1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_local(struct perf_event *event, event_f func, void *data) 246 { 247 struct event_function_struct efs = { 248 .event = event, 249 .func = func, 250 .data = data, 251 }; 252 253 int ret = event_function(&efs); 254 WARN_ON_ONCE(ret); 255 } 256 257 static void event_function_call(struct perf_event *event, event_f func, void *data) 258 { 259 struct perf_event_context *ctx = event->ctx; 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 261 struct event_function_struct efs = { 262 .event = event, 263 .func = func, 264 .data = data, 265 }; 266 267 if (!event->parent) { 268 /* 269 * If this is a !child event, we must hold ctx::mutex to 270 * stabilize the the event->ctx relation. See 271 * perf_event_ctx_lock(). 272 */ 273 lockdep_assert_held(&ctx->mutex); 274 } 275 276 if (!task) { 277 cpu_function_call(event->cpu, event_function, &efs); 278 return; 279 } 280 281 if (task == TASK_TOMBSTONE) 282 return; 283 284 again: 285 if (!task_function_call(task, event_function, &efs)) 286 return; 287 288 raw_spin_lock_irq(&ctx->lock); 289 /* 290 * Reload the task pointer, it might have been changed by 291 * a concurrent perf_event_context_sched_out(). 292 */ 293 task = ctx->task; 294 if (task == TASK_TOMBSTONE) { 295 raw_spin_unlock_irq(&ctx->lock); 296 return; 297 } 298 if (ctx->is_active) { 299 raw_spin_unlock_irq(&ctx->lock); 300 goto again; 301 } 302 func(event, NULL, ctx, data); 303 raw_spin_unlock_irq(&ctx->lock); 304 } 305 306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 307 PERF_FLAG_FD_OUTPUT |\ 308 PERF_FLAG_PID_CGROUP |\ 309 PERF_FLAG_FD_CLOEXEC) 310 311 /* 312 * branch priv levels that need permission checks 313 */ 314 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 315 (PERF_SAMPLE_BRANCH_KERNEL |\ 316 PERF_SAMPLE_BRANCH_HV) 317 318 enum event_type_t { 319 EVENT_FLEXIBLE = 0x1, 320 EVENT_PINNED = 0x2, 321 EVENT_TIME = 0x4, 322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 323 }; 324 325 /* 326 * perf_sched_events : >0 events exist 327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 328 */ 329 330 static void perf_sched_delayed(struct work_struct *work); 331 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 333 static DEFINE_MUTEX(perf_sched_mutex); 334 static atomic_t perf_sched_count; 335 336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 337 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 339 340 static atomic_t nr_mmap_events __read_mostly; 341 static atomic_t nr_comm_events __read_mostly; 342 static atomic_t nr_task_events __read_mostly; 343 static atomic_t nr_freq_events __read_mostly; 344 static atomic_t nr_switch_events __read_mostly; 345 346 static LIST_HEAD(pmus); 347 static DEFINE_MUTEX(pmus_lock); 348 static struct srcu_struct pmus_srcu; 349 350 /* 351 * perf event paranoia level: 352 * -1 - not paranoid at all 353 * 0 - disallow raw tracepoint access for unpriv 354 * 1 - disallow cpu events for unpriv 355 * 2 - disallow kernel profiling for unpriv 356 */ 357 int sysctl_perf_event_paranoid __read_mostly = 2; 358 359 /* Minimum for 512 kiB + 1 user control page */ 360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 361 362 /* 363 * max perf event sample rate 364 */ 365 #define DEFAULT_MAX_SAMPLE_RATE 100000 366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 368 369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 370 371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 373 374 static int perf_sample_allowed_ns __read_mostly = 375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 376 377 static void update_perf_cpu_limits(void) 378 { 379 u64 tmp = perf_sample_period_ns; 380 381 tmp *= sysctl_perf_cpu_time_max_percent; 382 tmp = div_u64(tmp, 100); 383 if (!tmp) 384 tmp = 1; 385 386 WRITE_ONCE(perf_sample_allowed_ns, tmp); 387 } 388 389 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 390 391 int perf_proc_update_handler(struct ctl_table *table, int write, 392 void __user *buffer, size_t *lenp, 393 loff_t *ppos) 394 { 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 396 397 if (ret || !write) 398 return ret; 399 400 /* 401 * If throttling is disabled don't allow the write: 402 */ 403 if (sysctl_perf_cpu_time_max_percent == 100 || 404 sysctl_perf_cpu_time_max_percent == 0) 405 return -EINVAL; 406 407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 409 update_perf_cpu_limits(); 410 411 return 0; 412 } 413 414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 415 416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 417 void __user *buffer, size_t *lenp, 418 loff_t *ppos) 419 { 420 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 421 422 if (ret || !write) 423 return ret; 424 425 if (sysctl_perf_cpu_time_max_percent == 100 || 426 sysctl_perf_cpu_time_max_percent == 0) { 427 printk(KERN_WARNING 428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 429 WRITE_ONCE(perf_sample_allowed_ns, 0); 430 } else { 431 update_perf_cpu_limits(); 432 } 433 434 return 0; 435 } 436 437 /* 438 * perf samples are done in some very critical code paths (NMIs). 439 * If they take too much CPU time, the system can lock up and not 440 * get any real work done. This will drop the sample rate when 441 * we detect that events are taking too long. 442 */ 443 #define NR_ACCUMULATED_SAMPLES 128 444 static DEFINE_PER_CPU(u64, running_sample_length); 445 446 static u64 __report_avg; 447 static u64 __report_allowed; 448 449 static void perf_duration_warn(struct irq_work *w) 450 { 451 printk_ratelimited(KERN_WARNING 452 "perf: interrupt took too long (%lld > %lld), lowering " 453 "kernel.perf_event_max_sample_rate to %d\n", 454 __report_avg, __report_allowed, 455 sysctl_perf_event_sample_rate); 456 } 457 458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 459 460 void perf_sample_event_took(u64 sample_len_ns) 461 { 462 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 463 u64 running_len; 464 u64 avg_len; 465 u32 max; 466 467 if (max_len == 0) 468 return; 469 470 /* Decay the counter by 1 average sample. */ 471 running_len = __this_cpu_read(running_sample_length); 472 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 473 running_len += sample_len_ns; 474 __this_cpu_write(running_sample_length, running_len); 475 476 /* 477 * Note: this will be biased artifically low until we have 478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 479 * from having to maintain a count. 480 */ 481 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 482 if (avg_len <= max_len) 483 return; 484 485 __report_avg = avg_len; 486 __report_allowed = max_len; 487 488 /* 489 * Compute a throttle threshold 25% below the current duration. 490 */ 491 avg_len += avg_len / 4; 492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 493 if (avg_len < max) 494 max /= (u32)avg_len; 495 else 496 max = 1; 497 498 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 499 WRITE_ONCE(max_samples_per_tick, max); 500 501 sysctl_perf_event_sample_rate = max * HZ; 502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 503 504 if (!irq_work_queue(&perf_duration_work)) { 505 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 506 "kernel.perf_event_max_sample_rate to %d\n", 507 __report_avg, __report_allowed, 508 sysctl_perf_event_sample_rate); 509 } 510 } 511 512 static atomic64_t perf_event_id; 513 514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 515 enum event_type_t event_type); 516 517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 518 enum event_type_t event_type, 519 struct task_struct *task); 520 521 static void update_context_time(struct perf_event_context *ctx); 522 static u64 perf_event_time(struct perf_event *event); 523 524 void __weak perf_event_print_debug(void) { } 525 526 extern __weak const char *perf_pmu_name(void) 527 { 528 return "pmu"; 529 } 530 531 static inline u64 perf_clock(void) 532 { 533 return local_clock(); 534 } 535 536 static inline u64 perf_event_clock(struct perf_event *event) 537 { 538 return event->clock(); 539 } 540 541 #ifdef CONFIG_CGROUP_PERF 542 543 static inline bool 544 perf_cgroup_match(struct perf_event *event) 545 { 546 struct perf_event_context *ctx = event->ctx; 547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 548 549 /* @event doesn't care about cgroup */ 550 if (!event->cgrp) 551 return true; 552 553 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 554 if (!cpuctx->cgrp) 555 return false; 556 557 /* 558 * Cgroup scoping is recursive. An event enabled for a cgroup is 559 * also enabled for all its descendant cgroups. If @cpuctx's 560 * cgroup is a descendant of @event's (the test covers identity 561 * case), it's a match. 562 */ 563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 564 event->cgrp->css.cgroup); 565 } 566 567 static inline void perf_detach_cgroup(struct perf_event *event) 568 { 569 css_put(&event->cgrp->css); 570 event->cgrp = NULL; 571 } 572 573 static inline int is_cgroup_event(struct perf_event *event) 574 { 575 return event->cgrp != NULL; 576 } 577 578 static inline u64 perf_cgroup_event_time(struct perf_event *event) 579 { 580 struct perf_cgroup_info *t; 581 582 t = per_cpu_ptr(event->cgrp->info, event->cpu); 583 return t->time; 584 } 585 586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 587 { 588 struct perf_cgroup_info *info; 589 u64 now; 590 591 now = perf_clock(); 592 593 info = this_cpu_ptr(cgrp->info); 594 595 info->time += now - info->timestamp; 596 info->timestamp = now; 597 } 598 599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 600 { 601 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 602 if (cgrp_out) 603 __update_cgrp_time(cgrp_out); 604 } 605 606 static inline void update_cgrp_time_from_event(struct perf_event *event) 607 { 608 struct perf_cgroup *cgrp; 609 610 /* 611 * ensure we access cgroup data only when needed and 612 * when we know the cgroup is pinned (css_get) 613 */ 614 if (!is_cgroup_event(event)) 615 return; 616 617 cgrp = perf_cgroup_from_task(current, event->ctx); 618 /* 619 * Do not update time when cgroup is not active 620 */ 621 if (cgrp == event->cgrp) 622 __update_cgrp_time(event->cgrp); 623 } 624 625 static inline void 626 perf_cgroup_set_timestamp(struct task_struct *task, 627 struct perf_event_context *ctx) 628 { 629 struct perf_cgroup *cgrp; 630 struct perf_cgroup_info *info; 631 632 /* 633 * ctx->lock held by caller 634 * ensure we do not access cgroup data 635 * unless we have the cgroup pinned (css_get) 636 */ 637 if (!task || !ctx->nr_cgroups) 638 return; 639 640 cgrp = perf_cgroup_from_task(task, ctx); 641 info = this_cpu_ptr(cgrp->info); 642 info->timestamp = ctx->timestamp; 643 } 644 645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 647 648 /* 649 * reschedule events based on the cgroup constraint of task. 650 * 651 * mode SWOUT : schedule out everything 652 * mode SWIN : schedule in based on cgroup for next 653 */ 654 static void perf_cgroup_switch(struct task_struct *task, int mode) 655 { 656 struct perf_cpu_context *cpuctx; 657 struct pmu *pmu; 658 unsigned long flags; 659 660 /* 661 * disable interrupts to avoid geting nr_cgroup 662 * changes via __perf_event_disable(). Also 663 * avoids preemption. 664 */ 665 local_irq_save(flags); 666 667 /* 668 * we reschedule only in the presence of cgroup 669 * constrained events. 670 */ 671 672 list_for_each_entry_rcu(pmu, &pmus, entry) { 673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 674 if (cpuctx->unique_pmu != pmu) 675 continue; /* ensure we process each cpuctx once */ 676 677 /* 678 * perf_cgroup_events says at least one 679 * context on this CPU has cgroup events. 680 * 681 * ctx->nr_cgroups reports the number of cgroup 682 * events for a context. 683 */ 684 if (cpuctx->ctx.nr_cgroups > 0) { 685 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 686 perf_pmu_disable(cpuctx->ctx.pmu); 687 688 if (mode & PERF_CGROUP_SWOUT) { 689 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 690 /* 691 * must not be done before ctxswout due 692 * to event_filter_match() in event_sched_out() 693 */ 694 cpuctx->cgrp = NULL; 695 } 696 697 if (mode & PERF_CGROUP_SWIN) { 698 WARN_ON_ONCE(cpuctx->cgrp); 699 /* 700 * set cgrp before ctxsw in to allow 701 * event_filter_match() to not have to pass 702 * task around 703 * we pass the cpuctx->ctx to perf_cgroup_from_task() 704 * because cgorup events are only per-cpu 705 */ 706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 708 } 709 perf_pmu_enable(cpuctx->ctx.pmu); 710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 711 } 712 } 713 714 local_irq_restore(flags); 715 } 716 717 static inline void perf_cgroup_sched_out(struct task_struct *task, 718 struct task_struct *next) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(next, NULL); 731 732 /* 733 * only schedule out current cgroup events if we know 734 * that we are switching to a different cgroup. Otherwise, 735 * do no touch the cgroup events. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 739 740 rcu_read_unlock(); 741 } 742 743 static inline void perf_cgroup_sched_in(struct task_struct *prev, 744 struct task_struct *task) 745 { 746 struct perf_cgroup *cgrp1; 747 struct perf_cgroup *cgrp2 = NULL; 748 749 rcu_read_lock(); 750 /* 751 * we come here when we know perf_cgroup_events > 0 752 * we do not need to pass the ctx here because we know 753 * we are holding the rcu lock 754 */ 755 cgrp1 = perf_cgroup_from_task(task, NULL); 756 cgrp2 = perf_cgroup_from_task(prev, NULL); 757 758 /* 759 * only need to schedule in cgroup events if we are changing 760 * cgroup during ctxsw. Cgroup events were not scheduled 761 * out of ctxsw out if that was not the case. 762 */ 763 if (cgrp1 != cgrp2) 764 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 765 766 rcu_read_unlock(); 767 } 768 769 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 770 struct perf_event_attr *attr, 771 struct perf_event *group_leader) 772 { 773 struct perf_cgroup *cgrp; 774 struct cgroup_subsys_state *css; 775 struct fd f = fdget(fd); 776 int ret = 0; 777 778 if (!f.file) 779 return -EBADF; 780 781 css = css_tryget_online_from_dir(f.file->f_path.dentry, 782 &perf_event_cgrp_subsys); 783 if (IS_ERR(css)) { 784 ret = PTR_ERR(css); 785 goto out; 786 } 787 788 cgrp = container_of(css, struct perf_cgroup, css); 789 event->cgrp = cgrp; 790 791 /* 792 * all events in a group must monitor 793 * the same cgroup because a task belongs 794 * to only one perf cgroup at a time 795 */ 796 if (group_leader && group_leader->cgrp != cgrp) { 797 perf_detach_cgroup(event); 798 ret = -EINVAL; 799 } 800 out: 801 fdput(f); 802 return ret; 803 } 804 805 static inline void 806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 807 { 808 struct perf_cgroup_info *t; 809 t = per_cpu_ptr(event->cgrp->info, event->cpu); 810 event->shadow_ctx_time = now - t->timestamp; 811 } 812 813 static inline void 814 perf_cgroup_defer_enabled(struct perf_event *event) 815 { 816 /* 817 * when the current task's perf cgroup does not match 818 * the event's, we need to remember to call the 819 * perf_mark_enable() function the first time a task with 820 * a matching perf cgroup is scheduled in. 821 */ 822 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 823 event->cgrp_defer_enabled = 1; 824 } 825 826 static inline void 827 perf_cgroup_mark_enabled(struct perf_event *event, 828 struct perf_event_context *ctx) 829 { 830 struct perf_event *sub; 831 u64 tstamp = perf_event_time(event); 832 833 if (!event->cgrp_defer_enabled) 834 return; 835 836 event->cgrp_defer_enabled = 0; 837 838 event->tstamp_enabled = tstamp - event->total_time_enabled; 839 list_for_each_entry(sub, &event->sibling_list, group_entry) { 840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 841 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 842 sub->cgrp_defer_enabled = 0; 843 } 844 } 845 } 846 #else /* !CONFIG_CGROUP_PERF */ 847 848 static inline bool 849 perf_cgroup_match(struct perf_event *event) 850 { 851 return true; 852 } 853 854 static inline void perf_detach_cgroup(struct perf_event *event) 855 {} 856 857 static inline int is_cgroup_event(struct perf_event *event) 858 { 859 return 0; 860 } 861 862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 863 { 864 return 0; 865 } 866 867 static inline void update_cgrp_time_from_event(struct perf_event *event) 868 { 869 } 870 871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 872 { 873 } 874 875 static inline void perf_cgroup_sched_out(struct task_struct *task, 876 struct task_struct *next) 877 { 878 } 879 880 static inline void perf_cgroup_sched_in(struct task_struct *prev, 881 struct task_struct *task) 882 { 883 } 884 885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 886 struct perf_event_attr *attr, 887 struct perf_event *group_leader) 888 { 889 return -EINVAL; 890 } 891 892 static inline void 893 perf_cgroup_set_timestamp(struct task_struct *task, 894 struct perf_event_context *ctx) 895 { 896 } 897 898 void 899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 900 { 901 } 902 903 static inline void 904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 905 { 906 } 907 908 static inline u64 perf_cgroup_event_time(struct perf_event *event) 909 { 910 return 0; 911 } 912 913 static inline void 914 perf_cgroup_defer_enabled(struct perf_event *event) 915 { 916 } 917 918 static inline void 919 perf_cgroup_mark_enabled(struct perf_event *event, 920 struct perf_event_context *ctx) 921 { 922 } 923 #endif 924 925 /* 926 * set default to be dependent on timer tick just 927 * like original code 928 */ 929 #define PERF_CPU_HRTIMER (1000 / HZ) 930 /* 931 * function must be called with interrupts disbled 932 */ 933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 934 { 935 struct perf_cpu_context *cpuctx; 936 int rotations = 0; 937 938 WARN_ON(!irqs_disabled()); 939 940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 941 rotations = perf_rotate_context(cpuctx); 942 943 raw_spin_lock(&cpuctx->hrtimer_lock); 944 if (rotations) 945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 946 else 947 cpuctx->hrtimer_active = 0; 948 raw_spin_unlock(&cpuctx->hrtimer_lock); 949 950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 951 } 952 953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 954 { 955 struct hrtimer *timer = &cpuctx->hrtimer; 956 struct pmu *pmu = cpuctx->ctx.pmu; 957 u64 interval; 958 959 /* no multiplexing needed for SW PMU */ 960 if (pmu->task_ctx_nr == perf_sw_context) 961 return; 962 963 /* 964 * check default is sane, if not set then force to 965 * default interval (1/tick) 966 */ 967 interval = pmu->hrtimer_interval_ms; 968 if (interval < 1) 969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 970 971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 972 973 raw_spin_lock_init(&cpuctx->hrtimer_lock); 974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 975 timer->function = perf_mux_hrtimer_handler; 976 } 977 978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 979 { 980 struct hrtimer *timer = &cpuctx->hrtimer; 981 struct pmu *pmu = cpuctx->ctx.pmu; 982 unsigned long flags; 983 984 /* not for SW PMU */ 985 if (pmu->task_ctx_nr == perf_sw_context) 986 return 0; 987 988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 989 if (!cpuctx->hrtimer_active) { 990 cpuctx->hrtimer_active = 1; 991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 993 } 994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 995 996 return 0; 997 } 998 999 void perf_pmu_disable(struct pmu *pmu) 1000 { 1001 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1002 if (!(*count)++) 1003 pmu->pmu_disable(pmu); 1004 } 1005 1006 void perf_pmu_enable(struct pmu *pmu) 1007 { 1008 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1009 if (!--(*count)) 1010 pmu->pmu_enable(pmu); 1011 } 1012 1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1014 1015 /* 1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1017 * perf_event_task_tick() are fully serialized because they're strictly cpu 1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1019 * disabled, while perf_event_task_tick is called from IRQ context. 1020 */ 1021 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1022 { 1023 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1024 1025 WARN_ON(!irqs_disabled()); 1026 1027 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1028 1029 list_add(&ctx->active_ctx_list, head); 1030 } 1031 1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1033 { 1034 WARN_ON(!irqs_disabled()); 1035 1036 WARN_ON(list_empty(&ctx->active_ctx_list)); 1037 1038 list_del_init(&ctx->active_ctx_list); 1039 } 1040 1041 static void get_ctx(struct perf_event_context *ctx) 1042 { 1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1044 } 1045 1046 static void free_ctx(struct rcu_head *head) 1047 { 1048 struct perf_event_context *ctx; 1049 1050 ctx = container_of(head, struct perf_event_context, rcu_head); 1051 kfree(ctx->task_ctx_data); 1052 kfree(ctx); 1053 } 1054 1055 static void put_ctx(struct perf_event_context *ctx) 1056 { 1057 if (atomic_dec_and_test(&ctx->refcount)) { 1058 if (ctx->parent_ctx) 1059 put_ctx(ctx->parent_ctx); 1060 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1061 put_task_struct(ctx->task); 1062 call_rcu(&ctx->rcu_head, free_ctx); 1063 } 1064 } 1065 1066 /* 1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1068 * perf_pmu_migrate_context() we need some magic. 1069 * 1070 * Those places that change perf_event::ctx will hold both 1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1072 * 1073 * Lock ordering is by mutex address. There are two other sites where 1074 * perf_event_context::mutex nests and those are: 1075 * 1076 * - perf_event_exit_task_context() [ child , 0 ] 1077 * perf_event_exit_event() 1078 * put_event() [ parent, 1 ] 1079 * 1080 * - perf_event_init_context() [ parent, 0 ] 1081 * inherit_task_group() 1082 * inherit_group() 1083 * inherit_event() 1084 * perf_event_alloc() 1085 * perf_init_event() 1086 * perf_try_init_event() [ child , 1 ] 1087 * 1088 * While it appears there is an obvious deadlock here -- the parent and child 1089 * nesting levels are inverted between the two. This is in fact safe because 1090 * life-time rules separate them. That is an exiting task cannot fork, and a 1091 * spawning task cannot (yet) exit. 1092 * 1093 * But remember that that these are parent<->child context relations, and 1094 * migration does not affect children, therefore these two orderings should not 1095 * interact. 1096 * 1097 * The change in perf_event::ctx does not affect children (as claimed above) 1098 * because the sys_perf_event_open() case will install a new event and break 1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1100 * concerned with cpuctx and that doesn't have children. 1101 * 1102 * The places that change perf_event::ctx will issue: 1103 * 1104 * perf_remove_from_context(); 1105 * synchronize_rcu(); 1106 * perf_install_in_context(); 1107 * 1108 * to affect the change. The remove_from_context() + synchronize_rcu() should 1109 * quiesce the event, after which we can install it in the new location. This 1110 * means that only external vectors (perf_fops, prctl) can perturb the event 1111 * while in transit. Therefore all such accessors should also acquire 1112 * perf_event_context::mutex to serialize against this. 1113 * 1114 * However; because event->ctx can change while we're waiting to acquire 1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1116 * function. 1117 * 1118 * Lock order: 1119 * cred_guard_mutex 1120 * task_struct::perf_event_mutex 1121 * perf_event_context::mutex 1122 * perf_event::child_mutex; 1123 * perf_event_context::lock 1124 * perf_event::mmap_mutex 1125 * mmap_sem 1126 */ 1127 static struct perf_event_context * 1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1129 { 1130 struct perf_event_context *ctx; 1131 1132 again: 1133 rcu_read_lock(); 1134 ctx = ACCESS_ONCE(event->ctx); 1135 if (!atomic_inc_not_zero(&ctx->refcount)) { 1136 rcu_read_unlock(); 1137 goto again; 1138 } 1139 rcu_read_unlock(); 1140 1141 mutex_lock_nested(&ctx->mutex, nesting); 1142 if (event->ctx != ctx) { 1143 mutex_unlock(&ctx->mutex); 1144 put_ctx(ctx); 1145 goto again; 1146 } 1147 1148 return ctx; 1149 } 1150 1151 static inline struct perf_event_context * 1152 perf_event_ctx_lock(struct perf_event *event) 1153 { 1154 return perf_event_ctx_lock_nested(event, 0); 1155 } 1156 1157 static void perf_event_ctx_unlock(struct perf_event *event, 1158 struct perf_event_context *ctx) 1159 { 1160 mutex_unlock(&ctx->mutex); 1161 put_ctx(ctx); 1162 } 1163 1164 /* 1165 * This must be done under the ctx->lock, such as to serialize against 1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1167 * calling scheduler related locks and ctx->lock nests inside those. 1168 */ 1169 static __must_check struct perf_event_context * 1170 unclone_ctx(struct perf_event_context *ctx) 1171 { 1172 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1173 1174 lockdep_assert_held(&ctx->lock); 1175 1176 if (parent_ctx) 1177 ctx->parent_ctx = NULL; 1178 ctx->generation++; 1179 1180 return parent_ctx; 1181 } 1182 1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1184 { 1185 /* 1186 * only top level events have the pid namespace they were created in 1187 */ 1188 if (event->parent) 1189 event = event->parent; 1190 1191 return task_tgid_nr_ns(p, event->ns); 1192 } 1193 1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1195 { 1196 /* 1197 * only top level events have the pid namespace they were created in 1198 */ 1199 if (event->parent) 1200 event = event->parent; 1201 1202 return task_pid_nr_ns(p, event->ns); 1203 } 1204 1205 /* 1206 * If we inherit events we want to return the parent event id 1207 * to userspace. 1208 */ 1209 static u64 primary_event_id(struct perf_event *event) 1210 { 1211 u64 id = event->id; 1212 1213 if (event->parent) 1214 id = event->parent->id; 1215 1216 return id; 1217 } 1218 1219 /* 1220 * Get the perf_event_context for a task and lock it. 1221 * 1222 * This has to cope with with the fact that until it is locked, 1223 * the context could get moved to another task. 1224 */ 1225 static struct perf_event_context * 1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1227 { 1228 struct perf_event_context *ctx; 1229 1230 retry: 1231 /* 1232 * One of the few rules of preemptible RCU is that one cannot do 1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1234 * part of the read side critical section was irqs-enabled -- see 1235 * rcu_read_unlock_special(). 1236 * 1237 * Since ctx->lock nests under rq->lock we must ensure the entire read 1238 * side critical section has interrupts disabled. 1239 */ 1240 local_irq_save(*flags); 1241 rcu_read_lock(); 1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1243 if (ctx) { 1244 /* 1245 * If this context is a clone of another, it might 1246 * get swapped for another underneath us by 1247 * perf_event_task_sched_out, though the 1248 * rcu_read_lock() protects us from any context 1249 * getting freed. Lock the context and check if it 1250 * got swapped before we could get the lock, and retry 1251 * if so. If we locked the right context, then it 1252 * can't get swapped on us any more. 1253 */ 1254 raw_spin_lock(&ctx->lock); 1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1256 raw_spin_unlock(&ctx->lock); 1257 rcu_read_unlock(); 1258 local_irq_restore(*flags); 1259 goto retry; 1260 } 1261 1262 if (ctx->task == TASK_TOMBSTONE || 1263 !atomic_inc_not_zero(&ctx->refcount)) { 1264 raw_spin_unlock(&ctx->lock); 1265 ctx = NULL; 1266 } else { 1267 WARN_ON_ONCE(ctx->task != task); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 if (!ctx) 1272 local_irq_restore(*flags); 1273 return ctx; 1274 } 1275 1276 /* 1277 * Get the context for a task and increment its pin_count so it 1278 * can't get swapped to another task. This also increments its 1279 * reference count so that the context can't get freed. 1280 */ 1281 static struct perf_event_context * 1282 perf_pin_task_context(struct task_struct *task, int ctxn) 1283 { 1284 struct perf_event_context *ctx; 1285 unsigned long flags; 1286 1287 ctx = perf_lock_task_context(task, ctxn, &flags); 1288 if (ctx) { 1289 ++ctx->pin_count; 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1291 } 1292 return ctx; 1293 } 1294 1295 static void perf_unpin_context(struct perf_event_context *ctx) 1296 { 1297 unsigned long flags; 1298 1299 raw_spin_lock_irqsave(&ctx->lock, flags); 1300 --ctx->pin_count; 1301 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1302 } 1303 1304 /* 1305 * Update the record of the current time in a context. 1306 */ 1307 static void update_context_time(struct perf_event_context *ctx) 1308 { 1309 u64 now = perf_clock(); 1310 1311 ctx->time += now - ctx->timestamp; 1312 ctx->timestamp = now; 1313 } 1314 1315 static u64 perf_event_time(struct perf_event *event) 1316 { 1317 struct perf_event_context *ctx = event->ctx; 1318 1319 if (is_cgroup_event(event)) 1320 return perf_cgroup_event_time(event); 1321 1322 return ctx ? ctx->time : 0; 1323 } 1324 1325 /* 1326 * Update the total_time_enabled and total_time_running fields for a event. 1327 */ 1328 static void update_event_times(struct perf_event *event) 1329 { 1330 struct perf_event_context *ctx = event->ctx; 1331 u64 run_end; 1332 1333 lockdep_assert_held(&ctx->lock); 1334 1335 if (event->state < PERF_EVENT_STATE_INACTIVE || 1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1337 return; 1338 1339 /* 1340 * in cgroup mode, time_enabled represents 1341 * the time the event was enabled AND active 1342 * tasks were in the monitored cgroup. This is 1343 * independent of the activity of the context as 1344 * there may be a mix of cgroup and non-cgroup events. 1345 * 1346 * That is why we treat cgroup events differently 1347 * here. 1348 */ 1349 if (is_cgroup_event(event)) 1350 run_end = perf_cgroup_event_time(event); 1351 else if (ctx->is_active) 1352 run_end = ctx->time; 1353 else 1354 run_end = event->tstamp_stopped; 1355 1356 event->total_time_enabled = run_end - event->tstamp_enabled; 1357 1358 if (event->state == PERF_EVENT_STATE_INACTIVE) 1359 run_end = event->tstamp_stopped; 1360 else 1361 run_end = perf_event_time(event); 1362 1363 event->total_time_running = run_end - event->tstamp_running; 1364 1365 } 1366 1367 /* 1368 * Update total_time_enabled and total_time_running for all events in a group. 1369 */ 1370 static void update_group_times(struct perf_event *leader) 1371 { 1372 struct perf_event *event; 1373 1374 update_event_times(leader); 1375 list_for_each_entry(event, &leader->sibling_list, group_entry) 1376 update_event_times(event); 1377 } 1378 1379 static struct list_head * 1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1381 { 1382 if (event->attr.pinned) 1383 return &ctx->pinned_groups; 1384 else 1385 return &ctx->flexible_groups; 1386 } 1387 1388 /* 1389 * Add a event from the lists for its context. 1390 * Must be called with ctx->mutex and ctx->lock held. 1391 */ 1392 static void 1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1394 { 1395 lockdep_assert_held(&ctx->lock); 1396 1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1398 event->attach_state |= PERF_ATTACH_CONTEXT; 1399 1400 /* 1401 * If we're a stand alone event or group leader, we go to the context 1402 * list, group events are kept attached to the group so that 1403 * perf_group_detach can, at all times, locate all siblings. 1404 */ 1405 if (event->group_leader == event) { 1406 struct list_head *list; 1407 1408 if (is_software_event(event)) 1409 event->group_flags |= PERF_GROUP_SOFTWARE; 1410 1411 list = ctx_group_list(event, ctx); 1412 list_add_tail(&event->group_entry, list); 1413 } 1414 1415 if (is_cgroup_event(event)) 1416 ctx->nr_cgroups++; 1417 1418 list_add_rcu(&event->event_entry, &ctx->event_list); 1419 ctx->nr_events++; 1420 if (event->attr.inherit_stat) 1421 ctx->nr_stat++; 1422 1423 ctx->generation++; 1424 } 1425 1426 /* 1427 * Initialize event state based on the perf_event_attr::disabled. 1428 */ 1429 static inline void perf_event__state_init(struct perf_event *event) 1430 { 1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1432 PERF_EVENT_STATE_INACTIVE; 1433 } 1434 1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1436 { 1437 int entry = sizeof(u64); /* value */ 1438 int size = 0; 1439 int nr = 1; 1440 1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1442 size += sizeof(u64); 1443 1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1445 size += sizeof(u64); 1446 1447 if (event->attr.read_format & PERF_FORMAT_ID) 1448 entry += sizeof(u64); 1449 1450 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1451 nr += nr_siblings; 1452 size += sizeof(u64); 1453 } 1454 1455 size += entry * nr; 1456 event->read_size = size; 1457 } 1458 1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1460 { 1461 struct perf_sample_data *data; 1462 u16 size = 0; 1463 1464 if (sample_type & PERF_SAMPLE_IP) 1465 size += sizeof(data->ip); 1466 1467 if (sample_type & PERF_SAMPLE_ADDR) 1468 size += sizeof(data->addr); 1469 1470 if (sample_type & PERF_SAMPLE_PERIOD) 1471 size += sizeof(data->period); 1472 1473 if (sample_type & PERF_SAMPLE_WEIGHT) 1474 size += sizeof(data->weight); 1475 1476 if (sample_type & PERF_SAMPLE_READ) 1477 size += event->read_size; 1478 1479 if (sample_type & PERF_SAMPLE_DATA_SRC) 1480 size += sizeof(data->data_src.val); 1481 1482 if (sample_type & PERF_SAMPLE_TRANSACTION) 1483 size += sizeof(data->txn); 1484 1485 event->header_size = size; 1486 } 1487 1488 /* 1489 * Called at perf_event creation and when events are attached/detached from a 1490 * group. 1491 */ 1492 static void perf_event__header_size(struct perf_event *event) 1493 { 1494 __perf_event_read_size(event, 1495 event->group_leader->nr_siblings); 1496 __perf_event_header_size(event, event->attr.sample_type); 1497 } 1498 1499 static void perf_event__id_header_size(struct perf_event *event) 1500 { 1501 struct perf_sample_data *data; 1502 u64 sample_type = event->attr.sample_type; 1503 u16 size = 0; 1504 1505 if (sample_type & PERF_SAMPLE_TID) 1506 size += sizeof(data->tid_entry); 1507 1508 if (sample_type & PERF_SAMPLE_TIME) 1509 size += sizeof(data->time); 1510 1511 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1512 size += sizeof(data->id); 1513 1514 if (sample_type & PERF_SAMPLE_ID) 1515 size += sizeof(data->id); 1516 1517 if (sample_type & PERF_SAMPLE_STREAM_ID) 1518 size += sizeof(data->stream_id); 1519 1520 if (sample_type & PERF_SAMPLE_CPU) 1521 size += sizeof(data->cpu_entry); 1522 1523 event->id_header_size = size; 1524 } 1525 1526 static bool perf_event_validate_size(struct perf_event *event) 1527 { 1528 /* 1529 * The values computed here will be over-written when we actually 1530 * attach the event. 1531 */ 1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1534 perf_event__id_header_size(event); 1535 1536 /* 1537 * Sum the lot; should not exceed the 64k limit we have on records. 1538 * Conservative limit to allow for callchains and other variable fields. 1539 */ 1540 if (event->read_size + event->header_size + 1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 static void perf_group_attach(struct perf_event *event) 1548 { 1549 struct perf_event *group_leader = event->group_leader, *pos; 1550 1551 /* 1552 * We can have double attach due to group movement in perf_event_open. 1553 */ 1554 if (event->attach_state & PERF_ATTACH_GROUP) 1555 return; 1556 1557 event->attach_state |= PERF_ATTACH_GROUP; 1558 1559 if (group_leader == event) 1560 return; 1561 1562 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1563 1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1565 !is_software_event(event)) 1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1567 1568 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1569 group_leader->nr_siblings++; 1570 1571 perf_event__header_size(group_leader); 1572 1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1574 perf_event__header_size(pos); 1575 } 1576 1577 /* 1578 * Remove a event from the lists for its context. 1579 * Must be called with ctx->mutex and ctx->lock held. 1580 */ 1581 static void 1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1583 { 1584 struct perf_cpu_context *cpuctx; 1585 1586 WARN_ON_ONCE(event->ctx != ctx); 1587 lockdep_assert_held(&ctx->lock); 1588 1589 /* 1590 * We can have double detach due to exit/hot-unplug + close. 1591 */ 1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1593 return; 1594 1595 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1596 1597 if (is_cgroup_event(event)) { 1598 ctx->nr_cgroups--; 1599 /* 1600 * Because cgroup events are always per-cpu events, this will 1601 * always be called from the right CPU. 1602 */ 1603 cpuctx = __get_cpu_context(ctx); 1604 /* 1605 * If there are no more cgroup events then clear cgrp to avoid 1606 * stale pointer in update_cgrp_time_from_cpuctx(). 1607 */ 1608 if (!ctx->nr_cgroups) 1609 cpuctx->cgrp = NULL; 1610 } 1611 1612 ctx->nr_events--; 1613 if (event->attr.inherit_stat) 1614 ctx->nr_stat--; 1615 1616 list_del_rcu(&event->event_entry); 1617 1618 if (event->group_leader == event) 1619 list_del_init(&event->group_entry); 1620 1621 update_group_times(event); 1622 1623 /* 1624 * If event was in error state, then keep it 1625 * that way, otherwise bogus counts will be 1626 * returned on read(). The only way to get out 1627 * of error state is by explicit re-enabling 1628 * of the event 1629 */ 1630 if (event->state > PERF_EVENT_STATE_OFF) 1631 event->state = PERF_EVENT_STATE_OFF; 1632 1633 ctx->generation++; 1634 } 1635 1636 static void perf_group_detach(struct perf_event *event) 1637 { 1638 struct perf_event *sibling, *tmp; 1639 struct list_head *list = NULL; 1640 1641 /* 1642 * We can have double detach due to exit/hot-unplug + close. 1643 */ 1644 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1645 return; 1646 1647 event->attach_state &= ~PERF_ATTACH_GROUP; 1648 1649 /* 1650 * If this is a sibling, remove it from its group. 1651 */ 1652 if (event->group_leader != event) { 1653 list_del_init(&event->group_entry); 1654 event->group_leader->nr_siblings--; 1655 goto out; 1656 } 1657 1658 if (!list_empty(&event->group_entry)) 1659 list = &event->group_entry; 1660 1661 /* 1662 * If this was a group event with sibling events then 1663 * upgrade the siblings to singleton events by adding them 1664 * to whatever list we are on. 1665 */ 1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1667 if (list) 1668 list_move_tail(&sibling->group_entry, list); 1669 sibling->group_leader = sibling; 1670 1671 /* Inherit group flags from the previous leader */ 1672 sibling->group_flags = event->group_flags; 1673 1674 WARN_ON_ONCE(sibling->ctx != event->ctx); 1675 } 1676 1677 out: 1678 perf_event__header_size(event->group_leader); 1679 1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1681 perf_event__header_size(tmp); 1682 } 1683 1684 static bool is_orphaned_event(struct perf_event *event) 1685 { 1686 return event->state == PERF_EVENT_STATE_DEAD; 1687 } 1688 1689 static inline int __pmu_filter_match(struct perf_event *event) 1690 { 1691 struct pmu *pmu = event->pmu; 1692 return pmu->filter_match ? pmu->filter_match(event) : 1; 1693 } 1694 1695 /* 1696 * Check whether we should attempt to schedule an event group based on 1697 * PMU-specific filtering. An event group can consist of HW and SW events, 1698 * potentially with a SW leader, so we must check all the filters, to 1699 * determine whether a group is schedulable: 1700 */ 1701 static inline int pmu_filter_match(struct perf_event *event) 1702 { 1703 struct perf_event *child; 1704 1705 if (!__pmu_filter_match(event)) 1706 return 0; 1707 1708 list_for_each_entry(child, &event->sibling_list, group_entry) { 1709 if (!__pmu_filter_match(child)) 1710 return 0; 1711 } 1712 1713 return 1; 1714 } 1715 1716 static inline int 1717 event_filter_match(struct perf_event *event) 1718 { 1719 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1720 && perf_cgroup_match(event) && pmu_filter_match(event); 1721 } 1722 1723 static void 1724 event_sched_out(struct perf_event *event, 1725 struct perf_cpu_context *cpuctx, 1726 struct perf_event_context *ctx) 1727 { 1728 u64 tstamp = perf_event_time(event); 1729 u64 delta; 1730 1731 WARN_ON_ONCE(event->ctx != ctx); 1732 lockdep_assert_held(&ctx->lock); 1733 1734 /* 1735 * An event which could not be activated because of 1736 * filter mismatch still needs to have its timings 1737 * maintained, otherwise bogus information is return 1738 * via read() for time_enabled, time_running: 1739 */ 1740 if (event->state == PERF_EVENT_STATE_INACTIVE 1741 && !event_filter_match(event)) { 1742 delta = tstamp - event->tstamp_stopped; 1743 event->tstamp_running += delta; 1744 event->tstamp_stopped = tstamp; 1745 } 1746 1747 if (event->state != PERF_EVENT_STATE_ACTIVE) 1748 return; 1749 1750 perf_pmu_disable(event->pmu); 1751 1752 event->tstamp_stopped = tstamp; 1753 event->pmu->del(event, 0); 1754 event->oncpu = -1; 1755 event->state = PERF_EVENT_STATE_INACTIVE; 1756 if (event->pending_disable) { 1757 event->pending_disable = 0; 1758 event->state = PERF_EVENT_STATE_OFF; 1759 } 1760 1761 if (!is_software_event(event)) 1762 cpuctx->active_oncpu--; 1763 if (!--ctx->nr_active) 1764 perf_event_ctx_deactivate(ctx); 1765 if (event->attr.freq && event->attr.sample_freq) 1766 ctx->nr_freq--; 1767 if (event->attr.exclusive || !cpuctx->active_oncpu) 1768 cpuctx->exclusive = 0; 1769 1770 perf_pmu_enable(event->pmu); 1771 } 1772 1773 static void 1774 group_sched_out(struct perf_event *group_event, 1775 struct perf_cpu_context *cpuctx, 1776 struct perf_event_context *ctx) 1777 { 1778 struct perf_event *event; 1779 int state = group_event->state; 1780 1781 event_sched_out(group_event, cpuctx, ctx); 1782 1783 /* 1784 * Schedule out siblings (if any): 1785 */ 1786 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1787 event_sched_out(event, cpuctx, ctx); 1788 1789 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1790 cpuctx->exclusive = 0; 1791 } 1792 1793 #define DETACH_GROUP 0x01UL 1794 1795 /* 1796 * Cross CPU call to remove a performance event 1797 * 1798 * We disable the event on the hardware level first. After that we 1799 * remove it from the context list. 1800 */ 1801 static void 1802 __perf_remove_from_context(struct perf_event *event, 1803 struct perf_cpu_context *cpuctx, 1804 struct perf_event_context *ctx, 1805 void *info) 1806 { 1807 unsigned long flags = (unsigned long)info; 1808 1809 event_sched_out(event, cpuctx, ctx); 1810 if (flags & DETACH_GROUP) 1811 perf_group_detach(event); 1812 list_del_event(event, ctx); 1813 1814 if (!ctx->nr_events && ctx->is_active) { 1815 ctx->is_active = 0; 1816 if (ctx->task) { 1817 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1818 cpuctx->task_ctx = NULL; 1819 } 1820 } 1821 } 1822 1823 /* 1824 * Remove the event from a task's (or a CPU's) list of events. 1825 * 1826 * If event->ctx is a cloned context, callers must make sure that 1827 * every task struct that event->ctx->task could possibly point to 1828 * remains valid. This is OK when called from perf_release since 1829 * that only calls us on the top-level context, which can't be a clone. 1830 * When called from perf_event_exit_task, it's OK because the 1831 * context has been detached from its task. 1832 */ 1833 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1834 { 1835 lockdep_assert_held(&event->ctx->mutex); 1836 1837 event_function_call(event, __perf_remove_from_context, (void *)flags); 1838 } 1839 1840 /* 1841 * Cross CPU call to disable a performance event 1842 */ 1843 static void __perf_event_disable(struct perf_event *event, 1844 struct perf_cpu_context *cpuctx, 1845 struct perf_event_context *ctx, 1846 void *info) 1847 { 1848 if (event->state < PERF_EVENT_STATE_INACTIVE) 1849 return; 1850 1851 update_context_time(ctx); 1852 update_cgrp_time_from_event(event); 1853 update_group_times(event); 1854 if (event == event->group_leader) 1855 group_sched_out(event, cpuctx, ctx); 1856 else 1857 event_sched_out(event, cpuctx, ctx); 1858 event->state = PERF_EVENT_STATE_OFF; 1859 } 1860 1861 /* 1862 * Disable a event. 1863 * 1864 * If event->ctx is a cloned context, callers must make sure that 1865 * every task struct that event->ctx->task could possibly point to 1866 * remains valid. This condition is satisifed when called through 1867 * perf_event_for_each_child or perf_event_for_each because they 1868 * hold the top-level event's child_mutex, so any descendant that 1869 * goes to exit will block in perf_event_exit_event(). 1870 * 1871 * When called from perf_pending_event it's OK because event->ctx 1872 * is the current context on this CPU and preemption is disabled, 1873 * hence we can't get into perf_event_task_sched_out for this context. 1874 */ 1875 static void _perf_event_disable(struct perf_event *event) 1876 { 1877 struct perf_event_context *ctx = event->ctx; 1878 1879 raw_spin_lock_irq(&ctx->lock); 1880 if (event->state <= PERF_EVENT_STATE_OFF) { 1881 raw_spin_unlock_irq(&ctx->lock); 1882 return; 1883 } 1884 raw_spin_unlock_irq(&ctx->lock); 1885 1886 event_function_call(event, __perf_event_disable, NULL); 1887 } 1888 1889 void perf_event_disable_local(struct perf_event *event) 1890 { 1891 event_function_local(event, __perf_event_disable, NULL); 1892 } 1893 1894 /* 1895 * Strictly speaking kernel users cannot create groups and therefore this 1896 * interface does not need the perf_event_ctx_lock() magic. 1897 */ 1898 void perf_event_disable(struct perf_event *event) 1899 { 1900 struct perf_event_context *ctx; 1901 1902 ctx = perf_event_ctx_lock(event); 1903 _perf_event_disable(event); 1904 perf_event_ctx_unlock(event, ctx); 1905 } 1906 EXPORT_SYMBOL_GPL(perf_event_disable); 1907 1908 static void perf_set_shadow_time(struct perf_event *event, 1909 struct perf_event_context *ctx, 1910 u64 tstamp) 1911 { 1912 /* 1913 * use the correct time source for the time snapshot 1914 * 1915 * We could get by without this by leveraging the 1916 * fact that to get to this function, the caller 1917 * has most likely already called update_context_time() 1918 * and update_cgrp_time_xx() and thus both timestamp 1919 * are identical (or very close). Given that tstamp is, 1920 * already adjusted for cgroup, we could say that: 1921 * tstamp - ctx->timestamp 1922 * is equivalent to 1923 * tstamp - cgrp->timestamp. 1924 * 1925 * Then, in perf_output_read(), the calculation would 1926 * work with no changes because: 1927 * - event is guaranteed scheduled in 1928 * - no scheduled out in between 1929 * - thus the timestamp would be the same 1930 * 1931 * But this is a bit hairy. 1932 * 1933 * So instead, we have an explicit cgroup call to remain 1934 * within the time time source all along. We believe it 1935 * is cleaner and simpler to understand. 1936 */ 1937 if (is_cgroup_event(event)) 1938 perf_cgroup_set_shadow_time(event, tstamp); 1939 else 1940 event->shadow_ctx_time = tstamp - ctx->timestamp; 1941 } 1942 1943 #define MAX_INTERRUPTS (~0ULL) 1944 1945 static void perf_log_throttle(struct perf_event *event, int enable); 1946 static void perf_log_itrace_start(struct perf_event *event); 1947 1948 static int 1949 event_sched_in(struct perf_event *event, 1950 struct perf_cpu_context *cpuctx, 1951 struct perf_event_context *ctx) 1952 { 1953 u64 tstamp = perf_event_time(event); 1954 int ret = 0; 1955 1956 lockdep_assert_held(&ctx->lock); 1957 1958 if (event->state <= PERF_EVENT_STATE_OFF) 1959 return 0; 1960 1961 WRITE_ONCE(event->oncpu, smp_processor_id()); 1962 /* 1963 * Order event::oncpu write to happen before the ACTIVE state 1964 * is visible. 1965 */ 1966 smp_wmb(); 1967 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 1968 1969 /* 1970 * Unthrottle events, since we scheduled we might have missed several 1971 * ticks already, also for a heavily scheduling task there is little 1972 * guarantee it'll get a tick in a timely manner. 1973 */ 1974 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1975 perf_log_throttle(event, 1); 1976 event->hw.interrupts = 0; 1977 } 1978 1979 /* 1980 * The new state must be visible before we turn it on in the hardware: 1981 */ 1982 smp_wmb(); 1983 1984 perf_pmu_disable(event->pmu); 1985 1986 perf_set_shadow_time(event, ctx, tstamp); 1987 1988 perf_log_itrace_start(event); 1989 1990 if (event->pmu->add(event, PERF_EF_START)) { 1991 event->state = PERF_EVENT_STATE_INACTIVE; 1992 event->oncpu = -1; 1993 ret = -EAGAIN; 1994 goto out; 1995 } 1996 1997 event->tstamp_running += tstamp - event->tstamp_stopped; 1998 1999 if (!is_software_event(event)) 2000 cpuctx->active_oncpu++; 2001 if (!ctx->nr_active++) 2002 perf_event_ctx_activate(ctx); 2003 if (event->attr.freq && event->attr.sample_freq) 2004 ctx->nr_freq++; 2005 2006 if (event->attr.exclusive) 2007 cpuctx->exclusive = 1; 2008 2009 out: 2010 perf_pmu_enable(event->pmu); 2011 2012 return ret; 2013 } 2014 2015 static int 2016 group_sched_in(struct perf_event *group_event, 2017 struct perf_cpu_context *cpuctx, 2018 struct perf_event_context *ctx) 2019 { 2020 struct perf_event *event, *partial_group = NULL; 2021 struct pmu *pmu = ctx->pmu; 2022 u64 now = ctx->time; 2023 bool simulate = false; 2024 2025 if (group_event->state == PERF_EVENT_STATE_OFF) 2026 return 0; 2027 2028 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2029 2030 if (event_sched_in(group_event, cpuctx, ctx)) { 2031 pmu->cancel_txn(pmu); 2032 perf_mux_hrtimer_restart(cpuctx); 2033 return -EAGAIN; 2034 } 2035 2036 /* 2037 * Schedule in siblings as one group (if any): 2038 */ 2039 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2040 if (event_sched_in(event, cpuctx, ctx)) { 2041 partial_group = event; 2042 goto group_error; 2043 } 2044 } 2045 2046 if (!pmu->commit_txn(pmu)) 2047 return 0; 2048 2049 group_error: 2050 /* 2051 * Groups can be scheduled in as one unit only, so undo any 2052 * partial group before returning: 2053 * The events up to the failed event are scheduled out normally, 2054 * tstamp_stopped will be updated. 2055 * 2056 * The failed events and the remaining siblings need to have 2057 * their timings updated as if they had gone thru event_sched_in() 2058 * and event_sched_out(). This is required to get consistent timings 2059 * across the group. This also takes care of the case where the group 2060 * could never be scheduled by ensuring tstamp_stopped is set to mark 2061 * the time the event was actually stopped, such that time delta 2062 * calculation in update_event_times() is correct. 2063 */ 2064 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2065 if (event == partial_group) 2066 simulate = true; 2067 2068 if (simulate) { 2069 event->tstamp_running += now - event->tstamp_stopped; 2070 event->tstamp_stopped = now; 2071 } else { 2072 event_sched_out(event, cpuctx, ctx); 2073 } 2074 } 2075 event_sched_out(group_event, cpuctx, ctx); 2076 2077 pmu->cancel_txn(pmu); 2078 2079 perf_mux_hrtimer_restart(cpuctx); 2080 2081 return -EAGAIN; 2082 } 2083 2084 /* 2085 * Work out whether we can put this event group on the CPU now. 2086 */ 2087 static int group_can_go_on(struct perf_event *event, 2088 struct perf_cpu_context *cpuctx, 2089 int can_add_hw) 2090 { 2091 /* 2092 * Groups consisting entirely of software events can always go on. 2093 */ 2094 if (event->group_flags & PERF_GROUP_SOFTWARE) 2095 return 1; 2096 /* 2097 * If an exclusive group is already on, no other hardware 2098 * events can go on. 2099 */ 2100 if (cpuctx->exclusive) 2101 return 0; 2102 /* 2103 * If this group is exclusive and there are already 2104 * events on the CPU, it can't go on. 2105 */ 2106 if (event->attr.exclusive && cpuctx->active_oncpu) 2107 return 0; 2108 /* 2109 * Otherwise, try to add it if all previous groups were able 2110 * to go on. 2111 */ 2112 return can_add_hw; 2113 } 2114 2115 static void add_event_to_ctx(struct perf_event *event, 2116 struct perf_event_context *ctx) 2117 { 2118 u64 tstamp = perf_event_time(event); 2119 2120 list_add_event(event, ctx); 2121 perf_group_attach(event); 2122 event->tstamp_enabled = tstamp; 2123 event->tstamp_running = tstamp; 2124 event->tstamp_stopped = tstamp; 2125 } 2126 2127 static void ctx_sched_out(struct perf_event_context *ctx, 2128 struct perf_cpu_context *cpuctx, 2129 enum event_type_t event_type); 2130 static void 2131 ctx_sched_in(struct perf_event_context *ctx, 2132 struct perf_cpu_context *cpuctx, 2133 enum event_type_t event_type, 2134 struct task_struct *task); 2135 2136 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2137 struct perf_event_context *ctx) 2138 { 2139 if (!cpuctx->task_ctx) 2140 return; 2141 2142 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2143 return; 2144 2145 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2146 } 2147 2148 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2149 struct perf_event_context *ctx, 2150 struct task_struct *task) 2151 { 2152 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2153 if (ctx) 2154 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2155 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2156 if (ctx) 2157 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2158 } 2159 2160 static void ctx_resched(struct perf_cpu_context *cpuctx, 2161 struct perf_event_context *task_ctx) 2162 { 2163 perf_pmu_disable(cpuctx->ctx.pmu); 2164 if (task_ctx) 2165 task_ctx_sched_out(cpuctx, task_ctx); 2166 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2167 perf_event_sched_in(cpuctx, task_ctx, current); 2168 perf_pmu_enable(cpuctx->ctx.pmu); 2169 } 2170 2171 /* 2172 * Cross CPU call to install and enable a performance event 2173 * 2174 * Very similar to remote_function() + event_function() but cannot assume that 2175 * things like ctx->is_active and cpuctx->task_ctx are set. 2176 */ 2177 static int __perf_install_in_context(void *info) 2178 { 2179 struct perf_event *event = info; 2180 struct perf_event_context *ctx = event->ctx; 2181 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2182 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2183 bool activate = true; 2184 int ret = 0; 2185 2186 raw_spin_lock(&cpuctx->ctx.lock); 2187 if (ctx->task) { 2188 raw_spin_lock(&ctx->lock); 2189 task_ctx = ctx; 2190 2191 /* If we're on the wrong CPU, try again */ 2192 if (task_cpu(ctx->task) != smp_processor_id()) { 2193 ret = -ESRCH; 2194 goto unlock; 2195 } 2196 2197 /* 2198 * If we're on the right CPU, see if the task we target is 2199 * current, if not we don't have to activate the ctx, a future 2200 * context switch will do that for us. 2201 */ 2202 if (ctx->task != current) 2203 activate = false; 2204 else 2205 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2206 2207 } else if (task_ctx) { 2208 raw_spin_lock(&task_ctx->lock); 2209 } 2210 2211 if (activate) { 2212 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2213 add_event_to_ctx(event, ctx); 2214 ctx_resched(cpuctx, task_ctx); 2215 } else { 2216 add_event_to_ctx(event, ctx); 2217 } 2218 2219 unlock: 2220 perf_ctx_unlock(cpuctx, task_ctx); 2221 2222 return ret; 2223 } 2224 2225 /* 2226 * Attach a performance event to a context. 2227 * 2228 * Very similar to event_function_call, see comment there. 2229 */ 2230 static void 2231 perf_install_in_context(struct perf_event_context *ctx, 2232 struct perf_event *event, 2233 int cpu) 2234 { 2235 struct task_struct *task = READ_ONCE(ctx->task); 2236 2237 lockdep_assert_held(&ctx->mutex); 2238 2239 event->ctx = ctx; 2240 if (event->cpu != -1) 2241 event->cpu = cpu; 2242 2243 if (!task) { 2244 cpu_function_call(cpu, __perf_install_in_context, event); 2245 return; 2246 } 2247 2248 /* 2249 * Should not happen, we validate the ctx is still alive before calling. 2250 */ 2251 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2252 return; 2253 2254 /* 2255 * Installing events is tricky because we cannot rely on ctx->is_active 2256 * to be set in case this is the nr_events 0 -> 1 transition. 2257 */ 2258 again: 2259 /* 2260 * Cannot use task_function_call() because we need to run on the task's 2261 * CPU regardless of whether its current or not. 2262 */ 2263 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2264 return; 2265 2266 raw_spin_lock_irq(&ctx->lock); 2267 task = ctx->task; 2268 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2269 /* 2270 * Cannot happen because we already checked above (which also 2271 * cannot happen), and we hold ctx->mutex, which serializes us 2272 * against perf_event_exit_task_context(). 2273 */ 2274 raw_spin_unlock_irq(&ctx->lock); 2275 return; 2276 } 2277 raw_spin_unlock_irq(&ctx->lock); 2278 /* 2279 * Since !ctx->is_active doesn't mean anything, we must IPI 2280 * unconditionally. 2281 */ 2282 goto again; 2283 } 2284 2285 /* 2286 * Put a event into inactive state and update time fields. 2287 * Enabling the leader of a group effectively enables all 2288 * the group members that aren't explicitly disabled, so we 2289 * have to update their ->tstamp_enabled also. 2290 * Note: this works for group members as well as group leaders 2291 * since the non-leader members' sibling_lists will be empty. 2292 */ 2293 static void __perf_event_mark_enabled(struct perf_event *event) 2294 { 2295 struct perf_event *sub; 2296 u64 tstamp = perf_event_time(event); 2297 2298 event->state = PERF_EVENT_STATE_INACTIVE; 2299 event->tstamp_enabled = tstamp - event->total_time_enabled; 2300 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2301 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2302 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2303 } 2304 } 2305 2306 /* 2307 * Cross CPU call to enable a performance event 2308 */ 2309 static void __perf_event_enable(struct perf_event *event, 2310 struct perf_cpu_context *cpuctx, 2311 struct perf_event_context *ctx, 2312 void *info) 2313 { 2314 struct perf_event *leader = event->group_leader; 2315 struct perf_event_context *task_ctx; 2316 2317 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2318 event->state <= PERF_EVENT_STATE_ERROR) 2319 return; 2320 2321 if (ctx->is_active) 2322 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2323 2324 __perf_event_mark_enabled(event); 2325 2326 if (!ctx->is_active) 2327 return; 2328 2329 if (!event_filter_match(event)) { 2330 if (is_cgroup_event(event)) 2331 perf_cgroup_defer_enabled(event); 2332 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2333 return; 2334 } 2335 2336 /* 2337 * If the event is in a group and isn't the group leader, 2338 * then don't put it on unless the group is on. 2339 */ 2340 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2341 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2342 return; 2343 } 2344 2345 task_ctx = cpuctx->task_ctx; 2346 if (ctx->task) 2347 WARN_ON_ONCE(task_ctx != ctx); 2348 2349 ctx_resched(cpuctx, task_ctx); 2350 } 2351 2352 /* 2353 * Enable a event. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This condition is satisfied when called through 2358 * perf_event_for_each_child or perf_event_for_each as described 2359 * for perf_event_disable. 2360 */ 2361 static void _perf_event_enable(struct perf_event *event) 2362 { 2363 struct perf_event_context *ctx = event->ctx; 2364 2365 raw_spin_lock_irq(&ctx->lock); 2366 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2367 event->state < PERF_EVENT_STATE_ERROR) { 2368 raw_spin_unlock_irq(&ctx->lock); 2369 return; 2370 } 2371 2372 /* 2373 * If the event is in error state, clear that first. 2374 * 2375 * That way, if we see the event in error state below, we know that it 2376 * has gone back into error state, as distinct from the task having 2377 * been scheduled away before the cross-call arrived. 2378 */ 2379 if (event->state == PERF_EVENT_STATE_ERROR) 2380 event->state = PERF_EVENT_STATE_OFF; 2381 raw_spin_unlock_irq(&ctx->lock); 2382 2383 event_function_call(event, __perf_event_enable, NULL); 2384 } 2385 2386 /* 2387 * See perf_event_disable(); 2388 */ 2389 void perf_event_enable(struct perf_event *event) 2390 { 2391 struct perf_event_context *ctx; 2392 2393 ctx = perf_event_ctx_lock(event); 2394 _perf_event_enable(event); 2395 perf_event_ctx_unlock(event, ctx); 2396 } 2397 EXPORT_SYMBOL_GPL(perf_event_enable); 2398 2399 struct stop_event_data { 2400 struct perf_event *event; 2401 unsigned int restart; 2402 }; 2403 2404 static int __perf_event_stop(void *info) 2405 { 2406 struct stop_event_data *sd = info; 2407 struct perf_event *event = sd->event; 2408 2409 /* if it's already INACTIVE, do nothing */ 2410 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2411 return 0; 2412 2413 /* matches smp_wmb() in event_sched_in() */ 2414 smp_rmb(); 2415 2416 /* 2417 * There is a window with interrupts enabled before we get here, 2418 * so we need to check again lest we try to stop another CPU's event. 2419 */ 2420 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2421 return -EAGAIN; 2422 2423 event->pmu->stop(event, PERF_EF_UPDATE); 2424 2425 /* 2426 * May race with the actual stop (through perf_pmu_output_stop()), 2427 * but it is only used for events with AUX ring buffer, and such 2428 * events will refuse to restart because of rb::aux_mmap_count==0, 2429 * see comments in perf_aux_output_begin(). 2430 * 2431 * Since this is happening on a event-local CPU, no trace is lost 2432 * while restarting. 2433 */ 2434 if (sd->restart) 2435 event->pmu->start(event, PERF_EF_START); 2436 2437 return 0; 2438 } 2439 2440 static int perf_event_restart(struct perf_event *event) 2441 { 2442 struct stop_event_data sd = { 2443 .event = event, 2444 .restart = 1, 2445 }; 2446 int ret = 0; 2447 2448 do { 2449 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2450 return 0; 2451 2452 /* matches smp_wmb() in event_sched_in() */ 2453 smp_rmb(); 2454 2455 /* 2456 * We only want to restart ACTIVE events, so if the event goes 2457 * inactive here (event->oncpu==-1), there's nothing more to do; 2458 * fall through with ret==-ENXIO. 2459 */ 2460 ret = cpu_function_call(READ_ONCE(event->oncpu), 2461 __perf_event_stop, &sd); 2462 } while (ret == -EAGAIN); 2463 2464 return ret; 2465 } 2466 2467 /* 2468 * In order to contain the amount of racy and tricky in the address filter 2469 * configuration management, it is a two part process: 2470 * 2471 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2472 * we update the addresses of corresponding vmas in 2473 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2474 * (p2) when an event is scheduled in (pmu::add), it calls 2475 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2476 * if the generation has changed since the previous call. 2477 * 2478 * If (p1) happens while the event is active, we restart it to force (p2). 2479 * 2480 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2481 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2482 * ioctl; 2483 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2484 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2485 * for reading; 2486 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2487 * of exec. 2488 */ 2489 void perf_event_addr_filters_sync(struct perf_event *event) 2490 { 2491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2492 2493 if (!has_addr_filter(event)) 2494 return; 2495 2496 raw_spin_lock(&ifh->lock); 2497 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2498 event->pmu->addr_filters_sync(event); 2499 event->hw.addr_filters_gen = event->addr_filters_gen; 2500 } 2501 raw_spin_unlock(&ifh->lock); 2502 } 2503 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2504 2505 static int _perf_event_refresh(struct perf_event *event, int refresh) 2506 { 2507 /* 2508 * not supported on inherited events 2509 */ 2510 if (event->attr.inherit || !is_sampling_event(event)) 2511 return -EINVAL; 2512 2513 atomic_add(refresh, &event->event_limit); 2514 _perf_event_enable(event); 2515 2516 return 0; 2517 } 2518 2519 /* 2520 * See perf_event_disable() 2521 */ 2522 int perf_event_refresh(struct perf_event *event, int refresh) 2523 { 2524 struct perf_event_context *ctx; 2525 int ret; 2526 2527 ctx = perf_event_ctx_lock(event); 2528 ret = _perf_event_refresh(event, refresh); 2529 perf_event_ctx_unlock(event, ctx); 2530 2531 return ret; 2532 } 2533 EXPORT_SYMBOL_GPL(perf_event_refresh); 2534 2535 static void ctx_sched_out(struct perf_event_context *ctx, 2536 struct perf_cpu_context *cpuctx, 2537 enum event_type_t event_type) 2538 { 2539 int is_active = ctx->is_active; 2540 struct perf_event *event; 2541 2542 lockdep_assert_held(&ctx->lock); 2543 2544 if (likely(!ctx->nr_events)) { 2545 /* 2546 * See __perf_remove_from_context(). 2547 */ 2548 WARN_ON_ONCE(ctx->is_active); 2549 if (ctx->task) 2550 WARN_ON_ONCE(cpuctx->task_ctx); 2551 return; 2552 } 2553 2554 ctx->is_active &= ~event_type; 2555 if (!(ctx->is_active & EVENT_ALL)) 2556 ctx->is_active = 0; 2557 2558 if (ctx->task) { 2559 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2560 if (!ctx->is_active) 2561 cpuctx->task_ctx = NULL; 2562 } 2563 2564 /* 2565 * Always update time if it was set; not only when it changes. 2566 * Otherwise we can 'forget' to update time for any but the last 2567 * context we sched out. For example: 2568 * 2569 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2570 * ctx_sched_out(.event_type = EVENT_PINNED) 2571 * 2572 * would only update time for the pinned events. 2573 */ 2574 if (is_active & EVENT_TIME) { 2575 /* update (and stop) ctx time */ 2576 update_context_time(ctx); 2577 update_cgrp_time_from_cpuctx(cpuctx); 2578 } 2579 2580 is_active ^= ctx->is_active; /* changed bits */ 2581 2582 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2583 return; 2584 2585 perf_pmu_disable(ctx->pmu); 2586 if (is_active & EVENT_PINNED) { 2587 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2588 group_sched_out(event, cpuctx, ctx); 2589 } 2590 2591 if (is_active & EVENT_FLEXIBLE) { 2592 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2593 group_sched_out(event, cpuctx, ctx); 2594 } 2595 perf_pmu_enable(ctx->pmu); 2596 } 2597 2598 /* 2599 * Test whether two contexts are equivalent, i.e. whether they have both been 2600 * cloned from the same version of the same context. 2601 * 2602 * Equivalence is measured using a generation number in the context that is 2603 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2604 * and list_del_event(). 2605 */ 2606 static int context_equiv(struct perf_event_context *ctx1, 2607 struct perf_event_context *ctx2) 2608 { 2609 lockdep_assert_held(&ctx1->lock); 2610 lockdep_assert_held(&ctx2->lock); 2611 2612 /* Pinning disables the swap optimization */ 2613 if (ctx1->pin_count || ctx2->pin_count) 2614 return 0; 2615 2616 /* If ctx1 is the parent of ctx2 */ 2617 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2618 return 1; 2619 2620 /* If ctx2 is the parent of ctx1 */ 2621 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2622 return 1; 2623 2624 /* 2625 * If ctx1 and ctx2 have the same parent; we flatten the parent 2626 * hierarchy, see perf_event_init_context(). 2627 */ 2628 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2629 ctx1->parent_gen == ctx2->parent_gen) 2630 return 1; 2631 2632 /* Unmatched */ 2633 return 0; 2634 } 2635 2636 static void __perf_event_sync_stat(struct perf_event *event, 2637 struct perf_event *next_event) 2638 { 2639 u64 value; 2640 2641 if (!event->attr.inherit_stat) 2642 return; 2643 2644 /* 2645 * Update the event value, we cannot use perf_event_read() 2646 * because we're in the middle of a context switch and have IRQs 2647 * disabled, which upsets smp_call_function_single(), however 2648 * we know the event must be on the current CPU, therefore we 2649 * don't need to use it. 2650 */ 2651 switch (event->state) { 2652 case PERF_EVENT_STATE_ACTIVE: 2653 event->pmu->read(event); 2654 /* fall-through */ 2655 2656 case PERF_EVENT_STATE_INACTIVE: 2657 update_event_times(event); 2658 break; 2659 2660 default: 2661 break; 2662 } 2663 2664 /* 2665 * In order to keep per-task stats reliable we need to flip the event 2666 * values when we flip the contexts. 2667 */ 2668 value = local64_read(&next_event->count); 2669 value = local64_xchg(&event->count, value); 2670 local64_set(&next_event->count, value); 2671 2672 swap(event->total_time_enabled, next_event->total_time_enabled); 2673 swap(event->total_time_running, next_event->total_time_running); 2674 2675 /* 2676 * Since we swizzled the values, update the user visible data too. 2677 */ 2678 perf_event_update_userpage(event); 2679 perf_event_update_userpage(next_event); 2680 } 2681 2682 static void perf_event_sync_stat(struct perf_event_context *ctx, 2683 struct perf_event_context *next_ctx) 2684 { 2685 struct perf_event *event, *next_event; 2686 2687 if (!ctx->nr_stat) 2688 return; 2689 2690 update_context_time(ctx); 2691 2692 event = list_first_entry(&ctx->event_list, 2693 struct perf_event, event_entry); 2694 2695 next_event = list_first_entry(&next_ctx->event_list, 2696 struct perf_event, event_entry); 2697 2698 while (&event->event_entry != &ctx->event_list && 2699 &next_event->event_entry != &next_ctx->event_list) { 2700 2701 __perf_event_sync_stat(event, next_event); 2702 2703 event = list_next_entry(event, event_entry); 2704 next_event = list_next_entry(next_event, event_entry); 2705 } 2706 } 2707 2708 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2709 struct task_struct *next) 2710 { 2711 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2712 struct perf_event_context *next_ctx; 2713 struct perf_event_context *parent, *next_parent; 2714 struct perf_cpu_context *cpuctx; 2715 int do_switch = 1; 2716 2717 if (likely(!ctx)) 2718 return; 2719 2720 cpuctx = __get_cpu_context(ctx); 2721 if (!cpuctx->task_ctx) 2722 return; 2723 2724 rcu_read_lock(); 2725 next_ctx = next->perf_event_ctxp[ctxn]; 2726 if (!next_ctx) 2727 goto unlock; 2728 2729 parent = rcu_dereference(ctx->parent_ctx); 2730 next_parent = rcu_dereference(next_ctx->parent_ctx); 2731 2732 /* If neither context have a parent context; they cannot be clones. */ 2733 if (!parent && !next_parent) 2734 goto unlock; 2735 2736 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2737 /* 2738 * Looks like the two contexts are clones, so we might be 2739 * able to optimize the context switch. We lock both 2740 * contexts and check that they are clones under the 2741 * lock (including re-checking that neither has been 2742 * uncloned in the meantime). It doesn't matter which 2743 * order we take the locks because no other cpu could 2744 * be trying to lock both of these tasks. 2745 */ 2746 raw_spin_lock(&ctx->lock); 2747 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2748 if (context_equiv(ctx, next_ctx)) { 2749 WRITE_ONCE(ctx->task, next); 2750 WRITE_ONCE(next_ctx->task, task); 2751 2752 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2753 2754 /* 2755 * RCU_INIT_POINTER here is safe because we've not 2756 * modified the ctx and the above modification of 2757 * ctx->task and ctx->task_ctx_data are immaterial 2758 * since those values are always verified under 2759 * ctx->lock which we're now holding. 2760 */ 2761 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2762 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2763 2764 do_switch = 0; 2765 2766 perf_event_sync_stat(ctx, next_ctx); 2767 } 2768 raw_spin_unlock(&next_ctx->lock); 2769 raw_spin_unlock(&ctx->lock); 2770 } 2771 unlock: 2772 rcu_read_unlock(); 2773 2774 if (do_switch) { 2775 raw_spin_lock(&ctx->lock); 2776 task_ctx_sched_out(cpuctx, ctx); 2777 raw_spin_unlock(&ctx->lock); 2778 } 2779 } 2780 2781 void perf_sched_cb_dec(struct pmu *pmu) 2782 { 2783 this_cpu_dec(perf_sched_cb_usages); 2784 } 2785 2786 void perf_sched_cb_inc(struct pmu *pmu) 2787 { 2788 this_cpu_inc(perf_sched_cb_usages); 2789 } 2790 2791 /* 2792 * This function provides the context switch callback to the lower code 2793 * layer. It is invoked ONLY when the context switch callback is enabled. 2794 */ 2795 static void perf_pmu_sched_task(struct task_struct *prev, 2796 struct task_struct *next, 2797 bool sched_in) 2798 { 2799 struct perf_cpu_context *cpuctx; 2800 struct pmu *pmu; 2801 unsigned long flags; 2802 2803 if (prev == next) 2804 return; 2805 2806 local_irq_save(flags); 2807 2808 rcu_read_lock(); 2809 2810 list_for_each_entry_rcu(pmu, &pmus, entry) { 2811 if (pmu->sched_task) { 2812 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2813 2814 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2815 2816 perf_pmu_disable(pmu); 2817 2818 pmu->sched_task(cpuctx->task_ctx, sched_in); 2819 2820 perf_pmu_enable(pmu); 2821 2822 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2823 } 2824 } 2825 2826 rcu_read_unlock(); 2827 2828 local_irq_restore(flags); 2829 } 2830 2831 static void perf_event_switch(struct task_struct *task, 2832 struct task_struct *next_prev, bool sched_in); 2833 2834 #define for_each_task_context_nr(ctxn) \ 2835 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2836 2837 /* 2838 * Called from scheduler to remove the events of the current task, 2839 * with interrupts disabled. 2840 * 2841 * We stop each event and update the event value in event->count. 2842 * 2843 * This does not protect us against NMI, but disable() 2844 * sets the disabled bit in the control field of event _before_ 2845 * accessing the event control register. If a NMI hits, then it will 2846 * not restart the event. 2847 */ 2848 void __perf_event_task_sched_out(struct task_struct *task, 2849 struct task_struct *next) 2850 { 2851 int ctxn; 2852 2853 if (__this_cpu_read(perf_sched_cb_usages)) 2854 perf_pmu_sched_task(task, next, false); 2855 2856 if (atomic_read(&nr_switch_events)) 2857 perf_event_switch(task, next, false); 2858 2859 for_each_task_context_nr(ctxn) 2860 perf_event_context_sched_out(task, ctxn, next); 2861 2862 /* 2863 * if cgroup events exist on this CPU, then we need 2864 * to check if we have to switch out PMU state. 2865 * cgroup event are system-wide mode only 2866 */ 2867 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2868 perf_cgroup_sched_out(task, next); 2869 } 2870 2871 /* 2872 * Called with IRQs disabled 2873 */ 2874 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2875 enum event_type_t event_type) 2876 { 2877 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2878 } 2879 2880 static void 2881 ctx_pinned_sched_in(struct perf_event_context *ctx, 2882 struct perf_cpu_context *cpuctx) 2883 { 2884 struct perf_event *event; 2885 2886 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2887 if (event->state <= PERF_EVENT_STATE_OFF) 2888 continue; 2889 if (!event_filter_match(event)) 2890 continue; 2891 2892 /* may need to reset tstamp_enabled */ 2893 if (is_cgroup_event(event)) 2894 perf_cgroup_mark_enabled(event, ctx); 2895 2896 if (group_can_go_on(event, cpuctx, 1)) 2897 group_sched_in(event, cpuctx, ctx); 2898 2899 /* 2900 * If this pinned group hasn't been scheduled, 2901 * put it in error state. 2902 */ 2903 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2904 update_group_times(event); 2905 event->state = PERF_EVENT_STATE_ERROR; 2906 } 2907 } 2908 } 2909 2910 static void 2911 ctx_flexible_sched_in(struct perf_event_context *ctx, 2912 struct perf_cpu_context *cpuctx) 2913 { 2914 struct perf_event *event; 2915 int can_add_hw = 1; 2916 2917 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2918 /* Ignore events in OFF or ERROR state */ 2919 if (event->state <= PERF_EVENT_STATE_OFF) 2920 continue; 2921 /* 2922 * Listen to the 'cpu' scheduling filter constraint 2923 * of events: 2924 */ 2925 if (!event_filter_match(event)) 2926 continue; 2927 2928 /* may need to reset tstamp_enabled */ 2929 if (is_cgroup_event(event)) 2930 perf_cgroup_mark_enabled(event, ctx); 2931 2932 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2933 if (group_sched_in(event, cpuctx, ctx)) 2934 can_add_hw = 0; 2935 } 2936 } 2937 } 2938 2939 static void 2940 ctx_sched_in(struct perf_event_context *ctx, 2941 struct perf_cpu_context *cpuctx, 2942 enum event_type_t event_type, 2943 struct task_struct *task) 2944 { 2945 int is_active = ctx->is_active; 2946 u64 now; 2947 2948 lockdep_assert_held(&ctx->lock); 2949 2950 if (likely(!ctx->nr_events)) 2951 return; 2952 2953 ctx->is_active |= (event_type | EVENT_TIME); 2954 if (ctx->task) { 2955 if (!is_active) 2956 cpuctx->task_ctx = ctx; 2957 else 2958 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2959 } 2960 2961 is_active ^= ctx->is_active; /* changed bits */ 2962 2963 if (is_active & EVENT_TIME) { 2964 /* start ctx time */ 2965 now = perf_clock(); 2966 ctx->timestamp = now; 2967 perf_cgroup_set_timestamp(task, ctx); 2968 } 2969 2970 /* 2971 * First go through the list and put on any pinned groups 2972 * in order to give them the best chance of going on. 2973 */ 2974 if (is_active & EVENT_PINNED) 2975 ctx_pinned_sched_in(ctx, cpuctx); 2976 2977 /* Then walk through the lower prio flexible groups */ 2978 if (is_active & EVENT_FLEXIBLE) 2979 ctx_flexible_sched_in(ctx, cpuctx); 2980 } 2981 2982 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2983 enum event_type_t event_type, 2984 struct task_struct *task) 2985 { 2986 struct perf_event_context *ctx = &cpuctx->ctx; 2987 2988 ctx_sched_in(ctx, cpuctx, event_type, task); 2989 } 2990 2991 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2992 struct task_struct *task) 2993 { 2994 struct perf_cpu_context *cpuctx; 2995 2996 cpuctx = __get_cpu_context(ctx); 2997 if (cpuctx->task_ctx == ctx) 2998 return; 2999 3000 perf_ctx_lock(cpuctx, ctx); 3001 perf_pmu_disable(ctx->pmu); 3002 /* 3003 * We want to keep the following priority order: 3004 * cpu pinned (that don't need to move), task pinned, 3005 * cpu flexible, task flexible. 3006 */ 3007 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3008 perf_event_sched_in(cpuctx, ctx, task); 3009 perf_pmu_enable(ctx->pmu); 3010 perf_ctx_unlock(cpuctx, ctx); 3011 } 3012 3013 /* 3014 * Called from scheduler to add the events of the current task 3015 * with interrupts disabled. 3016 * 3017 * We restore the event value and then enable it. 3018 * 3019 * This does not protect us against NMI, but enable() 3020 * sets the enabled bit in the control field of event _before_ 3021 * accessing the event control register. If a NMI hits, then it will 3022 * keep the event running. 3023 */ 3024 void __perf_event_task_sched_in(struct task_struct *prev, 3025 struct task_struct *task) 3026 { 3027 struct perf_event_context *ctx; 3028 int ctxn; 3029 3030 /* 3031 * If cgroup events exist on this CPU, then we need to check if we have 3032 * to switch in PMU state; cgroup event are system-wide mode only. 3033 * 3034 * Since cgroup events are CPU events, we must schedule these in before 3035 * we schedule in the task events. 3036 */ 3037 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3038 perf_cgroup_sched_in(prev, task); 3039 3040 for_each_task_context_nr(ctxn) { 3041 ctx = task->perf_event_ctxp[ctxn]; 3042 if (likely(!ctx)) 3043 continue; 3044 3045 perf_event_context_sched_in(ctx, task); 3046 } 3047 3048 if (atomic_read(&nr_switch_events)) 3049 perf_event_switch(task, prev, true); 3050 3051 if (__this_cpu_read(perf_sched_cb_usages)) 3052 perf_pmu_sched_task(prev, task, true); 3053 } 3054 3055 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3056 { 3057 u64 frequency = event->attr.sample_freq; 3058 u64 sec = NSEC_PER_SEC; 3059 u64 divisor, dividend; 3060 3061 int count_fls, nsec_fls, frequency_fls, sec_fls; 3062 3063 count_fls = fls64(count); 3064 nsec_fls = fls64(nsec); 3065 frequency_fls = fls64(frequency); 3066 sec_fls = 30; 3067 3068 /* 3069 * We got @count in @nsec, with a target of sample_freq HZ 3070 * the target period becomes: 3071 * 3072 * @count * 10^9 3073 * period = ------------------- 3074 * @nsec * sample_freq 3075 * 3076 */ 3077 3078 /* 3079 * Reduce accuracy by one bit such that @a and @b converge 3080 * to a similar magnitude. 3081 */ 3082 #define REDUCE_FLS(a, b) \ 3083 do { \ 3084 if (a##_fls > b##_fls) { \ 3085 a >>= 1; \ 3086 a##_fls--; \ 3087 } else { \ 3088 b >>= 1; \ 3089 b##_fls--; \ 3090 } \ 3091 } while (0) 3092 3093 /* 3094 * Reduce accuracy until either term fits in a u64, then proceed with 3095 * the other, so that finally we can do a u64/u64 division. 3096 */ 3097 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3098 REDUCE_FLS(nsec, frequency); 3099 REDUCE_FLS(sec, count); 3100 } 3101 3102 if (count_fls + sec_fls > 64) { 3103 divisor = nsec * frequency; 3104 3105 while (count_fls + sec_fls > 64) { 3106 REDUCE_FLS(count, sec); 3107 divisor >>= 1; 3108 } 3109 3110 dividend = count * sec; 3111 } else { 3112 dividend = count * sec; 3113 3114 while (nsec_fls + frequency_fls > 64) { 3115 REDUCE_FLS(nsec, frequency); 3116 dividend >>= 1; 3117 } 3118 3119 divisor = nsec * frequency; 3120 } 3121 3122 if (!divisor) 3123 return dividend; 3124 3125 return div64_u64(dividend, divisor); 3126 } 3127 3128 static DEFINE_PER_CPU(int, perf_throttled_count); 3129 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3130 3131 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3132 { 3133 struct hw_perf_event *hwc = &event->hw; 3134 s64 period, sample_period; 3135 s64 delta; 3136 3137 period = perf_calculate_period(event, nsec, count); 3138 3139 delta = (s64)(period - hwc->sample_period); 3140 delta = (delta + 7) / 8; /* low pass filter */ 3141 3142 sample_period = hwc->sample_period + delta; 3143 3144 if (!sample_period) 3145 sample_period = 1; 3146 3147 hwc->sample_period = sample_period; 3148 3149 if (local64_read(&hwc->period_left) > 8*sample_period) { 3150 if (disable) 3151 event->pmu->stop(event, PERF_EF_UPDATE); 3152 3153 local64_set(&hwc->period_left, 0); 3154 3155 if (disable) 3156 event->pmu->start(event, PERF_EF_RELOAD); 3157 } 3158 } 3159 3160 /* 3161 * combine freq adjustment with unthrottling to avoid two passes over the 3162 * events. At the same time, make sure, having freq events does not change 3163 * the rate of unthrottling as that would introduce bias. 3164 */ 3165 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3166 int needs_unthr) 3167 { 3168 struct perf_event *event; 3169 struct hw_perf_event *hwc; 3170 u64 now, period = TICK_NSEC; 3171 s64 delta; 3172 3173 /* 3174 * only need to iterate over all events iff: 3175 * - context have events in frequency mode (needs freq adjust) 3176 * - there are events to unthrottle on this cpu 3177 */ 3178 if (!(ctx->nr_freq || needs_unthr)) 3179 return; 3180 3181 raw_spin_lock(&ctx->lock); 3182 perf_pmu_disable(ctx->pmu); 3183 3184 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3185 if (event->state != PERF_EVENT_STATE_ACTIVE) 3186 continue; 3187 3188 if (!event_filter_match(event)) 3189 continue; 3190 3191 perf_pmu_disable(event->pmu); 3192 3193 hwc = &event->hw; 3194 3195 if (hwc->interrupts == MAX_INTERRUPTS) { 3196 hwc->interrupts = 0; 3197 perf_log_throttle(event, 1); 3198 event->pmu->start(event, 0); 3199 } 3200 3201 if (!event->attr.freq || !event->attr.sample_freq) 3202 goto next; 3203 3204 /* 3205 * stop the event and update event->count 3206 */ 3207 event->pmu->stop(event, PERF_EF_UPDATE); 3208 3209 now = local64_read(&event->count); 3210 delta = now - hwc->freq_count_stamp; 3211 hwc->freq_count_stamp = now; 3212 3213 /* 3214 * restart the event 3215 * reload only if value has changed 3216 * we have stopped the event so tell that 3217 * to perf_adjust_period() to avoid stopping it 3218 * twice. 3219 */ 3220 if (delta > 0) 3221 perf_adjust_period(event, period, delta, false); 3222 3223 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3224 next: 3225 perf_pmu_enable(event->pmu); 3226 } 3227 3228 perf_pmu_enable(ctx->pmu); 3229 raw_spin_unlock(&ctx->lock); 3230 } 3231 3232 /* 3233 * Round-robin a context's events: 3234 */ 3235 static void rotate_ctx(struct perf_event_context *ctx) 3236 { 3237 /* 3238 * Rotate the first entry last of non-pinned groups. Rotation might be 3239 * disabled by the inheritance code. 3240 */ 3241 if (!ctx->rotate_disable) 3242 list_rotate_left(&ctx->flexible_groups); 3243 } 3244 3245 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3246 { 3247 struct perf_event_context *ctx = NULL; 3248 int rotate = 0; 3249 3250 if (cpuctx->ctx.nr_events) { 3251 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3252 rotate = 1; 3253 } 3254 3255 ctx = cpuctx->task_ctx; 3256 if (ctx && ctx->nr_events) { 3257 if (ctx->nr_events != ctx->nr_active) 3258 rotate = 1; 3259 } 3260 3261 if (!rotate) 3262 goto done; 3263 3264 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3265 perf_pmu_disable(cpuctx->ctx.pmu); 3266 3267 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3268 if (ctx) 3269 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3270 3271 rotate_ctx(&cpuctx->ctx); 3272 if (ctx) 3273 rotate_ctx(ctx); 3274 3275 perf_event_sched_in(cpuctx, ctx, current); 3276 3277 perf_pmu_enable(cpuctx->ctx.pmu); 3278 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3279 done: 3280 3281 return rotate; 3282 } 3283 3284 void perf_event_task_tick(void) 3285 { 3286 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3287 struct perf_event_context *ctx, *tmp; 3288 int throttled; 3289 3290 WARN_ON(!irqs_disabled()); 3291 3292 __this_cpu_inc(perf_throttled_seq); 3293 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3294 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3295 3296 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3297 perf_adjust_freq_unthr_context(ctx, throttled); 3298 } 3299 3300 static int event_enable_on_exec(struct perf_event *event, 3301 struct perf_event_context *ctx) 3302 { 3303 if (!event->attr.enable_on_exec) 3304 return 0; 3305 3306 event->attr.enable_on_exec = 0; 3307 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3308 return 0; 3309 3310 __perf_event_mark_enabled(event); 3311 3312 return 1; 3313 } 3314 3315 /* 3316 * Enable all of a task's events that have been marked enable-on-exec. 3317 * This expects task == current. 3318 */ 3319 static void perf_event_enable_on_exec(int ctxn) 3320 { 3321 struct perf_event_context *ctx, *clone_ctx = NULL; 3322 struct perf_cpu_context *cpuctx; 3323 struct perf_event *event; 3324 unsigned long flags; 3325 int enabled = 0; 3326 3327 local_irq_save(flags); 3328 ctx = current->perf_event_ctxp[ctxn]; 3329 if (!ctx || !ctx->nr_events) 3330 goto out; 3331 3332 cpuctx = __get_cpu_context(ctx); 3333 perf_ctx_lock(cpuctx, ctx); 3334 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3335 list_for_each_entry(event, &ctx->event_list, event_entry) 3336 enabled |= event_enable_on_exec(event, ctx); 3337 3338 /* 3339 * Unclone and reschedule this context if we enabled any event. 3340 */ 3341 if (enabled) { 3342 clone_ctx = unclone_ctx(ctx); 3343 ctx_resched(cpuctx, ctx); 3344 } 3345 perf_ctx_unlock(cpuctx, ctx); 3346 3347 out: 3348 local_irq_restore(flags); 3349 3350 if (clone_ctx) 3351 put_ctx(clone_ctx); 3352 } 3353 3354 struct perf_read_data { 3355 struct perf_event *event; 3356 bool group; 3357 int ret; 3358 }; 3359 3360 /* 3361 * Cross CPU call to read the hardware event 3362 */ 3363 static void __perf_event_read(void *info) 3364 { 3365 struct perf_read_data *data = info; 3366 struct perf_event *sub, *event = data->event; 3367 struct perf_event_context *ctx = event->ctx; 3368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3369 struct pmu *pmu = event->pmu; 3370 3371 /* 3372 * If this is a task context, we need to check whether it is 3373 * the current task context of this cpu. If not it has been 3374 * scheduled out before the smp call arrived. In that case 3375 * event->count would have been updated to a recent sample 3376 * when the event was scheduled out. 3377 */ 3378 if (ctx->task && cpuctx->task_ctx != ctx) 3379 return; 3380 3381 raw_spin_lock(&ctx->lock); 3382 if (ctx->is_active) { 3383 update_context_time(ctx); 3384 update_cgrp_time_from_event(event); 3385 } 3386 3387 update_event_times(event); 3388 if (event->state != PERF_EVENT_STATE_ACTIVE) 3389 goto unlock; 3390 3391 if (!data->group) { 3392 pmu->read(event); 3393 data->ret = 0; 3394 goto unlock; 3395 } 3396 3397 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3398 3399 pmu->read(event); 3400 3401 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3402 update_event_times(sub); 3403 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3404 /* 3405 * Use sibling's PMU rather than @event's since 3406 * sibling could be on different (eg: software) PMU. 3407 */ 3408 sub->pmu->read(sub); 3409 } 3410 } 3411 3412 data->ret = pmu->commit_txn(pmu); 3413 3414 unlock: 3415 raw_spin_unlock(&ctx->lock); 3416 } 3417 3418 static inline u64 perf_event_count(struct perf_event *event) 3419 { 3420 if (event->pmu->count) 3421 return event->pmu->count(event); 3422 3423 return __perf_event_count(event); 3424 } 3425 3426 /* 3427 * NMI-safe method to read a local event, that is an event that 3428 * is: 3429 * - either for the current task, or for this CPU 3430 * - does not have inherit set, for inherited task events 3431 * will not be local and we cannot read them atomically 3432 * - must not have a pmu::count method 3433 */ 3434 u64 perf_event_read_local(struct perf_event *event) 3435 { 3436 unsigned long flags; 3437 u64 val; 3438 3439 /* 3440 * Disabling interrupts avoids all counter scheduling (context 3441 * switches, timer based rotation and IPIs). 3442 */ 3443 local_irq_save(flags); 3444 3445 /* If this is a per-task event, it must be for current */ 3446 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3447 event->hw.target != current); 3448 3449 /* If this is a per-CPU event, it must be for this CPU */ 3450 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3451 event->cpu != smp_processor_id()); 3452 3453 /* 3454 * It must not be an event with inherit set, we cannot read 3455 * all child counters from atomic context. 3456 */ 3457 WARN_ON_ONCE(event->attr.inherit); 3458 3459 /* 3460 * It must not have a pmu::count method, those are not 3461 * NMI safe. 3462 */ 3463 WARN_ON_ONCE(event->pmu->count); 3464 3465 /* 3466 * If the event is currently on this CPU, its either a per-task event, 3467 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3468 * oncpu == -1). 3469 */ 3470 if (event->oncpu == smp_processor_id()) 3471 event->pmu->read(event); 3472 3473 val = local64_read(&event->count); 3474 local_irq_restore(flags); 3475 3476 return val; 3477 } 3478 3479 static int perf_event_read(struct perf_event *event, bool group) 3480 { 3481 int ret = 0; 3482 3483 /* 3484 * If event is enabled and currently active on a CPU, update the 3485 * value in the event structure: 3486 */ 3487 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3488 struct perf_read_data data = { 3489 .event = event, 3490 .group = group, 3491 .ret = 0, 3492 }; 3493 smp_call_function_single(event->oncpu, 3494 __perf_event_read, &data, 1); 3495 ret = data.ret; 3496 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3497 struct perf_event_context *ctx = event->ctx; 3498 unsigned long flags; 3499 3500 raw_spin_lock_irqsave(&ctx->lock, flags); 3501 /* 3502 * may read while context is not active 3503 * (e.g., thread is blocked), in that case 3504 * we cannot update context time 3505 */ 3506 if (ctx->is_active) { 3507 update_context_time(ctx); 3508 update_cgrp_time_from_event(event); 3509 } 3510 if (group) 3511 update_group_times(event); 3512 else 3513 update_event_times(event); 3514 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3515 } 3516 3517 return ret; 3518 } 3519 3520 /* 3521 * Initialize the perf_event context in a task_struct: 3522 */ 3523 static void __perf_event_init_context(struct perf_event_context *ctx) 3524 { 3525 raw_spin_lock_init(&ctx->lock); 3526 mutex_init(&ctx->mutex); 3527 INIT_LIST_HEAD(&ctx->active_ctx_list); 3528 INIT_LIST_HEAD(&ctx->pinned_groups); 3529 INIT_LIST_HEAD(&ctx->flexible_groups); 3530 INIT_LIST_HEAD(&ctx->event_list); 3531 atomic_set(&ctx->refcount, 1); 3532 } 3533 3534 static struct perf_event_context * 3535 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3536 { 3537 struct perf_event_context *ctx; 3538 3539 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3540 if (!ctx) 3541 return NULL; 3542 3543 __perf_event_init_context(ctx); 3544 if (task) { 3545 ctx->task = task; 3546 get_task_struct(task); 3547 } 3548 ctx->pmu = pmu; 3549 3550 return ctx; 3551 } 3552 3553 static struct task_struct * 3554 find_lively_task_by_vpid(pid_t vpid) 3555 { 3556 struct task_struct *task; 3557 3558 rcu_read_lock(); 3559 if (!vpid) 3560 task = current; 3561 else 3562 task = find_task_by_vpid(vpid); 3563 if (task) 3564 get_task_struct(task); 3565 rcu_read_unlock(); 3566 3567 if (!task) 3568 return ERR_PTR(-ESRCH); 3569 3570 return task; 3571 } 3572 3573 /* 3574 * Returns a matching context with refcount and pincount. 3575 */ 3576 static struct perf_event_context * 3577 find_get_context(struct pmu *pmu, struct task_struct *task, 3578 struct perf_event *event) 3579 { 3580 struct perf_event_context *ctx, *clone_ctx = NULL; 3581 struct perf_cpu_context *cpuctx; 3582 void *task_ctx_data = NULL; 3583 unsigned long flags; 3584 int ctxn, err; 3585 int cpu = event->cpu; 3586 3587 if (!task) { 3588 /* Must be root to operate on a CPU event: */ 3589 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3590 return ERR_PTR(-EACCES); 3591 3592 /* 3593 * We could be clever and allow to attach a event to an 3594 * offline CPU and activate it when the CPU comes up, but 3595 * that's for later. 3596 */ 3597 if (!cpu_online(cpu)) 3598 return ERR_PTR(-ENODEV); 3599 3600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3601 ctx = &cpuctx->ctx; 3602 get_ctx(ctx); 3603 ++ctx->pin_count; 3604 3605 return ctx; 3606 } 3607 3608 err = -EINVAL; 3609 ctxn = pmu->task_ctx_nr; 3610 if (ctxn < 0) 3611 goto errout; 3612 3613 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3614 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3615 if (!task_ctx_data) { 3616 err = -ENOMEM; 3617 goto errout; 3618 } 3619 } 3620 3621 retry: 3622 ctx = perf_lock_task_context(task, ctxn, &flags); 3623 if (ctx) { 3624 clone_ctx = unclone_ctx(ctx); 3625 ++ctx->pin_count; 3626 3627 if (task_ctx_data && !ctx->task_ctx_data) { 3628 ctx->task_ctx_data = task_ctx_data; 3629 task_ctx_data = NULL; 3630 } 3631 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3632 3633 if (clone_ctx) 3634 put_ctx(clone_ctx); 3635 } else { 3636 ctx = alloc_perf_context(pmu, task); 3637 err = -ENOMEM; 3638 if (!ctx) 3639 goto errout; 3640 3641 if (task_ctx_data) { 3642 ctx->task_ctx_data = task_ctx_data; 3643 task_ctx_data = NULL; 3644 } 3645 3646 err = 0; 3647 mutex_lock(&task->perf_event_mutex); 3648 /* 3649 * If it has already passed perf_event_exit_task(). 3650 * we must see PF_EXITING, it takes this mutex too. 3651 */ 3652 if (task->flags & PF_EXITING) 3653 err = -ESRCH; 3654 else if (task->perf_event_ctxp[ctxn]) 3655 err = -EAGAIN; 3656 else { 3657 get_ctx(ctx); 3658 ++ctx->pin_count; 3659 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3660 } 3661 mutex_unlock(&task->perf_event_mutex); 3662 3663 if (unlikely(err)) { 3664 put_ctx(ctx); 3665 3666 if (err == -EAGAIN) 3667 goto retry; 3668 goto errout; 3669 } 3670 } 3671 3672 kfree(task_ctx_data); 3673 return ctx; 3674 3675 errout: 3676 kfree(task_ctx_data); 3677 return ERR_PTR(err); 3678 } 3679 3680 static void perf_event_free_filter(struct perf_event *event); 3681 static void perf_event_free_bpf_prog(struct perf_event *event); 3682 3683 static void free_event_rcu(struct rcu_head *head) 3684 { 3685 struct perf_event *event; 3686 3687 event = container_of(head, struct perf_event, rcu_head); 3688 if (event->ns) 3689 put_pid_ns(event->ns); 3690 perf_event_free_filter(event); 3691 kfree(event); 3692 } 3693 3694 static void ring_buffer_attach(struct perf_event *event, 3695 struct ring_buffer *rb); 3696 3697 static void detach_sb_event(struct perf_event *event) 3698 { 3699 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3700 3701 raw_spin_lock(&pel->lock); 3702 list_del_rcu(&event->sb_list); 3703 raw_spin_unlock(&pel->lock); 3704 } 3705 3706 static bool is_sb_event(struct perf_event *event) 3707 { 3708 struct perf_event_attr *attr = &event->attr; 3709 3710 if (event->parent) 3711 return false; 3712 3713 if (event->attach_state & PERF_ATTACH_TASK) 3714 return false; 3715 3716 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3717 attr->comm || attr->comm_exec || 3718 attr->task || 3719 attr->context_switch) 3720 return true; 3721 return false; 3722 } 3723 3724 static void unaccount_pmu_sb_event(struct perf_event *event) 3725 { 3726 if (is_sb_event(event)) 3727 detach_sb_event(event); 3728 } 3729 3730 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3731 { 3732 if (event->parent) 3733 return; 3734 3735 if (is_cgroup_event(event)) 3736 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3737 } 3738 3739 #ifdef CONFIG_NO_HZ_FULL 3740 static DEFINE_SPINLOCK(nr_freq_lock); 3741 #endif 3742 3743 static void unaccount_freq_event_nohz(void) 3744 { 3745 #ifdef CONFIG_NO_HZ_FULL 3746 spin_lock(&nr_freq_lock); 3747 if (atomic_dec_and_test(&nr_freq_events)) 3748 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3749 spin_unlock(&nr_freq_lock); 3750 #endif 3751 } 3752 3753 static void unaccount_freq_event(void) 3754 { 3755 if (tick_nohz_full_enabled()) 3756 unaccount_freq_event_nohz(); 3757 else 3758 atomic_dec(&nr_freq_events); 3759 } 3760 3761 static void unaccount_event(struct perf_event *event) 3762 { 3763 bool dec = false; 3764 3765 if (event->parent) 3766 return; 3767 3768 if (event->attach_state & PERF_ATTACH_TASK) 3769 dec = true; 3770 if (event->attr.mmap || event->attr.mmap_data) 3771 atomic_dec(&nr_mmap_events); 3772 if (event->attr.comm) 3773 atomic_dec(&nr_comm_events); 3774 if (event->attr.task) 3775 atomic_dec(&nr_task_events); 3776 if (event->attr.freq) 3777 unaccount_freq_event(); 3778 if (event->attr.context_switch) { 3779 dec = true; 3780 atomic_dec(&nr_switch_events); 3781 } 3782 if (is_cgroup_event(event)) 3783 dec = true; 3784 if (has_branch_stack(event)) 3785 dec = true; 3786 3787 if (dec) { 3788 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3789 schedule_delayed_work(&perf_sched_work, HZ); 3790 } 3791 3792 unaccount_event_cpu(event, event->cpu); 3793 3794 unaccount_pmu_sb_event(event); 3795 } 3796 3797 static void perf_sched_delayed(struct work_struct *work) 3798 { 3799 mutex_lock(&perf_sched_mutex); 3800 if (atomic_dec_and_test(&perf_sched_count)) 3801 static_branch_disable(&perf_sched_events); 3802 mutex_unlock(&perf_sched_mutex); 3803 } 3804 3805 /* 3806 * The following implement mutual exclusion of events on "exclusive" pmus 3807 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3808 * at a time, so we disallow creating events that might conflict, namely: 3809 * 3810 * 1) cpu-wide events in the presence of per-task events, 3811 * 2) per-task events in the presence of cpu-wide events, 3812 * 3) two matching events on the same context. 3813 * 3814 * The former two cases are handled in the allocation path (perf_event_alloc(), 3815 * _free_event()), the latter -- before the first perf_install_in_context(). 3816 */ 3817 static int exclusive_event_init(struct perf_event *event) 3818 { 3819 struct pmu *pmu = event->pmu; 3820 3821 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3822 return 0; 3823 3824 /* 3825 * Prevent co-existence of per-task and cpu-wide events on the 3826 * same exclusive pmu. 3827 * 3828 * Negative pmu::exclusive_cnt means there are cpu-wide 3829 * events on this "exclusive" pmu, positive means there are 3830 * per-task events. 3831 * 3832 * Since this is called in perf_event_alloc() path, event::ctx 3833 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3834 * to mean "per-task event", because unlike other attach states it 3835 * never gets cleared. 3836 */ 3837 if (event->attach_state & PERF_ATTACH_TASK) { 3838 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3839 return -EBUSY; 3840 } else { 3841 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3842 return -EBUSY; 3843 } 3844 3845 return 0; 3846 } 3847 3848 static void exclusive_event_destroy(struct perf_event *event) 3849 { 3850 struct pmu *pmu = event->pmu; 3851 3852 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3853 return; 3854 3855 /* see comment in exclusive_event_init() */ 3856 if (event->attach_state & PERF_ATTACH_TASK) 3857 atomic_dec(&pmu->exclusive_cnt); 3858 else 3859 atomic_inc(&pmu->exclusive_cnt); 3860 } 3861 3862 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3863 { 3864 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3865 (e1->cpu == e2->cpu || 3866 e1->cpu == -1 || 3867 e2->cpu == -1)) 3868 return true; 3869 return false; 3870 } 3871 3872 /* Called under the same ctx::mutex as perf_install_in_context() */ 3873 static bool exclusive_event_installable(struct perf_event *event, 3874 struct perf_event_context *ctx) 3875 { 3876 struct perf_event *iter_event; 3877 struct pmu *pmu = event->pmu; 3878 3879 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3880 return true; 3881 3882 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3883 if (exclusive_event_match(iter_event, event)) 3884 return false; 3885 } 3886 3887 return true; 3888 } 3889 3890 static void perf_addr_filters_splice(struct perf_event *event, 3891 struct list_head *head); 3892 3893 static void _free_event(struct perf_event *event) 3894 { 3895 irq_work_sync(&event->pending); 3896 3897 unaccount_event(event); 3898 3899 if (event->rb) { 3900 /* 3901 * Can happen when we close an event with re-directed output. 3902 * 3903 * Since we have a 0 refcount, perf_mmap_close() will skip 3904 * over us; possibly making our ring_buffer_put() the last. 3905 */ 3906 mutex_lock(&event->mmap_mutex); 3907 ring_buffer_attach(event, NULL); 3908 mutex_unlock(&event->mmap_mutex); 3909 } 3910 3911 if (is_cgroup_event(event)) 3912 perf_detach_cgroup(event); 3913 3914 if (!event->parent) { 3915 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3916 put_callchain_buffers(); 3917 } 3918 3919 perf_event_free_bpf_prog(event); 3920 perf_addr_filters_splice(event, NULL); 3921 kfree(event->addr_filters_offs); 3922 3923 if (event->destroy) 3924 event->destroy(event); 3925 3926 if (event->ctx) 3927 put_ctx(event->ctx); 3928 3929 exclusive_event_destroy(event); 3930 module_put(event->pmu->module); 3931 3932 call_rcu(&event->rcu_head, free_event_rcu); 3933 } 3934 3935 /* 3936 * Used to free events which have a known refcount of 1, such as in error paths 3937 * where the event isn't exposed yet and inherited events. 3938 */ 3939 static void free_event(struct perf_event *event) 3940 { 3941 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3942 "unexpected event refcount: %ld; ptr=%p\n", 3943 atomic_long_read(&event->refcount), event)) { 3944 /* leak to avoid use-after-free */ 3945 return; 3946 } 3947 3948 _free_event(event); 3949 } 3950 3951 /* 3952 * Remove user event from the owner task. 3953 */ 3954 static void perf_remove_from_owner(struct perf_event *event) 3955 { 3956 struct task_struct *owner; 3957 3958 rcu_read_lock(); 3959 /* 3960 * Matches the smp_store_release() in perf_event_exit_task(). If we 3961 * observe !owner it means the list deletion is complete and we can 3962 * indeed free this event, otherwise we need to serialize on 3963 * owner->perf_event_mutex. 3964 */ 3965 owner = lockless_dereference(event->owner); 3966 if (owner) { 3967 /* 3968 * Since delayed_put_task_struct() also drops the last 3969 * task reference we can safely take a new reference 3970 * while holding the rcu_read_lock(). 3971 */ 3972 get_task_struct(owner); 3973 } 3974 rcu_read_unlock(); 3975 3976 if (owner) { 3977 /* 3978 * If we're here through perf_event_exit_task() we're already 3979 * holding ctx->mutex which would be an inversion wrt. the 3980 * normal lock order. 3981 * 3982 * However we can safely take this lock because its the child 3983 * ctx->mutex. 3984 */ 3985 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3986 3987 /* 3988 * We have to re-check the event->owner field, if it is cleared 3989 * we raced with perf_event_exit_task(), acquiring the mutex 3990 * ensured they're done, and we can proceed with freeing the 3991 * event. 3992 */ 3993 if (event->owner) { 3994 list_del_init(&event->owner_entry); 3995 smp_store_release(&event->owner, NULL); 3996 } 3997 mutex_unlock(&owner->perf_event_mutex); 3998 put_task_struct(owner); 3999 } 4000 } 4001 4002 static void put_event(struct perf_event *event) 4003 { 4004 if (!atomic_long_dec_and_test(&event->refcount)) 4005 return; 4006 4007 _free_event(event); 4008 } 4009 4010 /* 4011 * Kill an event dead; while event:refcount will preserve the event 4012 * object, it will not preserve its functionality. Once the last 'user' 4013 * gives up the object, we'll destroy the thing. 4014 */ 4015 int perf_event_release_kernel(struct perf_event *event) 4016 { 4017 struct perf_event_context *ctx = event->ctx; 4018 struct perf_event *child, *tmp; 4019 4020 /* 4021 * If we got here through err_file: fput(event_file); we will not have 4022 * attached to a context yet. 4023 */ 4024 if (!ctx) { 4025 WARN_ON_ONCE(event->attach_state & 4026 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4027 goto no_ctx; 4028 } 4029 4030 if (!is_kernel_event(event)) 4031 perf_remove_from_owner(event); 4032 4033 ctx = perf_event_ctx_lock(event); 4034 WARN_ON_ONCE(ctx->parent_ctx); 4035 perf_remove_from_context(event, DETACH_GROUP); 4036 4037 raw_spin_lock_irq(&ctx->lock); 4038 /* 4039 * Mark this even as STATE_DEAD, there is no external reference to it 4040 * anymore. 4041 * 4042 * Anybody acquiring event->child_mutex after the below loop _must_ 4043 * also see this, most importantly inherit_event() which will avoid 4044 * placing more children on the list. 4045 * 4046 * Thus this guarantees that we will in fact observe and kill _ALL_ 4047 * child events. 4048 */ 4049 event->state = PERF_EVENT_STATE_DEAD; 4050 raw_spin_unlock_irq(&ctx->lock); 4051 4052 perf_event_ctx_unlock(event, ctx); 4053 4054 again: 4055 mutex_lock(&event->child_mutex); 4056 list_for_each_entry(child, &event->child_list, child_list) { 4057 4058 /* 4059 * Cannot change, child events are not migrated, see the 4060 * comment with perf_event_ctx_lock_nested(). 4061 */ 4062 ctx = lockless_dereference(child->ctx); 4063 /* 4064 * Since child_mutex nests inside ctx::mutex, we must jump 4065 * through hoops. We start by grabbing a reference on the ctx. 4066 * 4067 * Since the event cannot get freed while we hold the 4068 * child_mutex, the context must also exist and have a !0 4069 * reference count. 4070 */ 4071 get_ctx(ctx); 4072 4073 /* 4074 * Now that we have a ctx ref, we can drop child_mutex, and 4075 * acquire ctx::mutex without fear of it going away. Then we 4076 * can re-acquire child_mutex. 4077 */ 4078 mutex_unlock(&event->child_mutex); 4079 mutex_lock(&ctx->mutex); 4080 mutex_lock(&event->child_mutex); 4081 4082 /* 4083 * Now that we hold ctx::mutex and child_mutex, revalidate our 4084 * state, if child is still the first entry, it didn't get freed 4085 * and we can continue doing so. 4086 */ 4087 tmp = list_first_entry_or_null(&event->child_list, 4088 struct perf_event, child_list); 4089 if (tmp == child) { 4090 perf_remove_from_context(child, DETACH_GROUP); 4091 list_del(&child->child_list); 4092 free_event(child); 4093 /* 4094 * This matches the refcount bump in inherit_event(); 4095 * this can't be the last reference. 4096 */ 4097 put_event(event); 4098 } 4099 4100 mutex_unlock(&event->child_mutex); 4101 mutex_unlock(&ctx->mutex); 4102 put_ctx(ctx); 4103 goto again; 4104 } 4105 mutex_unlock(&event->child_mutex); 4106 4107 no_ctx: 4108 put_event(event); /* Must be the 'last' reference */ 4109 return 0; 4110 } 4111 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4112 4113 /* 4114 * Called when the last reference to the file is gone. 4115 */ 4116 static int perf_release(struct inode *inode, struct file *file) 4117 { 4118 perf_event_release_kernel(file->private_data); 4119 return 0; 4120 } 4121 4122 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4123 { 4124 struct perf_event *child; 4125 u64 total = 0; 4126 4127 *enabled = 0; 4128 *running = 0; 4129 4130 mutex_lock(&event->child_mutex); 4131 4132 (void)perf_event_read(event, false); 4133 total += perf_event_count(event); 4134 4135 *enabled += event->total_time_enabled + 4136 atomic64_read(&event->child_total_time_enabled); 4137 *running += event->total_time_running + 4138 atomic64_read(&event->child_total_time_running); 4139 4140 list_for_each_entry(child, &event->child_list, child_list) { 4141 (void)perf_event_read(child, false); 4142 total += perf_event_count(child); 4143 *enabled += child->total_time_enabled; 4144 *running += child->total_time_running; 4145 } 4146 mutex_unlock(&event->child_mutex); 4147 4148 return total; 4149 } 4150 EXPORT_SYMBOL_GPL(perf_event_read_value); 4151 4152 static int __perf_read_group_add(struct perf_event *leader, 4153 u64 read_format, u64 *values) 4154 { 4155 struct perf_event *sub; 4156 int n = 1; /* skip @nr */ 4157 int ret; 4158 4159 ret = perf_event_read(leader, true); 4160 if (ret) 4161 return ret; 4162 4163 /* 4164 * Since we co-schedule groups, {enabled,running} times of siblings 4165 * will be identical to those of the leader, so we only publish one 4166 * set. 4167 */ 4168 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4169 values[n++] += leader->total_time_enabled + 4170 atomic64_read(&leader->child_total_time_enabled); 4171 } 4172 4173 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4174 values[n++] += leader->total_time_running + 4175 atomic64_read(&leader->child_total_time_running); 4176 } 4177 4178 /* 4179 * Write {count,id} tuples for every sibling. 4180 */ 4181 values[n++] += perf_event_count(leader); 4182 if (read_format & PERF_FORMAT_ID) 4183 values[n++] = primary_event_id(leader); 4184 4185 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4186 values[n++] += perf_event_count(sub); 4187 if (read_format & PERF_FORMAT_ID) 4188 values[n++] = primary_event_id(sub); 4189 } 4190 4191 return 0; 4192 } 4193 4194 static int perf_read_group(struct perf_event *event, 4195 u64 read_format, char __user *buf) 4196 { 4197 struct perf_event *leader = event->group_leader, *child; 4198 struct perf_event_context *ctx = leader->ctx; 4199 int ret; 4200 u64 *values; 4201 4202 lockdep_assert_held(&ctx->mutex); 4203 4204 values = kzalloc(event->read_size, GFP_KERNEL); 4205 if (!values) 4206 return -ENOMEM; 4207 4208 values[0] = 1 + leader->nr_siblings; 4209 4210 /* 4211 * By locking the child_mutex of the leader we effectively 4212 * lock the child list of all siblings.. XXX explain how. 4213 */ 4214 mutex_lock(&leader->child_mutex); 4215 4216 ret = __perf_read_group_add(leader, read_format, values); 4217 if (ret) 4218 goto unlock; 4219 4220 list_for_each_entry(child, &leader->child_list, child_list) { 4221 ret = __perf_read_group_add(child, read_format, values); 4222 if (ret) 4223 goto unlock; 4224 } 4225 4226 mutex_unlock(&leader->child_mutex); 4227 4228 ret = event->read_size; 4229 if (copy_to_user(buf, values, event->read_size)) 4230 ret = -EFAULT; 4231 goto out; 4232 4233 unlock: 4234 mutex_unlock(&leader->child_mutex); 4235 out: 4236 kfree(values); 4237 return ret; 4238 } 4239 4240 static int perf_read_one(struct perf_event *event, 4241 u64 read_format, char __user *buf) 4242 { 4243 u64 enabled, running; 4244 u64 values[4]; 4245 int n = 0; 4246 4247 values[n++] = perf_event_read_value(event, &enabled, &running); 4248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4249 values[n++] = enabled; 4250 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4251 values[n++] = running; 4252 if (read_format & PERF_FORMAT_ID) 4253 values[n++] = primary_event_id(event); 4254 4255 if (copy_to_user(buf, values, n * sizeof(u64))) 4256 return -EFAULT; 4257 4258 return n * sizeof(u64); 4259 } 4260 4261 static bool is_event_hup(struct perf_event *event) 4262 { 4263 bool no_children; 4264 4265 if (event->state > PERF_EVENT_STATE_EXIT) 4266 return false; 4267 4268 mutex_lock(&event->child_mutex); 4269 no_children = list_empty(&event->child_list); 4270 mutex_unlock(&event->child_mutex); 4271 return no_children; 4272 } 4273 4274 /* 4275 * Read the performance event - simple non blocking version for now 4276 */ 4277 static ssize_t 4278 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4279 { 4280 u64 read_format = event->attr.read_format; 4281 int ret; 4282 4283 /* 4284 * Return end-of-file for a read on a event that is in 4285 * error state (i.e. because it was pinned but it couldn't be 4286 * scheduled on to the CPU at some point). 4287 */ 4288 if (event->state == PERF_EVENT_STATE_ERROR) 4289 return 0; 4290 4291 if (count < event->read_size) 4292 return -ENOSPC; 4293 4294 WARN_ON_ONCE(event->ctx->parent_ctx); 4295 if (read_format & PERF_FORMAT_GROUP) 4296 ret = perf_read_group(event, read_format, buf); 4297 else 4298 ret = perf_read_one(event, read_format, buf); 4299 4300 return ret; 4301 } 4302 4303 static ssize_t 4304 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4305 { 4306 struct perf_event *event = file->private_data; 4307 struct perf_event_context *ctx; 4308 int ret; 4309 4310 ctx = perf_event_ctx_lock(event); 4311 ret = __perf_read(event, buf, count); 4312 perf_event_ctx_unlock(event, ctx); 4313 4314 return ret; 4315 } 4316 4317 static unsigned int perf_poll(struct file *file, poll_table *wait) 4318 { 4319 struct perf_event *event = file->private_data; 4320 struct ring_buffer *rb; 4321 unsigned int events = POLLHUP; 4322 4323 poll_wait(file, &event->waitq, wait); 4324 4325 if (is_event_hup(event)) 4326 return events; 4327 4328 /* 4329 * Pin the event->rb by taking event->mmap_mutex; otherwise 4330 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4331 */ 4332 mutex_lock(&event->mmap_mutex); 4333 rb = event->rb; 4334 if (rb) 4335 events = atomic_xchg(&rb->poll, 0); 4336 mutex_unlock(&event->mmap_mutex); 4337 return events; 4338 } 4339 4340 static void _perf_event_reset(struct perf_event *event) 4341 { 4342 (void)perf_event_read(event, false); 4343 local64_set(&event->count, 0); 4344 perf_event_update_userpage(event); 4345 } 4346 4347 /* 4348 * Holding the top-level event's child_mutex means that any 4349 * descendant process that has inherited this event will block 4350 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4351 * task existence requirements of perf_event_enable/disable. 4352 */ 4353 static void perf_event_for_each_child(struct perf_event *event, 4354 void (*func)(struct perf_event *)) 4355 { 4356 struct perf_event *child; 4357 4358 WARN_ON_ONCE(event->ctx->parent_ctx); 4359 4360 mutex_lock(&event->child_mutex); 4361 func(event); 4362 list_for_each_entry(child, &event->child_list, child_list) 4363 func(child); 4364 mutex_unlock(&event->child_mutex); 4365 } 4366 4367 static void perf_event_for_each(struct perf_event *event, 4368 void (*func)(struct perf_event *)) 4369 { 4370 struct perf_event_context *ctx = event->ctx; 4371 struct perf_event *sibling; 4372 4373 lockdep_assert_held(&ctx->mutex); 4374 4375 event = event->group_leader; 4376 4377 perf_event_for_each_child(event, func); 4378 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4379 perf_event_for_each_child(sibling, func); 4380 } 4381 4382 static void __perf_event_period(struct perf_event *event, 4383 struct perf_cpu_context *cpuctx, 4384 struct perf_event_context *ctx, 4385 void *info) 4386 { 4387 u64 value = *((u64 *)info); 4388 bool active; 4389 4390 if (event->attr.freq) { 4391 event->attr.sample_freq = value; 4392 } else { 4393 event->attr.sample_period = value; 4394 event->hw.sample_period = value; 4395 } 4396 4397 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4398 if (active) { 4399 perf_pmu_disable(ctx->pmu); 4400 /* 4401 * We could be throttled; unthrottle now to avoid the tick 4402 * trying to unthrottle while we already re-started the event. 4403 */ 4404 if (event->hw.interrupts == MAX_INTERRUPTS) { 4405 event->hw.interrupts = 0; 4406 perf_log_throttle(event, 1); 4407 } 4408 event->pmu->stop(event, PERF_EF_UPDATE); 4409 } 4410 4411 local64_set(&event->hw.period_left, 0); 4412 4413 if (active) { 4414 event->pmu->start(event, PERF_EF_RELOAD); 4415 perf_pmu_enable(ctx->pmu); 4416 } 4417 } 4418 4419 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4420 { 4421 u64 value; 4422 4423 if (!is_sampling_event(event)) 4424 return -EINVAL; 4425 4426 if (copy_from_user(&value, arg, sizeof(value))) 4427 return -EFAULT; 4428 4429 if (!value) 4430 return -EINVAL; 4431 4432 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4433 return -EINVAL; 4434 4435 event_function_call(event, __perf_event_period, &value); 4436 4437 return 0; 4438 } 4439 4440 static const struct file_operations perf_fops; 4441 4442 static inline int perf_fget_light(int fd, struct fd *p) 4443 { 4444 struct fd f = fdget(fd); 4445 if (!f.file) 4446 return -EBADF; 4447 4448 if (f.file->f_op != &perf_fops) { 4449 fdput(f); 4450 return -EBADF; 4451 } 4452 *p = f; 4453 return 0; 4454 } 4455 4456 static int perf_event_set_output(struct perf_event *event, 4457 struct perf_event *output_event); 4458 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4460 4461 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4462 { 4463 void (*func)(struct perf_event *); 4464 u32 flags = arg; 4465 4466 switch (cmd) { 4467 case PERF_EVENT_IOC_ENABLE: 4468 func = _perf_event_enable; 4469 break; 4470 case PERF_EVENT_IOC_DISABLE: 4471 func = _perf_event_disable; 4472 break; 4473 case PERF_EVENT_IOC_RESET: 4474 func = _perf_event_reset; 4475 break; 4476 4477 case PERF_EVENT_IOC_REFRESH: 4478 return _perf_event_refresh(event, arg); 4479 4480 case PERF_EVENT_IOC_PERIOD: 4481 return perf_event_period(event, (u64 __user *)arg); 4482 4483 case PERF_EVENT_IOC_ID: 4484 { 4485 u64 id = primary_event_id(event); 4486 4487 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4488 return -EFAULT; 4489 return 0; 4490 } 4491 4492 case PERF_EVENT_IOC_SET_OUTPUT: 4493 { 4494 int ret; 4495 if (arg != -1) { 4496 struct perf_event *output_event; 4497 struct fd output; 4498 ret = perf_fget_light(arg, &output); 4499 if (ret) 4500 return ret; 4501 output_event = output.file->private_data; 4502 ret = perf_event_set_output(event, output_event); 4503 fdput(output); 4504 } else { 4505 ret = perf_event_set_output(event, NULL); 4506 } 4507 return ret; 4508 } 4509 4510 case PERF_EVENT_IOC_SET_FILTER: 4511 return perf_event_set_filter(event, (void __user *)arg); 4512 4513 case PERF_EVENT_IOC_SET_BPF: 4514 return perf_event_set_bpf_prog(event, arg); 4515 4516 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4517 struct ring_buffer *rb; 4518 4519 rcu_read_lock(); 4520 rb = rcu_dereference(event->rb); 4521 if (!rb || !rb->nr_pages) { 4522 rcu_read_unlock(); 4523 return -EINVAL; 4524 } 4525 rb_toggle_paused(rb, !!arg); 4526 rcu_read_unlock(); 4527 return 0; 4528 } 4529 default: 4530 return -ENOTTY; 4531 } 4532 4533 if (flags & PERF_IOC_FLAG_GROUP) 4534 perf_event_for_each(event, func); 4535 else 4536 perf_event_for_each_child(event, func); 4537 4538 return 0; 4539 } 4540 4541 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4542 { 4543 struct perf_event *event = file->private_data; 4544 struct perf_event_context *ctx; 4545 long ret; 4546 4547 ctx = perf_event_ctx_lock(event); 4548 ret = _perf_ioctl(event, cmd, arg); 4549 perf_event_ctx_unlock(event, ctx); 4550 4551 return ret; 4552 } 4553 4554 #ifdef CONFIG_COMPAT 4555 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4556 unsigned long arg) 4557 { 4558 switch (_IOC_NR(cmd)) { 4559 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4560 case _IOC_NR(PERF_EVENT_IOC_ID): 4561 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4562 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4563 cmd &= ~IOCSIZE_MASK; 4564 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4565 } 4566 break; 4567 } 4568 return perf_ioctl(file, cmd, arg); 4569 } 4570 #else 4571 # define perf_compat_ioctl NULL 4572 #endif 4573 4574 int perf_event_task_enable(void) 4575 { 4576 struct perf_event_context *ctx; 4577 struct perf_event *event; 4578 4579 mutex_lock(¤t->perf_event_mutex); 4580 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4581 ctx = perf_event_ctx_lock(event); 4582 perf_event_for_each_child(event, _perf_event_enable); 4583 perf_event_ctx_unlock(event, ctx); 4584 } 4585 mutex_unlock(¤t->perf_event_mutex); 4586 4587 return 0; 4588 } 4589 4590 int perf_event_task_disable(void) 4591 { 4592 struct perf_event_context *ctx; 4593 struct perf_event *event; 4594 4595 mutex_lock(¤t->perf_event_mutex); 4596 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4597 ctx = perf_event_ctx_lock(event); 4598 perf_event_for_each_child(event, _perf_event_disable); 4599 perf_event_ctx_unlock(event, ctx); 4600 } 4601 mutex_unlock(¤t->perf_event_mutex); 4602 4603 return 0; 4604 } 4605 4606 static int perf_event_index(struct perf_event *event) 4607 { 4608 if (event->hw.state & PERF_HES_STOPPED) 4609 return 0; 4610 4611 if (event->state != PERF_EVENT_STATE_ACTIVE) 4612 return 0; 4613 4614 return event->pmu->event_idx(event); 4615 } 4616 4617 static void calc_timer_values(struct perf_event *event, 4618 u64 *now, 4619 u64 *enabled, 4620 u64 *running) 4621 { 4622 u64 ctx_time; 4623 4624 *now = perf_clock(); 4625 ctx_time = event->shadow_ctx_time + *now; 4626 *enabled = ctx_time - event->tstamp_enabled; 4627 *running = ctx_time - event->tstamp_running; 4628 } 4629 4630 static void perf_event_init_userpage(struct perf_event *event) 4631 { 4632 struct perf_event_mmap_page *userpg; 4633 struct ring_buffer *rb; 4634 4635 rcu_read_lock(); 4636 rb = rcu_dereference(event->rb); 4637 if (!rb) 4638 goto unlock; 4639 4640 userpg = rb->user_page; 4641 4642 /* Allow new userspace to detect that bit 0 is deprecated */ 4643 userpg->cap_bit0_is_deprecated = 1; 4644 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4645 userpg->data_offset = PAGE_SIZE; 4646 userpg->data_size = perf_data_size(rb); 4647 4648 unlock: 4649 rcu_read_unlock(); 4650 } 4651 4652 void __weak arch_perf_update_userpage( 4653 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4654 { 4655 } 4656 4657 /* 4658 * Callers need to ensure there can be no nesting of this function, otherwise 4659 * the seqlock logic goes bad. We can not serialize this because the arch 4660 * code calls this from NMI context. 4661 */ 4662 void perf_event_update_userpage(struct perf_event *event) 4663 { 4664 struct perf_event_mmap_page *userpg; 4665 struct ring_buffer *rb; 4666 u64 enabled, running, now; 4667 4668 rcu_read_lock(); 4669 rb = rcu_dereference(event->rb); 4670 if (!rb) 4671 goto unlock; 4672 4673 /* 4674 * compute total_time_enabled, total_time_running 4675 * based on snapshot values taken when the event 4676 * was last scheduled in. 4677 * 4678 * we cannot simply called update_context_time() 4679 * because of locking issue as we can be called in 4680 * NMI context 4681 */ 4682 calc_timer_values(event, &now, &enabled, &running); 4683 4684 userpg = rb->user_page; 4685 /* 4686 * Disable preemption so as to not let the corresponding user-space 4687 * spin too long if we get preempted. 4688 */ 4689 preempt_disable(); 4690 ++userpg->lock; 4691 barrier(); 4692 userpg->index = perf_event_index(event); 4693 userpg->offset = perf_event_count(event); 4694 if (userpg->index) 4695 userpg->offset -= local64_read(&event->hw.prev_count); 4696 4697 userpg->time_enabled = enabled + 4698 atomic64_read(&event->child_total_time_enabled); 4699 4700 userpg->time_running = running + 4701 atomic64_read(&event->child_total_time_running); 4702 4703 arch_perf_update_userpage(event, userpg, now); 4704 4705 barrier(); 4706 ++userpg->lock; 4707 preempt_enable(); 4708 unlock: 4709 rcu_read_unlock(); 4710 } 4711 4712 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4713 { 4714 struct perf_event *event = vma->vm_file->private_data; 4715 struct ring_buffer *rb; 4716 int ret = VM_FAULT_SIGBUS; 4717 4718 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4719 if (vmf->pgoff == 0) 4720 ret = 0; 4721 return ret; 4722 } 4723 4724 rcu_read_lock(); 4725 rb = rcu_dereference(event->rb); 4726 if (!rb) 4727 goto unlock; 4728 4729 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4730 goto unlock; 4731 4732 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4733 if (!vmf->page) 4734 goto unlock; 4735 4736 get_page(vmf->page); 4737 vmf->page->mapping = vma->vm_file->f_mapping; 4738 vmf->page->index = vmf->pgoff; 4739 4740 ret = 0; 4741 unlock: 4742 rcu_read_unlock(); 4743 4744 return ret; 4745 } 4746 4747 static void ring_buffer_attach(struct perf_event *event, 4748 struct ring_buffer *rb) 4749 { 4750 struct ring_buffer *old_rb = NULL; 4751 unsigned long flags; 4752 4753 if (event->rb) { 4754 /* 4755 * Should be impossible, we set this when removing 4756 * event->rb_entry and wait/clear when adding event->rb_entry. 4757 */ 4758 WARN_ON_ONCE(event->rcu_pending); 4759 4760 old_rb = event->rb; 4761 spin_lock_irqsave(&old_rb->event_lock, flags); 4762 list_del_rcu(&event->rb_entry); 4763 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4764 4765 event->rcu_batches = get_state_synchronize_rcu(); 4766 event->rcu_pending = 1; 4767 } 4768 4769 if (rb) { 4770 if (event->rcu_pending) { 4771 cond_synchronize_rcu(event->rcu_batches); 4772 event->rcu_pending = 0; 4773 } 4774 4775 spin_lock_irqsave(&rb->event_lock, flags); 4776 list_add_rcu(&event->rb_entry, &rb->event_list); 4777 spin_unlock_irqrestore(&rb->event_lock, flags); 4778 } 4779 4780 rcu_assign_pointer(event->rb, rb); 4781 4782 if (old_rb) { 4783 ring_buffer_put(old_rb); 4784 /* 4785 * Since we detached before setting the new rb, so that we 4786 * could attach the new rb, we could have missed a wakeup. 4787 * Provide it now. 4788 */ 4789 wake_up_all(&event->waitq); 4790 } 4791 } 4792 4793 static void ring_buffer_wakeup(struct perf_event *event) 4794 { 4795 struct ring_buffer *rb; 4796 4797 rcu_read_lock(); 4798 rb = rcu_dereference(event->rb); 4799 if (rb) { 4800 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4801 wake_up_all(&event->waitq); 4802 } 4803 rcu_read_unlock(); 4804 } 4805 4806 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4807 { 4808 struct ring_buffer *rb; 4809 4810 rcu_read_lock(); 4811 rb = rcu_dereference(event->rb); 4812 if (rb) { 4813 if (!atomic_inc_not_zero(&rb->refcount)) 4814 rb = NULL; 4815 } 4816 rcu_read_unlock(); 4817 4818 return rb; 4819 } 4820 4821 void ring_buffer_put(struct ring_buffer *rb) 4822 { 4823 if (!atomic_dec_and_test(&rb->refcount)) 4824 return; 4825 4826 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4827 4828 call_rcu(&rb->rcu_head, rb_free_rcu); 4829 } 4830 4831 static void perf_mmap_open(struct vm_area_struct *vma) 4832 { 4833 struct perf_event *event = vma->vm_file->private_data; 4834 4835 atomic_inc(&event->mmap_count); 4836 atomic_inc(&event->rb->mmap_count); 4837 4838 if (vma->vm_pgoff) 4839 atomic_inc(&event->rb->aux_mmap_count); 4840 4841 if (event->pmu->event_mapped) 4842 event->pmu->event_mapped(event); 4843 } 4844 4845 static void perf_pmu_output_stop(struct perf_event *event); 4846 4847 /* 4848 * A buffer can be mmap()ed multiple times; either directly through the same 4849 * event, or through other events by use of perf_event_set_output(). 4850 * 4851 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4852 * the buffer here, where we still have a VM context. This means we need 4853 * to detach all events redirecting to us. 4854 */ 4855 static void perf_mmap_close(struct vm_area_struct *vma) 4856 { 4857 struct perf_event *event = vma->vm_file->private_data; 4858 4859 struct ring_buffer *rb = ring_buffer_get(event); 4860 struct user_struct *mmap_user = rb->mmap_user; 4861 int mmap_locked = rb->mmap_locked; 4862 unsigned long size = perf_data_size(rb); 4863 4864 if (event->pmu->event_unmapped) 4865 event->pmu->event_unmapped(event); 4866 4867 /* 4868 * rb->aux_mmap_count will always drop before rb->mmap_count and 4869 * event->mmap_count, so it is ok to use event->mmap_mutex to 4870 * serialize with perf_mmap here. 4871 */ 4872 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4873 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4874 /* 4875 * Stop all AUX events that are writing to this buffer, 4876 * so that we can free its AUX pages and corresponding PMU 4877 * data. Note that after rb::aux_mmap_count dropped to zero, 4878 * they won't start any more (see perf_aux_output_begin()). 4879 */ 4880 perf_pmu_output_stop(event); 4881 4882 /* now it's safe to free the pages */ 4883 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4884 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4885 4886 /* this has to be the last one */ 4887 rb_free_aux(rb); 4888 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4889 4890 mutex_unlock(&event->mmap_mutex); 4891 } 4892 4893 atomic_dec(&rb->mmap_count); 4894 4895 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4896 goto out_put; 4897 4898 ring_buffer_attach(event, NULL); 4899 mutex_unlock(&event->mmap_mutex); 4900 4901 /* If there's still other mmap()s of this buffer, we're done. */ 4902 if (atomic_read(&rb->mmap_count)) 4903 goto out_put; 4904 4905 /* 4906 * No other mmap()s, detach from all other events that might redirect 4907 * into the now unreachable buffer. Somewhat complicated by the 4908 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4909 */ 4910 again: 4911 rcu_read_lock(); 4912 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4913 if (!atomic_long_inc_not_zero(&event->refcount)) { 4914 /* 4915 * This event is en-route to free_event() which will 4916 * detach it and remove it from the list. 4917 */ 4918 continue; 4919 } 4920 rcu_read_unlock(); 4921 4922 mutex_lock(&event->mmap_mutex); 4923 /* 4924 * Check we didn't race with perf_event_set_output() which can 4925 * swizzle the rb from under us while we were waiting to 4926 * acquire mmap_mutex. 4927 * 4928 * If we find a different rb; ignore this event, a next 4929 * iteration will no longer find it on the list. We have to 4930 * still restart the iteration to make sure we're not now 4931 * iterating the wrong list. 4932 */ 4933 if (event->rb == rb) 4934 ring_buffer_attach(event, NULL); 4935 4936 mutex_unlock(&event->mmap_mutex); 4937 put_event(event); 4938 4939 /* 4940 * Restart the iteration; either we're on the wrong list or 4941 * destroyed its integrity by doing a deletion. 4942 */ 4943 goto again; 4944 } 4945 rcu_read_unlock(); 4946 4947 /* 4948 * It could be there's still a few 0-ref events on the list; they'll 4949 * get cleaned up by free_event() -- they'll also still have their 4950 * ref on the rb and will free it whenever they are done with it. 4951 * 4952 * Aside from that, this buffer is 'fully' detached and unmapped, 4953 * undo the VM accounting. 4954 */ 4955 4956 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4957 vma->vm_mm->pinned_vm -= mmap_locked; 4958 free_uid(mmap_user); 4959 4960 out_put: 4961 ring_buffer_put(rb); /* could be last */ 4962 } 4963 4964 static const struct vm_operations_struct perf_mmap_vmops = { 4965 .open = perf_mmap_open, 4966 .close = perf_mmap_close, /* non mergable */ 4967 .fault = perf_mmap_fault, 4968 .page_mkwrite = perf_mmap_fault, 4969 }; 4970 4971 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4972 { 4973 struct perf_event *event = file->private_data; 4974 unsigned long user_locked, user_lock_limit; 4975 struct user_struct *user = current_user(); 4976 unsigned long locked, lock_limit; 4977 struct ring_buffer *rb = NULL; 4978 unsigned long vma_size; 4979 unsigned long nr_pages; 4980 long user_extra = 0, extra = 0; 4981 int ret = 0, flags = 0; 4982 4983 /* 4984 * Don't allow mmap() of inherited per-task counters. This would 4985 * create a performance issue due to all children writing to the 4986 * same rb. 4987 */ 4988 if (event->cpu == -1 && event->attr.inherit) 4989 return -EINVAL; 4990 4991 if (!(vma->vm_flags & VM_SHARED)) 4992 return -EINVAL; 4993 4994 vma_size = vma->vm_end - vma->vm_start; 4995 4996 if (vma->vm_pgoff == 0) { 4997 nr_pages = (vma_size / PAGE_SIZE) - 1; 4998 } else { 4999 /* 5000 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5001 * mapped, all subsequent mappings should have the same size 5002 * and offset. Must be above the normal perf buffer. 5003 */ 5004 u64 aux_offset, aux_size; 5005 5006 if (!event->rb) 5007 return -EINVAL; 5008 5009 nr_pages = vma_size / PAGE_SIZE; 5010 5011 mutex_lock(&event->mmap_mutex); 5012 ret = -EINVAL; 5013 5014 rb = event->rb; 5015 if (!rb) 5016 goto aux_unlock; 5017 5018 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5019 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5020 5021 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5022 goto aux_unlock; 5023 5024 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5025 goto aux_unlock; 5026 5027 /* already mapped with a different offset */ 5028 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5029 goto aux_unlock; 5030 5031 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5032 goto aux_unlock; 5033 5034 /* already mapped with a different size */ 5035 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5036 goto aux_unlock; 5037 5038 if (!is_power_of_2(nr_pages)) 5039 goto aux_unlock; 5040 5041 if (!atomic_inc_not_zero(&rb->mmap_count)) 5042 goto aux_unlock; 5043 5044 if (rb_has_aux(rb)) { 5045 atomic_inc(&rb->aux_mmap_count); 5046 ret = 0; 5047 goto unlock; 5048 } 5049 5050 atomic_set(&rb->aux_mmap_count, 1); 5051 user_extra = nr_pages; 5052 5053 goto accounting; 5054 } 5055 5056 /* 5057 * If we have rb pages ensure they're a power-of-two number, so we 5058 * can do bitmasks instead of modulo. 5059 */ 5060 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5061 return -EINVAL; 5062 5063 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5064 return -EINVAL; 5065 5066 WARN_ON_ONCE(event->ctx->parent_ctx); 5067 again: 5068 mutex_lock(&event->mmap_mutex); 5069 if (event->rb) { 5070 if (event->rb->nr_pages != nr_pages) { 5071 ret = -EINVAL; 5072 goto unlock; 5073 } 5074 5075 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5076 /* 5077 * Raced against perf_mmap_close() through 5078 * perf_event_set_output(). Try again, hope for better 5079 * luck. 5080 */ 5081 mutex_unlock(&event->mmap_mutex); 5082 goto again; 5083 } 5084 5085 goto unlock; 5086 } 5087 5088 user_extra = nr_pages + 1; 5089 5090 accounting: 5091 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5092 5093 /* 5094 * Increase the limit linearly with more CPUs: 5095 */ 5096 user_lock_limit *= num_online_cpus(); 5097 5098 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5099 5100 if (user_locked > user_lock_limit) 5101 extra = user_locked - user_lock_limit; 5102 5103 lock_limit = rlimit(RLIMIT_MEMLOCK); 5104 lock_limit >>= PAGE_SHIFT; 5105 locked = vma->vm_mm->pinned_vm + extra; 5106 5107 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5108 !capable(CAP_IPC_LOCK)) { 5109 ret = -EPERM; 5110 goto unlock; 5111 } 5112 5113 WARN_ON(!rb && event->rb); 5114 5115 if (vma->vm_flags & VM_WRITE) 5116 flags |= RING_BUFFER_WRITABLE; 5117 5118 if (!rb) { 5119 rb = rb_alloc(nr_pages, 5120 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5121 event->cpu, flags); 5122 5123 if (!rb) { 5124 ret = -ENOMEM; 5125 goto unlock; 5126 } 5127 5128 atomic_set(&rb->mmap_count, 1); 5129 rb->mmap_user = get_current_user(); 5130 rb->mmap_locked = extra; 5131 5132 ring_buffer_attach(event, rb); 5133 5134 perf_event_init_userpage(event); 5135 perf_event_update_userpage(event); 5136 } else { 5137 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5138 event->attr.aux_watermark, flags); 5139 if (!ret) 5140 rb->aux_mmap_locked = extra; 5141 } 5142 5143 unlock: 5144 if (!ret) { 5145 atomic_long_add(user_extra, &user->locked_vm); 5146 vma->vm_mm->pinned_vm += extra; 5147 5148 atomic_inc(&event->mmap_count); 5149 } else if (rb) { 5150 atomic_dec(&rb->mmap_count); 5151 } 5152 aux_unlock: 5153 mutex_unlock(&event->mmap_mutex); 5154 5155 /* 5156 * Since pinned accounting is per vm we cannot allow fork() to copy our 5157 * vma. 5158 */ 5159 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5160 vma->vm_ops = &perf_mmap_vmops; 5161 5162 if (event->pmu->event_mapped) 5163 event->pmu->event_mapped(event); 5164 5165 return ret; 5166 } 5167 5168 static int perf_fasync(int fd, struct file *filp, int on) 5169 { 5170 struct inode *inode = file_inode(filp); 5171 struct perf_event *event = filp->private_data; 5172 int retval; 5173 5174 inode_lock(inode); 5175 retval = fasync_helper(fd, filp, on, &event->fasync); 5176 inode_unlock(inode); 5177 5178 if (retval < 0) 5179 return retval; 5180 5181 return 0; 5182 } 5183 5184 static const struct file_operations perf_fops = { 5185 .llseek = no_llseek, 5186 .release = perf_release, 5187 .read = perf_read, 5188 .poll = perf_poll, 5189 .unlocked_ioctl = perf_ioctl, 5190 .compat_ioctl = perf_compat_ioctl, 5191 .mmap = perf_mmap, 5192 .fasync = perf_fasync, 5193 }; 5194 5195 /* 5196 * Perf event wakeup 5197 * 5198 * If there's data, ensure we set the poll() state and publish everything 5199 * to user-space before waking everybody up. 5200 */ 5201 5202 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5203 { 5204 /* only the parent has fasync state */ 5205 if (event->parent) 5206 event = event->parent; 5207 return &event->fasync; 5208 } 5209 5210 void perf_event_wakeup(struct perf_event *event) 5211 { 5212 ring_buffer_wakeup(event); 5213 5214 if (event->pending_kill) { 5215 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5216 event->pending_kill = 0; 5217 } 5218 } 5219 5220 static void perf_pending_event(struct irq_work *entry) 5221 { 5222 struct perf_event *event = container_of(entry, 5223 struct perf_event, pending); 5224 int rctx; 5225 5226 rctx = perf_swevent_get_recursion_context(); 5227 /* 5228 * If we 'fail' here, that's OK, it means recursion is already disabled 5229 * and we won't recurse 'further'. 5230 */ 5231 5232 if (event->pending_disable) { 5233 event->pending_disable = 0; 5234 perf_event_disable_local(event); 5235 } 5236 5237 if (event->pending_wakeup) { 5238 event->pending_wakeup = 0; 5239 perf_event_wakeup(event); 5240 } 5241 5242 if (rctx >= 0) 5243 perf_swevent_put_recursion_context(rctx); 5244 } 5245 5246 /* 5247 * We assume there is only KVM supporting the callbacks. 5248 * Later on, we might change it to a list if there is 5249 * another virtualization implementation supporting the callbacks. 5250 */ 5251 struct perf_guest_info_callbacks *perf_guest_cbs; 5252 5253 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5254 { 5255 perf_guest_cbs = cbs; 5256 return 0; 5257 } 5258 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5259 5260 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5261 { 5262 perf_guest_cbs = NULL; 5263 return 0; 5264 } 5265 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5266 5267 static void 5268 perf_output_sample_regs(struct perf_output_handle *handle, 5269 struct pt_regs *regs, u64 mask) 5270 { 5271 int bit; 5272 5273 for_each_set_bit(bit, (const unsigned long *) &mask, 5274 sizeof(mask) * BITS_PER_BYTE) { 5275 u64 val; 5276 5277 val = perf_reg_value(regs, bit); 5278 perf_output_put(handle, val); 5279 } 5280 } 5281 5282 static void perf_sample_regs_user(struct perf_regs *regs_user, 5283 struct pt_regs *regs, 5284 struct pt_regs *regs_user_copy) 5285 { 5286 if (user_mode(regs)) { 5287 regs_user->abi = perf_reg_abi(current); 5288 regs_user->regs = regs; 5289 } else if (current->mm) { 5290 perf_get_regs_user(regs_user, regs, regs_user_copy); 5291 } else { 5292 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5293 regs_user->regs = NULL; 5294 } 5295 } 5296 5297 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5298 struct pt_regs *regs) 5299 { 5300 regs_intr->regs = regs; 5301 regs_intr->abi = perf_reg_abi(current); 5302 } 5303 5304 5305 /* 5306 * Get remaining task size from user stack pointer. 5307 * 5308 * It'd be better to take stack vma map and limit this more 5309 * precisly, but there's no way to get it safely under interrupt, 5310 * so using TASK_SIZE as limit. 5311 */ 5312 static u64 perf_ustack_task_size(struct pt_regs *regs) 5313 { 5314 unsigned long addr = perf_user_stack_pointer(regs); 5315 5316 if (!addr || addr >= TASK_SIZE) 5317 return 0; 5318 5319 return TASK_SIZE - addr; 5320 } 5321 5322 static u16 5323 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5324 struct pt_regs *regs) 5325 { 5326 u64 task_size; 5327 5328 /* No regs, no stack pointer, no dump. */ 5329 if (!regs) 5330 return 0; 5331 5332 /* 5333 * Check if we fit in with the requested stack size into the: 5334 * - TASK_SIZE 5335 * If we don't, we limit the size to the TASK_SIZE. 5336 * 5337 * - remaining sample size 5338 * If we don't, we customize the stack size to 5339 * fit in to the remaining sample size. 5340 */ 5341 5342 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5343 stack_size = min(stack_size, (u16) task_size); 5344 5345 /* Current header size plus static size and dynamic size. */ 5346 header_size += 2 * sizeof(u64); 5347 5348 /* Do we fit in with the current stack dump size? */ 5349 if ((u16) (header_size + stack_size) < header_size) { 5350 /* 5351 * If we overflow the maximum size for the sample, 5352 * we customize the stack dump size to fit in. 5353 */ 5354 stack_size = USHRT_MAX - header_size - sizeof(u64); 5355 stack_size = round_up(stack_size, sizeof(u64)); 5356 } 5357 5358 return stack_size; 5359 } 5360 5361 static void 5362 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5363 struct pt_regs *regs) 5364 { 5365 /* Case of a kernel thread, nothing to dump */ 5366 if (!regs) { 5367 u64 size = 0; 5368 perf_output_put(handle, size); 5369 } else { 5370 unsigned long sp; 5371 unsigned int rem; 5372 u64 dyn_size; 5373 5374 /* 5375 * We dump: 5376 * static size 5377 * - the size requested by user or the best one we can fit 5378 * in to the sample max size 5379 * data 5380 * - user stack dump data 5381 * dynamic size 5382 * - the actual dumped size 5383 */ 5384 5385 /* Static size. */ 5386 perf_output_put(handle, dump_size); 5387 5388 /* Data. */ 5389 sp = perf_user_stack_pointer(regs); 5390 rem = __output_copy_user(handle, (void *) sp, dump_size); 5391 dyn_size = dump_size - rem; 5392 5393 perf_output_skip(handle, rem); 5394 5395 /* Dynamic size. */ 5396 perf_output_put(handle, dyn_size); 5397 } 5398 } 5399 5400 static void __perf_event_header__init_id(struct perf_event_header *header, 5401 struct perf_sample_data *data, 5402 struct perf_event *event) 5403 { 5404 u64 sample_type = event->attr.sample_type; 5405 5406 data->type = sample_type; 5407 header->size += event->id_header_size; 5408 5409 if (sample_type & PERF_SAMPLE_TID) { 5410 /* namespace issues */ 5411 data->tid_entry.pid = perf_event_pid(event, current); 5412 data->tid_entry.tid = perf_event_tid(event, current); 5413 } 5414 5415 if (sample_type & PERF_SAMPLE_TIME) 5416 data->time = perf_event_clock(event); 5417 5418 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5419 data->id = primary_event_id(event); 5420 5421 if (sample_type & PERF_SAMPLE_STREAM_ID) 5422 data->stream_id = event->id; 5423 5424 if (sample_type & PERF_SAMPLE_CPU) { 5425 data->cpu_entry.cpu = raw_smp_processor_id(); 5426 data->cpu_entry.reserved = 0; 5427 } 5428 } 5429 5430 void perf_event_header__init_id(struct perf_event_header *header, 5431 struct perf_sample_data *data, 5432 struct perf_event *event) 5433 { 5434 if (event->attr.sample_id_all) 5435 __perf_event_header__init_id(header, data, event); 5436 } 5437 5438 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5439 struct perf_sample_data *data) 5440 { 5441 u64 sample_type = data->type; 5442 5443 if (sample_type & PERF_SAMPLE_TID) 5444 perf_output_put(handle, data->tid_entry); 5445 5446 if (sample_type & PERF_SAMPLE_TIME) 5447 perf_output_put(handle, data->time); 5448 5449 if (sample_type & PERF_SAMPLE_ID) 5450 perf_output_put(handle, data->id); 5451 5452 if (sample_type & PERF_SAMPLE_STREAM_ID) 5453 perf_output_put(handle, data->stream_id); 5454 5455 if (sample_type & PERF_SAMPLE_CPU) 5456 perf_output_put(handle, data->cpu_entry); 5457 5458 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5459 perf_output_put(handle, data->id); 5460 } 5461 5462 void perf_event__output_id_sample(struct perf_event *event, 5463 struct perf_output_handle *handle, 5464 struct perf_sample_data *sample) 5465 { 5466 if (event->attr.sample_id_all) 5467 __perf_event__output_id_sample(handle, sample); 5468 } 5469 5470 static void perf_output_read_one(struct perf_output_handle *handle, 5471 struct perf_event *event, 5472 u64 enabled, u64 running) 5473 { 5474 u64 read_format = event->attr.read_format; 5475 u64 values[4]; 5476 int n = 0; 5477 5478 values[n++] = perf_event_count(event); 5479 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5480 values[n++] = enabled + 5481 atomic64_read(&event->child_total_time_enabled); 5482 } 5483 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5484 values[n++] = running + 5485 atomic64_read(&event->child_total_time_running); 5486 } 5487 if (read_format & PERF_FORMAT_ID) 5488 values[n++] = primary_event_id(event); 5489 5490 __output_copy(handle, values, n * sizeof(u64)); 5491 } 5492 5493 /* 5494 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5495 */ 5496 static void perf_output_read_group(struct perf_output_handle *handle, 5497 struct perf_event *event, 5498 u64 enabled, u64 running) 5499 { 5500 struct perf_event *leader = event->group_leader, *sub; 5501 u64 read_format = event->attr.read_format; 5502 u64 values[5]; 5503 int n = 0; 5504 5505 values[n++] = 1 + leader->nr_siblings; 5506 5507 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5508 values[n++] = enabled; 5509 5510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5511 values[n++] = running; 5512 5513 if (leader != event) 5514 leader->pmu->read(leader); 5515 5516 values[n++] = perf_event_count(leader); 5517 if (read_format & PERF_FORMAT_ID) 5518 values[n++] = primary_event_id(leader); 5519 5520 __output_copy(handle, values, n * sizeof(u64)); 5521 5522 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5523 n = 0; 5524 5525 if ((sub != event) && 5526 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5527 sub->pmu->read(sub); 5528 5529 values[n++] = perf_event_count(sub); 5530 if (read_format & PERF_FORMAT_ID) 5531 values[n++] = primary_event_id(sub); 5532 5533 __output_copy(handle, values, n * sizeof(u64)); 5534 } 5535 } 5536 5537 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5538 PERF_FORMAT_TOTAL_TIME_RUNNING) 5539 5540 static void perf_output_read(struct perf_output_handle *handle, 5541 struct perf_event *event) 5542 { 5543 u64 enabled = 0, running = 0, now; 5544 u64 read_format = event->attr.read_format; 5545 5546 /* 5547 * compute total_time_enabled, total_time_running 5548 * based on snapshot values taken when the event 5549 * was last scheduled in. 5550 * 5551 * we cannot simply called update_context_time() 5552 * because of locking issue as we are called in 5553 * NMI context 5554 */ 5555 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5556 calc_timer_values(event, &now, &enabled, &running); 5557 5558 if (event->attr.read_format & PERF_FORMAT_GROUP) 5559 perf_output_read_group(handle, event, enabled, running); 5560 else 5561 perf_output_read_one(handle, event, enabled, running); 5562 } 5563 5564 void perf_output_sample(struct perf_output_handle *handle, 5565 struct perf_event_header *header, 5566 struct perf_sample_data *data, 5567 struct perf_event *event) 5568 { 5569 u64 sample_type = data->type; 5570 5571 perf_output_put(handle, *header); 5572 5573 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5574 perf_output_put(handle, data->id); 5575 5576 if (sample_type & PERF_SAMPLE_IP) 5577 perf_output_put(handle, data->ip); 5578 5579 if (sample_type & PERF_SAMPLE_TID) 5580 perf_output_put(handle, data->tid_entry); 5581 5582 if (sample_type & PERF_SAMPLE_TIME) 5583 perf_output_put(handle, data->time); 5584 5585 if (sample_type & PERF_SAMPLE_ADDR) 5586 perf_output_put(handle, data->addr); 5587 5588 if (sample_type & PERF_SAMPLE_ID) 5589 perf_output_put(handle, data->id); 5590 5591 if (sample_type & PERF_SAMPLE_STREAM_ID) 5592 perf_output_put(handle, data->stream_id); 5593 5594 if (sample_type & PERF_SAMPLE_CPU) 5595 perf_output_put(handle, data->cpu_entry); 5596 5597 if (sample_type & PERF_SAMPLE_PERIOD) 5598 perf_output_put(handle, data->period); 5599 5600 if (sample_type & PERF_SAMPLE_READ) 5601 perf_output_read(handle, event); 5602 5603 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5604 if (data->callchain) { 5605 int size = 1; 5606 5607 if (data->callchain) 5608 size += data->callchain->nr; 5609 5610 size *= sizeof(u64); 5611 5612 __output_copy(handle, data->callchain, size); 5613 } else { 5614 u64 nr = 0; 5615 perf_output_put(handle, nr); 5616 } 5617 } 5618 5619 if (sample_type & PERF_SAMPLE_RAW) { 5620 if (data->raw) { 5621 u32 raw_size = data->raw->size; 5622 u32 real_size = round_up(raw_size + sizeof(u32), 5623 sizeof(u64)) - sizeof(u32); 5624 u64 zero = 0; 5625 5626 perf_output_put(handle, real_size); 5627 __output_copy(handle, data->raw->data, raw_size); 5628 if (real_size - raw_size) 5629 __output_copy(handle, &zero, real_size - raw_size); 5630 } else { 5631 struct { 5632 u32 size; 5633 u32 data; 5634 } raw = { 5635 .size = sizeof(u32), 5636 .data = 0, 5637 }; 5638 perf_output_put(handle, raw); 5639 } 5640 } 5641 5642 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5643 if (data->br_stack) { 5644 size_t size; 5645 5646 size = data->br_stack->nr 5647 * sizeof(struct perf_branch_entry); 5648 5649 perf_output_put(handle, data->br_stack->nr); 5650 perf_output_copy(handle, data->br_stack->entries, size); 5651 } else { 5652 /* 5653 * we always store at least the value of nr 5654 */ 5655 u64 nr = 0; 5656 perf_output_put(handle, nr); 5657 } 5658 } 5659 5660 if (sample_type & PERF_SAMPLE_REGS_USER) { 5661 u64 abi = data->regs_user.abi; 5662 5663 /* 5664 * If there are no regs to dump, notice it through 5665 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5666 */ 5667 perf_output_put(handle, abi); 5668 5669 if (abi) { 5670 u64 mask = event->attr.sample_regs_user; 5671 perf_output_sample_regs(handle, 5672 data->regs_user.regs, 5673 mask); 5674 } 5675 } 5676 5677 if (sample_type & PERF_SAMPLE_STACK_USER) { 5678 perf_output_sample_ustack(handle, 5679 data->stack_user_size, 5680 data->regs_user.regs); 5681 } 5682 5683 if (sample_type & PERF_SAMPLE_WEIGHT) 5684 perf_output_put(handle, data->weight); 5685 5686 if (sample_type & PERF_SAMPLE_DATA_SRC) 5687 perf_output_put(handle, data->data_src.val); 5688 5689 if (sample_type & PERF_SAMPLE_TRANSACTION) 5690 perf_output_put(handle, data->txn); 5691 5692 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5693 u64 abi = data->regs_intr.abi; 5694 /* 5695 * If there are no regs to dump, notice it through 5696 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5697 */ 5698 perf_output_put(handle, abi); 5699 5700 if (abi) { 5701 u64 mask = event->attr.sample_regs_intr; 5702 5703 perf_output_sample_regs(handle, 5704 data->regs_intr.regs, 5705 mask); 5706 } 5707 } 5708 5709 if (!event->attr.watermark) { 5710 int wakeup_events = event->attr.wakeup_events; 5711 5712 if (wakeup_events) { 5713 struct ring_buffer *rb = handle->rb; 5714 int events = local_inc_return(&rb->events); 5715 5716 if (events >= wakeup_events) { 5717 local_sub(wakeup_events, &rb->events); 5718 local_inc(&rb->wakeup); 5719 } 5720 } 5721 } 5722 } 5723 5724 void perf_prepare_sample(struct perf_event_header *header, 5725 struct perf_sample_data *data, 5726 struct perf_event *event, 5727 struct pt_regs *regs) 5728 { 5729 u64 sample_type = event->attr.sample_type; 5730 5731 header->type = PERF_RECORD_SAMPLE; 5732 header->size = sizeof(*header) + event->header_size; 5733 5734 header->misc = 0; 5735 header->misc |= perf_misc_flags(regs); 5736 5737 __perf_event_header__init_id(header, data, event); 5738 5739 if (sample_type & PERF_SAMPLE_IP) 5740 data->ip = perf_instruction_pointer(regs); 5741 5742 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5743 int size = 1; 5744 5745 data->callchain = perf_callchain(event, regs); 5746 5747 if (data->callchain) 5748 size += data->callchain->nr; 5749 5750 header->size += size * sizeof(u64); 5751 } 5752 5753 if (sample_type & PERF_SAMPLE_RAW) { 5754 int size = sizeof(u32); 5755 5756 if (data->raw) 5757 size += data->raw->size; 5758 else 5759 size += sizeof(u32); 5760 5761 header->size += round_up(size, sizeof(u64)); 5762 } 5763 5764 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5765 int size = sizeof(u64); /* nr */ 5766 if (data->br_stack) { 5767 size += data->br_stack->nr 5768 * sizeof(struct perf_branch_entry); 5769 } 5770 header->size += size; 5771 } 5772 5773 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5774 perf_sample_regs_user(&data->regs_user, regs, 5775 &data->regs_user_copy); 5776 5777 if (sample_type & PERF_SAMPLE_REGS_USER) { 5778 /* regs dump ABI info */ 5779 int size = sizeof(u64); 5780 5781 if (data->regs_user.regs) { 5782 u64 mask = event->attr.sample_regs_user; 5783 size += hweight64(mask) * sizeof(u64); 5784 } 5785 5786 header->size += size; 5787 } 5788 5789 if (sample_type & PERF_SAMPLE_STACK_USER) { 5790 /* 5791 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5792 * processed as the last one or have additional check added 5793 * in case new sample type is added, because we could eat 5794 * up the rest of the sample size. 5795 */ 5796 u16 stack_size = event->attr.sample_stack_user; 5797 u16 size = sizeof(u64); 5798 5799 stack_size = perf_sample_ustack_size(stack_size, header->size, 5800 data->regs_user.regs); 5801 5802 /* 5803 * If there is something to dump, add space for the dump 5804 * itself and for the field that tells the dynamic size, 5805 * which is how many have been actually dumped. 5806 */ 5807 if (stack_size) 5808 size += sizeof(u64) + stack_size; 5809 5810 data->stack_user_size = stack_size; 5811 header->size += size; 5812 } 5813 5814 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5815 /* regs dump ABI info */ 5816 int size = sizeof(u64); 5817 5818 perf_sample_regs_intr(&data->regs_intr, regs); 5819 5820 if (data->regs_intr.regs) { 5821 u64 mask = event->attr.sample_regs_intr; 5822 5823 size += hweight64(mask) * sizeof(u64); 5824 } 5825 5826 header->size += size; 5827 } 5828 } 5829 5830 static void __always_inline 5831 __perf_event_output(struct perf_event *event, 5832 struct perf_sample_data *data, 5833 struct pt_regs *regs, 5834 int (*output_begin)(struct perf_output_handle *, 5835 struct perf_event *, 5836 unsigned int)) 5837 { 5838 struct perf_output_handle handle; 5839 struct perf_event_header header; 5840 5841 /* protect the callchain buffers */ 5842 rcu_read_lock(); 5843 5844 perf_prepare_sample(&header, data, event, regs); 5845 5846 if (output_begin(&handle, event, header.size)) 5847 goto exit; 5848 5849 perf_output_sample(&handle, &header, data, event); 5850 5851 perf_output_end(&handle); 5852 5853 exit: 5854 rcu_read_unlock(); 5855 } 5856 5857 void 5858 perf_event_output_forward(struct perf_event *event, 5859 struct perf_sample_data *data, 5860 struct pt_regs *regs) 5861 { 5862 __perf_event_output(event, data, regs, perf_output_begin_forward); 5863 } 5864 5865 void 5866 perf_event_output_backward(struct perf_event *event, 5867 struct perf_sample_data *data, 5868 struct pt_regs *regs) 5869 { 5870 __perf_event_output(event, data, regs, perf_output_begin_backward); 5871 } 5872 5873 void 5874 perf_event_output(struct perf_event *event, 5875 struct perf_sample_data *data, 5876 struct pt_regs *regs) 5877 { 5878 __perf_event_output(event, data, regs, perf_output_begin); 5879 } 5880 5881 /* 5882 * read event_id 5883 */ 5884 5885 struct perf_read_event { 5886 struct perf_event_header header; 5887 5888 u32 pid; 5889 u32 tid; 5890 }; 5891 5892 static void 5893 perf_event_read_event(struct perf_event *event, 5894 struct task_struct *task) 5895 { 5896 struct perf_output_handle handle; 5897 struct perf_sample_data sample; 5898 struct perf_read_event read_event = { 5899 .header = { 5900 .type = PERF_RECORD_READ, 5901 .misc = 0, 5902 .size = sizeof(read_event) + event->read_size, 5903 }, 5904 .pid = perf_event_pid(event, task), 5905 .tid = perf_event_tid(event, task), 5906 }; 5907 int ret; 5908 5909 perf_event_header__init_id(&read_event.header, &sample, event); 5910 ret = perf_output_begin(&handle, event, read_event.header.size); 5911 if (ret) 5912 return; 5913 5914 perf_output_put(&handle, read_event); 5915 perf_output_read(&handle, event); 5916 perf_event__output_id_sample(event, &handle, &sample); 5917 5918 perf_output_end(&handle); 5919 } 5920 5921 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 5922 5923 static void 5924 perf_iterate_ctx(struct perf_event_context *ctx, 5925 perf_iterate_f output, 5926 void *data, bool all) 5927 { 5928 struct perf_event *event; 5929 5930 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5931 if (!all) { 5932 if (event->state < PERF_EVENT_STATE_INACTIVE) 5933 continue; 5934 if (!event_filter_match(event)) 5935 continue; 5936 } 5937 5938 output(event, data); 5939 } 5940 } 5941 5942 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 5943 { 5944 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 5945 struct perf_event *event; 5946 5947 list_for_each_entry_rcu(event, &pel->list, sb_list) { 5948 if (event->state < PERF_EVENT_STATE_INACTIVE) 5949 continue; 5950 if (!event_filter_match(event)) 5951 continue; 5952 output(event, data); 5953 } 5954 } 5955 5956 /* 5957 * Iterate all events that need to receive side-band events. 5958 * 5959 * For new callers; ensure that account_pmu_sb_event() includes 5960 * your event, otherwise it might not get delivered. 5961 */ 5962 static void 5963 perf_iterate_sb(perf_iterate_f output, void *data, 5964 struct perf_event_context *task_ctx) 5965 { 5966 struct perf_event_context *ctx; 5967 int ctxn; 5968 5969 rcu_read_lock(); 5970 preempt_disable(); 5971 5972 /* 5973 * If we have task_ctx != NULL we only notify the task context itself. 5974 * The task_ctx is set only for EXIT events before releasing task 5975 * context. 5976 */ 5977 if (task_ctx) { 5978 perf_iterate_ctx(task_ctx, output, data, false); 5979 goto done; 5980 } 5981 5982 perf_iterate_sb_cpu(output, data); 5983 5984 for_each_task_context_nr(ctxn) { 5985 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5986 if (ctx) 5987 perf_iterate_ctx(ctx, output, data, false); 5988 } 5989 done: 5990 preempt_enable(); 5991 rcu_read_unlock(); 5992 } 5993 5994 /* 5995 * Clear all file-based filters at exec, they'll have to be 5996 * re-instated when/if these objects are mmapped again. 5997 */ 5998 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 5999 { 6000 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6001 struct perf_addr_filter *filter; 6002 unsigned int restart = 0, count = 0; 6003 unsigned long flags; 6004 6005 if (!has_addr_filter(event)) 6006 return; 6007 6008 raw_spin_lock_irqsave(&ifh->lock, flags); 6009 list_for_each_entry(filter, &ifh->list, entry) { 6010 if (filter->inode) { 6011 event->addr_filters_offs[count] = 0; 6012 restart++; 6013 } 6014 6015 count++; 6016 } 6017 6018 if (restart) 6019 event->addr_filters_gen++; 6020 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6021 6022 if (restart) 6023 perf_event_restart(event); 6024 } 6025 6026 void perf_event_exec(void) 6027 { 6028 struct perf_event_context *ctx; 6029 int ctxn; 6030 6031 rcu_read_lock(); 6032 for_each_task_context_nr(ctxn) { 6033 ctx = current->perf_event_ctxp[ctxn]; 6034 if (!ctx) 6035 continue; 6036 6037 perf_event_enable_on_exec(ctxn); 6038 6039 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6040 true); 6041 } 6042 rcu_read_unlock(); 6043 } 6044 6045 struct remote_output { 6046 struct ring_buffer *rb; 6047 int err; 6048 }; 6049 6050 static void __perf_event_output_stop(struct perf_event *event, void *data) 6051 { 6052 struct perf_event *parent = event->parent; 6053 struct remote_output *ro = data; 6054 struct ring_buffer *rb = ro->rb; 6055 struct stop_event_data sd = { 6056 .event = event, 6057 }; 6058 6059 if (!has_aux(event)) 6060 return; 6061 6062 if (!parent) 6063 parent = event; 6064 6065 /* 6066 * In case of inheritance, it will be the parent that links to the 6067 * ring-buffer, but it will be the child that's actually using it: 6068 */ 6069 if (rcu_dereference(parent->rb) == rb) 6070 ro->err = __perf_event_stop(&sd); 6071 } 6072 6073 static int __perf_pmu_output_stop(void *info) 6074 { 6075 struct perf_event *event = info; 6076 struct pmu *pmu = event->pmu; 6077 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 6078 struct remote_output ro = { 6079 .rb = event->rb, 6080 }; 6081 6082 rcu_read_lock(); 6083 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6084 if (cpuctx->task_ctx) 6085 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6086 &ro, false); 6087 rcu_read_unlock(); 6088 6089 return ro.err; 6090 } 6091 6092 static void perf_pmu_output_stop(struct perf_event *event) 6093 { 6094 struct perf_event *iter; 6095 int err, cpu; 6096 6097 restart: 6098 rcu_read_lock(); 6099 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6100 /* 6101 * For per-CPU events, we need to make sure that neither they 6102 * nor their children are running; for cpu==-1 events it's 6103 * sufficient to stop the event itself if it's active, since 6104 * it can't have children. 6105 */ 6106 cpu = iter->cpu; 6107 if (cpu == -1) 6108 cpu = READ_ONCE(iter->oncpu); 6109 6110 if (cpu == -1) 6111 continue; 6112 6113 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6114 if (err == -EAGAIN) { 6115 rcu_read_unlock(); 6116 goto restart; 6117 } 6118 } 6119 rcu_read_unlock(); 6120 } 6121 6122 /* 6123 * task tracking -- fork/exit 6124 * 6125 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6126 */ 6127 6128 struct perf_task_event { 6129 struct task_struct *task; 6130 struct perf_event_context *task_ctx; 6131 6132 struct { 6133 struct perf_event_header header; 6134 6135 u32 pid; 6136 u32 ppid; 6137 u32 tid; 6138 u32 ptid; 6139 u64 time; 6140 } event_id; 6141 }; 6142 6143 static int perf_event_task_match(struct perf_event *event) 6144 { 6145 return event->attr.comm || event->attr.mmap || 6146 event->attr.mmap2 || event->attr.mmap_data || 6147 event->attr.task; 6148 } 6149 6150 static void perf_event_task_output(struct perf_event *event, 6151 void *data) 6152 { 6153 struct perf_task_event *task_event = data; 6154 struct perf_output_handle handle; 6155 struct perf_sample_data sample; 6156 struct task_struct *task = task_event->task; 6157 int ret, size = task_event->event_id.header.size; 6158 6159 if (!perf_event_task_match(event)) 6160 return; 6161 6162 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6163 6164 ret = perf_output_begin(&handle, event, 6165 task_event->event_id.header.size); 6166 if (ret) 6167 goto out; 6168 6169 task_event->event_id.pid = perf_event_pid(event, task); 6170 task_event->event_id.ppid = perf_event_pid(event, current); 6171 6172 task_event->event_id.tid = perf_event_tid(event, task); 6173 task_event->event_id.ptid = perf_event_tid(event, current); 6174 6175 task_event->event_id.time = perf_event_clock(event); 6176 6177 perf_output_put(&handle, task_event->event_id); 6178 6179 perf_event__output_id_sample(event, &handle, &sample); 6180 6181 perf_output_end(&handle); 6182 out: 6183 task_event->event_id.header.size = size; 6184 } 6185 6186 static void perf_event_task(struct task_struct *task, 6187 struct perf_event_context *task_ctx, 6188 int new) 6189 { 6190 struct perf_task_event task_event; 6191 6192 if (!atomic_read(&nr_comm_events) && 6193 !atomic_read(&nr_mmap_events) && 6194 !atomic_read(&nr_task_events)) 6195 return; 6196 6197 task_event = (struct perf_task_event){ 6198 .task = task, 6199 .task_ctx = task_ctx, 6200 .event_id = { 6201 .header = { 6202 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6203 .misc = 0, 6204 .size = sizeof(task_event.event_id), 6205 }, 6206 /* .pid */ 6207 /* .ppid */ 6208 /* .tid */ 6209 /* .ptid */ 6210 /* .time */ 6211 }, 6212 }; 6213 6214 perf_iterate_sb(perf_event_task_output, 6215 &task_event, 6216 task_ctx); 6217 } 6218 6219 void perf_event_fork(struct task_struct *task) 6220 { 6221 perf_event_task(task, NULL, 1); 6222 } 6223 6224 /* 6225 * comm tracking 6226 */ 6227 6228 struct perf_comm_event { 6229 struct task_struct *task; 6230 char *comm; 6231 int comm_size; 6232 6233 struct { 6234 struct perf_event_header header; 6235 6236 u32 pid; 6237 u32 tid; 6238 } event_id; 6239 }; 6240 6241 static int perf_event_comm_match(struct perf_event *event) 6242 { 6243 return event->attr.comm; 6244 } 6245 6246 static void perf_event_comm_output(struct perf_event *event, 6247 void *data) 6248 { 6249 struct perf_comm_event *comm_event = data; 6250 struct perf_output_handle handle; 6251 struct perf_sample_data sample; 6252 int size = comm_event->event_id.header.size; 6253 int ret; 6254 6255 if (!perf_event_comm_match(event)) 6256 return; 6257 6258 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6259 ret = perf_output_begin(&handle, event, 6260 comm_event->event_id.header.size); 6261 6262 if (ret) 6263 goto out; 6264 6265 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6266 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6267 6268 perf_output_put(&handle, comm_event->event_id); 6269 __output_copy(&handle, comm_event->comm, 6270 comm_event->comm_size); 6271 6272 perf_event__output_id_sample(event, &handle, &sample); 6273 6274 perf_output_end(&handle); 6275 out: 6276 comm_event->event_id.header.size = size; 6277 } 6278 6279 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6280 { 6281 char comm[TASK_COMM_LEN]; 6282 unsigned int size; 6283 6284 memset(comm, 0, sizeof(comm)); 6285 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6286 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6287 6288 comm_event->comm = comm; 6289 comm_event->comm_size = size; 6290 6291 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6292 6293 perf_iterate_sb(perf_event_comm_output, 6294 comm_event, 6295 NULL); 6296 } 6297 6298 void perf_event_comm(struct task_struct *task, bool exec) 6299 { 6300 struct perf_comm_event comm_event; 6301 6302 if (!atomic_read(&nr_comm_events)) 6303 return; 6304 6305 comm_event = (struct perf_comm_event){ 6306 .task = task, 6307 /* .comm */ 6308 /* .comm_size */ 6309 .event_id = { 6310 .header = { 6311 .type = PERF_RECORD_COMM, 6312 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6313 /* .size */ 6314 }, 6315 /* .pid */ 6316 /* .tid */ 6317 }, 6318 }; 6319 6320 perf_event_comm_event(&comm_event); 6321 } 6322 6323 /* 6324 * mmap tracking 6325 */ 6326 6327 struct perf_mmap_event { 6328 struct vm_area_struct *vma; 6329 6330 const char *file_name; 6331 int file_size; 6332 int maj, min; 6333 u64 ino; 6334 u64 ino_generation; 6335 u32 prot, flags; 6336 6337 struct { 6338 struct perf_event_header header; 6339 6340 u32 pid; 6341 u32 tid; 6342 u64 start; 6343 u64 len; 6344 u64 pgoff; 6345 } event_id; 6346 }; 6347 6348 static int perf_event_mmap_match(struct perf_event *event, 6349 void *data) 6350 { 6351 struct perf_mmap_event *mmap_event = data; 6352 struct vm_area_struct *vma = mmap_event->vma; 6353 int executable = vma->vm_flags & VM_EXEC; 6354 6355 return (!executable && event->attr.mmap_data) || 6356 (executable && (event->attr.mmap || event->attr.mmap2)); 6357 } 6358 6359 static void perf_event_mmap_output(struct perf_event *event, 6360 void *data) 6361 { 6362 struct perf_mmap_event *mmap_event = data; 6363 struct perf_output_handle handle; 6364 struct perf_sample_data sample; 6365 int size = mmap_event->event_id.header.size; 6366 int ret; 6367 6368 if (!perf_event_mmap_match(event, data)) 6369 return; 6370 6371 if (event->attr.mmap2) { 6372 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6373 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6374 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6375 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6376 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6377 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6378 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6379 } 6380 6381 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6382 ret = perf_output_begin(&handle, event, 6383 mmap_event->event_id.header.size); 6384 if (ret) 6385 goto out; 6386 6387 mmap_event->event_id.pid = perf_event_pid(event, current); 6388 mmap_event->event_id.tid = perf_event_tid(event, current); 6389 6390 perf_output_put(&handle, mmap_event->event_id); 6391 6392 if (event->attr.mmap2) { 6393 perf_output_put(&handle, mmap_event->maj); 6394 perf_output_put(&handle, mmap_event->min); 6395 perf_output_put(&handle, mmap_event->ino); 6396 perf_output_put(&handle, mmap_event->ino_generation); 6397 perf_output_put(&handle, mmap_event->prot); 6398 perf_output_put(&handle, mmap_event->flags); 6399 } 6400 6401 __output_copy(&handle, mmap_event->file_name, 6402 mmap_event->file_size); 6403 6404 perf_event__output_id_sample(event, &handle, &sample); 6405 6406 perf_output_end(&handle); 6407 out: 6408 mmap_event->event_id.header.size = size; 6409 } 6410 6411 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6412 { 6413 struct vm_area_struct *vma = mmap_event->vma; 6414 struct file *file = vma->vm_file; 6415 int maj = 0, min = 0; 6416 u64 ino = 0, gen = 0; 6417 u32 prot = 0, flags = 0; 6418 unsigned int size; 6419 char tmp[16]; 6420 char *buf = NULL; 6421 char *name; 6422 6423 if (file) { 6424 struct inode *inode; 6425 dev_t dev; 6426 6427 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6428 if (!buf) { 6429 name = "//enomem"; 6430 goto cpy_name; 6431 } 6432 /* 6433 * d_path() works from the end of the rb backwards, so we 6434 * need to add enough zero bytes after the string to handle 6435 * the 64bit alignment we do later. 6436 */ 6437 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6438 if (IS_ERR(name)) { 6439 name = "//toolong"; 6440 goto cpy_name; 6441 } 6442 inode = file_inode(vma->vm_file); 6443 dev = inode->i_sb->s_dev; 6444 ino = inode->i_ino; 6445 gen = inode->i_generation; 6446 maj = MAJOR(dev); 6447 min = MINOR(dev); 6448 6449 if (vma->vm_flags & VM_READ) 6450 prot |= PROT_READ; 6451 if (vma->vm_flags & VM_WRITE) 6452 prot |= PROT_WRITE; 6453 if (vma->vm_flags & VM_EXEC) 6454 prot |= PROT_EXEC; 6455 6456 if (vma->vm_flags & VM_MAYSHARE) 6457 flags = MAP_SHARED; 6458 else 6459 flags = MAP_PRIVATE; 6460 6461 if (vma->vm_flags & VM_DENYWRITE) 6462 flags |= MAP_DENYWRITE; 6463 if (vma->vm_flags & VM_MAYEXEC) 6464 flags |= MAP_EXECUTABLE; 6465 if (vma->vm_flags & VM_LOCKED) 6466 flags |= MAP_LOCKED; 6467 if (vma->vm_flags & VM_HUGETLB) 6468 flags |= MAP_HUGETLB; 6469 6470 goto got_name; 6471 } else { 6472 if (vma->vm_ops && vma->vm_ops->name) { 6473 name = (char *) vma->vm_ops->name(vma); 6474 if (name) 6475 goto cpy_name; 6476 } 6477 6478 name = (char *)arch_vma_name(vma); 6479 if (name) 6480 goto cpy_name; 6481 6482 if (vma->vm_start <= vma->vm_mm->start_brk && 6483 vma->vm_end >= vma->vm_mm->brk) { 6484 name = "[heap]"; 6485 goto cpy_name; 6486 } 6487 if (vma->vm_start <= vma->vm_mm->start_stack && 6488 vma->vm_end >= vma->vm_mm->start_stack) { 6489 name = "[stack]"; 6490 goto cpy_name; 6491 } 6492 6493 name = "//anon"; 6494 goto cpy_name; 6495 } 6496 6497 cpy_name: 6498 strlcpy(tmp, name, sizeof(tmp)); 6499 name = tmp; 6500 got_name: 6501 /* 6502 * Since our buffer works in 8 byte units we need to align our string 6503 * size to a multiple of 8. However, we must guarantee the tail end is 6504 * zero'd out to avoid leaking random bits to userspace. 6505 */ 6506 size = strlen(name)+1; 6507 while (!IS_ALIGNED(size, sizeof(u64))) 6508 name[size++] = '\0'; 6509 6510 mmap_event->file_name = name; 6511 mmap_event->file_size = size; 6512 mmap_event->maj = maj; 6513 mmap_event->min = min; 6514 mmap_event->ino = ino; 6515 mmap_event->ino_generation = gen; 6516 mmap_event->prot = prot; 6517 mmap_event->flags = flags; 6518 6519 if (!(vma->vm_flags & VM_EXEC)) 6520 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6521 6522 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6523 6524 perf_iterate_sb(perf_event_mmap_output, 6525 mmap_event, 6526 NULL); 6527 6528 kfree(buf); 6529 } 6530 6531 /* 6532 * Whether this @filter depends on a dynamic object which is not loaded 6533 * yet or its load addresses are not known. 6534 */ 6535 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter) 6536 { 6537 return filter->filter && filter->inode; 6538 } 6539 6540 /* 6541 * Check whether inode and address range match filter criteria. 6542 */ 6543 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6544 struct file *file, unsigned long offset, 6545 unsigned long size) 6546 { 6547 if (filter->inode != file->f_inode) 6548 return false; 6549 6550 if (filter->offset > offset + size) 6551 return false; 6552 6553 if (filter->offset + filter->size < offset) 6554 return false; 6555 6556 return true; 6557 } 6558 6559 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6560 { 6561 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6562 struct vm_area_struct *vma = data; 6563 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6564 struct file *file = vma->vm_file; 6565 struct perf_addr_filter *filter; 6566 unsigned int restart = 0, count = 0; 6567 6568 if (!has_addr_filter(event)) 6569 return; 6570 6571 if (!file) 6572 return; 6573 6574 raw_spin_lock_irqsave(&ifh->lock, flags); 6575 list_for_each_entry(filter, &ifh->list, entry) { 6576 if (perf_addr_filter_match(filter, file, off, 6577 vma->vm_end - vma->vm_start)) { 6578 event->addr_filters_offs[count] = vma->vm_start; 6579 restart++; 6580 } 6581 6582 count++; 6583 } 6584 6585 if (restart) 6586 event->addr_filters_gen++; 6587 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6588 6589 if (restart) 6590 perf_event_restart(event); 6591 } 6592 6593 /* 6594 * Adjust all task's events' filters to the new vma 6595 */ 6596 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6597 { 6598 struct perf_event_context *ctx; 6599 int ctxn; 6600 6601 rcu_read_lock(); 6602 for_each_task_context_nr(ctxn) { 6603 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6604 if (!ctx) 6605 continue; 6606 6607 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6608 } 6609 rcu_read_unlock(); 6610 } 6611 6612 void perf_event_mmap(struct vm_area_struct *vma) 6613 { 6614 struct perf_mmap_event mmap_event; 6615 6616 if (!atomic_read(&nr_mmap_events)) 6617 return; 6618 6619 mmap_event = (struct perf_mmap_event){ 6620 .vma = vma, 6621 /* .file_name */ 6622 /* .file_size */ 6623 .event_id = { 6624 .header = { 6625 .type = PERF_RECORD_MMAP, 6626 .misc = PERF_RECORD_MISC_USER, 6627 /* .size */ 6628 }, 6629 /* .pid */ 6630 /* .tid */ 6631 .start = vma->vm_start, 6632 .len = vma->vm_end - vma->vm_start, 6633 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6634 }, 6635 /* .maj (attr_mmap2 only) */ 6636 /* .min (attr_mmap2 only) */ 6637 /* .ino (attr_mmap2 only) */ 6638 /* .ino_generation (attr_mmap2 only) */ 6639 /* .prot (attr_mmap2 only) */ 6640 /* .flags (attr_mmap2 only) */ 6641 }; 6642 6643 perf_addr_filters_adjust(vma); 6644 perf_event_mmap_event(&mmap_event); 6645 } 6646 6647 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6648 unsigned long size, u64 flags) 6649 { 6650 struct perf_output_handle handle; 6651 struct perf_sample_data sample; 6652 struct perf_aux_event { 6653 struct perf_event_header header; 6654 u64 offset; 6655 u64 size; 6656 u64 flags; 6657 } rec = { 6658 .header = { 6659 .type = PERF_RECORD_AUX, 6660 .misc = 0, 6661 .size = sizeof(rec), 6662 }, 6663 .offset = head, 6664 .size = size, 6665 .flags = flags, 6666 }; 6667 int ret; 6668 6669 perf_event_header__init_id(&rec.header, &sample, event); 6670 ret = perf_output_begin(&handle, event, rec.header.size); 6671 6672 if (ret) 6673 return; 6674 6675 perf_output_put(&handle, rec); 6676 perf_event__output_id_sample(event, &handle, &sample); 6677 6678 perf_output_end(&handle); 6679 } 6680 6681 /* 6682 * Lost/dropped samples logging 6683 */ 6684 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6685 { 6686 struct perf_output_handle handle; 6687 struct perf_sample_data sample; 6688 int ret; 6689 6690 struct { 6691 struct perf_event_header header; 6692 u64 lost; 6693 } lost_samples_event = { 6694 .header = { 6695 .type = PERF_RECORD_LOST_SAMPLES, 6696 .misc = 0, 6697 .size = sizeof(lost_samples_event), 6698 }, 6699 .lost = lost, 6700 }; 6701 6702 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6703 6704 ret = perf_output_begin(&handle, event, 6705 lost_samples_event.header.size); 6706 if (ret) 6707 return; 6708 6709 perf_output_put(&handle, lost_samples_event); 6710 perf_event__output_id_sample(event, &handle, &sample); 6711 perf_output_end(&handle); 6712 } 6713 6714 /* 6715 * context_switch tracking 6716 */ 6717 6718 struct perf_switch_event { 6719 struct task_struct *task; 6720 struct task_struct *next_prev; 6721 6722 struct { 6723 struct perf_event_header header; 6724 u32 next_prev_pid; 6725 u32 next_prev_tid; 6726 } event_id; 6727 }; 6728 6729 static int perf_event_switch_match(struct perf_event *event) 6730 { 6731 return event->attr.context_switch; 6732 } 6733 6734 static void perf_event_switch_output(struct perf_event *event, void *data) 6735 { 6736 struct perf_switch_event *se = data; 6737 struct perf_output_handle handle; 6738 struct perf_sample_data sample; 6739 int ret; 6740 6741 if (!perf_event_switch_match(event)) 6742 return; 6743 6744 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6745 if (event->ctx->task) { 6746 se->event_id.header.type = PERF_RECORD_SWITCH; 6747 se->event_id.header.size = sizeof(se->event_id.header); 6748 } else { 6749 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6750 se->event_id.header.size = sizeof(se->event_id); 6751 se->event_id.next_prev_pid = 6752 perf_event_pid(event, se->next_prev); 6753 se->event_id.next_prev_tid = 6754 perf_event_tid(event, se->next_prev); 6755 } 6756 6757 perf_event_header__init_id(&se->event_id.header, &sample, event); 6758 6759 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6760 if (ret) 6761 return; 6762 6763 if (event->ctx->task) 6764 perf_output_put(&handle, se->event_id.header); 6765 else 6766 perf_output_put(&handle, se->event_id); 6767 6768 perf_event__output_id_sample(event, &handle, &sample); 6769 6770 perf_output_end(&handle); 6771 } 6772 6773 static void perf_event_switch(struct task_struct *task, 6774 struct task_struct *next_prev, bool sched_in) 6775 { 6776 struct perf_switch_event switch_event; 6777 6778 /* N.B. caller checks nr_switch_events != 0 */ 6779 6780 switch_event = (struct perf_switch_event){ 6781 .task = task, 6782 .next_prev = next_prev, 6783 .event_id = { 6784 .header = { 6785 /* .type */ 6786 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6787 /* .size */ 6788 }, 6789 /* .next_prev_pid */ 6790 /* .next_prev_tid */ 6791 }, 6792 }; 6793 6794 perf_iterate_sb(perf_event_switch_output, 6795 &switch_event, 6796 NULL); 6797 } 6798 6799 /* 6800 * IRQ throttle logging 6801 */ 6802 6803 static void perf_log_throttle(struct perf_event *event, int enable) 6804 { 6805 struct perf_output_handle handle; 6806 struct perf_sample_data sample; 6807 int ret; 6808 6809 struct { 6810 struct perf_event_header header; 6811 u64 time; 6812 u64 id; 6813 u64 stream_id; 6814 } throttle_event = { 6815 .header = { 6816 .type = PERF_RECORD_THROTTLE, 6817 .misc = 0, 6818 .size = sizeof(throttle_event), 6819 }, 6820 .time = perf_event_clock(event), 6821 .id = primary_event_id(event), 6822 .stream_id = event->id, 6823 }; 6824 6825 if (enable) 6826 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6827 6828 perf_event_header__init_id(&throttle_event.header, &sample, event); 6829 6830 ret = perf_output_begin(&handle, event, 6831 throttle_event.header.size); 6832 if (ret) 6833 return; 6834 6835 perf_output_put(&handle, throttle_event); 6836 perf_event__output_id_sample(event, &handle, &sample); 6837 perf_output_end(&handle); 6838 } 6839 6840 static void perf_log_itrace_start(struct perf_event *event) 6841 { 6842 struct perf_output_handle handle; 6843 struct perf_sample_data sample; 6844 struct perf_aux_event { 6845 struct perf_event_header header; 6846 u32 pid; 6847 u32 tid; 6848 } rec; 6849 int ret; 6850 6851 if (event->parent) 6852 event = event->parent; 6853 6854 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6855 event->hw.itrace_started) 6856 return; 6857 6858 rec.header.type = PERF_RECORD_ITRACE_START; 6859 rec.header.misc = 0; 6860 rec.header.size = sizeof(rec); 6861 rec.pid = perf_event_pid(event, current); 6862 rec.tid = perf_event_tid(event, current); 6863 6864 perf_event_header__init_id(&rec.header, &sample, event); 6865 ret = perf_output_begin(&handle, event, rec.header.size); 6866 6867 if (ret) 6868 return; 6869 6870 perf_output_put(&handle, rec); 6871 perf_event__output_id_sample(event, &handle, &sample); 6872 6873 perf_output_end(&handle); 6874 } 6875 6876 /* 6877 * Generic event overflow handling, sampling. 6878 */ 6879 6880 static int __perf_event_overflow(struct perf_event *event, 6881 int throttle, struct perf_sample_data *data, 6882 struct pt_regs *regs) 6883 { 6884 int events = atomic_read(&event->event_limit); 6885 struct hw_perf_event *hwc = &event->hw; 6886 u64 seq; 6887 int ret = 0; 6888 6889 /* 6890 * Non-sampling counters might still use the PMI to fold short 6891 * hardware counters, ignore those. 6892 */ 6893 if (unlikely(!is_sampling_event(event))) 6894 return 0; 6895 6896 seq = __this_cpu_read(perf_throttled_seq); 6897 if (seq != hwc->interrupts_seq) { 6898 hwc->interrupts_seq = seq; 6899 hwc->interrupts = 1; 6900 } else { 6901 hwc->interrupts++; 6902 if (unlikely(throttle 6903 && hwc->interrupts >= max_samples_per_tick)) { 6904 __this_cpu_inc(perf_throttled_count); 6905 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6906 hwc->interrupts = MAX_INTERRUPTS; 6907 perf_log_throttle(event, 0); 6908 ret = 1; 6909 } 6910 } 6911 6912 if (event->attr.freq) { 6913 u64 now = perf_clock(); 6914 s64 delta = now - hwc->freq_time_stamp; 6915 6916 hwc->freq_time_stamp = now; 6917 6918 if (delta > 0 && delta < 2*TICK_NSEC) 6919 perf_adjust_period(event, delta, hwc->last_period, true); 6920 } 6921 6922 /* 6923 * XXX event_limit might not quite work as expected on inherited 6924 * events 6925 */ 6926 6927 event->pending_kill = POLL_IN; 6928 if (events && atomic_dec_and_test(&event->event_limit)) { 6929 ret = 1; 6930 event->pending_kill = POLL_HUP; 6931 event->pending_disable = 1; 6932 irq_work_queue(&event->pending); 6933 } 6934 6935 event->overflow_handler(event, data, regs); 6936 6937 if (*perf_event_fasync(event) && event->pending_kill) { 6938 event->pending_wakeup = 1; 6939 irq_work_queue(&event->pending); 6940 } 6941 6942 return ret; 6943 } 6944 6945 int perf_event_overflow(struct perf_event *event, 6946 struct perf_sample_data *data, 6947 struct pt_regs *regs) 6948 { 6949 return __perf_event_overflow(event, 1, data, regs); 6950 } 6951 6952 /* 6953 * Generic software event infrastructure 6954 */ 6955 6956 struct swevent_htable { 6957 struct swevent_hlist *swevent_hlist; 6958 struct mutex hlist_mutex; 6959 int hlist_refcount; 6960 6961 /* Recursion avoidance in each contexts */ 6962 int recursion[PERF_NR_CONTEXTS]; 6963 }; 6964 6965 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6966 6967 /* 6968 * We directly increment event->count and keep a second value in 6969 * event->hw.period_left to count intervals. This period event 6970 * is kept in the range [-sample_period, 0] so that we can use the 6971 * sign as trigger. 6972 */ 6973 6974 u64 perf_swevent_set_period(struct perf_event *event) 6975 { 6976 struct hw_perf_event *hwc = &event->hw; 6977 u64 period = hwc->last_period; 6978 u64 nr, offset; 6979 s64 old, val; 6980 6981 hwc->last_period = hwc->sample_period; 6982 6983 again: 6984 old = val = local64_read(&hwc->period_left); 6985 if (val < 0) 6986 return 0; 6987 6988 nr = div64_u64(period + val, period); 6989 offset = nr * period; 6990 val -= offset; 6991 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6992 goto again; 6993 6994 return nr; 6995 } 6996 6997 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6998 struct perf_sample_data *data, 6999 struct pt_regs *regs) 7000 { 7001 struct hw_perf_event *hwc = &event->hw; 7002 int throttle = 0; 7003 7004 if (!overflow) 7005 overflow = perf_swevent_set_period(event); 7006 7007 if (hwc->interrupts == MAX_INTERRUPTS) 7008 return; 7009 7010 for (; overflow; overflow--) { 7011 if (__perf_event_overflow(event, throttle, 7012 data, regs)) { 7013 /* 7014 * We inhibit the overflow from happening when 7015 * hwc->interrupts == MAX_INTERRUPTS. 7016 */ 7017 break; 7018 } 7019 throttle = 1; 7020 } 7021 } 7022 7023 static void perf_swevent_event(struct perf_event *event, u64 nr, 7024 struct perf_sample_data *data, 7025 struct pt_regs *regs) 7026 { 7027 struct hw_perf_event *hwc = &event->hw; 7028 7029 local64_add(nr, &event->count); 7030 7031 if (!regs) 7032 return; 7033 7034 if (!is_sampling_event(event)) 7035 return; 7036 7037 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7038 data->period = nr; 7039 return perf_swevent_overflow(event, 1, data, regs); 7040 } else 7041 data->period = event->hw.last_period; 7042 7043 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7044 return perf_swevent_overflow(event, 1, data, regs); 7045 7046 if (local64_add_negative(nr, &hwc->period_left)) 7047 return; 7048 7049 perf_swevent_overflow(event, 0, data, regs); 7050 } 7051 7052 static int perf_exclude_event(struct perf_event *event, 7053 struct pt_regs *regs) 7054 { 7055 if (event->hw.state & PERF_HES_STOPPED) 7056 return 1; 7057 7058 if (regs) { 7059 if (event->attr.exclude_user && user_mode(regs)) 7060 return 1; 7061 7062 if (event->attr.exclude_kernel && !user_mode(regs)) 7063 return 1; 7064 } 7065 7066 return 0; 7067 } 7068 7069 static int perf_swevent_match(struct perf_event *event, 7070 enum perf_type_id type, 7071 u32 event_id, 7072 struct perf_sample_data *data, 7073 struct pt_regs *regs) 7074 { 7075 if (event->attr.type != type) 7076 return 0; 7077 7078 if (event->attr.config != event_id) 7079 return 0; 7080 7081 if (perf_exclude_event(event, regs)) 7082 return 0; 7083 7084 return 1; 7085 } 7086 7087 static inline u64 swevent_hash(u64 type, u32 event_id) 7088 { 7089 u64 val = event_id | (type << 32); 7090 7091 return hash_64(val, SWEVENT_HLIST_BITS); 7092 } 7093 7094 static inline struct hlist_head * 7095 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7096 { 7097 u64 hash = swevent_hash(type, event_id); 7098 7099 return &hlist->heads[hash]; 7100 } 7101 7102 /* For the read side: events when they trigger */ 7103 static inline struct hlist_head * 7104 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7105 { 7106 struct swevent_hlist *hlist; 7107 7108 hlist = rcu_dereference(swhash->swevent_hlist); 7109 if (!hlist) 7110 return NULL; 7111 7112 return __find_swevent_head(hlist, type, event_id); 7113 } 7114 7115 /* For the event head insertion and removal in the hlist */ 7116 static inline struct hlist_head * 7117 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7118 { 7119 struct swevent_hlist *hlist; 7120 u32 event_id = event->attr.config; 7121 u64 type = event->attr.type; 7122 7123 /* 7124 * Event scheduling is always serialized against hlist allocation 7125 * and release. Which makes the protected version suitable here. 7126 * The context lock guarantees that. 7127 */ 7128 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7129 lockdep_is_held(&event->ctx->lock)); 7130 if (!hlist) 7131 return NULL; 7132 7133 return __find_swevent_head(hlist, type, event_id); 7134 } 7135 7136 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7137 u64 nr, 7138 struct perf_sample_data *data, 7139 struct pt_regs *regs) 7140 { 7141 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7142 struct perf_event *event; 7143 struct hlist_head *head; 7144 7145 rcu_read_lock(); 7146 head = find_swevent_head_rcu(swhash, type, event_id); 7147 if (!head) 7148 goto end; 7149 7150 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7151 if (perf_swevent_match(event, type, event_id, data, regs)) 7152 perf_swevent_event(event, nr, data, regs); 7153 } 7154 end: 7155 rcu_read_unlock(); 7156 } 7157 7158 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7159 7160 int perf_swevent_get_recursion_context(void) 7161 { 7162 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7163 7164 return get_recursion_context(swhash->recursion); 7165 } 7166 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7167 7168 void perf_swevent_put_recursion_context(int rctx) 7169 { 7170 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7171 7172 put_recursion_context(swhash->recursion, rctx); 7173 } 7174 7175 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7176 { 7177 struct perf_sample_data data; 7178 7179 if (WARN_ON_ONCE(!regs)) 7180 return; 7181 7182 perf_sample_data_init(&data, addr, 0); 7183 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7184 } 7185 7186 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7187 { 7188 int rctx; 7189 7190 preempt_disable_notrace(); 7191 rctx = perf_swevent_get_recursion_context(); 7192 if (unlikely(rctx < 0)) 7193 goto fail; 7194 7195 ___perf_sw_event(event_id, nr, regs, addr); 7196 7197 perf_swevent_put_recursion_context(rctx); 7198 fail: 7199 preempt_enable_notrace(); 7200 } 7201 7202 static void perf_swevent_read(struct perf_event *event) 7203 { 7204 } 7205 7206 static int perf_swevent_add(struct perf_event *event, int flags) 7207 { 7208 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7209 struct hw_perf_event *hwc = &event->hw; 7210 struct hlist_head *head; 7211 7212 if (is_sampling_event(event)) { 7213 hwc->last_period = hwc->sample_period; 7214 perf_swevent_set_period(event); 7215 } 7216 7217 hwc->state = !(flags & PERF_EF_START); 7218 7219 head = find_swevent_head(swhash, event); 7220 if (WARN_ON_ONCE(!head)) 7221 return -EINVAL; 7222 7223 hlist_add_head_rcu(&event->hlist_entry, head); 7224 perf_event_update_userpage(event); 7225 7226 return 0; 7227 } 7228 7229 static void perf_swevent_del(struct perf_event *event, int flags) 7230 { 7231 hlist_del_rcu(&event->hlist_entry); 7232 } 7233 7234 static void perf_swevent_start(struct perf_event *event, int flags) 7235 { 7236 event->hw.state = 0; 7237 } 7238 7239 static void perf_swevent_stop(struct perf_event *event, int flags) 7240 { 7241 event->hw.state = PERF_HES_STOPPED; 7242 } 7243 7244 /* Deref the hlist from the update side */ 7245 static inline struct swevent_hlist * 7246 swevent_hlist_deref(struct swevent_htable *swhash) 7247 { 7248 return rcu_dereference_protected(swhash->swevent_hlist, 7249 lockdep_is_held(&swhash->hlist_mutex)); 7250 } 7251 7252 static void swevent_hlist_release(struct swevent_htable *swhash) 7253 { 7254 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7255 7256 if (!hlist) 7257 return; 7258 7259 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7260 kfree_rcu(hlist, rcu_head); 7261 } 7262 7263 static void swevent_hlist_put_cpu(int cpu) 7264 { 7265 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7266 7267 mutex_lock(&swhash->hlist_mutex); 7268 7269 if (!--swhash->hlist_refcount) 7270 swevent_hlist_release(swhash); 7271 7272 mutex_unlock(&swhash->hlist_mutex); 7273 } 7274 7275 static void swevent_hlist_put(void) 7276 { 7277 int cpu; 7278 7279 for_each_possible_cpu(cpu) 7280 swevent_hlist_put_cpu(cpu); 7281 } 7282 7283 static int swevent_hlist_get_cpu(int cpu) 7284 { 7285 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7286 int err = 0; 7287 7288 mutex_lock(&swhash->hlist_mutex); 7289 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7290 struct swevent_hlist *hlist; 7291 7292 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7293 if (!hlist) { 7294 err = -ENOMEM; 7295 goto exit; 7296 } 7297 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7298 } 7299 swhash->hlist_refcount++; 7300 exit: 7301 mutex_unlock(&swhash->hlist_mutex); 7302 7303 return err; 7304 } 7305 7306 static int swevent_hlist_get(void) 7307 { 7308 int err, cpu, failed_cpu; 7309 7310 get_online_cpus(); 7311 for_each_possible_cpu(cpu) { 7312 err = swevent_hlist_get_cpu(cpu); 7313 if (err) { 7314 failed_cpu = cpu; 7315 goto fail; 7316 } 7317 } 7318 put_online_cpus(); 7319 7320 return 0; 7321 fail: 7322 for_each_possible_cpu(cpu) { 7323 if (cpu == failed_cpu) 7324 break; 7325 swevent_hlist_put_cpu(cpu); 7326 } 7327 7328 put_online_cpus(); 7329 return err; 7330 } 7331 7332 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7333 7334 static void sw_perf_event_destroy(struct perf_event *event) 7335 { 7336 u64 event_id = event->attr.config; 7337 7338 WARN_ON(event->parent); 7339 7340 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7341 swevent_hlist_put(); 7342 } 7343 7344 static int perf_swevent_init(struct perf_event *event) 7345 { 7346 u64 event_id = event->attr.config; 7347 7348 if (event->attr.type != PERF_TYPE_SOFTWARE) 7349 return -ENOENT; 7350 7351 /* 7352 * no branch sampling for software events 7353 */ 7354 if (has_branch_stack(event)) 7355 return -EOPNOTSUPP; 7356 7357 switch (event_id) { 7358 case PERF_COUNT_SW_CPU_CLOCK: 7359 case PERF_COUNT_SW_TASK_CLOCK: 7360 return -ENOENT; 7361 7362 default: 7363 break; 7364 } 7365 7366 if (event_id >= PERF_COUNT_SW_MAX) 7367 return -ENOENT; 7368 7369 if (!event->parent) { 7370 int err; 7371 7372 err = swevent_hlist_get(); 7373 if (err) 7374 return err; 7375 7376 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7377 event->destroy = sw_perf_event_destroy; 7378 } 7379 7380 return 0; 7381 } 7382 7383 static struct pmu perf_swevent = { 7384 .task_ctx_nr = perf_sw_context, 7385 7386 .capabilities = PERF_PMU_CAP_NO_NMI, 7387 7388 .event_init = perf_swevent_init, 7389 .add = perf_swevent_add, 7390 .del = perf_swevent_del, 7391 .start = perf_swevent_start, 7392 .stop = perf_swevent_stop, 7393 .read = perf_swevent_read, 7394 }; 7395 7396 #ifdef CONFIG_EVENT_TRACING 7397 7398 static int perf_tp_filter_match(struct perf_event *event, 7399 struct perf_sample_data *data) 7400 { 7401 void *record = data->raw->data; 7402 7403 /* only top level events have filters set */ 7404 if (event->parent) 7405 event = event->parent; 7406 7407 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7408 return 1; 7409 return 0; 7410 } 7411 7412 static int perf_tp_event_match(struct perf_event *event, 7413 struct perf_sample_data *data, 7414 struct pt_regs *regs) 7415 { 7416 if (event->hw.state & PERF_HES_STOPPED) 7417 return 0; 7418 /* 7419 * All tracepoints are from kernel-space. 7420 */ 7421 if (event->attr.exclude_kernel) 7422 return 0; 7423 7424 if (!perf_tp_filter_match(event, data)) 7425 return 0; 7426 7427 return 1; 7428 } 7429 7430 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7431 struct trace_event_call *call, u64 count, 7432 struct pt_regs *regs, struct hlist_head *head, 7433 struct task_struct *task) 7434 { 7435 struct bpf_prog *prog = call->prog; 7436 7437 if (prog) { 7438 *(struct pt_regs **)raw_data = regs; 7439 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7440 perf_swevent_put_recursion_context(rctx); 7441 return; 7442 } 7443 } 7444 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7445 rctx, task); 7446 } 7447 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7448 7449 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7450 struct pt_regs *regs, struct hlist_head *head, int rctx, 7451 struct task_struct *task) 7452 { 7453 struct perf_sample_data data; 7454 struct perf_event *event; 7455 7456 struct perf_raw_record raw = { 7457 .size = entry_size, 7458 .data = record, 7459 }; 7460 7461 perf_sample_data_init(&data, 0, 0); 7462 data.raw = &raw; 7463 7464 perf_trace_buf_update(record, event_type); 7465 7466 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7467 if (perf_tp_event_match(event, &data, regs)) 7468 perf_swevent_event(event, count, &data, regs); 7469 } 7470 7471 /* 7472 * If we got specified a target task, also iterate its context and 7473 * deliver this event there too. 7474 */ 7475 if (task && task != current) { 7476 struct perf_event_context *ctx; 7477 struct trace_entry *entry = record; 7478 7479 rcu_read_lock(); 7480 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7481 if (!ctx) 7482 goto unlock; 7483 7484 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7485 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7486 continue; 7487 if (event->attr.config != entry->type) 7488 continue; 7489 if (perf_tp_event_match(event, &data, regs)) 7490 perf_swevent_event(event, count, &data, regs); 7491 } 7492 unlock: 7493 rcu_read_unlock(); 7494 } 7495 7496 perf_swevent_put_recursion_context(rctx); 7497 } 7498 EXPORT_SYMBOL_GPL(perf_tp_event); 7499 7500 static void tp_perf_event_destroy(struct perf_event *event) 7501 { 7502 perf_trace_destroy(event); 7503 } 7504 7505 static int perf_tp_event_init(struct perf_event *event) 7506 { 7507 int err; 7508 7509 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7510 return -ENOENT; 7511 7512 /* 7513 * no branch sampling for tracepoint events 7514 */ 7515 if (has_branch_stack(event)) 7516 return -EOPNOTSUPP; 7517 7518 err = perf_trace_init(event); 7519 if (err) 7520 return err; 7521 7522 event->destroy = tp_perf_event_destroy; 7523 7524 return 0; 7525 } 7526 7527 static struct pmu perf_tracepoint = { 7528 .task_ctx_nr = perf_sw_context, 7529 7530 .event_init = perf_tp_event_init, 7531 .add = perf_trace_add, 7532 .del = perf_trace_del, 7533 .start = perf_swevent_start, 7534 .stop = perf_swevent_stop, 7535 .read = perf_swevent_read, 7536 }; 7537 7538 static inline void perf_tp_register(void) 7539 { 7540 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7541 } 7542 7543 static void perf_event_free_filter(struct perf_event *event) 7544 { 7545 ftrace_profile_free_filter(event); 7546 } 7547 7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7549 { 7550 bool is_kprobe, is_tracepoint; 7551 struct bpf_prog *prog; 7552 7553 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7554 return -EINVAL; 7555 7556 if (event->tp_event->prog) 7557 return -EEXIST; 7558 7559 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7560 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7561 if (!is_kprobe && !is_tracepoint) 7562 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7563 return -EINVAL; 7564 7565 prog = bpf_prog_get(prog_fd); 7566 if (IS_ERR(prog)) 7567 return PTR_ERR(prog); 7568 7569 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7570 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7571 /* valid fd, but invalid bpf program type */ 7572 bpf_prog_put(prog); 7573 return -EINVAL; 7574 } 7575 7576 if (is_tracepoint) { 7577 int off = trace_event_get_offsets(event->tp_event); 7578 7579 if (prog->aux->max_ctx_offset > off) { 7580 bpf_prog_put(prog); 7581 return -EACCES; 7582 } 7583 } 7584 event->tp_event->prog = prog; 7585 7586 return 0; 7587 } 7588 7589 static void perf_event_free_bpf_prog(struct perf_event *event) 7590 { 7591 struct bpf_prog *prog; 7592 7593 if (!event->tp_event) 7594 return; 7595 7596 prog = event->tp_event->prog; 7597 if (prog) { 7598 event->tp_event->prog = NULL; 7599 bpf_prog_put_rcu(prog); 7600 } 7601 } 7602 7603 #else 7604 7605 static inline void perf_tp_register(void) 7606 { 7607 } 7608 7609 static void perf_event_free_filter(struct perf_event *event) 7610 { 7611 } 7612 7613 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7614 { 7615 return -ENOENT; 7616 } 7617 7618 static void perf_event_free_bpf_prog(struct perf_event *event) 7619 { 7620 } 7621 #endif /* CONFIG_EVENT_TRACING */ 7622 7623 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7624 void perf_bp_event(struct perf_event *bp, void *data) 7625 { 7626 struct perf_sample_data sample; 7627 struct pt_regs *regs = data; 7628 7629 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7630 7631 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7632 perf_swevent_event(bp, 1, &sample, regs); 7633 } 7634 #endif 7635 7636 /* 7637 * Allocate a new address filter 7638 */ 7639 static struct perf_addr_filter * 7640 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7641 { 7642 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7643 struct perf_addr_filter *filter; 7644 7645 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7646 if (!filter) 7647 return NULL; 7648 7649 INIT_LIST_HEAD(&filter->entry); 7650 list_add_tail(&filter->entry, filters); 7651 7652 return filter; 7653 } 7654 7655 static void free_filters_list(struct list_head *filters) 7656 { 7657 struct perf_addr_filter *filter, *iter; 7658 7659 list_for_each_entry_safe(filter, iter, filters, entry) { 7660 if (filter->inode) 7661 iput(filter->inode); 7662 list_del(&filter->entry); 7663 kfree(filter); 7664 } 7665 } 7666 7667 /* 7668 * Free existing address filters and optionally install new ones 7669 */ 7670 static void perf_addr_filters_splice(struct perf_event *event, 7671 struct list_head *head) 7672 { 7673 unsigned long flags; 7674 LIST_HEAD(list); 7675 7676 if (!has_addr_filter(event)) 7677 return; 7678 7679 /* don't bother with children, they don't have their own filters */ 7680 if (event->parent) 7681 return; 7682 7683 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7684 7685 list_splice_init(&event->addr_filters.list, &list); 7686 if (head) 7687 list_splice(head, &event->addr_filters.list); 7688 7689 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7690 7691 free_filters_list(&list); 7692 } 7693 7694 /* 7695 * Scan through mm's vmas and see if one of them matches the 7696 * @filter; if so, adjust filter's address range. 7697 * Called with mm::mmap_sem down for reading. 7698 */ 7699 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7700 struct mm_struct *mm) 7701 { 7702 struct vm_area_struct *vma; 7703 7704 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7705 struct file *file = vma->vm_file; 7706 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7707 unsigned long vma_size = vma->vm_end - vma->vm_start; 7708 7709 if (!file) 7710 continue; 7711 7712 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7713 continue; 7714 7715 return vma->vm_start; 7716 } 7717 7718 return 0; 7719 } 7720 7721 /* 7722 * Update event's address range filters based on the 7723 * task's existing mappings, if any. 7724 */ 7725 static void perf_event_addr_filters_apply(struct perf_event *event) 7726 { 7727 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7728 struct task_struct *task = READ_ONCE(event->ctx->task); 7729 struct perf_addr_filter *filter; 7730 struct mm_struct *mm = NULL; 7731 unsigned int count = 0; 7732 unsigned long flags; 7733 7734 /* 7735 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7736 * will stop on the parent's child_mutex that our caller is also holding 7737 */ 7738 if (task == TASK_TOMBSTONE) 7739 return; 7740 7741 mm = get_task_mm(event->ctx->task); 7742 if (!mm) 7743 goto restart; 7744 7745 down_read(&mm->mmap_sem); 7746 7747 raw_spin_lock_irqsave(&ifh->lock, flags); 7748 list_for_each_entry(filter, &ifh->list, entry) { 7749 event->addr_filters_offs[count] = 0; 7750 7751 if (perf_addr_filter_needs_mmap(filter)) 7752 event->addr_filters_offs[count] = 7753 perf_addr_filter_apply(filter, mm); 7754 7755 count++; 7756 } 7757 7758 event->addr_filters_gen++; 7759 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7760 7761 up_read(&mm->mmap_sem); 7762 7763 mmput(mm); 7764 7765 restart: 7766 perf_event_restart(event); 7767 } 7768 7769 /* 7770 * Address range filtering: limiting the data to certain 7771 * instruction address ranges. Filters are ioctl()ed to us from 7772 * userspace as ascii strings. 7773 * 7774 * Filter string format: 7775 * 7776 * ACTION RANGE_SPEC 7777 * where ACTION is one of the 7778 * * "filter": limit the trace to this region 7779 * * "start": start tracing from this address 7780 * * "stop": stop tracing at this address/region; 7781 * RANGE_SPEC is 7782 * * for kernel addresses: <start address>[/<size>] 7783 * * for object files: <start address>[/<size>]@</path/to/object/file> 7784 * 7785 * if <size> is not specified, the range is treated as a single address. 7786 */ 7787 enum { 7788 IF_ACT_FILTER, 7789 IF_ACT_START, 7790 IF_ACT_STOP, 7791 IF_SRC_FILE, 7792 IF_SRC_KERNEL, 7793 IF_SRC_FILEADDR, 7794 IF_SRC_KERNELADDR, 7795 }; 7796 7797 enum { 7798 IF_STATE_ACTION = 0, 7799 IF_STATE_SOURCE, 7800 IF_STATE_END, 7801 }; 7802 7803 static const match_table_t if_tokens = { 7804 { IF_ACT_FILTER, "filter" }, 7805 { IF_ACT_START, "start" }, 7806 { IF_ACT_STOP, "stop" }, 7807 { IF_SRC_FILE, "%u/%u@%s" }, 7808 { IF_SRC_KERNEL, "%u/%u" }, 7809 { IF_SRC_FILEADDR, "%u@%s" }, 7810 { IF_SRC_KERNELADDR, "%u" }, 7811 }; 7812 7813 /* 7814 * Address filter string parser 7815 */ 7816 static int 7817 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7818 struct list_head *filters) 7819 { 7820 struct perf_addr_filter *filter = NULL; 7821 char *start, *orig, *filename = NULL; 7822 struct path path; 7823 substring_t args[MAX_OPT_ARGS]; 7824 int state = IF_STATE_ACTION, token; 7825 unsigned int kernel = 0; 7826 int ret = -EINVAL; 7827 7828 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7829 if (!fstr) 7830 return -ENOMEM; 7831 7832 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7833 ret = -EINVAL; 7834 7835 if (!*start) 7836 continue; 7837 7838 /* filter definition begins */ 7839 if (state == IF_STATE_ACTION) { 7840 filter = perf_addr_filter_new(event, filters); 7841 if (!filter) 7842 goto fail; 7843 } 7844 7845 token = match_token(start, if_tokens, args); 7846 switch (token) { 7847 case IF_ACT_FILTER: 7848 case IF_ACT_START: 7849 filter->filter = 1; 7850 7851 case IF_ACT_STOP: 7852 if (state != IF_STATE_ACTION) 7853 goto fail; 7854 7855 state = IF_STATE_SOURCE; 7856 break; 7857 7858 case IF_SRC_KERNELADDR: 7859 case IF_SRC_KERNEL: 7860 kernel = 1; 7861 7862 case IF_SRC_FILEADDR: 7863 case IF_SRC_FILE: 7864 if (state != IF_STATE_SOURCE) 7865 goto fail; 7866 7867 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7868 filter->range = 1; 7869 7870 *args[0].to = 0; 7871 ret = kstrtoul(args[0].from, 0, &filter->offset); 7872 if (ret) 7873 goto fail; 7874 7875 if (filter->range) { 7876 *args[1].to = 0; 7877 ret = kstrtoul(args[1].from, 0, &filter->size); 7878 if (ret) 7879 goto fail; 7880 } 7881 7882 if (token == IF_SRC_FILE) { 7883 filename = match_strdup(&args[2]); 7884 if (!filename) { 7885 ret = -ENOMEM; 7886 goto fail; 7887 } 7888 } 7889 7890 state = IF_STATE_END; 7891 break; 7892 7893 default: 7894 goto fail; 7895 } 7896 7897 /* 7898 * Filter definition is fully parsed, validate and install it. 7899 * Make sure that it doesn't contradict itself or the event's 7900 * attribute. 7901 */ 7902 if (state == IF_STATE_END) { 7903 if (kernel && event->attr.exclude_kernel) 7904 goto fail; 7905 7906 if (!kernel) { 7907 if (!filename) 7908 goto fail; 7909 7910 /* look up the path and grab its inode */ 7911 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 7912 if (ret) 7913 goto fail_free_name; 7914 7915 filter->inode = igrab(d_inode(path.dentry)); 7916 path_put(&path); 7917 kfree(filename); 7918 filename = NULL; 7919 7920 ret = -EINVAL; 7921 if (!filter->inode || 7922 !S_ISREG(filter->inode->i_mode)) 7923 /* free_filters_list() will iput() */ 7924 goto fail; 7925 } 7926 7927 /* ready to consume more filters */ 7928 state = IF_STATE_ACTION; 7929 filter = NULL; 7930 } 7931 } 7932 7933 if (state != IF_STATE_ACTION) 7934 goto fail; 7935 7936 kfree(orig); 7937 7938 return 0; 7939 7940 fail_free_name: 7941 kfree(filename); 7942 fail: 7943 free_filters_list(filters); 7944 kfree(orig); 7945 7946 return ret; 7947 } 7948 7949 static int 7950 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 7951 { 7952 LIST_HEAD(filters); 7953 int ret; 7954 7955 /* 7956 * Since this is called in perf_ioctl() path, we're already holding 7957 * ctx::mutex. 7958 */ 7959 lockdep_assert_held(&event->ctx->mutex); 7960 7961 if (WARN_ON_ONCE(event->parent)) 7962 return -EINVAL; 7963 7964 /* 7965 * For now, we only support filtering in per-task events; doing so 7966 * for CPU-wide events requires additional context switching trickery, 7967 * since same object code will be mapped at different virtual 7968 * addresses in different processes. 7969 */ 7970 if (!event->ctx->task) 7971 return -EOPNOTSUPP; 7972 7973 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 7974 if (ret) 7975 return ret; 7976 7977 ret = event->pmu->addr_filters_validate(&filters); 7978 if (ret) { 7979 free_filters_list(&filters); 7980 return ret; 7981 } 7982 7983 /* remove existing filters, if any */ 7984 perf_addr_filters_splice(event, &filters); 7985 7986 /* install new filters */ 7987 perf_event_for_each_child(event, perf_event_addr_filters_apply); 7988 7989 return ret; 7990 } 7991 7992 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7993 { 7994 char *filter_str; 7995 int ret = -EINVAL; 7996 7997 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 7998 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 7999 !has_addr_filter(event)) 8000 return -EINVAL; 8001 8002 filter_str = strndup_user(arg, PAGE_SIZE); 8003 if (IS_ERR(filter_str)) 8004 return PTR_ERR(filter_str); 8005 8006 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8007 event->attr.type == PERF_TYPE_TRACEPOINT) 8008 ret = ftrace_profile_set_filter(event, event->attr.config, 8009 filter_str); 8010 else if (has_addr_filter(event)) 8011 ret = perf_event_set_addr_filter(event, filter_str); 8012 8013 kfree(filter_str); 8014 return ret; 8015 } 8016 8017 /* 8018 * hrtimer based swevent callback 8019 */ 8020 8021 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8022 { 8023 enum hrtimer_restart ret = HRTIMER_RESTART; 8024 struct perf_sample_data data; 8025 struct pt_regs *regs; 8026 struct perf_event *event; 8027 u64 period; 8028 8029 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8030 8031 if (event->state != PERF_EVENT_STATE_ACTIVE) 8032 return HRTIMER_NORESTART; 8033 8034 event->pmu->read(event); 8035 8036 perf_sample_data_init(&data, 0, event->hw.last_period); 8037 regs = get_irq_regs(); 8038 8039 if (regs && !perf_exclude_event(event, regs)) { 8040 if (!(event->attr.exclude_idle && is_idle_task(current))) 8041 if (__perf_event_overflow(event, 1, &data, regs)) 8042 ret = HRTIMER_NORESTART; 8043 } 8044 8045 period = max_t(u64, 10000, event->hw.sample_period); 8046 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8047 8048 return ret; 8049 } 8050 8051 static void perf_swevent_start_hrtimer(struct perf_event *event) 8052 { 8053 struct hw_perf_event *hwc = &event->hw; 8054 s64 period; 8055 8056 if (!is_sampling_event(event)) 8057 return; 8058 8059 period = local64_read(&hwc->period_left); 8060 if (period) { 8061 if (period < 0) 8062 period = 10000; 8063 8064 local64_set(&hwc->period_left, 0); 8065 } else { 8066 period = max_t(u64, 10000, hwc->sample_period); 8067 } 8068 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8069 HRTIMER_MODE_REL_PINNED); 8070 } 8071 8072 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8073 { 8074 struct hw_perf_event *hwc = &event->hw; 8075 8076 if (is_sampling_event(event)) { 8077 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8078 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8079 8080 hrtimer_cancel(&hwc->hrtimer); 8081 } 8082 } 8083 8084 static void perf_swevent_init_hrtimer(struct perf_event *event) 8085 { 8086 struct hw_perf_event *hwc = &event->hw; 8087 8088 if (!is_sampling_event(event)) 8089 return; 8090 8091 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8092 hwc->hrtimer.function = perf_swevent_hrtimer; 8093 8094 /* 8095 * Since hrtimers have a fixed rate, we can do a static freq->period 8096 * mapping and avoid the whole period adjust feedback stuff. 8097 */ 8098 if (event->attr.freq) { 8099 long freq = event->attr.sample_freq; 8100 8101 event->attr.sample_period = NSEC_PER_SEC / freq; 8102 hwc->sample_period = event->attr.sample_period; 8103 local64_set(&hwc->period_left, hwc->sample_period); 8104 hwc->last_period = hwc->sample_period; 8105 event->attr.freq = 0; 8106 } 8107 } 8108 8109 /* 8110 * Software event: cpu wall time clock 8111 */ 8112 8113 static void cpu_clock_event_update(struct perf_event *event) 8114 { 8115 s64 prev; 8116 u64 now; 8117 8118 now = local_clock(); 8119 prev = local64_xchg(&event->hw.prev_count, now); 8120 local64_add(now - prev, &event->count); 8121 } 8122 8123 static void cpu_clock_event_start(struct perf_event *event, int flags) 8124 { 8125 local64_set(&event->hw.prev_count, local_clock()); 8126 perf_swevent_start_hrtimer(event); 8127 } 8128 8129 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8130 { 8131 perf_swevent_cancel_hrtimer(event); 8132 cpu_clock_event_update(event); 8133 } 8134 8135 static int cpu_clock_event_add(struct perf_event *event, int flags) 8136 { 8137 if (flags & PERF_EF_START) 8138 cpu_clock_event_start(event, flags); 8139 perf_event_update_userpage(event); 8140 8141 return 0; 8142 } 8143 8144 static void cpu_clock_event_del(struct perf_event *event, int flags) 8145 { 8146 cpu_clock_event_stop(event, flags); 8147 } 8148 8149 static void cpu_clock_event_read(struct perf_event *event) 8150 { 8151 cpu_clock_event_update(event); 8152 } 8153 8154 static int cpu_clock_event_init(struct perf_event *event) 8155 { 8156 if (event->attr.type != PERF_TYPE_SOFTWARE) 8157 return -ENOENT; 8158 8159 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8160 return -ENOENT; 8161 8162 /* 8163 * no branch sampling for software events 8164 */ 8165 if (has_branch_stack(event)) 8166 return -EOPNOTSUPP; 8167 8168 perf_swevent_init_hrtimer(event); 8169 8170 return 0; 8171 } 8172 8173 static struct pmu perf_cpu_clock = { 8174 .task_ctx_nr = perf_sw_context, 8175 8176 .capabilities = PERF_PMU_CAP_NO_NMI, 8177 8178 .event_init = cpu_clock_event_init, 8179 .add = cpu_clock_event_add, 8180 .del = cpu_clock_event_del, 8181 .start = cpu_clock_event_start, 8182 .stop = cpu_clock_event_stop, 8183 .read = cpu_clock_event_read, 8184 }; 8185 8186 /* 8187 * Software event: task time clock 8188 */ 8189 8190 static void task_clock_event_update(struct perf_event *event, u64 now) 8191 { 8192 u64 prev; 8193 s64 delta; 8194 8195 prev = local64_xchg(&event->hw.prev_count, now); 8196 delta = now - prev; 8197 local64_add(delta, &event->count); 8198 } 8199 8200 static void task_clock_event_start(struct perf_event *event, int flags) 8201 { 8202 local64_set(&event->hw.prev_count, event->ctx->time); 8203 perf_swevent_start_hrtimer(event); 8204 } 8205 8206 static void task_clock_event_stop(struct perf_event *event, int flags) 8207 { 8208 perf_swevent_cancel_hrtimer(event); 8209 task_clock_event_update(event, event->ctx->time); 8210 } 8211 8212 static int task_clock_event_add(struct perf_event *event, int flags) 8213 { 8214 if (flags & PERF_EF_START) 8215 task_clock_event_start(event, flags); 8216 perf_event_update_userpage(event); 8217 8218 return 0; 8219 } 8220 8221 static void task_clock_event_del(struct perf_event *event, int flags) 8222 { 8223 task_clock_event_stop(event, PERF_EF_UPDATE); 8224 } 8225 8226 static void task_clock_event_read(struct perf_event *event) 8227 { 8228 u64 now = perf_clock(); 8229 u64 delta = now - event->ctx->timestamp; 8230 u64 time = event->ctx->time + delta; 8231 8232 task_clock_event_update(event, time); 8233 } 8234 8235 static int task_clock_event_init(struct perf_event *event) 8236 { 8237 if (event->attr.type != PERF_TYPE_SOFTWARE) 8238 return -ENOENT; 8239 8240 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8241 return -ENOENT; 8242 8243 /* 8244 * no branch sampling for software events 8245 */ 8246 if (has_branch_stack(event)) 8247 return -EOPNOTSUPP; 8248 8249 perf_swevent_init_hrtimer(event); 8250 8251 return 0; 8252 } 8253 8254 static struct pmu perf_task_clock = { 8255 .task_ctx_nr = perf_sw_context, 8256 8257 .capabilities = PERF_PMU_CAP_NO_NMI, 8258 8259 .event_init = task_clock_event_init, 8260 .add = task_clock_event_add, 8261 .del = task_clock_event_del, 8262 .start = task_clock_event_start, 8263 .stop = task_clock_event_stop, 8264 .read = task_clock_event_read, 8265 }; 8266 8267 static void perf_pmu_nop_void(struct pmu *pmu) 8268 { 8269 } 8270 8271 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8272 { 8273 } 8274 8275 static int perf_pmu_nop_int(struct pmu *pmu) 8276 { 8277 return 0; 8278 } 8279 8280 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8281 8282 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8283 { 8284 __this_cpu_write(nop_txn_flags, flags); 8285 8286 if (flags & ~PERF_PMU_TXN_ADD) 8287 return; 8288 8289 perf_pmu_disable(pmu); 8290 } 8291 8292 static int perf_pmu_commit_txn(struct pmu *pmu) 8293 { 8294 unsigned int flags = __this_cpu_read(nop_txn_flags); 8295 8296 __this_cpu_write(nop_txn_flags, 0); 8297 8298 if (flags & ~PERF_PMU_TXN_ADD) 8299 return 0; 8300 8301 perf_pmu_enable(pmu); 8302 return 0; 8303 } 8304 8305 static void perf_pmu_cancel_txn(struct pmu *pmu) 8306 { 8307 unsigned int flags = __this_cpu_read(nop_txn_flags); 8308 8309 __this_cpu_write(nop_txn_flags, 0); 8310 8311 if (flags & ~PERF_PMU_TXN_ADD) 8312 return; 8313 8314 perf_pmu_enable(pmu); 8315 } 8316 8317 static int perf_event_idx_default(struct perf_event *event) 8318 { 8319 return 0; 8320 } 8321 8322 /* 8323 * Ensures all contexts with the same task_ctx_nr have the same 8324 * pmu_cpu_context too. 8325 */ 8326 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8327 { 8328 struct pmu *pmu; 8329 8330 if (ctxn < 0) 8331 return NULL; 8332 8333 list_for_each_entry(pmu, &pmus, entry) { 8334 if (pmu->task_ctx_nr == ctxn) 8335 return pmu->pmu_cpu_context; 8336 } 8337 8338 return NULL; 8339 } 8340 8341 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8342 { 8343 int cpu; 8344 8345 for_each_possible_cpu(cpu) { 8346 struct perf_cpu_context *cpuctx; 8347 8348 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8349 8350 if (cpuctx->unique_pmu == old_pmu) 8351 cpuctx->unique_pmu = pmu; 8352 } 8353 } 8354 8355 static void free_pmu_context(struct pmu *pmu) 8356 { 8357 struct pmu *i; 8358 8359 mutex_lock(&pmus_lock); 8360 /* 8361 * Like a real lame refcount. 8362 */ 8363 list_for_each_entry(i, &pmus, entry) { 8364 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8365 update_pmu_context(i, pmu); 8366 goto out; 8367 } 8368 } 8369 8370 free_percpu(pmu->pmu_cpu_context); 8371 out: 8372 mutex_unlock(&pmus_lock); 8373 } 8374 8375 /* 8376 * Let userspace know that this PMU supports address range filtering: 8377 */ 8378 static ssize_t nr_addr_filters_show(struct device *dev, 8379 struct device_attribute *attr, 8380 char *page) 8381 { 8382 struct pmu *pmu = dev_get_drvdata(dev); 8383 8384 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8385 } 8386 DEVICE_ATTR_RO(nr_addr_filters); 8387 8388 static struct idr pmu_idr; 8389 8390 static ssize_t 8391 type_show(struct device *dev, struct device_attribute *attr, char *page) 8392 { 8393 struct pmu *pmu = dev_get_drvdata(dev); 8394 8395 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8396 } 8397 static DEVICE_ATTR_RO(type); 8398 8399 static ssize_t 8400 perf_event_mux_interval_ms_show(struct device *dev, 8401 struct device_attribute *attr, 8402 char *page) 8403 { 8404 struct pmu *pmu = dev_get_drvdata(dev); 8405 8406 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8407 } 8408 8409 static DEFINE_MUTEX(mux_interval_mutex); 8410 8411 static ssize_t 8412 perf_event_mux_interval_ms_store(struct device *dev, 8413 struct device_attribute *attr, 8414 const char *buf, size_t count) 8415 { 8416 struct pmu *pmu = dev_get_drvdata(dev); 8417 int timer, cpu, ret; 8418 8419 ret = kstrtoint(buf, 0, &timer); 8420 if (ret) 8421 return ret; 8422 8423 if (timer < 1) 8424 return -EINVAL; 8425 8426 /* same value, noting to do */ 8427 if (timer == pmu->hrtimer_interval_ms) 8428 return count; 8429 8430 mutex_lock(&mux_interval_mutex); 8431 pmu->hrtimer_interval_ms = timer; 8432 8433 /* update all cpuctx for this PMU */ 8434 get_online_cpus(); 8435 for_each_online_cpu(cpu) { 8436 struct perf_cpu_context *cpuctx; 8437 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8438 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8439 8440 cpu_function_call(cpu, 8441 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8442 } 8443 put_online_cpus(); 8444 mutex_unlock(&mux_interval_mutex); 8445 8446 return count; 8447 } 8448 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8449 8450 static struct attribute *pmu_dev_attrs[] = { 8451 &dev_attr_type.attr, 8452 &dev_attr_perf_event_mux_interval_ms.attr, 8453 NULL, 8454 }; 8455 ATTRIBUTE_GROUPS(pmu_dev); 8456 8457 static int pmu_bus_running; 8458 static struct bus_type pmu_bus = { 8459 .name = "event_source", 8460 .dev_groups = pmu_dev_groups, 8461 }; 8462 8463 static void pmu_dev_release(struct device *dev) 8464 { 8465 kfree(dev); 8466 } 8467 8468 static int pmu_dev_alloc(struct pmu *pmu) 8469 { 8470 int ret = -ENOMEM; 8471 8472 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8473 if (!pmu->dev) 8474 goto out; 8475 8476 pmu->dev->groups = pmu->attr_groups; 8477 device_initialize(pmu->dev); 8478 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8479 if (ret) 8480 goto free_dev; 8481 8482 dev_set_drvdata(pmu->dev, pmu); 8483 pmu->dev->bus = &pmu_bus; 8484 pmu->dev->release = pmu_dev_release; 8485 ret = device_add(pmu->dev); 8486 if (ret) 8487 goto free_dev; 8488 8489 /* For PMUs with address filters, throw in an extra attribute: */ 8490 if (pmu->nr_addr_filters) 8491 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8492 8493 if (ret) 8494 goto del_dev; 8495 8496 out: 8497 return ret; 8498 8499 del_dev: 8500 device_del(pmu->dev); 8501 8502 free_dev: 8503 put_device(pmu->dev); 8504 goto out; 8505 } 8506 8507 static struct lock_class_key cpuctx_mutex; 8508 static struct lock_class_key cpuctx_lock; 8509 8510 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8511 { 8512 int cpu, ret; 8513 8514 mutex_lock(&pmus_lock); 8515 ret = -ENOMEM; 8516 pmu->pmu_disable_count = alloc_percpu(int); 8517 if (!pmu->pmu_disable_count) 8518 goto unlock; 8519 8520 pmu->type = -1; 8521 if (!name) 8522 goto skip_type; 8523 pmu->name = name; 8524 8525 if (type < 0) { 8526 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8527 if (type < 0) { 8528 ret = type; 8529 goto free_pdc; 8530 } 8531 } 8532 pmu->type = type; 8533 8534 if (pmu_bus_running) { 8535 ret = pmu_dev_alloc(pmu); 8536 if (ret) 8537 goto free_idr; 8538 } 8539 8540 skip_type: 8541 if (pmu->task_ctx_nr == perf_hw_context) { 8542 static int hw_context_taken = 0; 8543 8544 /* 8545 * Other than systems with heterogeneous CPUs, it never makes 8546 * sense for two PMUs to share perf_hw_context. PMUs which are 8547 * uncore must use perf_invalid_context. 8548 */ 8549 if (WARN_ON_ONCE(hw_context_taken && 8550 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8551 pmu->task_ctx_nr = perf_invalid_context; 8552 8553 hw_context_taken = 1; 8554 } 8555 8556 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8557 if (pmu->pmu_cpu_context) 8558 goto got_cpu_context; 8559 8560 ret = -ENOMEM; 8561 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8562 if (!pmu->pmu_cpu_context) 8563 goto free_dev; 8564 8565 for_each_possible_cpu(cpu) { 8566 struct perf_cpu_context *cpuctx; 8567 8568 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8569 __perf_event_init_context(&cpuctx->ctx); 8570 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8571 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8572 cpuctx->ctx.pmu = pmu; 8573 8574 __perf_mux_hrtimer_init(cpuctx, cpu); 8575 8576 cpuctx->unique_pmu = pmu; 8577 } 8578 8579 got_cpu_context: 8580 if (!pmu->start_txn) { 8581 if (pmu->pmu_enable) { 8582 /* 8583 * If we have pmu_enable/pmu_disable calls, install 8584 * transaction stubs that use that to try and batch 8585 * hardware accesses. 8586 */ 8587 pmu->start_txn = perf_pmu_start_txn; 8588 pmu->commit_txn = perf_pmu_commit_txn; 8589 pmu->cancel_txn = perf_pmu_cancel_txn; 8590 } else { 8591 pmu->start_txn = perf_pmu_nop_txn; 8592 pmu->commit_txn = perf_pmu_nop_int; 8593 pmu->cancel_txn = perf_pmu_nop_void; 8594 } 8595 } 8596 8597 if (!pmu->pmu_enable) { 8598 pmu->pmu_enable = perf_pmu_nop_void; 8599 pmu->pmu_disable = perf_pmu_nop_void; 8600 } 8601 8602 if (!pmu->event_idx) 8603 pmu->event_idx = perf_event_idx_default; 8604 8605 list_add_rcu(&pmu->entry, &pmus); 8606 atomic_set(&pmu->exclusive_cnt, 0); 8607 ret = 0; 8608 unlock: 8609 mutex_unlock(&pmus_lock); 8610 8611 return ret; 8612 8613 free_dev: 8614 device_del(pmu->dev); 8615 put_device(pmu->dev); 8616 8617 free_idr: 8618 if (pmu->type >= PERF_TYPE_MAX) 8619 idr_remove(&pmu_idr, pmu->type); 8620 8621 free_pdc: 8622 free_percpu(pmu->pmu_disable_count); 8623 goto unlock; 8624 } 8625 EXPORT_SYMBOL_GPL(perf_pmu_register); 8626 8627 void perf_pmu_unregister(struct pmu *pmu) 8628 { 8629 mutex_lock(&pmus_lock); 8630 list_del_rcu(&pmu->entry); 8631 mutex_unlock(&pmus_lock); 8632 8633 /* 8634 * We dereference the pmu list under both SRCU and regular RCU, so 8635 * synchronize against both of those. 8636 */ 8637 synchronize_srcu(&pmus_srcu); 8638 synchronize_rcu(); 8639 8640 free_percpu(pmu->pmu_disable_count); 8641 if (pmu->type >= PERF_TYPE_MAX) 8642 idr_remove(&pmu_idr, pmu->type); 8643 if (pmu->nr_addr_filters) 8644 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8645 device_del(pmu->dev); 8646 put_device(pmu->dev); 8647 free_pmu_context(pmu); 8648 } 8649 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8650 8651 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8652 { 8653 struct perf_event_context *ctx = NULL; 8654 int ret; 8655 8656 if (!try_module_get(pmu->module)) 8657 return -ENODEV; 8658 8659 if (event->group_leader != event) { 8660 /* 8661 * This ctx->mutex can nest when we're called through 8662 * inheritance. See the perf_event_ctx_lock_nested() comment. 8663 */ 8664 ctx = perf_event_ctx_lock_nested(event->group_leader, 8665 SINGLE_DEPTH_NESTING); 8666 BUG_ON(!ctx); 8667 } 8668 8669 event->pmu = pmu; 8670 ret = pmu->event_init(event); 8671 8672 if (ctx) 8673 perf_event_ctx_unlock(event->group_leader, ctx); 8674 8675 if (ret) 8676 module_put(pmu->module); 8677 8678 return ret; 8679 } 8680 8681 static struct pmu *perf_init_event(struct perf_event *event) 8682 { 8683 struct pmu *pmu = NULL; 8684 int idx; 8685 int ret; 8686 8687 idx = srcu_read_lock(&pmus_srcu); 8688 8689 rcu_read_lock(); 8690 pmu = idr_find(&pmu_idr, event->attr.type); 8691 rcu_read_unlock(); 8692 if (pmu) { 8693 ret = perf_try_init_event(pmu, event); 8694 if (ret) 8695 pmu = ERR_PTR(ret); 8696 goto unlock; 8697 } 8698 8699 list_for_each_entry_rcu(pmu, &pmus, entry) { 8700 ret = perf_try_init_event(pmu, event); 8701 if (!ret) 8702 goto unlock; 8703 8704 if (ret != -ENOENT) { 8705 pmu = ERR_PTR(ret); 8706 goto unlock; 8707 } 8708 } 8709 pmu = ERR_PTR(-ENOENT); 8710 unlock: 8711 srcu_read_unlock(&pmus_srcu, idx); 8712 8713 return pmu; 8714 } 8715 8716 static void attach_sb_event(struct perf_event *event) 8717 { 8718 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8719 8720 raw_spin_lock(&pel->lock); 8721 list_add_rcu(&event->sb_list, &pel->list); 8722 raw_spin_unlock(&pel->lock); 8723 } 8724 8725 /* 8726 * We keep a list of all !task (and therefore per-cpu) events 8727 * that need to receive side-band records. 8728 * 8729 * This avoids having to scan all the various PMU per-cpu contexts 8730 * looking for them. 8731 */ 8732 static void account_pmu_sb_event(struct perf_event *event) 8733 { 8734 if (is_sb_event(event)) 8735 attach_sb_event(event); 8736 } 8737 8738 static void account_event_cpu(struct perf_event *event, int cpu) 8739 { 8740 if (event->parent) 8741 return; 8742 8743 if (is_cgroup_event(event)) 8744 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8745 } 8746 8747 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8748 static void account_freq_event_nohz(void) 8749 { 8750 #ifdef CONFIG_NO_HZ_FULL 8751 /* Lock so we don't race with concurrent unaccount */ 8752 spin_lock(&nr_freq_lock); 8753 if (atomic_inc_return(&nr_freq_events) == 1) 8754 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8755 spin_unlock(&nr_freq_lock); 8756 #endif 8757 } 8758 8759 static void account_freq_event(void) 8760 { 8761 if (tick_nohz_full_enabled()) 8762 account_freq_event_nohz(); 8763 else 8764 atomic_inc(&nr_freq_events); 8765 } 8766 8767 8768 static void account_event(struct perf_event *event) 8769 { 8770 bool inc = false; 8771 8772 if (event->parent) 8773 return; 8774 8775 if (event->attach_state & PERF_ATTACH_TASK) 8776 inc = true; 8777 if (event->attr.mmap || event->attr.mmap_data) 8778 atomic_inc(&nr_mmap_events); 8779 if (event->attr.comm) 8780 atomic_inc(&nr_comm_events); 8781 if (event->attr.task) 8782 atomic_inc(&nr_task_events); 8783 if (event->attr.freq) 8784 account_freq_event(); 8785 if (event->attr.context_switch) { 8786 atomic_inc(&nr_switch_events); 8787 inc = true; 8788 } 8789 if (has_branch_stack(event)) 8790 inc = true; 8791 if (is_cgroup_event(event)) 8792 inc = true; 8793 8794 if (inc) { 8795 if (atomic_inc_not_zero(&perf_sched_count)) 8796 goto enabled; 8797 8798 mutex_lock(&perf_sched_mutex); 8799 if (!atomic_read(&perf_sched_count)) { 8800 static_branch_enable(&perf_sched_events); 8801 /* 8802 * Guarantee that all CPUs observe they key change and 8803 * call the perf scheduling hooks before proceeding to 8804 * install events that need them. 8805 */ 8806 synchronize_sched(); 8807 } 8808 /* 8809 * Now that we have waited for the sync_sched(), allow further 8810 * increments to by-pass the mutex. 8811 */ 8812 atomic_inc(&perf_sched_count); 8813 mutex_unlock(&perf_sched_mutex); 8814 } 8815 enabled: 8816 8817 account_event_cpu(event, event->cpu); 8818 8819 account_pmu_sb_event(event); 8820 } 8821 8822 /* 8823 * Allocate and initialize a event structure 8824 */ 8825 static struct perf_event * 8826 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8827 struct task_struct *task, 8828 struct perf_event *group_leader, 8829 struct perf_event *parent_event, 8830 perf_overflow_handler_t overflow_handler, 8831 void *context, int cgroup_fd) 8832 { 8833 struct pmu *pmu; 8834 struct perf_event *event; 8835 struct hw_perf_event *hwc; 8836 long err = -EINVAL; 8837 8838 if ((unsigned)cpu >= nr_cpu_ids) { 8839 if (!task || cpu != -1) 8840 return ERR_PTR(-EINVAL); 8841 } 8842 8843 event = kzalloc(sizeof(*event), GFP_KERNEL); 8844 if (!event) 8845 return ERR_PTR(-ENOMEM); 8846 8847 /* 8848 * Single events are their own group leaders, with an 8849 * empty sibling list: 8850 */ 8851 if (!group_leader) 8852 group_leader = event; 8853 8854 mutex_init(&event->child_mutex); 8855 INIT_LIST_HEAD(&event->child_list); 8856 8857 INIT_LIST_HEAD(&event->group_entry); 8858 INIT_LIST_HEAD(&event->event_entry); 8859 INIT_LIST_HEAD(&event->sibling_list); 8860 INIT_LIST_HEAD(&event->rb_entry); 8861 INIT_LIST_HEAD(&event->active_entry); 8862 INIT_LIST_HEAD(&event->addr_filters.list); 8863 INIT_HLIST_NODE(&event->hlist_entry); 8864 8865 8866 init_waitqueue_head(&event->waitq); 8867 init_irq_work(&event->pending, perf_pending_event); 8868 8869 mutex_init(&event->mmap_mutex); 8870 raw_spin_lock_init(&event->addr_filters.lock); 8871 8872 atomic_long_set(&event->refcount, 1); 8873 event->cpu = cpu; 8874 event->attr = *attr; 8875 event->group_leader = group_leader; 8876 event->pmu = NULL; 8877 event->oncpu = -1; 8878 8879 event->parent = parent_event; 8880 8881 event->ns = get_pid_ns(task_active_pid_ns(current)); 8882 event->id = atomic64_inc_return(&perf_event_id); 8883 8884 event->state = PERF_EVENT_STATE_INACTIVE; 8885 8886 if (task) { 8887 event->attach_state = PERF_ATTACH_TASK; 8888 /* 8889 * XXX pmu::event_init needs to know what task to account to 8890 * and we cannot use the ctx information because we need the 8891 * pmu before we get a ctx. 8892 */ 8893 event->hw.target = task; 8894 } 8895 8896 event->clock = &local_clock; 8897 if (parent_event) 8898 event->clock = parent_event->clock; 8899 8900 if (!overflow_handler && parent_event) { 8901 overflow_handler = parent_event->overflow_handler; 8902 context = parent_event->overflow_handler_context; 8903 } 8904 8905 if (overflow_handler) { 8906 event->overflow_handler = overflow_handler; 8907 event->overflow_handler_context = context; 8908 } else if (is_write_backward(event)){ 8909 event->overflow_handler = perf_event_output_backward; 8910 event->overflow_handler_context = NULL; 8911 } else { 8912 event->overflow_handler = perf_event_output_forward; 8913 event->overflow_handler_context = NULL; 8914 } 8915 8916 perf_event__state_init(event); 8917 8918 pmu = NULL; 8919 8920 hwc = &event->hw; 8921 hwc->sample_period = attr->sample_period; 8922 if (attr->freq && attr->sample_freq) 8923 hwc->sample_period = 1; 8924 hwc->last_period = hwc->sample_period; 8925 8926 local64_set(&hwc->period_left, hwc->sample_period); 8927 8928 /* 8929 * we currently do not support PERF_FORMAT_GROUP on inherited events 8930 */ 8931 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8932 goto err_ns; 8933 8934 if (!has_branch_stack(event)) 8935 event->attr.branch_sample_type = 0; 8936 8937 if (cgroup_fd != -1) { 8938 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8939 if (err) 8940 goto err_ns; 8941 } 8942 8943 pmu = perf_init_event(event); 8944 if (!pmu) 8945 goto err_ns; 8946 else if (IS_ERR(pmu)) { 8947 err = PTR_ERR(pmu); 8948 goto err_ns; 8949 } 8950 8951 err = exclusive_event_init(event); 8952 if (err) 8953 goto err_pmu; 8954 8955 if (has_addr_filter(event)) { 8956 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 8957 sizeof(unsigned long), 8958 GFP_KERNEL); 8959 if (!event->addr_filters_offs) 8960 goto err_per_task; 8961 8962 /* force hw sync on the address filters */ 8963 event->addr_filters_gen = 1; 8964 } 8965 8966 if (!event->parent) { 8967 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8968 err = get_callchain_buffers(attr->sample_max_stack); 8969 if (err) 8970 goto err_addr_filters; 8971 } 8972 } 8973 8974 /* symmetric to unaccount_event() in _free_event() */ 8975 account_event(event); 8976 8977 return event; 8978 8979 err_addr_filters: 8980 kfree(event->addr_filters_offs); 8981 8982 err_per_task: 8983 exclusive_event_destroy(event); 8984 8985 err_pmu: 8986 if (event->destroy) 8987 event->destroy(event); 8988 module_put(pmu->module); 8989 err_ns: 8990 if (is_cgroup_event(event)) 8991 perf_detach_cgroup(event); 8992 if (event->ns) 8993 put_pid_ns(event->ns); 8994 kfree(event); 8995 8996 return ERR_PTR(err); 8997 } 8998 8999 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9000 struct perf_event_attr *attr) 9001 { 9002 u32 size; 9003 int ret; 9004 9005 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9006 return -EFAULT; 9007 9008 /* 9009 * zero the full structure, so that a short copy will be nice. 9010 */ 9011 memset(attr, 0, sizeof(*attr)); 9012 9013 ret = get_user(size, &uattr->size); 9014 if (ret) 9015 return ret; 9016 9017 if (size > PAGE_SIZE) /* silly large */ 9018 goto err_size; 9019 9020 if (!size) /* abi compat */ 9021 size = PERF_ATTR_SIZE_VER0; 9022 9023 if (size < PERF_ATTR_SIZE_VER0) 9024 goto err_size; 9025 9026 /* 9027 * If we're handed a bigger struct than we know of, 9028 * ensure all the unknown bits are 0 - i.e. new 9029 * user-space does not rely on any kernel feature 9030 * extensions we dont know about yet. 9031 */ 9032 if (size > sizeof(*attr)) { 9033 unsigned char __user *addr; 9034 unsigned char __user *end; 9035 unsigned char val; 9036 9037 addr = (void __user *)uattr + sizeof(*attr); 9038 end = (void __user *)uattr + size; 9039 9040 for (; addr < end; addr++) { 9041 ret = get_user(val, addr); 9042 if (ret) 9043 return ret; 9044 if (val) 9045 goto err_size; 9046 } 9047 size = sizeof(*attr); 9048 } 9049 9050 ret = copy_from_user(attr, uattr, size); 9051 if (ret) 9052 return -EFAULT; 9053 9054 if (attr->__reserved_1) 9055 return -EINVAL; 9056 9057 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9058 return -EINVAL; 9059 9060 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9061 return -EINVAL; 9062 9063 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9064 u64 mask = attr->branch_sample_type; 9065 9066 /* only using defined bits */ 9067 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9068 return -EINVAL; 9069 9070 /* at least one branch bit must be set */ 9071 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9072 return -EINVAL; 9073 9074 /* propagate priv level, when not set for branch */ 9075 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9076 9077 /* exclude_kernel checked on syscall entry */ 9078 if (!attr->exclude_kernel) 9079 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9080 9081 if (!attr->exclude_user) 9082 mask |= PERF_SAMPLE_BRANCH_USER; 9083 9084 if (!attr->exclude_hv) 9085 mask |= PERF_SAMPLE_BRANCH_HV; 9086 /* 9087 * adjust user setting (for HW filter setup) 9088 */ 9089 attr->branch_sample_type = mask; 9090 } 9091 /* privileged levels capture (kernel, hv): check permissions */ 9092 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9093 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9094 return -EACCES; 9095 } 9096 9097 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9098 ret = perf_reg_validate(attr->sample_regs_user); 9099 if (ret) 9100 return ret; 9101 } 9102 9103 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9104 if (!arch_perf_have_user_stack_dump()) 9105 return -ENOSYS; 9106 9107 /* 9108 * We have __u32 type for the size, but so far 9109 * we can only use __u16 as maximum due to the 9110 * __u16 sample size limit. 9111 */ 9112 if (attr->sample_stack_user >= USHRT_MAX) 9113 ret = -EINVAL; 9114 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9115 ret = -EINVAL; 9116 } 9117 9118 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9119 ret = perf_reg_validate(attr->sample_regs_intr); 9120 out: 9121 return ret; 9122 9123 err_size: 9124 put_user(sizeof(*attr), &uattr->size); 9125 ret = -E2BIG; 9126 goto out; 9127 } 9128 9129 static int 9130 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9131 { 9132 struct ring_buffer *rb = NULL; 9133 int ret = -EINVAL; 9134 9135 if (!output_event) 9136 goto set; 9137 9138 /* don't allow circular references */ 9139 if (event == output_event) 9140 goto out; 9141 9142 /* 9143 * Don't allow cross-cpu buffers 9144 */ 9145 if (output_event->cpu != event->cpu) 9146 goto out; 9147 9148 /* 9149 * If its not a per-cpu rb, it must be the same task. 9150 */ 9151 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9152 goto out; 9153 9154 /* 9155 * Mixing clocks in the same buffer is trouble you don't need. 9156 */ 9157 if (output_event->clock != event->clock) 9158 goto out; 9159 9160 /* 9161 * Either writing ring buffer from beginning or from end. 9162 * Mixing is not allowed. 9163 */ 9164 if (is_write_backward(output_event) != is_write_backward(event)) 9165 goto out; 9166 9167 /* 9168 * If both events generate aux data, they must be on the same PMU 9169 */ 9170 if (has_aux(event) && has_aux(output_event) && 9171 event->pmu != output_event->pmu) 9172 goto out; 9173 9174 set: 9175 mutex_lock(&event->mmap_mutex); 9176 /* Can't redirect output if we've got an active mmap() */ 9177 if (atomic_read(&event->mmap_count)) 9178 goto unlock; 9179 9180 if (output_event) { 9181 /* get the rb we want to redirect to */ 9182 rb = ring_buffer_get(output_event); 9183 if (!rb) 9184 goto unlock; 9185 } 9186 9187 ring_buffer_attach(event, rb); 9188 9189 ret = 0; 9190 unlock: 9191 mutex_unlock(&event->mmap_mutex); 9192 9193 out: 9194 return ret; 9195 } 9196 9197 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9198 { 9199 if (b < a) 9200 swap(a, b); 9201 9202 mutex_lock(a); 9203 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9204 } 9205 9206 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9207 { 9208 bool nmi_safe = false; 9209 9210 switch (clk_id) { 9211 case CLOCK_MONOTONIC: 9212 event->clock = &ktime_get_mono_fast_ns; 9213 nmi_safe = true; 9214 break; 9215 9216 case CLOCK_MONOTONIC_RAW: 9217 event->clock = &ktime_get_raw_fast_ns; 9218 nmi_safe = true; 9219 break; 9220 9221 case CLOCK_REALTIME: 9222 event->clock = &ktime_get_real_ns; 9223 break; 9224 9225 case CLOCK_BOOTTIME: 9226 event->clock = &ktime_get_boot_ns; 9227 break; 9228 9229 case CLOCK_TAI: 9230 event->clock = &ktime_get_tai_ns; 9231 break; 9232 9233 default: 9234 return -EINVAL; 9235 } 9236 9237 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9238 return -EINVAL; 9239 9240 return 0; 9241 } 9242 9243 /** 9244 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9245 * 9246 * @attr_uptr: event_id type attributes for monitoring/sampling 9247 * @pid: target pid 9248 * @cpu: target cpu 9249 * @group_fd: group leader event fd 9250 */ 9251 SYSCALL_DEFINE5(perf_event_open, 9252 struct perf_event_attr __user *, attr_uptr, 9253 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9254 { 9255 struct perf_event *group_leader = NULL, *output_event = NULL; 9256 struct perf_event *event, *sibling; 9257 struct perf_event_attr attr; 9258 struct perf_event_context *ctx, *uninitialized_var(gctx); 9259 struct file *event_file = NULL; 9260 struct fd group = {NULL, 0}; 9261 struct task_struct *task = NULL; 9262 struct pmu *pmu; 9263 int event_fd; 9264 int move_group = 0; 9265 int err; 9266 int f_flags = O_RDWR; 9267 int cgroup_fd = -1; 9268 9269 /* for future expandability... */ 9270 if (flags & ~PERF_FLAG_ALL) 9271 return -EINVAL; 9272 9273 err = perf_copy_attr(attr_uptr, &attr); 9274 if (err) 9275 return err; 9276 9277 if (!attr.exclude_kernel) { 9278 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9279 return -EACCES; 9280 } 9281 9282 if (attr.freq) { 9283 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9284 return -EINVAL; 9285 } else { 9286 if (attr.sample_period & (1ULL << 63)) 9287 return -EINVAL; 9288 } 9289 9290 if (!attr.sample_max_stack) 9291 attr.sample_max_stack = sysctl_perf_event_max_stack; 9292 9293 /* 9294 * In cgroup mode, the pid argument is used to pass the fd 9295 * opened to the cgroup directory in cgroupfs. The cpu argument 9296 * designates the cpu on which to monitor threads from that 9297 * cgroup. 9298 */ 9299 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9300 return -EINVAL; 9301 9302 if (flags & PERF_FLAG_FD_CLOEXEC) 9303 f_flags |= O_CLOEXEC; 9304 9305 event_fd = get_unused_fd_flags(f_flags); 9306 if (event_fd < 0) 9307 return event_fd; 9308 9309 if (group_fd != -1) { 9310 err = perf_fget_light(group_fd, &group); 9311 if (err) 9312 goto err_fd; 9313 group_leader = group.file->private_data; 9314 if (flags & PERF_FLAG_FD_OUTPUT) 9315 output_event = group_leader; 9316 if (flags & PERF_FLAG_FD_NO_GROUP) 9317 group_leader = NULL; 9318 } 9319 9320 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9321 task = find_lively_task_by_vpid(pid); 9322 if (IS_ERR(task)) { 9323 err = PTR_ERR(task); 9324 goto err_group_fd; 9325 } 9326 } 9327 9328 if (task && group_leader && 9329 group_leader->attr.inherit != attr.inherit) { 9330 err = -EINVAL; 9331 goto err_task; 9332 } 9333 9334 get_online_cpus(); 9335 9336 if (task) { 9337 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9338 if (err) 9339 goto err_cpus; 9340 9341 /* 9342 * Reuse ptrace permission checks for now. 9343 * 9344 * We must hold cred_guard_mutex across this and any potential 9345 * perf_install_in_context() call for this new event to 9346 * serialize against exec() altering our credentials (and the 9347 * perf_event_exit_task() that could imply). 9348 */ 9349 err = -EACCES; 9350 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9351 goto err_cred; 9352 } 9353 9354 if (flags & PERF_FLAG_PID_CGROUP) 9355 cgroup_fd = pid; 9356 9357 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9358 NULL, NULL, cgroup_fd); 9359 if (IS_ERR(event)) { 9360 err = PTR_ERR(event); 9361 goto err_cred; 9362 } 9363 9364 if (is_sampling_event(event)) { 9365 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9366 err = -EOPNOTSUPP; 9367 goto err_alloc; 9368 } 9369 } 9370 9371 /* 9372 * Special case software events and allow them to be part of 9373 * any hardware group. 9374 */ 9375 pmu = event->pmu; 9376 9377 if (attr.use_clockid) { 9378 err = perf_event_set_clock(event, attr.clockid); 9379 if (err) 9380 goto err_alloc; 9381 } 9382 9383 if (group_leader && 9384 (is_software_event(event) != is_software_event(group_leader))) { 9385 if (is_software_event(event)) { 9386 /* 9387 * If event and group_leader are not both a software 9388 * event, and event is, then group leader is not. 9389 * 9390 * Allow the addition of software events to !software 9391 * groups, this is safe because software events never 9392 * fail to schedule. 9393 */ 9394 pmu = group_leader->pmu; 9395 } else if (is_software_event(group_leader) && 9396 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9397 /* 9398 * In case the group is a pure software group, and we 9399 * try to add a hardware event, move the whole group to 9400 * the hardware context. 9401 */ 9402 move_group = 1; 9403 } 9404 } 9405 9406 /* 9407 * Get the target context (task or percpu): 9408 */ 9409 ctx = find_get_context(pmu, task, event); 9410 if (IS_ERR(ctx)) { 9411 err = PTR_ERR(ctx); 9412 goto err_alloc; 9413 } 9414 9415 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9416 err = -EBUSY; 9417 goto err_context; 9418 } 9419 9420 /* 9421 * Look up the group leader (we will attach this event to it): 9422 */ 9423 if (group_leader) { 9424 err = -EINVAL; 9425 9426 /* 9427 * Do not allow a recursive hierarchy (this new sibling 9428 * becoming part of another group-sibling): 9429 */ 9430 if (group_leader->group_leader != group_leader) 9431 goto err_context; 9432 9433 /* All events in a group should have the same clock */ 9434 if (group_leader->clock != event->clock) 9435 goto err_context; 9436 9437 /* 9438 * Do not allow to attach to a group in a different 9439 * task or CPU context: 9440 */ 9441 if (move_group) { 9442 /* 9443 * Make sure we're both on the same task, or both 9444 * per-cpu events. 9445 */ 9446 if (group_leader->ctx->task != ctx->task) 9447 goto err_context; 9448 9449 /* 9450 * Make sure we're both events for the same CPU; 9451 * grouping events for different CPUs is broken; since 9452 * you can never concurrently schedule them anyhow. 9453 */ 9454 if (group_leader->cpu != event->cpu) 9455 goto err_context; 9456 } else { 9457 if (group_leader->ctx != ctx) 9458 goto err_context; 9459 } 9460 9461 /* 9462 * Only a group leader can be exclusive or pinned 9463 */ 9464 if (attr.exclusive || attr.pinned) 9465 goto err_context; 9466 } 9467 9468 if (output_event) { 9469 err = perf_event_set_output(event, output_event); 9470 if (err) 9471 goto err_context; 9472 } 9473 9474 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9475 f_flags); 9476 if (IS_ERR(event_file)) { 9477 err = PTR_ERR(event_file); 9478 event_file = NULL; 9479 goto err_context; 9480 } 9481 9482 if (move_group) { 9483 gctx = group_leader->ctx; 9484 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9485 if (gctx->task == TASK_TOMBSTONE) { 9486 err = -ESRCH; 9487 goto err_locked; 9488 } 9489 } else { 9490 mutex_lock(&ctx->mutex); 9491 } 9492 9493 if (ctx->task == TASK_TOMBSTONE) { 9494 err = -ESRCH; 9495 goto err_locked; 9496 } 9497 9498 if (!perf_event_validate_size(event)) { 9499 err = -E2BIG; 9500 goto err_locked; 9501 } 9502 9503 /* 9504 * Must be under the same ctx::mutex as perf_install_in_context(), 9505 * because we need to serialize with concurrent event creation. 9506 */ 9507 if (!exclusive_event_installable(event, ctx)) { 9508 /* exclusive and group stuff are assumed mutually exclusive */ 9509 WARN_ON_ONCE(move_group); 9510 9511 err = -EBUSY; 9512 goto err_locked; 9513 } 9514 9515 WARN_ON_ONCE(ctx->parent_ctx); 9516 9517 /* 9518 * This is the point on no return; we cannot fail hereafter. This is 9519 * where we start modifying current state. 9520 */ 9521 9522 if (move_group) { 9523 /* 9524 * See perf_event_ctx_lock() for comments on the details 9525 * of swizzling perf_event::ctx. 9526 */ 9527 perf_remove_from_context(group_leader, 0); 9528 9529 list_for_each_entry(sibling, &group_leader->sibling_list, 9530 group_entry) { 9531 perf_remove_from_context(sibling, 0); 9532 put_ctx(gctx); 9533 } 9534 9535 /* 9536 * Wait for everybody to stop referencing the events through 9537 * the old lists, before installing it on new lists. 9538 */ 9539 synchronize_rcu(); 9540 9541 /* 9542 * Install the group siblings before the group leader. 9543 * 9544 * Because a group leader will try and install the entire group 9545 * (through the sibling list, which is still in-tact), we can 9546 * end up with siblings installed in the wrong context. 9547 * 9548 * By installing siblings first we NO-OP because they're not 9549 * reachable through the group lists. 9550 */ 9551 list_for_each_entry(sibling, &group_leader->sibling_list, 9552 group_entry) { 9553 perf_event__state_init(sibling); 9554 perf_install_in_context(ctx, sibling, sibling->cpu); 9555 get_ctx(ctx); 9556 } 9557 9558 /* 9559 * Removing from the context ends up with disabled 9560 * event. What we want here is event in the initial 9561 * startup state, ready to be add into new context. 9562 */ 9563 perf_event__state_init(group_leader); 9564 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9565 get_ctx(ctx); 9566 9567 /* 9568 * Now that all events are installed in @ctx, nothing 9569 * references @gctx anymore, so drop the last reference we have 9570 * on it. 9571 */ 9572 put_ctx(gctx); 9573 } 9574 9575 /* 9576 * Precalculate sample_data sizes; do while holding ctx::mutex such 9577 * that we're serialized against further additions and before 9578 * perf_install_in_context() which is the point the event is active and 9579 * can use these values. 9580 */ 9581 perf_event__header_size(event); 9582 perf_event__id_header_size(event); 9583 9584 event->owner = current; 9585 9586 perf_install_in_context(ctx, event, event->cpu); 9587 perf_unpin_context(ctx); 9588 9589 if (move_group) 9590 mutex_unlock(&gctx->mutex); 9591 mutex_unlock(&ctx->mutex); 9592 9593 if (task) { 9594 mutex_unlock(&task->signal->cred_guard_mutex); 9595 put_task_struct(task); 9596 } 9597 9598 put_online_cpus(); 9599 9600 mutex_lock(¤t->perf_event_mutex); 9601 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9602 mutex_unlock(¤t->perf_event_mutex); 9603 9604 /* 9605 * Drop the reference on the group_event after placing the 9606 * new event on the sibling_list. This ensures destruction 9607 * of the group leader will find the pointer to itself in 9608 * perf_group_detach(). 9609 */ 9610 fdput(group); 9611 fd_install(event_fd, event_file); 9612 return event_fd; 9613 9614 err_locked: 9615 if (move_group) 9616 mutex_unlock(&gctx->mutex); 9617 mutex_unlock(&ctx->mutex); 9618 /* err_file: */ 9619 fput(event_file); 9620 err_context: 9621 perf_unpin_context(ctx); 9622 put_ctx(ctx); 9623 err_alloc: 9624 /* 9625 * If event_file is set, the fput() above will have called ->release() 9626 * and that will take care of freeing the event. 9627 */ 9628 if (!event_file) 9629 free_event(event); 9630 err_cred: 9631 if (task) 9632 mutex_unlock(&task->signal->cred_guard_mutex); 9633 err_cpus: 9634 put_online_cpus(); 9635 err_task: 9636 if (task) 9637 put_task_struct(task); 9638 err_group_fd: 9639 fdput(group); 9640 err_fd: 9641 put_unused_fd(event_fd); 9642 return err; 9643 } 9644 9645 /** 9646 * perf_event_create_kernel_counter 9647 * 9648 * @attr: attributes of the counter to create 9649 * @cpu: cpu in which the counter is bound 9650 * @task: task to profile (NULL for percpu) 9651 */ 9652 struct perf_event * 9653 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9654 struct task_struct *task, 9655 perf_overflow_handler_t overflow_handler, 9656 void *context) 9657 { 9658 struct perf_event_context *ctx; 9659 struct perf_event *event; 9660 int err; 9661 9662 /* 9663 * Get the target context (task or percpu): 9664 */ 9665 9666 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9667 overflow_handler, context, -1); 9668 if (IS_ERR(event)) { 9669 err = PTR_ERR(event); 9670 goto err; 9671 } 9672 9673 /* Mark owner so we could distinguish it from user events. */ 9674 event->owner = TASK_TOMBSTONE; 9675 9676 ctx = find_get_context(event->pmu, task, event); 9677 if (IS_ERR(ctx)) { 9678 err = PTR_ERR(ctx); 9679 goto err_free; 9680 } 9681 9682 WARN_ON_ONCE(ctx->parent_ctx); 9683 mutex_lock(&ctx->mutex); 9684 if (ctx->task == TASK_TOMBSTONE) { 9685 err = -ESRCH; 9686 goto err_unlock; 9687 } 9688 9689 if (!exclusive_event_installable(event, ctx)) { 9690 err = -EBUSY; 9691 goto err_unlock; 9692 } 9693 9694 perf_install_in_context(ctx, event, cpu); 9695 perf_unpin_context(ctx); 9696 mutex_unlock(&ctx->mutex); 9697 9698 return event; 9699 9700 err_unlock: 9701 mutex_unlock(&ctx->mutex); 9702 perf_unpin_context(ctx); 9703 put_ctx(ctx); 9704 err_free: 9705 free_event(event); 9706 err: 9707 return ERR_PTR(err); 9708 } 9709 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9710 9711 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9712 { 9713 struct perf_event_context *src_ctx; 9714 struct perf_event_context *dst_ctx; 9715 struct perf_event *event, *tmp; 9716 LIST_HEAD(events); 9717 9718 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9719 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9720 9721 /* 9722 * See perf_event_ctx_lock() for comments on the details 9723 * of swizzling perf_event::ctx. 9724 */ 9725 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9726 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9727 event_entry) { 9728 perf_remove_from_context(event, 0); 9729 unaccount_event_cpu(event, src_cpu); 9730 put_ctx(src_ctx); 9731 list_add(&event->migrate_entry, &events); 9732 } 9733 9734 /* 9735 * Wait for the events to quiesce before re-instating them. 9736 */ 9737 synchronize_rcu(); 9738 9739 /* 9740 * Re-instate events in 2 passes. 9741 * 9742 * Skip over group leaders and only install siblings on this first 9743 * pass, siblings will not get enabled without a leader, however a 9744 * leader will enable its siblings, even if those are still on the old 9745 * context. 9746 */ 9747 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9748 if (event->group_leader == event) 9749 continue; 9750 9751 list_del(&event->migrate_entry); 9752 if (event->state >= PERF_EVENT_STATE_OFF) 9753 event->state = PERF_EVENT_STATE_INACTIVE; 9754 account_event_cpu(event, dst_cpu); 9755 perf_install_in_context(dst_ctx, event, dst_cpu); 9756 get_ctx(dst_ctx); 9757 } 9758 9759 /* 9760 * Once all the siblings are setup properly, install the group leaders 9761 * to make it go. 9762 */ 9763 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9764 list_del(&event->migrate_entry); 9765 if (event->state >= PERF_EVENT_STATE_OFF) 9766 event->state = PERF_EVENT_STATE_INACTIVE; 9767 account_event_cpu(event, dst_cpu); 9768 perf_install_in_context(dst_ctx, event, dst_cpu); 9769 get_ctx(dst_ctx); 9770 } 9771 mutex_unlock(&dst_ctx->mutex); 9772 mutex_unlock(&src_ctx->mutex); 9773 } 9774 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9775 9776 static void sync_child_event(struct perf_event *child_event, 9777 struct task_struct *child) 9778 { 9779 struct perf_event *parent_event = child_event->parent; 9780 u64 child_val; 9781 9782 if (child_event->attr.inherit_stat) 9783 perf_event_read_event(child_event, child); 9784 9785 child_val = perf_event_count(child_event); 9786 9787 /* 9788 * Add back the child's count to the parent's count: 9789 */ 9790 atomic64_add(child_val, &parent_event->child_count); 9791 atomic64_add(child_event->total_time_enabled, 9792 &parent_event->child_total_time_enabled); 9793 atomic64_add(child_event->total_time_running, 9794 &parent_event->child_total_time_running); 9795 } 9796 9797 static void 9798 perf_event_exit_event(struct perf_event *child_event, 9799 struct perf_event_context *child_ctx, 9800 struct task_struct *child) 9801 { 9802 struct perf_event *parent_event = child_event->parent; 9803 9804 /* 9805 * Do not destroy the 'original' grouping; because of the context 9806 * switch optimization the original events could've ended up in a 9807 * random child task. 9808 * 9809 * If we were to destroy the original group, all group related 9810 * operations would cease to function properly after this random 9811 * child dies. 9812 * 9813 * Do destroy all inherited groups, we don't care about those 9814 * and being thorough is better. 9815 */ 9816 raw_spin_lock_irq(&child_ctx->lock); 9817 WARN_ON_ONCE(child_ctx->is_active); 9818 9819 if (parent_event) 9820 perf_group_detach(child_event); 9821 list_del_event(child_event, child_ctx); 9822 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9823 raw_spin_unlock_irq(&child_ctx->lock); 9824 9825 /* 9826 * Parent events are governed by their filedesc, retain them. 9827 */ 9828 if (!parent_event) { 9829 perf_event_wakeup(child_event); 9830 return; 9831 } 9832 /* 9833 * Child events can be cleaned up. 9834 */ 9835 9836 sync_child_event(child_event, child); 9837 9838 /* 9839 * Remove this event from the parent's list 9840 */ 9841 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9842 mutex_lock(&parent_event->child_mutex); 9843 list_del_init(&child_event->child_list); 9844 mutex_unlock(&parent_event->child_mutex); 9845 9846 /* 9847 * Kick perf_poll() for is_event_hup(). 9848 */ 9849 perf_event_wakeup(parent_event); 9850 free_event(child_event); 9851 put_event(parent_event); 9852 } 9853 9854 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9855 { 9856 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9857 struct perf_event *child_event, *next; 9858 9859 WARN_ON_ONCE(child != current); 9860 9861 child_ctx = perf_pin_task_context(child, ctxn); 9862 if (!child_ctx) 9863 return; 9864 9865 /* 9866 * In order to reduce the amount of tricky in ctx tear-down, we hold 9867 * ctx::mutex over the entire thing. This serializes against almost 9868 * everything that wants to access the ctx. 9869 * 9870 * The exception is sys_perf_event_open() / 9871 * perf_event_create_kernel_count() which does find_get_context() 9872 * without ctx::mutex (it cannot because of the move_group double mutex 9873 * lock thing). See the comments in perf_install_in_context(). 9874 */ 9875 mutex_lock(&child_ctx->mutex); 9876 9877 /* 9878 * In a single ctx::lock section, de-schedule the events and detach the 9879 * context from the task such that we cannot ever get it scheduled back 9880 * in. 9881 */ 9882 raw_spin_lock_irq(&child_ctx->lock); 9883 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9884 9885 /* 9886 * Now that the context is inactive, destroy the task <-> ctx relation 9887 * and mark the context dead. 9888 */ 9889 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9890 put_ctx(child_ctx); /* cannot be last */ 9891 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9892 put_task_struct(current); /* cannot be last */ 9893 9894 clone_ctx = unclone_ctx(child_ctx); 9895 raw_spin_unlock_irq(&child_ctx->lock); 9896 9897 if (clone_ctx) 9898 put_ctx(clone_ctx); 9899 9900 /* 9901 * Report the task dead after unscheduling the events so that we 9902 * won't get any samples after PERF_RECORD_EXIT. We can however still 9903 * get a few PERF_RECORD_READ events. 9904 */ 9905 perf_event_task(child, child_ctx, 0); 9906 9907 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 9908 perf_event_exit_event(child_event, child_ctx, child); 9909 9910 mutex_unlock(&child_ctx->mutex); 9911 9912 put_ctx(child_ctx); 9913 } 9914 9915 /* 9916 * When a child task exits, feed back event values to parent events. 9917 * 9918 * Can be called with cred_guard_mutex held when called from 9919 * install_exec_creds(). 9920 */ 9921 void perf_event_exit_task(struct task_struct *child) 9922 { 9923 struct perf_event *event, *tmp; 9924 int ctxn; 9925 9926 mutex_lock(&child->perf_event_mutex); 9927 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9928 owner_entry) { 9929 list_del_init(&event->owner_entry); 9930 9931 /* 9932 * Ensure the list deletion is visible before we clear 9933 * the owner, closes a race against perf_release() where 9934 * we need to serialize on the owner->perf_event_mutex. 9935 */ 9936 smp_store_release(&event->owner, NULL); 9937 } 9938 mutex_unlock(&child->perf_event_mutex); 9939 9940 for_each_task_context_nr(ctxn) 9941 perf_event_exit_task_context(child, ctxn); 9942 9943 /* 9944 * The perf_event_exit_task_context calls perf_event_task 9945 * with child's task_ctx, which generates EXIT events for 9946 * child contexts and sets child->perf_event_ctxp[] to NULL. 9947 * At this point we need to send EXIT events to cpu contexts. 9948 */ 9949 perf_event_task(child, NULL, 0); 9950 } 9951 9952 static void perf_free_event(struct perf_event *event, 9953 struct perf_event_context *ctx) 9954 { 9955 struct perf_event *parent = event->parent; 9956 9957 if (WARN_ON_ONCE(!parent)) 9958 return; 9959 9960 mutex_lock(&parent->child_mutex); 9961 list_del_init(&event->child_list); 9962 mutex_unlock(&parent->child_mutex); 9963 9964 put_event(parent); 9965 9966 raw_spin_lock_irq(&ctx->lock); 9967 perf_group_detach(event); 9968 list_del_event(event, ctx); 9969 raw_spin_unlock_irq(&ctx->lock); 9970 free_event(event); 9971 } 9972 9973 /* 9974 * Free an unexposed, unused context as created by inheritance by 9975 * perf_event_init_task below, used by fork() in case of fail. 9976 * 9977 * Not all locks are strictly required, but take them anyway to be nice and 9978 * help out with the lockdep assertions. 9979 */ 9980 void perf_event_free_task(struct task_struct *task) 9981 { 9982 struct perf_event_context *ctx; 9983 struct perf_event *event, *tmp; 9984 int ctxn; 9985 9986 for_each_task_context_nr(ctxn) { 9987 ctx = task->perf_event_ctxp[ctxn]; 9988 if (!ctx) 9989 continue; 9990 9991 mutex_lock(&ctx->mutex); 9992 again: 9993 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9994 group_entry) 9995 perf_free_event(event, ctx); 9996 9997 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9998 group_entry) 9999 perf_free_event(event, ctx); 10000 10001 if (!list_empty(&ctx->pinned_groups) || 10002 !list_empty(&ctx->flexible_groups)) 10003 goto again; 10004 10005 mutex_unlock(&ctx->mutex); 10006 10007 put_ctx(ctx); 10008 } 10009 } 10010 10011 void perf_event_delayed_put(struct task_struct *task) 10012 { 10013 int ctxn; 10014 10015 for_each_task_context_nr(ctxn) 10016 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10017 } 10018 10019 struct file *perf_event_get(unsigned int fd) 10020 { 10021 struct file *file; 10022 10023 file = fget_raw(fd); 10024 if (!file) 10025 return ERR_PTR(-EBADF); 10026 10027 if (file->f_op != &perf_fops) { 10028 fput(file); 10029 return ERR_PTR(-EBADF); 10030 } 10031 10032 return file; 10033 } 10034 10035 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10036 { 10037 if (!event) 10038 return ERR_PTR(-EINVAL); 10039 10040 return &event->attr; 10041 } 10042 10043 /* 10044 * inherit a event from parent task to child task: 10045 */ 10046 static struct perf_event * 10047 inherit_event(struct perf_event *parent_event, 10048 struct task_struct *parent, 10049 struct perf_event_context *parent_ctx, 10050 struct task_struct *child, 10051 struct perf_event *group_leader, 10052 struct perf_event_context *child_ctx) 10053 { 10054 enum perf_event_active_state parent_state = parent_event->state; 10055 struct perf_event *child_event; 10056 unsigned long flags; 10057 10058 /* 10059 * Instead of creating recursive hierarchies of events, 10060 * we link inherited events back to the original parent, 10061 * which has a filp for sure, which we use as the reference 10062 * count: 10063 */ 10064 if (parent_event->parent) 10065 parent_event = parent_event->parent; 10066 10067 child_event = perf_event_alloc(&parent_event->attr, 10068 parent_event->cpu, 10069 child, 10070 group_leader, parent_event, 10071 NULL, NULL, -1); 10072 if (IS_ERR(child_event)) 10073 return child_event; 10074 10075 /* 10076 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10077 * must be under the same lock in order to serialize against 10078 * perf_event_release_kernel(), such that either we must observe 10079 * is_orphaned_event() or they will observe us on the child_list. 10080 */ 10081 mutex_lock(&parent_event->child_mutex); 10082 if (is_orphaned_event(parent_event) || 10083 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10084 mutex_unlock(&parent_event->child_mutex); 10085 free_event(child_event); 10086 return NULL; 10087 } 10088 10089 get_ctx(child_ctx); 10090 10091 /* 10092 * Make the child state follow the state of the parent event, 10093 * not its attr.disabled bit. We hold the parent's mutex, 10094 * so we won't race with perf_event_{en, dis}able_family. 10095 */ 10096 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10097 child_event->state = PERF_EVENT_STATE_INACTIVE; 10098 else 10099 child_event->state = PERF_EVENT_STATE_OFF; 10100 10101 if (parent_event->attr.freq) { 10102 u64 sample_period = parent_event->hw.sample_period; 10103 struct hw_perf_event *hwc = &child_event->hw; 10104 10105 hwc->sample_period = sample_period; 10106 hwc->last_period = sample_period; 10107 10108 local64_set(&hwc->period_left, sample_period); 10109 } 10110 10111 child_event->ctx = child_ctx; 10112 child_event->overflow_handler = parent_event->overflow_handler; 10113 child_event->overflow_handler_context 10114 = parent_event->overflow_handler_context; 10115 10116 /* 10117 * Precalculate sample_data sizes 10118 */ 10119 perf_event__header_size(child_event); 10120 perf_event__id_header_size(child_event); 10121 10122 /* 10123 * Link it up in the child's context: 10124 */ 10125 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10126 add_event_to_ctx(child_event, child_ctx); 10127 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10128 10129 /* 10130 * Link this into the parent event's child list 10131 */ 10132 list_add_tail(&child_event->child_list, &parent_event->child_list); 10133 mutex_unlock(&parent_event->child_mutex); 10134 10135 return child_event; 10136 } 10137 10138 static int inherit_group(struct perf_event *parent_event, 10139 struct task_struct *parent, 10140 struct perf_event_context *parent_ctx, 10141 struct task_struct *child, 10142 struct perf_event_context *child_ctx) 10143 { 10144 struct perf_event *leader; 10145 struct perf_event *sub; 10146 struct perf_event *child_ctr; 10147 10148 leader = inherit_event(parent_event, parent, parent_ctx, 10149 child, NULL, child_ctx); 10150 if (IS_ERR(leader)) 10151 return PTR_ERR(leader); 10152 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10153 child_ctr = inherit_event(sub, parent, parent_ctx, 10154 child, leader, child_ctx); 10155 if (IS_ERR(child_ctr)) 10156 return PTR_ERR(child_ctr); 10157 } 10158 return 0; 10159 } 10160 10161 static int 10162 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10163 struct perf_event_context *parent_ctx, 10164 struct task_struct *child, int ctxn, 10165 int *inherited_all) 10166 { 10167 int ret; 10168 struct perf_event_context *child_ctx; 10169 10170 if (!event->attr.inherit) { 10171 *inherited_all = 0; 10172 return 0; 10173 } 10174 10175 child_ctx = child->perf_event_ctxp[ctxn]; 10176 if (!child_ctx) { 10177 /* 10178 * This is executed from the parent task context, so 10179 * inherit events that have been marked for cloning. 10180 * First allocate and initialize a context for the 10181 * child. 10182 */ 10183 10184 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10185 if (!child_ctx) 10186 return -ENOMEM; 10187 10188 child->perf_event_ctxp[ctxn] = child_ctx; 10189 } 10190 10191 ret = inherit_group(event, parent, parent_ctx, 10192 child, child_ctx); 10193 10194 if (ret) 10195 *inherited_all = 0; 10196 10197 return ret; 10198 } 10199 10200 /* 10201 * Initialize the perf_event context in task_struct 10202 */ 10203 static int perf_event_init_context(struct task_struct *child, int ctxn) 10204 { 10205 struct perf_event_context *child_ctx, *parent_ctx; 10206 struct perf_event_context *cloned_ctx; 10207 struct perf_event *event; 10208 struct task_struct *parent = current; 10209 int inherited_all = 1; 10210 unsigned long flags; 10211 int ret = 0; 10212 10213 if (likely(!parent->perf_event_ctxp[ctxn])) 10214 return 0; 10215 10216 /* 10217 * If the parent's context is a clone, pin it so it won't get 10218 * swapped under us. 10219 */ 10220 parent_ctx = perf_pin_task_context(parent, ctxn); 10221 if (!parent_ctx) 10222 return 0; 10223 10224 /* 10225 * No need to check if parent_ctx != NULL here; since we saw 10226 * it non-NULL earlier, the only reason for it to become NULL 10227 * is if we exit, and since we're currently in the middle of 10228 * a fork we can't be exiting at the same time. 10229 */ 10230 10231 /* 10232 * Lock the parent list. No need to lock the child - not PID 10233 * hashed yet and not running, so nobody can access it. 10234 */ 10235 mutex_lock(&parent_ctx->mutex); 10236 10237 /* 10238 * We dont have to disable NMIs - we are only looking at 10239 * the list, not manipulating it: 10240 */ 10241 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10242 ret = inherit_task_group(event, parent, parent_ctx, 10243 child, ctxn, &inherited_all); 10244 if (ret) 10245 break; 10246 } 10247 10248 /* 10249 * We can't hold ctx->lock when iterating the ->flexible_group list due 10250 * to allocations, but we need to prevent rotation because 10251 * rotate_ctx() will change the list from interrupt context. 10252 */ 10253 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10254 parent_ctx->rotate_disable = 1; 10255 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10256 10257 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10258 ret = inherit_task_group(event, parent, parent_ctx, 10259 child, ctxn, &inherited_all); 10260 if (ret) 10261 break; 10262 } 10263 10264 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10265 parent_ctx->rotate_disable = 0; 10266 10267 child_ctx = child->perf_event_ctxp[ctxn]; 10268 10269 if (child_ctx && inherited_all) { 10270 /* 10271 * Mark the child context as a clone of the parent 10272 * context, or of whatever the parent is a clone of. 10273 * 10274 * Note that if the parent is a clone, the holding of 10275 * parent_ctx->lock avoids it from being uncloned. 10276 */ 10277 cloned_ctx = parent_ctx->parent_ctx; 10278 if (cloned_ctx) { 10279 child_ctx->parent_ctx = cloned_ctx; 10280 child_ctx->parent_gen = parent_ctx->parent_gen; 10281 } else { 10282 child_ctx->parent_ctx = parent_ctx; 10283 child_ctx->parent_gen = parent_ctx->generation; 10284 } 10285 get_ctx(child_ctx->parent_ctx); 10286 } 10287 10288 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10289 mutex_unlock(&parent_ctx->mutex); 10290 10291 perf_unpin_context(parent_ctx); 10292 put_ctx(parent_ctx); 10293 10294 return ret; 10295 } 10296 10297 /* 10298 * Initialize the perf_event context in task_struct 10299 */ 10300 int perf_event_init_task(struct task_struct *child) 10301 { 10302 int ctxn, ret; 10303 10304 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10305 mutex_init(&child->perf_event_mutex); 10306 INIT_LIST_HEAD(&child->perf_event_list); 10307 10308 for_each_task_context_nr(ctxn) { 10309 ret = perf_event_init_context(child, ctxn); 10310 if (ret) { 10311 perf_event_free_task(child); 10312 return ret; 10313 } 10314 } 10315 10316 return 0; 10317 } 10318 10319 static void __init perf_event_init_all_cpus(void) 10320 { 10321 struct swevent_htable *swhash; 10322 int cpu; 10323 10324 for_each_possible_cpu(cpu) { 10325 swhash = &per_cpu(swevent_htable, cpu); 10326 mutex_init(&swhash->hlist_mutex); 10327 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10328 10329 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10330 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10331 } 10332 } 10333 10334 static void perf_event_init_cpu(int cpu) 10335 { 10336 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10337 10338 mutex_lock(&swhash->hlist_mutex); 10339 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10340 struct swevent_hlist *hlist; 10341 10342 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10343 WARN_ON(!hlist); 10344 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10345 } 10346 mutex_unlock(&swhash->hlist_mutex); 10347 } 10348 10349 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10350 static void __perf_event_exit_context(void *__info) 10351 { 10352 struct perf_event_context *ctx = __info; 10353 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10354 struct perf_event *event; 10355 10356 raw_spin_lock(&ctx->lock); 10357 list_for_each_entry(event, &ctx->event_list, event_entry) 10358 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10359 raw_spin_unlock(&ctx->lock); 10360 } 10361 10362 static void perf_event_exit_cpu_context(int cpu) 10363 { 10364 struct perf_event_context *ctx; 10365 struct pmu *pmu; 10366 int idx; 10367 10368 idx = srcu_read_lock(&pmus_srcu); 10369 list_for_each_entry_rcu(pmu, &pmus, entry) { 10370 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10371 10372 mutex_lock(&ctx->mutex); 10373 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10374 mutex_unlock(&ctx->mutex); 10375 } 10376 srcu_read_unlock(&pmus_srcu, idx); 10377 } 10378 10379 static void perf_event_exit_cpu(int cpu) 10380 { 10381 perf_event_exit_cpu_context(cpu); 10382 } 10383 #else 10384 static inline void perf_event_exit_cpu(int cpu) { } 10385 #endif 10386 10387 static int 10388 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10389 { 10390 int cpu; 10391 10392 for_each_online_cpu(cpu) 10393 perf_event_exit_cpu(cpu); 10394 10395 return NOTIFY_OK; 10396 } 10397 10398 /* 10399 * Run the perf reboot notifier at the very last possible moment so that 10400 * the generic watchdog code runs as long as possible. 10401 */ 10402 static struct notifier_block perf_reboot_notifier = { 10403 .notifier_call = perf_reboot, 10404 .priority = INT_MIN, 10405 }; 10406 10407 static int 10408 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 10409 { 10410 unsigned int cpu = (long)hcpu; 10411 10412 switch (action & ~CPU_TASKS_FROZEN) { 10413 10414 case CPU_UP_PREPARE: 10415 /* 10416 * This must be done before the CPU comes alive, because the 10417 * moment we can run tasks we can encounter (software) events. 10418 * 10419 * Specifically, someone can have inherited events on kthreadd 10420 * or a pre-existing worker thread that gets re-bound. 10421 */ 10422 perf_event_init_cpu(cpu); 10423 break; 10424 10425 case CPU_DOWN_PREPARE: 10426 /* 10427 * This must be done before the CPU dies because after that an 10428 * active event might want to IPI the CPU and that'll not work 10429 * so great for dead CPUs. 10430 * 10431 * XXX smp_call_function_single() return -ENXIO without a warn 10432 * so we could possibly deal with this. 10433 * 10434 * This is safe against new events arriving because 10435 * sys_perf_event_open() serializes against hotplug using 10436 * get_online_cpus(). 10437 */ 10438 perf_event_exit_cpu(cpu); 10439 break; 10440 default: 10441 break; 10442 } 10443 10444 return NOTIFY_OK; 10445 } 10446 10447 void __init perf_event_init(void) 10448 { 10449 int ret; 10450 10451 idr_init(&pmu_idr); 10452 10453 perf_event_init_all_cpus(); 10454 init_srcu_struct(&pmus_srcu); 10455 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10456 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10457 perf_pmu_register(&perf_task_clock, NULL, -1); 10458 perf_tp_register(); 10459 perf_cpu_notifier(perf_cpu_notify); 10460 register_reboot_notifier(&perf_reboot_notifier); 10461 10462 ret = init_hw_breakpoint(); 10463 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10464 10465 /* 10466 * Build time assertion that we keep the data_head at the intended 10467 * location. IOW, validation we got the __reserved[] size right. 10468 */ 10469 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10470 != 1024); 10471 } 10472 10473 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10474 char *page) 10475 { 10476 struct perf_pmu_events_attr *pmu_attr = 10477 container_of(attr, struct perf_pmu_events_attr, attr); 10478 10479 if (pmu_attr->event_str) 10480 return sprintf(page, "%s\n", pmu_attr->event_str); 10481 10482 return 0; 10483 } 10484 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10485 10486 static int __init perf_event_sysfs_init(void) 10487 { 10488 struct pmu *pmu; 10489 int ret; 10490 10491 mutex_lock(&pmus_lock); 10492 10493 ret = bus_register(&pmu_bus); 10494 if (ret) 10495 goto unlock; 10496 10497 list_for_each_entry(pmu, &pmus, entry) { 10498 if (!pmu->name || pmu->type < 0) 10499 continue; 10500 10501 ret = pmu_dev_alloc(pmu); 10502 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10503 } 10504 pmu_bus_running = 1; 10505 ret = 0; 10506 10507 unlock: 10508 mutex_unlock(&pmus_lock); 10509 10510 return ret; 10511 } 10512 device_initcall(perf_event_sysfs_init); 10513 10514 #ifdef CONFIG_CGROUP_PERF 10515 static struct cgroup_subsys_state * 10516 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10517 { 10518 struct perf_cgroup *jc; 10519 10520 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10521 if (!jc) 10522 return ERR_PTR(-ENOMEM); 10523 10524 jc->info = alloc_percpu(struct perf_cgroup_info); 10525 if (!jc->info) { 10526 kfree(jc); 10527 return ERR_PTR(-ENOMEM); 10528 } 10529 10530 return &jc->css; 10531 } 10532 10533 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10534 { 10535 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10536 10537 free_percpu(jc->info); 10538 kfree(jc); 10539 } 10540 10541 static int __perf_cgroup_move(void *info) 10542 { 10543 struct task_struct *task = info; 10544 rcu_read_lock(); 10545 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10546 rcu_read_unlock(); 10547 return 0; 10548 } 10549 10550 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10551 { 10552 struct task_struct *task; 10553 struct cgroup_subsys_state *css; 10554 10555 cgroup_taskset_for_each(task, css, tset) 10556 task_function_call(task, __perf_cgroup_move, task); 10557 } 10558 10559 struct cgroup_subsys perf_event_cgrp_subsys = { 10560 .css_alloc = perf_cgroup_css_alloc, 10561 .css_free = perf_cgroup_css_free, 10562 .attach = perf_cgroup_attach, 10563 }; 10564 #endif /* CONFIG_CGROUP_PERF */ 10565