1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 CLASS(fd, f)(fd); 970 int ret = 0; 971 972 if (fd_empty(f)) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) 978 return PTR_ERR(css); 979 980 ret = perf_cgroup_ensure_storage(event, css); 981 if (ret) 982 return ret; 983 984 cgrp = container_of(css, struct perf_cgroup, css); 985 event->cgrp = cgrp; 986 987 /* 988 * all events in a group must monitor 989 * the same cgroup because a task belongs 990 * to only one perf cgroup at a time 991 */ 992 if (group_leader && group_leader->cgrp != cgrp) { 993 perf_detach_cgroup(event); 994 ret = -EINVAL; 995 } 996 return ret; 997 } 998 999 static inline void 1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 1004 if (!is_cgroup_event(event)) 1005 return; 1006 1007 event->pmu_ctx->nr_cgroups++; 1008 1009 /* 1010 * Because cgroup events are always per-cpu events, 1011 * @ctx == &cpuctx->ctx. 1012 */ 1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1014 1015 if (ctx->nr_cgroups++) 1016 return; 1017 1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 event->pmu_ctx->nr_cgroups--; 1030 1031 /* 1032 * Because cgroup events are always per-cpu events, 1033 * @ctx == &cpuctx->ctx. 1034 */ 1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1036 1037 if (--ctx->nr_cgroups) 1038 return; 1039 1040 cpuctx->cgrp = NULL; 1041 } 1042 1043 #else /* !CONFIG_CGROUP_PERF */ 1044 1045 static inline bool 1046 perf_cgroup_match(struct perf_event *event) 1047 { 1048 return true; 1049 } 1050 1051 static inline void perf_detach_cgroup(struct perf_event *event) 1052 {} 1053 1054 static inline int is_cgroup_event(struct perf_event *event) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void update_cgrp_time_from_event(struct perf_event *event) 1060 { 1061 } 1062 1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1064 bool final) 1065 { 1066 } 1067 1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1069 struct perf_event_attr *attr, 1070 struct perf_event *group_leader) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void 1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1077 { 1078 } 1079 1080 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1081 { 1082 return 0; 1083 } 1084 1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void 1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1097 { 1098 } 1099 1100 static void perf_cgroup_switch(struct task_struct *task) 1101 { 1102 } 1103 #endif 1104 1105 /* 1106 * set default to be dependent on timer tick just 1107 * like original code 1108 */ 1109 #define PERF_CPU_HRTIMER (1000 / HZ) 1110 /* 1111 * function must be called with interrupts disabled 1112 */ 1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1114 { 1115 struct perf_cpu_pmu_context *cpc; 1116 bool rotations; 1117 1118 lockdep_assert_irqs_disabled(); 1119 1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1121 rotations = perf_rotate_context(cpc); 1122 1123 raw_spin_lock(&cpc->hrtimer_lock); 1124 if (rotations) 1125 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1126 else 1127 cpc->hrtimer_active = 0; 1128 raw_spin_unlock(&cpc->hrtimer_lock); 1129 1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1131 } 1132 1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1134 { 1135 struct hrtimer *timer = &cpc->hrtimer; 1136 struct pmu *pmu = cpc->epc.pmu; 1137 u64 interval; 1138 1139 /* 1140 * check default is sane, if not set then force to 1141 * default interval (1/tick) 1142 */ 1143 interval = pmu->hrtimer_interval_ms; 1144 if (interval < 1) 1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1146 1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1148 1149 raw_spin_lock_init(&cpc->hrtimer_lock); 1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1151 timer->function = perf_mux_hrtimer_handler; 1152 } 1153 1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1155 { 1156 struct hrtimer *timer = &cpc->hrtimer; 1157 unsigned long flags; 1158 1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1160 if (!cpc->hrtimer_active) { 1161 cpc->hrtimer_active = 1; 1162 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1164 } 1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1166 1167 return 0; 1168 } 1169 1170 static int perf_mux_hrtimer_restart_ipi(void *arg) 1171 { 1172 return perf_mux_hrtimer_restart(arg); 1173 } 1174 1175 void perf_pmu_disable(struct pmu *pmu) 1176 { 1177 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1178 if (!(*count)++) 1179 pmu->pmu_disable(pmu); 1180 } 1181 1182 void perf_pmu_enable(struct pmu *pmu) 1183 { 1184 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1185 if (!--(*count)) 1186 pmu->pmu_enable(pmu); 1187 } 1188 1189 static void perf_assert_pmu_disabled(struct pmu *pmu) 1190 { 1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1192 } 1193 1194 static void get_ctx(struct perf_event_context *ctx) 1195 { 1196 refcount_inc(&ctx->refcount); 1197 } 1198 1199 static void *alloc_task_ctx_data(struct pmu *pmu) 1200 { 1201 if (pmu->task_ctx_cache) 1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1203 1204 return NULL; 1205 } 1206 1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1208 { 1209 if (pmu->task_ctx_cache && task_ctx_data) 1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1211 } 1212 1213 static void free_ctx(struct rcu_head *head) 1214 { 1215 struct perf_event_context *ctx; 1216 1217 ctx = container_of(head, struct perf_event_context, rcu_head); 1218 kfree(ctx); 1219 } 1220 1221 static void put_ctx(struct perf_event_context *ctx) 1222 { 1223 if (refcount_dec_and_test(&ctx->refcount)) { 1224 if (ctx->parent_ctx) 1225 put_ctx(ctx->parent_ctx); 1226 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1227 put_task_struct(ctx->task); 1228 call_rcu(&ctx->rcu_head, free_ctx); 1229 } 1230 } 1231 1232 /* 1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1234 * perf_pmu_migrate_context() we need some magic. 1235 * 1236 * Those places that change perf_event::ctx will hold both 1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1238 * 1239 * Lock ordering is by mutex address. There are two other sites where 1240 * perf_event_context::mutex nests and those are: 1241 * 1242 * - perf_event_exit_task_context() [ child , 0 ] 1243 * perf_event_exit_event() 1244 * put_event() [ parent, 1 ] 1245 * 1246 * - perf_event_init_context() [ parent, 0 ] 1247 * inherit_task_group() 1248 * inherit_group() 1249 * inherit_event() 1250 * perf_event_alloc() 1251 * perf_init_event() 1252 * perf_try_init_event() [ child , 1 ] 1253 * 1254 * While it appears there is an obvious deadlock here -- the parent and child 1255 * nesting levels are inverted between the two. This is in fact safe because 1256 * life-time rules separate them. That is an exiting task cannot fork, and a 1257 * spawning task cannot (yet) exit. 1258 * 1259 * But remember that these are parent<->child context relations, and 1260 * migration does not affect children, therefore these two orderings should not 1261 * interact. 1262 * 1263 * The change in perf_event::ctx does not affect children (as claimed above) 1264 * because the sys_perf_event_open() case will install a new event and break 1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1266 * concerned with cpuctx and that doesn't have children. 1267 * 1268 * The places that change perf_event::ctx will issue: 1269 * 1270 * perf_remove_from_context(); 1271 * synchronize_rcu(); 1272 * perf_install_in_context(); 1273 * 1274 * to affect the change. The remove_from_context() + synchronize_rcu() should 1275 * quiesce the event, after which we can install it in the new location. This 1276 * means that only external vectors (perf_fops, prctl) can perturb the event 1277 * while in transit. Therefore all such accessors should also acquire 1278 * perf_event_context::mutex to serialize against this. 1279 * 1280 * However; because event->ctx can change while we're waiting to acquire 1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1282 * function. 1283 * 1284 * Lock order: 1285 * exec_update_lock 1286 * task_struct::perf_event_mutex 1287 * perf_event_context::mutex 1288 * perf_event::child_mutex; 1289 * perf_event_context::lock 1290 * mmap_lock 1291 * perf_event::mmap_mutex 1292 * perf_buffer::aux_mutex 1293 * perf_addr_filters_head::lock 1294 * 1295 * cpu_hotplug_lock 1296 * pmus_lock 1297 * cpuctx->mutex / perf_event_context::mutex 1298 */ 1299 static struct perf_event_context * 1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 again: 1305 rcu_read_lock(); 1306 ctx = READ_ONCE(event->ctx); 1307 if (!refcount_inc_not_zero(&ctx->refcount)) { 1308 rcu_read_unlock(); 1309 goto again; 1310 } 1311 rcu_read_unlock(); 1312 1313 mutex_lock_nested(&ctx->mutex, nesting); 1314 if (event->ctx != ctx) { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 goto again; 1318 } 1319 1320 return ctx; 1321 } 1322 1323 static inline struct perf_event_context * 1324 perf_event_ctx_lock(struct perf_event *event) 1325 { 1326 return perf_event_ctx_lock_nested(event, 0); 1327 } 1328 1329 static void perf_event_ctx_unlock(struct perf_event *event, 1330 struct perf_event_context *ctx) 1331 { 1332 mutex_unlock(&ctx->mutex); 1333 put_ctx(ctx); 1334 } 1335 1336 /* 1337 * This must be done under the ctx->lock, such as to serialize against 1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1339 * calling scheduler related locks and ctx->lock nests inside those. 1340 */ 1341 static __must_check struct perf_event_context * 1342 unclone_ctx(struct perf_event_context *ctx) 1343 { 1344 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1345 1346 lockdep_assert_held(&ctx->lock); 1347 1348 if (parent_ctx) 1349 ctx->parent_ctx = NULL; 1350 ctx->generation++; 1351 1352 return parent_ctx; 1353 } 1354 1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1356 enum pid_type type) 1357 { 1358 u32 nr; 1359 /* 1360 * only top level events have the pid namespace they were created in 1361 */ 1362 if (event->parent) 1363 event = event->parent; 1364 1365 nr = __task_pid_nr_ns(p, type, event->ns); 1366 /* avoid -1 if it is idle thread or runs in another ns */ 1367 if (!nr && !pid_alive(p)) 1368 nr = -1; 1369 return nr; 1370 } 1371 1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1373 { 1374 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1375 } 1376 1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1378 { 1379 return perf_event_pid_type(event, p, PIDTYPE_PID); 1380 } 1381 1382 /* 1383 * If we inherit events we want to return the parent event id 1384 * to userspace. 1385 */ 1386 static u64 primary_event_id(struct perf_event *event) 1387 { 1388 u64 id = event->id; 1389 1390 if (event->parent) 1391 id = event->parent->id; 1392 1393 return id; 1394 } 1395 1396 /* 1397 * Get the perf_event_context for a task and lock it. 1398 * 1399 * This has to cope with the fact that until it is locked, 1400 * the context could get moved to another task. 1401 */ 1402 static struct perf_event_context * 1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1404 { 1405 struct perf_event_context *ctx; 1406 1407 retry: 1408 /* 1409 * One of the few rules of preemptible RCU is that one cannot do 1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1411 * part of the read side critical section was irqs-enabled -- see 1412 * rcu_read_unlock_special(). 1413 * 1414 * Since ctx->lock nests under rq->lock we must ensure the entire read 1415 * side critical section has interrupts disabled. 1416 */ 1417 local_irq_save(*flags); 1418 rcu_read_lock(); 1419 ctx = rcu_dereference(task->perf_event_ctxp); 1420 if (ctx) { 1421 /* 1422 * If this context is a clone of another, it might 1423 * get swapped for another underneath us by 1424 * perf_event_task_sched_out, though the 1425 * rcu_read_lock() protects us from any context 1426 * getting freed. Lock the context and check if it 1427 * got swapped before we could get the lock, and retry 1428 * if so. If we locked the right context, then it 1429 * can't get swapped on us any more. 1430 */ 1431 raw_spin_lock(&ctx->lock); 1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1433 raw_spin_unlock(&ctx->lock); 1434 rcu_read_unlock(); 1435 local_irq_restore(*flags); 1436 goto retry; 1437 } 1438 1439 if (ctx->task == TASK_TOMBSTONE || 1440 !refcount_inc_not_zero(&ctx->refcount)) { 1441 raw_spin_unlock(&ctx->lock); 1442 ctx = NULL; 1443 } else { 1444 WARN_ON_ONCE(ctx->task != task); 1445 } 1446 } 1447 rcu_read_unlock(); 1448 if (!ctx) 1449 local_irq_restore(*flags); 1450 return ctx; 1451 } 1452 1453 /* 1454 * Get the context for a task and increment its pin_count so it 1455 * can't get swapped to another task. This also increments its 1456 * reference count so that the context can't get freed. 1457 */ 1458 static struct perf_event_context * 1459 perf_pin_task_context(struct task_struct *task) 1460 { 1461 struct perf_event_context *ctx; 1462 unsigned long flags; 1463 1464 ctx = perf_lock_task_context(task, &flags); 1465 if (ctx) { 1466 ++ctx->pin_count; 1467 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1468 } 1469 return ctx; 1470 } 1471 1472 static void perf_unpin_context(struct perf_event_context *ctx) 1473 { 1474 unsigned long flags; 1475 1476 raw_spin_lock_irqsave(&ctx->lock, flags); 1477 --ctx->pin_count; 1478 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1479 } 1480 1481 /* 1482 * Update the record of the current time in a context. 1483 */ 1484 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1485 { 1486 u64 now = perf_clock(); 1487 1488 lockdep_assert_held(&ctx->lock); 1489 1490 if (adv) 1491 ctx->time += now - ctx->timestamp; 1492 ctx->timestamp = now; 1493 1494 /* 1495 * The above: time' = time + (now - timestamp), can be re-arranged 1496 * into: time` = now + (time - timestamp), which gives a single value 1497 * offset to compute future time without locks on. 1498 * 1499 * See perf_event_time_now(), which can be used from NMI context where 1500 * it's (obviously) not possible to acquire ctx->lock in order to read 1501 * both the above values in a consistent manner. 1502 */ 1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1504 } 1505 1506 static void update_context_time(struct perf_event_context *ctx) 1507 { 1508 __update_context_time(ctx, true); 1509 } 1510 1511 static u64 perf_event_time(struct perf_event *event) 1512 { 1513 struct perf_event_context *ctx = event->ctx; 1514 1515 if (unlikely(!ctx)) 1516 return 0; 1517 1518 if (is_cgroup_event(event)) 1519 return perf_cgroup_event_time(event); 1520 1521 return ctx->time; 1522 } 1523 1524 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 1528 if (unlikely(!ctx)) 1529 return 0; 1530 1531 if (is_cgroup_event(event)) 1532 return perf_cgroup_event_time_now(event, now); 1533 1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1535 return ctx->time; 1536 1537 now += READ_ONCE(ctx->timeoffset); 1538 return now; 1539 } 1540 1541 static enum event_type_t get_event_type(struct perf_event *event) 1542 { 1543 struct perf_event_context *ctx = event->ctx; 1544 enum event_type_t event_type; 1545 1546 lockdep_assert_held(&ctx->lock); 1547 1548 /* 1549 * It's 'group type', really, because if our group leader is 1550 * pinned, so are we. 1551 */ 1552 if (event->group_leader != event) 1553 event = event->group_leader; 1554 1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1556 if (!ctx->task) 1557 event_type |= EVENT_CPU; 1558 1559 return event_type; 1560 } 1561 1562 /* 1563 * Helper function to initialize event group nodes. 1564 */ 1565 static void init_event_group(struct perf_event *event) 1566 { 1567 RB_CLEAR_NODE(&event->group_node); 1568 event->group_index = 0; 1569 } 1570 1571 /* 1572 * Extract pinned or flexible groups from the context 1573 * based on event attrs bits. 1574 */ 1575 static struct perf_event_groups * 1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1577 { 1578 if (event->attr.pinned) 1579 return &ctx->pinned_groups; 1580 else 1581 return &ctx->flexible_groups; 1582 } 1583 1584 /* 1585 * Helper function to initializes perf_event_group trees. 1586 */ 1587 static void perf_event_groups_init(struct perf_event_groups *groups) 1588 { 1589 groups->tree = RB_ROOT; 1590 groups->index = 0; 1591 } 1592 1593 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1594 { 1595 struct cgroup *cgroup = NULL; 1596 1597 #ifdef CONFIG_CGROUP_PERF 1598 if (event->cgrp) 1599 cgroup = event->cgrp->css.cgroup; 1600 #endif 1601 1602 return cgroup; 1603 } 1604 1605 /* 1606 * Compare function for event groups; 1607 * 1608 * Implements complex key that first sorts by CPU and then by virtual index 1609 * which provides ordering when rotating groups for the same CPU. 1610 */ 1611 static __always_inline int 1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1613 const struct cgroup *left_cgroup, const u64 left_group_index, 1614 const struct perf_event *right) 1615 { 1616 if (left_cpu < right->cpu) 1617 return -1; 1618 if (left_cpu > right->cpu) 1619 return 1; 1620 1621 if (left_pmu) { 1622 if (left_pmu < right->pmu_ctx->pmu) 1623 return -1; 1624 if (left_pmu > right->pmu_ctx->pmu) 1625 return 1; 1626 } 1627 1628 #ifdef CONFIG_CGROUP_PERF 1629 { 1630 const struct cgroup *right_cgroup = event_cgroup(right); 1631 1632 if (left_cgroup != right_cgroup) { 1633 if (!left_cgroup) { 1634 /* 1635 * Left has no cgroup but right does, no 1636 * cgroups come first. 1637 */ 1638 return -1; 1639 } 1640 if (!right_cgroup) { 1641 /* 1642 * Right has no cgroup but left does, no 1643 * cgroups come first. 1644 */ 1645 return 1; 1646 } 1647 /* Two dissimilar cgroups, order by id. */ 1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1649 return -1; 1650 1651 return 1; 1652 } 1653 } 1654 #endif 1655 1656 if (left_group_index < right->group_index) 1657 return -1; 1658 if (left_group_index > right->group_index) 1659 return 1; 1660 1661 return 0; 1662 } 1663 1664 #define __node_2_pe(node) \ 1665 rb_entry((node), struct perf_event, group_node) 1666 1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1668 { 1669 struct perf_event *e = __node_2_pe(a); 1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1671 e->group_index, __node_2_pe(b)) < 0; 1672 } 1673 1674 struct __group_key { 1675 int cpu; 1676 struct pmu *pmu; 1677 struct cgroup *cgroup; 1678 }; 1679 1680 static inline int __group_cmp(const void *key, const struct rb_node *node) 1681 { 1682 const struct __group_key *a = key; 1683 const struct perf_event *b = __node_2_pe(node); 1684 1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1687 } 1688 1689 static inline int 1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1691 { 1692 const struct __group_key *a = key; 1693 const struct perf_event *b = __node_2_pe(node); 1694 1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1697 b->group_index, b); 1698 } 1699 1700 /* 1701 * Insert @event into @groups' tree; using 1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1704 */ 1705 static void 1706 perf_event_groups_insert(struct perf_event_groups *groups, 1707 struct perf_event *event) 1708 { 1709 event->group_index = ++groups->index; 1710 1711 rb_add(&event->group_node, &groups->tree, __group_less); 1712 } 1713 1714 /* 1715 * Helper function to insert event into the pinned or flexible groups. 1716 */ 1717 static void 1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1719 { 1720 struct perf_event_groups *groups; 1721 1722 groups = get_event_groups(event, ctx); 1723 perf_event_groups_insert(groups, event); 1724 } 1725 1726 /* 1727 * Delete a group from a tree. 1728 */ 1729 static void 1730 perf_event_groups_delete(struct perf_event_groups *groups, 1731 struct perf_event *event) 1732 { 1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1734 RB_EMPTY_ROOT(&groups->tree)); 1735 1736 rb_erase(&event->group_node, &groups->tree); 1737 init_event_group(event); 1738 } 1739 1740 /* 1741 * Helper function to delete event from its groups. 1742 */ 1743 static void 1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1745 { 1746 struct perf_event_groups *groups; 1747 1748 groups = get_event_groups(event, ctx); 1749 perf_event_groups_delete(groups, event); 1750 } 1751 1752 /* 1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1754 */ 1755 static struct perf_event * 1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1757 struct pmu *pmu, struct cgroup *cgrp) 1758 { 1759 struct __group_key key = { 1760 .cpu = cpu, 1761 .pmu = pmu, 1762 .cgroup = cgrp, 1763 }; 1764 struct rb_node *node; 1765 1766 node = rb_find_first(&key, &groups->tree, __group_cmp); 1767 if (node) 1768 return __node_2_pe(node); 1769 1770 return NULL; 1771 } 1772 1773 static struct perf_event * 1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1775 { 1776 struct __group_key key = { 1777 .cpu = event->cpu, 1778 .pmu = pmu, 1779 .cgroup = event_cgroup(event), 1780 }; 1781 struct rb_node *next; 1782 1783 next = rb_next_match(&key, &event->group_node, __group_cmp); 1784 if (next) 1785 return __node_2_pe(next); 1786 1787 return NULL; 1788 } 1789 1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1792 event; event = perf_event_groups_next(event, pmu)) 1793 1794 /* 1795 * Iterate through the whole groups tree. 1796 */ 1797 #define perf_event_groups_for_each(event, groups) \ 1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1799 typeof(*event), group_node); event; \ 1800 event = rb_entry_safe(rb_next(&event->group_node), \ 1801 typeof(*event), group_node)) 1802 1803 /* 1804 * Does the event attribute request inherit with PERF_SAMPLE_READ 1805 */ 1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1807 { 1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1809 } 1810 1811 /* 1812 * Add an event from the lists for its context. 1813 * Must be called with ctx->mutex and ctx->lock held. 1814 */ 1815 static void 1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1817 { 1818 lockdep_assert_held(&ctx->lock); 1819 1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1821 event->attach_state |= PERF_ATTACH_CONTEXT; 1822 1823 event->tstamp = perf_event_time(event); 1824 1825 /* 1826 * If we're a stand alone event or group leader, we go to the context 1827 * list, group events are kept attached to the group so that 1828 * perf_group_detach can, at all times, locate all siblings. 1829 */ 1830 if (event->group_leader == event) { 1831 event->group_caps = event->event_caps; 1832 add_event_to_groups(event, ctx); 1833 } 1834 1835 list_add_rcu(&event->event_entry, &ctx->event_list); 1836 ctx->nr_events++; 1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1838 ctx->nr_user++; 1839 if (event->attr.inherit_stat) 1840 ctx->nr_stat++; 1841 if (has_inherit_and_sample_read(&event->attr)) 1842 local_inc(&ctx->nr_no_switch_fast); 1843 1844 if (event->state > PERF_EVENT_STATE_OFF) 1845 perf_cgroup_event_enable(event, ctx); 1846 1847 ctx->generation++; 1848 event->pmu_ctx->nr_events++; 1849 } 1850 1851 /* 1852 * Initialize event state based on the perf_event_attr::disabled. 1853 */ 1854 static inline void perf_event__state_init(struct perf_event *event) 1855 { 1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1857 PERF_EVENT_STATE_INACTIVE; 1858 } 1859 1860 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1861 { 1862 int entry = sizeof(u64); /* value */ 1863 int size = 0; 1864 int nr = 1; 1865 1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1867 size += sizeof(u64); 1868 1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1870 size += sizeof(u64); 1871 1872 if (read_format & PERF_FORMAT_ID) 1873 entry += sizeof(u64); 1874 1875 if (read_format & PERF_FORMAT_LOST) 1876 entry += sizeof(u64); 1877 1878 if (read_format & PERF_FORMAT_GROUP) { 1879 nr += nr_siblings; 1880 size += sizeof(u64); 1881 } 1882 1883 /* 1884 * Since perf_event_validate_size() limits this to 16k and inhibits 1885 * adding more siblings, this will never overflow. 1886 */ 1887 return size + nr * entry; 1888 } 1889 1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1891 { 1892 struct perf_sample_data *data; 1893 u16 size = 0; 1894 1895 if (sample_type & PERF_SAMPLE_IP) 1896 size += sizeof(data->ip); 1897 1898 if (sample_type & PERF_SAMPLE_ADDR) 1899 size += sizeof(data->addr); 1900 1901 if (sample_type & PERF_SAMPLE_PERIOD) 1902 size += sizeof(data->period); 1903 1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1905 size += sizeof(data->weight.full); 1906 1907 if (sample_type & PERF_SAMPLE_READ) 1908 size += event->read_size; 1909 1910 if (sample_type & PERF_SAMPLE_DATA_SRC) 1911 size += sizeof(data->data_src.val); 1912 1913 if (sample_type & PERF_SAMPLE_TRANSACTION) 1914 size += sizeof(data->txn); 1915 1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1917 size += sizeof(data->phys_addr); 1918 1919 if (sample_type & PERF_SAMPLE_CGROUP) 1920 size += sizeof(data->cgroup); 1921 1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1923 size += sizeof(data->data_page_size); 1924 1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1926 size += sizeof(data->code_page_size); 1927 1928 event->header_size = size; 1929 } 1930 1931 /* 1932 * Called at perf_event creation and when events are attached/detached from a 1933 * group. 1934 */ 1935 static void perf_event__header_size(struct perf_event *event) 1936 { 1937 event->read_size = 1938 __perf_event_read_size(event->attr.read_format, 1939 event->group_leader->nr_siblings); 1940 __perf_event_header_size(event, event->attr.sample_type); 1941 } 1942 1943 static void perf_event__id_header_size(struct perf_event *event) 1944 { 1945 struct perf_sample_data *data; 1946 u64 sample_type = event->attr.sample_type; 1947 u16 size = 0; 1948 1949 if (sample_type & PERF_SAMPLE_TID) 1950 size += sizeof(data->tid_entry); 1951 1952 if (sample_type & PERF_SAMPLE_TIME) 1953 size += sizeof(data->time); 1954 1955 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1956 size += sizeof(data->id); 1957 1958 if (sample_type & PERF_SAMPLE_ID) 1959 size += sizeof(data->id); 1960 1961 if (sample_type & PERF_SAMPLE_STREAM_ID) 1962 size += sizeof(data->stream_id); 1963 1964 if (sample_type & PERF_SAMPLE_CPU) 1965 size += sizeof(data->cpu_entry); 1966 1967 event->id_header_size = size; 1968 } 1969 1970 /* 1971 * Check that adding an event to the group does not result in anybody 1972 * overflowing the 64k event limit imposed by the output buffer. 1973 * 1974 * Specifically, check that the read_size for the event does not exceed 16k, 1975 * read_size being the one term that grows with groups size. Since read_size 1976 * depends on per-event read_format, also (re)check the existing events. 1977 * 1978 * This leaves 48k for the constant size fields and things like callchains, 1979 * branch stacks and register sets. 1980 */ 1981 static bool perf_event_validate_size(struct perf_event *event) 1982 { 1983 struct perf_event *sibling, *group_leader = event->group_leader; 1984 1985 if (__perf_event_read_size(event->attr.read_format, 1986 group_leader->nr_siblings + 1) > 16*1024) 1987 return false; 1988 1989 if (__perf_event_read_size(group_leader->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 /* 1994 * When creating a new group leader, group_leader->ctx is initialized 1995 * after the size has been validated, but we cannot safely use 1996 * for_each_sibling_event() until group_leader->ctx is set. A new group 1997 * leader cannot have any siblings yet, so we can safely skip checking 1998 * the non-existent siblings. 1999 */ 2000 if (event == group_leader) 2001 return true; 2002 2003 for_each_sibling_event(sibling, group_leader) { 2004 if (__perf_event_read_size(sibling->attr.read_format, 2005 group_leader->nr_siblings + 1) > 16*1024) 2006 return false; 2007 } 2008 2009 return true; 2010 } 2011 2012 static void perf_group_attach(struct perf_event *event) 2013 { 2014 struct perf_event *group_leader = event->group_leader, *pos; 2015 2016 lockdep_assert_held(&event->ctx->lock); 2017 2018 /* 2019 * We can have double attach due to group movement (move_group) in 2020 * perf_event_open(). 2021 */ 2022 if (event->attach_state & PERF_ATTACH_GROUP) 2023 return; 2024 2025 event->attach_state |= PERF_ATTACH_GROUP; 2026 2027 if (group_leader == event) 2028 return; 2029 2030 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2031 2032 group_leader->group_caps &= event->event_caps; 2033 2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2035 group_leader->nr_siblings++; 2036 group_leader->group_generation++; 2037 2038 perf_event__header_size(group_leader); 2039 2040 for_each_sibling_event(pos, group_leader) 2041 perf_event__header_size(pos); 2042 } 2043 2044 /* 2045 * Remove an event from the lists for its context. 2046 * Must be called with ctx->mutex and ctx->lock held. 2047 */ 2048 static void 2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2050 { 2051 WARN_ON_ONCE(event->ctx != ctx); 2052 lockdep_assert_held(&ctx->lock); 2053 2054 /* 2055 * We can have double detach due to exit/hot-unplug + close. 2056 */ 2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2058 return; 2059 2060 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2061 2062 ctx->nr_events--; 2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2064 ctx->nr_user--; 2065 if (event->attr.inherit_stat) 2066 ctx->nr_stat--; 2067 if (has_inherit_and_sample_read(&event->attr)) 2068 local_dec(&ctx->nr_no_switch_fast); 2069 2070 list_del_rcu(&event->event_entry); 2071 2072 if (event->group_leader == event) 2073 del_event_from_groups(event, ctx); 2074 2075 /* 2076 * If event was in error state, then keep it 2077 * that way, otherwise bogus counts will be 2078 * returned on read(). The only way to get out 2079 * of error state is by explicit re-enabling 2080 * of the event 2081 */ 2082 if (event->state > PERF_EVENT_STATE_OFF) { 2083 perf_cgroup_event_disable(event, ctx); 2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2085 } 2086 2087 ctx->generation++; 2088 event->pmu_ctx->nr_events--; 2089 } 2090 2091 static int 2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2093 { 2094 if (!has_aux(aux_event)) 2095 return 0; 2096 2097 if (!event->pmu->aux_output_match) 2098 return 0; 2099 2100 return event->pmu->aux_output_match(aux_event); 2101 } 2102 2103 static void put_event(struct perf_event *event); 2104 static void event_sched_out(struct perf_event *event, 2105 struct perf_event_context *ctx); 2106 2107 static void perf_put_aux_event(struct perf_event *event) 2108 { 2109 struct perf_event_context *ctx = event->ctx; 2110 struct perf_event *iter; 2111 2112 /* 2113 * If event uses aux_event tear down the link 2114 */ 2115 if (event->aux_event) { 2116 iter = event->aux_event; 2117 event->aux_event = NULL; 2118 put_event(iter); 2119 return; 2120 } 2121 2122 /* 2123 * If the event is an aux_event, tear down all links to 2124 * it from other events. 2125 */ 2126 for_each_sibling_event(iter, event->group_leader) { 2127 if (iter->aux_event != event) 2128 continue; 2129 2130 iter->aux_event = NULL; 2131 put_event(event); 2132 2133 /* 2134 * If it's ACTIVE, schedule it out and put it into ERROR 2135 * state so that we don't try to schedule it again. Note 2136 * that perf_event_enable() will clear the ERROR status. 2137 */ 2138 event_sched_out(iter, ctx); 2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2140 } 2141 } 2142 2143 static bool perf_need_aux_event(struct perf_event *event) 2144 { 2145 return event->attr.aux_output || has_aux_action(event); 2146 } 2147 2148 static int perf_get_aux_event(struct perf_event *event, 2149 struct perf_event *group_leader) 2150 { 2151 /* 2152 * Our group leader must be an aux event if we want to be 2153 * an aux_output. This way, the aux event will precede its 2154 * aux_output events in the group, and therefore will always 2155 * schedule first. 2156 */ 2157 if (!group_leader) 2158 return 0; 2159 2160 /* 2161 * aux_output and aux_sample_size are mutually exclusive. 2162 */ 2163 if (event->attr.aux_output && event->attr.aux_sample_size) 2164 return 0; 2165 2166 if (event->attr.aux_output && 2167 !perf_aux_output_match(event, group_leader)) 2168 return 0; 2169 2170 if ((event->attr.aux_pause || event->attr.aux_resume) && 2171 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2172 return 0; 2173 2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2175 return 0; 2176 2177 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2178 return 0; 2179 2180 /* 2181 * Link aux_outputs to their aux event; this is undone in 2182 * perf_group_detach() by perf_put_aux_event(). When the 2183 * group in torn down, the aux_output events loose their 2184 * link to the aux_event and can't schedule any more. 2185 */ 2186 event->aux_event = group_leader; 2187 2188 return 1; 2189 } 2190 2191 static inline struct list_head *get_event_list(struct perf_event *event) 2192 { 2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2194 &event->pmu_ctx->flexible_active; 2195 } 2196 2197 /* 2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2199 * cannot exist on their own, schedule them out and move them into the ERROR 2200 * state. Also see _perf_event_enable(), it will not be able to recover 2201 * this ERROR state. 2202 */ 2203 static inline void perf_remove_sibling_event(struct perf_event *event) 2204 { 2205 event_sched_out(event, event->ctx); 2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2207 } 2208 2209 static void perf_group_detach(struct perf_event *event) 2210 { 2211 struct perf_event *leader = event->group_leader; 2212 struct perf_event *sibling, *tmp; 2213 struct perf_event_context *ctx = event->ctx; 2214 2215 lockdep_assert_held(&ctx->lock); 2216 2217 /* 2218 * We can have double detach due to exit/hot-unplug + close. 2219 */ 2220 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2221 return; 2222 2223 event->attach_state &= ~PERF_ATTACH_GROUP; 2224 2225 perf_put_aux_event(event); 2226 2227 /* 2228 * If this is a sibling, remove it from its group. 2229 */ 2230 if (leader != event) { 2231 list_del_init(&event->sibling_list); 2232 event->group_leader->nr_siblings--; 2233 event->group_leader->group_generation++; 2234 goto out; 2235 } 2236 2237 /* 2238 * If this was a group event with sibling events then 2239 * upgrade the siblings to singleton events by adding them 2240 * to whatever list we are on. 2241 */ 2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2243 2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2245 perf_remove_sibling_event(sibling); 2246 2247 sibling->group_leader = sibling; 2248 list_del_init(&sibling->sibling_list); 2249 2250 /* Inherit group flags from the previous leader */ 2251 sibling->group_caps = event->group_caps; 2252 2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2254 add_event_to_groups(sibling, event->ctx); 2255 2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2257 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2258 } 2259 2260 WARN_ON_ONCE(sibling->ctx != event->ctx); 2261 } 2262 2263 out: 2264 for_each_sibling_event(tmp, leader) 2265 perf_event__header_size(tmp); 2266 2267 perf_event__header_size(leader); 2268 } 2269 2270 static void sync_child_event(struct perf_event *child_event); 2271 2272 static void perf_child_detach(struct perf_event *event) 2273 { 2274 struct perf_event *parent_event = event->parent; 2275 2276 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2277 return; 2278 2279 event->attach_state &= ~PERF_ATTACH_CHILD; 2280 2281 if (WARN_ON_ONCE(!parent_event)) 2282 return; 2283 2284 lockdep_assert_held(&parent_event->child_mutex); 2285 2286 sync_child_event(event); 2287 list_del_init(&event->child_list); 2288 } 2289 2290 static bool is_orphaned_event(struct perf_event *event) 2291 { 2292 return event->state == PERF_EVENT_STATE_DEAD; 2293 } 2294 2295 static inline int 2296 event_filter_match(struct perf_event *event) 2297 { 2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2299 perf_cgroup_match(event); 2300 } 2301 2302 static void 2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2304 { 2305 struct perf_event_pmu_context *epc = event->pmu_ctx; 2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2308 2309 // XXX cpc serialization, probably per-cpu IRQ disabled 2310 2311 WARN_ON_ONCE(event->ctx != ctx); 2312 lockdep_assert_held(&ctx->lock); 2313 2314 if (event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 /* 2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2319 * we can schedule events _OUT_ individually through things like 2320 * __perf_remove_from_context(). 2321 */ 2322 list_del_init(&event->active_list); 2323 2324 perf_pmu_disable(event->pmu); 2325 2326 event->pmu->del(event, 0); 2327 event->oncpu = -1; 2328 2329 if (event->pending_disable) { 2330 event->pending_disable = 0; 2331 perf_cgroup_event_disable(event, ctx); 2332 state = PERF_EVENT_STATE_OFF; 2333 } 2334 2335 perf_event_set_state(event, state); 2336 2337 if (!is_software_event(event)) 2338 cpc->active_oncpu--; 2339 if (event->attr.freq && event->attr.sample_freq) { 2340 ctx->nr_freq--; 2341 epc->nr_freq--; 2342 } 2343 if (event->attr.exclusive || !cpc->active_oncpu) 2344 cpc->exclusive = 0; 2345 2346 perf_pmu_enable(event->pmu); 2347 } 2348 2349 static void 2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2351 { 2352 struct perf_event *event; 2353 2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2355 return; 2356 2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2358 2359 event_sched_out(group_event, ctx); 2360 2361 /* 2362 * Schedule out siblings (if any): 2363 */ 2364 for_each_sibling_event(event, group_event) 2365 event_sched_out(event, ctx); 2366 } 2367 2368 static inline void 2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2370 { 2371 if (ctx->is_active & EVENT_TIME) { 2372 if (ctx->is_active & EVENT_FROZEN) 2373 return; 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx, final); 2376 } 2377 } 2378 2379 static inline void 2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2381 { 2382 __ctx_time_update(cpuctx, ctx, false); 2383 } 2384 2385 /* 2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2387 */ 2388 static inline void 2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2390 { 2391 ctx_time_update(cpuctx, ctx); 2392 if (ctx->is_active & EVENT_TIME) 2393 ctx->is_active |= EVENT_FROZEN; 2394 } 2395 2396 static inline void 2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2398 { 2399 if (ctx->is_active & EVENT_TIME) { 2400 if (ctx->is_active & EVENT_FROZEN) 2401 return; 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 } 2406 2407 #define DETACH_GROUP 0x01UL 2408 #define DETACH_CHILD 0x02UL 2409 #define DETACH_DEAD 0x04UL 2410 2411 /* 2412 * Cross CPU call to remove a performance event 2413 * 2414 * We disable the event on the hardware level first. After that we 2415 * remove it from the context list. 2416 */ 2417 static void 2418 __perf_remove_from_context(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2424 unsigned long flags = (unsigned long)info; 2425 2426 ctx_time_update(cpuctx, ctx); 2427 2428 /* 2429 * Ensure event_sched_out() switches to OFF, at the very least 2430 * this avoids raising perf_pending_task() at this time. 2431 */ 2432 if (flags & DETACH_DEAD) 2433 event->pending_disable = 1; 2434 event_sched_out(event, ctx); 2435 if (flags & DETACH_GROUP) 2436 perf_group_detach(event); 2437 if (flags & DETACH_CHILD) 2438 perf_child_detach(event); 2439 list_del_event(event, ctx); 2440 if (flags & DETACH_DEAD) 2441 event->state = PERF_EVENT_STATE_DEAD; 2442 2443 if (!pmu_ctx->nr_events) { 2444 pmu_ctx->rotate_necessary = 0; 2445 2446 if (ctx->task && ctx->is_active) { 2447 struct perf_cpu_pmu_context *cpc; 2448 2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2451 cpc->task_epc = NULL; 2452 } 2453 } 2454 2455 if (!ctx->nr_events && ctx->is_active) { 2456 if (ctx == &cpuctx->ctx) 2457 update_cgrp_time_from_cpuctx(cpuctx, true); 2458 2459 ctx->is_active = 0; 2460 if (ctx->task) { 2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2462 cpuctx->task_ctx = NULL; 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Remove the event from a task's (or a CPU's) list of events. 2469 * 2470 * If event->ctx is a cloned context, callers must make sure that 2471 * every task struct that event->ctx->task could possibly point to 2472 * remains valid. This is OK when called from perf_release since 2473 * that only calls us on the top-level context, which can't be a clone. 2474 * When called from perf_event_exit_task, it's OK because the 2475 * context has been detached from its task. 2476 */ 2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 lockdep_assert_held(&ctx->mutex); 2482 2483 /* 2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2485 * to work in the face of TASK_TOMBSTONE, unlike every other 2486 * event_function_call() user. 2487 */ 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (!ctx->is_active) { 2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2491 ctx, (void *)flags); 2492 raw_spin_unlock_irq(&ctx->lock); 2493 return; 2494 } 2495 raw_spin_unlock_irq(&ctx->lock); 2496 2497 event_function_call(event, __perf_remove_from_context, (void *)flags); 2498 } 2499 2500 /* 2501 * Cross CPU call to disable a performance event 2502 */ 2503 static void __perf_event_disable(struct perf_event *event, 2504 struct perf_cpu_context *cpuctx, 2505 struct perf_event_context *ctx, 2506 void *info) 2507 { 2508 if (event->state < PERF_EVENT_STATE_INACTIVE) 2509 return; 2510 2511 perf_pmu_disable(event->pmu_ctx->pmu); 2512 ctx_time_update_event(ctx, event); 2513 2514 if (event == event->group_leader) 2515 group_sched_out(event, ctx); 2516 else 2517 event_sched_out(event, ctx); 2518 2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2520 perf_cgroup_event_disable(event, ctx); 2521 2522 perf_pmu_enable(event->pmu_ctx->pmu); 2523 } 2524 2525 /* 2526 * Disable an event. 2527 * 2528 * If event->ctx is a cloned context, callers must make sure that 2529 * every task struct that event->ctx->task could possibly point to 2530 * remains valid. This condition is satisfied when called through 2531 * perf_event_for_each_child or perf_event_for_each because they 2532 * hold the top-level event's child_mutex, so any descendant that 2533 * goes to exit will block in perf_event_exit_event(). 2534 * 2535 * When called from perf_pending_disable it's OK because event->ctx 2536 * is the current context on this CPU and preemption is disabled, 2537 * hence we can't get into perf_event_task_sched_out for this context. 2538 */ 2539 static void _perf_event_disable(struct perf_event *event) 2540 { 2541 struct perf_event_context *ctx = event->ctx; 2542 2543 raw_spin_lock_irq(&ctx->lock); 2544 if (event->state <= PERF_EVENT_STATE_OFF) { 2545 raw_spin_unlock_irq(&ctx->lock); 2546 return; 2547 } 2548 raw_spin_unlock_irq(&ctx->lock); 2549 2550 event_function_call(event, __perf_event_disable, NULL); 2551 } 2552 2553 void perf_event_disable_local(struct perf_event *event) 2554 { 2555 event_function_local(event, __perf_event_disable, NULL); 2556 } 2557 2558 /* 2559 * Strictly speaking kernel users cannot create groups and therefore this 2560 * interface does not need the perf_event_ctx_lock() magic. 2561 */ 2562 void perf_event_disable(struct perf_event *event) 2563 { 2564 struct perf_event_context *ctx; 2565 2566 ctx = perf_event_ctx_lock(event); 2567 _perf_event_disable(event); 2568 perf_event_ctx_unlock(event, ctx); 2569 } 2570 EXPORT_SYMBOL_GPL(perf_event_disable); 2571 2572 void perf_event_disable_inatomic(struct perf_event *event) 2573 { 2574 event->pending_disable = 1; 2575 irq_work_queue(&event->pending_disable_irq); 2576 } 2577 2578 #define MAX_INTERRUPTS (~0ULL) 2579 2580 static void perf_log_throttle(struct perf_event *event, int enable); 2581 static void perf_log_itrace_start(struct perf_event *event); 2582 2583 static int 2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 int ret = 0; 2589 2590 WARN_ON_ONCE(event->ctx != ctx); 2591 2592 lockdep_assert_held(&ctx->lock); 2593 2594 if (event->state <= PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 WRITE_ONCE(event->oncpu, smp_processor_id()); 2598 /* 2599 * Order event::oncpu write to happen before the ACTIVE state is 2600 * visible. This allows perf_event_{stop,read}() to observe the correct 2601 * ->oncpu if it sees ACTIVE. 2602 */ 2603 smp_wmb(); 2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2605 2606 /* 2607 * Unthrottle events, since we scheduled we might have missed several 2608 * ticks already, also for a heavily scheduling task there is little 2609 * guarantee it'll get a tick in a timely manner. 2610 */ 2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2612 perf_log_throttle(event, 1); 2613 event->hw.interrupts = 0; 2614 } 2615 2616 perf_pmu_disable(event->pmu); 2617 2618 perf_log_itrace_start(event); 2619 2620 if (event->pmu->add(event, PERF_EF_START)) { 2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2622 event->oncpu = -1; 2623 ret = -EAGAIN; 2624 goto out; 2625 } 2626 2627 if (!is_software_event(event)) 2628 cpc->active_oncpu++; 2629 if (event->attr.freq && event->attr.sample_freq) { 2630 ctx->nr_freq++; 2631 epc->nr_freq++; 2632 } 2633 if (event->attr.exclusive) 2634 cpc->exclusive = 1; 2635 2636 out: 2637 perf_pmu_enable(event->pmu); 2638 2639 return ret; 2640 } 2641 2642 static int 2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2644 { 2645 struct perf_event *event, *partial_group = NULL; 2646 struct pmu *pmu = group_event->pmu_ctx->pmu; 2647 2648 if (group_event->state == PERF_EVENT_STATE_OFF) 2649 return 0; 2650 2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2652 2653 if (event_sched_in(group_event, ctx)) 2654 goto error; 2655 2656 /* 2657 * Schedule in siblings as one group (if any): 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event_sched_in(event, ctx)) { 2661 partial_group = event; 2662 goto group_error; 2663 } 2664 } 2665 2666 if (!pmu->commit_txn(pmu)) 2667 return 0; 2668 2669 group_error: 2670 /* 2671 * Groups can be scheduled in as one unit only, so undo any 2672 * partial group before returning: 2673 * The events up to the failed event are scheduled out normally. 2674 */ 2675 for_each_sibling_event(event, group_event) { 2676 if (event == partial_group) 2677 break; 2678 2679 event_sched_out(event, ctx); 2680 } 2681 event_sched_out(group_event, ctx); 2682 2683 error: 2684 pmu->cancel_txn(pmu); 2685 return -EAGAIN; 2686 } 2687 2688 /* 2689 * Work out whether we can put this event group on the CPU now. 2690 */ 2691 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2692 { 2693 struct perf_event_pmu_context *epc = event->pmu_ctx; 2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2695 2696 /* 2697 * Groups consisting entirely of software events can always go on. 2698 */ 2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2700 return 1; 2701 /* 2702 * If an exclusive group is already on, no other hardware 2703 * events can go on. 2704 */ 2705 if (cpc->exclusive) 2706 return 0; 2707 /* 2708 * If this group is exclusive and there are already 2709 * events on the CPU, it can't go on. 2710 */ 2711 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2712 return 0; 2713 /* 2714 * Otherwise, try to add it if all previous groups were able 2715 * to go on. 2716 */ 2717 return can_add_hw; 2718 } 2719 2720 static void add_event_to_ctx(struct perf_event *event, 2721 struct perf_event_context *ctx) 2722 { 2723 list_add_event(event, ctx); 2724 perf_group_attach(event); 2725 } 2726 2727 static void task_ctx_sched_out(struct perf_event_context *ctx, 2728 struct pmu *pmu, 2729 enum event_type_t event_type) 2730 { 2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2732 2733 if (!cpuctx->task_ctx) 2734 return; 2735 2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2737 return; 2738 2739 ctx_sched_out(ctx, pmu, event_type); 2740 } 2741 2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 struct pmu *pmu) 2745 { 2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2747 if (ctx) 2748 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2750 if (ctx) 2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2752 } 2753 2754 /* 2755 * We want to maintain the following priority of scheduling: 2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2757 * - task pinned (EVENT_PINNED) 2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2759 * - task flexible (EVENT_FLEXIBLE). 2760 * 2761 * In order to avoid unscheduling and scheduling back in everything every 2762 * time an event is added, only do it for the groups of equal priority and 2763 * below. 2764 * 2765 * This can be called after a batch operation on task events, in which case 2766 * event_type is a bit mask of the types of events involved. For CPU events, 2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2768 */ 2769 static void ctx_resched(struct perf_cpu_context *cpuctx, 2770 struct perf_event_context *task_ctx, 2771 struct pmu *pmu, enum event_type_t event_type) 2772 { 2773 bool cpu_event = !!(event_type & EVENT_CPU); 2774 struct perf_event_pmu_context *epc; 2775 2776 /* 2777 * If pinned groups are involved, flexible groups also need to be 2778 * scheduled out. 2779 */ 2780 if (event_type & EVENT_PINNED) 2781 event_type |= EVENT_FLEXIBLE; 2782 2783 event_type &= EVENT_ALL; 2784 2785 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 if (task_ctx) { 2789 for_each_epc(epc, task_ctx, pmu, false) 2790 perf_pmu_disable(epc->pmu); 2791 2792 task_ctx_sched_out(task_ctx, pmu, event_type); 2793 } 2794 2795 /* 2796 * Decide which cpu ctx groups to schedule out based on the types 2797 * of events that caused rescheduling: 2798 * - EVENT_CPU: schedule out corresponding groups; 2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2800 * - otherwise, do nothing more. 2801 */ 2802 if (cpu_event) 2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2804 else if (event_type & EVENT_PINNED) 2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2806 2807 perf_event_sched_in(cpuctx, task_ctx, pmu); 2808 2809 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 2812 if (task_ctx) { 2813 for_each_epc(epc, task_ctx, pmu, false) 2814 perf_pmu_enable(epc->pmu); 2815 } 2816 } 2817 2818 void perf_pmu_resched(struct pmu *pmu) 2819 { 2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2821 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2822 2823 perf_ctx_lock(cpuctx, task_ctx); 2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2825 perf_ctx_unlock(cpuctx, task_ctx); 2826 } 2827 2828 /* 2829 * Cross CPU call to install and enable a performance event 2830 * 2831 * Very similar to remote_function() + event_function() but cannot assume that 2832 * things like ctx->is_active and cpuctx->task_ctx are set. 2833 */ 2834 static int __perf_install_in_context(void *info) 2835 { 2836 struct perf_event *event = info; 2837 struct perf_event_context *ctx = event->ctx; 2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2839 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2840 bool reprogram = true; 2841 int ret = 0; 2842 2843 raw_spin_lock(&cpuctx->ctx.lock); 2844 if (ctx->task) { 2845 raw_spin_lock(&ctx->lock); 2846 task_ctx = ctx; 2847 2848 reprogram = (ctx->task == current); 2849 2850 /* 2851 * If the task is running, it must be running on this CPU, 2852 * otherwise we cannot reprogram things. 2853 * 2854 * If its not running, we don't care, ctx->lock will 2855 * serialize against it becoming runnable. 2856 */ 2857 if (task_curr(ctx->task) && !reprogram) { 2858 ret = -ESRCH; 2859 goto unlock; 2860 } 2861 2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2863 } else if (task_ctx) { 2864 raw_spin_lock(&task_ctx->lock); 2865 } 2866 2867 #ifdef CONFIG_CGROUP_PERF 2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2869 /* 2870 * If the current cgroup doesn't match the event's 2871 * cgroup, we should not try to schedule it. 2872 */ 2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2875 event->cgrp->css.cgroup); 2876 } 2877 #endif 2878 2879 if (reprogram) { 2880 ctx_time_freeze(cpuctx, ctx); 2881 add_event_to_ctx(event, ctx); 2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2883 get_event_type(event)); 2884 } else { 2885 add_event_to_ctx(event, ctx); 2886 } 2887 2888 unlock: 2889 perf_ctx_unlock(cpuctx, task_ctx); 2890 2891 return ret; 2892 } 2893 2894 static bool exclusive_event_installable(struct perf_event *event, 2895 struct perf_event_context *ctx); 2896 2897 /* 2898 * Attach a performance event to a context. 2899 * 2900 * Very similar to event_function_call, see comment there. 2901 */ 2902 static void 2903 perf_install_in_context(struct perf_event_context *ctx, 2904 struct perf_event *event, 2905 int cpu) 2906 { 2907 struct task_struct *task = READ_ONCE(ctx->task); 2908 2909 lockdep_assert_held(&ctx->mutex); 2910 2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2912 2913 if (event->cpu != -1) 2914 WARN_ON_ONCE(event->cpu != cpu); 2915 2916 /* 2917 * Ensures that if we can observe event->ctx, both the event and ctx 2918 * will be 'complete'. See perf_iterate_sb_cpu(). 2919 */ 2920 smp_store_release(&event->ctx, ctx); 2921 2922 /* 2923 * perf_event_attr::disabled events will not run and can be initialized 2924 * without IPI. Except when this is the first event for the context, in 2925 * that case we need the magic of the IPI to set ctx->is_active. 2926 * 2927 * The IOC_ENABLE that is sure to follow the creation of a disabled 2928 * event will issue the IPI and reprogram the hardware. 2929 */ 2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2931 ctx->nr_events && !is_cgroup_event(event)) { 2932 raw_spin_lock_irq(&ctx->lock); 2933 if (ctx->task == TASK_TOMBSTONE) { 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 add_event_to_ctx(event, ctx); 2938 raw_spin_unlock_irq(&ctx->lock); 2939 return; 2940 } 2941 2942 if (!task) { 2943 cpu_function_call(cpu, __perf_install_in_context, event); 2944 return; 2945 } 2946 2947 /* 2948 * Should not happen, we validate the ctx is still alive before calling. 2949 */ 2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2951 return; 2952 2953 /* 2954 * Installing events is tricky because we cannot rely on ctx->is_active 2955 * to be set in case this is the nr_events 0 -> 1 transition. 2956 * 2957 * Instead we use task_curr(), which tells us if the task is running. 2958 * However, since we use task_curr() outside of rq::lock, we can race 2959 * against the actual state. This means the result can be wrong. 2960 * 2961 * If we get a false positive, we retry, this is harmless. 2962 * 2963 * If we get a false negative, things are complicated. If we are after 2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2965 * value must be correct. If we're before, it doesn't matter since 2966 * perf_event_context_sched_in() will program the counter. 2967 * 2968 * However, this hinges on the remote context switch having observed 2969 * our task->perf_event_ctxp[] store, such that it will in fact take 2970 * ctx::lock in perf_event_context_sched_in(). 2971 * 2972 * We do this by task_function_call(), if the IPI fails to hit the task 2973 * we know any future context switch of task must see the 2974 * perf_event_ctpx[] store. 2975 */ 2976 2977 /* 2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2979 * task_cpu() load, such that if the IPI then does not find the task 2980 * running, a future context switch of that task must observe the 2981 * store. 2982 */ 2983 smp_mb(); 2984 again: 2985 if (!task_function_call(task, __perf_install_in_context, event)) 2986 return; 2987 2988 raw_spin_lock_irq(&ctx->lock); 2989 task = ctx->task; 2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2991 /* 2992 * Cannot happen because we already checked above (which also 2993 * cannot happen), and we hold ctx->mutex, which serializes us 2994 * against perf_event_exit_task_context(). 2995 */ 2996 raw_spin_unlock_irq(&ctx->lock); 2997 return; 2998 } 2999 /* 3000 * If the task is not running, ctx->lock will avoid it becoming so, 3001 * thus we can safely install the event. 3002 */ 3003 if (task_curr(task)) { 3004 raw_spin_unlock_irq(&ctx->lock); 3005 goto again; 3006 } 3007 add_event_to_ctx(event, ctx); 3008 raw_spin_unlock_irq(&ctx->lock); 3009 } 3010 3011 /* 3012 * Cross CPU call to enable a performance event 3013 */ 3014 static void __perf_event_enable(struct perf_event *event, 3015 struct perf_cpu_context *cpuctx, 3016 struct perf_event_context *ctx, 3017 void *info) 3018 { 3019 struct perf_event *leader = event->group_leader; 3020 struct perf_event_context *task_ctx; 3021 3022 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3023 event->state <= PERF_EVENT_STATE_ERROR) 3024 return; 3025 3026 ctx_time_freeze(cpuctx, ctx); 3027 3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3029 perf_cgroup_event_enable(event, ctx); 3030 3031 if (!ctx->is_active) 3032 return; 3033 3034 if (!event_filter_match(event)) 3035 return; 3036 3037 /* 3038 * If the event is in a group and isn't the group leader, 3039 * then don't put it on unless the group is on. 3040 */ 3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3042 return; 3043 3044 task_ctx = cpuctx->task_ctx; 3045 if (ctx->task) 3046 WARN_ON_ONCE(task_ctx != ctx); 3047 3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3049 } 3050 3051 /* 3052 * Enable an event. 3053 * 3054 * If event->ctx is a cloned context, callers must make sure that 3055 * every task struct that event->ctx->task could possibly point to 3056 * remains valid. This condition is satisfied when called through 3057 * perf_event_for_each_child or perf_event_for_each as described 3058 * for perf_event_disable. 3059 */ 3060 static void _perf_event_enable(struct perf_event *event) 3061 { 3062 struct perf_event_context *ctx = event->ctx; 3063 3064 raw_spin_lock_irq(&ctx->lock); 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state < PERF_EVENT_STATE_ERROR) { 3067 out: 3068 raw_spin_unlock_irq(&ctx->lock); 3069 return; 3070 } 3071 3072 /* 3073 * If the event is in error state, clear that first. 3074 * 3075 * That way, if we see the event in error state below, we know that it 3076 * has gone back into error state, as distinct from the task having 3077 * been scheduled away before the cross-call arrived. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_ERROR) { 3080 /* 3081 * Detached SIBLING events cannot leave ERROR state. 3082 */ 3083 if (event->event_caps & PERF_EV_CAP_SIBLING && 3084 event->group_leader == event) 3085 goto out; 3086 3087 event->state = PERF_EVENT_STATE_OFF; 3088 } 3089 raw_spin_unlock_irq(&ctx->lock); 3090 3091 event_function_call(event, __perf_event_enable, NULL); 3092 } 3093 3094 /* 3095 * See perf_event_disable(); 3096 */ 3097 void perf_event_enable(struct perf_event *event) 3098 { 3099 struct perf_event_context *ctx; 3100 3101 ctx = perf_event_ctx_lock(event); 3102 _perf_event_enable(event); 3103 perf_event_ctx_unlock(event, ctx); 3104 } 3105 EXPORT_SYMBOL_GPL(perf_event_enable); 3106 3107 struct stop_event_data { 3108 struct perf_event *event; 3109 unsigned int restart; 3110 }; 3111 3112 static int __perf_event_stop(void *info) 3113 { 3114 struct stop_event_data *sd = info; 3115 struct perf_event *event = sd->event; 3116 3117 /* if it's already INACTIVE, do nothing */ 3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3119 return 0; 3120 3121 /* matches smp_wmb() in event_sched_in() */ 3122 smp_rmb(); 3123 3124 /* 3125 * There is a window with interrupts enabled before we get here, 3126 * so we need to check again lest we try to stop another CPU's event. 3127 */ 3128 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3129 return -EAGAIN; 3130 3131 event->pmu->stop(event, PERF_EF_UPDATE); 3132 3133 /* 3134 * May race with the actual stop (through perf_pmu_output_stop()), 3135 * but it is only used for events with AUX ring buffer, and such 3136 * events will refuse to restart because of rb::aux_mmap_count==0, 3137 * see comments in perf_aux_output_begin(). 3138 * 3139 * Since this is happening on an event-local CPU, no trace is lost 3140 * while restarting. 3141 */ 3142 if (sd->restart) 3143 event->pmu->start(event, 0); 3144 3145 return 0; 3146 } 3147 3148 static int perf_event_stop(struct perf_event *event, int restart) 3149 { 3150 struct stop_event_data sd = { 3151 .event = event, 3152 .restart = restart, 3153 }; 3154 int ret = 0; 3155 3156 do { 3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3158 return 0; 3159 3160 /* matches smp_wmb() in event_sched_in() */ 3161 smp_rmb(); 3162 3163 /* 3164 * We only want to restart ACTIVE events, so if the event goes 3165 * inactive here (event->oncpu==-1), there's nothing more to do; 3166 * fall through with ret==-ENXIO. 3167 */ 3168 ret = cpu_function_call(READ_ONCE(event->oncpu), 3169 __perf_event_stop, &sd); 3170 } while (ret == -EAGAIN); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * In order to contain the amount of racy and tricky in the address filter 3177 * configuration management, it is a two part process: 3178 * 3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3180 * we update the addresses of corresponding vmas in 3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3182 * (p2) when an event is scheduled in (pmu::add), it calls 3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3184 * if the generation has changed since the previous call. 3185 * 3186 * If (p1) happens while the event is active, we restart it to force (p2). 3187 * 3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3190 * ioctl; 3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3193 * for reading; 3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3195 * of exec. 3196 */ 3197 void perf_event_addr_filters_sync(struct perf_event *event) 3198 { 3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3200 3201 if (!has_addr_filter(event)) 3202 return; 3203 3204 raw_spin_lock(&ifh->lock); 3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3206 event->pmu->addr_filters_sync(event); 3207 event->hw.addr_filters_gen = event->addr_filters_gen; 3208 } 3209 raw_spin_unlock(&ifh->lock); 3210 } 3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3212 3213 static int _perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 /* 3216 * not supported on inherited events 3217 */ 3218 if (event->attr.inherit || !is_sampling_event(event)) 3219 return -EINVAL; 3220 3221 atomic_add(refresh, &event->event_limit); 3222 _perf_event_enable(event); 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * See perf_event_disable() 3229 */ 3230 int perf_event_refresh(struct perf_event *event, int refresh) 3231 { 3232 struct perf_event_context *ctx; 3233 int ret; 3234 3235 ctx = perf_event_ctx_lock(event); 3236 ret = _perf_event_refresh(event, refresh); 3237 perf_event_ctx_unlock(event, ctx); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(perf_event_refresh); 3242 3243 static int perf_event_modify_breakpoint(struct perf_event *bp, 3244 struct perf_event_attr *attr) 3245 { 3246 int err; 3247 3248 _perf_event_disable(bp); 3249 3250 err = modify_user_hw_breakpoint_check(bp, attr, true); 3251 3252 if (!bp->attr.disabled) 3253 _perf_event_enable(bp); 3254 3255 return err; 3256 } 3257 3258 /* 3259 * Copy event-type-independent attributes that may be modified. 3260 */ 3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3262 const struct perf_event_attr *from) 3263 { 3264 to->sig_data = from->sig_data; 3265 } 3266 3267 static int perf_event_modify_attr(struct perf_event *event, 3268 struct perf_event_attr *attr) 3269 { 3270 int (*func)(struct perf_event *, struct perf_event_attr *); 3271 struct perf_event *child; 3272 int err; 3273 3274 if (event->attr.type != attr->type) 3275 return -EINVAL; 3276 3277 switch (event->attr.type) { 3278 case PERF_TYPE_BREAKPOINT: 3279 func = perf_event_modify_breakpoint; 3280 break; 3281 default: 3282 /* Place holder for future additions. */ 3283 return -EOPNOTSUPP; 3284 } 3285 3286 WARN_ON_ONCE(event->ctx->parent_ctx); 3287 3288 mutex_lock(&event->child_mutex); 3289 /* 3290 * Event-type-independent attributes must be copied before event-type 3291 * modification, which will validate that final attributes match the 3292 * source attributes after all relevant attributes have been copied. 3293 */ 3294 perf_event_modify_copy_attr(&event->attr, attr); 3295 err = func(event, attr); 3296 if (err) 3297 goto out; 3298 list_for_each_entry(child, &event->child_list, child_list) { 3299 perf_event_modify_copy_attr(&child->attr, attr); 3300 err = func(child, attr); 3301 if (err) 3302 goto out; 3303 } 3304 out: 3305 mutex_unlock(&event->child_mutex); 3306 return err; 3307 } 3308 3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3310 enum event_type_t event_type) 3311 { 3312 struct perf_event_context *ctx = pmu_ctx->ctx; 3313 struct perf_event *event, *tmp; 3314 struct pmu *pmu = pmu_ctx->pmu; 3315 3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3317 struct perf_cpu_pmu_context *cpc; 3318 3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3321 cpc->task_epc = NULL; 3322 } 3323 3324 if (!(event_type & EVENT_ALL)) 3325 return; 3326 3327 perf_pmu_disable(pmu); 3328 if (event_type & EVENT_PINNED) { 3329 list_for_each_entry_safe(event, tmp, 3330 &pmu_ctx->pinned_active, 3331 active_list) 3332 group_sched_out(event, ctx); 3333 } 3334 3335 if (event_type & EVENT_FLEXIBLE) { 3336 list_for_each_entry_safe(event, tmp, 3337 &pmu_ctx->flexible_active, 3338 active_list) 3339 group_sched_out(event, ctx); 3340 /* 3341 * Since we cleared EVENT_FLEXIBLE, also clear 3342 * rotate_necessary, is will be reset by 3343 * ctx_flexible_sched_in() when needed. 3344 */ 3345 pmu_ctx->rotate_necessary = 0; 3346 } 3347 perf_pmu_enable(pmu); 3348 } 3349 3350 /* 3351 * Be very careful with the @pmu argument since this will change ctx state. 3352 * The @pmu argument works for ctx_resched(), because that is symmetric in 3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3354 * 3355 * However, if you were to be asymmetrical, you could end up with messed up 3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3357 * be active. 3358 */ 3359 static void 3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3361 { 3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3363 struct perf_event_pmu_context *pmu_ctx; 3364 int is_active = ctx->is_active; 3365 bool cgroup = event_type & EVENT_CGROUP; 3366 3367 event_type &= ~EVENT_CGROUP; 3368 3369 lockdep_assert_held(&ctx->lock); 3370 3371 if (likely(!ctx->nr_events)) { 3372 /* 3373 * See __perf_remove_from_context(). 3374 */ 3375 WARN_ON_ONCE(ctx->is_active); 3376 if (ctx->task) 3377 WARN_ON_ONCE(cpuctx->task_ctx); 3378 return; 3379 } 3380 3381 /* 3382 * Always update time if it was set; not only when it changes. 3383 * Otherwise we can 'forget' to update time for any but the last 3384 * context we sched out. For example: 3385 * 3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3387 * ctx_sched_out(.event_type = EVENT_PINNED) 3388 * 3389 * would only update time for the pinned events. 3390 */ 3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3392 3393 /* 3394 * CPU-release for the below ->is_active store, 3395 * see __load_acquire() in perf_event_time_now() 3396 */ 3397 barrier(); 3398 ctx->is_active &= ~event_type; 3399 3400 if (!(ctx->is_active & EVENT_ALL)) { 3401 /* 3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3403 * does not observe a hole. perf_ctx_unlock() will clean up. 3404 */ 3405 if (ctx->is_active & EVENT_FROZEN) 3406 ctx->is_active &= EVENT_TIME_FROZEN; 3407 else 3408 ctx->is_active = 0; 3409 } 3410 3411 if (ctx->task) { 3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3413 if (!(ctx->is_active & EVENT_ALL)) 3414 cpuctx->task_ctx = NULL; 3415 } 3416 3417 is_active ^= ctx->is_active; /* changed bits */ 3418 3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3420 __pmu_ctx_sched_out(pmu_ctx, is_active); 3421 } 3422 3423 /* 3424 * Test whether two contexts are equivalent, i.e. whether they have both been 3425 * cloned from the same version of the same context. 3426 * 3427 * Equivalence is measured using a generation number in the context that is 3428 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3429 * and list_del_event(). 3430 */ 3431 static int context_equiv(struct perf_event_context *ctx1, 3432 struct perf_event_context *ctx2) 3433 { 3434 lockdep_assert_held(&ctx1->lock); 3435 lockdep_assert_held(&ctx2->lock); 3436 3437 /* Pinning disables the swap optimization */ 3438 if (ctx1->pin_count || ctx2->pin_count) 3439 return 0; 3440 3441 /* If ctx1 is the parent of ctx2 */ 3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3443 return 1; 3444 3445 /* If ctx2 is the parent of ctx1 */ 3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3447 return 1; 3448 3449 /* 3450 * If ctx1 and ctx2 have the same parent; we flatten the parent 3451 * hierarchy, see perf_event_init_context(). 3452 */ 3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3454 ctx1->parent_gen == ctx2->parent_gen) 3455 return 1; 3456 3457 /* Unmatched */ 3458 return 0; 3459 } 3460 3461 static void __perf_event_sync_stat(struct perf_event *event, 3462 struct perf_event *next_event) 3463 { 3464 u64 value; 3465 3466 if (!event->attr.inherit_stat) 3467 return; 3468 3469 /* 3470 * Update the event value, we cannot use perf_event_read() 3471 * because we're in the middle of a context switch and have IRQs 3472 * disabled, which upsets smp_call_function_single(), however 3473 * we know the event must be on the current CPU, therefore we 3474 * don't need to use it. 3475 */ 3476 if (event->state == PERF_EVENT_STATE_ACTIVE) 3477 event->pmu->read(event); 3478 3479 perf_event_update_time(event); 3480 3481 /* 3482 * In order to keep per-task stats reliable we need to flip the event 3483 * values when we flip the contexts. 3484 */ 3485 value = local64_read(&next_event->count); 3486 value = local64_xchg(&event->count, value); 3487 local64_set(&next_event->count, value); 3488 3489 swap(event->total_time_enabled, next_event->total_time_enabled); 3490 swap(event->total_time_running, next_event->total_time_running); 3491 3492 /* 3493 * Since we swizzled the values, update the user visible data too. 3494 */ 3495 perf_event_update_userpage(event); 3496 perf_event_update_userpage(next_event); 3497 } 3498 3499 static void perf_event_sync_stat(struct perf_event_context *ctx, 3500 struct perf_event_context *next_ctx) 3501 { 3502 struct perf_event *event, *next_event; 3503 3504 if (!ctx->nr_stat) 3505 return; 3506 3507 update_context_time(ctx); 3508 3509 event = list_first_entry(&ctx->event_list, 3510 struct perf_event, event_entry); 3511 3512 next_event = list_first_entry(&next_ctx->event_list, 3513 struct perf_event, event_entry); 3514 3515 while (&event->event_entry != &ctx->event_list && 3516 &next_event->event_entry != &next_ctx->event_list) { 3517 3518 __perf_event_sync_stat(event, next_event); 3519 3520 event = list_next_entry(event, event_entry); 3521 next_event = list_next_entry(next_event, event_entry); 3522 } 3523 } 3524 3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3528 !list_entry_is_head(pos1, head1, member) && \ 3529 !list_entry_is_head(pos2, head2, member); \ 3530 pos1 = list_next_entry(pos1, member), \ 3531 pos2 = list_next_entry(pos2, member)) 3532 3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3534 struct perf_event_context *next_ctx) 3535 { 3536 struct perf_event_pmu_context *prev_epc, *next_epc; 3537 3538 if (!prev_ctx->nr_task_data) 3539 return; 3540 3541 double_list_for_each_entry(prev_epc, next_epc, 3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3543 pmu_ctx_entry) { 3544 3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3546 continue; 3547 3548 /* 3549 * PMU specific parts of task perf context can require 3550 * additional synchronization. As an example of such 3551 * synchronization see implementation details of Intel 3552 * LBR call stack data profiling; 3553 */ 3554 if (prev_epc->pmu->swap_task_ctx) 3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3556 else 3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3558 } 3559 } 3560 3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3562 { 3563 struct perf_event_pmu_context *pmu_ctx; 3564 struct perf_cpu_pmu_context *cpc; 3565 3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3568 3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3571 } 3572 } 3573 3574 static void 3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3576 { 3577 struct perf_event_context *ctx = task->perf_event_ctxp; 3578 struct perf_event_context *next_ctx; 3579 struct perf_event_context *parent, *next_parent; 3580 int do_switch = 1; 3581 3582 if (likely(!ctx)) 3583 return; 3584 3585 rcu_read_lock(); 3586 next_ctx = rcu_dereference(next->perf_event_ctxp); 3587 if (!next_ctx) 3588 goto unlock; 3589 3590 parent = rcu_dereference(ctx->parent_ctx); 3591 next_parent = rcu_dereference(next_ctx->parent_ctx); 3592 3593 /* If neither context have a parent context; they cannot be clones. */ 3594 if (!parent && !next_parent) 3595 goto unlock; 3596 3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3598 /* 3599 * Looks like the two contexts are clones, so we might be 3600 * able to optimize the context switch. We lock both 3601 * contexts and check that they are clones under the 3602 * lock (including re-checking that neither has been 3603 * uncloned in the meantime). It doesn't matter which 3604 * order we take the locks because no other cpu could 3605 * be trying to lock both of these tasks. 3606 */ 3607 raw_spin_lock(&ctx->lock); 3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3609 if (context_equiv(ctx, next_ctx)) { 3610 3611 perf_ctx_disable(ctx, false); 3612 3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3614 if (local_read(&ctx->nr_no_switch_fast) || 3615 local_read(&next_ctx->nr_no_switch_fast)) { 3616 /* 3617 * Must not swap out ctx when there's pending 3618 * events that rely on the ctx->task relation. 3619 * 3620 * Likewise, when a context contains inherit + 3621 * SAMPLE_READ events they should be switched 3622 * out using the slow path so that they are 3623 * treated as if they were distinct contexts. 3624 */ 3625 raw_spin_unlock(&next_ctx->lock); 3626 rcu_read_unlock(); 3627 goto inside_switch; 3628 } 3629 3630 WRITE_ONCE(ctx->task, next); 3631 WRITE_ONCE(next_ctx->task, task); 3632 3633 perf_ctx_sched_task_cb(ctx, false); 3634 perf_event_swap_task_ctx_data(ctx, next_ctx); 3635 3636 perf_ctx_enable(ctx, false); 3637 3638 /* 3639 * RCU_INIT_POINTER here is safe because we've not 3640 * modified the ctx and the above modification of 3641 * ctx->task and ctx->task_ctx_data are immaterial 3642 * since those values are always verified under 3643 * ctx->lock which we're now holding. 3644 */ 3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3647 3648 do_switch = 0; 3649 3650 perf_event_sync_stat(ctx, next_ctx); 3651 } 3652 raw_spin_unlock(&next_ctx->lock); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 unlock: 3656 rcu_read_unlock(); 3657 3658 if (do_switch) { 3659 raw_spin_lock(&ctx->lock); 3660 perf_ctx_disable(ctx, false); 3661 3662 inside_switch: 3663 perf_ctx_sched_task_cb(ctx, false); 3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3665 3666 perf_ctx_enable(ctx, false); 3667 raw_spin_unlock(&ctx->lock); 3668 } 3669 } 3670 3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3673 3674 void perf_sched_cb_dec(struct pmu *pmu) 3675 { 3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3677 3678 this_cpu_dec(perf_sched_cb_usages); 3679 barrier(); 3680 3681 if (!--cpc->sched_cb_usage) 3682 list_del(&cpc->sched_cb_entry); 3683 } 3684 3685 3686 void perf_sched_cb_inc(struct pmu *pmu) 3687 { 3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3689 3690 if (!cpc->sched_cb_usage++) 3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3692 3693 barrier(); 3694 this_cpu_inc(perf_sched_cb_usages); 3695 } 3696 3697 /* 3698 * This function provides the context switch callback to the lower code 3699 * layer. It is invoked ONLY when the context switch callback is enabled. 3700 * 3701 * This callback is relevant even to per-cpu events; for example multi event 3702 * PEBS requires this to provide PID/TID information. This requires we flush 3703 * all queued PEBS records before we context switch to a new task. 3704 */ 3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3706 { 3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 struct pmu *pmu; 3709 3710 pmu = cpc->epc.pmu; 3711 3712 /* software PMUs will not have sched_task */ 3713 if (WARN_ON_ONCE(!pmu->sched_task)) 3714 return; 3715 3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3717 perf_pmu_disable(pmu); 3718 3719 pmu->sched_task(cpc->task_epc, sched_in); 3720 3721 perf_pmu_enable(pmu); 3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3723 } 3724 3725 static void perf_pmu_sched_task(struct task_struct *prev, 3726 struct task_struct *next, 3727 bool sched_in) 3728 { 3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3730 struct perf_cpu_pmu_context *cpc; 3731 3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3733 if (prev == next || cpuctx->task_ctx) 3734 return; 3735 3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3737 __perf_pmu_sched_task(cpc, sched_in); 3738 } 3739 3740 static void perf_event_switch(struct task_struct *task, 3741 struct task_struct *next_prev, bool sched_in); 3742 3743 /* 3744 * Called from scheduler to remove the events of the current task, 3745 * with interrupts disabled. 3746 * 3747 * We stop each event and update the event value in event->count. 3748 * 3749 * This does not protect us against NMI, but disable() 3750 * sets the disabled bit in the control field of event _before_ 3751 * accessing the event control register. If a NMI hits, then it will 3752 * not restart the event. 3753 */ 3754 void __perf_event_task_sched_out(struct task_struct *task, 3755 struct task_struct *next) 3756 { 3757 if (__this_cpu_read(perf_sched_cb_usages)) 3758 perf_pmu_sched_task(task, next, false); 3759 3760 if (atomic_read(&nr_switch_events)) 3761 perf_event_switch(task, next, false); 3762 3763 perf_event_context_sched_out(task, next); 3764 3765 /* 3766 * if cgroup events exist on this CPU, then we need 3767 * to check if we have to switch out PMU state. 3768 * cgroup event are system-wide mode only 3769 */ 3770 perf_cgroup_switch(next); 3771 } 3772 3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3774 { 3775 const struct perf_event *le = *(const struct perf_event **)l; 3776 const struct perf_event *re = *(const struct perf_event **)r; 3777 3778 return le->group_index < re->group_index; 3779 } 3780 3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3782 3783 static const struct min_heap_callbacks perf_min_heap = { 3784 .less = perf_less_group_idx, 3785 .swp = NULL, 3786 }; 3787 3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3789 { 3790 struct perf_event **itrs = heap->data; 3791 3792 if (event) { 3793 itrs[heap->nr] = event; 3794 heap->nr++; 3795 } 3796 } 3797 3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3799 { 3800 struct perf_cpu_pmu_context *cpc; 3801 3802 if (!pmu_ctx->ctx->task) 3803 return; 3804 3805 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3806 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3807 cpc->task_epc = pmu_ctx; 3808 } 3809 3810 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3811 struct perf_event_groups *groups, int cpu, 3812 struct pmu *pmu, 3813 int (*func)(struct perf_event *, void *), 3814 void *data) 3815 { 3816 #ifdef CONFIG_CGROUP_PERF 3817 struct cgroup_subsys_state *css = NULL; 3818 #endif 3819 struct perf_cpu_context *cpuctx = NULL; 3820 /* Space for per CPU and/or any CPU event iterators. */ 3821 struct perf_event *itrs[2]; 3822 struct perf_event_min_heap event_heap; 3823 struct perf_event **evt; 3824 int ret; 3825 3826 if (pmu->filter && pmu->filter(pmu, cpu)) 3827 return 0; 3828 3829 if (!ctx->task) { 3830 cpuctx = this_cpu_ptr(&perf_cpu_context); 3831 event_heap = (struct perf_event_min_heap){ 3832 .data = cpuctx->heap, 3833 .nr = 0, 3834 .size = cpuctx->heap_size, 3835 }; 3836 3837 lockdep_assert_held(&cpuctx->ctx.lock); 3838 3839 #ifdef CONFIG_CGROUP_PERF 3840 if (cpuctx->cgrp) 3841 css = &cpuctx->cgrp->css; 3842 #endif 3843 } else { 3844 event_heap = (struct perf_event_min_heap){ 3845 .data = itrs, 3846 .nr = 0, 3847 .size = ARRAY_SIZE(itrs), 3848 }; 3849 /* Events not within a CPU context may be on any CPU. */ 3850 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3851 } 3852 evt = event_heap.data; 3853 3854 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3855 3856 #ifdef CONFIG_CGROUP_PERF 3857 for (; css; css = css->parent) 3858 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3859 #endif 3860 3861 if (event_heap.nr) { 3862 __link_epc((*evt)->pmu_ctx); 3863 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3864 } 3865 3866 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3867 3868 while (event_heap.nr) { 3869 ret = func(*evt, data); 3870 if (ret) 3871 return ret; 3872 3873 *evt = perf_event_groups_next(*evt, pmu); 3874 if (*evt) 3875 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3876 else 3877 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3878 } 3879 3880 return 0; 3881 } 3882 3883 /* 3884 * Because the userpage is strictly per-event (there is no concept of context, 3885 * so there cannot be a context indirection), every userpage must be updated 3886 * when context time starts :-( 3887 * 3888 * IOW, we must not miss EVENT_TIME edges. 3889 */ 3890 static inline bool event_update_userpage(struct perf_event *event) 3891 { 3892 if (likely(!atomic_read(&event->mmap_count))) 3893 return false; 3894 3895 perf_event_update_time(event); 3896 perf_event_update_userpage(event); 3897 3898 return true; 3899 } 3900 3901 static inline void group_update_userpage(struct perf_event *group_event) 3902 { 3903 struct perf_event *event; 3904 3905 if (!event_update_userpage(group_event)) 3906 return; 3907 3908 for_each_sibling_event(event, group_event) 3909 event_update_userpage(event); 3910 } 3911 3912 static int merge_sched_in(struct perf_event *event, void *data) 3913 { 3914 struct perf_event_context *ctx = event->ctx; 3915 int *can_add_hw = data; 3916 3917 if (event->state <= PERF_EVENT_STATE_OFF) 3918 return 0; 3919 3920 if (!event_filter_match(event)) 3921 return 0; 3922 3923 if (group_can_go_on(event, *can_add_hw)) { 3924 if (!group_sched_in(event, ctx)) 3925 list_add_tail(&event->active_list, get_event_list(event)); 3926 } 3927 3928 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3929 *can_add_hw = 0; 3930 if (event->attr.pinned) { 3931 perf_cgroup_event_disable(event, ctx); 3932 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3933 } else { 3934 struct perf_cpu_pmu_context *cpc; 3935 3936 event->pmu_ctx->rotate_necessary = 1; 3937 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3938 perf_mux_hrtimer_restart(cpc); 3939 group_update_userpage(event); 3940 } 3941 } 3942 3943 return 0; 3944 } 3945 3946 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3947 struct perf_event_groups *groups, 3948 struct pmu *pmu) 3949 { 3950 int can_add_hw = 1; 3951 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3952 merge_sched_in, &can_add_hw); 3953 } 3954 3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3956 enum event_type_t event_type) 3957 { 3958 struct perf_event_context *ctx = pmu_ctx->ctx; 3959 3960 if (event_type & EVENT_PINNED) 3961 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3962 if (event_type & EVENT_FLEXIBLE) 3963 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3964 } 3965 3966 static void 3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3968 { 3969 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3970 struct perf_event_pmu_context *pmu_ctx; 3971 int is_active = ctx->is_active; 3972 bool cgroup = event_type & EVENT_CGROUP; 3973 3974 event_type &= ~EVENT_CGROUP; 3975 3976 lockdep_assert_held(&ctx->lock); 3977 3978 if (likely(!ctx->nr_events)) 3979 return; 3980 3981 if (!(is_active & EVENT_TIME)) { 3982 /* start ctx time */ 3983 __update_context_time(ctx, false); 3984 perf_cgroup_set_timestamp(cpuctx); 3985 /* 3986 * CPU-release for the below ->is_active store, 3987 * see __load_acquire() in perf_event_time_now() 3988 */ 3989 barrier(); 3990 } 3991 3992 ctx->is_active |= (event_type | EVENT_TIME); 3993 if (ctx->task) { 3994 if (!(is_active & EVENT_ALL)) 3995 cpuctx->task_ctx = ctx; 3996 else 3997 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3998 } 3999 4000 is_active ^= ctx->is_active; /* changed bits */ 4001 4002 /* 4003 * First go through the list and put on any pinned groups 4004 * in order to give them the best chance of going on. 4005 */ 4006 if (is_active & EVENT_PINNED) { 4007 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4008 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4009 } 4010 4011 /* Then walk through the lower prio flexible groups */ 4012 if (is_active & EVENT_FLEXIBLE) { 4013 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4014 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4015 } 4016 } 4017 4018 static void perf_event_context_sched_in(struct task_struct *task) 4019 { 4020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4021 struct perf_event_context *ctx; 4022 4023 rcu_read_lock(); 4024 ctx = rcu_dereference(task->perf_event_ctxp); 4025 if (!ctx) 4026 goto rcu_unlock; 4027 4028 if (cpuctx->task_ctx == ctx) { 4029 perf_ctx_lock(cpuctx, ctx); 4030 perf_ctx_disable(ctx, false); 4031 4032 perf_ctx_sched_task_cb(ctx, true); 4033 4034 perf_ctx_enable(ctx, false); 4035 perf_ctx_unlock(cpuctx, ctx); 4036 goto rcu_unlock; 4037 } 4038 4039 perf_ctx_lock(cpuctx, ctx); 4040 /* 4041 * We must check ctx->nr_events while holding ctx->lock, such 4042 * that we serialize against perf_install_in_context(). 4043 */ 4044 if (!ctx->nr_events) 4045 goto unlock; 4046 4047 perf_ctx_disable(ctx, false); 4048 /* 4049 * We want to keep the following priority order: 4050 * cpu pinned (that don't need to move), task pinned, 4051 * cpu flexible, task flexible. 4052 * 4053 * However, if task's ctx is not carrying any pinned 4054 * events, no need to flip the cpuctx's events around. 4055 */ 4056 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4057 perf_ctx_disable(&cpuctx->ctx, false); 4058 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4059 } 4060 4061 perf_event_sched_in(cpuctx, ctx, NULL); 4062 4063 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4064 4065 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4066 perf_ctx_enable(&cpuctx->ctx, false); 4067 4068 perf_ctx_enable(ctx, false); 4069 4070 unlock: 4071 perf_ctx_unlock(cpuctx, ctx); 4072 rcu_unlock: 4073 rcu_read_unlock(); 4074 } 4075 4076 /* 4077 * Called from scheduler to add the events of the current task 4078 * with interrupts disabled. 4079 * 4080 * We restore the event value and then enable it. 4081 * 4082 * This does not protect us against NMI, but enable() 4083 * sets the enabled bit in the control field of event _before_ 4084 * accessing the event control register. If a NMI hits, then it will 4085 * keep the event running. 4086 */ 4087 void __perf_event_task_sched_in(struct task_struct *prev, 4088 struct task_struct *task) 4089 { 4090 perf_event_context_sched_in(task); 4091 4092 if (atomic_read(&nr_switch_events)) 4093 perf_event_switch(task, prev, true); 4094 4095 if (__this_cpu_read(perf_sched_cb_usages)) 4096 perf_pmu_sched_task(prev, task, true); 4097 } 4098 4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4100 { 4101 u64 frequency = event->attr.sample_freq; 4102 u64 sec = NSEC_PER_SEC; 4103 u64 divisor, dividend; 4104 4105 int count_fls, nsec_fls, frequency_fls, sec_fls; 4106 4107 count_fls = fls64(count); 4108 nsec_fls = fls64(nsec); 4109 frequency_fls = fls64(frequency); 4110 sec_fls = 30; 4111 4112 /* 4113 * We got @count in @nsec, with a target of sample_freq HZ 4114 * the target period becomes: 4115 * 4116 * @count * 10^9 4117 * period = ------------------- 4118 * @nsec * sample_freq 4119 * 4120 */ 4121 4122 /* 4123 * Reduce accuracy by one bit such that @a and @b converge 4124 * to a similar magnitude. 4125 */ 4126 #define REDUCE_FLS(a, b) \ 4127 do { \ 4128 if (a##_fls > b##_fls) { \ 4129 a >>= 1; \ 4130 a##_fls--; \ 4131 } else { \ 4132 b >>= 1; \ 4133 b##_fls--; \ 4134 } \ 4135 } while (0) 4136 4137 /* 4138 * Reduce accuracy until either term fits in a u64, then proceed with 4139 * the other, so that finally we can do a u64/u64 division. 4140 */ 4141 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4142 REDUCE_FLS(nsec, frequency); 4143 REDUCE_FLS(sec, count); 4144 } 4145 4146 if (count_fls + sec_fls > 64) { 4147 divisor = nsec * frequency; 4148 4149 while (count_fls + sec_fls > 64) { 4150 REDUCE_FLS(count, sec); 4151 divisor >>= 1; 4152 } 4153 4154 dividend = count * sec; 4155 } else { 4156 dividend = count * sec; 4157 4158 while (nsec_fls + frequency_fls > 64) { 4159 REDUCE_FLS(nsec, frequency); 4160 dividend >>= 1; 4161 } 4162 4163 divisor = nsec * frequency; 4164 } 4165 4166 if (!divisor) 4167 return dividend; 4168 4169 return div64_u64(dividend, divisor); 4170 } 4171 4172 static DEFINE_PER_CPU(int, perf_throttled_count); 4173 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4174 4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4176 { 4177 struct hw_perf_event *hwc = &event->hw; 4178 s64 period, sample_period; 4179 s64 delta; 4180 4181 period = perf_calculate_period(event, nsec, count); 4182 4183 delta = (s64)(period - hwc->sample_period); 4184 if (delta >= 0) 4185 delta += 7; 4186 else 4187 delta -= 7; 4188 delta /= 8; /* low pass filter */ 4189 4190 sample_period = hwc->sample_period + delta; 4191 4192 if (!sample_period) 4193 sample_period = 1; 4194 4195 hwc->sample_period = sample_period; 4196 4197 if (local64_read(&hwc->period_left) > 8*sample_period) { 4198 if (disable) 4199 event->pmu->stop(event, PERF_EF_UPDATE); 4200 4201 local64_set(&hwc->period_left, 0); 4202 4203 if (disable) 4204 event->pmu->start(event, PERF_EF_RELOAD); 4205 } 4206 } 4207 4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4209 { 4210 struct perf_event *event; 4211 struct hw_perf_event *hwc; 4212 u64 now, period = TICK_NSEC; 4213 s64 delta; 4214 4215 list_for_each_entry(event, event_list, active_list) { 4216 if (event->state != PERF_EVENT_STATE_ACTIVE) 4217 continue; 4218 4219 // XXX use visit thingy to avoid the -1,cpu match 4220 if (!event_filter_match(event)) 4221 continue; 4222 4223 hwc = &event->hw; 4224 4225 if (hwc->interrupts == MAX_INTERRUPTS) { 4226 hwc->interrupts = 0; 4227 perf_log_throttle(event, 1); 4228 if (!event->attr.freq || !event->attr.sample_freq) 4229 event->pmu->start(event, 0); 4230 } 4231 4232 if (!event->attr.freq || !event->attr.sample_freq) 4233 continue; 4234 4235 /* 4236 * stop the event and update event->count 4237 */ 4238 event->pmu->stop(event, PERF_EF_UPDATE); 4239 4240 now = local64_read(&event->count); 4241 delta = now - hwc->freq_count_stamp; 4242 hwc->freq_count_stamp = now; 4243 4244 /* 4245 * restart the event 4246 * reload only if value has changed 4247 * we have stopped the event so tell that 4248 * to perf_adjust_period() to avoid stopping it 4249 * twice. 4250 */ 4251 if (delta > 0) 4252 perf_adjust_period(event, period, delta, false); 4253 4254 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4255 } 4256 } 4257 4258 /* 4259 * combine freq adjustment with unthrottling to avoid two passes over the 4260 * events. At the same time, make sure, having freq events does not change 4261 * the rate of unthrottling as that would introduce bias. 4262 */ 4263 static void 4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4265 { 4266 struct perf_event_pmu_context *pmu_ctx; 4267 4268 /* 4269 * only need to iterate over all events iff: 4270 * - context have events in frequency mode (needs freq adjust) 4271 * - there are events to unthrottle on this cpu 4272 */ 4273 if (!(ctx->nr_freq || unthrottle)) 4274 return; 4275 4276 raw_spin_lock(&ctx->lock); 4277 4278 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4279 if (!(pmu_ctx->nr_freq || unthrottle)) 4280 continue; 4281 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4282 continue; 4283 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4284 continue; 4285 4286 perf_pmu_disable(pmu_ctx->pmu); 4287 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4288 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4289 perf_pmu_enable(pmu_ctx->pmu); 4290 } 4291 4292 raw_spin_unlock(&ctx->lock); 4293 } 4294 4295 /* 4296 * Move @event to the tail of the @ctx's elegible events. 4297 */ 4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4299 { 4300 /* 4301 * Rotate the first entry last of non-pinned groups. Rotation might be 4302 * disabled by the inheritance code. 4303 */ 4304 if (ctx->rotate_disable) 4305 return; 4306 4307 perf_event_groups_delete(&ctx->flexible_groups, event); 4308 perf_event_groups_insert(&ctx->flexible_groups, event); 4309 } 4310 4311 /* pick an event from the flexible_groups to rotate */ 4312 static inline struct perf_event * 4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4314 { 4315 struct perf_event *event; 4316 struct rb_node *node; 4317 struct rb_root *tree; 4318 struct __group_key key = { 4319 .pmu = pmu_ctx->pmu, 4320 }; 4321 4322 /* pick the first active flexible event */ 4323 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4324 struct perf_event, active_list); 4325 if (event) 4326 goto out; 4327 4328 /* if no active flexible event, pick the first event */ 4329 tree = &pmu_ctx->ctx->flexible_groups.tree; 4330 4331 if (!pmu_ctx->ctx->task) { 4332 key.cpu = smp_processor_id(); 4333 4334 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4335 if (node) 4336 event = __node_2_pe(node); 4337 goto out; 4338 } 4339 4340 key.cpu = -1; 4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4342 if (node) { 4343 event = __node_2_pe(node); 4344 goto out; 4345 } 4346 4347 key.cpu = smp_processor_id(); 4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4349 if (node) 4350 event = __node_2_pe(node); 4351 4352 out: 4353 /* 4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4355 * finds there are unschedulable events, it will set it again. 4356 */ 4357 pmu_ctx->rotate_necessary = 0; 4358 4359 return event; 4360 } 4361 4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4363 { 4364 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4365 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4366 struct perf_event *cpu_event = NULL, *task_event = NULL; 4367 int cpu_rotate, task_rotate; 4368 struct pmu *pmu; 4369 4370 /* 4371 * Since we run this from IRQ context, nobody can install new 4372 * events, thus the event count values are stable. 4373 */ 4374 4375 cpu_epc = &cpc->epc; 4376 pmu = cpu_epc->pmu; 4377 task_epc = cpc->task_epc; 4378 4379 cpu_rotate = cpu_epc->rotate_necessary; 4380 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4381 4382 if (!(cpu_rotate || task_rotate)) 4383 return false; 4384 4385 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4386 perf_pmu_disable(pmu); 4387 4388 if (task_rotate) 4389 task_event = ctx_event_to_rotate(task_epc); 4390 if (cpu_rotate) 4391 cpu_event = ctx_event_to_rotate(cpu_epc); 4392 4393 /* 4394 * As per the order given at ctx_resched() first 'pop' task flexible 4395 * and then, if needed CPU flexible. 4396 */ 4397 if (task_event || (task_epc && cpu_event)) { 4398 update_context_time(task_epc->ctx); 4399 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4400 } 4401 4402 if (cpu_event) { 4403 update_context_time(&cpuctx->ctx); 4404 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4405 rotate_ctx(&cpuctx->ctx, cpu_event); 4406 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4407 } 4408 4409 if (task_event) 4410 rotate_ctx(task_epc->ctx, task_event); 4411 4412 if (task_event || (task_epc && cpu_event)) 4413 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4414 4415 perf_pmu_enable(pmu); 4416 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4417 4418 return true; 4419 } 4420 4421 void perf_event_task_tick(void) 4422 { 4423 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4424 struct perf_event_context *ctx; 4425 int throttled; 4426 4427 lockdep_assert_irqs_disabled(); 4428 4429 __this_cpu_inc(perf_throttled_seq); 4430 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4432 4433 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4434 4435 rcu_read_lock(); 4436 ctx = rcu_dereference(current->perf_event_ctxp); 4437 if (ctx) 4438 perf_adjust_freq_unthr_context(ctx, !!throttled); 4439 rcu_read_unlock(); 4440 } 4441 4442 static int event_enable_on_exec(struct perf_event *event, 4443 struct perf_event_context *ctx) 4444 { 4445 if (!event->attr.enable_on_exec) 4446 return 0; 4447 4448 event->attr.enable_on_exec = 0; 4449 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4450 return 0; 4451 4452 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4453 4454 return 1; 4455 } 4456 4457 /* 4458 * Enable all of a task's events that have been marked enable-on-exec. 4459 * This expects task == current. 4460 */ 4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4462 { 4463 struct perf_event_context *clone_ctx = NULL; 4464 enum event_type_t event_type = 0; 4465 struct perf_cpu_context *cpuctx; 4466 struct perf_event *event; 4467 unsigned long flags; 4468 int enabled = 0; 4469 4470 local_irq_save(flags); 4471 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4472 goto out; 4473 4474 if (!ctx->nr_events) 4475 goto out; 4476 4477 cpuctx = this_cpu_ptr(&perf_cpu_context); 4478 perf_ctx_lock(cpuctx, ctx); 4479 ctx_time_freeze(cpuctx, ctx); 4480 4481 list_for_each_entry(event, &ctx->event_list, event_entry) { 4482 enabled |= event_enable_on_exec(event, ctx); 4483 event_type |= get_event_type(event); 4484 } 4485 4486 /* 4487 * Unclone and reschedule this context if we enabled any event. 4488 */ 4489 if (enabled) { 4490 clone_ctx = unclone_ctx(ctx); 4491 ctx_resched(cpuctx, ctx, NULL, event_type); 4492 } 4493 perf_ctx_unlock(cpuctx, ctx); 4494 4495 out: 4496 local_irq_restore(flags); 4497 4498 if (clone_ctx) 4499 put_ctx(clone_ctx); 4500 } 4501 4502 static void perf_remove_from_owner(struct perf_event *event); 4503 static void perf_event_exit_event(struct perf_event *event, 4504 struct perf_event_context *ctx); 4505 4506 /* 4507 * Removes all events from the current task that have been marked 4508 * remove-on-exec, and feeds their values back to parent events. 4509 */ 4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4511 { 4512 struct perf_event_context *clone_ctx = NULL; 4513 struct perf_event *event, *next; 4514 unsigned long flags; 4515 bool modified = false; 4516 4517 mutex_lock(&ctx->mutex); 4518 4519 if (WARN_ON_ONCE(ctx->task != current)) 4520 goto unlock; 4521 4522 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4523 if (!event->attr.remove_on_exec) 4524 continue; 4525 4526 if (!is_kernel_event(event)) 4527 perf_remove_from_owner(event); 4528 4529 modified = true; 4530 4531 perf_event_exit_event(event, ctx); 4532 } 4533 4534 raw_spin_lock_irqsave(&ctx->lock, flags); 4535 if (modified) 4536 clone_ctx = unclone_ctx(ctx); 4537 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4538 4539 unlock: 4540 mutex_unlock(&ctx->mutex); 4541 4542 if (clone_ctx) 4543 put_ctx(clone_ctx); 4544 } 4545 4546 struct perf_read_data { 4547 struct perf_event *event; 4548 bool group; 4549 int ret; 4550 }; 4551 4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4553 4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4555 { 4556 int local_cpu = smp_processor_id(); 4557 u16 local_pkg, event_pkg; 4558 4559 if ((unsigned)event_cpu >= nr_cpu_ids) 4560 return event_cpu; 4561 4562 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4563 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4564 4565 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4566 return local_cpu; 4567 } 4568 4569 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4570 event_pkg = topology_physical_package_id(event_cpu); 4571 local_pkg = topology_physical_package_id(local_cpu); 4572 4573 if (event_pkg == local_pkg) 4574 return local_cpu; 4575 } 4576 4577 return event_cpu; 4578 } 4579 4580 /* 4581 * Cross CPU call to read the hardware event 4582 */ 4583 static void __perf_event_read(void *info) 4584 { 4585 struct perf_read_data *data = info; 4586 struct perf_event *sub, *event = data->event; 4587 struct perf_event_context *ctx = event->ctx; 4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4589 struct pmu *pmu = event->pmu; 4590 4591 /* 4592 * If this is a task context, we need to check whether it is 4593 * the current task context of this cpu. If not it has been 4594 * scheduled out before the smp call arrived. In that case 4595 * event->count would have been updated to a recent sample 4596 * when the event was scheduled out. 4597 */ 4598 if (ctx->task && cpuctx->task_ctx != ctx) 4599 return; 4600 4601 raw_spin_lock(&ctx->lock); 4602 ctx_time_update_event(ctx, event); 4603 4604 perf_event_update_time(event); 4605 if (data->group) 4606 perf_event_update_sibling_time(event); 4607 4608 if (event->state != PERF_EVENT_STATE_ACTIVE) 4609 goto unlock; 4610 4611 if (!data->group) { 4612 pmu->read(event); 4613 data->ret = 0; 4614 goto unlock; 4615 } 4616 4617 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4618 4619 pmu->read(event); 4620 4621 for_each_sibling_event(sub, event) { 4622 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4623 /* 4624 * Use sibling's PMU rather than @event's since 4625 * sibling could be on different (eg: software) PMU. 4626 */ 4627 sub->pmu->read(sub); 4628 } 4629 } 4630 4631 data->ret = pmu->commit_txn(pmu); 4632 4633 unlock: 4634 raw_spin_unlock(&ctx->lock); 4635 } 4636 4637 static inline u64 perf_event_count(struct perf_event *event, bool self) 4638 { 4639 if (self) 4640 return local64_read(&event->count); 4641 4642 return local64_read(&event->count) + atomic64_read(&event->child_count); 4643 } 4644 4645 static void calc_timer_values(struct perf_event *event, 4646 u64 *now, 4647 u64 *enabled, 4648 u64 *running) 4649 { 4650 u64 ctx_time; 4651 4652 *now = perf_clock(); 4653 ctx_time = perf_event_time_now(event, *now); 4654 __perf_update_times(event, ctx_time, enabled, running); 4655 } 4656 4657 /* 4658 * NMI-safe method to read a local event, that is an event that 4659 * is: 4660 * - either for the current task, or for this CPU 4661 * - does not have inherit set, for inherited task events 4662 * will not be local and we cannot read them atomically 4663 * - must not have a pmu::count method 4664 */ 4665 int perf_event_read_local(struct perf_event *event, u64 *value, 4666 u64 *enabled, u64 *running) 4667 { 4668 unsigned long flags; 4669 int event_oncpu; 4670 int event_cpu; 4671 int ret = 0; 4672 4673 /* 4674 * Disabling interrupts avoids all counter scheduling (context 4675 * switches, timer based rotation and IPIs). 4676 */ 4677 local_irq_save(flags); 4678 4679 /* 4680 * It must not be an event with inherit set, we cannot read 4681 * all child counters from atomic context. 4682 */ 4683 if (event->attr.inherit) { 4684 ret = -EOPNOTSUPP; 4685 goto out; 4686 } 4687 4688 /* If this is a per-task event, it must be for current */ 4689 if ((event->attach_state & PERF_ATTACH_TASK) && 4690 event->hw.target != current) { 4691 ret = -EINVAL; 4692 goto out; 4693 } 4694 4695 /* 4696 * Get the event CPU numbers, and adjust them to local if the event is 4697 * a per-package event that can be read locally 4698 */ 4699 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4700 event_cpu = __perf_event_read_cpu(event, event->cpu); 4701 4702 /* If this is a per-CPU event, it must be for this CPU */ 4703 if (!(event->attach_state & PERF_ATTACH_TASK) && 4704 event_cpu != smp_processor_id()) { 4705 ret = -EINVAL; 4706 goto out; 4707 } 4708 4709 /* If this is a pinned event it must be running on this CPU */ 4710 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4711 ret = -EBUSY; 4712 goto out; 4713 } 4714 4715 /* 4716 * If the event is currently on this CPU, its either a per-task event, 4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4718 * oncpu == -1). 4719 */ 4720 if (event_oncpu == smp_processor_id()) 4721 event->pmu->read(event); 4722 4723 *value = local64_read(&event->count); 4724 if (enabled || running) { 4725 u64 __enabled, __running, __now; 4726 4727 calc_timer_values(event, &__now, &__enabled, &__running); 4728 if (enabled) 4729 *enabled = __enabled; 4730 if (running) 4731 *running = __running; 4732 } 4733 out: 4734 local_irq_restore(flags); 4735 4736 return ret; 4737 } 4738 4739 static int perf_event_read(struct perf_event *event, bool group) 4740 { 4741 enum perf_event_state state = READ_ONCE(event->state); 4742 int event_cpu, ret = 0; 4743 4744 /* 4745 * If event is enabled and currently active on a CPU, update the 4746 * value in the event structure: 4747 */ 4748 again: 4749 if (state == PERF_EVENT_STATE_ACTIVE) { 4750 struct perf_read_data data; 4751 4752 /* 4753 * Orders the ->state and ->oncpu loads such that if we see 4754 * ACTIVE we must also see the right ->oncpu. 4755 * 4756 * Matches the smp_wmb() from event_sched_in(). 4757 */ 4758 smp_rmb(); 4759 4760 event_cpu = READ_ONCE(event->oncpu); 4761 if ((unsigned)event_cpu >= nr_cpu_ids) 4762 return 0; 4763 4764 data = (struct perf_read_data){ 4765 .event = event, 4766 .group = group, 4767 .ret = 0, 4768 }; 4769 4770 preempt_disable(); 4771 event_cpu = __perf_event_read_cpu(event, event_cpu); 4772 4773 /* 4774 * Purposely ignore the smp_call_function_single() return 4775 * value. 4776 * 4777 * If event_cpu isn't a valid CPU it means the event got 4778 * scheduled out and that will have updated the event count. 4779 * 4780 * Therefore, either way, we'll have an up-to-date event count 4781 * after this. 4782 */ 4783 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4784 preempt_enable(); 4785 ret = data.ret; 4786 4787 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4788 struct perf_event_context *ctx = event->ctx; 4789 unsigned long flags; 4790 4791 raw_spin_lock_irqsave(&ctx->lock, flags); 4792 state = event->state; 4793 if (state != PERF_EVENT_STATE_INACTIVE) { 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 goto again; 4796 } 4797 4798 /* 4799 * May read while context is not active (e.g., thread is 4800 * blocked), in that case we cannot update context time 4801 */ 4802 ctx_time_update_event(ctx, event); 4803 4804 perf_event_update_time(event); 4805 if (group) 4806 perf_event_update_sibling_time(event); 4807 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4808 } 4809 4810 return ret; 4811 } 4812 4813 /* 4814 * Initialize the perf_event context in a task_struct: 4815 */ 4816 static void __perf_event_init_context(struct perf_event_context *ctx) 4817 { 4818 raw_spin_lock_init(&ctx->lock); 4819 mutex_init(&ctx->mutex); 4820 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4821 perf_event_groups_init(&ctx->pinned_groups); 4822 perf_event_groups_init(&ctx->flexible_groups); 4823 INIT_LIST_HEAD(&ctx->event_list); 4824 refcount_set(&ctx->refcount, 1); 4825 } 4826 4827 static void 4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4829 { 4830 epc->pmu = pmu; 4831 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4832 INIT_LIST_HEAD(&epc->pinned_active); 4833 INIT_LIST_HEAD(&epc->flexible_active); 4834 atomic_set(&epc->refcount, 1); 4835 } 4836 4837 static struct perf_event_context * 4838 alloc_perf_context(struct task_struct *task) 4839 { 4840 struct perf_event_context *ctx; 4841 4842 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4843 if (!ctx) 4844 return NULL; 4845 4846 __perf_event_init_context(ctx); 4847 if (task) 4848 ctx->task = get_task_struct(task); 4849 4850 return ctx; 4851 } 4852 4853 static struct task_struct * 4854 find_lively_task_by_vpid(pid_t vpid) 4855 { 4856 struct task_struct *task; 4857 4858 rcu_read_lock(); 4859 if (!vpid) 4860 task = current; 4861 else 4862 task = find_task_by_vpid(vpid); 4863 if (task) 4864 get_task_struct(task); 4865 rcu_read_unlock(); 4866 4867 if (!task) 4868 return ERR_PTR(-ESRCH); 4869 4870 return task; 4871 } 4872 4873 /* 4874 * Returns a matching context with refcount and pincount. 4875 */ 4876 static struct perf_event_context * 4877 find_get_context(struct task_struct *task, struct perf_event *event) 4878 { 4879 struct perf_event_context *ctx, *clone_ctx = NULL; 4880 struct perf_cpu_context *cpuctx; 4881 unsigned long flags; 4882 int err; 4883 4884 if (!task) { 4885 /* Must be root to operate on a CPU event: */ 4886 err = perf_allow_cpu(&event->attr); 4887 if (err) 4888 return ERR_PTR(err); 4889 4890 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4891 ctx = &cpuctx->ctx; 4892 get_ctx(ctx); 4893 raw_spin_lock_irqsave(&ctx->lock, flags); 4894 ++ctx->pin_count; 4895 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4896 4897 return ctx; 4898 } 4899 4900 err = -EINVAL; 4901 retry: 4902 ctx = perf_lock_task_context(task, &flags); 4903 if (ctx) { 4904 clone_ctx = unclone_ctx(ctx); 4905 ++ctx->pin_count; 4906 4907 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4908 4909 if (clone_ctx) 4910 put_ctx(clone_ctx); 4911 } else { 4912 ctx = alloc_perf_context(task); 4913 err = -ENOMEM; 4914 if (!ctx) 4915 goto errout; 4916 4917 err = 0; 4918 mutex_lock(&task->perf_event_mutex); 4919 /* 4920 * If it has already passed perf_event_exit_task(). 4921 * we must see PF_EXITING, it takes this mutex too. 4922 */ 4923 if (task->flags & PF_EXITING) 4924 err = -ESRCH; 4925 else if (task->perf_event_ctxp) 4926 err = -EAGAIN; 4927 else { 4928 get_ctx(ctx); 4929 ++ctx->pin_count; 4930 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4931 } 4932 mutex_unlock(&task->perf_event_mutex); 4933 4934 if (unlikely(err)) { 4935 put_ctx(ctx); 4936 4937 if (err == -EAGAIN) 4938 goto retry; 4939 goto errout; 4940 } 4941 } 4942 4943 return ctx; 4944 4945 errout: 4946 return ERR_PTR(err); 4947 } 4948 4949 static struct perf_event_pmu_context * 4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4951 struct perf_event *event) 4952 { 4953 struct perf_event_pmu_context *new = NULL, *epc; 4954 void *task_ctx_data = NULL; 4955 4956 if (!ctx->task) { 4957 /* 4958 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4959 * relies on the fact that find_get_pmu_context() cannot fail 4960 * for CPU contexts. 4961 */ 4962 struct perf_cpu_pmu_context *cpc; 4963 4964 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4965 epc = &cpc->epc; 4966 raw_spin_lock_irq(&ctx->lock); 4967 if (!epc->ctx) { 4968 atomic_set(&epc->refcount, 1); 4969 epc->embedded = 1; 4970 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4971 epc->ctx = ctx; 4972 } else { 4973 WARN_ON_ONCE(epc->ctx != ctx); 4974 atomic_inc(&epc->refcount); 4975 } 4976 raw_spin_unlock_irq(&ctx->lock); 4977 return epc; 4978 } 4979 4980 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4981 if (!new) 4982 return ERR_PTR(-ENOMEM); 4983 4984 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4985 task_ctx_data = alloc_task_ctx_data(pmu); 4986 if (!task_ctx_data) { 4987 kfree(new); 4988 return ERR_PTR(-ENOMEM); 4989 } 4990 } 4991 4992 __perf_init_event_pmu_context(new, pmu); 4993 4994 /* 4995 * XXX 4996 * 4997 * lockdep_assert_held(&ctx->mutex); 4998 * 4999 * can't because perf_event_init_task() doesn't actually hold the 5000 * child_ctx->mutex. 5001 */ 5002 5003 raw_spin_lock_irq(&ctx->lock); 5004 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5005 if (epc->pmu == pmu) { 5006 WARN_ON_ONCE(epc->ctx != ctx); 5007 atomic_inc(&epc->refcount); 5008 goto found_epc; 5009 } 5010 } 5011 5012 epc = new; 5013 new = NULL; 5014 5015 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5016 epc->ctx = ctx; 5017 5018 found_epc: 5019 if (task_ctx_data && !epc->task_ctx_data) { 5020 epc->task_ctx_data = task_ctx_data; 5021 task_ctx_data = NULL; 5022 ctx->nr_task_data++; 5023 } 5024 raw_spin_unlock_irq(&ctx->lock); 5025 5026 free_task_ctx_data(pmu, task_ctx_data); 5027 kfree(new); 5028 5029 return epc; 5030 } 5031 5032 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5033 { 5034 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5035 } 5036 5037 static void free_epc_rcu(struct rcu_head *head) 5038 { 5039 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5040 5041 kfree(epc->task_ctx_data); 5042 kfree(epc); 5043 } 5044 5045 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5046 { 5047 struct perf_event_context *ctx = epc->ctx; 5048 unsigned long flags; 5049 5050 /* 5051 * XXX 5052 * 5053 * lockdep_assert_held(&ctx->mutex); 5054 * 5055 * can't because of the call-site in _free_event()/put_event() 5056 * which isn't always called under ctx->mutex. 5057 */ 5058 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5059 return; 5060 5061 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5062 5063 list_del_init(&epc->pmu_ctx_entry); 5064 epc->ctx = NULL; 5065 5066 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5067 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5068 5069 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5070 5071 if (epc->embedded) 5072 return; 5073 5074 call_rcu(&epc->rcu_head, free_epc_rcu); 5075 } 5076 5077 static void perf_event_free_filter(struct perf_event *event); 5078 5079 static void free_event_rcu(struct rcu_head *head) 5080 { 5081 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5082 5083 if (event->ns) 5084 put_pid_ns(event->ns); 5085 perf_event_free_filter(event); 5086 kmem_cache_free(perf_event_cache, event); 5087 } 5088 5089 static void ring_buffer_attach(struct perf_event *event, 5090 struct perf_buffer *rb); 5091 5092 static void detach_sb_event(struct perf_event *event) 5093 { 5094 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5095 5096 raw_spin_lock(&pel->lock); 5097 list_del_rcu(&event->sb_list); 5098 raw_spin_unlock(&pel->lock); 5099 } 5100 5101 static bool is_sb_event(struct perf_event *event) 5102 { 5103 struct perf_event_attr *attr = &event->attr; 5104 5105 if (event->parent) 5106 return false; 5107 5108 if (event->attach_state & PERF_ATTACH_TASK) 5109 return false; 5110 5111 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5112 attr->comm || attr->comm_exec || 5113 attr->task || attr->ksymbol || 5114 attr->context_switch || attr->text_poke || 5115 attr->bpf_event) 5116 return true; 5117 return false; 5118 } 5119 5120 static void unaccount_pmu_sb_event(struct perf_event *event) 5121 { 5122 if (is_sb_event(event)) 5123 detach_sb_event(event); 5124 } 5125 5126 #ifdef CONFIG_NO_HZ_FULL 5127 static DEFINE_SPINLOCK(nr_freq_lock); 5128 #endif 5129 5130 static void unaccount_freq_event_nohz(void) 5131 { 5132 #ifdef CONFIG_NO_HZ_FULL 5133 spin_lock(&nr_freq_lock); 5134 if (atomic_dec_and_test(&nr_freq_events)) 5135 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5136 spin_unlock(&nr_freq_lock); 5137 #endif 5138 } 5139 5140 static void unaccount_freq_event(void) 5141 { 5142 if (tick_nohz_full_enabled()) 5143 unaccount_freq_event_nohz(); 5144 else 5145 atomic_dec(&nr_freq_events); 5146 } 5147 5148 static void unaccount_event(struct perf_event *event) 5149 { 5150 bool dec = false; 5151 5152 if (event->parent) 5153 return; 5154 5155 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5156 dec = true; 5157 if (event->attr.mmap || event->attr.mmap_data) 5158 atomic_dec(&nr_mmap_events); 5159 if (event->attr.build_id) 5160 atomic_dec(&nr_build_id_events); 5161 if (event->attr.comm) 5162 atomic_dec(&nr_comm_events); 5163 if (event->attr.namespaces) 5164 atomic_dec(&nr_namespaces_events); 5165 if (event->attr.cgroup) 5166 atomic_dec(&nr_cgroup_events); 5167 if (event->attr.task) 5168 atomic_dec(&nr_task_events); 5169 if (event->attr.freq) 5170 unaccount_freq_event(); 5171 if (event->attr.context_switch) { 5172 dec = true; 5173 atomic_dec(&nr_switch_events); 5174 } 5175 if (is_cgroup_event(event)) 5176 dec = true; 5177 if (has_branch_stack(event)) 5178 dec = true; 5179 if (event->attr.ksymbol) 5180 atomic_dec(&nr_ksymbol_events); 5181 if (event->attr.bpf_event) 5182 atomic_dec(&nr_bpf_events); 5183 if (event->attr.text_poke) 5184 atomic_dec(&nr_text_poke_events); 5185 5186 if (dec) { 5187 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5188 schedule_delayed_work(&perf_sched_work, HZ); 5189 } 5190 5191 unaccount_pmu_sb_event(event); 5192 } 5193 5194 static void perf_sched_delayed(struct work_struct *work) 5195 { 5196 mutex_lock(&perf_sched_mutex); 5197 if (atomic_dec_and_test(&perf_sched_count)) 5198 static_branch_disable(&perf_sched_events); 5199 mutex_unlock(&perf_sched_mutex); 5200 } 5201 5202 /* 5203 * The following implement mutual exclusion of events on "exclusive" pmus 5204 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5205 * at a time, so we disallow creating events that might conflict, namely: 5206 * 5207 * 1) cpu-wide events in the presence of per-task events, 5208 * 2) per-task events in the presence of cpu-wide events, 5209 * 3) two matching events on the same perf_event_context. 5210 * 5211 * The former two cases are handled in the allocation path (perf_event_alloc(), 5212 * _free_event()), the latter -- before the first perf_install_in_context(). 5213 */ 5214 static int exclusive_event_init(struct perf_event *event) 5215 { 5216 struct pmu *pmu = event->pmu; 5217 5218 if (!is_exclusive_pmu(pmu)) 5219 return 0; 5220 5221 /* 5222 * Prevent co-existence of per-task and cpu-wide events on the 5223 * same exclusive pmu. 5224 * 5225 * Negative pmu::exclusive_cnt means there are cpu-wide 5226 * events on this "exclusive" pmu, positive means there are 5227 * per-task events. 5228 * 5229 * Since this is called in perf_event_alloc() path, event::ctx 5230 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5231 * to mean "per-task event", because unlike other attach states it 5232 * never gets cleared. 5233 */ 5234 if (event->attach_state & PERF_ATTACH_TASK) { 5235 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5236 return -EBUSY; 5237 } else { 5238 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5239 return -EBUSY; 5240 } 5241 5242 return 0; 5243 } 5244 5245 static void exclusive_event_destroy(struct perf_event *event) 5246 { 5247 struct pmu *pmu = event->pmu; 5248 5249 if (!is_exclusive_pmu(pmu)) 5250 return; 5251 5252 /* see comment in exclusive_event_init() */ 5253 if (event->attach_state & PERF_ATTACH_TASK) 5254 atomic_dec(&pmu->exclusive_cnt); 5255 else 5256 atomic_inc(&pmu->exclusive_cnt); 5257 } 5258 5259 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5260 { 5261 if ((e1->pmu == e2->pmu) && 5262 (e1->cpu == e2->cpu || 5263 e1->cpu == -1 || 5264 e2->cpu == -1)) 5265 return true; 5266 return false; 5267 } 5268 5269 static bool exclusive_event_installable(struct perf_event *event, 5270 struct perf_event_context *ctx) 5271 { 5272 struct perf_event *iter_event; 5273 struct pmu *pmu = event->pmu; 5274 5275 lockdep_assert_held(&ctx->mutex); 5276 5277 if (!is_exclusive_pmu(pmu)) 5278 return true; 5279 5280 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5281 if (exclusive_event_match(iter_event, event)) 5282 return false; 5283 } 5284 5285 return true; 5286 } 5287 5288 static void perf_addr_filters_splice(struct perf_event *event, 5289 struct list_head *head); 5290 5291 static void perf_pending_task_sync(struct perf_event *event) 5292 { 5293 struct callback_head *head = &event->pending_task; 5294 5295 if (!event->pending_work) 5296 return; 5297 /* 5298 * If the task is queued to the current task's queue, we 5299 * obviously can't wait for it to complete. Simply cancel it. 5300 */ 5301 if (task_work_cancel(current, head)) { 5302 event->pending_work = 0; 5303 local_dec(&event->ctx->nr_no_switch_fast); 5304 return; 5305 } 5306 5307 /* 5308 * All accesses related to the event are within the same RCU section in 5309 * perf_pending_task(). The RCU grace period before the event is freed 5310 * will make sure all those accesses are complete by then. 5311 */ 5312 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5313 } 5314 5315 static void _free_event(struct perf_event *event) 5316 { 5317 irq_work_sync(&event->pending_irq); 5318 irq_work_sync(&event->pending_disable_irq); 5319 perf_pending_task_sync(event); 5320 5321 unaccount_event(event); 5322 5323 security_perf_event_free(event); 5324 5325 if (event->rb) { 5326 /* 5327 * Can happen when we close an event with re-directed output. 5328 * 5329 * Since we have a 0 refcount, perf_mmap_close() will skip 5330 * over us; possibly making our ring_buffer_put() the last. 5331 */ 5332 mutex_lock(&event->mmap_mutex); 5333 ring_buffer_attach(event, NULL); 5334 mutex_unlock(&event->mmap_mutex); 5335 } 5336 5337 if (is_cgroup_event(event)) 5338 perf_detach_cgroup(event); 5339 5340 if (!event->parent) { 5341 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5342 put_callchain_buffers(); 5343 } 5344 5345 perf_event_free_bpf_prog(event); 5346 perf_addr_filters_splice(event, NULL); 5347 kfree(event->addr_filter_ranges); 5348 5349 if (event->destroy) 5350 event->destroy(event); 5351 5352 /* 5353 * Must be after ->destroy(), due to uprobe_perf_close() using 5354 * hw.target. 5355 */ 5356 if (event->hw.target) 5357 put_task_struct(event->hw.target); 5358 5359 if (event->pmu_ctx) 5360 put_pmu_ctx(event->pmu_ctx); 5361 5362 /* 5363 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5364 * all task references must be cleaned up. 5365 */ 5366 if (event->ctx) 5367 put_ctx(event->ctx); 5368 5369 exclusive_event_destroy(event); 5370 module_put(event->pmu->module); 5371 5372 call_rcu(&event->rcu_head, free_event_rcu); 5373 } 5374 5375 /* 5376 * Used to free events which have a known refcount of 1, such as in error paths 5377 * where the event isn't exposed yet and inherited events. 5378 */ 5379 static void free_event(struct perf_event *event) 5380 { 5381 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5382 "unexpected event refcount: %ld; ptr=%p\n", 5383 atomic_long_read(&event->refcount), event)) { 5384 /* leak to avoid use-after-free */ 5385 return; 5386 } 5387 5388 _free_event(event); 5389 } 5390 5391 /* 5392 * Remove user event from the owner task. 5393 */ 5394 static void perf_remove_from_owner(struct perf_event *event) 5395 { 5396 struct task_struct *owner; 5397 5398 rcu_read_lock(); 5399 /* 5400 * Matches the smp_store_release() in perf_event_exit_task(). If we 5401 * observe !owner it means the list deletion is complete and we can 5402 * indeed free this event, otherwise we need to serialize on 5403 * owner->perf_event_mutex. 5404 */ 5405 owner = READ_ONCE(event->owner); 5406 if (owner) { 5407 /* 5408 * Since delayed_put_task_struct() also drops the last 5409 * task reference we can safely take a new reference 5410 * while holding the rcu_read_lock(). 5411 */ 5412 get_task_struct(owner); 5413 } 5414 rcu_read_unlock(); 5415 5416 if (owner) { 5417 /* 5418 * If we're here through perf_event_exit_task() we're already 5419 * holding ctx->mutex which would be an inversion wrt. the 5420 * normal lock order. 5421 * 5422 * However we can safely take this lock because its the child 5423 * ctx->mutex. 5424 */ 5425 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5426 5427 /* 5428 * We have to re-check the event->owner field, if it is cleared 5429 * we raced with perf_event_exit_task(), acquiring the mutex 5430 * ensured they're done, and we can proceed with freeing the 5431 * event. 5432 */ 5433 if (event->owner) { 5434 list_del_init(&event->owner_entry); 5435 smp_store_release(&event->owner, NULL); 5436 } 5437 mutex_unlock(&owner->perf_event_mutex); 5438 put_task_struct(owner); 5439 } 5440 } 5441 5442 static void put_event(struct perf_event *event) 5443 { 5444 if (!atomic_long_dec_and_test(&event->refcount)) 5445 return; 5446 5447 _free_event(event); 5448 } 5449 5450 /* 5451 * Kill an event dead; while event:refcount will preserve the event 5452 * object, it will not preserve its functionality. Once the last 'user' 5453 * gives up the object, we'll destroy the thing. 5454 */ 5455 int perf_event_release_kernel(struct perf_event *event) 5456 { 5457 struct perf_event_context *ctx = event->ctx; 5458 struct perf_event *child, *tmp; 5459 LIST_HEAD(free_list); 5460 5461 /* 5462 * If we got here through err_alloc: free_event(event); we will not 5463 * have attached to a context yet. 5464 */ 5465 if (!ctx) { 5466 WARN_ON_ONCE(event->attach_state & 5467 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5468 goto no_ctx; 5469 } 5470 5471 if (!is_kernel_event(event)) 5472 perf_remove_from_owner(event); 5473 5474 ctx = perf_event_ctx_lock(event); 5475 WARN_ON_ONCE(ctx->parent_ctx); 5476 5477 /* 5478 * Mark this event as STATE_DEAD, there is no external reference to it 5479 * anymore. 5480 * 5481 * Anybody acquiring event->child_mutex after the below loop _must_ 5482 * also see this, most importantly inherit_event() which will avoid 5483 * placing more children on the list. 5484 * 5485 * Thus this guarantees that we will in fact observe and kill _ALL_ 5486 * child events. 5487 */ 5488 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5489 5490 perf_event_ctx_unlock(event, ctx); 5491 5492 again: 5493 mutex_lock(&event->child_mutex); 5494 list_for_each_entry(child, &event->child_list, child_list) { 5495 void *var = NULL; 5496 5497 /* 5498 * Cannot change, child events are not migrated, see the 5499 * comment with perf_event_ctx_lock_nested(). 5500 */ 5501 ctx = READ_ONCE(child->ctx); 5502 /* 5503 * Since child_mutex nests inside ctx::mutex, we must jump 5504 * through hoops. We start by grabbing a reference on the ctx. 5505 * 5506 * Since the event cannot get freed while we hold the 5507 * child_mutex, the context must also exist and have a !0 5508 * reference count. 5509 */ 5510 get_ctx(ctx); 5511 5512 /* 5513 * Now that we have a ctx ref, we can drop child_mutex, and 5514 * acquire ctx::mutex without fear of it going away. Then we 5515 * can re-acquire child_mutex. 5516 */ 5517 mutex_unlock(&event->child_mutex); 5518 mutex_lock(&ctx->mutex); 5519 mutex_lock(&event->child_mutex); 5520 5521 /* 5522 * Now that we hold ctx::mutex and child_mutex, revalidate our 5523 * state, if child is still the first entry, it didn't get freed 5524 * and we can continue doing so. 5525 */ 5526 tmp = list_first_entry_or_null(&event->child_list, 5527 struct perf_event, child_list); 5528 if (tmp == child) { 5529 perf_remove_from_context(child, DETACH_GROUP); 5530 list_move(&child->child_list, &free_list); 5531 /* 5532 * This matches the refcount bump in inherit_event(); 5533 * this can't be the last reference. 5534 */ 5535 put_event(event); 5536 } else { 5537 var = &ctx->refcount; 5538 } 5539 5540 mutex_unlock(&event->child_mutex); 5541 mutex_unlock(&ctx->mutex); 5542 put_ctx(ctx); 5543 5544 if (var) { 5545 /* 5546 * If perf_event_free_task() has deleted all events from the 5547 * ctx while the child_mutex got released above, make sure to 5548 * notify about the preceding put_ctx(). 5549 */ 5550 smp_mb(); /* pairs with wait_var_event() */ 5551 wake_up_var(var); 5552 } 5553 goto again; 5554 } 5555 mutex_unlock(&event->child_mutex); 5556 5557 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5558 void *var = &child->ctx->refcount; 5559 5560 list_del(&child->child_list); 5561 free_event(child); 5562 5563 /* 5564 * Wake any perf_event_free_task() waiting for this event to be 5565 * freed. 5566 */ 5567 smp_mb(); /* pairs with wait_var_event() */ 5568 wake_up_var(var); 5569 } 5570 5571 no_ctx: 5572 put_event(event); /* Must be the 'last' reference */ 5573 return 0; 5574 } 5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5576 5577 /* 5578 * Called when the last reference to the file is gone. 5579 */ 5580 static int perf_release(struct inode *inode, struct file *file) 5581 { 5582 perf_event_release_kernel(file->private_data); 5583 return 0; 5584 } 5585 5586 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5587 { 5588 struct perf_event *child; 5589 u64 total = 0; 5590 5591 *enabled = 0; 5592 *running = 0; 5593 5594 mutex_lock(&event->child_mutex); 5595 5596 (void)perf_event_read(event, false); 5597 total += perf_event_count(event, false); 5598 5599 *enabled += event->total_time_enabled + 5600 atomic64_read(&event->child_total_time_enabled); 5601 *running += event->total_time_running + 5602 atomic64_read(&event->child_total_time_running); 5603 5604 list_for_each_entry(child, &event->child_list, child_list) { 5605 (void)perf_event_read(child, false); 5606 total += perf_event_count(child, false); 5607 *enabled += child->total_time_enabled; 5608 *running += child->total_time_running; 5609 } 5610 mutex_unlock(&event->child_mutex); 5611 5612 return total; 5613 } 5614 5615 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5616 { 5617 struct perf_event_context *ctx; 5618 u64 count; 5619 5620 ctx = perf_event_ctx_lock(event); 5621 count = __perf_event_read_value(event, enabled, running); 5622 perf_event_ctx_unlock(event, ctx); 5623 5624 return count; 5625 } 5626 EXPORT_SYMBOL_GPL(perf_event_read_value); 5627 5628 static int __perf_read_group_add(struct perf_event *leader, 5629 u64 read_format, u64 *values) 5630 { 5631 struct perf_event_context *ctx = leader->ctx; 5632 struct perf_event *sub, *parent; 5633 unsigned long flags; 5634 int n = 1; /* skip @nr */ 5635 int ret; 5636 5637 ret = perf_event_read(leader, true); 5638 if (ret) 5639 return ret; 5640 5641 raw_spin_lock_irqsave(&ctx->lock, flags); 5642 /* 5643 * Verify the grouping between the parent and child (inherited) 5644 * events is still in tact. 5645 * 5646 * Specifically: 5647 * - leader->ctx->lock pins leader->sibling_list 5648 * - parent->child_mutex pins parent->child_list 5649 * - parent->ctx->mutex pins parent->sibling_list 5650 * 5651 * Because parent->ctx != leader->ctx (and child_list nests inside 5652 * ctx->mutex), group destruction is not atomic between children, also 5653 * see perf_event_release_kernel(). Additionally, parent can grow the 5654 * group. 5655 * 5656 * Therefore it is possible to have parent and child groups in a 5657 * different configuration and summing over such a beast makes no sense 5658 * what so ever. 5659 * 5660 * Reject this. 5661 */ 5662 parent = leader->parent; 5663 if (parent && 5664 (parent->group_generation != leader->group_generation || 5665 parent->nr_siblings != leader->nr_siblings)) { 5666 ret = -ECHILD; 5667 goto unlock; 5668 } 5669 5670 /* 5671 * Since we co-schedule groups, {enabled,running} times of siblings 5672 * will be identical to those of the leader, so we only publish one 5673 * set. 5674 */ 5675 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5676 values[n++] += leader->total_time_enabled + 5677 atomic64_read(&leader->child_total_time_enabled); 5678 } 5679 5680 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5681 values[n++] += leader->total_time_running + 5682 atomic64_read(&leader->child_total_time_running); 5683 } 5684 5685 /* 5686 * Write {count,id} tuples for every sibling. 5687 */ 5688 values[n++] += perf_event_count(leader, false); 5689 if (read_format & PERF_FORMAT_ID) 5690 values[n++] = primary_event_id(leader); 5691 if (read_format & PERF_FORMAT_LOST) 5692 values[n++] = atomic64_read(&leader->lost_samples); 5693 5694 for_each_sibling_event(sub, leader) { 5695 values[n++] += perf_event_count(sub, false); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(sub); 5698 if (read_format & PERF_FORMAT_LOST) 5699 values[n++] = atomic64_read(&sub->lost_samples); 5700 } 5701 5702 unlock: 5703 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5704 return ret; 5705 } 5706 5707 static int perf_read_group(struct perf_event *event, 5708 u64 read_format, char __user *buf) 5709 { 5710 struct perf_event *leader = event->group_leader, *child; 5711 struct perf_event_context *ctx = leader->ctx; 5712 int ret; 5713 u64 *values; 5714 5715 lockdep_assert_held(&ctx->mutex); 5716 5717 values = kzalloc(event->read_size, GFP_KERNEL); 5718 if (!values) 5719 return -ENOMEM; 5720 5721 values[0] = 1 + leader->nr_siblings; 5722 5723 mutex_lock(&leader->child_mutex); 5724 5725 ret = __perf_read_group_add(leader, read_format, values); 5726 if (ret) 5727 goto unlock; 5728 5729 list_for_each_entry(child, &leader->child_list, child_list) { 5730 ret = __perf_read_group_add(child, read_format, values); 5731 if (ret) 5732 goto unlock; 5733 } 5734 5735 mutex_unlock(&leader->child_mutex); 5736 5737 ret = event->read_size; 5738 if (copy_to_user(buf, values, event->read_size)) 5739 ret = -EFAULT; 5740 goto out; 5741 5742 unlock: 5743 mutex_unlock(&leader->child_mutex); 5744 out: 5745 kfree(values); 5746 return ret; 5747 } 5748 5749 static int perf_read_one(struct perf_event *event, 5750 u64 read_format, char __user *buf) 5751 { 5752 u64 enabled, running; 5753 u64 values[5]; 5754 int n = 0; 5755 5756 values[n++] = __perf_event_read_value(event, &enabled, &running); 5757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5758 values[n++] = enabled; 5759 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5760 values[n++] = running; 5761 if (read_format & PERF_FORMAT_ID) 5762 values[n++] = primary_event_id(event); 5763 if (read_format & PERF_FORMAT_LOST) 5764 values[n++] = atomic64_read(&event->lost_samples); 5765 5766 if (copy_to_user(buf, values, n * sizeof(u64))) 5767 return -EFAULT; 5768 5769 return n * sizeof(u64); 5770 } 5771 5772 static bool is_event_hup(struct perf_event *event) 5773 { 5774 bool no_children; 5775 5776 if (event->state > PERF_EVENT_STATE_EXIT) 5777 return false; 5778 5779 mutex_lock(&event->child_mutex); 5780 no_children = list_empty(&event->child_list); 5781 mutex_unlock(&event->child_mutex); 5782 return no_children; 5783 } 5784 5785 /* 5786 * Read the performance event - simple non blocking version for now 5787 */ 5788 static ssize_t 5789 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5790 { 5791 u64 read_format = event->attr.read_format; 5792 int ret; 5793 5794 /* 5795 * Return end-of-file for a read on an event that is in 5796 * error state (i.e. because it was pinned but it couldn't be 5797 * scheduled on to the CPU at some point). 5798 */ 5799 if (event->state == PERF_EVENT_STATE_ERROR) 5800 return 0; 5801 5802 if (count < event->read_size) 5803 return -ENOSPC; 5804 5805 WARN_ON_ONCE(event->ctx->parent_ctx); 5806 if (read_format & PERF_FORMAT_GROUP) 5807 ret = perf_read_group(event, read_format, buf); 5808 else 5809 ret = perf_read_one(event, read_format, buf); 5810 5811 return ret; 5812 } 5813 5814 static ssize_t 5815 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5816 { 5817 struct perf_event *event = file->private_data; 5818 struct perf_event_context *ctx; 5819 int ret; 5820 5821 ret = security_perf_event_read(event); 5822 if (ret) 5823 return ret; 5824 5825 ctx = perf_event_ctx_lock(event); 5826 ret = __perf_read(event, buf, count); 5827 perf_event_ctx_unlock(event, ctx); 5828 5829 return ret; 5830 } 5831 5832 static __poll_t perf_poll(struct file *file, poll_table *wait) 5833 { 5834 struct perf_event *event = file->private_data; 5835 struct perf_buffer *rb; 5836 __poll_t events = EPOLLHUP; 5837 5838 poll_wait(file, &event->waitq, wait); 5839 5840 if (is_event_hup(event)) 5841 return events; 5842 5843 /* 5844 * Pin the event->rb by taking event->mmap_mutex; otherwise 5845 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5846 */ 5847 mutex_lock(&event->mmap_mutex); 5848 rb = event->rb; 5849 if (rb) 5850 events = atomic_xchg(&rb->poll, 0); 5851 mutex_unlock(&event->mmap_mutex); 5852 return events; 5853 } 5854 5855 static void _perf_event_reset(struct perf_event *event) 5856 { 5857 (void)perf_event_read(event, false); 5858 local64_set(&event->count, 0); 5859 perf_event_update_userpage(event); 5860 } 5861 5862 /* Assume it's not an event with inherit set. */ 5863 u64 perf_event_pause(struct perf_event *event, bool reset) 5864 { 5865 struct perf_event_context *ctx; 5866 u64 count; 5867 5868 ctx = perf_event_ctx_lock(event); 5869 WARN_ON_ONCE(event->attr.inherit); 5870 _perf_event_disable(event); 5871 count = local64_read(&event->count); 5872 if (reset) 5873 local64_set(&event->count, 0); 5874 perf_event_ctx_unlock(event, ctx); 5875 5876 return count; 5877 } 5878 EXPORT_SYMBOL_GPL(perf_event_pause); 5879 5880 /* 5881 * Holding the top-level event's child_mutex means that any 5882 * descendant process that has inherited this event will block 5883 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5884 * task existence requirements of perf_event_enable/disable. 5885 */ 5886 static void perf_event_for_each_child(struct perf_event *event, 5887 void (*func)(struct perf_event *)) 5888 { 5889 struct perf_event *child; 5890 5891 WARN_ON_ONCE(event->ctx->parent_ctx); 5892 5893 mutex_lock(&event->child_mutex); 5894 func(event); 5895 list_for_each_entry(child, &event->child_list, child_list) 5896 func(child); 5897 mutex_unlock(&event->child_mutex); 5898 } 5899 5900 static void perf_event_for_each(struct perf_event *event, 5901 void (*func)(struct perf_event *)) 5902 { 5903 struct perf_event_context *ctx = event->ctx; 5904 struct perf_event *sibling; 5905 5906 lockdep_assert_held(&ctx->mutex); 5907 5908 event = event->group_leader; 5909 5910 perf_event_for_each_child(event, func); 5911 for_each_sibling_event(sibling, event) 5912 perf_event_for_each_child(sibling, func); 5913 } 5914 5915 static void __perf_event_period(struct perf_event *event, 5916 struct perf_cpu_context *cpuctx, 5917 struct perf_event_context *ctx, 5918 void *info) 5919 { 5920 u64 value = *((u64 *)info); 5921 bool active; 5922 5923 if (event->attr.freq) { 5924 event->attr.sample_freq = value; 5925 } else { 5926 event->attr.sample_period = value; 5927 event->hw.sample_period = value; 5928 } 5929 5930 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5931 if (active) { 5932 perf_pmu_disable(event->pmu); 5933 /* 5934 * We could be throttled; unthrottle now to avoid the tick 5935 * trying to unthrottle while we already re-started the event. 5936 */ 5937 if (event->hw.interrupts == MAX_INTERRUPTS) { 5938 event->hw.interrupts = 0; 5939 perf_log_throttle(event, 1); 5940 } 5941 event->pmu->stop(event, PERF_EF_UPDATE); 5942 } 5943 5944 local64_set(&event->hw.period_left, 0); 5945 5946 if (active) { 5947 event->pmu->start(event, PERF_EF_RELOAD); 5948 perf_pmu_enable(event->pmu); 5949 } 5950 } 5951 5952 static int perf_event_check_period(struct perf_event *event, u64 value) 5953 { 5954 return event->pmu->check_period(event, value); 5955 } 5956 5957 static int _perf_event_period(struct perf_event *event, u64 value) 5958 { 5959 if (!is_sampling_event(event)) 5960 return -EINVAL; 5961 5962 if (!value) 5963 return -EINVAL; 5964 5965 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5966 return -EINVAL; 5967 5968 if (perf_event_check_period(event, value)) 5969 return -EINVAL; 5970 5971 if (!event->attr.freq && (value & (1ULL << 63))) 5972 return -EINVAL; 5973 5974 event_function_call(event, __perf_event_period, &value); 5975 5976 return 0; 5977 } 5978 5979 int perf_event_period(struct perf_event *event, u64 value) 5980 { 5981 struct perf_event_context *ctx; 5982 int ret; 5983 5984 ctx = perf_event_ctx_lock(event); 5985 ret = _perf_event_period(event, value); 5986 perf_event_ctx_unlock(event, ctx); 5987 5988 return ret; 5989 } 5990 EXPORT_SYMBOL_GPL(perf_event_period); 5991 5992 static const struct file_operations perf_fops; 5993 5994 static inline bool is_perf_file(struct fd f) 5995 { 5996 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 5997 } 5998 5999 static int perf_event_set_output(struct perf_event *event, 6000 struct perf_event *output_event); 6001 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6002 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6003 struct perf_event_attr *attr); 6004 6005 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6006 { 6007 void (*func)(struct perf_event *); 6008 u32 flags = arg; 6009 6010 switch (cmd) { 6011 case PERF_EVENT_IOC_ENABLE: 6012 func = _perf_event_enable; 6013 break; 6014 case PERF_EVENT_IOC_DISABLE: 6015 func = _perf_event_disable; 6016 break; 6017 case PERF_EVENT_IOC_RESET: 6018 func = _perf_event_reset; 6019 break; 6020 6021 case PERF_EVENT_IOC_REFRESH: 6022 return _perf_event_refresh(event, arg); 6023 6024 case PERF_EVENT_IOC_PERIOD: 6025 { 6026 u64 value; 6027 6028 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6029 return -EFAULT; 6030 6031 return _perf_event_period(event, value); 6032 } 6033 case PERF_EVENT_IOC_ID: 6034 { 6035 u64 id = primary_event_id(event); 6036 6037 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6038 return -EFAULT; 6039 return 0; 6040 } 6041 6042 case PERF_EVENT_IOC_SET_OUTPUT: 6043 { 6044 CLASS(fd, output)(arg); // arg == -1 => empty 6045 struct perf_event *output_event = NULL; 6046 if (arg != -1) { 6047 if (!is_perf_file(output)) 6048 return -EBADF; 6049 output_event = fd_file(output)->private_data; 6050 } 6051 return perf_event_set_output(event, output_event); 6052 } 6053 6054 case PERF_EVENT_IOC_SET_FILTER: 6055 return perf_event_set_filter(event, (void __user *)arg); 6056 6057 case PERF_EVENT_IOC_SET_BPF: 6058 { 6059 struct bpf_prog *prog; 6060 int err; 6061 6062 prog = bpf_prog_get(arg); 6063 if (IS_ERR(prog)) 6064 return PTR_ERR(prog); 6065 6066 err = perf_event_set_bpf_prog(event, prog, 0); 6067 if (err) { 6068 bpf_prog_put(prog); 6069 return err; 6070 } 6071 6072 return 0; 6073 } 6074 6075 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6076 struct perf_buffer *rb; 6077 6078 rcu_read_lock(); 6079 rb = rcu_dereference(event->rb); 6080 if (!rb || !rb->nr_pages) { 6081 rcu_read_unlock(); 6082 return -EINVAL; 6083 } 6084 rb_toggle_paused(rb, !!arg); 6085 rcu_read_unlock(); 6086 return 0; 6087 } 6088 6089 case PERF_EVENT_IOC_QUERY_BPF: 6090 return perf_event_query_prog_array(event, (void __user *)arg); 6091 6092 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6093 struct perf_event_attr new_attr; 6094 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6095 &new_attr); 6096 6097 if (err) 6098 return err; 6099 6100 return perf_event_modify_attr(event, &new_attr); 6101 } 6102 default: 6103 return -ENOTTY; 6104 } 6105 6106 if (flags & PERF_IOC_FLAG_GROUP) 6107 perf_event_for_each(event, func); 6108 else 6109 perf_event_for_each_child(event, func); 6110 6111 return 0; 6112 } 6113 6114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6115 { 6116 struct perf_event *event = file->private_data; 6117 struct perf_event_context *ctx; 6118 long ret; 6119 6120 /* Treat ioctl like writes as it is likely a mutating operation. */ 6121 ret = security_perf_event_write(event); 6122 if (ret) 6123 return ret; 6124 6125 ctx = perf_event_ctx_lock(event); 6126 ret = _perf_ioctl(event, cmd, arg); 6127 perf_event_ctx_unlock(event, ctx); 6128 6129 return ret; 6130 } 6131 6132 #ifdef CONFIG_COMPAT 6133 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6134 unsigned long arg) 6135 { 6136 switch (_IOC_NR(cmd)) { 6137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6138 case _IOC_NR(PERF_EVENT_IOC_ID): 6139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6143 cmd &= ~IOCSIZE_MASK; 6144 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6145 } 6146 break; 6147 } 6148 return perf_ioctl(file, cmd, arg); 6149 } 6150 #else 6151 # define perf_compat_ioctl NULL 6152 #endif 6153 6154 int perf_event_task_enable(void) 6155 { 6156 struct perf_event_context *ctx; 6157 struct perf_event *event; 6158 6159 mutex_lock(¤t->perf_event_mutex); 6160 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6161 ctx = perf_event_ctx_lock(event); 6162 perf_event_for_each_child(event, _perf_event_enable); 6163 perf_event_ctx_unlock(event, ctx); 6164 } 6165 mutex_unlock(¤t->perf_event_mutex); 6166 6167 return 0; 6168 } 6169 6170 int perf_event_task_disable(void) 6171 { 6172 struct perf_event_context *ctx; 6173 struct perf_event *event; 6174 6175 mutex_lock(¤t->perf_event_mutex); 6176 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6177 ctx = perf_event_ctx_lock(event); 6178 perf_event_for_each_child(event, _perf_event_disable); 6179 perf_event_ctx_unlock(event, ctx); 6180 } 6181 mutex_unlock(¤t->perf_event_mutex); 6182 6183 return 0; 6184 } 6185 6186 static int perf_event_index(struct perf_event *event) 6187 { 6188 if (event->hw.state & PERF_HES_STOPPED) 6189 return 0; 6190 6191 if (event->state != PERF_EVENT_STATE_ACTIVE) 6192 return 0; 6193 6194 return event->pmu->event_idx(event); 6195 } 6196 6197 static void perf_event_init_userpage(struct perf_event *event) 6198 { 6199 struct perf_event_mmap_page *userpg; 6200 struct perf_buffer *rb; 6201 6202 rcu_read_lock(); 6203 rb = rcu_dereference(event->rb); 6204 if (!rb) 6205 goto unlock; 6206 6207 userpg = rb->user_page; 6208 6209 /* Allow new userspace to detect that bit 0 is deprecated */ 6210 userpg->cap_bit0_is_deprecated = 1; 6211 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6212 userpg->data_offset = PAGE_SIZE; 6213 userpg->data_size = perf_data_size(rb); 6214 6215 unlock: 6216 rcu_read_unlock(); 6217 } 6218 6219 void __weak arch_perf_update_userpage( 6220 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6221 { 6222 } 6223 6224 /* 6225 * Callers need to ensure there can be no nesting of this function, otherwise 6226 * the seqlock logic goes bad. We can not serialize this because the arch 6227 * code calls this from NMI context. 6228 */ 6229 void perf_event_update_userpage(struct perf_event *event) 6230 { 6231 struct perf_event_mmap_page *userpg; 6232 struct perf_buffer *rb; 6233 u64 enabled, running, now; 6234 6235 rcu_read_lock(); 6236 rb = rcu_dereference(event->rb); 6237 if (!rb) 6238 goto unlock; 6239 6240 /* 6241 * compute total_time_enabled, total_time_running 6242 * based on snapshot values taken when the event 6243 * was last scheduled in. 6244 * 6245 * we cannot simply called update_context_time() 6246 * because of locking issue as we can be called in 6247 * NMI context 6248 */ 6249 calc_timer_values(event, &now, &enabled, &running); 6250 6251 userpg = rb->user_page; 6252 /* 6253 * Disable preemption to guarantee consistent time stamps are stored to 6254 * the user page. 6255 */ 6256 preempt_disable(); 6257 ++userpg->lock; 6258 barrier(); 6259 userpg->index = perf_event_index(event); 6260 userpg->offset = perf_event_count(event, false); 6261 if (userpg->index) 6262 userpg->offset -= local64_read(&event->hw.prev_count); 6263 6264 userpg->time_enabled = enabled + 6265 atomic64_read(&event->child_total_time_enabled); 6266 6267 userpg->time_running = running + 6268 atomic64_read(&event->child_total_time_running); 6269 6270 arch_perf_update_userpage(event, userpg, now); 6271 6272 barrier(); 6273 ++userpg->lock; 6274 preempt_enable(); 6275 unlock: 6276 rcu_read_unlock(); 6277 } 6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6279 6280 static void ring_buffer_attach(struct perf_event *event, 6281 struct perf_buffer *rb) 6282 { 6283 struct perf_buffer *old_rb = NULL; 6284 unsigned long flags; 6285 6286 WARN_ON_ONCE(event->parent); 6287 6288 if (event->rb) { 6289 /* 6290 * Should be impossible, we set this when removing 6291 * event->rb_entry and wait/clear when adding event->rb_entry. 6292 */ 6293 WARN_ON_ONCE(event->rcu_pending); 6294 6295 old_rb = event->rb; 6296 spin_lock_irqsave(&old_rb->event_lock, flags); 6297 list_del_rcu(&event->rb_entry); 6298 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6299 6300 event->rcu_batches = get_state_synchronize_rcu(); 6301 event->rcu_pending = 1; 6302 } 6303 6304 if (rb) { 6305 if (event->rcu_pending) { 6306 cond_synchronize_rcu(event->rcu_batches); 6307 event->rcu_pending = 0; 6308 } 6309 6310 spin_lock_irqsave(&rb->event_lock, flags); 6311 list_add_rcu(&event->rb_entry, &rb->event_list); 6312 spin_unlock_irqrestore(&rb->event_lock, flags); 6313 } 6314 6315 /* 6316 * Avoid racing with perf_mmap_close(AUX): stop the event 6317 * before swizzling the event::rb pointer; if it's getting 6318 * unmapped, its aux_mmap_count will be 0 and it won't 6319 * restart. See the comment in __perf_pmu_output_stop(). 6320 * 6321 * Data will inevitably be lost when set_output is done in 6322 * mid-air, but then again, whoever does it like this is 6323 * not in for the data anyway. 6324 */ 6325 if (has_aux(event)) 6326 perf_event_stop(event, 0); 6327 6328 rcu_assign_pointer(event->rb, rb); 6329 6330 if (old_rb) { 6331 ring_buffer_put(old_rb); 6332 /* 6333 * Since we detached before setting the new rb, so that we 6334 * could attach the new rb, we could have missed a wakeup. 6335 * Provide it now. 6336 */ 6337 wake_up_all(&event->waitq); 6338 } 6339 } 6340 6341 static void ring_buffer_wakeup(struct perf_event *event) 6342 { 6343 struct perf_buffer *rb; 6344 6345 if (event->parent) 6346 event = event->parent; 6347 6348 rcu_read_lock(); 6349 rb = rcu_dereference(event->rb); 6350 if (rb) { 6351 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6352 wake_up_all(&event->waitq); 6353 } 6354 rcu_read_unlock(); 6355 } 6356 6357 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6358 { 6359 struct perf_buffer *rb; 6360 6361 if (event->parent) 6362 event = event->parent; 6363 6364 rcu_read_lock(); 6365 rb = rcu_dereference(event->rb); 6366 if (rb) { 6367 if (!refcount_inc_not_zero(&rb->refcount)) 6368 rb = NULL; 6369 } 6370 rcu_read_unlock(); 6371 6372 return rb; 6373 } 6374 6375 void ring_buffer_put(struct perf_buffer *rb) 6376 { 6377 if (!refcount_dec_and_test(&rb->refcount)) 6378 return; 6379 6380 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6381 6382 call_rcu(&rb->rcu_head, rb_free_rcu); 6383 } 6384 6385 static void perf_mmap_open(struct vm_area_struct *vma) 6386 { 6387 struct perf_event *event = vma->vm_file->private_data; 6388 6389 atomic_inc(&event->mmap_count); 6390 atomic_inc(&event->rb->mmap_count); 6391 6392 if (vma->vm_pgoff) 6393 atomic_inc(&event->rb->aux_mmap_count); 6394 6395 if (event->pmu->event_mapped) 6396 event->pmu->event_mapped(event, vma->vm_mm); 6397 } 6398 6399 static void perf_pmu_output_stop(struct perf_event *event); 6400 6401 /* 6402 * A buffer can be mmap()ed multiple times; either directly through the same 6403 * event, or through other events by use of perf_event_set_output(). 6404 * 6405 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6406 * the buffer here, where we still have a VM context. This means we need 6407 * to detach all events redirecting to us. 6408 */ 6409 static void perf_mmap_close(struct vm_area_struct *vma) 6410 { 6411 struct perf_event *event = vma->vm_file->private_data; 6412 struct perf_buffer *rb = ring_buffer_get(event); 6413 struct user_struct *mmap_user = rb->mmap_user; 6414 int mmap_locked = rb->mmap_locked; 6415 unsigned long size = perf_data_size(rb); 6416 bool detach_rest = false; 6417 6418 if (event->pmu->event_unmapped) 6419 event->pmu->event_unmapped(event, vma->vm_mm); 6420 6421 /* 6422 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6423 * to avoid complications. 6424 */ 6425 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6426 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6427 /* 6428 * Stop all AUX events that are writing to this buffer, 6429 * so that we can free its AUX pages and corresponding PMU 6430 * data. Note that after rb::aux_mmap_count dropped to zero, 6431 * they won't start any more (see perf_aux_output_begin()). 6432 */ 6433 perf_pmu_output_stop(event); 6434 6435 /* now it's safe to free the pages */ 6436 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6437 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6438 6439 /* this has to be the last one */ 6440 rb_free_aux(rb); 6441 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6442 6443 mutex_unlock(&rb->aux_mutex); 6444 } 6445 6446 if (atomic_dec_and_test(&rb->mmap_count)) 6447 detach_rest = true; 6448 6449 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6450 goto out_put; 6451 6452 ring_buffer_attach(event, NULL); 6453 mutex_unlock(&event->mmap_mutex); 6454 6455 /* If there's still other mmap()s of this buffer, we're done. */ 6456 if (!detach_rest) 6457 goto out_put; 6458 6459 /* 6460 * No other mmap()s, detach from all other events that might redirect 6461 * into the now unreachable buffer. Somewhat complicated by the 6462 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6463 */ 6464 again: 6465 rcu_read_lock(); 6466 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6467 if (!atomic_long_inc_not_zero(&event->refcount)) { 6468 /* 6469 * This event is en-route to free_event() which will 6470 * detach it and remove it from the list. 6471 */ 6472 continue; 6473 } 6474 rcu_read_unlock(); 6475 6476 mutex_lock(&event->mmap_mutex); 6477 /* 6478 * Check we didn't race with perf_event_set_output() which can 6479 * swizzle the rb from under us while we were waiting to 6480 * acquire mmap_mutex. 6481 * 6482 * If we find a different rb; ignore this event, a next 6483 * iteration will no longer find it on the list. We have to 6484 * still restart the iteration to make sure we're not now 6485 * iterating the wrong list. 6486 */ 6487 if (event->rb == rb) 6488 ring_buffer_attach(event, NULL); 6489 6490 mutex_unlock(&event->mmap_mutex); 6491 put_event(event); 6492 6493 /* 6494 * Restart the iteration; either we're on the wrong list or 6495 * destroyed its integrity by doing a deletion. 6496 */ 6497 goto again; 6498 } 6499 rcu_read_unlock(); 6500 6501 /* 6502 * It could be there's still a few 0-ref events on the list; they'll 6503 * get cleaned up by free_event() -- they'll also still have their 6504 * ref on the rb and will free it whenever they are done with it. 6505 * 6506 * Aside from that, this buffer is 'fully' detached and unmapped, 6507 * undo the VM accounting. 6508 */ 6509 6510 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6511 &mmap_user->locked_vm); 6512 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6513 free_uid(mmap_user); 6514 6515 out_put: 6516 ring_buffer_put(rb); /* could be last */ 6517 } 6518 6519 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6520 { 6521 /* The first page is the user control page, others are read-only. */ 6522 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6523 } 6524 6525 static const struct vm_operations_struct perf_mmap_vmops = { 6526 .open = perf_mmap_open, 6527 .close = perf_mmap_close, /* non mergeable */ 6528 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6529 }; 6530 6531 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6532 { 6533 unsigned long nr_pages = vma_pages(vma); 6534 int err = 0; 6535 unsigned long pagenum; 6536 6537 /* 6538 * We map this as a VM_PFNMAP VMA. 6539 * 6540 * This is not ideal as this is designed broadly for mappings of PFNs 6541 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6542 * !pfn_valid(pfn). 6543 * 6544 * We are mapping kernel-allocated memory (memory we manage ourselves) 6545 * which would more ideally be mapped using vm_insert_page() or a 6546 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6547 * 6548 * However this won't work here, because: 6549 * 6550 * 1. It uses vma->vm_page_prot, but this field has not been completely 6551 * setup at the point of the f_op->mmp() hook, so we are unable to 6552 * indicate that this should be mapped CoW in order that the 6553 * mkwrite() hook can be invoked to make the first page R/W and the 6554 * rest R/O as desired. 6555 * 6556 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6557 * vm_normal_page() returning a struct page * pointer, which means 6558 * vm_ops->page_mkwrite() will be invoked rather than 6559 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6560 * to work around retry logic in the fault handler, however this 6561 * field is no longer allowed to be used within struct page. 6562 * 6563 * 3. Having a struct page * made available in the fault logic also 6564 * means that the page gets put on the rmap and becomes 6565 * inappropriately accessible and subject to map and ref counting. 6566 * 6567 * Ideally we would have a mechanism that could explicitly express our 6568 * desires, but this is not currently the case, so we instead use 6569 * VM_PFNMAP. 6570 * 6571 * We manage the lifetime of these mappings with internal refcounts (see 6572 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6573 * this mapping is maintained correctly. 6574 */ 6575 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6576 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6577 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6578 6579 if (page == NULL) { 6580 err = -EINVAL; 6581 break; 6582 } 6583 6584 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6585 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6586 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6587 if (err) 6588 break; 6589 } 6590 6591 #ifdef CONFIG_MMU 6592 /* Clear any partial mappings on error. */ 6593 if (err) 6594 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6595 #endif 6596 6597 return err; 6598 } 6599 6600 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6601 { 6602 struct perf_event *event = file->private_data; 6603 unsigned long user_locked, user_lock_limit; 6604 struct user_struct *user = current_user(); 6605 struct mutex *aux_mutex = NULL; 6606 struct perf_buffer *rb = NULL; 6607 unsigned long locked, lock_limit; 6608 unsigned long vma_size; 6609 unsigned long nr_pages; 6610 long user_extra = 0, extra = 0; 6611 int ret = 0, flags = 0; 6612 6613 /* 6614 * Don't allow mmap() of inherited per-task counters. This would 6615 * create a performance issue due to all children writing to the 6616 * same rb. 6617 */ 6618 if (event->cpu == -1 && event->attr.inherit) 6619 return -EINVAL; 6620 6621 if (!(vma->vm_flags & VM_SHARED)) 6622 return -EINVAL; 6623 6624 ret = security_perf_event_read(event); 6625 if (ret) 6626 return ret; 6627 6628 vma_size = vma->vm_end - vma->vm_start; 6629 6630 if (vma->vm_pgoff == 0) { 6631 nr_pages = (vma_size / PAGE_SIZE) - 1; 6632 } else { 6633 /* 6634 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6635 * mapped, all subsequent mappings should have the same size 6636 * and offset. Must be above the normal perf buffer. 6637 */ 6638 u64 aux_offset, aux_size; 6639 6640 if (!event->rb) 6641 return -EINVAL; 6642 6643 nr_pages = vma_size / PAGE_SIZE; 6644 if (nr_pages > INT_MAX) 6645 return -ENOMEM; 6646 6647 mutex_lock(&event->mmap_mutex); 6648 ret = -EINVAL; 6649 6650 rb = event->rb; 6651 if (!rb) 6652 goto aux_unlock; 6653 6654 aux_mutex = &rb->aux_mutex; 6655 mutex_lock(aux_mutex); 6656 6657 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6658 aux_size = READ_ONCE(rb->user_page->aux_size); 6659 6660 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6661 goto aux_unlock; 6662 6663 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6664 goto aux_unlock; 6665 6666 /* already mapped with a different offset */ 6667 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6668 goto aux_unlock; 6669 6670 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6671 goto aux_unlock; 6672 6673 /* already mapped with a different size */ 6674 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6675 goto aux_unlock; 6676 6677 if (!is_power_of_2(nr_pages)) 6678 goto aux_unlock; 6679 6680 if (!atomic_inc_not_zero(&rb->mmap_count)) 6681 goto aux_unlock; 6682 6683 if (rb_has_aux(rb)) { 6684 atomic_inc(&rb->aux_mmap_count); 6685 ret = 0; 6686 goto unlock; 6687 } 6688 6689 atomic_set(&rb->aux_mmap_count, 1); 6690 user_extra = nr_pages; 6691 6692 goto accounting; 6693 } 6694 6695 /* 6696 * If we have rb pages ensure they're a power-of-two number, so we 6697 * can do bitmasks instead of modulo. 6698 */ 6699 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6700 return -EINVAL; 6701 6702 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6703 return -EINVAL; 6704 6705 WARN_ON_ONCE(event->ctx->parent_ctx); 6706 again: 6707 mutex_lock(&event->mmap_mutex); 6708 if (event->rb) { 6709 if (data_page_nr(event->rb) != nr_pages) { 6710 ret = -EINVAL; 6711 goto unlock; 6712 } 6713 6714 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6715 /* 6716 * Raced against perf_mmap_close(); remove the 6717 * event and try again. 6718 */ 6719 ring_buffer_attach(event, NULL); 6720 mutex_unlock(&event->mmap_mutex); 6721 goto again; 6722 } 6723 6724 /* We need the rb to map pages. */ 6725 rb = event->rb; 6726 goto unlock; 6727 } 6728 6729 user_extra = nr_pages + 1; 6730 6731 accounting: 6732 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6733 6734 /* 6735 * Increase the limit linearly with more CPUs: 6736 */ 6737 user_lock_limit *= num_online_cpus(); 6738 6739 user_locked = atomic_long_read(&user->locked_vm); 6740 6741 /* 6742 * sysctl_perf_event_mlock may have changed, so that 6743 * user->locked_vm > user_lock_limit 6744 */ 6745 if (user_locked > user_lock_limit) 6746 user_locked = user_lock_limit; 6747 user_locked += user_extra; 6748 6749 if (user_locked > user_lock_limit) { 6750 /* 6751 * charge locked_vm until it hits user_lock_limit; 6752 * charge the rest from pinned_vm 6753 */ 6754 extra = user_locked - user_lock_limit; 6755 user_extra -= extra; 6756 } 6757 6758 lock_limit = rlimit(RLIMIT_MEMLOCK); 6759 lock_limit >>= PAGE_SHIFT; 6760 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6761 6762 if ((locked > lock_limit) && perf_is_paranoid() && 6763 !capable(CAP_IPC_LOCK)) { 6764 ret = -EPERM; 6765 goto unlock; 6766 } 6767 6768 WARN_ON(!rb && event->rb); 6769 6770 if (vma->vm_flags & VM_WRITE) 6771 flags |= RING_BUFFER_WRITABLE; 6772 6773 if (!rb) { 6774 rb = rb_alloc(nr_pages, 6775 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6776 event->cpu, flags); 6777 6778 if (!rb) { 6779 ret = -ENOMEM; 6780 goto unlock; 6781 } 6782 6783 atomic_set(&rb->mmap_count, 1); 6784 rb->mmap_user = get_current_user(); 6785 rb->mmap_locked = extra; 6786 6787 ring_buffer_attach(event, rb); 6788 6789 perf_event_update_time(event); 6790 perf_event_init_userpage(event); 6791 perf_event_update_userpage(event); 6792 } else { 6793 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6794 event->attr.aux_watermark, flags); 6795 if (!ret) 6796 rb->aux_mmap_locked = extra; 6797 } 6798 6799 unlock: 6800 if (!ret) { 6801 atomic_long_add(user_extra, &user->locked_vm); 6802 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6803 6804 atomic_inc(&event->mmap_count); 6805 } else if (rb) { 6806 atomic_dec(&rb->mmap_count); 6807 } 6808 aux_unlock: 6809 if (aux_mutex) 6810 mutex_unlock(aux_mutex); 6811 mutex_unlock(&event->mmap_mutex); 6812 6813 /* 6814 * Since pinned accounting is per vm we cannot allow fork() to copy our 6815 * vma. 6816 */ 6817 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6818 vma->vm_ops = &perf_mmap_vmops; 6819 6820 if (!ret) 6821 ret = map_range(rb, vma); 6822 6823 if (event->pmu->event_mapped) 6824 event->pmu->event_mapped(event, vma->vm_mm); 6825 6826 return ret; 6827 } 6828 6829 static int perf_fasync(int fd, struct file *filp, int on) 6830 { 6831 struct inode *inode = file_inode(filp); 6832 struct perf_event *event = filp->private_data; 6833 int retval; 6834 6835 inode_lock(inode); 6836 retval = fasync_helper(fd, filp, on, &event->fasync); 6837 inode_unlock(inode); 6838 6839 if (retval < 0) 6840 return retval; 6841 6842 return 0; 6843 } 6844 6845 static const struct file_operations perf_fops = { 6846 .release = perf_release, 6847 .read = perf_read, 6848 .poll = perf_poll, 6849 .unlocked_ioctl = perf_ioctl, 6850 .compat_ioctl = perf_compat_ioctl, 6851 .mmap = perf_mmap, 6852 .fasync = perf_fasync, 6853 }; 6854 6855 /* 6856 * Perf event wakeup 6857 * 6858 * If there's data, ensure we set the poll() state and publish everything 6859 * to user-space before waking everybody up. 6860 */ 6861 6862 void perf_event_wakeup(struct perf_event *event) 6863 { 6864 ring_buffer_wakeup(event); 6865 6866 if (event->pending_kill) { 6867 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6868 event->pending_kill = 0; 6869 } 6870 } 6871 6872 static void perf_sigtrap(struct perf_event *event) 6873 { 6874 /* 6875 * We'd expect this to only occur if the irq_work is delayed and either 6876 * ctx->task or current has changed in the meantime. This can be the 6877 * case on architectures that do not implement arch_irq_work_raise(). 6878 */ 6879 if (WARN_ON_ONCE(event->ctx->task != current)) 6880 return; 6881 6882 /* 6883 * Both perf_pending_task() and perf_pending_irq() can race with the 6884 * task exiting. 6885 */ 6886 if (current->flags & PF_EXITING) 6887 return; 6888 6889 send_sig_perf((void __user *)event->pending_addr, 6890 event->orig_type, event->attr.sig_data); 6891 } 6892 6893 /* 6894 * Deliver the pending work in-event-context or follow the context. 6895 */ 6896 static void __perf_pending_disable(struct perf_event *event) 6897 { 6898 int cpu = READ_ONCE(event->oncpu); 6899 6900 /* 6901 * If the event isn't running; we done. event_sched_out() will have 6902 * taken care of things. 6903 */ 6904 if (cpu < 0) 6905 return; 6906 6907 /* 6908 * Yay, we hit home and are in the context of the event. 6909 */ 6910 if (cpu == smp_processor_id()) { 6911 if (event->pending_disable) { 6912 event->pending_disable = 0; 6913 perf_event_disable_local(event); 6914 } 6915 return; 6916 } 6917 6918 /* 6919 * CPU-A CPU-B 6920 * 6921 * perf_event_disable_inatomic() 6922 * @pending_disable = CPU-A; 6923 * irq_work_queue(); 6924 * 6925 * sched-out 6926 * @pending_disable = -1; 6927 * 6928 * sched-in 6929 * perf_event_disable_inatomic() 6930 * @pending_disable = CPU-B; 6931 * irq_work_queue(); // FAILS 6932 * 6933 * irq_work_run() 6934 * perf_pending_disable() 6935 * 6936 * But the event runs on CPU-B and wants disabling there. 6937 */ 6938 irq_work_queue_on(&event->pending_disable_irq, cpu); 6939 } 6940 6941 static void perf_pending_disable(struct irq_work *entry) 6942 { 6943 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6944 int rctx; 6945 6946 /* 6947 * If we 'fail' here, that's OK, it means recursion is already disabled 6948 * and we won't recurse 'further'. 6949 */ 6950 rctx = perf_swevent_get_recursion_context(); 6951 __perf_pending_disable(event); 6952 if (rctx >= 0) 6953 perf_swevent_put_recursion_context(rctx); 6954 } 6955 6956 static void perf_pending_irq(struct irq_work *entry) 6957 { 6958 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6959 int rctx; 6960 6961 /* 6962 * If we 'fail' here, that's OK, it means recursion is already disabled 6963 * and we won't recurse 'further'. 6964 */ 6965 rctx = perf_swevent_get_recursion_context(); 6966 6967 /* 6968 * The wakeup isn't bound to the context of the event -- it can happen 6969 * irrespective of where the event is. 6970 */ 6971 if (event->pending_wakeup) { 6972 event->pending_wakeup = 0; 6973 perf_event_wakeup(event); 6974 } 6975 6976 if (rctx >= 0) 6977 perf_swevent_put_recursion_context(rctx); 6978 } 6979 6980 static void perf_pending_task(struct callback_head *head) 6981 { 6982 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6983 int rctx; 6984 6985 /* 6986 * All accesses to the event must belong to the same implicit RCU read-side 6987 * critical section as the ->pending_work reset. See comment in 6988 * perf_pending_task_sync(). 6989 */ 6990 rcu_read_lock(); 6991 /* 6992 * If we 'fail' here, that's OK, it means recursion is already disabled 6993 * and we won't recurse 'further'. 6994 */ 6995 rctx = perf_swevent_get_recursion_context(); 6996 6997 if (event->pending_work) { 6998 event->pending_work = 0; 6999 perf_sigtrap(event); 7000 local_dec(&event->ctx->nr_no_switch_fast); 7001 rcuwait_wake_up(&event->pending_work_wait); 7002 } 7003 rcu_read_unlock(); 7004 7005 if (rctx >= 0) 7006 perf_swevent_put_recursion_context(rctx); 7007 } 7008 7009 #ifdef CONFIG_GUEST_PERF_EVENTS 7010 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7011 7012 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7013 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7014 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7015 7016 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7017 { 7018 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7019 return; 7020 7021 rcu_assign_pointer(perf_guest_cbs, cbs); 7022 static_call_update(__perf_guest_state, cbs->state); 7023 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7024 7025 /* Implementing ->handle_intel_pt_intr is optional. */ 7026 if (cbs->handle_intel_pt_intr) 7027 static_call_update(__perf_guest_handle_intel_pt_intr, 7028 cbs->handle_intel_pt_intr); 7029 } 7030 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7031 7032 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7033 { 7034 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7035 return; 7036 7037 rcu_assign_pointer(perf_guest_cbs, NULL); 7038 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7039 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7040 static_call_update(__perf_guest_handle_intel_pt_intr, 7041 (void *)&__static_call_return0); 7042 synchronize_rcu(); 7043 } 7044 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7045 #endif 7046 7047 static bool should_sample_guest(struct perf_event *event) 7048 { 7049 return !event->attr.exclude_guest && perf_guest_state(); 7050 } 7051 7052 unsigned long perf_misc_flags(struct perf_event *event, 7053 struct pt_regs *regs) 7054 { 7055 if (should_sample_guest(event)) 7056 return perf_arch_guest_misc_flags(regs); 7057 7058 return perf_arch_misc_flags(regs); 7059 } 7060 7061 unsigned long perf_instruction_pointer(struct perf_event *event, 7062 struct pt_regs *regs) 7063 { 7064 if (should_sample_guest(event)) 7065 return perf_guest_get_ip(); 7066 7067 return perf_arch_instruction_pointer(regs); 7068 } 7069 7070 static void 7071 perf_output_sample_regs(struct perf_output_handle *handle, 7072 struct pt_regs *regs, u64 mask) 7073 { 7074 int bit; 7075 DECLARE_BITMAP(_mask, 64); 7076 7077 bitmap_from_u64(_mask, mask); 7078 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7079 u64 val; 7080 7081 val = perf_reg_value(regs, bit); 7082 perf_output_put(handle, val); 7083 } 7084 } 7085 7086 static void perf_sample_regs_user(struct perf_regs *regs_user, 7087 struct pt_regs *regs) 7088 { 7089 if (user_mode(regs)) { 7090 regs_user->abi = perf_reg_abi(current); 7091 regs_user->regs = regs; 7092 } else if (!(current->flags & PF_KTHREAD)) { 7093 perf_get_regs_user(regs_user, regs); 7094 } else { 7095 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7096 regs_user->regs = NULL; 7097 } 7098 } 7099 7100 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7101 struct pt_regs *regs) 7102 { 7103 regs_intr->regs = regs; 7104 regs_intr->abi = perf_reg_abi(current); 7105 } 7106 7107 7108 /* 7109 * Get remaining task size from user stack pointer. 7110 * 7111 * It'd be better to take stack vma map and limit this more 7112 * precisely, but there's no way to get it safely under interrupt, 7113 * so using TASK_SIZE as limit. 7114 */ 7115 static u64 perf_ustack_task_size(struct pt_regs *regs) 7116 { 7117 unsigned long addr = perf_user_stack_pointer(regs); 7118 7119 if (!addr || addr >= TASK_SIZE) 7120 return 0; 7121 7122 return TASK_SIZE - addr; 7123 } 7124 7125 static u16 7126 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7127 struct pt_regs *regs) 7128 { 7129 u64 task_size; 7130 7131 /* No regs, no stack pointer, no dump. */ 7132 if (!regs) 7133 return 0; 7134 7135 /* 7136 * Check if we fit in with the requested stack size into the: 7137 * - TASK_SIZE 7138 * If we don't, we limit the size to the TASK_SIZE. 7139 * 7140 * - remaining sample size 7141 * If we don't, we customize the stack size to 7142 * fit in to the remaining sample size. 7143 */ 7144 7145 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7146 stack_size = min(stack_size, (u16) task_size); 7147 7148 /* Current header size plus static size and dynamic size. */ 7149 header_size += 2 * sizeof(u64); 7150 7151 /* Do we fit in with the current stack dump size? */ 7152 if ((u16) (header_size + stack_size) < header_size) { 7153 /* 7154 * If we overflow the maximum size for the sample, 7155 * we customize the stack dump size to fit in. 7156 */ 7157 stack_size = USHRT_MAX - header_size - sizeof(u64); 7158 stack_size = round_up(stack_size, sizeof(u64)); 7159 } 7160 7161 return stack_size; 7162 } 7163 7164 static void 7165 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7166 struct pt_regs *regs) 7167 { 7168 /* Case of a kernel thread, nothing to dump */ 7169 if (!regs) { 7170 u64 size = 0; 7171 perf_output_put(handle, size); 7172 } else { 7173 unsigned long sp; 7174 unsigned int rem; 7175 u64 dyn_size; 7176 7177 /* 7178 * We dump: 7179 * static size 7180 * - the size requested by user or the best one we can fit 7181 * in to the sample max size 7182 * data 7183 * - user stack dump data 7184 * dynamic size 7185 * - the actual dumped size 7186 */ 7187 7188 /* Static size. */ 7189 perf_output_put(handle, dump_size); 7190 7191 /* Data. */ 7192 sp = perf_user_stack_pointer(regs); 7193 rem = __output_copy_user(handle, (void *) sp, dump_size); 7194 dyn_size = dump_size - rem; 7195 7196 perf_output_skip(handle, rem); 7197 7198 /* Dynamic size. */ 7199 perf_output_put(handle, dyn_size); 7200 } 7201 } 7202 7203 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7204 struct perf_sample_data *data, 7205 size_t size) 7206 { 7207 struct perf_event *sampler = event->aux_event; 7208 struct perf_buffer *rb; 7209 7210 data->aux_size = 0; 7211 7212 if (!sampler) 7213 goto out; 7214 7215 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7216 goto out; 7217 7218 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7219 goto out; 7220 7221 rb = ring_buffer_get(sampler); 7222 if (!rb) 7223 goto out; 7224 7225 /* 7226 * If this is an NMI hit inside sampling code, don't take 7227 * the sample. See also perf_aux_sample_output(). 7228 */ 7229 if (READ_ONCE(rb->aux_in_sampling)) { 7230 data->aux_size = 0; 7231 } else { 7232 size = min_t(size_t, size, perf_aux_size(rb)); 7233 data->aux_size = ALIGN(size, sizeof(u64)); 7234 } 7235 ring_buffer_put(rb); 7236 7237 out: 7238 return data->aux_size; 7239 } 7240 7241 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7242 struct perf_event *event, 7243 struct perf_output_handle *handle, 7244 unsigned long size) 7245 { 7246 unsigned long flags; 7247 long ret; 7248 7249 /* 7250 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7251 * paths. If we start calling them in NMI context, they may race with 7252 * the IRQ ones, that is, for example, re-starting an event that's just 7253 * been stopped, which is why we're using a separate callback that 7254 * doesn't change the event state. 7255 * 7256 * IRQs need to be disabled to prevent IPIs from racing with us. 7257 */ 7258 local_irq_save(flags); 7259 /* 7260 * Guard against NMI hits inside the critical section; 7261 * see also perf_prepare_sample_aux(). 7262 */ 7263 WRITE_ONCE(rb->aux_in_sampling, 1); 7264 barrier(); 7265 7266 ret = event->pmu->snapshot_aux(event, handle, size); 7267 7268 barrier(); 7269 WRITE_ONCE(rb->aux_in_sampling, 0); 7270 local_irq_restore(flags); 7271 7272 return ret; 7273 } 7274 7275 static void perf_aux_sample_output(struct perf_event *event, 7276 struct perf_output_handle *handle, 7277 struct perf_sample_data *data) 7278 { 7279 struct perf_event *sampler = event->aux_event; 7280 struct perf_buffer *rb; 7281 unsigned long pad; 7282 long size; 7283 7284 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7285 return; 7286 7287 rb = ring_buffer_get(sampler); 7288 if (!rb) 7289 return; 7290 7291 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7292 7293 /* 7294 * An error here means that perf_output_copy() failed (returned a 7295 * non-zero surplus that it didn't copy), which in its current 7296 * enlightened implementation is not possible. If that changes, we'd 7297 * like to know. 7298 */ 7299 if (WARN_ON_ONCE(size < 0)) 7300 goto out_put; 7301 7302 /* 7303 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7304 * perf_prepare_sample_aux(), so should not be more than that. 7305 */ 7306 pad = data->aux_size - size; 7307 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7308 pad = 8; 7309 7310 if (pad) { 7311 u64 zero = 0; 7312 perf_output_copy(handle, &zero, pad); 7313 } 7314 7315 out_put: 7316 ring_buffer_put(rb); 7317 } 7318 7319 /* 7320 * A set of common sample data types saved even for non-sample records 7321 * when event->attr.sample_id_all is set. 7322 */ 7323 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7324 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7325 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7326 7327 static void __perf_event_header__init_id(struct perf_sample_data *data, 7328 struct perf_event *event, 7329 u64 sample_type) 7330 { 7331 data->type = event->attr.sample_type; 7332 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7333 7334 if (sample_type & PERF_SAMPLE_TID) { 7335 /* namespace issues */ 7336 data->tid_entry.pid = perf_event_pid(event, current); 7337 data->tid_entry.tid = perf_event_tid(event, current); 7338 } 7339 7340 if (sample_type & PERF_SAMPLE_TIME) 7341 data->time = perf_event_clock(event); 7342 7343 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7344 data->id = primary_event_id(event); 7345 7346 if (sample_type & PERF_SAMPLE_STREAM_ID) 7347 data->stream_id = event->id; 7348 7349 if (sample_type & PERF_SAMPLE_CPU) { 7350 data->cpu_entry.cpu = raw_smp_processor_id(); 7351 data->cpu_entry.reserved = 0; 7352 } 7353 } 7354 7355 void perf_event_header__init_id(struct perf_event_header *header, 7356 struct perf_sample_data *data, 7357 struct perf_event *event) 7358 { 7359 if (event->attr.sample_id_all) { 7360 header->size += event->id_header_size; 7361 __perf_event_header__init_id(data, event, event->attr.sample_type); 7362 } 7363 } 7364 7365 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7366 struct perf_sample_data *data) 7367 { 7368 u64 sample_type = data->type; 7369 7370 if (sample_type & PERF_SAMPLE_TID) 7371 perf_output_put(handle, data->tid_entry); 7372 7373 if (sample_type & PERF_SAMPLE_TIME) 7374 perf_output_put(handle, data->time); 7375 7376 if (sample_type & PERF_SAMPLE_ID) 7377 perf_output_put(handle, data->id); 7378 7379 if (sample_type & PERF_SAMPLE_STREAM_ID) 7380 perf_output_put(handle, data->stream_id); 7381 7382 if (sample_type & PERF_SAMPLE_CPU) 7383 perf_output_put(handle, data->cpu_entry); 7384 7385 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7386 perf_output_put(handle, data->id); 7387 } 7388 7389 void perf_event__output_id_sample(struct perf_event *event, 7390 struct perf_output_handle *handle, 7391 struct perf_sample_data *sample) 7392 { 7393 if (event->attr.sample_id_all) 7394 __perf_event__output_id_sample(handle, sample); 7395 } 7396 7397 static void perf_output_read_one(struct perf_output_handle *handle, 7398 struct perf_event *event, 7399 u64 enabled, u64 running) 7400 { 7401 u64 read_format = event->attr.read_format; 7402 u64 values[5]; 7403 int n = 0; 7404 7405 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7407 values[n++] = enabled + 7408 atomic64_read(&event->child_total_time_enabled); 7409 } 7410 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7411 values[n++] = running + 7412 atomic64_read(&event->child_total_time_running); 7413 } 7414 if (read_format & PERF_FORMAT_ID) 7415 values[n++] = primary_event_id(event); 7416 if (read_format & PERF_FORMAT_LOST) 7417 values[n++] = atomic64_read(&event->lost_samples); 7418 7419 __output_copy(handle, values, n * sizeof(u64)); 7420 } 7421 7422 static void perf_output_read_group(struct perf_output_handle *handle, 7423 struct perf_event *event, 7424 u64 enabled, u64 running) 7425 { 7426 struct perf_event *leader = event->group_leader, *sub; 7427 u64 read_format = event->attr.read_format; 7428 unsigned long flags; 7429 u64 values[6]; 7430 int n = 0; 7431 bool self = has_inherit_and_sample_read(&event->attr); 7432 7433 /* 7434 * Disabling interrupts avoids all counter scheduling 7435 * (context switches, timer based rotation and IPIs). 7436 */ 7437 local_irq_save(flags); 7438 7439 values[n++] = 1 + leader->nr_siblings; 7440 7441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7442 values[n++] = enabled; 7443 7444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7445 values[n++] = running; 7446 7447 if ((leader != event) && 7448 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7449 leader->pmu->read(leader); 7450 7451 values[n++] = perf_event_count(leader, self); 7452 if (read_format & PERF_FORMAT_ID) 7453 values[n++] = primary_event_id(leader); 7454 if (read_format & PERF_FORMAT_LOST) 7455 values[n++] = atomic64_read(&leader->lost_samples); 7456 7457 __output_copy(handle, values, n * sizeof(u64)); 7458 7459 for_each_sibling_event(sub, leader) { 7460 n = 0; 7461 7462 if ((sub != event) && 7463 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7464 sub->pmu->read(sub); 7465 7466 values[n++] = perf_event_count(sub, self); 7467 if (read_format & PERF_FORMAT_ID) 7468 values[n++] = primary_event_id(sub); 7469 if (read_format & PERF_FORMAT_LOST) 7470 values[n++] = atomic64_read(&sub->lost_samples); 7471 7472 __output_copy(handle, values, n * sizeof(u64)); 7473 } 7474 7475 local_irq_restore(flags); 7476 } 7477 7478 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7479 PERF_FORMAT_TOTAL_TIME_RUNNING) 7480 7481 /* 7482 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7483 * 7484 * The problem is that its both hard and excessively expensive to iterate the 7485 * child list, not to mention that its impossible to IPI the children running 7486 * on another CPU, from interrupt/NMI context. 7487 * 7488 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7489 * counts rather than attempting to accumulate some value across all children on 7490 * all cores. 7491 */ 7492 static void perf_output_read(struct perf_output_handle *handle, 7493 struct perf_event *event) 7494 { 7495 u64 enabled = 0, running = 0, now; 7496 u64 read_format = event->attr.read_format; 7497 7498 /* 7499 * compute total_time_enabled, total_time_running 7500 * based on snapshot values taken when the event 7501 * was last scheduled in. 7502 * 7503 * we cannot simply called update_context_time() 7504 * because of locking issue as we are called in 7505 * NMI context 7506 */ 7507 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7508 calc_timer_values(event, &now, &enabled, &running); 7509 7510 if (event->attr.read_format & PERF_FORMAT_GROUP) 7511 perf_output_read_group(handle, event, enabled, running); 7512 else 7513 perf_output_read_one(handle, event, enabled, running); 7514 } 7515 7516 void perf_output_sample(struct perf_output_handle *handle, 7517 struct perf_event_header *header, 7518 struct perf_sample_data *data, 7519 struct perf_event *event) 7520 { 7521 u64 sample_type = data->type; 7522 7523 perf_output_put(handle, *header); 7524 7525 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7526 perf_output_put(handle, data->id); 7527 7528 if (sample_type & PERF_SAMPLE_IP) 7529 perf_output_put(handle, data->ip); 7530 7531 if (sample_type & PERF_SAMPLE_TID) 7532 perf_output_put(handle, data->tid_entry); 7533 7534 if (sample_type & PERF_SAMPLE_TIME) 7535 perf_output_put(handle, data->time); 7536 7537 if (sample_type & PERF_SAMPLE_ADDR) 7538 perf_output_put(handle, data->addr); 7539 7540 if (sample_type & PERF_SAMPLE_ID) 7541 perf_output_put(handle, data->id); 7542 7543 if (sample_type & PERF_SAMPLE_STREAM_ID) 7544 perf_output_put(handle, data->stream_id); 7545 7546 if (sample_type & PERF_SAMPLE_CPU) 7547 perf_output_put(handle, data->cpu_entry); 7548 7549 if (sample_type & PERF_SAMPLE_PERIOD) 7550 perf_output_put(handle, data->period); 7551 7552 if (sample_type & PERF_SAMPLE_READ) 7553 perf_output_read(handle, event); 7554 7555 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7556 int size = 1; 7557 7558 size += data->callchain->nr; 7559 size *= sizeof(u64); 7560 __output_copy(handle, data->callchain, size); 7561 } 7562 7563 if (sample_type & PERF_SAMPLE_RAW) { 7564 struct perf_raw_record *raw = data->raw; 7565 7566 if (raw) { 7567 struct perf_raw_frag *frag = &raw->frag; 7568 7569 perf_output_put(handle, raw->size); 7570 do { 7571 if (frag->copy) { 7572 __output_custom(handle, frag->copy, 7573 frag->data, frag->size); 7574 } else { 7575 __output_copy(handle, frag->data, 7576 frag->size); 7577 } 7578 if (perf_raw_frag_last(frag)) 7579 break; 7580 frag = frag->next; 7581 } while (1); 7582 if (frag->pad) 7583 __output_skip(handle, NULL, frag->pad); 7584 } else { 7585 struct { 7586 u32 size; 7587 u32 data; 7588 } raw = { 7589 .size = sizeof(u32), 7590 .data = 0, 7591 }; 7592 perf_output_put(handle, raw); 7593 } 7594 } 7595 7596 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7597 if (data->br_stack) { 7598 size_t size; 7599 7600 size = data->br_stack->nr 7601 * sizeof(struct perf_branch_entry); 7602 7603 perf_output_put(handle, data->br_stack->nr); 7604 if (branch_sample_hw_index(event)) 7605 perf_output_put(handle, data->br_stack->hw_idx); 7606 perf_output_copy(handle, data->br_stack->entries, size); 7607 /* 7608 * Add the extension space which is appended 7609 * right after the struct perf_branch_stack. 7610 */ 7611 if (data->br_stack_cntr) { 7612 size = data->br_stack->nr * sizeof(u64); 7613 perf_output_copy(handle, data->br_stack_cntr, size); 7614 } 7615 } else { 7616 /* 7617 * we always store at least the value of nr 7618 */ 7619 u64 nr = 0; 7620 perf_output_put(handle, nr); 7621 } 7622 } 7623 7624 if (sample_type & PERF_SAMPLE_REGS_USER) { 7625 u64 abi = data->regs_user.abi; 7626 7627 /* 7628 * If there are no regs to dump, notice it through 7629 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7630 */ 7631 perf_output_put(handle, abi); 7632 7633 if (abi) { 7634 u64 mask = event->attr.sample_regs_user; 7635 perf_output_sample_regs(handle, 7636 data->regs_user.regs, 7637 mask); 7638 } 7639 } 7640 7641 if (sample_type & PERF_SAMPLE_STACK_USER) { 7642 perf_output_sample_ustack(handle, 7643 data->stack_user_size, 7644 data->regs_user.regs); 7645 } 7646 7647 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7648 perf_output_put(handle, data->weight.full); 7649 7650 if (sample_type & PERF_SAMPLE_DATA_SRC) 7651 perf_output_put(handle, data->data_src.val); 7652 7653 if (sample_type & PERF_SAMPLE_TRANSACTION) 7654 perf_output_put(handle, data->txn); 7655 7656 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7657 u64 abi = data->regs_intr.abi; 7658 /* 7659 * If there are no regs to dump, notice it through 7660 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7661 */ 7662 perf_output_put(handle, abi); 7663 7664 if (abi) { 7665 u64 mask = event->attr.sample_regs_intr; 7666 7667 perf_output_sample_regs(handle, 7668 data->regs_intr.regs, 7669 mask); 7670 } 7671 } 7672 7673 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7674 perf_output_put(handle, data->phys_addr); 7675 7676 if (sample_type & PERF_SAMPLE_CGROUP) 7677 perf_output_put(handle, data->cgroup); 7678 7679 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7680 perf_output_put(handle, data->data_page_size); 7681 7682 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7683 perf_output_put(handle, data->code_page_size); 7684 7685 if (sample_type & PERF_SAMPLE_AUX) { 7686 perf_output_put(handle, data->aux_size); 7687 7688 if (data->aux_size) 7689 perf_aux_sample_output(event, handle, data); 7690 } 7691 7692 if (!event->attr.watermark) { 7693 int wakeup_events = event->attr.wakeup_events; 7694 7695 if (wakeup_events) { 7696 struct perf_buffer *rb = handle->rb; 7697 int events = local_inc_return(&rb->events); 7698 7699 if (events >= wakeup_events) { 7700 local_sub(wakeup_events, &rb->events); 7701 local_inc(&rb->wakeup); 7702 } 7703 } 7704 } 7705 } 7706 7707 static u64 perf_virt_to_phys(u64 virt) 7708 { 7709 u64 phys_addr = 0; 7710 7711 if (!virt) 7712 return 0; 7713 7714 if (virt >= TASK_SIZE) { 7715 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7716 if (virt_addr_valid((void *)(uintptr_t)virt) && 7717 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7718 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7719 } else { 7720 /* 7721 * Walking the pages tables for user address. 7722 * Interrupts are disabled, so it prevents any tear down 7723 * of the page tables. 7724 * Try IRQ-safe get_user_page_fast_only first. 7725 * If failed, leave phys_addr as 0. 7726 */ 7727 if (current->mm != NULL) { 7728 struct page *p; 7729 7730 pagefault_disable(); 7731 if (get_user_page_fast_only(virt, 0, &p)) { 7732 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7733 put_page(p); 7734 } 7735 pagefault_enable(); 7736 } 7737 } 7738 7739 return phys_addr; 7740 } 7741 7742 /* 7743 * Return the pagetable size of a given virtual address. 7744 */ 7745 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7746 { 7747 u64 size = 0; 7748 7749 #ifdef CONFIG_HAVE_GUP_FAST 7750 pgd_t *pgdp, pgd; 7751 p4d_t *p4dp, p4d; 7752 pud_t *pudp, pud; 7753 pmd_t *pmdp, pmd; 7754 pte_t *ptep, pte; 7755 7756 pgdp = pgd_offset(mm, addr); 7757 pgd = READ_ONCE(*pgdp); 7758 if (pgd_none(pgd)) 7759 return 0; 7760 7761 if (pgd_leaf(pgd)) 7762 return pgd_leaf_size(pgd); 7763 7764 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7765 p4d = READ_ONCE(*p4dp); 7766 if (!p4d_present(p4d)) 7767 return 0; 7768 7769 if (p4d_leaf(p4d)) 7770 return p4d_leaf_size(p4d); 7771 7772 pudp = pud_offset_lockless(p4dp, p4d, addr); 7773 pud = READ_ONCE(*pudp); 7774 if (!pud_present(pud)) 7775 return 0; 7776 7777 if (pud_leaf(pud)) 7778 return pud_leaf_size(pud); 7779 7780 pmdp = pmd_offset_lockless(pudp, pud, addr); 7781 again: 7782 pmd = pmdp_get_lockless(pmdp); 7783 if (!pmd_present(pmd)) 7784 return 0; 7785 7786 if (pmd_leaf(pmd)) 7787 return pmd_leaf_size(pmd); 7788 7789 ptep = pte_offset_map(&pmd, addr); 7790 if (!ptep) 7791 goto again; 7792 7793 pte = ptep_get_lockless(ptep); 7794 if (pte_present(pte)) 7795 size = __pte_leaf_size(pmd, pte); 7796 pte_unmap(ptep); 7797 #endif /* CONFIG_HAVE_GUP_FAST */ 7798 7799 return size; 7800 } 7801 7802 static u64 perf_get_page_size(unsigned long addr) 7803 { 7804 struct mm_struct *mm; 7805 unsigned long flags; 7806 u64 size; 7807 7808 if (!addr) 7809 return 0; 7810 7811 /* 7812 * Software page-table walkers must disable IRQs, 7813 * which prevents any tear down of the page tables. 7814 */ 7815 local_irq_save(flags); 7816 7817 mm = current->mm; 7818 if (!mm) { 7819 /* 7820 * For kernel threads and the like, use init_mm so that 7821 * we can find kernel memory. 7822 */ 7823 mm = &init_mm; 7824 } 7825 7826 size = perf_get_pgtable_size(mm, addr); 7827 7828 local_irq_restore(flags); 7829 7830 return size; 7831 } 7832 7833 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7834 7835 struct perf_callchain_entry * 7836 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7837 { 7838 bool kernel = !event->attr.exclude_callchain_kernel; 7839 bool user = !event->attr.exclude_callchain_user; 7840 /* Disallow cross-task user callchains. */ 7841 bool crosstask = event->ctx->task && event->ctx->task != current; 7842 const u32 max_stack = event->attr.sample_max_stack; 7843 struct perf_callchain_entry *callchain; 7844 7845 if (!kernel && !user) 7846 return &__empty_callchain; 7847 7848 callchain = get_perf_callchain(regs, 0, kernel, user, 7849 max_stack, crosstask, true); 7850 return callchain ?: &__empty_callchain; 7851 } 7852 7853 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7854 { 7855 return d * !!(flags & s); 7856 } 7857 7858 void perf_prepare_sample(struct perf_sample_data *data, 7859 struct perf_event *event, 7860 struct pt_regs *regs) 7861 { 7862 u64 sample_type = event->attr.sample_type; 7863 u64 filtered_sample_type; 7864 7865 /* 7866 * Add the sample flags that are dependent to others. And clear the 7867 * sample flags that have already been done by the PMU driver. 7868 */ 7869 filtered_sample_type = sample_type; 7870 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7871 PERF_SAMPLE_IP); 7872 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7873 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7874 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7875 PERF_SAMPLE_REGS_USER); 7876 filtered_sample_type &= ~data->sample_flags; 7877 7878 if (filtered_sample_type == 0) { 7879 /* Make sure it has the correct data->type for output */ 7880 data->type = event->attr.sample_type; 7881 return; 7882 } 7883 7884 __perf_event_header__init_id(data, event, filtered_sample_type); 7885 7886 if (filtered_sample_type & PERF_SAMPLE_IP) { 7887 data->ip = perf_instruction_pointer(event, regs); 7888 data->sample_flags |= PERF_SAMPLE_IP; 7889 } 7890 7891 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7892 perf_sample_save_callchain(data, event, regs); 7893 7894 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7895 data->raw = NULL; 7896 data->dyn_size += sizeof(u64); 7897 data->sample_flags |= PERF_SAMPLE_RAW; 7898 } 7899 7900 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7901 data->br_stack = NULL; 7902 data->dyn_size += sizeof(u64); 7903 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7904 } 7905 7906 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7907 perf_sample_regs_user(&data->regs_user, regs); 7908 7909 /* 7910 * It cannot use the filtered_sample_type here as REGS_USER can be set 7911 * by STACK_USER (using __cond_set() above) and we don't want to update 7912 * the dyn_size if it's not requested by users. 7913 */ 7914 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7915 /* regs dump ABI info */ 7916 int size = sizeof(u64); 7917 7918 if (data->regs_user.regs) { 7919 u64 mask = event->attr.sample_regs_user; 7920 size += hweight64(mask) * sizeof(u64); 7921 } 7922 7923 data->dyn_size += size; 7924 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7925 } 7926 7927 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7928 /* 7929 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7930 * processed as the last one or have additional check added 7931 * in case new sample type is added, because we could eat 7932 * up the rest of the sample size. 7933 */ 7934 u16 stack_size = event->attr.sample_stack_user; 7935 u16 header_size = perf_sample_data_size(data, event); 7936 u16 size = sizeof(u64); 7937 7938 stack_size = perf_sample_ustack_size(stack_size, header_size, 7939 data->regs_user.regs); 7940 7941 /* 7942 * If there is something to dump, add space for the dump 7943 * itself and for the field that tells the dynamic size, 7944 * which is how many have been actually dumped. 7945 */ 7946 if (stack_size) 7947 size += sizeof(u64) + stack_size; 7948 7949 data->stack_user_size = stack_size; 7950 data->dyn_size += size; 7951 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7952 } 7953 7954 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7955 data->weight.full = 0; 7956 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7957 } 7958 7959 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7960 data->data_src.val = PERF_MEM_NA; 7961 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7962 } 7963 7964 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7965 data->txn = 0; 7966 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7967 } 7968 7969 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7970 data->addr = 0; 7971 data->sample_flags |= PERF_SAMPLE_ADDR; 7972 } 7973 7974 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7975 /* regs dump ABI info */ 7976 int size = sizeof(u64); 7977 7978 perf_sample_regs_intr(&data->regs_intr, regs); 7979 7980 if (data->regs_intr.regs) { 7981 u64 mask = event->attr.sample_regs_intr; 7982 7983 size += hweight64(mask) * sizeof(u64); 7984 } 7985 7986 data->dyn_size += size; 7987 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7988 } 7989 7990 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7991 data->phys_addr = perf_virt_to_phys(data->addr); 7992 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7993 } 7994 7995 #ifdef CONFIG_CGROUP_PERF 7996 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7997 struct cgroup *cgrp; 7998 7999 /* protected by RCU */ 8000 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8001 data->cgroup = cgroup_id(cgrp); 8002 data->sample_flags |= PERF_SAMPLE_CGROUP; 8003 } 8004 #endif 8005 8006 /* 8007 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8008 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8009 * but the value will not dump to the userspace. 8010 */ 8011 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8012 data->data_page_size = perf_get_page_size(data->addr); 8013 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8014 } 8015 8016 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8017 data->code_page_size = perf_get_page_size(data->ip); 8018 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8019 } 8020 8021 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8022 u64 size; 8023 u16 header_size = perf_sample_data_size(data, event); 8024 8025 header_size += sizeof(u64); /* size */ 8026 8027 /* 8028 * Given the 16bit nature of header::size, an AUX sample can 8029 * easily overflow it, what with all the preceding sample bits. 8030 * Make sure this doesn't happen by using up to U16_MAX bytes 8031 * per sample in total (rounded down to 8 byte boundary). 8032 */ 8033 size = min_t(size_t, U16_MAX - header_size, 8034 event->attr.aux_sample_size); 8035 size = rounddown(size, 8); 8036 size = perf_prepare_sample_aux(event, data, size); 8037 8038 WARN_ON_ONCE(size + header_size > U16_MAX); 8039 data->dyn_size += size + sizeof(u64); /* size above */ 8040 data->sample_flags |= PERF_SAMPLE_AUX; 8041 } 8042 } 8043 8044 void perf_prepare_header(struct perf_event_header *header, 8045 struct perf_sample_data *data, 8046 struct perf_event *event, 8047 struct pt_regs *regs) 8048 { 8049 header->type = PERF_RECORD_SAMPLE; 8050 header->size = perf_sample_data_size(data, event); 8051 header->misc = perf_misc_flags(event, regs); 8052 8053 /* 8054 * If you're adding more sample types here, you likely need to do 8055 * something about the overflowing header::size, like repurpose the 8056 * lowest 3 bits of size, which should be always zero at the moment. 8057 * This raises a more important question, do we really need 512k sized 8058 * samples and why, so good argumentation is in order for whatever you 8059 * do here next. 8060 */ 8061 WARN_ON_ONCE(header->size & 7); 8062 } 8063 8064 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8065 { 8066 if (pause) { 8067 if (!event->hw.aux_paused) { 8068 event->hw.aux_paused = 1; 8069 event->pmu->stop(event, PERF_EF_PAUSE); 8070 } 8071 } else { 8072 if (event->hw.aux_paused) { 8073 event->hw.aux_paused = 0; 8074 event->pmu->start(event, PERF_EF_RESUME); 8075 } 8076 } 8077 } 8078 8079 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8080 { 8081 struct perf_buffer *rb; 8082 8083 if (WARN_ON_ONCE(!event)) 8084 return; 8085 8086 rb = ring_buffer_get(event); 8087 if (!rb) 8088 return; 8089 8090 scoped_guard (irqsave) { 8091 /* 8092 * Guard against self-recursion here. Another event could trip 8093 * this same from NMI context. 8094 */ 8095 if (READ_ONCE(rb->aux_in_pause_resume)) 8096 break; 8097 8098 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8099 barrier(); 8100 __perf_event_aux_pause(event, pause); 8101 barrier(); 8102 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8103 } 8104 ring_buffer_put(rb); 8105 } 8106 8107 static __always_inline int 8108 __perf_event_output(struct perf_event *event, 8109 struct perf_sample_data *data, 8110 struct pt_regs *regs, 8111 int (*output_begin)(struct perf_output_handle *, 8112 struct perf_sample_data *, 8113 struct perf_event *, 8114 unsigned int)) 8115 { 8116 struct perf_output_handle handle; 8117 struct perf_event_header header; 8118 int err; 8119 8120 /* protect the callchain buffers */ 8121 rcu_read_lock(); 8122 8123 perf_prepare_sample(data, event, regs); 8124 perf_prepare_header(&header, data, event, regs); 8125 8126 err = output_begin(&handle, data, event, header.size); 8127 if (err) 8128 goto exit; 8129 8130 perf_output_sample(&handle, &header, data, event); 8131 8132 perf_output_end(&handle); 8133 8134 exit: 8135 rcu_read_unlock(); 8136 return err; 8137 } 8138 8139 void 8140 perf_event_output_forward(struct perf_event *event, 8141 struct perf_sample_data *data, 8142 struct pt_regs *regs) 8143 { 8144 __perf_event_output(event, data, regs, perf_output_begin_forward); 8145 } 8146 8147 void 8148 perf_event_output_backward(struct perf_event *event, 8149 struct perf_sample_data *data, 8150 struct pt_regs *regs) 8151 { 8152 __perf_event_output(event, data, regs, perf_output_begin_backward); 8153 } 8154 8155 int 8156 perf_event_output(struct perf_event *event, 8157 struct perf_sample_data *data, 8158 struct pt_regs *regs) 8159 { 8160 return __perf_event_output(event, data, regs, perf_output_begin); 8161 } 8162 8163 /* 8164 * read event_id 8165 */ 8166 8167 struct perf_read_event { 8168 struct perf_event_header header; 8169 8170 u32 pid; 8171 u32 tid; 8172 }; 8173 8174 static void 8175 perf_event_read_event(struct perf_event *event, 8176 struct task_struct *task) 8177 { 8178 struct perf_output_handle handle; 8179 struct perf_sample_data sample; 8180 struct perf_read_event read_event = { 8181 .header = { 8182 .type = PERF_RECORD_READ, 8183 .misc = 0, 8184 .size = sizeof(read_event) + event->read_size, 8185 }, 8186 .pid = perf_event_pid(event, task), 8187 .tid = perf_event_tid(event, task), 8188 }; 8189 int ret; 8190 8191 perf_event_header__init_id(&read_event.header, &sample, event); 8192 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8193 if (ret) 8194 return; 8195 8196 perf_output_put(&handle, read_event); 8197 perf_output_read(&handle, event); 8198 perf_event__output_id_sample(event, &handle, &sample); 8199 8200 perf_output_end(&handle); 8201 } 8202 8203 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8204 8205 static void 8206 perf_iterate_ctx(struct perf_event_context *ctx, 8207 perf_iterate_f output, 8208 void *data, bool all) 8209 { 8210 struct perf_event *event; 8211 8212 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8213 if (!all) { 8214 if (event->state < PERF_EVENT_STATE_INACTIVE) 8215 continue; 8216 if (!event_filter_match(event)) 8217 continue; 8218 } 8219 8220 output(event, data); 8221 } 8222 } 8223 8224 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8225 { 8226 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8227 struct perf_event *event; 8228 8229 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8230 /* 8231 * Skip events that are not fully formed yet; ensure that 8232 * if we observe event->ctx, both event and ctx will be 8233 * complete enough. See perf_install_in_context(). 8234 */ 8235 if (!smp_load_acquire(&event->ctx)) 8236 continue; 8237 8238 if (event->state < PERF_EVENT_STATE_INACTIVE) 8239 continue; 8240 if (!event_filter_match(event)) 8241 continue; 8242 output(event, data); 8243 } 8244 } 8245 8246 /* 8247 * Iterate all events that need to receive side-band events. 8248 * 8249 * For new callers; ensure that account_pmu_sb_event() includes 8250 * your event, otherwise it might not get delivered. 8251 */ 8252 static void 8253 perf_iterate_sb(perf_iterate_f output, void *data, 8254 struct perf_event_context *task_ctx) 8255 { 8256 struct perf_event_context *ctx; 8257 8258 rcu_read_lock(); 8259 preempt_disable(); 8260 8261 /* 8262 * If we have task_ctx != NULL we only notify the task context itself. 8263 * The task_ctx is set only for EXIT events before releasing task 8264 * context. 8265 */ 8266 if (task_ctx) { 8267 perf_iterate_ctx(task_ctx, output, data, false); 8268 goto done; 8269 } 8270 8271 perf_iterate_sb_cpu(output, data); 8272 8273 ctx = rcu_dereference(current->perf_event_ctxp); 8274 if (ctx) 8275 perf_iterate_ctx(ctx, output, data, false); 8276 done: 8277 preempt_enable(); 8278 rcu_read_unlock(); 8279 } 8280 8281 /* 8282 * Clear all file-based filters at exec, they'll have to be 8283 * re-instated when/if these objects are mmapped again. 8284 */ 8285 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8286 { 8287 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8288 struct perf_addr_filter *filter; 8289 unsigned int restart = 0, count = 0; 8290 unsigned long flags; 8291 8292 if (!has_addr_filter(event)) 8293 return; 8294 8295 raw_spin_lock_irqsave(&ifh->lock, flags); 8296 list_for_each_entry(filter, &ifh->list, entry) { 8297 if (filter->path.dentry) { 8298 event->addr_filter_ranges[count].start = 0; 8299 event->addr_filter_ranges[count].size = 0; 8300 restart++; 8301 } 8302 8303 count++; 8304 } 8305 8306 if (restart) 8307 event->addr_filters_gen++; 8308 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8309 8310 if (restart) 8311 perf_event_stop(event, 1); 8312 } 8313 8314 void perf_event_exec(void) 8315 { 8316 struct perf_event_context *ctx; 8317 8318 ctx = perf_pin_task_context(current); 8319 if (!ctx) 8320 return; 8321 8322 perf_event_enable_on_exec(ctx); 8323 perf_event_remove_on_exec(ctx); 8324 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8325 8326 perf_unpin_context(ctx); 8327 put_ctx(ctx); 8328 } 8329 8330 struct remote_output { 8331 struct perf_buffer *rb; 8332 int err; 8333 }; 8334 8335 static void __perf_event_output_stop(struct perf_event *event, void *data) 8336 { 8337 struct perf_event *parent = event->parent; 8338 struct remote_output *ro = data; 8339 struct perf_buffer *rb = ro->rb; 8340 struct stop_event_data sd = { 8341 .event = event, 8342 }; 8343 8344 if (!has_aux(event)) 8345 return; 8346 8347 if (!parent) 8348 parent = event; 8349 8350 /* 8351 * In case of inheritance, it will be the parent that links to the 8352 * ring-buffer, but it will be the child that's actually using it. 8353 * 8354 * We are using event::rb to determine if the event should be stopped, 8355 * however this may race with ring_buffer_attach() (through set_output), 8356 * which will make us skip the event that actually needs to be stopped. 8357 * So ring_buffer_attach() has to stop an aux event before re-assigning 8358 * its rb pointer. 8359 */ 8360 if (rcu_dereference(parent->rb) == rb) 8361 ro->err = __perf_event_stop(&sd); 8362 } 8363 8364 static int __perf_pmu_output_stop(void *info) 8365 { 8366 struct perf_event *event = info; 8367 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8368 struct remote_output ro = { 8369 .rb = event->rb, 8370 }; 8371 8372 rcu_read_lock(); 8373 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8374 if (cpuctx->task_ctx) 8375 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8376 &ro, false); 8377 rcu_read_unlock(); 8378 8379 return ro.err; 8380 } 8381 8382 static void perf_pmu_output_stop(struct perf_event *event) 8383 { 8384 struct perf_event *iter; 8385 int err, cpu; 8386 8387 restart: 8388 rcu_read_lock(); 8389 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8390 /* 8391 * For per-CPU events, we need to make sure that neither they 8392 * nor their children are running; for cpu==-1 events it's 8393 * sufficient to stop the event itself if it's active, since 8394 * it can't have children. 8395 */ 8396 cpu = iter->cpu; 8397 if (cpu == -1) 8398 cpu = READ_ONCE(iter->oncpu); 8399 8400 if (cpu == -1) 8401 continue; 8402 8403 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8404 if (err == -EAGAIN) { 8405 rcu_read_unlock(); 8406 goto restart; 8407 } 8408 } 8409 rcu_read_unlock(); 8410 } 8411 8412 /* 8413 * task tracking -- fork/exit 8414 * 8415 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8416 */ 8417 8418 struct perf_task_event { 8419 struct task_struct *task; 8420 struct perf_event_context *task_ctx; 8421 8422 struct { 8423 struct perf_event_header header; 8424 8425 u32 pid; 8426 u32 ppid; 8427 u32 tid; 8428 u32 ptid; 8429 u64 time; 8430 } event_id; 8431 }; 8432 8433 static int perf_event_task_match(struct perf_event *event) 8434 { 8435 return event->attr.comm || event->attr.mmap || 8436 event->attr.mmap2 || event->attr.mmap_data || 8437 event->attr.task; 8438 } 8439 8440 static void perf_event_task_output(struct perf_event *event, 8441 void *data) 8442 { 8443 struct perf_task_event *task_event = data; 8444 struct perf_output_handle handle; 8445 struct perf_sample_data sample; 8446 struct task_struct *task = task_event->task; 8447 int ret, size = task_event->event_id.header.size; 8448 8449 if (!perf_event_task_match(event)) 8450 return; 8451 8452 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8453 8454 ret = perf_output_begin(&handle, &sample, event, 8455 task_event->event_id.header.size); 8456 if (ret) 8457 goto out; 8458 8459 task_event->event_id.pid = perf_event_pid(event, task); 8460 task_event->event_id.tid = perf_event_tid(event, task); 8461 8462 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8463 task_event->event_id.ppid = perf_event_pid(event, 8464 task->real_parent); 8465 task_event->event_id.ptid = perf_event_pid(event, 8466 task->real_parent); 8467 } else { /* PERF_RECORD_FORK */ 8468 task_event->event_id.ppid = perf_event_pid(event, current); 8469 task_event->event_id.ptid = perf_event_tid(event, current); 8470 } 8471 8472 task_event->event_id.time = perf_event_clock(event); 8473 8474 perf_output_put(&handle, task_event->event_id); 8475 8476 perf_event__output_id_sample(event, &handle, &sample); 8477 8478 perf_output_end(&handle); 8479 out: 8480 task_event->event_id.header.size = size; 8481 } 8482 8483 static void perf_event_task(struct task_struct *task, 8484 struct perf_event_context *task_ctx, 8485 int new) 8486 { 8487 struct perf_task_event task_event; 8488 8489 if (!atomic_read(&nr_comm_events) && 8490 !atomic_read(&nr_mmap_events) && 8491 !atomic_read(&nr_task_events)) 8492 return; 8493 8494 task_event = (struct perf_task_event){ 8495 .task = task, 8496 .task_ctx = task_ctx, 8497 .event_id = { 8498 .header = { 8499 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8500 .misc = 0, 8501 .size = sizeof(task_event.event_id), 8502 }, 8503 /* .pid */ 8504 /* .ppid */ 8505 /* .tid */ 8506 /* .ptid */ 8507 /* .time */ 8508 }, 8509 }; 8510 8511 perf_iterate_sb(perf_event_task_output, 8512 &task_event, 8513 task_ctx); 8514 } 8515 8516 void perf_event_fork(struct task_struct *task) 8517 { 8518 perf_event_task(task, NULL, 1); 8519 perf_event_namespaces(task); 8520 } 8521 8522 /* 8523 * comm tracking 8524 */ 8525 8526 struct perf_comm_event { 8527 struct task_struct *task; 8528 char *comm; 8529 int comm_size; 8530 8531 struct { 8532 struct perf_event_header header; 8533 8534 u32 pid; 8535 u32 tid; 8536 } event_id; 8537 }; 8538 8539 static int perf_event_comm_match(struct perf_event *event) 8540 { 8541 return event->attr.comm; 8542 } 8543 8544 static void perf_event_comm_output(struct perf_event *event, 8545 void *data) 8546 { 8547 struct perf_comm_event *comm_event = data; 8548 struct perf_output_handle handle; 8549 struct perf_sample_data sample; 8550 int size = comm_event->event_id.header.size; 8551 int ret; 8552 8553 if (!perf_event_comm_match(event)) 8554 return; 8555 8556 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8557 ret = perf_output_begin(&handle, &sample, event, 8558 comm_event->event_id.header.size); 8559 8560 if (ret) 8561 goto out; 8562 8563 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8564 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8565 8566 perf_output_put(&handle, comm_event->event_id); 8567 __output_copy(&handle, comm_event->comm, 8568 comm_event->comm_size); 8569 8570 perf_event__output_id_sample(event, &handle, &sample); 8571 8572 perf_output_end(&handle); 8573 out: 8574 comm_event->event_id.header.size = size; 8575 } 8576 8577 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8578 { 8579 char comm[TASK_COMM_LEN]; 8580 unsigned int size; 8581 8582 memset(comm, 0, sizeof(comm)); 8583 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8584 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8585 8586 comm_event->comm = comm; 8587 comm_event->comm_size = size; 8588 8589 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8590 8591 perf_iterate_sb(perf_event_comm_output, 8592 comm_event, 8593 NULL); 8594 } 8595 8596 void perf_event_comm(struct task_struct *task, bool exec) 8597 { 8598 struct perf_comm_event comm_event; 8599 8600 if (!atomic_read(&nr_comm_events)) 8601 return; 8602 8603 comm_event = (struct perf_comm_event){ 8604 .task = task, 8605 /* .comm */ 8606 /* .comm_size */ 8607 .event_id = { 8608 .header = { 8609 .type = PERF_RECORD_COMM, 8610 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8611 /* .size */ 8612 }, 8613 /* .pid */ 8614 /* .tid */ 8615 }, 8616 }; 8617 8618 perf_event_comm_event(&comm_event); 8619 } 8620 8621 /* 8622 * namespaces tracking 8623 */ 8624 8625 struct perf_namespaces_event { 8626 struct task_struct *task; 8627 8628 struct { 8629 struct perf_event_header header; 8630 8631 u32 pid; 8632 u32 tid; 8633 u64 nr_namespaces; 8634 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8635 } event_id; 8636 }; 8637 8638 static int perf_event_namespaces_match(struct perf_event *event) 8639 { 8640 return event->attr.namespaces; 8641 } 8642 8643 static void perf_event_namespaces_output(struct perf_event *event, 8644 void *data) 8645 { 8646 struct perf_namespaces_event *namespaces_event = data; 8647 struct perf_output_handle handle; 8648 struct perf_sample_data sample; 8649 u16 header_size = namespaces_event->event_id.header.size; 8650 int ret; 8651 8652 if (!perf_event_namespaces_match(event)) 8653 return; 8654 8655 perf_event_header__init_id(&namespaces_event->event_id.header, 8656 &sample, event); 8657 ret = perf_output_begin(&handle, &sample, event, 8658 namespaces_event->event_id.header.size); 8659 if (ret) 8660 goto out; 8661 8662 namespaces_event->event_id.pid = perf_event_pid(event, 8663 namespaces_event->task); 8664 namespaces_event->event_id.tid = perf_event_tid(event, 8665 namespaces_event->task); 8666 8667 perf_output_put(&handle, namespaces_event->event_id); 8668 8669 perf_event__output_id_sample(event, &handle, &sample); 8670 8671 perf_output_end(&handle); 8672 out: 8673 namespaces_event->event_id.header.size = header_size; 8674 } 8675 8676 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8677 struct task_struct *task, 8678 const struct proc_ns_operations *ns_ops) 8679 { 8680 struct path ns_path; 8681 struct inode *ns_inode; 8682 int error; 8683 8684 error = ns_get_path(&ns_path, task, ns_ops); 8685 if (!error) { 8686 ns_inode = ns_path.dentry->d_inode; 8687 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8688 ns_link_info->ino = ns_inode->i_ino; 8689 path_put(&ns_path); 8690 } 8691 } 8692 8693 void perf_event_namespaces(struct task_struct *task) 8694 { 8695 struct perf_namespaces_event namespaces_event; 8696 struct perf_ns_link_info *ns_link_info; 8697 8698 if (!atomic_read(&nr_namespaces_events)) 8699 return; 8700 8701 namespaces_event = (struct perf_namespaces_event){ 8702 .task = task, 8703 .event_id = { 8704 .header = { 8705 .type = PERF_RECORD_NAMESPACES, 8706 .misc = 0, 8707 .size = sizeof(namespaces_event.event_id), 8708 }, 8709 /* .pid */ 8710 /* .tid */ 8711 .nr_namespaces = NR_NAMESPACES, 8712 /* .link_info[NR_NAMESPACES] */ 8713 }, 8714 }; 8715 8716 ns_link_info = namespaces_event.event_id.link_info; 8717 8718 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8719 task, &mntns_operations); 8720 8721 #ifdef CONFIG_USER_NS 8722 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8723 task, &userns_operations); 8724 #endif 8725 #ifdef CONFIG_NET_NS 8726 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8727 task, &netns_operations); 8728 #endif 8729 #ifdef CONFIG_UTS_NS 8730 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8731 task, &utsns_operations); 8732 #endif 8733 #ifdef CONFIG_IPC_NS 8734 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8735 task, &ipcns_operations); 8736 #endif 8737 #ifdef CONFIG_PID_NS 8738 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8739 task, &pidns_operations); 8740 #endif 8741 #ifdef CONFIG_CGROUPS 8742 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8743 task, &cgroupns_operations); 8744 #endif 8745 8746 perf_iterate_sb(perf_event_namespaces_output, 8747 &namespaces_event, 8748 NULL); 8749 } 8750 8751 /* 8752 * cgroup tracking 8753 */ 8754 #ifdef CONFIG_CGROUP_PERF 8755 8756 struct perf_cgroup_event { 8757 char *path; 8758 int path_size; 8759 struct { 8760 struct perf_event_header header; 8761 u64 id; 8762 char path[]; 8763 } event_id; 8764 }; 8765 8766 static int perf_event_cgroup_match(struct perf_event *event) 8767 { 8768 return event->attr.cgroup; 8769 } 8770 8771 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8772 { 8773 struct perf_cgroup_event *cgroup_event = data; 8774 struct perf_output_handle handle; 8775 struct perf_sample_data sample; 8776 u16 header_size = cgroup_event->event_id.header.size; 8777 int ret; 8778 8779 if (!perf_event_cgroup_match(event)) 8780 return; 8781 8782 perf_event_header__init_id(&cgroup_event->event_id.header, 8783 &sample, event); 8784 ret = perf_output_begin(&handle, &sample, event, 8785 cgroup_event->event_id.header.size); 8786 if (ret) 8787 goto out; 8788 8789 perf_output_put(&handle, cgroup_event->event_id); 8790 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8791 8792 perf_event__output_id_sample(event, &handle, &sample); 8793 8794 perf_output_end(&handle); 8795 out: 8796 cgroup_event->event_id.header.size = header_size; 8797 } 8798 8799 static void perf_event_cgroup(struct cgroup *cgrp) 8800 { 8801 struct perf_cgroup_event cgroup_event; 8802 char path_enomem[16] = "//enomem"; 8803 char *pathname; 8804 size_t size; 8805 8806 if (!atomic_read(&nr_cgroup_events)) 8807 return; 8808 8809 cgroup_event = (struct perf_cgroup_event){ 8810 .event_id = { 8811 .header = { 8812 .type = PERF_RECORD_CGROUP, 8813 .misc = 0, 8814 .size = sizeof(cgroup_event.event_id), 8815 }, 8816 .id = cgroup_id(cgrp), 8817 }, 8818 }; 8819 8820 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8821 if (pathname == NULL) { 8822 cgroup_event.path = path_enomem; 8823 } else { 8824 /* just to be sure to have enough space for alignment */ 8825 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8826 cgroup_event.path = pathname; 8827 } 8828 8829 /* 8830 * Since our buffer works in 8 byte units we need to align our string 8831 * size to a multiple of 8. However, we must guarantee the tail end is 8832 * zero'd out to avoid leaking random bits to userspace. 8833 */ 8834 size = strlen(cgroup_event.path) + 1; 8835 while (!IS_ALIGNED(size, sizeof(u64))) 8836 cgroup_event.path[size++] = '\0'; 8837 8838 cgroup_event.event_id.header.size += size; 8839 cgroup_event.path_size = size; 8840 8841 perf_iterate_sb(perf_event_cgroup_output, 8842 &cgroup_event, 8843 NULL); 8844 8845 kfree(pathname); 8846 } 8847 8848 #endif 8849 8850 /* 8851 * mmap tracking 8852 */ 8853 8854 struct perf_mmap_event { 8855 struct vm_area_struct *vma; 8856 8857 const char *file_name; 8858 int file_size; 8859 int maj, min; 8860 u64 ino; 8861 u64 ino_generation; 8862 u32 prot, flags; 8863 u8 build_id[BUILD_ID_SIZE_MAX]; 8864 u32 build_id_size; 8865 8866 struct { 8867 struct perf_event_header header; 8868 8869 u32 pid; 8870 u32 tid; 8871 u64 start; 8872 u64 len; 8873 u64 pgoff; 8874 } event_id; 8875 }; 8876 8877 static int perf_event_mmap_match(struct perf_event *event, 8878 void *data) 8879 { 8880 struct perf_mmap_event *mmap_event = data; 8881 struct vm_area_struct *vma = mmap_event->vma; 8882 int executable = vma->vm_flags & VM_EXEC; 8883 8884 return (!executable && event->attr.mmap_data) || 8885 (executable && (event->attr.mmap || event->attr.mmap2)); 8886 } 8887 8888 static void perf_event_mmap_output(struct perf_event *event, 8889 void *data) 8890 { 8891 struct perf_mmap_event *mmap_event = data; 8892 struct perf_output_handle handle; 8893 struct perf_sample_data sample; 8894 int size = mmap_event->event_id.header.size; 8895 u32 type = mmap_event->event_id.header.type; 8896 bool use_build_id; 8897 int ret; 8898 8899 if (!perf_event_mmap_match(event, data)) 8900 return; 8901 8902 if (event->attr.mmap2) { 8903 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8904 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8905 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8906 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8907 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8908 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8909 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8910 } 8911 8912 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8913 ret = perf_output_begin(&handle, &sample, event, 8914 mmap_event->event_id.header.size); 8915 if (ret) 8916 goto out; 8917 8918 mmap_event->event_id.pid = perf_event_pid(event, current); 8919 mmap_event->event_id.tid = perf_event_tid(event, current); 8920 8921 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8922 8923 if (event->attr.mmap2 && use_build_id) 8924 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8925 8926 perf_output_put(&handle, mmap_event->event_id); 8927 8928 if (event->attr.mmap2) { 8929 if (use_build_id) { 8930 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8931 8932 __output_copy(&handle, size, 4); 8933 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8934 } else { 8935 perf_output_put(&handle, mmap_event->maj); 8936 perf_output_put(&handle, mmap_event->min); 8937 perf_output_put(&handle, mmap_event->ino); 8938 perf_output_put(&handle, mmap_event->ino_generation); 8939 } 8940 perf_output_put(&handle, mmap_event->prot); 8941 perf_output_put(&handle, mmap_event->flags); 8942 } 8943 8944 __output_copy(&handle, mmap_event->file_name, 8945 mmap_event->file_size); 8946 8947 perf_event__output_id_sample(event, &handle, &sample); 8948 8949 perf_output_end(&handle); 8950 out: 8951 mmap_event->event_id.header.size = size; 8952 mmap_event->event_id.header.type = type; 8953 } 8954 8955 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8956 { 8957 struct vm_area_struct *vma = mmap_event->vma; 8958 struct file *file = vma->vm_file; 8959 int maj = 0, min = 0; 8960 u64 ino = 0, gen = 0; 8961 u32 prot = 0, flags = 0; 8962 unsigned int size; 8963 char tmp[16]; 8964 char *buf = NULL; 8965 char *name = NULL; 8966 8967 if (vma->vm_flags & VM_READ) 8968 prot |= PROT_READ; 8969 if (vma->vm_flags & VM_WRITE) 8970 prot |= PROT_WRITE; 8971 if (vma->vm_flags & VM_EXEC) 8972 prot |= PROT_EXEC; 8973 8974 if (vma->vm_flags & VM_MAYSHARE) 8975 flags = MAP_SHARED; 8976 else 8977 flags = MAP_PRIVATE; 8978 8979 if (vma->vm_flags & VM_LOCKED) 8980 flags |= MAP_LOCKED; 8981 if (is_vm_hugetlb_page(vma)) 8982 flags |= MAP_HUGETLB; 8983 8984 if (file) { 8985 struct inode *inode; 8986 dev_t dev; 8987 8988 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8989 if (!buf) { 8990 name = "//enomem"; 8991 goto cpy_name; 8992 } 8993 /* 8994 * d_path() works from the end of the rb backwards, so we 8995 * need to add enough zero bytes after the string to handle 8996 * the 64bit alignment we do later. 8997 */ 8998 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8999 if (IS_ERR(name)) { 9000 name = "//toolong"; 9001 goto cpy_name; 9002 } 9003 inode = file_inode(vma->vm_file); 9004 dev = inode->i_sb->s_dev; 9005 ino = inode->i_ino; 9006 gen = inode->i_generation; 9007 maj = MAJOR(dev); 9008 min = MINOR(dev); 9009 9010 goto got_name; 9011 } else { 9012 if (vma->vm_ops && vma->vm_ops->name) 9013 name = (char *) vma->vm_ops->name(vma); 9014 if (!name) 9015 name = (char *)arch_vma_name(vma); 9016 if (!name) { 9017 if (vma_is_initial_heap(vma)) 9018 name = "[heap]"; 9019 else if (vma_is_initial_stack(vma)) 9020 name = "[stack]"; 9021 else 9022 name = "//anon"; 9023 } 9024 } 9025 9026 cpy_name: 9027 strscpy(tmp, name, sizeof(tmp)); 9028 name = tmp; 9029 got_name: 9030 /* 9031 * Since our buffer works in 8 byte units we need to align our string 9032 * size to a multiple of 8. However, we must guarantee the tail end is 9033 * zero'd out to avoid leaking random bits to userspace. 9034 */ 9035 size = strlen(name)+1; 9036 while (!IS_ALIGNED(size, sizeof(u64))) 9037 name[size++] = '\0'; 9038 9039 mmap_event->file_name = name; 9040 mmap_event->file_size = size; 9041 mmap_event->maj = maj; 9042 mmap_event->min = min; 9043 mmap_event->ino = ino; 9044 mmap_event->ino_generation = gen; 9045 mmap_event->prot = prot; 9046 mmap_event->flags = flags; 9047 9048 if (!(vma->vm_flags & VM_EXEC)) 9049 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9050 9051 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9052 9053 if (atomic_read(&nr_build_id_events)) 9054 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9055 9056 perf_iterate_sb(perf_event_mmap_output, 9057 mmap_event, 9058 NULL); 9059 9060 kfree(buf); 9061 } 9062 9063 /* 9064 * Check whether inode and address range match filter criteria. 9065 */ 9066 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9067 struct file *file, unsigned long offset, 9068 unsigned long size) 9069 { 9070 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9071 if (!filter->path.dentry) 9072 return false; 9073 9074 if (d_inode(filter->path.dentry) != file_inode(file)) 9075 return false; 9076 9077 if (filter->offset > offset + size) 9078 return false; 9079 9080 if (filter->offset + filter->size < offset) 9081 return false; 9082 9083 return true; 9084 } 9085 9086 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9087 struct vm_area_struct *vma, 9088 struct perf_addr_filter_range *fr) 9089 { 9090 unsigned long vma_size = vma->vm_end - vma->vm_start; 9091 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9092 struct file *file = vma->vm_file; 9093 9094 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9095 return false; 9096 9097 if (filter->offset < off) { 9098 fr->start = vma->vm_start; 9099 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9100 } else { 9101 fr->start = vma->vm_start + filter->offset - off; 9102 fr->size = min(vma->vm_end - fr->start, filter->size); 9103 } 9104 9105 return true; 9106 } 9107 9108 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9109 { 9110 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9111 struct vm_area_struct *vma = data; 9112 struct perf_addr_filter *filter; 9113 unsigned int restart = 0, count = 0; 9114 unsigned long flags; 9115 9116 if (!has_addr_filter(event)) 9117 return; 9118 9119 if (!vma->vm_file) 9120 return; 9121 9122 raw_spin_lock_irqsave(&ifh->lock, flags); 9123 list_for_each_entry(filter, &ifh->list, entry) { 9124 if (perf_addr_filter_vma_adjust(filter, vma, 9125 &event->addr_filter_ranges[count])) 9126 restart++; 9127 9128 count++; 9129 } 9130 9131 if (restart) 9132 event->addr_filters_gen++; 9133 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9134 9135 if (restart) 9136 perf_event_stop(event, 1); 9137 } 9138 9139 /* 9140 * Adjust all task's events' filters to the new vma 9141 */ 9142 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9143 { 9144 struct perf_event_context *ctx; 9145 9146 /* 9147 * Data tracing isn't supported yet and as such there is no need 9148 * to keep track of anything that isn't related to executable code: 9149 */ 9150 if (!(vma->vm_flags & VM_EXEC)) 9151 return; 9152 9153 rcu_read_lock(); 9154 ctx = rcu_dereference(current->perf_event_ctxp); 9155 if (ctx) 9156 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9157 rcu_read_unlock(); 9158 } 9159 9160 void perf_event_mmap(struct vm_area_struct *vma) 9161 { 9162 struct perf_mmap_event mmap_event; 9163 9164 if (!atomic_read(&nr_mmap_events)) 9165 return; 9166 9167 mmap_event = (struct perf_mmap_event){ 9168 .vma = vma, 9169 /* .file_name */ 9170 /* .file_size */ 9171 .event_id = { 9172 .header = { 9173 .type = PERF_RECORD_MMAP, 9174 .misc = PERF_RECORD_MISC_USER, 9175 /* .size */ 9176 }, 9177 /* .pid */ 9178 /* .tid */ 9179 .start = vma->vm_start, 9180 .len = vma->vm_end - vma->vm_start, 9181 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9182 }, 9183 /* .maj (attr_mmap2 only) */ 9184 /* .min (attr_mmap2 only) */ 9185 /* .ino (attr_mmap2 only) */ 9186 /* .ino_generation (attr_mmap2 only) */ 9187 /* .prot (attr_mmap2 only) */ 9188 /* .flags (attr_mmap2 only) */ 9189 }; 9190 9191 perf_addr_filters_adjust(vma); 9192 perf_event_mmap_event(&mmap_event); 9193 } 9194 9195 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9196 unsigned long size, u64 flags) 9197 { 9198 struct perf_output_handle handle; 9199 struct perf_sample_data sample; 9200 struct perf_aux_event { 9201 struct perf_event_header header; 9202 u64 offset; 9203 u64 size; 9204 u64 flags; 9205 } rec = { 9206 .header = { 9207 .type = PERF_RECORD_AUX, 9208 .misc = 0, 9209 .size = sizeof(rec), 9210 }, 9211 .offset = head, 9212 .size = size, 9213 .flags = flags, 9214 }; 9215 int ret; 9216 9217 perf_event_header__init_id(&rec.header, &sample, event); 9218 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9219 9220 if (ret) 9221 return; 9222 9223 perf_output_put(&handle, rec); 9224 perf_event__output_id_sample(event, &handle, &sample); 9225 9226 perf_output_end(&handle); 9227 } 9228 9229 /* 9230 * Lost/dropped samples logging 9231 */ 9232 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9233 { 9234 struct perf_output_handle handle; 9235 struct perf_sample_data sample; 9236 int ret; 9237 9238 struct { 9239 struct perf_event_header header; 9240 u64 lost; 9241 } lost_samples_event = { 9242 .header = { 9243 .type = PERF_RECORD_LOST_SAMPLES, 9244 .misc = 0, 9245 .size = sizeof(lost_samples_event), 9246 }, 9247 .lost = lost, 9248 }; 9249 9250 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9251 9252 ret = perf_output_begin(&handle, &sample, event, 9253 lost_samples_event.header.size); 9254 if (ret) 9255 return; 9256 9257 perf_output_put(&handle, lost_samples_event); 9258 perf_event__output_id_sample(event, &handle, &sample); 9259 perf_output_end(&handle); 9260 } 9261 9262 /* 9263 * context_switch tracking 9264 */ 9265 9266 struct perf_switch_event { 9267 struct task_struct *task; 9268 struct task_struct *next_prev; 9269 9270 struct { 9271 struct perf_event_header header; 9272 u32 next_prev_pid; 9273 u32 next_prev_tid; 9274 } event_id; 9275 }; 9276 9277 static int perf_event_switch_match(struct perf_event *event) 9278 { 9279 return event->attr.context_switch; 9280 } 9281 9282 static void perf_event_switch_output(struct perf_event *event, void *data) 9283 { 9284 struct perf_switch_event *se = data; 9285 struct perf_output_handle handle; 9286 struct perf_sample_data sample; 9287 int ret; 9288 9289 if (!perf_event_switch_match(event)) 9290 return; 9291 9292 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9293 if (event->ctx->task) { 9294 se->event_id.header.type = PERF_RECORD_SWITCH; 9295 se->event_id.header.size = sizeof(se->event_id.header); 9296 } else { 9297 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9298 se->event_id.header.size = sizeof(se->event_id); 9299 se->event_id.next_prev_pid = 9300 perf_event_pid(event, se->next_prev); 9301 se->event_id.next_prev_tid = 9302 perf_event_tid(event, se->next_prev); 9303 } 9304 9305 perf_event_header__init_id(&se->event_id.header, &sample, event); 9306 9307 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9308 if (ret) 9309 return; 9310 9311 if (event->ctx->task) 9312 perf_output_put(&handle, se->event_id.header); 9313 else 9314 perf_output_put(&handle, se->event_id); 9315 9316 perf_event__output_id_sample(event, &handle, &sample); 9317 9318 perf_output_end(&handle); 9319 } 9320 9321 static void perf_event_switch(struct task_struct *task, 9322 struct task_struct *next_prev, bool sched_in) 9323 { 9324 struct perf_switch_event switch_event; 9325 9326 /* N.B. caller checks nr_switch_events != 0 */ 9327 9328 switch_event = (struct perf_switch_event){ 9329 .task = task, 9330 .next_prev = next_prev, 9331 .event_id = { 9332 .header = { 9333 /* .type */ 9334 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9335 /* .size */ 9336 }, 9337 /* .next_prev_pid */ 9338 /* .next_prev_tid */ 9339 }, 9340 }; 9341 9342 if (!sched_in && task_is_runnable(task)) { 9343 switch_event.event_id.header.misc |= 9344 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9345 } 9346 9347 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9348 } 9349 9350 /* 9351 * IRQ throttle logging 9352 */ 9353 9354 static void perf_log_throttle(struct perf_event *event, int enable) 9355 { 9356 struct perf_output_handle handle; 9357 struct perf_sample_data sample; 9358 int ret; 9359 9360 struct { 9361 struct perf_event_header header; 9362 u64 time; 9363 u64 id; 9364 u64 stream_id; 9365 } throttle_event = { 9366 .header = { 9367 .type = PERF_RECORD_THROTTLE, 9368 .misc = 0, 9369 .size = sizeof(throttle_event), 9370 }, 9371 .time = perf_event_clock(event), 9372 .id = primary_event_id(event), 9373 .stream_id = event->id, 9374 }; 9375 9376 if (enable) 9377 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9378 9379 perf_event_header__init_id(&throttle_event.header, &sample, event); 9380 9381 ret = perf_output_begin(&handle, &sample, event, 9382 throttle_event.header.size); 9383 if (ret) 9384 return; 9385 9386 perf_output_put(&handle, throttle_event); 9387 perf_event__output_id_sample(event, &handle, &sample); 9388 perf_output_end(&handle); 9389 } 9390 9391 /* 9392 * ksymbol register/unregister tracking 9393 */ 9394 9395 struct perf_ksymbol_event { 9396 const char *name; 9397 int name_len; 9398 struct { 9399 struct perf_event_header header; 9400 u64 addr; 9401 u32 len; 9402 u16 ksym_type; 9403 u16 flags; 9404 } event_id; 9405 }; 9406 9407 static int perf_event_ksymbol_match(struct perf_event *event) 9408 { 9409 return event->attr.ksymbol; 9410 } 9411 9412 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9413 { 9414 struct perf_ksymbol_event *ksymbol_event = data; 9415 struct perf_output_handle handle; 9416 struct perf_sample_data sample; 9417 int ret; 9418 9419 if (!perf_event_ksymbol_match(event)) 9420 return; 9421 9422 perf_event_header__init_id(&ksymbol_event->event_id.header, 9423 &sample, event); 9424 ret = perf_output_begin(&handle, &sample, event, 9425 ksymbol_event->event_id.header.size); 9426 if (ret) 9427 return; 9428 9429 perf_output_put(&handle, ksymbol_event->event_id); 9430 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9431 perf_event__output_id_sample(event, &handle, &sample); 9432 9433 perf_output_end(&handle); 9434 } 9435 9436 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9437 const char *sym) 9438 { 9439 struct perf_ksymbol_event ksymbol_event; 9440 char name[KSYM_NAME_LEN]; 9441 u16 flags = 0; 9442 int name_len; 9443 9444 if (!atomic_read(&nr_ksymbol_events)) 9445 return; 9446 9447 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9448 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9449 goto err; 9450 9451 strscpy(name, sym, KSYM_NAME_LEN); 9452 name_len = strlen(name) + 1; 9453 while (!IS_ALIGNED(name_len, sizeof(u64))) 9454 name[name_len++] = '\0'; 9455 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9456 9457 if (unregister) 9458 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9459 9460 ksymbol_event = (struct perf_ksymbol_event){ 9461 .name = name, 9462 .name_len = name_len, 9463 .event_id = { 9464 .header = { 9465 .type = PERF_RECORD_KSYMBOL, 9466 .size = sizeof(ksymbol_event.event_id) + 9467 name_len, 9468 }, 9469 .addr = addr, 9470 .len = len, 9471 .ksym_type = ksym_type, 9472 .flags = flags, 9473 }, 9474 }; 9475 9476 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9477 return; 9478 err: 9479 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9480 } 9481 9482 /* 9483 * bpf program load/unload tracking 9484 */ 9485 9486 struct perf_bpf_event { 9487 struct bpf_prog *prog; 9488 struct { 9489 struct perf_event_header header; 9490 u16 type; 9491 u16 flags; 9492 u32 id; 9493 u8 tag[BPF_TAG_SIZE]; 9494 } event_id; 9495 }; 9496 9497 static int perf_event_bpf_match(struct perf_event *event) 9498 { 9499 return event->attr.bpf_event; 9500 } 9501 9502 static void perf_event_bpf_output(struct perf_event *event, void *data) 9503 { 9504 struct perf_bpf_event *bpf_event = data; 9505 struct perf_output_handle handle; 9506 struct perf_sample_data sample; 9507 int ret; 9508 9509 if (!perf_event_bpf_match(event)) 9510 return; 9511 9512 perf_event_header__init_id(&bpf_event->event_id.header, 9513 &sample, event); 9514 ret = perf_output_begin(&handle, &sample, event, 9515 bpf_event->event_id.header.size); 9516 if (ret) 9517 return; 9518 9519 perf_output_put(&handle, bpf_event->event_id); 9520 perf_event__output_id_sample(event, &handle, &sample); 9521 9522 perf_output_end(&handle); 9523 } 9524 9525 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9526 enum perf_bpf_event_type type) 9527 { 9528 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9529 int i; 9530 9531 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9532 (u64)(unsigned long)prog->bpf_func, 9533 prog->jited_len, unregister, 9534 prog->aux->ksym.name); 9535 9536 for (i = 1; i < prog->aux->func_cnt; i++) { 9537 struct bpf_prog *subprog = prog->aux->func[i]; 9538 9539 perf_event_ksymbol( 9540 PERF_RECORD_KSYMBOL_TYPE_BPF, 9541 (u64)(unsigned long)subprog->bpf_func, 9542 subprog->jited_len, unregister, 9543 subprog->aux->ksym.name); 9544 } 9545 } 9546 9547 void perf_event_bpf_event(struct bpf_prog *prog, 9548 enum perf_bpf_event_type type, 9549 u16 flags) 9550 { 9551 struct perf_bpf_event bpf_event; 9552 9553 switch (type) { 9554 case PERF_BPF_EVENT_PROG_LOAD: 9555 case PERF_BPF_EVENT_PROG_UNLOAD: 9556 if (atomic_read(&nr_ksymbol_events)) 9557 perf_event_bpf_emit_ksymbols(prog, type); 9558 break; 9559 default: 9560 return; 9561 } 9562 9563 if (!atomic_read(&nr_bpf_events)) 9564 return; 9565 9566 bpf_event = (struct perf_bpf_event){ 9567 .prog = prog, 9568 .event_id = { 9569 .header = { 9570 .type = PERF_RECORD_BPF_EVENT, 9571 .size = sizeof(bpf_event.event_id), 9572 }, 9573 .type = type, 9574 .flags = flags, 9575 .id = prog->aux->id, 9576 }, 9577 }; 9578 9579 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9580 9581 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9582 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9583 } 9584 9585 struct perf_text_poke_event { 9586 const void *old_bytes; 9587 const void *new_bytes; 9588 size_t pad; 9589 u16 old_len; 9590 u16 new_len; 9591 9592 struct { 9593 struct perf_event_header header; 9594 9595 u64 addr; 9596 } event_id; 9597 }; 9598 9599 static int perf_event_text_poke_match(struct perf_event *event) 9600 { 9601 return event->attr.text_poke; 9602 } 9603 9604 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9605 { 9606 struct perf_text_poke_event *text_poke_event = data; 9607 struct perf_output_handle handle; 9608 struct perf_sample_data sample; 9609 u64 padding = 0; 9610 int ret; 9611 9612 if (!perf_event_text_poke_match(event)) 9613 return; 9614 9615 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9616 9617 ret = perf_output_begin(&handle, &sample, event, 9618 text_poke_event->event_id.header.size); 9619 if (ret) 9620 return; 9621 9622 perf_output_put(&handle, text_poke_event->event_id); 9623 perf_output_put(&handle, text_poke_event->old_len); 9624 perf_output_put(&handle, text_poke_event->new_len); 9625 9626 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9627 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9628 9629 if (text_poke_event->pad) 9630 __output_copy(&handle, &padding, text_poke_event->pad); 9631 9632 perf_event__output_id_sample(event, &handle, &sample); 9633 9634 perf_output_end(&handle); 9635 } 9636 9637 void perf_event_text_poke(const void *addr, const void *old_bytes, 9638 size_t old_len, const void *new_bytes, size_t new_len) 9639 { 9640 struct perf_text_poke_event text_poke_event; 9641 size_t tot, pad; 9642 9643 if (!atomic_read(&nr_text_poke_events)) 9644 return; 9645 9646 tot = sizeof(text_poke_event.old_len) + old_len; 9647 tot += sizeof(text_poke_event.new_len) + new_len; 9648 pad = ALIGN(tot, sizeof(u64)) - tot; 9649 9650 text_poke_event = (struct perf_text_poke_event){ 9651 .old_bytes = old_bytes, 9652 .new_bytes = new_bytes, 9653 .pad = pad, 9654 .old_len = old_len, 9655 .new_len = new_len, 9656 .event_id = { 9657 .header = { 9658 .type = PERF_RECORD_TEXT_POKE, 9659 .misc = PERF_RECORD_MISC_KERNEL, 9660 .size = sizeof(text_poke_event.event_id) + tot + pad, 9661 }, 9662 .addr = (unsigned long)addr, 9663 }, 9664 }; 9665 9666 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9667 } 9668 9669 void perf_event_itrace_started(struct perf_event *event) 9670 { 9671 event->attach_state |= PERF_ATTACH_ITRACE; 9672 } 9673 9674 static void perf_log_itrace_start(struct perf_event *event) 9675 { 9676 struct perf_output_handle handle; 9677 struct perf_sample_data sample; 9678 struct perf_aux_event { 9679 struct perf_event_header header; 9680 u32 pid; 9681 u32 tid; 9682 } rec; 9683 int ret; 9684 9685 if (event->parent) 9686 event = event->parent; 9687 9688 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9689 event->attach_state & PERF_ATTACH_ITRACE) 9690 return; 9691 9692 rec.header.type = PERF_RECORD_ITRACE_START; 9693 rec.header.misc = 0; 9694 rec.header.size = sizeof(rec); 9695 rec.pid = perf_event_pid(event, current); 9696 rec.tid = perf_event_tid(event, current); 9697 9698 perf_event_header__init_id(&rec.header, &sample, event); 9699 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9700 9701 if (ret) 9702 return; 9703 9704 perf_output_put(&handle, rec); 9705 perf_event__output_id_sample(event, &handle, &sample); 9706 9707 perf_output_end(&handle); 9708 } 9709 9710 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9711 { 9712 struct perf_output_handle handle; 9713 struct perf_sample_data sample; 9714 struct perf_aux_event { 9715 struct perf_event_header header; 9716 u64 hw_id; 9717 } rec; 9718 int ret; 9719 9720 if (event->parent) 9721 event = event->parent; 9722 9723 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9724 rec.header.misc = 0; 9725 rec.header.size = sizeof(rec); 9726 rec.hw_id = hw_id; 9727 9728 perf_event_header__init_id(&rec.header, &sample, event); 9729 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9730 9731 if (ret) 9732 return; 9733 9734 perf_output_put(&handle, rec); 9735 perf_event__output_id_sample(event, &handle, &sample); 9736 9737 perf_output_end(&handle); 9738 } 9739 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9740 9741 static int 9742 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9743 { 9744 struct hw_perf_event *hwc = &event->hw; 9745 int ret = 0; 9746 u64 seq; 9747 9748 seq = __this_cpu_read(perf_throttled_seq); 9749 if (seq != hwc->interrupts_seq) { 9750 hwc->interrupts_seq = seq; 9751 hwc->interrupts = 1; 9752 } else { 9753 hwc->interrupts++; 9754 if (unlikely(throttle && 9755 hwc->interrupts > max_samples_per_tick)) { 9756 __this_cpu_inc(perf_throttled_count); 9757 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9758 hwc->interrupts = MAX_INTERRUPTS; 9759 perf_log_throttle(event, 0); 9760 ret = 1; 9761 } 9762 } 9763 9764 if (event->attr.freq) { 9765 u64 now = perf_clock(); 9766 s64 delta = now - hwc->freq_time_stamp; 9767 9768 hwc->freq_time_stamp = now; 9769 9770 if (delta > 0 && delta < 2*TICK_NSEC) 9771 perf_adjust_period(event, delta, hwc->last_period, true); 9772 } 9773 9774 return ret; 9775 } 9776 9777 int perf_event_account_interrupt(struct perf_event *event) 9778 { 9779 return __perf_event_account_interrupt(event, 1); 9780 } 9781 9782 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9783 { 9784 /* 9785 * Due to interrupt latency (AKA "skid"), we may enter the 9786 * kernel before taking an overflow, even if the PMU is only 9787 * counting user events. 9788 */ 9789 if (event->attr.exclude_kernel && !user_mode(regs)) 9790 return false; 9791 9792 return true; 9793 } 9794 9795 #ifdef CONFIG_BPF_SYSCALL 9796 static int bpf_overflow_handler(struct perf_event *event, 9797 struct perf_sample_data *data, 9798 struct pt_regs *regs) 9799 { 9800 struct bpf_perf_event_data_kern ctx = { 9801 .data = data, 9802 .event = event, 9803 }; 9804 struct bpf_prog *prog; 9805 int ret = 0; 9806 9807 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9808 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9809 goto out; 9810 rcu_read_lock(); 9811 prog = READ_ONCE(event->prog); 9812 if (prog) { 9813 perf_prepare_sample(data, event, regs); 9814 ret = bpf_prog_run(prog, &ctx); 9815 } 9816 rcu_read_unlock(); 9817 out: 9818 __this_cpu_dec(bpf_prog_active); 9819 9820 return ret; 9821 } 9822 9823 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9824 struct bpf_prog *prog, 9825 u64 bpf_cookie) 9826 { 9827 if (event->overflow_handler_context) 9828 /* hw breakpoint or kernel counter */ 9829 return -EINVAL; 9830 9831 if (event->prog) 9832 return -EEXIST; 9833 9834 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9835 return -EINVAL; 9836 9837 if (event->attr.precise_ip && 9838 prog->call_get_stack && 9839 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9840 event->attr.exclude_callchain_kernel || 9841 event->attr.exclude_callchain_user)) { 9842 /* 9843 * On perf_event with precise_ip, calling bpf_get_stack() 9844 * may trigger unwinder warnings and occasional crashes. 9845 * bpf_get_[stack|stackid] works around this issue by using 9846 * callchain attached to perf_sample_data. If the 9847 * perf_event does not full (kernel and user) callchain 9848 * attached to perf_sample_data, do not allow attaching BPF 9849 * program that calls bpf_get_[stack|stackid]. 9850 */ 9851 return -EPROTO; 9852 } 9853 9854 event->prog = prog; 9855 event->bpf_cookie = bpf_cookie; 9856 return 0; 9857 } 9858 9859 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9860 { 9861 struct bpf_prog *prog = event->prog; 9862 9863 if (!prog) 9864 return; 9865 9866 event->prog = NULL; 9867 bpf_prog_put(prog); 9868 } 9869 #else 9870 static inline int bpf_overflow_handler(struct perf_event *event, 9871 struct perf_sample_data *data, 9872 struct pt_regs *regs) 9873 { 9874 return 1; 9875 } 9876 9877 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9878 struct bpf_prog *prog, 9879 u64 bpf_cookie) 9880 { 9881 return -EOPNOTSUPP; 9882 } 9883 9884 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9885 { 9886 } 9887 #endif 9888 9889 /* 9890 * Generic event overflow handling, sampling. 9891 */ 9892 9893 static int __perf_event_overflow(struct perf_event *event, 9894 int throttle, struct perf_sample_data *data, 9895 struct pt_regs *regs) 9896 { 9897 int events = atomic_read(&event->event_limit); 9898 int ret = 0; 9899 9900 /* 9901 * Non-sampling counters might still use the PMI to fold short 9902 * hardware counters, ignore those. 9903 */ 9904 if (unlikely(!is_sampling_event(event))) 9905 return 0; 9906 9907 ret = __perf_event_account_interrupt(event, throttle); 9908 9909 if (event->attr.aux_pause) 9910 perf_event_aux_pause(event->aux_event, true); 9911 9912 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9913 !bpf_overflow_handler(event, data, regs)) 9914 goto out; 9915 9916 /* 9917 * XXX event_limit might not quite work as expected on inherited 9918 * events 9919 */ 9920 9921 event->pending_kill = POLL_IN; 9922 if (events && atomic_dec_and_test(&event->event_limit)) { 9923 ret = 1; 9924 event->pending_kill = POLL_HUP; 9925 perf_event_disable_inatomic(event); 9926 } 9927 9928 if (event->attr.sigtrap) { 9929 /* 9930 * The desired behaviour of sigtrap vs invalid samples is a bit 9931 * tricky; on the one hand, one should not loose the SIGTRAP if 9932 * it is the first event, on the other hand, we should also not 9933 * trigger the WARN or override the data address. 9934 */ 9935 bool valid_sample = sample_is_allowed(event, regs); 9936 unsigned int pending_id = 1; 9937 enum task_work_notify_mode notify_mode; 9938 9939 if (regs) 9940 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9941 9942 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9943 9944 if (!event->pending_work && 9945 !task_work_add(current, &event->pending_task, notify_mode)) { 9946 event->pending_work = pending_id; 9947 local_inc(&event->ctx->nr_no_switch_fast); 9948 9949 event->pending_addr = 0; 9950 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9951 event->pending_addr = data->addr; 9952 9953 } else if (event->attr.exclude_kernel && valid_sample) { 9954 /* 9955 * Should not be able to return to user space without 9956 * consuming pending_work; with exceptions: 9957 * 9958 * 1. Where !exclude_kernel, events can overflow again 9959 * in the kernel without returning to user space. 9960 * 9961 * 2. Events that can overflow again before the IRQ- 9962 * work without user space progress (e.g. hrtimer). 9963 * To approximate progress (with false negatives), 9964 * check 32-bit hash of the current IP. 9965 */ 9966 WARN_ON_ONCE(event->pending_work != pending_id); 9967 } 9968 } 9969 9970 READ_ONCE(event->overflow_handler)(event, data, regs); 9971 9972 if (*perf_event_fasync(event) && event->pending_kill) { 9973 event->pending_wakeup = 1; 9974 irq_work_queue(&event->pending_irq); 9975 } 9976 out: 9977 if (event->attr.aux_resume) 9978 perf_event_aux_pause(event->aux_event, false); 9979 9980 return ret; 9981 } 9982 9983 int perf_event_overflow(struct perf_event *event, 9984 struct perf_sample_data *data, 9985 struct pt_regs *regs) 9986 { 9987 return __perf_event_overflow(event, 1, data, regs); 9988 } 9989 9990 /* 9991 * Generic software event infrastructure 9992 */ 9993 9994 struct swevent_htable { 9995 struct swevent_hlist *swevent_hlist; 9996 struct mutex hlist_mutex; 9997 int hlist_refcount; 9998 }; 9999 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10000 10001 /* 10002 * We directly increment event->count and keep a second value in 10003 * event->hw.period_left to count intervals. This period event 10004 * is kept in the range [-sample_period, 0] so that we can use the 10005 * sign as trigger. 10006 */ 10007 10008 u64 perf_swevent_set_period(struct perf_event *event) 10009 { 10010 struct hw_perf_event *hwc = &event->hw; 10011 u64 period = hwc->last_period; 10012 u64 nr, offset; 10013 s64 old, val; 10014 10015 hwc->last_period = hwc->sample_period; 10016 10017 old = local64_read(&hwc->period_left); 10018 do { 10019 val = old; 10020 if (val < 0) 10021 return 0; 10022 10023 nr = div64_u64(period + val, period); 10024 offset = nr * period; 10025 val -= offset; 10026 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10027 10028 return nr; 10029 } 10030 10031 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10032 struct perf_sample_data *data, 10033 struct pt_regs *regs) 10034 { 10035 struct hw_perf_event *hwc = &event->hw; 10036 int throttle = 0; 10037 10038 if (!overflow) 10039 overflow = perf_swevent_set_period(event); 10040 10041 if (hwc->interrupts == MAX_INTERRUPTS) 10042 return; 10043 10044 for (; overflow; overflow--) { 10045 if (__perf_event_overflow(event, throttle, 10046 data, regs)) { 10047 /* 10048 * We inhibit the overflow from happening when 10049 * hwc->interrupts == MAX_INTERRUPTS. 10050 */ 10051 break; 10052 } 10053 throttle = 1; 10054 } 10055 } 10056 10057 static void perf_swevent_event(struct perf_event *event, u64 nr, 10058 struct perf_sample_data *data, 10059 struct pt_regs *regs) 10060 { 10061 struct hw_perf_event *hwc = &event->hw; 10062 10063 local64_add(nr, &event->count); 10064 10065 if (!regs) 10066 return; 10067 10068 if (!is_sampling_event(event)) 10069 return; 10070 10071 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10072 data->period = nr; 10073 return perf_swevent_overflow(event, 1, data, regs); 10074 } else 10075 data->period = event->hw.last_period; 10076 10077 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10078 return perf_swevent_overflow(event, 1, data, regs); 10079 10080 if (local64_add_negative(nr, &hwc->period_left)) 10081 return; 10082 10083 perf_swevent_overflow(event, 0, data, regs); 10084 } 10085 10086 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10087 { 10088 if (event->hw.state & PERF_HES_STOPPED) 10089 return 1; 10090 10091 if (regs) { 10092 if (event->attr.exclude_user && user_mode(regs)) 10093 return 1; 10094 10095 if (event->attr.exclude_kernel && !user_mode(regs)) 10096 return 1; 10097 } 10098 10099 return 0; 10100 } 10101 10102 static int perf_swevent_match(struct perf_event *event, 10103 enum perf_type_id type, 10104 u32 event_id, 10105 struct perf_sample_data *data, 10106 struct pt_regs *regs) 10107 { 10108 if (event->attr.type != type) 10109 return 0; 10110 10111 if (event->attr.config != event_id) 10112 return 0; 10113 10114 if (perf_exclude_event(event, regs)) 10115 return 0; 10116 10117 return 1; 10118 } 10119 10120 static inline u64 swevent_hash(u64 type, u32 event_id) 10121 { 10122 u64 val = event_id | (type << 32); 10123 10124 return hash_64(val, SWEVENT_HLIST_BITS); 10125 } 10126 10127 static inline struct hlist_head * 10128 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10129 { 10130 u64 hash = swevent_hash(type, event_id); 10131 10132 return &hlist->heads[hash]; 10133 } 10134 10135 /* For the read side: events when they trigger */ 10136 static inline struct hlist_head * 10137 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10138 { 10139 struct swevent_hlist *hlist; 10140 10141 hlist = rcu_dereference(swhash->swevent_hlist); 10142 if (!hlist) 10143 return NULL; 10144 10145 return __find_swevent_head(hlist, type, event_id); 10146 } 10147 10148 /* For the event head insertion and removal in the hlist */ 10149 static inline struct hlist_head * 10150 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10151 { 10152 struct swevent_hlist *hlist; 10153 u32 event_id = event->attr.config; 10154 u64 type = event->attr.type; 10155 10156 /* 10157 * Event scheduling is always serialized against hlist allocation 10158 * and release. Which makes the protected version suitable here. 10159 * The context lock guarantees that. 10160 */ 10161 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10162 lockdep_is_held(&event->ctx->lock)); 10163 if (!hlist) 10164 return NULL; 10165 10166 return __find_swevent_head(hlist, type, event_id); 10167 } 10168 10169 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10170 u64 nr, 10171 struct perf_sample_data *data, 10172 struct pt_regs *regs) 10173 { 10174 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10175 struct perf_event *event; 10176 struct hlist_head *head; 10177 10178 rcu_read_lock(); 10179 head = find_swevent_head_rcu(swhash, type, event_id); 10180 if (!head) 10181 goto end; 10182 10183 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10184 if (perf_swevent_match(event, type, event_id, data, regs)) 10185 perf_swevent_event(event, nr, data, regs); 10186 } 10187 end: 10188 rcu_read_unlock(); 10189 } 10190 10191 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10192 10193 int perf_swevent_get_recursion_context(void) 10194 { 10195 return get_recursion_context(current->perf_recursion); 10196 } 10197 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10198 10199 void perf_swevent_put_recursion_context(int rctx) 10200 { 10201 put_recursion_context(current->perf_recursion, rctx); 10202 } 10203 10204 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10205 { 10206 struct perf_sample_data data; 10207 10208 if (WARN_ON_ONCE(!regs)) 10209 return; 10210 10211 perf_sample_data_init(&data, addr, 0); 10212 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10213 } 10214 10215 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10216 { 10217 int rctx; 10218 10219 preempt_disable_notrace(); 10220 rctx = perf_swevent_get_recursion_context(); 10221 if (unlikely(rctx < 0)) 10222 goto fail; 10223 10224 ___perf_sw_event(event_id, nr, regs, addr); 10225 10226 perf_swevent_put_recursion_context(rctx); 10227 fail: 10228 preempt_enable_notrace(); 10229 } 10230 10231 static void perf_swevent_read(struct perf_event *event) 10232 { 10233 } 10234 10235 static int perf_swevent_add(struct perf_event *event, int flags) 10236 { 10237 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10238 struct hw_perf_event *hwc = &event->hw; 10239 struct hlist_head *head; 10240 10241 if (is_sampling_event(event)) { 10242 hwc->last_period = hwc->sample_period; 10243 perf_swevent_set_period(event); 10244 } 10245 10246 hwc->state = !(flags & PERF_EF_START); 10247 10248 head = find_swevent_head(swhash, event); 10249 if (WARN_ON_ONCE(!head)) 10250 return -EINVAL; 10251 10252 hlist_add_head_rcu(&event->hlist_entry, head); 10253 perf_event_update_userpage(event); 10254 10255 return 0; 10256 } 10257 10258 static void perf_swevent_del(struct perf_event *event, int flags) 10259 { 10260 hlist_del_rcu(&event->hlist_entry); 10261 } 10262 10263 static void perf_swevent_start(struct perf_event *event, int flags) 10264 { 10265 event->hw.state = 0; 10266 } 10267 10268 static void perf_swevent_stop(struct perf_event *event, int flags) 10269 { 10270 event->hw.state = PERF_HES_STOPPED; 10271 } 10272 10273 /* Deref the hlist from the update side */ 10274 static inline struct swevent_hlist * 10275 swevent_hlist_deref(struct swevent_htable *swhash) 10276 { 10277 return rcu_dereference_protected(swhash->swevent_hlist, 10278 lockdep_is_held(&swhash->hlist_mutex)); 10279 } 10280 10281 static void swevent_hlist_release(struct swevent_htable *swhash) 10282 { 10283 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10284 10285 if (!hlist) 10286 return; 10287 10288 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10289 kfree_rcu(hlist, rcu_head); 10290 } 10291 10292 static void swevent_hlist_put_cpu(int cpu) 10293 { 10294 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10295 10296 mutex_lock(&swhash->hlist_mutex); 10297 10298 if (!--swhash->hlist_refcount) 10299 swevent_hlist_release(swhash); 10300 10301 mutex_unlock(&swhash->hlist_mutex); 10302 } 10303 10304 static void swevent_hlist_put(void) 10305 { 10306 int cpu; 10307 10308 for_each_possible_cpu(cpu) 10309 swevent_hlist_put_cpu(cpu); 10310 } 10311 10312 static int swevent_hlist_get_cpu(int cpu) 10313 { 10314 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10315 int err = 0; 10316 10317 mutex_lock(&swhash->hlist_mutex); 10318 if (!swevent_hlist_deref(swhash) && 10319 cpumask_test_cpu(cpu, perf_online_mask)) { 10320 struct swevent_hlist *hlist; 10321 10322 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10323 if (!hlist) { 10324 err = -ENOMEM; 10325 goto exit; 10326 } 10327 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10328 } 10329 swhash->hlist_refcount++; 10330 exit: 10331 mutex_unlock(&swhash->hlist_mutex); 10332 10333 return err; 10334 } 10335 10336 static int swevent_hlist_get(void) 10337 { 10338 int err, cpu, failed_cpu; 10339 10340 mutex_lock(&pmus_lock); 10341 for_each_possible_cpu(cpu) { 10342 err = swevent_hlist_get_cpu(cpu); 10343 if (err) { 10344 failed_cpu = cpu; 10345 goto fail; 10346 } 10347 } 10348 mutex_unlock(&pmus_lock); 10349 return 0; 10350 fail: 10351 for_each_possible_cpu(cpu) { 10352 if (cpu == failed_cpu) 10353 break; 10354 swevent_hlist_put_cpu(cpu); 10355 } 10356 mutex_unlock(&pmus_lock); 10357 return err; 10358 } 10359 10360 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10361 10362 static void sw_perf_event_destroy(struct perf_event *event) 10363 { 10364 u64 event_id = event->attr.config; 10365 10366 WARN_ON(event->parent); 10367 10368 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10369 swevent_hlist_put(); 10370 } 10371 10372 static struct pmu perf_cpu_clock; /* fwd declaration */ 10373 static struct pmu perf_task_clock; 10374 10375 static int perf_swevent_init(struct perf_event *event) 10376 { 10377 u64 event_id = event->attr.config; 10378 10379 if (event->attr.type != PERF_TYPE_SOFTWARE) 10380 return -ENOENT; 10381 10382 /* 10383 * no branch sampling for software events 10384 */ 10385 if (has_branch_stack(event)) 10386 return -EOPNOTSUPP; 10387 10388 switch (event_id) { 10389 case PERF_COUNT_SW_CPU_CLOCK: 10390 event->attr.type = perf_cpu_clock.type; 10391 return -ENOENT; 10392 case PERF_COUNT_SW_TASK_CLOCK: 10393 event->attr.type = perf_task_clock.type; 10394 return -ENOENT; 10395 10396 default: 10397 break; 10398 } 10399 10400 if (event_id >= PERF_COUNT_SW_MAX) 10401 return -ENOENT; 10402 10403 if (!event->parent) { 10404 int err; 10405 10406 err = swevent_hlist_get(); 10407 if (err) 10408 return err; 10409 10410 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10411 event->destroy = sw_perf_event_destroy; 10412 } 10413 10414 return 0; 10415 } 10416 10417 static struct pmu perf_swevent = { 10418 .task_ctx_nr = perf_sw_context, 10419 10420 .capabilities = PERF_PMU_CAP_NO_NMI, 10421 10422 .event_init = perf_swevent_init, 10423 .add = perf_swevent_add, 10424 .del = perf_swevent_del, 10425 .start = perf_swevent_start, 10426 .stop = perf_swevent_stop, 10427 .read = perf_swevent_read, 10428 }; 10429 10430 #ifdef CONFIG_EVENT_TRACING 10431 10432 static void tp_perf_event_destroy(struct perf_event *event) 10433 { 10434 perf_trace_destroy(event); 10435 } 10436 10437 static int perf_tp_event_init(struct perf_event *event) 10438 { 10439 int err; 10440 10441 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10442 return -ENOENT; 10443 10444 /* 10445 * no branch sampling for tracepoint events 10446 */ 10447 if (has_branch_stack(event)) 10448 return -EOPNOTSUPP; 10449 10450 err = perf_trace_init(event); 10451 if (err) 10452 return err; 10453 10454 event->destroy = tp_perf_event_destroy; 10455 10456 return 0; 10457 } 10458 10459 static struct pmu perf_tracepoint = { 10460 .task_ctx_nr = perf_sw_context, 10461 10462 .event_init = perf_tp_event_init, 10463 .add = perf_trace_add, 10464 .del = perf_trace_del, 10465 .start = perf_swevent_start, 10466 .stop = perf_swevent_stop, 10467 .read = perf_swevent_read, 10468 }; 10469 10470 static int perf_tp_filter_match(struct perf_event *event, 10471 struct perf_raw_record *raw) 10472 { 10473 void *record = raw->frag.data; 10474 10475 /* only top level events have filters set */ 10476 if (event->parent) 10477 event = event->parent; 10478 10479 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10480 return 1; 10481 return 0; 10482 } 10483 10484 static int perf_tp_event_match(struct perf_event *event, 10485 struct perf_raw_record *raw, 10486 struct pt_regs *regs) 10487 { 10488 if (event->hw.state & PERF_HES_STOPPED) 10489 return 0; 10490 /* 10491 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10492 */ 10493 if (event->attr.exclude_kernel && !user_mode(regs)) 10494 return 0; 10495 10496 if (!perf_tp_filter_match(event, raw)) 10497 return 0; 10498 10499 return 1; 10500 } 10501 10502 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10503 struct trace_event_call *call, u64 count, 10504 struct pt_regs *regs, struct hlist_head *head, 10505 struct task_struct *task) 10506 { 10507 if (bpf_prog_array_valid(call)) { 10508 *(struct pt_regs **)raw_data = regs; 10509 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10510 perf_swevent_put_recursion_context(rctx); 10511 return; 10512 } 10513 } 10514 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10515 rctx, task); 10516 } 10517 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10518 10519 static void __perf_tp_event_target_task(u64 count, void *record, 10520 struct pt_regs *regs, 10521 struct perf_sample_data *data, 10522 struct perf_raw_record *raw, 10523 struct perf_event *event) 10524 { 10525 struct trace_entry *entry = record; 10526 10527 if (event->attr.config != entry->type) 10528 return; 10529 /* Cannot deliver synchronous signal to other task. */ 10530 if (event->attr.sigtrap) 10531 return; 10532 if (perf_tp_event_match(event, raw, regs)) { 10533 perf_sample_data_init(data, 0, 0); 10534 perf_sample_save_raw_data(data, event, raw); 10535 perf_swevent_event(event, count, data, regs); 10536 } 10537 } 10538 10539 static void perf_tp_event_target_task(u64 count, void *record, 10540 struct pt_regs *regs, 10541 struct perf_sample_data *data, 10542 struct perf_raw_record *raw, 10543 struct perf_event_context *ctx) 10544 { 10545 unsigned int cpu = smp_processor_id(); 10546 struct pmu *pmu = &perf_tracepoint; 10547 struct perf_event *event, *sibling; 10548 10549 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10550 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10551 for_each_sibling_event(sibling, event) 10552 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10553 } 10554 10555 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10556 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10557 for_each_sibling_event(sibling, event) 10558 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10559 } 10560 } 10561 10562 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10563 struct pt_regs *regs, struct hlist_head *head, int rctx, 10564 struct task_struct *task) 10565 { 10566 struct perf_sample_data data; 10567 struct perf_event *event; 10568 10569 struct perf_raw_record raw = { 10570 .frag = { 10571 .size = entry_size, 10572 .data = record, 10573 }, 10574 }; 10575 10576 perf_trace_buf_update(record, event_type); 10577 10578 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10579 if (perf_tp_event_match(event, &raw, regs)) { 10580 /* 10581 * Here use the same on-stack perf_sample_data, 10582 * some members in data are event-specific and 10583 * need to be re-computed for different sweveents. 10584 * Re-initialize data->sample_flags safely to avoid 10585 * the problem that next event skips preparing data 10586 * because data->sample_flags is set. 10587 */ 10588 perf_sample_data_init(&data, 0, 0); 10589 perf_sample_save_raw_data(&data, event, &raw); 10590 perf_swevent_event(event, count, &data, regs); 10591 } 10592 } 10593 10594 /* 10595 * If we got specified a target task, also iterate its context and 10596 * deliver this event there too. 10597 */ 10598 if (task && task != current) { 10599 struct perf_event_context *ctx; 10600 10601 rcu_read_lock(); 10602 ctx = rcu_dereference(task->perf_event_ctxp); 10603 if (!ctx) 10604 goto unlock; 10605 10606 raw_spin_lock(&ctx->lock); 10607 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 10608 raw_spin_unlock(&ctx->lock); 10609 unlock: 10610 rcu_read_unlock(); 10611 } 10612 10613 perf_swevent_put_recursion_context(rctx); 10614 } 10615 EXPORT_SYMBOL_GPL(perf_tp_event); 10616 10617 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10618 /* 10619 * Flags in config, used by dynamic PMU kprobe and uprobe 10620 * The flags should match following PMU_FORMAT_ATTR(). 10621 * 10622 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10623 * if not set, create kprobe/uprobe 10624 * 10625 * The following values specify a reference counter (or semaphore in the 10626 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10627 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10628 * 10629 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10630 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10631 */ 10632 enum perf_probe_config { 10633 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10634 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10635 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10636 }; 10637 10638 PMU_FORMAT_ATTR(retprobe, "config:0"); 10639 #endif 10640 10641 #ifdef CONFIG_KPROBE_EVENTS 10642 static struct attribute *kprobe_attrs[] = { 10643 &format_attr_retprobe.attr, 10644 NULL, 10645 }; 10646 10647 static struct attribute_group kprobe_format_group = { 10648 .name = "format", 10649 .attrs = kprobe_attrs, 10650 }; 10651 10652 static const struct attribute_group *kprobe_attr_groups[] = { 10653 &kprobe_format_group, 10654 NULL, 10655 }; 10656 10657 static int perf_kprobe_event_init(struct perf_event *event); 10658 static struct pmu perf_kprobe = { 10659 .task_ctx_nr = perf_sw_context, 10660 .event_init = perf_kprobe_event_init, 10661 .add = perf_trace_add, 10662 .del = perf_trace_del, 10663 .start = perf_swevent_start, 10664 .stop = perf_swevent_stop, 10665 .read = perf_swevent_read, 10666 .attr_groups = kprobe_attr_groups, 10667 }; 10668 10669 static int perf_kprobe_event_init(struct perf_event *event) 10670 { 10671 int err; 10672 bool is_retprobe; 10673 10674 if (event->attr.type != perf_kprobe.type) 10675 return -ENOENT; 10676 10677 if (!perfmon_capable()) 10678 return -EACCES; 10679 10680 /* 10681 * no branch sampling for probe events 10682 */ 10683 if (has_branch_stack(event)) 10684 return -EOPNOTSUPP; 10685 10686 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10687 err = perf_kprobe_init(event, is_retprobe); 10688 if (err) 10689 return err; 10690 10691 event->destroy = perf_kprobe_destroy; 10692 10693 return 0; 10694 } 10695 #endif /* CONFIG_KPROBE_EVENTS */ 10696 10697 #ifdef CONFIG_UPROBE_EVENTS 10698 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10699 10700 static struct attribute *uprobe_attrs[] = { 10701 &format_attr_retprobe.attr, 10702 &format_attr_ref_ctr_offset.attr, 10703 NULL, 10704 }; 10705 10706 static struct attribute_group uprobe_format_group = { 10707 .name = "format", 10708 .attrs = uprobe_attrs, 10709 }; 10710 10711 static const struct attribute_group *uprobe_attr_groups[] = { 10712 &uprobe_format_group, 10713 NULL, 10714 }; 10715 10716 static int perf_uprobe_event_init(struct perf_event *event); 10717 static struct pmu perf_uprobe = { 10718 .task_ctx_nr = perf_sw_context, 10719 .event_init = perf_uprobe_event_init, 10720 .add = perf_trace_add, 10721 .del = perf_trace_del, 10722 .start = perf_swevent_start, 10723 .stop = perf_swevent_stop, 10724 .read = perf_swevent_read, 10725 .attr_groups = uprobe_attr_groups, 10726 }; 10727 10728 static int perf_uprobe_event_init(struct perf_event *event) 10729 { 10730 int err; 10731 unsigned long ref_ctr_offset; 10732 bool is_retprobe; 10733 10734 if (event->attr.type != perf_uprobe.type) 10735 return -ENOENT; 10736 10737 if (!perfmon_capable()) 10738 return -EACCES; 10739 10740 /* 10741 * no branch sampling for probe events 10742 */ 10743 if (has_branch_stack(event)) 10744 return -EOPNOTSUPP; 10745 10746 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10747 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10748 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10749 if (err) 10750 return err; 10751 10752 event->destroy = perf_uprobe_destroy; 10753 10754 return 0; 10755 } 10756 #endif /* CONFIG_UPROBE_EVENTS */ 10757 10758 static inline void perf_tp_register(void) 10759 { 10760 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10761 #ifdef CONFIG_KPROBE_EVENTS 10762 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10763 #endif 10764 #ifdef CONFIG_UPROBE_EVENTS 10765 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10766 #endif 10767 } 10768 10769 static void perf_event_free_filter(struct perf_event *event) 10770 { 10771 ftrace_profile_free_filter(event); 10772 } 10773 10774 /* 10775 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10776 * with perf_event_open() 10777 */ 10778 static inline bool perf_event_is_tracing(struct perf_event *event) 10779 { 10780 if (event->pmu == &perf_tracepoint) 10781 return true; 10782 #ifdef CONFIG_KPROBE_EVENTS 10783 if (event->pmu == &perf_kprobe) 10784 return true; 10785 #endif 10786 #ifdef CONFIG_UPROBE_EVENTS 10787 if (event->pmu == &perf_uprobe) 10788 return true; 10789 #endif 10790 return false; 10791 } 10792 10793 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10794 u64 bpf_cookie) 10795 { 10796 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10797 10798 if (!perf_event_is_tracing(event)) 10799 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10800 10801 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10802 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10803 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10804 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10805 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10806 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10807 return -EINVAL; 10808 10809 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10810 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10811 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10812 return -EINVAL; 10813 10814 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10815 /* only uprobe programs are allowed to be sleepable */ 10816 return -EINVAL; 10817 10818 /* Kprobe override only works for kprobes, not uprobes. */ 10819 if (prog->kprobe_override && !is_kprobe) 10820 return -EINVAL; 10821 10822 if (is_tracepoint || is_syscall_tp) { 10823 int off = trace_event_get_offsets(event->tp_event); 10824 10825 if (prog->aux->max_ctx_offset > off) 10826 return -EACCES; 10827 } 10828 10829 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10830 } 10831 10832 void perf_event_free_bpf_prog(struct perf_event *event) 10833 { 10834 if (!perf_event_is_tracing(event)) { 10835 perf_event_free_bpf_handler(event); 10836 return; 10837 } 10838 perf_event_detach_bpf_prog(event); 10839 } 10840 10841 #else 10842 10843 static inline void perf_tp_register(void) 10844 { 10845 } 10846 10847 static void perf_event_free_filter(struct perf_event *event) 10848 { 10849 } 10850 10851 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10852 u64 bpf_cookie) 10853 { 10854 return -ENOENT; 10855 } 10856 10857 void perf_event_free_bpf_prog(struct perf_event *event) 10858 { 10859 } 10860 #endif /* CONFIG_EVENT_TRACING */ 10861 10862 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10863 void perf_bp_event(struct perf_event *bp, void *data) 10864 { 10865 struct perf_sample_data sample; 10866 struct pt_regs *regs = data; 10867 10868 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10869 10870 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10871 perf_swevent_event(bp, 1, &sample, regs); 10872 } 10873 #endif 10874 10875 /* 10876 * Allocate a new address filter 10877 */ 10878 static struct perf_addr_filter * 10879 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10880 { 10881 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10882 struct perf_addr_filter *filter; 10883 10884 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10885 if (!filter) 10886 return NULL; 10887 10888 INIT_LIST_HEAD(&filter->entry); 10889 list_add_tail(&filter->entry, filters); 10890 10891 return filter; 10892 } 10893 10894 static void free_filters_list(struct list_head *filters) 10895 { 10896 struct perf_addr_filter *filter, *iter; 10897 10898 list_for_each_entry_safe(filter, iter, filters, entry) { 10899 path_put(&filter->path); 10900 list_del(&filter->entry); 10901 kfree(filter); 10902 } 10903 } 10904 10905 /* 10906 * Free existing address filters and optionally install new ones 10907 */ 10908 static void perf_addr_filters_splice(struct perf_event *event, 10909 struct list_head *head) 10910 { 10911 unsigned long flags; 10912 LIST_HEAD(list); 10913 10914 if (!has_addr_filter(event)) 10915 return; 10916 10917 /* don't bother with children, they don't have their own filters */ 10918 if (event->parent) 10919 return; 10920 10921 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10922 10923 list_splice_init(&event->addr_filters.list, &list); 10924 if (head) 10925 list_splice(head, &event->addr_filters.list); 10926 10927 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10928 10929 free_filters_list(&list); 10930 } 10931 10932 /* 10933 * Scan through mm's vmas and see if one of them matches the 10934 * @filter; if so, adjust filter's address range. 10935 * Called with mm::mmap_lock down for reading. 10936 */ 10937 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10938 struct mm_struct *mm, 10939 struct perf_addr_filter_range *fr) 10940 { 10941 struct vm_area_struct *vma; 10942 VMA_ITERATOR(vmi, mm, 0); 10943 10944 for_each_vma(vmi, vma) { 10945 if (!vma->vm_file) 10946 continue; 10947 10948 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10949 return; 10950 } 10951 } 10952 10953 /* 10954 * Update event's address range filters based on the 10955 * task's existing mappings, if any. 10956 */ 10957 static void perf_event_addr_filters_apply(struct perf_event *event) 10958 { 10959 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10960 struct task_struct *task = READ_ONCE(event->ctx->task); 10961 struct perf_addr_filter *filter; 10962 struct mm_struct *mm = NULL; 10963 unsigned int count = 0; 10964 unsigned long flags; 10965 10966 /* 10967 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10968 * will stop on the parent's child_mutex that our caller is also holding 10969 */ 10970 if (task == TASK_TOMBSTONE) 10971 return; 10972 10973 if (ifh->nr_file_filters) { 10974 mm = get_task_mm(task); 10975 if (!mm) 10976 goto restart; 10977 10978 mmap_read_lock(mm); 10979 } 10980 10981 raw_spin_lock_irqsave(&ifh->lock, flags); 10982 list_for_each_entry(filter, &ifh->list, entry) { 10983 if (filter->path.dentry) { 10984 /* 10985 * Adjust base offset if the filter is associated to a 10986 * binary that needs to be mapped: 10987 */ 10988 event->addr_filter_ranges[count].start = 0; 10989 event->addr_filter_ranges[count].size = 0; 10990 10991 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10992 } else { 10993 event->addr_filter_ranges[count].start = filter->offset; 10994 event->addr_filter_ranges[count].size = filter->size; 10995 } 10996 10997 count++; 10998 } 10999 11000 event->addr_filters_gen++; 11001 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11002 11003 if (ifh->nr_file_filters) { 11004 mmap_read_unlock(mm); 11005 11006 mmput(mm); 11007 } 11008 11009 restart: 11010 perf_event_stop(event, 1); 11011 } 11012 11013 /* 11014 * Address range filtering: limiting the data to certain 11015 * instruction address ranges. Filters are ioctl()ed to us from 11016 * userspace as ascii strings. 11017 * 11018 * Filter string format: 11019 * 11020 * ACTION RANGE_SPEC 11021 * where ACTION is one of the 11022 * * "filter": limit the trace to this region 11023 * * "start": start tracing from this address 11024 * * "stop": stop tracing at this address/region; 11025 * RANGE_SPEC is 11026 * * for kernel addresses: <start address>[/<size>] 11027 * * for object files: <start address>[/<size>]@</path/to/object/file> 11028 * 11029 * if <size> is not specified or is zero, the range is treated as a single 11030 * address; not valid for ACTION=="filter". 11031 */ 11032 enum { 11033 IF_ACT_NONE = -1, 11034 IF_ACT_FILTER, 11035 IF_ACT_START, 11036 IF_ACT_STOP, 11037 IF_SRC_FILE, 11038 IF_SRC_KERNEL, 11039 IF_SRC_FILEADDR, 11040 IF_SRC_KERNELADDR, 11041 }; 11042 11043 enum { 11044 IF_STATE_ACTION = 0, 11045 IF_STATE_SOURCE, 11046 IF_STATE_END, 11047 }; 11048 11049 static const match_table_t if_tokens = { 11050 { IF_ACT_FILTER, "filter" }, 11051 { IF_ACT_START, "start" }, 11052 { IF_ACT_STOP, "stop" }, 11053 { IF_SRC_FILE, "%u/%u@%s" }, 11054 { IF_SRC_KERNEL, "%u/%u" }, 11055 { IF_SRC_FILEADDR, "%u@%s" }, 11056 { IF_SRC_KERNELADDR, "%u" }, 11057 { IF_ACT_NONE, NULL }, 11058 }; 11059 11060 /* 11061 * Address filter string parser 11062 */ 11063 static int 11064 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11065 struct list_head *filters) 11066 { 11067 struct perf_addr_filter *filter = NULL; 11068 char *start, *orig, *filename = NULL; 11069 substring_t args[MAX_OPT_ARGS]; 11070 int state = IF_STATE_ACTION, token; 11071 unsigned int kernel = 0; 11072 int ret = -EINVAL; 11073 11074 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11075 if (!fstr) 11076 return -ENOMEM; 11077 11078 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11079 static const enum perf_addr_filter_action_t actions[] = { 11080 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11081 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11082 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11083 }; 11084 ret = -EINVAL; 11085 11086 if (!*start) 11087 continue; 11088 11089 /* filter definition begins */ 11090 if (state == IF_STATE_ACTION) { 11091 filter = perf_addr_filter_new(event, filters); 11092 if (!filter) 11093 goto fail; 11094 } 11095 11096 token = match_token(start, if_tokens, args); 11097 switch (token) { 11098 case IF_ACT_FILTER: 11099 case IF_ACT_START: 11100 case IF_ACT_STOP: 11101 if (state != IF_STATE_ACTION) 11102 goto fail; 11103 11104 filter->action = actions[token]; 11105 state = IF_STATE_SOURCE; 11106 break; 11107 11108 case IF_SRC_KERNELADDR: 11109 case IF_SRC_KERNEL: 11110 kernel = 1; 11111 fallthrough; 11112 11113 case IF_SRC_FILEADDR: 11114 case IF_SRC_FILE: 11115 if (state != IF_STATE_SOURCE) 11116 goto fail; 11117 11118 *args[0].to = 0; 11119 ret = kstrtoul(args[0].from, 0, &filter->offset); 11120 if (ret) 11121 goto fail; 11122 11123 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11124 *args[1].to = 0; 11125 ret = kstrtoul(args[1].from, 0, &filter->size); 11126 if (ret) 11127 goto fail; 11128 } 11129 11130 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11131 int fpos = token == IF_SRC_FILE ? 2 : 1; 11132 11133 kfree(filename); 11134 filename = match_strdup(&args[fpos]); 11135 if (!filename) { 11136 ret = -ENOMEM; 11137 goto fail; 11138 } 11139 } 11140 11141 state = IF_STATE_END; 11142 break; 11143 11144 default: 11145 goto fail; 11146 } 11147 11148 /* 11149 * Filter definition is fully parsed, validate and install it. 11150 * Make sure that it doesn't contradict itself or the event's 11151 * attribute. 11152 */ 11153 if (state == IF_STATE_END) { 11154 ret = -EINVAL; 11155 11156 /* 11157 * ACTION "filter" must have a non-zero length region 11158 * specified. 11159 */ 11160 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11161 !filter->size) 11162 goto fail; 11163 11164 if (!kernel) { 11165 if (!filename) 11166 goto fail; 11167 11168 /* 11169 * For now, we only support file-based filters 11170 * in per-task events; doing so for CPU-wide 11171 * events requires additional context switching 11172 * trickery, since same object code will be 11173 * mapped at different virtual addresses in 11174 * different processes. 11175 */ 11176 ret = -EOPNOTSUPP; 11177 if (!event->ctx->task) 11178 goto fail; 11179 11180 /* look up the path and grab its inode */ 11181 ret = kern_path(filename, LOOKUP_FOLLOW, 11182 &filter->path); 11183 if (ret) 11184 goto fail; 11185 11186 ret = -EINVAL; 11187 if (!filter->path.dentry || 11188 !S_ISREG(d_inode(filter->path.dentry) 11189 ->i_mode)) 11190 goto fail; 11191 11192 event->addr_filters.nr_file_filters++; 11193 } 11194 11195 /* ready to consume more filters */ 11196 kfree(filename); 11197 filename = NULL; 11198 state = IF_STATE_ACTION; 11199 filter = NULL; 11200 kernel = 0; 11201 } 11202 } 11203 11204 if (state != IF_STATE_ACTION) 11205 goto fail; 11206 11207 kfree(filename); 11208 kfree(orig); 11209 11210 return 0; 11211 11212 fail: 11213 kfree(filename); 11214 free_filters_list(filters); 11215 kfree(orig); 11216 11217 return ret; 11218 } 11219 11220 static int 11221 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11222 { 11223 LIST_HEAD(filters); 11224 int ret; 11225 11226 /* 11227 * Since this is called in perf_ioctl() path, we're already holding 11228 * ctx::mutex. 11229 */ 11230 lockdep_assert_held(&event->ctx->mutex); 11231 11232 if (WARN_ON_ONCE(event->parent)) 11233 return -EINVAL; 11234 11235 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11236 if (ret) 11237 goto fail_clear_files; 11238 11239 ret = event->pmu->addr_filters_validate(&filters); 11240 if (ret) 11241 goto fail_free_filters; 11242 11243 /* remove existing filters, if any */ 11244 perf_addr_filters_splice(event, &filters); 11245 11246 /* install new filters */ 11247 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11248 11249 return ret; 11250 11251 fail_free_filters: 11252 free_filters_list(&filters); 11253 11254 fail_clear_files: 11255 event->addr_filters.nr_file_filters = 0; 11256 11257 return ret; 11258 } 11259 11260 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11261 { 11262 int ret = -EINVAL; 11263 char *filter_str; 11264 11265 filter_str = strndup_user(arg, PAGE_SIZE); 11266 if (IS_ERR(filter_str)) 11267 return PTR_ERR(filter_str); 11268 11269 #ifdef CONFIG_EVENT_TRACING 11270 if (perf_event_is_tracing(event)) { 11271 struct perf_event_context *ctx = event->ctx; 11272 11273 /* 11274 * Beware, here be dragons!! 11275 * 11276 * the tracepoint muck will deadlock against ctx->mutex, but 11277 * the tracepoint stuff does not actually need it. So 11278 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11279 * already have a reference on ctx. 11280 * 11281 * This can result in event getting moved to a different ctx, 11282 * but that does not affect the tracepoint state. 11283 */ 11284 mutex_unlock(&ctx->mutex); 11285 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11286 mutex_lock(&ctx->mutex); 11287 } else 11288 #endif 11289 if (has_addr_filter(event)) 11290 ret = perf_event_set_addr_filter(event, filter_str); 11291 11292 kfree(filter_str); 11293 return ret; 11294 } 11295 11296 /* 11297 * hrtimer based swevent callback 11298 */ 11299 11300 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11301 { 11302 enum hrtimer_restart ret = HRTIMER_RESTART; 11303 struct perf_sample_data data; 11304 struct pt_regs *regs; 11305 struct perf_event *event; 11306 u64 period; 11307 11308 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11309 11310 if (event->state != PERF_EVENT_STATE_ACTIVE) 11311 return HRTIMER_NORESTART; 11312 11313 event->pmu->read(event); 11314 11315 perf_sample_data_init(&data, 0, event->hw.last_period); 11316 regs = get_irq_regs(); 11317 11318 if (regs && !perf_exclude_event(event, regs)) { 11319 if (!(event->attr.exclude_idle && is_idle_task(current))) 11320 if (__perf_event_overflow(event, 1, &data, regs)) 11321 ret = HRTIMER_NORESTART; 11322 } 11323 11324 period = max_t(u64, 10000, event->hw.sample_period); 11325 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11326 11327 return ret; 11328 } 11329 11330 static void perf_swevent_start_hrtimer(struct perf_event *event) 11331 { 11332 struct hw_perf_event *hwc = &event->hw; 11333 s64 period; 11334 11335 if (!is_sampling_event(event)) 11336 return; 11337 11338 period = local64_read(&hwc->period_left); 11339 if (period) { 11340 if (period < 0) 11341 period = 10000; 11342 11343 local64_set(&hwc->period_left, 0); 11344 } else { 11345 period = max_t(u64, 10000, hwc->sample_period); 11346 } 11347 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11348 HRTIMER_MODE_REL_PINNED_HARD); 11349 } 11350 11351 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11352 { 11353 struct hw_perf_event *hwc = &event->hw; 11354 11355 if (is_sampling_event(event)) { 11356 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11357 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11358 11359 hrtimer_cancel(&hwc->hrtimer); 11360 } 11361 } 11362 11363 static void perf_swevent_init_hrtimer(struct perf_event *event) 11364 { 11365 struct hw_perf_event *hwc = &event->hw; 11366 11367 if (!is_sampling_event(event)) 11368 return; 11369 11370 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11371 hwc->hrtimer.function = perf_swevent_hrtimer; 11372 11373 /* 11374 * Since hrtimers have a fixed rate, we can do a static freq->period 11375 * mapping and avoid the whole period adjust feedback stuff. 11376 */ 11377 if (event->attr.freq) { 11378 long freq = event->attr.sample_freq; 11379 11380 event->attr.sample_period = NSEC_PER_SEC / freq; 11381 hwc->sample_period = event->attr.sample_period; 11382 local64_set(&hwc->period_left, hwc->sample_period); 11383 hwc->last_period = hwc->sample_period; 11384 event->attr.freq = 0; 11385 } 11386 } 11387 11388 /* 11389 * Software event: cpu wall time clock 11390 */ 11391 11392 static void cpu_clock_event_update(struct perf_event *event) 11393 { 11394 s64 prev; 11395 u64 now; 11396 11397 now = local_clock(); 11398 prev = local64_xchg(&event->hw.prev_count, now); 11399 local64_add(now - prev, &event->count); 11400 } 11401 11402 static void cpu_clock_event_start(struct perf_event *event, int flags) 11403 { 11404 local64_set(&event->hw.prev_count, local_clock()); 11405 perf_swevent_start_hrtimer(event); 11406 } 11407 11408 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11409 { 11410 perf_swevent_cancel_hrtimer(event); 11411 cpu_clock_event_update(event); 11412 } 11413 11414 static int cpu_clock_event_add(struct perf_event *event, int flags) 11415 { 11416 if (flags & PERF_EF_START) 11417 cpu_clock_event_start(event, flags); 11418 perf_event_update_userpage(event); 11419 11420 return 0; 11421 } 11422 11423 static void cpu_clock_event_del(struct perf_event *event, int flags) 11424 { 11425 cpu_clock_event_stop(event, flags); 11426 } 11427 11428 static void cpu_clock_event_read(struct perf_event *event) 11429 { 11430 cpu_clock_event_update(event); 11431 } 11432 11433 static int cpu_clock_event_init(struct perf_event *event) 11434 { 11435 if (event->attr.type != perf_cpu_clock.type) 11436 return -ENOENT; 11437 11438 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11439 return -ENOENT; 11440 11441 /* 11442 * no branch sampling for software events 11443 */ 11444 if (has_branch_stack(event)) 11445 return -EOPNOTSUPP; 11446 11447 perf_swevent_init_hrtimer(event); 11448 11449 return 0; 11450 } 11451 11452 static struct pmu perf_cpu_clock = { 11453 .task_ctx_nr = perf_sw_context, 11454 11455 .capabilities = PERF_PMU_CAP_NO_NMI, 11456 .dev = PMU_NULL_DEV, 11457 11458 .event_init = cpu_clock_event_init, 11459 .add = cpu_clock_event_add, 11460 .del = cpu_clock_event_del, 11461 .start = cpu_clock_event_start, 11462 .stop = cpu_clock_event_stop, 11463 .read = cpu_clock_event_read, 11464 }; 11465 11466 /* 11467 * Software event: task time clock 11468 */ 11469 11470 static void task_clock_event_update(struct perf_event *event, u64 now) 11471 { 11472 u64 prev; 11473 s64 delta; 11474 11475 prev = local64_xchg(&event->hw.prev_count, now); 11476 delta = now - prev; 11477 local64_add(delta, &event->count); 11478 } 11479 11480 static void task_clock_event_start(struct perf_event *event, int flags) 11481 { 11482 local64_set(&event->hw.prev_count, event->ctx->time); 11483 perf_swevent_start_hrtimer(event); 11484 } 11485 11486 static void task_clock_event_stop(struct perf_event *event, int flags) 11487 { 11488 perf_swevent_cancel_hrtimer(event); 11489 task_clock_event_update(event, event->ctx->time); 11490 } 11491 11492 static int task_clock_event_add(struct perf_event *event, int flags) 11493 { 11494 if (flags & PERF_EF_START) 11495 task_clock_event_start(event, flags); 11496 perf_event_update_userpage(event); 11497 11498 return 0; 11499 } 11500 11501 static void task_clock_event_del(struct perf_event *event, int flags) 11502 { 11503 task_clock_event_stop(event, PERF_EF_UPDATE); 11504 } 11505 11506 static void task_clock_event_read(struct perf_event *event) 11507 { 11508 u64 now = perf_clock(); 11509 u64 delta = now - event->ctx->timestamp; 11510 u64 time = event->ctx->time + delta; 11511 11512 task_clock_event_update(event, time); 11513 } 11514 11515 static int task_clock_event_init(struct perf_event *event) 11516 { 11517 if (event->attr.type != perf_task_clock.type) 11518 return -ENOENT; 11519 11520 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11521 return -ENOENT; 11522 11523 /* 11524 * no branch sampling for software events 11525 */ 11526 if (has_branch_stack(event)) 11527 return -EOPNOTSUPP; 11528 11529 perf_swevent_init_hrtimer(event); 11530 11531 return 0; 11532 } 11533 11534 static struct pmu perf_task_clock = { 11535 .task_ctx_nr = perf_sw_context, 11536 11537 .capabilities = PERF_PMU_CAP_NO_NMI, 11538 .dev = PMU_NULL_DEV, 11539 11540 .event_init = task_clock_event_init, 11541 .add = task_clock_event_add, 11542 .del = task_clock_event_del, 11543 .start = task_clock_event_start, 11544 .stop = task_clock_event_stop, 11545 .read = task_clock_event_read, 11546 }; 11547 11548 static void perf_pmu_nop_void(struct pmu *pmu) 11549 { 11550 } 11551 11552 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11553 { 11554 } 11555 11556 static int perf_pmu_nop_int(struct pmu *pmu) 11557 { 11558 return 0; 11559 } 11560 11561 static int perf_event_nop_int(struct perf_event *event, u64 value) 11562 { 11563 return 0; 11564 } 11565 11566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11567 11568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11569 { 11570 __this_cpu_write(nop_txn_flags, flags); 11571 11572 if (flags & ~PERF_PMU_TXN_ADD) 11573 return; 11574 11575 perf_pmu_disable(pmu); 11576 } 11577 11578 static int perf_pmu_commit_txn(struct pmu *pmu) 11579 { 11580 unsigned int flags = __this_cpu_read(nop_txn_flags); 11581 11582 __this_cpu_write(nop_txn_flags, 0); 11583 11584 if (flags & ~PERF_PMU_TXN_ADD) 11585 return 0; 11586 11587 perf_pmu_enable(pmu); 11588 return 0; 11589 } 11590 11591 static void perf_pmu_cancel_txn(struct pmu *pmu) 11592 { 11593 unsigned int flags = __this_cpu_read(nop_txn_flags); 11594 11595 __this_cpu_write(nop_txn_flags, 0); 11596 11597 if (flags & ~PERF_PMU_TXN_ADD) 11598 return; 11599 11600 perf_pmu_enable(pmu); 11601 } 11602 11603 static int perf_event_idx_default(struct perf_event *event) 11604 { 11605 return 0; 11606 } 11607 11608 static void free_pmu_context(struct pmu *pmu) 11609 { 11610 free_percpu(pmu->cpu_pmu_context); 11611 } 11612 11613 /* 11614 * Let userspace know that this PMU supports address range filtering: 11615 */ 11616 static ssize_t nr_addr_filters_show(struct device *dev, 11617 struct device_attribute *attr, 11618 char *page) 11619 { 11620 struct pmu *pmu = dev_get_drvdata(dev); 11621 11622 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11623 } 11624 DEVICE_ATTR_RO(nr_addr_filters); 11625 11626 static struct idr pmu_idr; 11627 11628 static ssize_t 11629 type_show(struct device *dev, struct device_attribute *attr, char *page) 11630 { 11631 struct pmu *pmu = dev_get_drvdata(dev); 11632 11633 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11634 } 11635 static DEVICE_ATTR_RO(type); 11636 11637 static ssize_t 11638 perf_event_mux_interval_ms_show(struct device *dev, 11639 struct device_attribute *attr, 11640 char *page) 11641 { 11642 struct pmu *pmu = dev_get_drvdata(dev); 11643 11644 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11645 } 11646 11647 static DEFINE_MUTEX(mux_interval_mutex); 11648 11649 static ssize_t 11650 perf_event_mux_interval_ms_store(struct device *dev, 11651 struct device_attribute *attr, 11652 const char *buf, size_t count) 11653 { 11654 struct pmu *pmu = dev_get_drvdata(dev); 11655 int timer, cpu, ret; 11656 11657 ret = kstrtoint(buf, 0, &timer); 11658 if (ret) 11659 return ret; 11660 11661 if (timer < 1) 11662 return -EINVAL; 11663 11664 /* same value, noting to do */ 11665 if (timer == pmu->hrtimer_interval_ms) 11666 return count; 11667 11668 mutex_lock(&mux_interval_mutex); 11669 pmu->hrtimer_interval_ms = timer; 11670 11671 /* update all cpuctx for this PMU */ 11672 cpus_read_lock(); 11673 for_each_online_cpu(cpu) { 11674 struct perf_cpu_pmu_context *cpc; 11675 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11676 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11677 11678 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11679 } 11680 cpus_read_unlock(); 11681 mutex_unlock(&mux_interval_mutex); 11682 11683 return count; 11684 } 11685 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11686 11687 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11688 { 11689 switch (scope) { 11690 case PERF_PMU_SCOPE_CORE: 11691 return topology_sibling_cpumask(cpu); 11692 case PERF_PMU_SCOPE_DIE: 11693 return topology_die_cpumask(cpu); 11694 case PERF_PMU_SCOPE_CLUSTER: 11695 return topology_cluster_cpumask(cpu); 11696 case PERF_PMU_SCOPE_PKG: 11697 return topology_core_cpumask(cpu); 11698 case PERF_PMU_SCOPE_SYS_WIDE: 11699 return cpu_online_mask; 11700 } 11701 11702 return NULL; 11703 } 11704 11705 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11706 { 11707 switch (scope) { 11708 case PERF_PMU_SCOPE_CORE: 11709 return perf_online_core_mask; 11710 case PERF_PMU_SCOPE_DIE: 11711 return perf_online_die_mask; 11712 case PERF_PMU_SCOPE_CLUSTER: 11713 return perf_online_cluster_mask; 11714 case PERF_PMU_SCOPE_PKG: 11715 return perf_online_pkg_mask; 11716 case PERF_PMU_SCOPE_SYS_WIDE: 11717 return perf_online_sys_mask; 11718 } 11719 11720 return NULL; 11721 } 11722 11723 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11724 char *buf) 11725 { 11726 struct pmu *pmu = dev_get_drvdata(dev); 11727 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11728 11729 if (mask) 11730 return cpumap_print_to_pagebuf(true, buf, mask); 11731 return 0; 11732 } 11733 11734 static DEVICE_ATTR_RO(cpumask); 11735 11736 static struct attribute *pmu_dev_attrs[] = { 11737 &dev_attr_type.attr, 11738 &dev_attr_perf_event_mux_interval_ms.attr, 11739 &dev_attr_nr_addr_filters.attr, 11740 &dev_attr_cpumask.attr, 11741 NULL, 11742 }; 11743 11744 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11745 { 11746 struct device *dev = kobj_to_dev(kobj); 11747 struct pmu *pmu = dev_get_drvdata(dev); 11748 11749 if (n == 2 && !pmu->nr_addr_filters) 11750 return 0; 11751 11752 /* cpumask */ 11753 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11754 return 0; 11755 11756 return a->mode; 11757 } 11758 11759 static struct attribute_group pmu_dev_attr_group = { 11760 .is_visible = pmu_dev_is_visible, 11761 .attrs = pmu_dev_attrs, 11762 }; 11763 11764 static const struct attribute_group *pmu_dev_groups[] = { 11765 &pmu_dev_attr_group, 11766 NULL, 11767 }; 11768 11769 static int pmu_bus_running; 11770 static struct bus_type pmu_bus = { 11771 .name = "event_source", 11772 .dev_groups = pmu_dev_groups, 11773 }; 11774 11775 static void pmu_dev_release(struct device *dev) 11776 { 11777 kfree(dev); 11778 } 11779 11780 static int pmu_dev_alloc(struct pmu *pmu) 11781 { 11782 int ret = -ENOMEM; 11783 11784 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11785 if (!pmu->dev) 11786 goto out; 11787 11788 pmu->dev->groups = pmu->attr_groups; 11789 device_initialize(pmu->dev); 11790 11791 dev_set_drvdata(pmu->dev, pmu); 11792 pmu->dev->bus = &pmu_bus; 11793 pmu->dev->parent = pmu->parent; 11794 pmu->dev->release = pmu_dev_release; 11795 11796 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11797 if (ret) 11798 goto free_dev; 11799 11800 ret = device_add(pmu->dev); 11801 if (ret) 11802 goto free_dev; 11803 11804 if (pmu->attr_update) { 11805 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11806 if (ret) 11807 goto del_dev; 11808 } 11809 11810 out: 11811 return ret; 11812 11813 del_dev: 11814 device_del(pmu->dev); 11815 11816 free_dev: 11817 put_device(pmu->dev); 11818 goto out; 11819 } 11820 11821 static struct lock_class_key cpuctx_mutex; 11822 static struct lock_class_key cpuctx_lock; 11823 11824 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11825 { 11826 int cpu, ret, max = PERF_TYPE_MAX; 11827 11828 mutex_lock(&pmus_lock); 11829 ret = -ENOMEM; 11830 pmu->pmu_disable_count = alloc_percpu(int); 11831 if (!pmu->pmu_disable_count) 11832 goto unlock; 11833 11834 pmu->type = -1; 11835 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11836 ret = -EINVAL; 11837 goto free_pdc; 11838 } 11839 11840 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11841 ret = -EINVAL; 11842 goto free_pdc; 11843 } 11844 11845 pmu->name = name; 11846 11847 if (type >= 0) 11848 max = type; 11849 11850 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11851 if (ret < 0) 11852 goto free_pdc; 11853 11854 WARN_ON(type >= 0 && ret != type); 11855 11856 type = ret; 11857 pmu->type = type; 11858 11859 if (pmu_bus_running && !pmu->dev) { 11860 ret = pmu_dev_alloc(pmu); 11861 if (ret) 11862 goto free_idr; 11863 } 11864 11865 ret = -ENOMEM; 11866 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11867 if (!pmu->cpu_pmu_context) 11868 goto free_dev; 11869 11870 for_each_possible_cpu(cpu) { 11871 struct perf_cpu_pmu_context *cpc; 11872 11873 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11874 __perf_init_event_pmu_context(&cpc->epc, pmu); 11875 __perf_mux_hrtimer_init(cpc, cpu); 11876 } 11877 11878 if (!pmu->start_txn) { 11879 if (pmu->pmu_enable) { 11880 /* 11881 * If we have pmu_enable/pmu_disable calls, install 11882 * transaction stubs that use that to try and batch 11883 * hardware accesses. 11884 */ 11885 pmu->start_txn = perf_pmu_start_txn; 11886 pmu->commit_txn = perf_pmu_commit_txn; 11887 pmu->cancel_txn = perf_pmu_cancel_txn; 11888 } else { 11889 pmu->start_txn = perf_pmu_nop_txn; 11890 pmu->commit_txn = perf_pmu_nop_int; 11891 pmu->cancel_txn = perf_pmu_nop_void; 11892 } 11893 } 11894 11895 if (!pmu->pmu_enable) { 11896 pmu->pmu_enable = perf_pmu_nop_void; 11897 pmu->pmu_disable = perf_pmu_nop_void; 11898 } 11899 11900 if (!pmu->check_period) 11901 pmu->check_period = perf_event_nop_int; 11902 11903 if (!pmu->event_idx) 11904 pmu->event_idx = perf_event_idx_default; 11905 11906 list_add_rcu(&pmu->entry, &pmus); 11907 atomic_set(&pmu->exclusive_cnt, 0); 11908 ret = 0; 11909 unlock: 11910 mutex_unlock(&pmus_lock); 11911 11912 return ret; 11913 11914 free_dev: 11915 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11916 device_del(pmu->dev); 11917 put_device(pmu->dev); 11918 } 11919 11920 free_idr: 11921 idr_remove(&pmu_idr, pmu->type); 11922 11923 free_pdc: 11924 free_percpu(pmu->pmu_disable_count); 11925 goto unlock; 11926 } 11927 EXPORT_SYMBOL_GPL(perf_pmu_register); 11928 11929 void perf_pmu_unregister(struct pmu *pmu) 11930 { 11931 mutex_lock(&pmus_lock); 11932 list_del_rcu(&pmu->entry); 11933 11934 /* 11935 * We dereference the pmu list under both SRCU and regular RCU, so 11936 * synchronize against both of those. 11937 */ 11938 synchronize_srcu(&pmus_srcu); 11939 synchronize_rcu(); 11940 11941 free_percpu(pmu->pmu_disable_count); 11942 idr_remove(&pmu_idr, pmu->type); 11943 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11944 if (pmu->nr_addr_filters) 11945 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11946 device_del(pmu->dev); 11947 put_device(pmu->dev); 11948 } 11949 free_pmu_context(pmu); 11950 mutex_unlock(&pmus_lock); 11951 } 11952 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11953 11954 static inline bool has_extended_regs(struct perf_event *event) 11955 { 11956 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11957 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11958 } 11959 11960 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11961 { 11962 struct perf_event_context *ctx = NULL; 11963 int ret; 11964 11965 if (!try_module_get(pmu->module)) 11966 return -ENODEV; 11967 11968 /* 11969 * A number of pmu->event_init() methods iterate the sibling_list to, 11970 * for example, validate if the group fits on the PMU. Therefore, 11971 * if this is a sibling event, acquire the ctx->mutex to protect 11972 * the sibling_list. 11973 */ 11974 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11975 /* 11976 * This ctx->mutex can nest when we're called through 11977 * inheritance. See the perf_event_ctx_lock_nested() comment. 11978 */ 11979 ctx = perf_event_ctx_lock_nested(event->group_leader, 11980 SINGLE_DEPTH_NESTING); 11981 BUG_ON(!ctx); 11982 } 11983 11984 event->pmu = pmu; 11985 ret = pmu->event_init(event); 11986 11987 if (ctx) 11988 perf_event_ctx_unlock(event->group_leader, ctx); 11989 11990 if (!ret) { 11991 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11992 has_extended_regs(event)) 11993 ret = -EOPNOTSUPP; 11994 11995 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11996 event_has_any_exclude_flag(event)) 11997 ret = -EINVAL; 11998 11999 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12000 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12001 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 12002 int cpu; 12003 12004 if (pmu_cpumask && cpumask) { 12005 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12006 if (cpu >= nr_cpu_ids) 12007 ret = -ENODEV; 12008 else 12009 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12010 } else { 12011 ret = -ENODEV; 12012 } 12013 } 12014 12015 if (ret && event->destroy) 12016 event->destroy(event); 12017 } 12018 12019 if (ret) 12020 module_put(pmu->module); 12021 12022 return ret; 12023 } 12024 12025 static struct pmu *perf_init_event(struct perf_event *event) 12026 { 12027 bool extended_type = false; 12028 int idx, type, ret; 12029 struct pmu *pmu; 12030 12031 idx = srcu_read_lock(&pmus_srcu); 12032 12033 /* 12034 * Save original type before calling pmu->event_init() since certain 12035 * pmus overwrites event->attr.type to forward event to another pmu. 12036 */ 12037 event->orig_type = event->attr.type; 12038 12039 /* Try parent's PMU first: */ 12040 if (event->parent && event->parent->pmu) { 12041 pmu = event->parent->pmu; 12042 ret = perf_try_init_event(pmu, event); 12043 if (!ret) 12044 goto unlock; 12045 } 12046 12047 /* 12048 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12049 * are often aliases for PERF_TYPE_RAW. 12050 */ 12051 type = event->attr.type; 12052 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12053 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12054 if (!type) { 12055 type = PERF_TYPE_RAW; 12056 } else { 12057 extended_type = true; 12058 event->attr.config &= PERF_HW_EVENT_MASK; 12059 } 12060 } 12061 12062 again: 12063 rcu_read_lock(); 12064 pmu = idr_find(&pmu_idr, type); 12065 rcu_read_unlock(); 12066 if (pmu) { 12067 if (event->attr.type != type && type != PERF_TYPE_RAW && 12068 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12069 goto fail; 12070 12071 ret = perf_try_init_event(pmu, event); 12072 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12073 type = event->attr.type; 12074 goto again; 12075 } 12076 12077 if (ret) 12078 pmu = ERR_PTR(ret); 12079 12080 goto unlock; 12081 } 12082 12083 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12084 ret = perf_try_init_event(pmu, event); 12085 if (!ret) 12086 goto unlock; 12087 12088 if (ret != -ENOENT) { 12089 pmu = ERR_PTR(ret); 12090 goto unlock; 12091 } 12092 } 12093 fail: 12094 pmu = ERR_PTR(-ENOENT); 12095 unlock: 12096 srcu_read_unlock(&pmus_srcu, idx); 12097 12098 return pmu; 12099 } 12100 12101 static void attach_sb_event(struct perf_event *event) 12102 { 12103 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12104 12105 raw_spin_lock(&pel->lock); 12106 list_add_rcu(&event->sb_list, &pel->list); 12107 raw_spin_unlock(&pel->lock); 12108 } 12109 12110 /* 12111 * We keep a list of all !task (and therefore per-cpu) events 12112 * that need to receive side-band records. 12113 * 12114 * This avoids having to scan all the various PMU per-cpu contexts 12115 * looking for them. 12116 */ 12117 static void account_pmu_sb_event(struct perf_event *event) 12118 { 12119 if (is_sb_event(event)) 12120 attach_sb_event(event); 12121 } 12122 12123 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12124 static void account_freq_event_nohz(void) 12125 { 12126 #ifdef CONFIG_NO_HZ_FULL 12127 /* Lock so we don't race with concurrent unaccount */ 12128 spin_lock(&nr_freq_lock); 12129 if (atomic_inc_return(&nr_freq_events) == 1) 12130 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12131 spin_unlock(&nr_freq_lock); 12132 #endif 12133 } 12134 12135 static void account_freq_event(void) 12136 { 12137 if (tick_nohz_full_enabled()) 12138 account_freq_event_nohz(); 12139 else 12140 atomic_inc(&nr_freq_events); 12141 } 12142 12143 12144 static void account_event(struct perf_event *event) 12145 { 12146 bool inc = false; 12147 12148 if (event->parent) 12149 return; 12150 12151 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12152 inc = true; 12153 if (event->attr.mmap || event->attr.mmap_data) 12154 atomic_inc(&nr_mmap_events); 12155 if (event->attr.build_id) 12156 atomic_inc(&nr_build_id_events); 12157 if (event->attr.comm) 12158 atomic_inc(&nr_comm_events); 12159 if (event->attr.namespaces) 12160 atomic_inc(&nr_namespaces_events); 12161 if (event->attr.cgroup) 12162 atomic_inc(&nr_cgroup_events); 12163 if (event->attr.task) 12164 atomic_inc(&nr_task_events); 12165 if (event->attr.freq) 12166 account_freq_event(); 12167 if (event->attr.context_switch) { 12168 atomic_inc(&nr_switch_events); 12169 inc = true; 12170 } 12171 if (has_branch_stack(event)) 12172 inc = true; 12173 if (is_cgroup_event(event)) 12174 inc = true; 12175 if (event->attr.ksymbol) 12176 atomic_inc(&nr_ksymbol_events); 12177 if (event->attr.bpf_event) 12178 atomic_inc(&nr_bpf_events); 12179 if (event->attr.text_poke) 12180 atomic_inc(&nr_text_poke_events); 12181 12182 if (inc) { 12183 /* 12184 * We need the mutex here because static_branch_enable() 12185 * must complete *before* the perf_sched_count increment 12186 * becomes visible. 12187 */ 12188 if (atomic_inc_not_zero(&perf_sched_count)) 12189 goto enabled; 12190 12191 mutex_lock(&perf_sched_mutex); 12192 if (!atomic_read(&perf_sched_count)) { 12193 static_branch_enable(&perf_sched_events); 12194 /* 12195 * Guarantee that all CPUs observe they key change and 12196 * call the perf scheduling hooks before proceeding to 12197 * install events that need them. 12198 */ 12199 synchronize_rcu(); 12200 } 12201 /* 12202 * Now that we have waited for the sync_sched(), allow further 12203 * increments to by-pass the mutex. 12204 */ 12205 atomic_inc(&perf_sched_count); 12206 mutex_unlock(&perf_sched_mutex); 12207 } 12208 enabled: 12209 12210 account_pmu_sb_event(event); 12211 } 12212 12213 /* 12214 * Allocate and initialize an event structure 12215 */ 12216 static struct perf_event * 12217 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12218 struct task_struct *task, 12219 struct perf_event *group_leader, 12220 struct perf_event *parent_event, 12221 perf_overflow_handler_t overflow_handler, 12222 void *context, int cgroup_fd) 12223 { 12224 struct pmu *pmu; 12225 struct perf_event *event; 12226 struct hw_perf_event *hwc; 12227 long err = -EINVAL; 12228 int node; 12229 12230 if ((unsigned)cpu >= nr_cpu_ids) { 12231 if (!task || cpu != -1) 12232 return ERR_PTR(-EINVAL); 12233 } 12234 if (attr->sigtrap && !task) { 12235 /* Requires a task: avoid signalling random tasks. */ 12236 return ERR_PTR(-EINVAL); 12237 } 12238 12239 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12240 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12241 node); 12242 if (!event) 12243 return ERR_PTR(-ENOMEM); 12244 12245 /* 12246 * Single events are their own group leaders, with an 12247 * empty sibling list: 12248 */ 12249 if (!group_leader) 12250 group_leader = event; 12251 12252 mutex_init(&event->child_mutex); 12253 INIT_LIST_HEAD(&event->child_list); 12254 12255 INIT_LIST_HEAD(&event->event_entry); 12256 INIT_LIST_HEAD(&event->sibling_list); 12257 INIT_LIST_HEAD(&event->active_list); 12258 init_event_group(event); 12259 INIT_LIST_HEAD(&event->rb_entry); 12260 INIT_LIST_HEAD(&event->active_entry); 12261 INIT_LIST_HEAD(&event->addr_filters.list); 12262 INIT_HLIST_NODE(&event->hlist_entry); 12263 12264 12265 init_waitqueue_head(&event->waitq); 12266 init_irq_work(&event->pending_irq, perf_pending_irq); 12267 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12268 init_task_work(&event->pending_task, perf_pending_task); 12269 rcuwait_init(&event->pending_work_wait); 12270 12271 mutex_init(&event->mmap_mutex); 12272 raw_spin_lock_init(&event->addr_filters.lock); 12273 12274 atomic_long_set(&event->refcount, 1); 12275 event->cpu = cpu; 12276 event->attr = *attr; 12277 event->group_leader = group_leader; 12278 event->pmu = NULL; 12279 event->oncpu = -1; 12280 12281 event->parent = parent_event; 12282 12283 event->ns = get_pid_ns(task_active_pid_ns(current)); 12284 event->id = atomic64_inc_return(&perf_event_id); 12285 12286 event->state = PERF_EVENT_STATE_INACTIVE; 12287 12288 if (parent_event) 12289 event->event_caps = parent_event->event_caps; 12290 12291 if (task) { 12292 event->attach_state = PERF_ATTACH_TASK; 12293 /* 12294 * XXX pmu::event_init needs to know what task to account to 12295 * and we cannot use the ctx information because we need the 12296 * pmu before we get a ctx. 12297 */ 12298 event->hw.target = get_task_struct(task); 12299 } 12300 12301 event->clock = &local_clock; 12302 if (parent_event) 12303 event->clock = parent_event->clock; 12304 12305 if (!overflow_handler && parent_event) { 12306 overflow_handler = parent_event->overflow_handler; 12307 context = parent_event->overflow_handler_context; 12308 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12309 if (parent_event->prog) { 12310 struct bpf_prog *prog = parent_event->prog; 12311 12312 bpf_prog_inc(prog); 12313 event->prog = prog; 12314 } 12315 #endif 12316 } 12317 12318 if (overflow_handler) { 12319 event->overflow_handler = overflow_handler; 12320 event->overflow_handler_context = context; 12321 } else if (is_write_backward(event)){ 12322 event->overflow_handler = perf_event_output_backward; 12323 event->overflow_handler_context = NULL; 12324 } else { 12325 event->overflow_handler = perf_event_output_forward; 12326 event->overflow_handler_context = NULL; 12327 } 12328 12329 perf_event__state_init(event); 12330 12331 pmu = NULL; 12332 12333 hwc = &event->hw; 12334 hwc->sample_period = attr->sample_period; 12335 if (attr->freq && attr->sample_freq) 12336 hwc->sample_period = 1; 12337 hwc->last_period = hwc->sample_period; 12338 12339 local64_set(&hwc->period_left, hwc->sample_period); 12340 12341 /* 12342 * We do not support PERF_SAMPLE_READ on inherited events unless 12343 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12344 * collect per-thread samples. 12345 * See perf_output_read(). 12346 */ 12347 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12348 goto err_ns; 12349 12350 if (!has_branch_stack(event)) 12351 event->attr.branch_sample_type = 0; 12352 12353 pmu = perf_init_event(event); 12354 if (IS_ERR(pmu)) { 12355 err = PTR_ERR(pmu); 12356 goto err_ns; 12357 } 12358 12359 /* 12360 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12361 * events (they don't make sense as the cgroup will be different 12362 * on other CPUs in the uncore mask). 12363 */ 12364 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12365 err = -EINVAL; 12366 goto err_pmu; 12367 } 12368 12369 if (event->attr.aux_output && 12370 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12371 event->attr.aux_pause || event->attr.aux_resume)) { 12372 err = -EOPNOTSUPP; 12373 goto err_pmu; 12374 } 12375 12376 if (event->attr.aux_pause && event->attr.aux_resume) { 12377 err = -EINVAL; 12378 goto err_pmu; 12379 } 12380 12381 if (event->attr.aux_start_paused) { 12382 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) { 12383 err = -EOPNOTSUPP; 12384 goto err_pmu; 12385 } 12386 event->hw.aux_paused = 1; 12387 } 12388 12389 if (cgroup_fd != -1) { 12390 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12391 if (err) 12392 goto err_pmu; 12393 } 12394 12395 err = exclusive_event_init(event); 12396 if (err) 12397 goto err_pmu; 12398 12399 if (has_addr_filter(event)) { 12400 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12401 sizeof(struct perf_addr_filter_range), 12402 GFP_KERNEL); 12403 if (!event->addr_filter_ranges) { 12404 err = -ENOMEM; 12405 goto err_per_task; 12406 } 12407 12408 /* 12409 * Clone the parent's vma offsets: they are valid until exec() 12410 * even if the mm is not shared with the parent. 12411 */ 12412 if (event->parent) { 12413 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12414 12415 raw_spin_lock_irq(&ifh->lock); 12416 memcpy(event->addr_filter_ranges, 12417 event->parent->addr_filter_ranges, 12418 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12419 raw_spin_unlock_irq(&ifh->lock); 12420 } 12421 12422 /* force hw sync on the address filters */ 12423 event->addr_filters_gen = 1; 12424 } 12425 12426 if (!event->parent) { 12427 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12428 err = get_callchain_buffers(attr->sample_max_stack); 12429 if (err) 12430 goto err_addr_filters; 12431 } 12432 } 12433 12434 err = security_perf_event_alloc(event); 12435 if (err) 12436 goto err_callchain_buffer; 12437 12438 /* symmetric to unaccount_event() in _free_event() */ 12439 account_event(event); 12440 12441 return event; 12442 12443 err_callchain_buffer: 12444 if (!event->parent) { 12445 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12446 put_callchain_buffers(); 12447 } 12448 err_addr_filters: 12449 kfree(event->addr_filter_ranges); 12450 12451 err_per_task: 12452 exclusive_event_destroy(event); 12453 12454 err_pmu: 12455 if (is_cgroup_event(event)) 12456 perf_detach_cgroup(event); 12457 if (event->destroy) 12458 event->destroy(event); 12459 module_put(pmu->module); 12460 err_ns: 12461 if (event->hw.target) 12462 put_task_struct(event->hw.target); 12463 call_rcu(&event->rcu_head, free_event_rcu); 12464 12465 return ERR_PTR(err); 12466 } 12467 12468 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12469 struct perf_event_attr *attr) 12470 { 12471 u32 size; 12472 int ret; 12473 12474 /* Zero the full structure, so that a short copy will be nice. */ 12475 memset(attr, 0, sizeof(*attr)); 12476 12477 ret = get_user(size, &uattr->size); 12478 if (ret) 12479 return ret; 12480 12481 /* ABI compatibility quirk: */ 12482 if (!size) 12483 size = PERF_ATTR_SIZE_VER0; 12484 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12485 goto err_size; 12486 12487 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12488 if (ret) { 12489 if (ret == -E2BIG) 12490 goto err_size; 12491 return ret; 12492 } 12493 12494 attr->size = size; 12495 12496 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12497 return -EINVAL; 12498 12499 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12500 return -EINVAL; 12501 12502 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12503 return -EINVAL; 12504 12505 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12506 u64 mask = attr->branch_sample_type; 12507 12508 /* only using defined bits */ 12509 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12510 return -EINVAL; 12511 12512 /* at least one branch bit must be set */ 12513 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12514 return -EINVAL; 12515 12516 /* propagate priv level, when not set for branch */ 12517 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12518 12519 /* exclude_kernel checked on syscall entry */ 12520 if (!attr->exclude_kernel) 12521 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12522 12523 if (!attr->exclude_user) 12524 mask |= PERF_SAMPLE_BRANCH_USER; 12525 12526 if (!attr->exclude_hv) 12527 mask |= PERF_SAMPLE_BRANCH_HV; 12528 /* 12529 * adjust user setting (for HW filter setup) 12530 */ 12531 attr->branch_sample_type = mask; 12532 } 12533 /* privileged levels capture (kernel, hv): check permissions */ 12534 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12535 ret = perf_allow_kernel(attr); 12536 if (ret) 12537 return ret; 12538 } 12539 } 12540 12541 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12542 ret = perf_reg_validate(attr->sample_regs_user); 12543 if (ret) 12544 return ret; 12545 } 12546 12547 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12548 if (!arch_perf_have_user_stack_dump()) 12549 return -ENOSYS; 12550 12551 /* 12552 * We have __u32 type for the size, but so far 12553 * we can only use __u16 as maximum due to the 12554 * __u16 sample size limit. 12555 */ 12556 if (attr->sample_stack_user >= USHRT_MAX) 12557 return -EINVAL; 12558 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12559 return -EINVAL; 12560 } 12561 12562 if (!attr->sample_max_stack) 12563 attr->sample_max_stack = sysctl_perf_event_max_stack; 12564 12565 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12566 ret = perf_reg_validate(attr->sample_regs_intr); 12567 12568 #ifndef CONFIG_CGROUP_PERF 12569 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12570 return -EINVAL; 12571 #endif 12572 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12573 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12574 return -EINVAL; 12575 12576 if (!attr->inherit && attr->inherit_thread) 12577 return -EINVAL; 12578 12579 if (attr->remove_on_exec && attr->enable_on_exec) 12580 return -EINVAL; 12581 12582 if (attr->sigtrap && !attr->remove_on_exec) 12583 return -EINVAL; 12584 12585 out: 12586 return ret; 12587 12588 err_size: 12589 put_user(sizeof(*attr), &uattr->size); 12590 ret = -E2BIG; 12591 goto out; 12592 } 12593 12594 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12595 { 12596 if (b < a) 12597 swap(a, b); 12598 12599 mutex_lock(a); 12600 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12601 } 12602 12603 static int 12604 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12605 { 12606 struct perf_buffer *rb = NULL; 12607 int ret = -EINVAL; 12608 12609 if (!output_event) { 12610 mutex_lock(&event->mmap_mutex); 12611 goto set; 12612 } 12613 12614 /* don't allow circular references */ 12615 if (event == output_event) 12616 goto out; 12617 12618 /* 12619 * Don't allow cross-cpu buffers 12620 */ 12621 if (output_event->cpu != event->cpu) 12622 goto out; 12623 12624 /* 12625 * If its not a per-cpu rb, it must be the same task. 12626 */ 12627 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12628 goto out; 12629 12630 /* 12631 * Mixing clocks in the same buffer is trouble you don't need. 12632 */ 12633 if (output_event->clock != event->clock) 12634 goto out; 12635 12636 /* 12637 * Either writing ring buffer from beginning or from end. 12638 * Mixing is not allowed. 12639 */ 12640 if (is_write_backward(output_event) != is_write_backward(event)) 12641 goto out; 12642 12643 /* 12644 * If both events generate aux data, they must be on the same PMU 12645 */ 12646 if (has_aux(event) && has_aux(output_event) && 12647 event->pmu != output_event->pmu) 12648 goto out; 12649 12650 /* 12651 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12652 * output_event is already on rb->event_list, and the list iteration 12653 * restarts after every removal, it is guaranteed this new event is 12654 * observed *OR* if output_event is already removed, it's guaranteed we 12655 * observe !rb->mmap_count. 12656 */ 12657 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12658 set: 12659 /* Can't redirect output if we've got an active mmap() */ 12660 if (atomic_read(&event->mmap_count)) 12661 goto unlock; 12662 12663 if (output_event) { 12664 /* get the rb we want to redirect to */ 12665 rb = ring_buffer_get(output_event); 12666 if (!rb) 12667 goto unlock; 12668 12669 /* did we race against perf_mmap_close() */ 12670 if (!atomic_read(&rb->mmap_count)) { 12671 ring_buffer_put(rb); 12672 goto unlock; 12673 } 12674 } 12675 12676 ring_buffer_attach(event, rb); 12677 12678 ret = 0; 12679 unlock: 12680 mutex_unlock(&event->mmap_mutex); 12681 if (output_event) 12682 mutex_unlock(&output_event->mmap_mutex); 12683 12684 out: 12685 return ret; 12686 } 12687 12688 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12689 { 12690 bool nmi_safe = false; 12691 12692 switch (clk_id) { 12693 case CLOCK_MONOTONIC: 12694 event->clock = &ktime_get_mono_fast_ns; 12695 nmi_safe = true; 12696 break; 12697 12698 case CLOCK_MONOTONIC_RAW: 12699 event->clock = &ktime_get_raw_fast_ns; 12700 nmi_safe = true; 12701 break; 12702 12703 case CLOCK_REALTIME: 12704 event->clock = &ktime_get_real_ns; 12705 break; 12706 12707 case CLOCK_BOOTTIME: 12708 event->clock = &ktime_get_boottime_ns; 12709 break; 12710 12711 case CLOCK_TAI: 12712 event->clock = &ktime_get_clocktai_ns; 12713 break; 12714 12715 default: 12716 return -EINVAL; 12717 } 12718 12719 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12720 return -EINVAL; 12721 12722 return 0; 12723 } 12724 12725 static bool 12726 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12727 { 12728 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12729 bool is_capable = perfmon_capable(); 12730 12731 if (attr->sigtrap) { 12732 /* 12733 * perf_event_attr::sigtrap sends signals to the other task. 12734 * Require the current task to also have CAP_KILL. 12735 */ 12736 rcu_read_lock(); 12737 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12738 rcu_read_unlock(); 12739 12740 /* 12741 * If the required capabilities aren't available, checks for 12742 * ptrace permissions: upgrade to ATTACH, since sending signals 12743 * can effectively change the target task. 12744 */ 12745 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12746 } 12747 12748 /* 12749 * Preserve ptrace permission check for backwards compatibility. The 12750 * ptrace check also includes checks that the current task and other 12751 * task have matching uids, and is therefore not done here explicitly. 12752 */ 12753 return is_capable || ptrace_may_access(task, ptrace_mode); 12754 } 12755 12756 /** 12757 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12758 * 12759 * @attr_uptr: event_id type attributes for monitoring/sampling 12760 * @pid: target pid 12761 * @cpu: target cpu 12762 * @group_fd: group leader event fd 12763 * @flags: perf event open flags 12764 */ 12765 SYSCALL_DEFINE5(perf_event_open, 12766 struct perf_event_attr __user *, attr_uptr, 12767 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12768 { 12769 struct perf_event *group_leader = NULL, *output_event = NULL; 12770 struct perf_event_pmu_context *pmu_ctx; 12771 struct perf_event *event, *sibling; 12772 struct perf_event_attr attr; 12773 struct perf_event_context *ctx; 12774 struct file *event_file = NULL; 12775 struct task_struct *task = NULL; 12776 struct pmu *pmu; 12777 int event_fd; 12778 int move_group = 0; 12779 int err; 12780 int f_flags = O_RDWR; 12781 int cgroup_fd = -1; 12782 12783 /* for future expandability... */ 12784 if (flags & ~PERF_FLAG_ALL) 12785 return -EINVAL; 12786 12787 err = perf_copy_attr(attr_uptr, &attr); 12788 if (err) 12789 return err; 12790 12791 /* Do we allow access to perf_event_open(2) ? */ 12792 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12793 if (err) 12794 return err; 12795 12796 if (!attr.exclude_kernel) { 12797 err = perf_allow_kernel(&attr); 12798 if (err) 12799 return err; 12800 } 12801 12802 if (attr.namespaces) { 12803 if (!perfmon_capable()) 12804 return -EACCES; 12805 } 12806 12807 if (attr.freq) { 12808 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12809 return -EINVAL; 12810 } else { 12811 if (attr.sample_period & (1ULL << 63)) 12812 return -EINVAL; 12813 } 12814 12815 /* Only privileged users can get physical addresses */ 12816 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12817 err = perf_allow_kernel(&attr); 12818 if (err) 12819 return err; 12820 } 12821 12822 /* REGS_INTR can leak data, lockdown must prevent this */ 12823 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12824 err = security_locked_down(LOCKDOWN_PERF); 12825 if (err) 12826 return err; 12827 } 12828 12829 /* 12830 * In cgroup mode, the pid argument is used to pass the fd 12831 * opened to the cgroup directory in cgroupfs. The cpu argument 12832 * designates the cpu on which to monitor threads from that 12833 * cgroup. 12834 */ 12835 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12836 return -EINVAL; 12837 12838 if (flags & PERF_FLAG_FD_CLOEXEC) 12839 f_flags |= O_CLOEXEC; 12840 12841 event_fd = get_unused_fd_flags(f_flags); 12842 if (event_fd < 0) 12843 return event_fd; 12844 12845 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 12846 if (group_fd != -1) { 12847 if (!is_perf_file(group)) { 12848 err = -EBADF; 12849 goto err_fd; 12850 } 12851 group_leader = fd_file(group)->private_data; 12852 if (flags & PERF_FLAG_FD_OUTPUT) 12853 output_event = group_leader; 12854 if (flags & PERF_FLAG_FD_NO_GROUP) 12855 group_leader = NULL; 12856 } 12857 12858 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12859 task = find_lively_task_by_vpid(pid); 12860 if (IS_ERR(task)) { 12861 err = PTR_ERR(task); 12862 goto err_fd; 12863 } 12864 } 12865 12866 if (task && group_leader && 12867 group_leader->attr.inherit != attr.inherit) { 12868 err = -EINVAL; 12869 goto err_task; 12870 } 12871 12872 if (flags & PERF_FLAG_PID_CGROUP) 12873 cgroup_fd = pid; 12874 12875 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12876 NULL, NULL, cgroup_fd); 12877 if (IS_ERR(event)) { 12878 err = PTR_ERR(event); 12879 goto err_task; 12880 } 12881 12882 if (is_sampling_event(event)) { 12883 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12884 err = -EOPNOTSUPP; 12885 goto err_alloc; 12886 } 12887 } 12888 12889 /* 12890 * Special case software events and allow them to be part of 12891 * any hardware group. 12892 */ 12893 pmu = event->pmu; 12894 12895 if (attr.use_clockid) { 12896 err = perf_event_set_clock(event, attr.clockid); 12897 if (err) 12898 goto err_alloc; 12899 } 12900 12901 if (pmu->task_ctx_nr == perf_sw_context) 12902 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12903 12904 if (task) { 12905 err = down_read_interruptible(&task->signal->exec_update_lock); 12906 if (err) 12907 goto err_alloc; 12908 12909 /* 12910 * We must hold exec_update_lock across this and any potential 12911 * perf_install_in_context() call for this new event to 12912 * serialize against exec() altering our credentials (and the 12913 * perf_event_exit_task() that could imply). 12914 */ 12915 err = -EACCES; 12916 if (!perf_check_permission(&attr, task)) 12917 goto err_cred; 12918 } 12919 12920 /* 12921 * Get the target context (task or percpu): 12922 */ 12923 ctx = find_get_context(task, event); 12924 if (IS_ERR(ctx)) { 12925 err = PTR_ERR(ctx); 12926 goto err_cred; 12927 } 12928 12929 mutex_lock(&ctx->mutex); 12930 12931 if (ctx->task == TASK_TOMBSTONE) { 12932 err = -ESRCH; 12933 goto err_locked; 12934 } 12935 12936 if (!task) { 12937 /* 12938 * Check if the @cpu we're creating an event for is online. 12939 * 12940 * We use the perf_cpu_context::ctx::mutex to serialize against 12941 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12942 */ 12943 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12944 12945 if (!cpuctx->online) { 12946 err = -ENODEV; 12947 goto err_locked; 12948 } 12949 } 12950 12951 if (group_leader) { 12952 err = -EINVAL; 12953 12954 /* 12955 * Do not allow a recursive hierarchy (this new sibling 12956 * becoming part of another group-sibling): 12957 */ 12958 if (group_leader->group_leader != group_leader) 12959 goto err_locked; 12960 12961 /* All events in a group should have the same clock */ 12962 if (group_leader->clock != event->clock) 12963 goto err_locked; 12964 12965 /* 12966 * Make sure we're both events for the same CPU; 12967 * grouping events for different CPUs is broken; since 12968 * you can never concurrently schedule them anyhow. 12969 */ 12970 if (group_leader->cpu != event->cpu) 12971 goto err_locked; 12972 12973 /* 12974 * Make sure we're both on the same context; either task or cpu. 12975 */ 12976 if (group_leader->ctx != ctx) 12977 goto err_locked; 12978 12979 /* 12980 * Only a group leader can be exclusive or pinned 12981 */ 12982 if (attr.exclusive || attr.pinned) 12983 goto err_locked; 12984 12985 if (is_software_event(event) && 12986 !in_software_context(group_leader)) { 12987 /* 12988 * If the event is a sw event, but the group_leader 12989 * is on hw context. 12990 * 12991 * Allow the addition of software events to hw 12992 * groups, this is safe because software events 12993 * never fail to schedule. 12994 * 12995 * Note the comment that goes with struct 12996 * perf_event_pmu_context. 12997 */ 12998 pmu = group_leader->pmu_ctx->pmu; 12999 } else if (!is_software_event(event)) { 13000 if (is_software_event(group_leader) && 13001 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13002 /* 13003 * In case the group is a pure software group, and we 13004 * try to add a hardware event, move the whole group to 13005 * the hardware context. 13006 */ 13007 move_group = 1; 13008 } 13009 13010 /* Don't allow group of multiple hw events from different pmus */ 13011 if (!in_software_context(group_leader) && 13012 group_leader->pmu_ctx->pmu != pmu) 13013 goto err_locked; 13014 } 13015 } 13016 13017 /* 13018 * Now that we're certain of the pmu; find the pmu_ctx. 13019 */ 13020 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13021 if (IS_ERR(pmu_ctx)) { 13022 err = PTR_ERR(pmu_ctx); 13023 goto err_locked; 13024 } 13025 event->pmu_ctx = pmu_ctx; 13026 13027 if (output_event) { 13028 err = perf_event_set_output(event, output_event); 13029 if (err) 13030 goto err_context; 13031 } 13032 13033 if (!perf_event_validate_size(event)) { 13034 err = -E2BIG; 13035 goto err_context; 13036 } 13037 13038 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13039 err = -EINVAL; 13040 goto err_context; 13041 } 13042 13043 /* 13044 * Must be under the same ctx::mutex as perf_install_in_context(), 13045 * because we need to serialize with concurrent event creation. 13046 */ 13047 if (!exclusive_event_installable(event, ctx)) { 13048 err = -EBUSY; 13049 goto err_context; 13050 } 13051 13052 WARN_ON_ONCE(ctx->parent_ctx); 13053 13054 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13055 if (IS_ERR(event_file)) { 13056 err = PTR_ERR(event_file); 13057 event_file = NULL; 13058 goto err_context; 13059 } 13060 13061 /* 13062 * This is the point on no return; we cannot fail hereafter. This is 13063 * where we start modifying current state. 13064 */ 13065 13066 if (move_group) { 13067 perf_remove_from_context(group_leader, 0); 13068 put_pmu_ctx(group_leader->pmu_ctx); 13069 13070 for_each_sibling_event(sibling, group_leader) { 13071 perf_remove_from_context(sibling, 0); 13072 put_pmu_ctx(sibling->pmu_ctx); 13073 } 13074 13075 /* 13076 * Install the group siblings before the group leader. 13077 * 13078 * Because a group leader will try and install the entire group 13079 * (through the sibling list, which is still in-tact), we can 13080 * end up with siblings installed in the wrong context. 13081 * 13082 * By installing siblings first we NO-OP because they're not 13083 * reachable through the group lists. 13084 */ 13085 for_each_sibling_event(sibling, group_leader) { 13086 sibling->pmu_ctx = pmu_ctx; 13087 get_pmu_ctx(pmu_ctx); 13088 perf_event__state_init(sibling); 13089 perf_install_in_context(ctx, sibling, sibling->cpu); 13090 } 13091 13092 /* 13093 * Removing from the context ends up with disabled 13094 * event. What we want here is event in the initial 13095 * startup state, ready to be add into new context. 13096 */ 13097 group_leader->pmu_ctx = pmu_ctx; 13098 get_pmu_ctx(pmu_ctx); 13099 perf_event__state_init(group_leader); 13100 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13101 } 13102 13103 /* 13104 * Precalculate sample_data sizes; do while holding ctx::mutex such 13105 * that we're serialized against further additions and before 13106 * perf_install_in_context() which is the point the event is active and 13107 * can use these values. 13108 */ 13109 perf_event__header_size(event); 13110 perf_event__id_header_size(event); 13111 13112 event->owner = current; 13113 13114 perf_install_in_context(ctx, event, event->cpu); 13115 perf_unpin_context(ctx); 13116 13117 mutex_unlock(&ctx->mutex); 13118 13119 if (task) { 13120 up_read(&task->signal->exec_update_lock); 13121 put_task_struct(task); 13122 } 13123 13124 mutex_lock(¤t->perf_event_mutex); 13125 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13126 mutex_unlock(¤t->perf_event_mutex); 13127 13128 /* 13129 * File reference in group guarantees that group_leader has been 13130 * kept alive until we place the new event on the sibling_list. 13131 * This ensures destruction of the group leader will find 13132 * the pointer to itself in perf_group_detach(). 13133 */ 13134 fd_install(event_fd, event_file); 13135 return event_fd; 13136 13137 err_context: 13138 put_pmu_ctx(event->pmu_ctx); 13139 event->pmu_ctx = NULL; /* _free_event() */ 13140 err_locked: 13141 mutex_unlock(&ctx->mutex); 13142 perf_unpin_context(ctx); 13143 put_ctx(ctx); 13144 err_cred: 13145 if (task) 13146 up_read(&task->signal->exec_update_lock); 13147 err_alloc: 13148 free_event(event); 13149 err_task: 13150 if (task) 13151 put_task_struct(task); 13152 err_fd: 13153 put_unused_fd(event_fd); 13154 return err; 13155 } 13156 13157 /** 13158 * perf_event_create_kernel_counter 13159 * 13160 * @attr: attributes of the counter to create 13161 * @cpu: cpu in which the counter is bound 13162 * @task: task to profile (NULL for percpu) 13163 * @overflow_handler: callback to trigger when we hit the event 13164 * @context: context data could be used in overflow_handler callback 13165 */ 13166 struct perf_event * 13167 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13168 struct task_struct *task, 13169 perf_overflow_handler_t overflow_handler, 13170 void *context) 13171 { 13172 struct perf_event_pmu_context *pmu_ctx; 13173 struct perf_event_context *ctx; 13174 struct perf_event *event; 13175 struct pmu *pmu; 13176 int err; 13177 13178 /* 13179 * Grouping is not supported for kernel events, neither is 'AUX', 13180 * make sure the caller's intentions are adjusted. 13181 */ 13182 if (attr->aux_output || attr->aux_action) 13183 return ERR_PTR(-EINVAL); 13184 13185 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13186 overflow_handler, context, -1); 13187 if (IS_ERR(event)) { 13188 err = PTR_ERR(event); 13189 goto err; 13190 } 13191 13192 /* Mark owner so we could distinguish it from user events. */ 13193 event->owner = TASK_TOMBSTONE; 13194 pmu = event->pmu; 13195 13196 if (pmu->task_ctx_nr == perf_sw_context) 13197 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13198 13199 /* 13200 * Get the target context (task or percpu): 13201 */ 13202 ctx = find_get_context(task, event); 13203 if (IS_ERR(ctx)) { 13204 err = PTR_ERR(ctx); 13205 goto err_alloc; 13206 } 13207 13208 WARN_ON_ONCE(ctx->parent_ctx); 13209 mutex_lock(&ctx->mutex); 13210 if (ctx->task == TASK_TOMBSTONE) { 13211 err = -ESRCH; 13212 goto err_unlock; 13213 } 13214 13215 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13216 if (IS_ERR(pmu_ctx)) { 13217 err = PTR_ERR(pmu_ctx); 13218 goto err_unlock; 13219 } 13220 event->pmu_ctx = pmu_ctx; 13221 13222 if (!task) { 13223 /* 13224 * Check if the @cpu we're creating an event for is online. 13225 * 13226 * We use the perf_cpu_context::ctx::mutex to serialize against 13227 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13228 */ 13229 struct perf_cpu_context *cpuctx = 13230 container_of(ctx, struct perf_cpu_context, ctx); 13231 if (!cpuctx->online) { 13232 err = -ENODEV; 13233 goto err_pmu_ctx; 13234 } 13235 } 13236 13237 if (!exclusive_event_installable(event, ctx)) { 13238 err = -EBUSY; 13239 goto err_pmu_ctx; 13240 } 13241 13242 perf_install_in_context(ctx, event, event->cpu); 13243 perf_unpin_context(ctx); 13244 mutex_unlock(&ctx->mutex); 13245 13246 return event; 13247 13248 err_pmu_ctx: 13249 put_pmu_ctx(pmu_ctx); 13250 event->pmu_ctx = NULL; /* _free_event() */ 13251 err_unlock: 13252 mutex_unlock(&ctx->mutex); 13253 perf_unpin_context(ctx); 13254 put_ctx(ctx); 13255 err_alloc: 13256 free_event(event); 13257 err: 13258 return ERR_PTR(err); 13259 } 13260 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13261 13262 static void __perf_pmu_remove(struct perf_event_context *ctx, 13263 int cpu, struct pmu *pmu, 13264 struct perf_event_groups *groups, 13265 struct list_head *events) 13266 { 13267 struct perf_event *event, *sibling; 13268 13269 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13270 perf_remove_from_context(event, 0); 13271 put_pmu_ctx(event->pmu_ctx); 13272 list_add(&event->migrate_entry, events); 13273 13274 for_each_sibling_event(sibling, event) { 13275 perf_remove_from_context(sibling, 0); 13276 put_pmu_ctx(sibling->pmu_ctx); 13277 list_add(&sibling->migrate_entry, events); 13278 } 13279 } 13280 } 13281 13282 static void __perf_pmu_install_event(struct pmu *pmu, 13283 struct perf_event_context *ctx, 13284 int cpu, struct perf_event *event) 13285 { 13286 struct perf_event_pmu_context *epc; 13287 struct perf_event_context *old_ctx = event->ctx; 13288 13289 get_ctx(ctx); /* normally find_get_context() */ 13290 13291 event->cpu = cpu; 13292 epc = find_get_pmu_context(pmu, ctx, event); 13293 event->pmu_ctx = epc; 13294 13295 if (event->state >= PERF_EVENT_STATE_OFF) 13296 event->state = PERF_EVENT_STATE_INACTIVE; 13297 perf_install_in_context(ctx, event, cpu); 13298 13299 /* 13300 * Now that event->ctx is updated and visible, put the old ctx. 13301 */ 13302 put_ctx(old_ctx); 13303 } 13304 13305 static void __perf_pmu_install(struct perf_event_context *ctx, 13306 int cpu, struct pmu *pmu, struct list_head *events) 13307 { 13308 struct perf_event *event, *tmp; 13309 13310 /* 13311 * Re-instate events in 2 passes. 13312 * 13313 * Skip over group leaders and only install siblings on this first 13314 * pass, siblings will not get enabled without a leader, however a 13315 * leader will enable its siblings, even if those are still on the old 13316 * context. 13317 */ 13318 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13319 if (event->group_leader == event) 13320 continue; 13321 13322 list_del(&event->migrate_entry); 13323 __perf_pmu_install_event(pmu, ctx, cpu, event); 13324 } 13325 13326 /* 13327 * Once all the siblings are setup properly, install the group leaders 13328 * to make it go. 13329 */ 13330 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13331 list_del(&event->migrate_entry); 13332 __perf_pmu_install_event(pmu, ctx, cpu, event); 13333 } 13334 } 13335 13336 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13337 { 13338 struct perf_event_context *src_ctx, *dst_ctx; 13339 LIST_HEAD(events); 13340 13341 /* 13342 * Since per-cpu context is persistent, no need to grab an extra 13343 * reference. 13344 */ 13345 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13346 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13347 13348 /* 13349 * See perf_event_ctx_lock() for comments on the details 13350 * of swizzling perf_event::ctx. 13351 */ 13352 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13353 13354 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13355 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13356 13357 if (!list_empty(&events)) { 13358 /* 13359 * Wait for the events to quiesce before re-instating them. 13360 */ 13361 synchronize_rcu(); 13362 13363 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13364 } 13365 13366 mutex_unlock(&dst_ctx->mutex); 13367 mutex_unlock(&src_ctx->mutex); 13368 } 13369 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13370 13371 static void sync_child_event(struct perf_event *child_event) 13372 { 13373 struct perf_event *parent_event = child_event->parent; 13374 u64 child_val; 13375 13376 if (child_event->attr.inherit_stat) { 13377 struct task_struct *task = child_event->ctx->task; 13378 13379 if (task && task != TASK_TOMBSTONE) 13380 perf_event_read_event(child_event, task); 13381 } 13382 13383 child_val = perf_event_count(child_event, false); 13384 13385 /* 13386 * Add back the child's count to the parent's count: 13387 */ 13388 atomic64_add(child_val, &parent_event->child_count); 13389 atomic64_add(child_event->total_time_enabled, 13390 &parent_event->child_total_time_enabled); 13391 atomic64_add(child_event->total_time_running, 13392 &parent_event->child_total_time_running); 13393 } 13394 13395 static void 13396 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13397 { 13398 struct perf_event *parent_event = event->parent; 13399 unsigned long detach_flags = 0; 13400 13401 if (parent_event) { 13402 /* 13403 * Do not destroy the 'original' grouping; because of the 13404 * context switch optimization the original events could've 13405 * ended up in a random child task. 13406 * 13407 * If we were to destroy the original group, all group related 13408 * operations would cease to function properly after this 13409 * random child dies. 13410 * 13411 * Do destroy all inherited groups, we don't care about those 13412 * and being thorough is better. 13413 */ 13414 detach_flags = DETACH_GROUP | DETACH_CHILD; 13415 mutex_lock(&parent_event->child_mutex); 13416 } 13417 13418 perf_remove_from_context(event, detach_flags); 13419 13420 raw_spin_lock_irq(&ctx->lock); 13421 if (event->state > PERF_EVENT_STATE_EXIT) 13422 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13423 raw_spin_unlock_irq(&ctx->lock); 13424 13425 /* 13426 * Child events can be freed. 13427 */ 13428 if (parent_event) { 13429 mutex_unlock(&parent_event->child_mutex); 13430 /* 13431 * Kick perf_poll() for is_event_hup(); 13432 */ 13433 perf_event_wakeup(parent_event); 13434 free_event(event); 13435 put_event(parent_event); 13436 return; 13437 } 13438 13439 /* 13440 * Parent events are governed by their filedesc, retain them. 13441 */ 13442 perf_event_wakeup(event); 13443 } 13444 13445 static void perf_event_exit_task_context(struct task_struct *child) 13446 { 13447 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13448 struct perf_event *child_event, *next; 13449 13450 WARN_ON_ONCE(child != current); 13451 13452 child_ctx = perf_pin_task_context(child); 13453 if (!child_ctx) 13454 return; 13455 13456 /* 13457 * In order to reduce the amount of tricky in ctx tear-down, we hold 13458 * ctx::mutex over the entire thing. This serializes against almost 13459 * everything that wants to access the ctx. 13460 * 13461 * The exception is sys_perf_event_open() / 13462 * perf_event_create_kernel_count() which does find_get_context() 13463 * without ctx::mutex (it cannot because of the move_group double mutex 13464 * lock thing). See the comments in perf_install_in_context(). 13465 */ 13466 mutex_lock(&child_ctx->mutex); 13467 13468 /* 13469 * In a single ctx::lock section, de-schedule the events and detach the 13470 * context from the task such that we cannot ever get it scheduled back 13471 * in. 13472 */ 13473 raw_spin_lock_irq(&child_ctx->lock); 13474 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13475 13476 /* 13477 * Now that the context is inactive, destroy the task <-> ctx relation 13478 * and mark the context dead. 13479 */ 13480 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13481 put_ctx(child_ctx); /* cannot be last */ 13482 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13483 put_task_struct(current); /* cannot be last */ 13484 13485 clone_ctx = unclone_ctx(child_ctx); 13486 raw_spin_unlock_irq(&child_ctx->lock); 13487 13488 if (clone_ctx) 13489 put_ctx(clone_ctx); 13490 13491 /* 13492 * Report the task dead after unscheduling the events so that we 13493 * won't get any samples after PERF_RECORD_EXIT. We can however still 13494 * get a few PERF_RECORD_READ events. 13495 */ 13496 perf_event_task(child, child_ctx, 0); 13497 13498 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13499 perf_event_exit_event(child_event, child_ctx); 13500 13501 mutex_unlock(&child_ctx->mutex); 13502 13503 put_ctx(child_ctx); 13504 } 13505 13506 /* 13507 * When a child task exits, feed back event values to parent events. 13508 * 13509 * Can be called with exec_update_lock held when called from 13510 * setup_new_exec(). 13511 */ 13512 void perf_event_exit_task(struct task_struct *child) 13513 { 13514 struct perf_event *event, *tmp; 13515 13516 mutex_lock(&child->perf_event_mutex); 13517 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13518 owner_entry) { 13519 list_del_init(&event->owner_entry); 13520 13521 /* 13522 * Ensure the list deletion is visible before we clear 13523 * the owner, closes a race against perf_release() where 13524 * we need to serialize on the owner->perf_event_mutex. 13525 */ 13526 smp_store_release(&event->owner, NULL); 13527 } 13528 mutex_unlock(&child->perf_event_mutex); 13529 13530 perf_event_exit_task_context(child); 13531 13532 /* 13533 * The perf_event_exit_task_context calls perf_event_task 13534 * with child's task_ctx, which generates EXIT events for 13535 * child contexts and sets child->perf_event_ctxp[] to NULL. 13536 * At this point we need to send EXIT events to cpu contexts. 13537 */ 13538 perf_event_task(child, NULL, 0); 13539 } 13540 13541 static void perf_free_event(struct perf_event *event, 13542 struct perf_event_context *ctx) 13543 { 13544 struct perf_event *parent = event->parent; 13545 13546 if (WARN_ON_ONCE(!parent)) 13547 return; 13548 13549 mutex_lock(&parent->child_mutex); 13550 list_del_init(&event->child_list); 13551 mutex_unlock(&parent->child_mutex); 13552 13553 put_event(parent); 13554 13555 raw_spin_lock_irq(&ctx->lock); 13556 perf_group_detach(event); 13557 list_del_event(event, ctx); 13558 raw_spin_unlock_irq(&ctx->lock); 13559 free_event(event); 13560 } 13561 13562 /* 13563 * Free a context as created by inheritance by perf_event_init_task() below, 13564 * used by fork() in case of fail. 13565 * 13566 * Even though the task has never lived, the context and events have been 13567 * exposed through the child_list, so we must take care tearing it all down. 13568 */ 13569 void perf_event_free_task(struct task_struct *task) 13570 { 13571 struct perf_event_context *ctx; 13572 struct perf_event *event, *tmp; 13573 13574 ctx = rcu_access_pointer(task->perf_event_ctxp); 13575 if (!ctx) 13576 return; 13577 13578 mutex_lock(&ctx->mutex); 13579 raw_spin_lock_irq(&ctx->lock); 13580 /* 13581 * Destroy the task <-> ctx relation and mark the context dead. 13582 * 13583 * This is important because even though the task hasn't been 13584 * exposed yet the context has been (through child_list). 13585 */ 13586 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13587 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13588 put_task_struct(task); /* cannot be last */ 13589 raw_spin_unlock_irq(&ctx->lock); 13590 13591 13592 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13593 perf_free_event(event, ctx); 13594 13595 mutex_unlock(&ctx->mutex); 13596 13597 /* 13598 * perf_event_release_kernel() could've stolen some of our 13599 * child events and still have them on its free_list. In that 13600 * case we must wait for these events to have been freed (in 13601 * particular all their references to this task must've been 13602 * dropped). 13603 * 13604 * Without this copy_process() will unconditionally free this 13605 * task (irrespective of its reference count) and 13606 * _free_event()'s put_task_struct(event->hw.target) will be a 13607 * use-after-free. 13608 * 13609 * Wait for all events to drop their context reference. 13610 */ 13611 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13612 put_ctx(ctx); /* must be last */ 13613 } 13614 13615 void perf_event_delayed_put(struct task_struct *task) 13616 { 13617 WARN_ON_ONCE(task->perf_event_ctxp); 13618 } 13619 13620 struct file *perf_event_get(unsigned int fd) 13621 { 13622 struct file *file = fget(fd); 13623 if (!file) 13624 return ERR_PTR(-EBADF); 13625 13626 if (file->f_op != &perf_fops) { 13627 fput(file); 13628 return ERR_PTR(-EBADF); 13629 } 13630 13631 return file; 13632 } 13633 13634 const struct perf_event *perf_get_event(struct file *file) 13635 { 13636 if (file->f_op != &perf_fops) 13637 return ERR_PTR(-EINVAL); 13638 13639 return file->private_data; 13640 } 13641 13642 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13643 { 13644 if (!event) 13645 return ERR_PTR(-EINVAL); 13646 13647 return &event->attr; 13648 } 13649 13650 int perf_allow_kernel(struct perf_event_attr *attr) 13651 { 13652 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13653 return -EACCES; 13654 13655 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13656 } 13657 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13658 13659 /* 13660 * Inherit an event from parent task to child task. 13661 * 13662 * Returns: 13663 * - valid pointer on success 13664 * - NULL for orphaned events 13665 * - IS_ERR() on error 13666 */ 13667 static struct perf_event * 13668 inherit_event(struct perf_event *parent_event, 13669 struct task_struct *parent, 13670 struct perf_event_context *parent_ctx, 13671 struct task_struct *child, 13672 struct perf_event *group_leader, 13673 struct perf_event_context *child_ctx) 13674 { 13675 enum perf_event_state parent_state = parent_event->state; 13676 struct perf_event_pmu_context *pmu_ctx; 13677 struct perf_event *child_event; 13678 unsigned long flags; 13679 13680 /* 13681 * Instead of creating recursive hierarchies of events, 13682 * we link inherited events back to the original parent, 13683 * which has a filp for sure, which we use as the reference 13684 * count: 13685 */ 13686 if (parent_event->parent) 13687 parent_event = parent_event->parent; 13688 13689 child_event = perf_event_alloc(&parent_event->attr, 13690 parent_event->cpu, 13691 child, 13692 group_leader, parent_event, 13693 NULL, NULL, -1); 13694 if (IS_ERR(child_event)) 13695 return child_event; 13696 13697 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13698 if (IS_ERR(pmu_ctx)) { 13699 free_event(child_event); 13700 return ERR_CAST(pmu_ctx); 13701 } 13702 child_event->pmu_ctx = pmu_ctx; 13703 13704 /* 13705 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13706 * must be under the same lock in order to serialize against 13707 * perf_event_release_kernel(), such that either we must observe 13708 * is_orphaned_event() or they will observe us on the child_list. 13709 */ 13710 mutex_lock(&parent_event->child_mutex); 13711 if (is_orphaned_event(parent_event) || 13712 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13713 mutex_unlock(&parent_event->child_mutex); 13714 /* task_ctx_data is freed with child_ctx */ 13715 free_event(child_event); 13716 return NULL; 13717 } 13718 13719 get_ctx(child_ctx); 13720 13721 /* 13722 * Make the child state follow the state of the parent event, 13723 * not its attr.disabled bit. We hold the parent's mutex, 13724 * so we won't race with perf_event_{en, dis}able_family. 13725 */ 13726 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13727 child_event->state = PERF_EVENT_STATE_INACTIVE; 13728 else 13729 child_event->state = PERF_EVENT_STATE_OFF; 13730 13731 if (parent_event->attr.freq) { 13732 u64 sample_period = parent_event->hw.sample_period; 13733 struct hw_perf_event *hwc = &child_event->hw; 13734 13735 hwc->sample_period = sample_period; 13736 hwc->last_period = sample_period; 13737 13738 local64_set(&hwc->period_left, sample_period); 13739 } 13740 13741 child_event->ctx = child_ctx; 13742 child_event->overflow_handler = parent_event->overflow_handler; 13743 child_event->overflow_handler_context 13744 = parent_event->overflow_handler_context; 13745 13746 /* 13747 * Precalculate sample_data sizes 13748 */ 13749 perf_event__header_size(child_event); 13750 perf_event__id_header_size(child_event); 13751 13752 /* 13753 * Link it up in the child's context: 13754 */ 13755 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13756 add_event_to_ctx(child_event, child_ctx); 13757 child_event->attach_state |= PERF_ATTACH_CHILD; 13758 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13759 13760 /* 13761 * Link this into the parent event's child list 13762 */ 13763 list_add_tail(&child_event->child_list, &parent_event->child_list); 13764 mutex_unlock(&parent_event->child_mutex); 13765 13766 return child_event; 13767 } 13768 13769 /* 13770 * Inherits an event group. 13771 * 13772 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13773 * This matches with perf_event_release_kernel() removing all child events. 13774 * 13775 * Returns: 13776 * - 0 on success 13777 * - <0 on error 13778 */ 13779 static int inherit_group(struct perf_event *parent_event, 13780 struct task_struct *parent, 13781 struct perf_event_context *parent_ctx, 13782 struct task_struct *child, 13783 struct perf_event_context *child_ctx) 13784 { 13785 struct perf_event *leader; 13786 struct perf_event *sub; 13787 struct perf_event *child_ctr; 13788 13789 leader = inherit_event(parent_event, parent, parent_ctx, 13790 child, NULL, child_ctx); 13791 if (IS_ERR(leader)) 13792 return PTR_ERR(leader); 13793 /* 13794 * @leader can be NULL here because of is_orphaned_event(). In this 13795 * case inherit_event() will create individual events, similar to what 13796 * perf_group_detach() would do anyway. 13797 */ 13798 for_each_sibling_event(sub, parent_event) { 13799 child_ctr = inherit_event(sub, parent, parent_ctx, 13800 child, leader, child_ctx); 13801 if (IS_ERR(child_ctr)) 13802 return PTR_ERR(child_ctr); 13803 13804 if (sub->aux_event == parent_event && child_ctr && 13805 !perf_get_aux_event(child_ctr, leader)) 13806 return -EINVAL; 13807 } 13808 if (leader) 13809 leader->group_generation = parent_event->group_generation; 13810 return 0; 13811 } 13812 13813 /* 13814 * Creates the child task context and tries to inherit the event-group. 13815 * 13816 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13817 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13818 * consistent with perf_event_release_kernel() removing all child events. 13819 * 13820 * Returns: 13821 * - 0 on success 13822 * - <0 on error 13823 */ 13824 static int 13825 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13826 struct perf_event_context *parent_ctx, 13827 struct task_struct *child, 13828 u64 clone_flags, int *inherited_all) 13829 { 13830 struct perf_event_context *child_ctx; 13831 int ret; 13832 13833 if (!event->attr.inherit || 13834 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13835 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13836 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13837 *inherited_all = 0; 13838 return 0; 13839 } 13840 13841 child_ctx = child->perf_event_ctxp; 13842 if (!child_ctx) { 13843 /* 13844 * This is executed from the parent task context, so 13845 * inherit events that have been marked for cloning. 13846 * First allocate and initialize a context for the 13847 * child. 13848 */ 13849 child_ctx = alloc_perf_context(child); 13850 if (!child_ctx) 13851 return -ENOMEM; 13852 13853 child->perf_event_ctxp = child_ctx; 13854 } 13855 13856 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13857 if (ret) 13858 *inherited_all = 0; 13859 13860 return ret; 13861 } 13862 13863 /* 13864 * Initialize the perf_event context in task_struct 13865 */ 13866 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13867 { 13868 struct perf_event_context *child_ctx, *parent_ctx; 13869 struct perf_event_context *cloned_ctx; 13870 struct perf_event *event; 13871 struct task_struct *parent = current; 13872 int inherited_all = 1; 13873 unsigned long flags; 13874 int ret = 0; 13875 13876 if (likely(!parent->perf_event_ctxp)) 13877 return 0; 13878 13879 /* 13880 * If the parent's context is a clone, pin it so it won't get 13881 * swapped under us. 13882 */ 13883 parent_ctx = perf_pin_task_context(parent); 13884 if (!parent_ctx) 13885 return 0; 13886 13887 /* 13888 * No need to check if parent_ctx != NULL here; since we saw 13889 * it non-NULL earlier, the only reason for it to become NULL 13890 * is if we exit, and since we're currently in the middle of 13891 * a fork we can't be exiting at the same time. 13892 */ 13893 13894 /* 13895 * Lock the parent list. No need to lock the child - not PID 13896 * hashed yet and not running, so nobody can access it. 13897 */ 13898 mutex_lock(&parent_ctx->mutex); 13899 13900 /* 13901 * We dont have to disable NMIs - we are only looking at 13902 * the list, not manipulating it: 13903 */ 13904 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13905 ret = inherit_task_group(event, parent, parent_ctx, 13906 child, clone_flags, &inherited_all); 13907 if (ret) 13908 goto out_unlock; 13909 } 13910 13911 /* 13912 * We can't hold ctx->lock when iterating the ->flexible_group list due 13913 * to allocations, but we need to prevent rotation because 13914 * rotate_ctx() will change the list from interrupt context. 13915 */ 13916 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13917 parent_ctx->rotate_disable = 1; 13918 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13919 13920 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13921 ret = inherit_task_group(event, parent, parent_ctx, 13922 child, clone_flags, &inherited_all); 13923 if (ret) 13924 goto out_unlock; 13925 } 13926 13927 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13928 parent_ctx->rotate_disable = 0; 13929 13930 child_ctx = child->perf_event_ctxp; 13931 13932 if (child_ctx && inherited_all) { 13933 /* 13934 * Mark the child context as a clone of the parent 13935 * context, or of whatever the parent is a clone of. 13936 * 13937 * Note that if the parent is a clone, the holding of 13938 * parent_ctx->lock avoids it from being uncloned. 13939 */ 13940 cloned_ctx = parent_ctx->parent_ctx; 13941 if (cloned_ctx) { 13942 child_ctx->parent_ctx = cloned_ctx; 13943 child_ctx->parent_gen = parent_ctx->parent_gen; 13944 } else { 13945 child_ctx->parent_ctx = parent_ctx; 13946 child_ctx->parent_gen = parent_ctx->generation; 13947 } 13948 get_ctx(child_ctx->parent_ctx); 13949 } 13950 13951 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13952 out_unlock: 13953 mutex_unlock(&parent_ctx->mutex); 13954 13955 perf_unpin_context(parent_ctx); 13956 put_ctx(parent_ctx); 13957 13958 return ret; 13959 } 13960 13961 /* 13962 * Initialize the perf_event context in task_struct 13963 */ 13964 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13965 { 13966 int ret; 13967 13968 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13969 child->perf_event_ctxp = NULL; 13970 mutex_init(&child->perf_event_mutex); 13971 INIT_LIST_HEAD(&child->perf_event_list); 13972 13973 ret = perf_event_init_context(child, clone_flags); 13974 if (ret) { 13975 perf_event_free_task(child); 13976 return ret; 13977 } 13978 13979 return 0; 13980 } 13981 13982 static void __init perf_event_init_all_cpus(void) 13983 { 13984 struct swevent_htable *swhash; 13985 struct perf_cpu_context *cpuctx; 13986 int cpu; 13987 13988 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13989 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 13990 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 13991 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 13992 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 13993 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 13994 13995 13996 for_each_possible_cpu(cpu) { 13997 swhash = &per_cpu(swevent_htable, cpu); 13998 mutex_init(&swhash->hlist_mutex); 13999 14000 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14001 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14002 14003 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14004 14005 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14006 __perf_event_init_context(&cpuctx->ctx); 14007 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14008 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14009 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14010 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14011 cpuctx->heap = cpuctx->heap_default; 14012 } 14013 } 14014 14015 static void perf_swevent_init_cpu(unsigned int cpu) 14016 { 14017 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14018 14019 mutex_lock(&swhash->hlist_mutex); 14020 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14021 struct swevent_hlist *hlist; 14022 14023 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14024 WARN_ON(!hlist); 14025 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14026 } 14027 mutex_unlock(&swhash->hlist_mutex); 14028 } 14029 14030 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14031 static void __perf_event_exit_context(void *__info) 14032 { 14033 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14034 struct perf_event_context *ctx = __info; 14035 struct perf_event *event; 14036 14037 raw_spin_lock(&ctx->lock); 14038 ctx_sched_out(ctx, NULL, EVENT_TIME); 14039 list_for_each_entry(event, &ctx->event_list, event_entry) 14040 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14041 raw_spin_unlock(&ctx->lock); 14042 } 14043 14044 static void perf_event_clear_cpumask(unsigned int cpu) 14045 { 14046 int target[PERF_PMU_MAX_SCOPE]; 14047 unsigned int scope; 14048 struct pmu *pmu; 14049 14050 cpumask_clear_cpu(cpu, perf_online_mask); 14051 14052 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14053 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14054 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14055 14056 target[scope] = -1; 14057 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14058 continue; 14059 14060 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14061 continue; 14062 target[scope] = cpumask_any_but(cpumask, cpu); 14063 if (target[scope] < nr_cpu_ids) 14064 cpumask_set_cpu(target[scope], pmu_cpumask); 14065 } 14066 14067 /* migrate */ 14068 list_for_each_entry(pmu, &pmus, entry) { 14069 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14070 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14071 continue; 14072 14073 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14074 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14075 } 14076 } 14077 14078 static void perf_event_exit_cpu_context(int cpu) 14079 { 14080 struct perf_cpu_context *cpuctx; 14081 struct perf_event_context *ctx; 14082 14083 // XXX simplify cpuctx->online 14084 mutex_lock(&pmus_lock); 14085 /* 14086 * Clear the cpumasks, and migrate to other CPUs if possible. 14087 * Must be invoked before the __perf_event_exit_context. 14088 */ 14089 perf_event_clear_cpumask(cpu); 14090 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14091 ctx = &cpuctx->ctx; 14092 14093 mutex_lock(&ctx->mutex); 14094 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14095 cpuctx->online = 0; 14096 mutex_unlock(&ctx->mutex); 14097 mutex_unlock(&pmus_lock); 14098 } 14099 #else 14100 14101 static void perf_event_exit_cpu_context(int cpu) { } 14102 14103 #endif 14104 14105 static void perf_event_setup_cpumask(unsigned int cpu) 14106 { 14107 struct cpumask *pmu_cpumask; 14108 unsigned int scope; 14109 14110 /* 14111 * Early boot stage, the cpumask hasn't been set yet. 14112 * The perf_online_<domain>_masks includes the first CPU of each domain. 14113 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14114 */ 14115 if (cpumask_empty(perf_online_mask)) { 14116 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14117 pmu_cpumask = perf_scope_cpumask(scope); 14118 if (WARN_ON_ONCE(!pmu_cpumask)) 14119 continue; 14120 cpumask_set_cpu(cpu, pmu_cpumask); 14121 } 14122 goto end; 14123 } 14124 14125 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14126 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14127 14128 pmu_cpumask = perf_scope_cpumask(scope); 14129 14130 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14131 continue; 14132 14133 if (!cpumask_empty(cpumask) && 14134 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14135 cpumask_set_cpu(cpu, pmu_cpumask); 14136 } 14137 end: 14138 cpumask_set_cpu(cpu, perf_online_mask); 14139 } 14140 14141 int perf_event_init_cpu(unsigned int cpu) 14142 { 14143 struct perf_cpu_context *cpuctx; 14144 struct perf_event_context *ctx; 14145 14146 perf_swevent_init_cpu(cpu); 14147 14148 mutex_lock(&pmus_lock); 14149 perf_event_setup_cpumask(cpu); 14150 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14151 ctx = &cpuctx->ctx; 14152 14153 mutex_lock(&ctx->mutex); 14154 cpuctx->online = 1; 14155 mutex_unlock(&ctx->mutex); 14156 mutex_unlock(&pmus_lock); 14157 14158 return 0; 14159 } 14160 14161 int perf_event_exit_cpu(unsigned int cpu) 14162 { 14163 perf_event_exit_cpu_context(cpu); 14164 return 0; 14165 } 14166 14167 static int 14168 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14169 { 14170 int cpu; 14171 14172 for_each_online_cpu(cpu) 14173 perf_event_exit_cpu(cpu); 14174 14175 return NOTIFY_OK; 14176 } 14177 14178 /* 14179 * Run the perf reboot notifier at the very last possible moment so that 14180 * the generic watchdog code runs as long as possible. 14181 */ 14182 static struct notifier_block perf_reboot_notifier = { 14183 .notifier_call = perf_reboot, 14184 .priority = INT_MIN, 14185 }; 14186 14187 void __init perf_event_init(void) 14188 { 14189 int ret; 14190 14191 idr_init(&pmu_idr); 14192 14193 perf_event_init_all_cpus(); 14194 init_srcu_struct(&pmus_srcu); 14195 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14196 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14197 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14198 perf_tp_register(); 14199 perf_event_init_cpu(smp_processor_id()); 14200 register_reboot_notifier(&perf_reboot_notifier); 14201 14202 ret = init_hw_breakpoint(); 14203 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14204 14205 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14206 14207 /* 14208 * Build time assertion that we keep the data_head at the intended 14209 * location. IOW, validation we got the __reserved[] size right. 14210 */ 14211 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14212 != 1024); 14213 } 14214 14215 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14216 char *page) 14217 { 14218 struct perf_pmu_events_attr *pmu_attr = 14219 container_of(attr, struct perf_pmu_events_attr, attr); 14220 14221 if (pmu_attr->event_str) 14222 return sprintf(page, "%s\n", pmu_attr->event_str); 14223 14224 return 0; 14225 } 14226 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14227 14228 static int __init perf_event_sysfs_init(void) 14229 { 14230 struct pmu *pmu; 14231 int ret; 14232 14233 mutex_lock(&pmus_lock); 14234 14235 ret = bus_register(&pmu_bus); 14236 if (ret) 14237 goto unlock; 14238 14239 list_for_each_entry(pmu, &pmus, entry) { 14240 if (pmu->dev) 14241 continue; 14242 14243 ret = pmu_dev_alloc(pmu); 14244 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14245 } 14246 pmu_bus_running = 1; 14247 ret = 0; 14248 14249 unlock: 14250 mutex_unlock(&pmus_lock); 14251 14252 return ret; 14253 } 14254 device_initcall(perf_event_sysfs_init); 14255 14256 #ifdef CONFIG_CGROUP_PERF 14257 static struct cgroup_subsys_state * 14258 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14259 { 14260 struct perf_cgroup *jc; 14261 14262 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14263 if (!jc) 14264 return ERR_PTR(-ENOMEM); 14265 14266 jc->info = alloc_percpu(struct perf_cgroup_info); 14267 if (!jc->info) { 14268 kfree(jc); 14269 return ERR_PTR(-ENOMEM); 14270 } 14271 14272 return &jc->css; 14273 } 14274 14275 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14276 { 14277 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14278 14279 free_percpu(jc->info); 14280 kfree(jc); 14281 } 14282 14283 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14284 { 14285 perf_event_cgroup(css->cgroup); 14286 return 0; 14287 } 14288 14289 static int __perf_cgroup_move(void *info) 14290 { 14291 struct task_struct *task = info; 14292 14293 preempt_disable(); 14294 perf_cgroup_switch(task); 14295 preempt_enable(); 14296 14297 return 0; 14298 } 14299 14300 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14301 { 14302 struct task_struct *task; 14303 struct cgroup_subsys_state *css; 14304 14305 cgroup_taskset_for_each(task, css, tset) 14306 task_function_call(task, __perf_cgroup_move, task); 14307 } 14308 14309 struct cgroup_subsys perf_event_cgrp_subsys = { 14310 .css_alloc = perf_cgroup_css_alloc, 14311 .css_free = perf_cgroup_css_free, 14312 .css_online = perf_cgroup_css_online, 14313 .attach = perf_cgroup_attach, 14314 /* 14315 * Implicitly enable on dfl hierarchy so that perf events can 14316 * always be filtered by cgroup2 path as long as perf_event 14317 * controller is not mounted on a legacy hierarchy. 14318 */ 14319 .implicit_on_dfl = true, 14320 .threaded = true, 14321 }; 14322 #endif /* CONFIG_CGROUP_PERF */ 14323 14324 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14325