_task_context_nr(ctxn) {
11125 		ctx = task->perf_event_ctxp[ctxn];
11126 		if (!ctx)
11127 			continue;
11128 
11129 		mutex_lock(&ctx->mutex);
11130 		raw_spin_lock_irq(&ctx->lock);
11131 		/*
11132 		 * Destroy the task <-> ctx relation and mark the context dead.
11133 		 *
11134 		 * This is important because even though the task hasn't been
11135 		 * exposed yet the context has been (through child_list).
11136 		 */
11137 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11138 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11139 		put_task_struct(task); /* cannot be last */
11140 		raw_spin_unlock_irq(&ctx->lock);
11141 
11142 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11143 			perf_free_event(event, ctx);
11144 
11145 		mutex_unlock(&ctx->mutex);
11146 		put_ctx(ctx);
11147 	}
11148 }
11149 
11150 void perf_event_delayed_put(struct task_struct *task)
11151 {
11152 	int ctxn;
11153 
11154 	for_each_task_context_nr(ctxn)
11155 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11156 }
11157 
11158 struct file *perf_event_get(unsigned int fd)
11159 {
11160 	struct file *file;
11161 
11162 	file = fget_raw(fd);
11163 	if (!file)
11164 		return ERR_PTR(-EBADF);
11165 
11166 	if (file->f_op != &perf_fops) {
11167 		fput(file);
11168 		return ERR_PTR(-EBADF);
11169 	}
11170 
11171 	return file;
11172 }
11173 
11174 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11175 {
11176 	if (!event)
11177 		return ERR_PTR(-EINVAL);
11178 
11179 	return &event->attr;
11180 }
11181 
11182 /*
11183  * Inherit a event from parent task to child task.
11184  *
11185  * Returns:
11186  *  - valid pointer on success
11187  *  - NULL for orphaned events
11188  *  - IS_ERR() on error
11189  */
11190 static struct perf_event *
11191 inherit_event(struct perf_event *parent_event,
11192 	      struct task_struct *parent,
11193 	      struct perf_event_context *parent_ctx,
11194 	      struct task_struct *child,
11195 	      struct perf_event *group_leader,
11196 	      struct perf_event_context *child_ctx)
11197 {
11198 	enum perf_event_state parent_state = parent_event->state;
11199 	struct perf_event *child_event;
11200 	unsigned long flags;
11201 
11202 	/*
11203 	 * Instead of creating recursive hierarchies of events,
11204 	 * we link inherited events back to the original parent,
11205 	 * which has a filp for sure, which we use as the reference
11206 	 * count:
11207 	 */
11208 	if (parent_event->parent)
11209 		parent_event = parent_event->parent;
11210 
11211 	child_event = perf_event_alloc(&parent_event->attr,
11212 					   parent_event->cpu,
11213 					   child,
11214 					   group_leader, parent_event,
11215 					   NULL, NULL, -1);
11216 	if (IS_ERR(child_event))
11217 		return child_event;
11218 
11219 
11220 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11221 	    !child_ctx->task_ctx_data) {
11222 		struct pmu *pmu = child_event->pmu;
11223 
11224 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11225 						   GFP_KERNEL);
11226 		if (!child_ctx->task_ctx_data) {
11227 			free_event(child_event);
11228 			return NULL;
11229 		}
11230 	}
11231 
11232 	/*
11233 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11234 	 * must be under the same lock in order to serialize against
11235 	 * perf_event_release_kernel(), such that either we must observe
11236 	 * is_orphaned_event() or they will observe us on the child_list.
11237 	 */
11238 	mutex_lock(&parent_event->child_mutex);
11239 	if (is_orphaned_event(parent_event) ||
11240 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11241 		mutex_unlock(&parent_event->child_mutex);
11242 		/* task_ctx_data is freed with child_ctx */
11243 		free_event(child_event);
11244 		return NULL;
11245 	}
11246 
11247 	get_ctx(child_ctx);
11248 
11249 	/*
11250 	 * Make the child state follow the state of the parent event,
11251 	 * not its attr.disabled bit.  We hold the parent's mutex,
11252 	 * so we won't race with perf_event_{en, dis}able_family.
11253 	 */
11254 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11255 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11256 	else
11257 		child_event->state = PERF_EVENT_STATE_OFF;
11258 
11259 	if (parent_event->attr.freq) {
11260 		u64 sample_period = parent_event->hw.sample_period;
11261 		struct hw_perf_event *hwc = &child_event->hw;
11262 
11263 		hwc->sample_period = sample_period;
11264 		hwc->last_period   = sample_period;
11265 
11266 		local64_set(&hwc->period_left, sample_period);
11267 	}
11268 
11269 	child_event->ctx = child_ctx;
11270 	child_event->overflow_handler = parent_event->overflow_handler;
11271 	child_event->overflow_handler_context
11272 		= parent_event->overflow_handler_context;
11273 
11274 	/*
11275 	 * Precalculate sample_data sizes
11276 	 */
11277 	perf_event__header_size(child_event);
11278 	perf_event__id_header_size(child_event);
11279 
11280 	/*
11281 	 * Link it up in the child's context:
11282 	 */
11283 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11284 	add_event_to_ctx(child_event, child_ctx);
11285 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11286 
11287 	/*
11288 	 * Link this into the parent event's child list
11289 	 */
11290 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11291 	mutex_unlock(&parent_event->child_mutex);
11292 
11293 	return child_event;
11294 }
11295 
11296 /*
11297  * Inherits an event group.
11298  *
11299  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11300  * This matches with perf_event_release_kernel() removing all child events.
11301  *
11302  * Returns:
11303  *  - 0 on success
11304  *  - <0 on error
11305  */
11306 static int inherit_group(struct perf_event *parent_event,
11307 	      struct task_struct *parent,
11308 	      struct perf_event_context *parent_ctx,
11309 	      struct task_struct *child,
11310 	      struct perf_event_context *child_ctx)
11311 {
11312 	struct perf_event *leader;
11313 	struct perf_event *sub;
11314 	struct perf_event *child_ctr;
11315 
11316 	leader = inherit_event(parent_event, parent, parent_ctx,
11317 				 child, NULL, child_ctx);
11318 	if (IS_ERR(leader))
11319 		return PTR_ERR(leader);
11320 	/*
11321 	 * @leader can be NULL here because of is_orphaned_event(). In this
11322 	 * case inherit_event() will create individual events, similar to what
11323 	 * perf_group_detach() would do anyway.
11324 	 */
11325 	for_each_sibling_event(sub, parent_event) {
11326 		child_ctr = inherit_event(sub, parent, parent_ctx,
11327 					    child, leader, child_ctx);
11328 		if (IS_ERR(child_ctr))
11329 			return PTR_ERR(child_ctr);
11330 	}
11331 	return 0;
11332 }
11333 
11334 /*
11335  * Creates the child task context and tries to inherit the event-group.
11336  *
11337  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11338  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11339  * consistent with perf_event_release_kernel() removing all child events.
11340  *
11341  * Returns:
11342  *  - 0 on success
11343  *  - <0 on error
11344  */
11345 static int
11346 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11347 		   struct perf_event_context *parent_ctx,
11348 		   struct task_struct *child, int ctxn,
11349 		   int *inherited_all)
11350 {
11351 	int ret;
11352 	struct perf_event_context *child_ctx;
11353 
11354 	if (!event->attr.inherit) {
11355 		*inherited_all = 0;
11356 		return 0;
11357 	}
11358 
11359 	child_ctx = child->perf_event_ctxp[ctxn];
11360 	if (!child_ctx) {
11361 		/*
11362 		 * This is executed from the parent task context, so
11363 		 * inherit events that have been marked for cloning.
11364 		 * First allocate and initialize a context for the
11365 		 * child.
11366 		 */
11367 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11368 		if (!child_ctx)
11369 			return -ENOMEM;
11370 
11371 		child->perf_event_ctxp[ctxn] = child_ctx;
11372 	}
11373 
11374 	ret = inherit_group(event, parent, parent_ctx,
11375 			    child, child_ctx);
11376 
11377 	if (ret)
11378 		*inherited_all = 0;
11379 
11380 	return ret;
11381 }
11382 
11383 /*
11384  * Initialize the perf_event context in task_struct
11385  */
11386 static int perf_event_init_context(struct task_struct *child, int ctxn)
11387 {
11388 	struct perf_event_context *child_ctx, *parent_ctx;
11389 	struct perf_event_context *cloned_ctx;
11390 	struct perf_event *event;
11391 	struct task_struct *parent = current;
11392 	int inherited_all = 1;
11393 	unsigned long flags;
11394 	int ret = 0;
11395 
11396 	if (likely(!parent->perf_event_ctxp[ctxn]))
11397 		return 0;
11398 
11399 	/*
11400 	 * If the parent's context is a clone, pin it so it won't get
11401 	 * swapped under us.
11402 	 */
11403 	parent_ctx = perf_pin_task_context(parent, ctxn);
11404 	if (!parent_ctx)
11405 		return 0;
11406 
11407 	/*
11408 	 * No need to check if parent_ctx != NULL here; since we saw
11409 	 * it non-NULL earlier, the only reason for it to become NULL
11410 	 * is if we exit, and since we're currently in the middle of
11411 	 * a fork we can't be exiting at the same time.
11412 	 */
11413 
11414 	/*
11415 	 * Lock the parent list. No need to lock the child - not PID
11416 	 * hashed yet and not running, so nobody can access it.
11417 	 */
11418 	mutex_lock(&parent_ctx->mutex);
11419 
11420 	/*
11421 	 * We dont have to disable NMIs - we are only looking at
11422 	 * the list, not manipulating it:
11423 	 */
11424 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11425 		ret = inherit_task_group(event, parent, parent_ctx,
11426 					 child, ctxn, &inherited_all);
11427 		if (ret)
11428 			goto out_unlock;
11429 	}
11430 
11431 	/*
11432 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11433 	 * to allocations, but we need to prevent rotation because
11434 	 * rotate_ctx() will change the list from interrupt context.
11435 	 */
11436 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11437 	parent_ctx->rotate_disable = 1;
11438 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11439 
11440 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11441 		ret = inherit_task_group(event, parent, parent_ctx,
11442 					 child, ctxn, &inherited_all);
11443 		if (ret)
11444 			goto out_unlock;
11445 	}
11446 
11447 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11448 	parent_ctx->rotate_disable = 0;
11449 
11450 	child_ctx = child->perf_event_ctxp[ctxn];
11451 
11452 	if (child_ctx && inherited_all) {
11453 		/*
11454 		 * Mark the child context as a clone of the parent
11455 		 * context, or of whatever the parent is a clone of.
11456 		 *
11457 		 * Note that if the parent is a clone, the holding of
11458 		 * parent_ctx->lock avoids it from being uncloned.
11459 		 */
11460 		cloned_ctx = parent_ctx->parent_ctx;
11461 		if (cloned_ctx) {
11462 			child_ctx->parent_ctx = cloned_ctx;
11463 			child_ctx->parent_gen = parent_ctx->parent_gen;
11464 		} else {
11465 			child_ctx->parent_ctx = parent_ctx;
11466 			child_ctx->parent_gen = parent_ctx->generation;
11467 		}
11468 		get_ctx(child_ctx->parent_ctx);
11469 	}
11470 
11471 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11472 out_unlock:
11473 	mutex_unlock(&parent_ctx->mutex);
11474 
11475 	perf_unpin_context(parent_ctx);
11476 	put_ctx(parent_ctx);
11477 
11478 	return ret;
11479 }
11480 
11481 /*
11482  * Initialize the perf_event context in task_struct
11483  */
11484 int perf_event_init_task(struct task_struct *child)
11485 {
11486 	int ctxn, ret;
11487 
11488 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11489 	mutex_init(&child->perf_event_mutex);
11490 	INIT_LIST_HEAD(&child->perf_event_list);
11491 
11492 	for_each_task_context_nr(ctxn) {
11493 		ret = perf_event_init_context(child, ctxn);
11494 		if (ret) {
11495 			perf_event_free_task(child);
11496 			return ret;
11497 		}
11498 	}
11499 
11500 	return 0;
11501 }
11502 
11503 static void __init perf_event_init_all_cpus(void)
11504 {
11505 	struct swevent_htable *swhash;
11506 	int cpu;
11507 
11508 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11509 
11510 	for_each_possible_cpu(cpu) {
11511 		swhash = &per_cpu(swevent_htable, cpu);
11512 		mutex_init(&swhash->hlist_mutex);
11513 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11514 
11515 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11516 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11517 
11518 #ifdef CONFIG_CGROUP_PERF
11519 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11520 #endif
11521 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11522 	}
11523 }
11524 
11525 void perf_swevent_init_cpu(unsigned int cpu)
11526 {
11527 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11528 
11529 	mutex_lock(&swhash->hlist_mutex);
11530 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11531 		struct swevent_hlist *hlist;
11532 
11533 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11534 		WARN_ON(!hlist);
11535 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11536 	}
11537 	mutex_unlock(&swhash->hlist_mutex);
11538 }
11539 
11540 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11541 static void __perf_event_exit_context(void *__info)
11542 {
11543 	struct perf_event_context *ctx = __info;
11544 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11545 	struct perf_event *event;
11546 
11547 	raw_spin_lock(&ctx->lock);
11548 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11549 	list_for_each_entry(event, &ctx->event_list, event_entry)
11550 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11551 	raw_spin_unlock(&ctx->lock);
11552 }
11553 
11554 static void perf_event_exit_cpu_context(int cpu)
11555 {
11556 	struct perf_cpu_context *cpuctx;
11557 	struct perf_event_context *ctx;
11558 	struct pmu *pmu;
11559 
11560 	mutex_lock(&pmus_lock);
11561 	list_for_each_entry(pmu, &pmus, entry) {
11562 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11563 		ctx = &cpuctx->ctx;
11564 
11565 		mutex_lock(&ctx->mutex);
11566 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11567 		cpuctx->online = 0;
11568 		mutex_unlock(&ctx->mutex);
11569 	}
11570 	cpumask_clear_cpu(cpu, perf_online_mask);
11571 	mutex_unlock(&pmus_lock);
11572 }
11573 #else
11574 
11575 static void perf_event_exit_cpu_context(int cpu) { }
11576 
11577 #endif
11578 
11579 int perf_event_init_cpu(unsigned int cpu)
11580 {
11581 	struct perf_cpu_context *cpuctx;
11582 	struct perf_event_context *ctx;
11583 	struct pmu *pmu;
11584 
11585 	perf_swevent_init_cpu(cpu);
11586 
11587 	mutex_lock(&pmus_lock);
11588 	cpumask_set_cpu(cpu, perf_online_mask);
11589 	list_for_each_entry(pmu, &pmus, entry) {
11590 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11591 		ctx = &cpuctx->ctx;
11592 
11593 		mutex_lock(&ctx->mutex);
11594 		cpuctx->online = 1;
11595 		mutex_unlock(&ctx->mutex);
11596 	}
11597 	mutex_unlock(&pmus_lock);
11598 
11599 	return 0;
11600 }
11601 
11602 int perf_event_exit_cpu(unsigned int cpu)
11603 {
11604 	perf_event_exit_cpu_context(cpu);
11605 	return 0;
11606 }
11607 
11608 static int
11609 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11610 {
11611 	int cpu;
11612 
11613 	for_each_online_cpu(cpu)
11614 		perf_event_exit_cpu(cpu);
11615 
11616 	return NOTIFY_OK;
11617 }
11618 
11619 /*
11620  * Run the perf reboot notifier at the very last possible moment so that
11621  * the generic watchdog code runs as long as possible.
11622  */
11623 static struct notifier_block perf_reboot_notifier = {
11624 	.notifier_call = perf_reboot,
11625 	.priority = INT_MIN,
11626 };
11627 
11628 void __init perf_event_init(void)
11629 {
11630 	int ret;
11631 
11632 	idr_init(&pmu_idr);
11633 
11634 	perf_event_init_all_cpus();
11635 	init_srcu_struct(&pmus_srcu);
11636 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11637 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11638 	perf_pmu_register(&perf_task_clock, NULL, -1);
11639 	perf_tp_register();
11640 	perf_event_init_cpu(smp_processor_id());
11641 	register_reboot_notifier(&perf_reboot_notifier);
11642 
11643 	ret = init_hw_breakpoint();
11644 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11645 
11646 	/*
11647 	 * Build time assertion that we keep the data_head at the intended
11648 	 * location.  IOW, validation we got the __reserved[] size right.
11649 	 */
11650 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11651 		     != 1024);
11652 }
11653 
11654 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11655 			      char *page)
11656 {
11657 	struct perf_pmu_events_attr *pmu_attr =
11658 		container_of(attr, struct perf_pmu_events_attr, attr);
11659 
11660 	if (pmu_attr->event_str)
11661 		return sprintf(page, "%s\n", pmu_attr->event_str);
11662 
11663 	return 0;
11664 }
11665 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11666 
11667 static int __init perf_event_sysfs_init(void)
11668 {
11669 	struct pmu *pmu;
11670 	int ret;
11671 
11672 	mutex_lock(&pmus_lock);
11673 
11674 	ret = bus_register(&pmu_bus);
11675 	if (ret)
11676 		goto unlock;
11677 
11678 	list_for_each_entry(pmu, &pmus, entry) {
11679 		if (!pmu->name || pmu->type < 0)
11680 			continue;
11681 
11682 		ret = pmu_dev_alloc(pmu);
11683 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11684 	}
11685 	pmu_bus_running = 1;
11686 	ret = 0;
11687 
11688 unlock:
11689 	mutex_unlock(&pmus_lock);
11690 
11691 	return ret;
11692 }
11693 device_initcall(perf_event_sysfs_init);
11694 
11695 #ifdef CONFIG_CGROUP_PERF
11696 static struct cgroup_subsys_state *
11697 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11698 {
11699 	struct perf_cgroup *jc;
11700 
11701 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11702 	if (!jc)
11703 		return ERR_PTR(-ENOMEM);
11704 
11705 	jc->info = alloc_percpu(struct perf_cgroup_info);
11706 	if (!jc->info) {
11707 		kfree(jc);
11708 		return ERR_PTR(-ENOMEM);
11709 	}
11710 
11711 	return &jc->css;
11712 }
11713 
11714 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11715 {
11716 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11717 
11718 	free_percpu(jc->info);
11719 	kfree(jc);
11720 }
11721 
11722 static int __perf_cgroup_move(void *info)
11723 {
11724 	struct task_struct *task = info;
11725 	rcu_read_lock();
11726 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11727 	rcu_read_unlock();
11728 	return 0;
11729 }
11730 
11731 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11732 {
11733 	struct task_struct *task;
11734 	struct cgroup_subsys_state *css;
11735 
11736 	cgroup_taskset_for_each(task, css, tset)
11737 		task_function_call(task, __perf_cgroup_move, task);
11738 }
11739 
11740 struct cgroup_subsys perf_event_cgrp_subsys = {
11741 	.css_alloc	= perf_cgroup_css_alloc,
11742 	.css_free	= perf_cgroup_css_free,
11743 	.attach		= perf_cgroup_attach,
11744 	/*
11745 	 * Implicitly enable on dfl hierarchy so that perf events can
11746 	 * always be filtered by cgroup2 path as long as perf_event
11747 	 * controller is not mounted on a legacy hierarchy.
11748 	 */
11749 	.implicit_on_dfl = true,
11750 	.threaded	= true,
11751 };
11752 #endif /* CONFIG_CGROUP_PERF */
11753