xref: /linux/kernel/events/core.c (revision dd7bd1093622621a910cbb6a77c7addeb20c9984)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 	struct event_function_struct efs = {
248 		.event = event,
249 		.func = func,
250 		.data = data,
251 	};
252 
253 	int ret = event_function(&efs);
254 	WARN_ON_ONCE(ret);
255 }
256 
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 	struct perf_event_context *ctx = event->ctx;
260 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 	struct event_function_struct efs = {
262 		.event = event,
263 		.func = func,
264 		.data = data,
265 	};
266 
267 	if (!event->parent) {
268 		/*
269 		 * If this is a !child event, we must hold ctx::mutex to
270 		 * stabilize the the event->ctx relation. See
271 		 * perf_event_ctx_lock().
272 		 */
273 		lockdep_assert_held(&ctx->mutex);
274 	}
275 
276 	if (!task) {
277 		cpu_function_call(event->cpu, event_function, &efs);
278 		return;
279 	}
280 
281 	if (task == TASK_TOMBSTONE)
282 		return;
283 
284 again:
285 	if (!task_function_call(task, event_function, &efs))
286 		return;
287 
288 	raw_spin_lock_irq(&ctx->lock);
289 	/*
290 	 * Reload the task pointer, it might have been changed by
291 	 * a concurrent perf_event_context_sched_out().
292 	 */
293 	task = ctx->task;
294 	if (task == TASK_TOMBSTONE) {
295 		raw_spin_unlock_irq(&ctx->lock);
296 		return;
297 	}
298 	if (ctx->is_active) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		goto again;
301 	}
302 	func(event, NULL, ctx, data);
303 	raw_spin_unlock_irq(&ctx->lock);
304 }
305 
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 		       PERF_FLAG_FD_OUTPUT  |\
308 		       PERF_FLAG_PID_CGROUP |\
309 		       PERF_FLAG_FD_CLOEXEC)
310 
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 	(PERF_SAMPLE_BRANCH_KERNEL |\
316 	 PERF_SAMPLE_BRANCH_HV)
317 
318 enum event_type_t {
319 	EVENT_FLEXIBLE = 0x1,
320 	EVENT_PINNED = 0x2,
321 	EVENT_TIME = 0x4,
322 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324 
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329 
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335 
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339 
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345 
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349 
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358 
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361 
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE		100000
366 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
368 
369 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
370 
371 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
373 
374 static int perf_sample_allowed_ns __read_mostly =
375 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376 
377 static void update_perf_cpu_limits(void)
378 {
379 	u64 tmp = perf_sample_period_ns;
380 
381 	tmp *= sysctl_perf_cpu_time_max_percent;
382 	tmp = div_u64(tmp, 100);
383 	if (!tmp)
384 		tmp = 1;
385 
386 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388 
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390 
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392 		void __user *buffer, size_t *lenp,
393 		loff_t *ppos)
394 {
395 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396 
397 	if (ret || !write)
398 		return ret;
399 
400 	/*
401 	 * If throttling is disabled don't allow the write:
402 	 */
403 	if (sysctl_perf_cpu_time_max_percent == 100 ||
404 	    sysctl_perf_cpu_time_max_percent == 0)
405 		return -EINVAL;
406 
407 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 	update_perf_cpu_limits();
410 
411 	return 0;
412 }
413 
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415 
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 				void __user *buffer, size_t *lenp,
418 				loff_t *ppos)
419 {
420 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421 
422 	if (ret || !write)
423 		return ret;
424 
425 	if (sysctl_perf_cpu_time_max_percent == 100 ||
426 	    sysctl_perf_cpu_time_max_percent == 0) {
427 		printk(KERN_WARNING
428 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 		WRITE_ONCE(perf_sample_allowed_ns, 0);
430 	} else {
431 		update_perf_cpu_limits();
432 	}
433 
434 	return 0;
435 }
436 
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445 
446 static u64 __report_avg;
447 static u64 __report_allowed;
448 
449 static void perf_duration_warn(struct irq_work *w)
450 {
451 	printk_ratelimited(KERN_WARNING
452 		"perf: interrupt took too long (%lld > %lld), lowering "
453 		"kernel.perf_event_max_sample_rate to %d\n",
454 		__report_avg, __report_allowed,
455 		sysctl_perf_event_sample_rate);
456 }
457 
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459 
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463 	u64 running_len;
464 	u64 avg_len;
465 	u32 max;
466 
467 	if (max_len == 0)
468 		return;
469 
470 	/* Decay the counter by 1 average sample. */
471 	running_len = __this_cpu_read(running_sample_length);
472 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 	running_len += sample_len_ns;
474 	__this_cpu_write(running_sample_length, running_len);
475 
476 	/*
477 	 * Note: this will be biased artifically low until we have
478 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479 	 * from having to maintain a count.
480 	 */
481 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 	if (avg_len <= max_len)
483 		return;
484 
485 	__report_avg = avg_len;
486 	__report_allowed = max_len;
487 
488 	/*
489 	 * Compute a throttle threshold 25% below the current duration.
490 	 */
491 	avg_len += avg_len / 4;
492 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493 	if (avg_len < max)
494 		max /= (u32)avg_len;
495 	else
496 		max = 1;
497 
498 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 	WRITE_ONCE(max_samples_per_tick, max);
500 
501 	sysctl_perf_event_sample_rate = max * HZ;
502 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503 
504 	if (!irq_work_queue(&perf_duration_work)) {
505 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506 			     "kernel.perf_event_max_sample_rate to %d\n",
507 			     __report_avg, __report_allowed,
508 			     sysctl_perf_event_sample_rate);
509 	}
510 }
511 
512 static atomic64_t perf_event_id;
513 
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 			      enum event_type_t event_type);
516 
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518 			     enum event_type_t event_type,
519 			     struct task_struct *task);
520 
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523 
524 void __weak perf_event_print_debug(void)	{ }
525 
526 extern __weak const char *perf_pmu_name(void)
527 {
528 	return "pmu";
529 }
530 
531 static inline u64 perf_clock(void)
532 {
533 	return local_clock();
534 }
535 
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538 	return event->clock();
539 }
540 
541 #ifdef CONFIG_CGROUP_PERF
542 
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546 	struct perf_event_context *ctx = event->ctx;
547 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548 
549 	/* @event doesn't care about cgroup */
550 	if (!event->cgrp)
551 		return true;
552 
553 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
554 	if (!cpuctx->cgrp)
555 		return false;
556 
557 	/*
558 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
559 	 * also enabled for all its descendant cgroups.  If @cpuctx's
560 	 * cgroup is a descendant of @event's (the test covers identity
561 	 * case), it's a match.
562 	 */
563 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 				    event->cgrp->css.cgroup);
565 }
566 
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569 	css_put(&event->cgrp->css);
570 	event->cgrp = NULL;
571 }
572 
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575 	return event->cgrp != NULL;
576 }
577 
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580 	struct perf_cgroup_info *t;
581 
582 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
583 	return t->time;
584 }
585 
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588 	struct perf_cgroup_info *info;
589 	u64 now;
590 
591 	now = perf_clock();
592 
593 	info = this_cpu_ptr(cgrp->info);
594 
595 	info->time += now - info->timestamp;
596 	info->timestamp = now;
597 }
598 
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602 	if (cgrp_out)
603 		__update_cgrp_time(cgrp_out);
604 }
605 
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608 	struct perf_cgroup *cgrp;
609 
610 	/*
611 	 * ensure we access cgroup data only when needed and
612 	 * when we know the cgroup is pinned (css_get)
613 	 */
614 	if (!is_cgroup_event(event))
615 		return;
616 
617 	cgrp = perf_cgroup_from_task(current, event->ctx);
618 	/*
619 	 * Do not update time when cgroup is not active
620 	 */
621 	if (cgrp == event->cgrp)
622 		__update_cgrp_time(event->cgrp);
623 }
624 
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627 			  struct perf_event_context *ctx)
628 {
629 	struct perf_cgroup *cgrp;
630 	struct perf_cgroup_info *info;
631 
632 	/*
633 	 * ctx->lock held by caller
634 	 * ensure we do not access cgroup data
635 	 * unless we have the cgroup pinned (css_get)
636 	 */
637 	if (!task || !ctx->nr_cgroups)
638 		return;
639 
640 	cgrp = perf_cgroup_from_task(task, ctx);
641 	info = this_cpu_ptr(cgrp->info);
642 	info->timestamp = ctx->timestamp;
643 }
644 
645 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
647 
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656 	struct perf_cpu_context *cpuctx;
657 	struct pmu *pmu;
658 	unsigned long flags;
659 
660 	/*
661 	 * disable interrupts to avoid geting nr_cgroup
662 	 * changes via __perf_event_disable(). Also
663 	 * avoids preemption.
664 	 */
665 	local_irq_save(flags);
666 
667 	/*
668 	 * we reschedule only in the presence of cgroup
669 	 * constrained events.
670 	 */
671 
672 	list_for_each_entry_rcu(pmu, &pmus, entry) {
673 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674 		if (cpuctx->unique_pmu != pmu)
675 			continue; /* ensure we process each cpuctx once */
676 
677 		/*
678 		 * perf_cgroup_events says at least one
679 		 * context on this CPU has cgroup events.
680 		 *
681 		 * ctx->nr_cgroups reports the number of cgroup
682 		 * events for a context.
683 		 */
684 		if (cpuctx->ctx.nr_cgroups > 0) {
685 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 			perf_pmu_disable(cpuctx->ctx.pmu);
687 
688 			if (mode & PERF_CGROUP_SWOUT) {
689 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690 				/*
691 				 * must not be done before ctxswout due
692 				 * to event_filter_match() in event_sched_out()
693 				 */
694 				cpuctx->cgrp = NULL;
695 			}
696 
697 			if (mode & PERF_CGROUP_SWIN) {
698 				WARN_ON_ONCE(cpuctx->cgrp);
699 				/*
700 				 * set cgrp before ctxsw in to allow
701 				 * event_filter_match() to not have to pass
702 				 * task around
703 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 				 * because cgorup events are only per-cpu
705 				 */
706 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708 			}
709 			perf_pmu_enable(cpuctx->ctx.pmu);
710 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711 		}
712 	}
713 
714 	local_irq_restore(flags);
715 }
716 
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718 					 struct task_struct *next)
719 {
720 	struct perf_cgroup *cgrp1;
721 	struct perf_cgroup *cgrp2 = NULL;
722 
723 	rcu_read_lock();
724 	/*
725 	 * we come here when we know perf_cgroup_events > 0
726 	 * we do not need to pass the ctx here because we know
727 	 * we are holding the rcu lock
728 	 */
729 	cgrp1 = perf_cgroup_from_task(task, NULL);
730 	cgrp2 = perf_cgroup_from_task(next, NULL);
731 
732 	/*
733 	 * only schedule out current cgroup events if we know
734 	 * that we are switching to a different cgroup. Otherwise,
735 	 * do no touch the cgroup events.
736 	 */
737 	if (cgrp1 != cgrp2)
738 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739 
740 	rcu_read_unlock();
741 }
742 
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 					struct task_struct *task)
745 {
746 	struct perf_cgroup *cgrp1;
747 	struct perf_cgroup *cgrp2 = NULL;
748 
749 	rcu_read_lock();
750 	/*
751 	 * we come here when we know perf_cgroup_events > 0
752 	 * we do not need to pass the ctx here because we know
753 	 * we are holding the rcu lock
754 	 */
755 	cgrp1 = perf_cgroup_from_task(task, NULL);
756 	cgrp2 = perf_cgroup_from_task(prev, NULL);
757 
758 	/*
759 	 * only need to schedule in cgroup events if we are changing
760 	 * cgroup during ctxsw. Cgroup events were not scheduled
761 	 * out of ctxsw out if that was not the case.
762 	 */
763 	if (cgrp1 != cgrp2)
764 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765 
766 	rcu_read_unlock();
767 }
768 
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 				      struct perf_event_attr *attr,
771 				      struct perf_event *group_leader)
772 {
773 	struct perf_cgroup *cgrp;
774 	struct cgroup_subsys_state *css;
775 	struct fd f = fdget(fd);
776 	int ret = 0;
777 
778 	if (!f.file)
779 		return -EBADF;
780 
781 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
782 					 &perf_event_cgrp_subsys);
783 	if (IS_ERR(css)) {
784 		ret = PTR_ERR(css);
785 		goto out;
786 	}
787 
788 	cgrp = container_of(css, struct perf_cgroup, css);
789 	event->cgrp = cgrp;
790 
791 	/*
792 	 * all events in a group must monitor
793 	 * the same cgroup because a task belongs
794 	 * to only one perf cgroup at a time
795 	 */
796 	if (group_leader && group_leader->cgrp != cgrp) {
797 		perf_detach_cgroup(event);
798 		ret = -EINVAL;
799 	}
800 out:
801 	fdput(f);
802 	return ret;
803 }
804 
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808 	struct perf_cgroup_info *t;
809 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 	event->shadow_ctx_time = now - t->timestamp;
811 }
812 
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816 	/*
817 	 * when the current task's perf cgroup does not match
818 	 * the event's, we need to remember to call the
819 	 * perf_mark_enable() function the first time a task with
820 	 * a matching perf cgroup is scheduled in.
821 	 */
822 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 		event->cgrp_defer_enabled = 1;
824 }
825 
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828 			 struct perf_event_context *ctx)
829 {
830 	struct perf_event *sub;
831 	u64 tstamp = perf_event_time(event);
832 
833 	if (!event->cgrp_defer_enabled)
834 		return;
835 
836 	event->cgrp_defer_enabled = 0;
837 
838 	event->tstamp_enabled = tstamp - event->total_time_enabled;
839 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 			sub->cgrp_defer_enabled = 0;
843 		}
844 	}
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847 
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851 	return true;
852 }
853 
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856 
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859 	return 0;
860 }
861 
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864 	return 0;
865 }
866 
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870 
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874 
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876 					 struct task_struct *next)
877 {
878 }
879 
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881 					struct task_struct *task)
882 {
883 }
884 
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886 				      struct perf_event_attr *attr,
887 				      struct perf_event *group_leader)
888 {
889 	return -EINVAL;
890 }
891 
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894 			  struct perf_event_context *ctx)
895 {
896 }
897 
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902 
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907 
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910 	return 0;
911 }
912 
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917 
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920 			 struct perf_event_context *ctx)
921 {
922 }
923 #endif
924 
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935 	struct perf_cpu_context *cpuctx;
936 	int rotations = 0;
937 
938 	WARN_ON(!irqs_disabled());
939 
940 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941 	rotations = perf_rotate_context(cpuctx);
942 
943 	raw_spin_lock(&cpuctx->hrtimer_lock);
944 	if (rotations)
945 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946 	else
947 		cpuctx->hrtimer_active = 0;
948 	raw_spin_unlock(&cpuctx->hrtimer_lock);
949 
950 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952 
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955 	struct hrtimer *timer = &cpuctx->hrtimer;
956 	struct pmu *pmu = cpuctx->ctx.pmu;
957 	u64 interval;
958 
959 	/* no multiplexing needed for SW PMU */
960 	if (pmu->task_ctx_nr == perf_sw_context)
961 		return;
962 
963 	/*
964 	 * check default is sane, if not set then force to
965 	 * default interval (1/tick)
966 	 */
967 	interval = pmu->hrtimer_interval_ms;
968 	if (interval < 1)
969 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970 
971 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972 
973 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
974 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975 	timer->function = perf_mux_hrtimer_handler;
976 }
977 
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980 	struct hrtimer *timer = &cpuctx->hrtimer;
981 	struct pmu *pmu = cpuctx->ctx.pmu;
982 	unsigned long flags;
983 
984 	/* not for SW PMU */
985 	if (pmu->task_ctx_nr == perf_sw_context)
986 		return 0;
987 
988 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989 	if (!cpuctx->hrtimer_active) {
990 		cpuctx->hrtimer_active = 1;
991 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993 	}
994 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995 
996 	return 0;
997 }
998 
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002 	if (!(*count)++)
1003 		pmu->pmu_disable(pmu);
1004 }
1005 
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009 	if (!--(*count))
1010 		pmu->pmu_enable(pmu);
1011 }
1012 
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014 
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024 
1025 	WARN_ON(!irqs_disabled());
1026 
1027 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1028 
1029 	list_add(&ctx->active_ctx_list, head);
1030 }
1031 
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034 	WARN_ON(!irqs_disabled());
1035 
1036 	WARN_ON(list_empty(&ctx->active_ctx_list));
1037 
1038 	list_del_init(&ctx->active_ctx_list);
1039 }
1040 
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045 
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048 	struct perf_event_context *ctx;
1049 
1050 	ctx = container_of(head, struct perf_event_context, rcu_head);
1051 	kfree(ctx->task_ctx_data);
1052 	kfree(ctx);
1053 }
1054 
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057 	if (atomic_dec_and_test(&ctx->refcount)) {
1058 		if (ctx->parent_ctx)
1059 			put_ctx(ctx->parent_ctx);
1060 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061 			put_task_struct(ctx->task);
1062 		call_rcu(&ctx->rcu_head, free_ctx);
1063 	}
1064 }
1065 
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()	[ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()			[ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()		[ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event()	[ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *	task_struct::perf_event_mutex
1121  *	  perf_event_context::mutex
1122  *	    perf_event::child_mutex;
1123  *	      perf_event_context::lock
1124  *	    perf_event::mmap_mutex
1125  *	    mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130 	struct perf_event_context *ctx;
1131 
1132 again:
1133 	rcu_read_lock();
1134 	ctx = ACCESS_ONCE(event->ctx);
1135 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1136 		rcu_read_unlock();
1137 		goto again;
1138 	}
1139 	rcu_read_unlock();
1140 
1141 	mutex_lock_nested(&ctx->mutex, nesting);
1142 	if (event->ctx != ctx) {
1143 		mutex_unlock(&ctx->mutex);
1144 		put_ctx(ctx);
1145 		goto again;
1146 	}
1147 
1148 	return ctx;
1149 }
1150 
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154 	return perf_event_ctx_lock_nested(event, 0);
1155 }
1156 
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158 				  struct perf_event_context *ctx)
1159 {
1160 	mutex_unlock(&ctx->mutex);
1161 	put_ctx(ctx);
1162 }
1163 
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173 
1174 	lockdep_assert_held(&ctx->lock);
1175 
1176 	if (parent_ctx)
1177 		ctx->parent_ctx = NULL;
1178 	ctx->generation++;
1179 
1180 	return parent_ctx;
1181 }
1182 
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185 	/*
1186 	 * only top level events have the pid namespace they were created in
1187 	 */
1188 	if (event->parent)
1189 		event = event->parent;
1190 
1191 	return task_tgid_nr_ns(p, event->ns);
1192 }
1193 
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196 	/*
1197 	 * only top level events have the pid namespace they were created in
1198 	 */
1199 	if (event->parent)
1200 		event = event->parent;
1201 
1202 	return task_pid_nr_ns(p, event->ns);
1203 }
1204 
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211 	u64 id = event->id;
1212 
1213 	if (event->parent)
1214 		id = event->parent->id;
1215 
1216 	return id;
1217 }
1218 
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228 	struct perf_event_context *ctx;
1229 
1230 retry:
1231 	/*
1232 	 * One of the few rules of preemptible RCU is that one cannot do
1233 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234 	 * part of the read side critical section was irqs-enabled -- see
1235 	 * rcu_read_unlock_special().
1236 	 *
1237 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1238 	 * side critical section has interrupts disabled.
1239 	 */
1240 	local_irq_save(*flags);
1241 	rcu_read_lock();
1242 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243 	if (ctx) {
1244 		/*
1245 		 * If this context is a clone of another, it might
1246 		 * get swapped for another underneath us by
1247 		 * perf_event_task_sched_out, though the
1248 		 * rcu_read_lock() protects us from any context
1249 		 * getting freed.  Lock the context and check if it
1250 		 * got swapped before we could get the lock, and retry
1251 		 * if so.  If we locked the right context, then it
1252 		 * can't get swapped on us any more.
1253 		 */
1254 		raw_spin_lock(&ctx->lock);
1255 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256 			raw_spin_unlock(&ctx->lock);
1257 			rcu_read_unlock();
1258 			local_irq_restore(*flags);
1259 			goto retry;
1260 		}
1261 
1262 		if (ctx->task == TASK_TOMBSTONE ||
1263 		    !atomic_inc_not_zero(&ctx->refcount)) {
1264 			raw_spin_unlock(&ctx->lock);
1265 			ctx = NULL;
1266 		} else {
1267 			WARN_ON_ONCE(ctx->task != task);
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 	if (!ctx)
1272 		local_irq_restore(*flags);
1273 	return ctx;
1274 }
1275 
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284 	struct perf_event_context *ctx;
1285 	unsigned long flags;
1286 
1287 	ctx = perf_lock_task_context(task, ctxn, &flags);
1288 	if (ctx) {
1289 		++ctx->pin_count;
1290 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291 	}
1292 	return ctx;
1293 }
1294 
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297 	unsigned long flags;
1298 
1299 	raw_spin_lock_irqsave(&ctx->lock, flags);
1300 	--ctx->pin_count;
1301 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303 
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309 	u64 now = perf_clock();
1310 
1311 	ctx->time += now - ctx->timestamp;
1312 	ctx->timestamp = now;
1313 }
1314 
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317 	struct perf_event_context *ctx = event->ctx;
1318 
1319 	if (is_cgroup_event(event))
1320 		return perf_cgroup_event_time(event);
1321 
1322 	return ctx ? ctx->time : 0;
1323 }
1324 
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330 	struct perf_event_context *ctx = event->ctx;
1331 	u64 run_end;
1332 
1333 	lockdep_assert_held(&ctx->lock);
1334 
1335 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337 		return;
1338 
1339 	/*
1340 	 * in cgroup mode, time_enabled represents
1341 	 * the time the event was enabled AND active
1342 	 * tasks were in the monitored cgroup. This is
1343 	 * independent of the activity of the context as
1344 	 * there may be a mix of cgroup and non-cgroup events.
1345 	 *
1346 	 * That is why we treat cgroup events differently
1347 	 * here.
1348 	 */
1349 	if (is_cgroup_event(event))
1350 		run_end = perf_cgroup_event_time(event);
1351 	else if (ctx->is_active)
1352 		run_end = ctx->time;
1353 	else
1354 		run_end = event->tstamp_stopped;
1355 
1356 	event->total_time_enabled = run_end - event->tstamp_enabled;
1357 
1358 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1359 		run_end = event->tstamp_stopped;
1360 	else
1361 		run_end = perf_event_time(event);
1362 
1363 	event->total_time_running = run_end - event->tstamp_running;
1364 
1365 }
1366 
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372 	struct perf_event *event;
1373 
1374 	update_event_times(leader);
1375 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1376 		update_event_times(event);
1377 }
1378 
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382 	if (event->attr.pinned)
1383 		return &ctx->pinned_groups;
1384 	else
1385 		return &ctx->flexible_groups;
1386 }
1387 
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 	lockdep_assert_held(&ctx->lock);
1396 
1397 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398 	event->attach_state |= PERF_ATTACH_CONTEXT;
1399 
1400 	/*
1401 	 * If we're a stand alone event or group leader, we go to the context
1402 	 * list, group events are kept attached to the group so that
1403 	 * perf_group_detach can, at all times, locate all siblings.
1404 	 */
1405 	if (event->group_leader == event) {
1406 		struct list_head *list;
1407 
1408 		if (is_software_event(event))
1409 			event->group_flags |= PERF_GROUP_SOFTWARE;
1410 
1411 		list = ctx_group_list(event, ctx);
1412 		list_add_tail(&event->group_entry, list);
1413 	}
1414 
1415 	if (is_cgroup_event(event))
1416 		ctx->nr_cgroups++;
1417 
1418 	list_add_rcu(&event->event_entry, &ctx->event_list);
1419 	ctx->nr_events++;
1420 	if (event->attr.inherit_stat)
1421 		ctx->nr_stat++;
1422 
1423 	ctx->generation++;
1424 }
1425 
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432 					      PERF_EVENT_STATE_INACTIVE;
1433 }
1434 
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437 	int entry = sizeof(u64); /* value */
1438 	int size = 0;
1439 	int nr = 1;
1440 
1441 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 		size += sizeof(u64);
1443 
1444 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 		size += sizeof(u64);
1446 
1447 	if (event->attr.read_format & PERF_FORMAT_ID)
1448 		entry += sizeof(u64);
1449 
1450 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451 		nr += nr_siblings;
1452 		size += sizeof(u64);
1453 	}
1454 
1455 	size += entry * nr;
1456 	event->read_size = size;
1457 }
1458 
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461 	struct perf_sample_data *data;
1462 	u16 size = 0;
1463 
1464 	if (sample_type & PERF_SAMPLE_IP)
1465 		size += sizeof(data->ip);
1466 
1467 	if (sample_type & PERF_SAMPLE_ADDR)
1468 		size += sizeof(data->addr);
1469 
1470 	if (sample_type & PERF_SAMPLE_PERIOD)
1471 		size += sizeof(data->period);
1472 
1473 	if (sample_type & PERF_SAMPLE_WEIGHT)
1474 		size += sizeof(data->weight);
1475 
1476 	if (sample_type & PERF_SAMPLE_READ)
1477 		size += event->read_size;
1478 
1479 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1480 		size += sizeof(data->data_src.val);
1481 
1482 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1483 		size += sizeof(data->txn);
1484 
1485 	event->header_size = size;
1486 }
1487 
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494 	__perf_event_read_size(event,
1495 			       event->group_leader->nr_siblings);
1496 	__perf_event_header_size(event, event->attr.sample_type);
1497 }
1498 
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501 	struct perf_sample_data *data;
1502 	u64 sample_type = event->attr.sample_type;
1503 	u16 size = 0;
1504 
1505 	if (sample_type & PERF_SAMPLE_TID)
1506 		size += sizeof(data->tid_entry);
1507 
1508 	if (sample_type & PERF_SAMPLE_TIME)
1509 		size += sizeof(data->time);
1510 
1511 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512 		size += sizeof(data->id);
1513 
1514 	if (sample_type & PERF_SAMPLE_ID)
1515 		size += sizeof(data->id);
1516 
1517 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1518 		size += sizeof(data->stream_id);
1519 
1520 	if (sample_type & PERF_SAMPLE_CPU)
1521 		size += sizeof(data->cpu_entry);
1522 
1523 	event->id_header_size = size;
1524 }
1525 
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528 	/*
1529 	 * The values computed here will be over-written when we actually
1530 	 * attach the event.
1531 	 */
1532 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534 	perf_event__id_header_size(event);
1535 
1536 	/*
1537 	 * Sum the lot; should not exceed the 64k limit we have on records.
1538 	 * Conservative limit to allow for callchains and other variable fields.
1539 	 */
1540 	if (event->read_size + event->header_size +
1541 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542 		return false;
1543 
1544 	return true;
1545 }
1546 
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549 	struct perf_event *group_leader = event->group_leader, *pos;
1550 
1551 	/*
1552 	 * We can have double attach due to group movement in perf_event_open.
1553 	 */
1554 	if (event->attach_state & PERF_ATTACH_GROUP)
1555 		return;
1556 
1557 	event->attach_state |= PERF_ATTACH_GROUP;
1558 
1559 	if (group_leader == event)
1560 		return;
1561 
1562 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563 
1564 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565 			!is_software_event(event))
1566 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567 
1568 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569 	group_leader->nr_siblings++;
1570 
1571 	perf_event__header_size(group_leader);
1572 
1573 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574 		perf_event__header_size(pos);
1575 }
1576 
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584 	struct perf_cpu_context *cpuctx;
1585 
1586 	WARN_ON_ONCE(event->ctx != ctx);
1587 	lockdep_assert_held(&ctx->lock);
1588 
1589 	/*
1590 	 * We can have double detach due to exit/hot-unplug + close.
1591 	 */
1592 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593 		return;
1594 
1595 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596 
1597 	if (is_cgroup_event(event)) {
1598 		ctx->nr_cgroups--;
1599 		/*
1600 		 * Because cgroup events are always per-cpu events, this will
1601 		 * always be called from the right CPU.
1602 		 */
1603 		cpuctx = __get_cpu_context(ctx);
1604 		/*
1605 		 * If there are no more cgroup events then clear cgrp to avoid
1606 		 * stale pointer in update_cgrp_time_from_cpuctx().
1607 		 */
1608 		if (!ctx->nr_cgroups)
1609 			cpuctx->cgrp = NULL;
1610 	}
1611 
1612 	ctx->nr_events--;
1613 	if (event->attr.inherit_stat)
1614 		ctx->nr_stat--;
1615 
1616 	list_del_rcu(&event->event_entry);
1617 
1618 	if (event->group_leader == event)
1619 		list_del_init(&event->group_entry);
1620 
1621 	update_group_times(event);
1622 
1623 	/*
1624 	 * If event was in error state, then keep it
1625 	 * that way, otherwise bogus counts will be
1626 	 * returned on read(). The only way to get out
1627 	 * of error state is by explicit re-enabling
1628 	 * of the event
1629 	 */
1630 	if (event->state > PERF_EVENT_STATE_OFF)
1631 		event->state = PERF_EVENT_STATE_OFF;
1632 
1633 	ctx->generation++;
1634 }
1635 
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638 	struct perf_event *sibling, *tmp;
1639 	struct list_head *list = NULL;
1640 
1641 	/*
1642 	 * We can have double detach due to exit/hot-unplug + close.
1643 	 */
1644 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1645 		return;
1646 
1647 	event->attach_state &= ~PERF_ATTACH_GROUP;
1648 
1649 	/*
1650 	 * If this is a sibling, remove it from its group.
1651 	 */
1652 	if (event->group_leader != event) {
1653 		list_del_init(&event->group_entry);
1654 		event->group_leader->nr_siblings--;
1655 		goto out;
1656 	}
1657 
1658 	if (!list_empty(&event->group_entry))
1659 		list = &event->group_entry;
1660 
1661 	/*
1662 	 * If this was a group event with sibling events then
1663 	 * upgrade the siblings to singleton events by adding them
1664 	 * to whatever list we are on.
1665 	 */
1666 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667 		if (list)
1668 			list_move_tail(&sibling->group_entry, list);
1669 		sibling->group_leader = sibling;
1670 
1671 		/* Inherit group flags from the previous leader */
1672 		sibling->group_flags = event->group_flags;
1673 
1674 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1675 	}
1676 
1677 out:
1678 	perf_event__header_size(event->group_leader);
1679 
1680 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681 		perf_event__header_size(tmp);
1682 }
1683 
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686 	return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688 
1689 static inline int __pmu_filter_match(struct perf_event *event)
1690 {
1691 	struct pmu *pmu = event->pmu;
1692 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694 
1695 /*
1696  * Check whether we should attempt to schedule an event group based on
1697  * PMU-specific filtering. An event group can consist of HW and SW events,
1698  * potentially with a SW leader, so we must check all the filters, to
1699  * determine whether a group is schedulable:
1700  */
1701 static inline int pmu_filter_match(struct perf_event *event)
1702 {
1703 	struct perf_event *child;
1704 
1705 	if (!__pmu_filter_match(event))
1706 		return 0;
1707 
1708 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1709 		if (!__pmu_filter_match(child))
1710 			return 0;
1711 	}
1712 
1713 	return 1;
1714 }
1715 
1716 static inline int
1717 event_filter_match(struct perf_event *event)
1718 {
1719 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1720 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1721 }
1722 
1723 static void
1724 event_sched_out(struct perf_event *event,
1725 		  struct perf_cpu_context *cpuctx,
1726 		  struct perf_event_context *ctx)
1727 {
1728 	u64 tstamp = perf_event_time(event);
1729 	u64 delta;
1730 
1731 	WARN_ON_ONCE(event->ctx != ctx);
1732 	lockdep_assert_held(&ctx->lock);
1733 
1734 	/*
1735 	 * An event which could not be activated because of
1736 	 * filter mismatch still needs to have its timings
1737 	 * maintained, otherwise bogus information is return
1738 	 * via read() for time_enabled, time_running:
1739 	 */
1740 	if (event->state == PERF_EVENT_STATE_INACTIVE
1741 	    && !event_filter_match(event)) {
1742 		delta = tstamp - event->tstamp_stopped;
1743 		event->tstamp_running += delta;
1744 		event->tstamp_stopped = tstamp;
1745 	}
1746 
1747 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1748 		return;
1749 
1750 	perf_pmu_disable(event->pmu);
1751 
1752 	event->tstamp_stopped = tstamp;
1753 	event->pmu->del(event, 0);
1754 	event->oncpu = -1;
1755 	event->state = PERF_EVENT_STATE_INACTIVE;
1756 	if (event->pending_disable) {
1757 		event->pending_disable = 0;
1758 		event->state = PERF_EVENT_STATE_OFF;
1759 	}
1760 
1761 	if (!is_software_event(event))
1762 		cpuctx->active_oncpu--;
1763 	if (!--ctx->nr_active)
1764 		perf_event_ctx_deactivate(ctx);
1765 	if (event->attr.freq && event->attr.sample_freq)
1766 		ctx->nr_freq--;
1767 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1768 		cpuctx->exclusive = 0;
1769 
1770 	perf_pmu_enable(event->pmu);
1771 }
1772 
1773 static void
1774 group_sched_out(struct perf_event *group_event,
1775 		struct perf_cpu_context *cpuctx,
1776 		struct perf_event_context *ctx)
1777 {
1778 	struct perf_event *event;
1779 	int state = group_event->state;
1780 
1781 	event_sched_out(group_event, cpuctx, ctx);
1782 
1783 	/*
1784 	 * Schedule out siblings (if any):
1785 	 */
1786 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1787 		event_sched_out(event, cpuctx, ctx);
1788 
1789 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1790 		cpuctx->exclusive = 0;
1791 }
1792 
1793 #define DETACH_GROUP	0x01UL
1794 
1795 /*
1796  * Cross CPU call to remove a performance event
1797  *
1798  * We disable the event on the hardware level first. After that we
1799  * remove it from the context list.
1800  */
1801 static void
1802 __perf_remove_from_context(struct perf_event *event,
1803 			   struct perf_cpu_context *cpuctx,
1804 			   struct perf_event_context *ctx,
1805 			   void *info)
1806 {
1807 	unsigned long flags = (unsigned long)info;
1808 
1809 	event_sched_out(event, cpuctx, ctx);
1810 	if (flags & DETACH_GROUP)
1811 		perf_group_detach(event);
1812 	list_del_event(event, ctx);
1813 
1814 	if (!ctx->nr_events && ctx->is_active) {
1815 		ctx->is_active = 0;
1816 		if (ctx->task) {
1817 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1818 			cpuctx->task_ctx = NULL;
1819 		}
1820 	}
1821 }
1822 
1823 /*
1824  * Remove the event from a task's (or a CPU's) list of events.
1825  *
1826  * If event->ctx is a cloned context, callers must make sure that
1827  * every task struct that event->ctx->task could possibly point to
1828  * remains valid.  This is OK when called from perf_release since
1829  * that only calls us on the top-level context, which can't be a clone.
1830  * When called from perf_event_exit_task, it's OK because the
1831  * context has been detached from its task.
1832  */
1833 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1834 {
1835 	lockdep_assert_held(&event->ctx->mutex);
1836 
1837 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1838 }
1839 
1840 /*
1841  * Cross CPU call to disable a performance event
1842  */
1843 static void __perf_event_disable(struct perf_event *event,
1844 				 struct perf_cpu_context *cpuctx,
1845 				 struct perf_event_context *ctx,
1846 				 void *info)
1847 {
1848 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1849 		return;
1850 
1851 	update_context_time(ctx);
1852 	update_cgrp_time_from_event(event);
1853 	update_group_times(event);
1854 	if (event == event->group_leader)
1855 		group_sched_out(event, cpuctx, ctx);
1856 	else
1857 		event_sched_out(event, cpuctx, ctx);
1858 	event->state = PERF_EVENT_STATE_OFF;
1859 }
1860 
1861 /*
1862  * Disable a event.
1863  *
1864  * If event->ctx is a cloned context, callers must make sure that
1865  * every task struct that event->ctx->task could possibly point to
1866  * remains valid.  This condition is satisifed when called through
1867  * perf_event_for_each_child or perf_event_for_each because they
1868  * hold the top-level event's child_mutex, so any descendant that
1869  * goes to exit will block in perf_event_exit_event().
1870  *
1871  * When called from perf_pending_event it's OK because event->ctx
1872  * is the current context on this CPU and preemption is disabled,
1873  * hence we can't get into perf_event_task_sched_out for this context.
1874  */
1875 static void _perf_event_disable(struct perf_event *event)
1876 {
1877 	struct perf_event_context *ctx = event->ctx;
1878 
1879 	raw_spin_lock_irq(&ctx->lock);
1880 	if (event->state <= PERF_EVENT_STATE_OFF) {
1881 		raw_spin_unlock_irq(&ctx->lock);
1882 		return;
1883 	}
1884 	raw_spin_unlock_irq(&ctx->lock);
1885 
1886 	event_function_call(event, __perf_event_disable, NULL);
1887 }
1888 
1889 void perf_event_disable_local(struct perf_event *event)
1890 {
1891 	event_function_local(event, __perf_event_disable, NULL);
1892 }
1893 
1894 /*
1895  * Strictly speaking kernel users cannot create groups and therefore this
1896  * interface does not need the perf_event_ctx_lock() magic.
1897  */
1898 void perf_event_disable(struct perf_event *event)
1899 {
1900 	struct perf_event_context *ctx;
1901 
1902 	ctx = perf_event_ctx_lock(event);
1903 	_perf_event_disable(event);
1904 	perf_event_ctx_unlock(event, ctx);
1905 }
1906 EXPORT_SYMBOL_GPL(perf_event_disable);
1907 
1908 static void perf_set_shadow_time(struct perf_event *event,
1909 				 struct perf_event_context *ctx,
1910 				 u64 tstamp)
1911 {
1912 	/*
1913 	 * use the correct time source for the time snapshot
1914 	 *
1915 	 * We could get by without this by leveraging the
1916 	 * fact that to get to this function, the caller
1917 	 * has most likely already called update_context_time()
1918 	 * and update_cgrp_time_xx() and thus both timestamp
1919 	 * are identical (or very close). Given that tstamp is,
1920 	 * already adjusted for cgroup, we could say that:
1921 	 *    tstamp - ctx->timestamp
1922 	 * is equivalent to
1923 	 *    tstamp - cgrp->timestamp.
1924 	 *
1925 	 * Then, in perf_output_read(), the calculation would
1926 	 * work with no changes because:
1927 	 * - event is guaranteed scheduled in
1928 	 * - no scheduled out in between
1929 	 * - thus the timestamp would be the same
1930 	 *
1931 	 * But this is a bit hairy.
1932 	 *
1933 	 * So instead, we have an explicit cgroup call to remain
1934 	 * within the time time source all along. We believe it
1935 	 * is cleaner and simpler to understand.
1936 	 */
1937 	if (is_cgroup_event(event))
1938 		perf_cgroup_set_shadow_time(event, tstamp);
1939 	else
1940 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1941 }
1942 
1943 #define MAX_INTERRUPTS (~0ULL)
1944 
1945 static void perf_log_throttle(struct perf_event *event, int enable);
1946 static void perf_log_itrace_start(struct perf_event *event);
1947 
1948 static int
1949 event_sched_in(struct perf_event *event,
1950 		 struct perf_cpu_context *cpuctx,
1951 		 struct perf_event_context *ctx)
1952 {
1953 	u64 tstamp = perf_event_time(event);
1954 	int ret = 0;
1955 
1956 	lockdep_assert_held(&ctx->lock);
1957 
1958 	if (event->state <= PERF_EVENT_STATE_OFF)
1959 		return 0;
1960 
1961 	WRITE_ONCE(event->oncpu, smp_processor_id());
1962 	/*
1963 	 * Order event::oncpu write to happen before the ACTIVE state
1964 	 * is visible.
1965 	 */
1966 	smp_wmb();
1967 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1968 
1969 	/*
1970 	 * Unthrottle events, since we scheduled we might have missed several
1971 	 * ticks already, also for a heavily scheduling task there is little
1972 	 * guarantee it'll get a tick in a timely manner.
1973 	 */
1974 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1975 		perf_log_throttle(event, 1);
1976 		event->hw.interrupts = 0;
1977 	}
1978 
1979 	/*
1980 	 * The new state must be visible before we turn it on in the hardware:
1981 	 */
1982 	smp_wmb();
1983 
1984 	perf_pmu_disable(event->pmu);
1985 
1986 	perf_set_shadow_time(event, ctx, tstamp);
1987 
1988 	perf_log_itrace_start(event);
1989 
1990 	if (event->pmu->add(event, PERF_EF_START)) {
1991 		event->state = PERF_EVENT_STATE_INACTIVE;
1992 		event->oncpu = -1;
1993 		ret = -EAGAIN;
1994 		goto out;
1995 	}
1996 
1997 	event->tstamp_running += tstamp - event->tstamp_stopped;
1998 
1999 	if (!is_software_event(event))
2000 		cpuctx->active_oncpu++;
2001 	if (!ctx->nr_active++)
2002 		perf_event_ctx_activate(ctx);
2003 	if (event->attr.freq && event->attr.sample_freq)
2004 		ctx->nr_freq++;
2005 
2006 	if (event->attr.exclusive)
2007 		cpuctx->exclusive = 1;
2008 
2009 out:
2010 	perf_pmu_enable(event->pmu);
2011 
2012 	return ret;
2013 }
2014 
2015 static int
2016 group_sched_in(struct perf_event *group_event,
2017 	       struct perf_cpu_context *cpuctx,
2018 	       struct perf_event_context *ctx)
2019 {
2020 	struct perf_event *event, *partial_group = NULL;
2021 	struct pmu *pmu = ctx->pmu;
2022 	u64 now = ctx->time;
2023 	bool simulate = false;
2024 
2025 	if (group_event->state == PERF_EVENT_STATE_OFF)
2026 		return 0;
2027 
2028 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2029 
2030 	if (event_sched_in(group_event, cpuctx, ctx)) {
2031 		pmu->cancel_txn(pmu);
2032 		perf_mux_hrtimer_restart(cpuctx);
2033 		return -EAGAIN;
2034 	}
2035 
2036 	/*
2037 	 * Schedule in siblings as one group (if any):
2038 	 */
2039 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2040 		if (event_sched_in(event, cpuctx, ctx)) {
2041 			partial_group = event;
2042 			goto group_error;
2043 		}
2044 	}
2045 
2046 	if (!pmu->commit_txn(pmu))
2047 		return 0;
2048 
2049 group_error:
2050 	/*
2051 	 * Groups can be scheduled in as one unit only, so undo any
2052 	 * partial group before returning:
2053 	 * The events up to the failed event are scheduled out normally,
2054 	 * tstamp_stopped will be updated.
2055 	 *
2056 	 * The failed events and the remaining siblings need to have
2057 	 * their timings updated as if they had gone thru event_sched_in()
2058 	 * and event_sched_out(). This is required to get consistent timings
2059 	 * across the group. This also takes care of the case where the group
2060 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2061 	 * the time the event was actually stopped, such that time delta
2062 	 * calculation in update_event_times() is correct.
2063 	 */
2064 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2065 		if (event == partial_group)
2066 			simulate = true;
2067 
2068 		if (simulate) {
2069 			event->tstamp_running += now - event->tstamp_stopped;
2070 			event->tstamp_stopped = now;
2071 		} else {
2072 			event_sched_out(event, cpuctx, ctx);
2073 		}
2074 	}
2075 	event_sched_out(group_event, cpuctx, ctx);
2076 
2077 	pmu->cancel_txn(pmu);
2078 
2079 	perf_mux_hrtimer_restart(cpuctx);
2080 
2081 	return -EAGAIN;
2082 }
2083 
2084 /*
2085  * Work out whether we can put this event group on the CPU now.
2086  */
2087 static int group_can_go_on(struct perf_event *event,
2088 			   struct perf_cpu_context *cpuctx,
2089 			   int can_add_hw)
2090 {
2091 	/*
2092 	 * Groups consisting entirely of software events can always go on.
2093 	 */
2094 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2095 		return 1;
2096 	/*
2097 	 * If an exclusive group is already on, no other hardware
2098 	 * events can go on.
2099 	 */
2100 	if (cpuctx->exclusive)
2101 		return 0;
2102 	/*
2103 	 * If this group is exclusive and there are already
2104 	 * events on the CPU, it can't go on.
2105 	 */
2106 	if (event->attr.exclusive && cpuctx->active_oncpu)
2107 		return 0;
2108 	/*
2109 	 * Otherwise, try to add it if all previous groups were able
2110 	 * to go on.
2111 	 */
2112 	return can_add_hw;
2113 }
2114 
2115 static void add_event_to_ctx(struct perf_event *event,
2116 			       struct perf_event_context *ctx)
2117 {
2118 	u64 tstamp = perf_event_time(event);
2119 
2120 	list_add_event(event, ctx);
2121 	perf_group_attach(event);
2122 	event->tstamp_enabled = tstamp;
2123 	event->tstamp_running = tstamp;
2124 	event->tstamp_stopped = tstamp;
2125 }
2126 
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 			  struct perf_cpu_context *cpuctx,
2129 			  enum event_type_t event_type);
2130 static void
2131 ctx_sched_in(struct perf_event_context *ctx,
2132 	     struct perf_cpu_context *cpuctx,
2133 	     enum event_type_t event_type,
2134 	     struct task_struct *task);
2135 
2136 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2137 			       struct perf_event_context *ctx)
2138 {
2139 	if (!cpuctx->task_ctx)
2140 		return;
2141 
2142 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2143 		return;
2144 
2145 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2146 }
2147 
2148 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2149 				struct perf_event_context *ctx,
2150 				struct task_struct *task)
2151 {
2152 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2153 	if (ctx)
2154 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2155 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2156 	if (ctx)
2157 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2158 }
2159 
2160 static void ctx_resched(struct perf_cpu_context *cpuctx,
2161 			struct perf_event_context *task_ctx)
2162 {
2163 	perf_pmu_disable(cpuctx->ctx.pmu);
2164 	if (task_ctx)
2165 		task_ctx_sched_out(cpuctx, task_ctx);
2166 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2167 	perf_event_sched_in(cpuctx, task_ctx, current);
2168 	perf_pmu_enable(cpuctx->ctx.pmu);
2169 }
2170 
2171 /*
2172  * Cross CPU call to install and enable a performance event
2173  *
2174  * Very similar to remote_function() + event_function() but cannot assume that
2175  * things like ctx->is_active and cpuctx->task_ctx are set.
2176  */
2177 static int  __perf_install_in_context(void *info)
2178 {
2179 	struct perf_event *event = info;
2180 	struct perf_event_context *ctx = event->ctx;
2181 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2182 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2183 	bool activate = true;
2184 	int ret = 0;
2185 
2186 	raw_spin_lock(&cpuctx->ctx.lock);
2187 	if (ctx->task) {
2188 		raw_spin_lock(&ctx->lock);
2189 		task_ctx = ctx;
2190 
2191 		/* If we're on the wrong CPU, try again */
2192 		if (task_cpu(ctx->task) != smp_processor_id()) {
2193 			ret = -ESRCH;
2194 			goto unlock;
2195 		}
2196 
2197 		/*
2198 		 * If we're on the right CPU, see if the task we target is
2199 		 * current, if not we don't have to activate the ctx, a future
2200 		 * context switch will do that for us.
2201 		 */
2202 		if (ctx->task != current)
2203 			activate = false;
2204 		else
2205 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2206 
2207 	} else if (task_ctx) {
2208 		raw_spin_lock(&task_ctx->lock);
2209 	}
2210 
2211 	if (activate) {
2212 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2213 		add_event_to_ctx(event, ctx);
2214 		ctx_resched(cpuctx, task_ctx);
2215 	} else {
2216 		add_event_to_ctx(event, ctx);
2217 	}
2218 
2219 unlock:
2220 	perf_ctx_unlock(cpuctx, task_ctx);
2221 
2222 	return ret;
2223 }
2224 
2225 /*
2226  * Attach a performance event to a context.
2227  *
2228  * Very similar to event_function_call, see comment there.
2229  */
2230 static void
2231 perf_install_in_context(struct perf_event_context *ctx,
2232 			struct perf_event *event,
2233 			int cpu)
2234 {
2235 	struct task_struct *task = READ_ONCE(ctx->task);
2236 
2237 	lockdep_assert_held(&ctx->mutex);
2238 
2239 	event->ctx = ctx;
2240 	if (event->cpu != -1)
2241 		event->cpu = cpu;
2242 
2243 	if (!task) {
2244 		cpu_function_call(cpu, __perf_install_in_context, event);
2245 		return;
2246 	}
2247 
2248 	/*
2249 	 * Should not happen, we validate the ctx is still alive before calling.
2250 	 */
2251 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2252 		return;
2253 
2254 	/*
2255 	 * Installing events is tricky because we cannot rely on ctx->is_active
2256 	 * to be set in case this is the nr_events 0 -> 1 transition.
2257 	 */
2258 again:
2259 	/*
2260 	 * Cannot use task_function_call() because we need to run on the task's
2261 	 * CPU regardless of whether its current or not.
2262 	 */
2263 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2264 		return;
2265 
2266 	raw_spin_lock_irq(&ctx->lock);
2267 	task = ctx->task;
2268 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2269 		/*
2270 		 * Cannot happen because we already checked above (which also
2271 		 * cannot happen), and we hold ctx->mutex, which serializes us
2272 		 * against perf_event_exit_task_context().
2273 		 */
2274 		raw_spin_unlock_irq(&ctx->lock);
2275 		return;
2276 	}
2277 	raw_spin_unlock_irq(&ctx->lock);
2278 	/*
2279 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2280 	 * unconditionally.
2281 	 */
2282 	goto again;
2283 }
2284 
2285 /*
2286  * Put a event into inactive state and update time fields.
2287  * Enabling the leader of a group effectively enables all
2288  * the group members that aren't explicitly disabled, so we
2289  * have to update their ->tstamp_enabled also.
2290  * Note: this works for group members as well as group leaders
2291  * since the non-leader members' sibling_lists will be empty.
2292  */
2293 static void __perf_event_mark_enabled(struct perf_event *event)
2294 {
2295 	struct perf_event *sub;
2296 	u64 tstamp = perf_event_time(event);
2297 
2298 	event->state = PERF_EVENT_STATE_INACTIVE;
2299 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2300 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2301 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2302 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2303 	}
2304 }
2305 
2306 /*
2307  * Cross CPU call to enable a performance event
2308  */
2309 static void __perf_event_enable(struct perf_event *event,
2310 				struct perf_cpu_context *cpuctx,
2311 				struct perf_event_context *ctx,
2312 				void *info)
2313 {
2314 	struct perf_event *leader = event->group_leader;
2315 	struct perf_event_context *task_ctx;
2316 
2317 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2318 	    event->state <= PERF_EVENT_STATE_ERROR)
2319 		return;
2320 
2321 	if (ctx->is_active)
2322 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2323 
2324 	__perf_event_mark_enabled(event);
2325 
2326 	if (!ctx->is_active)
2327 		return;
2328 
2329 	if (!event_filter_match(event)) {
2330 		if (is_cgroup_event(event))
2331 			perf_cgroup_defer_enabled(event);
2332 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2333 		return;
2334 	}
2335 
2336 	/*
2337 	 * If the event is in a group and isn't the group leader,
2338 	 * then don't put it on unless the group is on.
2339 	 */
2340 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2341 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2342 		return;
2343 	}
2344 
2345 	task_ctx = cpuctx->task_ctx;
2346 	if (ctx->task)
2347 		WARN_ON_ONCE(task_ctx != ctx);
2348 
2349 	ctx_resched(cpuctx, task_ctx);
2350 }
2351 
2352 /*
2353  * Enable a event.
2354  *
2355  * If event->ctx is a cloned context, callers must make sure that
2356  * every task struct that event->ctx->task could possibly point to
2357  * remains valid.  This condition is satisfied when called through
2358  * perf_event_for_each_child or perf_event_for_each as described
2359  * for perf_event_disable.
2360  */
2361 static void _perf_event_enable(struct perf_event *event)
2362 {
2363 	struct perf_event_context *ctx = event->ctx;
2364 
2365 	raw_spin_lock_irq(&ctx->lock);
2366 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2367 	    event->state <  PERF_EVENT_STATE_ERROR) {
2368 		raw_spin_unlock_irq(&ctx->lock);
2369 		return;
2370 	}
2371 
2372 	/*
2373 	 * If the event is in error state, clear that first.
2374 	 *
2375 	 * That way, if we see the event in error state below, we know that it
2376 	 * has gone back into error state, as distinct from the task having
2377 	 * been scheduled away before the cross-call arrived.
2378 	 */
2379 	if (event->state == PERF_EVENT_STATE_ERROR)
2380 		event->state = PERF_EVENT_STATE_OFF;
2381 	raw_spin_unlock_irq(&ctx->lock);
2382 
2383 	event_function_call(event, __perf_event_enable, NULL);
2384 }
2385 
2386 /*
2387  * See perf_event_disable();
2388  */
2389 void perf_event_enable(struct perf_event *event)
2390 {
2391 	struct perf_event_context *ctx;
2392 
2393 	ctx = perf_event_ctx_lock(event);
2394 	_perf_event_enable(event);
2395 	perf_event_ctx_unlock(event, ctx);
2396 }
2397 EXPORT_SYMBOL_GPL(perf_event_enable);
2398 
2399 struct stop_event_data {
2400 	struct perf_event	*event;
2401 	unsigned int		restart;
2402 };
2403 
2404 static int __perf_event_stop(void *info)
2405 {
2406 	struct stop_event_data *sd = info;
2407 	struct perf_event *event = sd->event;
2408 
2409 	/* if it's already INACTIVE, do nothing */
2410 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2411 		return 0;
2412 
2413 	/* matches smp_wmb() in event_sched_in() */
2414 	smp_rmb();
2415 
2416 	/*
2417 	 * There is a window with interrupts enabled before we get here,
2418 	 * so we need to check again lest we try to stop another CPU's event.
2419 	 */
2420 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2421 		return -EAGAIN;
2422 
2423 	event->pmu->stop(event, PERF_EF_UPDATE);
2424 
2425 	/*
2426 	 * May race with the actual stop (through perf_pmu_output_stop()),
2427 	 * but it is only used for events with AUX ring buffer, and such
2428 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2429 	 * see comments in perf_aux_output_begin().
2430 	 *
2431 	 * Since this is happening on a event-local CPU, no trace is lost
2432 	 * while restarting.
2433 	 */
2434 	if (sd->restart)
2435 		event->pmu->start(event, PERF_EF_START);
2436 
2437 	return 0;
2438 }
2439 
2440 static int perf_event_restart(struct perf_event *event)
2441 {
2442 	struct stop_event_data sd = {
2443 		.event		= event,
2444 		.restart	= 1,
2445 	};
2446 	int ret = 0;
2447 
2448 	do {
2449 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2450 			return 0;
2451 
2452 		/* matches smp_wmb() in event_sched_in() */
2453 		smp_rmb();
2454 
2455 		/*
2456 		 * We only want to restart ACTIVE events, so if the event goes
2457 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2458 		 * fall through with ret==-ENXIO.
2459 		 */
2460 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2461 					__perf_event_stop, &sd);
2462 	} while (ret == -EAGAIN);
2463 
2464 	return ret;
2465 }
2466 
2467 /*
2468  * In order to contain the amount of racy and tricky in the address filter
2469  * configuration management, it is a two part process:
2470  *
2471  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2472  *      we update the addresses of corresponding vmas in
2473  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2474  * (p2) when an event is scheduled in (pmu::add), it calls
2475  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2476  *      if the generation has changed since the previous call.
2477  *
2478  * If (p1) happens while the event is active, we restart it to force (p2).
2479  *
2480  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2481  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2482  *     ioctl;
2483  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2484  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2485  *     for reading;
2486  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2487  *     of exec.
2488  */
2489 void perf_event_addr_filters_sync(struct perf_event *event)
2490 {
2491 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2492 
2493 	if (!has_addr_filter(event))
2494 		return;
2495 
2496 	raw_spin_lock(&ifh->lock);
2497 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2498 		event->pmu->addr_filters_sync(event);
2499 		event->hw.addr_filters_gen = event->addr_filters_gen;
2500 	}
2501 	raw_spin_unlock(&ifh->lock);
2502 }
2503 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2504 
2505 static int _perf_event_refresh(struct perf_event *event, int refresh)
2506 {
2507 	/*
2508 	 * not supported on inherited events
2509 	 */
2510 	if (event->attr.inherit || !is_sampling_event(event))
2511 		return -EINVAL;
2512 
2513 	atomic_add(refresh, &event->event_limit);
2514 	_perf_event_enable(event);
2515 
2516 	return 0;
2517 }
2518 
2519 /*
2520  * See perf_event_disable()
2521  */
2522 int perf_event_refresh(struct perf_event *event, int refresh)
2523 {
2524 	struct perf_event_context *ctx;
2525 	int ret;
2526 
2527 	ctx = perf_event_ctx_lock(event);
2528 	ret = _perf_event_refresh(event, refresh);
2529 	perf_event_ctx_unlock(event, ctx);
2530 
2531 	return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(perf_event_refresh);
2534 
2535 static void ctx_sched_out(struct perf_event_context *ctx,
2536 			  struct perf_cpu_context *cpuctx,
2537 			  enum event_type_t event_type)
2538 {
2539 	int is_active = ctx->is_active;
2540 	struct perf_event *event;
2541 
2542 	lockdep_assert_held(&ctx->lock);
2543 
2544 	if (likely(!ctx->nr_events)) {
2545 		/*
2546 		 * See __perf_remove_from_context().
2547 		 */
2548 		WARN_ON_ONCE(ctx->is_active);
2549 		if (ctx->task)
2550 			WARN_ON_ONCE(cpuctx->task_ctx);
2551 		return;
2552 	}
2553 
2554 	ctx->is_active &= ~event_type;
2555 	if (!(ctx->is_active & EVENT_ALL))
2556 		ctx->is_active = 0;
2557 
2558 	if (ctx->task) {
2559 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2560 		if (!ctx->is_active)
2561 			cpuctx->task_ctx = NULL;
2562 	}
2563 
2564 	/*
2565 	 * Always update time if it was set; not only when it changes.
2566 	 * Otherwise we can 'forget' to update time for any but the last
2567 	 * context we sched out. For example:
2568 	 *
2569 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2570 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2571 	 *
2572 	 * would only update time for the pinned events.
2573 	 */
2574 	if (is_active & EVENT_TIME) {
2575 		/* update (and stop) ctx time */
2576 		update_context_time(ctx);
2577 		update_cgrp_time_from_cpuctx(cpuctx);
2578 	}
2579 
2580 	is_active ^= ctx->is_active; /* changed bits */
2581 
2582 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2583 		return;
2584 
2585 	perf_pmu_disable(ctx->pmu);
2586 	if (is_active & EVENT_PINNED) {
2587 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2588 			group_sched_out(event, cpuctx, ctx);
2589 	}
2590 
2591 	if (is_active & EVENT_FLEXIBLE) {
2592 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2593 			group_sched_out(event, cpuctx, ctx);
2594 	}
2595 	perf_pmu_enable(ctx->pmu);
2596 }
2597 
2598 /*
2599  * Test whether two contexts are equivalent, i.e. whether they have both been
2600  * cloned from the same version of the same context.
2601  *
2602  * Equivalence is measured using a generation number in the context that is
2603  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2604  * and list_del_event().
2605  */
2606 static int context_equiv(struct perf_event_context *ctx1,
2607 			 struct perf_event_context *ctx2)
2608 {
2609 	lockdep_assert_held(&ctx1->lock);
2610 	lockdep_assert_held(&ctx2->lock);
2611 
2612 	/* Pinning disables the swap optimization */
2613 	if (ctx1->pin_count || ctx2->pin_count)
2614 		return 0;
2615 
2616 	/* If ctx1 is the parent of ctx2 */
2617 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2618 		return 1;
2619 
2620 	/* If ctx2 is the parent of ctx1 */
2621 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2622 		return 1;
2623 
2624 	/*
2625 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2626 	 * hierarchy, see perf_event_init_context().
2627 	 */
2628 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2629 			ctx1->parent_gen == ctx2->parent_gen)
2630 		return 1;
2631 
2632 	/* Unmatched */
2633 	return 0;
2634 }
2635 
2636 static void __perf_event_sync_stat(struct perf_event *event,
2637 				     struct perf_event *next_event)
2638 {
2639 	u64 value;
2640 
2641 	if (!event->attr.inherit_stat)
2642 		return;
2643 
2644 	/*
2645 	 * Update the event value, we cannot use perf_event_read()
2646 	 * because we're in the middle of a context switch and have IRQs
2647 	 * disabled, which upsets smp_call_function_single(), however
2648 	 * we know the event must be on the current CPU, therefore we
2649 	 * don't need to use it.
2650 	 */
2651 	switch (event->state) {
2652 	case PERF_EVENT_STATE_ACTIVE:
2653 		event->pmu->read(event);
2654 		/* fall-through */
2655 
2656 	case PERF_EVENT_STATE_INACTIVE:
2657 		update_event_times(event);
2658 		break;
2659 
2660 	default:
2661 		break;
2662 	}
2663 
2664 	/*
2665 	 * In order to keep per-task stats reliable we need to flip the event
2666 	 * values when we flip the contexts.
2667 	 */
2668 	value = local64_read(&next_event->count);
2669 	value = local64_xchg(&event->count, value);
2670 	local64_set(&next_event->count, value);
2671 
2672 	swap(event->total_time_enabled, next_event->total_time_enabled);
2673 	swap(event->total_time_running, next_event->total_time_running);
2674 
2675 	/*
2676 	 * Since we swizzled the values, update the user visible data too.
2677 	 */
2678 	perf_event_update_userpage(event);
2679 	perf_event_update_userpage(next_event);
2680 }
2681 
2682 static void perf_event_sync_stat(struct perf_event_context *ctx,
2683 				   struct perf_event_context *next_ctx)
2684 {
2685 	struct perf_event *event, *next_event;
2686 
2687 	if (!ctx->nr_stat)
2688 		return;
2689 
2690 	update_context_time(ctx);
2691 
2692 	event = list_first_entry(&ctx->event_list,
2693 				   struct perf_event, event_entry);
2694 
2695 	next_event = list_first_entry(&next_ctx->event_list,
2696 					struct perf_event, event_entry);
2697 
2698 	while (&event->event_entry != &ctx->event_list &&
2699 	       &next_event->event_entry != &next_ctx->event_list) {
2700 
2701 		__perf_event_sync_stat(event, next_event);
2702 
2703 		event = list_next_entry(event, event_entry);
2704 		next_event = list_next_entry(next_event, event_entry);
2705 	}
2706 }
2707 
2708 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2709 					 struct task_struct *next)
2710 {
2711 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2712 	struct perf_event_context *next_ctx;
2713 	struct perf_event_context *parent, *next_parent;
2714 	struct perf_cpu_context *cpuctx;
2715 	int do_switch = 1;
2716 
2717 	if (likely(!ctx))
2718 		return;
2719 
2720 	cpuctx = __get_cpu_context(ctx);
2721 	if (!cpuctx->task_ctx)
2722 		return;
2723 
2724 	rcu_read_lock();
2725 	next_ctx = next->perf_event_ctxp[ctxn];
2726 	if (!next_ctx)
2727 		goto unlock;
2728 
2729 	parent = rcu_dereference(ctx->parent_ctx);
2730 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2731 
2732 	/* If neither context have a parent context; they cannot be clones. */
2733 	if (!parent && !next_parent)
2734 		goto unlock;
2735 
2736 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2737 		/*
2738 		 * Looks like the two contexts are clones, so we might be
2739 		 * able to optimize the context switch.  We lock both
2740 		 * contexts and check that they are clones under the
2741 		 * lock (including re-checking that neither has been
2742 		 * uncloned in the meantime).  It doesn't matter which
2743 		 * order we take the locks because no other cpu could
2744 		 * be trying to lock both of these tasks.
2745 		 */
2746 		raw_spin_lock(&ctx->lock);
2747 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2748 		if (context_equiv(ctx, next_ctx)) {
2749 			WRITE_ONCE(ctx->task, next);
2750 			WRITE_ONCE(next_ctx->task, task);
2751 
2752 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2753 
2754 			/*
2755 			 * RCU_INIT_POINTER here is safe because we've not
2756 			 * modified the ctx and the above modification of
2757 			 * ctx->task and ctx->task_ctx_data are immaterial
2758 			 * since those values are always verified under
2759 			 * ctx->lock which we're now holding.
2760 			 */
2761 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2762 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2763 
2764 			do_switch = 0;
2765 
2766 			perf_event_sync_stat(ctx, next_ctx);
2767 		}
2768 		raw_spin_unlock(&next_ctx->lock);
2769 		raw_spin_unlock(&ctx->lock);
2770 	}
2771 unlock:
2772 	rcu_read_unlock();
2773 
2774 	if (do_switch) {
2775 		raw_spin_lock(&ctx->lock);
2776 		task_ctx_sched_out(cpuctx, ctx);
2777 		raw_spin_unlock(&ctx->lock);
2778 	}
2779 }
2780 
2781 void perf_sched_cb_dec(struct pmu *pmu)
2782 {
2783 	this_cpu_dec(perf_sched_cb_usages);
2784 }
2785 
2786 void perf_sched_cb_inc(struct pmu *pmu)
2787 {
2788 	this_cpu_inc(perf_sched_cb_usages);
2789 }
2790 
2791 /*
2792  * This function provides the context switch callback to the lower code
2793  * layer. It is invoked ONLY when the context switch callback is enabled.
2794  */
2795 static void perf_pmu_sched_task(struct task_struct *prev,
2796 				struct task_struct *next,
2797 				bool sched_in)
2798 {
2799 	struct perf_cpu_context *cpuctx;
2800 	struct pmu *pmu;
2801 	unsigned long flags;
2802 
2803 	if (prev == next)
2804 		return;
2805 
2806 	local_irq_save(flags);
2807 
2808 	rcu_read_lock();
2809 
2810 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2811 		if (pmu->sched_task) {
2812 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2813 
2814 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2815 
2816 			perf_pmu_disable(pmu);
2817 
2818 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2819 
2820 			perf_pmu_enable(pmu);
2821 
2822 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2823 		}
2824 	}
2825 
2826 	rcu_read_unlock();
2827 
2828 	local_irq_restore(flags);
2829 }
2830 
2831 static void perf_event_switch(struct task_struct *task,
2832 			      struct task_struct *next_prev, bool sched_in);
2833 
2834 #define for_each_task_context_nr(ctxn)					\
2835 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2836 
2837 /*
2838  * Called from scheduler to remove the events of the current task,
2839  * with interrupts disabled.
2840  *
2841  * We stop each event and update the event value in event->count.
2842  *
2843  * This does not protect us against NMI, but disable()
2844  * sets the disabled bit in the control field of event _before_
2845  * accessing the event control register. If a NMI hits, then it will
2846  * not restart the event.
2847  */
2848 void __perf_event_task_sched_out(struct task_struct *task,
2849 				 struct task_struct *next)
2850 {
2851 	int ctxn;
2852 
2853 	if (__this_cpu_read(perf_sched_cb_usages))
2854 		perf_pmu_sched_task(task, next, false);
2855 
2856 	if (atomic_read(&nr_switch_events))
2857 		perf_event_switch(task, next, false);
2858 
2859 	for_each_task_context_nr(ctxn)
2860 		perf_event_context_sched_out(task, ctxn, next);
2861 
2862 	/*
2863 	 * if cgroup events exist on this CPU, then we need
2864 	 * to check if we have to switch out PMU state.
2865 	 * cgroup event are system-wide mode only
2866 	 */
2867 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2868 		perf_cgroup_sched_out(task, next);
2869 }
2870 
2871 /*
2872  * Called with IRQs disabled
2873  */
2874 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2875 			      enum event_type_t event_type)
2876 {
2877 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2878 }
2879 
2880 static void
2881 ctx_pinned_sched_in(struct perf_event_context *ctx,
2882 		    struct perf_cpu_context *cpuctx)
2883 {
2884 	struct perf_event *event;
2885 
2886 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2887 		if (event->state <= PERF_EVENT_STATE_OFF)
2888 			continue;
2889 		if (!event_filter_match(event))
2890 			continue;
2891 
2892 		/* may need to reset tstamp_enabled */
2893 		if (is_cgroup_event(event))
2894 			perf_cgroup_mark_enabled(event, ctx);
2895 
2896 		if (group_can_go_on(event, cpuctx, 1))
2897 			group_sched_in(event, cpuctx, ctx);
2898 
2899 		/*
2900 		 * If this pinned group hasn't been scheduled,
2901 		 * put it in error state.
2902 		 */
2903 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2904 			update_group_times(event);
2905 			event->state = PERF_EVENT_STATE_ERROR;
2906 		}
2907 	}
2908 }
2909 
2910 static void
2911 ctx_flexible_sched_in(struct perf_event_context *ctx,
2912 		      struct perf_cpu_context *cpuctx)
2913 {
2914 	struct perf_event *event;
2915 	int can_add_hw = 1;
2916 
2917 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2918 		/* Ignore events in OFF or ERROR state */
2919 		if (event->state <= PERF_EVENT_STATE_OFF)
2920 			continue;
2921 		/*
2922 		 * Listen to the 'cpu' scheduling filter constraint
2923 		 * of events:
2924 		 */
2925 		if (!event_filter_match(event))
2926 			continue;
2927 
2928 		/* may need to reset tstamp_enabled */
2929 		if (is_cgroup_event(event))
2930 			perf_cgroup_mark_enabled(event, ctx);
2931 
2932 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2933 			if (group_sched_in(event, cpuctx, ctx))
2934 				can_add_hw = 0;
2935 		}
2936 	}
2937 }
2938 
2939 static void
2940 ctx_sched_in(struct perf_event_context *ctx,
2941 	     struct perf_cpu_context *cpuctx,
2942 	     enum event_type_t event_type,
2943 	     struct task_struct *task)
2944 {
2945 	int is_active = ctx->is_active;
2946 	u64 now;
2947 
2948 	lockdep_assert_held(&ctx->lock);
2949 
2950 	if (likely(!ctx->nr_events))
2951 		return;
2952 
2953 	ctx->is_active |= (event_type | EVENT_TIME);
2954 	if (ctx->task) {
2955 		if (!is_active)
2956 			cpuctx->task_ctx = ctx;
2957 		else
2958 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2959 	}
2960 
2961 	is_active ^= ctx->is_active; /* changed bits */
2962 
2963 	if (is_active & EVENT_TIME) {
2964 		/* start ctx time */
2965 		now = perf_clock();
2966 		ctx->timestamp = now;
2967 		perf_cgroup_set_timestamp(task, ctx);
2968 	}
2969 
2970 	/*
2971 	 * First go through the list and put on any pinned groups
2972 	 * in order to give them the best chance of going on.
2973 	 */
2974 	if (is_active & EVENT_PINNED)
2975 		ctx_pinned_sched_in(ctx, cpuctx);
2976 
2977 	/* Then walk through the lower prio flexible groups */
2978 	if (is_active & EVENT_FLEXIBLE)
2979 		ctx_flexible_sched_in(ctx, cpuctx);
2980 }
2981 
2982 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2983 			     enum event_type_t event_type,
2984 			     struct task_struct *task)
2985 {
2986 	struct perf_event_context *ctx = &cpuctx->ctx;
2987 
2988 	ctx_sched_in(ctx, cpuctx, event_type, task);
2989 }
2990 
2991 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2992 					struct task_struct *task)
2993 {
2994 	struct perf_cpu_context *cpuctx;
2995 
2996 	cpuctx = __get_cpu_context(ctx);
2997 	if (cpuctx->task_ctx == ctx)
2998 		return;
2999 
3000 	perf_ctx_lock(cpuctx, ctx);
3001 	perf_pmu_disable(ctx->pmu);
3002 	/*
3003 	 * We want to keep the following priority order:
3004 	 * cpu pinned (that don't need to move), task pinned,
3005 	 * cpu flexible, task flexible.
3006 	 */
3007 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3008 	perf_event_sched_in(cpuctx, ctx, task);
3009 	perf_pmu_enable(ctx->pmu);
3010 	perf_ctx_unlock(cpuctx, ctx);
3011 }
3012 
3013 /*
3014  * Called from scheduler to add the events of the current task
3015  * with interrupts disabled.
3016  *
3017  * We restore the event value and then enable it.
3018  *
3019  * This does not protect us against NMI, but enable()
3020  * sets the enabled bit in the control field of event _before_
3021  * accessing the event control register. If a NMI hits, then it will
3022  * keep the event running.
3023  */
3024 void __perf_event_task_sched_in(struct task_struct *prev,
3025 				struct task_struct *task)
3026 {
3027 	struct perf_event_context *ctx;
3028 	int ctxn;
3029 
3030 	/*
3031 	 * If cgroup events exist on this CPU, then we need to check if we have
3032 	 * to switch in PMU state; cgroup event are system-wide mode only.
3033 	 *
3034 	 * Since cgroup events are CPU events, we must schedule these in before
3035 	 * we schedule in the task events.
3036 	 */
3037 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3038 		perf_cgroup_sched_in(prev, task);
3039 
3040 	for_each_task_context_nr(ctxn) {
3041 		ctx = task->perf_event_ctxp[ctxn];
3042 		if (likely(!ctx))
3043 			continue;
3044 
3045 		perf_event_context_sched_in(ctx, task);
3046 	}
3047 
3048 	if (atomic_read(&nr_switch_events))
3049 		perf_event_switch(task, prev, true);
3050 
3051 	if (__this_cpu_read(perf_sched_cb_usages))
3052 		perf_pmu_sched_task(prev, task, true);
3053 }
3054 
3055 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3056 {
3057 	u64 frequency = event->attr.sample_freq;
3058 	u64 sec = NSEC_PER_SEC;
3059 	u64 divisor, dividend;
3060 
3061 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3062 
3063 	count_fls = fls64(count);
3064 	nsec_fls = fls64(nsec);
3065 	frequency_fls = fls64(frequency);
3066 	sec_fls = 30;
3067 
3068 	/*
3069 	 * We got @count in @nsec, with a target of sample_freq HZ
3070 	 * the target period becomes:
3071 	 *
3072 	 *             @count * 10^9
3073 	 * period = -------------------
3074 	 *          @nsec * sample_freq
3075 	 *
3076 	 */
3077 
3078 	/*
3079 	 * Reduce accuracy by one bit such that @a and @b converge
3080 	 * to a similar magnitude.
3081 	 */
3082 #define REDUCE_FLS(a, b)		\
3083 do {					\
3084 	if (a##_fls > b##_fls) {	\
3085 		a >>= 1;		\
3086 		a##_fls--;		\
3087 	} else {			\
3088 		b >>= 1;		\
3089 		b##_fls--;		\
3090 	}				\
3091 } while (0)
3092 
3093 	/*
3094 	 * Reduce accuracy until either term fits in a u64, then proceed with
3095 	 * the other, so that finally we can do a u64/u64 division.
3096 	 */
3097 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3098 		REDUCE_FLS(nsec, frequency);
3099 		REDUCE_FLS(sec, count);
3100 	}
3101 
3102 	if (count_fls + sec_fls > 64) {
3103 		divisor = nsec * frequency;
3104 
3105 		while (count_fls + sec_fls > 64) {
3106 			REDUCE_FLS(count, sec);
3107 			divisor >>= 1;
3108 		}
3109 
3110 		dividend = count * sec;
3111 	} else {
3112 		dividend = count * sec;
3113 
3114 		while (nsec_fls + frequency_fls > 64) {
3115 			REDUCE_FLS(nsec, frequency);
3116 			dividend >>= 1;
3117 		}
3118 
3119 		divisor = nsec * frequency;
3120 	}
3121 
3122 	if (!divisor)
3123 		return dividend;
3124 
3125 	return div64_u64(dividend, divisor);
3126 }
3127 
3128 static DEFINE_PER_CPU(int, perf_throttled_count);
3129 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3130 
3131 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3132 {
3133 	struct hw_perf_event *hwc = &event->hw;
3134 	s64 period, sample_period;
3135 	s64 delta;
3136 
3137 	period = perf_calculate_period(event, nsec, count);
3138 
3139 	delta = (s64)(period - hwc->sample_period);
3140 	delta = (delta + 7) / 8; /* low pass filter */
3141 
3142 	sample_period = hwc->sample_period + delta;
3143 
3144 	if (!sample_period)
3145 		sample_period = 1;
3146 
3147 	hwc->sample_period = sample_period;
3148 
3149 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3150 		if (disable)
3151 			event->pmu->stop(event, PERF_EF_UPDATE);
3152 
3153 		local64_set(&hwc->period_left, 0);
3154 
3155 		if (disable)
3156 			event->pmu->start(event, PERF_EF_RELOAD);
3157 	}
3158 }
3159 
3160 /*
3161  * combine freq adjustment with unthrottling to avoid two passes over the
3162  * events. At the same time, make sure, having freq events does not change
3163  * the rate of unthrottling as that would introduce bias.
3164  */
3165 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3166 					   int needs_unthr)
3167 {
3168 	struct perf_event *event;
3169 	struct hw_perf_event *hwc;
3170 	u64 now, period = TICK_NSEC;
3171 	s64 delta;
3172 
3173 	/*
3174 	 * only need to iterate over all events iff:
3175 	 * - context have events in frequency mode (needs freq adjust)
3176 	 * - there are events to unthrottle on this cpu
3177 	 */
3178 	if (!(ctx->nr_freq || needs_unthr))
3179 		return;
3180 
3181 	raw_spin_lock(&ctx->lock);
3182 	perf_pmu_disable(ctx->pmu);
3183 
3184 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3185 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3186 			continue;
3187 
3188 		if (!event_filter_match(event))
3189 			continue;
3190 
3191 		perf_pmu_disable(event->pmu);
3192 
3193 		hwc = &event->hw;
3194 
3195 		if (hwc->interrupts == MAX_INTERRUPTS) {
3196 			hwc->interrupts = 0;
3197 			perf_log_throttle(event, 1);
3198 			event->pmu->start(event, 0);
3199 		}
3200 
3201 		if (!event->attr.freq || !event->attr.sample_freq)
3202 			goto next;
3203 
3204 		/*
3205 		 * stop the event and update event->count
3206 		 */
3207 		event->pmu->stop(event, PERF_EF_UPDATE);
3208 
3209 		now = local64_read(&event->count);
3210 		delta = now - hwc->freq_count_stamp;
3211 		hwc->freq_count_stamp = now;
3212 
3213 		/*
3214 		 * restart the event
3215 		 * reload only if value has changed
3216 		 * we have stopped the event so tell that
3217 		 * to perf_adjust_period() to avoid stopping it
3218 		 * twice.
3219 		 */
3220 		if (delta > 0)
3221 			perf_adjust_period(event, period, delta, false);
3222 
3223 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3224 	next:
3225 		perf_pmu_enable(event->pmu);
3226 	}
3227 
3228 	perf_pmu_enable(ctx->pmu);
3229 	raw_spin_unlock(&ctx->lock);
3230 }
3231 
3232 /*
3233  * Round-robin a context's events:
3234  */
3235 static void rotate_ctx(struct perf_event_context *ctx)
3236 {
3237 	/*
3238 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3239 	 * disabled by the inheritance code.
3240 	 */
3241 	if (!ctx->rotate_disable)
3242 		list_rotate_left(&ctx->flexible_groups);
3243 }
3244 
3245 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3246 {
3247 	struct perf_event_context *ctx = NULL;
3248 	int rotate = 0;
3249 
3250 	if (cpuctx->ctx.nr_events) {
3251 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3252 			rotate = 1;
3253 	}
3254 
3255 	ctx = cpuctx->task_ctx;
3256 	if (ctx && ctx->nr_events) {
3257 		if (ctx->nr_events != ctx->nr_active)
3258 			rotate = 1;
3259 	}
3260 
3261 	if (!rotate)
3262 		goto done;
3263 
3264 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3265 	perf_pmu_disable(cpuctx->ctx.pmu);
3266 
3267 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3268 	if (ctx)
3269 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3270 
3271 	rotate_ctx(&cpuctx->ctx);
3272 	if (ctx)
3273 		rotate_ctx(ctx);
3274 
3275 	perf_event_sched_in(cpuctx, ctx, current);
3276 
3277 	perf_pmu_enable(cpuctx->ctx.pmu);
3278 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3279 done:
3280 
3281 	return rotate;
3282 }
3283 
3284 void perf_event_task_tick(void)
3285 {
3286 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3287 	struct perf_event_context *ctx, *tmp;
3288 	int throttled;
3289 
3290 	WARN_ON(!irqs_disabled());
3291 
3292 	__this_cpu_inc(perf_throttled_seq);
3293 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3294 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3295 
3296 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3297 		perf_adjust_freq_unthr_context(ctx, throttled);
3298 }
3299 
3300 static int event_enable_on_exec(struct perf_event *event,
3301 				struct perf_event_context *ctx)
3302 {
3303 	if (!event->attr.enable_on_exec)
3304 		return 0;
3305 
3306 	event->attr.enable_on_exec = 0;
3307 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3308 		return 0;
3309 
3310 	__perf_event_mark_enabled(event);
3311 
3312 	return 1;
3313 }
3314 
3315 /*
3316  * Enable all of a task's events that have been marked enable-on-exec.
3317  * This expects task == current.
3318  */
3319 static void perf_event_enable_on_exec(int ctxn)
3320 {
3321 	struct perf_event_context *ctx, *clone_ctx = NULL;
3322 	struct perf_cpu_context *cpuctx;
3323 	struct perf_event *event;
3324 	unsigned long flags;
3325 	int enabled = 0;
3326 
3327 	local_irq_save(flags);
3328 	ctx = current->perf_event_ctxp[ctxn];
3329 	if (!ctx || !ctx->nr_events)
3330 		goto out;
3331 
3332 	cpuctx = __get_cpu_context(ctx);
3333 	perf_ctx_lock(cpuctx, ctx);
3334 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3335 	list_for_each_entry(event, &ctx->event_list, event_entry)
3336 		enabled |= event_enable_on_exec(event, ctx);
3337 
3338 	/*
3339 	 * Unclone and reschedule this context if we enabled any event.
3340 	 */
3341 	if (enabled) {
3342 		clone_ctx = unclone_ctx(ctx);
3343 		ctx_resched(cpuctx, ctx);
3344 	}
3345 	perf_ctx_unlock(cpuctx, ctx);
3346 
3347 out:
3348 	local_irq_restore(flags);
3349 
3350 	if (clone_ctx)
3351 		put_ctx(clone_ctx);
3352 }
3353 
3354 struct perf_read_data {
3355 	struct perf_event *event;
3356 	bool group;
3357 	int ret;
3358 };
3359 
3360 /*
3361  * Cross CPU call to read the hardware event
3362  */
3363 static void __perf_event_read(void *info)
3364 {
3365 	struct perf_read_data *data = info;
3366 	struct perf_event *sub, *event = data->event;
3367 	struct perf_event_context *ctx = event->ctx;
3368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3369 	struct pmu *pmu = event->pmu;
3370 
3371 	/*
3372 	 * If this is a task context, we need to check whether it is
3373 	 * the current task context of this cpu.  If not it has been
3374 	 * scheduled out before the smp call arrived.  In that case
3375 	 * event->count would have been updated to a recent sample
3376 	 * when the event was scheduled out.
3377 	 */
3378 	if (ctx->task && cpuctx->task_ctx != ctx)
3379 		return;
3380 
3381 	raw_spin_lock(&ctx->lock);
3382 	if (ctx->is_active) {
3383 		update_context_time(ctx);
3384 		update_cgrp_time_from_event(event);
3385 	}
3386 
3387 	update_event_times(event);
3388 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3389 		goto unlock;
3390 
3391 	if (!data->group) {
3392 		pmu->read(event);
3393 		data->ret = 0;
3394 		goto unlock;
3395 	}
3396 
3397 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3398 
3399 	pmu->read(event);
3400 
3401 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3402 		update_event_times(sub);
3403 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3404 			/*
3405 			 * Use sibling's PMU rather than @event's since
3406 			 * sibling could be on different (eg: software) PMU.
3407 			 */
3408 			sub->pmu->read(sub);
3409 		}
3410 	}
3411 
3412 	data->ret = pmu->commit_txn(pmu);
3413 
3414 unlock:
3415 	raw_spin_unlock(&ctx->lock);
3416 }
3417 
3418 static inline u64 perf_event_count(struct perf_event *event)
3419 {
3420 	if (event->pmu->count)
3421 		return event->pmu->count(event);
3422 
3423 	return __perf_event_count(event);
3424 }
3425 
3426 /*
3427  * NMI-safe method to read a local event, that is an event that
3428  * is:
3429  *   - either for the current task, or for this CPU
3430  *   - does not have inherit set, for inherited task events
3431  *     will not be local and we cannot read them atomically
3432  *   - must not have a pmu::count method
3433  */
3434 u64 perf_event_read_local(struct perf_event *event)
3435 {
3436 	unsigned long flags;
3437 	u64 val;
3438 
3439 	/*
3440 	 * Disabling interrupts avoids all counter scheduling (context
3441 	 * switches, timer based rotation and IPIs).
3442 	 */
3443 	local_irq_save(flags);
3444 
3445 	/* If this is a per-task event, it must be for current */
3446 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3447 		     event->hw.target != current);
3448 
3449 	/* If this is a per-CPU event, it must be for this CPU */
3450 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3451 		     event->cpu != smp_processor_id());
3452 
3453 	/*
3454 	 * It must not be an event with inherit set, we cannot read
3455 	 * all child counters from atomic context.
3456 	 */
3457 	WARN_ON_ONCE(event->attr.inherit);
3458 
3459 	/*
3460 	 * It must not have a pmu::count method, those are not
3461 	 * NMI safe.
3462 	 */
3463 	WARN_ON_ONCE(event->pmu->count);
3464 
3465 	/*
3466 	 * If the event is currently on this CPU, its either a per-task event,
3467 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3468 	 * oncpu == -1).
3469 	 */
3470 	if (event->oncpu == smp_processor_id())
3471 		event->pmu->read(event);
3472 
3473 	val = local64_read(&event->count);
3474 	local_irq_restore(flags);
3475 
3476 	return val;
3477 }
3478 
3479 static int perf_event_read(struct perf_event *event, bool group)
3480 {
3481 	int ret = 0;
3482 
3483 	/*
3484 	 * If event is enabled and currently active on a CPU, update the
3485 	 * value in the event structure:
3486 	 */
3487 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3488 		struct perf_read_data data = {
3489 			.event = event,
3490 			.group = group,
3491 			.ret = 0,
3492 		};
3493 		smp_call_function_single(event->oncpu,
3494 					 __perf_event_read, &data, 1);
3495 		ret = data.ret;
3496 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3497 		struct perf_event_context *ctx = event->ctx;
3498 		unsigned long flags;
3499 
3500 		raw_spin_lock_irqsave(&ctx->lock, flags);
3501 		/*
3502 		 * may read while context is not active
3503 		 * (e.g., thread is blocked), in that case
3504 		 * we cannot update context time
3505 		 */
3506 		if (ctx->is_active) {
3507 			update_context_time(ctx);
3508 			update_cgrp_time_from_event(event);
3509 		}
3510 		if (group)
3511 			update_group_times(event);
3512 		else
3513 			update_event_times(event);
3514 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3515 	}
3516 
3517 	return ret;
3518 }
3519 
3520 /*
3521  * Initialize the perf_event context in a task_struct:
3522  */
3523 static void __perf_event_init_context(struct perf_event_context *ctx)
3524 {
3525 	raw_spin_lock_init(&ctx->lock);
3526 	mutex_init(&ctx->mutex);
3527 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3528 	INIT_LIST_HEAD(&ctx->pinned_groups);
3529 	INIT_LIST_HEAD(&ctx->flexible_groups);
3530 	INIT_LIST_HEAD(&ctx->event_list);
3531 	atomic_set(&ctx->refcount, 1);
3532 }
3533 
3534 static struct perf_event_context *
3535 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3536 {
3537 	struct perf_event_context *ctx;
3538 
3539 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3540 	if (!ctx)
3541 		return NULL;
3542 
3543 	__perf_event_init_context(ctx);
3544 	if (task) {
3545 		ctx->task = task;
3546 		get_task_struct(task);
3547 	}
3548 	ctx->pmu = pmu;
3549 
3550 	return ctx;
3551 }
3552 
3553 static struct task_struct *
3554 find_lively_task_by_vpid(pid_t vpid)
3555 {
3556 	struct task_struct *task;
3557 
3558 	rcu_read_lock();
3559 	if (!vpid)
3560 		task = current;
3561 	else
3562 		task = find_task_by_vpid(vpid);
3563 	if (task)
3564 		get_task_struct(task);
3565 	rcu_read_unlock();
3566 
3567 	if (!task)
3568 		return ERR_PTR(-ESRCH);
3569 
3570 	return task;
3571 }
3572 
3573 /*
3574  * Returns a matching context with refcount and pincount.
3575  */
3576 static struct perf_event_context *
3577 find_get_context(struct pmu *pmu, struct task_struct *task,
3578 		struct perf_event *event)
3579 {
3580 	struct perf_event_context *ctx, *clone_ctx = NULL;
3581 	struct perf_cpu_context *cpuctx;
3582 	void *task_ctx_data = NULL;
3583 	unsigned long flags;
3584 	int ctxn, err;
3585 	int cpu = event->cpu;
3586 
3587 	if (!task) {
3588 		/* Must be root to operate on a CPU event: */
3589 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3590 			return ERR_PTR(-EACCES);
3591 
3592 		/*
3593 		 * We could be clever and allow to attach a event to an
3594 		 * offline CPU and activate it when the CPU comes up, but
3595 		 * that's for later.
3596 		 */
3597 		if (!cpu_online(cpu))
3598 			return ERR_PTR(-ENODEV);
3599 
3600 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3601 		ctx = &cpuctx->ctx;
3602 		get_ctx(ctx);
3603 		++ctx->pin_count;
3604 
3605 		return ctx;
3606 	}
3607 
3608 	err = -EINVAL;
3609 	ctxn = pmu->task_ctx_nr;
3610 	if (ctxn < 0)
3611 		goto errout;
3612 
3613 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3614 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3615 		if (!task_ctx_data) {
3616 			err = -ENOMEM;
3617 			goto errout;
3618 		}
3619 	}
3620 
3621 retry:
3622 	ctx = perf_lock_task_context(task, ctxn, &flags);
3623 	if (ctx) {
3624 		clone_ctx = unclone_ctx(ctx);
3625 		++ctx->pin_count;
3626 
3627 		if (task_ctx_data && !ctx->task_ctx_data) {
3628 			ctx->task_ctx_data = task_ctx_data;
3629 			task_ctx_data = NULL;
3630 		}
3631 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3632 
3633 		if (clone_ctx)
3634 			put_ctx(clone_ctx);
3635 	} else {
3636 		ctx = alloc_perf_context(pmu, task);
3637 		err = -ENOMEM;
3638 		if (!ctx)
3639 			goto errout;
3640 
3641 		if (task_ctx_data) {
3642 			ctx->task_ctx_data = task_ctx_data;
3643 			task_ctx_data = NULL;
3644 		}
3645 
3646 		err = 0;
3647 		mutex_lock(&task->perf_event_mutex);
3648 		/*
3649 		 * If it has already passed perf_event_exit_task().
3650 		 * we must see PF_EXITING, it takes this mutex too.
3651 		 */
3652 		if (task->flags & PF_EXITING)
3653 			err = -ESRCH;
3654 		else if (task->perf_event_ctxp[ctxn])
3655 			err = -EAGAIN;
3656 		else {
3657 			get_ctx(ctx);
3658 			++ctx->pin_count;
3659 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3660 		}
3661 		mutex_unlock(&task->perf_event_mutex);
3662 
3663 		if (unlikely(err)) {
3664 			put_ctx(ctx);
3665 
3666 			if (err == -EAGAIN)
3667 				goto retry;
3668 			goto errout;
3669 		}
3670 	}
3671 
3672 	kfree(task_ctx_data);
3673 	return ctx;
3674 
3675 errout:
3676 	kfree(task_ctx_data);
3677 	return ERR_PTR(err);
3678 }
3679 
3680 static void perf_event_free_filter(struct perf_event *event);
3681 static void perf_event_free_bpf_prog(struct perf_event *event);
3682 
3683 static void free_event_rcu(struct rcu_head *head)
3684 {
3685 	struct perf_event *event;
3686 
3687 	event = container_of(head, struct perf_event, rcu_head);
3688 	if (event->ns)
3689 		put_pid_ns(event->ns);
3690 	perf_event_free_filter(event);
3691 	kfree(event);
3692 }
3693 
3694 static void ring_buffer_attach(struct perf_event *event,
3695 			       struct ring_buffer *rb);
3696 
3697 static void detach_sb_event(struct perf_event *event)
3698 {
3699 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3700 
3701 	raw_spin_lock(&pel->lock);
3702 	list_del_rcu(&event->sb_list);
3703 	raw_spin_unlock(&pel->lock);
3704 }
3705 
3706 static bool is_sb_event(struct perf_event *event)
3707 {
3708 	struct perf_event_attr *attr = &event->attr;
3709 
3710 	if (event->parent)
3711 		return false;
3712 
3713 	if (event->attach_state & PERF_ATTACH_TASK)
3714 		return false;
3715 
3716 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3717 	    attr->comm || attr->comm_exec ||
3718 	    attr->task ||
3719 	    attr->context_switch)
3720 		return true;
3721 	return false;
3722 }
3723 
3724 static void unaccount_pmu_sb_event(struct perf_event *event)
3725 {
3726 	if (is_sb_event(event))
3727 		detach_sb_event(event);
3728 }
3729 
3730 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3731 {
3732 	if (event->parent)
3733 		return;
3734 
3735 	if (is_cgroup_event(event))
3736 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3737 }
3738 
3739 #ifdef CONFIG_NO_HZ_FULL
3740 static DEFINE_SPINLOCK(nr_freq_lock);
3741 #endif
3742 
3743 static void unaccount_freq_event_nohz(void)
3744 {
3745 #ifdef CONFIG_NO_HZ_FULL
3746 	spin_lock(&nr_freq_lock);
3747 	if (atomic_dec_and_test(&nr_freq_events))
3748 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3749 	spin_unlock(&nr_freq_lock);
3750 #endif
3751 }
3752 
3753 static void unaccount_freq_event(void)
3754 {
3755 	if (tick_nohz_full_enabled())
3756 		unaccount_freq_event_nohz();
3757 	else
3758 		atomic_dec(&nr_freq_events);
3759 }
3760 
3761 static void unaccount_event(struct perf_event *event)
3762 {
3763 	bool dec = false;
3764 
3765 	if (event->parent)
3766 		return;
3767 
3768 	if (event->attach_state & PERF_ATTACH_TASK)
3769 		dec = true;
3770 	if (event->attr.mmap || event->attr.mmap_data)
3771 		atomic_dec(&nr_mmap_events);
3772 	if (event->attr.comm)
3773 		atomic_dec(&nr_comm_events);
3774 	if (event->attr.task)
3775 		atomic_dec(&nr_task_events);
3776 	if (event->attr.freq)
3777 		unaccount_freq_event();
3778 	if (event->attr.context_switch) {
3779 		dec = true;
3780 		atomic_dec(&nr_switch_events);
3781 	}
3782 	if (is_cgroup_event(event))
3783 		dec = true;
3784 	if (has_branch_stack(event))
3785 		dec = true;
3786 
3787 	if (dec) {
3788 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3789 			schedule_delayed_work(&perf_sched_work, HZ);
3790 	}
3791 
3792 	unaccount_event_cpu(event, event->cpu);
3793 
3794 	unaccount_pmu_sb_event(event);
3795 }
3796 
3797 static void perf_sched_delayed(struct work_struct *work)
3798 {
3799 	mutex_lock(&perf_sched_mutex);
3800 	if (atomic_dec_and_test(&perf_sched_count))
3801 		static_branch_disable(&perf_sched_events);
3802 	mutex_unlock(&perf_sched_mutex);
3803 }
3804 
3805 /*
3806  * The following implement mutual exclusion of events on "exclusive" pmus
3807  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3808  * at a time, so we disallow creating events that might conflict, namely:
3809  *
3810  *  1) cpu-wide events in the presence of per-task events,
3811  *  2) per-task events in the presence of cpu-wide events,
3812  *  3) two matching events on the same context.
3813  *
3814  * The former two cases are handled in the allocation path (perf_event_alloc(),
3815  * _free_event()), the latter -- before the first perf_install_in_context().
3816  */
3817 static int exclusive_event_init(struct perf_event *event)
3818 {
3819 	struct pmu *pmu = event->pmu;
3820 
3821 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3822 		return 0;
3823 
3824 	/*
3825 	 * Prevent co-existence of per-task and cpu-wide events on the
3826 	 * same exclusive pmu.
3827 	 *
3828 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3829 	 * events on this "exclusive" pmu, positive means there are
3830 	 * per-task events.
3831 	 *
3832 	 * Since this is called in perf_event_alloc() path, event::ctx
3833 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3834 	 * to mean "per-task event", because unlike other attach states it
3835 	 * never gets cleared.
3836 	 */
3837 	if (event->attach_state & PERF_ATTACH_TASK) {
3838 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3839 			return -EBUSY;
3840 	} else {
3841 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3842 			return -EBUSY;
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 static void exclusive_event_destroy(struct perf_event *event)
3849 {
3850 	struct pmu *pmu = event->pmu;
3851 
3852 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3853 		return;
3854 
3855 	/* see comment in exclusive_event_init() */
3856 	if (event->attach_state & PERF_ATTACH_TASK)
3857 		atomic_dec(&pmu->exclusive_cnt);
3858 	else
3859 		atomic_inc(&pmu->exclusive_cnt);
3860 }
3861 
3862 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3863 {
3864 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3865 	    (e1->cpu == e2->cpu ||
3866 	     e1->cpu == -1 ||
3867 	     e2->cpu == -1))
3868 		return true;
3869 	return false;
3870 }
3871 
3872 /* Called under the same ctx::mutex as perf_install_in_context() */
3873 static bool exclusive_event_installable(struct perf_event *event,
3874 					struct perf_event_context *ctx)
3875 {
3876 	struct perf_event *iter_event;
3877 	struct pmu *pmu = event->pmu;
3878 
3879 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3880 		return true;
3881 
3882 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3883 		if (exclusive_event_match(iter_event, event))
3884 			return false;
3885 	}
3886 
3887 	return true;
3888 }
3889 
3890 static void perf_addr_filters_splice(struct perf_event *event,
3891 				       struct list_head *head);
3892 
3893 static void _free_event(struct perf_event *event)
3894 {
3895 	irq_work_sync(&event->pending);
3896 
3897 	unaccount_event(event);
3898 
3899 	if (event->rb) {
3900 		/*
3901 		 * Can happen when we close an event with re-directed output.
3902 		 *
3903 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3904 		 * over us; possibly making our ring_buffer_put() the last.
3905 		 */
3906 		mutex_lock(&event->mmap_mutex);
3907 		ring_buffer_attach(event, NULL);
3908 		mutex_unlock(&event->mmap_mutex);
3909 	}
3910 
3911 	if (is_cgroup_event(event))
3912 		perf_detach_cgroup(event);
3913 
3914 	if (!event->parent) {
3915 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3916 			put_callchain_buffers();
3917 	}
3918 
3919 	perf_event_free_bpf_prog(event);
3920 	perf_addr_filters_splice(event, NULL);
3921 	kfree(event->addr_filters_offs);
3922 
3923 	if (event->destroy)
3924 		event->destroy(event);
3925 
3926 	if (event->ctx)
3927 		put_ctx(event->ctx);
3928 
3929 	exclusive_event_destroy(event);
3930 	module_put(event->pmu->module);
3931 
3932 	call_rcu(&event->rcu_head, free_event_rcu);
3933 }
3934 
3935 /*
3936  * Used to free events which have a known refcount of 1, such as in error paths
3937  * where the event isn't exposed yet and inherited events.
3938  */
3939 static void free_event(struct perf_event *event)
3940 {
3941 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3942 				"unexpected event refcount: %ld; ptr=%p\n",
3943 				atomic_long_read(&event->refcount), event)) {
3944 		/* leak to avoid use-after-free */
3945 		return;
3946 	}
3947 
3948 	_free_event(event);
3949 }
3950 
3951 /*
3952  * Remove user event from the owner task.
3953  */
3954 static void perf_remove_from_owner(struct perf_event *event)
3955 {
3956 	struct task_struct *owner;
3957 
3958 	rcu_read_lock();
3959 	/*
3960 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3961 	 * observe !owner it means the list deletion is complete and we can
3962 	 * indeed free this event, otherwise we need to serialize on
3963 	 * owner->perf_event_mutex.
3964 	 */
3965 	owner = lockless_dereference(event->owner);
3966 	if (owner) {
3967 		/*
3968 		 * Since delayed_put_task_struct() also drops the last
3969 		 * task reference we can safely take a new reference
3970 		 * while holding the rcu_read_lock().
3971 		 */
3972 		get_task_struct(owner);
3973 	}
3974 	rcu_read_unlock();
3975 
3976 	if (owner) {
3977 		/*
3978 		 * If we're here through perf_event_exit_task() we're already
3979 		 * holding ctx->mutex which would be an inversion wrt. the
3980 		 * normal lock order.
3981 		 *
3982 		 * However we can safely take this lock because its the child
3983 		 * ctx->mutex.
3984 		 */
3985 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3986 
3987 		/*
3988 		 * We have to re-check the event->owner field, if it is cleared
3989 		 * we raced with perf_event_exit_task(), acquiring the mutex
3990 		 * ensured they're done, and we can proceed with freeing the
3991 		 * event.
3992 		 */
3993 		if (event->owner) {
3994 			list_del_init(&event->owner_entry);
3995 			smp_store_release(&event->owner, NULL);
3996 		}
3997 		mutex_unlock(&owner->perf_event_mutex);
3998 		put_task_struct(owner);
3999 	}
4000 }
4001 
4002 static void put_event(struct perf_event *event)
4003 {
4004 	if (!atomic_long_dec_and_test(&event->refcount))
4005 		return;
4006 
4007 	_free_event(event);
4008 }
4009 
4010 /*
4011  * Kill an event dead; while event:refcount will preserve the event
4012  * object, it will not preserve its functionality. Once the last 'user'
4013  * gives up the object, we'll destroy the thing.
4014  */
4015 int perf_event_release_kernel(struct perf_event *event)
4016 {
4017 	struct perf_event_context *ctx = event->ctx;
4018 	struct perf_event *child, *tmp;
4019 
4020 	/*
4021 	 * If we got here through err_file: fput(event_file); we will not have
4022 	 * attached to a context yet.
4023 	 */
4024 	if (!ctx) {
4025 		WARN_ON_ONCE(event->attach_state &
4026 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4027 		goto no_ctx;
4028 	}
4029 
4030 	if (!is_kernel_event(event))
4031 		perf_remove_from_owner(event);
4032 
4033 	ctx = perf_event_ctx_lock(event);
4034 	WARN_ON_ONCE(ctx->parent_ctx);
4035 	perf_remove_from_context(event, DETACH_GROUP);
4036 
4037 	raw_spin_lock_irq(&ctx->lock);
4038 	/*
4039 	 * Mark this even as STATE_DEAD, there is no external reference to it
4040 	 * anymore.
4041 	 *
4042 	 * Anybody acquiring event->child_mutex after the below loop _must_
4043 	 * also see this, most importantly inherit_event() which will avoid
4044 	 * placing more children on the list.
4045 	 *
4046 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4047 	 * child events.
4048 	 */
4049 	event->state = PERF_EVENT_STATE_DEAD;
4050 	raw_spin_unlock_irq(&ctx->lock);
4051 
4052 	perf_event_ctx_unlock(event, ctx);
4053 
4054 again:
4055 	mutex_lock(&event->child_mutex);
4056 	list_for_each_entry(child, &event->child_list, child_list) {
4057 
4058 		/*
4059 		 * Cannot change, child events are not migrated, see the
4060 		 * comment with perf_event_ctx_lock_nested().
4061 		 */
4062 		ctx = lockless_dereference(child->ctx);
4063 		/*
4064 		 * Since child_mutex nests inside ctx::mutex, we must jump
4065 		 * through hoops. We start by grabbing a reference on the ctx.
4066 		 *
4067 		 * Since the event cannot get freed while we hold the
4068 		 * child_mutex, the context must also exist and have a !0
4069 		 * reference count.
4070 		 */
4071 		get_ctx(ctx);
4072 
4073 		/*
4074 		 * Now that we have a ctx ref, we can drop child_mutex, and
4075 		 * acquire ctx::mutex without fear of it going away. Then we
4076 		 * can re-acquire child_mutex.
4077 		 */
4078 		mutex_unlock(&event->child_mutex);
4079 		mutex_lock(&ctx->mutex);
4080 		mutex_lock(&event->child_mutex);
4081 
4082 		/*
4083 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4084 		 * state, if child is still the first entry, it didn't get freed
4085 		 * and we can continue doing so.
4086 		 */
4087 		tmp = list_first_entry_or_null(&event->child_list,
4088 					       struct perf_event, child_list);
4089 		if (tmp == child) {
4090 			perf_remove_from_context(child, DETACH_GROUP);
4091 			list_del(&child->child_list);
4092 			free_event(child);
4093 			/*
4094 			 * This matches the refcount bump in inherit_event();
4095 			 * this can't be the last reference.
4096 			 */
4097 			put_event(event);
4098 		}
4099 
4100 		mutex_unlock(&event->child_mutex);
4101 		mutex_unlock(&ctx->mutex);
4102 		put_ctx(ctx);
4103 		goto again;
4104 	}
4105 	mutex_unlock(&event->child_mutex);
4106 
4107 no_ctx:
4108 	put_event(event); /* Must be the 'last' reference */
4109 	return 0;
4110 }
4111 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4112 
4113 /*
4114  * Called when the last reference to the file is gone.
4115  */
4116 static int perf_release(struct inode *inode, struct file *file)
4117 {
4118 	perf_event_release_kernel(file->private_data);
4119 	return 0;
4120 }
4121 
4122 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4123 {
4124 	struct perf_event *child;
4125 	u64 total = 0;
4126 
4127 	*enabled = 0;
4128 	*running = 0;
4129 
4130 	mutex_lock(&event->child_mutex);
4131 
4132 	(void)perf_event_read(event, false);
4133 	total += perf_event_count(event);
4134 
4135 	*enabled += event->total_time_enabled +
4136 			atomic64_read(&event->child_total_time_enabled);
4137 	*running += event->total_time_running +
4138 			atomic64_read(&event->child_total_time_running);
4139 
4140 	list_for_each_entry(child, &event->child_list, child_list) {
4141 		(void)perf_event_read(child, false);
4142 		total += perf_event_count(child);
4143 		*enabled += child->total_time_enabled;
4144 		*running += child->total_time_running;
4145 	}
4146 	mutex_unlock(&event->child_mutex);
4147 
4148 	return total;
4149 }
4150 EXPORT_SYMBOL_GPL(perf_event_read_value);
4151 
4152 static int __perf_read_group_add(struct perf_event *leader,
4153 					u64 read_format, u64 *values)
4154 {
4155 	struct perf_event *sub;
4156 	int n = 1; /* skip @nr */
4157 	int ret;
4158 
4159 	ret = perf_event_read(leader, true);
4160 	if (ret)
4161 		return ret;
4162 
4163 	/*
4164 	 * Since we co-schedule groups, {enabled,running} times of siblings
4165 	 * will be identical to those of the leader, so we only publish one
4166 	 * set.
4167 	 */
4168 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4169 		values[n++] += leader->total_time_enabled +
4170 			atomic64_read(&leader->child_total_time_enabled);
4171 	}
4172 
4173 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4174 		values[n++] += leader->total_time_running +
4175 			atomic64_read(&leader->child_total_time_running);
4176 	}
4177 
4178 	/*
4179 	 * Write {count,id} tuples for every sibling.
4180 	 */
4181 	values[n++] += perf_event_count(leader);
4182 	if (read_format & PERF_FORMAT_ID)
4183 		values[n++] = primary_event_id(leader);
4184 
4185 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4186 		values[n++] += perf_event_count(sub);
4187 		if (read_format & PERF_FORMAT_ID)
4188 			values[n++] = primary_event_id(sub);
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 static int perf_read_group(struct perf_event *event,
4195 				   u64 read_format, char __user *buf)
4196 {
4197 	struct perf_event *leader = event->group_leader, *child;
4198 	struct perf_event_context *ctx = leader->ctx;
4199 	int ret;
4200 	u64 *values;
4201 
4202 	lockdep_assert_held(&ctx->mutex);
4203 
4204 	values = kzalloc(event->read_size, GFP_KERNEL);
4205 	if (!values)
4206 		return -ENOMEM;
4207 
4208 	values[0] = 1 + leader->nr_siblings;
4209 
4210 	/*
4211 	 * By locking the child_mutex of the leader we effectively
4212 	 * lock the child list of all siblings.. XXX explain how.
4213 	 */
4214 	mutex_lock(&leader->child_mutex);
4215 
4216 	ret = __perf_read_group_add(leader, read_format, values);
4217 	if (ret)
4218 		goto unlock;
4219 
4220 	list_for_each_entry(child, &leader->child_list, child_list) {
4221 		ret = __perf_read_group_add(child, read_format, values);
4222 		if (ret)
4223 			goto unlock;
4224 	}
4225 
4226 	mutex_unlock(&leader->child_mutex);
4227 
4228 	ret = event->read_size;
4229 	if (copy_to_user(buf, values, event->read_size))
4230 		ret = -EFAULT;
4231 	goto out;
4232 
4233 unlock:
4234 	mutex_unlock(&leader->child_mutex);
4235 out:
4236 	kfree(values);
4237 	return ret;
4238 }
4239 
4240 static int perf_read_one(struct perf_event *event,
4241 				 u64 read_format, char __user *buf)
4242 {
4243 	u64 enabled, running;
4244 	u64 values[4];
4245 	int n = 0;
4246 
4247 	values[n++] = perf_event_read_value(event, &enabled, &running);
4248 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4249 		values[n++] = enabled;
4250 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4251 		values[n++] = running;
4252 	if (read_format & PERF_FORMAT_ID)
4253 		values[n++] = primary_event_id(event);
4254 
4255 	if (copy_to_user(buf, values, n * sizeof(u64)))
4256 		return -EFAULT;
4257 
4258 	return n * sizeof(u64);
4259 }
4260 
4261 static bool is_event_hup(struct perf_event *event)
4262 {
4263 	bool no_children;
4264 
4265 	if (event->state > PERF_EVENT_STATE_EXIT)
4266 		return false;
4267 
4268 	mutex_lock(&event->child_mutex);
4269 	no_children = list_empty(&event->child_list);
4270 	mutex_unlock(&event->child_mutex);
4271 	return no_children;
4272 }
4273 
4274 /*
4275  * Read the performance event - simple non blocking version for now
4276  */
4277 static ssize_t
4278 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4279 {
4280 	u64 read_format = event->attr.read_format;
4281 	int ret;
4282 
4283 	/*
4284 	 * Return end-of-file for a read on a event that is in
4285 	 * error state (i.e. because it was pinned but it couldn't be
4286 	 * scheduled on to the CPU at some point).
4287 	 */
4288 	if (event->state == PERF_EVENT_STATE_ERROR)
4289 		return 0;
4290 
4291 	if (count < event->read_size)
4292 		return -ENOSPC;
4293 
4294 	WARN_ON_ONCE(event->ctx->parent_ctx);
4295 	if (read_format & PERF_FORMAT_GROUP)
4296 		ret = perf_read_group(event, read_format, buf);
4297 	else
4298 		ret = perf_read_one(event, read_format, buf);
4299 
4300 	return ret;
4301 }
4302 
4303 static ssize_t
4304 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4305 {
4306 	struct perf_event *event = file->private_data;
4307 	struct perf_event_context *ctx;
4308 	int ret;
4309 
4310 	ctx = perf_event_ctx_lock(event);
4311 	ret = __perf_read(event, buf, count);
4312 	perf_event_ctx_unlock(event, ctx);
4313 
4314 	return ret;
4315 }
4316 
4317 static unsigned int perf_poll(struct file *file, poll_table *wait)
4318 {
4319 	struct perf_event *event = file->private_data;
4320 	struct ring_buffer *rb;
4321 	unsigned int events = POLLHUP;
4322 
4323 	poll_wait(file, &event->waitq, wait);
4324 
4325 	if (is_event_hup(event))
4326 		return events;
4327 
4328 	/*
4329 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4330 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4331 	 */
4332 	mutex_lock(&event->mmap_mutex);
4333 	rb = event->rb;
4334 	if (rb)
4335 		events = atomic_xchg(&rb->poll, 0);
4336 	mutex_unlock(&event->mmap_mutex);
4337 	return events;
4338 }
4339 
4340 static void _perf_event_reset(struct perf_event *event)
4341 {
4342 	(void)perf_event_read(event, false);
4343 	local64_set(&event->count, 0);
4344 	perf_event_update_userpage(event);
4345 }
4346 
4347 /*
4348  * Holding the top-level event's child_mutex means that any
4349  * descendant process that has inherited this event will block
4350  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4351  * task existence requirements of perf_event_enable/disable.
4352  */
4353 static void perf_event_for_each_child(struct perf_event *event,
4354 					void (*func)(struct perf_event *))
4355 {
4356 	struct perf_event *child;
4357 
4358 	WARN_ON_ONCE(event->ctx->parent_ctx);
4359 
4360 	mutex_lock(&event->child_mutex);
4361 	func(event);
4362 	list_for_each_entry(child, &event->child_list, child_list)
4363 		func(child);
4364 	mutex_unlock(&event->child_mutex);
4365 }
4366 
4367 static void perf_event_for_each(struct perf_event *event,
4368 				  void (*func)(struct perf_event *))
4369 {
4370 	struct perf_event_context *ctx = event->ctx;
4371 	struct perf_event *sibling;
4372 
4373 	lockdep_assert_held(&ctx->mutex);
4374 
4375 	event = event->group_leader;
4376 
4377 	perf_event_for_each_child(event, func);
4378 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4379 		perf_event_for_each_child(sibling, func);
4380 }
4381 
4382 static void __perf_event_period(struct perf_event *event,
4383 				struct perf_cpu_context *cpuctx,
4384 				struct perf_event_context *ctx,
4385 				void *info)
4386 {
4387 	u64 value = *((u64 *)info);
4388 	bool active;
4389 
4390 	if (event->attr.freq) {
4391 		event->attr.sample_freq = value;
4392 	} else {
4393 		event->attr.sample_period = value;
4394 		event->hw.sample_period = value;
4395 	}
4396 
4397 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4398 	if (active) {
4399 		perf_pmu_disable(ctx->pmu);
4400 		/*
4401 		 * We could be throttled; unthrottle now to avoid the tick
4402 		 * trying to unthrottle while we already re-started the event.
4403 		 */
4404 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4405 			event->hw.interrupts = 0;
4406 			perf_log_throttle(event, 1);
4407 		}
4408 		event->pmu->stop(event, PERF_EF_UPDATE);
4409 	}
4410 
4411 	local64_set(&event->hw.period_left, 0);
4412 
4413 	if (active) {
4414 		event->pmu->start(event, PERF_EF_RELOAD);
4415 		perf_pmu_enable(ctx->pmu);
4416 	}
4417 }
4418 
4419 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4420 {
4421 	u64 value;
4422 
4423 	if (!is_sampling_event(event))
4424 		return -EINVAL;
4425 
4426 	if (copy_from_user(&value, arg, sizeof(value)))
4427 		return -EFAULT;
4428 
4429 	if (!value)
4430 		return -EINVAL;
4431 
4432 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4433 		return -EINVAL;
4434 
4435 	event_function_call(event, __perf_event_period, &value);
4436 
4437 	return 0;
4438 }
4439 
4440 static const struct file_operations perf_fops;
4441 
4442 static inline int perf_fget_light(int fd, struct fd *p)
4443 {
4444 	struct fd f = fdget(fd);
4445 	if (!f.file)
4446 		return -EBADF;
4447 
4448 	if (f.file->f_op != &perf_fops) {
4449 		fdput(f);
4450 		return -EBADF;
4451 	}
4452 	*p = f;
4453 	return 0;
4454 }
4455 
4456 static int perf_event_set_output(struct perf_event *event,
4457 				 struct perf_event *output_event);
4458 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4460 
4461 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4462 {
4463 	void (*func)(struct perf_event *);
4464 	u32 flags = arg;
4465 
4466 	switch (cmd) {
4467 	case PERF_EVENT_IOC_ENABLE:
4468 		func = _perf_event_enable;
4469 		break;
4470 	case PERF_EVENT_IOC_DISABLE:
4471 		func = _perf_event_disable;
4472 		break;
4473 	case PERF_EVENT_IOC_RESET:
4474 		func = _perf_event_reset;
4475 		break;
4476 
4477 	case PERF_EVENT_IOC_REFRESH:
4478 		return _perf_event_refresh(event, arg);
4479 
4480 	case PERF_EVENT_IOC_PERIOD:
4481 		return perf_event_period(event, (u64 __user *)arg);
4482 
4483 	case PERF_EVENT_IOC_ID:
4484 	{
4485 		u64 id = primary_event_id(event);
4486 
4487 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4488 			return -EFAULT;
4489 		return 0;
4490 	}
4491 
4492 	case PERF_EVENT_IOC_SET_OUTPUT:
4493 	{
4494 		int ret;
4495 		if (arg != -1) {
4496 			struct perf_event *output_event;
4497 			struct fd output;
4498 			ret = perf_fget_light(arg, &output);
4499 			if (ret)
4500 				return ret;
4501 			output_event = output.file->private_data;
4502 			ret = perf_event_set_output(event, output_event);
4503 			fdput(output);
4504 		} else {
4505 			ret = perf_event_set_output(event, NULL);
4506 		}
4507 		return ret;
4508 	}
4509 
4510 	case PERF_EVENT_IOC_SET_FILTER:
4511 		return perf_event_set_filter(event, (void __user *)arg);
4512 
4513 	case PERF_EVENT_IOC_SET_BPF:
4514 		return perf_event_set_bpf_prog(event, arg);
4515 
4516 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4517 		struct ring_buffer *rb;
4518 
4519 		rcu_read_lock();
4520 		rb = rcu_dereference(event->rb);
4521 		if (!rb || !rb->nr_pages) {
4522 			rcu_read_unlock();
4523 			return -EINVAL;
4524 		}
4525 		rb_toggle_paused(rb, !!arg);
4526 		rcu_read_unlock();
4527 		return 0;
4528 	}
4529 	default:
4530 		return -ENOTTY;
4531 	}
4532 
4533 	if (flags & PERF_IOC_FLAG_GROUP)
4534 		perf_event_for_each(event, func);
4535 	else
4536 		perf_event_for_each_child(event, func);
4537 
4538 	return 0;
4539 }
4540 
4541 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4542 {
4543 	struct perf_event *event = file->private_data;
4544 	struct perf_event_context *ctx;
4545 	long ret;
4546 
4547 	ctx = perf_event_ctx_lock(event);
4548 	ret = _perf_ioctl(event, cmd, arg);
4549 	perf_event_ctx_unlock(event, ctx);
4550 
4551 	return ret;
4552 }
4553 
4554 #ifdef CONFIG_COMPAT
4555 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4556 				unsigned long arg)
4557 {
4558 	switch (_IOC_NR(cmd)) {
4559 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4560 	case _IOC_NR(PERF_EVENT_IOC_ID):
4561 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4562 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4563 			cmd &= ~IOCSIZE_MASK;
4564 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4565 		}
4566 		break;
4567 	}
4568 	return perf_ioctl(file, cmd, arg);
4569 }
4570 #else
4571 # define perf_compat_ioctl NULL
4572 #endif
4573 
4574 int perf_event_task_enable(void)
4575 {
4576 	struct perf_event_context *ctx;
4577 	struct perf_event *event;
4578 
4579 	mutex_lock(&current->perf_event_mutex);
4580 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4581 		ctx = perf_event_ctx_lock(event);
4582 		perf_event_for_each_child(event, _perf_event_enable);
4583 		perf_event_ctx_unlock(event, ctx);
4584 	}
4585 	mutex_unlock(&current->perf_event_mutex);
4586 
4587 	return 0;
4588 }
4589 
4590 int perf_event_task_disable(void)
4591 {
4592 	struct perf_event_context *ctx;
4593 	struct perf_event *event;
4594 
4595 	mutex_lock(&current->perf_event_mutex);
4596 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4597 		ctx = perf_event_ctx_lock(event);
4598 		perf_event_for_each_child(event, _perf_event_disable);
4599 		perf_event_ctx_unlock(event, ctx);
4600 	}
4601 	mutex_unlock(&current->perf_event_mutex);
4602 
4603 	return 0;
4604 }
4605 
4606 static int perf_event_index(struct perf_event *event)
4607 {
4608 	if (event->hw.state & PERF_HES_STOPPED)
4609 		return 0;
4610 
4611 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4612 		return 0;
4613 
4614 	return event->pmu->event_idx(event);
4615 }
4616 
4617 static void calc_timer_values(struct perf_event *event,
4618 				u64 *now,
4619 				u64 *enabled,
4620 				u64 *running)
4621 {
4622 	u64 ctx_time;
4623 
4624 	*now = perf_clock();
4625 	ctx_time = event->shadow_ctx_time + *now;
4626 	*enabled = ctx_time - event->tstamp_enabled;
4627 	*running = ctx_time - event->tstamp_running;
4628 }
4629 
4630 static void perf_event_init_userpage(struct perf_event *event)
4631 {
4632 	struct perf_event_mmap_page *userpg;
4633 	struct ring_buffer *rb;
4634 
4635 	rcu_read_lock();
4636 	rb = rcu_dereference(event->rb);
4637 	if (!rb)
4638 		goto unlock;
4639 
4640 	userpg = rb->user_page;
4641 
4642 	/* Allow new userspace to detect that bit 0 is deprecated */
4643 	userpg->cap_bit0_is_deprecated = 1;
4644 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4645 	userpg->data_offset = PAGE_SIZE;
4646 	userpg->data_size = perf_data_size(rb);
4647 
4648 unlock:
4649 	rcu_read_unlock();
4650 }
4651 
4652 void __weak arch_perf_update_userpage(
4653 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4654 {
4655 }
4656 
4657 /*
4658  * Callers need to ensure there can be no nesting of this function, otherwise
4659  * the seqlock logic goes bad. We can not serialize this because the arch
4660  * code calls this from NMI context.
4661  */
4662 void perf_event_update_userpage(struct perf_event *event)
4663 {
4664 	struct perf_event_mmap_page *userpg;
4665 	struct ring_buffer *rb;
4666 	u64 enabled, running, now;
4667 
4668 	rcu_read_lock();
4669 	rb = rcu_dereference(event->rb);
4670 	if (!rb)
4671 		goto unlock;
4672 
4673 	/*
4674 	 * compute total_time_enabled, total_time_running
4675 	 * based on snapshot values taken when the event
4676 	 * was last scheduled in.
4677 	 *
4678 	 * we cannot simply called update_context_time()
4679 	 * because of locking issue as we can be called in
4680 	 * NMI context
4681 	 */
4682 	calc_timer_values(event, &now, &enabled, &running);
4683 
4684 	userpg = rb->user_page;
4685 	/*
4686 	 * Disable preemption so as to not let the corresponding user-space
4687 	 * spin too long if we get preempted.
4688 	 */
4689 	preempt_disable();
4690 	++userpg->lock;
4691 	barrier();
4692 	userpg->index = perf_event_index(event);
4693 	userpg->offset = perf_event_count(event);
4694 	if (userpg->index)
4695 		userpg->offset -= local64_read(&event->hw.prev_count);
4696 
4697 	userpg->time_enabled = enabled +
4698 			atomic64_read(&event->child_total_time_enabled);
4699 
4700 	userpg->time_running = running +
4701 			atomic64_read(&event->child_total_time_running);
4702 
4703 	arch_perf_update_userpage(event, userpg, now);
4704 
4705 	barrier();
4706 	++userpg->lock;
4707 	preempt_enable();
4708 unlock:
4709 	rcu_read_unlock();
4710 }
4711 
4712 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4713 {
4714 	struct perf_event *event = vma->vm_file->private_data;
4715 	struct ring_buffer *rb;
4716 	int ret = VM_FAULT_SIGBUS;
4717 
4718 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4719 		if (vmf->pgoff == 0)
4720 			ret = 0;
4721 		return ret;
4722 	}
4723 
4724 	rcu_read_lock();
4725 	rb = rcu_dereference(event->rb);
4726 	if (!rb)
4727 		goto unlock;
4728 
4729 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4730 		goto unlock;
4731 
4732 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4733 	if (!vmf->page)
4734 		goto unlock;
4735 
4736 	get_page(vmf->page);
4737 	vmf->page->mapping = vma->vm_file->f_mapping;
4738 	vmf->page->index   = vmf->pgoff;
4739 
4740 	ret = 0;
4741 unlock:
4742 	rcu_read_unlock();
4743 
4744 	return ret;
4745 }
4746 
4747 static void ring_buffer_attach(struct perf_event *event,
4748 			       struct ring_buffer *rb)
4749 {
4750 	struct ring_buffer *old_rb = NULL;
4751 	unsigned long flags;
4752 
4753 	if (event->rb) {
4754 		/*
4755 		 * Should be impossible, we set this when removing
4756 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4757 		 */
4758 		WARN_ON_ONCE(event->rcu_pending);
4759 
4760 		old_rb = event->rb;
4761 		spin_lock_irqsave(&old_rb->event_lock, flags);
4762 		list_del_rcu(&event->rb_entry);
4763 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4764 
4765 		event->rcu_batches = get_state_synchronize_rcu();
4766 		event->rcu_pending = 1;
4767 	}
4768 
4769 	if (rb) {
4770 		if (event->rcu_pending) {
4771 			cond_synchronize_rcu(event->rcu_batches);
4772 			event->rcu_pending = 0;
4773 		}
4774 
4775 		spin_lock_irqsave(&rb->event_lock, flags);
4776 		list_add_rcu(&event->rb_entry, &rb->event_list);
4777 		spin_unlock_irqrestore(&rb->event_lock, flags);
4778 	}
4779 
4780 	rcu_assign_pointer(event->rb, rb);
4781 
4782 	if (old_rb) {
4783 		ring_buffer_put(old_rb);
4784 		/*
4785 		 * Since we detached before setting the new rb, so that we
4786 		 * could attach the new rb, we could have missed a wakeup.
4787 		 * Provide it now.
4788 		 */
4789 		wake_up_all(&event->waitq);
4790 	}
4791 }
4792 
4793 static void ring_buffer_wakeup(struct perf_event *event)
4794 {
4795 	struct ring_buffer *rb;
4796 
4797 	rcu_read_lock();
4798 	rb = rcu_dereference(event->rb);
4799 	if (rb) {
4800 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4801 			wake_up_all(&event->waitq);
4802 	}
4803 	rcu_read_unlock();
4804 }
4805 
4806 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4807 {
4808 	struct ring_buffer *rb;
4809 
4810 	rcu_read_lock();
4811 	rb = rcu_dereference(event->rb);
4812 	if (rb) {
4813 		if (!atomic_inc_not_zero(&rb->refcount))
4814 			rb = NULL;
4815 	}
4816 	rcu_read_unlock();
4817 
4818 	return rb;
4819 }
4820 
4821 void ring_buffer_put(struct ring_buffer *rb)
4822 {
4823 	if (!atomic_dec_and_test(&rb->refcount))
4824 		return;
4825 
4826 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4827 
4828 	call_rcu(&rb->rcu_head, rb_free_rcu);
4829 }
4830 
4831 static void perf_mmap_open(struct vm_area_struct *vma)
4832 {
4833 	struct perf_event *event = vma->vm_file->private_data;
4834 
4835 	atomic_inc(&event->mmap_count);
4836 	atomic_inc(&event->rb->mmap_count);
4837 
4838 	if (vma->vm_pgoff)
4839 		atomic_inc(&event->rb->aux_mmap_count);
4840 
4841 	if (event->pmu->event_mapped)
4842 		event->pmu->event_mapped(event);
4843 }
4844 
4845 static void perf_pmu_output_stop(struct perf_event *event);
4846 
4847 /*
4848  * A buffer can be mmap()ed multiple times; either directly through the same
4849  * event, or through other events by use of perf_event_set_output().
4850  *
4851  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4852  * the buffer here, where we still have a VM context. This means we need
4853  * to detach all events redirecting to us.
4854  */
4855 static void perf_mmap_close(struct vm_area_struct *vma)
4856 {
4857 	struct perf_event *event = vma->vm_file->private_data;
4858 
4859 	struct ring_buffer *rb = ring_buffer_get(event);
4860 	struct user_struct *mmap_user = rb->mmap_user;
4861 	int mmap_locked = rb->mmap_locked;
4862 	unsigned long size = perf_data_size(rb);
4863 
4864 	if (event->pmu->event_unmapped)
4865 		event->pmu->event_unmapped(event);
4866 
4867 	/*
4868 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4869 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4870 	 * serialize with perf_mmap here.
4871 	 */
4872 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4873 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4874 		/*
4875 		 * Stop all AUX events that are writing to this buffer,
4876 		 * so that we can free its AUX pages and corresponding PMU
4877 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4878 		 * they won't start any more (see perf_aux_output_begin()).
4879 		 */
4880 		perf_pmu_output_stop(event);
4881 
4882 		/* now it's safe to free the pages */
4883 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4884 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4885 
4886 		/* this has to be the last one */
4887 		rb_free_aux(rb);
4888 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4889 
4890 		mutex_unlock(&event->mmap_mutex);
4891 	}
4892 
4893 	atomic_dec(&rb->mmap_count);
4894 
4895 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4896 		goto out_put;
4897 
4898 	ring_buffer_attach(event, NULL);
4899 	mutex_unlock(&event->mmap_mutex);
4900 
4901 	/* If there's still other mmap()s of this buffer, we're done. */
4902 	if (atomic_read(&rb->mmap_count))
4903 		goto out_put;
4904 
4905 	/*
4906 	 * No other mmap()s, detach from all other events that might redirect
4907 	 * into the now unreachable buffer. Somewhat complicated by the
4908 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4909 	 */
4910 again:
4911 	rcu_read_lock();
4912 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4913 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4914 			/*
4915 			 * This event is en-route to free_event() which will
4916 			 * detach it and remove it from the list.
4917 			 */
4918 			continue;
4919 		}
4920 		rcu_read_unlock();
4921 
4922 		mutex_lock(&event->mmap_mutex);
4923 		/*
4924 		 * Check we didn't race with perf_event_set_output() which can
4925 		 * swizzle the rb from under us while we were waiting to
4926 		 * acquire mmap_mutex.
4927 		 *
4928 		 * If we find a different rb; ignore this event, a next
4929 		 * iteration will no longer find it on the list. We have to
4930 		 * still restart the iteration to make sure we're not now
4931 		 * iterating the wrong list.
4932 		 */
4933 		if (event->rb == rb)
4934 			ring_buffer_attach(event, NULL);
4935 
4936 		mutex_unlock(&event->mmap_mutex);
4937 		put_event(event);
4938 
4939 		/*
4940 		 * Restart the iteration; either we're on the wrong list or
4941 		 * destroyed its integrity by doing a deletion.
4942 		 */
4943 		goto again;
4944 	}
4945 	rcu_read_unlock();
4946 
4947 	/*
4948 	 * It could be there's still a few 0-ref events on the list; they'll
4949 	 * get cleaned up by free_event() -- they'll also still have their
4950 	 * ref on the rb and will free it whenever they are done with it.
4951 	 *
4952 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4953 	 * undo the VM accounting.
4954 	 */
4955 
4956 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4957 	vma->vm_mm->pinned_vm -= mmap_locked;
4958 	free_uid(mmap_user);
4959 
4960 out_put:
4961 	ring_buffer_put(rb); /* could be last */
4962 }
4963 
4964 static const struct vm_operations_struct perf_mmap_vmops = {
4965 	.open		= perf_mmap_open,
4966 	.close		= perf_mmap_close, /* non mergable */
4967 	.fault		= perf_mmap_fault,
4968 	.page_mkwrite	= perf_mmap_fault,
4969 };
4970 
4971 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4972 {
4973 	struct perf_event *event = file->private_data;
4974 	unsigned long user_locked, user_lock_limit;
4975 	struct user_struct *user = current_user();
4976 	unsigned long locked, lock_limit;
4977 	struct ring_buffer *rb = NULL;
4978 	unsigned long vma_size;
4979 	unsigned long nr_pages;
4980 	long user_extra = 0, extra = 0;
4981 	int ret = 0, flags = 0;
4982 
4983 	/*
4984 	 * Don't allow mmap() of inherited per-task counters. This would
4985 	 * create a performance issue due to all children writing to the
4986 	 * same rb.
4987 	 */
4988 	if (event->cpu == -1 && event->attr.inherit)
4989 		return -EINVAL;
4990 
4991 	if (!(vma->vm_flags & VM_SHARED))
4992 		return -EINVAL;
4993 
4994 	vma_size = vma->vm_end - vma->vm_start;
4995 
4996 	if (vma->vm_pgoff == 0) {
4997 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4998 	} else {
4999 		/*
5000 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5001 		 * mapped, all subsequent mappings should have the same size
5002 		 * and offset. Must be above the normal perf buffer.
5003 		 */
5004 		u64 aux_offset, aux_size;
5005 
5006 		if (!event->rb)
5007 			return -EINVAL;
5008 
5009 		nr_pages = vma_size / PAGE_SIZE;
5010 
5011 		mutex_lock(&event->mmap_mutex);
5012 		ret = -EINVAL;
5013 
5014 		rb = event->rb;
5015 		if (!rb)
5016 			goto aux_unlock;
5017 
5018 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5019 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5020 
5021 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5022 			goto aux_unlock;
5023 
5024 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5025 			goto aux_unlock;
5026 
5027 		/* already mapped with a different offset */
5028 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5029 			goto aux_unlock;
5030 
5031 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5032 			goto aux_unlock;
5033 
5034 		/* already mapped with a different size */
5035 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5036 			goto aux_unlock;
5037 
5038 		if (!is_power_of_2(nr_pages))
5039 			goto aux_unlock;
5040 
5041 		if (!atomic_inc_not_zero(&rb->mmap_count))
5042 			goto aux_unlock;
5043 
5044 		if (rb_has_aux(rb)) {
5045 			atomic_inc(&rb->aux_mmap_count);
5046 			ret = 0;
5047 			goto unlock;
5048 		}
5049 
5050 		atomic_set(&rb->aux_mmap_count, 1);
5051 		user_extra = nr_pages;
5052 
5053 		goto accounting;
5054 	}
5055 
5056 	/*
5057 	 * If we have rb pages ensure they're a power-of-two number, so we
5058 	 * can do bitmasks instead of modulo.
5059 	 */
5060 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5061 		return -EINVAL;
5062 
5063 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5064 		return -EINVAL;
5065 
5066 	WARN_ON_ONCE(event->ctx->parent_ctx);
5067 again:
5068 	mutex_lock(&event->mmap_mutex);
5069 	if (event->rb) {
5070 		if (event->rb->nr_pages != nr_pages) {
5071 			ret = -EINVAL;
5072 			goto unlock;
5073 		}
5074 
5075 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5076 			/*
5077 			 * Raced against perf_mmap_close() through
5078 			 * perf_event_set_output(). Try again, hope for better
5079 			 * luck.
5080 			 */
5081 			mutex_unlock(&event->mmap_mutex);
5082 			goto again;
5083 		}
5084 
5085 		goto unlock;
5086 	}
5087 
5088 	user_extra = nr_pages + 1;
5089 
5090 accounting:
5091 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5092 
5093 	/*
5094 	 * Increase the limit linearly with more CPUs:
5095 	 */
5096 	user_lock_limit *= num_online_cpus();
5097 
5098 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5099 
5100 	if (user_locked > user_lock_limit)
5101 		extra = user_locked - user_lock_limit;
5102 
5103 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5104 	lock_limit >>= PAGE_SHIFT;
5105 	locked = vma->vm_mm->pinned_vm + extra;
5106 
5107 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5108 		!capable(CAP_IPC_LOCK)) {
5109 		ret = -EPERM;
5110 		goto unlock;
5111 	}
5112 
5113 	WARN_ON(!rb && event->rb);
5114 
5115 	if (vma->vm_flags & VM_WRITE)
5116 		flags |= RING_BUFFER_WRITABLE;
5117 
5118 	if (!rb) {
5119 		rb = rb_alloc(nr_pages,
5120 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5121 			      event->cpu, flags);
5122 
5123 		if (!rb) {
5124 			ret = -ENOMEM;
5125 			goto unlock;
5126 		}
5127 
5128 		atomic_set(&rb->mmap_count, 1);
5129 		rb->mmap_user = get_current_user();
5130 		rb->mmap_locked = extra;
5131 
5132 		ring_buffer_attach(event, rb);
5133 
5134 		perf_event_init_userpage(event);
5135 		perf_event_update_userpage(event);
5136 	} else {
5137 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5138 				   event->attr.aux_watermark, flags);
5139 		if (!ret)
5140 			rb->aux_mmap_locked = extra;
5141 	}
5142 
5143 unlock:
5144 	if (!ret) {
5145 		atomic_long_add(user_extra, &user->locked_vm);
5146 		vma->vm_mm->pinned_vm += extra;
5147 
5148 		atomic_inc(&event->mmap_count);
5149 	} else if (rb) {
5150 		atomic_dec(&rb->mmap_count);
5151 	}
5152 aux_unlock:
5153 	mutex_unlock(&event->mmap_mutex);
5154 
5155 	/*
5156 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5157 	 * vma.
5158 	 */
5159 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5160 	vma->vm_ops = &perf_mmap_vmops;
5161 
5162 	if (event->pmu->event_mapped)
5163 		event->pmu->event_mapped(event);
5164 
5165 	return ret;
5166 }
5167 
5168 static int perf_fasync(int fd, struct file *filp, int on)
5169 {
5170 	struct inode *inode = file_inode(filp);
5171 	struct perf_event *event = filp->private_data;
5172 	int retval;
5173 
5174 	inode_lock(inode);
5175 	retval = fasync_helper(fd, filp, on, &event->fasync);
5176 	inode_unlock(inode);
5177 
5178 	if (retval < 0)
5179 		return retval;
5180 
5181 	return 0;
5182 }
5183 
5184 static const struct file_operations perf_fops = {
5185 	.llseek			= no_llseek,
5186 	.release		= perf_release,
5187 	.read			= perf_read,
5188 	.poll			= perf_poll,
5189 	.unlocked_ioctl		= perf_ioctl,
5190 	.compat_ioctl		= perf_compat_ioctl,
5191 	.mmap			= perf_mmap,
5192 	.fasync			= perf_fasync,
5193 };
5194 
5195 /*
5196  * Perf event wakeup
5197  *
5198  * If there's data, ensure we set the poll() state and publish everything
5199  * to user-space before waking everybody up.
5200  */
5201 
5202 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5203 {
5204 	/* only the parent has fasync state */
5205 	if (event->parent)
5206 		event = event->parent;
5207 	return &event->fasync;
5208 }
5209 
5210 void perf_event_wakeup(struct perf_event *event)
5211 {
5212 	ring_buffer_wakeup(event);
5213 
5214 	if (event->pending_kill) {
5215 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5216 		event->pending_kill = 0;
5217 	}
5218 }
5219 
5220 static void perf_pending_event(struct irq_work *entry)
5221 {
5222 	struct perf_event *event = container_of(entry,
5223 			struct perf_event, pending);
5224 	int rctx;
5225 
5226 	rctx = perf_swevent_get_recursion_context();
5227 	/*
5228 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5229 	 * and we won't recurse 'further'.
5230 	 */
5231 
5232 	if (event->pending_disable) {
5233 		event->pending_disable = 0;
5234 		perf_event_disable_local(event);
5235 	}
5236 
5237 	if (event->pending_wakeup) {
5238 		event->pending_wakeup = 0;
5239 		perf_event_wakeup(event);
5240 	}
5241 
5242 	if (rctx >= 0)
5243 		perf_swevent_put_recursion_context(rctx);
5244 }
5245 
5246 /*
5247  * We assume there is only KVM supporting the callbacks.
5248  * Later on, we might change it to a list if there is
5249  * another virtualization implementation supporting the callbacks.
5250  */
5251 struct perf_guest_info_callbacks *perf_guest_cbs;
5252 
5253 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5254 {
5255 	perf_guest_cbs = cbs;
5256 	return 0;
5257 }
5258 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5259 
5260 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5261 {
5262 	perf_guest_cbs = NULL;
5263 	return 0;
5264 }
5265 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5266 
5267 static void
5268 perf_output_sample_regs(struct perf_output_handle *handle,
5269 			struct pt_regs *regs, u64 mask)
5270 {
5271 	int bit;
5272 
5273 	for_each_set_bit(bit, (const unsigned long *) &mask,
5274 			 sizeof(mask) * BITS_PER_BYTE) {
5275 		u64 val;
5276 
5277 		val = perf_reg_value(regs, bit);
5278 		perf_output_put(handle, val);
5279 	}
5280 }
5281 
5282 static void perf_sample_regs_user(struct perf_regs *regs_user,
5283 				  struct pt_regs *regs,
5284 				  struct pt_regs *regs_user_copy)
5285 {
5286 	if (user_mode(regs)) {
5287 		regs_user->abi = perf_reg_abi(current);
5288 		regs_user->regs = regs;
5289 	} else if (current->mm) {
5290 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5291 	} else {
5292 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5293 		regs_user->regs = NULL;
5294 	}
5295 }
5296 
5297 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5298 				  struct pt_regs *regs)
5299 {
5300 	regs_intr->regs = regs;
5301 	regs_intr->abi  = perf_reg_abi(current);
5302 }
5303 
5304 
5305 /*
5306  * Get remaining task size from user stack pointer.
5307  *
5308  * It'd be better to take stack vma map and limit this more
5309  * precisly, but there's no way to get it safely under interrupt,
5310  * so using TASK_SIZE as limit.
5311  */
5312 static u64 perf_ustack_task_size(struct pt_regs *regs)
5313 {
5314 	unsigned long addr = perf_user_stack_pointer(regs);
5315 
5316 	if (!addr || addr >= TASK_SIZE)
5317 		return 0;
5318 
5319 	return TASK_SIZE - addr;
5320 }
5321 
5322 static u16
5323 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5324 			struct pt_regs *regs)
5325 {
5326 	u64 task_size;
5327 
5328 	/* No regs, no stack pointer, no dump. */
5329 	if (!regs)
5330 		return 0;
5331 
5332 	/*
5333 	 * Check if we fit in with the requested stack size into the:
5334 	 * - TASK_SIZE
5335 	 *   If we don't, we limit the size to the TASK_SIZE.
5336 	 *
5337 	 * - remaining sample size
5338 	 *   If we don't, we customize the stack size to
5339 	 *   fit in to the remaining sample size.
5340 	 */
5341 
5342 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5343 	stack_size = min(stack_size, (u16) task_size);
5344 
5345 	/* Current header size plus static size and dynamic size. */
5346 	header_size += 2 * sizeof(u64);
5347 
5348 	/* Do we fit in with the current stack dump size? */
5349 	if ((u16) (header_size + stack_size) < header_size) {
5350 		/*
5351 		 * If we overflow the maximum size for the sample,
5352 		 * we customize the stack dump size to fit in.
5353 		 */
5354 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5355 		stack_size = round_up(stack_size, sizeof(u64));
5356 	}
5357 
5358 	return stack_size;
5359 }
5360 
5361 static void
5362 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5363 			  struct pt_regs *regs)
5364 {
5365 	/* Case of a kernel thread, nothing to dump */
5366 	if (!regs) {
5367 		u64 size = 0;
5368 		perf_output_put(handle, size);
5369 	} else {
5370 		unsigned long sp;
5371 		unsigned int rem;
5372 		u64 dyn_size;
5373 
5374 		/*
5375 		 * We dump:
5376 		 * static size
5377 		 *   - the size requested by user or the best one we can fit
5378 		 *     in to the sample max size
5379 		 * data
5380 		 *   - user stack dump data
5381 		 * dynamic size
5382 		 *   - the actual dumped size
5383 		 */
5384 
5385 		/* Static size. */
5386 		perf_output_put(handle, dump_size);
5387 
5388 		/* Data. */
5389 		sp = perf_user_stack_pointer(regs);
5390 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5391 		dyn_size = dump_size - rem;
5392 
5393 		perf_output_skip(handle, rem);
5394 
5395 		/* Dynamic size. */
5396 		perf_output_put(handle, dyn_size);
5397 	}
5398 }
5399 
5400 static void __perf_event_header__init_id(struct perf_event_header *header,
5401 					 struct perf_sample_data *data,
5402 					 struct perf_event *event)
5403 {
5404 	u64 sample_type = event->attr.sample_type;
5405 
5406 	data->type = sample_type;
5407 	header->size += event->id_header_size;
5408 
5409 	if (sample_type & PERF_SAMPLE_TID) {
5410 		/* namespace issues */
5411 		data->tid_entry.pid = perf_event_pid(event, current);
5412 		data->tid_entry.tid = perf_event_tid(event, current);
5413 	}
5414 
5415 	if (sample_type & PERF_SAMPLE_TIME)
5416 		data->time = perf_event_clock(event);
5417 
5418 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5419 		data->id = primary_event_id(event);
5420 
5421 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5422 		data->stream_id = event->id;
5423 
5424 	if (sample_type & PERF_SAMPLE_CPU) {
5425 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5426 		data->cpu_entry.reserved = 0;
5427 	}
5428 }
5429 
5430 void perf_event_header__init_id(struct perf_event_header *header,
5431 				struct perf_sample_data *data,
5432 				struct perf_event *event)
5433 {
5434 	if (event->attr.sample_id_all)
5435 		__perf_event_header__init_id(header, data, event);
5436 }
5437 
5438 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5439 					   struct perf_sample_data *data)
5440 {
5441 	u64 sample_type = data->type;
5442 
5443 	if (sample_type & PERF_SAMPLE_TID)
5444 		perf_output_put(handle, data->tid_entry);
5445 
5446 	if (sample_type & PERF_SAMPLE_TIME)
5447 		perf_output_put(handle, data->time);
5448 
5449 	if (sample_type & PERF_SAMPLE_ID)
5450 		perf_output_put(handle, data->id);
5451 
5452 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5453 		perf_output_put(handle, data->stream_id);
5454 
5455 	if (sample_type & PERF_SAMPLE_CPU)
5456 		perf_output_put(handle, data->cpu_entry);
5457 
5458 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5459 		perf_output_put(handle, data->id);
5460 }
5461 
5462 void perf_event__output_id_sample(struct perf_event *event,
5463 				  struct perf_output_handle *handle,
5464 				  struct perf_sample_data *sample)
5465 {
5466 	if (event->attr.sample_id_all)
5467 		__perf_event__output_id_sample(handle, sample);
5468 }
5469 
5470 static void perf_output_read_one(struct perf_output_handle *handle,
5471 				 struct perf_event *event,
5472 				 u64 enabled, u64 running)
5473 {
5474 	u64 read_format = event->attr.read_format;
5475 	u64 values[4];
5476 	int n = 0;
5477 
5478 	values[n++] = perf_event_count(event);
5479 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5480 		values[n++] = enabled +
5481 			atomic64_read(&event->child_total_time_enabled);
5482 	}
5483 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5484 		values[n++] = running +
5485 			atomic64_read(&event->child_total_time_running);
5486 	}
5487 	if (read_format & PERF_FORMAT_ID)
5488 		values[n++] = primary_event_id(event);
5489 
5490 	__output_copy(handle, values, n * sizeof(u64));
5491 }
5492 
5493 /*
5494  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5495  */
5496 static void perf_output_read_group(struct perf_output_handle *handle,
5497 			    struct perf_event *event,
5498 			    u64 enabled, u64 running)
5499 {
5500 	struct perf_event *leader = event->group_leader, *sub;
5501 	u64 read_format = event->attr.read_format;
5502 	u64 values[5];
5503 	int n = 0;
5504 
5505 	values[n++] = 1 + leader->nr_siblings;
5506 
5507 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5508 		values[n++] = enabled;
5509 
5510 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5511 		values[n++] = running;
5512 
5513 	if (leader != event)
5514 		leader->pmu->read(leader);
5515 
5516 	values[n++] = perf_event_count(leader);
5517 	if (read_format & PERF_FORMAT_ID)
5518 		values[n++] = primary_event_id(leader);
5519 
5520 	__output_copy(handle, values, n * sizeof(u64));
5521 
5522 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5523 		n = 0;
5524 
5525 		if ((sub != event) &&
5526 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5527 			sub->pmu->read(sub);
5528 
5529 		values[n++] = perf_event_count(sub);
5530 		if (read_format & PERF_FORMAT_ID)
5531 			values[n++] = primary_event_id(sub);
5532 
5533 		__output_copy(handle, values, n * sizeof(u64));
5534 	}
5535 }
5536 
5537 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5538 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5539 
5540 static void perf_output_read(struct perf_output_handle *handle,
5541 			     struct perf_event *event)
5542 {
5543 	u64 enabled = 0, running = 0, now;
5544 	u64 read_format = event->attr.read_format;
5545 
5546 	/*
5547 	 * compute total_time_enabled, total_time_running
5548 	 * based on snapshot values taken when the event
5549 	 * was last scheduled in.
5550 	 *
5551 	 * we cannot simply called update_context_time()
5552 	 * because of locking issue as we are called in
5553 	 * NMI context
5554 	 */
5555 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5556 		calc_timer_values(event, &now, &enabled, &running);
5557 
5558 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5559 		perf_output_read_group(handle, event, enabled, running);
5560 	else
5561 		perf_output_read_one(handle, event, enabled, running);
5562 }
5563 
5564 void perf_output_sample(struct perf_output_handle *handle,
5565 			struct perf_event_header *header,
5566 			struct perf_sample_data *data,
5567 			struct perf_event *event)
5568 {
5569 	u64 sample_type = data->type;
5570 
5571 	perf_output_put(handle, *header);
5572 
5573 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5574 		perf_output_put(handle, data->id);
5575 
5576 	if (sample_type & PERF_SAMPLE_IP)
5577 		perf_output_put(handle, data->ip);
5578 
5579 	if (sample_type & PERF_SAMPLE_TID)
5580 		perf_output_put(handle, data->tid_entry);
5581 
5582 	if (sample_type & PERF_SAMPLE_TIME)
5583 		perf_output_put(handle, data->time);
5584 
5585 	if (sample_type & PERF_SAMPLE_ADDR)
5586 		perf_output_put(handle, data->addr);
5587 
5588 	if (sample_type & PERF_SAMPLE_ID)
5589 		perf_output_put(handle, data->id);
5590 
5591 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5592 		perf_output_put(handle, data->stream_id);
5593 
5594 	if (sample_type & PERF_SAMPLE_CPU)
5595 		perf_output_put(handle, data->cpu_entry);
5596 
5597 	if (sample_type & PERF_SAMPLE_PERIOD)
5598 		perf_output_put(handle, data->period);
5599 
5600 	if (sample_type & PERF_SAMPLE_READ)
5601 		perf_output_read(handle, event);
5602 
5603 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5604 		if (data->callchain) {
5605 			int size = 1;
5606 
5607 			if (data->callchain)
5608 				size += data->callchain->nr;
5609 
5610 			size *= sizeof(u64);
5611 
5612 			__output_copy(handle, data->callchain, size);
5613 		} else {
5614 			u64 nr = 0;
5615 			perf_output_put(handle, nr);
5616 		}
5617 	}
5618 
5619 	if (sample_type & PERF_SAMPLE_RAW) {
5620 		if (data->raw) {
5621 			u32 raw_size = data->raw->size;
5622 			u32 real_size = round_up(raw_size + sizeof(u32),
5623 						 sizeof(u64)) - sizeof(u32);
5624 			u64 zero = 0;
5625 
5626 			perf_output_put(handle, real_size);
5627 			__output_copy(handle, data->raw->data, raw_size);
5628 			if (real_size - raw_size)
5629 				__output_copy(handle, &zero, real_size - raw_size);
5630 		} else {
5631 			struct {
5632 				u32	size;
5633 				u32	data;
5634 			} raw = {
5635 				.size = sizeof(u32),
5636 				.data = 0,
5637 			};
5638 			perf_output_put(handle, raw);
5639 		}
5640 	}
5641 
5642 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5643 		if (data->br_stack) {
5644 			size_t size;
5645 
5646 			size = data->br_stack->nr
5647 			     * sizeof(struct perf_branch_entry);
5648 
5649 			perf_output_put(handle, data->br_stack->nr);
5650 			perf_output_copy(handle, data->br_stack->entries, size);
5651 		} else {
5652 			/*
5653 			 * we always store at least the value of nr
5654 			 */
5655 			u64 nr = 0;
5656 			perf_output_put(handle, nr);
5657 		}
5658 	}
5659 
5660 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5661 		u64 abi = data->regs_user.abi;
5662 
5663 		/*
5664 		 * If there are no regs to dump, notice it through
5665 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5666 		 */
5667 		perf_output_put(handle, abi);
5668 
5669 		if (abi) {
5670 			u64 mask = event->attr.sample_regs_user;
5671 			perf_output_sample_regs(handle,
5672 						data->regs_user.regs,
5673 						mask);
5674 		}
5675 	}
5676 
5677 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5678 		perf_output_sample_ustack(handle,
5679 					  data->stack_user_size,
5680 					  data->regs_user.regs);
5681 	}
5682 
5683 	if (sample_type & PERF_SAMPLE_WEIGHT)
5684 		perf_output_put(handle, data->weight);
5685 
5686 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5687 		perf_output_put(handle, data->data_src.val);
5688 
5689 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5690 		perf_output_put(handle, data->txn);
5691 
5692 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5693 		u64 abi = data->regs_intr.abi;
5694 		/*
5695 		 * If there are no regs to dump, notice it through
5696 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5697 		 */
5698 		perf_output_put(handle, abi);
5699 
5700 		if (abi) {
5701 			u64 mask = event->attr.sample_regs_intr;
5702 
5703 			perf_output_sample_regs(handle,
5704 						data->regs_intr.regs,
5705 						mask);
5706 		}
5707 	}
5708 
5709 	if (!event->attr.watermark) {
5710 		int wakeup_events = event->attr.wakeup_events;
5711 
5712 		if (wakeup_events) {
5713 			struct ring_buffer *rb = handle->rb;
5714 			int events = local_inc_return(&rb->events);
5715 
5716 			if (events >= wakeup_events) {
5717 				local_sub(wakeup_events, &rb->events);
5718 				local_inc(&rb->wakeup);
5719 			}
5720 		}
5721 	}
5722 }
5723 
5724 void perf_prepare_sample(struct perf_event_header *header,
5725 			 struct perf_sample_data *data,
5726 			 struct perf_event *event,
5727 			 struct pt_regs *regs)
5728 {
5729 	u64 sample_type = event->attr.sample_type;
5730 
5731 	header->type = PERF_RECORD_SAMPLE;
5732 	header->size = sizeof(*header) + event->header_size;
5733 
5734 	header->misc = 0;
5735 	header->misc |= perf_misc_flags(regs);
5736 
5737 	__perf_event_header__init_id(header, data, event);
5738 
5739 	if (sample_type & PERF_SAMPLE_IP)
5740 		data->ip = perf_instruction_pointer(regs);
5741 
5742 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5743 		int size = 1;
5744 
5745 		data->callchain = perf_callchain(event, regs);
5746 
5747 		if (data->callchain)
5748 			size += data->callchain->nr;
5749 
5750 		header->size += size * sizeof(u64);
5751 	}
5752 
5753 	if (sample_type & PERF_SAMPLE_RAW) {
5754 		int size = sizeof(u32);
5755 
5756 		if (data->raw)
5757 			size += data->raw->size;
5758 		else
5759 			size += sizeof(u32);
5760 
5761 		header->size += round_up(size, sizeof(u64));
5762 	}
5763 
5764 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5765 		int size = sizeof(u64); /* nr */
5766 		if (data->br_stack) {
5767 			size += data->br_stack->nr
5768 			      * sizeof(struct perf_branch_entry);
5769 		}
5770 		header->size += size;
5771 	}
5772 
5773 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5774 		perf_sample_regs_user(&data->regs_user, regs,
5775 				      &data->regs_user_copy);
5776 
5777 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5778 		/* regs dump ABI info */
5779 		int size = sizeof(u64);
5780 
5781 		if (data->regs_user.regs) {
5782 			u64 mask = event->attr.sample_regs_user;
5783 			size += hweight64(mask) * sizeof(u64);
5784 		}
5785 
5786 		header->size += size;
5787 	}
5788 
5789 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5790 		/*
5791 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5792 		 * processed as the last one or have additional check added
5793 		 * in case new sample type is added, because we could eat
5794 		 * up the rest of the sample size.
5795 		 */
5796 		u16 stack_size = event->attr.sample_stack_user;
5797 		u16 size = sizeof(u64);
5798 
5799 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5800 						     data->regs_user.regs);
5801 
5802 		/*
5803 		 * If there is something to dump, add space for the dump
5804 		 * itself and for the field that tells the dynamic size,
5805 		 * which is how many have been actually dumped.
5806 		 */
5807 		if (stack_size)
5808 			size += sizeof(u64) + stack_size;
5809 
5810 		data->stack_user_size = stack_size;
5811 		header->size += size;
5812 	}
5813 
5814 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5815 		/* regs dump ABI info */
5816 		int size = sizeof(u64);
5817 
5818 		perf_sample_regs_intr(&data->regs_intr, regs);
5819 
5820 		if (data->regs_intr.regs) {
5821 			u64 mask = event->attr.sample_regs_intr;
5822 
5823 			size += hweight64(mask) * sizeof(u64);
5824 		}
5825 
5826 		header->size += size;
5827 	}
5828 }
5829 
5830 static void __always_inline
5831 __perf_event_output(struct perf_event *event,
5832 		    struct perf_sample_data *data,
5833 		    struct pt_regs *regs,
5834 		    int (*output_begin)(struct perf_output_handle *,
5835 					struct perf_event *,
5836 					unsigned int))
5837 {
5838 	struct perf_output_handle handle;
5839 	struct perf_event_header header;
5840 
5841 	/* protect the callchain buffers */
5842 	rcu_read_lock();
5843 
5844 	perf_prepare_sample(&header, data, event, regs);
5845 
5846 	if (output_begin(&handle, event, header.size))
5847 		goto exit;
5848 
5849 	perf_output_sample(&handle, &header, data, event);
5850 
5851 	perf_output_end(&handle);
5852 
5853 exit:
5854 	rcu_read_unlock();
5855 }
5856 
5857 void
5858 perf_event_output_forward(struct perf_event *event,
5859 			 struct perf_sample_data *data,
5860 			 struct pt_regs *regs)
5861 {
5862 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5863 }
5864 
5865 void
5866 perf_event_output_backward(struct perf_event *event,
5867 			   struct perf_sample_data *data,
5868 			   struct pt_regs *regs)
5869 {
5870 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5871 }
5872 
5873 void
5874 perf_event_output(struct perf_event *event,
5875 		  struct perf_sample_data *data,
5876 		  struct pt_regs *regs)
5877 {
5878 	__perf_event_output(event, data, regs, perf_output_begin);
5879 }
5880 
5881 /*
5882  * read event_id
5883  */
5884 
5885 struct perf_read_event {
5886 	struct perf_event_header	header;
5887 
5888 	u32				pid;
5889 	u32				tid;
5890 };
5891 
5892 static void
5893 perf_event_read_event(struct perf_event *event,
5894 			struct task_struct *task)
5895 {
5896 	struct perf_output_handle handle;
5897 	struct perf_sample_data sample;
5898 	struct perf_read_event read_event = {
5899 		.header = {
5900 			.type = PERF_RECORD_READ,
5901 			.misc = 0,
5902 			.size = sizeof(read_event) + event->read_size,
5903 		},
5904 		.pid = perf_event_pid(event, task),
5905 		.tid = perf_event_tid(event, task),
5906 	};
5907 	int ret;
5908 
5909 	perf_event_header__init_id(&read_event.header, &sample, event);
5910 	ret = perf_output_begin(&handle, event, read_event.header.size);
5911 	if (ret)
5912 		return;
5913 
5914 	perf_output_put(&handle, read_event);
5915 	perf_output_read(&handle, event);
5916 	perf_event__output_id_sample(event, &handle, &sample);
5917 
5918 	perf_output_end(&handle);
5919 }
5920 
5921 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5922 
5923 static void
5924 perf_iterate_ctx(struct perf_event_context *ctx,
5925 		   perf_iterate_f output,
5926 		   void *data, bool all)
5927 {
5928 	struct perf_event *event;
5929 
5930 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5931 		if (!all) {
5932 			if (event->state < PERF_EVENT_STATE_INACTIVE)
5933 				continue;
5934 			if (!event_filter_match(event))
5935 				continue;
5936 		}
5937 
5938 		output(event, data);
5939 	}
5940 }
5941 
5942 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5943 {
5944 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5945 	struct perf_event *event;
5946 
5947 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
5948 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5949 			continue;
5950 		if (!event_filter_match(event))
5951 			continue;
5952 		output(event, data);
5953 	}
5954 }
5955 
5956 /*
5957  * Iterate all events that need to receive side-band events.
5958  *
5959  * For new callers; ensure that account_pmu_sb_event() includes
5960  * your event, otherwise it might not get delivered.
5961  */
5962 static void
5963 perf_iterate_sb(perf_iterate_f output, void *data,
5964 	       struct perf_event_context *task_ctx)
5965 {
5966 	struct perf_event_context *ctx;
5967 	int ctxn;
5968 
5969 	rcu_read_lock();
5970 	preempt_disable();
5971 
5972 	/*
5973 	 * If we have task_ctx != NULL we only notify the task context itself.
5974 	 * The task_ctx is set only for EXIT events before releasing task
5975 	 * context.
5976 	 */
5977 	if (task_ctx) {
5978 		perf_iterate_ctx(task_ctx, output, data, false);
5979 		goto done;
5980 	}
5981 
5982 	perf_iterate_sb_cpu(output, data);
5983 
5984 	for_each_task_context_nr(ctxn) {
5985 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5986 		if (ctx)
5987 			perf_iterate_ctx(ctx, output, data, false);
5988 	}
5989 done:
5990 	preempt_enable();
5991 	rcu_read_unlock();
5992 }
5993 
5994 /*
5995  * Clear all file-based filters at exec, they'll have to be
5996  * re-instated when/if these objects are mmapped again.
5997  */
5998 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5999 {
6000 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6001 	struct perf_addr_filter *filter;
6002 	unsigned int restart = 0, count = 0;
6003 	unsigned long flags;
6004 
6005 	if (!has_addr_filter(event))
6006 		return;
6007 
6008 	raw_spin_lock_irqsave(&ifh->lock, flags);
6009 	list_for_each_entry(filter, &ifh->list, entry) {
6010 		if (filter->inode) {
6011 			event->addr_filters_offs[count] = 0;
6012 			restart++;
6013 		}
6014 
6015 		count++;
6016 	}
6017 
6018 	if (restart)
6019 		event->addr_filters_gen++;
6020 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6021 
6022 	if (restart)
6023 		perf_event_restart(event);
6024 }
6025 
6026 void perf_event_exec(void)
6027 {
6028 	struct perf_event_context *ctx;
6029 	int ctxn;
6030 
6031 	rcu_read_lock();
6032 	for_each_task_context_nr(ctxn) {
6033 		ctx = current->perf_event_ctxp[ctxn];
6034 		if (!ctx)
6035 			continue;
6036 
6037 		perf_event_enable_on_exec(ctxn);
6038 
6039 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6040 				   true);
6041 	}
6042 	rcu_read_unlock();
6043 }
6044 
6045 struct remote_output {
6046 	struct ring_buffer	*rb;
6047 	int			err;
6048 };
6049 
6050 static void __perf_event_output_stop(struct perf_event *event, void *data)
6051 {
6052 	struct perf_event *parent = event->parent;
6053 	struct remote_output *ro = data;
6054 	struct ring_buffer *rb = ro->rb;
6055 	struct stop_event_data sd = {
6056 		.event	= event,
6057 	};
6058 
6059 	if (!has_aux(event))
6060 		return;
6061 
6062 	if (!parent)
6063 		parent = event;
6064 
6065 	/*
6066 	 * In case of inheritance, it will be the parent that links to the
6067 	 * ring-buffer, but it will be the child that's actually using it:
6068 	 */
6069 	if (rcu_dereference(parent->rb) == rb)
6070 		ro->err = __perf_event_stop(&sd);
6071 }
6072 
6073 static int __perf_pmu_output_stop(void *info)
6074 {
6075 	struct perf_event *event = info;
6076 	struct pmu *pmu = event->pmu;
6077 	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6078 	struct remote_output ro = {
6079 		.rb	= event->rb,
6080 	};
6081 
6082 	rcu_read_lock();
6083 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6084 	if (cpuctx->task_ctx)
6085 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6086 				   &ro, false);
6087 	rcu_read_unlock();
6088 
6089 	return ro.err;
6090 }
6091 
6092 static void perf_pmu_output_stop(struct perf_event *event)
6093 {
6094 	struct perf_event *iter;
6095 	int err, cpu;
6096 
6097 restart:
6098 	rcu_read_lock();
6099 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6100 		/*
6101 		 * For per-CPU events, we need to make sure that neither they
6102 		 * nor their children are running; for cpu==-1 events it's
6103 		 * sufficient to stop the event itself if it's active, since
6104 		 * it can't have children.
6105 		 */
6106 		cpu = iter->cpu;
6107 		if (cpu == -1)
6108 			cpu = READ_ONCE(iter->oncpu);
6109 
6110 		if (cpu == -1)
6111 			continue;
6112 
6113 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6114 		if (err == -EAGAIN) {
6115 			rcu_read_unlock();
6116 			goto restart;
6117 		}
6118 	}
6119 	rcu_read_unlock();
6120 }
6121 
6122 /*
6123  * task tracking -- fork/exit
6124  *
6125  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6126  */
6127 
6128 struct perf_task_event {
6129 	struct task_struct		*task;
6130 	struct perf_event_context	*task_ctx;
6131 
6132 	struct {
6133 		struct perf_event_header	header;
6134 
6135 		u32				pid;
6136 		u32				ppid;
6137 		u32				tid;
6138 		u32				ptid;
6139 		u64				time;
6140 	} event_id;
6141 };
6142 
6143 static int perf_event_task_match(struct perf_event *event)
6144 {
6145 	return event->attr.comm  || event->attr.mmap ||
6146 	       event->attr.mmap2 || event->attr.mmap_data ||
6147 	       event->attr.task;
6148 }
6149 
6150 static void perf_event_task_output(struct perf_event *event,
6151 				   void *data)
6152 {
6153 	struct perf_task_event *task_event = data;
6154 	struct perf_output_handle handle;
6155 	struct perf_sample_data	sample;
6156 	struct task_struct *task = task_event->task;
6157 	int ret, size = task_event->event_id.header.size;
6158 
6159 	if (!perf_event_task_match(event))
6160 		return;
6161 
6162 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6163 
6164 	ret = perf_output_begin(&handle, event,
6165 				task_event->event_id.header.size);
6166 	if (ret)
6167 		goto out;
6168 
6169 	task_event->event_id.pid = perf_event_pid(event, task);
6170 	task_event->event_id.ppid = perf_event_pid(event, current);
6171 
6172 	task_event->event_id.tid = perf_event_tid(event, task);
6173 	task_event->event_id.ptid = perf_event_tid(event, current);
6174 
6175 	task_event->event_id.time = perf_event_clock(event);
6176 
6177 	perf_output_put(&handle, task_event->event_id);
6178 
6179 	perf_event__output_id_sample(event, &handle, &sample);
6180 
6181 	perf_output_end(&handle);
6182 out:
6183 	task_event->event_id.header.size = size;
6184 }
6185 
6186 static void perf_event_task(struct task_struct *task,
6187 			      struct perf_event_context *task_ctx,
6188 			      int new)
6189 {
6190 	struct perf_task_event task_event;
6191 
6192 	if (!atomic_read(&nr_comm_events) &&
6193 	    !atomic_read(&nr_mmap_events) &&
6194 	    !atomic_read(&nr_task_events))
6195 		return;
6196 
6197 	task_event = (struct perf_task_event){
6198 		.task	  = task,
6199 		.task_ctx = task_ctx,
6200 		.event_id    = {
6201 			.header = {
6202 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6203 				.misc = 0,
6204 				.size = sizeof(task_event.event_id),
6205 			},
6206 			/* .pid  */
6207 			/* .ppid */
6208 			/* .tid  */
6209 			/* .ptid */
6210 			/* .time */
6211 		},
6212 	};
6213 
6214 	perf_iterate_sb(perf_event_task_output,
6215 		       &task_event,
6216 		       task_ctx);
6217 }
6218 
6219 void perf_event_fork(struct task_struct *task)
6220 {
6221 	perf_event_task(task, NULL, 1);
6222 }
6223 
6224 /*
6225  * comm tracking
6226  */
6227 
6228 struct perf_comm_event {
6229 	struct task_struct	*task;
6230 	char			*comm;
6231 	int			comm_size;
6232 
6233 	struct {
6234 		struct perf_event_header	header;
6235 
6236 		u32				pid;
6237 		u32				tid;
6238 	} event_id;
6239 };
6240 
6241 static int perf_event_comm_match(struct perf_event *event)
6242 {
6243 	return event->attr.comm;
6244 }
6245 
6246 static void perf_event_comm_output(struct perf_event *event,
6247 				   void *data)
6248 {
6249 	struct perf_comm_event *comm_event = data;
6250 	struct perf_output_handle handle;
6251 	struct perf_sample_data sample;
6252 	int size = comm_event->event_id.header.size;
6253 	int ret;
6254 
6255 	if (!perf_event_comm_match(event))
6256 		return;
6257 
6258 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6259 	ret = perf_output_begin(&handle, event,
6260 				comm_event->event_id.header.size);
6261 
6262 	if (ret)
6263 		goto out;
6264 
6265 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6266 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6267 
6268 	perf_output_put(&handle, comm_event->event_id);
6269 	__output_copy(&handle, comm_event->comm,
6270 				   comm_event->comm_size);
6271 
6272 	perf_event__output_id_sample(event, &handle, &sample);
6273 
6274 	perf_output_end(&handle);
6275 out:
6276 	comm_event->event_id.header.size = size;
6277 }
6278 
6279 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6280 {
6281 	char comm[TASK_COMM_LEN];
6282 	unsigned int size;
6283 
6284 	memset(comm, 0, sizeof(comm));
6285 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6286 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6287 
6288 	comm_event->comm = comm;
6289 	comm_event->comm_size = size;
6290 
6291 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6292 
6293 	perf_iterate_sb(perf_event_comm_output,
6294 		       comm_event,
6295 		       NULL);
6296 }
6297 
6298 void perf_event_comm(struct task_struct *task, bool exec)
6299 {
6300 	struct perf_comm_event comm_event;
6301 
6302 	if (!atomic_read(&nr_comm_events))
6303 		return;
6304 
6305 	comm_event = (struct perf_comm_event){
6306 		.task	= task,
6307 		/* .comm      */
6308 		/* .comm_size */
6309 		.event_id  = {
6310 			.header = {
6311 				.type = PERF_RECORD_COMM,
6312 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6313 				/* .size */
6314 			},
6315 			/* .pid */
6316 			/* .tid */
6317 		},
6318 	};
6319 
6320 	perf_event_comm_event(&comm_event);
6321 }
6322 
6323 /*
6324  * mmap tracking
6325  */
6326 
6327 struct perf_mmap_event {
6328 	struct vm_area_struct	*vma;
6329 
6330 	const char		*file_name;
6331 	int			file_size;
6332 	int			maj, min;
6333 	u64			ino;
6334 	u64			ino_generation;
6335 	u32			prot, flags;
6336 
6337 	struct {
6338 		struct perf_event_header	header;
6339 
6340 		u32				pid;
6341 		u32				tid;
6342 		u64				start;
6343 		u64				len;
6344 		u64				pgoff;
6345 	} event_id;
6346 };
6347 
6348 static int perf_event_mmap_match(struct perf_event *event,
6349 				 void *data)
6350 {
6351 	struct perf_mmap_event *mmap_event = data;
6352 	struct vm_area_struct *vma = mmap_event->vma;
6353 	int executable = vma->vm_flags & VM_EXEC;
6354 
6355 	return (!executable && event->attr.mmap_data) ||
6356 	       (executable && (event->attr.mmap || event->attr.mmap2));
6357 }
6358 
6359 static void perf_event_mmap_output(struct perf_event *event,
6360 				   void *data)
6361 {
6362 	struct perf_mmap_event *mmap_event = data;
6363 	struct perf_output_handle handle;
6364 	struct perf_sample_data sample;
6365 	int size = mmap_event->event_id.header.size;
6366 	int ret;
6367 
6368 	if (!perf_event_mmap_match(event, data))
6369 		return;
6370 
6371 	if (event->attr.mmap2) {
6372 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6373 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6374 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6375 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6376 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6377 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6378 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6379 	}
6380 
6381 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6382 	ret = perf_output_begin(&handle, event,
6383 				mmap_event->event_id.header.size);
6384 	if (ret)
6385 		goto out;
6386 
6387 	mmap_event->event_id.pid = perf_event_pid(event, current);
6388 	mmap_event->event_id.tid = perf_event_tid(event, current);
6389 
6390 	perf_output_put(&handle, mmap_event->event_id);
6391 
6392 	if (event->attr.mmap2) {
6393 		perf_output_put(&handle, mmap_event->maj);
6394 		perf_output_put(&handle, mmap_event->min);
6395 		perf_output_put(&handle, mmap_event->ino);
6396 		perf_output_put(&handle, mmap_event->ino_generation);
6397 		perf_output_put(&handle, mmap_event->prot);
6398 		perf_output_put(&handle, mmap_event->flags);
6399 	}
6400 
6401 	__output_copy(&handle, mmap_event->file_name,
6402 				   mmap_event->file_size);
6403 
6404 	perf_event__output_id_sample(event, &handle, &sample);
6405 
6406 	perf_output_end(&handle);
6407 out:
6408 	mmap_event->event_id.header.size = size;
6409 }
6410 
6411 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6412 {
6413 	struct vm_area_struct *vma = mmap_event->vma;
6414 	struct file *file = vma->vm_file;
6415 	int maj = 0, min = 0;
6416 	u64 ino = 0, gen = 0;
6417 	u32 prot = 0, flags = 0;
6418 	unsigned int size;
6419 	char tmp[16];
6420 	char *buf = NULL;
6421 	char *name;
6422 
6423 	if (file) {
6424 		struct inode *inode;
6425 		dev_t dev;
6426 
6427 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6428 		if (!buf) {
6429 			name = "//enomem";
6430 			goto cpy_name;
6431 		}
6432 		/*
6433 		 * d_path() works from the end of the rb backwards, so we
6434 		 * need to add enough zero bytes after the string to handle
6435 		 * the 64bit alignment we do later.
6436 		 */
6437 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6438 		if (IS_ERR(name)) {
6439 			name = "//toolong";
6440 			goto cpy_name;
6441 		}
6442 		inode = file_inode(vma->vm_file);
6443 		dev = inode->i_sb->s_dev;
6444 		ino = inode->i_ino;
6445 		gen = inode->i_generation;
6446 		maj = MAJOR(dev);
6447 		min = MINOR(dev);
6448 
6449 		if (vma->vm_flags & VM_READ)
6450 			prot |= PROT_READ;
6451 		if (vma->vm_flags & VM_WRITE)
6452 			prot |= PROT_WRITE;
6453 		if (vma->vm_flags & VM_EXEC)
6454 			prot |= PROT_EXEC;
6455 
6456 		if (vma->vm_flags & VM_MAYSHARE)
6457 			flags = MAP_SHARED;
6458 		else
6459 			flags = MAP_PRIVATE;
6460 
6461 		if (vma->vm_flags & VM_DENYWRITE)
6462 			flags |= MAP_DENYWRITE;
6463 		if (vma->vm_flags & VM_MAYEXEC)
6464 			flags |= MAP_EXECUTABLE;
6465 		if (vma->vm_flags & VM_LOCKED)
6466 			flags |= MAP_LOCKED;
6467 		if (vma->vm_flags & VM_HUGETLB)
6468 			flags |= MAP_HUGETLB;
6469 
6470 		goto got_name;
6471 	} else {
6472 		if (vma->vm_ops && vma->vm_ops->name) {
6473 			name = (char *) vma->vm_ops->name(vma);
6474 			if (name)
6475 				goto cpy_name;
6476 		}
6477 
6478 		name = (char *)arch_vma_name(vma);
6479 		if (name)
6480 			goto cpy_name;
6481 
6482 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6483 				vma->vm_end >= vma->vm_mm->brk) {
6484 			name = "[heap]";
6485 			goto cpy_name;
6486 		}
6487 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6488 				vma->vm_end >= vma->vm_mm->start_stack) {
6489 			name = "[stack]";
6490 			goto cpy_name;
6491 		}
6492 
6493 		name = "//anon";
6494 		goto cpy_name;
6495 	}
6496 
6497 cpy_name:
6498 	strlcpy(tmp, name, sizeof(tmp));
6499 	name = tmp;
6500 got_name:
6501 	/*
6502 	 * Since our buffer works in 8 byte units we need to align our string
6503 	 * size to a multiple of 8. However, we must guarantee the tail end is
6504 	 * zero'd out to avoid leaking random bits to userspace.
6505 	 */
6506 	size = strlen(name)+1;
6507 	while (!IS_ALIGNED(size, sizeof(u64)))
6508 		name[size++] = '\0';
6509 
6510 	mmap_event->file_name = name;
6511 	mmap_event->file_size = size;
6512 	mmap_event->maj = maj;
6513 	mmap_event->min = min;
6514 	mmap_event->ino = ino;
6515 	mmap_event->ino_generation = gen;
6516 	mmap_event->prot = prot;
6517 	mmap_event->flags = flags;
6518 
6519 	if (!(vma->vm_flags & VM_EXEC))
6520 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6521 
6522 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6523 
6524 	perf_iterate_sb(perf_event_mmap_output,
6525 		       mmap_event,
6526 		       NULL);
6527 
6528 	kfree(buf);
6529 }
6530 
6531 /*
6532  * Whether this @filter depends on a dynamic object which is not loaded
6533  * yet or its load addresses are not known.
6534  */
6535 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6536 {
6537 	return filter->filter && filter->inode;
6538 }
6539 
6540 /*
6541  * Check whether inode and address range match filter criteria.
6542  */
6543 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6544 				     struct file *file, unsigned long offset,
6545 				     unsigned long size)
6546 {
6547 	if (filter->inode != file->f_inode)
6548 		return false;
6549 
6550 	if (filter->offset > offset + size)
6551 		return false;
6552 
6553 	if (filter->offset + filter->size < offset)
6554 		return false;
6555 
6556 	return true;
6557 }
6558 
6559 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6560 {
6561 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6562 	struct vm_area_struct *vma = data;
6563 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6564 	struct file *file = vma->vm_file;
6565 	struct perf_addr_filter *filter;
6566 	unsigned int restart = 0, count = 0;
6567 
6568 	if (!has_addr_filter(event))
6569 		return;
6570 
6571 	if (!file)
6572 		return;
6573 
6574 	raw_spin_lock_irqsave(&ifh->lock, flags);
6575 	list_for_each_entry(filter, &ifh->list, entry) {
6576 		if (perf_addr_filter_match(filter, file, off,
6577 					     vma->vm_end - vma->vm_start)) {
6578 			event->addr_filters_offs[count] = vma->vm_start;
6579 			restart++;
6580 		}
6581 
6582 		count++;
6583 	}
6584 
6585 	if (restart)
6586 		event->addr_filters_gen++;
6587 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6588 
6589 	if (restart)
6590 		perf_event_restart(event);
6591 }
6592 
6593 /*
6594  * Adjust all task's events' filters to the new vma
6595  */
6596 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6597 {
6598 	struct perf_event_context *ctx;
6599 	int ctxn;
6600 
6601 	rcu_read_lock();
6602 	for_each_task_context_nr(ctxn) {
6603 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6604 		if (!ctx)
6605 			continue;
6606 
6607 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6608 	}
6609 	rcu_read_unlock();
6610 }
6611 
6612 void perf_event_mmap(struct vm_area_struct *vma)
6613 {
6614 	struct perf_mmap_event mmap_event;
6615 
6616 	if (!atomic_read(&nr_mmap_events))
6617 		return;
6618 
6619 	mmap_event = (struct perf_mmap_event){
6620 		.vma	= vma,
6621 		/* .file_name */
6622 		/* .file_size */
6623 		.event_id  = {
6624 			.header = {
6625 				.type = PERF_RECORD_MMAP,
6626 				.misc = PERF_RECORD_MISC_USER,
6627 				/* .size */
6628 			},
6629 			/* .pid */
6630 			/* .tid */
6631 			.start  = vma->vm_start,
6632 			.len    = vma->vm_end - vma->vm_start,
6633 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6634 		},
6635 		/* .maj (attr_mmap2 only) */
6636 		/* .min (attr_mmap2 only) */
6637 		/* .ino (attr_mmap2 only) */
6638 		/* .ino_generation (attr_mmap2 only) */
6639 		/* .prot (attr_mmap2 only) */
6640 		/* .flags (attr_mmap2 only) */
6641 	};
6642 
6643 	perf_addr_filters_adjust(vma);
6644 	perf_event_mmap_event(&mmap_event);
6645 }
6646 
6647 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6648 			  unsigned long size, u64 flags)
6649 {
6650 	struct perf_output_handle handle;
6651 	struct perf_sample_data sample;
6652 	struct perf_aux_event {
6653 		struct perf_event_header	header;
6654 		u64				offset;
6655 		u64				size;
6656 		u64				flags;
6657 	} rec = {
6658 		.header = {
6659 			.type = PERF_RECORD_AUX,
6660 			.misc = 0,
6661 			.size = sizeof(rec),
6662 		},
6663 		.offset		= head,
6664 		.size		= size,
6665 		.flags		= flags,
6666 	};
6667 	int ret;
6668 
6669 	perf_event_header__init_id(&rec.header, &sample, event);
6670 	ret = perf_output_begin(&handle, event, rec.header.size);
6671 
6672 	if (ret)
6673 		return;
6674 
6675 	perf_output_put(&handle, rec);
6676 	perf_event__output_id_sample(event, &handle, &sample);
6677 
6678 	perf_output_end(&handle);
6679 }
6680 
6681 /*
6682  * Lost/dropped samples logging
6683  */
6684 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6685 {
6686 	struct perf_output_handle handle;
6687 	struct perf_sample_data sample;
6688 	int ret;
6689 
6690 	struct {
6691 		struct perf_event_header	header;
6692 		u64				lost;
6693 	} lost_samples_event = {
6694 		.header = {
6695 			.type = PERF_RECORD_LOST_SAMPLES,
6696 			.misc = 0,
6697 			.size = sizeof(lost_samples_event),
6698 		},
6699 		.lost		= lost,
6700 	};
6701 
6702 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6703 
6704 	ret = perf_output_begin(&handle, event,
6705 				lost_samples_event.header.size);
6706 	if (ret)
6707 		return;
6708 
6709 	perf_output_put(&handle, lost_samples_event);
6710 	perf_event__output_id_sample(event, &handle, &sample);
6711 	perf_output_end(&handle);
6712 }
6713 
6714 /*
6715  * context_switch tracking
6716  */
6717 
6718 struct perf_switch_event {
6719 	struct task_struct	*task;
6720 	struct task_struct	*next_prev;
6721 
6722 	struct {
6723 		struct perf_event_header	header;
6724 		u32				next_prev_pid;
6725 		u32				next_prev_tid;
6726 	} event_id;
6727 };
6728 
6729 static int perf_event_switch_match(struct perf_event *event)
6730 {
6731 	return event->attr.context_switch;
6732 }
6733 
6734 static void perf_event_switch_output(struct perf_event *event, void *data)
6735 {
6736 	struct perf_switch_event *se = data;
6737 	struct perf_output_handle handle;
6738 	struct perf_sample_data sample;
6739 	int ret;
6740 
6741 	if (!perf_event_switch_match(event))
6742 		return;
6743 
6744 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6745 	if (event->ctx->task) {
6746 		se->event_id.header.type = PERF_RECORD_SWITCH;
6747 		se->event_id.header.size = sizeof(se->event_id.header);
6748 	} else {
6749 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6750 		se->event_id.header.size = sizeof(se->event_id);
6751 		se->event_id.next_prev_pid =
6752 					perf_event_pid(event, se->next_prev);
6753 		se->event_id.next_prev_tid =
6754 					perf_event_tid(event, se->next_prev);
6755 	}
6756 
6757 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6758 
6759 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6760 	if (ret)
6761 		return;
6762 
6763 	if (event->ctx->task)
6764 		perf_output_put(&handle, se->event_id.header);
6765 	else
6766 		perf_output_put(&handle, se->event_id);
6767 
6768 	perf_event__output_id_sample(event, &handle, &sample);
6769 
6770 	perf_output_end(&handle);
6771 }
6772 
6773 static void perf_event_switch(struct task_struct *task,
6774 			      struct task_struct *next_prev, bool sched_in)
6775 {
6776 	struct perf_switch_event switch_event;
6777 
6778 	/* N.B. caller checks nr_switch_events != 0 */
6779 
6780 	switch_event = (struct perf_switch_event){
6781 		.task		= task,
6782 		.next_prev	= next_prev,
6783 		.event_id	= {
6784 			.header = {
6785 				/* .type */
6786 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6787 				/* .size */
6788 			},
6789 			/* .next_prev_pid */
6790 			/* .next_prev_tid */
6791 		},
6792 	};
6793 
6794 	perf_iterate_sb(perf_event_switch_output,
6795 		       &switch_event,
6796 		       NULL);
6797 }
6798 
6799 /*
6800  * IRQ throttle logging
6801  */
6802 
6803 static void perf_log_throttle(struct perf_event *event, int enable)
6804 {
6805 	struct perf_output_handle handle;
6806 	struct perf_sample_data sample;
6807 	int ret;
6808 
6809 	struct {
6810 		struct perf_event_header	header;
6811 		u64				time;
6812 		u64				id;
6813 		u64				stream_id;
6814 	} throttle_event = {
6815 		.header = {
6816 			.type = PERF_RECORD_THROTTLE,
6817 			.misc = 0,
6818 			.size = sizeof(throttle_event),
6819 		},
6820 		.time		= perf_event_clock(event),
6821 		.id		= primary_event_id(event),
6822 		.stream_id	= event->id,
6823 	};
6824 
6825 	if (enable)
6826 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6827 
6828 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6829 
6830 	ret = perf_output_begin(&handle, event,
6831 				throttle_event.header.size);
6832 	if (ret)
6833 		return;
6834 
6835 	perf_output_put(&handle, throttle_event);
6836 	perf_event__output_id_sample(event, &handle, &sample);
6837 	perf_output_end(&handle);
6838 }
6839 
6840 static void perf_log_itrace_start(struct perf_event *event)
6841 {
6842 	struct perf_output_handle handle;
6843 	struct perf_sample_data sample;
6844 	struct perf_aux_event {
6845 		struct perf_event_header        header;
6846 		u32				pid;
6847 		u32				tid;
6848 	} rec;
6849 	int ret;
6850 
6851 	if (event->parent)
6852 		event = event->parent;
6853 
6854 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6855 	    event->hw.itrace_started)
6856 		return;
6857 
6858 	rec.header.type	= PERF_RECORD_ITRACE_START;
6859 	rec.header.misc	= 0;
6860 	rec.header.size	= sizeof(rec);
6861 	rec.pid	= perf_event_pid(event, current);
6862 	rec.tid	= perf_event_tid(event, current);
6863 
6864 	perf_event_header__init_id(&rec.header, &sample, event);
6865 	ret = perf_output_begin(&handle, event, rec.header.size);
6866 
6867 	if (ret)
6868 		return;
6869 
6870 	perf_output_put(&handle, rec);
6871 	perf_event__output_id_sample(event, &handle, &sample);
6872 
6873 	perf_output_end(&handle);
6874 }
6875 
6876 /*
6877  * Generic event overflow handling, sampling.
6878  */
6879 
6880 static int __perf_event_overflow(struct perf_event *event,
6881 				   int throttle, struct perf_sample_data *data,
6882 				   struct pt_regs *regs)
6883 {
6884 	int events = atomic_read(&event->event_limit);
6885 	struct hw_perf_event *hwc = &event->hw;
6886 	u64 seq;
6887 	int ret = 0;
6888 
6889 	/*
6890 	 * Non-sampling counters might still use the PMI to fold short
6891 	 * hardware counters, ignore those.
6892 	 */
6893 	if (unlikely(!is_sampling_event(event)))
6894 		return 0;
6895 
6896 	seq = __this_cpu_read(perf_throttled_seq);
6897 	if (seq != hwc->interrupts_seq) {
6898 		hwc->interrupts_seq = seq;
6899 		hwc->interrupts = 1;
6900 	} else {
6901 		hwc->interrupts++;
6902 		if (unlikely(throttle
6903 			     && hwc->interrupts >= max_samples_per_tick)) {
6904 			__this_cpu_inc(perf_throttled_count);
6905 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6906 			hwc->interrupts = MAX_INTERRUPTS;
6907 			perf_log_throttle(event, 0);
6908 			ret = 1;
6909 		}
6910 	}
6911 
6912 	if (event->attr.freq) {
6913 		u64 now = perf_clock();
6914 		s64 delta = now - hwc->freq_time_stamp;
6915 
6916 		hwc->freq_time_stamp = now;
6917 
6918 		if (delta > 0 && delta < 2*TICK_NSEC)
6919 			perf_adjust_period(event, delta, hwc->last_period, true);
6920 	}
6921 
6922 	/*
6923 	 * XXX event_limit might not quite work as expected on inherited
6924 	 * events
6925 	 */
6926 
6927 	event->pending_kill = POLL_IN;
6928 	if (events && atomic_dec_and_test(&event->event_limit)) {
6929 		ret = 1;
6930 		event->pending_kill = POLL_HUP;
6931 		event->pending_disable = 1;
6932 		irq_work_queue(&event->pending);
6933 	}
6934 
6935 	event->overflow_handler(event, data, regs);
6936 
6937 	if (*perf_event_fasync(event) && event->pending_kill) {
6938 		event->pending_wakeup = 1;
6939 		irq_work_queue(&event->pending);
6940 	}
6941 
6942 	return ret;
6943 }
6944 
6945 int perf_event_overflow(struct perf_event *event,
6946 			  struct perf_sample_data *data,
6947 			  struct pt_regs *regs)
6948 {
6949 	return __perf_event_overflow(event, 1, data, regs);
6950 }
6951 
6952 /*
6953  * Generic software event infrastructure
6954  */
6955 
6956 struct swevent_htable {
6957 	struct swevent_hlist		*swevent_hlist;
6958 	struct mutex			hlist_mutex;
6959 	int				hlist_refcount;
6960 
6961 	/* Recursion avoidance in each contexts */
6962 	int				recursion[PERF_NR_CONTEXTS];
6963 };
6964 
6965 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6966 
6967 /*
6968  * We directly increment event->count and keep a second value in
6969  * event->hw.period_left to count intervals. This period event
6970  * is kept in the range [-sample_period, 0] so that we can use the
6971  * sign as trigger.
6972  */
6973 
6974 u64 perf_swevent_set_period(struct perf_event *event)
6975 {
6976 	struct hw_perf_event *hwc = &event->hw;
6977 	u64 period = hwc->last_period;
6978 	u64 nr, offset;
6979 	s64 old, val;
6980 
6981 	hwc->last_period = hwc->sample_period;
6982 
6983 again:
6984 	old = val = local64_read(&hwc->period_left);
6985 	if (val < 0)
6986 		return 0;
6987 
6988 	nr = div64_u64(period + val, period);
6989 	offset = nr * period;
6990 	val -= offset;
6991 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6992 		goto again;
6993 
6994 	return nr;
6995 }
6996 
6997 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6998 				    struct perf_sample_data *data,
6999 				    struct pt_regs *regs)
7000 {
7001 	struct hw_perf_event *hwc = &event->hw;
7002 	int throttle = 0;
7003 
7004 	if (!overflow)
7005 		overflow = perf_swevent_set_period(event);
7006 
7007 	if (hwc->interrupts == MAX_INTERRUPTS)
7008 		return;
7009 
7010 	for (; overflow; overflow--) {
7011 		if (__perf_event_overflow(event, throttle,
7012 					    data, regs)) {
7013 			/*
7014 			 * We inhibit the overflow from happening when
7015 			 * hwc->interrupts == MAX_INTERRUPTS.
7016 			 */
7017 			break;
7018 		}
7019 		throttle = 1;
7020 	}
7021 }
7022 
7023 static void perf_swevent_event(struct perf_event *event, u64 nr,
7024 			       struct perf_sample_data *data,
7025 			       struct pt_regs *regs)
7026 {
7027 	struct hw_perf_event *hwc = &event->hw;
7028 
7029 	local64_add(nr, &event->count);
7030 
7031 	if (!regs)
7032 		return;
7033 
7034 	if (!is_sampling_event(event))
7035 		return;
7036 
7037 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7038 		data->period = nr;
7039 		return perf_swevent_overflow(event, 1, data, regs);
7040 	} else
7041 		data->period = event->hw.last_period;
7042 
7043 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7044 		return perf_swevent_overflow(event, 1, data, regs);
7045 
7046 	if (local64_add_negative(nr, &hwc->period_left))
7047 		return;
7048 
7049 	perf_swevent_overflow(event, 0, data, regs);
7050 }
7051 
7052 static int perf_exclude_event(struct perf_event *event,
7053 			      struct pt_regs *regs)
7054 {
7055 	if (event->hw.state & PERF_HES_STOPPED)
7056 		return 1;
7057 
7058 	if (regs) {
7059 		if (event->attr.exclude_user && user_mode(regs))
7060 			return 1;
7061 
7062 		if (event->attr.exclude_kernel && !user_mode(regs))
7063 			return 1;
7064 	}
7065 
7066 	return 0;
7067 }
7068 
7069 static int perf_swevent_match(struct perf_event *event,
7070 				enum perf_type_id type,
7071 				u32 event_id,
7072 				struct perf_sample_data *data,
7073 				struct pt_regs *regs)
7074 {
7075 	if (event->attr.type != type)
7076 		return 0;
7077 
7078 	if (event->attr.config != event_id)
7079 		return 0;
7080 
7081 	if (perf_exclude_event(event, regs))
7082 		return 0;
7083 
7084 	return 1;
7085 }
7086 
7087 static inline u64 swevent_hash(u64 type, u32 event_id)
7088 {
7089 	u64 val = event_id | (type << 32);
7090 
7091 	return hash_64(val, SWEVENT_HLIST_BITS);
7092 }
7093 
7094 static inline struct hlist_head *
7095 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7096 {
7097 	u64 hash = swevent_hash(type, event_id);
7098 
7099 	return &hlist->heads[hash];
7100 }
7101 
7102 /* For the read side: events when they trigger */
7103 static inline struct hlist_head *
7104 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7105 {
7106 	struct swevent_hlist *hlist;
7107 
7108 	hlist = rcu_dereference(swhash->swevent_hlist);
7109 	if (!hlist)
7110 		return NULL;
7111 
7112 	return __find_swevent_head(hlist, type, event_id);
7113 }
7114 
7115 /* For the event head insertion and removal in the hlist */
7116 static inline struct hlist_head *
7117 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7118 {
7119 	struct swevent_hlist *hlist;
7120 	u32 event_id = event->attr.config;
7121 	u64 type = event->attr.type;
7122 
7123 	/*
7124 	 * Event scheduling is always serialized against hlist allocation
7125 	 * and release. Which makes the protected version suitable here.
7126 	 * The context lock guarantees that.
7127 	 */
7128 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7129 					  lockdep_is_held(&event->ctx->lock));
7130 	if (!hlist)
7131 		return NULL;
7132 
7133 	return __find_swevent_head(hlist, type, event_id);
7134 }
7135 
7136 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7137 				    u64 nr,
7138 				    struct perf_sample_data *data,
7139 				    struct pt_regs *regs)
7140 {
7141 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7142 	struct perf_event *event;
7143 	struct hlist_head *head;
7144 
7145 	rcu_read_lock();
7146 	head = find_swevent_head_rcu(swhash, type, event_id);
7147 	if (!head)
7148 		goto end;
7149 
7150 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7151 		if (perf_swevent_match(event, type, event_id, data, regs))
7152 			perf_swevent_event(event, nr, data, regs);
7153 	}
7154 end:
7155 	rcu_read_unlock();
7156 }
7157 
7158 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7159 
7160 int perf_swevent_get_recursion_context(void)
7161 {
7162 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7163 
7164 	return get_recursion_context(swhash->recursion);
7165 }
7166 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7167 
7168 void perf_swevent_put_recursion_context(int rctx)
7169 {
7170 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7171 
7172 	put_recursion_context(swhash->recursion, rctx);
7173 }
7174 
7175 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7176 {
7177 	struct perf_sample_data data;
7178 
7179 	if (WARN_ON_ONCE(!regs))
7180 		return;
7181 
7182 	perf_sample_data_init(&data, addr, 0);
7183 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7184 }
7185 
7186 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7187 {
7188 	int rctx;
7189 
7190 	preempt_disable_notrace();
7191 	rctx = perf_swevent_get_recursion_context();
7192 	if (unlikely(rctx < 0))
7193 		goto fail;
7194 
7195 	___perf_sw_event(event_id, nr, regs, addr);
7196 
7197 	perf_swevent_put_recursion_context(rctx);
7198 fail:
7199 	preempt_enable_notrace();
7200 }
7201 
7202 static void perf_swevent_read(struct perf_event *event)
7203 {
7204 }
7205 
7206 static int perf_swevent_add(struct perf_event *event, int flags)
7207 {
7208 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7209 	struct hw_perf_event *hwc = &event->hw;
7210 	struct hlist_head *head;
7211 
7212 	if (is_sampling_event(event)) {
7213 		hwc->last_period = hwc->sample_period;
7214 		perf_swevent_set_period(event);
7215 	}
7216 
7217 	hwc->state = !(flags & PERF_EF_START);
7218 
7219 	head = find_swevent_head(swhash, event);
7220 	if (WARN_ON_ONCE(!head))
7221 		return -EINVAL;
7222 
7223 	hlist_add_head_rcu(&event->hlist_entry, head);
7224 	perf_event_update_userpage(event);
7225 
7226 	return 0;
7227 }
7228 
7229 static void perf_swevent_del(struct perf_event *event, int flags)
7230 {
7231 	hlist_del_rcu(&event->hlist_entry);
7232 }
7233 
7234 static void perf_swevent_start(struct perf_event *event, int flags)
7235 {
7236 	event->hw.state = 0;
7237 }
7238 
7239 static void perf_swevent_stop(struct perf_event *event, int flags)
7240 {
7241 	event->hw.state = PERF_HES_STOPPED;
7242 }
7243 
7244 /* Deref the hlist from the update side */
7245 static inline struct swevent_hlist *
7246 swevent_hlist_deref(struct swevent_htable *swhash)
7247 {
7248 	return rcu_dereference_protected(swhash->swevent_hlist,
7249 					 lockdep_is_held(&swhash->hlist_mutex));
7250 }
7251 
7252 static void swevent_hlist_release(struct swevent_htable *swhash)
7253 {
7254 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7255 
7256 	if (!hlist)
7257 		return;
7258 
7259 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7260 	kfree_rcu(hlist, rcu_head);
7261 }
7262 
7263 static void swevent_hlist_put_cpu(int cpu)
7264 {
7265 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7266 
7267 	mutex_lock(&swhash->hlist_mutex);
7268 
7269 	if (!--swhash->hlist_refcount)
7270 		swevent_hlist_release(swhash);
7271 
7272 	mutex_unlock(&swhash->hlist_mutex);
7273 }
7274 
7275 static void swevent_hlist_put(void)
7276 {
7277 	int cpu;
7278 
7279 	for_each_possible_cpu(cpu)
7280 		swevent_hlist_put_cpu(cpu);
7281 }
7282 
7283 static int swevent_hlist_get_cpu(int cpu)
7284 {
7285 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7286 	int err = 0;
7287 
7288 	mutex_lock(&swhash->hlist_mutex);
7289 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7290 		struct swevent_hlist *hlist;
7291 
7292 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7293 		if (!hlist) {
7294 			err = -ENOMEM;
7295 			goto exit;
7296 		}
7297 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7298 	}
7299 	swhash->hlist_refcount++;
7300 exit:
7301 	mutex_unlock(&swhash->hlist_mutex);
7302 
7303 	return err;
7304 }
7305 
7306 static int swevent_hlist_get(void)
7307 {
7308 	int err, cpu, failed_cpu;
7309 
7310 	get_online_cpus();
7311 	for_each_possible_cpu(cpu) {
7312 		err = swevent_hlist_get_cpu(cpu);
7313 		if (err) {
7314 			failed_cpu = cpu;
7315 			goto fail;
7316 		}
7317 	}
7318 	put_online_cpus();
7319 
7320 	return 0;
7321 fail:
7322 	for_each_possible_cpu(cpu) {
7323 		if (cpu == failed_cpu)
7324 			break;
7325 		swevent_hlist_put_cpu(cpu);
7326 	}
7327 
7328 	put_online_cpus();
7329 	return err;
7330 }
7331 
7332 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7333 
7334 static void sw_perf_event_destroy(struct perf_event *event)
7335 {
7336 	u64 event_id = event->attr.config;
7337 
7338 	WARN_ON(event->parent);
7339 
7340 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7341 	swevent_hlist_put();
7342 }
7343 
7344 static int perf_swevent_init(struct perf_event *event)
7345 {
7346 	u64 event_id = event->attr.config;
7347 
7348 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7349 		return -ENOENT;
7350 
7351 	/*
7352 	 * no branch sampling for software events
7353 	 */
7354 	if (has_branch_stack(event))
7355 		return -EOPNOTSUPP;
7356 
7357 	switch (event_id) {
7358 	case PERF_COUNT_SW_CPU_CLOCK:
7359 	case PERF_COUNT_SW_TASK_CLOCK:
7360 		return -ENOENT;
7361 
7362 	default:
7363 		break;
7364 	}
7365 
7366 	if (event_id >= PERF_COUNT_SW_MAX)
7367 		return -ENOENT;
7368 
7369 	if (!event->parent) {
7370 		int err;
7371 
7372 		err = swevent_hlist_get();
7373 		if (err)
7374 			return err;
7375 
7376 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7377 		event->destroy = sw_perf_event_destroy;
7378 	}
7379 
7380 	return 0;
7381 }
7382 
7383 static struct pmu perf_swevent = {
7384 	.task_ctx_nr	= perf_sw_context,
7385 
7386 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7387 
7388 	.event_init	= perf_swevent_init,
7389 	.add		= perf_swevent_add,
7390 	.del		= perf_swevent_del,
7391 	.start		= perf_swevent_start,
7392 	.stop		= perf_swevent_stop,
7393 	.read		= perf_swevent_read,
7394 };
7395 
7396 #ifdef CONFIG_EVENT_TRACING
7397 
7398 static int perf_tp_filter_match(struct perf_event *event,
7399 				struct perf_sample_data *data)
7400 {
7401 	void *record = data->raw->data;
7402 
7403 	/* only top level events have filters set */
7404 	if (event->parent)
7405 		event = event->parent;
7406 
7407 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7408 		return 1;
7409 	return 0;
7410 }
7411 
7412 static int perf_tp_event_match(struct perf_event *event,
7413 				struct perf_sample_data *data,
7414 				struct pt_regs *regs)
7415 {
7416 	if (event->hw.state & PERF_HES_STOPPED)
7417 		return 0;
7418 	/*
7419 	 * All tracepoints are from kernel-space.
7420 	 */
7421 	if (event->attr.exclude_kernel)
7422 		return 0;
7423 
7424 	if (!perf_tp_filter_match(event, data))
7425 		return 0;
7426 
7427 	return 1;
7428 }
7429 
7430 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7431 			       struct trace_event_call *call, u64 count,
7432 			       struct pt_regs *regs, struct hlist_head *head,
7433 			       struct task_struct *task)
7434 {
7435 	struct bpf_prog *prog = call->prog;
7436 
7437 	if (prog) {
7438 		*(struct pt_regs **)raw_data = regs;
7439 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7440 			perf_swevent_put_recursion_context(rctx);
7441 			return;
7442 		}
7443 	}
7444 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7445 		      rctx, task);
7446 }
7447 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7448 
7449 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7450 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7451 		   struct task_struct *task)
7452 {
7453 	struct perf_sample_data data;
7454 	struct perf_event *event;
7455 
7456 	struct perf_raw_record raw = {
7457 		.size = entry_size,
7458 		.data = record,
7459 	};
7460 
7461 	perf_sample_data_init(&data, 0, 0);
7462 	data.raw = &raw;
7463 
7464 	perf_trace_buf_update(record, event_type);
7465 
7466 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7467 		if (perf_tp_event_match(event, &data, regs))
7468 			perf_swevent_event(event, count, &data, regs);
7469 	}
7470 
7471 	/*
7472 	 * If we got specified a target task, also iterate its context and
7473 	 * deliver this event there too.
7474 	 */
7475 	if (task && task != current) {
7476 		struct perf_event_context *ctx;
7477 		struct trace_entry *entry = record;
7478 
7479 		rcu_read_lock();
7480 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7481 		if (!ctx)
7482 			goto unlock;
7483 
7484 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7485 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7486 				continue;
7487 			if (event->attr.config != entry->type)
7488 				continue;
7489 			if (perf_tp_event_match(event, &data, regs))
7490 				perf_swevent_event(event, count, &data, regs);
7491 		}
7492 unlock:
7493 		rcu_read_unlock();
7494 	}
7495 
7496 	perf_swevent_put_recursion_context(rctx);
7497 }
7498 EXPORT_SYMBOL_GPL(perf_tp_event);
7499 
7500 static void tp_perf_event_destroy(struct perf_event *event)
7501 {
7502 	perf_trace_destroy(event);
7503 }
7504 
7505 static int perf_tp_event_init(struct perf_event *event)
7506 {
7507 	int err;
7508 
7509 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7510 		return -ENOENT;
7511 
7512 	/*
7513 	 * no branch sampling for tracepoint events
7514 	 */
7515 	if (has_branch_stack(event))
7516 		return -EOPNOTSUPP;
7517 
7518 	err = perf_trace_init(event);
7519 	if (err)
7520 		return err;
7521 
7522 	event->destroy = tp_perf_event_destroy;
7523 
7524 	return 0;
7525 }
7526 
7527 static struct pmu perf_tracepoint = {
7528 	.task_ctx_nr	= perf_sw_context,
7529 
7530 	.event_init	= perf_tp_event_init,
7531 	.add		= perf_trace_add,
7532 	.del		= perf_trace_del,
7533 	.start		= perf_swevent_start,
7534 	.stop		= perf_swevent_stop,
7535 	.read		= perf_swevent_read,
7536 };
7537 
7538 static inline void perf_tp_register(void)
7539 {
7540 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7541 }
7542 
7543 static void perf_event_free_filter(struct perf_event *event)
7544 {
7545 	ftrace_profile_free_filter(event);
7546 }
7547 
7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7549 {
7550 	bool is_kprobe, is_tracepoint;
7551 	struct bpf_prog *prog;
7552 
7553 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7554 		return -EINVAL;
7555 
7556 	if (event->tp_event->prog)
7557 		return -EEXIST;
7558 
7559 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7560 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7561 	if (!is_kprobe && !is_tracepoint)
7562 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7563 		return -EINVAL;
7564 
7565 	prog = bpf_prog_get(prog_fd);
7566 	if (IS_ERR(prog))
7567 		return PTR_ERR(prog);
7568 
7569 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7570 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7571 		/* valid fd, but invalid bpf program type */
7572 		bpf_prog_put(prog);
7573 		return -EINVAL;
7574 	}
7575 
7576 	if (is_tracepoint) {
7577 		int off = trace_event_get_offsets(event->tp_event);
7578 
7579 		if (prog->aux->max_ctx_offset > off) {
7580 			bpf_prog_put(prog);
7581 			return -EACCES;
7582 		}
7583 	}
7584 	event->tp_event->prog = prog;
7585 
7586 	return 0;
7587 }
7588 
7589 static void perf_event_free_bpf_prog(struct perf_event *event)
7590 {
7591 	struct bpf_prog *prog;
7592 
7593 	if (!event->tp_event)
7594 		return;
7595 
7596 	prog = event->tp_event->prog;
7597 	if (prog) {
7598 		event->tp_event->prog = NULL;
7599 		bpf_prog_put_rcu(prog);
7600 	}
7601 }
7602 
7603 #else
7604 
7605 static inline void perf_tp_register(void)
7606 {
7607 }
7608 
7609 static void perf_event_free_filter(struct perf_event *event)
7610 {
7611 }
7612 
7613 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7614 {
7615 	return -ENOENT;
7616 }
7617 
7618 static void perf_event_free_bpf_prog(struct perf_event *event)
7619 {
7620 }
7621 #endif /* CONFIG_EVENT_TRACING */
7622 
7623 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7624 void perf_bp_event(struct perf_event *bp, void *data)
7625 {
7626 	struct perf_sample_data sample;
7627 	struct pt_regs *regs = data;
7628 
7629 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7630 
7631 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7632 		perf_swevent_event(bp, 1, &sample, regs);
7633 }
7634 #endif
7635 
7636 /*
7637  * Allocate a new address filter
7638  */
7639 static struct perf_addr_filter *
7640 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7641 {
7642 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7643 	struct perf_addr_filter *filter;
7644 
7645 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7646 	if (!filter)
7647 		return NULL;
7648 
7649 	INIT_LIST_HEAD(&filter->entry);
7650 	list_add_tail(&filter->entry, filters);
7651 
7652 	return filter;
7653 }
7654 
7655 static void free_filters_list(struct list_head *filters)
7656 {
7657 	struct perf_addr_filter *filter, *iter;
7658 
7659 	list_for_each_entry_safe(filter, iter, filters, entry) {
7660 		if (filter->inode)
7661 			iput(filter->inode);
7662 		list_del(&filter->entry);
7663 		kfree(filter);
7664 	}
7665 }
7666 
7667 /*
7668  * Free existing address filters and optionally install new ones
7669  */
7670 static void perf_addr_filters_splice(struct perf_event *event,
7671 				     struct list_head *head)
7672 {
7673 	unsigned long flags;
7674 	LIST_HEAD(list);
7675 
7676 	if (!has_addr_filter(event))
7677 		return;
7678 
7679 	/* don't bother with children, they don't have their own filters */
7680 	if (event->parent)
7681 		return;
7682 
7683 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7684 
7685 	list_splice_init(&event->addr_filters.list, &list);
7686 	if (head)
7687 		list_splice(head, &event->addr_filters.list);
7688 
7689 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7690 
7691 	free_filters_list(&list);
7692 }
7693 
7694 /*
7695  * Scan through mm's vmas and see if one of them matches the
7696  * @filter; if so, adjust filter's address range.
7697  * Called with mm::mmap_sem down for reading.
7698  */
7699 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7700 					    struct mm_struct *mm)
7701 {
7702 	struct vm_area_struct *vma;
7703 
7704 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7705 		struct file *file = vma->vm_file;
7706 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7707 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7708 
7709 		if (!file)
7710 			continue;
7711 
7712 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7713 			continue;
7714 
7715 		return vma->vm_start;
7716 	}
7717 
7718 	return 0;
7719 }
7720 
7721 /*
7722  * Update event's address range filters based on the
7723  * task's existing mappings, if any.
7724  */
7725 static void perf_event_addr_filters_apply(struct perf_event *event)
7726 {
7727 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7728 	struct task_struct *task = READ_ONCE(event->ctx->task);
7729 	struct perf_addr_filter *filter;
7730 	struct mm_struct *mm = NULL;
7731 	unsigned int count = 0;
7732 	unsigned long flags;
7733 
7734 	/*
7735 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7736 	 * will stop on the parent's child_mutex that our caller is also holding
7737 	 */
7738 	if (task == TASK_TOMBSTONE)
7739 		return;
7740 
7741 	mm = get_task_mm(event->ctx->task);
7742 	if (!mm)
7743 		goto restart;
7744 
7745 	down_read(&mm->mmap_sem);
7746 
7747 	raw_spin_lock_irqsave(&ifh->lock, flags);
7748 	list_for_each_entry(filter, &ifh->list, entry) {
7749 		event->addr_filters_offs[count] = 0;
7750 
7751 		if (perf_addr_filter_needs_mmap(filter))
7752 			event->addr_filters_offs[count] =
7753 				perf_addr_filter_apply(filter, mm);
7754 
7755 		count++;
7756 	}
7757 
7758 	event->addr_filters_gen++;
7759 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7760 
7761 	up_read(&mm->mmap_sem);
7762 
7763 	mmput(mm);
7764 
7765 restart:
7766 	perf_event_restart(event);
7767 }
7768 
7769 /*
7770  * Address range filtering: limiting the data to certain
7771  * instruction address ranges. Filters are ioctl()ed to us from
7772  * userspace as ascii strings.
7773  *
7774  * Filter string format:
7775  *
7776  * ACTION RANGE_SPEC
7777  * where ACTION is one of the
7778  *  * "filter": limit the trace to this region
7779  *  * "start": start tracing from this address
7780  *  * "stop": stop tracing at this address/region;
7781  * RANGE_SPEC is
7782  *  * for kernel addresses: <start address>[/<size>]
7783  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7784  *
7785  * if <size> is not specified, the range is treated as a single address.
7786  */
7787 enum {
7788 	IF_ACT_FILTER,
7789 	IF_ACT_START,
7790 	IF_ACT_STOP,
7791 	IF_SRC_FILE,
7792 	IF_SRC_KERNEL,
7793 	IF_SRC_FILEADDR,
7794 	IF_SRC_KERNELADDR,
7795 };
7796 
7797 enum {
7798 	IF_STATE_ACTION = 0,
7799 	IF_STATE_SOURCE,
7800 	IF_STATE_END,
7801 };
7802 
7803 static const match_table_t if_tokens = {
7804 	{ IF_ACT_FILTER,	"filter" },
7805 	{ IF_ACT_START,		"start" },
7806 	{ IF_ACT_STOP,		"stop" },
7807 	{ IF_SRC_FILE,		"%u/%u@%s" },
7808 	{ IF_SRC_KERNEL,	"%u/%u" },
7809 	{ IF_SRC_FILEADDR,	"%u@%s" },
7810 	{ IF_SRC_KERNELADDR,	"%u" },
7811 };
7812 
7813 /*
7814  * Address filter string parser
7815  */
7816 static int
7817 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7818 			     struct list_head *filters)
7819 {
7820 	struct perf_addr_filter *filter = NULL;
7821 	char *start, *orig, *filename = NULL;
7822 	struct path path;
7823 	substring_t args[MAX_OPT_ARGS];
7824 	int state = IF_STATE_ACTION, token;
7825 	unsigned int kernel = 0;
7826 	int ret = -EINVAL;
7827 
7828 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7829 	if (!fstr)
7830 		return -ENOMEM;
7831 
7832 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7833 		ret = -EINVAL;
7834 
7835 		if (!*start)
7836 			continue;
7837 
7838 		/* filter definition begins */
7839 		if (state == IF_STATE_ACTION) {
7840 			filter = perf_addr_filter_new(event, filters);
7841 			if (!filter)
7842 				goto fail;
7843 		}
7844 
7845 		token = match_token(start, if_tokens, args);
7846 		switch (token) {
7847 		case IF_ACT_FILTER:
7848 		case IF_ACT_START:
7849 			filter->filter = 1;
7850 
7851 		case IF_ACT_STOP:
7852 			if (state != IF_STATE_ACTION)
7853 				goto fail;
7854 
7855 			state = IF_STATE_SOURCE;
7856 			break;
7857 
7858 		case IF_SRC_KERNELADDR:
7859 		case IF_SRC_KERNEL:
7860 			kernel = 1;
7861 
7862 		case IF_SRC_FILEADDR:
7863 		case IF_SRC_FILE:
7864 			if (state != IF_STATE_SOURCE)
7865 				goto fail;
7866 
7867 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7868 				filter->range = 1;
7869 
7870 			*args[0].to = 0;
7871 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7872 			if (ret)
7873 				goto fail;
7874 
7875 			if (filter->range) {
7876 				*args[1].to = 0;
7877 				ret = kstrtoul(args[1].from, 0, &filter->size);
7878 				if (ret)
7879 					goto fail;
7880 			}
7881 
7882 			if (token == IF_SRC_FILE) {
7883 				filename = match_strdup(&args[2]);
7884 				if (!filename) {
7885 					ret = -ENOMEM;
7886 					goto fail;
7887 				}
7888 			}
7889 
7890 			state = IF_STATE_END;
7891 			break;
7892 
7893 		default:
7894 			goto fail;
7895 		}
7896 
7897 		/*
7898 		 * Filter definition is fully parsed, validate and install it.
7899 		 * Make sure that it doesn't contradict itself or the event's
7900 		 * attribute.
7901 		 */
7902 		if (state == IF_STATE_END) {
7903 			if (kernel && event->attr.exclude_kernel)
7904 				goto fail;
7905 
7906 			if (!kernel) {
7907 				if (!filename)
7908 					goto fail;
7909 
7910 				/* look up the path and grab its inode */
7911 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7912 				if (ret)
7913 					goto fail_free_name;
7914 
7915 				filter->inode = igrab(d_inode(path.dentry));
7916 				path_put(&path);
7917 				kfree(filename);
7918 				filename = NULL;
7919 
7920 				ret = -EINVAL;
7921 				if (!filter->inode ||
7922 				    !S_ISREG(filter->inode->i_mode))
7923 					/* free_filters_list() will iput() */
7924 					goto fail;
7925 			}
7926 
7927 			/* ready to consume more filters */
7928 			state = IF_STATE_ACTION;
7929 			filter = NULL;
7930 		}
7931 	}
7932 
7933 	if (state != IF_STATE_ACTION)
7934 		goto fail;
7935 
7936 	kfree(orig);
7937 
7938 	return 0;
7939 
7940 fail_free_name:
7941 	kfree(filename);
7942 fail:
7943 	free_filters_list(filters);
7944 	kfree(orig);
7945 
7946 	return ret;
7947 }
7948 
7949 static int
7950 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7951 {
7952 	LIST_HEAD(filters);
7953 	int ret;
7954 
7955 	/*
7956 	 * Since this is called in perf_ioctl() path, we're already holding
7957 	 * ctx::mutex.
7958 	 */
7959 	lockdep_assert_held(&event->ctx->mutex);
7960 
7961 	if (WARN_ON_ONCE(event->parent))
7962 		return -EINVAL;
7963 
7964 	/*
7965 	 * For now, we only support filtering in per-task events; doing so
7966 	 * for CPU-wide events requires additional context switching trickery,
7967 	 * since same object code will be mapped at different virtual
7968 	 * addresses in different processes.
7969 	 */
7970 	if (!event->ctx->task)
7971 		return -EOPNOTSUPP;
7972 
7973 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7974 	if (ret)
7975 		return ret;
7976 
7977 	ret = event->pmu->addr_filters_validate(&filters);
7978 	if (ret) {
7979 		free_filters_list(&filters);
7980 		return ret;
7981 	}
7982 
7983 	/* remove existing filters, if any */
7984 	perf_addr_filters_splice(event, &filters);
7985 
7986 	/* install new filters */
7987 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
7988 
7989 	return ret;
7990 }
7991 
7992 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7993 {
7994 	char *filter_str;
7995 	int ret = -EINVAL;
7996 
7997 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7998 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7999 	    !has_addr_filter(event))
8000 		return -EINVAL;
8001 
8002 	filter_str = strndup_user(arg, PAGE_SIZE);
8003 	if (IS_ERR(filter_str))
8004 		return PTR_ERR(filter_str);
8005 
8006 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8007 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8008 		ret = ftrace_profile_set_filter(event, event->attr.config,
8009 						filter_str);
8010 	else if (has_addr_filter(event))
8011 		ret = perf_event_set_addr_filter(event, filter_str);
8012 
8013 	kfree(filter_str);
8014 	return ret;
8015 }
8016 
8017 /*
8018  * hrtimer based swevent callback
8019  */
8020 
8021 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8022 {
8023 	enum hrtimer_restart ret = HRTIMER_RESTART;
8024 	struct perf_sample_data data;
8025 	struct pt_regs *regs;
8026 	struct perf_event *event;
8027 	u64 period;
8028 
8029 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8030 
8031 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8032 		return HRTIMER_NORESTART;
8033 
8034 	event->pmu->read(event);
8035 
8036 	perf_sample_data_init(&data, 0, event->hw.last_period);
8037 	regs = get_irq_regs();
8038 
8039 	if (regs && !perf_exclude_event(event, regs)) {
8040 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8041 			if (__perf_event_overflow(event, 1, &data, regs))
8042 				ret = HRTIMER_NORESTART;
8043 	}
8044 
8045 	period = max_t(u64, 10000, event->hw.sample_period);
8046 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8047 
8048 	return ret;
8049 }
8050 
8051 static void perf_swevent_start_hrtimer(struct perf_event *event)
8052 {
8053 	struct hw_perf_event *hwc = &event->hw;
8054 	s64 period;
8055 
8056 	if (!is_sampling_event(event))
8057 		return;
8058 
8059 	period = local64_read(&hwc->period_left);
8060 	if (period) {
8061 		if (period < 0)
8062 			period = 10000;
8063 
8064 		local64_set(&hwc->period_left, 0);
8065 	} else {
8066 		period = max_t(u64, 10000, hwc->sample_period);
8067 	}
8068 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8069 		      HRTIMER_MODE_REL_PINNED);
8070 }
8071 
8072 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8073 {
8074 	struct hw_perf_event *hwc = &event->hw;
8075 
8076 	if (is_sampling_event(event)) {
8077 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8078 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8079 
8080 		hrtimer_cancel(&hwc->hrtimer);
8081 	}
8082 }
8083 
8084 static void perf_swevent_init_hrtimer(struct perf_event *event)
8085 {
8086 	struct hw_perf_event *hwc = &event->hw;
8087 
8088 	if (!is_sampling_event(event))
8089 		return;
8090 
8091 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8092 	hwc->hrtimer.function = perf_swevent_hrtimer;
8093 
8094 	/*
8095 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8096 	 * mapping and avoid the whole period adjust feedback stuff.
8097 	 */
8098 	if (event->attr.freq) {
8099 		long freq = event->attr.sample_freq;
8100 
8101 		event->attr.sample_period = NSEC_PER_SEC / freq;
8102 		hwc->sample_period = event->attr.sample_period;
8103 		local64_set(&hwc->period_left, hwc->sample_period);
8104 		hwc->last_period = hwc->sample_period;
8105 		event->attr.freq = 0;
8106 	}
8107 }
8108 
8109 /*
8110  * Software event: cpu wall time clock
8111  */
8112 
8113 static void cpu_clock_event_update(struct perf_event *event)
8114 {
8115 	s64 prev;
8116 	u64 now;
8117 
8118 	now = local_clock();
8119 	prev = local64_xchg(&event->hw.prev_count, now);
8120 	local64_add(now - prev, &event->count);
8121 }
8122 
8123 static void cpu_clock_event_start(struct perf_event *event, int flags)
8124 {
8125 	local64_set(&event->hw.prev_count, local_clock());
8126 	perf_swevent_start_hrtimer(event);
8127 }
8128 
8129 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8130 {
8131 	perf_swevent_cancel_hrtimer(event);
8132 	cpu_clock_event_update(event);
8133 }
8134 
8135 static int cpu_clock_event_add(struct perf_event *event, int flags)
8136 {
8137 	if (flags & PERF_EF_START)
8138 		cpu_clock_event_start(event, flags);
8139 	perf_event_update_userpage(event);
8140 
8141 	return 0;
8142 }
8143 
8144 static void cpu_clock_event_del(struct perf_event *event, int flags)
8145 {
8146 	cpu_clock_event_stop(event, flags);
8147 }
8148 
8149 static void cpu_clock_event_read(struct perf_event *event)
8150 {
8151 	cpu_clock_event_update(event);
8152 }
8153 
8154 static int cpu_clock_event_init(struct perf_event *event)
8155 {
8156 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8157 		return -ENOENT;
8158 
8159 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8160 		return -ENOENT;
8161 
8162 	/*
8163 	 * no branch sampling for software events
8164 	 */
8165 	if (has_branch_stack(event))
8166 		return -EOPNOTSUPP;
8167 
8168 	perf_swevent_init_hrtimer(event);
8169 
8170 	return 0;
8171 }
8172 
8173 static struct pmu perf_cpu_clock = {
8174 	.task_ctx_nr	= perf_sw_context,
8175 
8176 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8177 
8178 	.event_init	= cpu_clock_event_init,
8179 	.add		= cpu_clock_event_add,
8180 	.del		= cpu_clock_event_del,
8181 	.start		= cpu_clock_event_start,
8182 	.stop		= cpu_clock_event_stop,
8183 	.read		= cpu_clock_event_read,
8184 };
8185 
8186 /*
8187  * Software event: task time clock
8188  */
8189 
8190 static void task_clock_event_update(struct perf_event *event, u64 now)
8191 {
8192 	u64 prev;
8193 	s64 delta;
8194 
8195 	prev = local64_xchg(&event->hw.prev_count, now);
8196 	delta = now - prev;
8197 	local64_add(delta, &event->count);
8198 }
8199 
8200 static void task_clock_event_start(struct perf_event *event, int flags)
8201 {
8202 	local64_set(&event->hw.prev_count, event->ctx->time);
8203 	perf_swevent_start_hrtimer(event);
8204 }
8205 
8206 static void task_clock_event_stop(struct perf_event *event, int flags)
8207 {
8208 	perf_swevent_cancel_hrtimer(event);
8209 	task_clock_event_update(event, event->ctx->time);
8210 }
8211 
8212 static int task_clock_event_add(struct perf_event *event, int flags)
8213 {
8214 	if (flags & PERF_EF_START)
8215 		task_clock_event_start(event, flags);
8216 	perf_event_update_userpage(event);
8217 
8218 	return 0;
8219 }
8220 
8221 static void task_clock_event_del(struct perf_event *event, int flags)
8222 {
8223 	task_clock_event_stop(event, PERF_EF_UPDATE);
8224 }
8225 
8226 static void task_clock_event_read(struct perf_event *event)
8227 {
8228 	u64 now = perf_clock();
8229 	u64 delta = now - event->ctx->timestamp;
8230 	u64 time = event->ctx->time + delta;
8231 
8232 	task_clock_event_update(event, time);
8233 }
8234 
8235 static int task_clock_event_init(struct perf_event *event)
8236 {
8237 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8238 		return -ENOENT;
8239 
8240 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8241 		return -ENOENT;
8242 
8243 	/*
8244 	 * no branch sampling for software events
8245 	 */
8246 	if (has_branch_stack(event))
8247 		return -EOPNOTSUPP;
8248 
8249 	perf_swevent_init_hrtimer(event);
8250 
8251 	return 0;
8252 }
8253 
8254 static struct pmu perf_task_clock = {
8255 	.task_ctx_nr	= perf_sw_context,
8256 
8257 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8258 
8259 	.event_init	= task_clock_event_init,
8260 	.add		= task_clock_event_add,
8261 	.del		= task_clock_event_del,
8262 	.start		= task_clock_event_start,
8263 	.stop		= task_clock_event_stop,
8264 	.read		= task_clock_event_read,
8265 };
8266 
8267 static void perf_pmu_nop_void(struct pmu *pmu)
8268 {
8269 }
8270 
8271 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8272 {
8273 }
8274 
8275 static int perf_pmu_nop_int(struct pmu *pmu)
8276 {
8277 	return 0;
8278 }
8279 
8280 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8281 
8282 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8283 {
8284 	__this_cpu_write(nop_txn_flags, flags);
8285 
8286 	if (flags & ~PERF_PMU_TXN_ADD)
8287 		return;
8288 
8289 	perf_pmu_disable(pmu);
8290 }
8291 
8292 static int perf_pmu_commit_txn(struct pmu *pmu)
8293 {
8294 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8295 
8296 	__this_cpu_write(nop_txn_flags, 0);
8297 
8298 	if (flags & ~PERF_PMU_TXN_ADD)
8299 		return 0;
8300 
8301 	perf_pmu_enable(pmu);
8302 	return 0;
8303 }
8304 
8305 static void perf_pmu_cancel_txn(struct pmu *pmu)
8306 {
8307 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8308 
8309 	__this_cpu_write(nop_txn_flags, 0);
8310 
8311 	if (flags & ~PERF_PMU_TXN_ADD)
8312 		return;
8313 
8314 	perf_pmu_enable(pmu);
8315 }
8316 
8317 static int perf_event_idx_default(struct perf_event *event)
8318 {
8319 	return 0;
8320 }
8321 
8322 /*
8323  * Ensures all contexts with the same task_ctx_nr have the same
8324  * pmu_cpu_context too.
8325  */
8326 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8327 {
8328 	struct pmu *pmu;
8329 
8330 	if (ctxn < 0)
8331 		return NULL;
8332 
8333 	list_for_each_entry(pmu, &pmus, entry) {
8334 		if (pmu->task_ctx_nr == ctxn)
8335 			return pmu->pmu_cpu_context;
8336 	}
8337 
8338 	return NULL;
8339 }
8340 
8341 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8342 {
8343 	int cpu;
8344 
8345 	for_each_possible_cpu(cpu) {
8346 		struct perf_cpu_context *cpuctx;
8347 
8348 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8349 
8350 		if (cpuctx->unique_pmu == old_pmu)
8351 			cpuctx->unique_pmu = pmu;
8352 	}
8353 }
8354 
8355 static void free_pmu_context(struct pmu *pmu)
8356 {
8357 	struct pmu *i;
8358 
8359 	mutex_lock(&pmus_lock);
8360 	/*
8361 	 * Like a real lame refcount.
8362 	 */
8363 	list_for_each_entry(i, &pmus, entry) {
8364 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8365 			update_pmu_context(i, pmu);
8366 			goto out;
8367 		}
8368 	}
8369 
8370 	free_percpu(pmu->pmu_cpu_context);
8371 out:
8372 	mutex_unlock(&pmus_lock);
8373 }
8374 
8375 /*
8376  * Let userspace know that this PMU supports address range filtering:
8377  */
8378 static ssize_t nr_addr_filters_show(struct device *dev,
8379 				    struct device_attribute *attr,
8380 				    char *page)
8381 {
8382 	struct pmu *pmu = dev_get_drvdata(dev);
8383 
8384 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8385 }
8386 DEVICE_ATTR_RO(nr_addr_filters);
8387 
8388 static struct idr pmu_idr;
8389 
8390 static ssize_t
8391 type_show(struct device *dev, struct device_attribute *attr, char *page)
8392 {
8393 	struct pmu *pmu = dev_get_drvdata(dev);
8394 
8395 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8396 }
8397 static DEVICE_ATTR_RO(type);
8398 
8399 static ssize_t
8400 perf_event_mux_interval_ms_show(struct device *dev,
8401 				struct device_attribute *attr,
8402 				char *page)
8403 {
8404 	struct pmu *pmu = dev_get_drvdata(dev);
8405 
8406 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8407 }
8408 
8409 static DEFINE_MUTEX(mux_interval_mutex);
8410 
8411 static ssize_t
8412 perf_event_mux_interval_ms_store(struct device *dev,
8413 				 struct device_attribute *attr,
8414 				 const char *buf, size_t count)
8415 {
8416 	struct pmu *pmu = dev_get_drvdata(dev);
8417 	int timer, cpu, ret;
8418 
8419 	ret = kstrtoint(buf, 0, &timer);
8420 	if (ret)
8421 		return ret;
8422 
8423 	if (timer < 1)
8424 		return -EINVAL;
8425 
8426 	/* same value, noting to do */
8427 	if (timer == pmu->hrtimer_interval_ms)
8428 		return count;
8429 
8430 	mutex_lock(&mux_interval_mutex);
8431 	pmu->hrtimer_interval_ms = timer;
8432 
8433 	/* update all cpuctx for this PMU */
8434 	get_online_cpus();
8435 	for_each_online_cpu(cpu) {
8436 		struct perf_cpu_context *cpuctx;
8437 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8438 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8439 
8440 		cpu_function_call(cpu,
8441 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8442 	}
8443 	put_online_cpus();
8444 	mutex_unlock(&mux_interval_mutex);
8445 
8446 	return count;
8447 }
8448 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8449 
8450 static struct attribute *pmu_dev_attrs[] = {
8451 	&dev_attr_type.attr,
8452 	&dev_attr_perf_event_mux_interval_ms.attr,
8453 	NULL,
8454 };
8455 ATTRIBUTE_GROUPS(pmu_dev);
8456 
8457 static int pmu_bus_running;
8458 static struct bus_type pmu_bus = {
8459 	.name		= "event_source",
8460 	.dev_groups	= pmu_dev_groups,
8461 };
8462 
8463 static void pmu_dev_release(struct device *dev)
8464 {
8465 	kfree(dev);
8466 }
8467 
8468 static int pmu_dev_alloc(struct pmu *pmu)
8469 {
8470 	int ret = -ENOMEM;
8471 
8472 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8473 	if (!pmu->dev)
8474 		goto out;
8475 
8476 	pmu->dev->groups = pmu->attr_groups;
8477 	device_initialize(pmu->dev);
8478 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8479 	if (ret)
8480 		goto free_dev;
8481 
8482 	dev_set_drvdata(pmu->dev, pmu);
8483 	pmu->dev->bus = &pmu_bus;
8484 	pmu->dev->release = pmu_dev_release;
8485 	ret = device_add(pmu->dev);
8486 	if (ret)
8487 		goto free_dev;
8488 
8489 	/* For PMUs with address filters, throw in an extra attribute: */
8490 	if (pmu->nr_addr_filters)
8491 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8492 
8493 	if (ret)
8494 		goto del_dev;
8495 
8496 out:
8497 	return ret;
8498 
8499 del_dev:
8500 	device_del(pmu->dev);
8501 
8502 free_dev:
8503 	put_device(pmu->dev);
8504 	goto out;
8505 }
8506 
8507 static struct lock_class_key cpuctx_mutex;
8508 static struct lock_class_key cpuctx_lock;
8509 
8510 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8511 {
8512 	int cpu, ret;
8513 
8514 	mutex_lock(&pmus_lock);
8515 	ret = -ENOMEM;
8516 	pmu->pmu_disable_count = alloc_percpu(int);
8517 	if (!pmu->pmu_disable_count)
8518 		goto unlock;
8519 
8520 	pmu->type = -1;
8521 	if (!name)
8522 		goto skip_type;
8523 	pmu->name = name;
8524 
8525 	if (type < 0) {
8526 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8527 		if (type < 0) {
8528 			ret = type;
8529 			goto free_pdc;
8530 		}
8531 	}
8532 	pmu->type = type;
8533 
8534 	if (pmu_bus_running) {
8535 		ret = pmu_dev_alloc(pmu);
8536 		if (ret)
8537 			goto free_idr;
8538 	}
8539 
8540 skip_type:
8541 	if (pmu->task_ctx_nr == perf_hw_context) {
8542 		static int hw_context_taken = 0;
8543 
8544 		/*
8545 		 * Other than systems with heterogeneous CPUs, it never makes
8546 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8547 		 * uncore must use perf_invalid_context.
8548 		 */
8549 		if (WARN_ON_ONCE(hw_context_taken &&
8550 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8551 			pmu->task_ctx_nr = perf_invalid_context;
8552 
8553 		hw_context_taken = 1;
8554 	}
8555 
8556 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8557 	if (pmu->pmu_cpu_context)
8558 		goto got_cpu_context;
8559 
8560 	ret = -ENOMEM;
8561 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8562 	if (!pmu->pmu_cpu_context)
8563 		goto free_dev;
8564 
8565 	for_each_possible_cpu(cpu) {
8566 		struct perf_cpu_context *cpuctx;
8567 
8568 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8569 		__perf_event_init_context(&cpuctx->ctx);
8570 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8571 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8572 		cpuctx->ctx.pmu = pmu;
8573 
8574 		__perf_mux_hrtimer_init(cpuctx, cpu);
8575 
8576 		cpuctx->unique_pmu = pmu;
8577 	}
8578 
8579 got_cpu_context:
8580 	if (!pmu->start_txn) {
8581 		if (pmu->pmu_enable) {
8582 			/*
8583 			 * If we have pmu_enable/pmu_disable calls, install
8584 			 * transaction stubs that use that to try and batch
8585 			 * hardware accesses.
8586 			 */
8587 			pmu->start_txn  = perf_pmu_start_txn;
8588 			pmu->commit_txn = perf_pmu_commit_txn;
8589 			pmu->cancel_txn = perf_pmu_cancel_txn;
8590 		} else {
8591 			pmu->start_txn  = perf_pmu_nop_txn;
8592 			pmu->commit_txn = perf_pmu_nop_int;
8593 			pmu->cancel_txn = perf_pmu_nop_void;
8594 		}
8595 	}
8596 
8597 	if (!pmu->pmu_enable) {
8598 		pmu->pmu_enable  = perf_pmu_nop_void;
8599 		pmu->pmu_disable = perf_pmu_nop_void;
8600 	}
8601 
8602 	if (!pmu->event_idx)
8603 		pmu->event_idx = perf_event_idx_default;
8604 
8605 	list_add_rcu(&pmu->entry, &pmus);
8606 	atomic_set(&pmu->exclusive_cnt, 0);
8607 	ret = 0;
8608 unlock:
8609 	mutex_unlock(&pmus_lock);
8610 
8611 	return ret;
8612 
8613 free_dev:
8614 	device_del(pmu->dev);
8615 	put_device(pmu->dev);
8616 
8617 free_idr:
8618 	if (pmu->type >= PERF_TYPE_MAX)
8619 		idr_remove(&pmu_idr, pmu->type);
8620 
8621 free_pdc:
8622 	free_percpu(pmu->pmu_disable_count);
8623 	goto unlock;
8624 }
8625 EXPORT_SYMBOL_GPL(perf_pmu_register);
8626 
8627 void perf_pmu_unregister(struct pmu *pmu)
8628 {
8629 	mutex_lock(&pmus_lock);
8630 	list_del_rcu(&pmu->entry);
8631 	mutex_unlock(&pmus_lock);
8632 
8633 	/*
8634 	 * We dereference the pmu list under both SRCU and regular RCU, so
8635 	 * synchronize against both of those.
8636 	 */
8637 	synchronize_srcu(&pmus_srcu);
8638 	synchronize_rcu();
8639 
8640 	free_percpu(pmu->pmu_disable_count);
8641 	if (pmu->type >= PERF_TYPE_MAX)
8642 		idr_remove(&pmu_idr, pmu->type);
8643 	if (pmu->nr_addr_filters)
8644 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8645 	device_del(pmu->dev);
8646 	put_device(pmu->dev);
8647 	free_pmu_context(pmu);
8648 }
8649 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8650 
8651 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8652 {
8653 	struct perf_event_context *ctx = NULL;
8654 	int ret;
8655 
8656 	if (!try_module_get(pmu->module))
8657 		return -ENODEV;
8658 
8659 	if (event->group_leader != event) {
8660 		/*
8661 		 * This ctx->mutex can nest when we're called through
8662 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8663 		 */
8664 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8665 						 SINGLE_DEPTH_NESTING);
8666 		BUG_ON(!ctx);
8667 	}
8668 
8669 	event->pmu = pmu;
8670 	ret = pmu->event_init(event);
8671 
8672 	if (ctx)
8673 		perf_event_ctx_unlock(event->group_leader, ctx);
8674 
8675 	if (ret)
8676 		module_put(pmu->module);
8677 
8678 	return ret;
8679 }
8680 
8681 static struct pmu *perf_init_event(struct perf_event *event)
8682 {
8683 	struct pmu *pmu = NULL;
8684 	int idx;
8685 	int ret;
8686 
8687 	idx = srcu_read_lock(&pmus_srcu);
8688 
8689 	rcu_read_lock();
8690 	pmu = idr_find(&pmu_idr, event->attr.type);
8691 	rcu_read_unlock();
8692 	if (pmu) {
8693 		ret = perf_try_init_event(pmu, event);
8694 		if (ret)
8695 			pmu = ERR_PTR(ret);
8696 		goto unlock;
8697 	}
8698 
8699 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8700 		ret = perf_try_init_event(pmu, event);
8701 		if (!ret)
8702 			goto unlock;
8703 
8704 		if (ret != -ENOENT) {
8705 			pmu = ERR_PTR(ret);
8706 			goto unlock;
8707 		}
8708 	}
8709 	pmu = ERR_PTR(-ENOENT);
8710 unlock:
8711 	srcu_read_unlock(&pmus_srcu, idx);
8712 
8713 	return pmu;
8714 }
8715 
8716 static void attach_sb_event(struct perf_event *event)
8717 {
8718 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8719 
8720 	raw_spin_lock(&pel->lock);
8721 	list_add_rcu(&event->sb_list, &pel->list);
8722 	raw_spin_unlock(&pel->lock);
8723 }
8724 
8725 /*
8726  * We keep a list of all !task (and therefore per-cpu) events
8727  * that need to receive side-band records.
8728  *
8729  * This avoids having to scan all the various PMU per-cpu contexts
8730  * looking for them.
8731  */
8732 static void account_pmu_sb_event(struct perf_event *event)
8733 {
8734 	if (is_sb_event(event))
8735 		attach_sb_event(event);
8736 }
8737 
8738 static void account_event_cpu(struct perf_event *event, int cpu)
8739 {
8740 	if (event->parent)
8741 		return;
8742 
8743 	if (is_cgroup_event(event))
8744 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8745 }
8746 
8747 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8748 static void account_freq_event_nohz(void)
8749 {
8750 #ifdef CONFIG_NO_HZ_FULL
8751 	/* Lock so we don't race with concurrent unaccount */
8752 	spin_lock(&nr_freq_lock);
8753 	if (atomic_inc_return(&nr_freq_events) == 1)
8754 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8755 	spin_unlock(&nr_freq_lock);
8756 #endif
8757 }
8758 
8759 static void account_freq_event(void)
8760 {
8761 	if (tick_nohz_full_enabled())
8762 		account_freq_event_nohz();
8763 	else
8764 		atomic_inc(&nr_freq_events);
8765 }
8766 
8767 
8768 static void account_event(struct perf_event *event)
8769 {
8770 	bool inc = false;
8771 
8772 	if (event->parent)
8773 		return;
8774 
8775 	if (event->attach_state & PERF_ATTACH_TASK)
8776 		inc = true;
8777 	if (event->attr.mmap || event->attr.mmap_data)
8778 		atomic_inc(&nr_mmap_events);
8779 	if (event->attr.comm)
8780 		atomic_inc(&nr_comm_events);
8781 	if (event->attr.task)
8782 		atomic_inc(&nr_task_events);
8783 	if (event->attr.freq)
8784 		account_freq_event();
8785 	if (event->attr.context_switch) {
8786 		atomic_inc(&nr_switch_events);
8787 		inc = true;
8788 	}
8789 	if (has_branch_stack(event))
8790 		inc = true;
8791 	if (is_cgroup_event(event))
8792 		inc = true;
8793 
8794 	if (inc) {
8795 		if (atomic_inc_not_zero(&perf_sched_count))
8796 			goto enabled;
8797 
8798 		mutex_lock(&perf_sched_mutex);
8799 		if (!atomic_read(&perf_sched_count)) {
8800 			static_branch_enable(&perf_sched_events);
8801 			/*
8802 			 * Guarantee that all CPUs observe they key change and
8803 			 * call the perf scheduling hooks before proceeding to
8804 			 * install events that need them.
8805 			 */
8806 			synchronize_sched();
8807 		}
8808 		/*
8809 		 * Now that we have waited for the sync_sched(), allow further
8810 		 * increments to by-pass the mutex.
8811 		 */
8812 		atomic_inc(&perf_sched_count);
8813 		mutex_unlock(&perf_sched_mutex);
8814 	}
8815 enabled:
8816 
8817 	account_event_cpu(event, event->cpu);
8818 
8819 	account_pmu_sb_event(event);
8820 }
8821 
8822 /*
8823  * Allocate and initialize a event structure
8824  */
8825 static struct perf_event *
8826 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8827 		 struct task_struct *task,
8828 		 struct perf_event *group_leader,
8829 		 struct perf_event *parent_event,
8830 		 perf_overflow_handler_t overflow_handler,
8831 		 void *context, int cgroup_fd)
8832 {
8833 	struct pmu *pmu;
8834 	struct perf_event *event;
8835 	struct hw_perf_event *hwc;
8836 	long err = -EINVAL;
8837 
8838 	if ((unsigned)cpu >= nr_cpu_ids) {
8839 		if (!task || cpu != -1)
8840 			return ERR_PTR(-EINVAL);
8841 	}
8842 
8843 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8844 	if (!event)
8845 		return ERR_PTR(-ENOMEM);
8846 
8847 	/*
8848 	 * Single events are their own group leaders, with an
8849 	 * empty sibling list:
8850 	 */
8851 	if (!group_leader)
8852 		group_leader = event;
8853 
8854 	mutex_init(&event->child_mutex);
8855 	INIT_LIST_HEAD(&event->child_list);
8856 
8857 	INIT_LIST_HEAD(&event->group_entry);
8858 	INIT_LIST_HEAD(&event->event_entry);
8859 	INIT_LIST_HEAD(&event->sibling_list);
8860 	INIT_LIST_HEAD(&event->rb_entry);
8861 	INIT_LIST_HEAD(&event->active_entry);
8862 	INIT_LIST_HEAD(&event->addr_filters.list);
8863 	INIT_HLIST_NODE(&event->hlist_entry);
8864 
8865 
8866 	init_waitqueue_head(&event->waitq);
8867 	init_irq_work(&event->pending, perf_pending_event);
8868 
8869 	mutex_init(&event->mmap_mutex);
8870 	raw_spin_lock_init(&event->addr_filters.lock);
8871 
8872 	atomic_long_set(&event->refcount, 1);
8873 	event->cpu		= cpu;
8874 	event->attr		= *attr;
8875 	event->group_leader	= group_leader;
8876 	event->pmu		= NULL;
8877 	event->oncpu		= -1;
8878 
8879 	event->parent		= parent_event;
8880 
8881 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8882 	event->id		= atomic64_inc_return(&perf_event_id);
8883 
8884 	event->state		= PERF_EVENT_STATE_INACTIVE;
8885 
8886 	if (task) {
8887 		event->attach_state = PERF_ATTACH_TASK;
8888 		/*
8889 		 * XXX pmu::event_init needs to know what task to account to
8890 		 * and we cannot use the ctx information because we need the
8891 		 * pmu before we get a ctx.
8892 		 */
8893 		event->hw.target = task;
8894 	}
8895 
8896 	event->clock = &local_clock;
8897 	if (parent_event)
8898 		event->clock = parent_event->clock;
8899 
8900 	if (!overflow_handler && parent_event) {
8901 		overflow_handler = parent_event->overflow_handler;
8902 		context = parent_event->overflow_handler_context;
8903 	}
8904 
8905 	if (overflow_handler) {
8906 		event->overflow_handler	= overflow_handler;
8907 		event->overflow_handler_context = context;
8908 	} else if (is_write_backward(event)){
8909 		event->overflow_handler = perf_event_output_backward;
8910 		event->overflow_handler_context = NULL;
8911 	} else {
8912 		event->overflow_handler = perf_event_output_forward;
8913 		event->overflow_handler_context = NULL;
8914 	}
8915 
8916 	perf_event__state_init(event);
8917 
8918 	pmu = NULL;
8919 
8920 	hwc = &event->hw;
8921 	hwc->sample_period = attr->sample_period;
8922 	if (attr->freq && attr->sample_freq)
8923 		hwc->sample_period = 1;
8924 	hwc->last_period = hwc->sample_period;
8925 
8926 	local64_set(&hwc->period_left, hwc->sample_period);
8927 
8928 	/*
8929 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8930 	 */
8931 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8932 		goto err_ns;
8933 
8934 	if (!has_branch_stack(event))
8935 		event->attr.branch_sample_type = 0;
8936 
8937 	if (cgroup_fd != -1) {
8938 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8939 		if (err)
8940 			goto err_ns;
8941 	}
8942 
8943 	pmu = perf_init_event(event);
8944 	if (!pmu)
8945 		goto err_ns;
8946 	else if (IS_ERR(pmu)) {
8947 		err = PTR_ERR(pmu);
8948 		goto err_ns;
8949 	}
8950 
8951 	err = exclusive_event_init(event);
8952 	if (err)
8953 		goto err_pmu;
8954 
8955 	if (has_addr_filter(event)) {
8956 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8957 						   sizeof(unsigned long),
8958 						   GFP_KERNEL);
8959 		if (!event->addr_filters_offs)
8960 			goto err_per_task;
8961 
8962 		/* force hw sync on the address filters */
8963 		event->addr_filters_gen = 1;
8964 	}
8965 
8966 	if (!event->parent) {
8967 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8968 			err = get_callchain_buffers(attr->sample_max_stack);
8969 			if (err)
8970 				goto err_addr_filters;
8971 		}
8972 	}
8973 
8974 	/* symmetric to unaccount_event() in _free_event() */
8975 	account_event(event);
8976 
8977 	return event;
8978 
8979 err_addr_filters:
8980 	kfree(event->addr_filters_offs);
8981 
8982 err_per_task:
8983 	exclusive_event_destroy(event);
8984 
8985 err_pmu:
8986 	if (event->destroy)
8987 		event->destroy(event);
8988 	module_put(pmu->module);
8989 err_ns:
8990 	if (is_cgroup_event(event))
8991 		perf_detach_cgroup(event);
8992 	if (event->ns)
8993 		put_pid_ns(event->ns);
8994 	kfree(event);
8995 
8996 	return ERR_PTR(err);
8997 }
8998 
8999 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9000 			  struct perf_event_attr *attr)
9001 {
9002 	u32 size;
9003 	int ret;
9004 
9005 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9006 		return -EFAULT;
9007 
9008 	/*
9009 	 * zero the full structure, so that a short copy will be nice.
9010 	 */
9011 	memset(attr, 0, sizeof(*attr));
9012 
9013 	ret = get_user(size, &uattr->size);
9014 	if (ret)
9015 		return ret;
9016 
9017 	if (size > PAGE_SIZE)	/* silly large */
9018 		goto err_size;
9019 
9020 	if (!size)		/* abi compat */
9021 		size = PERF_ATTR_SIZE_VER0;
9022 
9023 	if (size < PERF_ATTR_SIZE_VER0)
9024 		goto err_size;
9025 
9026 	/*
9027 	 * If we're handed a bigger struct than we know of,
9028 	 * ensure all the unknown bits are 0 - i.e. new
9029 	 * user-space does not rely on any kernel feature
9030 	 * extensions we dont know about yet.
9031 	 */
9032 	if (size > sizeof(*attr)) {
9033 		unsigned char __user *addr;
9034 		unsigned char __user *end;
9035 		unsigned char val;
9036 
9037 		addr = (void __user *)uattr + sizeof(*attr);
9038 		end  = (void __user *)uattr + size;
9039 
9040 		for (; addr < end; addr++) {
9041 			ret = get_user(val, addr);
9042 			if (ret)
9043 				return ret;
9044 			if (val)
9045 				goto err_size;
9046 		}
9047 		size = sizeof(*attr);
9048 	}
9049 
9050 	ret = copy_from_user(attr, uattr, size);
9051 	if (ret)
9052 		return -EFAULT;
9053 
9054 	if (attr->__reserved_1)
9055 		return -EINVAL;
9056 
9057 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9058 		return -EINVAL;
9059 
9060 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9061 		return -EINVAL;
9062 
9063 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9064 		u64 mask = attr->branch_sample_type;
9065 
9066 		/* only using defined bits */
9067 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9068 			return -EINVAL;
9069 
9070 		/* at least one branch bit must be set */
9071 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9072 			return -EINVAL;
9073 
9074 		/* propagate priv level, when not set for branch */
9075 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9076 
9077 			/* exclude_kernel checked on syscall entry */
9078 			if (!attr->exclude_kernel)
9079 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9080 
9081 			if (!attr->exclude_user)
9082 				mask |= PERF_SAMPLE_BRANCH_USER;
9083 
9084 			if (!attr->exclude_hv)
9085 				mask |= PERF_SAMPLE_BRANCH_HV;
9086 			/*
9087 			 * adjust user setting (for HW filter setup)
9088 			 */
9089 			attr->branch_sample_type = mask;
9090 		}
9091 		/* privileged levels capture (kernel, hv): check permissions */
9092 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9093 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9094 			return -EACCES;
9095 	}
9096 
9097 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9098 		ret = perf_reg_validate(attr->sample_regs_user);
9099 		if (ret)
9100 			return ret;
9101 	}
9102 
9103 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9104 		if (!arch_perf_have_user_stack_dump())
9105 			return -ENOSYS;
9106 
9107 		/*
9108 		 * We have __u32 type for the size, but so far
9109 		 * we can only use __u16 as maximum due to the
9110 		 * __u16 sample size limit.
9111 		 */
9112 		if (attr->sample_stack_user >= USHRT_MAX)
9113 			ret = -EINVAL;
9114 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9115 			ret = -EINVAL;
9116 	}
9117 
9118 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9119 		ret = perf_reg_validate(attr->sample_regs_intr);
9120 out:
9121 	return ret;
9122 
9123 err_size:
9124 	put_user(sizeof(*attr), &uattr->size);
9125 	ret = -E2BIG;
9126 	goto out;
9127 }
9128 
9129 static int
9130 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9131 {
9132 	struct ring_buffer *rb = NULL;
9133 	int ret = -EINVAL;
9134 
9135 	if (!output_event)
9136 		goto set;
9137 
9138 	/* don't allow circular references */
9139 	if (event == output_event)
9140 		goto out;
9141 
9142 	/*
9143 	 * Don't allow cross-cpu buffers
9144 	 */
9145 	if (output_event->cpu != event->cpu)
9146 		goto out;
9147 
9148 	/*
9149 	 * If its not a per-cpu rb, it must be the same task.
9150 	 */
9151 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9152 		goto out;
9153 
9154 	/*
9155 	 * Mixing clocks in the same buffer is trouble you don't need.
9156 	 */
9157 	if (output_event->clock != event->clock)
9158 		goto out;
9159 
9160 	/*
9161 	 * Either writing ring buffer from beginning or from end.
9162 	 * Mixing is not allowed.
9163 	 */
9164 	if (is_write_backward(output_event) != is_write_backward(event))
9165 		goto out;
9166 
9167 	/*
9168 	 * If both events generate aux data, they must be on the same PMU
9169 	 */
9170 	if (has_aux(event) && has_aux(output_event) &&
9171 	    event->pmu != output_event->pmu)
9172 		goto out;
9173 
9174 set:
9175 	mutex_lock(&event->mmap_mutex);
9176 	/* Can't redirect output if we've got an active mmap() */
9177 	if (atomic_read(&event->mmap_count))
9178 		goto unlock;
9179 
9180 	if (output_event) {
9181 		/* get the rb we want to redirect to */
9182 		rb = ring_buffer_get(output_event);
9183 		if (!rb)
9184 			goto unlock;
9185 	}
9186 
9187 	ring_buffer_attach(event, rb);
9188 
9189 	ret = 0;
9190 unlock:
9191 	mutex_unlock(&event->mmap_mutex);
9192 
9193 out:
9194 	return ret;
9195 }
9196 
9197 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9198 {
9199 	if (b < a)
9200 		swap(a, b);
9201 
9202 	mutex_lock(a);
9203 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9204 }
9205 
9206 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9207 {
9208 	bool nmi_safe = false;
9209 
9210 	switch (clk_id) {
9211 	case CLOCK_MONOTONIC:
9212 		event->clock = &ktime_get_mono_fast_ns;
9213 		nmi_safe = true;
9214 		break;
9215 
9216 	case CLOCK_MONOTONIC_RAW:
9217 		event->clock = &ktime_get_raw_fast_ns;
9218 		nmi_safe = true;
9219 		break;
9220 
9221 	case CLOCK_REALTIME:
9222 		event->clock = &ktime_get_real_ns;
9223 		break;
9224 
9225 	case CLOCK_BOOTTIME:
9226 		event->clock = &ktime_get_boot_ns;
9227 		break;
9228 
9229 	case CLOCK_TAI:
9230 		event->clock = &ktime_get_tai_ns;
9231 		break;
9232 
9233 	default:
9234 		return -EINVAL;
9235 	}
9236 
9237 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9238 		return -EINVAL;
9239 
9240 	return 0;
9241 }
9242 
9243 /**
9244  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9245  *
9246  * @attr_uptr:	event_id type attributes for monitoring/sampling
9247  * @pid:		target pid
9248  * @cpu:		target cpu
9249  * @group_fd:		group leader event fd
9250  */
9251 SYSCALL_DEFINE5(perf_event_open,
9252 		struct perf_event_attr __user *, attr_uptr,
9253 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9254 {
9255 	struct perf_event *group_leader = NULL, *output_event = NULL;
9256 	struct perf_event *event, *sibling;
9257 	struct perf_event_attr attr;
9258 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9259 	struct file *event_file = NULL;
9260 	struct fd group = {NULL, 0};
9261 	struct task_struct *task = NULL;
9262 	struct pmu *pmu;
9263 	int event_fd;
9264 	int move_group = 0;
9265 	int err;
9266 	int f_flags = O_RDWR;
9267 	int cgroup_fd = -1;
9268 
9269 	/* for future expandability... */
9270 	if (flags & ~PERF_FLAG_ALL)
9271 		return -EINVAL;
9272 
9273 	err = perf_copy_attr(attr_uptr, &attr);
9274 	if (err)
9275 		return err;
9276 
9277 	if (!attr.exclude_kernel) {
9278 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9279 			return -EACCES;
9280 	}
9281 
9282 	if (attr.freq) {
9283 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9284 			return -EINVAL;
9285 	} else {
9286 		if (attr.sample_period & (1ULL << 63))
9287 			return -EINVAL;
9288 	}
9289 
9290 	if (!attr.sample_max_stack)
9291 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9292 
9293 	/*
9294 	 * In cgroup mode, the pid argument is used to pass the fd
9295 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9296 	 * designates the cpu on which to monitor threads from that
9297 	 * cgroup.
9298 	 */
9299 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9300 		return -EINVAL;
9301 
9302 	if (flags & PERF_FLAG_FD_CLOEXEC)
9303 		f_flags |= O_CLOEXEC;
9304 
9305 	event_fd = get_unused_fd_flags(f_flags);
9306 	if (event_fd < 0)
9307 		return event_fd;
9308 
9309 	if (group_fd != -1) {
9310 		err = perf_fget_light(group_fd, &group);
9311 		if (err)
9312 			goto err_fd;
9313 		group_leader = group.file->private_data;
9314 		if (flags & PERF_FLAG_FD_OUTPUT)
9315 			output_event = group_leader;
9316 		if (flags & PERF_FLAG_FD_NO_GROUP)
9317 			group_leader = NULL;
9318 	}
9319 
9320 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9321 		task = find_lively_task_by_vpid(pid);
9322 		if (IS_ERR(task)) {
9323 			err = PTR_ERR(task);
9324 			goto err_group_fd;
9325 		}
9326 	}
9327 
9328 	if (task && group_leader &&
9329 	    group_leader->attr.inherit != attr.inherit) {
9330 		err = -EINVAL;
9331 		goto err_task;
9332 	}
9333 
9334 	get_online_cpus();
9335 
9336 	if (task) {
9337 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9338 		if (err)
9339 			goto err_cpus;
9340 
9341 		/*
9342 		 * Reuse ptrace permission checks for now.
9343 		 *
9344 		 * We must hold cred_guard_mutex across this and any potential
9345 		 * perf_install_in_context() call for this new event to
9346 		 * serialize against exec() altering our credentials (and the
9347 		 * perf_event_exit_task() that could imply).
9348 		 */
9349 		err = -EACCES;
9350 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9351 			goto err_cred;
9352 	}
9353 
9354 	if (flags & PERF_FLAG_PID_CGROUP)
9355 		cgroup_fd = pid;
9356 
9357 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9358 				 NULL, NULL, cgroup_fd);
9359 	if (IS_ERR(event)) {
9360 		err = PTR_ERR(event);
9361 		goto err_cred;
9362 	}
9363 
9364 	if (is_sampling_event(event)) {
9365 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9366 			err = -EOPNOTSUPP;
9367 			goto err_alloc;
9368 		}
9369 	}
9370 
9371 	/*
9372 	 * Special case software events and allow them to be part of
9373 	 * any hardware group.
9374 	 */
9375 	pmu = event->pmu;
9376 
9377 	if (attr.use_clockid) {
9378 		err = perf_event_set_clock(event, attr.clockid);
9379 		if (err)
9380 			goto err_alloc;
9381 	}
9382 
9383 	if (group_leader &&
9384 	    (is_software_event(event) != is_software_event(group_leader))) {
9385 		if (is_software_event(event)) {
9386 			/*
9387 			 * If event and group_leader are not both a software
9388 			 * event, and event is, then group leader is not.
9389 			 *
9390 			 * Allow the addition of software events to !software
9391 			 * groups, this is safe because software events never
9392 			 * fail to schedule.
9393 			 */
9394 			pmu = group_leader->pmu;
9395 		} else if (is_software_event(group_leader) &&
9396 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9397 			/*
9398 			 * In case the group is a pure software group, and we
9399 			 * try to add a hardware event, move the whole group to
9400 			 * the hardware context.
9401 			 */
9402 			move_group = 1;
9403 		}
9404 	}
9405 
9406 	/*
9407 	 * Get the target context (task or percpu):
9408 	 */
9409 	ctx = find_get_context(pmu, task, event);
9410 	if (IS_ERR(ctx)) {
9411 		err = PTR_ERR(ctx);
9412 		goto err_alloc;
9413 	}
9414 
9415 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9416 		err = -EBUSY;
9417 		goto err_context;
9418 	}
9419 
9420 	/*
9421 	 * Look up the group leader (we will attach this event to it):
9422 	 */
9423 	if (group_leader) {
9424 		err = -EINVAL;
9425 
9426 		/*
9427 		 * Do not allow a recursive hierarchy (this new sibling
9428 		 * becoming part of another group-sibling):
9429 		 */
9430 		if (group_leader->group_leader != group_leader)
9431 			goto err_context;
9432 
9433 		/* All events in a group should have the same clock */
9434 		if (group_leader->clock != event->clock)
9435 			goto err_context;
9436 
9437 		/*
9438 		 * Do not allow to attach to a group in a different
9439 		 * task or CPU context:
9440 		 */
9441 		if (move_group) {
9442 			/*
9443 			 * Make sure we're both on the same task, or both
9444 			 * per-cpu events.
9445 			 */
9446 			if (group_leader->ctx->task != ctx->task)
9447 				goto err_context;
9448 
9449 			/*
9450 			 * Make sure we're both events for the same CPU;
9451 			 * grouping events for different CPUs is broken; since
9452 			 * you can never concurrently schedule them anyhow.
9453 			 */
9454 			if (group_leader->cpu != event->cpu)
9455 				goto err_context;
9456 		} else {
9457 			if (group_leader->ctx != ctx)
9458 				goto err_context;
9459 		}
9460 
9461 		/*
9462 		 * Only a group leader can be exclusive or pinned
9463 		 */
9464 		if (attr.exclusive || attr.pinned)
9465 			goto err_context;
9466 	}
9467 
9468 	if (output_event) {
9469 		err = perf_event_set_output(event, output_event);
9470 		if (err)
9471 			goto err_context;
9472 	}
9473 
9474 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9475 					f_flags);
9476 	if (IS_ERR(event_file)) {
9477 		err = PTR_ERR(event_file);
9478 		event_file = NULL;
9479 		goto err_context;
9480 	}
9481 
9482 	if (move_group) {
9483 		gctx = group_leader->ctx;
9484 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9485 		if (gctx->task == TASK_TOMBSTONE) {
9486 			err = -ESRCH;
9487 			goto err_locked;
9488 		}
9489 	} else {
9490 		mutex_lock(&ctx->mutex);
9491 	}
9492 
9493 	if (ctx->task == TASK_TOMBSTONE) {
9494 		err = -ESRCH;
9495 		goto err_locked;
9496 	}
9497 
9498 	if (!perf_event_validate_size(event)) {
9499 		err = -E2BIG;
9500 		goto err_locked;
9501 	}
9502 
9503 	/*
9504 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9505 	 * because we need to serialize with concurrent event creation.
9506 	 */
9507 	if (!exclusive_event_installable(event, ctx)) {
9508 		/* exclusive and group stuff are assumed mutually exclusive */
9509 		WARN_ON_ONCE(move_group);
9510 
9511 		err = -EBUSY;
9512 		goto err_locked;
9513 	}
9514 
9515 	WARN_ON_ONCE(ctx->parent_ctx);
9516 
9517 	/*
9518 	 * This is the point on no return; we cannot fail hereafter. This is
9519 	 * where we start modifying current state.
9520 	 */
9521 
9522 	if (move_group) {
9523 		/*
9524 		 * See perf_event_ctx_lock() for comments on the details
9525 		 * of swizzling perf_event::ctx.
9526 		 */
9527 		perf_remove_from_context(group_leader, 0);
9528 
9529 		list_for_each_entry(sibling, &group_leader->sibling_list,
9530 				    group_entry) {
9531 			perf_remove_from_context(sibling, 0);
9532 			put_ctx(gctx);
9533 		}
9534 
9535 		/*
9536 		 * Wait for everybody to stop referencing the events through
9537 		 * the old lists, before installing it on new lists.
9538 		 */
9539 		synchronize_rcu();
9540 
9541 		/*
9542 		 * Install the group siblings before the group leader.
9543 		 *
9544 		 * Because a group leader will try and install the entire group
9545 		 * (through the sibling list, which is still in-tact), we can
9546 		 * end up with siblings installed in the wrong context.
9547 		 *
9548 		 * By installing siblings first we NO-OP because they're not
9549 		 * reachable through the group lists.
9550 		 */
9551 		list_for_each_entry(sibling, &group_leader->sibling_list,
9552 				    group_entry) {
9553 			perf_event__state_init(sibling);
9554 			perf_install_in_context(ctx, sibling, sibling->cpu);
9555 			get_ctx(ctx);
9556 		}
9557 
9558 		/*
9559 		 * Removing from the context ends up with disabled
9560 		 * event. What we want here is event in the initial
9561 		 * startup state, ready to be add into new context.
9562 		 */
9563 		perf_event__state_init(group_leader);
9564 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9565 		get_ctx(ctx);
9566 
9567 		/*
9568 		 * Now that all events are installed in @ctx, nothing
9569 		 * references @gctx anymore, so drop the last reference we have
9570 		 * on it.
9571 		 */
9572 		put_ctx(gctx);
9573 	}
9574 
9575 	/*
9576 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9577 	 * that we're serialized against further additions and before
9578 	 * perf_install_in_context() which is the point the event is active and
9579 	 * can use these values.
9580 	 */
9581 	perf_event__header_size(event);
9582 	perf_event__id_header_size(event);
9583 
9584 	event->owner = current;
9585 
9586 	perf_install_in_context(ctx, event, event->cpu);
9587 	perf_unpin_context(ctx);
9588 
9589 	if (move_group)
9590 		mutex_unlock(&gctx->mutex);
9591 	mutex_unlock(&ctx->mutex);
9592 
9593 	if (task) {
9594 		mutex_unlock(&task->signal->cred_guard_mutex);
9595 		put_task_struct(task);
9596 	}
9597 
9598 	put_online_cpus();
9599 
9600 	mutex_lock(&current->perf_event_mutex);
9601 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9602 	mutex_unlock(&current->perf_event_mutex);
9603 
9604 	/*
9605 	 * Drop the reference on the group_event after placing the
9606 	 * new event on the sibling_list. This ensures destruction
9607 	 * of the group leader will find the pointer to itself in
9608 	 * perf_group_detach().
9609 	 */
9610 	fdput(group);
9611 	fd_install(event_fd, event_file);
9612 	return event_fd;
9613 
9614 err_locked:
9615 	if (move_group)
9616 		mutex_unlock(&gctx->mutex);
9617 	mutex_unlock(&ctx->mutex);
9618 /* err_file: */
9619 	fput(event_file);
9620 err_context:
9621 	perf_unpin_context(ctx);
9622 	put_ctx(ctx);
9623 err_alloc:
9624 	/*
9625 	 * If event_file is set, the fput() above will have called ->release()
9626 	 * and that will take care of freeing the event.
9627 	 */
9628 	if (!event_file)
9629 		free_event(event);
9630 err_cred:
9631 	if (task)
9632 		mutex_unlock(&task->signal->cred_guard_mutex);
9633 err_cpus:
9634 	put_online_cpus();
9635 err_task:
9636 	if (task)
9637 		put_task_struct(task);
9638 err_group_fd:
9639 	fdput(group);
9640 err_fd:
9641 	put_unused_fd(event_fd);
9642 	return err;
9643 }
9644 
9645 /**
9646  * perf_event_create_kernel_counter
9647  *
9648  * @attr: attributes of the counter to create
9649  * @cpu: cpu in which the counter is bound
9650  * @task: task to profile (NULL for percpu)
9651  */
9652 struct perf_event *
9653 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9654 				 struct task_struct *task,
9655 				 perf_overflow_handler_t overflow_handler,
9656 				 void *context)
9657 {
9658 	struct perf_event_context *ctx;
9659 	struct perf_event *event;
9660 	int err;
9661 
9662 	/*
9663 	 * Get the target context (task or percpu):
9664 	 */
9665 
9666 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9667 				 overflow_handler, context, -1);
9668 	if (IS_ERR(event)) {
9669 		err = PTR_ERR(event);
9670 		goto err;
9671 	}
9672 
9673 	/* Mark owner so we could distinguish it from user events. */
9674 	event->owner = TASK_TOMBSTONE;
9675 
9676 	ctx = find_get_context(event->pmu, task, event);
9677 	if (IS_ERR(ctx)) {
9678 		err = PTR_ERR(ctx);
9679 		goto err_free;
9680 	}
9681 
9682 	WARN_ON_ONCE(ctx->parent_ctx);
9683 	mutex_lock(&ctx->mutex);
9684 	if (ctx->task == TASK_TOMBSTONE) {
9685 		err = -ESRCH;
9686 		goto err_unlock;
9687 	}
9688 
9689 	if (!exclusive_event_installable(event, ctx)) {
9690 		err = -EBUSY;
9691 		goto err_unlock;
9692 	}
9693 
9694 	perf_install_in_context(ctx, event, cpu);
9695 	perf_unpin_context(ctx);
9696 	mutex_unlock(&ctx->mutex);
9697 
9698 	return event;
9699 
9700 err_unlock:
9701 	mutex_unlock(&ctx->mutex);
9702 	perf_unpin_context(ctx);
9703 	put_ctx(ctx);
9704 err_free:
9705 	free_event(event);
9706 err:
9707 	return ERR_PTR(err);
9708 }
9709 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9710 
9711 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9712 {
9713 	struct perf_event_context *src_ctx;
9714 	struct perf_event_context *dst_ctx;
9715 	struct perf_event *event, *tmp;
9716 	LIST_HEAD(events);
9717 
9718 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9719 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9720 
9721 	/*
9722 	 * See perf_event_ctx_lock() for comments on the details
9723 	 * of swizzling perf_event::ctx.
9724 	 */
9725 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9726 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9727 				 event_entry) {
9728 		perf_remove_from_context(event, 0);
9729 		unaccount_event_cpu(event, src_cpu);
9730 		put_ctx(src_ctx);
9731 		list_add(&event->migrate_entry, &events);
9732 	}
9733 
9734 	/*
9735 	 * Wait for the events to quiesce before re-instating them.
9736 	 */
9737 	synchronize_rcu();
9738 
9739 	/*
9740 	 * Re-instate events in 2 passes.
9741 	 *
9742 	 * Skip over group leaders and only install siblings on this first
9743 	 * pass, siblings will not get enabled without a leader, however a
9744 	 * leader will enable its siblings, even if those are still on the old
9745 	 * context.
9746 	 */
9747 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9748 		if (event->group_leader == event)
9749 			continue;
9750 
9751 		list_del(&event->migrate_entry);
9752 		if (event->state >= PERF_EVENT_STATE_OFF)
9753 			event->state = PERF_EVENT_STATE_INACTIVE;
9754 		account_event_cpu(event, dst_cpu);
9755 		perf_install_in_context(dst_ctx, event, dst_cpu);
9756 		get_ctx(dst_ctx);
9757 	}
9758 
9759 	/*
9760 	 * Once all the siblings are setup properly, install the group leaders
9761 	 * to make it go.
9762 	 */
9763 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9764 		list_del(&event->migrate_entry);
9765 		if (event->state >= PERF_EVENT_STATE_OFF)
9766 			event->state = PERF_EVENT_STATE_INACTIVE;
9767 		account_event_cpu(event, dst_cpu);
9768 		perf_install_in_context(dst_ctx, event, dst_cpu);
9769 		get_ctx(dst_ctx);
9770 	}
9771 	mutex_unlock(&dst_ctx->mutex);
9772 	mutex_unlock(&src_ctx->mutex);
9773 }
9774 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9775 
9776 static void sync_child_event(struct perf_event *child_event,
9777 			       struct task_struct *child)
9778 {
9779 	struct perf_event *parent_event = child_event->parent;
9780 	u64 child_val;
9781 
9782 	if (child_event->attr.inherit_stat)
9783 		perf_event_read_event(child_event, child);
9784 
9785 	child_val = perf_event_count(child_event);
9786 
9787 	/*
9788 	 * Add back the child's count to the parent's count:
9789 	 */
9790 	atomic64_add(child_val, &parent_event->child_count);
9791 	atomic64_add(child_event->total_time_enabled,
9792 		     &parent_event->child_total_time_enabled);
9793 	atomic64_add(child_event->total_time_running,
9794 		     &parent_event->child_total_time_running);
9795 }
9796 
9797 static void
9798 perf_event_exit_event(struct perf_event *child_event,
9799 		      struct perf_event_context *child_ctx,
9800 		      struct task_struct *child)
9801 {
9802 	struct perf_event *parent_event = child_event->parent;
9803 
9804 	/*
9805 	 * Do not destroy the 'original' grouping; because of the context
9806 	 * switch optimization the original events could've ended up in a
9807 	 * random child task.
9808 	 *
9809 	 * If we were to destroy the original group, all group related
9810 	 * operations would cease to function properly after this random
9811 	 * child dies.
9812 	 *
9813 	 * Do destroy all inherited groups, we don't care about those
9814 	 * and being thorough is better.
9815 	 */
9816 	raw_spin_lock_irq(&child_ctx->lock);
9817 	WARN_ON_ONCE(child_ctx->is_active);
9818 
9819 	if (parent_event)
9820 		perf_group_detach(child_event);
9821 	list_del_event(child_event, child_ctx);
9822 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9823 	raw_spin_unlock_irq(&child_ctx->lock);
9824 
9825 	/*
9826 	 * Parent events are governed by their filedesc, retain them.
9827 	 */
9828 	if (!parent_event) {
9829 		perf_event_wakeup(child_event);
9830 		return;
9831 	}
9832 	/*
9833 	 * Child events can be cleaned up.
9834 	 */
9835 
9836 	sync_child_event(child_event, child);
9837 
9838 	/*
9839 	 * Remove this event from the parent's list
9840 	 */
9841 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9842 	mutex_lock(&parent_event->child_mutex);
9843 	list_del_init(&child_event->child_list);
9844 	mutex_unlock(&parent_event->child_mutex);
9845 
9846 	/*
9847 	 * Kick perf_poll() for is_event_hup().
9848 	 */
9849 	perf_event_wakeup(parent_event);
9850 	free_event(child_event);
9851 	put_event(parent_event);
9852 }
9853 
9854 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9855 {
9856 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9857 	struct perf_event *child_event, *next;
9858 
9859 	WARN_ON_ONCE(child != current);
9860 
9861 	child_ctx = perf_pin_task_context(child, ctxn);
9862 	if (!child_ctx)
9863 		return;
9864 
9865 	/*
9866 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9867 	 * ctx::mutex over the entire thing. This serializes against almost
9868 	 * everything that wants to access the ctx.
9869 	 *
9870 	 * The exception is sys_perf_event_open() /
9871 	 * perf_event_create_kernel_count() which does find_get_context()
9872 	 * without ctx::mutex (it cannot because of the move_group double mutex
9873 	 * lock thing). See the comments in perf_install_in_context().
9874 	 */
9875 	mutex_lock(&child_ctx->mutex);
9876 
9877 	/*
9878 	 * In a single ctx::lock section, de-schedule the events and detach the
9879 	 * context from the task such that we cannot ever get it scheduled back
9880 	 * in.
9881 	 */
9882 	raw_spin_lock_irq(&child_ctx->lock);
9883 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9884 
9885 	/*
9886 	 * Now that the context is inactive, destroy the task <-> ctx relation
9887 	 * and mark the context dead.
9888 	 */
9889 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9890 	put_ctx(child_ctx); /* cannot be last */
9891 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9892 	put_task_struct(current); /* cannot be last */
9893 
9894 	clone_ctx = unclone_ctx(child_ctx);
9895 	raw_spin_unlock_irq(&child_ctx->lock);
9896 
9897 	if (clone_ctx)
9898 		put_ctx(clone_ctx);
9899 
9900 	/*
9901 	 * Report the task dead after unscheduling the events so that we
9902 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
9903 	 * get a few PERF_RECORD_READ events.
9904 	 */
9905 	perf_event_task(child, child_ctx, 0);
9906 
9907 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9908 		perf_event_exit_event(child_event, child_ctx, child);
9909 
9910 	mutex_unlock(&child_ctx->mutex);
9911 
9912 	put_ctx(child_ctx);
9913 }
9914 
9915 /*
9916  * When a child task exits, feed back event values to parent events.
9917  *
9918  * Can be called with cred_guard_mutex held when called from
9919  * install_exec_creds().
9920  */
9921 void perf_event_exit_task(struct task_struct *child)
9922 {
9923 	struct perf_event *event, *tmp;
9924 	int ctxn;
9925 
9926 	mutex_lock(&child->perf_event_mutex);
9927 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9928 				 owner_entry) {
9929 		list_del_init(&event->owner_entry);
9930 
9931 		/*
9932 		 * Ensure the list deletion is visible before we clear
9933 		 * the owner, closes a race against perf_release() where
9934 		 * we need to serialize on the owner->perf_event_mutex.
9935 		 */
9936 		smp_store_release(&event->owner, NULL);
9937 	}
9938 	mutex_unlock(&child->perf_event_mutex);
9939 
9940 	for_each_task_context_nr(ctxn)
9941 		perf_event_exit_task_context(child, ctxn);
9942 
9943 	/*
9944 	 * The perf_event_exit_task_context calls perf_event_task
9945 	 * with child's task_ctx, which generates EXIT events for
9946 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9947 	 * At this point we need to send EXIT events to cpu contexts.
9948 	 */
9949 	perf_event_task(child, NULL, 0);
9950 }
9951 
9952 static void perf_free_event(struct perf_event *event,
9953 			    struct perf_event_context *ctx)
9954 {
9955 	struct perf_event *parent = event->parent;
9956 
9957 	if (WARN_ON_ONCE(!parent))
9958 		return;
9959 
9960 	mutex_lock(&parent->child_mutex);
9961 	list_del_init(&event->child_list);
9962 	mutex_unlock(&parent->child_mutex);
9963 
9964 	put_event(parent);
9965 
9966 	raw_spin_lock_irq(&ctx->lock);
9967 	perf_group_detach(event);
9968 	list_del_event(event, ctx);
9969 	raw_spin_unlock_irq(&ctx->lock);
9970 	free_event(event);
9971 }
9972 
9973 /*
9974  * Free an unexposed, unused context as created by inheritance by
9975  * perf_event_init_task below, used by fork() in case of fail.
9976  *
9977  * Not all locks are strictly required, but take them anyway to be nice and
9978  * help out with the lockdep assertions.
9979  */
9980 void perf_event_free_task(struct task_struct *task)
9981 {
9982 	struct perf_event_context *ctx;
9983 	struct perf_event *event, *tmp;
9984 	int ctxn;
9985 
9986 	for_each_task_context_nr(ctxn) {
9987 		ctx = task->perf_event_ctxp[ctxn];
9988 		if (!ctx)
9989 			continue;
9990 
9991 		mutex_lock(&ctx->mutex);
9992 again:
9993 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9994 				group_entry)
9995 			perf_free_event(event, ctx);
9996 
9997 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9998 				group_entry)
9999 			perf_free_event(event, ctx);
10000 
10001 		if (!list_empty(&ctx->pinned_groups) ||
10002 				!list_empty(&ctx->flexible_groups))
10003 			goto again;
10004 
10005 		mutex_unlock(&ctx->mutex);
10006 
10007 		put_ctx(ctx);
10008 	}
10009 }
10010 
10011 void perf_event_delayed_put(struct task_struct *task)
10012 {
10013 	int ctxn;
10014 
10015 	for_each_task_context_nr(ctxn)
10016 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10017 }
10018 
10019 struct file *perf_event_get(unsigned int fd)
10020 {
10021 	struct file *file;
10022 
10023 	file = fget_raw(fd);
10024 	if (!file)
10025 		return ERR_PTR(-EBADF);
10026 
10027 	if (file->f_op != &perf_fops) {
10028 		fput(file);
10029 		return ERR_PTR(-EBADF);
10030 	}
10031 
10032 	return file;
10033 }
10034 
10035 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10036 {
10037 	if (!event)
10038 		return ERR_PTR(-EINVAL);
10039 
10040 	return &event->attr;
10041 }
10042 
10043 /*
10044  * inherit a event from parent task to child task:
10045  */
10046 static struct perf_event *
10047 inherit_event(struct perf_event *parent_event,
10048 	      struct task_struct *parent,
10049 	      struct perf_event_context *parent_ctx,
10050 	      struct task_struct *child,
10051 	      struct perf_event *group_leader,
10052 	      struct perf_event_context *child_ctx)
10053 {
10054 	enum perf_event_active_state parent_state = parent_event->state;
10055 	struct perf_event *child_event;
10056 	unsigned long flags;
10057 
10058 	/*
10059 	 * Instead of creating recursive hierarchies of events,
10060 	 * we link inherited events back to the original parent,
10061 	 * which has a filp for sure, which we use as the reference
10062 	 * count:
10063 	 */
10064 	if (parent_event->parent)
10065 		parent_event = parent_event->parent;
10066 
10067 	child_event = perf_event_alloc(&parent_event->attr,
10068 					   parent_event->cpu,
10069 					   child,
10070 					   group_leader, parent_event,
10071 					   NULL, NULL, -1);
10072 	if (IS_ERR(child_event))
10073 		return child_event;
10074 
10075 	/*
10076 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10077 	 * must be under the same lock in order to serialize against
10078 	 * perf_event_release_kernel(), such that either we must observe
10079 	 * is_orphaned_event() or they will observe us on the child_list.
10080 	 */
10081 	mutex_lock(&parent_event->child_mutex);
10082 	if (is_orphaned_event(parent_event) ||
10083 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10084 		mutex_unlock(&parent_event->child_mutex);
10085 		free_event(child_event);
10086 		return NULL;
10087 	}
10088 
10089 	get_ctx(child_ctx);
10090 
10091 	/*
10092 	 * Make the child state follow the state of the parent event,
10093 	 * not its attr.disabled bit.  We hold the parent's mutex,
10094 	 * so we won't race with perf_event_{en, dis}able_family.
10095 	 */
10096 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10097 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10098 	else
10099 		child_event->state = PERF_EVENT_STATE_OFF;
10100 
10101 	if (parent_event->attr.freq) {
10102 		u64 sample_period = parent_event->hw.sample_period;
10103 		struct hw_perf_event *hwc = &child_event->hw;
10104 
10105 		hwc->sample_period = sample_period;
10106 		hwc->last_period   = sample_period;
10107 
10108 		local64_set(&hwc->period_left, sample_period);
10109 	}
10110 
10111 	child_event->ctx = child_ctx;
10112 	child_event->overflow_handler = parent_event->overflow_handler;
10113 	child_event->overflow_handler_context
10114 		= parent_event->overflow_handler_context;
10115 
10116 	/*
10117 	 * Precalculate sample_data sizes
10118 	 */
10119 	perf_event__header_size(child_event);
10120 	perf_event__id_header_size(child_event);
10121 
10122 	/*
10123 	 * Link it up in the child's context:
10124 	 */
10125 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10126 	add_event_to_ctx(child_event, child_ctx);
10127 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10128 
10129 	/*
10130 	 * Link this into the parent event's child list
10131 	 */
10132 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10133 	mutex_unlock(&parent_event->child_mutex);
10134 
10135 	return child_event;
10136 }
10137 
10138 static int inherit_group(struct perf_event *parent_event,
10139 	      struct task_struct *parent,
10140 	      struct perf_event_context *parent_ctx,
10141 	      struct task_struct *child,
10142 	      struct perf_event_context *child_ctx)
10143 {
10144 	struct perf_event *leader;
10145 	struct perf_event *sub;
10146 	struct perf_event *child_ctr;
10147 
10148 	leader = inherit_event(parent_event, parent, parent_ctx,
10149 				 child, NULL, child_ctx);
10150 	if (IS_ERR(leader))
10151 		return PTR_ERR(leader);
10152 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10153 		child_ctr = inherit_event(sub, parent, parent_ctx,
10154 					    child, leader, child_ctx);
10155 		if (IS_ERR(child_ctr))
10156 			return PTR_ERR(child_ctr);
10157 	}
10158 	return 0;
10159 }
10160 
10161 static int
10162 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10163 		   struct perf_event_context *parent_ctx,
10164 		   struct task_struct *child, int ctxn,
10165 		   int *inherited_all)
10166 {
10167 	int ret;
10168 	struct perf_event_context *child_ctx;
10169 
10170 	if (!event->attr.inherit) {
10171 		*inherited_all = 0;
10172 		return 0;
10173 	}
10174 
10175 	child_ctx = child->perf_event_ctxp[ctxn];
10176 	if (!child_ctx) {
10177 		/*
10178 		 * This is executed from the parent task context, so
10179 		 * inherit events that have been marked for cloning.
10180 		 * First allocate and initialize a context for the
10181 		 * child.
10182 		 */
10183 
10184 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10185 		if (!child_ctx)
10186 			return -ENOMEM;
10187 
10188 		child->perf_event_ctxp[ctxn] = child_ctx;
10189 	}
10190 
10191 	ret = inherit_group(event, parent, parent_ctx,
10192 			    child, child_ctx);
10193 
10194 	if (ret)
10195 		*inherited_all = 0;
10196 
10197 	return ret;
10198 }
10199 
10200 /*
10201  * Initialize the perf_event context in task_struct
10202  */
10203 static int perf_event_init_context(struct task_struct *child, int ctxn)
10204 {
10205 	struct perf_event_context *child_ctx, *parent_ctx;
10206 	struct perf_event_context *cloned_ctx;
10207 	struct perf_event *event;
10208 	struct task_struct *parent = current;
10209 	int inherited_all = 1;
10210 	unsigned long flags;
10211 	int ret = 0;
10212 
10213 	if (likely(!parent->perf_event_ctxp[ctxn]))
10214 		return 0;
10215 
10216 	/*
10217 	 * If the parent's context is a clone, pin it so it won't get
10218 	 * swapped under us.
10219 	 */
10220 	parent_ctx = perf_pin_task_context(parent, ctxn);
10221 	if (!parent_ctx)
10222 		return 0;
10223 
10224 	/*
10225 	 * No need to check if parent_ctx != NULL here; since we saw
10226 	 * it non-NULL earlier, the only reason for it to become NULL
10227 	 * is if we exit, and since we're currently in the middle of
10228 	 * a fork we can't be exiting at the same time.
10229 	 */
10230 
10231 	/*
10232 	 * Lock the parent list. No need to lock the child - not PID
10233 	 * hashed yet and not running, so nobody can access it.
10234 	 */
10235 	mutex_lock(&parent_ctx->mutex);
10236 
10237 	/*
10238 	 * We dont have to disable NMIs - we are only looking at
10239 	 * the list, not manipulating it:
10240 	 */
10241 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10242 		ret = inherit_task_group(event, parent, parent_ctx,
10243 					 child, ctxn, &inherited_all);
10244 		if (ret)
10245 			break;
10246 	}
10247 
10248 	/*
10249 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10250 	 * to allocations, but we need to prevent rotation because
10251 	 * rotate_ctx() will change the list from interrupt context.
10252 	 */
10253 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10254 	parent_ctx->rotate_disable = 1;
10255 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10256 
10257 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10258 		ret = inherit_task_group(event, parent, parent_ctx,
10259 					 child, ctxn, &inherited_all);
10260 		if (ret)
10261 			break;
10262 	}
10263 
10264 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10265 	parent_ctx->rotate_disable = 0;
10266 
10267 	child_ctx = child->perf_event_ctxp[ctxn];
10268 
10269 	if (child_ctx && inherited_all) {
10270 		/*
10271 		 * Mark the child context as a clone of the parent
10272 		 * context, or of whatever the parent is a clone of.
10273 		 *
10274 		 * Note that if the parent is a clone, the holding of
10275 		 * parent_ctx->lock avoids it from being uncloned.
10276 		 */
10277 		cloned_ctx = parent_ctx->parent_ctx;
10278 		if (cloned_ctx) {
10279 			child_ctx->parent_ctx = cloned_ctx;
10280 			child_ctx->parent_gen = parent_ctx->parent_gen;
10281 		} else {
10282 			child_ctx->parent_ctx = parent_ctx;
10283 			child_ctx->parent_gen = parent_ctx->generation;
10284 		}
10285 		get_ctx(child_ctx->parent_ctx);
10286 	}
10287 
10288 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10289 	mutex_unlock(&parent_ctx->mutex);
10290 
10291 	perf_unpin_context(parent_ctx);
10292 	put_ctx(parent_ctx);
10293 
10294 	return ret;
10295 }
10296 
10297 /*
10298  * Initialize the perf_event context in task_struct
10299  */
10300 int perf_event_init_task(struct task_struct *child)
10301 {
10302 	int ctxn, ret;
10303 
10304 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10305 	mutex_init(&child->perf_event_mutex);
10306 	INIT_LIST_HEAD(&child->perf_event_list);
10307 
10308 	for_each_task_context_nr(ctxn) {
10309 		ret = perf_event_init_context(child, ctxn);
10310 		if (ret) {
10311 			perf_event_free_task(child);
10312 			return ret;
10313 		}
10314 	}
10315 
10316 	return 0;
10317 }
10318 
10319 static void __init perf_event_init_all_cpus(void)
10320 {
10321 	struct swevent_htable *swhash;
10322 	int cpu;
10323 
10324 	for_each_possible_cpu(cpu) {
10325 		swhash = &per_cpu(swevent_htable, cpu);
10326 		mutex_init(&swhash->hlist_mutex);
10327 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10328 
10329 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10330 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10331 	}
10332 }
10333 
10334 static void perf_event_init_cpu(int cpu)
10335 {
10336 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10337 
10338 	mutex_lock(&swhash->hlist_mutex);
10339 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10340 		struct swevent_hlist *hlist;
10341 
10342 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10343 		WARN_ON(!hlist);
10344 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10345 	}
10346 	mutex_unlock(&swhash->hlist_mutex);
10347 }
10348 
10349 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10350 static void __perf_event_exit_context(void *__info)
10351 {
10352 	struct perf_event_context *ctx = __info;
10353 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10354 	struct perf_event *event;
10355 
10356 	raw_spin_lock(&ctx->lock);
10357 	list_for_each_entry(event, &ctx->event_list, event_entry)
10358 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10359 	raw_spin_unlock(&ctx->lock);
10360 }
10361 
10362 static void perf_event_exit_cpu_context(int cpu)
10363 {
10364 	struct perf_event_context *ctx;
10365 	struct pmu *pmu;
10366 	int idx;
10367 
10368 	idx = srcu_read_lock(&pmus_srcu);
10369 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10370 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10371 
10372 		mutex_lock(&ctx->mutex);
10373 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10374 		mutex_unlock(&ctx->mutex);
10375 	}
10376 	srcu_read_unlock(&pmus_srcu, idx);
10377 }
10378 
10379 static void perf_event_exit_cpu(int cpu)
10380 {
10381 	perf_event_exit_cpu_context(cpu);
10382 }
10383 #else
10384 static inline void perf_event_exit_cpu(int cpu) { }
10385 #endif
10386 
10387 static int
10388 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10389 {
10390 	int cpu;
10391 
10392 	for_each_online_cpu(cpu)
10393 		perf_event_exit_cpu(cpu);
10394 
10395 	return NOTIFY_OK;
10396 }
10397 
10398 /*
10399  * Run the perf reboot notifier at the very last possible moment so that
10400  * the generic watchdog code runs as long as possible.
10401  */
10402 static struct notifier_block perf_reboot_notifier = {
10403 	.notifier_call = perf_reboot,
10404 	.priority = INT_MIN,
10405 };
10406 
10407 static int
10408 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10409 {
10410 	unsigned int cpu = (long)hcpu;
10411 
10412 	switch (action & ~CPU_TASKS_FROZEN) {
10413 
10414 	case CPU_UP_PREPARE:
10415 		/*
10416 		 * This must be done before the CPU comes alive, because the
10417 		 * moment we can run tasks we can encounter (software) events.
10418 		 *
10419 		 * Specifically, someone can have inherited events on kthreadd
10420 		 * or a pre-existing worker thread that gets re-bound.
10421 		 */
10422 		perf_event_init_cpu(cpu);
10423 		break;
10424 
10425 	case CPU_DOWN_PREPARE:
10426 		/*
10427 		 * This must be done before the CPU dies because after that an
10428 		 * active event might want to IPI the CPU and that'll not work
10429 		 * so great for dead CPUs.
10430 		 *
10431 		 * XXX smp_call_function_single() return -ENXIO without a warn
10432 		 * so we could possibly deal with this.
10433 		 *
10434 		 * This is safe against new events arriving because
10435 		 * sys_perf_event_open() serializes against hotplug using
10436 		 * get_online_cpus().
10437 		 */
10438 		perf_event_exit_cpu(cpu);
10439 		break;
10440 	default:
10441 		break;
10442 	}
10443 
10444 	return NOTIFY_OK;
10445 }
10446 
10447 void __init perf_event_init(void)
10448 {
10449 	int ret;
10450 
10451 	idr_init(&pmu_idr);
10452 
10453 	perf_event_init_all_cpus();
10454 	init_srcu_struct(&pmus_srcu);
10455 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10456 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10457 	perf_pmu_register(&perf_task_clock, NULL, -1);
10458 	perf_tp_register();
10459 	perf_cpu_notifier(perf_cpu_notify);
10460 	register_reboot_notifier(&perf_reboot_notifier);
10461 
10462 	ret = init_hw_breakpoint();
10463 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10464 
10465 	/*
10466 	 * Build time assertion that we keep the data_head at the intended
10467 	 * location.  IOW, validation we got the __reserved[] size right.
10468 	 */
10469 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10470 		     != 1024);
10471 }
10472 
10473 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10474 			      char *page)
10475 {
10476 	struct perf_pmu_events_attr *pmu_attr =
10477 		container_of(attr, struct perf_pmu_events_attr, attr);
10478 
10479 	if (pmu_attr->event_str)
10480 		return sprintf(page, "%s\n", pmu_attr->event_str);
10481 
10482 	return 0;
10483 }
10484 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10485 
10486 static int __init perf_event_sysfs_init(void)
10487 {
10488 	struct pmu *pmu;
10489 	int ret;
10490 
10491 	mutex_lock(&pmus_lock);
10492 
10493 	ret = bus_register(&pmu_bus);
10494 	if (ret)
10495 		goto unlock;
10496 
10497 	list_for_each_entry(pmu, &pmus, entry) {
10498 		if (!pmu->name || pmu->type < 0)
10499 			continue;
10500 
10501 		ret = pmu_dev_alloc(pmu);
10502 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10503 	}
10504 	pmu_bus_running = 1;
10505 	ret = 0;
10506 
10507 unlock:
10508 	mutex_unlock(&pmus_lock);
10509 
10510 	return ret;
10511 }
10512 device_initcall(perf_event_sysfs_init);
10513 
10514 #ifdef CONFIG_CGROUP_PERF
10515 static struct cgroup_subsys_state *
10516 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10517 {
10518 	struct perf_cgroup *jc;
10519 
10520 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10521 	if (!jc)
10522 		return ERR_PTR(-ENOMEM);
10523 
10524 	jc->info = alloc_percpu(struct perf_cgroup_info);
10525 	if (!jc->info) {
10526 		kfree(jc);
10527 		return ERR_PTR(-ENOMEM);
10528 	}
10529 
10530 	return &jc->css;
10531 }
10532 
10533 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10534 {
10535 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10536 
10537 	free_percpu(jc->info);
10538 	kfree(jc);
10539 }
10540 
10541 static int __perf_cgroup_move(void *info)
10542 {
10543 	struct task_struct *task = info;
10544 	rcu_read_lock();
10545 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10546 	rcu_read_unlock();
10547 	return 0;
10548 }
10549 
10550 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10551 {
10552 	struct task_struct *task;
10553 	struct cgroup_subsys_state *css;
10554 
10555 	cgroup_taskset_for_each(task, css, tset)
10556 		task_function_call(task, __perf_cgroup_move, task);
10557 }
10558 
10559 struct cgroup_subsys perf_event_cgrp_subsys = {
10560 	.css_alloc	= perf_cgroup_css_alloc,
10561 	.css_free	= perf_cgroup_css_free,
10562 	.attach		= perf_cgroup_attach,
10563 };
10564 #endif /* CONFIG_CGROUP_PERF */
10565