xref: /linux/kernel/events/core.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 
55 #include "internal.h"
56 
57 #include <asm/irq_regs.h>
58 
59 typedef int (*remote_function_f)(void *);
60 
61 struct remote_function_call {
62 	struct task_struct	*p;
63 	remote_function_f	func;
64 	void			*info;
65 	int			ret;
66 };
67 
68 static void remote_function(void *data)
69 {
70 	struct remote_function_call *tfc = data;
71 	struct task_struct *p = tfc->p;
72 
73 	if (p) {
74 		/* -EAGAIN */
75 		if (task_cpu(p) != smp_processor_id())
76 			return;
77 
78 		/*
79 		 * Now that we're on right CPU with IRQs disabled, we can test
80 		 * if we hit the right task without races.
81 		 */
82 
83 		tfc->ret = -ESRCH; /* No such (running) process */
84 		if (p != current)
85 			return;
86 	}
87 
88 	tfc->ret = tfc->func(tfc->info);
89 }
90 
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:		the task to evaluate
94  * @func:	the function to be called
95  * @info:	the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH when the process isn't running
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= p,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -EAGAIN,
112 	};
113 	int ret;
114 
115 	for (;;) {
116 		ret = smp_call_function_single(task_cpu(p), remote_function,
117 					       &data, 1);
118 		ret = !ret ? data.ret : -EAGAIN;
119 
120 		if (ret != -EAGAIN)
121 			break;
122 
123 		cond_resched();
124 	}
125 
126 	return ret;
127 }
128 
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:	the function to be called
132  * @info:	the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140 	struct remote_function_call data = {
141 		.p	= NULL,
142 		.func	= func,
143 		.info	= info,
144 		.ret	= -ENXIO, /* No such CPU */
145 	};
146 
147 	smp_call_function_single(cpu, remote_function, &data, 1);
148 
149 	return data.ret;
150 }
151 
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199 
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201 			struct perf_event_context *, void *);
202 
203 struct event_function_struct {
204 	struct perf_event *event;
205 	event_f func;
206 	void *data;
207 };
208 
209 static int event_function(void *info)
210 {
211 	struct event_function_struct *efs = info;
212 	struct perf_event *event = efs->event;
213 	struct perf_event_context *ctx = event->ctx;
214 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
216 	int ret = 0;
217 
218 	lockdep_assert_irqs_disabled();
219 
220 	perf_ctx_lock(cpuctx, task_ctx);
221 	/*
222 	 * Since we do the IPI call without holding ctx->lock things can have
223 	 * changed, double check we hit the task we set out to hit.
224 	 */
225 	if (ctx->task) {
226 		if (ctx->task != current) {
227 			ret = -ESRCH;
228 			goto unlock;
229 		}
230 
231 		/*
232 		 * We only use event_function_call() on established contexts,
233 		 * and event_function() is only ever called when active (or
234 		 * rather, we'll have bailed in task_function_call() or the
235 		 * above ctx->task != current test), therefore we must have
236 		 * ctx->is_active here.
237 		 */
238 		WARN_ON_ONCE(!ctx->is_active);
239 		/*
240 		 * And since we have ctx->is_active, cpuctx->task_ctx must
241 		 * match.
242 		 */
243 		WARN_ON_ONCE(task_ctx != ctx);
244 	} else {
245 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
246 	}
247 
248 	efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250 	perf_ctx_unlock(cpuctx, task_ctx);
251 
252 	return ret;
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310 	struct perf_event_context *ctx = event->ctx;
311 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312 	struct task_struct *task = READ_ONCE(ctx->task);
313 	struct perf_event_context *task_ctx = NULL;
314 
315 	lockdep_assert_irqs_disabled();
316 
317 	if (task) {
318 		if (task == TASK_TOMBSTONE)
319 			return;
320 
321 		task_ctx = ctx;
322 	}
323 
324 	perf_ctx_lock(cpuctx, task_ctx);
325 
326 	task = ctx->task;
327 	if (task == TASK_TOMBSTONE)
328 		goto unlock;
329 
330 	if (task) {
331 		/*
332 		 * We must be either inactive or active and the right task,
333 		 * otherwise we're screwed, since we cannot IPI to somewhere
334 		 * else.
335 		 */
336 		if (ctx->is_active) {
337 			if (WARN_ON_ONCE(task != current))
338 				goto unlock;
339 
340 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341 				goto unlock;
342 		}
343 	} else {
344 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
345 	}
346 
347 	func(event, cpuctx, ctx, data);
348 unlock:
349 	perf_ctx_unlock(cpuctx, task_ctx);
350 }
351 
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353 		       PERF_FLAG_FD_OUTPUT  |\
354 		       PERF_FLAG_PID_CGROUP |\
355 		       PERF_FLAG_FD_CLOEXEC)
356 
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361 	(PERF_SAMPLE_BRANCH_KERNEL |\
362 	 PERF_SAMPLE_BRANCH_HV)
363 
364 enum event_type_t {
365 	EVENT_FLEXIBLE = 0x1,
366 	EVENT_PINNED = 0x2,
367 	EVENT_TIME = 0x4,
368 	/* see ctx_resched() for details */
369 	EVENT_CPU = 0x8,
370 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372 
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377 
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383 
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387 
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397 
398 static LIST_HEAD(pmus);
399 static DEFINE_MUTEX(pmus_lock);
400 static struct srcu_struct pmus_srcu;
401 static cpumask_var_t perf_online_mask;
402 
403 /*
404  * perf event paranoia level:
405  *  -1 - not paranoid at all
406  *   0 - disallow raw tracepoint access for unpriv
407  *   1 - disallow cpu events for unpriv
408  *   2 - disallow kernel profiling for unpriv
409  */
410 int sysctl_perf_event_paranoid __read_mostly = 2;
411 
412 /* Minimum for 512 kiB + 1 user control page */
413 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
414 
415 /*
416  * max perf event sample rate
417  */
418 #define DEFAULT_MAX_SAMPLE_RATE		100000
419 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
420 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
421 
422 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
423 
424 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
425 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
426 
427 static int perf_sample_allowed_ns __read_mostly =
428 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
429 
430 static void update_perf_cpu_limits(void)
431 {
432 	u64 tmp = perf_sample_period_ns;
433 
434 	tmp *= sysctl_perf_cpu_time_max_percent;
435 	tmp = div_u64(tmp, 100);
436 	if (!tmp)
437 		tmp = 1;
438 
439 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
440 }
441 
442 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
443 
444 int perf_proc_update_handler(struct ctl_table *table, int write,
445 		void __user *buffer, size_t *lenp,
446 		loff_t *ppos)
447 {
448 	int ret;
449 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
450 	/*
451 	 * If throttling is disabled don't allow the write:
452 	 */
453 	if (write && (perf_cpu == 100 || perf_cpu == 0))
454 		return -EINVAL;
455 
456 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457 	if (ret || !write)
458 		return ret;
459 
460 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
461 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462 	update_perf_cpu_limits();
463 
464 	return 0;
465 }
466 
467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
470 				void __user *buffer, size_t *lenp,
471 				loff_t *ppos)
472 {
473 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
474 
475 	if (ret || !write)
476 		return ret;
477 
478 	if (sysctl_perf_cpu_time_max_percent == 100 ||
479 	    sysctl_perf_cpu_time_max_percent == 0) {
480 		printk(KERN_WARNING
481 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 		WRITE_ONCE(perf_sample_allowed_ns, 0);
483 	} else {
484 		update_perf_cpu_limits();
485 	}
486 
487 	return 0;
488 }
489 
490 /*
491  * perf samples are done in some very critical code paths (NMIs).
492  * If they take too much CPU time, the system can lock up and not
493  * get any real work done.  This will drop the sample rate when
494  * we detect that events are taking too long.
495  */
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64, running_sample_length);
498 
499 static u64 __report_avg;
500 static u64 __report_allowed;
501 
502 static void perf_duration_warn(struct irq_work *w)
503 {
504 	printk_ratelimited(KERN_INFO
505 		"perf: interrupt took too long (%lld > %lld), lowering "
506 		"kernel.perf_event_max_sample_rate to %d\n",
507 		__report_avg, __report_allowed,
508 		sysctl_perf_event_sample_rate);
509 }
510 
511 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
512 
513 void perf_sample_event_took(u64 sample_len_ns)
514 {
515 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
516 	u64 running_len;
517 	u64 avg_len;
518 	u32 max;
519 
520 	if (max_len == 0)
521 		return;
522 
523 	/* Decay the counter by 1 average sample. */
524 	running_len = __this_cpu_read(running_sample_length);
525 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
526 	running_len += sample_len_ns;
527 	__this_cpu_write(running_sample_length, running_len);
528 
529 	/*
530 	 * Note: this will be biased artifically low until we have
531 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 	 * from having to maintain a count.
533 	 */
534 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
535 	if (avg_len <= max_len)
536 		return;
537 
538 	__report_avg = avg_len;
539 	__report_allowed = max_len;
540 
541 	/*
542 	 * Compute a throttle threshold 25% below the current duration.
543 	 */
544 	avg_len += avg_len / 4;
545 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
546 	if (avg_len < max)
547 		max /= (u32)avg_len;
548 	else
549 		max = 1;
550 
551 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
552 	WRITE_ONCE(max_samples_per_tick, max);
553 
554 	sysctl_perf_event_sample_rate = max * HZ;
555 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
556 
557 	if (!irq_work_queue(&perf_duration_work)) {
558 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 			     "kernel.perf_event_max_sample_rate to %d\n",
560 			     __report_avg, __report_allowed,
561 			     sysctl_perf_event_sample_rate);
562 	}
563 }
564 
565 static atomic64_t perf_event_id;
566 
567 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
568 			      enum event_type_t event_type);
569 
570 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
571 			     enum event_type_t event_type,
572 			     struct task_struct *task);
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 extern __weak const char *perf_pmu_name(void)
580 {
581 	return "pmu";
582 }
583 
584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 #ifdef CONFIG_CGROUP_PERF
677 
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681 	struct perf_event_context *ctx = event->ctx;
682 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683 
684 	/* @event doesn't care about cgroup */
685 	if (!event->cgrp)
686 		return true;
687 
688 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
689 	if (!cpuctx->cgrp)
690 		return false;
691 
692 	/*
693 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
694 	 * also enabled for all its descendant cgroups.  If @cpuctx's
695 	 * cgroup is a descendant of @event's (the test covers identity
696 	 * case), it's a match.
697 	 */
698 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699 				    event->cgrp->css.cgroup);
700 }
701 
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704 	css_put(&event->cgrp->css);
705 	event->cgrp = NULL;
706 }
707 
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710 	return event->cgrp != NULL;
711 }
712 
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715 	struct perf_cgroup_info *t;
716 
717 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
718 	return t->time;
719 }
720 
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723 	struct perf_cgroup_info *info;
724 	u64 now;
725 
726 	now = perf_clock();
727 
728 	info = this_cpu_ptr(cgrp->info);
729 
730 	info->time += now - info->timestamp;
731 	info->timestamp = now;
732 }
733 
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736 	struct perf_cgroup *cgrp = cpuctx->cgrp;
737 	struct cgroup_subsys_state *css;
738 
739 	if (cgrp) {
740 		for (css = &cgrp->css; css; css = css->parent) {
741 			cgrp = container_of(css, struct perf_cgroup, css);
742 			__update_cgrp_time(cgrp);
743 		}
744 	}
745 }
746 
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749 	struct perf_cgroup *cgrp;
750 
751 	/*
752 	 * ensure we access cgroup data only when needed and
753 	 * when we know the cgroup is pinned (css_get)
754 	 */
755 	if (!is_cgroup_event(event))
756 		return;
757 
758 	cgrp = perf_cgroup_from_task(current, event->ctx);
759 	/*
760 	 * Do not update time when cgroup is not active
761 	 */
762 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763 		__update_cgrp_time(event->cgrp);
764 }
765 
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768 			  struct perf_event_context *ctx)
769 {
770 	struct perf_cgroup *cgrp;
771 	struct perf_cgroup_info *info;
772 	struct cgroup_subsys_state *css;
773 
774 	/*
775 	 * ctx->lock held by caller
776 	 * ensure we do not access cgroup data
777 	 * unless we have the cgroup pinned (css_get)
778 	 */
779 	if (!task || !ctx->nr_cgroups)
780 		return;
781 
782 	cgrp = perf_cgroup_from_task(task, ctx);
783 
784 	for (css = &cgrp->css; css; css = css->parent) {
785 		cgrp = container_of(css, struct perf_cgroup, css);
786 		info = this_cpu_ptr(cgrp->info);
787 		info->timestamp = ctx->timestamp;
788 	}
789 }
790 
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792 
793 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
795 
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804 	struct perf_cpu_context *cpuctx;
805 	struct list_head *list;
806 	unsigned long flags;
807 
808 	/*
809 	 * Disable interrupts and preemption to avoid this CPU's
810 	 * cgrp_cpuctx_entry to change under us.
811 	 */
812 	local_irq_save(flags);
813 
814 	list = this_cpu_ptr(&cgrp_cpuctx_list);
815 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817 
818 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819 		perf_pmu_disable(cpuctx->ctx.pmu);
820 
821 		if (mode & PERF_CGROUP_SWOUT) {
822 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823 			/*
824 			 * must not be done before ctxswout due
825 			 * to event_filter_match() in event_sched_out()
826 			 */
827 			cpuctx->cgrp = NULL;
828 		}
829 
830 		if (mode & PERF_CGROUP_SWIN) {
831 			WARN_ON_ONCE(cpuctx->cgrp);
832 			/*
833 			 * set cgrp before ctxsw in to allow
834 			 * event_filter_match() to not have to pass
835 			 * task around
836 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 			 * because cgorup events are only per-cpu
838 			 */
839 			cpuctx->cgrp = perf_cgroup_from_task(task,
840 							     &cpuctx->ctx);
841 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842 		}
843 		perf_pmu_enable(cpuctx->ctx.pmu);
844 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 	}
846 
847 	local_irq_restore(flags);
848 }
849 
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851 					 struct task_struct *next)
852 {
853 	struct perf_cgroup *cgrp1;
854 	struct perf_cgroup *cgrp2 = NULL;
855 
856 	rcu_read_lock();
857 	/*
858 	 * we come here when we know perf_cgroup_events > 0
859 	 * we do not need to pass the ctx here because we know
860 	 * we are holding the rcu lock
861 	 */
862 	cgrp1 = perf_cgroup_from_task(task, NULL);
863 	cgrp2 = perf_cgroup_from_task(next, NULL);
864 
865 	/*
866 	 * only schedule out current cgroup events if we know
867 	 * that we are switching to a different cgroup. Otherwise,
868 	 * do no touch the cgroup events.
869 	 */
870 	if (cgrp1 != cgrp2)
871 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872 
873 	rcu_read_unlock();
874 }
875 
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877 					struct task_struct *task)
878 {
879 	struct perf_cgroup *cgrp1;
880 	struct perf_cgroup *cgrp2 = NULL;
881 
882 	rcu_read_lock();
883 	/*
884 	 * we come here when we know perf_cgroup_events > 0
885 	 * we do not need to pass the ctx here because we know
886 	 * we are holding the rcu lock
887 	 */
888 	cgrp1 = perf_cgroup_from_task(task, NULL);
889 	cgrp2 = perf_cgroup_from_task(prev, NULL);
890 
891 	/*
892 	 * only need to schedule in cgroup events if we are changing
893 	 * cgroup during ctxsw. Cgroup events were not scheduled
894 	 * out of ctxsw out if that was not the case.
895 	 */
896 	if (cgrp1 != cgrp2)
897 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898 
899 	rcu_read_unlock();
900 }
901 
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903 				struct cgroup_subsys_state *css)
904 {
905 	struct perf_cpu_context *cpuctx;
906 	struct perf_event **storage;
907 	int cpu, heap_size, ret = 0;
908 
909 	/*
910 	 * Allow storage to have sufficent space for an iterator for each
911 	 * possibly nested cgroup plus an iterator for events with no cgroup.
912 	 */
913 	for (heap_size = 1; css; css = css->parent)
914 		heap_size++;
915 
916 	for_each_possible_cpu(cpu) {
917 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918 		if (heap_size <= cpuctx->heap_size)
919 			continue;
920 
921 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922 				       GFP_KERNEL, cpu_to_node(cpu));
923 		if (!storage) {
924 			ret = -ENOMEM;
925 			break;
926 		}
927 
928 		raw_spin_lock_irq(&cpuctx->ctx.lock);
929 		if (cpuctx->heap_size < heap_size) {
930 			swap(cpuctx->heap, storage);
931 			if (storage == cpuctx->heap_default)
932 				storage = NULL;
933 			cpuctx->heap_size = heap_size;
934 		}
935 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
936 
937 		kfree(storage);
938 	}
939 
940 	return ret;
941 }
942 
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944 				      struct perf_event_attr *attr,
945 				      struct perf_event *group_leader)
946 {
947 	struct perf_cgroup *cgrp;
948 	struct cgroup_subsys_state *css;
949 	struct fd f = fdget(fd);
950 	int ret = 0;
951 
952 	if (!f.file)
953 		return -EBADF;
954 
955 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
956 					 &perf_event_cgrp_subsys);
957 	if (IS_ERR(css)) {
958 		ret = PTR_ERR(css);
959 		goto out;
960 	}
961 
962 	ret = perf_cgroup_ensure_storage(event, css);
963 	if (ret)
964 		goto out;
965 
966 	cgrp = container_of(css, struct perf_cgroup, css);
967 	event->cgrp = cgrp;
968 
969 	/*
970 	 * all events in a group must monitor
971 	 * the same cgroup because a task belongs
972 	 * to only one perf cgroup at a time
973 	 */
974 	if (group_leader && group_leader->cgrp != cgrp) {
975 		perf_detach_cgroup(event);
976 		ret = -EINVAL;
977 	}
978 out:
979 	fdput(f);
980 	return ret;
981 }
982 
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986 	struct perf_cgroup_info *t;
987 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
988 	event->shadow_ctx_time = now - t->timestamp;
989 }
990 
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994 	struct perf_cpu_context *cpuctx;
995 
996 	if (!is_cgroup_event(event))
997 		return;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	/*
1006 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 	 * matching the event's cgroup, we must do this for every new event,
1008 	 * because if the first would mismatch, the second would not try again
1009 	 * and we would leave cpuctx->cgrp unset.
1010 	 */
1011 	if (ctx->is_active && !cpuctx->cgrp) {
1012 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013 
1014 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015 			cpuctx->cgrp = cgrp;
1016 	}
1017 
1018 	if (ctx->nr_cgroups++)
1019 		return;
1020 
1021 	list_add(&cpuctx->cgrp_cpuctx_entry,
1022 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024 
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 	struct perf_cpu_context *cpuctx;
1029 
1030 	if (!is_cgroup_event(event))
1031 		return;
1032 
1033 	/*
1034 	 * Because cgroup events are always per-cpu events,
1035 	 * @ctx == &cpuctx->ctx.
1036 	 */
1037 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038 
1039 	if (--ctx->nr_cgroups)
1040 		return;
1041 
1042 	if (ctx->is_active && cpuctx->cgrp)
1043 		cpuctx->cgrp = NULL;
1044 
1045 	list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047 
1048 #else /* !CONFIG_CGROUP_PERF */
1049 
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053 	return true;
1054 }
1055 
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058 
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061 	return 0;
1062 }
1063 
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067 
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071 
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073 					 struct task_struct *next)
1074 {
1075 }
1076 
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078 					struct task_struct *task)
1079 {
1080 }
1081 
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083 				      struct perf_event_attr *attr,
1084 				      struct perf_event *group_leader)
1085 {
1086 	return -EINVAL;
1087 }
1088 
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091 			  struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099 
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104 
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107 	return 0;
1108 }
1109 
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120 
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131 	struct perf_cpu_context *cpuctx;
1132 	bool rotations;
1133 
1134 	lockdep_assert_irqs_disabled();
1135 
1136 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137 	rotations = perf_rotate_context(cpuctx);
1138 
1139 	raw_spin_lock(&cpuctx->hrtimer_lock);
1140 	if (rotations)
1141 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142 	else
1143 		cpuctx->hrtimer_active = 0;
1144 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1145 
1146 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148 
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151 	struct hrtimer *timer = &cpuctx->hrtimer;
1152 	struct pmu *pmu = cpuctx->ctx.pmu;
1153 	u64 interval;
1154 
1155 	/* no multiplexing needed for SW PMU */
1156 	if (pmu->task_ctx_nr == perf_sw_context)
1157 		return;
1158 
1159 	/*
1160 	 * check default is sane, if not set then force to
1161 	 * default interval (1/tick)
1162 	 */
1163 	interval = pmu->hrtimer_interval_ms;
1164 	if (interval < 1)
1165 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166 
1167 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168 
1169 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171 	timer->function = perf_mux_hrtimer_handler;
1172 }
1173 
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176 	struct hrtimer *timer = &cpuctx->hrtimer;
1177 	struct pmu *pmu = cpuctx->ctx.pmu;
1178 	unsigned long flags;
1179 
1180 	/* not for SW PMU */
1181 	if (pmu->task_ctx_nr == perf_sw_context)
1182 		return 0;
1183 
1184 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185 	if (!cpuctx->hrtimer_active) {
1186 		cpuctx->hrtimer_active = 1;
1187 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189 	}
1190 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191 
1192 	return 0;
1193 }
1194 
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198 	if (!(*count)++)
1199 		pmu->pmu_disable(pmu);
1200 }
1201 
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205 	if (!--(*count))
1206 		pmu->pmu_enable(pmu);
1207 }
1208 
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210 
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220 
1221 	lockdep_assert_irqs_disabled();
1222 
1223 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1224 
1225 	list_add(&ctx->active_ctx_list, head);
1226 }
1227 
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230 	lockdep_assert_irqs_disabled();
1231 
1232 	WARN_ON(list_empty(&ctx->active_ctx_list));
1233 
1234 	list_del_init(&ctx->active_ctx_list);
1235 }
1236 
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239 	refcount_inc(&ctx->refcount);
1240 }
1241 
1242 static void free_ctx(struct rcu_head *head)
1243 {
1244 	struct perf_event_context *ctx;
1245 
1246 	ctx = container_of(head, struct perf_event_context, rcu_head);
1247 	kfree(ctx->task_ctx_data);
1248 	kfree(ctx);
1249 }
1250 
1251 static void put_ctx(struct perf_event_context *ctx)
1252 {
1253 	if (refcount_dec_and_test(&ctx->refcount)) {
1254 		if (ctx->parent_ctx)
1255 			put_ctx(ctx->parent_ctx);
1256 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1257 			put_task_struct(ctx->task);
1258 		call_rcu(&ctx->rcu_head, free_ctx);
1259 	}
1260 }
1261 
1262 /*
1263  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1264  * perf_pmu_migrate_context() we need some magic.
1265  *
1266  * Those places that change perf_event::ctx will hold both
1267  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1268  *
1269  * Lock ordering is by mutex address. There are two other sites where
1270  * perf_event_context::mutex nests and those are:
1271  *
1272  *  - perf_event_exit_task_context()	[ child , 0 ]
1273  *      perf_event_exit_event()
1274  *        put_event()			[ parent, 1 ]
1275  *
1276  *  - perf_event_init_context()		[ parent, 0 ]
1277  *      inherit_task_group()
1278  *        inherit_group()
1279  *          inherit_event()
1280  *            perf_event_alloc()
1281  *              perf_init_event()
1282  *                perf_try_init_event()	[ child , 1 ]
1283  *
1284  * While it appears there is an obvious deadlock here -- the parent and child
1285  * nesting levels are inverted between the two. This is in fact safe because
1286  * life-time rules separate them. That is an exiting task cannot fork, and a
1287  * spawning task cannot (yet) exit.
1288  *
1289  * But remember that that these are parent<->child context relations, and
1290  * migration does not affect children, therefore these two orderings should not
1291  * interact.
1292  *
1293  * The change in perf_event::ctx does not affect children (as claimed above)
1294  * because the sys_perf_event_open() case will install a new event and break
1295  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1296  * concerned with cpuctx and that doesn't have children.
1297  *
1298  * The places that change perf_event::ctx will issue:
1299  *
1300  *   perf_remove_from_context();
1301  *   synchronize_rcu();
1302  *   perf_install_in_context();
1303  *
1304  * to affect the change. The remove_from_context() + synchronize_rcu() should
1305  * quiesce the event, after which we can install it in the new location. This
1306  * means that only external vectors (perf_fops, prctl) can perturb the event
1307  * while in transit. Therefore all such accessors should also acquire
1308  * perf_event_context::mutex to serialize against this.
1309  *
1310  * However; because event->ctx can change while we're waiting to acquire
1311  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1312  * function.
1313  *
1314  * Lock order:
1315  *    exec_update_mutex
1316  *	task_struct::perf_event_mutex
1317  *	  perf_event_context::mutex
1318  *	    perf_event::child_mutex;
1319  *	      perf_event_context::lock
1320  *	    perf_event::mmap_mutex
1321  *	    mmap_sem
1322  *	      perf_addr_filters_head::lock
1323  *
1324  *    cpu_hotplug_lock
1325  *      pmus_lock
1326  *	  cpuctx->mutex / perf_event_context::mutex
1327  */
1328 static struct perf_event_context *
1329 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1330 {
1331 	struct perf_event_context *ctx;
1332 
1333 again:
1334 	rcu_read_lock();
1335 	ctx = READ_ONCE(event->ctx);
1336 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1337 		rcu_read_unlock();
1338 		goto again;
1339 	}
1340 	rcu_read_unlock();
1341 
1342 	mutex_lock_nested(&ctx->mutex, nesting);
1343 	if (event->ctx != ctx) {
1344 		mutex_unlock(&ctx->mutex);
1345 		put_ctx(ctx);
1346 		goto again;
1347 	}
1348 
1349 	return ctx;
1350 }
1351 
1352 static inline struct perf_event_context *
1353 perf_event_ctx_lock(struct perf_event *event)
1354 {
1355 	return perf_event_ctx_lock_nested(event, 0);
1356 }
1357 
1358 static void perf_event_ctx_unlock(struct perf_event *event,
1359 				  struct perf_event_context *ctx)
1360 {
1361 	mutex_unlock(&ctx->mutex);
1362 	put_ctx(ctx);
1363 }
1364 
1365 /*
1366  * This must be done under the ctx->lock, such as to serialize against
1367  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1368  * calling scheduler related locks and ctx->lock nests inside those.
1369  */
1370 static __must_check struct perf_event_context *
1371 unclone_ctx(struct perf_event_context *ctx)
1372 {
1373 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1374 
1375 	lockdep_assert_held(&ctx->lock);
1376 
1377 	if (parent_ctx)
1378 		ctx->parent_ctx = NULL;
1379 	ctx->generation++;
1380 
1381 	return parent_ctx;
1382 }
1383 
1384 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1385 				enum pid_type type)
1386 {
1387 	u32 nr;
1388 	/*
1389 	 * only top level events have the pid namespace they were created in
1390 	 */
1391 	if (event->parent)
1392 		event = event->parent;
1393 
1394 	nr = __task_pid_nr_ns(p, type, event->ns);
1395 	/* avoid -1 if it is idle thread or runs in another ns */
1396 	if (!nr && !pid_alive(p))
1397 		nr = -1;
1398 	return nr;
1399 }
1400 
1401 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1402 {
1403 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1404 }
1405 
1406 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1407 {
1408 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1409 }
1410 
1411 /*
1412  * If we inherit events we want to return the parent event id
1413  * to userspace.
1414  */
1415 static u64 primary_event_id(struct perf_event *event)
1416 {
1417 	u64 id = event->id;
1418 
1419 	if (event->parent)
1420 		id = event->parent->id;
1421 
1422 	return id;
1423 }
1424 
1425 /*
1426  * Get the perf_event_context for a task and lock it.
1427  *
1428  * This has to cope with with the fact that until it is locked,
1429  * the context could get moved to another task.
1430  */
1431 static struct perf_event_context *
1432 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1433 {
1434 	struct perf_event_context *ctx;
1435 
1436 retry:
1437 	/*
1438 	 * One of the few rules of preemptible RCU is that one cannot do
1439 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1440 	 * part of the read side critical section was irqs-enabled -- see
1441 	 * rcu_read_unlock_special().
1442 	 *
1443 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1444 	 * side critical section has interrupts disabled.
1445 	 */
1446 	local_irq_save(*flags);
1447 	rcu_read_lock();
1448 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1449 	if (ctx) {
1450 		/*
1451 		 * If this context is a clone of another, it might
1452 		 * get swapped for another underneath us by
1453 		 * perf_event_task_sched_out, though the
1454 		 * rcu_read_lock() protects us from any context
1455 		 * getting freed.  Lock the context and check if it
1456 		 * got swapped before we could get the lock, and retry
1457 		 * if so.  If we locked the right context, then it
1458 		 * can't get swapped on us any more.
1459 		 */
1460 		raw_spin_lock(&ctx->lock);
1461 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1462 			raw_spin_unlock(&ctx->lock);
1463 			rcu_read_unlock();
1464 			local_irq_restore(*flags);
1465 			goto retry;
1466 		}
1467 
1468 		if (ctx->task == TASK_TOMBSTONE ||
1469 		    !refcount_inc_not_zero(&ctx->refcount)) {
1470 			raw_spin_unlock(&ctx->lock);
1471 			ctx = NULL;
1472 		} else {
1473 			WARN_ON_ONCE(ctx->task != task);
1474 		}
1475 	}
1476 	rcu_read_unlock();
1477 	if (!ctx)
1478 		local_irq_restore(*flags);
1479 	return ctx;
1480 }
1481 
1482 /*
1483  * Get the context for a task and increment its pin_count so it
1484  * can't get swapped to another task.  This also increments its
1485  * reference count so that the context can't get freed.
1486  */
1487 static struct perf_event_context *
1488 perf_pin_task_context(struct task_struct *task, int ctxn)
1489 {
1490 	struct perf_event_context *ctx;
1491 	unsigned long flags;
1492 
1493 	ctx = perf_lock_task_context(task, ctxn, &flags);
1494 	if (ctx) {
1495 		++ctx->pin_count;
1496 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1497 	}
1498 	return ctx;
1499 }
1500 
1501 static void perf_unpin_context(struct perf_event_context *ctx)
1502 {
1503 	unsigned long flags;
1504 
1505 	raw_spin_lock_irqsave(&ctx->lock, flags);
1506 	--ctx->pin_count;
1507 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1508 }
1509 
1510 /*
1511  * Update the record of the current time in a context.
1512  */
1513 static void update_context_time(struct perf_event_context *ctx)
1514 {
1515 	u64 now = perf_clock();
1516 
1517 	ctx->time += now - ctx->timestamp;
1518 	ctx->timestamp = now;
1519 }
1520 
1521 static u64 perf_event_time(struct perf_event *event)
1522 {
1523 	struct perf_event_context *ctx = event->ctx;
1524 
1525 	if (is_cgroup_event(event))
1526 		return perf_cgroup_event_time(event);
1527 
1528 	return ctx ? ctx->time : 0;
1529 }
1530 
1531 static enum event_type_t get_event_type(struct perf_event *event)
1532 {
1533 	struct perf_event_context *ctx = event->ctx;
1534 	enum event_type_t event_type;
1535 
1536 	lockdep_assert_held(&ctx->lock);
1537 
1538 	/*
1539 	 * It's 'group type', really, because if our group leader is
1540 	 * pinned, so are we.
1541 	 */
1542 	if (event->group_leader != event)
1543 		event = event->group_leader;
1544 
1545 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1546 	if (!ctx->task)
1547 		event_type |= EVENT_CPU;
1548 
1549 	return event_type;
1550 }
1551 
1552 /*
1553  * Helper function to initialize event group nodes.
1554  */
1555 static void init_event_group(struct perf_event *event)
1556 {
1557 	RB_CLEAR_NODE(&event->group_node);
1558 	event->group_index = 0;
1559 }
1560 
1561 /*
1562  * Extract pinned or flexible groups from the context
1563  * based on event attrs bits.
1564  */
1565 static struct perf_event_groups *
1566 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1567 {
1568 	if (event->attr.pinned)
1569 		return &ctx->pinned_groups;
1570 	else
1571 		return &ctx->flexible_groups;
1572 }
1573 
1574 /*
1575  * Helper function to initializes perf_event_group trees.
1576  */
1577 static void perf_event_groups_init(struct perf_event_groups *groups)
1578 {
1579 	groups->tree = RB_ROOT;
1580 	groups->index = 0;
1581 }
1582 
1583 /*
1584  * Compare function for event groups;
1585  *
1586  * Implements complex key that first sorts by CPU and then by virtual index
1587  * which provides ordering when rotating groups for the same CPU.
1588  */
1589 static bool
1590 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1591 {
1592 	if (left->cpu < right->cpu)
1593 		return true;
1594 	if (left->cpu > right->cpu)
1595 		return false;
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	if (left->cgrp != right->cgrp) {
1599 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1600 			/*
1601 			 * Left has no cgroup but right does, no cgroups come
1602 			 * first.
1603 			 */
1604 			return true;
1605 		}
1606 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1607 			/*
1608 			 * Right has no cgroup but left does, no cgroups come
1609 			 * first.
1610 			 */
1611 			return false;
1612 		}
1613 		/* Two dissimilar cgroups, order by id. */
1614 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1615 			return true;
1616 
1617 		return false;
1618 	}
1619 #endif
1620 
1621 	if (left->group_index < right->group_index)
1622 		return true;
1623 	if (left->group_index > right->group_index)
1624 		return false;
1625 
1626 	return false;
1627 }
1628 
1629 /*
1630  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1631  * key (see perf_event_groups_less). This places it last inside the CPU
1632  * subtree.
1633  */
1634 static void
1635 perf_event_groups_insert(struct perf_event_groups *groups,
1636 			 struct perf_event *event)
1637 {
1638 	struct perf_event *node_event;
1639 	struct rb_node *parent;
1640 	struct rb_node **node;
1641 
1642 	event->group_index = ++groups->index;
1643 
1644 	node = &groups->tree.rb_node;
1645 	parent = *node;
1646 
1647 	while (*node) {
1648 		parent = *node;
1649 		node_event = container_of(*node, struct perf_event, group_node);
1650 
1651 		if (perf_event_groups_less(event, node_event))
1652 			node = &parent->rb_left;
1653 		else
1654 			node = &parent->rb_right;
1655 	}
1656 
1657 	rb_link_node(&event->group_node, parent, node);
1658 	rb_insert_color(&event->group_node, &groups->tree);
1659 }
1660 
1661 /*
1662  * Helper function to insert event into the pinned or flexible groups.
1663  */
1664 static void
1665 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	struct perf_event_groups *groups;
1668 
1669 	groups = get_event_groups(event, ctx);
1670 	perf_event_groups_insert(groups, event);
1671 }
1672 
1673 /*
1674  * Delete a group from a tree.
1675  */
1676 static void
1677 perf_event_groups_delete(struct perf_event_groups *groups,
1678 			 struct perf_event *event)
1679 {
1680 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1681 		     RB_EMPTY_ROOT(&groups->tree));
1682 
1683 	rb_erase(&event->group_node, &groups->tree);
1684 	init_event_group(event);
1685 }
1686 
1687 /*
1688  * Helper function to delete event from its groups.
1689  */
1690 static void
1691 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1692 {
1693 	struct perf_event_groups *groups;
1694 
1695 	groups = get_event_groups(event, ctx);
1696 	perf_event_groups_delete(groups, event);
1697 }
1698 
1699 /*
1700  * Get the leftmost event in the cpu/cgroup subtree.
1701  */
1702 static struct perf_event *
1703 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1704 			struct cgroup *cgrp)
1705 {
1706 	struct perf_event *node_event = NULL, *match = NULL;
1707 	struct rb_node *node = groups->tree.rb_node;
1708 #ifdef CONFIG_CGROUP_PERF
1709 	u64 node_cgrp_id, cgrp_id = 0;
1710 
1711 	if (cgrp)
1712 		cgrp_id = cgrp->kn->id;
1713 #endif
1714 
1715 	while (node) {
1716 		node_event = container_of(node, struct perf_event, group_node);
1717 
1718 		if (cpu < node_event->cpu) {
1719 			node = node->rb_left;
1720 			continue;
1721 		}
1722 		if (cpu > node_event->cpu) {
1723 			node = node->rb_right;
1724 			continue;
1725 		}
1726 #ifdef CONFIG_CGROUP_PERF
1727 		node_cgrp_id = 0;
1728 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1729 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1730 
1731 		if (cgrp_id < node_cgrp_id) {
1732 			node = node->rb_left;
1733 			continue;
1734 		}
1735 		if (cgrp_id > node_cgrp_id) {
1736 			node = node->rb_right;
1737 			continue;
1738 		}
1739 #endif
1740 		match = node_event;
1741 		node = node->rb_left;
1742 	}
1743 
1744 	return match;
1745 }
1746 
1747 /*
1748  * Like rb_entry_next_safe() for the @cpu subtree.
1749  */
1750 static struct perf_event *
1751 perf_event_groups_next(struct perf_event *event)
1752 {
1753 	struct perf_event *next;
1754 #ifdef CONFIG_CGROUP_PERF
1755 	u64 curr_cgrp_id = 0;
1756 	u64 next_cgrp_id = 0;
1757 #endif
1758 
1759 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1760 	if (next == NULL || next->cpu != event->cpu)
1761 		return NULL;
1762 
1763 #ifdef CONFIG_CGROUP_PERF
1764 	if (event->cgrp && event->cgrp->css.cgroup)
1765 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1766 
1767 	if (next->cgrp && next->cgrp->css.cgroup)
1768 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1769 
1770 	if (curr_cgrp_id != next_cgrp_id)
1771 		return NULL;
1772 #endif
1773 	return next;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->attr.inherit_stat)
1812 		ctx->nr_stat++;
1813 
1814 	if (event->state > PERF_EVENT_STATE_OFF)
1815 		perf_cgroup_event_enable(event, ctx);
1816 
1817 	ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 					      PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 	int entry = sizeof(u64); /* value */
1832 	int size = 0;
1833 	int nr = 1;
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 		size += sizeof(u64);
1837 
1838 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 		size += sizeof(u64);
1840 
1841 	if (event->attr.read_format & PERF_FORMAT_ID)
1842 		entry += sizeof(u64);
1843 
1844 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 		nr += nr_siblings;
1846 		size += sizeof(u64);
1847 	}
1848 
1849 	size += entry * nr;
1850 	event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 	struct perf_sample_data *data;
1856 	u16 size = 0;
1857 
1858 	if (sample_type & PERF_SAMPLE_IP)
1859 		size += sizeof(data->ip);
1860 
1861 	if (sample_type & PERF_SAMPLE_ADDR)
1862 		size += sizeof(data->addr);
1863 
1864 	if (sample_type & PERF_SAMPLE_PERIOD)
1865 		size += sizeof(data->period);
1866 
1867 	if (sample_type & PERF_SAMPLE_WEIGHT)
1868 		size += sizeof(data->weight);
1869 
1870 	if (sample_type & PERF_SAMPLE_READ)
1871 		size += event->read_size;
1872 
1873 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 		size += sizeof(data->data_src.val);
1875 
1876 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 		size += sizeof(data->txn);
1878 
1879 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 		size += sizeof(data->phys_addr);
1881 
1882 	if (sample_type & PERF_SAMPLE_CGROUP)
1883 		size += sizeof(data->cgroup);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	__perf_event_read_size(event,
1895 			       event->group_leader->nr_siblings);
1896 	__perf_event_header_size(event, event->attr.sample_type);
1897 }
1898 
1899 static void perf_event__id_header_size(struct perf_event *event)
1900 {
1901 	struct perf_sample_data *data;
1902 	u64 sample_type = event->attr.sample_type;
1903 	u16 size = 0;
1904 
1905 	if (sample_type & PERF_SAMPLE_TID)
1906 		size += sizeof(data->tid_entry);
1907 
1908 	if (sample_type & PERF_SAMPLE_TIME)
1909 		size += sizeof(data->time);
1910 
1911 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1912 		size += sizeof(data->id);
1913 
1914 	if (sample_type & PERF_SAMPLE_ID)
1915 		size += sizeof(data->id);
1916 
1917 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1918 		size += sizeof(data->stream_id);
1919 
1920 	if (sample_type & PERF_SAMPLE_CPU)
1921 		size += sizeof(data->cpu_entry);
1922 
1923 	event->id_header_size = size;
1924 }
1925 
1926 static bool perf_event_validate_size(struct perf_event *event)
1927 {
1928 	/*
1929 	 * The values computed here will be over-written when we actually
1930 	 * attach the event.
1931 	 */
1932 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1933 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1934 	perf_event__id_header_size(event);
1935 
1936 	/*
1937 	 * Sum the lot; should not exceed the 64k limit we have on records.
1938 	 * Conservative limit to allow for callchains and other variable fields.
1939 	 */
1940 	if (event->read_size + event->header_size +
1941 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1942 		return false;
1943 
1944 	return true;
1945 }
1946 
1947 static void perf_group_attach(struct perf_event *event)
1948 {
1949 	struct perf_event *group_leader = event->group_leader, *pos;
1950 
1951 	lockdep_assert_held(&event->ctx->lock);
1952 
1953 	/*
1954 	 * We can have double attach due to group movement in perf_event_open.
1955 	 */
1956 	if (event->attach_state & PERF_ATTACH_GROUP)
1957 		return;
1958 
1959 	event->attach_state |= PERF_ATTACH_GROUP;
1960 
1961 	if (group_leader == event)
1962 		return;
1963 
1964 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1965 
1966 	group_leader->group_caps &= event->event_caps;
1967 
1968 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1969 	group_leader->nr_siblings++;
1970 
1971 	perf_event__header_size(group_leader);
1972 
1973 	for_each_sibling_event(pos, group_leader)
1974 		perf_event__header_size(pos);
1975 }
1976 
1977 /*
1978  * Remove an event from the lists for its context.
1979  * Must be called with ctx->mutex and ctx->lock held.
1980  */
1981 static void
1982 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1983 {
1984 	WARN_ON_ONCE(event->ctx != ctx);
1985 	lockdep_assert_held(&ctx->lock);
1986 
1987 	/*
1988 	 * We can have double detach due to exit/hot-unplug + close.
1989 	 */
1990 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1991 		return;
1992 
1993 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1994 
1995 	ctx->nr_events--;
1996 	if (event->attr.inherit_stat)
1997 		ctx->nr_stat--;
1998 
1999 	list_del_rcu(&event->event_entry);
2000 
2001 	if (event->group_leader == event)
2002 		del_event_from_groups(event, ctx);
2003 
2004 	/*
2005 	 * If event was in error state, then keep it
2006 	 * that way, otherwise bogus counts will be
2007 	 * returned on read(). The only way to get out
2008 	 * of error state is by explicit re-enabling
2009 	 * of the event
2010 	 */
2011 	if (event->state > PERF_EVENT_STATE_OFF) {
2012 		perf_cgroup_event_disable(event, ctx);
2013 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2014 	}
2015 
2016 	ctx->generation++;
2017 }
2018 
2019 static int
2020 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2021 {
2022 	if (!has_aux(aux_event))
2023 		return 0;
2024 
2025 	if (!event->pmu->aux_output_match)
2026 		return 0;
2027 
2028 	return event->pmu->aux_output_match(aux_event);
2029 }
2030 
2031 static void put_event(struct perf_event *event);
2032 static void event_sched_out(struct perf_event *event,
2033 			    struct perf_cpu_context *cpuctx,
2034 			    struct perf_event_context *ctx);
2035 
2036 static void perf_put_aux_event(struct perf_event *event)
2037 {
2038 	struct perf_event_context *ctx = event->ctx;
2039 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040 	struct perf_event *iter;
2041 
2042 	/*
2043 	 * If event uses aux_event tear down the link
2044 	 */
2045 	if (event->aux_event) {
2046 		iter = event->aux_event;
2047 		event->aux_event = NULL;
2048 		put_event(iter);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * If the event is an aux_event, tear down all links to
2054 	 * it from other events.
2055 	 */
2056 	for_each_sibling_event(iter, event->group_leader) {
2057 		if (iter->aux_event != event)
2058 			continue;
2059 
2060 		iter->aux_event = NULL;
2061 		put_event(event);
2062 
2063 		/*
2064 		 * If it's ACTIVE, schedule it out and put it into ERROR
2065 		 * state so that we don't try to schedule it again. Note
2066 		 * that perf_event_enable() will clear the ERROR status.
2067 		 */
2068 		event_sched_out(iter, cpuctx, ctx);
2069 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2070 	}
2071 }
2072 
2073 static bool perf_need_aux_event(struct perf_event *event)
2074 {
2075 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 }
2077 
2078 static int perf_get_aux_event(struct perf_event *event,
2079 			      struct perf_event *group_leader)
2080 {
2081 	/*
2082 	 * Our group leader must be an aux event if we want to be
2083 	 * an aux_output. This way, the aux event will precede its
2084 	 * aux_output events in the group, and therefore will always
2085 	 * schedule first.
2086 	 */
2087 	if (!group_leader)
2088 		return 0;
2089 
2090 	/*
2091 	 * aux_output and aux_sample_size are mutually exclusive.
2092 	 */
2093 	if (event->attr.aux_output && event->attr.aux_sample_size)
2094 		return 0;
2095 
2096 	if (event->attr.aux_output &&
2097 	    !perf_aux_output_match(event, group_leader))
2098 		return 0;
2099 
2100 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 		return 0;
2102 
2103 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2104 		return 0;
2105 
2106 	/*
2107 	 * Link aux_outputs to their aux event; this is undone in
2108 	 * perf_group_detach() by perf_put_aux_event(). When the
2109 	 * group in torn down, the aux_output events loose their
2110 	 * link to the aux_event and can't schedule any more.
2111 	 */
2112 	event->aux_event = group_leader;
2113 
2114 	return 1;
2115 }
2116 
2117 static inline struct list_head *get_event_list(struct perf_event *event)
2118 {
2119 	struct perf_event_context *ctx = event->ctx;
2120 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2121 }
2122 
2123 static void perf_group_detach(struct perf_event *event)
2124 {
2125 	struct perf_event *sibling, *tmp;
2126 	struct perf_event_context *ctx = event->ctx;
2127 
2128 	lockdep_assert_held(&ctx->lock);
2129 
2130 	/*
2131 	 * We can have double detach due to exit/hot-unplug + close.
2132 	 */
2133 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2134 		return;
2135 
2136 	event->attach_state &= ~PERF_ATTACH_GROUP;
2137 
2138 	perf_put_aux_event(event);
2139 
2140 	/*
2141 	 * If this is a sibling, remove it from its group.
2142 	 */
2143 	if (event->group_leader != event) {
2144 		list_del_init(&event->sibling_list);
2145 		event->group_leader->nr_siblings--;
2146 		goto out;
2147 	}
2148 
2149 	/*
2150 	 * If this was a group event with sibling events then
2151 	 * upgrade the siblings to singleton events by adding them
2152 	 * to whatever list we are on.
2153 	 */
2154 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2155 
2156 		sibling->group_leader = sibling;
2157 		list_del_init(&sibling->sibling_list);
2158 
2159 		/* Inherit group flags from the previous leader */
2160 		sibling->group_caps = event->group_caps;
2161 
2162 		if (!RB_EMPTY_NODE(&event->group_node)) {
2163 			add_event_to_groups(sibling, event->ctx);
2164 
2165 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2166 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2167 		}
2168 
2169 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2170 	}
2171 
2172 out:
2173 	perf_event__header_size(event->group_leader);
2174 
2175 	for_each_sibling_event(tmp, event->group_leader)
2176 		perf_event__header_size(tmp);
2177 }
2178 
2179 static bool is_orphaned_event(struct perf_event *event)
2180 {
2181 	return event->state == PERF_EVENT_STATE_DEAD;
2182 }
2183 
2184 static inline int __pmu_filter_match(struct perf_event *event)
2185 {
2186 	struct pmu *pmu = event->pmu;
2187 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2188 }
2189 
2190 /*
2191  * Check whether we should attempt to schedule an event group based on
2192  * PMU-specific filtering. An event group can consist of HW and SW events,
2193  * potentially with a SW leader, so we must check all the filters, to
2194  * determine whether a group is schedulable:
2195  */
2196 static inline int pmu_filter_match(struct perf_event *event)
2197 {
2198 	struct perf_event *sibling;
2199 
2200 	if (!__pmu_filter_match(event))
2201 		return 0;
2202 
2203 	for_each_sibling_event(sibling, event) {
2204 		if (!__pmu_filter_match(sibling))
2205 			return 0;
2206 	}
2207 
2208 	return 1;
2209 }
2210 
2211 static inline int
2212 event_filter_match(struct perf_event *event)
2213 {
2214 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2215 	       perf_cgroup_match(event) && pmu_filter_match(event);
2216 }
2217 
2218 static void
2219 event_sched_out(struct perf_event *event,
2220 		  struct perf_cpu_context *cpuctx,
2221 		  struct perf_event_context *ctx)
2222 {
2223 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2224 
2225 	WARN_ON_ONCE(event->ctx != ctx);
2226 	lockdep_assert_held(&ctx->lock);
2227 
2228 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2229 		return;
2230 
2231 	/*
2232 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2233 	 * we can schedule events _OUT_ individually through things like
2234 	 * __perf_remove_from_context().
2235 	 */
2236 	list_del_init(&event->active_list);
2237 
2238 	perf_pmu_disable(event->pmu);
2239 
2240 	event->pmu->del(event, 0);
2241 	event->oncpu = -1;
2242 
2243 	if (READ_ONCE(event->pending_disable) >= 0) {
2244 		WRITE_ONCE(event->pending_disable, -1);
2245 		perf_cgroup_event_disable(event, ctx);
2246 		state = PERF_EVENT_STATE_OFF;
2247 	}
2248 	perf_event_set_state(event, state);
2249 
2250 	if (!is_software_event(event))
2251 		cpuctx->active_oncpu--;
2252 	if (!--ctx->nr_active)
2253 		perf_event_ctx_deactivate(ctx);
2254 	if (event->attr.freq && event->attr.sample_freq)
2255 		ctx->nr_freq--;
2256 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2257 		cpuctx->exclusive = 0;
2258 
2259 	perf_pmu_enable(event->pmu);
2260 }
2261 
2262 static void
2263 group_sched_out(struct perf_event *group_event,
2264 		struct perf_cpu_context *cpuctx,
2265 		struct perf_event_context *ctx)
2266 {
2267 	struct perf_event *event;
2268 
2269 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2270 		return;
2271 
2272 	perf_pmu_disable(ctx->pmu);
2273 
2274 	event_sched_out(group_event, cpuctx, ctx);
2275 
2276 	/*
2277 	 * Schedule out siblings (if any):
2278 	 */
2279 	for_each_sibling_event(event, group_event)
2280 		event_sched_out(event, cpuctx, ctx);
2281 
2282 	perf_pmu_enable(ctx->pmu);
2283 
2284 	if (group_event->attr.exclusive)
2285 		cpuctx->exclusive = 0;
2286 }
2287 
2288 #define DETACH_GROUP	0x01UL
2289 
2290 /*
2291  * Cross CPU call to remove a performance event
2292  *
2293  * We disable the event on the hardware level first. After that we
2294  * remove it from the context list.
2295  */
2296 static void
2297 __perf_remove_from_context(struct perf_event *event,
2298 			   struct perf_cpu_context *cpuctx,
2299 			   struct perf_event_context *ctx,
2300 			   void *info)
2301 {
2302 	unsigned long flags = (unsigned long)info;
2303 
2304 	if (ctx->is_active & EVENT_TIME) {
2305 		update_context_time(ctx);
2306 		update_cgrp_time_from_cpuctx(cpuctx);
2307 	}
2308 
2309 	event_sched_out(event, cpuctx, ctx);
2310 	if (flags & DETACH_GROUP)
2311 		perf_group_detach(event);
2312 	list_del_event(event, ctx);
2313 
2314 	if (!ctx->nr_events && ctx->is_active) {
2315 		ctx->is_active = 0;
2316 		ctx->rotate_necessary = 0;
2317 		if (ctx->task) {
2318 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2319 			cpuctx->task_ctx = NULL;
2320 		}
2321 	}
2322 }
2323 
2324 /*
2325  * Remove the event from a task's (or a CPU's) list of events.
2326  *
2327  * If event->ctx is a cloned context, callers must make sure that
2328  * every task struct that event->ctx->task could possibly point to
2329  * remains valid.  This is OK when called from perf_release since
2330  * that only calls us on the top-level context, which can't be a clone.
2331  * When called from perf_event_exit_task, it's OK because the
2332  * context has been detached from its task.
2333  */
2334 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2335 {
2336 	struct perf_event_context *ctx = event->ctx;
2337 
2338 	lockdep_assert_held(&ctx->mutex);
2339 
2340 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2341 
2342 	/*
2343 	 * The above event_function_call() can NO-OP when it hits
2344 	 * TASK_TOMBSTONE. In that case we must already have been detached
2345 	 * from the context (by perf_event_exit_event()) but the grouping
2346 	 * might still be in-tact.
2347 	 */
2348 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2349 	if ((flags & DETACH_GROUP) &&
2350 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2351 		/*
2352 		 * Since in that case we cannot possibly be scheduled, simply
2353 		 * detach now.
2354 		 */
2355 		raw_spin_lock_irq(&ctx->lock);
2356 		perf_group_detach(event);
2357 		raw_spin_unlock_irq(&ctx->lock);
2358 	}
2359 }
2360 
2361 /*
2362  * Cross CPU call to disable a performance event
2363  */
2364 static void __perf_event_disable(struct perf_event *event,
2365 				 struct perf_cpu_context *cpuctx,
2366 				 struct perf_event_context *ctx,
2367 				 void *info)
2368 {
2369 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2370 		return;
2371 
2372 	if (ctx->is_active & EVENT_TIME) {
2373 		update_context_time(ctx);
2374 		update_cgrp_time_from_event(event);
2375 	}
2376 
2377 	if (event == event->group_leader)
2378 		group_sched_out(event, cpuctx, ctx);
2379 	else
2380 		event_sched_out(event, cpuctx, ctx);
2381 
2382 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2383 	perf_cgroup_event_disable(event, ctx);
2384 }
2385 
2386 /*
2387  * Disable an event.
2388  *
2389  * If event->ctx is a cloned context, callers must make sure that
2390  * every task struct that event->ctx->task could possibly point to
2391  * remains valid.  This condition is satisfied when called through
2392  * perf_event_for_each_child or perf_event_for_each because they
2393  * hold the top-level event's child_mutex, so any descendant that
2394  * goes to exit will block in perf_event_exit_event().
2395  *
2396  * When called from perf_pending_event it's OK because event->ctx
2397  * is the current context on this CPU and preemption is disabled,
2398  * hence we can't get into perf_event_task_sched_out for this context.
2399  */
2400 static void _perf_event_disable(struct perf_event *event)
2401 {
2402 	struct perf_event_context *ctx = event->ctx;
2403 
2404 	raw_spin_lock_irq(&ctx->lock);
2405 	if (event->state <= PERF_EVENT_STATE_OFF) {
2406 		raw_spin_unlock_irq(&ctx->lock);
2407 		return;
2408 	}
2409 	raw_spin_unlock_irq(&ctx->lock);
2410 
2411 	event_function_call(event, __perf_event_disable, NULL);
2412 }
2413 
2414 void perf_event_disable_local(struct perf_event *event)
2415 {
2416 	event_function_local(event, __perf_event_disable, NULL);
2417 }
2418 
2419 /*
2420  * Strictly speaking kernel users cannot create groups and therefore this
2421  * interface does not need the perf_event_ctx_lock() magic.
2422  */
2423 void perf_event_disable(struct perf_event *event)
2424 {
2425 	struct perf_event_context *ctx;
2426 
2427 	ctx = perf_event_ctx_lock(event);
2428 	_perf_event_disable(event);
2429 	perf_event_ctx_unlock(event, ctx);
2430 }
2431 EXPORT_SYMBOL_GPL(perf_event_disable);
2432 
2433 void perf_event_disable_inatomic(struct perf_event *event)
2434 {
2435 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2436 	/* can fail, see perf_pending_event_disable() */
2437 	irq_work_queue(&event->pending);
2438 }
2439 
2440 static void perf_set_shadow_time(struct perf_event *event,
2441 				 struct perf_event_context *ctx)
2442 {
2443 	/*
2444 	 * use the correct time source for the time snapshot
2445 	 *
2446 	 * We could get by without this by leveraging the
2447 	 * fact that to get to this function, the caller
2448 	 * has most likely already called update_context_time()
2449 	 * and update_cgrp_time_xx() and thus both timestamp
2450 	 * are identical (or very close). Given that tstamp is,
2451 	 * already adjusted for cgroup, we could say that:
2452 	 *    tstamp - ctx->timestamp
2453 	 * is equivalent to
2454 	 *    tstamp - cgrp->timestamp.
2455 	 *
2456 	 * Then, in perf_output_read(), the calculation would
2457 	 * work with no changes because:
2458 	 * - event is guaranteed scheduled in
2459 	 * - no scheduled out in between
2460 	 * - thus the timestamp would be the same
2461 	 *
2462 	 * But this is a bit hairy.
2463 	 *
2464 	 * So instead, we have an explicit cgroup call to remain
2465 	 * within the time time source all along. We believe it
2466 	 * is cleaner and simpler to understand.
2467 	 */
2468 	if (is_cgroup_event(event))
2469 		perf_cgroup_set_shadow_time(event, event->tstamp);
2470 	else
2471 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2472 }
2473 
2474 #define MAX_INTERRUPTS (~0ULL)
2475 
2476 static void perf_log_throttle(struct perf_event *event, int enable);
2477 static void perf_log_itrace_start(struct perf_event *event);
2478 
2479 static int
2480 event_sched_in(struct perf_event *event,
2481 		 struct perf_cpu_context *cpuctx,
2482 		 struct perf_event_context *ctx)
2483 {
2484 	int ret = 0;
2485 
2486 	WARN_ON_ONCE(event->ctx != ctx);
2487 
2488 	lockdep_assert_held(&ctx->lock);
2489 
2490 	if (event->state <= PERF_EVENT_STATE_OFF)
2491 		return 0;
2492 
2493 	WRITE_ONCE(event->oncpu, smp_processor_id());
2494 	/*
2495 	 * Order event::oncpu write to happen before the ACTIVE state is
2496 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2497 	 * ->oncpu if it sees ACTIVE.
2498 	 */
2499 	smp_wmb();
2500 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2501 
2502 	/*
2503 	 * Unthrottle events, since we scheduled we might have missed several
2504 	 * ticks already, also for a heavily scheduling task there is little
2505 	 * guarantee it'll get a tick in a timely manner.
2506 	 */
2507 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2508 		perf_log_throttle(event, 1);
2509 		event->hw.interrupts = 0;
2510 	}
2511 
2512 	perf_pmu_disable(event->pmu);
2513 
2514 	perf_set_shadow_time(event, ctx);
2515 
2516 	perf_log_itrace_start(event);
2517 
2518 	if (event->pmu->add(event, PERF_EF_START)) {
2519 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2520 		event->oncpu = -1;
2521 		ret = -EAGAIN;
2522 		goto out;
2523 	}
2524 
2525 	if (!is_software_event(event))
2526 		cpuctx->active_oncpu++;
2527 	if (!ctx->nr_active++)
2528 		perf_event_ctx_activate(ctx);
2529 	if (event->attr.freq && event->attr.sample_freq)
2530 		ctx->nr_freq++;
2531 
2532 	if (event->attr.exclusive)
2533 		cpuctx->exclusive = 1;
2534 
2535 out:
2536 	perf_pmu_enable(event->pmu);
2537 
2538 	return ret;
2539 }
2540 
2541 static int
2542 group_sched_in(struct perf_event *group_event,
2543 	       struct perf_cpu_context *cpuctx,
2544 	       struct perf_event_context *ctx)
2545 {
2546 	struct perf_event *event, *partial_group = NULL;
2547 	struct pmu *pmu = ctx->pmu;
2548 
2549 	if (group_event->state == PERF_EVENT_STATE_OFF)
2550 		return 0;
2551 
2552 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2553 
2554 	if (event_sched_in(group_event, cpuctx, ctx)) {
2555 		pmu->cancel_txn(pmu);
2556 		perf_mux_hrtimer_restart(cpuctx);
2557 		return -EAGAIN;
2558 	}
2559 
2560 	/*
2561 	 * Schedule in siblings as one group (if any):
2562 	 */
2563 	for_each_sibling_event(event, group_event) {
2564 		if (event_sched_in(event, cpuctx, ctx)) {
2565 			partial_group = event;
2566 			goto group_error;
2567 		}
2568 	}
2569 
2570 	if (!pmu->commit_txn(pmu))
2571 		return 0;
2572 
2573 group_error:
2574 	/*
2575 	 * Groups can be scheduled in as one unit only, so undo any
2576 	 * partial group before returning:
2577 	 * The events up to the failed event are scheduled out normally.
2578 	 */
2579 	for_each_sibling_event(event, group_event) {
2580 		if (event == partial_group)
2581 			break;
2582 
2583 		event_sched_out(event, cpuctx, ctx);
2584 	}
2585 	event_sched_out(group_event, cpuctx, ctx);
2586 
2587 	pmu->cancel_txn(pmu);
2588 
2589 	perf_mux_hrtimer_restart(cpuctx);
2590 
2591 	return -EAGAIN;
2592 }
2593 
2594 /*
2595  * Work out whether we can put this event group on the CPU now.
2596  */
2597 static int group_can_go_on(struct perf_event *event,
2598 			   struct perf_cpu_context *cpuctx,
2599 			   int can_add_hw)
2600 {
2601 	/*
2602 	 * Groups consisting entirely of software events can always go on.
2603 	 */
2604 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2605 		return 1;
2606 	/*
2607 	 * If an exclusive group is already on, no other hardware
2608 	 * events can go on.
2609 	 */
2610 	if (cpuctx->exclusive)
2611 		return 0;
2612 	/*
2613 	 * If this group is exclusive and there are already
2614 	 * events on the CPU, it can't go on.
2615 	 */
2616 	if (event->attr.exclusive && cpuctx->active_oncpu)
2617 		return 0;
2618 	/*
2619 	 * Otherwise, try to add it if all previous groups were able
2620 	 * to go on.
2621 	 */
2622 	return can_add_hw;
2623 }
2624 
2625 static void add_event_to_ctx(struct perf_event *event,
2626 			       struct perf_event_context *ctx)
2627 {
2628 	list_add_event(event, ctx);
2629 	perf_group_attach(event);
2630 }
2631 
2632 static void ctx_sched_out(struct perf_event_context *ctx,
2633 			  struct perf_cpu_context *cpuctx,
2634 			  enum event_type_t event_type);
2635 static void
2636 ctx_sched_in(struct perf_event_context *ctx,
2637 	     struct perf_cpu_context *cpuctx,
2638 	     enum event_type_t event_type,
2639 	     struct task_struct *task);
2640 
2641 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2642 			       struct perf_event_context *ctx,
2643 			       enum event_type_t event_type)
2644 {
2645 	if (!cpuctx->task_ctx)
2646 		return;
2647 
2648 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2649 		return;
2650 
2651 	ctx_sched_out(ctx, cpuctx, event_type);
2652 }
2653 
2654 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2655 				struct perf_event_context *ctx,
2656 				struct task_struct *task)
2657 {
2658 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2659 	if (ctx)
2660 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2661 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2662 	if (ctx)
2663 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2664 }
2665 
2666 /*
2667  * We want to maintain the following priority of scheduling:
2668  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2669  *  - task pinned (EVENT_PINNED)
2670  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2671  *  - task flexible (EVENT_FLEXIBLE).
2672  *
2673  * In order to avoid unscheduling and scheduling back in everything every
2674  * time an event is added, only do it for the groups of equal priority and
2675  * below.
2676  *
2677  * This can be called after a batch operation on task events, in which case
2678  * event_type is a bit mask of the types of events involved. For CPU events,
2679  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2680  */
2681 static void ctx_resched(struct perf_cpu_context *cpuctx,
2682 			struct perf_event_context *task_ctx,
2683 			enum event_type_t event_type)
2684 {
2685 	enum event_type_t ctx_event_type;
2686 	bool cpu_event = !!(event_type & EVENT_CPU);
2687 
2688 	/*
2689 	 * If pinned groups are involved, flexible groups also need to be
2690 	 * scheduled out.
2691 	 */
2692 	if (event_type & EVENT_PINNED)
2693 		event_type |= EVENT_FLEXIBLE;
2694 
2695 	ctx_event_type = event_type & EVENT_ALL;
2696 
2697 	perf_pmu_disable(cpuctx->ctx.pmu);
2698 	if (task_ctx)
2699 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2700 
2701 	/*
2702 	 * Decide which cpu ctx groups to schedule out based on the types
2703 	 * of events that caused rescheduling:
2704 	 *  - EVENT_CPU: schedule out corresponding groups;
2705 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2706 	 *  - otherwise, do nothing more.
2707 	 */
2708 	if (cpu_event)
2709 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2710 	else if (ctx_event_type & EVENT_PINNED)
2711 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2712 
2713 	perf_event_sched_in(cpuctx, task_ctx, current);
2714 	perf_pmu_enable(cpuctx->ctx.pmu);
2715 }
2716 
2717 void perf_pmu_resched(struct pmu *pmu)
2718 {
2719 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2720 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2721 
2722 	perf_ctx_lock(cpuctx, task_ctx);
2723 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2724 	perf_ctx_unlock(cpuctx, task_ctx);
2725 }
2726 
2727 /*
2728  * Cross CPU call to install and enable a performance event
2729  *
2730  * Very similar to remote_function() + event_function() but cannot assume that
2731  * things like ctx->is_active and cpuctx->task_ctx are set.
2732  */
2733 static int  __perf_install_in_context(void *info)
2734 {
2735 	struct perf_event *event = info;
2736 	struct perf_event_context *ctx = event->ctx;
2737 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2738 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2739 	bool reprogram = true;
2740 	int ret = 0;
2741 
2742 	raw_spin_lock(&cpuctx->ctx.lock);
2743 	if (ctx->task) {
2744 		raw_spin_lock(&ctx->lock);
2745 		task_ctx = ctx;
2746 
2747 		reprogram = (ctx->task == current);
2748 
2749 		/*
2750 		 * If the task is running, it must be running on this CPU,
2751 		 * otherwise we cannot reprogram things.
2752 		 *
2753 		 * If its not running, we don't care, ctx->lock will
2754 		 * serialize against it becoming runnable.
2755 		 */
2756 		if (task_curr(ctx->task) && !reprogram) {
2757 			ret = -ESRCH;
2758 			goto unlock;
2759 		}
2760 
2761 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2762 	} else if (task_ctx) {
2763 		raw_spin_lock(&task_ctx->lock);
2764 	}
2765 
2766 #ifdef CONFIG_CGROUP_PERF
2767 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2768 		/*
2769 		 * If the current cgroup doesn't match the event's
2770 		 * cgroup, we should not try to schedule it.
2771 		 */
2772 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2773 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2774 					event->cgrp->css.cgroup);
2775 	}
2776 #endif
2777 
2778 	if (reprogram) {
2779 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2780 		add_event_to_ctx(event, ctx);
2781 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2782 	} else {
2783 		add_event_to_ctx(event, ctx);
2784 	}
2785 
2786 unlock:
2787 	perf_ctx_unlock(cpuctx, task_ctx);
2788 
2789 	return ret;
2790 }
2791 
2792 static bool exclusive_event_installable(struct perf_event *event,
2793 					struct perf_event_context *ctx);
2794 
2795 /*
2796  * Attach a performance event to a context.
2797  *
2798  * Very similar to event_function_call, see comment there.
2799  */
2800 static void
2801 perf_install_in_context(struct perf_event_context *ctx,
2802 			struct perf_event *event,
2803 			int cpu)
2804 {
2805 	struct task_struct *task = READ_ONCE(ctx->task);
2806 
2807 	lockdep_assert_held(&ctx->mutex);
2808 
2809 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2810 
2811 	if (event->cpu != -1)
2812 		event->cpu = cpu;
2813 
2814 	/*
2815 	 * Ensures that if we can observe event->ctx, both the event and ctx
2816 	 * will be 'complete'. See perf_iterate_sb_cpu().
2817 	 */
2818 	smp_store_release(&event->ctx, ctx);
2819 
2820 	/*
2821 	 * perf_event_attr::disabled events will not run and can be initialized
2822 	 * without IPI. Except when this is the first event for the context, in
2823 	 * that case we need the magic of the IPI to set ctx->is_active.
2824 	 *
2825 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2826 	 * event will issue the IPI and reprogram the hardware.
2827 	 */
2828 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2829 		raw_spin_lock_irq(&ctx->lock);
2830 		if (ctx->task == TASK_TOMBSTONE) {
2831 			raw_spin_unlock_irq(&ctx->lock);
2832 			return;
2833 		}
2834 		add_event_to_ctx(event, ctx);
2835 		raw_spin_unlock_irq(&ctx->lock);
2836 		return;
2837 	}
2838 
2839 	if (!task) {
2840 		cpu_function_call(cpu, __perf_install_in_context, event);
2841 		return;
2842 	}
2843 
2844 	/*
2845 	 * Should not happen, we validate the ctx is still alive before calling.
2846 	 */
2847 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2848 		return;
2849 
2850 	/*
2851 	 * Installing events is tricky because we cannot rely on ctx->is_active
2852 	 * to be set in case this is the nr_events 0 -> 1 transition.
2853 	 *
2854 	 * Instead we use task_curr(), which tells us if the task is running.
2855 	 * However, since we use task_curr() outside of rq::lock, we can race
2856 	 * against the actual state. This means the result can be wrong.
2857 	 *
2858 	 * If we get a false positive, we retry, this is harmless.
2859 	 *
2860 	 * If we get a false negative, things are complicated. If we are after
2861 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2862 	 * value must be correct. If we're before, it doesn't matter since
2863 	 * perf_event_context_sched_in() will program the counter.
2864 	 *
2865 	 * However, this hinges on the remote context switch having observed
2866 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2867 	 * ctx::lock in perf_event_context_sched_in().
2868 	 *
2869 	 * We do this by task_function_call(), if the IPI fails to hit the task
2870 	 * we know any future context switch of task must see the
2871 	 * perf_event_ctpx[] store.
2872 	 */
2873 
2874 	/*
2875 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2876 	 * task_cpu() load, such that if the IPI then does not find the task
2877 	 * running, a future context switch of that task must observe the
2878 	 * store.
2879 	 */
2880 	smp_mb();
2881 again:
2882 	if (!task_function_call(task, __perf_install_in_context, event))
2883 		return;
2884 
2885 	raw_spin_lock_irq(&ctx->lock);
2886 	task = ctx->task;
2887 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2888 		/*
2889 		 * Cannot happen because we already checked above (which also
2890 		 * cannot happen), and we hold ctx->mutex, which serializes us
2891 		 * against perf_event_exit_task_context().
2892 		 */
2893 		raw_spin_unlock_irq(&ctx->lock);
2894 		return;
2895 	}
2896 	/*
2897 	 * If the task is not running, ctx->lock will avoid it becoming so,
2898 	 * thus we can safely install the event.
2899 	 */
2900 	if (task_curr(task)) {
2901 		raw_spin_unlock_irq(&ctx->lock);
2902 		goto again;
2903 	}
2904 	add_event_to_ctx(event, ctx);
2905 	raw_spin_unlock_irq(&ctx->lock);
2906 }
2907 
2908 /*
2909  * Cross CPU call to enable a performance event
2910  */
2911 static void __perf_event_enable(struct perf_event *event,
2912 				struct perf_cpu_context *cpuctx,
2913 				struct perf_event_context *ctx,
2914 				void *info)
2915 {
2916 	struct perf_event *leader = event->group_leader;
2917 	struct perf_event_context *task_ctx;
2918 
2919 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2920 	    event->state <= PERF_EVENT_STATE_ERROR)
2921 		return;
2922 
2923 	if (ctx->is_active)
2924 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2925 
2926 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2927 	perf_cgroup_event_enable(event, ctx);
2928 
2929 	if (!ctx->is_active)
2930 		return;
2931 
2932 	if (!event_filter_match(event)) {
2933 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2934 		return;
2935 	}
2936 
2937 	/*
2938 	 * If the event is in a group and isn't the group leader,
2939 	 * then don't put it on unless the group is on.
2940 	 */
2941 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2942 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2943 		return;
2944 	}
2945 
2946 	task_ctx = cpuctx->task_ctx;
2947 	if (ctx->task)
2948 		WARN_ON_ONCE(task_ctx != ctx);
2949 
2950 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2951 }
2952 
2953 /*
2954  * Enable an event.
2955  *
2956  * If event->ctx is a cloned context, callers must make sure that
2957  * every task struct that event->ctx->task could possibly point to
2958  * remains valid.  This condition is satisfied when called through
2959  * perf_event_for_each_child or perf_event_for_each as described
2960  * for perf_event_disable.
2961  */
2962 static void _perf_event_enable(struct perf_event *event)
2963 {
2964 	struct perf_event_context *ctx = event->ctx;
2965 
2966 	raw_spin_lock_irq(&ctx->lock);
2967 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2968 	    event->state <  PERF_EVENT_STATE_ERROR) {
2969 		raw_spin_unlock_irq(&ctx->lock);
2970 		return;
2971 	}
2972 
2973 	/*
2974 	 * If the event is in error state, clear that first.
2975 	 *
2976 	 * That way, if we see the event in error state below, we know that it
2977 	 * has gone back into error state, as distinct from the task having
2978 	 * been scheduled away before the cross-call arrived.
2979 	 */
2980 	if (event->state == PERF_EVENT_STATE_ERROR)
2981 		event->state = PERF_EVENT_STATE_OFF;
2982 	raw_spin_unlock_irq(&ctx->lock);
2983 
2984 	event_function_call(event, __perf_event_enable, NULL);
2985 }
2986 
2987 /*
2988  * See perf_event_disable();
2989  */
2990 void perf_event_enable(struct perf_event *event)
2991 {
2992 	struct perf_event_context *ctx;
2993 
2994 	ctx = perf_event_ctx_lock(event);
2995 	_perf_event_enable(event);
2996 	perf_event_ctx_unlock(event, ctx);
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_enable);
2999 
3000 struct stop_event_data {
3001 	struct perf_event	*event;
3002 	unsigned int		restart;
3003 };
3004 
3005 static int __perf_event_stop(void *info)
3006 {
3007 	struct stop_event_data *sd = info;
3008 	struct perf_event *event = sd->event;
3009 
3010 	/* if it's already INACTIVE, do nothing */
3011 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012 		return 0;
3013 
3014 	/* matches smp_wmb() in event_sched_in() */
3015 	smp_rmb();
3016 
3017 	/*
3018 	 * There is a window with interrupts enabled before we get here,
3019 	 * so we need to check again lest we try to stop another CPU's event.
3020 	 */
3021 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3022 		return -EAGAIN;
3023 
3024 	event->pmu->stop(event, PERF_EF_UPDATE);
3025 
3026 	/*
3027 	 * May race with the actual stop (through perf_pmu_output_stop()),
3028 	 * but it is only used for events with AUX ring buffer, and such
3029 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3030 	 * see comments in perf_aux_output_begin().
3031 	 *
3032 	 * Since this is happening on an event-local CPU, no trace is lost
3033 	 * while restarting.
3034 	 */
3035 	if (sd->restart)
3036 		event->pmu->start(event, 0);
3037 
3038 	return 0;
3039 }
3040 
3041 static int perf_event_stop(struct perf_event *event, int restart)
3042 {
3043 	struct stop_event_data sd = {
3044 		.event		= event,
3045 		.restart	= restart,
3046 	};
3047 	int ret = 0;
3048 
3049 	do {
3050 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 			return 0;
3052 
3053 		/* matches smp_wmb() in event_sched_in() */
3054 		smp_rmb();
3055 
3056 		/*
3057 		 * We only want to restart ACTIVE events, so if the event goes
3058 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3059 		 * fall through with ret==-ENXIO.
3060 		 */
3061 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3062 					__perf_event_stop, &sd);
3063 	} while (ret == -EAGAIN);
3064 
3065 	return ret;
3066 }
3067 
3068 /*
3069  * In order to contain the amount of racy and tricky in the address filter
3070  * configuration management, it is a two part process:
3071  *
3072  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3073  *      we update the addresses of corresponding vmas in
3074  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3075  * (p2) when an event is scheduled in (pmu::add), it calls
3076  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3077  *      if the generation has changed since the previous call.
3078  *
3079  * If (p1) happens while the event is active, we restart it to force (p2).
3080  *
3081  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3082  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3083  *     ioctl;
3084  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3085  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3086  *     for reading;
3087  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088  *     of exec.
3089  */
3090 void perf_event_addr_filters_sync(struct perf_event *event)
3091 {
3092 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3093 
3094 	if (!has_addr_filter(event))
3095 		return;
3096 
3097 	raw_spin_lock(&ifh->lock);
3098 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3099 		event->pmu->addr_filters_sync(event);
3100 		event->hw.addr_filters_gen = event->addr_filters_gen;
3101 	}
3102 	raw_spin_unlock(&ifh->lock);
3103 }
3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3105 
3106 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 {
3108 	/*
3109 	 * not supported on inherited events
3110 	 */
3111 	if (event->attr.inherit || !is_sampling_event(event))
3112 		return -EINVAL;
3113 
3114 	atomic_add(refresh, &event->event_limit);
3115 	_perf_event_enable(event);
3116 
3117 	return 0;
3118 }
3119 
3120 /*
3121  * See perf_event_disable()
3122  */
3123 int perf_event_refresh(struct perf_event *event, int refresh)
3124 {
3125 	struct perf_event_context *ctx;
3126 	int ret;
3127 
3128 	ctx = perf_event_ctx_lock(event);
3129 	ret = _perf_event_refresh(event, refresh);
3130 	perf_event_ctx_unlock(event, ctx);
3131 
3132 	return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_refresh);
3135 
3136 static int perf_event_modify_breakpoint(struct perf_event *bp,
3137 					 struct perf_event_attr *attr)
3138 {
3139 	int err;
3140 
3141 	_perf_event_disable(bp);
3142 
3143 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3144 
3145 	if (!bp->attr.disabled)
3146 		_perf_event_enable(bp);
3147 
3148 	return err;
3149 }
3150 
3151 static int perf_event_modify_attr(struct perf_event *event,
3152 				  struct perf_event_attr *attr)
3153 {
3154 	if (event->attr.type != attr->type)
3155 		return -EINVAL;
3156 
3157 	switch (event->attr.type) {
3158 	case PERF_TYPE_BREAKPOINT:
3159 		return perf_event_modify_breakpoint(event, attr);
3160 	default:
3161 		/* Place holder for future additions. */
3162 		return -EOPNOTSUPP;
3163 	}
3164 }
3165 
3166 static void ctx_sched_out(struct perf_event_context *ctx,
3167 			  struct perf_cpu_context *cpuctx,
3168 			  enum event_type_t event_type)
3169 {
3170 	struct perf_event *event, *tmp;
3171 	int is_active = ctx->is_active;
3172 
3173 	lockdep_assert_held(&ctx->lock);
3174 
3175 	if (likely(!ctx->nr_events)) {
3176 		/*
3177 		 * See __perf_remove_from_context().
3178 		 */
3179 		WARN_ON_ONCE(ctx->is_active);
3180 		if (ctx->task)
3181 			WARN_ON_ONCE(cpuctx->task_ctx);
3182 		return;
3183 	}
3184 
3185 	ctx->is_active &= ~event_type;
3186 	if (!(ctx->is_active & EVENT_ALL))
3187 		ctx->is_active = 0;
3188 
3189 	if (ctx->task) {
3190 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3191 		if (!ctx->is_active)
3192 			cpuctx->task_ctx = NULL;
3193 	}
3194 
3195 	/*
3196 	 * Always update time if it was set; not only when it changes.
3197 	 * Otherwise we can 'forget' to update time for any but the last
3198 	 * context we sched out. For example:
3199 	 *
3200 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3201 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3202 	 *
3203 	 * would only update time for the pinned events.
3204 	 */
3205 	if (is_active & EVENT_TIME) {
3206 		/* update (and stop) ctx time */
3207 		update_context_time(ctx);
3208 		update_cgrp_time_from_cpuctx(cpuctx);
3209 	}
3210 
3211 	is_active ^= ctx->is_active; /* changed bits */
3212 
3213 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3214 		return;
3215 
3216 	perf_pmu_disable(ctx->pmu);
3217 	if (is_active & EVENT_PINNED) {
3218 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3219 			group_sched_out(event, cpuctx, ctx);
3220 	}
3221 
3222 	if (is_active & EVENT_FLEXIBLE) {
3223 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3224 			group_sched_out(event, cpuctx, ctx);
3225 
3226 		/*
3227 		 * Since we cleared EVENT_FLEXIBLE, also clear
3228 		 * rotate_necessary, is will be reset by
3229 		 * ctx_flexible_sched_in() when needed.
3230 		 */
3231 		ctx->rotate_necessary = 0;
3232 	}
3233 	perf_pmu_enable(ctx->pmu);
3234 }
3235 
3236 /*
3237  * Test whether two contexts are equivalent, i.e. whether they have both been
3238  * cloned from the same version of the same context.
3239  *
3240  * Equivalence is measured using a generation number in the context that is
3241  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3242  * and list_del_event().
3243  */
3244 static int context_equiv(struct perf_event_context *ctx1,
3245 			 struct perf_event_context *ctx2)
3246 {
3247 	lockdep_assert_held(&ctx1->lock);
3248 	lockdep_assert_held(&ctx2->lock);
3249 
3250 	/* Pinning disables the swap optimization */
3251 	if (ctx1->pin_count || ctx2->pin_count)
3252 		return 0;
3253 
3254 	/* If ctx1 is the parent of ctx2 */
3255 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3256 		return 1;
3257 
3258 	/* If ctx2 is the parent of ctx1 */
3259 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3260 		return 1;
3261 
3262 	/*
3263 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3264 	 * hierarchy, see perf_event_init_context().
3265 	 */
3266 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3267 			ctx1->parent_gen == ctx2->parent_gen)
3268 		return 1;
3269 
3270 	/* Unmatched */
3271 	return 0;
3272 }
3273 
3274 static void __perf_event_sync_stat(struct perf_event *event,
3275 				     struct perf_event *next_event)
3276 {
3277 	u64 value;
3278 
3279 	if (!event->attr.inherit_stat)
3280 		return;
3281 
3282 	/*
3283 	 * Update the event value, we cannot use perf_event_read()
3284 	 * because we're in the middle of a context switch and have IRQs
3285 	 * disabled, which upsets smp_call_function_single(), however
3286 	 * we know the event must be on the current CPU, therefore we
3287 	 * don't need to use it.
3288 	 */
3289 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3290 		event->pmu->read(event);
3291 
3292 	perf_event_update_time(event);
3293 
3294 	/*
3295 	 * In order to keep per-task stats reliable we need to flip the event
3296 	 * values when we flip the contexts.
3297 	 */
3298 	value = local64_read(&next_event->count);
3299 	value = local64_xchg(&event->count, value);
3300 	local64_set(&next_event->count, value);
3301 
3302 	swap(event->total_time_enabled, next_event->total_time_enabled);
3303 	swap(event->total_time_running, next_event->total_time_running);
3304 
3305 	/*
3306 	 * Since we swizzled the values, update the user visible data too.
3307 	 */
3308 	perf_event_update_userpage(event);
3309 	perf_event_update_userpage(next_event);
3310 }
3311 
3312 static void perf_event_sync_stat(struct perf_event_context *ctx,
3313 				   struct perf_event_context *next_ctx)
3314 {
3315 	struct perf_event *event, *next_event;
3316 
3317 	if (!ctx->nr_stat)
3318 		return;
3319 
3320 	update_context_time(ctx);
3321 
3322 	event = list_first_entry(&ctx->event_list,
3323 				   struct perf_event, event_entry);
3324 
3325 	next_event = list_first_entry(&next_ctx->event_list,
3326 					struct perf_event, event_entry);
3327 
3328 	while (&event->event_entry != &ctx->event_list &&
3329 	       &next_event->event_entry != &next_ctx->event_list) {
3330 
3331 		__perf_event_sync_stat(event, next_event);
3332 
3333 		event = list_next_entry(event, event_entry);
3334 		next_event = list_next_entry(next_event, event_entry);
3335 	}
3336 }
3337 
3338 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3339 					 struct task_struct *next)
3340 {
3341 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3342 	struct perf_event_context *next_ctx;
3343 	struct perf_event_context *parent, *next_parent;
3344 	struct perf_cpu_context *cpuctx;
3345 	int do_switch = 1;
3346 
3347 	if (likely(!ctx))
3348 		return;
3349 
3350 	cpuctx = __get_cpu_context(ctx);
3351 	if (!cpuctx->task_ctx)
3352 		return;
3353 
3354 	rcu_read_lock();
3355 	next_ctx = next->perf_event_ctxp[ctxn];
3356 	if (!next_ctx)
3357 		goto unlock;
3358 
3359 	parent = rcu_dereference(ctx->parent_ctx);
3360 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3361 
3362 	/* If neither context have a parent context; they cannot be clones. */
3363 	if (!parent && !next_parent)
3364 		goto unlock;
3365 
3366 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3367 		/*
3368 		 * Looks like the two contexts are clones, so we might be
3369 		 * able to optimize the context switch.  We lock both
3370 		 * contexts and check that they are clones under the
3371 		 * lock (including re-checking that neither has been
3372 		 * uncloned in the meantime).  It doesn't matter which
3373 		 * order we take the locks because no other cpu could
3374 		 * be trying to lock both of these tasks.
3375 		 */
3376 		raw_spin_lock(&ctx->lock);
3377 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3378 		if (context_equiv(ctx, next_ctx)) {
3379 			struct pmu *pmu = ctx->pmu;
3380 
3381 			WRITE_ONCE(ctx->task, next);
3382 			WRITE_ONCE(next_ctx->task, task);
3383 
3384 			/*
3385 			 * PMU specific parts of task perf context can require
3386 			 * additional synchronization. As an example of such
3387 			 * synchronization see implementation details of Intel
3388 			 * LBR call stack data profiling;
3389 			 */
3390 			if (pmu->swap_task_ctx)
3391 				pmu->swap_task_ctx(ctx, next_ctx);
3392 			else
3393 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3394 
3395 			/*
3396 			 * RCU_INIT_POINTER here is safe because we've not
3397 			 * modified the ctx and the above modification of
3398 			 * ctx->task and ctx->task_ctx_data are immaterial
3399 			 * since those values are always verified under
3400 			 * ctx->lock which we're now holding.
3401 			 */
3402 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3403 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3404 
3405 			do_switch = 0;
3406 
3407 			perf_event_sync_stat(ctx, next_ctx);
3408 		}
3409 		raw_spin_unlock(&next_ctx->lock);
3410 		raw_spin_unlock(&ctx->lock);
3411 	}
3412 unlock:
3413 	rcu_read_unlock();
3414 
3415 	if (do_switch) {
3416 		raw_spin_lock(&ctx->lock);
3417 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3418 		raw_spin_unlock(&ctx->lock);
3419 	}
3420 }
3421 
3422 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3423 
3424 void perf_sched_cb_dec(struct pmu *pmu)
3425 {
3426 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3427 
3428 	this_cpu_dec(perf_sched_cb_usages);
3429 
3430 	if (!--cpuctx->sched_cb_usage)
3431 		list_del(&cpuctx->sched_cb_entry);
3432 }
3433 
3434 
3435 void perf_sched_cb_inc(struct pmu *pmu)
3436 {
3437 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3438 
3439 	if (!cpuctx->sched_cb_usage++)
3440 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3441 
3442 	this_cpu_inc(perf_sched_cb_usages);
3443 }
3444 
3445 /*
3446  * This function provides the context switch callback to the lower code
3447  * layer. It is invoked ONLY when the context switch callback is enabled.
3448  *
3449  * This callback is relevant even to per-cpu events; for example multi event
3450  * PEBS requires this to provide PID/TID information. This requires we flush
3451  * all queued PEBS records before we context switch to a new task.
3452  */
3453 static void perf_pmu_sched_task(struct task_struct *prev,
3454 				struct task_struct *next,
3455 				bool sched_in)
3456 {
3457 	struct perf_cpu_context *cpuctx;
3458 	struct pmu *pmu;
3459 
3460 	if (prev == next)
3461 		return;
3462 
3463 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3464 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3465 
3466 		if (WARN_ON_ONCE(!pmu->sched_task))
3467 			continue;
3468 
3469 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3470 		perf_pmu_disable(pmu);
3471 
3472 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3473 
3474 		perf_pmu_enable(pmu);
3475 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3476 	}
3477 }
3478 
3479 static void perf_event_switch(struct task_struct *task,
3480 			      struct task_struct *next_prev, bool sched_in);
3481 
3482 #define for_each_task_context_nr(ctxn)					\
3483 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3484 
3485 /*
3486  * Called from scheduler to remove the events of the current task,
3487  * with interrupts disabled.
3488  *
3489  * We stop each event and update the event value in event->count.
3490  *
3491  * This does not protect us against NMI, but disable()
3492  * sets the disabled bit in the control field of event _before_
3493  * accessing the event control register. If a NMI hits, then it will
3494  * not restart the event.
3495  */
3496 void __perf_event_task_sched_out(struct task_struct *task,
3497 				 struct task_struct *next)
3498 {
3499 	int ctxn;
3500 
3501 	if (__this_cpu_read(perf_sched_cb_usages))
3502 		perf_pmu_sched_task(task, next, false);
3503 
3504 	if (atomic_read(&nr_switch_events))
3505 		perf_event_switch(task, next, false);
3506 
3507 	for_each_task_context_nr(ctxn)
3508 		perf_event_context_sched_out(task, ctxn, next);
3509 
3510 	/*
3511 	 * if cgroup events exist on this CPU, then we need
3512 	 * to check if we have to switch out PMU state.
3513 	 * cgroup event are system-wide mode only
3514 	 */
3515 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3516 		perf_cgroup_sched_out(task, next);
3517 }
3518 
3519 /*
3520  * Called with IRQs disabled
3521  */
3522 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3523 			      enum event_type_t event_type)
3524 {
3525 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3526 }
3527 
3528 static bool perf_less_group_idx(const void *l, const void *r)
3529 {
3530 	const struct perf_event *le = *(const struct perf_event **)l;
3531 	const struct perf_event *re = *(const struct perf_event **)r;
3532 
3533 	return le->group_index < re->group_index;
3534 }
3535 
3536 static void swap_ptr(void *l, void *r)
3537 {
3538 	void **lp = l, **rp = r;
3539 
3540 	swap(*lp, *rp);
3541 }
3542 
3543 static const struct min_heap_callbacks perf_min_heap = {
3544 	.elem_size = sizeof(struct perf_event *),
3545 	.less = perf_less_group_idx,
3546 	.swp = swap_ptr,
3547 };
3548 
3549 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3550 {
3551 	struct perf_event **itrs = heap->data;
3552 
3553 	if (event) {
3554 		itrs[heap->nr] = event;
3555 		heap->nr++;
3556 	}
3557 }
3558 
3559 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3560 				struct perf_event_groups *groups, int cpu,
3561 				int (*func)(struct perf_event *, void *),
3562 				void *data)
3563 {
3564 #ifdef CONFIG_CGROUP_PERF
3565 	struct cgroup_subsys_state *css = NULL;
3566 #endif
3567 	/* Space for per CPU and/or any CPU event iterators. */
3568 	struct perf_event *itrs[2];
3569 	struct min_heap event_heap;
3570 	struct perf_event **evt;
3571 	int ret;
3572 
3573 	if (cpuctx) {
3574 		event_heap = (struct min_heap){
3575 			.data = cpuctx->heap,
3576 			.nr = 0,
3577 			.size = cpuctx->heap_size,
3578 		};
3579 
3580 		lockdep_assert_held(&cpuctx->ctx.lock);
3581 
3582 #ifdef CONFIG_CGROUP_PERF
3583 		if (cpuctx->cgrp)
3584 			css = &cpuctx->cgrp->css;
3585 #endif
3586 	} else {
3587 		event_heap = (struct min_heap){
3588 			.data = itrs,
3589 			.nr = 0,
3590 			.size = ARRAY_SIZE(itrs),
3591 		};
3592 		/* Events not within a CPU context may be on any CPU. */
3593 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3594 	}
3595 	evt = event_heap.data;
3596 
3597 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3598 
3599 #ifdef CONFIG_CGROUP_PERF
3600 	for (; css; css = css->parent)
3601 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3602 #endif
3603 
3604 	min_heapify_all(&event_heap, &perf_min_heap);
3605 
3606 	while (event_heap.nr) {
3607 		ret = func(*evt, data);
3608 		if (ret)
3609 			return ret;
3610 
3611 		*evt = perf_event_groups_next(*evt);
3612 		if (*evt)
3613 			min_heapify(&event_heap, 0, &perf_min_heap);
3614 		else
3615 			min_heap_pop(&event_heap, &perf_min_heap);
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static int merge_sched_in(struct perf_event *event, void *data)
3622 {
3623 	struct perf_event_context *ctx = event->ctx;
3624 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625 	int *can_add_hw = data;
3626 
3627 	if (event->state <= PERF_EVENT_STATE_OFF)
3628 		return 0;
3629 
3630 	if (!event_filter_match(event))
3631 		return 0;
3632 
3633 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3634 		if (!group_sched_in(event, cpuctx, ctx))
3635 			list_add_tail(&event->active_list, get_event_list(event));
3636 	}
3637 
3638 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3639 		if (event->attr.pinned) {
3640 			perf_cgroup_event_disable(event, ctx);
3641 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3642 		}
3643 
3644 		*can_add_hw = 0;
3645 		ctx->rotate_necessary = 1;
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 static void
3652 ctx_pinned_sched_in(struct perf_event_context *ctx,
3653 		    struct perf_cpu_context *cpuctx)
3654 {
3655 	int can_add_hw = 1;
3656 
3657 	if (ctx != &cpuctx->ctx)
3658 		cpuctx = NULL;
3659 
3660 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3661 			   smp_processor_id(),
3662 			   merge_sched_in, &can_add_hw);
3663 }
3664 
3665 static void
3666 ctx_flexible_sched_in(struct perf_event_context *ctx,
3667 		      struct perf_cpu_context *cpuctx)
3668 {
3669 	int can_add_hw = 1;
3670 
3671 	if (ctx != &cpuctx->ctx)
3672 		cpuctx = NULL;
3673 
3674 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3675 			   smp_processor_id(),
3676 			   merge_sched_in, &can_add_hw);
3677 }
3678 
3679 static void
3680 ctx_sched_in(struct perf_event_context *ctx,
3681 	     struct perf_cpu_context *cpuctx,
3682 	     enum event_type_t event_type,
3683 	     struct task_struct *task)
3684 {
3685 	int is_active = ctx->is_active;
3686 	u64 now;
3687 
3688 	lockdep_assert_held(&ctx->lock);
3689 
3690 	if (likely(!ctx->nr_events))
3691 		return;
3692 
3693 	ctx->is_active |= (event_type | EVENT_TIME);
3694 	if (ctx->task) {
3695 		if (!is_active)
3696 			cpuctx->task_ctx = ctx;
3697 		else
3698 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3699 	}
3700 
3701 	is_active ^= ctx->is_active; /* changed bits */
3702 
3703 	if (is_active & EVENT_TIME) {
3704 		/* start ctx time */
3705 		now = perf_clock();
3706 		ctx->timestamp = now;
3707 		perf_cgroup_set_timestamp(task, ctx);
3708 	}
3709 
3710 	/*
3711 	 * First go through the list and put on any pinned groups
3712 	 * in order to give them the best chance of going on.
3713 	 */
3714 	if (is_active & EVENT_PINNED)
3715 		ctx_pinned_sched_in(ctx, cpuctx);
3716 
3717 	/* Then walk through the lower prio flexible groups */
3718 	if (is_active & EVENT_FLEXIBLE)
3719 		ctx_flexible_sched_in(ctx, cpuctx);
3720 }
3721 
3722 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3723 			     enum event_type_t event_type,
3724 			     struct task_struct *task)
3725 {
3726 	struct perf_event_context *ctx = &cpuctx->ctx;
3727 
3728 	ctx_sched_in(ctx, cpuctx, event_type, task);
3729 }
3730 
3731 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3732 					struct task_struct *task)
3733 {
3734 	struct perf_cpu_context *cpuctx;
3735 
3736 	cpuctx = __get_cpu_context(ctx);
3737 	if (cpuctx->task_ctx == ctx)
3738 		return;
3739 
3740 	perf_ctx_lock(cpuctx, ctx);
3741 	/*
3742 	 * We must check ctx->nr_events while holding ctx->lock, such
3743 	 * that we serialize against perf_install_in_context().
3744 	 */
3745 	if (!ctx->nr_events)
3746 		goto unlock;
3747 
3748 	perf_pmu_disable(ctx->pmu);
3749 	/*
3750 	 * We want to keep the following priority order:
3751 	 * cpu pinned (that don't need to move), task pinned,
3752 	 * cpu flexible, task flexible.
3753 	 *
3754 	 * However, if task's ctx is not carrying any pinned
3755 	 * events, no need to flip the cpuctx's events around.
3756 	 */
3757 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3758 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3759 	perf_event_sched_in(cpuctx, ctx, task);
3760 	perf_pmu_enable(ctx->pmu);
3761 
3762 unlock:
3763 	perf_ctx_unlock(cpuctx, ctx);
3764 }
3765 
3766 /*
3767  * Called from scheduler to add the events of the current task
3768  * with interrupts disabled.
3769  *
3770  * We restore the event value and then enable it.
3771  *
3772  * This does not protect us against NMI, but enable()
3773  * sets the enabled bit in the control field of event _before_
3774  * accessing the event control register. If a NMI hits, then it will
3775  * keep the event running.
3776  */
3777 void __perf_event_task_sched_in(struct task_struct *prev,
3778 				struct task_struct *task)
3779 {
3780 	struct perf_event_context *ctx;
3781 	int ctxn;
3782 
3783 	/*
3784 	 * If cgroup events exist on this CPU, then we need to check if we have
3785 	 * to switch in PMU state; cgroup event are system-wide mode only.
3786 	 *
3787 	 * Since cgroup events are CPU events, we must schedule these in before
3788 	 * we schedule in the task events.
3789 	 */
3790 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3791 		perf_cgroup_sched_in(prev, task);
3792 
3793 	for_each_task_context_nr(ctxn) {
3794 		ctx = task->perf_event_ctxp[ctxn];
3795 		if (likely(!ctx))
3796 			continue;
3797 
3798 		perf_event_context_sched_in(ctx, task);
3799 	}
3800 
3801 	if (atomic_read(&nr_switch_events))
3802 		perf_event_switch(task, prev, true);
3803 
3804 	if (__this_cpu_read(perf_sched_cb_usages))
3805 		perf_pmu_sched_task(prev, task, true);
3806 }
3807 
3808 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3809 {
3810 	u64 frequency = event->attr.sample_freq;
3811 	u64 sec = NSEC_PER_SEC;
3812 	u64 divisor, dividend;
3813 
3814 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3815 
3816 	count_fls = fls64(count);
3817 	nsec_fls = fls64(nsec);
3818 	frequency_fls = fls64(frequency);
3819 	sec_fls = 30;
3820 
3821 	/*
3822 	 * We got @count in @nsec, with a target of sample_freq HZ
3823 	 * the target period becomes:
3824 	 *
3825 	 *             @count * 10^9
3826 	 * period = -------------------
3827 	 *          @nsec * sample_freq
3828 	 *
3829 	 */
3830 
3831 	/*
3832 	 * Reduce accuracy by one bit such that @a and @b converge
3833 	 * to a similar magnitude.
3834 	 */
3835 #define REDUCE_FLS(a, b)		\
3836 do {					\
3837 	if (a##_fls > b##_fls) {	\
3838 		a >>= 1;		\
3839 		a##_fls--;		\
3840 	} else {			\
3841 		b >>= 1;		\
3842 		b##_fls--;		\
3843 	}				\
3844 } while (0)
3845 
3846 	/*
3847 	 * Reduce accuracy until either term fits in a u64, then proceed with
3848 	 * the other, so that finally we can do a u64/u64 division.
3849 	 */
3850 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3851 		REDUCE_FLS(nsec, frequency);
3852 		REDUCE_FLS(sec, count);
3853 	}
3854 
3855 	if (count_fls + sec_fls > 64) {
3856 		divisor = nsec * frequency;
3857 
3858 		while (count_fls + sec_fls > 64) {
3859 			REDUCE_FLS(count, sec);
3860 			divisor >>= 1;
3861 		}
3862 
3863 		dividend = count * sec;
3864 	} else {
3865 		dividend = count * sec;
3866 
3867 		while (nsec_fls + frequency_fls > 64) {
3868 			REDUCE_FLS(nsec, frequency);
3869 			dividend >>= 1;
3870 		}
3871 
3872 		divisor = nsec * frequency;
3873 	}
3874 
3875 	if (!divisor)
3876 		return dividend;
3877 
3878 	return div64_u64(dividend, divisor);
3879 }
3880 
3881 static DEFINE_PER_CPU(int, perf_throttled_count);
3882 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3883 
3884 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3885 {
3886 	struct hw_perf_event *hwc = &event->hw;
3887 	s64 period, sample_period;
3888 	s64 delta;
3889 
3890 	period = perf_calculate_period(event, nsec, count);
3891 
3892 	delta = (s64)(period - hwc->sample_period);
3893 	delta = (delta + 7) / 8; /* low pass filter */
3894 
3895 	sample_period = hwc->sample_period + delta;
3896 
3897 	if (!sample_period)
3898 		sample_period = 1;
3899 
3900 	hwc->sample_period = sample_period;
3901 
3902 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3903 		if (disable)
3904 			event->pmu->stop(event, PERF_EF_UPDATE);
3905 
3906 		local64_set(&hwc->period_left, 0);
3907 
3908 		if (disable)
3909 			event->pmu->start(event, PERF_EF_RELOAD);
3910 	}
3911 }
3912 
3913 /*
3914  * combine freq adjustment with unthrottling to avoid two passes over the
3915  * events. At the same time, make sure, having freq events does not change
3916  * the rate of unthrottling as that would introduce bias.
3917  */
3918 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3919 					   int needs_unthr)
3920 {
3921 	struct perf_event *event;
3922 	struct hw_perf_event *hwc;
3923 	u64 now, period = TICK_NSEC;
3924 	s64 delta;
3925 
3926 	/*
3927 	 * only need to iterate over all events iff:
3928 	 * - context have events in frequency mode (needs freq adjust)
3929 	 * - there are events to unthrottle on this cpu
3930 	 */
3931 	if (!(ctx->nr_freq || needs_unthr))
3932 		return;
3933 
3934 	raw_spin_lock(&ctx->lock);
3935 	perf_pmu_disable(ctx->pmu);
3936 
3937 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3938 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3939 			continue;
3940 
3941 		if (!event_filter_match(event))
3942 			continue;
3943 
3944 		perf_pmu_disable(event->pmu);
3945 
3946 		hwc = &event->hw;
3947 
3948 		if (hwc->interrupts == MAX_INTERRUPTS) {
3949 			hwc->interrupts = 0;
3950 			perf_log_throttle(event, 1);
3951 			event->pmu->start(event, 0);
3952 		}
3953 
3954 		if (!event->attr.freq || !event->attr.sample_freq)
3955 			goto next;
3956 
3957 		/*
3958 		 * stop the event and update event->count
3959 		 */
3960 		event->pmu->stop(event, PERF_EF_UPDATE);
3961 
3962 		now = local64_read(&event->count);
3963 		delta = now - hwc->freq_count_stamp;
3964 		hwc->freq_count_stamp = now;
3965 
3966 		/*
3967 		 * restart the event
3968 		 * reload only if value has changed
3969 		 * we have stopped the event so tell that
3970 		 * to perf_adjust_period() to avoid stopping it
3971 		 * twice.
3972 		 */
3973 		if (delta > 0)
3974 			perf_adjust_period(event, period, delta, false);
3975 
3976 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3977 	next:
3978 		perf_pmu_enable(event->pmu);
3979 	}
3980 
3981 	perf_pmu_enable(ctx->pmu);
3982 	raw_spin_unlock(&ctx->lock);
3983 }
3984 
3985 /*
3986  * Move @event to the tail of the @ctx's elegible events.
3987  */
3988 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3989 {
3990 	/*
3991 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3992 	 * disabled by the inheritance code.
3993 	 */
3994 	if (ctx->rotate_disable)
3995 		return;
3996 
3997 	perf_event_groups_delete(&ctx->flexible_groups, event);
3998 	perf_event_groups_insert(&ctx->flexible_groups, event);
3999 }
4000 
4001 /* pick an event from the flexible_groups to rotate */
4002 static inline struct perf_event *
4003 ctx_event_to_rotate(struct perf_event_context *ctx)
4004 {
4005 	struct perf_event *event;
4006 
4007 	/* pick the first active flexible event */
4008 	event = list_first_entry_or_null(&ctx->flexible_active,
4009 					 struct perf_event, active_list);
4010 
4011 	/* if no active flexible event, pick the first event */
4012 	if (!event) {
4013 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4014 				      typeof(*event), group_node);
4015 	}
4016 
4017 	/*
4018 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4019 	 * finds there are unschedulable events, it will set it again.
4020 	 */
4021 	ctx->rotate_necessary = 0;
4022 
4023 	return event;
4024 }
4025 
4026 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4027 {
4028 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4029 	struct perf_event_context *task_ctx = NULL;
4030 	int cpu_rotate, task_rotate;
4031 
4032 	/*
4033 	 * Since we run this from IRQ context, nobody can install new
4034 	 * events, thus the event count values are stable.
4035 	 */
4036 
4037 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4038 	task_ctx = cpuctx->task_ctx;
4039 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4040 
4041 	if (!(cpu_rotate || task_rotate))
4042 		return false;
4043 
4044 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4045 	perf_pmu_disable(cpuctx->ctx.pmu);
4046 
4047 	if (task_rotate)
4048 		task_event = ctx_event_to_rotate(task_ctx);
4049 	if (cpu_rotate)
4050 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4051 
4052 	/*
4053 	 * As per the order given at ctx_resched() first 'pop' task flexible
4054 	 * and then, if needed CPU flexible.
4055 	 */
4056 	if (task_event || (task_ctx && cpu_event))
4057 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4058 	if (cpu_event)
4059 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4060 
4061 	if (task_event)
4062 		rotate_ctx(task_ctx, task_event);
4063 	if (cpu_event)
4064 		rotate_ctx(&cpuctx->ctx, cpu_event);
4065 
4066 	perf_event_sched_in(cpuctx, task_ctx, current);
4067 
4068 	perf_pmu_enable(cpuctx->ctx.pmu);
4069 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4070 
4071 	return true;
4072 }
4073 
4074 void perf_event_task_tick(void)
4075 {
4076 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4077 	struct perf_event_context *ctx, *tmp;
4078 	int throttled;
4079 
4080 	lockdep_assert_irqs_disabled();
4081 
4082 	__this_cpu_inc(perf_throttled_seq);
4083 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4084 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4085 
4086 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4087 		perf_adjust_freq_unthr_context(ctx, throttled);
4088 }
4089 
4090 static int event_enable_on_exec(struct perf_event *event,
4091 				struct perf_event_context *ctx)
4092 {
4093 	if (!event->attr.enable_on_exec)
4094 		return 0;
4095 
4096 	event->attr.enable_on_exec = 0;
4097 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4098 		return 0;
4099 
4100 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4101 
4102 	return 1;
4103 }
4104 
4105 /*
4106  * Enable all of a task's events that have been marked enable-on-exec.
4107  * This expects task == current.
4108  */
4109 static void perf_event_enable_on_exec(int ctxn)
4110 {
4111 	struct perf_event_context *ctx, *clone_ctx = NULL;
4112 	enum event_type_t event_type = 0;
4113 	struct perf_cpu_context *cpuctx;
4114 	struct perf_event *event;
4115 	unsigned long flags;
4116 	int enabled = 0;
4117 
4118 	local_irq_save(flags);
4119 	ctx = current->perf_event_ctxp[ctxn];
4120 	if (!ctx || !ctx->nr_events)
4121 		goto out;
4122 
4123 	cpuctx = __get_cpu_context(ctx);
4124 	perf_ctx_lock(cpuctx, ctx);
4125 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4126 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4127 		enabled |= event_enable_on_exec(event, ctx);
4128 		event_type |= get_event_type(event);
4129 	}
4130 
4131 	/*
4132 	 * Unclone and reschedule this context if we enabled any event.
4133 	 */
4134 	if (enabled) {
4135 		clone_ctx = unclone_ctx(ctx);
4136 		ctx_resched(cpuctx, ctx, event_type);
4137 	} else {
4138 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4139 	}
4140 	perf_ctx_unlock(cpuctx, ctx);
4141 
4142 out:
4143 	local_irq_restore(flags);
4144 
4145 	if (clone_ctx)
4146 		put_ctx(clone_ctx);
4147 }
4148 
4149 struct perf_read_data {
4150 	struct perf_event *event;
4151 	bool group;
4152 	int ret;
4153 };
4154 
4155 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4156 {
4157 	u16 local_pkg, event_pkg;
4158 
4159 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4160 		int local_cpu = smp_processor_id();
4161 
4162 		event_pkg = topology_physical_package_id(event_cpu);
4163 		local_pkg = topology_physical_package_id(local_cpu);
4164 
4165 		if (event_pkg == local_pkg)
4166 			return local_cpu;
4167 	}
4168 
4169 	return event_cpu;
4170 }
4171 
4172 /*
4173  * Cross CPU call to read the hardware event
4174  */
4175 static void __perf_event_read(void *info)
4176 {
4177 	struct perf_read_data *data = info;
4178 	struct perf_event *sub, *event = data->event;
4179 	struct perf_event_context *ctx = event->ctx;
4180 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4181 	struct pmu *pmu = event->pmu;
4182 
4183 	/*
4184 	 * If this is a task context, we need to check whether it is
4185 	 * the current task context of this cpu.  If not it has been
4186 	 * scheduled out before the smp call arrived.  In that case
4187 	 * event->count would have been updated to a recent sample
4188 	 * when the event was scheduled out.
4189 	 */
4190 	if (ctx->task && cpuctx->task_ctx != ctx)
4191 		return;
4192 
4193 	raw_spin_lock(&ctx->lock);
4194 	if (ctx->is_active & EVENT_TIME) {
4195 		update_context_time(ctx);
4196 		update_cgrp_time_from_event(event);
4197 	}
4198 
4199 	perf_event_update_time(event);
4200 	if (data->group)
4201 		perf_event_update_sibling_time(event);
4202 
4203 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4204 		goto unlock;
4205 
4206 	if (!data->group) {
4207 		pmu->read(event);
4208 		data->ret = 0;
4209 		goto unlock;
4210 	}
4211 
4212 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4213 
4214 	pmu->read(event);
4215 
4216 	for_each_sibling_event(sub, event) {
4217 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4218 			/*
4219 			 * Use sibling's PMU rather than @event's since
4220 			 * sibling could be on different (eg: software) PMU.
4221 			 */
4222 			sub->pmu->read(sub);
4223 		}
4224 	}
4225 
4226 	data->ret = pmu->commit_txn(pmu);
4227 
4228 unlock:
4229 	raw_spin_unlock(&ctx->lock);
4230 }
4231 
4232 static inline u64 perf_event_count(struct perf_event *event)
4233 {
4234 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4235 }
4236 
4237 /*
4238  * NMI-safe method to read a local event, that is an event that
4239  * is:
4240  *   - either for the current task, or for this CPU
4241  *   - does not have inherit set, for inherited task events
4242  *     will not be local and we cannot read them atomically
4243  *   - must not have a pmu::count method
4244  */
4245 int perf_event_read_local(struct perf_event *event, u64 *value,
4246 			  u64 *enabled, u64 *running)
4247 {
4248 	unsigned long flags;
4249 	int ret = 0;
4250 
4251 	/*
4252 	 * Disabling interrupts avoids all counter scheduling (context
4253 	 * switches, timer based rotation and IPIs).
4254 	 */
4255 	local_irq_save(flags);
4256 
4257 	/*
4258 	 * It must not be an event with inherit set, we cannot read
4259 	 * all child counters from atomic context.
4260 	 */
4261 	if (event->attr.inherit) {
4262 		ret = -EOPNOTSUPP;
4263 		goto out;
4264 	}
4265 
4266 	/* If this is a per-task event, it must be for current */
4267 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4268 	    event->hw.target != current) {
4269 		ret = -EINVAL;
4270 		goto out;
4271 	}
4272 
4273 	/* If this is a per-CPU event, it must be for this CPU */
4274 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4275 	    event->cpu != smp_processor_id()) {
4276 		ret = -EINVAL;
4277 		goto out;
4278 	}
4279 
4280 	/* If this is a pinned event it must be running on this CPU */
4281 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4282 		ret = -EBUSY;
4283 		goto out;
4284 	}
4285 
4286 	/*
4287 	 * If the event is currently on this CPU, its either a per-task event,
4288 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4289 	 * oncpu == -1).
4290 	 */
4291 	if (event->oncpu == smp_processor_id())
4292 		event->pmu->read(event);
4293 
4294 	*value = local64_read(&event->count);
4295 	if (enabled || running) {
4296 		u64 now = event->shadow_ctx_time + perf_clock();
4297 		u64 __enabled, __running;
4298 
4299 		__perf_update_times(event, now, &__enabled, &__running);
4300 		if (enabled)
4301 			*enabled = __enabled;
4302 		if (running)
4303 			*running = __running;
4304 	}
4305 out:
4306 	local_irq_restore(flags);
4307 
4308 	return ret;
4309 }
4310 
4311 static int perf_event_read(struct perf_event *event, bool group)
4312 {
4313 	enum perf_event_state state = READ_ONCE(event->state);
4314 	int event_cpu, ret = 0;
4315 
4316 	/*
4317 	 * If event is enabled and currently active on a CPU, update the
4318 	 * value in the event structure:
4319 	 */
4320 again:
4321 	if (state == PERF_EVENT_STATE_ACTIVE) {
4322 		struct perf_read_data data;
4323 
4324 		/*
4325 		 * Orders the ->state and ->oncpu loads such that if we see
4326 		 * ACTIVE we must also see the right ->oncpu.
4327 		 *
4328 		 * Matches the smp_wmb() from event_sched_in().
4329 		 */
4330 		smp_rmb();
4331 
4332 		event_cpu = READ_ONCE(event->oncpu);
4333 		if ((unsigned)event_cpu >= nr_cpu_ids)
4334 			return 0;
4335 
4336 		data = (struct perf_read_data){
4337 			.event = event,
4338 			.group = group,
4339 			.ret = 0,
4340 		};
4341 
4342 		preempt_disable();
4343 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4344 
4345 		/*
4346 		 * Purposely ignore the smp_call_function_single() return
4347 		 * value.
4348 		 *
4349 		 * If event_cpu isn't a valid CPU it means the event got
4350 		 * scheduled out and that will have updated the event count.
4351 		 *
4352 		 * Therefore, either way, we'll have an up-to-date event count
4353 		 * after this.
4354 		 */
4355 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4356 		preempt_enable();
4357 		ret = data.ret;
4358 
4359 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4360 		struct perf_event_context *ctx = event->ctx;
4361 		unsigned long flags;
4362 
4363 		raw_spin_lock_irqsave(&ctx->lock, flags);
4364 		state = event->state;
4365 		if (state != PERF_EVENT_STATE_INACTIVE) {
4366 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4367 			goto again;
4368 		}
4369 
4370 		/*
4371 		 * May read while context is not active (e.g., thread is
4372 		 * blocked), in that case we cannot update context time
4373 		 */
4374 		if (ctx->is_active & EVENT_TIME) {
4375 			update_context_time(ctx);
4376 			update_cgrp_time_from_event(event);
4377 		}
4378 
4379 		perf_event_update_time(event);
4380 		if (group)
4381 			perf_event_update_sibling_time(event);
4382 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4383 	}
4384 
4385 	return ret;
4386 }
4387 
4388 /*
4389  * Initialize the perf_event context in a task_struct:
4390  */
4391 static void __perf_event_init_context(struct perf_event_context *ctx)
4392 {
4393 	raw_spin_lock_init(&ctx->lock);
4394 	mutex_init(&ctx->mutex);
4395 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4396 	perf_event_groups_init(&ctx->pinned_groups);
4397 	perf_event_groups_init(&ctx->flexible_groups);
4398 	INIT_LIST_HEAD(&ctx->event_list);
4399 	INIT_LIST_HEAD(&ctx->pinned_active);
4400 	INIT_LIST_HEAD(&ctx->flexible_active);
4401 	refcount_set(&ctx->refcount, 1);
4402 }
4403 
4404 static struct perf_event_context *
4405 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4406 {
4407 	struct perf_event_context *ctx;
4408 
4409 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4410 	if (!ctx)
4411 		return NULL;
4412 
4413 	__perf_event_init_context(ctx);
4414 	if (task)
4415 		ctx->task = get_task_struct(task);
4416 	ctx->pmu = pmu;
4417 
4418 	return ctx;
4419 }
4420 
4421 static struct task_struct *
4422 find_lively_task_by_vpid(pid_t vpid)
4423 {
4424 	struct task_struct *task;
4425 
4426 	rcu_read_lock();
4427 	if (!vpid)
4428 		task = current;
4429 	else
4430 		task = find_task_by_vpid(vpid);
4431 	if (task)
4432 		get_task_struct(task);
4433 	rcu_read_unlock();
4434 
4435 	if (!task)
4436 		return ERR_PTR(-ESRCH);
4437 
4438 	return task;
4439 }
4440 
4441 /*
4442  * Returns a matching context with refcount and pincount.
4443  */
4444 static struct perf_event_context *
4445 find_get_context(struct pmu *pmu, struct task_struct *task,
4446 		struct perf_event *event)
4447 {
4448 	struct perf_event_context *ctx, *clone_ctx = NULL;
4449 	struct perf_cpu_context *cpuctx;
4450 	void *task_ctx_data = NULL;
4451 	unsigned long flags;
4452 	int ctxn, err;
4453 	int cpu = event->cpu;
4454 
4455 	if (!task) {
4456 		/* Must be root to operate on a CPU event: */
4457 		err = perf_allow_cpu(&event->attr);
4458 		if (err)
4459 			return ERR_PTR(err);
4460 
4461 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4462 		ctx = &cpuctx->ctx;
4463 		get_ctx(ctx);
4464 		++ctx->pin_count;
4465 
4466 		return ctx;
4467 	}
4468 
4469 	err = -EINVAL;
4470 	ctxn = pmu->task_ctx_nr;
4471 	if (ctxn < 0)
4472 		goto errout;
4473 
4474 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4475 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4476 		if (!task_ctx_data) {
4477 			err = -ENOMEM;
4478 			goto errout;
4479 		}
4480 	}
4481 
4482 retry:
4483 	ctx = perf_lock_task_context(task, ctxn, &flags);
4484 	if (ctx) {
4485 		clone_ctx = unclone_ctx(ctx);
4486 		++ctx->pin_count;
4487 
4488 		if (task_ctx_data && !ctx->task_ctx_data) {
4489 			ctx->task_ctx_data = task_ctx_data;
4490 			task_ctx_data = NULL;
4491 		}
4492 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4493 
4494 		if (clone_ctx)
4495 			put_ctx(clone_ctx);
4496 	} else {
4497 		ctx = alloc_perf_context(pmu, task);
4498 		err = -ENOMEM;
4499 		if (!ctx)
4500 			goto errout;
4501 
4502 		if (task_ctx_data) {
4503 			ctx->task_ctx_data = task_ctx_data;
4504 			task_ctx_data = NULL;
4505 		}
4506 
4507 		err = 0;
4508 		mutex_lock(&task->perf_event_mutex);
4509 		/*
4510 		 * If it has already passed perf_event_exit_task().
4511 		 * we must see PF_EXITING, it takes this mutex too.
4512 		 */
4513 		if (task->flags & PF_EXITING)
4514 			err = -ESRCH;
4515 		else if (task->perf_event_ctxp[ctxn])
4516 			err = -EAGAIN;
4517 		else {
4518 			get_ctx(ctx);
4519 			++ctx->pin_count;
4520 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4521 		}
4522 		mutex_unlock(&task->perf_event_mutex);
4523 
4524 		if (unlikely(err)) {
4525 			put_ctx(ctx);
4526 
4527 			if (err == -EAGAIN)
4528 				goto retry;
4529 			goto errout;
4530 		}
4531 	}
4532 
4533 	kfree(task_ctx_data);
4534 	return ctx;
4535 
4536 errout:
4537 	kfree(task_ctx_data);
4538 	return ERR_PTR(err);
4539 }
4540 
4541 static void perf_event_free_filter(struct perf_event *event);
4542 static void perf_event_free_bpf_prog(struct perf_event *event);
4543 
4544 static void free_event_rcu(struct rcu_head *head)
4545 {
4546 	struct perf_event *event;
4547 
4548 	event = container_of(head, struct perf_event, rcu_head);
4549 	if (event->ns)
4550 		put_pid_ns(event->ns);
4551 	perf_event_free_filter(event);
4552 	kfree(event);
4553 }
4554 
4555 static void ring_buffer_attach(struct perf_event *event,
4556 			       struct perf_buffer *rb);
4557 
4558 static void detach_sb_event(struct perf_event *event)
4559 {
4560 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4561 
4562 	raw_spin_lock(&pel->lock);
4563 	list_del_rcu(&event->sb_list);
4564 	raw_spin_unlock(&pel->lock);
4565 }
4566 
4567 static bool is_sb_event(struct perf_event *event)
4568 {
4569 	struct perf_event_attr *attr = &event->attr;
4570 
4571 	if (event->parent)
4572 		return false;
4573 
4574 	if (event->attach_state & PERF_ATTACH_TASK)
4575 		return false;
4576 
4577 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4578 	    attr->comm || attr->comm_exec ||
4579 	    attr->task || attr->ksymbol ||
4580 	    attr->context_switch ||
4581 	    attr->bpf_event)
4582 		return true;
4583 	return false;
4584 }
4585 
4586 static void unaccount_pmu_sb_event(struct perf_event *event)
4587 {
4588 	if (is_sb_event(event))
4589 		detach_sb_event(event);
4590 }
4591 
4592 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4593 {
4594 	if (event->parent)
4595 		return;
4596 
4597 	if (is_cgroup_event(event))
4598 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4599 }
4600 
4601 #ifdef CONFIG_NO_HZ_FULL
4602 static DEFINE_SPINLOCK(nr_freq_lock);
4603 #endif
4604 
4605 static void unaccount_freq_event_nohz(void)
4606 {
4607 #ifdef CONFIG_NO_HZ_FULL
4608 	spin_lock(&nr_freq_lock);
4609 	if (atomic_dec_and_test(&nr_freq_events))
4610 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4611 	spin_unlock(&nr_freq_lock);
4612 #endif
4613 }
4614 
4615 static void unaccount_freq_event(void)
4616 {
4617 	if (tick_nohz_full_enabled())
4618 		unaccount_freq_event_nohz();
4619 	else
4620 		atomic_dec(&nr_freq_events);
4621 }
4622 
4623 static void unaccount_event(struct perf_event *event)
4624 {
4625 	bool dec = false;
4626 
4627 	if (event->parent)
4628 		return;
4629 
4630 	if (event->attach_state & PERF_ATTACH_TASK)
4631 		dec = true;
4632 	if (event->attr.mmap || event->attr.mmap_data)
4633 		atomic_dec(&nr_mmap_events);
4634 	if (event->attr.comm)
4635 		atomic_dec(&nr_comm_events);
4636 	if (event->attr.namespaces)
4637 		atomic_dec(&nr_namespaces_events);
4638 	if (event->attr.cgroup)
4639 		atomic_dec(&nr_cgroup_events);
4640 	if (event->attr.task)
4641 		atomic_dec(&nr_task_events);
4642 	if (event->attr.freq)
4643 		unaccount_freq_event();
4644 	if (event->attr.context_switch) {
4645 		dec = true;
4646 		atomic_dec(&nr_switch_events);
4647 	}
4648 	if (is_cgroup_event(event))
4649 		dec = true;
4650 	if (has_branch_stack(event))
4651 		dec = true;
4652 	if (event->attr.ksymbol)
4653 		atomic_dec(&nr_ksymbol_events);
4654 	if (event->attr.bpf_event)
4655 		atomic_dec(&nr_bpf_events);
4656 
4657 	if (dec) {
4658 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4659 			schedule_delayed_work(&perf_sched_work, HZ);
4660 	}
4661 
4662 	unaccount_event_cpu(event, event->cpu);
4663 
4664 	unaccount_pmu_sb_event(event);
4665 }
4666 
4667 static void perf_sched_delayed(struct work_struct *work)
4668 {
4669 	mutex_lock(&perf_sched_mutex);
4670 	if (atomic_dec_and_test(&perf_sched_count))
4671 		static_branch_disable(&perf_sched_events);
4672 	mutex_unlock(&perf_sched_mutex);
4673 }
4674 
4675 /*
4676  * The following implement mutual exclusion of events on "exclusive" pmus
4677  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4678  * at a time, so we disallow creating events that might conflict, namely:
4679  *
4680  *  1) cpu-wide events in the presence of per-task events,
4681  *  2) per-task events in the presence of cpu-wide events,
4682  *  3) two matching events on the same context.
4683  *
4684  * The former two cases are handled in the allocation path (perf_event_alloc(),
4685  * _free_event()), the latter -- before the first perf_install_in_context().
4686  */
4687 static int exclusive_event_init(struct perf_event *event)
4688 {
4689 	struct pmu *pmu = event->pmu;
4690 
4691 	if (!is_exclusive_pmu(pmu))
4692 		return 0;
4693 
4694 	/*
4695 	 * Prevent co-existence of per-task and cpu-wide events on the
4696 	 * same exclusive pmu.
4697 	 *
4698 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4699 	 * events on this "exclusive" pmu, positive means there are
4700 	 * per-task events.
4701 	 *
4702 	 * Since this is called in perf_event_alloc() path, event::ctx
4703 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4704 	 * to mean "per-task event", because unlike other attach states it
4705 	 * never gets cleared.
4706 	 */
4707 	if (event->attach_state & PERF_ATTACH_TASK) {
4708 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4709 			return -EBUSY;
4710 	} else {
4711 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4712 			return -EBUSY;
4713 	}
4714 
4715 	return 0;
4716 }
4717 
4718 static void exclusive_event_destroy(struct perf_event *event)
4719 {
4720 	struct pmu *pmu = event->pmu;
4721 
4722 	if (!is_exclusive_pmu(pmu))
4723 		return;
4724 
4725 	/* see comment in exclusive_event_init() */
4726 	if (event->attach_state & PERF_ATTACH_TASK)
4727 		atomic_dec(&pmu->exclusive_cnt);
4728 	else
4729 		atomic_inc(&pmu->exclusive_cnt);
4730 }
4731 
4732 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4733 {
4734 	if ((e1->pmu == e2->pmu) &&
4735 	    (e1->cpu == e2->cpu ||
4736 	     e1->cpu == -1 ||
4737 	     e2->cpu == -1))
4738 		return true;
4739 	return false;
4740 }
4741 
4742 static bool exclusive_event_installable(struct perf_event *event,
4743 					struct perf_event_context *ctx)
4744 {
4745 	struct perf_event *iter_event;
4746 	struct pmu *pmu = event->pmu;
4747 
4748 	lockdep_assert_held(&ctx->mutex);
4749 
4750 	if (!is_exclusive_pmu(pmu))
4751 		return true;
4752 
4753 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4754 		if (exclusive_event_match(iter_event, event))
4755 			return false;
4756 	}
4757 
4758 	return true;
4759 }
4760 
4761 static void perf_addr_filters_splice(struct perf_event *event,
4762 				       struct list_head *head);
4763 
4764 static void _free_event(struct perf_event *event)
4765 {
4766 	irq_work_sync(&event->pending);
4767 
4768 	unaccount_event(event);
4769 
4770 	security_perf_event_free(event);
4771 
4772 	if (event->rb) {
4773 		/*
4774 		 * Can happen when we close an event with re-directed output.
4775 		 *
4776 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4777 		 * over us; possibly making our ring_buffer_put() the last.
4778 		 */
4779 		mutex_lock(&event->mmap_mutex);
4780 		ring_buffer_attach(event, NULL);
4781 		mutex_unlock(&event->mmap_mutex);
4782 	}
4783 
4784 	if (is_cgroup_event(event))
4785 		perf_detach_cgroup(event);
4786 
4787 	if (!event->parent) {
4788 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4789 			put_callchain_buffers();
4790 	}
4791 
4792 	perf_event_free_bpf_prog(event);
4793 	perf_addr_filters_splice(event, NULL);
4794 	kfree(event->addr_filter_ranges);
4795 
4796 	if (event->destroy)
4797 		event->destroy(event);
4798 
4799 	/*
4800 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4801 	 * hw.target.
4802 	 */
4803 	if (event->hw.target)
4804 		put_task_struct(event->hw.target);
4805 
4806 	/*
4807 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4808 	 * all task references must be cleaned up.
4809 	 */
4810 	if (event->ctx)
4811 		put_ctx(event->ctx);
4812 
4813 	exclusive_event_destroy(event);
4814 	module_put(event->pmu->module);
4815 
4816 	call_rcu(&event->rcu_head, free_event_rcu);
4817 }
4818 
4819 /*
4820  * Used to free events which have a known refcount of 1, such as in error paths
4821  * where the event isn't exposed yet and inherited events.
4822  */
4823 static void free_event(struct perf_event *event)
4824 {
4825 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4826 				"unexpected event refcount: %ld; ptr=%p\n",
4827 				atomic_long_read(&event->refcount), event)) {
4828 		/* leak to avoid use-after-free */
4829 		return;
4830 	}
4831 
4832 	_free_event(event);
4833 }
4834 
4835 /*
4836  * Remove user event from the owner task.
4837  */
4838 static void perf_remove_from_owner(struct perf_event *event)
4839 {
4840 	struct task_struct *owner;
4841 
4842 	rcu_read_lock();
4843 	/*
4844 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4845 	 * observe !owner it means the list deletion is complete and we can
4846 	 * indeed free this event, otherwise we need to serialize on
4847 	 * owner->perf_event_mutex.
4848 	 */
4849 	owner = READ_ONCE(event->owner);
4850 	if (owner) {
4851 		/*
4852 		 * Since delayed_put_task_struct() also drops the last
4853 		 * task reference we can safely take a new reference
4854 		 * while holding the rcu_read_lock().
4855 		 */
4856 		get_task_struct(owner);
4857 	}
4858 	rcu_read_unlock();
4859 
4860 	if (owner) {
4861 		/*
4862 		 * If we're here through perf_event_exit_task() we're already
4863 		 * holding ctx->mutex which would be an inversion wrt. the
4864 		 * normal lock order.
4865 		 *
4866 		 * However we can safely take this lock because its the child
4867 		 * ctx->mutex.
4868 		 */
4869 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4870 
4871 		/*
4872 		 * We have to re-check the event->owner field, if it is cleared
4873 		 * we raced with perf_event_exit_task(), acquiring the mutex
4874 		 * ensured they're done, and we can proceed with freeing the
4875 		 * event.
4876 		 */
4877 		if (event->owner) {
4878 			list_del_init(&event->owner_entry);
4879 			smp_store_release(&event->owner, NULL);
4880 		}
4881 		mutex_unlock(&owner->perf_event_mutex);
4882 		put_task_struct(owner);
4883 	}
4884 }
4885 
4886 static void put_event(struct perf_event *event)
4887 {
4888 	if (!atomic_long_dec_and_test(&event->refcount))
4889 		return;
4890 
4891 	_free_event(event);
4892 }
4893 
4894 /*
4895  * Kill an event dead; while event:refcount will preserve the event
4896  * object, it will not preserve its functionality. Once the last 'user'
4897  * gives up the object, we'll destroy the thing.
4898  */
4899 int perf_event_release_kernel(struct perf_event *event)
4900 {
4901 	struct perf_event_context *ctx = event->ctx;
4902 	struct perf_event *child, *tmp;
4903 	LIST_HEAD(free_list);
4904 
4905 	/*
4906 	 * If we got here through err_file: fput(event_file); we will not have
4907 	 * attached to a context yet.
4908 	 */
4909 	if (!ctx) {
4910 		WARN_ON_ONCE(event->attach_state &
4911 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4912 		goto no_ctx;
4913 	}
4914 
4915 	if (!is_kernel_event(event))
4916 		perf_remove_from_owner(event);
4917 
4918 	ctx = perf_event_ctx_lock(event);
4919 	WARN_ON_ONCE(ctx->parent_ctx);
4920 	perf_remove_from_context(event, DETACH_GROUP);
4921 
4922 	raw_spin_lock_irq(&ctx->lock);
4923 	/*
4924 	 * Mark this event as STATE_DEAD, there is no external reference to it
4925 	 * anymore.
4926 	 *
4927 	 * Anybody acquiring event->child_mutex after the below loop _must_
4928 	 * also see this, most importantly inherit_event() which will avoid
4929 	 * placing more children on the list.
4930 	 *
4931 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4932 	 * child events.
4933 	 */
4934 	event->state = PERF_EVENT_STATE_DEAD;
4935 	raw_spin_unlock_irq(&ctx->lock);
4936 
4937 	perf_event_ctx_unlock(event, ctx);
4938 
4939 again:
4940 	mutex_lock(&event->child_mutex);
4941 	list_for_each_entry(child, &event->child_list, child_list) {
4942 
4943 		/*
4944 		 * Cannot change, child events are not migrated, see the
4945 		 * comment with perf_event_ctx_lock_nested().
4946 		 */
4947 		ctx = READ_ONCE(child->ctx);
4948 		/*
4949 		 * Since child_mutex nests inside ctx::mutex, we must jump
4950 		 * through hoops. We start by grabbing a reference on the ctx.
4951 		 *
4952 		 * Since the event cannot get freed while we hold the
4953 		 * child_mutex, the context must also exist and have a !0
4954 		 * reference count.
4955 		 */
4956 		get_ctx(ctx);
4957 
4958 		/*
4959 		 * Now that we have a ctx ref, we can drop child_mutex, and
4960 		 * acquire ctx::mutex without fear of it going away. Then we
4961 		 * can re-acquire child_mutex.
4962 		 */
4963 		mutex_unlock(&event->child_mutex);
4964 		mutex_lock(&ctx->mutex);
4965 		mutex_lock(&event->child_mutex);
4966 
4967 		/*
4968 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4969 		 * state, if child is still the first entry, it didn't get freed
4970 		 * and we can continue doing so.
4971 		 */
4972 		tmp = list_first_entry_or_null(&event->child_list,
4973 					       struct perf_event, child_list);
4974 		if (tmp == child) {
4975 			perf_remove_from_context(child, DETACH_GROUP);
4976 			list_move(&child->child_list, &free_list);
4977 			/*
4978 			 * This matches the refcount bump in inherit_event();
4979 			 * this can't be the last reference.
4980 			 */
4981 			put_event(event);
4982 		}
4983 
4984 		mutex_unlock(&event->child_mutex);
4985 		mutex_unlock(&ctx->mutex);
4986 		put_ctx(ctx);
4987 		goto again;
4988 	}
4989 	mutex_unlock(&event->child_mutex);
4990 
4991 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4992 		void *var = &child->ctx->refcount;
4993 
4994 		list_del(&child->child_list);
4995 		free_event(child);
4996 
4997 		/*
4998 		 * Wake any perf_event_free_task() waiting for this event to be
4999 		 * freed.
5000 		 */
5001 		smp_mb(); /* pairs with wait_var_event() */
5002 		wake_up_var(var);
5003 	}
5004 
5005 no_ctx:
5006 	put_event(event); /* Must be the 'last' reference */
5007 	return 0;
5008 }
5009 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5010 
5011 /*
5012  * Called when the last reference to the file is gone.
5013  */
5014 static int perf_release(struct inode *inode, struct file *file)
5015 {
5016 	perf_event_release_kernel(file->private_data);
5017 	return 0;
5018 }
5019 
5020 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5021 {
5022 	struct perf_event *child;
5023 	u64 total = 0;
5024 
5025 	*enabled = 0;
5026 	*running = 0;
5027 
5028 	mutex_lock(&event->child_mutex);
5029 
5030 	(void)perf_event_read(event, false);
5031 	total += perf_event_count(event);
5032 
5033 	*enabled += event->total_time_enabled +
5034 			atomic64_read(&event->child_total_time_enabled);
5035 	*running += event->total_time_running +
5036 			atomic64_read(&event->child_total_time_running);
5037 
5038 	list_for_each_entry(child, &event->child_list, child_list) {
5039 		(void)perf_event_read(child, false);
5040 		total += perf_event_count(child);
5041 		*enabled += child->total_time_enabled;
5042 		*running += child->total_time_running;
5043 	}
5044 	mutex_unlock(&event->child_mutex);
5045 
5046 	return total;
5047 }
5048 
5049 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5050 {
5051 	struct perf_event_context *ctx;
5052 	u64 count;
5053 
5054 	ctx = perf_event_ctx_lock(event);
5055 	count = __perf_event_read_value(event, enabled, running);
5056 	perf_event_ctx_unlock(event, ctx);
5057 
5058 	return count;
5059 }
5060 EXPORT_SYMBOL_GPL(perf_event_read_value);
5061 
5062 static int __perf_read_group_add(struct perf_event *leader,
5063 					u64 read_format, u64 *values)
5064 {
5065 	struct perf_event_context *ctx = leader->ctx;
5066 	struct perf_event *sub;
5067 	unsigned long flags;
5068 	int n = 1; /* skip @nr */
5069 	int ret;
5070 
5071 	ret = perf_event_read(leader, true);
5072 	if (ret)
5073 		return ret;
5074 
5075 	raw_spin_lock_irqsave(&ctx->lock, flags);
5076 
5077 	/*
5078 	 * Since we co-schedule groups, {enabled,running} times of siblings
5079 	 * will be identical to those of the leader, so we only publish one
5080 	 * set.
5081 	 */
5082 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5083 		values[n++] += leader->total_time_enabled +
5084 			atomic64_read(&leader->child_total_time_enabled);
5085 	}
5086 
5087 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5088 		values[n++] += leader->total_time_running +
5089 			atomic64_read(&leader->child_total_time_running);
5090 	}
5091 
5092 	/*
5093 	 * Write {count,id} tuples for every sibling.
5094 	 */
5095 	values[n++] += perf_event_count(leader);
5096 	if (read_format & PERF_FORMAT_ID)
5097 		values[n++] = primary_event_id(leader);
5098 
5099 	for_each_sibling_event(sub, leader) {
5100 		values[n++] += perf_event_count(sub);
5101 		if (read_format & PERF_FORMAT_ID)
5102 			values[n++] = primary_event_id(sub);
5103 	}
5104 
5105 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5106 	return 0;
5107 }
5108 
5109 static int perf_read_group(struct perf_event *event,
5110 				   u64 read_format, char __user *buf)
5111 {
5112 	struct perf_event *leader = event->group_leader, *child;
5113 	struct perf_event_context *ctx = leader->ctx;
5114 	int ret;
5115 	u64 *values;
5116 
5117 	lockdep_assert_held(&ctx->mutex);
5118 
5119 	values = kzalloc(event->read_size, GFP_KERNEL);
5120 	if (!values)
5121 		return -ENOMEM;
5122 
5123 	values[0] = 1 + leader->nr_siblings;
5124 
5125 	/*
5126 	 * By locking the child_mutex of the leader we effectively
5127 	 * lock the child list of all siblings.. XXX explain how.
5128 	 */
5129 	mutex_lock(&leader->child_mutex);
5130 
5131 	ret = __perf_read_group_add(leader, read_format, values);
5132 	if (ret)
5133 		goto unlock;
5134 
5135 	list_for_each_entry(child, &leader->child_list, child_list) {
5136 		ret = __perf_read_group_add(child, read_format, values);
5137 		if (ret)
5138 			goto unlock;
5139 	}
5140 
5141 	mutex_unlock(&leader->child_mutex);
5142 
5143 	ret = event->read_size;
5144 	if (copy_to_user(buf, values, event->read_size))
5145 		ret = -EFAULT;
5146 	goto out;
5147 
5148 unlock:
5149 	mutex_unlock(&leader->child_mutex);
5150 out:
5151 	kfree(values);
5152 	return ret;
5153 }
5154 
5155 static int perf_read_one(struct perf_event *event,
5156 				 u64 read_format, char __user *buf)
5157 {
5158 	u64 enabled, running;
5159 	u64 values[4];
5160 	int n = 0;
5161 
5162 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5163 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5164 		values[n++] = enabled;
5165 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5166 		values[n++] = running;
5167 	if (read_format & PERF_FORMAT_ID)
5168 		values[n++] = primary_event_id(event);
5169 
5170 	if (copy_to_user(buf, values, n * sizeof(u64)))
5171 		return -EFAULT;
5172 
5173 	return n * sizeof(u64);
5174 }
5175 
5176 static bool is_event_hup(struct perf_event *event)
5177 {
5178 	bool no_children;
5179 
5180 	if (event->state > PERF_EVENT_STATE_EXIT)
5181 		return false;
5182 
5183 	mutex_lock(&event->child_mutex);
5184 	no_children = list_empty(&event->child_list);
5185 	mutex_unlock(&event->child_mutex);
5186 	return no_children;
5187 }
5188 
5189 /*
5190  * Read the performance event - simple non blocking version for now
5191  */
5192 static ssize_t
5193 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5194 {
5195 	u64 read_format = event->attr.read_format;
5196 	int ret;
5197 
5198 	/*
5199 	 * Return end-of-file for a read on an event that is in
5200 	 * error state (i.e. because it was pinned but it couldn't be
5201 	 * scheduled on to the CPU at some point).
5202 	 */
5203 	if (event->state == PERF_EVENT_STATE_ERROR)
5204 		return 0;
5205 
5206 	if (count < event->read_size)
5207 		return -ENOSPC;
5208 
5209 	WARN_ON_ONCE(event->ctx->parent_ctx);
5210 	if (read_format & PERF_FORMAT_GROUP)
5211 		ret = perf_read_group(event, read_format, buf);
5212 	else
5213 		ret = perf_read_one(event, read_format, buf);
5214 
5215 	return ret;
5216 }
5217 
5218 static ssize_t
5219 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5220 {
5221 	struct perf_event *event = file->private_data;
5222 	struct perf_event_context *ctx;
5223 	int ret;
5224 
5225 	ret = security_perf_event_read(event);
5226 	if (ret)
5227 		return ret;
5228 
5229 	ctx = perf_event_ctx_lock(event);
5230 	ret = __perf_read(event, buf, count);
5231 	perf_event_ctx_unlock(event, ctx);
5232 
5233 	return ret;
5234 }
5235 
5236 static __poll_t perf_poll(struct file *file, poll_table *wait)
5237 {
5238 	struct perf_event *event = file->private_data;
5239 	struct perf_buffer *rb;
5240 	__poll_t events = EPOLLHUP;
5241 
5242 	poll_wait(file, &event->waitq, wait);
5243 
5244 	if (is_event_hup(event))
5245 		return events;
5246 
5247 	/*
5248 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5249 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5250 	 */
5251 	mutex_lock(&event->mmap_mutex);
5252 	rb = event->rb;
5253 	if (rb)
5254 		events = atomic_xchg(&rb->poll, 0);
5255 	mutex_unlock(&event->mmap_mutex);
5256 	return events;
5257 }
5258 
5259 static void _perf_event_reset(struct perf_event *event)
5260 {
5261 	(void)perf_event_read(event, false);
5262 	local64_set(&event->count, 0);
5263 	perf_event_update_userpage(event);
5264 }
5265 
5266 /* Assume it's not an event with inherit set. */
5267 u64 perf_event_pause(struct perf_event *event, bool reset)
5268 {
5269 	struct perf_event_context *ctx;
5270 	u64 count;
5271 
5272 	ctx = perf_event_ctx_lock(event);
5273 	WARN_ON_ONCE(event->attr.inherit);
5274 	_perf_event_disable(event);
5275 	count = local64_read(&event->count);
5276 	if (reset)
5277 		local64_set(&event->count, 0);
5278 	perf_event_ctx_unlock(event, ctx);
5279 
5280 	return count;
5281 }
5282 EXPORT_SYMBOL_GPL(perf_event_pause);
5283 
5284 /*
5285  * Holding the top-level event's child_mutex means that any
5286  * descendant process that has inherited this event will block
5287  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5288  * task existence requirements of perf_event_enable/disable.
5289  */
5290 static void perf_event_for_each_child(struct perf_event *event,
5291 					void (*func)(struct perf_event *))
5292 {
5293 	struct perf_event *child;
5294 
5295 	WARN_ON_ONCE(event->ctx->parent_ctx);
5296 
5297 	mutex_lock(&event->child_mutex);
5298 	func(event);
5299 	list_for_each_entry(child, &event->child_list, child_list)
5300 		func(child);
5301 	mutex_unlock(&event->child_mutex);
5302 }
5303 
5304 static void perf_event_for_each(struct perf_event *event,
5305 				  void (*func)(struct perf_event *))
5306 {
5307 	struct perf_event_context *ctx = event->ctx;
5308 	struct perf_event *sibling;
5309 
5310 	lockdep_assert_held(&ctx->mutex);
5311 
5312 	event = event->group_leader;
5313 
5314 	perf_event_for_each_child(event, func);
5315 	for_each_sibling_event(sibling, event)
5316 		perf_event_for_each_child(sibling, func);
5317 }
5318 
5319 static void __perf_event_period(struct perf_event *event,
5320 				struct perf_cpu_context *cpuctx,
5321 				struct perf_event_context *ctx,
5322 				void *info)
5323 {
5324 	u64 value = *((u64 *)info);
5325 	bool active;
5326 
5327 	if (event->attr.freq) {
5328 		event->attr.sample_freq = value;
5329 	} else {
5330 		event->attr.sample_period = value;
5331 		event->hw.sample_period = value;
5332 	}
5333 
5334 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5335 	if (active) {
5336 		perf_pmu_disable(ctx->pmu);
5337 		/*
5338 		 * We could be throttled; unthrottle now to avoid the tick
5339 		 * trying to unthrottle while we already re-started the event.
5340 		 */
5341 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5342 			event->hw.interrupts = 0;
5343 			perf_log_throttle(event, 1);
5344 		}
5345 		event->pmu->stop(event, PERF_EF_UPDATE);
5346 	}
5347 
5348 	local64_set(&event->hw.period_left, 0);
5349 
5350 	if (active) {
5351 		event->pmu->start(event, PERF_EF_RELOAD);
5352 		perf_pmu_enable(ctx->pmu);
5353 	}
5354 }
5355 
5356 static int perf_event_check_period(struct perf_event *event, u64 value)
5357 {
5358 	return event->pmu->check_period(event, value);
5359 }
5360 
5361 static int _perf_event_period(struct perf_event *event, u64 value)
5362 {
5363 	if (!is_sampling_event(event))
5364 		return -EINVAL;
5365 
5366 	if (!value)
5367 		return -EINVAL;
5368 
5369 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5370 		return -EINVAL;
5371 
5372 	if (perf_event_check_period(event, value))
5373 		return -EINVAL;
5374 
5375 	if (!event->attr.freq && (value & (1ULL << 63)))
5376 		return -EINVAL;
5377 
5378 	event_function_call(event, __perf_event_period, &value);
5379 
5380 	return 0;
5381 }
5382 
5383 int perf_event_period(struct perf_event *event, u64 value)
5384 {
5385 	struct perf_event_context *ctx;
5386 	int ret;
5387 
5388 	ctx = perf_event_ctx_lock(event);
5389 	ret = _perf_event_period(event, value);
5390 	perf_event_ctx_unlock(event, ctx);
5391 
5392 	return ret;
5393 }
5394 EXPORT_SYMBOL_GPL(perf_event_period);
5395 
5396 static const struct file_operations perf_fops;
5397 
5398 static inline int perf_fget_light(int fd, struct fd *p)
5399 {
5400 	struct fd f = fdget(fd);
5401 	if (!f.file)
5402 		return -EBADF;
5403 
5404 	if (f.file->f_op != &perf_fops) {
5405 		fdput(f);
5406 		return -EBADF;
5407 	}
5408 	*p = f;
5409 	return 0;
5410 }
5411 
5412 static int perf_event_set_output(struct perf_event *event,
5413 				 struct perf_event *output_event);
5414 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5415 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5416 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5417 			  struct perf_event_attr *attr);
5418 
5419 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5420 {
5421 	void (*func)(struct perf_event *);
5422 	u32 flags = arg;
5423 
5424 	switch (cmd) {
5425 	case PERF_EVENT_IOC_ENABLE:
5426 		func = _perf_event_enable;
5427 		break;
5428 	case PERF_EVENT_IOC_DISABLE:
5429 		func = _perf_event_disable;
5430 		break;
5431 	case PERF_EVENT_IOC_RESET:
5432 		func = _perf_event_reset;
5433 		break;
5434 
5435 	case PERF_EVENT_IOC_REFRESH:
5436 		return _perf_event_refresh(event, arg);
5437 
5438 	case PERF_EVENT_IOC_PERIOD:
5439 	{
5440 		u64 value;
5441 
5442 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5443 			return -EFAULT;
5444 
5445 		return _perf_event_period(event, value);
5446 	}
5447 	case PERF_EVENT_IOC_ID:
5448 	{
5449 		u64 id = primary_event_id(event);
5450 
5451 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5452 			return -EFAULT;
5453 		return 0;
5454 	}
5455 
5456 	case PERF_EVENT_IOC_SET_OUTPUT:
5457 	{
5458 		int ret;
5459 		if (arg != -1) {
5460 			struct perf_event *output_event;
5461 			struct fd output;
5462 			ret = perf_fget_light(arg, &output);
5463 			if (ret)
5464 				return ret;
5465 			output_event = output.file->private_data;
5466 			ret = perf_event_set_output(event, output_event);
5467 			fdput(output);
5468 		} else {
5469 			ret = perf_event_set_output(event, NULL);
5470 		}
5471 		return ret;
5472 	}
5473 
5474 	case PERF_EVENT_IOC_SET_FILTER:
5475 		return perf_event_set_filter(event, (void __user *)arg);
5476 
5477 	case PERF_EVENT_IOC_SET_BPF:
5478 		return perf_event_set_bpf_prog(event, arg);
5479 
5480 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5481 		struct perf_buffer *rb;
5482 
5483 		rcu_read_lock();
5484 		rb = rcu_dereference(event->rb);
5485 		if (!rb || !rb->nr_pages) {
5486 			rcu_read_unlock();
5487 			return -EINVAL;
5488 		}
5489 		rb_toggle_paused(rb, !!arg);
5490 		rcu_read_unlock();
5491 		return 0;
5492 	}
5493 
5494 	case PERF_EVENT_IOC_QUERY_BPF:
5495 		return perf_event_query_prog_array(event, (void __user *)arg);
5496 
5497 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5498 		struct perf_event_attr new_attr;
5499 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5500 					 &new_attr);
5501 
5502 		if (err)
5503 			return err;
5504 
5505 		return perf_event_modify_attr(event,  &new_attr);
5506 	}
5507 	default:
5508 		return -ENOTTY;
5509 	}
5510 
5511 	if (flags & PERF_IOC_FLAG_GROUP)
5512 		perf_event_for_each(event, func);
5513 	else
5514 		perf_event_for_each_child(event, func);
5515 
5516 	return 0;
5517 }
5518 
5519 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5520 {
5521 	struct perf_event *event = file->private_data;
5522 	struct perf_event_context *ctx;
5523 	long ret;
5524 
5525 	/* Treat ioctl like writes as it is likely a mutating operation. */
5526 	ret = security_perf_event_write(event);
5527 	if (ret)
5528 		return ret;
5529 
5530 	ctx = perf_event_ctx_lock(event);
5531 	ret = _perf_ioctl(event, cmd, arg);
5532 	perf_event_ctx_unlock(event, ctx);
5533 
5534 	return ret;
5535 }
5536 
5537 #ifdef CONFIG_COMPAT
5538 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5539 				unsigned long arg)
5540 {
5541 	switch (_IOC_NR(cmd)) {
5542 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5543 	case _IOC_NR(PERF_EVENT_IOC_ID):
5544 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5545 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5546 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5547 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5548 			cmd &= ~IOCSIZE_MASK;
5549 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5550 		}
5551 		break;
5552 	}
5553 	return perf_ioctl(file, cmd, arg);
5554 }
5555 #else
5556 # define perf_compat_ioctl NULL
5557 #endif
5558 
5559 int perf_event_task_enable(void)
5560 {
5561 	struct perf_event_context *ctx;
5562 	struct perf_event *event;
5563 
5564 	mutex_lock(&current->perf_event_mutex);
5565 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5566 		ctx = perf_event_ctx_lock(event);
5567 		perf_event_for_each_child(event, _perf_event_enable);
5568 		perf_event_ctx_unlock(event, ctx);
5569 	}
5570 	mutex_unlock(&current->perf_event_mutex);
5571 
5572 	return 0;
5573 }
5574 
5575 int perf_event_task_disable(void)
5576 {
5577 	struct perf_event_context *ctx;
5578 	struct perf_event *event;
5579 
5580 	mutex_lock(&current->perf_event_mutex);
5581 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5582 		ctx = perf_event_ctx_lock(event);
5583 		perf_event_for_each_child(event, _perf_event_disable);
5584 		perf_event_ctx_unlock(event, ctx);
5585 	}
5586 	mutex_unlock(&current->perf_event_mutex);
5587 
5588 	return 0;
5589 }
5590 
5591 static int perf_event_index(struct perf_event *event)
5592 {
5593 	if (event->hw.state & PERF_HES_STOPPED)
5594 		return 0;
5595 
5596 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5597 		return 0;
5598 
5599 	return event->pmu->event_idx(event);
5600 }
5601 
5602 static void calc_timer_values(struct perf_event *event,
5603 				u64 *now,
5604 				u64 *enabled,
5605 				u64 *running)
5606 {
5607 	u64 ctx_time;
5608 
5609 	*now = perf_clock();
5610 	ctx_time = event->shadow_ctx_time + *now;
5611 	__perf_update_times(event, ctx_time, enabled, running);
5612 }
5613 
5614 static void perf_event_init_userpage(struct perf_event *event)
5615 {
5616 	struct perf_event_mmap_page *userpg;
5617 	struct perf_buffer *rb;
5618 
5619 	rcu_read_lock();
5620 	rb = rcu_dereference(event->rb);
5621 	if (!rb)
5622 		goto unlock;
5623 
5624 	userpg = rb->user_page;
5625 
5626 	/* Allow new userspace to detect that bit 0 is deprecated */
5627 	userpg->cap_bit0_is_deprecated = 1;
5628 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5629 	userpg->data_offset = PAGE_SIZE;
5630 	userpg->data_size = perf_data_size(rb);
5631 
5632 unlock:
5633 	rcu_read_unlock();
5634 }
5635 
5636 void __weak arch_perf_update_userpage(
5637 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5638 {
5639 }
5640 
5641 /*
5642  * Callers need to ensure there can be no nesting of this function, otherwise
5643  * the seqlock logic goes bad. We can not serialize this because the arch
5644  * code calls this from NMI context.
5645  */
5646 void perf_event_update_userpage(struct perf_event *event)
5647 {
5648 	struct perf_event_mmap_page *userpg;
5649 	struct perf_buffer *rb;
5650 	u64 enabled, running, now;
5651 
5652 	rcu_read_lock();
5653 	rb = rcu_dereference(event->rb);
5654 	if (!rb)
5655 		goto unlock;
5656 
5657 	/*
5658 	 * compute total_time_enabled, total_time_running
5659 	 * based on snapshot values taken when the event
5660 	 * was last scheduled in.
5661 	 *
5662 	 * we cannot simply called update_context_time()
5663 	 * because of locking issue as we can be called in
5664 	 * NMI context
5665 	 */
5666 	calc_timer_values(event, &now, &enabled, &running);
5667 
5668 	userpg = rb->user_page;
5669 	/*
5670 	 * Disable preemption to guarantee consistent time stamps are stored to
5671 	 * the user page.
5672 	 */
5673 	preempt_disable();
5674 	++userpg->lock;
5675 	barrier();
5676 	userpg->index = perf_event_index(event);
5677 	userpg->offset = perf_event_count(event);
5678 	if (userpg->index)
5679 		userpg->offset -= local64_read(&event->hw.prev_count);
5680 
5681 	userpg->time_enabled = enabled +
5682 			atomic64_read(&event->child_total_time_enabled);
5683 
5684 	userpg->time_running = running +
5685 			atomic64_read(&event->child_total_time_running);
5686 
5687 	arch_perf_update_userpage(event, userpg, now);
5688 
5689 	barrier();
5690 	++userpg->lock;
5691 	preempt_enable();
5692 unlock:
5693 	rcu_read_unlock();
5694 }
5695 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5696 
5697 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5698 {
5699 	struct perf_event *event = vmf->vma->vm_file->private_data;
5700 	struct perf_buffer *rb;
5701 	vm_fault_t ret = VM_FAULT_SIGBUS;
5702 
5703 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5704 		if (vmf->pgoff == 0)
5705 			ret = 0;
5706 		return ret;
5707 	}
5708 
5709 	rcu_read_lock();
5710 	rb = rcu_dereference(event->rb);
5711 	if (!rb)
5712 		goto unlock;
5713 
5714 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5715 		goto unlock;
5716 
5717 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5718 	if (!vmf->page)
5719 		goto unlock;
5720 
5721 	get_page(vmf->page);
5722 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5723 	vmf->page->index   = vmf->pgoff;
5724 
5725 	ret = 0;
5726 unlock:
5727 	rcu_read_unlock();
5728 
5729 	return ret;
5730 }
5731 
5732 static void ring_buffer_attach(struct perf_event *event,
5733 			       struct perf_buffer *rb)
5734 {
5735 	struct perf_buffer *old_rb = NULL;
5736 	unsigned long flags;
5737 
5738 	if (event->rb) {
5739 		/*
5740 		 * Should be impossible, we set this when removing
5741 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5742 		 */
5743 		WARN_ON_ONCE(event->rcu_pending);
5744 
5745 		old_rb = event->rb;
5746 		spin_lock_irqsave(&old_rb->event_lock, flags);
5747 		list_del_rcu(&event->rb_entry);
5748 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5749 
5750 		event->rcu_batches = get_state_synchronize_rcu();
5751 		event->rcu_pending = 1;
5752 	}
5753 
5754 	if (rb) {
5755 		if (event->rcu_pending) {
5756 			cond_synchronize_rcu(event->rcu_batches);
5757 			event->rcu_pending = 0;
5758 		}
5759 
5760 		spin_lock_irqsave(&rb->event_lock, flags);
5761 		list_add_rcu(&event->rb_entry, &rb->event_list);
5762 		spin_unlock_irqrestore(&rb->event_lock, flags);
5763 	}
5764 
5765 	/*
5766 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5767 	 * before swizzling the event::rb pointer; if it's getting
5768 	 * unmapped, its aux_mmap_count will be 0 and it won't
5769 	 * restart. See the comment in __perf_pmu_output_stop().
5770 	 *
5771 	 * Data will inevitably be lost when set_output is done in
5772 	 * mid-air, but then again, whoever does it like this is
5773 	 * not in for the data anyway.
5774 	 */
5775 	if (has_aux(event))
5776 		perf_event_stop(event, 0);
5777 
5778 	rcu_assign_pointer(event->rb, rb);
5779 
5780 	if (old_rb) {
5781 		ring_buffer_put(old_rb);
5782 		/*
5783 		 * Since we detached before setting the new rb, so that we
5784 		 * could attach the new rb, we could have missed a wakeup.
5785 		 * Provide it now.
5786 		 */
5787 		wake_up_all(&event->waitq);
5788 	}
5789 }
5790 
5791 static void ring_buffer_wakeup(struct perf_event *event)
5792 {
5793 	struct perf_buffer *rb;
5794 
5795 	rcu_read_lock();
5796 	rb = rcu_dereference(event->rb);
5797 	if (rb) {
5798 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5799 			wake_up_all(&event->waitq);
5800 	}
5801 	rcu_read_unlock();
5802 }
5803 
5804 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5805 {
5806 	struct perf_buffer *rb;
5807 
5808 	rcu_read_lock();
5809 	rb = rcu_dereference(event->rb);
5810 	if (rb) {
5811 		if (!refcount_inc_not_zero(&rb->refcount))
5812 			rb = NULL;
5813 	}
5814 	rcu_read_unlock();
5815 
5816 	return rb;
5817 }
5818 
5819 void ring_buffer_put(struct perf_buffer *rb)
5820 {
5821 	if (!refcount_dec_and_test(&rb->refcount))
5822 		return;
5823 
5824 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5825 
5826 	call_rcu(&rb->rcu_head, rb_free_rcu);
5827 }
5828 
5829 static void perf_mmap_open(struct vm_area_struct *vma)
5830 {
5831 	struct perf_event *event = vma->vm_file->private_data;
5832 
5833 	atomic_inc(&event->mmap_count);
5834 	atomic_inc(&event->rb->mmap_count);
5835 
5836 	if (vma->vm_pgoff)
5837 		atomic_inc(&event->rb->aux_mmap_count);
5838 
5839 	if (event->pmu->event_mapped)
5840 		event->pmu->event_mapped(event, vma->vm_mm);
5841 }
5842 
5843 static void perf_pmu_output_stop(struct perf_event *event);
5844 
5845 /*
5846  * A buffer can be mmap()ed multiple times; either directly through the same
5847  * event, or through other events by use of perf_event_set_output().
5848  *
5849  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5850  * the buffer here, where we still have a VM context. This means we need
5851  * to detach all events redirecting to us.
5852  */
5853 static void perf_mmap_close(struct vm_area_struct *vma)
5854 {
5855 	struct perf_event *event = vma->vm_file->private_data;
5856 
5857 	struct perf_buffer *rb = ring_buffer_get(event);
5858 	struct user_struct *mmap_user = rb->mmap_user;
5859 	int mmap_locked = rb->mmap_locked;
5860 	unsigned long size = perf_data_size(rb);
5861 
5862 	if (event->pmu->event_unmapped)
5863 		event->pmu->event_unmapped(event, vma->vm_mm);
5864 
5865 	/*
5866 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5867 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5868 	 * serialize with perf_mmap here.
5869 	 */
5870 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5871 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5872 		/*
5873 		 * Stop all AUX events that are writing to this buffer,
5874 		 * so that we can free its AUX pages and corresponding PMU
5875 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5876 		 * they won't start any more (see perf_aux_output_begin()).
5877 		 */
5878 		perf_pmu_output_stop(event);
5879 
5880 		/* now it's safe to free the pages */
5881 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5882 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5883 
5884 		/* this has to be the last one */
5885 		rb_free_aux(rb);
5886 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5887 
5888 		mutex_unlock(&event->mmap_mutex);
5889 	}
5890 
5891 	atomic_dec(&rb->mmap_count);
5892 
5893 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5894 		goto out_put;
5895 
5896 	ring_buffer_attach(event, NULL);
5897 	mutex_unlock(&event->mmap_mutex);
5898 
5899 	/* If there's still other mmap()s of this buffer, we're done. */
5900 	if (atomic_read(&rb->mmap_count))
5901 		goto out_put;
5902 
5903 	/*
5904 	 * No other mmap()s, detach from all other events that might redirect
5905 	 * into the now unreachable buffer. Somewhat complicated by the
5906 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5907 	 */
5908 again:
5909 	rcu_read_lock();
5910 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5911 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5912 			/*
5913 			 * This event is en-route to free_event() which will
5914 			 * detach it and remove it from the list.
5915 			 */
5916 			continue;
5917 		}
5918 		rcu_read_unlock();
5919 
5920 		mutex_lock(&event->mmap_mutex);
5921 		/*
5922 		 * Check we didn't race with perf_event_set_output() which can
5923 		 * swizzle the rb from under us while we were waiting to
5924 		 * acquire mmap_mutex.
5925 		 *
5926 		 * If we find a different rb; ignore this event, a next
5927 		 * iteration will no longer find it on the list. We have to
5928 		 * still restart the iteration to make sure we're not now
5929 		 * iterating the wrong list.
5930 		 */
5931 		if (event->rb == rb)
5932 			ring_buffer_attach(event, NULL);
5933 
5934 		mutex_unlock(&event->mmap_mutex);
5935 		put_event(event);
5936 
5937 		/*
5938 		 * Restart the iteration; either we're on the wrong list or
5939 		 * destroyed its integrity by doing a deletion.
5940 		 */
5941 		goto again;
5942 	}
5943 	rcu_read_unlock();
5944 
5945 	/*
5946 	 * It could be there's still a few 0-ref events on the list; they'll
5947 	 * get cleaned up by free_event() -- they'll also still have their
5948 	 * ref on the rb and will free it whenever they are done with it.
5949 	 *
5950 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5951 	 * undo the VM accounting.
5952 	 */
5953 
5954 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5955 			&mmap_user->locked_vm);
5956 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5957 	free_uid(mmap_user);
5958 
5959 out_put:
5960 	ring_buffer_put(rb); /* could be last */
5961 }
5962 
5963 static const struct vm_operations_struct perf_mmap_vmops = {
5964 	.open		= perf_mmap_open,
5965 	.close		= perf_mmap_close, /* non mergeable */
5966 	.fault		= perf_mmap_fault,
5967 	.page_mkwrite	= perf_mmap_fault,
5968 };
5969 
5970 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5971 {
5972 	struct perf_event *event = file->private_data;
5973 	unsigned long user_locked, user_lock_limit;
5974 	struct user_struct *user = current_user();
5975 	struct perf_buffer *rb = NULL;
5976 	unsigned long locked, lock_limit;
5977 	unsigned long vma_size;
5978 	unsigned long nr_pages;
5979 	long user_extra = 0, extra = 0;
5980 	int ret = 0, flags = 0;
5981 
5982 	/*
5983 	 * Don't allow mmap() of inherited per-task counters. This would
5984 	 * create a performance issue due to all children writing to the
5985 	 * same rb.
5986 	 */
5987 	if (event->cpu == -1 && event->attr.inherit)
5988 		return -EINVAL;
5989 
5990 	if (!(vma->vm_flags & VM_SHARED))
5991 		return -EINVAL;
5992 
5993 	ret = security_perf_event_read(event);
5994 	if (ret)
5995 		return ret;
5996 
5997 	vma_size = vma->vm_end - vma->vm_start;
5998 
5999 	if (vma->vm_pgoff == 0) {
6000 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6001 	} else {
6002 		/*
6003 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6004 		 * mapped, all subsequent mappings should have the same size
6005 		 * and offset. Must be above the normal perf buffer.
6006 		 */
6007 		u64 aux_offset, aux_size;
6008 
6009 		if (!event->rb)
6010 			return -EINVAL;
6011 
6012 		nr_pages = vma_size / PAGE_SIZE;
6013 
6014 		mutex_lock(&event->mmap_mutex);
6015 		ret = -EINVAL;
6016 
6017 		rb = event->rb;
6018 		if (!rb)
6019 			goto aux_unlock;
6020 
6021 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6022 		aux_size = READ_ONCE(rb->user_page->aux_size);
6023 
6024 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6025 			goto aux_unlock;
6026 
6027 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6028 			goto aux_unlock;
6029 
6030 		/* already mapped with a different offset */
6031 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6032 			goto aux_unlock;
6033 
6034 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6035 			goto aux_unlock;
6036 
6037 		/* already mapped with a different size */
6038 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6039 			goto aux_unlock;
6040 
6041 		if (!is_power_of_2(nr_pages))
6042 			goto aux_unlock;
6043 
6044 		if (!atomic_inc_not_zero(&rb->mmap_count))
6045 			goto aux_unlock;
6046 
6047 		if (rb_has_aux(rb)) {
6048 			atomic_inc(&rb->aux_mmap_count);
6049 			ret = 0;
6050 			goto unlock;
6051 		}
6052 
6053 		atomic_set(&rb->aux_mmap_count, 1);
6054 		user_extra = nr_pages;
6055 
6056 		goto accounting;
6057 	}
6058 
6059 	/*
6060 	 * If we have rb pages ensure they're a power-of-two number, so we
6061 	 * can do bitmasks instead of modulo.
6062 	 */
6063 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6064 		return -EINVAL;
6065 
6066 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6067 		return -EINVAL;
6068 
6069 	WARN_ON_ONCE(event->ctx->parent_ctx);
6070 again:
6071 	mutex_lock(&event->mmap_mutex);
6072 	if (event->rb) {
6073 		if (event->rb->nr_pages != nr_pages) {
6074 			ret = -EINVAL;
6075 			goto unlock;
6076 		}
6077 
6078 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6079 			/*
6080 			 * Raced against perf_mmap_close() through
6081 			 * perf_event_set_output(). Try again, hope for better
6082 			 * luck.
6083 			 */
6084 			mutex_unlock(&event->mmap_mutex);
6085 			goto again;
6086 		}
6087 
6088 		goto unlock;
6089 	}
6090 
6091 	user_extra = nr_pages + 1;
6092 
6093 accounting:
6094 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6095 
6096 	/*
6097 	 * Increase the limit linearly with more CPUs:
6098 	 */
6099 	user_lock_limit *= num_online_cpus();
6100 
6101 	user_locked = atomic_long_read(&user->locked_vm);
6102 
6103 	/*
6104 	 * sysctl_perf_event_mlock may have changed, so that
6105 	 *     user->locked_vm > user_lock_limit
6106 	 */
6107 	if (user_locked > user_lock_limit)
6108 		user_locked = user_lock_limit;
6109 	user_locked += user_extra;
6110 
6111 	if (user_locked > user_lock_limit) {
6112 		/*
6113 		 * charge locked_vm until it hits user_lock_limit;
6114 		 * charge the rest from pinned_vm
6115 		 */
6116 		extra = user_locked - user_lock_limit;
6117 		user_extra -= extra;
6118 	}
6119 
6120 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6121 	lock_limit >>= PAGE_SHIFT;
6122 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6123 
6124 	if ((locked > lock_limit) && perf_is_paranoid() &&
6125 		!capable(CAP_IPC_LOCK)) {
6126 		ret = -EPERM;
6127 		goto unlock;
6128 	}
6129 
6130 	WARN_ON(!rb && event->rb);
6131 
6132 	if (vma->vm_flags & VM_WRITE)
6133 		flags |= RING_BUFFER_WRITABLE;
6134 
6135 	if (!rb) {
6136 		rb = rb_alloc(nr_pages,
6137 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6138 			      event->cpu, flags);
6139 
6140 		if (!rb) {
6141 			ret = -ENOMEM;
6142 			goto unlock;
6143 		}
6144 
6145 		atomic_set(&rb->mmap_count, 1);
6146 		rb->mmap_user = get_current_user();
6147 		rb->mmap_locked = extra;
6148 
6149 		ring_buffer_attach(event, rb);
6150 
6151 		perf_event_init_userpage(event);
6152 		perf_event_update_userpage(event);
6153 	} else {
6154 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6155 				   event->attr.aux_watermark, flags);
6156 		if (!ret)
6157 			rb->aux_mmap_locked = extra;
6158 	}
6159 
6160 unlock:
6161 	if (!ret) {
6162 		atomic_long_add(user_extra, &user->locked_vm);
6163 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6164 
6165 		atomic_inc(&event->mmap_count);
6166 	} else if (rb) {
6167 		atomic_dec(&rb->mmap_count);
6168 	}
6169 aux_unlock:
6170 	mutex_unlock(&event->mmap_mutex);
6171 
6172 	/*
6173 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6174 	 * vma.
6175 	 */
6176 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6177 	vma->vm_ops = &perf_mmap_vmops;
6178 
6179 	if (event->pmu->event_mapped)
6180 		event->pmu->event_mapped(event, vma->vm_mm);
6181 
6182 	return ret;
6183 }
6184 
6185 static int perf_fasync(int fd, struct file *filp, int on)
6186 {
6187 	struct inode *inode = file_inode(filp);
6188 	struct perf_event *event = filp->private_data;
6189 	int retval;
6190 
6191 	inode_lock(inode);
6192 	retval = fasync_helper(fd, filp, on, &event->fasync);
6193 	inode_unlock(inode);
6194 
6195 	if (retval < 0)
6196 		return retval;
6197 
6198 	return 0;
6199 }
6200 
6201 static const struct file_operations perf_fops = {
6202 	.llseek			= no_llseek,
6203 	.release		= perf_release,
6204 	.read			= perf_read,
6205 	.poll			= perf_poll,
6206 	.unlocked_ioctl		= perf_ioctl,
6207 	.compat_ioctl		= perf_compat_ioctl,
6208 	.mmap			= perf_mmap,
6209 	.fasync			= perf_fasync,
6210 };
6211 
6212 /*
6213  * Perf event wakeup
6214  *
6215  * If there's data, ensure we set the poll() state and publish everything
6216  * to user-space before waking everybody up.
6217  */
6218 
6219 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6220 {
6221 	/* only the parent has fasync state */
6222 	if (event->parent)
6223 		event = event->parent;
6224 	return &event->fasync;
6225 }
6226 
6227 void perf_event_wakeup(struct perf_event *event)
6228 {
6229 	ring_buffer_wakeup(event);
6230 
6231 	if (event->pending_kill) {
6232 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6233 		event->pending_kill = 0;
6234 	}
6235 }
6236 
6237 static void perf_pending_event_disable(struct perf_event *event)
6238 {
6239 	int cpu = READ_ONCE(event->pending_disable);
6240 
6241 	if (cpu < 0)
6242 		return;
6243 
6244 	if (cpu == smp_processor_id()) {
6245 		WRITE_ONCE(event->pending_disable, -1);
6246 		perf_event_disable_local(event);
6247 		return;
6248 	}
6249 
6250 	/*
6251 	 *  CPU-A			CPU-B
6252 	 *
6253 	 *  perf_event_disable_inatomic()
6254 	 *    @pending_disable = CPU-A;
6255 	 *    irq_work_queue();
6256 	 *
6257 	 *  sched-out
6258 	 *    @pending_disable = -1;
6259 	 *
6260 	 *				sched-in
6261 	 *				perf_event_disable_inatomic()
6262 	 *				  @pending_disable = CPU-B;
6263 	 *				  irq_work_queue(); // FAILS
6264 	 *
6265 	 *  irq_work_run()
6266 	 *    perf_pending_event()
6267 	 *
6268 	 * But the event runs on CPU-B and wants disabling there.
6269 	 */
6270 	irq_work_queue_on(&event->pending, cpu);
6271 }
6272 
6273 static void perf_pending_event(struct irq_work *entry)
6274 {
6275 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6276 	int rctx;
6277 
6278 	rctx = perf_swevent_get_recursion_context();
6279 	/*
6280 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6281 	 * and we won't recurse 'further'.
6282 	 */
6283 
6284 	perf_pending_event_disable(event);
6285 
6286 	if (event->pending_wakeup) {
6287 		event->pending_wakeup = 0;
6288 		perf_event_wakeup(event);
6289 	}
6290 
6291 	if (rctx >= 0)
6292 		perf_swevent_put_recursion_context(rctx);
6293 }
6294 
6295 /*
6296  * We assume there is only KVM supporting the callbacks.
6297  * Later on, we might change it to a list if there is
6298  * another virtualization implementation supporting the callbacks.
6299  */
6300 struct perf_guest_info_callbacks *perf_guest_cbs;
6301 
6302 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6303 {
6304 	perf_guest_cbs = cbs;
6305 	return 0;
6306 }
6307 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6308 
6309 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6310 {
6311 	perf_guest_cbs = NULL;
6312 	return 0;
6313 }
6314 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6315 
6316 static void
6317 perf_output_sample_regs(struct perf_output_handle *handle,
6318 			struct pt_regs *regs, u64 mask)
6319 {
6320 	int bit;
6321 	DECLARE_BITMAP(_mask, 64);
6322 
6323 	bitmap_from_u64(_mask, mask);
6324 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6325 		u64 val;
6326 
6327 		val = perf_reg_value(regs, bit);
6328 		perf_output_put(handle, val);
6329 	}
6330 }
6331 
6332 static void perf_sample_regs_user(struct perf_regs *regs_user,
6333 				  struct pt_regs *regs,
6334 				  struct pt_regs *regs_user_copy)
6335 {
6336 	if (user_mode(regs)) {
6337 		regs_user->abi = perf_reg_abi(current);
6338 		regs_user->regs = regs;
6339 	} else if (!(current->flags & PF_KTHREAD)) {
6340 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6341 	} else {
6342 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6343 		regs_user->regs = NULL;
6344 	}
6345 }
6346 
6347 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6348 				  struct pt_regs *regs)
6349 {
6350 	regs_intr->regs = regs;
6351 	regs_intr->abi  = perf_reg_abi(current);
6352 }
6353 
6354 
6355 /*
6356  * Get remaining task size from user stack pointer.
6357  *
6358  * It'd be better to take stack vma map and limit this more
6359  * precisely, but there's no way to get it safely under interrupt,
6360  * so using TASK_SIZE as limit.
6361  */
6362 static u64 perf_ustack_task_size(struct pt_regs *regs)
6363 {
6364 	unsigned long addr = perf_user_stack_pointer(regs);
6365 
6366 	if (!addr || addr >= TASK_SIZE)
6367 		return 0;
6368 
6369 	return TASK_SIZE - addr;
6370 }
6371 
6372 static u16
6373 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6374 			struct pt_regs *regs)
6375 {
6376 	u64 task_size;
6377 
6378 	/* No regs, no stack pointer, no dump. */
6379 	if (!regs)
6380 		return 0;
6381 
6382 	/*
6383 	 * Check if we fit in with the requested stack size into the:
6384 	 * - TASK_SIZE
6385 	 *   If we don't, we limit the size to the TASK_SIZE.
6386 	 *
6387 	 * - remaining sample size
6388 	 *   If we don't, we customize the stack size to
6389 	 *   fit in to the remaining sample size.
6390 	 */
6391 
6392 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6393 	stack_size = min(stack_size, (u16) task_size);
6394 
6395 	/* Current header size plus static size and dynamic size. */
6396 	header_size += 2 * sizeof(u64);
6397 
6398 	/* Do we fit in with the current stack dump size? */
6399 	if ((u16) (header_size + stack_size) < header_size) {
6400 		/*
6401 		 * If we overflow the maximum size for the sample,
6402 		 * we customize the stack dump size to fit in.
6403 		 */
6404 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6405 		stack_size = round_up(stack_size, sizeof(u64));
6406 	}
6407 
6408 	return stack_size;
6409 }
6410 
6411 static void
6412 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6413 			  struct pt_regs *regs)
6414 {
6415 	/* Case of a kernel thread, nothing to dump */
6416 	if (!regs) {
6417 		u64 size = 0;
6418 		perf_output_put(handle, size);
6419 	} else {
6420 		unsigned long sp;
6421 		unsigned int rem;
6422 		u64 dyn_size;
6423 		mm_segment_t fs;
6424 
6425 		/*
6426 		 * We dump:
6427 		 * static size
6428 		 *   - the size requested by user or the best one we can fit
6429 		 *     in to the sample max size
6430 		 * data
6431 		 *   - user stack dump data
6432 		 * dynamic size
6433 		 *   - the actual dumped size
6434 		 */
6435 
6436 		/* Static size. */
6437 		perf_output_put(handle, dump_size);
6438 
6439 		/* Data. */
6440 		sp = perf_user_stack_pointer(regs);
6441 		fs = get_fs();
6442 		set_fs(USER_DS);
6443 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6444 		set_fs(fs);
6445 		dyn_size = dump_size - rem;
6446 
6447 		perf_output_skip(handle, rem);
6448 
6449 		/* Dynamic size. */
6450 		perf_output_put(handle, dyn_size);
6451 	}
6452 }
6453 
6454 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6455 					  struct perf_sample_data *data,
6456 					  size_t size)
6457 {
6458 	struct perf_event *sampler = event->aux_event;
6459 	struct perf_buffer *rb;
6460 
6461 	data->aux_size = 0;
6462 
6463 	if (!sampler)
6464 		goto out;
6465 
6466 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6467 		goto out;
6468 
6469 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6470 		goto out;
6471 
6472 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6473 	if (!rb)
6474 		goto out;
6475 
6476 	/*
6477 	 * If this is an NMI hit inside sampling code, don't take
6478 	 * the sample. See also perf_aux_sample_output().
6479 	 */
6480 	if (READ_ONCE(rb->aux_in_sampling)) {
6481 		data->aux_size = 0;
6482 	} else {
6483 		size = min_t(size_t, size, perf_aux_size(rb));
6484 		data->aux_size = ALIGN(size, sizeof(u64));
6485 	}
6486 	ring_buffer_put(rb);
6487 
6488 out:
6489 	return data->aux_size;
6490 }
6491 
6492 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6493 			   struct perf_event *event,
6494 			   struct perf_output_handle *handle,
6495 			   unsigned long size)
6496 {
6497 	unsigned long flags;
6498 	long ret;
6499 
6500 	/*
6501 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6502 	 * paths. If we start calling them in NMI context, they may race with
6503 	 * the IRQ ones, that is, for example, re-starting an event that's just
6504 	 * been stopped, which is why we're using a separate callback that
6505 	 * doesn't change the event state.
6506 	 *
6507 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6508 	 */
6509 	local_irq_save(flags);
6510 	/*
6511 	 * Guard against NMI hits inside the critical section;
6512 	 * see also perf_prepare_sample_aux().
6513 	 */
6514 	WRITE_ONCE(rb->aux_in_sampling, 1);
6515 	barrier();
6516 
6517 	ret = event->pmu->snapshot_aux(event, handle, size);
6518 
6519 	barrier();
6520 	WRITE_ONCE(rb->aux_in_sampling, 0);
6521 	local_irq_restore(flags);
6522 
6523 	return ret;
6524 }
6525 
6526 static void perf_aux_sample_output(struct perf_event *event,
6527 				   struct perf_output_handle *handle,
6528 				   struct perf_sample_data *data)
6529 {
6530 	struct perf_event *sampler = event->aux_event;
6531 	struct perf_buffer *rb;
6532 	unsigned long pad;
6533 	long size;
6534 
6535 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6536 		return;
6537 
6538 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6539 	if (!rb)
6540 		return;
6541 
6542 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6543 
6544 	/*
6545 	 * An error here means that perf_output_copy() failed (returned a
6546 	 * non-zero surplus that it didn't copy), which in its current
6547 	 * enlightened implementation is not possible. If that changes, we'd
6548 	 * like to know.
6549 	 */
6550 	if (WARN_ON_ONCE(size < 0))
6551 		goto out_put;
6552 
6553 	/*
6554 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6555 	 * perf_prepare_sample_aux(), so should not be more than that.
6556 	 */
6557 	pad = data->aux_size - size;
6558 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6559 		pad = 8;
6560 
6561 	if (pad) {
6562 		u64 zero = 0;
6563 		perf_output_copy(handle, &zero, pad);
6564 	}
6565 
6566 out_put:
6567 	ring_buffer_put(rb);
6568 }
6569 
6570 static void __perf_event_header__init_id(struct perf_event_header *header,
6571 					 struct perf_sample_data *data,
6572 					 struct perf_event *event)
6573 {
6574 	u64 sample_type = event->attr.sample_type;
6575 
6576 	data->type = sample_type;
6577 	header->size += event->id_header_size;
6578 
6579 	if (sample_type & PERF_SAMPLE_TID) {
6580 		/* namespace issues */
6581 		data->tid_entry.pid = perf_event_pid(event, current);
6582 		data->tid_entry.tid = perf_event_tid(event, current);
6583 	}
6584 
6585 	if (sample_type & PERF_SAMPLE_TIME)
6586 		data->time = perf_event_clock(event);
6587 
6588 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6589 		data->id = primary_event_id(event);
6590 
6591 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6592 		data->stream_id = event->id;
6593 
6594 	if (sample_type & PERF_SAMPLE_CPU) {
6595 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6596 		data->cpu_entry.reserved = 0;
6597 	}
6598 }
6599 
6600 void perf_event_header__init_id(struct perf_event_header *header,
6601 				struct perf_sample_data *data,
6602 				struct perf_event *event)
6603 {
6604 	if (event->attr.sample_id_all)
6605 		__perf_event_header__init_id(header, data, event);
6606 }
6607 
6608 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6609 					   struct perf_sample_data *data)
6610 {
6611 	u64 sample_type = data->type;
6612 
6613 	if (sample_type & PERF_SAMPLE_TID)
6614 		perf_output_put(handle, data->tid_entry);
6615 
6616 	if (sample_type & PERF_SAMPLE_TIME)
6617 		perf_output_put(handle, data->time);
6618 
6619 	if (sample_type & PERF_SAMPLE_ID)
6620 		perf_output_put(handle, data->id);
6621 
6622 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6623 		perf_output_put(handle, data->stream_id);
6624 
6625 	if (sample_type & PERF_SAMPLE_CPU)
6626 		perf_output_put(handle, data->cpu_entry);
6627 
6628 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6629 		perf_output_put(handle, data->id);
6630 }
6631 
6632 void perf_event__output_id_sample(struct perf_event *event,
6633 				  struct perf_output_handle *handle,
6634 				  struct perf_sample_data *sample)
6635 {
6636 	if (event->attr.sample_id_all)
6637 		__perf_event__output_id_sample(handle, sample);
6638 }
6639 
6640 static void perf_output_read_one(struct perf_output_handle *handle,
6641 				 struct perf_event *event,
6642 				 u64 enabled, u64 running)
6643 {
6644 	u64 read_format = event->attr.read_format;
6645 	u64 values[4];
6646 	int n = 0;
6647 
6648 	values[n++] = perf_event_count(event);
6649 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6650 		values[n++] = enabled +
6651 			atomic64_read(&event->child_total_time_enabled);
6652 	}
6653 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6654 		values[n++] = running +
6655 			atomic64_read(&event->child_total_time_running);
6656 	}
6657 	if (read_format & PERF_FORMAT_ID)
6658 		values[n++] = primary_event_id(event);
6659 
6660 	__output_copy(handle, values, n * sizeof(u64));
6661 }
6662 
6663 static void perf_output_read_group(struct perf_output_handle *handle,
6664 			    struct perf_event *event,
6665 			    u64 enabled, u64 running)
6666 {
6667 	struct perf_event *leader = event->group_leader, *sub;
6668 	u64 read_format = event->attr.read_format;
6669 	u64 values[5];
6670 	int n = 0;
6671 
6672 	values[n++] = 1 + leader->nr_siblings;
6673 
6674 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6675 		values[n++] = enabled;
6676 
6677 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6678 		values[n++] = running;
6679 
6680 	if ((leader != event) &&
6681 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6682 		leader->pmu->read(leader);
6683 
6684 	values[n++] = perf_event_count(leader);
6685 	if (read_format & PERF_FORMAT_ID)
6686 		values[n++] = primary_event_id(leader);
6687 
6688 	__output_copy(handle, values, n * sizeof(u64));
6689 
6690 	for_each_sibling_event(sub, leader) {
6691 		n = 0;
6692 
6693 		if ((sub != event) &&
6694 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6695 			sub->pmu->read(sub);
6696 
6697 		values[n++] = perf_event_count(sub);
6698 		if (read_format & PERF_FORMAT_ID)
6699 			values[n++] = primary_event_id(sub);
6700 
6701 		__output_copy(handle, values, n * sizeof(u64));
6702 	}
6703 }
6704 
6705 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6706 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6707 
6708 /*
6709  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6710  *
6711  * The problem is that its both hard and excessively expensive to iterate the
6712  * child list, not to mention that its impossible to IPI the children running
6713  * on another CPU, from interrupt/NMI context.
6714  */
6715 static void perf_output_read(struct perf_output_handle *handle,
6716 			     struct perf_event *event)
6717 {
6718 	u64 enabled = 0, running = 0, now;
6719 	u64 read_format = event->attr.read_format;
6720 
6721 	/*
6722 	 * compute total_time_enabled, total_time_running
6723 	 * based on snapshot values taken when the event
6724 	 * was last scheduled in.
6725 	 *
6726 	 * we cannot simply called update_context_time()
6727 	 * because of locking issue as we are called in
6728 	 * NMI context
6729 	 */
6730 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6731 		calc_timer_values(event, &now, &enabled, &running);
6732 
6733 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6734 		perf_output_read_group(handle, event, enabled, running);
6735 	else
6736 		perf_output_read_one(handle, event, enabled, running);
6737 }
6738 
6739 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6740 {
6741 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6742 }
6743 
6744 void perf_output_sample(struct perf_output_handle *handle,
6745 			struct perf_event_header *header,
6746 			struct perf_sample_data *data,
6747 			struct perf_event *event)
6748 {
6749 	u64 sample_type = data->type;
6750 
6751 	perf_output_put(handle, *header);
6752 
6753 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6754 		perf_output_put(handle, data->id);
6755 
6756 	if (sample_type & PERF_SAMPLE_IP)
6757 		perf_output_put(handle, data->ip);
6758 
6759 	if (sample_type & PERF_SAMPLE_TID)
6760 		perf_output_put(handle, data->tid_entry);
6761 
6762 	if (sample_type & PERF_SAMPLE_TIME)
6763 		perf_output_put(handle, data->time);
6764 
6765 	if (sample_type & PERF_SAMPLE_ADDR)
6766 		perf_output_put(handle, data->addr);
6767 
6768 	if (sample_type & PERF_SAMPLE_ID)
6769 		perf_output_put(handle, data->id);
6770 
6771 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6772 		perf_output_put(handle, data->stream_id);
6773 
6774 	if (sample_type & PERF_SAMPLE_CPU)
6775 		perf_output_put(handle, data->cpu_entry);
6776 
6777 	if (sample_type & PERF_SAMPLE_PERIOD)
6778 		perf_output_put(handle, data->period);
6779 
6780 	if (sample_type & PERF_SAMPLE_READ)
6781 		perf_output_read(handle, event);
6782 
6783 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6784 		int size = 1;
6785 
6786 		size += data->callchain->nr;
6787 		size *= sizeof(u64);
6788 		__output_copy(handle, data->callchain, size);
6789 	}
6790 
6791 	if (sample_type & PERF_SAMPLE_RAW) {
6792 		struct perf_raw_record *raw = data->raw;
6793 
6794 		if (raw) {
6795 			struct perf_raw_frag *frag = &raw->frag;
6796 
6797 			perf_output_put(handle, raw->size);
6798 			do {
6799 				if (frag->copy) {
6800 					__output_custom(handle, frag->copy,
6801 							frag->data, frag->size);
6802 				} else {
6803 					__output_copy(handle, frag->data,
6804 						      frag->size);
6805 				}
6806 				if (perf_raw_frag_last(frag))
6807 					break;
6808 				frag = frag->next;
6809 			} while (1);
6810 			if (frag->pad)
6811 				__output_skip(handle, NULL, frag->pad);
6812 		} else {
6813 			struct {
6814 				u32	size;
6815 				u32	data;
6816 			} raw = {
6817 				.size = sizeof(u32),
6818 				.data = 0,
6819 			};
6820 			perf_output_put(handle, raw);
6821 		}
6822 	}
6823 
6824 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6825 		if (data->br_stack) {
6826 			size_t size;
6827 
6828 			size = data->br_stack->nr
6829 			     * sizeof(struct perf_branch_entry);
6830 
6831 			perf_output_put(handle, data->br_stack->nr);
6832 			if (perf_sample_save_hw_index(event))
6833 				perf_output_put(handle, data->br_stack->hw_idx);
6834 			perf_output_copy(handle, data->br_stack->entries, size);
6835 		} else {
6836 			/*
6837 			 * we always store at least the value of nr
6838 			 */
6839 			u64 nr = 0;
6840 			perf_output_put(handle, nr);
6841 		}
6842 	}
6843 
6844 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6845 		u64 abi = data->regs_user.abi;
6846 
6847 		/*
6848 		 * If there are no regs to dump, notice it through
6849 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6850 		 */
6851 		perf_output_put(handle, abi);
6852 
6853 		if (abi) {
6854 			u64 mask = event->attr.sample_regs_user;
6855 			perf_output_sample_regs(handle,
6856 						data->regs_user.regs,
6857 						mask);
6858 		}
6859 	}
6860 
6861 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6862 		perf_output_sample_ustack(handle,
6863 					  data->stack_user_size,
6864 					  data->regs_user.regs);
6865 	}
6866 
6867 	if (sample_type & PERF_SAMPLE_WEIGHT)
6868 		perf_output_put(handle, data->weight);
6869 
6870 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6871 		perf_output_put(handle, data->data_src.val);
6872 
6873 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6874 		perf_output_put(handle, data->txn);
6875 
6876 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6877 		u64 abi = data->regs_intr.abi;
6878 		/*
6879 		 * If there are no regs to dump, notice it through
6880 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6881 		 */
6882 		perf_output_put(handle, abi);
6883 
6884 		if (abi) {
6885 			u64 mask = event->attr.sample_regs_intr;
6886 
6887 			perf_output_sample_regs(handle,
6888 						data->regs_intr.regs,
6889 						mask);
6890 		}
6891 	}
6892 
6893 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6894 		perf_output_put(handle, data->phys_addr);
6895 
6896 	if (sample_type & PERF_SAMPLE_CGROUP)
6897 		perf_output_put(handle, data->cgroup);
6898 
6899 	if (sample_type & PERF_SAMPLE_AUX) {
6900 		perf_output_put(handle, data->aux_size);
6901 
6902 		if (data->aux_size)
6903 			perf_aux_sample_output(event, handle, data);
6904 	}
6905 
6906 	if (!event->attr.watermark) {
6907 		int wakeup_events = event->attr.wakeup_events;
6908 
6909 		if (wakeup_events) {
6910 			struct perf_buffer *rb = handle->rb;
6911 			int events = local_inc_return(&rb->events);
6912 
6913 			if (events >= wakeup_events) {
6914 				local_sub(wakeup_events, &rb->events);
6915 				local_inc(&rb->wakeup);
6916 			}
6917 		}
6918 	}
6919 }
6920 
6921 static u64 perf_virt_to_phys(u64 virt)
6922 {
6923 	u64 phys_addr = 0;
6924 	struct page *p = NULL;
6925 
6926 	if (!virt)
6927 		return 0;
6928 
6929 	if (virt >= TASK_SIZE) {
6930 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6931 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6932 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6933 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6934 	} else {
6935 		/*
6936 		 * Walking the pages tables for user address.
6937 		 * Interrupts are disabled, so it prevents any tear down
6938 		 * of the page tables.
6939 		 * Try IRQ-safe __get_user_pages_fast first.
6940 		 * If failed, leave phys_addr as 0.
6941 		 */
6942 		if (current->mm != NULL) {
6943 			pagefault_disable();
6944 			if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6945 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6946 			pagefault_enable();
6947 		}
6948 
6949 		if (p)
6950 			put_page(p);
6951 	}
6952 
6953 	return phys_addr;
6954 }
6955 
6956 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6957 
6958 struct perf_callchain_entry *
6959 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6960 {
6961 	bool kernel = !event->attr.exclude_callchain_kernel;
6962 	bool user   = !event->attr.exclude_callchain_user;
6963 	/* Disallow cross-task user callchains. */
6964 	bool crosstask = event->ctx->task && event->ctx->task != current;
6965 	const u32 max_stack = event->attr.sample_max_stack;
6966 	struct perf_callchain_entry *callchain;
6967 
6968 	if (!kernel && !user)
6969 		return &__empty_callchain;
6970 
6971 	callchain = get_perf_callchain(regs, 0, kernel, user,
6972 				       max_stack, crosstask, true);
6973 	return callchain ?: &__empty_callchain;
6974 }
6975 
6976 void perf_prepare_sample(struct perf_event_header *header,
6977 			 struct perf_sample_data *data,
6978 			 struct perf_event *event,
6979 			 struct pt_regs *regs)
6980 {
6981 	u64 sample_type = event->attr.sample_type;
6982 
6983 	header->type = PERF_RECORD_SAMPLE;
6984 	header->size = sizeof(*header) + event->header_size;
6985 
6986 	header->misc = 0;
6987 	header->misc |= perf_misc_flags(regs);
6988 
6989 	__perf_event_header__init_id(header, data, event);
6990 
6991 	if (sample_type & PERF_SAMPLE_IP)
6992 		data->ip = perf_instruction_pointer(regs);
6993 
6994 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6995 		int size = 1;
6996 
6997 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6998 			data->callchain = perf_callchain(event, regs);
6999 
7000 		size += data->callchain->nr;
7001 
7002 		header->size += size * sizeof(u64);
7003 	}
7004 
7005 	if (sample_type & PERF_SAMPLE_RAW) {
7006 		struct perf_raw_record *raw = data->raw;
7007 		int size;
7008 
7009 		if (raw) {
7010 			struct perf_raw_frag *frag = &raw->frag;
7011 			u32 sum = 0;
7012 
7013 			do {
7014 				sum += frag->size;
7015 				if (perf_raw_frag_last(frag))
7016 					break;
7017 				frag = frag->next;
7018 			} while (1);
7019 
7020 			size = round_up(sum + sizeof(u32), sizeof(u64));
7021 			raw->size = size - sizeof(u32);
7022 			frag->pad = raw->size - sum;
7023 		} else {
7024 			size = sizeof(u64);
7025 		}
7026 
7027 		header->size += size;
7028 	}
7029 
7030 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7031 		int size = sizeof(u64); /* nr */
7032 		if (data->br_stack) {
7033 			if (perf_sample_save_hw_index(event))
7034 				size += sizeof(u64);
7035 
7036 			size += data->br_stack->nr
7037 			      * sizeof(struct perf_branch_entry);
7038 		}
7039 		header->size += size;
7040 	}
7041 
7042 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7043 		perf_sample_regs_user(&data->regs_user, regs,
7044 				      &data->regs_user_copy);
7045 
7046 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7047 		/* regs dump ABI info */
7048 		int size = sizeof(u64);
7049 
7050 		if (data->regs_user.regs) {
7051 			u64 mask = event->attr.sample_regs_user;
7052 			size += hweight64(mask) * sizeof(u64);
7053 		}
7054 
7055 		header->size += size;
7056 	}
7057 
7058 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7059 		/*
7060 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7061 		 * processed as the last one or have additional check added
7062 		 * in case new sample type is added, because we could eat
7063 		 * up the rest of the sample size.
7064 		 */
7065 		u16 stack_size = event->attr.sample_stack_user;
7066 		u16 size = sizeof(u64);
7067 
7068 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7069 						     data->regs_user.regs);
7070 
7071 		/*
7072 		 * If there is something to dump, add space for the dump
7073 		 * itself and for the field that tells the dynamic size,
7074 		 * which is how many have been actually dumped.
7075 		 */
7076 		if (stack_size)
7077 			size += sizeof(u64) + stack_size;
7078 
7079 		data->stack_user_size = stack_size;
7080 		header->size += size;
7081 	}
7082 
7083 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7084 		/* regs dump ABI info */
7085 		int size = sizeof(u64);
7086 
7087 		perf_sample_regs_intr(&data->regs_intr, regs);
7088 
7089 		if (data->regs_intr.regs) {
7090 			u64 mask = event->attr.sample_regs_intr;
7091 
7092 			size += hweight64(mask) * sizeof(u64);
7093 		}
7094 
7095 		header->size += size;
7096 	}
7097 
7098 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7099 		data->phys_addr = perf_virt_to_phys(data->addr);
7100 
7101 #ifdef CONFIG_CGROUP_PERF
7102 	if (sample_type & PERF_SAMPLE_CGROUP) {
7103 		struct cgroup *cgrp;
7104 
7105 		/* protected by RCU */
7106 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7107 		data->cgroup = cgroup_id(cgrp);
7108 	}
7109 #endif
7110 
7111 	if (sample_type & PERF_SAMPLE_AUX) {
7112 		u64 size;
7113 
7114 		header->size += sizeof(u64); /* size */
7115 
7116 		/*
7117 		 * Given the 16bit nature of header::size, an AUX sample can
7118 		 * easily overflow it, what with all the preceding sample bits.
7119 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7120 		 * per sample in total (rounded down to 8 byte boundary).
7121 		 */
7122 		size = min_t(size_t, U16_MAX - header->size,
7123 			     event->attr.aux_sample_size);
7124 		size = rounddown(size, 8);
7125 		size = perf_prepare_sample_aux(event, data, size);
7126 
7127 		WARN_ON_ONCE(size + header->size > U16_MAX);
7128 		header->size += size;
7129 	}
7130 	/*
7131 	 * If you're adding more sample types here, you likely need to do
7132 	 * something about the overflowing header::size, like repurpose the
7133 	 * lowest 3 bits of size, which should be always zero at the moment.
7134 	 * This raises a more important question, do we really need 512k sized
7135 	 * samples and why, so good argumentation is in order for whatever you
7136 	 * do here next.
7137 	 */
7138 	WARN_ON_ONCE(header->size & 7);
7139 }
7140 
7141 static __always_inline int
7142 __perf_event_output(struct perf_event *event,
7143 		    struct perf_sample_data *data,
7144 		    struct pt_regs *regs,
7145 		    int (*output_begin)(struct perf_output_handle *,
7146 					struct perf_event *,
7147 					unsigned int))
7148 {
7149 	struct perf_output_handle handle;
7150 	struct perf_event_header header;
7151 	int err;
7152 
7153 	/* protect the callchain buffers */
7154 	rcu_read_lock();
7155 
7156 	perf_prepare_sample(&header, data, event, regs);
7157 
7158 	err = output_begin(&handle, event, header.size);
7159 	if (err)
7160 		goto exit;
7161 
7162 	perf_output_sample(&handle, &header, data, event);
7163 
7164 	perf_output_end(&handle);
7165 
7166 exit:
7167 	rcu_read_unlock();
7168 	return err;
7169 }
7170 
7171 void
7172 perf_event_output_forward(struct perf_event *event,
7173 			 struct perf_sample_data *data,
7174 			 struct pt_regs *regs)
7175 {
7176 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7177 }
7178 
7179 void
7180 perf_event_output_backward(struct perf_event *event,
7181 			   struct perf_sample_data *data,
7182 			   struct pt_regs *regs)
7183 {
7184 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7185 }
7186 
7187 int
7188 perf_event_output(struct perf_event *event,
7189 		  struct perf_sample_data *data,
7190 		  struct pt_regs *regs)
7191 {
7192 	return __perf_event_output(event, data, regs, perf_output_begin);
7193 }
7194 
7195 /*
7196  * read event_id
7197  */
7198 
7199 struct perf_read_event {
7200 	struct perf_event_header	header;
7201 
7202 	u32				pid;
7203 	u32				tid;
7204 };
7205 
7206 static void
7207 perf_event_read_event(struct perf_event *event,
7208 			struct task_struct *task)
7209 {
7210 	struct perf_output_handle handle;
7211 	struct perf_sample_data sample;
7212 	struct perf_read_event read_event = {
7213 		.header = {
7214 			.type = PERF_RECORD_READ,
7215 			.misc = 0,
7216 			.size = sizeof(read_event) + event->read_size,
7217 		},
7218 		.pid = perf_event_pid(event, task),
7219 		.tid = perf_event_tid(event, task),
7220 	};
7221 	int ret;
7222 
7223 	perf_event_header__init_id(&read_event.header, &sample, event);
7224 	ret = perf_output_begin(&handle, event, read_event.header.size);
7225 	if (ret)
7226 		return;
7227 
7228 	perf_output_put(&handle, read_event);
7229 	perf_output_read(&handle, event);
7230 	perf_event__output_id_sample(event, &handle, &sample);
7231 
7232 	perf_output_end(&handle);
7233 }
7234 
7235 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7236 
7237 static void
7238 perf_iterate_ctx(struct perf_event_context *ctx,
7239 		   perf_iterate_f output,
7240 		   void *data, bool all)
7241 {
7242 	struct perf_event *event;
7243 
7244 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7245 		if (!all) {
7246 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7247 				continue;
7248 			if (!event_filter_match(event))
7249 				continue;
7250 		}
7251 
7252 		output(event, data);
7253 	}
7254 }
7255 
7256 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7257 {
7258 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7259 	struct perf_event *event;
7260 
7261 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7262 		/*
7263 		 * Skip events that are not fully formed yet; ensure that
7264 		 * if we observe event->ctx, both event and ctx will be
7265 		 * complete enough. See perf_install_in_context().
7266 		 */
7267 		if (!smp_load_acquire(&event->ctx))
7268 			continue;
7269 
7270 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7271 			continue;
7272 		if (!event_filter_match(event))
7273 			continue;
7274 		output(event, data);
7275 	}
7276 }
7277 
7278 /*
7279  * Iterate all events that need to receive side-band events.
7280  *
7281  * For new callers; ensure that account_pmu_sb_event() includes
7282  * your event, otherwise it might not get delivered.
7283  */
7284 static void
7285 perf_iterate_sb(perf_iterate_f output, void *data,
7286 	       struct perf_event_context *task_ctx)
7287 {
7288 	struct perf_event_context *ctx;
7289 	int ctxn;
7290 
7291 	rcu_read_lock();
7292 	preempt_disable();
7293 
7294 	/*
7295 	 * If we have task_ctx != NULL we only notify the task context itself.
7296 	 * The task_ctx is set only for EXIT events before releasing task
7297 	 * context.
7298 	 */
7299 	if (task_ctx) {
7300 		perf_iterate_ctx(task_ctx, output, data, false);
7301 		goto done;
7302 	}
7303 
7304 	perf_iterate_sb_cpu(output, data);
7305 
7306 	for_each_task_context_nr(ctxn) {
7307 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7308 		if (ctx)
7309 			perf_iterate_ctx(ctx, output, data, false);
7310 	}
7311 done:
7312 	preempt_enable();
7313 	rcu_read_unlock();
7314 }
7315 
7316 /*
7317  * Clear all file-based filters at exec, they'll have to be
7318  * re-instated when/if these objects are mmapped again.
7319  */
7320 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7321 {
7322 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7323 	struct perf_addr_filter *filter;
7324 	unsigned int restart = 0, count = 0;
7325 	unsigned long flags;
7326 
7327 	if (!has_addr_filter(event))
7328 		return;
7329 
7330 	raw_spin_lock_irqsave(&ifh->lock, flags);
7331 	list_for_each_entry(filter, &ifh->list, entry) {
7332 		if (filter->path.dentry) {
7333 			event->addr_filter_ranges[count].start = 0;
7334 			event->addr_filter_ranges[count].size = 0;
7335 			restart++;
7336 		}
7337 
7338 		count++;
7339 	}
7340 
7341 	if (restart)
7342 		event->addr_filters_gen++;
7343 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7344 
7345 	if (restart)
7346 		perf_event_stop(event, 1);
7347 }
7348 
7349 void perf_event_exec(void)
7350 {
7351 	struct perf_event_context *ctx;
7352 	int ctxn;
7353 
7354 	rcu_read_lock();
7355 	for_each_task_context_nr(ctxn) {
7356 		ctx = current->perf_event_ctxp[ctxn];
7357 		if (!ctx)
7358 			continue;
7359 
7360 		perf_event_enable_on_exec(ctxn);
7361 
7362 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7363 				   true);
7364 	}
7365 	rcu_read_unlock();
7366 }
7367 
7368 struct remote_output {
7369 	struct perf_buffer	*rb;
7370 	int			err;
7371 };
7372 
7373 static void __perf_event_output_stop(struct perf_event *event, void *data)
7374 {
7375 	struct perf_event *parent = event->parent;
7376 	struct remote_output *ro = data;
7377 	struct perf_buffer *rb = ro->rb;
7378 	struct stop_event_data sd = {
7379 		.event	= event,
7380 	};
7381 
7382 	if (!has_aux(event))
7383 		return;
7384 
7385 	if (!parent)
7386 		parent = event;
7387 
7388 	/*
7389 	 * In case of inheritance, it will be the parent that links to the
7390 	 * ring-buffer, but it will be the child that's actually using it.
7391 	 *
7392 	 * We are using event::rb to determine if the event should be stopped,
7393 	 * however this may race with ring_buffer_attach() (through set_output),
7394 	 * which will make us skip the event that actually needs to be stopped.
7395 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7396 	 * its rb pointer.
7397 	 */
7398 	if (rcu_dereference(parent->rb) == rb)
7399 		ro->err = __perf_event_stop(&sd);
7400 }
7401 
7402 static int __perf_pmu_output_stop(void *info)
7403 {
7404 	struct perf_event *event = info;
7405 	struct pmu *pmu = event->ctx->pmu;
7406 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7407 	struct remote_output ro = {
7408 		.rb	= event->rb,
7409 	};
7410 
7411 	rcu_read_lock();
7412 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7413 	if (cpuctx->task_ctx)
7414 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7415 				   &ro, false);
7416 	rcu_read_unlock();
7417 
7418 	return ro.err;
7419 }
7420 
7421 static void perf_pmu_output_stop(struct perf_event *event)
7422 {
7423 	struct perf_event *iter;
7424 	int err, cpu;
7425 
7426 restart:
7427 	rcu_read_lock();
7428 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7429 		/*
7430 		 * For per-CPU events, we need to make sure that neither they
7431 		 * nor their children are running; for cpu==-1 events it's
7432 		 * sufficient to stop the event itself if it's active, since
7433 		 * it can't have children.
7434 		 */
7435 		cpu = iter->cpu;
7436 		if (cpu == -1)
7437 			cpu = READ_ONCE(iter->oncpu);
7438 
7439 		if (cpu == -1)
7440 			continue;
7441 
7442 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7443 		if (err == -EAGAIN) {
7444 			rcu_read_unlock();
7445 			goto restart;
7446 		}
7447 	}
7448 	rcu_read_unlock();
7449 }
7450 
7451 /*
7452  * task tracking -- fork/exit
7453  *
7454  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7455  */
7456 
7457 struct perf_task_event {
7458 	struct task_struct		*task;
7459 	struct perf_event_context	*task_ctx;
7460 
7461 	struct {
7462 		struct perf_event_header	header;
7463 
7464 		u32				pid;
7465 		u32				ppid;
7466 		u32				tid;
7467 		u32				ptid;
7468 		u64				time;
7469 	} event_id;
7470 };
7471 
7472 static int perf_event_task_match(struct perf_event *event)
7473 {
7474 	return event->attr.comm  || event->attr.mmap ||
7475 	       event->attr.mmap2 || event->attr.mmap_data ||
7476 	       event->attr.task;
7477 }
7478 
7479 static void perf_event_task_output(struct perf_event *event,
7480 				   void *data)
7481 {
7482 	struct perf_task_event *task_event = data;
7483 	struct perf_output_handle handle;
7484 	struct perf_sample_data	sample;
7485 	struct task_struct *task = task_event->task;
7486 	int ret, size = task_event->event_id.header.size;
7487 
7488 	if (!perf_event_task_match(event))
7489 		return;
7490 
7491 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7492 
7493 	ret = perf_output_begin(&handle, event,
7494 				task_event->event_id.header.size);
7495 	if (ret)
7496 		goto out;
7497 
7498 	task_event->event_id.pid = perf_event_pid(event, task);
7499 	task_event->event_id.tid = perf_event_tid(event, task);
7500 
7501 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7502 		task_event->event_id.ppid = perf_event_pid(event,
7503 							task->real_parent);
7504 		task_event->event_id.ptid = perf_event_pid(event,
7505 							task->real_parent);
7506 	} else {  /* PERF_RECORD_FORK */
7507 		task_event->event_id.ppid = perf_event_pid(event, current);
7508 		task_event->event_id.ptid = perf_event_tid(event, current);
7509 	}
7510 
7511 	task_event->event_id.time = perf_event_clock(event);
7512 
7513 	perf_output_put(&handle, task_event->event_id);
7514 
7515 	perf_event__output_id_sample(event, &handle, &sample);
7516 
7517 	perf_output_end(&handle);
7518 out:
7519 	task_event->event_id.header.size = size;
7520 }
7521 
7522 static void perf_event_task(struct task_struct *task,
7523 			      struct perf_event_context *task_ctx,
7524 			      int new)
7525 {
7526 	struct perf_task_event task_event;
7527 
7528 	if (!atomic_read(&nr_comm_events) &&
7529 	    !atomic_read(&nr_mmap_events) &&
7530 	    !atomic_read(&nr_task_events))
7531 		return;
7532 
7533 	task_event = (struct perf_task_event){
7534 		.task	  = task,
7535 		.task_ctx = task_ctx,
7536 		.event_id    = {
7537 			.header = {
7538 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7539 				.misc = 0,
7540 				.size = sizeof(task_event.event_id),
7541 			},
7542 			/* .pid  */
7543 			/* .ppid */
7544 			/* .tid  */
7545 			/* .ptid */
7546 			/* .time */
7547 		},
7548 	};
7549 
7550 	perf_iterate_sb(perf_event_task_output,
7551 		       &task_event,
7552 		       task_ctx);
7553 }
7554 
7555 void perf_event_fork(struct task_struct *task)
7556 {
7557 	perf_event_task(task, NULL, 1);
7558 	perf_event_namespaces(task);
7559 }
7560 
7561 /*
7562  * comm tracking
7563  */
7564 
7565 struct perf_comm_event {
7566 	struct task_struct	*task;
7567 	char			*comm;
7568 	int			comm_size;
7569 
7570 	struct {
7571 		struct perf_event_header	header;
7572 
7573 		u32				pid;
7574 		u32				tid;
7575 	} event_id;
7576 };
7577 
7578 static int perf_event_comm_match(struct perf_event *event)
7579 {
7580 	return event->attr.comm;
7581 }
7582 
7583 static void perf_event_comm_output(struct perf_event *event,
7584 				   void *data)
7585 {
7586 	struct perf_comm_event *comm_event = data;
7587 	struct perf_output_handle handle;
7588 	struct perf_sample_data sample;
7589 	int size = comm_event->event_id.header.size;
7590 	int ret;
7591 
7592 	if (!perf_event_comm_match(event))
7593 		return;
7594 
7595 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7596 	ret = perf_output_begin(&handle, event,
7597 				comm_event->event_id.header.size);
7598 
7599 	if (ret)
7600 		goto out;
7601 
7602 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7603 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7604 
7605 	perf_output_put(&handle, comm_event->event_id);
7606 	__output_copy(&handle, comm_event->comm,
7607 				   comm_event->comm_size);
7608 
7609 	perf_event__output_id_sample(event, &handle, &sample);
7610 
7611 	perf_output_end(&handle);
7612 out:
7613 	comm_event->event_id.header.size = size;
7614 }
7615 
7616 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7617 {
7618 	char comm[TASK_COMM_LEN];
7619 	unsigned int size;
7620 
7621 	memset(comm, 0, sizeof(comm));
7622 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7623 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7624 
7625 	comm_event->comm = comm;
7626 	comm_event->comm_size = size;
7627 
7628 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7629 
7630 	perf_iterate_sb(perf_event_comm_output,
7631 		       comm_event,
7632 		       NULL);
7633 }
7634 
7635 void perf_event_comm(struct task_struct *task, bool exec)
7636 {
7637 	struct perf_comm_event comm_event;
7638 
7639 	if (!atomic_read(&nr_comm_events))
7640 		return;
7641 
7642 	comm_event = (struct perf_comm_event){
7643 		.task	= task,
7644 		/* .comm      */
7645 		/* .comm_size */
7646 		.event_id  = {
7647 			.header = {
7648 				.type = PERF_RECORD_COMM,
7649 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7650 				/* .size */
7651 			},
7652 			/* .pid */
7653 			/* .tid */
7654 		},
7655 	};
7656 
7657 	perf_event_comm_event(&comm_event);
7658 }
7659 
7660 /*
7661  * namespaces tracking
7662  */
7663 
7664 struct perf_namespaces_event {
7665 	struct task_struct		*task;
7666 
7667 	struct {
7668 		struct perf_event_header	header;
7669 
7670 		u32				pid;
7671 		u32				tid;
7672 		u64				nr_namespaces;
7673 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7674 	} event_id;
7675 };
7676 
7677 static int perf_event_namespaces_match(struct perf_event *event)
7678 {
7679 	return event->attr.namespaces;
7680 }
7681 
7682 static void perf_event_namespaces_output(struct perf_event *event,
7683 					 void *data)
7684 {
7685 	struct perf_namespaces_event *namespaces_event = data;
7686 	struct perf_output_handle handle;
7687 	struct perf_sample_data sample;
7688 	u16 header_size = namespaces_event->event_id.header.size;
7689 	int ret;
7690 
7691 	if (!perf_event_namespaces_match(event))
7692 		return;
7693 
7694 	perf_event_header__init_id(&namespaces_event->event_id.header,
7695 				   &sample, event);
7696 	ret = perf_output_begin(&handle, event,
7697 				namespaces_event->event_id.header.size);
7698 	if (ret)
7699 		goto out;
7700 
7701 	namespaces_event->event_id.pid = perf_event_pid(event,
7702 							namespaces_event->task);
7703 	namespaces_event->event_id.tid = perf_event_tid(event,
7704 							namespaces_event->task);
7705 
7706 	perf_output_put(&handle, namespaces_event->event_id);
7707 
7708 	perf_event__output_id_sample(event, &handle, &sample);
7709 
7710 	perf_output_end(&handle);
7711 out:
7712 	namespaces_event->event_id.header.size = header_size;
7713 }
7714 
7715 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7716 				   struct task_struct *task,
7717 				   const struct proc_ns_operations *ns_ops)
7718 {
7719 	struct path ns_path;
7720 	struct inode *ns_inode;
7721 	int error;
7722 
7723 	error = ns_get_path(&ns_path, task, ns_ops);
7724 	if (!error) {
7725 		ns_inode = ns_path.dentry->d_inode;
7726 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7727 		ns_link_info->ino = ns_inode->i_ino;
7728 		path_put(&ns_path);
7729 	}
7730 }
7731 
7732 void perf_event_namespaces(struct task_struct *task)
7733 {
7734 	struct perf_namespaces_event namespaces_event;
7735 	struct perf_ns_link_info *ns_link_info;
7736 
7737 	if (!atomic_read(&nr_namespaces_events))
7738 		return;
7739 
7740 	namespaces_event = (struct perf_namespaces_event){
7741 		.task	= task,
7742 		.event_id  = {
7743 			.header = {
7744 				.type = PERF_RECORD_NAMESPACES,
7745 				.misc = 0,
7746 				.size = sizeof(namespaces_event.event_id),
7747 			},
7748 			/* .pid */
7749 			/* .tid */
7750 			.nr_namespaces = NR_NAMESPACES,
7751 			/* .link_info[NR_NAMESPACES] */
7752 		},
7753 	};
7754 
7755 	ns_link_info = namespaces_event.event_id.link_info;
7756 
7757 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7758 			       task, &mntns_operations);
7759 
7760 #ifdef CONFIG_USER_NS
7761 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7762 			       task, &userns_operations);
7763 #endif
7764 #ifdef CONFIG_NET_NS
7765 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7766 			       task, &netns_operations);
7767 #endif
7768 #ifdef CONFIG_UTS_NS
7769 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7770 			       task, &utsns_operations);
7771 #endif
7772 #ifdef CONFIG_IPC_NS
7773 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7774 			       task, &ipcns_operations);
7775 #endif
7776 #ifdef CONFIG_PID_NS
7777 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7778 			       task, &pidns_operations);
7779 #endif
7780 #ifdef CONFIG_CGROUPS
7781 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7782 			       task, &cgroupns_operations);
7783 #endif
7784 
7785 	perf_iterate_sb(perf_event_namespaces_output,
7786 			&namespaces_event,
7787 			NULL);
7788 }
7789 
7790 /*
7791  * cgroup tracking
7792  */
7793 #ifdef CONFIG_CGROUP_PERF
7794 
7795 struct perf_cgroup_event {
7796 	char				*path;
7797 	int				path_size;
7798 	struct {
7799 		struct perf_event_header	header;
7800 		u64				id;
7801 		char				path[];
7802 	} event_id;
7803 };
7804 
7805 static int perf_event_cgroup_match(struct perf_event *event)
7806 {
7807 	return event->attr.cgroup;
7808 }
7809 
7810 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7811 {
7812 	struct perf_cgroup_event *cgroup_event = data;
7813 	struct perf_output_handle handle;
7814 	struct perf_sample_data sample;
7815 	u16 header_size = cgroup_event->event_id.header.size;
7816 	int ret;
7817 
7818 	if (!perf_event_cgroup_match(event))
7819 		return;
7820 
7821 	perf_event_header__init_id(&cgroup_event->event_id.header,
7822 				   &sample, event);
7823 	ret = perf_output_begin(&handle, event,
7824 				cgroup_event->event_id.header.size);
7825 	if (ret)
7826 		goto out;
7827 
7828 	perf_output_put(&handle, cgroup_event->event_id);
7829 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7830 
7831 	perf_event__output_id_sample(event, &handle, &sample);
7832 
7833 	perf_output_end(&handle);
7834 out:
7835 	cgroup_event->event_id.header.size = header_size;
7836 }
7837 
7838 static void perf_event_cgroup(struct cgroup *cgrp)
7839 {
7840 	struct perf_cgroup_event cgroup_event;
7841 	char path_enomem[16] = "//enomem";
7842 	char *pathname;
7843 	size_t size;
7844 
7845 	if (!atomic_read(&nr_cgroup_events))
7846 		return;
7847 
7848 	cgroup_event = (struct perf_cgroup_event){
7849 		.event_id  = {
7850 			.header = {
7851 				.type = PERF_RECORD_CGROUP,
7852 				.misc = 0,
7853 				.size = sizeof(cgroup_event.event_id),
7854 			},
7855 			.id = cgroup_id(cgrp),
7856 		},
7857 	};
7858 
7859 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7860 	if (pathname == NULL) {
7861 		cgroup_event.path = path_enomem;
7862 	} else {
7863 		/* just to be sure to have enough space for alignment */
7864 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7865 		cgroup_event.path = pathname;
7866 	}
7867 
7868 	/*
7869 	 * Since our buffer works in 8 byte units we need to align our string
7870 	 * size to a multiple of 8. However, we must guarantee the tail end is
7871 	 * zero'd out to avoid leaking random bits to userspace.
7872 	 */
7873 	size = strlen(cgroup_event.path) + 1;
7874 	while (!IS_ALIGNED(size, sizeof(u64)))
7875 		cgroup_event.path[size++] = '\0';
7876 
7877 	cgroup_event.event_id.header.size += size;
7878 	cgroup_event.path_size = size;
7879 
7880 	perf_iterate_sb(perf_event_cgroup_output,
7881 			&cgroup_event,
7882 			NULL);
7883 
7884 	kfree(pathname);
7885 }
7886 
7887 #endif
7888 
7889 /*
7890  * mmap tracking
7891  */
7892 
7893 struct perf_mmap_event {
7894 	struct vm_area_struct	*vma;
7895 
7896 	const char		*file_name;
7897 	int			file_size;
7898 	int			maj, min;
7899 	u64			ino;
7900 	u64			ino_generation;
7901 	u32			prot, flags;
7902 
7903 	struct {
7904 		struct perf_event_header	header;
7905 
7906 		u32				pid;
7907 		u32				tid;
7908 		u64				start;
7909 		u64				len;
7910 		u64				pgoff;
7911 	} event_id;
7912 };
7913 
7914 static int perf_event_mmap_match(struct perf_event *event,
7915 				 void *data)
7916 {
7917 	struct perf_mmap_event *mmap_event = data;
7918 	struct vm_area_struct *vma = mmap_event->vma;
7919 	int executable = vma->vm_flags & VM_EXEC;
7920 
7921 	return (!executable && event->attr.mmap_data) ||
7922 	       (executable && (event->attr.mmap || event->attr.mmap2));
7923 }
7924 
7925 static void perf_event_mmap_output(struct perf_event *event,
7926 				   void *data)
7927 {
7928 	struct perf_mmap_event *mmap_event = data;
7929 	struct perf_output_handle handle;
7930 	struct perf_sample_data sample;
7931 	int size = mmap_event->event_id.header.size;
7932 	u32 type = mmap_event->event_id.header.type;
7933 	int ret;
7934 
7935 	if (!perf_event_mmap_match(event, data))
7936 		return;
7937 
7938 	if (event->attr.mmap2) {
7939 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7940 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7941 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7942 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7943 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7944 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7945 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7946 	}
7947 
7948 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7949 	ret = perf_output_begin(&handle, event,
7950 				mmap_event->event_id.header.size);
7951 	if (ret)
7952 		goto out;
7953 
7954 	mmap_event->event_id.pid = perf_event_pid(event, current);
7955 	mmap_event->event_id.tid = perf_event_tid(event, current);
7956 
7957 	perf_output_put(&handle, mmap_event->event_id);
7958 
7959 	if (event->attr.mmap2) {
7960 		perf_output_put(&handle, mmap_event->maj);
7961 		perf_output_put(&handle, mmap_event->min);
7962 		perf_output_put(&handle, mmap_event->ino);
7963 		perf_output_put(&handle, mmap_event->ino_generation);
7964 		perf_output_put(&handle, mmap_event->prot);
7965 		perf_output_put(&handle, mmap_event->flags);
7966 	}
7967 
7968 	__output_copy(&handle, mmap_event->file_name,
7969 				   mmap_event->file_size);
7970 
7971 	perf_event__output_id_sample(event, &handle, &sample);
7972 
7973 	perf_output_end(&handle);
7974 out:
7975 	mmap_event->event_id.header.size = size;
7976 	mmap_event->event_id.header.type = type;
7977 }
7978 
7979 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7980 {
7981 	struct vm_area_struct *vma = mmap_event->vma;
7982 	struct file *file = vma->vm_file;
7983 	int maj = 0, min = 0;
7984 	u64 ino = 0, gen = 0;
7985 	u32 prot = 0, flags = 0;
7986 	unsigned int size;
7987 	char tmp[16];
7988 	char *buf = NULL;
7989 	char *name;
7990 
7991 	if (vma->vm_flags & VM_READ)
7992 		prot |= PROT_READ;
7993 	if (vma->vm_flags & VM_WRITE)
7994 		prot |= PROT_WRITE;
7995 	if (vma->vm_flags & VM_EXEC)
7996 		prot |= PROT_EXEC;
7997 
7998 	if (vma->vm_flags & VM_MAYSHARE)
7999 		flags = MAP_SHARED;
8000 	else
8001 		flags = MAP_PRIVATE;
8002 
8003 	if (vma->vm_flags & VM_DENYWRITE)
8004 		flags |= MAP_DENYWRITE;
8005 	if (vma->vm_flags & VM_MAYEXEC)
8006 		flags |= MAP_EXECUTABLE;
8007 	if (vma->vm_flags & VM_LOCKED)
8008 		flags |= MAP_LOCKED;
8009 	if (is_vm_hugetlb_page(vma))
8010 		flags |= MAP_HUGETLB;
8011 
8012 	if (file) {
8013 		struct inode *inode;
8014 		dev_t dev;
8015 
8016 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8017 		if (!buf) {
8018 			name = "//enomem";
8019 			goto cpy_name;
8020 		}
8021 		/*
8022 		 * d_path() works from the end of the rb backwards, so we
8023 		 * need to add enough zero bytes after the string to handle
8024 		 * the 64bit alignment we do later.
8025 		 */
8026 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8027 		if (IS_ERR(name)) {
8028 			name = "//toolong";
8029 			goto cpy_name;
8030 		}
8031 		inode = file_inode(vma->vm_file);
8032 		dev = inode->i_sb->s_dev;
8033 		ino = inode->i_ino;
8034 		gen = inode->i_generation;
8035 		maj = MAJOR(dev);
8036 		min = MINOR(dev);
8037 
8038 		goto got_name;
8039 	} else {
8040 		if (vma->vm_ops && vma->vm_ops->name) {
8041 			name = (char *) vma->vm_ops->name(vma);
8042 			if (name)
8043 				goto cpy_name;
8044 		}
8045 
8046 		name = (char *)arch_vma_name(vma);
8047 		if (name)
8048 			goto cpy_name;
8049 
8050 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8051 				vma->vm_end >= vma->vm_mm->brk) {
8052 			name = "[heap]";
8053 			goto cpy_name;
8054 		}
8055 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8056 				vma->vm_end >= vma->vm_mm->start_stack) {
8057 			name = "[stack]";
8058 			goto cpy_name;
8059 		}
8060 
8061 		name = "//anon";
8062 		goto cpy_name;
8063 	}
8064 
8065 cpy_name:
8066 	strlcpy(tmp, name, sizeof(tmp));
8067 	name = tmp;
8068 got_name:
8069 	/*
8070 	 * Since our buffer works in 8 byte units we need to align our string
8071 	 * size to a multiple of 8. However, we must guarantee the tail end is
8072 	 * zero'd out to avoid leaking random bits to userspace.
8073 	 */
8074 	size = strlen(name)+1;
8075 	while (!IS_ALIGNED(size, sizeof(u64)))
8076 		name[size++] = '\0';
8077 
8078 	mmap_event->file_name = name;
8079 	mmap_event->file_size = size;
8080 	mmap_event->maj = maj;
8081 	mmap_event->min = min;
8082 	mmap_event->ino = ino;
8083 	mmap_event->ino_generation = gen;
8084 	mmap_event->prot = prot;
8085 	mmap_event->flags = flags;
8086 
8087 	if (!(vma->vm_flags & VM_EXEC))
8088 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8089 
8090 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8091 
8092 	perf_iterate_sb(perf_event_mmap_output,
8093 		       mmap_event,
8094 		       NULL);
8095 
8096 	kfree(buf);
8097 }
8098 
8099 /*
8100  * Check whether inode and address range match filter criteria.
8101  */
8102 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8103 				     struct file *file, unsigned long offset,
8104 				     unsigned long size)
8105 {
8106 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8107 	if (!filter->path.dentry)
8108 		return false;
8109 
8110 	if (d_inode(filter->path.dentry) != file_inode(file))
8111 		return false;
8112 
8113 	if (filter->offset > offset + size)
8114 		return false;
8115 
8116 	if (filter->offset + filter->size < offset)
8117 		return false;
8118 
8119 	return true;
8120 }
8121 
8122 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8123 					struct vm_area_struct *vma,
8124 					struct perf_addr_filter_range *fr)
8125 {
8126 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8127 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8128 	struct file *file = vma->vm_file;
8129 
8130 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8131 		return false;
8132 
8133 	if (filter->offset < off) {
8134 		fr->start = vma->vm_start;
8135 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8136 	} else {
8137 		fr->start = vma->vm_start + filter->offset - off;
8138 		fr->size = min(vma->vm_end - fr->start, filter->size);
8139 	}
8140 
8141 	return true;
8142 }
8143 
8144 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8145 {
8146 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8147 	struct vm_area_struct *vma = data;
8148 	struct perf_addr_filter *filter;
8149 	unsigned int restart = 0, count = 0;
8150 	unsigned long flags;
8151 
8152 	if (!has_addr_filter(event))
8153 		return;
8154 
8155 	if (!vma->vm_file)
8156 		return;
8157 
8158 	raw_spin_lock_irqsave(&ifh->lock, flags);
8159 	list_for_each_entry(filter, &ifh->list, entry) {
8160 		if (perf_addr_filter_vma_adjust(filter, vma,
8161 						&event->addr_filter_ranges[count]))
8162 			restart++;
8163 
8164 		count++;
8165 	}
8166 
8167 	if (restart)
8168 		event->addr_filters_gen++;
8169 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8170 
8171 	if (restart)
8172 		perf_event_stop(event, 1);
8173 }
8174 
8175 /*
8176  * Adjust all task's events' filters to the new vma
8177  */
8178 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8179 {
8180 	struct perf_event_context *ctx;
8181 	int ctxn;
8182 
8183 	/*
8184 	 * Data tracing isn't supported yet and as such there is no need
8185 	 * to keep track of anything that isn't related to executable code:
8186 	 */
8187 	if (!(vma->vm_flags & VM_EXEC))
8188 		return;
8189 
8190 	rcu_read_lock();
8191 	for_each_task_context_nr(ctxn) {
8192 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8193 		if (!ctx)
8194 			continue;
8195 
8196 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8197 	}
8198 	rcu_read_unlock();
8199 }
8200 
8201 void perf_event_mmap(struct vm_area_struct *vma)
8202 {
8203 	struct perf_mmap_event mmap_event;
8204 
8205 	if (!atomic_read(&nr_mmap_events))
8206 		return;
8207 
8208 	mmap_event = (struct perf_mmap_event){
8209 		.vma	= vma,
8210 		/* .file_name */
8211 		/* .file_size */
8212 		.event_id  = {
8213 			.header = {
8214 				.type = PERF_RECORD_MMAP,
8215 				.misc = PERF_RECORD_MISC_USER,
8216 				/* .size */
8217 			},
8218 			/* .pid */
8219 			/* .tid */
8220 			.start  = vma->vm_start,
8221 			.len    = vma->vm_end - vma->vm_start,
8222 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8223 		},
8224 		/* .maj (attr_mmap2 only) */
8225 		/* .min (attr_mmap2 only) */
8226 		/* .ino (attr_mmap2 only) */
8227 		/* .ino_generation (attr_mmap2 only) */
8228 		/* .prot (attr_mmap2 only) */
8229 		/* .flags (attr_mmap2 only) */
8230 	};
8231 
8232 	perf_addr_filters_adjust(vma);
8233 	perf_event_mmap_event(&mmap_event);
8234 }
8235 
8236 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8237 			  unsigned long size, u64 flags)
8238 {
8239 	struct perf_output_handle handle;
8240 	struct perf_sample_data sample;
8241 	struct perf_aux_event {
8242 		struct perf_event_header	header;
8243 		u64				offset;
8244 		u64				size;
8245 		u64				flags;
8246 	} rec = {
8247 		.header = {
8248 			.type = PERF_RECORD_AUX,
8249 			.misc = 0,
8250 			.size = sizeof(rec),
8251 		},
8252 		.offset		= head,
8253 		.size		= size,
8254 		.flags		= flags,
8255 	};
8256 	int ret;
8257 
8258 	perf_event_header__init_id(&rec.header, &sample, event);
8259 	ret = perf_output_begin(&handle, event, rec.header.size);
8260 
8261 	if (ret)
8262 		return;
8263 
8264 	perf_output_put(&handle, rec);
8265 	perf_event__output_id_sample(event, &handle, &sample);
8266 
8267 	perf_output_end(&handle);
8268 }
8269 
8270 /*
8271  * Lost/dropped samples logging
8272  */
8273 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8274 {
8275 	struct perf_output_handle handle;
8276 	struct perf_sample_data sample;
8277 	int ret;
8278 
8279 	struct {
8280 		struct perf_event_header	header;
8281 		u64				lost;
8282 	} lost_samples_event = {
8283 		.header = {
8284 			.type = PERF_RECORD_LOST_SAMPLES,
8285 			.misc = 0,
8286 			.size = sizeof(lost_samples_event),
8287 		},
8288 		.lost		= lost,
8289 	};
8290 
8291 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8292 
8293 	ret = perf_output_begin(&handle, event,
8294 				lost_samples_event.header.size);
8295 	if (ret)
8296 		return;
8297 
8298 	perf_output_put(&handle, lost_samples_event);
8299 	perf_event__output_id_sample(event, &handle, &sample);
8300 	perf_output_end(&handle);
8301 }
8302 
8303 /*
8304  * context_switch tracking
8305  */
8306 
8307 struct perf_switch_event {
8308 	struct task_struct	*task;
8309 	struct task_struct	*next_prev;
8310 
8311 	struct {
8312 		struct perf_event_header	header;
8313 		u32				next_prev_pid;
8314 		u32				next_prev_tid;
8315 	} event_id;
8316 };
8317 
8318 static int perf_event_switch_match(struct perf_event *event)
8319 {
8320 	return event->attr.context_switch;
8321 }
8322 
8323 static void perf_event_switch_output(struct perf_event *event, void *data)
8324 {
8325 	struct perf_switch_event *se = data;
8326 	struct perf_output_handle handle;
8327 	struct perf_sample_data sample;
8328 	int ret;
8329 
8330 	if (!perf_event_switch_match(event))
8331 		return;
8332 
8333 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8334 	if (event->ctx->task) {
8335 		se->event_id.header.type = PERF_RECORD_SWITCH;
8336 		se->event_id.header.size = sizeof(se->event_id.header);
8337 	} else {
8338 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8339 		se->event_id.header.size = sizeof(se->event_id);
8340 		se->event_id.next_prev_pid =
8341 					perf_event_pid(event, se->next_prev);
8342 		se->event_id.next_prev_tid =
8343 					perf_event_tid(event, se->next_prev);
8344 	}
8345 
8346 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8347 
8348 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8349 	if (ret)
8350 		return;
8351 
8352 	if (event->ctx->task)
8353 		perf_output_put(&handle, se->event_id.header);
8354 	else
8355 		perf_output_put(&handle, se->event_id);
8356 
8357 	perf_event__output_id_sample(event, &handle, &sample);
8358 
8359 	perf_output_end(&handle);
8360 }
8361 
8362 static void perf_event_switch(struct task_struct *task,
8363 			      struct task_struct *next_prev, bool sched_in)
8364 {
8365 	struct perf_switch_event switch_event;
8366 
8367 	/* N.B. caller checks nr_switch_events != 0 */
8368 
8369 	switch_event = (struct perf_switch_event){
8370 		.task		= task,
8371 		.next_prev	= next_prev,
8372 		.event_id	= {
8373 			.header = {
8374 				/* .type */
8375 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8376 				/* .size */
8377 			},
8378 			/* .next_prev_pid */
8379 			/* .next_prev_tid */
8380 		},
8381 	};
8382 
8383 	if (!sched_in && task->state == TASK_RUNNING)
8384 		switch_event.event_id.header.misc |=
8385 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8386 
8387 	perf_iterate_sb(perf_event_switch_output,
8388 		       &switch_event,
8389 		       NULL);
8390 }
8391 
8392 /*
8393  * IRQ throttle logging
8394  */
8395 
8396 static void perf_log_throttle(struct perf_event *event, int enable)
8397 {
8398 	struct perf_output_handle handle;
8399 	struct perf_sample_data sample;
8400 	int ret;
8401 
8402 	struct {
8403 		struct perf_event_header	header;
8404 		u64				time;
8405 		u64				id;
8406 		u64				stream_id;
8407 	} throttle_event = {
8408 		.header = {
8409 			.type = PERF_RECORD_THROTTLE,
8410 			.misc = 0,
8411 			.size = sizeof(throttle_event),
8412 		},
8413 		.time		= perf_event_clock(event),
8414 		.id		= primary_event_id(event),
8415 		.stream_id	= event->id,
8416 	};
8417 
8418 	if (enable)
8419 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8420 
8421 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8422 
8423 	ret = perf_output_begin(&handle, event,
8424 				throttle_event.header.size);
8425 	if (ret)
8426 		return;
8427 
8428 	perf_output_put(&handle, throttle_event);
8429 	perf_event__output_id_sample(event, &handle, &sample);
8430 	perf_output_end(&handle);
8431 }
8432 
8433 /*
8434  * ksymbol register/unregister tracking
8435  */
8436 
8437 struct perf_ksymbol_event {
8438 	const char	*name;
8439 	int		name_len;
8440 	struct {
8441 		struct perf_event_header        header;
8442 		u64				addr;
8443 		u32				len;
8444 		u16				ksym_type;
8445 		u16				flags;
8446 	} event_id;
8447 };
8448 
8449 static int perf_event_ksymbol_match(struct perf_event *event)
8450 {
8451 	return event->attr.ksymbol;
8452 }
8453 
8454 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8455 {
8456 	struct perf_ksymbol_event *ksymbol_event = data;
8457 	struct perf_output_handle handle;
8458 	struct perf_sample_data sample;
8459 	int ret;
8460 
8461 	if (!perf_event_ksymbol_match(event))
8462 		return;
8463 
8464 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8465 				   &sample, event);
8466 	ret = perf_output_begin(&handle, event,
8467 				ksymbol_event->event_id.header.size);
8468 	if (ret)
8469 		return;
8470 
8471 	perf_output_put(&handle, ksymbol_event->event_id);
8472 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8473 	perf_event__output_id_sample(event, &handle, &sample);
8474 
8475 	perf_output_end(&handle);
8476 }
8477 
8478 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8479 			const char *sym)
8480 {
8481 	struct perf_ksymbol_event ksymbol_event;
8482 	char name[KSYM_NAME_LEN];
8483 	u16 flags = 0;
8484 	int name_len;
8485 
8486 	if (!atomic_read(&nr_ksymbol_events))
8487 		return;
8488 
8489 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8490 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8491 		goto err;
8492 
8493 	strlcpy(name, sym, KSYM_NAME_LEN);
8494 	name_len = strlen(name) + 1;
8495 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8496 		name[name_len++] = '\0';
8497 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8498 
8499 	if (unregister)
8500 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8501 
8502 	ksymbol_event = (struct perf_ksymbol_event){
8503 		.name = name,
8504 		.name_len = name_len,
8505 		.event_id = {
8506 			.header = {
8507 				.type = PERF_RECORD_KSYMBOL,
8508 				.size = sizeof(ksymbol_event.event_id) +
8509 					name_len,
8510 			},
8511 			.addr = addr,
8512 			.len = len,
8513 			.ksym_type = ksym_type,
8514 			.flags = flags,
8515 		},
8516 	};
8517 
8518 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8519 	return;
8520 err:
8521 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8522 }
8523 
8524 /*
8525  * bpf program load/unload tracking
8526  */
8527 
8528 struct perf_bpf_event {
8529 	struct bpf_prog	*prog;
8530 	struct {
8531 		struct perf_event_header        header;
8532 		u16				type;
8533 		u16				flags;
8534 		u32				id;
8535 		u8				tag[BPF_TAG_SIZE];
8536 	} event_id;
8537 };
8538 
8539 static int perf_event_bpf_match(struct perf_event *event)
8540 {
8541 	return event->attr.bpf_event;
8542 }
8543 
8544 static void perf_event_bpf_output(struct perf_event *event, void *data)
8545 {
8546 	struct perf_bpf_event *bpf_event = data;
8547 	struct perf_output_handle handle;
8548 	struct perf_sample_data sample;
8549 	int ret;
8550 
8551 	if (!perf_event_bpf_match(event))
8552 		return;
8553 
8554 	perf_event_header__init_id(&bpf_event->event_id.header,
8555 				   &sample, event);
8556 	ret = perf_output_begin(&handle, event,
8557 				bpf_event->event_id.header.size);
8558 	if (ret)
8559 		return;
8560 
8561 	perf_output_put(&handle, bpf_event->event_id);
8562 	perf_event__output_id_sample(event, &handle, &sample);
8563 
8564 	perf_output_end(&handle);
8565 }
8566 
8567 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8568 					 enum perf_bpf_event_type type)
8569 {
8570 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8571 	int i;
8572 
8573 	if (prog->aux->func_cnt == 0) {
8574 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8575 				   (u64)(unsigned long)prog->bpf_func,
8576 				   prog->jited_len, unregister,
8577 				   prog->aux->ksym.name);
8578 	} else {
8579 		for (i = 0; i < prog->aux->func_cnt; i++) {
8580 			struct bpf_prog *subprog = prog->aux->func[i];
8581 
8582 			perf_event_ksymbol(
8583 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8584 				(u64)(unsigned long)subprog->bpf_func,
8585 				subprog->jited_len, unregister,
8586 				prog->aux->ksym.name);
8587 		}
8588 	}
8589 }
8590 
8591 void perf_event_bpf_event(struct bpf_prog *prog,
8592 			  enum perf_bpf_event_type type,
8593 			  u16 flags)
8594 {
8595 	struct perf_bpf_event bpf_event;
8596 
8597 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8598 	    type >= PERF_BPF_EVENT_MAX)
8599 		return;
8600 
8601 	switch (type) {
8602 	case PERF_BPF_EVENT_PROG_LOAD:
8603 	case PERF_BPF_EVENT_PROG_UNLOAD:
8604 		if (atomic_read(&nr_ksymbol_events))
8605 			perf_event_bpf_emit_ksymbols(prog, type);
8606 		break;
8607 	default:
8608 		break;
8609 	}
8610 
8611 	if (!atomic_read(&nr_bpf_events))
8612 		return;
8613 
8614 	bpf_event = (struct perf_bpf_event){
8615 		.prog = prog,
8616 		.event_id = {
8617 			.header = {
8618 				.type = PERF_RECORD_BPF_EVENT,
8619 				.size = sizeof(bpf_event.event_id),
8620 			},
8621 			.type = type,
8622 			.flags = flags,
8623 			.id = prog->aux->id,
8624 		},
8625 	};
8626 
8627 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8628 
8629 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8630 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8631 }
8632 
8633 void perf_event_itrace_started(struct perf_event *event)
8634 {
8635 	event->attach_state |= PERF_ATTACH_ITRACE;
8636 }
8637 
8638 static void perf_log_itrace_start(struct perf_event *event)
8639 {
8640 	struct perf_output_handle handle;
8641 	struct perf_sample_data sample;
8642 	struct perf_aux_event {
8643 		struct perf_event_header        header;
8644 		u32				pid;
8645 		u32				tid;
8646 	} rec;
8647 	int ret;
8648 
8649 	if (event->parent)
8650 		event = event->parent;
8651 
8652 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8653 	    event->attach_state & PERF_ATTACH_ITRACE)
8654 		return;
8655 
8656 	rec.header.type	= PERF_RECORD_ITRACE_START;
8657 	rec.header.misc	= 0;
8658 	rec.header.size	= sizeof(rec);
8659 	rec.pid	= perf_event_pid(event, current);
8660 	rec.tid	= perf_event_tid(event, current);
8661 
8662 	perf_event_header__init_id(&rec.header, &sample, event);
8663 	ret = perf_output_begin(&handle, event, rec.header.size);
8664 
8665 	if (ret)
8666 		return;
8667 
8668 	perf_output_put(&handle, rec);
8669 	perf_event__output_id_sample(event, &handle, &sample);
8670 
8671 	perf_output_end(&handle);
8672 }
8673 
8674 static int
8675 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8676 {
8677 	struct hw_perf_event *hwc = &event->hw;
8678 	int ret = 0;
8679 	u64 seq;
8680 
8681 	seq = __this_cpu_read(perf_throttled_seq);
8682 	if (seq != hwc->interrupts_seq) {
8683 		hwc->interrupts_seq = seq;
8684 		hwc->interrupts = 1;
8685 	} else {
8686 		hwc->interrupts++;
8687 		if (unlikely(throttle
8688 			     && hwc->interrupts >= max_samples_per_tick)) {
8689 			__this_cpu_inc(perf_throttled_count);
8690 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8691 			hwc->interrupts = MAX_INTERRUPTS;
8692 			perf_log_throttle(event, 0);
8693 			ret = 1;
8694 		}
8695 	}
8696 
8697 	if (event->attr.freq) {
8698 		u64 now = perf_clock();
8699 		s64 delta = now - hwc->freq_time_stamp;
8700 
8701 		hwc->freq_time_stamp = now;
8702 
8703 		if (delta > 0 && delta < 2*TICK_NSEC)
8704 			perf_adjust_period(event, delta, hwc->last_period, true);
8705 	}
8706 
8707 	return ret;
8708 }
8709 
8710 int perf_event_account_interrupt(struct perf_event *event)
8711 {
8712 	return __perf_event_account_interrupt(event, 1);
8713 }
8714 
8715 /*
8716  * Generic event overflow handling, sampling.
8717  */
8718 
8719 static int __perf_event_overflow(struct perf_event *event,
8720 				   int throttle, struct perf_sample_data *data,
8721 				   struct pt_regs *regs)
8722 {
8723 	int events = atomic_read(&event->event_limit);
8724 	int ret = 0;
8725 
8726 	/*
8727 	 * Non-sampling counters might still use the PMI to fold short
8728 	 * hardware counters, ignore those.
8729 	 */
8730 	if (unlikely(!is_sampling_event(event)))
8731 		return 0;
8732 
8733 	ret = __perf_event_account_interrupt(event, throttle);
8734 
8735 	/*
8736 	 * XXX event_limit might not quite work as expected on inherited
8737 	 * events
8738 	 */
8739 
8740 	event->pending_kill = POLL_IN;
8741 	if (events && atomic_dec_and_test(&event->event_limit)) {
8742 		ret = 1;
8743 		event->pending_kill = POLL_HUP;
8744 
8745 		perf_event_disable_inatomic(event);
8746 	}
8747 
8748 	READ_ONCE(event->overflow_handler)(event, data, regs);
8749 
8750 	if (*perf_event_fasync(event) && event->pending_kill) {
8751 		event->pending_wakeup = 1;
8752 		irq_work_queue(&event->pending);
8753 	}
8754 
8755 	return ret;
8756 }
8757 
8758 int perf_event_overflow(struct perf_event *event,
8759 			  struct perf_sample_data *data,
8760 			  struct pt_regs *regs)
8761 {
8762 	return __perf_event_overflow(event, 1, data, regs);
8763 }
8764 
8765 /*
8766  * Generic software event infrastructure
8767  */
8768 
8769 struct swevent_htable {
8770 	struct swevent_hlist		*swevent_hlist;
8771 	struct mutex			hlist_mutex;
8772 	int				hlist_refcount;
8773 
8774 	/* Recursion avoidance in each contexts */
8775 	int				recursion[PERF_NR_CONTEXTS];
8776 };
8777 
8778 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8779 
8780 /*
8781  * We directly increment event->count and keep a second value in
8782  * event->hw.period_left to count intervals. This period event
8783  * is kept in the range [-sample_period, 0] so that we can use the
8784  * sign as trigger.
8785  */
8786 
8787 u64 perf_swevent_set_period(struct perf_event *event)
8788 {
8789 	struct hw_perf_event *hwc = &event->hw;
8790 	u64 period = hwc->last_period;
8791 	u64 nr, offset;
8792 	s64 old, val;
8793 
8794 	hwc->last_period = hwc->sample_period;
8795 
8796 again:
8797 	old = val = local64_read(&hwc->period_left);
8798 	if (val < 0)
8799 		return 0;
8800 
8801 	nr = div64_u64(period + val, period);
8802 	offset = nr * period;
8803 	val -= offset;
8804 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8805 		goto again;
8806 
8807 	return nr;
8808 }
8809 
8810 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8811 				    struct perf_sample_data *data,
8812 				    struct pt_regs *regs)
8813 {
8814 	struct hw_perf_event *hwc = &event->hw;
8815 	int throttle = 0;
8816 
8817 	if (!overflow)
8818 		overflow = perf_swevent_set_period(event);
8819 
8820 	if (hwc->interrupts == MAX_INTERRUPTS)
8821 		return;
8822 
8823 	for (; overflow; overflow--) {
8824 		if (__perf_event_overflow(event, throttle,
8825 					    data, regs)) {
8826 			/*
8827 			 * We inhibit the overflow from happening when
8828 			 * hwc->interrupts == MAX_INTERRUPTS.
8829 			 */
8830 			break;
8831 		}
8832 		throttle = 1;
8833 	}
8834 }
8835 
8836 static void perf_swevent_event(struct perf_event *event, u64 nr,
8837 			       struct perf_sample_data *data,
8838 			       struct pt_regs *regs)
8839 {
8840 	struct hw_perf_event *hwc = &event->hw;
8841 
8842 	local64_add(nr, &event->count);
8843 
8844 	if (!regs)
8845 		return;
8846 
8847 	if (!is_sampling_event(event))
8848 		return;
8849 
8850 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8851 		data->period = nr;
8852 		return perf_swevent_overflow(event, 1, data, regs);
8853 	} else
8854 		data->period = event->hw.last_period;
8855 
8856 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8857 		return perf_swevent_overflow(event, 1, data, regs);
8858 
8859 	if (local64_add_negative(nr, &hwc->period_left))
8860 		return;
8861 
8862 	perf_swevent_overflow(event, 0, data, regs);
8863 }
8864 
8865 static int perf_exclude_event(struct perf_event *event,
8866 			      struct pt_regs *regs)
8867 {
8868 	if (event->hw.state & PERF_HES_STOPPED)
8869 		return 1;
8870 
8871 	if (regs) {
8872 		if (event->attr.exclude_user && user_mode(regs))
8873 			return 1;
8874 
8875 		if (event->attr.exclude_kernel && !user_mode(regs))
8876 			return 1;
8877 	}
8878 
8879 	return 0;
8880 }
8881 
8882 static int perf_swevent_match(struct perf_event *event,
8883 				enum perf_type_id type,
8884 				u32 event_id,
8885 				struct perf_sample_data *data,
8886 				struct pt_regs *regs)
8887 {
8888 	if (event->attr.type != type)
8889 		return 0;
8890 
8891 	if (event->attr.config != event_id)
8892 		return 0;
8893 
8894 	if (perf_exclude_event(event, regs))
8895 		return 0;
8896 
8897 	return 1;
8898 }
8899 
8900 static inline u64 swevent_hash(u64 type, u32 event_id)
8901 {
8902 	u64 val = event_id | (type << 32);
8903 
8904 	return hash_64(val, SWEVENT_HLIST_BITS);
8905 }
8906 
8907 static inline struct hlist_head *
8908 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8909 {
8910 	u64 hash = swevent_hash(type, event_id);
8911 
8912 	return &hlist->heads[hash];
8913 }
8914 
8915 /* For the read side: events when they trigger */
8916 static inline struct hlist_head *
8917 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8918 {
8919 	struct swevent_hlist *hlist;
8920 
8921 	hlist = rcu_dereference(swhash->swevent_hlist);
8922 	if (!hlist)
8923 		return NULL;
8924 
8925 	return __find_swevent_head(hlist, type, event_id);
8926 }
8927 
8928 /* For the event head insertion and removal in the hlist */
8929 static inline struct hlist_head *
8930 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8931 {
8932 	struct swevent_hlist *hlist;
8933 	u32 event_id = event->attr.config;
8934 	u64 type = event->attr.type;
8935 
8936 	/*
8937 	 * Event scheduling is always serialized against hlist allocation
8938 	 * and release. Which makes the protected version suitable here.
8939 	 * The context lock guarantees that.
8940 	 */
8941 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8942 					  lockdep_is_held(&event->ctx->lock));
8943 	if (!hlist)
8944 		return NULL;
8945 
8946 	return __find_swevent_head(hlist, type, event_id);
8947 }
8948 
8949 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8950 				    u64 nr,
8951 				    struct perf_sample_data *data,
8952 				    struct pt_regs *regs)
8953 {
8954 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8955 	struct perf_event *event;
8956 	struct hlist_head *head;
8957 
8958 	rcu_read_lock();
8959 	head = find_swevent_head_rcu(swhash, type, event_id);
8960 	if (!head)
8961 		goto end;
8962 
8963 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8964 		if (perf_swevent_match(event, type, event_id, data, regs))
8965 			perf_swevent_event(event, nr, data, regs);
8966 	}
8967 end:
8968 	rcu_read_unlock();
8969 }
8970 
8971 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8972 
8973 int perf_swevent_get_recursion_context(void)
8974 {
8975 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8976 
8977 	return get_recursion_context(swhash->recursion);
8978 }
8979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8980 
8981 void perf_swevent_put_recursion_context(int rctx)
8982 {
8983 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8984 
8985 	put_recursion_context(swhash->recursion, rctx);
8986 }
8987 
8988 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8989 {
8990 	struct perf_sample_data data;
8991 
8992 	if (WARN_ON_ONCE(!regs))
8993 		return;
8994 
8995 	perf_sample_data_init(&data, addr, 0);
8996 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8997 }
8998 
8999 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9000 {
9001 	int rctx;
9002 
9003 	preempt_disable_notrace();
9004 	rctx = perf_swevent_get_recursion_context();
9005 	if (unlikely(rctx < 0))
9006 		goto fail;
9007 
9008 	___perf_sw_event(event_id, nr, regs, addr);
9009 
9010 	perf_swevent_put_recursion_context(rctx);
9011 fail:
9012 	preempt_enable_notrace();
9013 }
9014 
9015 static void perf_swevent_read(struct perf_event *event)
9016 {
9017 }
9018 
9019 static int perf_swevent_add(struct perf_event *event, int flags)
9020 {
9021 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9022 	struct hw_perf_event *hwc = &event->hw;
9023 	struct hlist_head *head;
9024 
9025 	if (is_sampling_event(event)) {
9026 		hwc->last_period = hwc->sample_period;
9027 		perf_swevent_set_period(event);
9028 	}
9029 
9030 	hwc->state = !(flags & PERF_EF_START);
9031 
9032 	head = find_swevent_head(swhash, event);
9033 	if (WARN_ON_ONCE(!head))
9034 		return -EINVAL;
9035 
9036 	hlist_add_head_rcu(&event->hlist_entry, head);
9037 	perf_event_update_userpage(event);
9038 
9039 	return 0;
9040 }
9041 
9042 static void perf_swevent_del(struct perf_event *event, int flags)
9043 {
9044 	hlist_del_rcu(&event->hlist_entry);
9045 }
9046 
9047 static void perf_swevent_start(struct perf_event *event, int flags)
9048 {
9049 	event->hw.state = 0;
9050 }
9051 
9052 static void perf_swevent_stop(struct perf_event *event, int flags)
9053 {
9054 	event->hw.state = PERF_HES_STOPPED;
9055 }
9056 
9057 /* Deref the hlist from the update side */
9058 static inline struct swevent_hlist *
9059 swevent_hlist_deref(struct swevent_htable *swhash)
9060 {
9061 	return rcu_dereference_protected(swhash->swevent_hlist,
9062 					 lockdep_is_held(&swhash->hlist_mutex));
9063 }
9064 
9065 static void swevent_hlist_release(struct swevent_htable *swhash)
9066 {
9067 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9068 
9069 	if (!hlist)
9070 		return;
9071 
9072 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9073 	kfree_rcu(hlist, rcu_head);
9074 }
9075 
9076 static void swevent_hlist_put_cpu(int cpu)
9077 {
9078 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9079 
9080 	mutex_lock(&swhash->hlist_mutex);
9081 
9082 	if (!--swhash->hlist_refcount)
9083 		swevent_hlist_release(swhash);
9084 
9085 	mutex_unlock(&swhash->hlist_mutex);
9086 }
9087 
9088 static void swevent_hlist_put(void)
9089 {
9090 	int cpu;
9091 
9092 	for_each_possible_cpu(cpu)
9093 		swevent_hlist_put_cpu(cpu);
9094 }
9095 
9096 static int swevent_hlist_get_cpu(int cpu)
9097 {
9098 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9099 	int err = 0;
9100 
9101 	mutex_lock(&swhash->hlist_mutex);
9102 	if (!swevent_hlist_deref(swhash) &&
9103 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9104 		struct swevent_hlist *hlist;
9105 
9106 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9107 		if (!hlist) {
9108 			err = -ENOMEM;
9109 			goto exit;
9110 		}
9111 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9112 	}
9113 	swhash->hlist_refcount++;
9114 exit:
9115 	mutex_unlock(&swhash->hlist_mutex);
9116 
9117 	return err;
9118 }
9119 
9120 static int swevent_hlist_get(void)
9121 {
9122 	int err, cpu, failed_cpu;
9123 
9124 	mutex_lock(&pmus_lock);
9125 	for_each_possible_cpu(cpu) {
9126 		err = swevent_hlist_get_cpu(cpu);
9127 		if (err) {
9128 			failed_cpu = cpu;
9129 			goto fail;
9130 		}
9131 	}
9132 	mutex_unlock(&pmus_lock);
9133 	return 0;
9134 fail:
9135 	for_each_possible_cpu(cpu) {
9136 		if (cpu == failed_cpu)
9137 			break;
9138 		swevent_hlist_put_cpu(cpu);
9139 	}
9140 	mutex_unlock(&pmus_lock);
9141 	return err;
9142 }
9143 
9144 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9145 
9146 static void sw_perf_event_destroy(struct perf_event *event)
9147 {
9148 	u64 event_id = event->attr.config;
9149 
9150 	WARN_ON(event->parent);
9151 
9152 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9153 	swevent_hlist_put();
9154 }
9155 
9156 static int perf_swevent_init(struct perf_event *event)
9157 {
9158 	u64 event_id = event->attr.config;
9159 
9160 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9161 		return -ENOENT;
9162 
9163 	/*
9164 	 * no branch sampling for software events
9165 	 */
9166 	if (has_branch_stack(event))
9167 		return -EOPNOTSUPP;
9168 
9169 	switch (event_id) {
9170 	case PERF_COUNT_SW_CPU_CLOCK:
9171 	case PERF_COUNT_SW_TASK_CLOCK:
9172 		return -ENOENT;
9173 
9174 	default:
9175 		break;
9176 	}
9177 
9178 	if (event_id >= PERF_COUNT_SW_MAX)
9179 		return -ENOENT;
9180 
9181 	if (!event->parent) {
9182 		int err;
9183 
9184 		err = swevent_hlist_get();
9185 		if (err)
9186 			return err;
9187 
9188 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9189 		event->destroy = sw_perf_event_destroy;
9190 	}
9191 
9192 	return 0;
9193 }
9194 
9195 static struct pmu perf_swevent = {
9196 	.task_ctx_nr	= perf_sw_context,
9197 
9198 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9199 
9200 	.event_init	= perf_swevent_init,
9201 	.add		= perf_swevent_add,
9202 	.del		= perf_swevent_del,
9203 	.start		= perf_swevent_start,
9204 	.stop		= perf_swevent_stop,
9205 	.read		= perf_swevent_read,
9206 };
9207 
9208 #ifdef CONFIG_EVENT_TRACING
9209 
9210 static int perf_tp_filter_match(struct perf_event *event,
9211 				struct perf_sample_data *data)
9212 {
9213 	void *record = data->raw->frag.data;
9214 
9215 	/* only top level events have filters set */
9216 	if (event->parent)
9217 		event = event->parent;
9218 
9219 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9220 		return 1;
9221 	return 0;
9222 }
9223 
9224 static int perf_tp_event_match(struct perf_event *event,
9225 				struct perf_sample_data *data,
9226 				struct pt_regs *regs)
9227 {
9228 	if (event->hw.state & PERF_HES_STOPPED)
9229 		return 0;
9230 	/*
9231 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9232 	 */
9233 	if (event->attr.exclude_kernel && !user_mode(regs))
9234 		return 0;
9235 
9236 	if (!perf_tp_filter_match(event, data))
9237 		return 0;
9238 
9239 	return 1;
9240 }
9241 
9242 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9243 			       struct trace_event_call *call, u64 count,
9244 			       struct pt_regs *regs, struct hlist_head *head,
9245 			       struct task_struct *task)
9246 {
9247 	if (bpf_prog_array_valid(call)) {
9248 		*(struct pt_regs **)raw_data = regs;
9249 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9250 			perf_swevent_put_recursion_context(rctx);
9251 			return;
9252 		}
9253 	}
9254 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9255 		      rctx, task);
9256 }
9257 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9258 
9259 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9260 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9261 		   struct task_struct *task)
9262 {
9263 	struct perf_sample_data data;
9264 	struct perf_event *event;
9265 
9266 	struct perf_raw_record raw = {
9267 		.frag = {
9268 			.size = entry_size,
9269 			.data = record,
9270 		},
9271 	};
9272 
9273 	perf_sample_data_init(&data, 0, 0);
9274 	data.raw = &raw;
9275 
9276 	perf_trace_buf_update(record, event_type);
9277 
9278 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9279 		if (perf_tp_event_match(event, &data, regs))
9280 			perf_swevent_event(event, count, &data, regs);
9281 	}
9282 
9283 	/*
9284 	 * If we got specified a target task, also iterate its context and
9285 	 * deliver this event there too.
9286 	 */
9287 	if (task && task != current) {
9288 		struct perf_event_context *ctx;
9289 		struct trace_entry *entry = record;
9290 
9291 		rcu_read_lock();
9292 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9293 		if (!ctx)
9294 			goto unlock;
9295 
9296 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9297 			if (event->cpu != smp_processor_id())
9298 				continue;
9299 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9300 				continue;
9301 			if (event->attr.config != entry->type)
9302 				continue;
9303 			if (perf_tp_event_match(event, &data, regs))
9304 				perf_swevent_event(event, count, &data, regs);
9305 		}
9306 unlock:
9307 		rcu_read_unlock();
9308 	}
9309 
9310 	perf_swevent_put_recursion_context(rctx);
9311 }
9312 EXPORT_SYMBOL_GPL(perf_tp_event);
9313 
9314 static void tp_perf_event_destroy(struct perf_event *event)
9315 {
9316 	perf_trace_destroy(event);
9317 }
9318 
9319 static int perf_tp_event_init(struct perf_event *event)
9320 {
9321 	int err;
9322 
9323 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9324 		return -ENOENT;
9325 
9326 	/*
9327 	 * no branch sampling for tracepoint events
9328 	 */
9329 	if (has_branch_stack(event))
9330 		return -EOPNOTSUPP;
9331 
9332 	err = perf_trace_init(event);
9333 	if (err)
9334 		return err;
9335 
9336 	event->destroy = tp_perf_event_destroy;
9337 
9338 	return 0;
9339 }
9340 
9341 static struct pmu perf_tracepoint = {
9342 	.task_ctx_nr	= perf_sw_context,
9343 
9344 	.event_init	= perf_tp_event_init,
9345 	.add		= perf_trace_add,
9346 	.del		= perf_trace_del,
9347 	.start		= perf_swevent_start,
9348 	.stop		= perf_swevent_stop,
9349 	.read		= perf_swevent_read,
9350 };
9351 
9352 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9353 /*
9354  * Flags in config, used by dynamic PMU kprobe and uprobe
9355  * The flags should match following PMU_FORMAT_ATTR().
9356  *
9357  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9358  *                               if not set, create kprobe/uprobe
9359  *
9360  * The following values specify a reference counter (or semaphore in the
9361  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9362  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9363  *
9364  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9365  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9366  */
9367 enum perf_probe_config {
9368 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9369 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9370 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9371 };
9372 
9373 PMU_FORMAT_ATTR(retprobe, "config:0");
9374 #endif
9375 
9376 #ifdef CONFIG_KPROBE_EVENTS
9377 static struct attribute *kprobe_attrs[] = {
9378 	&format_attr_retprobe.attr,
9379 	NULL,
9380 };
9381 
9382 static struct attribute_group kprobe_format_group = {
9383 	.name = "format",
9384 	.attrs = kprobe_attrs,
9385 };
9386 
9387 static const struct attribute_group *kprobe_attr_groups[] = {
9388 	&kprobe_format_group,
9389 	NULL,
9390 };
9391 
9392 static int perf_kprobe_event_init(struct perf_event *event);
9393 static struct pmu perf_kprobe = {
9394 	.task_ctx_nr	= perf_sw_context,
9395 	.event_init	= perf_kprobe_event_init,
9396 	.add		= perf_trace_add,
9397 	.del		= perf_trace_del,
9398 	.start		= perf_swevent_start,
9399 	.stop		= perf_swevent_stop,
9400 	.read		= perf_swevent_read,
9401 	.attr_groups	= kprobe_attr_groups,
9402 };
9403 
9404 static int perf_kprobe_event_init(struct perf_event *event)
9405 {
9406 	int err;
9407 	bool is_retprobe;
9408 
9409 	if (event->attr.type != perf_kprobe.type)
9410 		return -ENOENT;
9411 
9412 	if (!perfmon_capable())
9413 		return -EACCES;
9414 
9415 	/*
9416 	 * no branch sampling for probe events
9417 	 */
9418 	if (has_branch_stack(event))
9419 		return -EOPNOTSUPP;
9420 
9421 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9422 	err = perf_kprobe_init(event, is_retprobe);
9423 	if (err)
9424 		return err;
9425 
9426 	event->destroy = perf_kprobe_destroy;
9427 
9428 	return 0;
9429 }
9430 #endif /* CONFIG_KPROBE_EVENTS */
9431 
9432 #ifdef CONFIG_UPROBE_EVENTS
9433 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9434 
9435 static struct attribute *uprobe_attrs[] = {
9436 	&format_attr_retprobe.attr,
9437 	&format_attr_ref_ctr_offset.attr,
9438 	NULL,
9439 };
9440 
9441 static struct attribute_group uprobe_format_group = {
9442 	.name = "format",
9443 	.attrs = uprobe_attrs,
9444 };
9445 
9446 static const struct attribute_group *uprobe_attr_groups[] = {
9447 	&uprobe_format_group,
9448 	NULL,
9449 };
9450 
9451 static int perf_uprobe_event_init(struct perf_event *event);
9452 static struct pmu perf_uprobe = {
9453 	.task_ctx_nr	= perf_sw_context,
9454 	.event_init	= perf_uprobe_event_init,
9455 	.add		= perf_trace_add,
9456 	.del		= perf_trace_del,
9457 	.start		= perf_swevent_start,
9458 	.stop		= perf_swevent_stop,
9459 	.read		= perf_swevent_read,
9460 	.attr_groups	= uprobe_attr_groups,
9461 };
9462 
9463 static int perf_uprobe_event_init(struct perf_event *event)
9464 {
9465 	int err;
9466 	unsigned long ref_ctr_offset;
9467 	bool is_retprobe;
9468 
9469 	if (event->attr.type != perf_uprobe.type)
9470 		return -ENOENT;
9471 
9472 	if (!perfmon_capable())
9473 		return -EACCES;
9474 
9475 	/*
9476 	 * no branch sampling for probe events
9477 	 */
9478 	if (has_branch_stack(event))
9479 		return -EOPNOTSUPP;
9480 
9481 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9482 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9483 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9484 	if (err)
9485 		return err;
9486 
9487 	event->destroy = perf_uprobe_destroy;
9488 
9489 	return 0;
9490 }
9491 #endif /* CONFIG_UPROBE_EVENTS */
9492 
9493 static inline void perf_tp_register(void)
9494 {
9495 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9496 #ifdef CONFIG_KPROBE_EVENTS
9497 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9498 #endif
9499 #ifdef CONFIG_UPROBE_EVENTS
9500 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9501 #endif
9502 }
9503 
9504 static void perf_event_free_filter(struct perf_event *event)
9505 {
9506 	ftrace_profile_free_filter(event);
9507 }
9508 
9509 #ifdef CONFIG_BPF_SYSCALL
9510 static void bpf_overflow_handler(struct perf_event *event,
9511 				 struct perf_sample_data *data,
9512 				 struct pt_regs *regs)
9513 {
9514 	struct bpf_perf_event_data_kern ctx = {
9515 		.data = data,
9516 		.event = event,
9517 	};
9518 	int ret = 0;
9519 
9520 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9521 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9522 		goto out;
9523 	rcu_read_lock();
9524 	ret = BPF_PROG_RUN(event->prog, &ctx);
9525 	rcu_read_unlock();
9526 out:
9527 	__this_cpu_dec(bpf_prog_active);
9528 	if (!ret)
9529 		return;
9530 
9531 	event->orig_overflow_handler(event, data, regs);
9532 }
9533 
9534 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9535 {
9536 	struct bpf_prog *prog;
9537 
9538 	if (event->overflow_handler_context)
9539 		/* hw breakpoint or kernel counter */
9540 		return -EINVAL;
9541 
9542 	if (event->prog)
9543 		return -EEXIST;
9544 
9545 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9546 	if (IS_ERR(prog))
9547 		return PTR_ERR(prog);
9548 
9549 	event->prog = prog;
9550 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9551 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9552 	return 0;
9553 }
9554 
9555 static void perf_event_free_bpf_handler(struct perf_event *event)
9556 {
9557 	struct bpf_prog *prog = event->prog;
9558 
9559 	if (!prog)
9560 		return;
9561 
9562 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9563 	event->prog = NULL;
9564 	bpf_prog_put(prog);
9565 }
9566 #else
9567 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9568 {
9569 	return -EOPNOTSUPP;
9570 }
9571 static void perf_event_free_bpf_handler(struct perf_event *event)
9572 {
9573 }
9574 #endif
9575 
9576 /*
9577  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9578  * with perf_event_open()
9579  */
9580 static inline bool perf_event_is_tracing(struct perf_event *event)
9581 {
9582 	if (event->pmu == &perf_tracepoint)
9583 		return true;
9584 #ifdef CONFIG_KPROBE_EVENTS
9585 	if (event->pmu == &perf_kprobe)
9586 		return true;
9587 #endif
9588 #ifdef CONFIG_UPROBE_EVENTS
9589 	if (event->pmu == &perf_uprobe)
9590 		return true;
9591 #endif
9592 	return false;
9593 }
9594 
9595 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9596 {
9597 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9598 	struct bpf_prog *prog;
9599 	int ret;
9600 
9601 	if (!perf_event_is_tracing(event))
9602 		return perf_event_set_bpf_handler(event, prog_fd);
9603 
9604 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9605 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9606 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9607 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9608 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9609 		return -EINVAL;
9610 
9611 	prog = bpf_prog_get(prog_fd);
9612 	if (IS_ERR(prog))
9613 		return PTR_ERR(prog);
9614 
9615 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9616 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9617 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9618 		/* valid fd, but invalid bpf program type */
9619 		bpf_prog_put(prog);
9620 		return -EINVAL;
9621 	}
9622 
9623 	/* Kprobe override only works for kprobes, not uprobes. */
9624 	if (prog->kprobe_override &&
9625 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9626 		bpf_prog_put(prog);
9627 		return -EINVAL;
9628 	}
9629 
9630 	if (is_tracepoint || is_syscall_tp) {
9631 		int off = trace_event_get_offsets(event->tp_event);
9632 
9633 		if (prog->aux->max_ctx_offset > off) {
9634 			bpf_prog_put(prog);
9635 			return -EACCES;
9636 		}
9637 	}
9638 
9639 	ret = perf_event_attach_bpf_prog(event, prog);
9640 	if (ret)
9641 		bpf_prog_put(prog);
9642 	return ret;
9643 }
9644 
9645 static void perf_event_free_bpf_prog(struct perf_event *event)
9646 {
9647 	if (!perf_event_is_tracing(event)) {
9648 		perf_event_free_bpf_handler(event);
9649 		return;
9650 	}
9651 	perf_event_detach_bpf_prog(event);
9652 }
9653 
9654 #else
9655 
9656 static inline void perf_tp_register(void)
9657 {
9658 }
9659 
9660 static void perf_event_free_filter(struct perf_event *event)
9661 {
9662 }
9663 
9664 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9665 {
9666 	return -ENOENT;
9667 }
9668 
9669 static void perf_event_free_bpf_prog(struct perf_event *event)
9670 {
9671 }
9672 #endif /* CONFIG_EVENT_TRACING */
9673 
9674 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9675 void perf_bp_event(struct perf_event *bp, void *data)
9676 {
9677 	struct perf_sample_data sample;
9678 	struct pt_regs *regs = data;
9679 
9680 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9681 
9682 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9683 		perf_swevent_event(bp, 1, &sample, regs);
9684 }
9685 #endif
9686 
9687 /*
9688  * Allocate a new address filter
9689  */
9690 static struct perf_addr_filter *
9691 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9692 {
9693 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9694 	struct perf_addr_filter *filter;
9695 
9696 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9697 	if (!filter)
9698 		return NULL;
9699 
9700 	INIT_LIST_HEAD(&filter->entry);
9701 	list_add_tail(&filter->entry, filters);
9702 
9703 	return filter;
9704 }
9705 
9706 static void free_filters_list(struct list_head *filters)
9707 {
9708 	struct perf_addr_filter *filter, *iter;
9709 
9710 	list_for_each_entry_safe(filter, iter, filters, entry) {
9711 		path_put(&filter->path);
9712 		list_del(&filter->entry);
9713 		kfree(filter);
9714 	}
9715 }
9716 
9717 /*
9718  * Free existing address filters and optionally install new ones
9719  */
9720 static void perf_addr_filters_splice(struct perf_event *event,
9721 				     struct list_head *head)
9722 {
9723 	unsigned long flags;
9724 	LIST_HEAD(list);
9725 
9726 	if (!has_addr_filter(event))
9727 		return;
9728 
9729 	/* don't bother with children, they don't have their own filters */
9730 	if (event->parent)
9731 		return;
9732 
9733 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9734 
9735 	list_splice_init(&event->addr_filters.list, &list);
9736 	if (head)
9737 		list_splice(head, &event->addr_filters.list);
9738 
9739 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9740 
9741 	free_filters_list(&list);
9742 }
9743 
9744 /*
9745  * Scan through mm's vmas and see if one of them matches the
9746  * @filter; if so, adjust filter's address range.
9747  * Called with mm::mmap_sem down for reading.
9748  */
9749 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9750 				   struct mm_struct *mm,
9751 				   struct perf_addr_filter_range *fr)
9752 {
9753 	struct vm_area_struct *vma;
9754 
9755 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9756 		if (!vma->vm_file)
9757 			continue;
9758 
9759 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9760 			return;
9761 	}
9762 }
9763 
9764 /*
9765  * Update event's address range filters based on the
9766  * task's existing mappings, if any.
9767  */
9768 static void perf_event_addr_filters_apply(struct perf_event *event)
9769 {
9770 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9771 	struct task_struct *task = READ_ONCE(event->ctx->task);
9772 	struct perf_addr_filter *filter;
9773 	struct mm_struct *mm = NULL;
9774 	unsigned int count = 0;
9775 	unsigned long flags;
9776 
9777 	/*
9778 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9779 	 * will stop on the parent's child_mutex that our caller is also holding
9780 	 */
9781 	if (task == TASK_TOMBSTONE)
9782 		return;
9783 
9784 	if (ifh->nr_file_filters) {
9785 		mm = get_task_mm(event->ctx->task);
9786 		if (!mm)
9787 			goto restart;
9788 
9789 		down_read(&mm->mmap_sem);
9790 	}
9791 
9792 	raw_spin_lock_irqsave(&ifh->lock, flags);
9793 	list_for_each_entry(filter, &ifh->list, entry) {
9794 		if (filter->path.dentry) {
9795 			/*
9796 			 * Adjust base offset if the filter is associated to a
9797 			 * binary that needs to be mapped:
9798 			 */
9799 			event->addr_filter_ranges[count].start = 0;
9800 			event->addr_filter_ranges[count].size = 0;
9801 
9802 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9803 		} else {
9804 			event->addr_filter_ranges[count].start = filter->offset;
9805 			event->addr_filter_ranges[count].size  = filter->size;
9806 		}
9807 
9808 		count++;
9809 	}
9810 
9811 	event->addr_filters_gen++;
9812 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9813 
9814 	if (ifh->nr_file_filters) {
9815 		up_read(&mm->mmap_sem);
9816 
9817 		mmput(mm);
9818 	}
9819 
9820 restart:
9821 	perf_event_stop(event, 1);
9822 }
9823 
9824 /*
9825  * Address range filtering: limiting the data to certain
9826  * instruction address ranges. Filters are ioctl()ed to us from
9827  * userspace as ascii strings.
9828  *
9829  * Filter string format:
9830  *
9831  * ACTION RANGE_SPEC
9832  * where ACTION is one of the
9833  *  * "filter": limit the trace to this region
9834  *  * "start": start tracing from this address
9835  *  * "stop": stop tracing at this address/region;
9836  * RANGE_SPEC is
9837  *  * for kernel addresses: <start address>[/<size>]
9838  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9839  *
9840  * if <size> is not specified or is zero, the range is treated as a single
9841  * address; not valid for ACTION=="filter".
9842  */
9843 enum {
9844 	IF_ACT_NONE = -1,
9845 	IF_ACT_FILTER,
9846 	IF_ACT_START,
9847 	IF_ACT_STOP,
9848 	IF_SRC_FILE,
9849 	IF_SRC_KERNEL,
9850 	IF_SRC_FILEADDR,
9851 	IF_SRC_KERNELADDR,
9852 };
9853 
9854 enum {
9855 	IF_STATE_ACTION = 0,
9856 	IF_STATE_SOURCE,
9857 	IF_STATE_END,
9858 };
9859 
9860 static const match_table_t if_tokens = {
9861 	{ IF_ACT_FILTER,	"filter" },
9862 	{ IF_ACT_START,		"start" },
9863 	{ IF_ACT_STOP,		"stop" },
9864 	{ IF_SRC_FILE,		"%u/%u@%s" },
9865 	{ IF_SRC_KERNEL,	"%u/%u" },
9866 	{ IF_SRC_FILEADDR,	"%u@%s" },
9867 	{ IF_SRC_KERNELADDR,	"%u" },
9868 	{ IF_ACT_NONE,		NULL },
9869 };
9870 
9871 /*
9872  * Address filter string parser
9873  */
9874 static int
9875 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9876 			     struct list_head *filters)
9877 {
9878 	struct perf_addr_filter *filter = NULL;
9879 	char *start, *orig, *filename = NULL;
9880 	substring_t args[MAX_OPT_ARGS];
9881 	int state = IF_STATE_ACTION, token;
9882 	unsigned int kernel = 0;
9883 	int ret = -EINVAL;
9884 
9885 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9886 	if (!fstr)
9887 		return -ENOMEM;
9888 
9889 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9890 		static const enum perf_addr_filter_action_t actions[] = {
9891 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9892 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9893 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9894 		};
9895 		ret = -EINVAL;
9896 
9897 		if (!*start)
9898 			continue;
9899 
9900 		/* filter definition begins */
9901 		if (state == IF_STATE_ACTION) {
9902 			filter = perf_addr_filter_new(event, filters);
9903 			if (!filter)
9904 				goto fail;
9905 		}
9906 
9907 		token = match_token(start, if_tokens, args);
9908 		switch (token) {
9909 		case IF_ACT_FILTER:
9910 		case IF_ACT_START:
9911 		case IF_ACT_STOP:
9912 			if (state != IF_STATE_ACTION)
9913 				goto fail;
9914 
9915 			filter->action = actions[token];
9916 			state = IF_STATE_SOURCE;
9917 			break;
9918 
9919 		case IF_SRC_KERNELADDR:
9920 		case IF_SRC_KERNEL:
9921 			kernel = 1;
9922 			/* fall through */
9923 
9924 		case IF_SRC_FILEADDR:
9925 		case IF_SRC_FILE:
9926 			if (state != IF_STATE_SOURCE)
9927 				goto fail;
9928 
9929 			*args[0].to = 0;
9930 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9931 			if (ret)
9932 				goto fail;
9933 
9934 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9935 				*args[1].to = 0;
9936 				ret = kstrtoul(args[1].from, 0, &filter->size);
9937 				if (ret)
9938 					goto fail;
9939 			}
9940 
9941 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9942 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9943 
9944 				filename = match_strdup(&args[fpos]);
9945 				if (!filename) {
9946 					ret = -ENOMEM;
9947 					goto fail;
9948 				}
9949 			}
9950 
9951 			state = IF_STATE_END;
9952 			break;
9953 
9954 		default:
9955 			goto fail;
9956 		}
9957 
9958 		/*
9959 		 * Filter definition is fully parsed, validate and install it.
9960 		 * Make sure that it doesn't contradict itself or the event's
9961 		 * attribute.
9962 		 */
9963 		if (state == IF_STATE_END) {
9964 			ret = -EINVAL;
9965 			if (kernel && event->attr.exclude_kernel)
9966 				goto fail;
9967 
9968 			/*
9969 			 * ACTION "filter" must have a non-zero length region
9970 			 * specified.
9971 			 */
9972 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9973 			    !filter->size)
9974 				goto fail;
9975 
9976 			if (!kernel) {
9977 				if (!filename)
9978 					goto fail;
9979 
9980 				/*
9981 				 * For now, we only support file-based filters
9982 				 * in per-task events; doing so for CPU-wide
9983 				 * events requires additional context switching
9984 				 * trickery, since same object code will be
9985 				 * mapped at different virtual addresses in
9986 				 * different processes.
9987 				 */
9988 				ret = -EOPNOTSUPP;
9989 				if (!event->ctx->task)
9990 					goto fail_free_name;
9991 
9992 				/* look up the path and grab its inode */
9993 				ret = kern_path(filename, LOOKUP_FOLLOW,
9994 						&filter->path);
9995 				if (ret)
9996 					goto fail_free_name;
9997 
9998 				kfree(filename);
9999 				filename = NULL;
10000 
10001 				ret = -EINVAL;
10002 				if (!filter->path.dentry ||
10003 				    !S_ISREG(d_inode(filter->path.dentry)
10004 					     ->i_mode))
10005 					goto fail;
10006 
10007 				event->addr_filters.nr_file_filters++;
10008 			}
10009 
10010 			/* ready to consume more filters */
10011 			state = IF_STATE_ACTION;
10012 			filter = NULL;
10013 		}
10014 	}
10015 
10016 	if (state != IF_STATE_ACTION)
10017 		goto fail;
10018 
10019 	kfree(orig);
10020 
10021 	return 0;
10022 
10023 fail_free_name:
10024 	kfree(filename);
10025 fail:
10026 	free_filters_list(filters);
10027 	kfree(orig);
10028 
10029 	return ret;
10030 }
10031 
10032 static int
10033 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10034 {
10035 	LIST_HEAD(filters);
10036 	int ret;
10037 
10038 	/*
10039 	 * Since this is called in perf_ioctl() path, we're already holding
10040 	 * ctx::mutex.
10041 	 */
10042 	lockdep_assert_held(&event->ctx->mutex);
10043 
10044 	if (WARN_ON_ONCE(event->parent))
10045 		return -EINVAL;
10046 
10047 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10048 	if (ret)
10049 		goto fail_clear_files;
10050 
10051 	ret = event->pmu->addr_filters_validate(&filters);
10052 	if (ret)
10053 		goto fail_free_filters;
10054 
10055 	/* remove existing filters, if any */
10056 	perf_addr_filters_splice(event, &filters);
10057 
10058 	/* install new filters */
10059 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10060 
10061 	return ret;
10062 
10063 fail_free_filters:
10064 	free_filters_list(&filters);
10065 
10066 fail_clear_files:
10067 	event->addr_filters.nr_file_filters = 0;
10068 
10069 	return ret;
10070 }
10071 
10072 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10073 {
10074 	int ret = -EINVAL;
10075 	char *filter_str;
10076 
10077 	filter_str = strndup_user(arg, PAGE_SIZE);
10078 	if (IS_ERR(filter_str))
10079 		return PTR_ERR(filter_str);
10080 
10081 #ifdef CONFIG_EVENT_TRACING
10082 	if (perf_event_is_tracing(event)) {
10083 		struct perf_event_context *ctx = event->ctx;
10084 
10085 		/*
10086 		 * Beware, here be dragons!!
10087 		 *
10088 		 * the tracepoint muck will deadlock against ctx->mutex, but
10089 		 * the tracepoint stuff does not actually need it. So
10090 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10091 		 * already have a reference on ctx.
10092 		 *
10093 		 * This can result in event getting moved to a different ctx,
10094 		 * but that does not affect the tracepoint state.
10095 		 */
10096 		mutex_unlock(&ctx->mutex);
10097 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10098 		mutex_lock(&ctx->mutex);
10099 	} else
10100 #endif
10101 	if (has_addr_filter(event))
10102 		ret = perf_event_set_addr_filter(event, filter_str);
10103 
10104 	kfree(filter_str);
10105 	return ret;
10106 }
10107 
10108 /*
10109  * hrtimer based swevent callback
10110  */
10111 
10112 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10113 {
10114 	enum hrtimer_restart ret = HRTIMER_RESTART;
10115 	struct perf_sample_data data;
10116 	struct pt_regs *regs;
10117 	struct perf_event *event;
10118 	u64 period;
10119 
10120 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10121 
10122 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10123 		return HRTIMER_NORESTART;
10124 
10125 	event->pmu->read(event);
10126 
10127 	perf_sample_data_init(&data, 0, event->hw.last_period);
10128 	regs = get_irq_regs();
10129 
10130 	if (regs && !perf_exclude_event(event, regs)) {
10131 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10132 			if (__perf_event_overflow(event, 1, &data, regs))
10133 				ret = HRTIMER_NORESTART;
10134 	}
10135 
10136 	period = max_t(u64, 10000, event->hw.sample_period);
10137 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10138 
10139 	return ret;
10140 }
10141 
10142 static void perf_swevent_start_hrtimer(struct perf_event *event)
10143 {
10144 	struct hw_perf_event *hwc = &event->hw;
10145 	s64 period;
10146 
10147 	if (!is_sampling_event(event))
10148 		return;
10149 
10150 	period = local64_read(&hwc->period_left);
10151 	if (period) {
10152 		if (period < 0)
10153 			period = 10000;
10154 
10155 		local64_set(&hwc->period_left, 0);
10156 	} else {
10157 		period = max_t(u64, 10000, hwc->sample_period);
10158 	}
10159 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10160 		      HRTIMER_MODE_REL_PINNED_HARD);
10161 }
10162 
10163 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10164 {
10165 	struct hw_perf_event *hwc = &event->hw;
10166 
10167 	if (is_sampling_event(event)) {
10168 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10169 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10170 
10171 		hrtimer_cancel(&hwc->hrtimer);
10172 	}
10173 }
10174 
10175 static void perf_swevent_init_hrtimer(struct perf_event *event)
10176 {
10177 	struct hw_perf_event *hwc = &event->hw;
10178 
10179 	if (!is_sampling_event(event))
10180 		return;
10181 
10182 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10183 	hwc->hrtimer.function = perf_swevent_hrtimer;
10184 
10185 	/*
10186 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10187 	 * mapping and avoid the whole period adjust feedback stuff.
10188 	 */
10189 	if (event->attr.freq) {
10190 		long freq = event->attr.sample_freq;
10191 
10192 		event->attr.sample_period = NSEC_PER_SEC / freq;
10193 		hwc->sample_period = event->attr.sample_period;
10194 		local64_set(&hwc->period_left, hwc->sample_period);
10195 		hwc->last_period = hwc->sample_period;
10196 		event->attr.freq = 0;
10197 	}
10198 }
10199 
10200 /*
10201  * Software event: cpu wall time clock
10202  */
10203 
10204 static void cpu_clock_event_update(struct perf_event *event)
10205 {
10206 	s64 prev;
10207 	u64 now;
10208 
10209 	now = local_clock();
10210 	prev = local64_xchg(&event->hw.prev_count, now);
10211 	local64_add(now - prev, &event->count);
10212 }
10213 
10214 static void cpu_clock_event_start(struct perf_event *event, int flags)
10215 {
10216 	local64_set(&event->hw.prev_count, local_clock());
10217 	perf_swevent_start_hrtimer(event);
10218 }
10219 
10220 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10221 {
10222 	perf_swevent_cancel_hrtimer(event);
10223 	cpu_clock_event_update(event);
10224 }
10225 
10226 static int cpu_clock_event_add(struct perf_event *event, int flags)
10227 {
10228 	if (flags & PERF_EF_START)
10229 		cpu_clock_event_start(event, flags);
10230 	perf_event_update_userpage(event);
10231 
10232 	return 0;
10233 }
10234 
10235 static void cpu_clock_event_del(struct perf_event *event, int flags)
10236 {
10237 	cpu_clock_event_stop(event, flags);
10238 }
10239 
10240 static void cpu_clock_event_read(struct perf_event *event)
10241 {
10242 	cpu_clock_event_update(event);
10243 }
10244 
10245 static int cpu_clock_event_init(struct perf_event *event)
10246 {
10247 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10248 		return -ENOENT;
10249 
10250 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10251 		return -ENOENT;
10252 
10253 	/*
10254 	 * no branch sampling for software events
10255 	 */
10256 	if (has_branch_stack(event))
10257 		return -EOPNOTSUPP;
10258 
10259 	perf_swevent_init_hrtimer(event);
10260 
10261 	return 0;
10262 }
10263 
10264 static struct pmu perf_cpu_clock = {
10265 	.task_ctx_nr	= perf_sw_context,
10266 
10267 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10268 
10269 	.event_init	= cpu_clock_event_init,
10270 	.add		= cpu_clock_event_add,
10271 	.del		= cpu_clock_event_del,
10272 	.start		= cpu_clock_event_start,
10273 	.stop		= cpu_clock_event_stop,
10274 	.read		= cpu_clock_event_read,
10275 };
10276 
10277 /*
10278  * Software event: task time clock
10279  */
10280 
10281 static void task_clock_event_update(struct perf_event *event, u64 now)
10282 {
10283 	u64 prev;
10284 	s64 delta;
10285 
10286 	prev = local64_xchg(&event->hw.prev_count, now);
10287 	delta = now - prev;
10288 	local64_add(delta, &event->count);
10289 }
10290 
10291 static void task_clock_event_start(struct perf_event *event, int flags)
10292 {
10293 	local64_set(&event->hw.prev_count, event->ctx->time);
10294 	perf_swevent_start_hrtimer(event);
10295 }
10296 
10297 static void task_clock_event_stop(struct perf_event *event, int flags)
10298 {
10299 	perf_swevent_cancel_hrtimer(event);
10300 	task_clock_event_update(event, event->ctx->time);
10301 }
10302 
10303 static int task_clock_event_add(struct perf_event *event, int flags)
10304 {
10305 	if (flags & PERF_EF_START)
10306 		task_clock_event_start(event, flags);
10307 	perf_event_update_userpage(event);
10308 
10309 	return 0;
10310 }
10311 
10312 static void task_clock_event_del(struct perf_event *event, int flags)
10313 {
10314 	task_clock_event_stop(event, PERF_EF_UPDATE);
10315 }
10316 
10317 static void task_clock_event_read(struct perf_event *event)
10318 {
10319 	u64 now = perf_clock();
10320 	u64 delta = now - event->ctx->timestamp;
10321 	u64 time = event->ctx->time + delta;
10322 
10323 	task_clock_event_update(event, time);
10324 }
10325 
10326 static int task_clock_event_init(struct perf_event *event)
10327 {
10328 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10329 		return -ENOENT;
10330 
10331 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10332 		return -ENOENT;
10333 
10334 	/*
10335 	 * no branch sampling for software events
10336 	 */
10337 	if (has_branch_stack(event))
10338 		return -EOPNOTSUPP;
10339 
10340 	perf_swevent_init_hrtimer(event);
10341 
10342 	return 0;
10343 }
10344 
10345 static struct pmu perf_task_clock = {
10346 	.task_ctx_nr	= perf_sw_context,
10347 
10348 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10349 
10350 	.event_init	= task_clock_event_init,
10351 	.add		= task_clock_event_add,
10352 	.del		= task_clock_event_del,
10353 	.start		= task_clock_event_start,
10354 	.stop		= task_clock_event_stop,
10355 	.read		= task_clock_event_read,
10356 };
10357 
10358 static void perf_pmu_nop_void(struct pmu *pmu)
10359 {
10360 }
10361 
10362 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10363 {
10364 }
10365 
10366 static int perf_pmu_nop_int(struct pmu *pmu)
10367 {
10368 	return 0;
10369 }
10370 
10371 static int perf_event_nop_int(struct perf_event *event, u64 value)
10372 {
10373 	return 0;
10374 }
10375 
10376 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10377 
10378 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10379 {
10380 	__this_cpu_write(nop_txn_flags, flags);
10381 
10382 	if (flags & ~PERF_PMU_TXN_ADD)
10383 		return;
10384 
10385 	perf_pmu_disable(pmu);
10386 }
10387 
10388 static int perf_pmu_commit_txn(struct pmu *pmu)
10389 {
10390 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10391 
10392 	__this_cpu_write(nop_txn_flags, 0);
10393 
10394 	if (flags & ~PERF_PMU_TXN_ADD)
10395 		return 0;
10396 
10397 	perf_pmu_enable(pmu);
10398 	return 0;
10399 }
10400 
10401 static void perf_pmu_cancel_txn(struct pmu *pmu)
10402 {
10403 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10404 
10405 	__this_cpu_write(nop_txn_flags, 0);
10406 
10407 	if (flags & ~PERF_PMU_TXN_ADD)
10408 		return;
10409 
10410 	perf_pmu_enable(pmu);
10411 }
10412 
10413 static int perf_event_idx_default(struct perf_event *event)
10414 {
10415 	return 0;
10416 }
10417 
10418 /*
10419  * Ensures all contexts with the same task_ctx_nr have the same
10420  * pmu_cpu_context too.
10421  */
10422 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10423 {
10424 	struct pmu *pmu;
10425 
10426 	if (ctxn < 0)
10427 		return NULL;
10428 
10429 	list_for_each_entry(pmu, &pmus, entry) {
10430 		if (pmu->task_ctx_nr == ctxn)
10431 			return pmu->pmu_cpu_context;
10432 	}
10433 
10434 	return NULL;
10435 }
10436 
10437 static void free_pmu_context(struct pmu *pmu)
10438 {
10439 	/*
10440 	 * Static contexts such as perf_sw_context have a global lifetime
10441 	 * and may be shared between different PMUs. Avoid freeing them
10442 	 * when a single PMU is going away.
10443 	 */
10444 	if (pmu->task_ctx_nr > perf_invalid_context)
10445 		return;
10446 
10447 	free_percpu(pmu->pmu_cpu_context);
10448 }
10449 
10450 /*
10451  * Let userspace know that this PMU supports address range filtering:
10452  */
10453 static ssize_t nr_addr_filters_show(struct device *dev,
10454 				    struct device_attribute *attr,
10455 				    char *page)
10456 {
10457 	struct pmu *pmu = dev_get_drvdata(dev);
10458 
10459 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10460 }
10461 DEVICE_ATTR_RO(nr_addr_filters);
10462 
10463 static struct idr pmu_idr;
10464 
10465 static ssize_t
10466 type_show(struct device *dev, struct device_attribute *attr, char *page)
10467 {
10468 	struct pmu *pmu = dev_get_drvdata(dev);
10469 
10470 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10471 }
10472 static DEVICE_ATTR_RO(type);
10473 
10474 static ssize_t
10475 perf_event_mux_interval_ms_show(struct device *dev,
10476 				struct device_attribute *attr,
10477 				char *page)
10478 {
10479 	struct pmu *pmu = dev_get_drvdata(dev);
10480 
10481 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10482 }
10483 
10484 static DEFINE_MUTEX(mux_interval_mutex);
10485 
10486 static ssize_t
10487 perf_event_mux_interval_ms_store(struct device *dev,
10488 				 struct device_attribute *attr,
10489 				 const char *buf, size_t count)
10490 {
10491 	struct pmu *pmu = dev_get_drvdata(dev);
10492 	int timer, cpu, ret;
10493 
10494 	ret = kstrtoint(buf, 0, &timer);
10495 	if (ret)
10496 		return ret;
10497 
10498 	if (timer < 1)
10499 		return -EINVAL;
10500 
10501 	/* same value, noting to do */
10502 	if (timer == pmu->hrtimer_interval_ms)
10503 		return count;
10504 
10505 	mutex_lock(&mux_interval_mutex);
10506 	pmu->hrtimer_interval_ms = timer;
10507 
10508 	/* update all cpuctx for this PMU */
10509 	cpus_read_lock();
10510 	for_each_online_cpu(cpu) {
10511 		struct perf_cpu_context *cpuctx;
10512 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10513 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10514 
10515 		cpu_function_call(cpu,
10516 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10517 	}
10518 	cpus_read_unlock();
10519 	mutex_unlock(&mux_interval_mutex);
10520 
10521 	return count;
10522 }
10523 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10524 
10525 static struct attribute *pmu_dev_attrs[] = {
10526 	&dev_attr_type.attr,
10527 	&dev_attr_perf_event_mux_interval_ms.attr,
10528 	NULL,
10529 };
10530 ATTRIBUTE_GROUPS(pmu_dev);
10531 
10532 static int pmu_bus_running;
10533 static struct bus_type pmu_bus = {
10534 	.name		= "event_source",
10535 	.dev_groups	= pmu_dev_groups,
10536 };
10537 
10538 static void pmu_dev_release(struct device *dev)
10539 {
10540 	kfree(dev);
10541 }
10542 
10543 static int pmu_dev_alloc(struct pmu *pmu)
10544 {
10545 	int ret = -ENOMEM;
10546 
10547 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10548 	if (!pmu->dev)
10549 		goto out;
10550 
10551 	pmu->dev->groups = pmu->attr_groups;
10552 	device_initialize(pmu->dev);
10553 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10554 	if (ret)
10555 		goto free_dev;
10556 
10557 	dev_set_drvdata(pmu->dev, pmu);
10558 	pmu->dev->bus = &pmu_bus;
10559 	pmu->dev->release = pmu_dev_release;
10560 	ret = device_add(pmu->dev);
10561 	if (ret)
10562 		goto free_dev;
10563 
10564 	/* For PMUs with address filters, throw in an extra attribute: */
10565 	if (pmu->nr_addr_filters)
10566 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10567 
10568 	if (ret)
10569 		goto del_dev;
10570 
10571 	if (pmu->attr_update)
10572 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10573 
10574 	if (ret)
10575 		goto del_dev;
10576 
10577 out:
10578 	return ret;
10579 
10580 del_dev:
10581 	device_del(pmu->dev);
10582 
10583 free_dev:
10584 	put_device(pmu->dev);
10585 	goto out;
10586 }
10587 
10588 static struct lock_class_key cpuctx_mutex;
10589 static struct lock_class_key cpuctx_lock;
10590 
10591 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10592 {
10593 	int cpu, ret, max = PERF_TYPE_MAX;
10594 
10595 	mutex_lock(&pmus_lock);
10596 	ret = -ENOMEM;
10597 	pmu->pmu_disable_count = alloc_percpu(int);
10598 	if (!pmu->pmu_disable_count)
10599 		goto unlock;
10600 
10601 	pmu->type = -1;
10602 	if (!name)
10603 		goto skip_type;
10604 	pmu->name = name;
10605 
10606 	if (type != PERF_TYPE_SOFTWARE) {
10607 		if (type >= 0)
10608 			max = type;
10609 
10610 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10611 		if (ret < 0)
10612 			goto free_pdc;
10613 
10614 		WARN_ON(type >= 0 && ret != type);
10615 
10616 		type = ret;
10617 	}
10618 	pmu->type = type;
10619 
10620 	if (pmu_bus_running) {
10621 		ret = pmu_dev_alloc(pmu);
10622 		if (ret)
10623 			goto free_idr;
10624 	}
10625 
10626 skip_type:
10627 	if (pmu->task_ctx_nr == perf_hw_context) {
10628 		static int hw_context_taken = 0;
10629 
10630 		/*
10631 		 * Other than systems with heterogeneous CPUs, it never makes
10632 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10633 		 * uncore must use perf_invalid_context.
10634 		 */
10635 		if (WARN_ON_ONCE(hw_context_taken &&
10636 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10637 			pmu->task_ctx_nr = perf_invalid_context;
10638 
10639 		hw_context_taken = 1;
10640 	}
10641 
10642 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10643 	if (pmu->pmu_cpu_context)
10644 		goto got_cpu_context;
10645 
10646 	ret = -ENOMEM;
10647 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10648 	if (!pmu->pmu_cpu_context)
10649 		goto free_dev;
10650 
10651 	for_each_possible_cpu(cpu) {
10652 		struct perf_cpu_context *cpuctx;
10653 
10654 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10655 		__perf_event_init_context(&cpuctx->ctx);
10656 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10657 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10658 		cpuctx->ctx.pmu = pmu;
10659 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10660 
10661 		__perf_mux_hrtimer_init(cpuctx, cpu);
10662 
10663 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10664 		cpuctx->heap = cpuctx->heap_default;
10665 	}
10666 
10667 got_cpu_context:
10668 	if (!pmu->start_txn) {
10669 		if (pmu->pmu_enable) {
10670 			/*
10671 			 * If we have pmu_enable/pmu_disable calls, install
10672 			 * transaction stubs that use that to try and batch
10673 			 * hardware accesses.
10674 			 */
10675 			pmu->start_txn  = perf_pmu_start_txn;
10676 			pmu->commit_txn = perf_pmu_commit_txn;
10677 			pmu->cancel_txn = perf_pmu_cancel_txn;
10678 		} else {
10679 			pmu->start_txn  = perf_pmu_nop_txn;
10680 			pmu->commit_txn = perf_pmu_nop_int;
10681 			pmu->cancel_txn = perf_pmu_nop_void;
10682 		}
10683 	}
10684 
10685 	if (!pmu->pmu_enable) {
10686 		pmu->pmu_enable  = perf_pmu_nop_void;
10687 		pmu->pmu_disable = perf_pmu_nop_void;
10688 	}
10689 
10690 	if (!pmu->check_period)
10691 		pmu->check_period = perf_event_nop_int;
10692 
10693 	if (!pmu->event_idx)
10694 		pmu->event_idx = perf_event_idx_default;
10695 
10696 	/*
10697 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10698 	 * since these cannot be in the IDR. This way the linear search
10699 	 * is fast, provided a valid software event is provided.
10700 	 */
10701 	if (type == PERF_TYPE_SOFTWARE || !name)
10702 		list_add_rcu(&pmu->entry, &pmus);
10703 	else
10704 		list_add_tail_rcu(&pmu->entry, &pmus);
10705 
10706 	atomic_set(&pmu->exclusive_cnt, 0);
10707 	ret = 0;
10708 unlock:
10709 	mutex_unlock(&pmus_lock);
10710 
10711 	return ret;
10712 
10713 free_dev:
10714 	device_del(pmu->dev);
10715 	put_device(pmu->dev);
10716 
10717 free_idr:
10718 	if (pmu->type != PERF_TYPE_SOFTWARE)
10719 		idr_remove(&pmu_idr, pmu->type);
10720 
10721 free_pdc:
10722 	free_percpu(pmu->pmu_disable_count);
10723 	goto unlock;
10724 }
10725 EXPORT_SYMBOL_GPL(perf_pmu_register);
10726 
10727 void perf_pmu_unregister(struct pmu *pmu)
10728 {
10729 	mutex_lock(&pmus_lock);
10730 	list_del_rcu(&pmu->entry);
10731 
10732 	/*
10733 	 * We dereference the pmu list under both SRCU and regular RCU, so
10734 	 * synchronize against both of those.
10735 	 */
10736 	synchronize_srcu(&pmus_srcu);
10737 	synchronize_rcu();
10738 
10739 	free_percpu(pmu->pmu_disable_count);
10740 	if (pmu->type != PERF_TYPE_SOFTWARE)
10741 		idr_remove(&pmu_idr, pmu->type);
10742 	if (pmu_bus_running) {
10743 		if (pmu->nr_addr_filters)
10744 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10745 		device_del(pmu->dev);
10746 		put_device(pmu->dev);
10747 	}
10748 	free_pmu_context(pmu);
10749 	mutex_unlock(&pmus_lock);
10750 }
10751 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10752 
10753 static inline bool has_extended_regs(struct perf_event *event)
10754 {
10755 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10756 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10757 }
10758 
10759 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10760 {
10761 	struct perf_event_context *ctx = NULL;
10762 	int ret;
10763 
10764 	if (!try_module_get(pmu->module))
10765 		return -ENODEV;
10766 
10767 	/*
10768 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10769 	 * for example, validate if the group fits on the PMU. Therefore,
10770 	 * if this is a sibling event, acquire the ctx->mutex to protect
10771 	 * the sibling_list.
10772 	 */
10773 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10774 		/*
10775 		 * This ctx->mutex can nest when we're called through
10776 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10777 		 */
10778 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10779 						 SINGLE_DEPTH_NESTING);
10780 		BUG_ON(!ctx);
10781 	}
10782 
10783 	event->pmu = pmu;
10784 	ret = pmu->event_init(event);
10785 
10786 	if (ctx)
10787 		perf_event_ctx_unlock(event->group_leader, ctx);
10788 
10789 	if (!ret) {
10790 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10791 		    has_extended_regs(event))
10792 			ret = -EOPNOTSUPP;
10793 
10794 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10795 		    event_has_any_exclude_flag(event))
10796 			ret = -EINVAL;
10797 
10798 		if (ret && event->destroy)
10799 			event->destroy(event);
10800 	}
10801 
10802 	if (ret)
10803 		module_put(pmu->module);
10804 
10805 	return ret;
10806 }
10807 
10808 static struct pmu *perf_init_event(struct perf_event *event)
10809 {
10810 	int idx, type, ret;
10811 	struct pmu *pmu;
10812 
10813 	idx = srcu_read_lock(&pmus_srcu);
10814 
10815 	/* Try parent's PMU first: */
10816 	if (event->parent && event->parent->pmu) {
10817 		pmu = event->parent->pmu;
10818 		ret = perf_try_init_event(pmu, event);
10819 		if (!ret)
10820 			goto unlock;
10821 	}
10822 
10823 	/*
10824 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10825 	 * are often aliases for PERF_TYPE_RAW.
10826 	 */
10827 	type = event->attr.type;
10828 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10829 		type = PERF_TYPE_RAW;
10830 
10831 again:
10832 	rcu_read_lock();
10833 	pmu = idr_find(&pmu_idr, type);
10834 	rcu_read_unlock();
10835 	if (pmu) {
10836 		ret = perf_try_init_event(pmu, event);
10837 		if (ret == -ENOENT && event->attr.type != type) {
10838 			type = event->attr.type;
10839 			goto again;
10840 		}
10841 
10842 		if (ret)
10843 			pmu = ERR_PTR(ret);
10844 
10845 		goto unlock;
10846 	}
10847 
10848 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10849 		ret = perf_try_init_event(pmu, event);
10850 		if (!ret)
10851 			goto unlock;
10852 
10853 		if (ret != -ENOENT) {
10854 			pmu = ERR_PTR(ret);
10855 			goto unlock;
10856 		}
10857 	}
10858 	pmu = ERR_PTR(-ENOENT);
10859 unlock:
10860 	srcu_read_unlock(&pmus_srcu, idx);
10861 
10862 	return pmu;
10863 }
10864 
10865 static void attach_sb_event(struct perf_event *event)
10866 {
10867 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10868 
10869 	raw_spin_lock(&pel->lock);
10870 	list_add_rcu(&event->sb_list, &pel->list);
10871 	raw_spin_unlock(&pel->lock);
10872 }
10873 
10874 /*
10875  * We keep a list of all !task (and therefore per-cpu) events
10876  * that need to receive side-band records.
10877  *
10878  * This avoids having to scan all the various PMU per-cpu contexts
10879  * looking for them.
10880  */
10881 static void account_pmu_sb_event(struct perf_event *event)
10882 {
10883 	if (is_sb_event(event))
10884 		attach_sb_event(event);
10885 }
10886 
10887 static void account_event_cpu(struct perf_event *event, int cpu)
10888 {
10889 	if (event->parent)
10890 		return;
10891 
10892 	if (is_cgroup_event(event))
10893 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10894 }
10895 
10896 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10897 static void account_freq_event_nohz(void)
10898 {
10899 #ifdef CONFIG_NO_HZ_FULL
10900 	/* Lock so we don't race with concurrent unaccount */
10901 	spin_lock(&nr_freq_lock);
10902 	if (atomic_inc_return(&nr_freq_events) == 1)
10903 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10904 	spin_unlock(&nr_freq_lock);
10905 #endif
10906 }
10907 
10908 static void account_freq_event(void)
10909 {
10910 	if (tick_nohz_full_enabled())
10911 		account_freq_event_nohz();
10912 	else
10913 		atomic_inc(&nr_freq_events);
10914 }
10915 
10916 
10917 static void account_event(struct perf_event *event)
10918 {
10919 	bool inc = false;
10920 
10921 	if (event->parent)
10922 		return;
10923 
10924 	if (event->attach_state & PERF_ATTACH_TASK)
10925 		inc = true;
10926 	if (event->attr.mmap || event->attr.mmap_data)
10927 		atomic_inc(&nr_mmap_events);
10928 	if (event->attr.comm)
10929 		atomic_inc(&nr_comm_events);
10930 	if (event->attr.namespaces)
10931 		atomic_inc(&nr_namespaces_events);
10932 	if (event->attr.cgroup)
10933 		atomic_inc(&nr_cgroup_events);
10934 	if (event->attr.task)
10935 		atomic_inc(&nr_task_events);
10936 	if (event->attr.freq)
10937 		account_freq_event();
10938 	if (event->attr.context_switch) {
10939 		atomic_inc(&nr_switch_events);
10940 		inc = true;
10941 	}
10942 	if (has_branch_stack(event))
10943 		inc = true;
10944 	if (is_cgroup_event(event))
10945 		inc = true;
10946 	if (event->attr.ksymbol)
10947 		atomic_inc(&nr_ksymbol_events);
10948 	if (event->attr.bpf_event)
10949 		atomic_inc(&nr_bpf_events);
10950 
10951 	if (inc) {
10952 		/*
10953 		 * We need the mutex here because static_branch_enable()
10954 		 * must complete *before* the perf_sched_count increment
10955 		 * becomes visible.
10956 		 */
10957 		if (atomic_inc_not_zero(&perf_sched_count))
10958 			goto enabled;
10959 
10960 		mutex_lock(&perf_sched_mutex);
10961 		if (!atomic_read(&perf_sched_count)) {
10962 			static_branch_enable(&perf_sched_events);
10963 			/*
10964 			 * Guarantee that all CPUs observe they key change and
10965 			 * call the perf scheduling hooks before proceeding to
10966 			 * install events that need them.
10967 			 */
10968 			synchronize_rcu();
10969 		}
10970 		/*
10971 		 * Now that we have waited for the sync_sched(), allow further
10972 		 * increments to by-pass the mutex.
10973 		 */
10974 		atomic_inc(&perf_sched_count);
10975 		mutex_unlock(&perf_sched_mutex);
10976 	}
10977 enabled:
10978 
10979 	account_event_cpu(event, event->cpu);
10980 
10981 	account_pmu_sb_event(event);
10982 }
10983 
10984 /*
10985  * Allocate and initialize an event structure
10986  */
10987 static struct perf_event *
10988 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10989 		 struct task_struct *task,
10990 		 struct perf_event *group_leader,
10991 		 struct perf_event *parent_event,
10992 		 perf_overflow_handler_t overflow_handler,
10993 		 void *context, int cgroup_fd)
10994 {
10995 	struct pmu *pmu;
10996 	struct perf_event *event;
10997 	struct hw_perf_event *hwc;
10998 	long err = -EINVAL;
10999 
11000 	if ((unsigned)cpu >= nr_cpu_ids) {
11001 		if (!task || cpu != -1)
11002 			return ERR_PTR(-EINVAL);
11003 	}
11004 
11005 	event = kzalloc(sizeof(*event), GFP_KERNEL);
11006 	if (!event)
11007 		return ERR_PTR(-ENOMEM);
11008 
11009 	/*
11010 	 * Single events are their own group leaders, with an
11011 	 * empty sibling list:
11012 	 */
11013 	if (!group_leader)
11014 		group_leader = event;
11015 
11016 	mutex_init(&event->child_mutex);
11017 	INIT_LIST_HEAD(&event->child_list);
11018 
11019 	INIT_LIST_HEAD(&event->event_entry);
11020 	INIT_LIST_HEAD(&event->sibling_list);
11021 	INIT_LIST_HEAD(&event->active_list);
11022 	init_event_group(event);
11023 	INIT_LIST_HEAD(&event->rb_entry);
11024 	INIT_LIST_HEAD(&event->active_entry);
11025 	INIT_LIST_HEAD(&event->addr_filters.list);
11026 	INIT_HLIST_NODE(&event->hlist_entry);
11027 
11028 
11029 	init_waitqueue_head(&event->waitq);
11030 	event->pending_disable = -1;
11031 	init_irq_work(&event->pending, perf_pending_event);
11032 
11033 	mutex_init(&event->mmap_mutex);
11034 	raw_spin_lock_init(&event->addr_filters.lock);
11035 
11036 	atomic_long_set(&event->refcount, 1);
11037 	event->cpu		= cpu;
11038 	event->attr		= *attr;
11039 	event->group_leader	= group_leader;
11040 	event->pmu		= NULL;
11041 	event->oncpu		= -1;
11042 
11043 	event->parent		= parent_event;
11044 
11045 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11046 	event->id		= atomic64_inc_return(&perf_event_id);
11047 
11048 	event->state		= PERF_EVENT_STATE_INACTIVE;
11049 
11050 	if (task) {
11051 		event->attach_state = PERF_ATTACH_TASK;
11052 		/*
11053 		 * XXX pmu::event_init needs to know what task to account to
11054 		 * and we cannot use the ctx information because we need the
11055 		 * pmu before we get a ctx.
11056 		 */
11057 		event->hw.target = get_task_struct(task);
11058 	}
11059 
11060 	event->clock = &local_clock;
11061 	if (parent_event)
11062 		event->clock = parent_event->clock;
11063 
11064 	if (!overflow_handler && parent_event) {
11065 		overflow_handler = parent_event->overflow_handler;
11066 		context = parent_event->overflow_handler_context;
11067 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11068 		if (overflow_handler == bpf_overflow_handler) {
11069 			struct bpf_prog *prog = parent_event->prog;
11070 
11071 			bpf_prog_inc(prog);
11072 			event->prog = prog;
11073 			event->orig_overflow_handler =
11074 				parent_event->orig_overflow_handler;
11075 		}
11076 #endif
11077 	}
11078 
11079 	if (overflow_handler) {
11080 		event->overflow_handler	= overflow_handler;
11081 		event->overflow_handler_context = context;
11082 	} else if (is_write_backward(event)){
11083 		event->overflow_handler = perf_event_output_backward;
11084 		event->overflow_handler_context = NULL;
11085 	} else {
11086 		event->overflow_handler = perf_event_output_forward;
11087 		event->overflow_handler_context = NULL;
11088 	}
11089 
11090 	perf_event__state_init(event);
11091 
11092 	pmu = NULL;
11093 
11094 	hwc = &event->hw;
11095 	hwc->sample_period = attr->sample_period;
11096 	if (attr->freq && attr->sample_freq)
11097 		hwc->sample_period = 1;
11098 	hwc->last_period = hwc->sample_period;
11099 
11100 	local64_set(&hwc->period_left, hwc->sample_period);
11101 
11102 	/*
11103 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11104 	 * See perf_output_read().
11105 	 */
11106 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11107 		goto err_ns;
11108 
11109 	if (!has_branch_stack(event))
11110 		event->attr.branch_sample_type = 0;
11111 
11112 	pmu = perf_init_event(event);
11113 	if (IS_ERR(pmu)) {
11114 		err = PTR_ERR(pmu);
11115 		goto err_ns;
11116 	}
11117 
11118 	/*
11119 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11120 	 * be different on other CPUs in the uncore mask.
11121 	 */
11122 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11123 		err = -EINVAL;
11124 		goto err_pmu;
11125 	}
11126 
11127 	if (event->attr.aux_output &&
11128 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11129 		err = -EOPNOTSUPP;
11130 		goto err_pmu;
11131 	}
11132 
11133 	if (cgroup_fd != -1) {
11134 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11135 		if (err)
11136 			goto err_pmu;
11137 	}
11138 
11139 	err = exclusive_event_init(event);
11140 	if (err)
11141 		goto err_pmu;
11142 
11143 	if (has_addr_filter(event)) {
11144 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11145 						    sizeof(struct perf_addr_filter_range),
11146 						    GFP_KERNEL);
11147 		if (!event->addr_filter_ranges) {
11148 			err = -ENOMEM;
11149 			goto err_per_task;
11150 		}
11151 
11152 		/*
11153 		 * Clone the parent's vma offsets: they are valid until exec()
11154 		 * even if the mm is not shared with the parent.
11155 		 */
11156 		if (event->parent) {
11157 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11158 
11159 			raw_spin_lock_irq(&ifh->lock);
11160 			memcpy(event->addr_filter_ranges,
11161 			       event->parent->addr_filter_ranges,
11162 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11163 			raw_spin_unlock_irq(&ifh->lock);
11164 		}
11165 
11166 		/* force hw sync on the address filters */
11167 		event->addr_filters_gen = 1;
11168 	}
11169 
11170 	if (!event->parent) {
11171 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11172 			err = get_callchain_buffers(attr->sample_max_stack);
11173 			if (err)
11174 				goto err_addr_filters;
11175 		}
11176 	}
11177 
11178 	err = security_perf_event_alloc(event);
11179 	if (err)
11180 		goto err_callchain_buffer;
11181 
11182 	/* symmetric to unaccount_event() in _free_event() */
11183 	account_event(event);
11184 
11185 	return event;
11186 
11187 err_callchain_buffer:
11188 	if (!event->parent) {
11189 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11190 			put_callchain_buffers();
11191 	}
11192 err_addr_filters:
11193 	kfree(event->addr_filter_ranges);
11194 
11195 err_per_task:
11196 	exclusive_event_destroy(event);
11197 
11198 err_pmu:
11199 	if (is_cgroup_event(event))
11200 		perf_detach_cgroup(event);
11201 	if (event->destroy)
11202 		event->destroy(event);
11203 	module_put(pmu->module);
11204 err_ns:
11205 	if (event->ns)
11206 		put_pid_ns(event->ns);
11207 	if (event->hw.target)
11208 		put_task_struct(event->hw.target);
11209 	kfree(event);
11210 
11211 	return ERR_PTR(err);
11212 }
11213 
11214 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11215 			  struct perf_event_attr *attr)
11216 {
11217 	u32 size;
11218 	int ret;
11219 
11220 	/* Zero the full structure, so that a short copy will be nice. */
11221 	memset(attr, 0, sizeof(*attr));
11222 
11223 	ret = get_user(size, &uattr->size);
11224 	if (ret)
11225 		return ret;
11226 
11227 	/* ABI compatibility quirk: */
11228 	if (!size)
11229 		size = PERF_ATTR_SIZE_VER0;
11230 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11231 		goto err_size;
11232 
11233 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11234 	if (ret) {
11235 		if (ret == -E2BIG)
11236 			goto err_size;
11237 		return ret;
11238 	}
11239 
11240 	attr->size = size;
11241 
11242 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11243 		return -EINVAL;
11244 
11245 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11246 		return -EINVAL;
11247 
11248 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11249 		return -EINVAL;
11250 
11251 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11252 		u64 mask = attr->branch_sample_type;
11253 
11254 		/* only using defined bits */
11255 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11256 			return -EINVAL;
11257 
11258 		/* at least one branch bit must be set */
11259 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11260 			return -EINVAL;
11261 
11262 		/* propagate priv level, when not set for branch */
11263 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11264 
11265 			/* exclude_kernel checked on syscall entry */
11266 			if (!attr->exclude_kernel)
11267 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11268 
11269 			if (!attr->exclude_user)
11270 				mask |= PERF_SAMPLE_BRANCH_USER;
11271 
11272 			if (!attr->exclude_hv)
11273 				mask |= PERF_SAMPLE_BRANCH_HV;
11274 			/*
11275 			 * adjust user setting (for HW filter setup)
11276 			 */
11277 			attr->branch_sample_type = mask;
11278 		}
11279 		/* privileged levels capture (kernel, hv): check permissions */
11280 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11281 			ret = perf_allow_kernel(attr);
11282 			if (ret)
11283 				return ret;
11284 		}
11285 	}
11286 
11287 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11288 		ret = perf_reg_validate(attr->sample_regs_user);
11289 		if (ret)
11290 			return ret;
11291 	}
11292 
11293 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11294 		if (!arch_perf_have_user_stack_dump())
11295 			return -ENOSYS;
11296 
11297 		/*
11298 		 * We have __u32 type for the size, but so far
11299 		 * we can only use __u16 as maximum due to the
11300 		 * __u16 sample size limit.
11301 		 */
11302 		if (attr->sample_stack_user >= USHRT_MAX)
11303 			return -EINVAL;
11304 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11305 			return -EINVAL;
11306 	}
11307 
11308 	if (!attr->sample_max_stack)
11309 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11310 
11311 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11312 		ret = perf_reg_validate(attr->sample_regs_intr);
11313 
11314 #ifndef CONFIG_CGROUP_PERF
11315 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11316 		return -EINVAL;
11317 #endif
11318 
11319 out:
11320 	return ret;
11321 
11322 err_size:
11323 	put_user(sizeof(*attr), &uattr->size);
11324 	ret = -E2BIG;
11325 	goto out;
11326 }
11327 
11328 static int
11329 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11330 {
11331 	struct perf_buffer *rb = NULL;
11332 	int ret = -EINVAL;
11333 
11334 	if (!output_event)
11335 		goto set;
11336 
11337 	/* don't allow circular references */
11338 	if (event == output_event)
11339 		goto out;
11340 
11341 	/*
11342 	 * Don't allow cross-cpu buffers
11343 	 */
11344 	if (output_event->cpu != event->cpu)
11345 		goto out;
11346 
11347 	/*
11348 	 * If its not a per-cpu rb, it must be the same task.
11349 	 */
11350 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11351 		goto out;
11352 
11353 	/*
11354 	 * Mixing clocks in the same buffer is trouble you don't need.
11355 	 */
11356 	if (output_event->clock != event->clock)
11357 		goto out;
11358 
11359 	/*
11360 	 * Either writing ring buffer from beginning or from end.
11361 	 * Mixing is not allowed.
11362 	 */
11363 	if (is_write_backward(output_event) != is_write_backward(event))
11364 		goto out;
11365 
11366 	/*
11367 	 * If both events generate aux data, they must be on the same PMU
11368 	 */
11369 	if (has_aux(event) && has_aux(output_event) &&
11370 	    event->pmu != output_event->pmu)
11371 		goto out;
11372 
11373 set:
11374 	mutex_lock(&event->mmap_mutex);
11375 	/* Can't redirect output if we've got an active mmap() */
11376 	if (atomic_read(&event->mmap_count))
11377 		goto unlock;
11378 
11379 	if (output_event) {
11380 		/* get the rb we want to redirect to */
11381 		rb = ring_buffer_get(output_event);
11382 		if (!rb)
11383 			goto unlock;
11384 	}
11385 
11386 	ring_buffer_attach(event, rb);
11387 
11388 	ret = 0;
11389 unlock:
11390 	mutex_unlock(&event->mmap_mutex);
11391 
11392 out:
11393 	return ret;
11394 }
11395 
11396 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11397 {
11398 	if (b < a)
11399 		swap(a, b);
11400 
11401 	mutex_lock(a);
11402 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11403 }
11404 
11405 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11406 {
11407 	bool nmi_safe = false;
11408 
11409 	switch (clk_id) {
11410 	case CLOCK_MONOTONIC:
11411 		event->clock = &ktime_get_mono_fast_ns;
11412 		nmi_safe = true;
11413 		break;
11414 
11415 	case CLOCK_MONOTONIC_RAW:
11416 		event->clock = &ktime_get_raw_fast_ns;
11417 		nmi_safe = true;
11418 		break;
11419 
11420 	case CLOCK_REALTIME:
11421 		event->clock = &ktime_get_real_ns;
11422 		break;
11423 
11424 	case CLOCK_BOOTTIME:
11425 		event->clock = &ktime_get_boottime_ns;
11426 		break;
11427 
11428 	case CLOCK_TAI:
11429 		event->clock = &ktime_get_clocktai_ns;
11430 		break;
11431 
11432 	default:
11433 		return -EINVAL;
11434 	}
11435 
11436 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11437 		return -EINVAL;
11438 
11439 	return 0;
11440 }
11441 
11442 /*
11443  * Variation on perf_event_ctx_lock_nested(), except we take two context
11444  * mutexes.
11445  */
11446 static struct perf_event_context *
11447 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11448 			     struct perf_event_context *ctx)
11449 {
11450 	struct perf_event_context *gctx;
11451 
11452 again:
11453 	rcu_read_lock();
11454 	gctx = READ_ONCE(group_leader->ctx);
11455 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11456 		rcu_read_unlock();
11457 		goto again;
11458 	}
11459 	rcu_read_unlock();
11460 
11461 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11462 
11463 	if (group_leader->ctx != gctx) {
11464 		mutex_unlock(&ctx->mutex);
11465 		mutex_unlock(&gctx->mutex);
11466 		put_ctx(gctx);
11467 		goto again;
11468 	}
11469 
11470 	return gctx;
11471 }
11472 
11473 /**
11474  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11475  *
11476  * @attr_uptr:	event_id type attributes for monitoring/sampling
11477  * @pid:		target pid
11478  * @cpu:		target cpu
11479  * @group_fd:		group leader event fd
11480  */
11481 SYSCALL_DEFINE5(perf_event_open,
11482 		struct perf_event_attr __user *, attr_uptr,
11483 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11484 {
11485 	struct perf_event *group_leader = NULL, *output_event = NULL;
11486 	struct perf_event *event, *sibling;
11487 	struct perf_event_attr attr;
11488 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11489 	struct file *event_file = NULL;
11490 	struct fd group = {NULL, 0};
11491 	struct task_struct *task = NULL;
11492 	struct pmu *pmu;
11493 	int event_fd;
11494 	int move_group = 0;
11495 	int err;
11496 	int f_flags = O_RDWR;
11497 	int cgroup_fd = -1;
11498 
11499 	/* for future expandability... */
11500 	if (flags & ~PERF_FLAG_ALL)
11501 		return -EINVAL;
11502 
11503 	/* Do we allow access to perf_event_open(2) ? */
11504 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11505 	if (err)
11506 		return err;
11507 
11508 	err = perf_copy_attr(attr_uptr, &attr);
11509 	if (err)
11510 		return err;
11511 
11512 	if (!attr.exclude_kernel) {
11513 		err = perf_allow_kernel(&attr);
11514 		if (err)
11515 			return err;
11516 	}
11517 
11518 	if (attr.namespaces) {
11519 		if (!perfmon_capable())
11520 			return -EACCES;
11521 	}
11522 
11523 	if (attr.freq) {
11524 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11525 			return -EINVAL;
11526 	} else {
11527 		if (attr.sample_period & (1ULL << 63))
11528 			return -EINVAL;
11529 	}
11530 
11531 	/* Only privileged users can get physical addresses */
11532 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11533 		err = perf_allow_kernel(&attr);
11534 		if (err)
11535 			return err;
11536 	}
11537 
11538 	err = security_locked_down(LOCKDOWN_PERF);
11539 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11540 		/* REGS_INTR can leak data, lockdown must prevent this */
11541 		return err;
11542 
11543 	err = 0;
11544 
11545 	/*
11546 	 * In cgroup mode, the pid argument is used to pass the fd
11547 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11548 	 * designates the cpu on which to monitor threads from that
11549 	 * cgroup.
11550 	 */
11551 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11552 		return -EINVAL;
11553 
11554 	if (flags & PERF_FLAG_FD_CLOEXEC)
11555 		f_flags |= O_CLOEXEC;
11556 
11557 	event_fd = get_unused_fd_flags(f_flags);
11558 	if (event_fd < 0)
11559 		return event_fd;
11560 
11561 	if (group_fd != -1) {
11562 		err = perf_fget_light(group_fd, &group);
11563 		if (err)
11564 			goto err_fd;
11565 		group_leader = group.file->private_data;
11566 		if (flags & PERF_FLAG_FD_OUTPUT)
11567 			output_event = group_leader;
11568 		if (flags & PERF_FLAG_FD_NO_GROUP)
11569 			group_leader = NULL;
11570 	}
11571 
11572 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11573 		task = find_lively_task_by_vpid(pid);
11574 		if (IS_ERR(task)) {
11575 			err = PTR_ERR(task);
11576 			goto err_group_fd;
11577 		}
11578 	}
11579 
11580 	if (task && group_leader &&
11581 	    group_leader->attr.inherit != attr.inherit) {
11582 		err = -EINVAL;
11583 		goto err_task;
11584 	}
11585 
11586 	if (task) {
11587 		err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11588 		if (err)
11589 			goto err_task;
11590 
11591 		/*
11592 		 * Reuse ptrace permission checks for now.
11593 		 *
11594 		 * We must hold exec_update_mutex across this and any potential
11595 		 * perf_install_in_context() call for this new event to
11596 		 * serialize against exec() altering our credentials (and the
11597 		 * perf_event_exit_task() that could imply).
11598 		 */
11599 		err = -EACCES;
11600 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11601 			goto err_cred;
11602 	}
11603 
11604 	if (flags & PERF_FLAG_PID_CGROUP)
11605 		cgroup_fd = pid;
11606 
11607 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11608 				 NULL, NULL, cgroup_fd);
11609 	if (IS_ERR(event)) {
11610 		err = PTR_ERR(event);
11611 		goto err_cred;
11612 	}
11613 
11614 	if (is_sampling_event(event)) {
11615 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11616 			err = -EOPNOTSUPP;
11617 			goto err_alloc;
11618 		}
11619 	}
11620 
11621 	/*
11622 	 * Special case software events and allow them to be part of
11623 	 * any hardware group.
11624 	 */
11625 	pmu = event->pmu;
11626 
11627 	if (attr.use_clockid) {
11628 		err = perf_event_set_clock(event, attr.clockid);
11629 		if (err)
11630 			goto err_alloc;
11631 	}
11632 
11633 	if (pmu->task_ctx_nr == perf_sw_context)
11634 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11635 
11636 	if (group_leader) {
11637 		if (is_software_event(event) &&
11638 		    !in_software_context(group_leader)) {
11639 			/*
11640 			 * If the event is a sw event, but the group_leader
11641 			 * is on hw context.
11642 			 *
11643 			 * Allow the addition of software events to hw
11644 			 * groups, this is safe because software events
11645 			 * never fail to schedule.
11646 			 */
11647 			pmu = group_leader->ctx->pmu;
11648 		} else if (!is_software_event(event) &&
11649 			   is_software_event(group_leader) &&
11650 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11651 			/*
11652 			 * In case the group is a pure software group, and we
11653 			 * try to add a hardware event, move the whole group to
11654 			 * the hardware context.
11655 			 */
11656 			move_group = 1;
11657 		}
11658 	}
11659 
11660 	/*
11661 	 * Get the target context (task or percpu):
11662 	 */
11663 	ctx = find_get_context(pmu, task, event);
11664 	if (IS_ERR(ctx)) {
11665 		err = PTR_ERR(ctx);
11666 		goto err_alloc;
11667 	}
11668 
11669 	/*
11670 	 * Look up the group leader (we will attach this event to it):
11671 	 */
11672 	if (group_leader) {
11673 		err = -EINVAL;
11674 
11675 		/*
11676 		 * Do not allow a recursive hierarchy (this new sibling
11677 		 * becoming part of another group-sibling):
11678 		 */
11679 		if (group_leader->group_leader != group_leader)
11680 			goto err_context;
11681 
11682 		/* All events in a group should have the same clock */
11683 		if (group_leader->clock != event->clock)
11684 			goto err_context;
11685 
11686 		/*
11687 		 * Make sure we're both events for the same CPU;
11688 		 * grouping events for different CPUs is broken; since
11689 		 * you can never concurrently schedule them anyhow.
11690 		 */
11691 		if (group_leader->cpu != event->cpu)
11692 			goto err_context;
11693 
11694 		/*
11695 		 * Make sure we're both on the same task, or both
11696 		 * per-CPU events.
11697 		 */
11698 		if (group_leader->ctx->task != ctx->task)
11699 			goto err_context;
11700 
11701 		/*
11702 		 * Do not allow to attach to a group in a different task
11703 		 * or CPU context. If we're moving SW events, we'll fix
11704 		 * this up later, so allow that.
11705 		 */
11706 		if (!move_group && group_leader->ctx != ctx)
11707 			goto err_context;
11708 
11709 		/*
11710 		 * Only a group leader can be exclusive or pinned
11711 		 */
11712 		if (attr.exclusive || attr.pinned)
11713 			goto err_context;
11714 	}
11715 
11716 	if (output_event) {
11717 		err = perf_event_set_output(event, output_event);
11718 		if (err)
11719 			goto err_context;
11720 	}
11721 
11722 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11723 					f_flags);
11724 	if (IS_ERR(event_file)) {
11725 		err = PTR_ERR(event_file);
11726 		event_file = NULL;
11727 		goto err_context;
11728 	}
11729 
11730 	if (move_group) {
11731 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11732 
11733 		if (gctx->task == TASK_TOMBSTONE) {
11734 			err = -ESRCH;
11735 			goto err_locked;
11736 		}
11737 
11738 		/*
11739 		 * Check if we raced against another sys_perf_event_open() call
11740 		 * moving the software group underneath us.
11741 		 */
11742 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11743 			/*
11744 			 * If someone moved the group out from under us, check
11745 			 * if this new event wound up on the same ctx, if so
11746 			 * its the regular !move_group case, otherwise fail.
11747 			 */
11748 			if (gctx != ctx) {
11749 				err = -EINVAL;
11750 				goto err_locked;
11751 			} else {
11752 				perf_event_ctx_unlock(group_leader, gctx);
11753 				move_group = 0;
11754 			}
11755 		}
11756 
11757 		/*
11758 		 * Failure to create exclusive events returns -EBUSY.
11759 		 */
11760 		err = -EBUSY;
11761 		if (!exclusive_event_installable(group_leader, ctx))
11762 			goto err_locked;
11763 
11764 		for_each_sibling_event(sibling, group_leader) {
11765 			if (!exclusive_event_installable(sibling, ctx))
11766 				goto err_locked;
11767 		}
11768 	} else {
11769 		mutex_lock(&ctx->mutex);
11770 	}
11771 
11772 	if (ctx->task == TASK_TOMBSTONE) {
11773 		err = -ESRCH;
11774 		goto err_locked;
11775 	}
11776 
11777 	if (!perf_event_validate_size(event)) {
11778 		err = -E2BIG;
11779 		goto err_locked;
11780 	}
11781 
11782 	if (!task) {
11783 		/*
11784 		 * Check if the @cpu we're creating an event for is online.
11785 		 *
11786 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11787 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11788 		 */
11789 		struct perf_cpu_context *cpuctx =
11790 			container_of(ctx, struct perf_cpu_context, ctx);
11791 
11792 		if (!cpuctx->online) {
11793 			err = -ENODEV;
11794 			goto err_locked;
11795 		}
11796 	}
11797 
11798 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11799 		err = -EINVAL;
11800 		goto err_locked;
11801 	}
11802 
11803 	/*
11804 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11805 	 * because we need to serialize with concurrent event creation.
11806 	 */
11807 	if (!exclusive_event_installable(event, ctx)) {
11808 		err = -EBUSY;
11809 		goto err_locked;
11810 	}
11811 
11812 	WARN_ON_ONCE(ctx->parent_ctx);
11813 
11814 	/*
11815 	 * This is the point on no return; we cannot fail hereafter. This is
11816 	 * where we start modifying current state.
11817 	 */
11818 
11819 	if (move_group) {
11820 		/*
11821 		 * See perf_event_ctx_lock() for comments on the details
11822 		 * of swizzling perf_event::ctx.
11823 		 */
11824 		perf_remove_from_context(group_leader, 0);
11825 		put_ctx(gctx);
11826 
11827 		for_each_sibling_event(sibling, group_leader) {
11828 			perf_remove_from_context(sibling, 0);
11829 			put_ctx(gctx);
11830 		}
11831 
11832 		/*
11833 		 * Wait for everybody to stop referencing the events through
11834 		 * the old lists, before installing it on new lists.
11835 		 */
11836 		synchronize_rcu();
11837 
11838 		/*
11839 		 * Install the group siblings before the group leader.
11840 		 *
11841 		 * Because a group leader will try and install the entire group
11842 		 * (through the sibling list, which is still in-tact), we can
11843 		 * end up with siblings installed in the wrong context.
11844 		 *
11845 		 * By installing siblings first we NO-OP because they're not
11846 		 * reachable through the group lists.
11847 		 */
11848 		for_each_sibling_event(sibling, group_leader) {
11849 			perf_event__state_init(sibling);
11850 			perf_install_in_context(ctx, sibling, sibling->cpu);
11851 			get_ctx(ctx);
11852 		}
11853 
11854 		/*
11855 		 * Removing from the context ends up with disabled
11856 		 * event. What we want here is event in the initial
11857 		 * startup state, ready to be add into new context.
11858 		 */
11859 		perf_event__state_init(group_leader);
11860 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11861 		get_ctx(ctx);
11862 	}
11863 
11864 	/*
11865 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11866 	 * that we're serialized against further additions and before
11867 	 * perf_install_in_context() which is the point the event is active and
11868 	 * can use these values.
11869 	 */
11870 	perf_event__header_size(event);
11871 	perf_event__id_header_size(event);
11872 
11873 	event->owner = current;
11874 
11875 	perf_install_in_context(ctx, event, event->cpu);
11876 	perf_unpin_context(ctx);
11877 
11878 	if (move_group)
11879 		perf_event_ctx_unlock(group_leader, gctx);
11880 	mutex_unlock(&ctx->mutex);
11881 
11882 	if (task) {
11883 		mutex_unlock(&task->signal->exec_update_mutex);
11884 		put_task_struct(task);
11885 	}
11886 
11887 	mutex_lock(&current->perf_event_mutex);
11888 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11889 	mutex_unlock(&current->perf_event_mutex);
11890 
11891 	/*
11892 	 * Drop the reference on the group_event after placing the
11893 	 * new event on the sibling_list. This ensures destruction
11894 	 * of the group leader will find the pointer to itself in
11895 	 * perf_group_detach().
11896 	 */
11897 	fdput(group);
11898 	fd_install(event_fd, event_file);
11899 	return event_fd;
11900 
11901 err_locked:
11902 	if (move_group)
11903 		perf_event_ctx_unlock(group_leader, gctx);
11904 	mutex_unlock(&ctx->mutex);
11905 /* err_file: */
11906 	fput(event_file);
11907 err_context:
11908 	perf_unpin_context(ctx);
11909 	put_ctx(ctx);
11910 err_alloc:
11911 	/*
11912 	 * If event_file is set, the fput() above will have called ->release()
11913 	 * and that will take care of freeing the event.
11914 	 */
11915 	if (!event_file)
11916 		free_event(event);
11917 err_cred:
11918 	if (task)
11919 		mutex_unlock(&task->signal->exec_update_mutex);
11920 err_task:
11921 	if (task)
11922 		put_task_struct(task);
11923 err_group_fd:
11924 	fdput(group);
11925 err_fd:
11926 	put_unused_fd(event_fd);
11927 	return err;
11928 }
11929 
11930 /**
11931  * perf_event_create_kernel_counter
11932  *
11933  * @attr: attributes of the counter to create
11934  * @cpu: cpu in which the counter is bound
11935  * @task: task to profile (NULL for percpu)
11936  */
11937 struct perf_event *
11938 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11939 				 struct task_struct *task,
11940 				 perf_overflow_handler_t overflow_handler,
11941 				 void *context)
11942 {
11943 	struct perf_event_context *ctx;
11944 	struct perf_event *event;
11945 	int err;
11946 
11947 	/*
11948 	 * Grouping is not supported for kernel events, neither is 'AUX',
11949 	 * make sure the caller's intentions are adjusted.
11950 	 */
11951 	if (attr->aux_output)
11952 		return ERR_PTR(-EINVAL);
11953 
11954 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11955 				 overflow_handler, context, -1);
11956 	if (IS_ERR(event)) {
11957 		err = PTR_ERR(event);
11958 		goto err;
11959 	}
11960 
11961 	/* Mark owner so we could distinguish it from user events. */
11962 	event->owner = TASK_TOMBSTONE;
11963 
11964 	/*
11965 	 * Get the target context (task or percpu):
11966 	 */
11967 	ctx = find_get_context(event->pmu, task, event);
11968 	if (IS_ERR(ctx)) {
11969 		err = PTR_ERR(ctx);
11970 		goto err_free;
11971 	}
11972 
11973 	WARN_ON_ONCE(ctx->parent_ctx);
11974 	mutex_lock(&ctx->mutex);
11975 	if (ctx->task == TASK_TOMBSTONE) {
11976 		err = -ESRCH;
11977 		goto err_unlock;
11978 	}
11979 
11980 	if (!task) {
11981 		/*
11982 		 * Check if the @cpu we're creating an event for is online.
11983 		 *
11984 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11985 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11986 		 */
11987 		struct perf_cpu_context *cpuctx =
11988 			container_of(ctx, struct perf_cpu_context, ctx);
11989 		if (!cpuctx->online) {
11990 			err = -ENODEV;
11991 			goto err_unlock;
11992 		}
11993 	}
11994 
11995 	if (!exclusive_event_installable(event, ctx)) {
11996 		err = -EBUSY;
11997 		goto err_unlock;
11998 	}
11999 
12000 	perf_install_in_context(ctx, event, event->cpu);
12001 	perf_unpin_context(ctx);
12002 	mutex_unlock(&ctx->mutex);
12003 
12004 	return event;
12005 
12006 err_unlock:
12007 	mutex_unlock(&ctx->mutex);
12008 	perf_unpin_context(ctx);
12009 	put_ctx(ctx);
12010 err_free:
12011 	free_event(event);
12012 err:
12013 	return ERR_PTR(err);
12014 }
12015 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12016 
12017 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12018 {
12019 	struct perf_event_context *src_ctx;
12020 	struct perf_event_context *dst_ctx;
12021 	struct perf_event *event, *tmp;
12022 	LIST_HEAD(events);
12023 
12024 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12025 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12026 
12027 	/*
12028 	 * See perf_event_ctx_lock() for comments on the details
12029 	 * of swizzling perf_event::ctx.
12030 	 */
12031 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12032 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12033 				 event_entry) {
12034 		perf_remove_from_context(event, 0);
12035 		unaccount_event_cpu(event, src_cpu);
12036 		put_ctx(src_ctx);
12037 		list_add(&event->migrate_entry, &events);
12038 	}
12039 
12040 	/*
12041 	 * Wait for the events to quiesce before re-instating them.
12042 	 */
12043 	synchronize_rcu();
12044 
12045 	/*
12046 	 * Re-instate events in 2 passes.
12047 	 *
12048 	 * Skip over group leaders and only install siblings on this first
12049 	 * pass, siblings will not get enabled without a leader, however a
12050 	 * leader will enable its siblings, even if those are still on the old
12051 	 * context.
12052 	 */
12053 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12054 		if (event->group_leader == event)
12055 			continue;
12056 
12057 		list_del(&event->migrate_entry);
12058 		if (event->state >= PERF_EVENT_STATE_OFF)
12059 			event->state = PERF_EVENT_STATE_INACTIVE;
12060 		account_event_cpu(event, dst_cpu);
12061 		perf_install_in_context(dst_ctx, event, dst_cpu);
12062 		get_ctx(dst_ctx);
12063 	}
12064 
12065 	/*
12066 	 * Once all the siblings are setup properly, install the group leaders
12067 	 * to make it go.
12068 	 */
12069 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12070 		list_del(&event->migrate_entry);
12071 		if (event->state >= PERF_EVENT_STATE_OFF)
12072 			event->state = PERF_EVENT_STATE_INACTIVE;
12073 		account_event_cpu(event, dst_cpu);
12074 		perf_install_in_context(dst_ctx, event, dst_cpu);
12075 		get_ctx(dst_ctx);
12076 	}
12077 	mutex_unlock(&dst_ctx->mutex);
12078 	mutex_unlock(&src_ctx->mutex);
12079 }
12080 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12081 
12082 static void sync_child_event(struct perf_event *child_event,
12083 			       struct task_struct *child)
12084 {
12085 	struct perf_event *parent_event = child_event->parent;
12086 	u64 child_val;
12087 
12088 	if (child_event->attr.inherit_stat)
12089 		perf_event_read_event(child_event, child);
12090 
12091 	child_val = perf_event_count(child_event);
12092 
12093 	/*
12094 	 * Add back the child's count to the parent's count:
12095 	 */
12096 	atomic64_add(child_val, &parent_event->child_count);
12097 	atomic64_add(child_event->total_time_enabled,
12098 		     &parent_event->child_total_time_enabled);
12099 	atomic64_add(child_event->total_time_running,
12100 		     &parent_event->child_total_time_running);
12101 }
12102 
12103 static void
12104 perf_event_exit_event(struct perf_event *child_event,
12105 		      struct perf_event_context *child_ctx,
12106 		      struct task_struct *child)
12107 {
12108 	struct perf_event *parent_event = child_event->parent;
12109 
12110 	/*
12111 	 * Do not destroy the 'original' grouping; because of the context
12112 	 * switch optimization the original events could've ended up in a
12113 	 * random child task.
12114 	 *
12115 	 * If we were to destroy the original group, all group related
12116 	 * operations would cease to function properly after this random
12117 	 * child dies.
12118 	 *
12119 	 * Do destroy all inherited groups, we don't care about those
12120 	 * and being thorough is better.
12121 	 */
12122 	raw_spin_lock_irq(&child_ctx->lock);
12123 	WARN_ON_ONCE(child_ctx->is_active);
12124 
12125 	if (parent_event)
12126 		perf_group_detach(child_event);
12127 	list_del_event(child_event, child_ctx);
12128 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12129 	raw_spin_unlock_irq(&child_ctx->lock);
12130 
12131 	/*
12132 	 * Parent events are governed by their filedesc, retain them.
12133 	 */
12134 	if (!parent_event) {
12135 		perf_event_wakeup(child_event);
12136 		return;
12137 	}
12138 	/*
12139 	 * Child events can be cleaned up.
12140 	 */
12141 
12142 	sync_child_event(child_event, child);
12143 
12144 	/*
12145 	 * Remove this event from the parent's list
12146 	 */
12147 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12148 	mutex_lock(&parent_event->child_mutex);
12149 	list_del_init(&child_event->child_list);
12150 	mutex_unlock(&parent_event->child_mutex);
12151 
12152 	/*
12153 	 * Kick perf_poll() for is_event_hup().
12154 	 */
12155 	perf_event_wakeup(parent_event);
12156 	free_event(child_event);
12157 	put_event(parent_event);
12158 }
12159 
12160 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12161 {
12162 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12163 	struct perf_event *child_event, *next;
12164 
12165 	WARN_ON_ONCE(child != current);
12166 
12167 	child_ctx = perf_pin_task_context(child, ctxn);
12168 	if (!child_ctx)
12169 		return;
12170 
12171 	/*
12172 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12173 	 * ctx::mutex over the entire thing. This serializes against almost
12174 	 * everything that wants to access the ctx.
12175 	 *
12176 	 * The exception is sys_perf_event_open() /
12177 	 * perf_event_create_kernel_count() which does find_get_context()
12178 	 * without ctx::mutex (it cannot because of the move_group double mutex
12179 	 * lock thing). See the comments in perf_install_in_context().
12180 	 */
12181 	mutex_lock(&child_ctx->mutex);
12182 
12183 	/*
12184 	 * In a single ctx::lock section, de-schedule the events and detach the
12185 	 * context from the task such that we cannot ever get it scheduled back
12186 	 * in.
12187 	 */
12188 	raw_spin_lock_irq(&child_ctx->lock);
12189 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12190 
12191 	/*
12192 	 * Now that the context is inactive, destroy the task <-> ctx relation
12193 	 * and mark the context dead.
12194 	 */
12195 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12196 	put_ctx(child_ctx); /* cannot be last */
12197 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12198 	put_task_struct(current); /* cannot be last */
12199 
12200 	clone_ctx = unclone_ctx(child_ctx);
12201 	raw_spin_unlock_irq(&child_ctx->lock);
12202 
12203 	if (clone_ctx)
12204 		put_ctx(clone_ctx);
12205 
12206 	/*
12207 	 * Report the task dead after unscheduling the events so that we
12208 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12209 	 * get a few PERF_RECORD_READ events.
12210 	 */
12211 	perf_event_task(child, child_ctx, 0);
12212 
12213 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12214 		perf_event_exit_event(child_event, child_ctx, child);
12215 
12216 	mutex_unlock(&child_ctx->mutex);
12217 
12218 	put_ctx(child_ctx);
12219 }
12220 
12221 /*
12222  * When a child task exits, feed back event values to parent events.
12223  *
12224  * Can be called with exec_update_mutex held when called from
12225  * install_exec_creds().
12226  */
12227 void perf_event_exit_task(struct task_struct *child)
12228 {
12229 	struct perf_event *event, *tmp;
12230 	int ctxn;
12231 
12232 	mutex_lock(&child->perf_event_mutex);
12233 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12234 				 owner_entry) {
12235 		list_del_init(&event->owner_entry);
12236 
12237 		/*
12238 		 * Ensure the list deletion is visible before we clear
12239 		 * the owner, closes a race against perf_release() where
12240 		 * we need to serialize on the owner->perf_event_mutex.
12241 		 */
12242 		smp_store_release(&event->owner, NULL);
12243 	}
12244 	mutex_unlock(&child->perf_event_mutex);
12245 
12246 	for_each_task_context_nr(ctxn)
12247 		perf_event_exit_task_context(child, ctxn);
12248 
12249 	/*
12250 	 * The perf_event_exit_task_context calls perf_event_task
12251 	 * with child's task_ctx, which generates EXIT events for
12252 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12253 	 * At this point we need to send EXIT events to cpu contexts.
12254 	 */
12255 	perf_event_task(child, NULL, 0);
12256 }
12257 
12258 static void perf_free_event(struct perf_event *event,
12259 			    struct perf_event_context *ctx)
12260 {
12261 	struct perf_event *parent = event->parent;
12262 
12263 	if (WARN_ON_ONCE(!parent))
12264 		return;
12265 
12266 	mutex_lock(&parent->child_mutex);
12267 	list_del_init(&event->child_list);
12268 	mutex_unlock(&parent->child_mutex);
12269 
12270 	put_event(parent);
12271 
12272 	raw_spin_lock_irq(&ctx->lock);
12273 	perf_group_detach(event);
12274 	list_del_event(event, ctx);
12275 	raw_spin_unlock_irq(&ctx->lock);
12276 	free_event(event);
12277 }
12278 
12279 /*
12280  * Free a context as created by inheritance by perf_event_init_task() below,
12281  * used by fork() in case of fail.
12282  *
12283  * Even though the task has never lived, the context and events have been
12284  * exposed through the child_list, so we must take care tearing it all down.
12285  */
12286 void perf_event_free_task(struct task_struct *task)
12287 {
12288 	struct perf_event_context *ctx;
12289 	struct perf_event *event, *tmp;
12290 	int ctxn;
12291 
12292 	for_each_task_context_nr(ctxn) {
12293 		ctx = task->perf_event_ctxp[ctxn];
12294 		if (!ctx)
12295 			continue;
12296 
12297 		mutex_lock(&ctx->mutex);
12298 		raw_spin_lock_irq(&ctx->lock);
12299 		/*
12300 		 * Destroy the task <-> ctx relation and mark the context dead.
12301 		 *
12302 		 * This is important because even though the task hasn't been
12303 		 * exposed yet the context has been (through child_list).
12304 		 */
12305 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12306 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12307 		put_task_struct(task); /* cannot be last */
12308 		raw_spin_unlock_irq(&ctx->lock);
12309 
12310 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12311 			perf_free_event(event, ctx);
12312 
12313 		mutex_unlock(&ctx->mutex);
12314 
12315 		/*
12316 		 * perf_event_release_kernel() could've stolen some of our
12317 		 * child events and still have them on its free_list. In that
12318 		 * case we must wait for these events to have been freed (in
12319 		 * particular all their references to this task must've been
12320 		 * dropped).
12321 		 *
12322 		 * Without this copy_process() will unconditionally free this
12323 		 * task (irrespective of its reference count) and
12324 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12325 		 * use-after-free.
12326 		 *
12327 		 * Wait for all events to drop their context reference.
12328 		 */
12329 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12330 		put_ctx(ctx); /* must be last */
12331 	}
12332 }
12333 
12334 void perf_event_delayed_put(struct task_struct *task)
12335 {
12336 	int ctxn;
12337 
12338 	for_each_task_context_nr(ctxn)
12339 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12340 }
12341 
12342 struct file *perf_event_get(unsigned int fd)
12343 {
12344 	struct file *file = fget(fd);
12345 	if (!file)
12346 		return ERR_PTR(-EBADF);
12347 
12348 	if (file->f_op != &perf_fops) {
12349 		fput(file);
12350 		return ERR_PTR(-EBADF);
12351 	}
12352 
12353 	return file;
12354 }
12355 
12356 const struct perf_event *perf_get_event(struct file *file)
12357 {
12358 	if (file->f_op != &perf_fops)
12359 		return ERR_PTR(-EINVAL);
12360 
12361 	return file->private_data;
12362 }
12363 
12364 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12365 {
12366 	if (!event)
12367 		return ERR_PTR(-EINVAL);
12368 
12369 	return &event->attr;
12370 }
12371 
12372 /*
12373  * Inherit an event from parent task to child task.
12374  *
12375  * Returns:
12376  *  - valid pointer on success
12377  *  - NULL for orphaned events
12378  *  - IS_ERR() on error
12379  */
12380 static struct perf_event *
12381 inherit_event(struct perf_event *parent_event,
12382 	      struct task_struct *parent,
12383 	      struct perf_event_context *parent_ctx,
12384 	      struct task_struct *child,
12385 	      struct perf_event *group_leader,
12386 	      struct perf_event_context *child_ctx)
12387 {
12388 	enum perf_event_state parent_state = parent_event->state;
12389 	struct perf_event *child_event;
12390 	unsigned long flags;
12391 
12392 	/*
12393 	 * Instead of creating recursive hierarchies of events,
12394 	 * we link inherited events back to the original parent,
12395 	 * which has a filp for sure, which we use as the reference
12396 	 * count:
12397 	 */
12398 	if (parent_event->parent)
12399 		parent_event = parent_event->parent;
12400 
12401 	child_event = perf_event_alloc(&parent_event->attr,
12402 					   parent_event->cpu,
12403 					   child,
12404 					   group_leader, parent_event,
12405 					   NULL, NULL, -1);
12406 	if (IS_ERR(child_event))
12407 		return child_event;
12408 
12409 
12410 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12411 	    !child_ctx->task_ctx_data) {
12412 		struct pmu *pmu = child_event->pmu;
12413 
12414 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12415 						   GFP_KERNEL);
12416 		if (!child_ctx->task_ctx_data) {
12417 			free_event(child_event);
12418 			return ERR_PTR(-ENOMEM);
12419 		}
12420 	}
12421 
12422 	/*
12423 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12424 	 * must be under the same lock in order to serialize against
12425 	 * perf_event_release_kernel(), such that either we must observe
12426 	 * is_orphaned_event() or they will observe us on the child_list.
12427 	 */
12428 	mutex_lock(&parent_event->child_mutex);
12429 	if (is_orphaned_event(parent_event) ||
12430 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12431 		mutex_unlock(&parent_event->child_mutex);
12432 		/* task_ctx_data is freed with child_ctx */
12433 		free_event(child_event);
12434 		return NULL;
12435 	}
12436 
12437 	get_ctx(child_ctx);
12438 
12439 	/*
12440 	 * Make the child state follow the state of the parent event,
12441 	 * not its attr.disabled bit.  We hold the parent's mutex,
12442 	 * so we won't race with perf_event_{en, dis}able_family.
12443 	 */
12444 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12445 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12446 	else
12447 		child_event->state = PERF_EVENT_STATE_OFF;
12448 
12449 	if (parent_event->attr.freq) {
12450 		u64 sample_period = parent_event->hw.sample_period;
12451 		struct hw_perf_event *hwc = &child_event->hw;
12452 
12453 		hwc->sample_period = sample_period;
12454 		hwc->last_period   = sample_period;
12455 
12456 		local64_set(&hwc->period_left, sample_period);
12457 	}
12458 
12459 	child_event->ctx = child_ctx;
12460 	child_event->overflow_handler = parent_event->overflow_handler;
12461 	child_event->overflow_handler_context
12462 		= parent_event->overflow_handler_context;
12463 
12464 	/*
12465 	 * Precalculate sample_data sizes
12466 	 */
12467 	perf_event__header_size(child_event);
12468 	perf_event__id_header_size(child_event);
12469 
12470 	/*
12471 	 * Link it up in the child's context:
12472 	 */
12473 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12474 	add_event_to_ctx(child_event, child_ctx);
12475 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12476 
12477 	/*
12478 	 * Link this into the parent event's child list
12479 	 */
12480 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12481 	mutex_unlock(&parent_event->child_mutex);
12482 
12483 	return child_event;
12484 }
12485 
12486 /*
12487  * Inherits an event group.
12488  *
12489  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12490  * This matches with perf_event_release_kernel() removing all child events.
12491  *
12492  * Returns:
12493  *  - 0 on success
12494  *  - <0 on error
12495  */
12496 static int inherit_group(struct perf_event *parent_event,
12497 	      struct task_struct *parent,
12498 	      struct perf_event_context *parent_ctx,
12499 	      struct task_struct *child,
12500 	      struct perf_event_context *child_ctx)
12501 {
12502 	struct perf_event *leader;
12503 	struct perf_event *sub;
12504 	struct perf_event *child_ctr;
12505 
12506 	leader = inherit_event(parent_event, parent, parent_ctx,
12507 				 child, NULL, child_ctx);
12508 	if (IS_ERR(leader))
12509 		return PTR_ERR(leader);
12510 	/*
12511 	 * @leader can be NULL here because of is_orphaned_event(). In this
12512 	 * case inherit_event() will create individual events, similar to what
12513 	 * perf_group_detach() would do anyway.
12514 	 */
12515 	for_each_sibling_event(sub, parent_event) {
12516 		child_ctr = inherit_event(sub, parent, parent_ctx,
12517 					    child, leader, child_ctx);
12518 		if (IS_ERR(child_ctr))
12519 			return PTR_ERR(child_ctr);
12520 
12521 		if (sub->aux_event == parent_event && child_ctr &&
12522 		    !perf_get_aux_event(child_ctr, leader))
12523 			return -EINVAL;
12524 	}
12525 	return 0;
12526 }
12527 
12528 /*
12529  * Creates the child task context and tries to inherit the event-group.
12530  *
12531  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12532  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12533  * consistent with perf_event_release_kernel() removing all child events.
12534  *
12535  * Returns:
12536  *  - 0 on success
12537  *  - <0 on error
12538  */
12539 static int
12540 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12541 		   struct perf_event_context *parent_ctx,
12542 		   struct task_struct *child, int ctxn,
12543 		   int *inherited_all)
12544 {
12545 	int ret;
12546 	struct perf_event_context *child_ctx;
12547 
12548 	if (!event->attr.inherit) {
12549 		*inherited_all = 0;
12550 		return 0;
12551 	}
12552 
12553 	child_ctx = child->perf_event_ctxp[ctxn];
12554 	if (!child_ctx) {
12555 		/*
12556 		 * This is executed from the parent task context, so
12557 		 * inherit events that have been marked for cloning.
12558 		 * First allocate and initialize a context for the
12559 		 * child.
12560 		 */
12561 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12562 		if (!child_ctx)
12563 			return -ENOMEM;
12564 
12565 		child->perf_event_ctxp[ctxn] = child_ctx;
12566 	}
12567 
12568 	ret = inherit_group(event, parent, parent_ctx,
12569 			    child, child_ctx);
12570 
12571 	if (ret)
12572 		*inherited_all = 0;
12573 
12574 	return ret;
12575 }
12576 
12577 /*
12578  * Initialize the perf_event context in task_struct
12579  */
12580 static int perf_event_init_context(struct task_struct *child, int ctxn)
12581 {
12582 	struct perf_event_context *child_ctx, *parent_ctx;
12583 	struct perf_event_context *cloned_ctx;
12584 	struct perf_event *event;
12585 	struct task_struct *parent = current;
12586 	int inherited_all = 1;
12587 	unsigned long flags;
12588 	int ret = 0;
12589 
12590 	if (likely(!parent->perf_event_ctxp[ctxn]))
12591 		return 0;
12592 
12593 	/*
12594 	 * If the parent's context is a clone, pin it so it won't get
12595 	 * swapped under us.
12596 	 */
12597 	parent_ctx = perf_pin_task_context(parent, ctxn);
12598 	if (!parent_ctx)
12599 		return 0;
12600 
12601 	/*
12602 	 * No need to check if parent_ctx != NULL here; since we saw
12603 	 * it non-NULL earlier, the only reason for it to become NULL
12604 	 * is if we exit, and since we're currently in the middle of
12605 	 * a fork we can't be exiting at the same time.
12606 	 */
12607 
12608 	/*
12609 	 * Lock the parent list. No need to lock the child - not PID
12610 	 * hashed yet and not running, so nobody can access it.
12611 	 */
12612 	mutex_lock(&parent_ctx->mutex);
12613 
12614 	/*
12615 	 * We dont have to disable NMIs - we are only looking at
12616 	 * the list, not manipulating it:
12617 	 */
12618 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12619 		ret = inherit_task_group(event, parent, parent_ctx,
12620 					 child, ctxn, &inherited_all);
12621 		if (ret)
12622 			goto out_unlock;
12623 	}
12624 
12625 	/*
12626 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12627 	 * to allocations, but we need to prevent rotation because
12628 	 * rotate_ctx() will change the list from interrupt context.
12629 	 */
12630 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12631 	parent_ctx->rotate_disable = 1;
12632 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12633 
12634 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12635 		ret = inherit_task_group(event, parent, parent_ctx,
12636 					 child, ctxn, &inherited_all);
12637 		if (ret)
12638 			goto out_unlock;
12639 	}
12640 
12641 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12642 	parent_ctx->rotate_disable = 0;
12643 
12644 	child_ctx = child->perf_event_ctxp[ctxn];
12645 
12646 	if (child_ctx && inherited_all) {
12647 		/*
12648 		 * Mark the child context as a clone of the parent
12649 		 * context, or of whatever the parent is a clone of.
12650 		 *
12651 		 * Note that if the parent is a clone, the holding of
12652 		 * parent_ctx->lock avoids it from being uncloned.
12653 		 */
12654 		cloned_ctx = parent_ctx->parent_ctx;
12655 		if (cloned_ctx) {
12656 			child_ctx->parent_ctx = cloned_ctx;
12657 			child_ctx->parent_gen = parent_ctx->parent_gen;
12658 		} else {
12659 			child_ctx->parent_ctx = parent_ctx;
12660 			child_ctx->parent_gen = parent_ctx->generation;
12661 		}
12662 		get_ctx(child_ctx->parent_ctx);
12663 	}
12664 
12665 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12666 out_unlock:
12667 	mutex_unlock(&parent_ctx->mutex);
12668 
12669 	perf_unpin_context(parent_ctx);
12670 	put_ctx(parent_ctx);
12671 
12672 	return ret;
12673 }
12674 
12675 /*
12676  * Initialize the perf_event context in task_struct
12677  */
12678 int perf_event_init_task(struct task_struct *child)
12679 {
12680 	int ctxn, ret;
12681 
12682 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12683 	mutex_init(&child->perf_event_mutex);
12684 	INIT_LIST_HEAD(&child->perf_event_list);
12685 
12686 	for_each_task_context_nr(ctxn) {
12687 		ret = perf_event_init_context(child, ctxn);
12688 		if (ret) {
12689 			perf_event_free_task(child);
12690 			return ret;
12691 		}
12692 	}
12693 
12694 	return 0;
12695 }
12696 
12697 static void __init perf_event_init_all_cpus(void)
12698 {
12699 	struct swevent_htable *swhash;
12700 	int cpu;
12701 
12702 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12703 
12704 	for_each_possible_cpu(cpu) {
12705 		swhash = &per_cpu(swevent_htable, cpu);
12706 		mutex_init(&swhash->hlist_mutex);
12707 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12708 
12709 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12710 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12711 
12712 #ifdef CONFIG_CGROUP_PERF
12713 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12714 #endif
12715 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12716 	}
12717 }
12718 
12719 static void perf_swevent_init_cpu(unsigned int cpu)
12720 {
12721 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12722 
12723 	mutex_lock(&swhash->hlist_mutex);
12724 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12725 		struct swevent_hlist *hlist;
12726 
12727 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12728 		WARN_ON(!hlist);
12729 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12730 	}
12731 	mutex_unlock(&swhash->hlist_mutex);
12732 }
12733 
12734 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12735 static void __perf_event_exit_context(void *__info)
12736 {
12737 	struct perf_event_context *ctx = __info;
12738 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12739 	struct perf_event *event;
12740 
12741 	raw_spin_lock(&ctx->lock);
12742 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12743 	list_for_each_entry(event, &ctx->event_list, event_entry)
12744 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12745 	raw_spin_unlock(&ctx->lock);
12746 }
12747 
12748 static void perf_event_exit_cpu_context(int cpu)
12749 {
12750 	struct perf_cpu_context *cpuctx;
12751 	struct perf_event_context *ctx;
12752 	struct pmu *pmu;
12753 
12754 	mutex_lock(&pmus_lock);
12755 	list_for_each_entry(pmu, &pmus, entry) {
12756 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12757 		ctx = &cpuctx->ctx;
12758 
12759 		mutex_lock(&ctx->mutex);
12760 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12761 		cpuctx->online = 0;
12762 		mutex_unlock(&ctx->mutex);
12763 	}
12764 	cpumask_clear_cpu(cpu, perf_online_mask);
12765 	mutex_unlock(&pmus_lock);
12766 }
12767 #else
12768 
12769 static void perf_event_exit_cpu_context(int cpu) { }
12770 
12771 #endif
12772 
12773 int perf_event_init_cpu(unsigned int cpu)
12774 {
12775 	struct perf_cpu_context *cpuctx;
12776 	struct perf_event_context *ctx;
12777 	struct pmu *pmu;
12778 
12779 	perf_swevent_init_cpu(cpu);
12780 
12781 	mutex_lock(&pmus_lock);
12782 	cpumask_set_cpu(cpu, perf_online_mask);
12783 	list_for_each_entry(pmu, &pmus, entry) {
12784 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12785 		ctx = &cpuctx->ctx;
12786 
12787 		mutex_lock(&ctx->mutex);
12788 		cpuctx->online = 1;
12789 		mutex_unlock(&ctx->mutex);
12790 	}
12791 	mutex_unlock(&pmus_lock);
12792 
12793 	return 0;
12794 }
12795 
12796 int perf_event_exit_cpu(unsigned int cpu)
12797 {
12798 	perf_event_exit_cpu_context(cpu);
12799 	return 0;
12800 }
12801 
12802 static int
12803 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12804 {
12805 	int cpu;
12806 
12807 	for_each_online_cpu(cpu)
12808 		perf_event_exit_cpu(cpu);
12809 
12810 	return NOTIFY_OK;
12811 }
12812 
12813 /*
12814  * Run the perf reboot notifier at the very last possible moment so that
12815  * the generic watchdog code runs as long as possible.
12816  */
12817 static struct notifier_block perf_reboot_notifier = {
12818 	.notifier_call = perf_reboot,
12819 	.priority = INT_MIN,
12820 };
12821 
12822 void __init perf_event_init(void)
12823 {
12824 	int ret;
12825 
12826 	idr_init(&pmu_idr);
12827 
12828 	perf_event_init_all_cpus();
12829 	init_srcu_struct(&pmus_srcu);
12830 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12831 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12832 	perf_pmu_register(&perf_task_clock, NULL, -1);
12833 	perf_tp_register();
12834 	perf_event_init_cpu(smp_processor_id());
12835 	register_reboot_notifier(&perf_reboot_notifier);
12836 
12837 	ret = init_hw_breakpoint();
12838 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12839 
12840 	/*
12841 	 * Build time assertion that we keep the data_head at the intended
12842 	 * location.  IOW, validation we got the __reserved[] size right.
12843 	 */
12844 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12845 		     != 1024);
12846 }
12847 
12848 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12849 			      char *page)
12850 {
12851 	struct perf_pmu_events_attr *pmu_attr =
12852 		container_of(attr, struct perf_pmu_events_attr, attr);
12853 
12854 	if (pmu_attr->event_str)
12855 		return sprintf(page, "%s\n", pmu_attr->event_str);
12856 
12857 	return 0;
12858 }
12859 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12860 
12861 static int __init perf_event_sysfs_init(void)
12862 {
12863 	struct pmu *pmu;
12864 	int ret;
12865 
12866 	mutex_lock(&pmus_lock);
12867 
12868 	ret = bus_register(&pmu_bus);
12869 	if (ret)
12870 		goto unlock;
12871 
12872 	list_for_each_entry(pmu, &pmus, entry) {
12873 		if (!pmu->name || pmu->type < 0)
12874 			continue;
12875 
12876 		ret = pmu_dev_alloc(pmu);
12877 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12878 	}
12879 	pmu_bus_running = 1;
12880 	ret = 0;
12881 
12882 unlock:
12883 	mutex_unlock(&pmus_lock);
12884 
12885 	return ret;
12886 }
12887 device_initcall(perf_event_sysfs_init);
12888 
12889 #ifdef CONFIG_CGROUP_PERF
12890 static struct cgroup_subsys_state *
12891 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12892 {
12893 	struct perf_cgroup *jc;
12894 
12895 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12896 	if (!jc)
12897 		return ERR_PTR(-ENOMEM);
12898 
12899 	jc->info = alloc_percpu(struct perf_cgroup_info);
12900 	if (!jc->info) {
12901 		kfree(jc);
12902 		return ERR_PTR(-ENOMEM);
12903 	}
12904 
12905 	return &jc->css;
12906 }
12907 
12908 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12909 {
12910 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12911 
12912 	free_percpu(jc->info);
12913 	kfree(jc);
12914 }
12915 
12916 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12917 {
12918 	perf_event_cgroup(css->cgroup);
12919 	return 0;
12920 }
12921 
12922 static int __perf_cgroup_move(void *info)
12923 {
12924 	struct task_struct *task = info;
12925 	rcu_read_lock();
12926 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12927 	rcu_read_unlock();
12928 	return 0;
12929 }
12930 
12931 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12932 {
12933 	struct task_struct *task;
12934 	struct cgroup_subsys_state *css;
12935 
12936 	cgroup_taskset_for_each(task, css, tset)
12937 		task_function_call(task, __perf_cgroup_move, task);
12938 }
12939 
12940 struct cgroup_subsys perf_event_cgrp_subsys = {
12941 	.css_alloc	= perf_cgroup_css_alloc,
12942 	.css_free	= perf_cgroup_css_free,
12943 	.css_online	= perf_cgroup_css_online,
12944 	.attach		= perf_cgroup_attach,
12945 	/*
12946 	 * Implicitly enable on dfl hierarchy so that perf events can
12947 	 * always be filtered by cgroup2 path as long as perf_event
12948 	 * controller is not mounted on a legacy hierarchy.
12949 	 */
12950 	.implicit_on_dfl = true,
12951 	.threaded	= true,
12952 };
12953 #endif /* CONFIG_CGROUP_PERF */
12954