xref: /linux/kernel/events/core.c (revision d83ff0bb828854d9e7172ac5d8d007a7466934c9)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40 
41 #include "internal.h"
42 
43 #include <asm/irq_regs.h>
44 
45 struct remote_function_call {
46 	struct task_struct	*p;
47 	int			(*func)(void *info);
48 	void			*info;
49 	int			ret;
50 };
51 
52 static void remote_function(void *data)
53 {
54 	struct remote_function_call *tfc = data;
55 	struct task_struct *p = tfc->p;
56 
57 	if (p) {
58 		tfc->ret = -EAGAIN;
59 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 			return;
61 	}
62 
63 	tfc->ret = tfc->func(tfc->info);
64 }
65 
66 /**
67  * task_function_call - call a function on the cpu on which a task runs
68  * @p:		the task to evaluate
69  * @func:	the function to be called
70  * @info:	the function call argument
71  *
72  * Calls the function @func when the task is currently running. This might
73  * be on the current CPU, which just calls the function directly
74  *
75  * returns: @func return value, or
76  *	    -ESRCH  - when the process isn't running
77  *	    -EAGAIN - when the process moved away
78  */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 	struct remote_function_call data = {
83 		.p	= p,
84 		.func	= func,
85 		.info	= info,
86 		.ret	= -ESRCH, /* No such (running) process */
87 	};
88 
89 	if (task_curr(p))
90 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 
92 	return data.ret;
93 }
94 
95 /**
96  * cpu_function_call - call a function on the cpu
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func on the remote cpu.
101  *
102  * returns: @func return value or -ENXIO when the cpu is offline
103  */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= NULL,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -ENXIO, /* No such CPU */
111 	};
112 
113 	smp_call_function_single(cpu, remote_function, &data, 1);
114 
115 	return data.ret;
116 }
117 
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 		       PERF_FLAG_FD_OUTPUT  |\
120 		       PERF_FLAG_PID_CGROUP)
121 
122 /*
123  * branch priv levels that need permission checks
124  */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 	(PERF_SAMPLE_BRANCH_KERNEL |\
127 	 PERF_SAMPLE_BRANCH_HV)
128 
129 enum event_type_t {
130 	EVENT_FLEXIBLE = 0x1,
131 	EVENT_PINNED = 0x2,
132 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134 
135 /*
136  * perf_sched_events : >0 events exist
137  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138  */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142 
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146 
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150 
151 /*
152  * perf event paranoia level:
153  *  -1 - not paranoid at all
154  *   0 - disallow raw tracepoint access for unpriv
155  *   1 - disallow cpu events for unpriv
156  *   2 - disallow kernel profiling for unpriv
157  */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159 
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 
163 /*
164  * max perf event sample rate
165  */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170 
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 		void __user *buffer, size_t *lenp,
173 		loff_t *ppos)
174 {
175 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176 
177 	if (ret || !write)
178 		return ret;
179 
180 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181 
182 	return 0;
183 }
184 
185 static atomic64_t perf_event_id;
186 
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 			      enum event_type_t event_type);
189 
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 			     enum event_type_t event_type,
192 			     struct task_struct *task);
193 
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196 
197 static void ring_buffer_attach(struct perf_event *event,
198 			       struct ring_buffer *rb);
199 
200 void __weak perf_event_print_debug(void)	{ }
201 
202 extern __weak const char *perf_pmu_name(void)
203 {
204 	return "pmu";
205 }
206 
207 static inline u64 perf_clock(void)
208 {
209 	return local_clock();
210 }
211 
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217 
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 			  struct perf_event_context *ctx)
220 {
221 	raw_spin_lock(&cpuctx->ctx.lock);
222 	if (ctx)
223 		raw_spin_lock(&ctx->lock);
224 }
225 
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 			    struct perf_event_context *ctx)
228 {
229 	if (ctx)
230 		raw_spin_unlock(&ctx->lock);
231 	raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233 
234 #ifdef CONFIG_CGROUP_PERF
235 
236 /*
237  * Must ensure cgroup is pinned (css_get) before calling
238  * this function. In other words, we cannot call this function
239  * if there is no cgroup event for the current CPU context.
240  */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 	return container_of(task_subsys_state(task, perf_subsys_id),
245 			struct perf_cgroup, css);
246 }
247 
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253 
254 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256 
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 	return css_tryget(&event->cgrp->css);
260 }
261 
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 	css_put(&event->cgrp->css);
265 }
266 
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 	perf_put_cgroup(event);
270 	event->cgrp = NULL;
271 }
272 
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 	return event->cgrp != NULL;
276 }
277 
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 	struct perf_cgroup_info *t;
281 
282 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 	return t->time;
284 }
285 
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 	struct perf_cgroup_info *info;
289 	u64 now;
290 
291 	now = perf_clock();
292 
293 	info = this_cpu_ptr(cgrp->info);
294 
295 	info->time += now - info->timestamp;
296 	info->timestamp = now;
297 }
298 
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 	if (cgrp_out)
303 		__update_cgrp_time(cgrp_out);
304 }
305 
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 	struct perf_cgroup *cgrp;
309 
310 	/*
311 	 * ensure we access cgroup data only when needed and
312 	 * when we know the cgroup is pinned (css_get)
313 	 */
314 	if (!is_cgroup_event(event))
315 		return;
316 
317 	cgrp = perf_cgroup_from_task(current);
318 	/*
319 	 * Do not update time when cgroup is not active
320 	 */
321 	if (cgrp == event->cgrp)
322 		__update_cgrp_time(event->cgrp);
323 }
324 
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 			  struct perf_event_context *ctx)
328 {
329 	struct perf_cgroup *cgrp;
330 	struct perf_cgroup_info *info;
331 
332 	/*
333 	 * ctx->lock held by caller
334 	 * ensure we do not access cgroup data
335 	 * unless we have the cgroup pinned (css_get)
336 	 */
337 	if (!task || !ctx->nr_cgroups)
338 		return;
339 
340 	cgrp = perf_cgroup_from_task(task);
341 	info = this_cpu_ptr(cgrp->info);
342 	info->timestamp = ctx->timestamp;
343 }
344 
345 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
347 
348 /*
349  * reschedule events based on the cgroup constraint of task.
350  *
351  * mode SWOUT : schedule out everything
352  * mode SWIN : schedule in based on cgroup for next
353  */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 	struct perf_cpu_context *cpuctx;
357 	struct pmu *pmu;
358 	unsigned long flags;
359 
360 	/*
361 	 * disable interrupts to avoid geting nr_cgroup
362 	 * changes via __perf_event_disable(). Also
363 	 * avoids preemption.
364 	 */
365 	local_irq_save(flags);
366 
367 	/*
368 	 * we reschedule only in the presence of cgroup
369 	 * constrained events.
370 	 */
371 	rcu_read_lock();
372 
373 	list_for_each_entry_rcu(pmu, &pmus, entry) {
374 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 		if (cpuctx->unique_pmu != pmu)
376 			continue; /* ensure we process each cpuctx once */
377 
378 		/*
379 		 * perf_cgroup_events says at least one
380 		 * context on this CPU has cgroup events.
381 		 *
382 		 * ctx->nr_cgroups reports the number of cgroup
383 		 * events for a context.
384 		 */
385 		if (cpuctx->ctx.nr_cgroups > 0) {
386 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
387 			perf_pmu_disable(cpuctx->ctx.pmu);
388 
389 			if (mode & PERF_CGROUP_SWOUT) {
390 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
391 				/*
392 				 * must not be done before ctxswout due
393 				 * to event_filter_match() in event_sched_out()
394 				 */
395 				cpuctx->cgrp = NULL;
396 			}
397 
398 			if (mode & PERF_CGROUP_SWIN) {
399 				WARN_ON_ONCE(cpuctx->cgrp);
400 				/*
401 				 * set cgrp before ctxsw in to allow
402 				 * event_filter_match() to not have to pass
403 				 * task around
404 				 */
405 				cpuctx->cgrp = perf_cgroup_from_task(task);
406 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
407 			}
408 			perf_pmu_enable(cpuctx->ctx.pmu);
409 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
410 		}
411 	}
412 
413 	rcu_read_unlock();
414 
415 	local_irq_restore(flags);
416 }
417 
418 static inline void perf_cgroup_sched_out(struct task_struct *task,
419 					 struct task_struct *next)
420 {
421 	struct perf_cgroup *cgrp1;
422 	struct perf_cgroup *cgrp2 = NULL;
423 
424 	/*
425 	 * we come here when we know perf_cgroup_events > 0
426 	 */
427 	cgrp1 = perf_cgroup_from_task(task);
428 
429 	/*
430 	 * next is NULL when called from perf_event_enable_on_exec()
431 	 * that will systematically cause a cgroup_switch()
432 	 */
433 	if (next)
434 		cgrp2 = perf_cgroup_from_task(next);
435 
436 	/*
437 	 * only schedule out current cgroup events if we know
438 	 * that we are switching to a different cgroup. Otherwise,
439 	 * do no touch the cgroup events.
440 	 */
441 	if (cgrp1 != cgrp2)
442 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
443 }
444 
445 static inline void perf_cgroup_sched_in(struct task_struct *prev,
446 					struct task_struct *task)
447 {
448 	struct perf_cgroup *cgrp1;
449 	struct perf_cgroup *cgrp2 = NULL;
450 
451 	/*
452 	 * we come here when we know perf_cgroup_events > 0
453 	 */
454 	cgrp1 = perf_cgroup_from_task(task);
455 
456 	/* prev can never be NULL */
457 	cgrp2 = perf_cgroup_from_task(prev);
458 
459 	/*
460 	 * only need to schedule in cgroup events if we are changing
461 	 * cgroup during ctxsw. Cgroup events were not scheduled
462 	 * out of ctxsw out if that was not the case.
463 	 */
464 	if (cgrp1 != cgrp2)
465 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
466 }
467 
468 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
469 				      struct perf_event_attr *attr,
470 				      struct perf_event *group_leader)
471 {
472 	struct perf_cgroup *cgrp;
473 	struct cgroup_subsys_state *css;
474 	struct fd f = fdget(fd);
475 	int ret = 0;
476 
477 	if (!f.file)
478 		return -EBADF;
479 
480 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 	if (IS_ERR(css)) {
482 		ret = PTR_ERR(css);
483 		goto out;
484 	}
485 
486 	cgrp = container_of(css, struct perf_cgroup, css);
487 	event->cgrp = cgrp;
488 
489 	/* must be done before we fput() the file */
490 	if (!perf_tryget_cgroup(event)) {
491 		event->cgrp = NULL;
492 		ret = -ENOENT;
493 		goto out;
494 	}
495 
496 	/*
497 	 * all events in a group must monitor
498 	 * the same cgroup because a task belongs
499 	 * to only one perf cgroup at a time
500 	 */
501 	if (group_leader && group_leader->cgrp != cgrp) {
502 		perf_detach_cgroup(event);
503 		ret = -EINVAL;
504 	}
505 out:
506 	fdput(f);
507 	return ret;
508 }
509 
510 static inline void
511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
512 {
513 	struct perf_cgroup_info *t;
514 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
515 	event->shadow_ctx_time = now - t->timestamp;
516 }
517 
518 static inline void
519 perf_cgroup_defer_enabled(struct perf_event *event)
520 {
521 	/*
522 	 * when the current task's perf cgroup does not match
523 	 * the event's, we need to remember to call the
524 	 * perf_mark_enable() function the first time a task with
525 	 * a matching perf cgroup is scheduled in.
526 	 */
527 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
528 		event->cgrp_defer_enabled = 1;
529 }
530 
531 static inline void
532 perf_cgroup_mark_enabled(struct perf_event *event,
533 			 struct perf_event_context *ctx)
534 {
535 	struct perf_event *sub;
536 	u64 tstamp = perf_event_time(event);
537 
538 	if (!event->cgrp_defer_enabled)
539 		return;
540 
541 	event->cgrp_defer_enabled = 0;
542 
543 	event->tstamp_enabled = tstamp - event->total_time_enabled;
544 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
545 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
546 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
547 			sub->cgrp_defer_enabled = 0;
548 		}
549 	}
550 }
551 #else /* !CONFIG_CGROUP_PERF */
552 
553 static inline bool
554 perf_cgroup_match(struct perf_event *event)
555 {
556 	return true;
557 }
558 
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {}
561 
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 	return 0;
565 }
566 
567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
568 {
569 	return 0;
570 }
571 
572 static inline void update_cgrp_time_from_event(struct perf_event *event)
573 {
574 }
575 
576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
577 {
578 }
579 
580 static inline void perf_cgroup_sched_out(struct task_struct *task,
581 					 struct task_struct *next)
582 {
583 }
584 
585 static inline void perf_cgroup_sched_in(struct task_struct *prev,
586 					struct task_struct *task)
587 {
588 }
589 
590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
591 				      struct perf_event_attr *attr,
592 				      struct perf_event *group_leader)
593 {
594 	return -EINVAL;
595 }
596 
597 static inline void
598 perf_cgroup_set_timestamp(struct task_struct *task,
599 			  struct perf_event_context *ctx)
600 {
601 }
602 
603 void
604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
605 {
606 }
607 
608 static inline void
609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
610 {
611 }
612 
613 static inline u64 perf_cgroup_event_time(struct perf_event *event)
614 {
615 	return 0;
616 }
617 
618 static inline void
619 perf_cgroup_defer_enabled(struct perf_event *event)
620 {
621 }
622 
623 static inline void
624 perf_cgroup_mark_enabled(struct perf_event *event,
625 			 struct perf_event_context *ctx)
626 {
627 }
628 #endif
629 
630 void perf_pmu_disable(struct pmu *pmu)
631 {
632 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 	if (!(*count)++)
634 		pmu->pmu_disable(pmu);
635 }
636 
637 void perf_pmu_enable(struct pmu *pmu)
638 {
639 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
640 	if (!--(*count))
641 		pmu->pmu_enable(pmu);
642 }
643 
644 static DEFINE_PER_CPU(struct list_head, rotation_list);
645 
646 /*
647  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
648  * because they're strictly cpu affine and rotate_start is called with IRQs
649  * disabled, while rotate_context is called from IRQ context.
650  */
651 static void perf_pmu_rotate_start(struct pmu *pmu)
652 {
653 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654 	struct list_head *head = &__get_cpu_var(rotation_list);
655 
656 	WARN_ON(!irqs_disabled());
657 
658 	if (list_empty(&cpuctx->rotation_list))
659 		list_add(&cpuctx->rotation_list, head);
660 }
661 
662 static void get_ctx(struct perf_event_context *ctx)
663 {
664 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 }
666 
667 static void put_ctx(struct perf_event_context *ctx)
668 {
669 	if (atomic_dec_and_test(&ctx->refcount)) {
670 		if (ctx->parent_ctx)
671 			put_ctx(ctx->parent_ctx);
672 		if (ctx->task)
673 			put_task_struct(ctx->task);
674 		kfree_rcu(ctx, rcu_head);
675 	}
676 }
677 
678 static void unclone_ctx(struct perf_event_context *ctx)
679 {
680 	if (ctx->parent_ctx) {
681 		put_ctx(ctx->parent_ctx);
682 		ctx->parent_ctx = NULL;
683 	}
684 }
685 
686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
687 {
688 	/*
689 	 * only top level events have the pid namespace they were created in
690 	 */
691 	if (event->parent)
692 		event = event->parent;
693 
694 	return task_tgid_nr_ns(p, event->ns);
695 }
696 
697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
698 {
699 	/*
700 	 * only top level events have the pid namespace they were created in
701 	 */
702 	if (event->parent)
703 		event = event->parent;
704 
705 	return task_pid_nr_ns(p, event->ns);
706 }
707 
708 /*
709  * If we inherit events we want to return the parent event id
710  * to userspace.
711  */
712 static u64 primary_event_id(struct perf_event *event)
713 {
714 	u64 id = event->id;
715 
716 	if (event->parent)
717 		id = event->parent->id;
718 
719 	return id;
720 }
721 
722 /*
723  * Get the perf_event_context for a task and lock it.
724  * This has to cope with with the fact that until it is locked,
725  * the context could get moved to another task.
726  */
727 static struct perf_event_context *
728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729 {
730 	struct perf_event_context *ctx;
731 
732 	rcu_read_lock();
733 retry:
734 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 	if (ctx) {
736 		/*
737 		 * If this context is a clone of another, it might
738 		 * get swapped for another underneath us by
739 		 * perf_event_task_sched_out, though the
740 		 * rcu_read_lock() protects us from any context
741 		 * getting freed.  Lock the context and check if it
742 		 * got swapped before we could get the lock, and retry
743 		 * if so.  If we locked the right context, then it
744 		 * can't get swapped on us any more.
745 		 */
746 		raw_spin_lock_irqsave(&ctx->lock, *flags);
747 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 			goto retry;
750 		}
751 
752 		if (!atomic_inc_not_zero(&ctx->refcount)) {
753 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 			ctx = NULL;
755 		}
756 	}
757 	rcu_read_unlock();
758 	return ctx;
759 }
760 
761 /*
762  * Get the context for a task and increment its pin_count so it
763  * can't get swapped to another task.  This also increments its
764  * reference count so that the context can't get freed.
765  */
766 static struct perf_event_context *
767 perf_pin_task_context(struct task_struct *task, int ctxn)
768 {
769 	struct perf_event_context *ctx;
770 	unsigned long flags;
771 
772 	ctx = perf_lock_task_context(task, ctxn, &flags);
773 	if (ctx) {
774 		++ctx->pin_count;
775 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 	}
777 	return ctx;
778 }
779 
780 static void perf_unpin_context(struct perf_event_context *ctx)
781 {
782 	unsigned long flags;
783 
784 	raw_spin_lock_irqsave(&ctx->lock, flags);
785 	--ctx->pin_count;
786 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 }
788 
789 /*
790  * Update the record of the current time in a context.
791  */
792 static void update_context_time(struct perf_event_context *ctx)
793 {
794 	u64 now = perf_clock();
795 
796 	ctx->time += now - ctx->timestamp;
797 	ctx->timestamp = now;
798 }
799 
800 static u64 perf_event_time(struct perf_event *event)
801 {
802 	struct perf_event_context *ctx = event->ctx;
803 
804 	if (is_cgroup_event(event))
805 		return perf_cgroup_event_time(event);
806 
807 	return ctx ? ctx->time : 0;
808 }
809 
810 /*
811  * Update the total_time_enabled and total_time_running fields for a event.
812  * The caller of this function needs to hold the ctx->lock.
813  */
814 static void update_event_times(struct perf_event *event)
815 {
816 	struct perf_event_context *ctx = event->ctx;
817 	u64 run_end;
818 
819 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
820 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
821 		return;
822 	/*
823 	 * in cgroup mode, time_enabled represents
824 	 * the time the event was enabled AND active
825 	 * tasks were in the monitored cgroup. This is
826 	 * independent of the activity of the context as
827 	 * there may be a mix of cgroup and non-cgroup events.
828 	 *
829 	 * That is why we treat cgroup events differently
830 	 * here.
831 	 */
832 	if (is_cgroup_event(event))
833 		run_end = perf_cgroup_event_time(event);
834 	else if (ctx->is_active)
835 		run_end = ctx->time;
836 	else
837 		run_end = event->tstamp_stopped;
838 
839 	event->total_time_enabled = run_end - event->tstamp_enabled;
840 
841 	if (event->state == PERF_EVENT_STATE_INACTIVE)
842 		run_end = event->tstamp_stopped;
843 	else
844 		run_end = perf_event_time(event);
845 
846 	event->total_time_running = run_end - event->tstamp_running;
847 
848 }
849 
850 /*
851  * Update total_time_enabled and total_time_running for all events in a group.
852  */
853 static void update_group_times(struct perf_event *leader)
854 {
855 	struct perf_event *event;
856 
857 	update_event_times(leader);
858 	list_for_each_entry(event, &leader->sibling_list, group_entry)
859 		update_event_times(event);
860 }
861 
862 static struct list_head *
863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
864 {
865 	if (event->attr.pinned)
866 		return &ctx->pinned_groups;
867 	else
868 		return &ctx->flexible_groups;
869 }
870 
871 /*
872  * Add a event from the lists for its context.
873  * Must be called with ctx->mutex and ctx->lock held.
874  */
875 static void
876 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877 {
878 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
879 	event->attach_state |= PERF_ATTACH_CONTEXT;
880 
881 	/*
882 	 * If we're a stand alone event or group leader, we go to the context
883 	 * list, group events are kept attached to the group so that
884 	 * perf_group_detach can, at all times, locate all siblings.
885 	 */
886 	if (event->group_leader == event) {
887 		struct list_head *list;
888 
889 		if (is_software_event(event))
890 			event->group_flags |= PERF_GROUP_SOFTWARE;
891 
892 		list = ctx_group_list(event, ctx);
893 		list_add_tail(&event->group_entry, list);
894 	}
895 
896 	if (is_cgroup_event(event))
897 		ctx->nr_cgroups++;
898 
899 	if (has_branch_stack(event))
900 		ctx->nr_branch_stack++;
901 
902 	list_add_rcu(&event->event_entry, &ctx->event_list);
903 	if (!ctx->nr_events)
904 		perf_pmu_rotate_start(ctx->pmu);
905 	ctx->nr_events++;
906 	if (event->attr.inherit_stat)
907 		ctx->nr_stat++;
908 }
909 
910 /*
911  * Initialize event state based on the perf_event_attr::disabled.
912  */
913 static inline void perf_event__state_init(struct perf_event *event)
914 {
915 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
916 					      PERF_EVENT_STATE_INACTIVE;
917 }
918 
919 /*
920  * Called at perf_event creation and when events are attached/detached from a
921  * group.
922  */
923 static void perf_event__read_size(struct perf_event *event)
924 {
925 	int entry = sizeof(u64); /* value */
926 	int size = 0;
927 	int nr = 1;
928 
929 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
930 		size += sizeof(u64);
931 
932 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
933 		size += sizeof(u64);
934 
935 	if (event->attr.read_format & PERF_FORMAT_ID)
936 		entry += sizeof(u64);
937 
938 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
939 		nr += event->group_leader->nr_siblings;
940 		size += sizeof(u64);
941 	}
942 
943 	size += entry * nr;
944 	event->read_size = size;
945 }
946 
947 static void perf_event__header_size(struct perf_event *event)
948 {
949 	struct perf_sample_data *data;
950 	u64 sample_type = event->attr.sample_type;
951 	u16 size = 0;
952 
953 	perf_event__read_size(event);
954 
955 	if (sample_type & PERF_SAMPLE_IP)
956 		size += sizeof(data->ip);
957 
958 	if (sample_type & PERF_SAMPLE_ADDR)
959 		size += sizeof(data->addr);
960 
961 	if (sample_type & PERF_SAMPLE_PERIOD)
962 		size += sizeof(data->period);
963 
964 	if (sample_type & PERF_SAMPLE_READ)
965 		size += event->read_size;
966 
967 	event->header_size = size;
968 }
969 
970 static void perf_event__id_header_size(struct perf_event *event)
971 {
972 	struct perf_sample_data *data;
973 	u64 sample_type = event->attr.sample_type;
974 	u16 size = 0;
975 
976 	if (sample_type & PERF_SAMPLE_TID)
977 		size += sizeof(data->tid_entry);
978 
979 	if (sample_type & PERF_SAMPLE_TIME)
980 		size += sizeof(data->time);
981 
982 	if (sample_type & PERF_SAMPLE_ID)
983 		size += sizeof(data->id);
984 
985 	if (sample_type & PERF_SAMPLE_STREAM_ID)
986 		size += sizeof(data->stream_id);
987 
988 	if (sample_type & PERF_SAMPLE_CPU)
989 		size += sizeof(data->cpu_entry);
990 
991 	event->id_header_size = size;
992 }
993 
994 static void perf_group_attach(struct perf_event *event)
995 {
996 	struct perf_event *group_leader = event->group_leader, *pos;
997 
998 	/*
999 	 * We can have double attach due to group movement in perf_event_open.
1000 	 */
1001 	if (event->attach_state & PERF_ATTACH_GROUP)
1002 		return;
1003 
1004 	event->attach_state |= PERF_ATTACH_GROUP;
1005 
1006 	if (group_leader == event)
1007 		return;
1008 
1009 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1010 			!is_software_event(event))
1011 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1012 
1013 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1014 	group_leader->nr_siblings++;
1015 
1016 	perf_event__header_size(group_leader);
1017 
1018 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1019 		perf_event__header_size(pos);
1020 }
1021 
1022 /*
1023  * Remove a event from the lists for its context.
1024  * Must be called with ctx->mutex and ctx->lock held.
1025  */
1026 static void
1027 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 	/*
1031 	 * We can have double detach due to exit/hot-unplug + close.
1032 	 */
1033 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1034 		return;
1035 
1036 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1037 
1038 	if (is_cgroup_event(event)) {
1039 		ctx->nr_cgroups--;
1040 		cpuctx = __get_cpu_context(ctx);
1041 		/*
1042 		 * if there are no more cgroup events
1043 		 * then cler cgrp to avoid stale pointer
1044 		 * in update_cgrp_time_from_cpuctx()
1045 		 */
1046 		if (!ctx->nr_cgroups)
1047 			cpuctx->cgrp = NULL;
1048 	}
1049 
1050 	if (has_branch_stack(event))
1051 		ctx->nr_branch_stack--;
1052 
1053 	ctx->nr_events--;
1054 	if (event->attr.inherit_stat)
1055 		ctx->nr_stat--;
1056 
1057 	list_del_rcu(&event->event_entry);
1058 
1059 	if (event->group_leader == event)
1060 		list_del_init(&event->group_entry);
1061 
1062 	update_group_times(event);
1063 
1064 	/*
1065 	 * If event was in error state, then keep it
1066 	 * that way, otherwise bogus counts will be
1067 	 * returned on read(). The only way to get out
1068 	 * of error state is by explicit re-enabling
1069 	 * of the event
1070 	 */
1071 	if (event->state > PERF_EVENT_STATE_OFF)
1072 		event->state = PERF_EVENT_STATE_OFF;
1073 }
1074 
1075 static void perf_group_detach(struct perf_event *event)
1076 {
1077 	struct perf_event *sibling, *tmp;
1078 	struct list_head *list = NULL;
1079 
1080 	/*
1081 	 * We can have double detach due to exit/hot-unplug + close.
1082 	 */
1083 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1084 		return;
1085 
1086 	event->attach_state &= ~PERF_ATTACH_GROUP;
1087 
1088 	/*
1089 	 * If this is a sibling, remove it from its group.
1090 	 */
1091 	if (event->group_leader != event) {
1092 		list_del_init(&event->group_entry);
1093 		event->group_leader->nr_siblings--;
1094 		goto out;
1095 	}
1096 
1097 	if (!list_empty(&event->group_entry))
1098 		list = &event->group_entry;
1099 
1100 	/*
1101 	 * If this was a group event with sibling events then
1102 	 * upgrade the siblings to singleton events by adding them
1103 	 * to whatever list we are on.
1104 	 */
1105 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1106 		if (list)
1107 			list_move_tail(&sibling->group_entry, list);
1108 		sibling->group_leader = sibling;
1109 
1110 		/* Inherit group flags from the previous leader */
1111 		sibling->group_flags = event->group_flags;
1112 	}
1113 
1114 out:
1115 	perf_event__header_size(event->group_leader);
1116 
1117 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1118 		perf_event__header_size(tmp);
1119 }
1120 
1121 static inline int
1122 event_filter_match(struct perf_event *event)
1123 {
1124 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1125 	    && perf_cgroup_match(event);
1126 }
1127 
1128 static void
1129 event_sched_out(struct perf_event *event,
1130 		  struct perf_cpu_context *cpuctx,
1131 		  struct perf_event_context *ctx)
1132 {
1133 	u64 tstamp = perf_event_time(event);
1134 	u64 delta;
1135 	/*
1136 	 * An event which could not be activated because of
1137 	 * filter mismatch still needs to have its timings
1138 	 * maintained, otherwise bogus information is return
1139 	 * via read() for time_enabled, time_running:
1140 	 */
1141 	if (event->state == PERF_EVENT_STATE_INACTIVE
1142 	    && !event_filter_match(event)) {
1143 		delta = tstamp - event->tstamp_stopped;
1144 		event->tstamp_running += delta;
1145 		event->tstamp_stopped = tstamp;
1146 	}
1147 
1148 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1149 		return;
1150 
1151 	event->state = PERF_EVENT_STATE_INACTIVE;
1152 	if (event->pending_disable) {
1153 		event->pending_disable = 0;
1154 		event->state = PERF_EVENT_STATE_OFF;
1155 	}
1156 	event->tstamp_stopped = tstamp;
1157 	event->pmu->del(event, 0);
1158 	event->oncpu = -1;
1159 
1160 	if (!is_software_event(event))
1161 		cpuctx->active_oncpu--;
1162 	ctx->nr_active--;
1163 	if (event->attr.freq && event->attr.sample_freq)
1164 		ctx->nr_freq--;
1165 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1166 		cpuctx->exclusive = 0;
1167 }
1168 
1169 static void
1170 group_sched_out(struct perf_event *group_event,
1171 		struct perf_cpu_context *cpuctx,
1172 		struct perf_event_context *ctx)
1173 {
1174 	struct perf_event *event;
1175 	int state = group_event->state;
1176 
1177 	event_sched_out(group_event, cpuctx, ctx);
1178 
1179 	/*
1180 	 * Schedule out siblings (if any):
1181 	 */
1182 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1183 		event_sched_out(event, cpuctx, ctx);
1184 
1185 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1186 		cpuctx->exclusive = 0;
1187 }
1188 
1189 /*
1190  * Cross CPU call to remove a performance event
1191  *
1192  * We disable the event on the hardware level first. After that we
1193  * remove it from the context list.
1194  */
1195 static int __perf_remove_from_context(void *info)
1196 {
1197 	struct perf_event *event = info;
1198 	struct perf_event_context *ctx = event->ctx;
1199 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1200 
1201 	raw_spin_lock(&ctx->lock);
1202 	event_sched_out(event, cpuctx, ctx);
1203 	list_del_event(event, ctx);
1204 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1205 		ctx->is_active = 0;
1206 		cpuctx->task_ctx = NULL;
1207 	}
1208 	raw_spin_unlock(&ctx->lock);
1209 
1210 	return 0;
1211 }
1212 
1213 
1214 /*
1215  * Remove the event from a task's (or a CPU's) list of events.
1216  *
1217  * CPU events are removed with a smp call. For task events we only
1218  * call when the task is on a CPU.
1219  *
1220  * If event->ctx is a cloned context, callers must make sure that
1221  * every task struct that event->ctx->task could possibly point to
1222  * remains valid.  This is OK when called from perf_release since
1223  * that only calls us on the top-level context, which can't be a clone.
1224  * When called from perf_event_exit_task, it's OK because the
1225  * context has been detached from its task.
1226  */
1227 static void perf_remove_from_context(struct perf_event *event)
1228 {
1229 	struct perf_event_context *ctx = event->ctx;
1230 	struct task_struct *task = ctx->task;
1231 
1232 	lockdep_assert_held(&ctx->mutex);
1233 
1234 	if (!task) {
1235 		/*
1236 		 * Per cpu events are removed via an smp call and
1237 		 * the removal is always successful.
1238 		 */
1239 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1240 		return;
1241 	}
1242 
1243 retry:
1244 	if (!task_function_call(task, __perf_remove_from_context, event))
1245 		return;
1246 
1247 	raw_spin_lock_irq(&ctx->lock);
1248 	/*
1249 	 * If we failed to find a running task, but find the context active now
1250 	 * that we've acquired the ctx->lock, retry.
1251 	 */
1252 	if (ctx->is_active) {
1253 		raw_spin_unlock_irq(&ctx->lock);
1254 		goto retry;
1255 	}
1256 
1257 	/*
1258 	 * Since the task isn't running, its safe to remove the event, us
1259 	 * holding the ctx->lock ensures the task won't get scheduled in.
1260 	 */
1261 	list_del_event(event, ctx);
1262 	raw_spin_unlock_irq(&ctx->lock);
1263 }
1264 
1265 /*
1266  * Cross CPU call to disable a performance event
1267  */
1268 int __perf_event_disable(void *info)
1269 {
1270 	struct perf_event *event = info;
1271 	struct perf_event_context *ctx = event->ctx;
1272 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1273 
1274 	/*
1275 	 * If this is a per-task event, need to check whether this
1276 	 * event's task is the current task on this cpu.
1277 	 *
1278 	 * Can trigger due to concurrent perf_event_context_sched_out()
1279 	 * flipping contexts around.
1280 	 */
1281 	if (ctx->task && cpuctx->task_ctx != ctx)
1282 		return -EINVAL;
1283 
1284 	raw_spin_lock(&ctx->lock);
1285 
1286 	/*
1287 	 * If the event is on, turn it off.
1288 	 * If it is in error state, leave it in error state.
1289 	 */
1290 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1291 		update_context_time(ctx);
1292 		update_cgrp_time_from_event(event);
1293 		update_group_times(event);
1294 		if (event == event->group_leader)
1295 			group_sched_out(event, cpuctx, ctx);
1296 		else
1297 			event_sched_out(event, cpuctx, ctx);
1298 		event->state = PERF_EVENT_STATE_OFF;
1299 	}
1300 
1301 	raw_spin_unlock(&ctx->lock);
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Disable a event.
1308  *
1309  * If event->ctx is a cloned context, callers must make sure that
1310  * every task struct that event->ctx->task could possibly point to
1311  * remains valid.  This condition is satisifed when called through
1312  * perf_event_for_each_child or perf_event_for_each because they
1313  * hold the top-level event's child_mutex, so any descendant that
1314  * goes to exit will block in sync_child_event.
1315  * When called from perf_pending_event it's OK because event->ctx
1316  * is the current context on this CPU and preemption is disabled,
1317  * hence we can't get into perf_event_task_sched_out for this context.
1318  */
1319 void perf_event_disable(struct perf_event *event)
1320 {
1321 	struct perf_event_context *ctx = event->ctx;
1322 	struct task_struct *task = ctx->task;
1323 
1324 	if (!task) {
1325 		/*
1326 		 * Disable the event on the cpu that it's on
1327 		 */
1328 		cpu_function_call(event->cpu, __perf_event_disable, event);
1329 		return;
1330 	}
1331 
1332 retry:
1333 	if (!task_function_call(task, __perf_event_disable, event))
1334 		return;
1335 
1336 	raw_spin_lock_irq(&ctx->lock);
1337 	/*
1338 	 * If the event is still active, we need to retry the cross-call.
1339 	 */
1340 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1341 		raw_spin_unlock_irq(&ctx->lock);
1342 		/*
1343 		 * Reload the task pointer, it might have been changed by
1344 		 * a concurrent perf_event_context_sched_out().
1345 		 */
1346 		task = ctx->task;
1347 		goto retry;
1348 	}
1349 
1350 	/*
1351 	 * Since we have the lock this context can't be scheduled
1352 	 * in, so we can change the state safely.
1353 	 */
1354 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1355 		update_group_times(event);
1356 		event->state = PERF_EVENT_STATE_OFF;
1357 	}
1358 	raw_spin_unlock_irq(&ctx->lock);
1359 }
1360 EXPORT_SYMBOL_GPL(perf_event_disable);
1361 
1362 static void perf_set_shadow_time(struct perf_event *event,
1363 				 struct perf_event_context *ctx,
1364 				 u64 tstamp)
1365 {
1366 	/*
1367 	 * use the correct time source for the time snapshot
1368 	 *
1369 	 * We could get by without this by leveraging the
1370 	 * fact that to get to this function, the caller
1371 	 * has most likely already called update_context_time()
1372 	 * and update_cgrp_time_xx() and thus both timestamp
1373 	 * are identical (or very close). Given that tstamp is,
1374 	 * already adjusted for cgroup, we could say that:
1375 	 *    tstamp - ctx->timestamp
1376 	 * is equivalent to
1377 	 *    tstamp - cgrp->timestamp.
1378 	 *
1379 	 * Then, in perf_output_read(), the calculation would
1380 	 * work with no changes because:
1381 	 * - event is guaranteed scheduled in
1382 	 * - no scheduled out in between
1383 	 * - thus the timestamp would be the same
1384 	 *
1385 	 * But this is a bit hairy.
1386 	 *
1387 	 * So instead, we have an explicit cgroup call to remain
1388 	 * within the time time source all along. We believe it
1389 	 * is cleaner and simpler to understand.
1390 	 */
1391 	if (is_cgroup_event(event))
1392 		perf_cgroup_set_shadow_time(event, tstamp);
1393 	else
1394 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1395 }
1396 
1397 #define MAX_INTERRUPTS (~0ULL)
1398 
1399 static void perf_log_throttle(struct perf_event *event, int enable);
1400 
1401 static int
1402 event_sched_in(struct perf_event *event,
1403 		 struct perf_cpu_context *cpuctx,
1404 		 struct perf_event_context *ctx)
1405 {
1406 	u64 tstamp = perf_event_time(event);
1407 
1408 	if (event->state <= PERF_EVENT_STATE_OFF)
1409 		return 0;
1410 
1411 	event->state = PERF_EVENT_STATE_ACTIVE;
1412 	event->oncpu = smp_processor_id();
1413 
1414 	/*
1415 	 * Unthrottle events, since we scheduled we might have missed several
1416 	 * ticks already, also for a heavily scheduling task there is little
1417 	 * guarantee it'll get a tick in a timely manner.
1418 	 */
1419 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1420 		perf_log_throttle(event, 1);
1421 		event->hw.interrupts = 0;
1422 	}
1423 
1424 	/*
1425 	 * The new state must be visible before we turn it on in the hardware:
1426 	 */
1427 	smp_wmb();
1428 
1429 	if (event->pmu->add(event, PERF_EF_START)) {
1430 		event->state = PERF_EVENT_STATE_INACTIVE;
1431 		event->oncpu = -1;
1432 		return -EAGAIN;
1433 	}
1434 
1435 	event->tstamp_running += tstamp - event->tstamp_stopped;
1436 
1437 	perf_set_shadow_time(event, ctx, tstamp);
1438 
1439 	if (!is_software_event(event))
1440 		cpuctx->active_oncpu++;
1441 	ctx->nr_active++;
1442 	if (event->attr.freq && event->attr.sample_freq)
1443 		ctx->nr_freq++;
1444 
1445 	if (event->attr.exclusive)
1446 		cpuctx->exclusive = 1;
1447 
1448 	return 0;
1449 }
1450 
1451 static int
1452 group_sched_in(struct perf_event *group_event,
1453 	       struct perf_cpu_context *cpuctx,
1454 	       struct perf_event_context *ctx)
1455 {
1456 	struct perf_event *event, *partial_group = NULL;
1457 	struct pmu *pmu = group_event->pmu;
1458 	u64 now = ctx->time;
1459 	bool simulate = false;
1460 
1461 	if (group_event->state == PERF_EVENT_STATE_OFF)
1462 		return 0;
1463 
1464 	pmu->start_txn(pmu);
1465 
1466 	if (event_sched_in(group_event, cpuctx, ctx)) {
1467 		pmu->cancel_txn(pmu);
1468 		return -EAGAIN;
1469 	}
1470 
1471 	/*
1472 	 * Schedule in siblings as one group (if any):
1473 	 */
1474 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1475 		if (event_sched_in(event, cpuctx, ctx)) {
1476 			partial_group = event;
1477 			goto group_error;
1478 		}
1479 	}
1480 
1481 	if (!pmu->commit_txn(pmu))
1482 		return 0;
1483 
1484 group_error:
1485 	/*
1486 	 * Groups can be scheduled in as one unit only, so undo any
1487 	 * partial group before returning:
1488 	 * The events up to the failed event are scheduled out normally,
1489 	 * tstamp_stopped will be updated.
1490 	 *
1491 	 * The failed events and the remaining siblings need to have
1492 	 * their timings updated as if they had gone thru event_sched_in()
1493 	 * and event_sched_out(). This is required to get consistent timings
1494 	 * across the group. This also takes care of the case where the group
1495 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1496 	 * the time the event was actually stopped, such that time delta
1497 	 * calculation in update_event_times() is correct.
1498 	 */
1499 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1500 		if (event == partial_group)
1501 			simulate = true;
1502 
1503 		if (simulate) {
1504 			event->tstamp_running += now - event->tstamp_stopped;
1505 			event->tstamp_stopped = now;
1506 		} else {
1507 			event_sched_out(event, cpuctx, ctx);
1508 		}
1509 	}
1510 	event_sched_out(group_event, cpuctx, ctx);
1511 
1512 	pmu->cancel_txn(pmu);
1513 
1514 	return -EAGAIN;
1515 }
1516 
1517 /*
1518  * Work out whether we can put this event group on the CPU now.
1519  */
1520 static int group_can_go_on(struct perf_event *event,
1521 			   struct perf_cpu_context *cpuctx,
1522 			   int can_add_hw)
1523 {
1524 	/*
1525 	 * Groups consisting entirely of software events can always go on.
1526 	 */
1527 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1528 		return 1;
1529 	/*
1530 	 * If an exclusive group is already on, no other hardware
1531 	 * events can go on.
1532 	 */
1533 	if (cpuctx->exclusive)
1534 		return 0;
1535 	/*
1536 	 * If this group is exclusive and there are already
1537 	 * events on the CPU, it can't go on.
1538 	 */
1539 	if (event->attr.exclusive && cpuctx->active_oncpu)
1540 		return 0;
1541 	/*
1542 	 * Otherwise, try to add it if all previous groups were able
1543 	 * to go on.
1544 	 */
1545 	return can_add_hw;
1546 }
1547 
1548 static void add_event_to_ctx(struct perf_event *event,
1549 			       struct perf_event_context *ctx)
1550 {
1551 	u64 tstamp = perf_event_time(event);
1552 
1553 	list_add_event(event, ctx);
1554 	perf_group_attach(event);
1555 	event->tstamp_enabled = tstamp;
1556 	event->tstamp_running = tstamp;
1557 	event->tstamp_stopped = tstamp;
1558 }
1559 
1560 static void task_ctx_sched_out(struct perf_event_context *ctx);
1561 static void
1562 ctx_sched_in(struct perf_event_context *ctx,
1563 	     struct perf_cpu_context *cpuctx,
1564 	     enum event_type_t event_type,
1565 	     struct task_struct *task);
1566 
1567 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1568 				struct perf_event_context *ctx,
1569 				struct task_struct *task)
1570 {
1571 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1572 	if (ctx)
1573 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1574 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1575 	if (ctx)
1576 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1577 }
1578 
1579 /*
1580  * Cross CPU call to install and enable a performance event
1581  *
1582  * Must be called with ctx->mutex held
1583  */
1584 static int  __perf_install_in_context(void *info)
1585 {
1586 	struct perf_event *event = info;
1587 	struct perf_event_context *ctx = event->ctx;
1588 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1589 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1590 	struct task_struct *task = current;
1591 
1592 	perf_ctx_lock(cpuctx, task_ctx);
1593 	perf_pmu_disable(cpuctx->ctx.pmu);
1594 
1595 	/*
1596 	 * If there was an active task_ctx schedule it out.
1597 	 */
1598 	if (task_ctx)
1599 		task_ctx_sched_out(task_ctx);
1600 
1601 	/*
1602 	 * If the context we're installing events in is not the
1603 	 * active task_ctx, flip them.
1604 	 */
1605 	if (ctx->task && task_ctx != ctx) {
1606 		if (task_ctx)
1607 			raw_spin_unlock(&task_ctx->lock);
1608 		raw_spin_lock(&ctx->lock);
1609 		task_ctx = ctx;
1610 	}
1611 
1612 	if (task_ctx) {
1613 		cpuctx->task_ctx = task_ctx;
1614 		task = task_ctx->task;
1615 	}
1616 
1617 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1618 
1619 	update_context_time(ctx);
1620 	/*
1621 	 * update cgrp time only if current cgrp
1622 	 * matches event->cgrp. Must be done before
1623 	 * calling add_event_to_ctx()
1624 	 */
1625 	update_cgrp_time_from_event(event);
1626 
1627 	add_event_to_ctx(event, ctx);
1628 
1629 	/*
1630 	 * Schedule everything back in
1631 	 */
1632 	perf_event_sched_in(cpuctx, task_ctx, task);
1633 
1634 	perf_pmu_enable(cpuctx->ctx.pmu);
1635 	perf_ctx_unlock(cpuctx, task_ctx);
1636 
1637 	return 0;
1638 }
1639 
1640 /*
1641  * Attach a performance event to a context
1642  *
1643  * First we add the event to the list with the hardware enable bit
1644  * in event->hw_config cleared.
1645  *
1646  * If the event is attached to a task which is on a CPU we use a smp
1647  * call to enable it in the task context. The task might have been
1648  * scheduled away, but we check this in the smp call again.
1649  */
1650 static void
1651 perf_install_in_context(struct perf_event_context *ctx,
1652 			struct perf_event *event,
1653 			int cpu)
1654 {
1655 	struct task_struct *task = ctx->task;
1656 
1657 	lockdep_assert_held(&ctx->mutex);
1658 
1659 	event->ctx = ctx;
1660 	if (event->cpu != -1)
1661 		event->cpu = cpu;
1662 
1663 	if (!task) {
1664 		/*
1665 		 * Per cpu events are installed via an smp call and
1666 		 * the install is always successful.
1667 		 */
1668 		cpu_function_call(cpu, __perf_install_in_context, event);
1669 		return;
1670 	}
1671 
1672 retry:
1673 	if (!task_function_call(task, __perf_install_in_context, event))
1674 		return;
1675 
1676 	raw_spin_lock_irq(&ctx->lock);
1677 	/*
1678 	 * If we failed to find a running task, but find the context active now
1679 	 * that we've acquired the ctx->lock, retry.
1680 	 */
1681 	if (ctx->is_active) {
1682 		raw_spin_unlock_irq(&ctx->lock);
1683 		goto retry;
1684 	}
1685 
1686 	/*
1687 	 * Since the task isn't running, its safe to add the event, us holding
1688 	 * the ctx->lock ensures the task won't get scheduled in.
1689 	 */
1690 	add_event_to_ctx(event, ctx);
1691 	raw_spin_unlock_irq(&ctx->lock);
1692 }
1693 
1694 /*
1695  * Put a event into inactive state and update time fields.
1696  * Enabling the leader of a group effectively enables all
1697  * the group members that aren't explicitly disabled, so we
1698  * have to update their ->tstamp_enabled also.
1699  * Note: this works for group members as well as group leaders
1700  * since the non-leader members' sibling_lists will be empty.
1701  */
1702 static void __perf_event_mark_enabled(struct perf_event *event)
1703 {
1704 	struct perf_event *sub;
1705 	u64 tstamp = perf_event_time(event);
1706 
1707 	event->state = PERF_EVENT_STATE_INACTIVE;
1708 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1709 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1710 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1711 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1712 	}
1713 }
1714 
1715 /*
1716  * Cross CPU call to enable a performance event
1717  */
1718 static int __perf_event_enable(void *info)
1719 {
1720 	struct perf_event *event = info;
1721 	struct perf_event_context *ctx = event->ctx;
1722 	struct perf_event *leader = event->group_leader;
1723 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1724 	int err;
1725 
1726 	if (WARN_ON_ONCE(!ctx->is_active))
1727 		return -EINVAL;
1728 
1729 	raw_spin_lock(&ctx->lock);
1730 	update_context_time(ctx);
1731 
1732 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733 		goto unlock;
1734 
1735 	/*
1736 	 * set current task's cgroup time reference point
1737 	 */
1738 	perf_cgroup_set_timestamp(current, ctx);
1739 
1740 	__perf_event_mark_enabled(event);
1741 
1742 	if (!event_filter_match(event)) {
1743 		if (is_cgroup_event(event))
1744 			perf_cgroup_defer_enabled(event);
1745 		goto unlock;
1746 	}
1747 
1748 	/*
1749 	 * If the event is in a group and isn't the group leader,
1750 	 * then don't put it on unless the group is on.
1751 	 */
1752 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1753 		goto unlock;
1754 
1755 	if (!group_can_go_on(event, cpuctx, 1)) {
1756 		err = -EEXIST;
1757 	} else {
1758 		if (event == leader)
1759 			err = group_sched_in(event, cpuctx, ctx);
1760 		else
1761 			err = event_sched_in(event, cpuctx, ctx);
1762 	}
1763 
1764 	if (err) {
1765 		/*
1766 		 * If this event can't go on and it's part of a
1767 		 * group, then the whole group has to come off.
1768 		 */
1769 		if (leader != event)
1770 			group_sched_out(leader, cpuctx, ctx);
1771 		if (leader->attr.pinned) {
1772 			update_group_times(leader);
1773 			leader->state = PERF_EVENT_STATE_ERROR;
1774 		}
1775 	}
1776 
1777 unlock:
1778 	raw_spin_unlock(&ctx->lock);
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Enable a event.
1785  *
1786  * If event->ctx is a cloned context, callers must make sure that
1787  * every task struct that event->ctx->task could possibly point to
1788  * remains valid.  This condition is satisfied when called through
1789  * perf_event_for_each_child or perf_event_for_each as described
1790  * for perf_event_disable.
1791  */
1792 void perf_event_enable(struct perf_event *event)
1793 {
1794 	struct perf_event_context *ctx = event->ctx;
1795 	struct task_struct *task = ctx->task;
1796 
1797 	if (!task) {
1798 		/*
1799 		 * Enable the event on the cpu that it's on
1800 		 */
1801 		cpu_function_call(event->cpu, __perf_event_enable, event);
1802 		return;
1803 	}
1804 
1805 	raw_spin_lock_irq(&ctx->lock);
1806 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1807 		goto out;
1808 
1809 	/*
1810 	 * If the event is in error state, clear that first.
1811 	 * That way, if we see the event in error state below, we
1812 	 * know that it has gone back into error state, as distinct
1813 	 * from the task having been scheduled away before the
1814 	 * cross-call arrived.
1815 	 */
1816 	if (event->state == PERF_EVENT_STATE_ERROR)
1817 		event->state = PERF_EVENT_STATE_OFF;
1818 
1819 retry:
1820 	if (!ctx->is_active) {
1821 		__perf_event_mark_enabled(event);
1822 		goto out;
1823 	}
1824 
1825 	raw_spin_unlock_irq(&ctx->lock);
1826 
1827 	if (!task_function_call(task, __perf_event_enable, event))
1828 		return;
1829 
1830 	raw_spin_lock_irq(&ctx->lock);
1831 
1832 	/*
1833 	 * If the context is active and the event is still off,
1834 	 * we need to retry the cross-call.
1835 	 */
1836 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1837 		/*
1838 		 * task could have been flipped by a concurrent
1839 		 * perf_event_context_sched_out()
1840 		 */
1841 		task = ctx->task;
1842 		goto retry;
1843 	}
1844 
1845 out:
1846 	raw_spin_unlock_irq(&ctx->lock);
1847 }
1848 EXPORT_SYMBOL_GPL(perf_event_enable);
1849 
1850 int perf_event_refresh(struct perf_event *event, int refresh)
1851 {
1852 	/*
1853 	 * not supported on inherited events
1854 	 */
1855 	if (event->attr.inherit || !is_sampling_event(event))
1856 		return -EINVAL;
1857 
1858 	atomic_add(refresh, &event->event_limit);
1859 	perf_event_enable(event);
1860 
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL_GPL(perf_event_refresh);
1864 
1865 static void ctx_sched_out(struct perf_event_context *ctx,
1866 			  struct perf_cpu_context *cpuctx,
1867 			  enum event_type_t event_type)
1868 {
1869 	struct perf_event *event;
1870 	int is_active = ctx->is_active;
1871 
1872 	ctx->is_active &= ~event_type;
1873 	if (likely(!ctx->nr_events))
1874 		return;
1875 
1876 	update_context_time(ctx);
1877 	update_cgrp_time_from_cpuctx(cpuctx);
1878 	if (!ctx->nr_active)
1879 		return;
1880 
1881 	perf_pmu_disable(ctx->pmu);
1882 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1883 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1884 			group_sched_out(event, cpuctx, ctx);
1885 	}
1886 
1887 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1888 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1889 			group_sched_out(event, cpuctx, ctx);
1890 	}
1891 	perf_pmu_enable(ctx->pmu);
1892 }
1893 
1894 /*
1895  * Test whether two contexts are equivalent, i.e. whether they
1896  * have both been cloned from the same version of the same context
1897  * and they both have the same number of enabled events.
1898  * If the number of enabled events is the same, then the set
1899  * of enabled events should be the same, because these are both
1900  * inherited contexts, therefore we can't access individual events
1901  * in them directly with an fd; we can only enable/disable all
1902  * events via prctl, or enable/disable all events in a family
1903  * via ioctl, which will have the same effect on both contexts.
1904  */
1905 static int context_equiv(struct perf_event_context *ctx1,
1906 			 struct perf_event_context *ctx2)
1907 {
1908 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1909 		&& ctx1->parent_gen == ctx2->parent_gen
1910 		&& !ctx1->pin_count && !ctx2->pin_count;
1911 }
1912 
1913 static void __perf_event_sync_stat(struct perf_event *event,
1914 				     struct perf_event *next_event)
1915 {
1916 	u64 value;
1917 
1918 	if (!event->attr.inherit_stat)
1919 		return;
1920 
1921 	/*
1922 	 * Update the event value, we cannot use perf_event_read()
1923 	 * because we're in the middle of a context switch and have IRQs
1924 	 * disabled, which upsets smp_call_function_single(), however
1925 	 * we know the event must be on the current CPU, therefore we
1926 	 * don't need to use it.
1927 	 */
1928 	switch (event->state) {
1929 	case PERF_EVENT_STATE_ACTIVE:
1930 		event->pmu->read(event);
1931 		/* fall-through */
1932 
1933 	case PERF_EVENT_STATE_INACTIVE:
1934 		update_event_times(event);
1935 		break;
1936 
1937 	default:
1938 		break;
1939 	}
1940 
1941 	/*
1942 	 * In order to keep per-task stats reliable we need to flip the event
1943 	 * values when we flip the contexts.
1944 	 */
1945 	value = local64_read(&next_event->count);
1946 	value = local64_xchg(&event->count, value);
1947 	local64_set(&next_event->count, value);
1948 
1949 	swap(event->total_time_enabled, next_event->total_time_enabled);
1950 	swap(event->total_time_running, next_event->total_time_running);
1951 
1952 	/*
1953 	 * Since we swizzled the values, update the user visible data too.
1954 	 */
1955 	perf_event_update_userpage(event);
1956 	perf_event_update_userpage(next_event);
1957 }
1958 
1959 #define list_next_entry(pos, member) \
1960 	list_entry(pos->member.next, typeof(*pos), member)
1961 
1962 static void perf_event_sync_stat(struct perf_event_context *ctx,
1963 				   struct perf_event_context *next_ctx)
1964 {
1965 	struct perf_event *event, *next_event;
1966 
1967 	if (!ctx->nr_stat)
1968 		return;
1969 
1970 	update_context_time(ctx);
1971 
1972 	event = list_first_entry(&ctx->event_list,
1973 				   struct perf_event, event_entry);
1974 
1975 	next_event = list_first_entry(&next_ctx->event_list,
1976 					struct perf_event, event_entry);
1977 
1978 	while (&event->event_entry != &ctx->event_list &&
1979 	       &next_event->event_entry != &next_ctx->event_list) {
1980 
1981 		__perf_event_sync_stat(event, next_event);
1982 
1983 		event = list_next_entry(event, event_entry);
1984 		next_event = list_next_entry(next_event, event_entry);
1985 	}
1986 }
1987 
1988 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1989 					 struct task_struct *next)
1990 {
1991 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1992 	struct perf_event_context *next_ctx;
1993 	struct perf_event_context *parent;
1994 	struct perf_cpu_context *cpuctx;
1995 	int do_switch = 1;
1996 
1997 	if (likely(!ctx))
1998 		return;
1999 
2000 	cpuctx = __get_cpu_context(ctx);
2001 	if (!cpuctx->task_ctx)
2002 		return;
2003 
2004 	rcu_read_lock();
2005 	parent = rcu_dereference(ctx->parent_ctx);
2006 	next_ctx = next->perf_event_ctxp[ctxn];
2007 	if (parent && next_ctx &&
2008 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2009 		/*
2010 		 * Looks like the two contexts are clones, so we might be
2011 		 * able to optimize the context switch.  We lock both
2012 		 * contexts and check that they are clones under the
2013 		 * lock (including re-checking that neither has been
2014 		 * uncloned in the meantime).  It doesn't matter which
2015 		 * order we take the locks because no other cpu could
2016 		 * be trying to lock both of these tasks.
2017 		 */
2018 		raw_spin_lock(&ctx->lock);
2019 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2020 		if (context_equiv(ctx, next_ctx)) {
2021 			/*
2022 			 * XXX do we need a memory barrier of sorts
2023 			 * wrt to rcu_dereference() of perf_event_ctxp
2024 			 */
2025 			task->perf_event_ctxp[ctxn] = next_ctx;
2026 			next->perf_event_ctxp[ctxn] = ctx;
2027 			ctx->task = next;
2028 			next_ctx->task = task;
2029 			do_switch = 0;
2030 
2031 			perf_event_sync_stat(ctx, next_ctx);
2032 		}
2033 		raw_spin_unlock(&next_ctx->lock);
2034 		raw_spin_unlock(&ctx->lock);
2035 	}
2036 	rcu_read_unlock();
2037 
2038 	if (do_switch) {
2039 		raw_spin_lock(&ctx->lock);
2040 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2041 		cpuctx->task_ctx = NULL;
2042 		raw_spin_unlock(&ctx->lock);
2043 	}
2044 }
2045 
2046 #define for_each_task_context_nr(ctxn)					\
2047 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2048 
2049 /*
2050  * Called from scheduler to remove the events of the current task,
2051  * with interrupts disabled.
2052  *
2053  * We stop each event and update the event value in event->count.
2054  *
2055  * This does not protect us against NMI, but disable()
2056  * sets the disabled bit in the control field of event _before_
2057  * accessing the event control register. If a NMI hits, then it will
2058  * not restart the event.
2059  */
2060 void __perf_event_task_sched_out(struct task_struct *task,
2061 				 struct task_struct *next)
2062 {
2063 	int ctxn;
2064 
2065 	for_each_task_context_nr(ctxn)
2066 		perf_event_context_sched_out(task, ctxn, next);
2067 
2068 	/*
2069 	 * if cgroup events exist on this CPU, then we need
2070 	 * to check if we have to switch out PMU state.
2071 	 * cgroup event are system-wide mode only
2072 	 */
2073 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2074 		perf_cgroup_sched_out(task, next);
2075 }
2076 
2077 static void task_ctx_sched_out(struct perf_event_context *ctx)
2078 {
2079 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 
2081 	if (!cpuctx->task_ctx)
2082 		return;
2083 
2084 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2085 		return;
2086 
2087 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2088 	cpuctx->task_ctx = NULL;
2089 }
2090 
2091 /*
2092  * Called with IRQs disabled
2093  */
2094 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2095 			      enum event_type_t event_type)
2096 {
2097 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2098 }
2099 
2100 static void
2101 ctx_pinned_sched_in(struct perf_event_context *ctx,
2102 		    struct perf_cpu_context *cpuctx)
2103 {
2104 	struct perf_event *event;
2105 
2106 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2107 		if (event->state <= PERF_EVENT_STATE_OFF)
2108 			continue;
2109 		if (!event_filter_match(event))
2110 			continue;
2111 
2112 		/* may need to reset tstamp_enabled */
2113 		if (is_cgroup_event(event))
2114 			perf_cgroup_mark_enabled(event, ctx);
2115 
2116 		if (group_can_go_on(event, cpuctx, 1))
2117 			group_sched_in(event, cpuctx, ctx);
2118 
2119 		/*
2120 		 * If this pinned group hasn't been scheduled,
2121 		 * put it in error state.
2122 		 */
2123 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2124 			update_group_times(event);
2125 			event->state = PERF_EVENT_STATE_ERROR;
2126 		}
2127 	}
2128 }
2129 
2130 static void
2131 ctx_flexible_sched_in(struct perf_event_context *ctx,
2132 		      struct perf_cpu_context *cpuctx)
2133 {
2134 	struct perf_event *event;
2135 	int can_add_hw = 1;
2136 
2137 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2138 		/* Ignore events in OFF or ERROR state */
2139 		if (event->state <= PERF_EVENT_STATE_OFF)
2140 			continue;
2141 		/*
2142 		 * Listen to the 'cpu' scheduling filter constraint
2143 		 * of events:
2144 		 */
2145 		if (!event_filter_match(event))
2146 			continue;
2147 
2148 		/* may need to reset tstamp_enabled */
2149 		if (is_cgroup_event(event))
2150 			perf_cgroup_mark_enabled(event, ctx);
2151 
2152 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2153 			if (group_sched_in(event, cpuctx, ctx))
2154 				can_add_hw = 0;
2155 		}
2156 	}
2157 }
2158 
2159 static void
2160 ctx_sched_in(struct perf_event_context *ctx,
2161 	     struct perf_cpu_context *cpuctx,
2162 	     enum event_type_t event_type,
2163 	     struct task_struct *task)
2164 {
2165 	u64 now;
2166 	int is_active = ctx->is_active;
2167 
2168 	ctx->is_active |= event_type;
2169 	if (likely(!ctx->nr_events))
2170 		return;
2171 
2172 	now = perf_clock();
2173 	ctx->timestamp = now;
2174 	perf_cgroup_set_timestamp(task, ctx);
2175 	/*
2176 	 * First go through the list and put on any pinned groups
2177 	 * in order to give them the best chance of going on.
2178 	 */
2179 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2180 		ctx_pinned_sched_in(ctx, cpuctx);
2181 
2182 	/* Then walk through the lower prio flexible groups */
2183 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2184 		ctx_flexible_sched_in(ctx, cpuctx);
2185 }
2186 
2187 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2188 			     enum event_type_t event_type,
2189 			     struct task_struct *task)
2190 {
2191 	struct perf_event_context *ctx = &cpuctx->ctx;
2192 
2193 	ctx_sched_in(ctx, cpuctx, event_type, task);
2194 }
2195 
2196 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2197 					struct task_struct *task)
2198 {
2199 	struct perf_cpu_context *cpuctx;
2200 
2201 	cpuctx = __get_cpu_context(ctx);
2202 	if (cpuctx->task_ctx == ctx)
2203 		return;
2204 
2205 	perf_ctx_lock(cpuctx, ctx);
2206 	perf_pmu_disable(ctx->pmu);
2207 	/*
2208 	 * We want to keep the following priority order:
2209 	 * cpu pinned (that don't need to move), task pinned,
2210 	 * cpu flexible, task flexible.
2211 	 */
2212 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2213 
2214 	if (ctx->nr_events)
2215 		cpuctx->task_ctx = ctx;
2216 
2217 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2218 
2219 	perf_pmu_enable(ctx->pmu);
2220 	perf_ctx_unlock(cpuctx, ctx);
2221 
2222 	/*
2223 	 * Since these rotations are per-cpu, we need to ensure the
2224 	 * cpu-context we got scheduled on is actually rotating.
2225 	 */
2226 	perf_pmu_rotate_start(ctx->pmu);
2227 }
2228 
2229 /*
2230  * When sampling the branck stack in system-wide, it may be necessary
2231  * to flush the stack on context switch. This happens when the branch
2232  * stack does not tag its entries with the pid of the current task.
2233  * Otherwise it becomes impossible to associate a branch entry with a
2234  * task. This ambiguity is more likely to appear when the branch stack
2235  * supports priv level filtering and the user sets it to monitor only
2236  * at the user level (which could be a useful measurement in system-wide
2237  * mode). In that case, the risk is high of having a branch stack with
2238  * branch from multiple tasks. Flushing may mean dropping the existing
2239  * entries or stashing them somewhere in the PMU specific code layer.
2240  *
2241  * This function provides the context switch callback to the lower code
2242  * layer. It is invoked ONLY when there is at least one system-wide context
2243  * with at least one active event using taken branch sampling.
2244  */
2245 static void perf_branch_stack_sched_in(struct task_struct *prev,
2246 				       struct task_struct *task)
2247 {
2248 	struct perf_cpu_context *cpuctx;
2249 	struct pmu *pmu;
2250 	unsigned long flags;
2251 
2252 	/* no need to flush branch stack if not changing task */
2253 	if (prev == task)
2254 		return;
2255 
2256 	local_irq_save(flags);
2257 
2258 	rcu_read_lock();
2259 
2260 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2261 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2262 
2263 		/*
2264 		 * check if the context has at least one
2265 		 * event using PERF_SAMPLE_BRANCH_STACK
2266 		 */
2267 		if (cpuctx->ctx.nr_branch_stack > 0
2268 		    && pmu->flush_branch_stack) {
2269 
2270 			pmu = cpuctx->ctx.pmu;
2271 
2272 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2273 
2274 			perf_pmu_disable(pmu);
2275 
2276 			pmu->flush_branch_stack();
2277 
2278 			perf_pmu_enable(pmu);
2279 
2280 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2281 		}
2282 	}
2283 
2284 	rcu_read_unlock();
2285 
2286 	local_irq_restore(flags);
2287 }
2288 
2289 /*
2290  * Called from scheduler to add the events of the current task
2291  * with interrupts disabled.
2292  *
2293  * We restore the event value and then enable it.
2294  *
2295  * This does not protect us against NMI, but enable()
2296  * sets the enabled bit in the control field of event _before_
2297  * accessing the event control register. If a NMI hits, then it will
2298  * keep the event running.
2299  */
2300 void __perf_event_task_sched_in(struct task_struct *prev,
2301 				struct task_struct *task)
2302 {
2303 	struct perf_event_context *ctx;
2304 	int ctxn;
2305 
2306 	for_each_task_context_nr(ctxn) {
2307 		ctx = task->perf_event_ctxp[ctxn];
2308 		if (likely(!ctx))
2309 			continue;
2310 
2311 		perf_event_context_sched_in(ctx, task);
2312 	}
2313 	/*
2314 	 * if cgroup events exist on this CPU, then we need
2315 	 * to check if we have to switch in PMU state.
2316 	 * cgroup event are system-wide mode only
2317 	 */
2318 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2319 		perf_cgroup_sched_in(prev, task);
2320 
2321 	/* check for system-wide branch_stack events */
2322 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2323 		perf_branch_stack_sched_in(prev, task);
2324 }
2325 
2326 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2327 {
2328 	u64 frequency = event->attr.sample_freq;
2329 	u64 sec = NSEC_PER_SEC;
2330 	u64 divisor, dividend;
2331 
2332 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2333 
2334 	count_fls = fls64(count);
2335 	nsec_fls = fls64(nsec);
2336 	frequency_fls = fls64(frequency);
2337 	sec_fls = 30;
2338 
2339 	/*
2340 	 * We got @count in @nsec, with a target of sample_freq HZ
2341 	 * the target period becomes:
2342 	 *
2343 	 *             @count * 10^9
2344 	 * period = -------------------
2345 	 *          @nsec * sample_freq
2346 	 *
2347 	 */
2348 
2349 	/*
2350 	 * Reduce accuracy by one bit such that @a and @b converge
2351 	 * to a similar magnitude.
2352 	 */
2353 #define REDUCE_FLS(a, b)		\
2354 do {					\
2355 	if (a##_fls > b##_fls) {	\
2356 		a >>= 1;		\
2357 		a##_fls--;		\
2358 	} else {			\
2359 		b >>= 1;		\
2360 		b##_fls--;		\
2361 	}				\
2362 } while (0)
2363 
2364 	/*
2365 	 * Reduce accuracy until either term fits in a u64, then proceed with
2366 	 * the other, so that finally we can do a u64/u64 division.
2367 	 */
2368 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2369 		REDUCE_FLS(nsec, frequency);
2370 		REDUCE_FLS(sec, count);
2371 	}
2372 
2373 	if (count_fls + sec_fls > 64) {
2374 		divisor = nsec * frequency;
2375 
2376 		while (count_fls + sec_fls > 64) {
2377 			REDUCE_FLS(count, sec);
2378 			divisor >>= 1;
2379 		}
2380 
2381 		dividend = count * sec;
2382 	} else {
2383 		dividend = count * sec;
2384 
2385 		while (nsec_fls + frequency_fls > 64) {
2386 			REDUCE_FLS(nsec, frequency);
2387 			dividend >>= 1;
2388 		}
2389 
2390 		divisor = nsec * frequency;
2391 	}
2392 
2393 	if (!divisor)
2394 		return dividend;
2395 
2396 	return div64_u64(dividend, divisor);
2397 }
2398 
2399 static DEFINE_PER_CPU(int, perf_throttled_count);
2400 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2401 
2402 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2403 {
2404 	struct hw_perf_event *hwc = &event->hw;
2405 	s64 period, sample_period;
2406 	s64 delta;
2407 
2408 	period = perf_calculate_period(event, nsec, count);
2409 
2410 	delta = (s64)(period - hwc->sample_period);
2411 	delta = (delta + 7) / 8; /* low pass filter */
2412 
2413 	sample_period = hwc->sample_period + delta;
2414 
2415 	if (!sample_period)
2416 		sample_period = 1;
2417 
2418 	hwc->sample_period = sample_period;
2419 
2420 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2421 		if (disable)
2422 			event->pmu->stop(event, PERF_EF_UPDATE);
2423 
2424 		local64_set(&hwc->period_left, 0);
2425 
2426 		if (disable)
2427 			event->pmu->start(event, PERF_EF_RELOAD);
2428 	}
2429 }
2430 
2431 /*
2432  * combine freq adjustment with unthrottling to avoid two passes over the
2433  * events. At the same time, make sure, having freq events does not change
2434  * the rate of unthrottling as that would introduce bias.
2435  */
2436 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2437 					   int needs_unthr)
2438 {
2439 	struct perf_event *event;
2440 	struct hw_perf_event *hwc;
2441 	u64 now, period = TICK_NSEC;
2442 	s64 delta;
2443 
2444 	/*
2445 	 * only need to iterate over all events iff:
2446 	 * - context have events in frequency mode (needs freq adjust)
2447 	 * - there are events to unthrottle on this cpu
2448 	 */
2449 	if (!(ctx->nr_freq || needs_unthr))
2450 		return;
2451 
2452 	raw_spin_lock(&ctx->lock);
2453 	perf_pmu_disable(ctx->pmu);
2454 
2455 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2456 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2457 			continue;
2458 
2459 		if (!event_filter_match(event))
2460 			continue;
2461 
2462 		hwc = &event->hw;
2463 
2464 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2465 			hwc->interrupts = 0;
2466 			perf_log_throttle(event, 1);
2467 			event->pmu->start(event, 0);
2468 		}
2469 
2470 		if (!event->attr.freq || !event->attr.sample_freq)
2471 			continue;
2472 
2473 		/*
2474 		 * stop the event and update event->count
2475 		 */
2476 		event->pmu->stop(event, PERF_EF_UPDATE);
2477 
2478 		now = local64_read(&event->count);
2479 		delta = now - hwc->freq_count_stamp;
2480 		hwc->freq_count_stamp = now;
2481 
2482 		/*
2483 		 * restart the event
2484 		 * reload only if value has changed
2485 		 * we have stopped the event so tell that
2486 		 * to perf_adjust_period() to avoid stopping it
2487 		 * twice.
2488 		 */
2489 		if (delta > 0)
2490 			perf_adjust_period(event, period, delta, false);
2491 
2492 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2493 	}
2494 
2495 	perf_pmu_enable(ctx->pmu);
2496 	raw_spin_unlock(&ctx->lock);
2497 }
2498 
2499 /*
2500  * Round-robin a context's events:
2501  */
2502 static void rotate_ctx(struct perf_event_context *ctx)
2503 {
2504 	/*
2505 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2506 	 * disabled by the inheritance code.
2507 	 */
2508 	if (!ctx->rotate_disable)
2509 		list_rotate_left(&ctx->flexible_groups);
2510 }
2511 
2512 /*
2513  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2514  * because they're strictly cpu affine and rotate_start is called with IRQs
2515  * disabled, while rotate_context is called from IRQ context.
2516  */
2517 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2518 {
2519 	struct perf_event_context *ctx = NULL;
2520 	int rotate = 0, remove = 1;
2521 
2522 	if (cpuctx->ctx.nr_events) {
2523 		remove = 0;
2524 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2525 			rotate = 1;
2526 	}
2527 
2528 	ctx = cpuctx->task_ctx;
2529 	if (ctx && ctx->nr_events) {
2530 		remove = 0;
2531 		if (ctx->nr_events != ctx->nr_active)
2532 			rotate = 1;
2533 	}
2534 
2535 	if (!rotate)
2536 		goto done;
2537 
2538 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2539 	perf_pmu_disable(cpuctx->ctx.pmu);
2540 
2541 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2542 	if (ctx)
2543 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2544 
2545 	rotate_ctx(&cpuctx->ctx);
2546 	if (ctx)
2547 		rotate_ctx(ctx);
2548 
2549 	perf_event_sched_in(cpuctx, ctx, current);
2550 
2551 	perf_pmu_enable(cpuctx->ctx.pmu);
2552 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2553 done:
2554 	if (remove)
2555 		list_del_init(&cpuctx->rotation_list);
2556 }
2557 
2558 void perf_event_task_tick(void)
2559 {
2560 	struct list_head *head = &__get_cpu_var(rotation_list);
2561 	struct perf_cpu_context *cpuctx, *tmp;
2562 	struct perf_event_context *ctx;
2563 	int throttled;
2564 
2565 	WARN_ON(!irqs_disabled());
2566 
2567 	__this_cpu_inc(perf_throttled_seq);
2568 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2569 
2570 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2571 		ctx = &cpuctx->ctx;
2572 		perf_adjust_freq_unthr_context(ctx, throttled);
2573 
2574 		ctx = cpuctx->task_ctx;
2575 		if (ctx)
2576 			perf_adjust_freq_unthr_context(ctx, throttled);
2577 
2578 		if (cpuctx->jiffies_interval == 1 ||
2579 				!(jiffies % cpuctx->jiffies_interval))
2580 			perf_rotate_context(cpuctx);
2581 	}
2582 }
2583 
2584 static int event_enable_on_exec(struct perf_event *event,
2585 				struct perf_event_context *ctx)
2586 {
2587 	if (!event->attr.enable_on_exec)
2588 		return 0;
2589 
2590 	event->attr.enable_on_exec = 0;
2591 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2592 		return 0;
2593 
2594 	__perf_event_mark_enabled(event);
2595 
2596 	return 1;
2597 }
2598 
2599 /*
2600  * Enable all of a task's events that have been marked enable-on-exec.
2601  * This expects task == current.
2602  */
2603 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2604 {
2605 	struct perf_event *event;
2606 	unsigned long flags;
2607 	int enabled = 0;
2608 	int ret;
2609 
2610 	local_irq_save(flags);
2611 	if (!ctx || !ctx->nr_events)
2612 		goto out;
2613 
2614 	/*
2615 	 * We must ctxsw out cgroup events to avoid conflict
2616 	 * when invoking perf_task_event_sched_in() later on
2617 	 * in this function. Otherwise we end up trying to
2618 	 * ctxswin cgroup events which are already scheduled
2619 	 * in.
2620 	 */
2621 	perf_cgroup_sched_out(current, NULL);
2622 
2623 	raw_spin_lock(&ctx->lock);
2624 	task_ctx_sched_out(ctx);
2625 
2626 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2627 		ret = event_enable_on_exec(event, ctx);
2628 		if (ret)
2629 			enabled = 1;
2630 	}
2631 
2632 	/*
2633 	 * Unclone this context if we enabled any event.
2634 	 */
2635 	if (enabled)
2636 		unclone_ctx(ctx);
2637 
2638 	raw_spin_unlock(&ctx->lock);
2639 
2640 	/*
2641 	 * Also calls ctxswin for cgroup events, if any:
2642 	 */
2643 	perf_event_context_sched_in(ctx, ctx->task);
2644 out:
2645 	local_irq_restore(flags);
2646 }
2647 
2648 /*
2649  * Cross CPU call to read the hardware event
2650  */
2651 static void __perf_event_read(void *info)
2652 {
2653 	struct perf_event *event = info;
2654 	struct perf_event_context *ctx = event->ctx;
2655 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2656 
2657 	/*
2658 	 * If this is a task context, we need to check whether it is
2659 	 * the current task context of this cpu.  If not it has been
2660 	 * scheduled out before the smp call arrived.  In that case
2661 	 * event->count would have been updated to a recent sample
2662 	 * when the event was scheduled out.
2663 	 */
2664 	if (ctx->task && cpuctx->task_ctx != ctx)
2665 		return;
2666 
2667 	raw_spin_lock(&ctx->lock);
2668 	if (ctx->is_active) {
2669 		update_context_time(ctx);
2670 		update_cgrp_time_from_event(event);
2671 	}
2672 	update_event_times(event);
2673 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2674 		event->pmu->read(event);
2675 	raw_spin_unlock(&ctx->lock);
2676 }
2677 
2678 static inline u64 perf_event_count(struct perf_event *event)
2679 {
2680 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2681 }
2682 
2683 static u64 perf_event_read(struct perf_event *event)
2684 {
2685 	/*
2686 	 * If event is enabled and currently active on a CPU, update the
2687 	 * value in the event structure:
2688 	 */
2689 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2690 		smp_call_function_single(event->oncpu,
2691 					 __perf_event_read, event, 1);
2692 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2693 		struct perf_event_context *ctx = event->ctx;
2694 		unsigned long flags;
2695 
2696 		raw_spin_lock_irqsave(&ctx->lock, flags);
2697 		/*
2698 		 * may read while context is not active
2699 		 * (e.g., thread is blocked), in that case
2700 		 * we cannot update context time
2701 		 */
2702 		if (ctx->is_active) {
2703 			update_context_time(ctx);
2704 			update_cgrp_time_from_event(event);
2705 		}
2706 		update_event_times(event);
2707 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2708 	}
2709 
2710 	return perf_event_count(event);
2711 }
2712 
2713 /*
2714  * Initialize the perf_event context in a task_struct:
2715  */
2716 static void __perf_event_init_context(struct perf_event_context *ctx)
2717 {
2718 	raw_spin_lock_init(&ctx->lock);
2719 	mutex_init(&ctx->mutex);
2720 	INIT_LIST_HEAD(&ctx->pinned_groups);
2721 	INIT_LIST_HEAD(&ctx->flexible_groups);
2722 	INIT_LIST_HEAD(&ctx->event_list);
2723 	atomic_set(&ctx->refcount, 1);
2724 }
2725 
2726 static struct perf_event_context *
2727 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2728 {
2729 	struct perf_event_context *ctx;
2730 
2731 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2732 	if (!ctx)
2733 		return NULL;
2734 
2735 	__perf_event_init_context(ctx);
2736 	if (task) {
2737 		ctx->task = task;
2738 		get_task_struct(task);
2739 	}
2740 	ctx->pmu = pmu;
2741 
2742 	return ctx;
2743 }
2744 
2745 static struct task_struct *
2746 find_lively_task_by_vpid(pid_t vpid)
2747 {
2748 	struct task_struct *task;
2749 	int err;
2750 
2751 	rcu_read_lock();
2752 	if (!vpid)
2753 		task = current;
2754 	else
2755 		task = find_task_by_vpid(vpid);
2756 	if (task)
2757 		get_task_struct(task);
2758 	rcu_read_unlock();
2759 
2760 	if (!task)
2761 		return ERR_PTR(-ESRCH);
2762 
2763 	/* Reuse ptrace permission checks for now. */
2764 	err = -EACCES;
2765 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2766 		goto errout;
2767 
2768 	return task;
2769 errout:
2770 	put_task_struct(task);
2771 	return ERR_PTR(err);
2772 
2773 }
2774 
2775 /*
2776  * Returns a matching context with refcount and pincount.
2777  */
2778 static struct perf_event_context *
2779 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2780 {
2781 	struct perf_event_context *ctx;
2782 	struct perf_cpu_context *cpuctx;
2783 	unsigned long flags;
2784 	int ctxn, err;
2785 
2786 	if (!task) {
2787 		/* Must be root to operate on a CPU event: */
2788 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2789 			return ERR_PTR(-EACCES);
2790 
2791 		/*
2792 		 * We could be clever and allow to attach a event to an
2793 		 * offline CPU and activate it when the CPU comes up, but
2794 		 * that's for later.
2795 		 */
2796 		if (!cpu_online(cpu))
2797 			return ERR_PTR(-ENODEV);
2798 
2799 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2800 		ctx = &cpuctx->ctx;
2801 		get_ctx(ctx);
2802 		++ctx->pin_count;
2803 
2804 		return ctx;
2805 	}
2806 
2807 	err = -EINVAL;
2808 	ctxn = pmu->task_ctx_nr;
2809 	if (ctxn < 0)
2810 		goto errout;
2811 
2812 retry:
2813 	ctx = perf_lock_task_context(task, ctxn, &flags);
2814 	if (ctx) {
2815 		unclone_ctx(ctx);
2816 		++ctx->pin_count;
2817 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2818 	} else {
2819 		ctx = alloc_perf_context(pmu, task);
2820 		err = -ENOMEM;
2821 		if (!ctx)
2822 			goto errout;
2823 
2824 		err = 0;
2825 		mutex_lock(&task->perf_event_mutex);
2826 		/*
2827 		 * If it has already passed perf_event_exit_task().
2828 		 * we must see PF_EXITING, it takes this mutex too.
2829 		 */
2830 		if (task->flags & PF_EXITING)
2831 			err = -ESRCH;
2832 		else if (task->perf_event_ctxp[ctxn])
2833 			err = -EAGAIN;
2834 		else {
2835 			get_ctx(ctx);
2836 			++ctx->pin_count;
2837 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2838 		}
2839 		mutex_unlock(&task->perf_event_mutex);
2840 
2841 		if (unlikely(err)) {
2842 			put_ctx(ctx);
2843 
2844 			if (err == -EAGAIN)
2845 				goto retry;
2846 			goto errout;
2847 		}
2848 	}
2849 
2850 	return ctx;
2851 
2852 errout:
2853 	return ERR_PTR(err);
2854 }
2855 
2856 static void perf_event_free_filter(struct perf_event *event);
2857 
2858 static void free_event_rcu(struct rcu_head *head)
2859 {
2860 	struct perf_event *event;
2861 
2862 	event = container_of(head, struct perf_event, rcu_head);
2863 	if (event->ns)
2864 		put_pid_ns(event->ns);
2865 	perf_event_free_filter(event);
2866 	kfree(event);
2867 }
2868 
2869 static void ring_buffer_put(struct ring_buffer *rb);
2870 
2871 static void free_event(struct perf_event *event)
2872 {
2873 	irq_work_sync(&event->pending);
2874 
2875 	if (!event->parent) {
2876 		if (event->attach_state & PERF_ATTACH_TASK)
2877 			static_key_slow_dec_deferred(&perf_sched_events);
2878 		if (event->attr.mmap || event->attr.mmap_data)
2879 			atomic_dec(&nr_mmap_events);
2880 		if (event->attr.comm)
2881 			atomic_dec(&nr_comm_events);
2882 		if (event->attr.task)
2883 			atomic_dec(&nr_task_events);
2884 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2885 			put_callchain_buffers();
2886 		if (is_cgroup_event(event)) {
2887 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2888 			static_key_slow_dec_deferred(&perf_sched_events);
2889 		}
2890 
2891 		if (has_branch_stack(event)) {
2892 			static_key_slow_dec_deferred(&perf_sched_events);
2893 			/* is system-wide event */
2894 			if (!(event->attach_state & PERF_ATTACH_TASK))
2895 				atomic_dec(&per_cpu(perf_branch_stack_events,
2896 						    event->cpu));
2897 		}
2898 	}
2899 
2900 	if (event->rb) {
2901 		ring_buffer_put(event->rb);
2902 		event->rb = NULL;
2903 	}
2904 
2905 	if (is_cgroup_event(event))
2906 		perf_detach_cgroup(event);
2907 
2908 	if (event->destroy)
2909 		event->destroy(event);
2910 
2911 	if (event->ctx)
2912 		put_ctx(event->ctx);
2913 
2914 	call_rcu(&event->rcu_head, free_event_rcu);
2915 }
2916 
2917 int perf_event_release_kernel(struct perf_event *event)
2918 {
2919 	struct perf_event_context *ctx = event->ctx;
2920 
2921 	WARN_ON_ONCE(ctx->parent_ctx);
2922 	/*
2923 	 * There are two ways this annotation is useful:
2924 	 *
2925 	 *  1) there is a lock recursion from perf_event_exit_task
2926 	 *     see the comment there.
2927 	 *
2928 	 *  2) there is a lock-inversion with mmap_sem through
2929 	 *     perf_event_read_group(), which takes faults while
2930 	 *     holding ctx->mutex, however this is called after
2931 	 *     the last filedesc died, so there is no possibility
2932 	 *     to trigger the AB-BA case.
2933 	 */
2934 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2935 	raw_spin_lock_irq(&ctx->lock);
2936 	perf_group_detach(event);
2937 	raw_spin_unlock_irq(&ctx->lock);
2938 	perf_remove_from_context(event);
2939 	mutex_unlock(&ctx->mutex);
2940 
2941 	free_event(event);
2942 
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2946 
2947 /*
2948  * Called when the last reference to the file is gone.
2949  */
2950 static void put_event(struct perf_event *event)
2951 {
2952 	struct task_struct *owner;
2953 
2954 	if (!atomic_long_dec_and_test(&event->refcount))
2955 		return;
2956 
2957 	rcu_read_lock();
2958 	owner = ACCESS_ONCE(event->owner);
2959 	/*
2960 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2961 	 * !owner it means the list deletion is complete and we can indeed
2962 	 * free this event, otherwise we need to serialize on
2963 	 * owner->perf_event_mutex.
2964 	 */
2965 	smp_read_barrier_depends();
2966 	if (owner) {
2967 		/*
2968 		 * Since delayed_put_task_struct() also drops the last
2969 		 * task reference we can safely take a new reference
2970 		 * while holding the rcu_read_lock().
2971 		 */
2972 		get_task_struct(owner);
2973 	}
2974 	rcu_read_unlock();
2975 
2976 	if (owner) {
2977 		mutex_lock(&owner->perf_event_mutex);
2978 		/*
2979 		 * We have to re-check the event->owner field, if it is cleared
2980 		 * we raced with perf_event_exit_task(), acquiring the mutex
2981 		 * ensured they're done, and we can proceed with freeing the
2982 		 * event.
2983 		 */
2984 		if (event->owner)
2985 			list_del_init(&event->owner_entry);
2986 		mutex_unlock(&owner->perf_event_mutex);
2987 		put_task_struct(owner);
2988 	}
2989 
2990 	perf_event_release_kernel(event);
2991 }
2992 
2993 static int perf_release(struct inode *inode, struct file *file)
2994 {
2995 	put_event(file->private_data);
2996 	return 0;
2997 }
2998 
2999 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3000 {
3001 	struct perf_event *child;
3002 	u64 total = 0;
3003 
3004 	*enabled = 0;
3005 	*running = 0;
3006 
3007 	mutex_lock(&event->child_mutex);
3008 	total += perf_event_read(event);
3009 	*enabled += event->total_time_enabled +
3010 			atomic64_read(&event->child_total_time_enabled);
3011 	*running += event->total_time_running +
3012 			atomic64_read(&event->child_total_time_running);
3013 
3014 	list_for_each_entry(child, &event->child_list, child_list) {
3015 		total += perf_event_read(child);
3016 		*enabled += child->total_time_enabled;
3017 		*running += child->total_time_running;
3018 	}
3019 	mutex_unlock(&event->child_mutex);
3020 
3021 	return total;
3022 }
3023 EXPORT_SYMBOL_GPL(perf_event_read_value);
3024 
3025 static int perf_event_read_group(struct perf_event *event,
3026 				   u64 read_format, char __user *buf)
3027 {
3028 	struct perf_event *leader = event->group_leader, *sub;
3029 	int n = 0, size = 0, ret = -EFAULT;
3030 	struct perf_event_context *ctx = leader->ctx;
3031 	u64 values[5];
3032 	u64 count, enabled, running;
3033 
3034 	mutex_lock(&ctx->mutex);
3035 	count = perf_event_read_value(leader, &enabled, &running);
3036 
3037 	values[n++] = 1 + leader->nr_siblings;
3038 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3039 		values[n++] = enabled;
3040 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3041 		values[n++] = running;
3042 	values[n++] = count;
3043 	if (read_format & PERF_FORMAT_ID)
3044 		values[n++] = primary_event_id(leader);
3045 
3046 	size = n * sizeof(u64);
3047 
3048 	if (copy_to_user(buf, values, size))
3049 		goto unlock;
3050 
3051 	ret = size;
3052 
3053 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3054 		n = 0;
3055 
3056 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3057 		if (read_format & PERF_FORMAT_ID)
3058 			values[n++] = primary_event_id(sub);
3059 
3060 		size = n * sizeof(u64);
3061 
3062 		if (copy_to_user(buf + ret, values, size)) {
3063 			ret = -EFAULT;
3064 			goto unlock;
3065 		}
3066 
3067 		ret += size;
3068 	}
3069 unlock:
3070 	mutex_unlock(&ctx->mutex);
3071 
3072 	return ret;
3073 }
3074 
3075 static int perf_event_read_one(struct perf_event *event,
3076 				 u64 read_format, char __user *buf)
3077 {
3078 	u64 enabled, running;
3079 	u64 values[4];
3080 	int n = 0;
3081 
3082 	values[n++] = perf_event_read_value(event, &enabled, &running);
3083 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3084 		values[n++] = enabled;
3085 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3086 		values[n++] = running;
3087 	if (read_format & PERF_FORMAT_ID)
3088 		values[n++] = primary_event_id(event);
3089 
3090 	if (copy_to_user(buf, values, n * sizeof(u64)))
3091 		return -EFAULT;
3092 
3093 	return n * sizeof(u64);
3094 }
3095 
3096 /*
3097  * Read the performance event - simple non blocking version for now
3098  */
3099 static ssize_t
3100 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3101 {
3102 	u64 read_format = event->attr.read_format;
3103 	int ret;
3104 
3105 	/*
3106 	 * Return end-of-file for a read on a event that is in
3107 	 * error state (i.e. because it was pinned but it couldn't be
3108 	 * scheduled on to the CPU at some point).
3109 	 */
3110 	if (event->state == PERF_EVENT_STATE_ERROR)
3111 		return 0;
3112 
3113 	if (count < event->read_size)
3114 		return -ENOSPC;
3115 
3116 	WARN_ON_ONCE(event->ctx->parent_ctx);
3117 	if (read_format & PERF_FORMAT_GROUP)
3118 		ret = perf_event_read_group(event, read_format, buf);
3119 	else
3120 		ret = perf_event_read_one(event, read_format, buf);
3121 
3122 	return ret;
3123 }
3124 
3125 static ssize_t
3126 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3127 {
3128 	struct perf_event *event = file->private_data;
3129 
3130 	return perf_read_hw(event, buf, count);
3131 }
3132 
3133 static unsigned int perf_poll(struct file *file, poll_table *wait)
3134 {
3135 	struct perf_event *event = file->private_data;
3136 	struct ring_buffer *rb;
3137 	unsigned int events = POLL_HUP;
3138 
3139 	/*
3140 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3141 	 * grabs the rb reference but perf_event_set_output() overrides it.
3142 	 * Here is the timeline for two threads T1, T2:
3143 	 * t0: T1, rb = rcu_dereference(event->rb)
3144 	 * t1: T2, old_rb = event->rb
3145 	 * t2: T2, event->rb = new rb
3146 	 * t3: T2, ring_buffer_detach(old_rb)
3147 	 * t4: T1, ring_buffer_attach(rb1)
3148 	 * t5: T1, poll_wait(event->waitq)
3149 	 *
3150 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3151 	 * thereby ensuring that the assignment of the new ring buffer
3152 	 * and the detachment of the old buffer appear atomic to perf_poll()
3153 	 */
3154 	mutex_lock(&event->mmap_mutex);
3155 
3156 	rcu_read_lock();
3157 	rb = rcu_dereference(event->rb);
3158 	if (rb) {
3159 		ring_buffer_attach(event, rb);
3160 		events = atomic_xchg(&rb->poll, 0);
3161 	}
3162 	rcu_read_unlock();
3163 
3164 	mutex_unlock(&event->mmap_mutex);
3165 
3166 	poll_wait(file, &event->waitq, wait);
3167 
3168 	return events;
3169 }
3170 
3171 static void perf_event_reset(struct perf_event *event)
3172 {
3173 	(void)perf_event_read(event);
3174 	local64_set(&event->count, 0);
3175 	perf_event_update_userpage(event);
3176 }
3177 
3178 /*
3179  * Holding the top-level event's child_mutex means that any
3180  * descendant process that has inherited this event will block
3181  * in sync_child_event if it goes to exit, thus satisfying the
3182  * task existence requirements of perf_event_enable/disable.
3183  */
3184 static void perf_event_for_each_child(struct perf_event *event,
3185 					void (*func)(struct perf_event *))
3186 {
3187 	struct perf_event *child;
3188 
3189 	WARN_ON_ONCE(event->ctx->parent_ctx);
3190 	mutex_lock(&event->child_mutex);
3191 	func(event);
3192 	list_for_each_entry(child, &event->child_list, child_list)
3193 		func(child);
3194 	mutex_unlock(&event->child_mutex);
3195 }
3196 
3197 static void perf_event_for_each(struct perf_event *event,
3198 				  void (*func)(struct perf_event *))
3199 {
3200 	struct perf_event_context *ctx = event->ctx;
3201 	struct perf_event *sibling;
3202 
3203 	WARN_ON_ONCE(ctx->parent_ctx);
3204 	mutex_lock(&ctx->mutex);
3205 	event = event->group_leader;
3206 
3207 	perf_event_for_each_child(event, func);
3208 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3209 		perf_event_for_each_child(sibling, func);
3210 	mutex_unlock(&ctx->mutex);
3211 }
3212 
3213 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3214 {
3215 	struct perf_event_context *ctx = event->ctx;
3216 	int ret = 0;
3217 	u64 value;
3218 
3219 	if (!is_sampling_event(event))
3220 		return -EINVAL;
3221 
3222 	if (copy_from_user(&value, arg, sizeof(value)))
3223 		return -EFAULT;
3224 
3225 	if (!value)
3226 		return -EINVAL;
3227 
3228 	raw_spin_lock_irq(&ctx->lock);
3229 	if (event->attr.freq) {
3230 		if (value > sysctl_perf_event_sample_rate) {
3231 			ret = -EINVAL;
3232 			goto unlock;
3233 		}
3234 
3235 		event->attr.sample_freq = value;
3236 	} else {
3237 		event->attr.sample_period = value;
3238 		event->hw.sample_period = value;
3239 	}
3240 unlock:
3241 	raw_spin_unlock_irq(&ctx->lock);
3242 
3243 	return ret;
3244 }
3245 
3246 static const struct file_operations perf_fops;
3247 
3248 static inline int perf_fget_light(int fd, struct fd *p)
3249 {
3250 	struct fd f = fdget(fd);
3251 	if (!f.file)
3252 		return -EBADF;
3253 
3254 	if (f.file->f_op != &perf_fops) {
3255 		fdput(f);
3256 		return -EBADF;
3257 	}
3258 	*p = f;
3259 	return 0;
3260 }
3261 
3262 static int perf_event_set_output(struct perf_event *event,
3263 				 struct perf_event *output_event);
3264 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3265 
3266 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3267 {
3268 	struct perf_event *event = file->private_data;
3269 	void (*func)(struct perf_event *);
3270 	u32 flags = arg;
3271 
3272 	switch (cmd) {
3273 	case PERF_EVENT_IOC_ENABLE:
3274 		func = perf_event_enable;
3275 		break;
3276 	case PERF_EVENT_IOC_DISABLE:
3277 		func = perf_event_disable;
3278 		break;
3279 	case PERF_EVENT_IOC_RESET:
3280 		func = perf_event_reset;
3281 		break;
3282 
3283 	case PERF_EVENT_IOC_REFRESH:
3284 		return perf_event_refresh(event, arg);
3285 
3286 	case PERF_EVENT_IOC_PERIOD:
3287 		return perf_event_period(event, (u64 __user *)arg);
3288 
3289 	case PERF_EVENT_IOC_SET_OUTPUT:
3290 	{
3291 		int ret;
3292 		if (arg != -1) {
3293 			struct perf_event *output_event;
3294 			struct fd output;
3295 			ret = perf_fget_light(arg, &output);
3296 			if (ret)
3297 				return ret;
3298 			output_event = output.file->private_data;
3299 			ret = perf_event_set_output(event, output_event);
3300 			fdput(output);
3301 		} else {
3302 			ret = perf_event_set_output(event, NULL);
3303 		}
3304 		return ret;
3305 	}
3306 
3307 	case PERF_EVENT_IOC_SET_FILTER:
3308 		return perf_event_set_filter(event, (void __user *)arg);
3309 
3310 	default:
3311 		return -ENOTTY;
3312 	}
3313 
3314 	if (flags & PERF_IOC_FLAG_GROUP)
3315 		perf_event_for_each(event, func);
3316 	else
3317 		perf_event_for_each_child(event, func);
3318 
3319 	return 0;
3320 }
3321 
3322 int perf_event_task_enable(void)
3323 {
3324 	struct perf_event *event;
3325 
3326 	mutex_lock(&current->perf_event_mutex);
3327 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3328 		perf_event_for_each_child(event, perf_event_enable);
3329 	mutex_unlock(&current->perf_event_mutex);
3330 
3331 	return 0;
3332 }
3333 
3334 int perf_event_task_disable(void)
3335 {
3336 	struct perf_event *event;
3337 
3338 	mutex_lock(&current->perf_event_mutex);
3339 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3340 		perf_event_for_each_child(event, perf_event_disable);
3341 	mutex_unlock(&current->perf_event_mutex);
3342 
3343 	return 0;
3344 }
3345 
3346 static int perf_event_index(struct perf_event *event)
3347 {
3348 	if (event->hw.state & PERF_HES_STOPPED)
3349 		return 0;
3350 
3351 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 		return 0;
3353 
3354 	return event->pmu->event_idx(event);
3355 }
3356 
3357 static void calc_timer_values(struct perf_event *event,
3358 				u64 *now,
3359 				u64 *enabled,
3360 				u64 *running)
3361 {
3362 	u64 ctx_time;
3363 
3364 	*now = perf_clock();
3365 	ctx_time = event->shadow_ctx_time + *now;
3366 	*enabled = ctx_time - event->tstamp_enabled;
3367 	*running = ctx_time - event->tstamp_running;
3368 }
3369 
3370 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3371 {
3372 }
3373 
3374 /*
3375  * Callers need to ensure there can be no nesting of this function, otherwise
3376  * the seqlock logic goes bad. We can not serialize this because the arch
3377  * code calls this from NMI context.
3378  */
3379 void perf_event_update_userpage(struct perf_event *event)
3380 {
3381 	struct perf_event_mmap_page *userpg;
3382 	struct ring_buffer *rb;
3383 	u64 enabled, running, now;
3384 
3385 	rcu_read_lock();
3386 	/*
3387 	 * compute total_time_enabled, total_time_running
3388 	 * based on snapshot values taken when the event
3389 	 * was last scheduled in.
3390 	 *
3391 	 * we cannot simply called update_context_time()
3392 	 * because of locking issue as we can be called in
3393 	 * NMI context
3394 	 */
3395 	calc_timer_values(event, &now, &enabled, &running);
3396 	rb = rcu_dereference(event->rb);
3397 	if (!rb)
3398 		goto unlock;
3399 
3400 	userpg = rb->user_page;
3401 
3402 	/*
3403 	 * Disable preemption so as to not let the corresponding user-space
3404 	 * spin too long if we get preempted.
3405 	 */
3406 	preempt_disable();
3407 	++userpg->lock;
3408 	barrier();
3409 	userpg->index = perf_event_index(event);
3410 	userpg->offset = perf_event_count(event);
3411 	if (userpg->index)
3412 		userpg->offset -= local64_read(&event->hw.prev_count);
3413 
3414 	userpg->time_enabled = enabled +
3415 			atomic64_read(&event->child_total_time_enabled);
3416 
3417 	userpg->time_running = running +
3418 			atomic64_read(&event->child_total_time_running);
3419 
3420 	arch_perf_update_userpage(userpg, now);
3421 
3422 	barrier();
3423 	++userpg->lock;
3424 	preempt_enable();
3425 unlock:
3426 	rcu_read_unlock();
3427 }
3428 
3429 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3430 {
3431 	struct perf_event *event = vma->vm_file->private_data;
3432 	struct ring_buffer *rb;
3433 	int ret = VM_FAULT_SIGBUS;
3434 
3435 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3436 		if (vmf->pgoff == 0)
3437 			ret = 0;
3438 		return ret;
3439 	}
3440 
3441 	rcu_read_lock();
3442 	rb = rcu_dereference(event->rb);
3443 	if (!rb)
3444 		goto unlock;
3445 
3446 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3447 		goto unlock;
3448 
3449 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3450 	if (!vmf->page)
3451 		goto unlock;
3452 
3453 	get_page(vmf->page);
3454 	vmf->page->mapping = vma->vm_file->f_mapping;
3455 	vmf->page->index   = vmf->pgoff;
3456 
3457 	ret = 0;
3458 unlock:
3459 	rcu_read_unlock();
3460 
3461 	return ret;
3462 }
3463 
3464 static void ring_buffer_attach(struct perf_event *event,
3465 			       struct ring_buffer *rb)
3466 {
3467 	unsigned long flags;
3468 
3469 	if (!list_empty(&event->rb_entry))
3470 		return;
3471 
3472 	spin_lock_irqsave(&rb->event_lock, flags);
3473 	if (!list_empty(&event->rb_entry))
3474 		goto unlock;
3475 
3476 	list_add(&event->rb_entry, &rb->event_list);
3477 unlock:
3478 	spin_unlock_irqrestore(&rb->event_lock, flags);
3479 }
3480 
3481 static void ring_buffer_detach(struct perf_event *event,
3482 			       struct ring_buffer *rb)
3483 {
3484 	unsigned long flags;
3485 
3486 	if (list_empty(&event->rb_entry))
3487 		return;
3488 
3489 	spin_lock_irqsave(&rb->event_lock, flags);
3490 	list_del_init(&event->rb_entry);
3491 	wake_up_all(&event->waitq);
3492 	spin_unlock_irqrestore(&rb->event_lock, flags);
3493 }
3494 
3495 static void ring_buffer_wakeup(struct perf_event *event)
3496 {
3497 	struct ring_buffer *rb;
3498 
3499 	rcu_read_lock();
3500 	rb = rcu_dereference(event->rb);
3501 	if (!rb)
3502 		goto unlock;
3503 
3504 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3505 		wake_up_all(&event->waitq);
3506 
3507 unlock:
3508 	rcu_read_unlock();
3509 }
3510 
3511 static void rb_free_rcu(struct rcu_head *rcu_head)
3512 {
3513 	struct ring_buffer *rb;
3514 
3515 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3516 	rb_free(rb);
3517 }
3518 
3519 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3520 {
3521 	struct ring_buffer *rb;
3522 
3523 	rcu_read_lock();
3524 	rb = rcu_dereference(event->rb);
3525 	if (rb) {
3526 		if (!atomic_inc_not_zero(&rb->refcount))
3527 			rb = NULL;
3528 	}
3529 	rcu_read_unlock();
3530 
3531 	return rb;
3532 }
3533 
3534 static void ring_buffer_put(struct ring_buffer *rb)
3535 {
3536 	struct perf_event *event, *n;
3537 	unsigned long flags;
3538 
3539 	if (!atomic_dec_and_test(&rb->refcount))
3540 		return;
3541 
3542 	spin_lock_irqsave(&rb->event_lock, flags);
3543 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3544 		list_del_init(&event->rb_entry);
3545 		wake_up_all(&event->waitq);
3546 	}
3547 	spin_unlock_irqrestore(&rb->event_lock, flags);
3548 
3549 	call_rcu(&rb->rcu_head, rb_free_rcu);
3550 }
3551 
3552 static void perf_mmap_open(struct vm_area_struct *vma)
3553 {
3554 	struct perf_event *event = vma->vm_file->private_data;
3555 
3556 	atomic_inc(&event->mmap_count);
3557 }
3558 
3559 static void perf_mmap_close(struct vm_area_struct *vma)
3560 {
3561 	struct perf_event *event = vma->vm_file->private_data;
3562 
3563 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3564 		unsigned long size = perf_data_size(event->rb);
3565 		struct user_struct *user = event->mmap_user;
3566 		struct ring_buffer *rb = event->rb;
3567 
3568 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3569 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3570 		rcu_assign_pointer(event->rb, NULL);
3571 		ring_buffer_detach(event, rb);
3572 		mutex_unlock(&event->mmap_mutex);
3573 
3574 		ring_buffer_put(rb);
3575 		free_uid(user);
3576 	}
3577 }
3578 
3579 static const struct vm_operations_struct perf_mmap_vmops = {
3580 	.open		= perf_mmap_open,
3581 	.close		= perf_mmap_close,
3582 	.fault		= perf_mmap_fault,
3583 	.page_mkwrite	= perf_mmap_fault,
3584 };
3585 
3586 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3587 {
3588 	struct perf_event *event = file->private_data;
3589 	unsigned long user_locked, user_lock_limit;
3590 	struct user_struct *user = current_user();
3591 	unsigned long locked, lock_limit;
3592 	struct ring_buffer *rb;
3593 	unsigned long vma_size;
3594 	unsigned long nr_pages;
3595 	long user_extra, extra;
3596 	int ret = 0, flags = 0;
3597 
3598 	/*
3599 	 * Don't allow mmap() of inherited per-task counters. This would
3600 	 * create a performance issue due to all children writing to the
3601 	 * same rb.
3602 	 */
3603 	if (event->cpu == -1 && event->attr.inherit)
3604 		return -EINVAL;
3605 
3606 	if (!(vma->vm_flags & VM_SHARED))
3607 		return -EINVAL;
3608 
3609 	vma_size = vma->vm_end - vma->vm_start;
3610 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3611 
3612 	/*
3613 	 * If we have rb pages ensure they're a power-of-two number, so we
3614 	 * can do bitmasks instead of modulo.
3615 	 */
3616 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3617 		return -EINVAL;
3618 
3619 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3620 		return -EINVAL;
3621 
3622 	if (vma->vm_pgoff != 0)
3623 		return -EINVAL;
3624 
3625 	WARN_ON_ONCE(event->ctx->parent_ctx);
3626 	mutex_lock(&event->mmap_mutex);
3627 	if (event->rb) {
3628 		if (event->rb->nr_pages == nr_pages)
3629 			atomic_inc(&event->rb->refcount);
3630 		else
3631 			ret = -EINVAL;
3632 		goto unlock;
3633 	}
3634 
3635 	user_extra = nr_pages + 1;
3636 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3637 
3638 	/*
3639 	 * Increase the limit linearly with more CPUs:
3640 	 */
3641 	user_lock_limit *= num_online_cpus();
3642 
3643 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3644 
3645 	extra = 0;
3646 	if (user_locked > user_lock_limit)
3647 		extra = user_locked - user_lock_limit;
3648 
3649 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3650 	lock_limit >>= PAGE_SHIFT;
3651 	locked = vma->vm_mm->pinned_vm + extra;
3652 
3653 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3654 		!capable(CAP_IPC_LOCK)) {
3655 		ret = -EPERM;
3656 		goto unlock;
3657 	}
3658 
3659 	WARN_ON(event->rb);
3660 
3661 	if (vma->vm_flags & VM_WRITE)
3662 		flags |= RING_BUFFER_WRITABLE;
3663 
3664 	rb = rb_alloc(nr_pages,
3665 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3666 		event->cpu, flags);
3667 
3668 	if (!rb) {
3669 		ret = -ENOMEM;
3670 		goto unlock;
3671 	}
3672 	rcu_assign_pointer(event->rb, rb);
3673 
3674 	atomic_long_add(user_extra, &user->locked_vm);
3675 	event->mmap_locked = extra;
3676 	event->mmap_user = get_current_user();
3677 	vma->vm_mm->pinned_vm += event->mmap_locked;
3678 
3679 	perf_event_update_userpage(event);
3680 
3681 unlock:
3682 	if (!ret)
3683 		atomic_inc(&event->mmap_count);
3684 	mutex_unlock(&event->mmap_mutex);
3685 
3686 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3687 	vma->vm_ops = &perf_mmap_vmops;
3688 
3689 	return ret;
3690 }
3691 
3692 static int perf_fasync(int fd, struct file *filp, int on)
3693 {
3694 	struct inode *inode = file_inode(filp);
3695 	struct perf_event *event = filp->private_data;
3696 	int retval;
3697 
3698 	mutex_lock(&inode->i_mutex);
3699 	retval = fasync_helper(fd, filp, on, &event->fasync);
3700 	mutex_unlock(&inode->i_mutex);
3701 
3702 	if (retval < 0)
3703 		return retval;
3704 
3705 	return 0;
3706 }
3707 
3708 static const struct file_operations perf_fops = {
3709 	.llseek			= no_llseek,
3710 	.release		= perf_release,
3711 	.read			= perf_read,
3712 	.poll			= perf_poll,
3713 	.unlocked_ioctl		= perf_ioctl,
3714 	.compat_ioctl		= perf_ioctl,
3715 	.mmap			= perf_mmap,
3716 	.fasync			= perf_fasync,
3717 };
3718 
3719 /*
3720  * Perf event wakeup
3721  *
3722  * If there's data, ensure we set the poll() state and publish everything
3723  * to user-space before waking everybody up.
3724  */
3725 
3726 void perf_event_wakeup(struct perf_event *event)
3727 {
3728 	ring_buffer_wakeup(event);
3729 
3730 	if (event->pending_kill) {
3731 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3732 		event->pending_kill = 0;
3733 	}
3734 }
3735 
3736 static void perf_pending_event(struct irq_work *entry)
3737 {
3738 	struct perf_event *event = container_of(entry,
3739 			struct perf_event, pending);
3740 
3741 	if (event->pending_disable) {
3742 		event->pending_disable = 0;
3743 		__perf_event_disable(event);
3744 	}
3745 
3746 	if (event->pending_wakeup) {
3747 		event->pending_wakeup = 0;
3748 		perf_event_wakeup(event);
3749 	}
3750 }
3751 
3752 /*
3753  * We assume there is only KVM supporting the callbacks.
3754  * Later on, we might change it to a list if there is
3755  * another virtualization implementation supporting the callbacks.
3756  */
3757 struct perf_guest_info_callbacks *perf_guest_cbs;
3758 
3759 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3760 {
3761 	perf_guest_cbs = cbs;
3762 	return 0;
3763 }
3764 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3765 
3766 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3767 {
3768 	perf_guest_cbs = NULL;
3769 	return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3772 
3773 static void
3774 perf_output_sample_regs(struct perf_output_handle *handle,
3775 			struct pt_regs *regs, u64 mask)
3776 {
3777 	int bit;
3778 
3779 	for_each_set_bit(bit, (const unsigned long *) &mask,
3780 			 sizeof(mask) * BITS_PER_BYTE) {
3781 		u64 val;
3782 
3783 		val = perf_reg_value(regs, bit);
3784 		perf_output_put(handle, val);
3785 	}
3786 }
3787 
3788 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3789 				  struct pt_regs *regs)
3790 {
3791 	if (!user_mode(regs)) {
3792 		if (current->mm)
3793 			regs = task_pt_regs(current);
3794 		else
3795 			regs = NULL;
3796 	}
3797 
3798 	if (regs) {
3799 		regs_user->regs = regs;
3800 		regs_user->abi  = perf_reg_abi(current);
3801 	}
3802 }
3803 
3804 /*
3805  * Get remaining task size from user stack pointer.
3806  *
3807  * It'd be better to take stack vma map and limit this more
3808  * precisly, but there's no way to get it safely under interrupt,
3809  * so using TASK_SIZE as limit.
3810  */
3811 static u64 perf_ustack_task_size(struct pt_regs *regs)
3812 {
3813 	unsigned long addr = perf_user_stack_pointer(regs);
3814 
3815 	if (!addr || addr >= TASK_SIZE)
3816 		return 0;
3817 
3818 	return TASK_SIZE - addr;
3819 }
3820 
3821 static u16
3822 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3823 			struct pt_regs *regs)
3824 {
3825 	u64 task_size;
3826 
3827 	/* No regs, no stack pointer, no dump. */
3828 	if (!regs)
3829 		return 0;
3830 
3831 	/*
3832 	 * Check if we fit in with the requested stack size into the:
3833 	 * - TASK_SIZE
3834 	 *   If we don't, we limit the size to the TASK_SIZE.
3835 	 *
3836 	 * - remaining sample size
3837 	 *   If we don't, we customize the stack size to
3838 	 *   fit in to the remaining sample size.
3839 	 */
3840 
3841 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3842 	stack_size = min(stack_size, (u16) task_size);
3843 
3844 	/* Current header size plus static size and dynamic size. */
3845 	header_size += 2 * sizeof(u64);
3846 
3847 	/* Do we fit in with the current stack dump size? */
3848 	if ((u16) (header_size + stack_size) < header_size) {
3849 		/*
3850 		 * If we overflow the maximum size for the sample,
3851 		 * we customize the stack dump size to fit in.
3852 		 */
3853 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3854 		stack_size = round_up(stack_size, sizeof(u64));
3855 	}
3856 
3857 	return stack_size;
3858 }
3859 
3860 static void
3861 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3862 			  struct pt_regs *regs)
3863 {
3864 	/* Case of a kernel thread, nothing to dump */
3865 	if (!regs) {
3866 		u64 size = 0;
3867 		perf_output_put(handle, size);
3868 	} else {
3869 		unsigned long sp;
3870 		unsigned int rem;
3871 		u64 dyn_size;
3872 
3873 		/*
3874 		 * We dump:
3875 		 * static size
3876 		 *   - the size requested by user or the best one we can fit
3877 		 *     in to the sample max size
3878 		 * data
3879 		 *   - user stack dump data
3880 		 * dynamic size
3881 		 *   - the actual dumped size
3882 		 */
3883 
3884 		/* Static size. */
3885 		perf_output_put(handle, dump_size);
3886 
3887 		/* Data. */
3888 		sp = perf_user_stack_pointer(regs);
3889 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3890 		dyn_size = dump_size - rem;
3891 
3892 		perf_output_skip(handle, rem);
3893 
3894 		/* Dynamic size. */
3895 		perf_output_put(handle, dyn_size);
3896 	}
3897 }
3898 
3899 static void __perf_event_header__init_id(struct perf_event_header *header,
3900 					 struct perf_sample_data *data,
3901 					 struct perf_event *event)
3902 {
3903 	u64 sample_type = event->attr.sample_type;
3904 
3905 	data->type = sample_type;
3906 	header->size += event->id_header_size;
3907 
3908 	if (sample_type & PERF_SAMPLE_TID) {
3909 		/* namespace issues */
3910 		data->tid_entry.pid = perf_event_pid(event, current);
3911 		data->tid_entry.tid = perf_event_tid(event, current);
3912 	}
3913 
3914 	if (sample_type & PERF_SAMPLE_TIME)
3915 		data->time = perf_clock();
3916 
3917 	if (sample_type & PERF_SAMPLE_ID)
3918 		data->id = primary_event_id(event);
3919 
3920 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3921 		data->stream_id = event->id;
3922 
3923 	if (sample_type & PERF_SAMPLE_CPU) {
3924 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3925 		data->cpu_entry.reserved = 0;
3926 	}
3927 }
3928 
3929 void perf_event_header__init_id(struct perf_event_header *header,
3930 				struct perf_sample_data *data,
3931 				struct perf_event *event)
3932 {
3933 	if (event->attr.sample_id_all)
3934 		__perf_event_header__init_id(header, data, event);
3935 }
3936 
3937 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3938 					   struct perf_sample_data *data)
3939 {
3940 	u64 sample_type = data->type;
3941 
3942 	if (sample_type & PERF_SAMPLE_TID)
3943 		perf_output_put(handle, data->tid_entry);
3944 
3945 	if (sample_type & PERF_SAMPLE_TIME)
3946 		perf_output_put(handle, data->time);
3947 
3948 	if (sample_type & PERF_SAMPLE_ID)
3949 		perf_output_put(handle, data->id);
3950 
3951 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3952 		perf_output_put(handle, data->stream_id);
3953 
3954 	if (sample_type & PERF_SAMPLE_CPU)
3955 		perf_output_put(handle, data->cpu_entry);
3956 }
3957 
3958 void perf_event__output_id_sample(struct perf_event *event,
3959 				  struct perf_output_handle *handle,
3960 				  struct perf_sample_data *sample)
3961 {
3962 	if (event->attr.sample_id_all)
3963 		__perf_event__output_id_sample(handle, sample);
3964 }
3965 
3966 static void perf_output_read_one(struct perf_output_handle *handle,
3967 				 struct perf_event *event,
3968 				 u64 enabled, u64 running)
3969 {
3970 	u64 read_format = event->attr.read_format;
3971 	u64 values[4];
3972 	int n = 0;
3973 
3974 	values[n++] = perf_event_count(event);
3975 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3976 		values[n++] = enabled +
3977 			atomic64_read(&event->child_total_time_enabled);
3978 	}
3979 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3980 		values[n++] = running +
3981 			atomic64_read(&event->child_total_time_running);
3982 	}
3983 	if (read_format & PERF_FORMAT_ID)
3984 		values[n++] = primary_event_id(event);
3985 
3986 	__output_copy(handle, values, n * sizeof(u64));
3987 }
3988 
3989 /*
3990  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3991  */
3992 static void perf_output_read_group(struct perf_output_handle *handle,
3993 			    struct perf_event *event,
3994 			    u64 enabled, u64 running)
3995 {
3996 	struct perf_event *leader = event->group_leader, *sub;
3997 	u64 read_format = event->attr.read_format;
3998 	u64 values[5];
3999 	int n = 0;
4000 
4001 	values[n++] = 1 + leader->nr_siblings;
4002 
4003 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4004 		values[n++] = enabled;
4005 
4006 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4007 		values[n++] = running;
4008 
4009 	if (leader != event)
4010 		leader->pmu->read(leader);
4011 
4012 	values[n++] = perf_event_count(leader);
4013 	if (read_format & PERF_FORMAT_ID)
4014 		values[n++] = primary_event_id(leader);
4015 
4016 	__output_copy(handle, values, n * sizeof(u64));
4017 
4018 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4019 		n = 0;
4020 
4021 		if (sub != event)
4022 			sub->pmu->read(sub);
4023 
4024 		values[n++] = perf_event_count(sub);
4025 		if (read_format & PERF_FORMAT_ID)
4026 			values[n++] = primary_event_id(sub);
4027 
4028 		__output_copy(handle, values, n * sizeof(u64));
4029 	}
4030 }
4031 
4032 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4033 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4034 
4035 static void perf_output_read(struct perf_output_handle *handle,
4036 			     struct perf_event *event)
4037 {
4038 	u64 enabled = 0, running = 0, now;
4039 	u64 read_format = event->attr.read_format;
4040 
4041 	/*
4042 	 * compute total_time_enabled, total_time_running
4043 	 * based on snapshot values taken when the event
4044 	 * was last scheduled in.
4045 	 *
4046 	 * we cannot simply called update_context_time()
4047 	 * because of locking issue as we are called in
4048 	 * NMI context
4049 	 */
4050 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4051 		calc_timer_values(event, &now, &enabled, &running);
4052 
4053 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4054 		perf_output_read_group(handle, event, enabled, running);
4055 	else
4056 		perf_output_read_one(handle, event, enabled, running);
4057 }
4058 
4059 void perf_output_sample(struct perf_output_handle *handle,
4060 			struct perf_event_header *header,
4061 			struct perf_sample_data *data,
4062 			struct perf_event *event)
4063 {
4064 	u64 sample_type = data->type;
4065 
4066 	perf_output_put(handle, *header);
4067 
4068 	if (sample_type & PERF_SAMPLE_IP)
4069 		perf_output_put(handle, data->ip);
4070 
4071 	if (sample_type & PERF_SAMPLE_TID)
4072 		perf_output_put(handle, data->tid_entry);
4073 
4074 	if (sample_type & PERF_SAMPLE_TIME)
4075 		perf_output_put(handle, data->time);
4076 
4077 	if (sample_type & PERF_SAMPLE_ADDR)
4078 		perf_output_put(handle, data->addr);
4079 
4080 	if (sample_type & PERF_SAMPLE_ID)
4081 		perf_output_put(handle, data->id);
4082 
4083 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4084 		perf_output_put(handle, data->stream_id);
4085 
4086 	if (sample_type & PERF_SAMPLE_CPU)
4087 		perf_output_put(handle, data->cpu_entry);
4088 
4089 	if (sample_type & PERF_SAMPLE_PERIOD)
4090 		perf_output_put(handle, data->period);
4091 
4092 	if (sample_type & PERF_SAMPLE_READ)
4093 		perf_output_read(handle, event);
4094 
4095 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4096 		if (data->callchain) {
4097 			int size = 1;
4098 
4099 			if (data->callchain)
4100 				size += data->callchain->nr;
4101 
4102 			size *= sizeof(u64);
4103 
4104 			__output_copy(handle, data->callchain, size);
4105 		} else {
4106 			u64 nr = 0;
4107 			perf_output_put(handle, nr);
4108 		}
4109 	}
4110 
4111 	if (sample_type & PERF_SAMPLE_RAW) {
4112 		if (data->raw) {
4113 			perf_output_put(handle, data->raw->size);
4114 			__output_copy(handle, data->raw->data,
4115 					   data->raw->size);
4116 		} else {
4117 			struct {
4118 				u32	size;
4119 				u32	data;
4120 			} raw = {
4121 				.size = sizeof(u32),
4122 				.data = 0,
4123 			};
4124 			perf_output_put(handle, raw);
4125 		}
4126 	}
4127 
4128 	if (!event->attr.watermark) {
4129 		int wakeup_events = event->attr.wakeup_events;
4130 
4131 		if (wakeup_events) {
4132 			struct ring_buffer *rb = handle->rb;
4133 			int events = local_inc_return(&rb->events);
4134 
4135 			if (events >= wakeup_events) {
4136 				local_sub(wakeup_events, &rb->events);
4137 				local_inc(&rb->wakeup);
4138 			}
4139 		}
4140 	}
4141 
4142 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4143 		if (data->br_stack) {
4144 			size_t size;
4145 
4146 			size = data->br_stack->nr
4147 			     * sizeof(struct perf_branch_entry);
4148 
4149 			perf_output_put(handle, data->br_stack->nr);
4150 			perf_output_copy(handle, data->br_stack->entries, size);
4151 		} else {
4152 			/*
4153 			 * we always store at least the value of nr
4154 			 */
4155 			u64 nr = 0;
4156 			perf_output_put(handle, nr);
4157 		}
4158 	}
4159 
4160 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4161 		u64 abi = data->regs_user.abi;
4162 
4163 		/*
4164 		 * If there are no regs to dump, notice it through
4165 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4166 		 */
4167 		perf_output_put(handle, abi);
4168 
4169 		if (abi) {
4170 			u64 mask = event->attr.sample_regs_user;
4171 			perf_output_sample_regs(handle,
4172 						data->regs_user.regs,
4173 						mask);
4174 		}
4175 	}
4176 
4177 	if (sample_type & PERF_SAMPLE_STACK_USER)
4178 		perf_output_sample_ustack(handle,
4179 					  data->stack_user_size,
4180 					  data->regs_user.regs);
4181 }
4182 
4183 void perf_prepare_sample(struct perf_event_header *header,
4184 			 struct perf_sample_data *data,
4185 			 struct perf_event *event,
4186 			 struct pt_regs *regs)
4187 {
4188 	u64 sample_type = event->attr.sample_type;
4189 
4190 	header->type = PERF_RECORD_SAMPLE;
4191 	header->size = sizeof(*header) + event->header_size;
4192 
4193 	header->misc = 0;
4194 	header->misc |= perf_misc_flags(regs);
4195 
4196 	__perf_event_header__init_id(header, data, event);
4197 
4198 	if (sample_type & PERF_SAMPLE_IP)
4199 		data->ip = perf_instruction_pointer(regs);
4200 
4201 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4202 		int size = 1;
4203 
4204 		data->callchain = perf_callchain(event, regs);
4205 
4206 		if (data->callchain)
4207 			size += data->callchain->nr;
4208 
4209 		header->size += size * sizeof(u64);
4210 	}
4211 
4212 	if (sample_type & PERF_SAMPLE_RAW) {
4213 		int size = sizeof(u32);
4214 
4215 		if (data->raw)
4216 			size += data->raw->size;
4217 		else
4218 			size += sizeof(u32);
4219 
4220 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4221 		header->size += size;
4222 	}
4223 
4224 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4225 		int size = sizeof(u64); /* nr */
4226 		if (data->br_stack) {
4227 			size += data->br_stack->nr
4228 			      * sizeof(struct perf_branch_entry);
4229 		}
4230 		header->size += size;
4231 	}
4232 
4233 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4234 		/* regs dump ABI info */
4235 		int size = sizeof(u64);
4236 
4237 		perf_sample_regs_user(&data->regs_user, regs);
4238 
4239 		if (data->regs_user.regs) {
4240 			u64 mask = event->attr.sample_regs_user;
4241 			size += hweight64(mask) * sizeof(u64);
4242 		}
4243 
4244 		header->size += size;
4245 	}
4246 
4247 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4248 		/*
4249 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4250 		 * processed as the last one or have additional check added
4251 		 * in case new sample type is added, because we could eat
4252 		 * up the rest of the sample size.
4253 		 */
4254 		struct perf_regs_user *uregs = &data->regs_user;
4255 		u16 stack_size = event->attr.sample_stack_user;
4256 		u16 size = sizeof(u64);
4257 
4258 		if (!uregs->abi)
4259 			perf_sample_regs_user(uregs, regs);
4260 
4261 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4262 						     uregs->regs);
4263 
4264 		/*
4265 		 * If there is something to dump, add space for the dump
4266 		 * itself and for the field that tells the dynamic size,
4267 		 * which is how many have been actually dumped.
4268 		 */
4269 		if (stack_size)
4270 			size += sizeof(u64) + stack_size;
4271 
4272 		data->stack_user_size = stack_size;
4273 		header->size += size;
4274 	}
4275 }
4276 
4277 static void perf_event_output(struct perf_event *event,
4278 				struct perf_sample_data *data,
4279 				struct pt_regs *regs)
4280 {
4281 	struct perf_output_handle handle;
4282 	struct perf_event_header header;
4283 
4284 	/* protect the callchain buffers */
4285 	rcu_read_lock();
4286 
4287 	perf_prepare_sample(&header, data, event, regs);
4288 
4289 	if (perf_output_begin(&handle, event, header.size))
4290 		goto exit;
4291 
4292 	perf_output_sample(&handle, &header, data, event);
4293 
4294 	perf_output_end(&handle);
4295 
4296 exit:
4297 	rcu_read_unlock();
4298 }
4299 
4300 /*
4301  * read event_id
4302  */
4303 
4304 struct perf_read_event {
4305 	struct perf_event_header	header;
4306 
4307 	u32				pid;
4308 	u32				tid;
4309 };
4310 
4311 static void
4312 perf_event_read_event(struct perf_event *event,
4313 			struct task_struct *task)
4314 {
4315 	struct perf_output_handle handle;
4316 	struct perf_sample_data sample;
4317 	struct perf_read_event read_event = {
4318 		.header = {
4319 			.type = PERF_RECORD_READ,
4320 			.misc = 0,
4321 			.size = sizeof(read_event) + event->read_size,
4322 		},
4323 		.pid = perf_event_pid(event, task),
4324 		.tid = perf_event_tid(event, task),
4325 	};
4326 	int ret;
4327 
4328 	perf_event_header__init_id(&read_event.header, &sample, event);
4329 	ret = perf_output_begin(&handle, event, read_event.header.size);
4330 	if (ret)
4331 		return;
4332 
4333 	perf_output_put(&handle, read_event);
4334 	perf_output_read(&handle, event);
4335 	perf_event__output_id_sample(event, &handle, &sample);
4336 
4337 	perf_output_end(&handle);
4338 }
4339 
4340 /*
4341  * task tracking -- fork/exit
4342  *
4343  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4344  */
4345 
4346 struct perf_task_event {
4347 	struct task_struct		*task;
4348 	struct perf_event_context	*task_ctx;
4349 
4350 	struct {
4351 		struct perf_event_header	header;
4352 
4353 		u32				pid;
4354 		u32				ppid;
4355 		u32				tid;
4356 		u32				ptid;
4357 		u64				time;
4358 	} event_id;
4359 };
4360 
4361 static void perf_event_task_output(struct perf_event *event,
4362 				     struct perf_task_event *task_event)
4363 {
4364 	struct perf_output_handle handle;
4365 	struct perf_sample_data	sample;
4366 	struct task_struct *task = task_event->task;
4367 	int ret, size = task_event->event_id.header.size;
4368 
4369 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4370 
4371 	ret = perf_output_begin(&handle, event,
4372 				task_event->event_id.header.size);
4373 	if (ret)
4374 		goto out;
4375 
4376 	task_event->event_id.pid = perf_event_pid(event, task);
4377 	task_event->event_id.ppid = perf_event_pid(event, current);
4378 
4379 	task_event->event_id.tid = perf_event_tid(event, task);
4380 	task_event->event_id.ptid = perf_event_tid(event, current);
4381 
4382 	perf_output_put(&handle, task_event->event_id);
4383 
4384 	perf_event__output_id_sample(event, &handle, &sample);
4385 
4386 	perf_output_end(&handle);
4387 out:
4388 	task_event->event_id.header.size = size;
4389 }
4390 
4391 static int perf_event_task_match(struct perf_event *event)
4392 {
4393 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4394 		return 0;
4395 
4396 	if (!event_filter_match(event))
4397 		return 0;
4398 
4399 	if (event->attr.comm || event->attr.mmap ||
4400 	    event->attr.mmap_data || event->attr.task)
4401 		return 1;
4402 
4403 	return 0;
4404 }
4405 
4406 static void perf_event_task_ctx(struct perf_event_context *ctx,
4407 				  struct perf_task_event *task_event)
4408 {
4409 	struct perf_event *event;
4410 
4411 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4412 		if (perf_event_task_match(event))
4413 			perf_event_task_output(event, task_event);
4414 	}
4415 }
4416 
4417 static void perf_event_task_event(struct perf_task_event *task_event)
4418 {
4419 	struct perf_cpu_context *cpuctx;
4420 	struct perf_event_context *ctx;
4421 	struct pmu *pmu;
4422 	int ctxn;
4423 
4424 	rcu_read_lock();
4425 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4426 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4427 		if (cpuctx->unique_pmu != pmu)
4428 			goto next;
4429 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4430 
4431 		ctx = task_event->task_ctx;
4432 		if (!ctx) {
4433 			ctxn = pmu->task_ctx_nr;
4434 			if (ctxn < 0)
4435 				goto next;
4436 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4437 			if (ctx)
4438 				perf_event_task_ctx(ctx, task_event);
4439 		}
4440 next:
4441 		put_cpu_ptr(pmu->pmu_cpu_context);
4442 	}
4443 	if (task_event->task_ctx)
4444 		perf_event_task_ctx(task_event->task_ctx, task_event);
4445 
4446 	rcu_read_unlock();
4447 }
4448 
4449 static void perf_event_task(struct task_struct *task,
4450 			      struct perf_event_context *task_ctx,
4451 			      int new)
4452 {
4453 	struct perf_task_event task_event;
4454 
4455 	if (!atomic_read(&nr_comm_events) &&
4456 	    !atomic_read(&nr_mmap_events) &&
4457 	    !atomic_read(&nr_task_events))
4458 		return;
4459 
4460 	task_event = (struct perf_task_event){
4461 		.task	  = task,
4462 		.task_ctx = task_ctx,
4463 		.event_id    = {
4464 			.header = {
4465 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4466 				.misc = 0,
4467 				.size = sizeof(task_event.event_id),
4468 			},
4469 			/* .pid  */
4470 			/* .ppid */
4471 			/* .tid  */
4472 			/* .ptid */
4473 			.time = perf_clock(),
4474 		},
4475 	};
4476 
4477 	perf_event_task_event(&task_event);
4478 }
4479 
4480 void perf_event_fork(struct task_struct *task)
4481 {
4482 	perf_event_task(task, NULL, 1);
4483 }
4484 
4485 /*
4486  * comm tracking
4487  */
4488 
4489 struct perf_comm_event {
4490 	struct task_struct	*task;
4491 	char			*comm;
4492 	int			comm_size;
4493 
4494 	struct {
4495 		struct perf_event_header	header;
4496 
4497 		u32				pid;
4498 		u32				tid;
4499 	} event_id;
4500 };
4501 
4502 static void perf_event_comm_output(struct perf_event *event,
4503 				     struct perf_comm_event *comm_event)
4504 {
4505 	struct perf_output_handle handle;
4506 	struct perf_sample_data sample;
4507 	int size = comm_event->event_id.header.size;
4508 	int ret;
4509 
4510 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4511 	ret = perf_output_begin(&handle, event,
4512 				comm_event->event_id.header.size);
4513 
4514 	if (ret)
4515 		goto out;
4516 
4517 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4518 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4519 
4520 	perf_output_put(&handle, comm_event->event_id);
4521 	__output_copy(&handle, comm_event->comm,
4522 				   comm_event->comm_size);
4523 
4524 	perf_event__output_id_sample(event, &handle, &sample);
4525 
4526 	perf_output_end(&handle);
4527 out:
4528 	comm_event->event_id.header.size = size;
4529 }
4530 
4531 static int perf_event_comm_match(struct perf_event *event)
4532 {
4533 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4534 		return 0;
4535 
4536 	if (!event_filter_match(event))
4537 		return 0;
4538 
4539 	if (event->attr.comm)
4540 		return 1;
4541 
4542 	return 0;
4543 }
4544 
4545 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4546 				  struct perf_comm_event *comm_event)
4547 {
4548 	struct perf_event *event;
4549 
4550 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4551 		if (perf_event_comm_match(event))
4552 			perf_event_comm_output(event, comm_event);
4553 	}
4554 }
4555 
4556 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4557 {
4558 	struct perf_cpu_context *cpuctx;
4559 	struct perf_event_context *ctx;
4560 	char comm[TASK_COMM_LEN];
4561 	unsigned int size;
4562 	struct pmu *pmu;
4563 	int ctxn;
4564 
4565 	memset(comm, 0, sizeof(comm));
4566 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4567 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4568 
4569 	comm_event->comm = comm;
4570 	comm_event->comm_size = size;
4571 
4572 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4573 	rcu_read_lock();
4574 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4575 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4576 		if (cpuctx->unique_pmu != pmu)
4577 			goto next;
4578 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4579 
4580 		ctxn = pmu->task_ctx_nr;
4581 		if (ctxn < 0)
4582 			goto next;
4583 
4584 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4585 		if (ctx)
4586 			perf_event_comm_ctx(ctx, comm_event);
4587 next:
4588 		put_cpu_ptr(pmu->pmu_cpu_context);
4589 	}
4590 	rcu_read_unlock();
4591 }
4592 
4593 void perf_event_comm(struct task_struct *task)
4594 {
4595 	struct perf_comm_event comm_event;
4596 	struct perf_event_context *ctx;
4597 	int ctxn;
4598 
4599 	rcu_read_lock();
4600 	for_each_task_context_nr(ctxn) {
4601 		ctx = task->perf_event_ctxp[ctxn];
4602 		if (!ctx)
4603 			continue;
4604 
4605 		perf_event_enable_on_exec(ctx);
4606 	}
4607 	rcu_read_unlock();
4608 
4609 	if (!atomic_read(&nr_comm_events))
4610 		return;
4611 
4612 	comm_event = (struct perf_comm_event){
4613 		.task	= task,
4614 		/* .comm      */
4615 		/* .comm_size */
4616 		.event_id  = {
4617 			.header = {
4618 				.type = PERF_RECORD_COMM,
4619 				.misc = 0,
4620 				/* .size */
4621 			},
4622 			/* .pid */
4623 			/* .tid */
4624 		},
4625 	};
4626 
4627 	perf_event_comm_event(&comm_event);
4628 }
4629 
4630 /*
4631  * mmap tracking
4632  */
4633 
4634 struct perf_mmap_event {
4635 	struct vm_area_struct	*vma;
4636 
4637 	const char		*file_name;
4638 	int			file_size;
4639 
4640 	struct {
4641 		struct perf_event_header	header;
4642 
4643 		u32				pid;
4644 		u32				tid;
4645 		u64				start;
4646 		u64				len;
4647 		u64				pgoff;
4648 	} event_id;
4649 };
4650 
4651 static void perf_event_mmap_output(struct perf_event *event,
4652 				     struct perf_mmap_event *mmap_event)
4653 {
4654 	struct perf_output_handle handle;
4655 	struct perf_sample_data sample;
4656 	int size = mmap_event->event_id.header.size;
4657 	int ret;
4658 
4659 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4660 	ret = perf_output_begin(&handle, event,
4661 				mmap_event->event_id.header.size);
4662 	if (ret)
4663 		goto out;
4664 
4665 	mmap_event->event_id.pid = perf_event_pid(event, current);
4666 	mmap_event->event_id.tid = perf_event_tid(event, current);
4667 
4668 	perf_output_put(&handle, mmap_event->event_id);
4669 	__output_copy(&handle, mmap_event->file_name,
4670 				   mmap_event->file_size);
4671 
4672 	perf_event__output_id_sample(event, &handle, &sample);
4673 
4674 	perf_output_end(&handle);
4675 out:
4676 	mmap_event->event_id.header.size = size;
4677 }
4678 
4679 static int perf_event_mmap_match(struct perf_event *event,
4680 				   struct perf_mmap_event *mmap_event,
4681 				   int executable)
4682 {
4683 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4684 		return 0;
4685 
4686 	if (!event_filter_match(event))
4687 		return 0;
4688 
4689 	if ((!executable && event->attr.mmap_data) ||
4690 	    (executable && event->attr.mmap))
4691 		return 1;
4692 
4693 	return 0;
4694 }
4695 
4696 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4697 				  struct perf_mmap_event *mmap_event,
4698 				  int executable)
4699 {
4700 	struct perf_event *event;
4701 
4702 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4703 		if (perf_event_mmap_match(event, mmap_event, executable))
4704 			perf_event_mmap_output(event, mmap_event);
4705 	}
4706 }
4707 
4708 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4709 {
4710 	struct perf_cpu_context *cpuctx;
4711 	struct perf_event_context *ctx;
4712 	struct vm_area_struct *vma = mmap_event->vma;
4713 	struct file *file = vma->vm_file;
4714 	unsigned int size;
4715 	char tmp[16];
4716 	char *buf = NULL;
4717 	const char *name;
4718 	struct pmu *pmu;
4719 	int ctxn;
4720 
4721 	memset(tmp, 0, sizeof(tmp));
4722 
4723 	if (file) {
4724 		/*
4725 		 * d_path works from the end of the rb backwards, so we
4726 		 * need to add enough zero bytes after the string to handle
4727 		 * the 64bit alignment we do later.
4728 		 */
4729 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4730 		if (!buf) {
4731 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4732 			goto got_name;
4733 		}
4734 		name = d_path(&file->f_path, buf, PATH_MAX);
4735 		if (IS_ERR(name)) {
4736 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4737 			goto got_name;
4738 		}
4739 	} else {
4740 		if (arch_vma_name(mmap_event->vma)) {
4741 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4742 				       sizeof(tmp) - 1);
4743 			tmp[sizeof(tmp) - 1] = '\0';
4744 			goto got_name;
4745 		}
4746 
4747 		if (!vma->vm_mm) {
4748 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4749 			goto got_name;
4750 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4751 				vma->vm_end >= vma->vm_mm->brk) {
4752 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4753 			goto got_name;
4754 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4755 				vma->vm_end >= vma->vm_mm->start_stack) {
4756 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4757 			goto got_name;
4758 		}
4759 
4760 		name = strncpy(tmp, "//anon", sizeof(tmp));
4761 		goto got_name;
4762 	}
4763 
4764 got_name:
4765 	size = ALIGN(strlen(name)+1, sizeof(u64));
4766 
4767 	mmap_event->file_name = name;
4768 	mmap_event->file_size = size;
4769 
4770 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4771 
4772 	rcu_read_lock();
4773 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4774 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4775 		if (cpuctx->unique_pmu != pmu)
4776 			goto next;
4777 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4778 					vma->vm_flags & VM_EXEC);
4779 
4780 		ctxn = pmu->task_ctx_nr;
4781 		if (ctxn < 0)
4782 			goto next;
4783 
4784 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4785 		if (ctx) {
4786 			perf_event_mmap_ctx(ctx, mmap_event,
4787 					vma->vm_flags & VM_EXEC);
4788 		}
4789 next:
4790 		put_cpu_ptr(pmu->pmu_cpu_context);
4791 	}
4792 	rcu_read_unlock();
4793 
4794 	kfree(buf);
4795 }
4796 
4797 void perf_event_mmap(struct vm_area_struct *vma)
4798 {
4799 	struct perf_mmap_event mmap_event;
4800 
4801 	if (!atomic_read(&nr_mmap_events))
4802 		return;
4803 
4804 	mmap_event = (struct perf_mmap_event){
4805 		.vma	= vma,
4806 		/* .file_name */
4807 		/* .file_size */
4808 		.event_id  = {
4809 			.header = {
4810 				.type = PERF_RECORD_MMAP,
4811 				.misc = PERF_RECORD_MISC_USER,
4812 				/* .size */
4813 			},
4814 			/* .pid */
4815 			/* .tid */
4816 			.start  = vma->vm_start,
4817 			.len    = vma->vm_end - vma->vm_start,
4818 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4819 		},
4820 	};
4821 
4822 	perf_event_mmap_event(&mmap_event);
4823 }
4824 
4825 /*
4826  * IRQ throttle logging
4827  */
4828 
4829 static void perf_log_throttle(struct perf_event *event, int enable)
4830 {
4831 	struct perf_output_handle handle;
4832 	struct perf_sample_data sample;
4833 	int ret;
4834 
4835 	struct {
4836 		struct perf_event_header	header;
4837 		u64				time;
4838 		u64				id;
4839 		u64				stream_id;
4840 	} throttle_event = {
4841 		.header = {
4842 			.type = PERF_RECORD_THROTTLE,
4843 			.misc = 0,
4844 			.size = sizeof(throttle_event),
4845 		},
4846 		.time		= perf_clock(),
4847 		.id		= primary_event_id(event),
4848 		.stream_id	= event->id,
4849 	};
4850 
4851 	if (enable)
4852 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4853 
4854 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4855 
4856 	ret = perf_output_begin(&handle, event,
4857 				throttle_event.header.size);
4858 	if (ret)
4859 		return;
4860 
4861 	perf_output_put(&handle, throttle_event);
4862 	perf_event__output_id_sample(event, &handle, &sample);
4863 	perf_output_end(&handle);
4864 }
4865 
4866 /*
4867  * Generic event overflow handling, sampling.
4868  */
4869 
4870 static int __perf_event_overflow(struct perf_event *event,
4871 				   int throttle, struct perf_sample_data *data,
4872 				   struct pt_regs *regs)
4873 {
4874 	int events = atomic_read(&event->event_limit);
4875 	struct hw_perf_event *hwc = &event->hw;
4876 	u64 seq;
4877 	int ret = 0;
4878 
4879 	/*
4880 	 * Non-sampling counters might still use the PMI to fold short
4881 	 * hardware counters, ignore those.
4882 	 */
4883 	if (unlikely(!is_sampling_event(event)))
4884 		return 0;
4885 
4886 	seq = __this_cpu_read(perf_throttled_seq);
4887 	if (seq != hwc->interrupts_seq) {
4888 		hwc->interrupts_seq = seq;
4889 		hwc->interrupts = 1;
4890 	} else {
4891 		hwc->interrupts++;
4892 		if (unlikely(throttle
4893 			     && hwc->interrupts >= max_samples_per_tick)) {
4894 			__this_cpu_inc(perf_throttled_count);
4895 			hwc->interrupts = MAX_INTERRUPTS;
4896 			perf_log_throttle(event, 0);
4897 			ret = 1;
4898 		}
4899 	}
4900 
4901 	if (event->attr.freq) {
4902 		u64 now = perf_clock();
4903 		s64 delta = now - hwc->freq_time_stamp;
4904 
4905 		hwc->freq_time_stamp = now;
4906 
4907 		if (delta > 0 && delta < 2*TICK_NSEC)
4908 			perf_adjust_period(event, delta, hwc->last_period, true);
4909 	}
4910 
4911 	/*
4912 	 * XXX event_limit might not quite work as expected on inherited
4913 	 * events
4914 	 */
4915 
4916 	event->pending_kill = POLL_IN;
4917 	if (events && atomic_dec_and_test(&event->event_limit)) {
4918 		ret = 1;
4919 		event->pending_kill = POLL_HUP;
4920 		event->pending_disable = 1;
4921 		irq_work_queue(&event->pending);
4922 	}
4923 
4924 	if (event->overflow_handler)
4925 		event->overflow_handler(event, data, regs);
4926 	else
4927 		perf_event_output(event, data, regs);
4928 
4929 	if (event->fasync && event->pending_kill) {
4930 		event->pending_wakeup = 1;
4931 		irq_work_queue(&event->pending);
4932 	}
4933 
4934 	return ret;
4935 }
4936 
4937 int perf_event_overflow(struct perf_event *event,
4938 			  struct perf_sample_data *data,
4939 			  struct pt_regs *regs)
4940 {
4941 	return __perf_event_overflow(event, 1, data, regs);
4942 }
4943 
4944 /*
4945  * Generic software event infrastructure
4946  */
4947 
4948 struct swevent_htable {
4949 	struct swevent_hlist		*swevent_hlist;
4950 	struct mutex			hlist_mutex;
4951 	int				hlist_refcount;
4952 
4953 	/* Recursion avoidance in each contexts */
4954 	int				recursion[PERF_NR_CONTEXTS];
4955 };
4956 
4957 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4958 
4959 /*
4960  * We directly increment event->count and keep a second value in
4961  * event->hw.period_left to count intervals. This period event
4962  * is kept in the range [-sample_period, 0] so that we can use the
4963  * sign as trigger.
4964  */
4965 
4966 static u64 perf_swevent_set_period(struct perf_event *event)
4967 {
4968 	struct hw_perf_event *hwc = &event->hw;
4969 	u64 period = hwc->last_period;
4970 	u64 nr, offset;
4971 	s64 old, val;
4972 
4973 	hwc->last_period = hwc->sample_period;
4974 
4975 again:
4976 	old = val = local64_read(&hwc->period_left);
4977 	if (val < 0)
4978 		return 0;
4979 
4980 	nr = div64_u64(period + val, period);
4981 	offset = nr * period;
4982 	val -= offset;
4983 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4984 		goto again;
4985 
4986 	return nr;
4987 }
4988 
4989 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4990 				    struct perf_sample_data *data,
4991 				    struct pt_regs *regs)
4992 {
4993 	struct hw_perf_event *hwc = &event->hw;
4994 	int throttle = 0;
4995 
4996 	if (!overflow)
4997 		overflow = perf_swevent_set_period(event);
4998 
4999 	if (hwc->interrupts == MAX_INTERRUPTS)
5000 		return;
5001 
5002 	for (; overflow; overflow--) {
5003 		if (__perf_event_overflow(event, throttle,
5004 					    data, regs)) {
5005 			/*
5006 			 * We inhibit the overflow from happening when
5007 			 * hwc->interrupts == MAX_INTERRUPTS.
5008 			 */
5009 			break;
5010 		}
5011 		throttle = 1;
5012 	}
5013 }
5014 
5015 static void perf_swevent_event(struct perf_event *event, u64 nr,
5016 			       struct perf_sample_data *data,
5017 			       struct pt_regs *regs)
5018 {
5019 	struct hw_perf_event *hwc = &event->hw;
5020 
5021 	local64_add(nr, &event->count);
5022 
5023 	if (!regs)
5024 		return;
5025 
5026 	if (!is_sampling_event(event))
5027 		return;
5028 
5029 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5030 		data->period = nr;
5031 		return perf_swevent_overflow(event, 1, data, regs);
5032 	} else
5033 		data->period = event->hw.last_period;
5034 
5035 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5036 		return perf_swevent_overflow(event, 1, data, regs);
5037 
5038 	if (local64_add_negative(nr, &hwc->period_left))
5039 		return;
5040 
5041 	perf_swevent_overflow(event, 0, data, regs);
5042 }
5043 
5044 static int perf_exclude_event(struct perf_event *event,
5045 			      struct pt_regs *regs)
5046 {
5047 	if (event->hw.state & PERF_HES_STOPPED)
5048 		return 1;
5049 
5050 	if (regs) {
5051 		if (event->attr.exclude_user && user_mode(regs))
5052 			return 1;
5053 
5054 		if (event->attr.exclude_kernel && !user_mode(regs))
5055 			return 1;
5056 	}
5057 
5058 	return 0;
5059 }
5060 
5061 static int perf_swevent_match(struct perf_event *event,
5062 				enum perf_type_id type,
5063 				u32 event_id,
5064 				struct perf_sample_data *data,
5065 				struct pt_regs *regs)
5066 {
5067 	if (event->attr.type != type)
5068 		return 0;
5069 
5070 	if (event->attr.config != event_id)
5071 		return 0;
5072 
5073 	if (perf_exclude_event(event, regs))
5074 		return 0;
5075 
5076 	return 1;
5077 }
5078 
5079 static inline u64 swevent_hash(u64 type, u32 event_id)
5080 {
5081 	u64 val = event_id | (type << 32);
5082 
5083 	return hash_64(val, SWEVENT_HLIST_BITS);
5084 }
5085 
5086 static inline struct hlist_head *
5087 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5088 {
5089 	u64 hash = swevent_hash(type, event_id);
5090 
5091 	return &hlist->heads[hash];
5092 }
5093 
5094 /* For the read side: events when they trigger */
5095 static inline struct hlist_head *
5096 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5097 {
5098 	struct swevent_hlist *hlist;
5099 
5100 	hlist = rcu_dereference(swhash->swevent_hlist);
5101 	if (!hlist)
5102 		return NULL;
5103 
5104 	return __find_swevent_head(hlist, type, event_id);
5105 }
5106 
5107 /* For the event head insertion and removal in the hlist */
5108 static inline struct hlist_head *
5109 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5110 {
5111 	struct swevent_hlist *hlist;
5112 	u32 event_id = event->attr.config;
5113 	u64 type = event->attr.type;
5114 
5115 	/*
5116 	 * Event scheduling is always serialized against hlist allocation
5117 	 * and release. Which makes the protected version suitable here.
5118 	 * The context lock guarantees that.
5119 	 */
5120 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5121 					  lockdep_is_held(&event->ctx->lock));
5122 	if (!hlist)
5123 		return NULL;
5124 
5125 	return __find_swevent_head(hlist, type, event_id);
5126 }
5127 
5128 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5129 				    u64 nr,
5130 				    struct perf_sample_data *data,
5131 				    struct pt_regs *regs)
5132 {
5133 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5134 	struct perf_event *event;
5135 	struct hlist_head *head;
5136 
5137 	rcu_read_lock();
5138 	head = find_swevent_head_rcu(swhash, type, event_id);
5139 	if (!head)
5140 		goto end;
5141 
5142 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5143 		if (perf_swevent_match(event, type, event_id, data, regs))
5144 			perf_swevent_event(event, nr, data, regs);
5145 	}
5146 end:
5147 	rcu_read_unlock();
5148 }
5149 
5150 int perf_swevent_get_recursion_context(void)
5151 {
5152 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5153 
5154 	return get_recursion_context(swhash->recursion);
5155 }
5156 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5157 
5158 inline void perf_swevent_put_recursion_context(int rctx)
5159 {
5160 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5161 
5162 	put_recursion_context(swhash->recursion, rctx);
5163 }
5164 
5165 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5166 {
5167 	struct perf_sample_data data;
5168 	int rctx;
5169 
5170 	preempt_disable_notrace();
5171 	rctx = perf_swevent_get_recursion_context();
5172 	if (rctx < 0)
5173 		return;
5174 
5175 	perf_sample_data_init(&data, addr, 0);
5176 
5177 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5178 
5179 	perf_swevent_put_recursion_context(rctx);
5180 	preempt_enable_notrace();
5181 }
5182 
5183 static void perf_swevent_read(struct perf_event *event)
5184 {
5185 }
5186 
5187 static int perf_swevent_add(struct perf_event *event, int flags)
5188 {
5189 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5190 	struct hw_perf_event *hwc = &event->hw;
5191 	struct hlist_head *head;
5192 
5193 	if (is_sampling_event(event)) {
5194 		hwc->last_period = hwc->sample_period;
5195 		perf_swevent_set_period(event);
5196 	}
5197 
5198 	hwc->state = !(flags & PERF_EF_START);
5199 
5200 	head = find_swevent_head(swhash, event);
5201 	if (WARN_ON_ONCE(!head))
5202 		return -EINVAL;
5203 
5204 	hlist_add_head_rcu(&event->hlist_entry, head);
5205 
5206 	return 0;
5207 }
5208 
5209 static void perf_swevent_del(struct perf_event *event, int flags)
5210 {
5211 	hlist_del_rcu(&event->hlist_entry);
5212 }
5213 
5214 static void perf_swevent_start(struct perf_event *event, int flags)
5215 {
5216 	event->hw.state = 0;
5217 }
5218 
5219 static void perf_swevent_stop(struct perf_event *event, int flags)
5220 {
5221 	event->hw.state = PERF_HES_STOPPED;
5222 }
5223 
5224 /* Deref the hlist from the update side */
5225 static inline struct swevent_hlist *
5226 swevent_hlist_deref(struct swevent_htable *swhash)
5227 {
5228 	return rcu_dereference_protected(swhash->swevent_hlist,
5229 					 lockdep_is_held(&swhash->hlist_mutex));
5230 }
5231 
5232 static void swevent_hlist_release(struct swevent_htable *swhash)
5233 {
5234 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5235 
5236 	if (!hlist)
5237 		return;
5238 
5239 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5240 	kfree_rcu(hlist, rcu_head);
5241 }
5242 
5243 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5244 {
5245 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5246 
5247 	mutex_lock(&swhash->hlist_mutex);
5248 
5249 	if (!--swhash->hlist_refcount)
5250 		swevent_hlist_release(swhash);
5251 
5252 	mutex_unlock(&swhash->hlist_mutex);
5253 }
5254 
5255 static void swevent_hlist_put(struct perf_event *event)
5256 {
5257 	int cpu;
5258 
5259 	if (event->cpu != -1) {
5260 		swevent_hlist_put_cpu(event, event->cpu);
5261 		return;
5262 	}
5263 
5264 	for_each_possible_cpu(cpu)
5265 		swevent_hlist_put_cpu(event, cpu);
5266 }
5267 
5268 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5269 {
5270 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5271 	int err = 0;
5272 
5273 	mutex_lock(&swhash->hlist_mutex);
5274 
5275 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5276 		struct swevent_hlist *hlist;
5277 
5278 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5279 		if (!hlist) {
5280 			err = -ENOMEM;
5281 			goto exit;
5282 		}
5283 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5284 	}
5285 	swhash->hlist_refcount++;
5286 exit:
5287 	mutex_unlock(&swhash->hlist_mutex);
5288 
5289 	return err;
5290 }
5291 
5292 static int swevent_hlist_get(struct perf_event *event)
5293 {
5294 	int err;
5295 	int cpu, failed_cpu;
5296 
5297 	if (event->cpu != -1)
5298 		return swevent_hlist_get_cpu(event, event->cpu);
5299 
5300 	get_online_cpus();
5301 	for_each_possible_cpu(cpu) {
5302 		err = swevent_hlist_get_cpu(event, cpu);
5303 		if (err) {
5304 			failed_cpu = cpu;
5305 			goto fail;
5306 		}
5307 	}
5308 	put_online_cpus();
5309 
5310 	return 0;
5311 fail:
5312 	for_each_possible_cpu(cpu) {
5313 		if (cpu == failed_cpu)
5314 			break;
5315 		swevent_hlist_put_cpu(event, cpu);
5316 	}
5317 
5318 	put_online_cpus();
5319 	return err;
5320 }
5321 
5322 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5323 
5324 static void sw_perf_event_destroy(struct perf_event *event)
5325 {
5326 	u64 event_id = event->attr.config;
5327 
5328 	WARN_ON(event->parent);
5329 
5330 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5331 	swevent_hlist_put(event);
5332 }
5333 
5334 static int perf_swevent_init(struct perf_event *event)
5335 {
5336 	u64 event_id = event->attr.config;
5337 
5338 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5339 		return -ENOENT;
5340 
5341 	/*
5342 	 * no branch sampling for software events
5343 	 */
5344 	if (has_branch_stack(event))
5345 		return -EOPNOTSUPP;
5346 
5347 	switch (event_id) {
5348 	case PERF_COUNT_SW_CPU_CLOCK:
5349 	case PERF_COUNT_SW_TASK_CLOCK:
5350 		return -ENOENT;
5351 
5352 	default:
5353 		break;
5354 	}
5355 
5356 	if (event_id >= PERF_COUNT_SW_MAX)
5357 		return -ENOENT;
5358 
5359 	if (!event->parent) {
5360 		int err;
5361 
5362 		err = swevent_hlist_get(event);
5363 		if (err)
5364 			return err;
5365 
5366 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5367 		event->destroy = sw_perf_event_destroy;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static int perf_swevent_event_idx(struct perf_event *event)
5374 {
5375 	return 0;
5376 }
5377 
5378 static struct pmu perf_swevent = {
5379 	.task_ctx_nr	= perf_sw_context,
5380 
5381 	.event_init	= perf_swevent_init,
5382 	.add		= perf_swevent_add,
5383 	.del		= perf_swevent_del,
5384 	.start		= perf_swevent_start,
5385 	.stop		= perf_swevent_stop,
5386 	.read		= perf_swevent_read,
5387 
5388 	.event_idx	= perf_swevent_event_idx,
5389 };
5390 
5391 #ifdef CONFIG_EVENT_TRACING
5392 
5393 static int perf_tp_filter_match(struct perf_event *event,
5394 				struct perf_sample_data *data)
5395 {
5396 	void *record = data->raw->data;
5397 
5398 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5399 		return 1;
5400 	return 0;
5401 }
5402 
5403 static int perf_tp_event_match(struct perf_event *event,
5404 				struct perf_sample_data *data,
5405 				struct pt_regs *regs)
5406 {
5407 	if (event->hw.state & PERF_HES_STOPPED)
5408 		return 0;
5409 	/*
5410 	 * All tracepoints are from kernel-space.
5411 	 */
5412 	if (event->attr.exclude_kernel)
5413 		return 0;
5414 
5415 	if (!perf_tp_filter_match(event, data))
5416 		return 0;
5417 
5418 	return 1;
5419 }
5420 
5421 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5422 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5423 		   struct task_struct *task)
5424 {
5425 	struct perf_sample_data data;
5426 	struct perf_event *event;
5427 
5428 	struct perf_raw_record raw = {
5429 		.size = entry_size,
5430 		.data = record,
5431 	};
5432 
5433 	perf_sample_data_init(&data, addr, 0);
5434 	data.raw = &raw;
5435 
5436 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5437 		if (perf_tp_event_match(event, &data, regs))
5438 			perf_swevent_event(event, count, &data, regs);
5439 	}
5440 
5441 	/*
5442 	 * If we got specified a target task, also iterate its context and
5443 	 * deliver this event there too.
5444 	 */
5445 	if (task && task != current) {
5446 		struct perf_event_context *ctx;
5447 		struct trace_entry *entry = record;
5448 
5449 		rcu_read_lock();
5450 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5451 		if (!ctx)
5452 			goto unlock;
5453 
5454 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5455 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5456 				continue;
5457 			if (event->attr.config != entry->type)
5458 				continue;
5459 			if (perf_tp_event_match(event, &data, regs))
5460 				perf_swevent_event(event, count, &data, regs);
5461 		}
5462 unlock:
5463 		rcu_read_unlock();
5464 	}
5465 
5466 	perf_swevent_put_recursion_context(rctx);
5467 }
5468 EXPORT_SYMBOL_GPL(perf_tp_event);
5469 
5470 static void tp_perf_event_destroy(struct perf_event *event)
5471 {
5472 	perf_trace_destroy(event);
5473 }
5474 
5475 static int perf_tp_event_init(struct perf_event *event)
5476 {
5477 	int err;
5478 
5479 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5480 		return -ENOENT;
5481 
5482 	/*
5483 	 * no branch sampling for tracepoint events
5484 	 */
5485 	if (has_branch_stack(event))
5486 		return -EOPNOTSUPP;
5487 
5488 	err = perf_trace_init(event);
5489 	if (err)
5490 		return err;
5491 
5492 	event->destroy = tp_perf_event_destroy;
5493 
5494 	return 0;
5495 }
5496 
5497 static struct pmu perf_tracepoint = {
5498 	.task_ctx_nr	= perf_sw_context,
5499 
5500 	.event_init	= perf_tp_event_init,
5501 	.add		= perf_trace_add,
5502 	.del		= perf_trace_del,
5503 	.start		= perf_swevent_start,
5504 	.stop		= perf_swevent_stop,
5505 	.read		= perf_swevent_read,
5506 
5507 	.event_idx	= perf_swevent_event_idx,
5508 };
5509 
5510 static inline void perf_tp_register(void)
5511 {
5512 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5513 }
5514 
5515 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5516 {
5517 	char *filter_str;
5518 	int ret;
5519 
5520 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5521 		return -EINVAL;
5522 
5523 	filter_str = strndup_user(arg, PAGE_SIZE);
5524 	if (IS_ERR(filter_str))
5525 		return PTR_ERR(filter_str);
5526 
5527 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5528 
5529 	kfree(filter_str);
5530 	return ret;
5531 }
5532 
5533 static void perf_event_free_filter(struct perf_event *event)
5534 {
5535 	ftrace_profile_free_filter(event);
5536 }
5537 
5538 #else
5539 
5540 static inline void perf_tp_register(void)
5541 {
5542 }
5543 
5544 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5545 {
5546 	return -ENOENT;
5547 }
5548 
5549 static void perf_event_free_filter(struct perf_event *event)
5550 {
5551 }
5552 
5553 #endif /* CONFIG_EVENT_TRACING */
5554 
5555 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5556 void perf_bp_event(struct perf_event *bp, void *data)
5557 {
5558 	struct perf_sample_data sample;
5559 	struct pt_regs *regs = data;
5560 
5561 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5562 
5563 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5564 		perf_swevent_event(bp, 1, &sample, regs);
5565 }
5566 #endif
5567 
5568 /*
5569  * hrtimer based swevent callback
5570  */
5571 
5572 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5573 {
5574 	enum hrtimer_restart ret = HRTIMER_RESTART;
5575 	struct perf_sample_data data;
5576 	struct pt_regs *regs;
5577 	struct perf_event *event;
5578 	u64 period;
5579 
5580 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5581 
5582 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5583 		return HRTIMER_NORESTART;
5584 
5585 	event->pmu->read(event);
5586 
5587 	perf_sample_data_init(&data, 0, event->hw.last_period);
5588 	regs = get_irq_regs();
5589 
5590 	if (regs && !perf_exclude_event(event, regs)) {
5591 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5592 			if (__perf_event_overflow(event, 1, &data, regs))
5593 				ret = HRTIMER_NORESTART;
5594 	}
5595 
5596 	period = max_t(u64, 10000, event->hw.sample_period);
5597 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5598 
5599 	return ret;
5600 }
5601 
5602 static void perf_swevent_start_hrtimer(struct perf_event *event)
5603 {
5604 	struct hw_perf_event *hwc = &event->hw;
5605 	s64 period;
5606 
5607 	if (!is_sampling_event(event))
5608 		return;
5609 
5610 	period = local64_read(&hwc->period_left);
5611 	if (period) {
5612 		if (period < 0)
5613 			period = 10000;
5614 
5615 		local64_set(&hwc->period_left, 0);
5616 	} else {
5617 		period = max_t(u64, 10000, hwc->sample_period);
5618 	}
5619 	__hrtimer_start_range_ns(&hwc->hrtimer,
5620 				ns_to_ktime(period), 0,
5621 				HRTIMER_MODE_REL_PINNED, 0);
5622 }
5623 
5624 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5625 {
5626 	struct hw_perf_event *hwc = &event->hw;
5627 
5628 	if (is_sampling_event(event)) {
5629 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5630 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5631 
5632 		hrtimer_cancel(&hwc->hrtimer);
5633 	}
5634 }
5635 
5636 static void perf_swevent_init_hrtimer(struct perf_event *event)
5637 {
5638 	struct hw_perf_event *hwc = &event->hw;
5639 
5640 	if (!is_sampling_event(event))
5641 		return;
5642 
5643 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5644 	hwc->hrtimer.function = perf_swevent_hrtimer;
5645 
5646 	/*
5647 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5648 	 * mapping and avoid the whole period adjust feedback stuff.
5649 	 */
5650 	if (event->attr.freq) {
5651 		long freq = event->attr.sample_freq;
5652 
5653 		event->attr.sample_period = NSEC_PER_SEC / freq;
5654 		hwc->sample_period = event->attr.sample_period;
5655 		local64_set(&hwc->period_left, hwc->sample_period);
5656 		hwc->last_period = hwc->sample_period;
5657 		event->attr.freq = 0;
5658 	}
5659 }
5660 
5661 /*
5662  * Software event: cpu wall time clock
5663  */
5664 
5665 static void cpu_clock_event_update(struct perf_event *event)
5666 {
5667 	s64 prev;
5668 	u64 now;
5669 
5670 	now = local_clock();
5671 	prev = local64_xchg(&event->hw.prev_count, now);
5672 	local64_add(now - prev, &event->count);
5673 }
5674 
5675 static void cpu_clock_event_start(struct perf_event *event, int flags)
5676 {
5677 	local64_set(&event->hw.prev_count, local_clock());
5678 	perf_swevent_start_hrtimer(event);
5679 }
5680 
5681 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5682 {
5683 	perf_swevent_cancel_hrtimer(event);
5684 	cpu_clock_event_update(event);
5685 }
5686 
5687 static int cpu_clock_event_add(struct perf_event *event, int flags)
5688 {
5689 	if (flags & PERF_EF_START)
5690 		cpu_clock_event_start(event, flags);
5691 
5692 	return 0;
5693 }
5694 
5695 static void cpu_clock_event_del(struct perf_event *event, int flags)
5696 {
5697 	cpu_clock_event_stop(event, flags);
5698 }
5699 
5700 static void cpu_clock_event_read(struct perf_event *event)
5701 {
5702 	cpu_clock_event_update(event);
5703 }
5704 
5705 static int cpu_clock_event_init(struct perf_event *event)
5706 {
5707 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5708 		return -ENOENT;
5709 
5710 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5711 		return -ENOENT;
5712 
5713 	/*
5714 	 * no branch sampling for software events
5715 	 */
5716 	if (has_branch_stack(event))
5717 		return -EOPNOTSUPP;
5718 
5719 	perf_swevent_init_hrtimer(event);
5720 
5721 	return 0;
5722 }
5723 
5724 static struct pmu perf_cpu_clock = {
5725 	.task_ctx_nr	= perf_sw_context,
5726 
5727 	.event_init	= cpu_clock_event_init,
5728 	.add		= cpu_clock_event_add,
5729 	.del		= cpu_clock_event_del,
5730 	.start		= cpu_clock_event_start,
5731 	.stop		= cpu_clock_event_stop,
5732 	.read		= cpu_clock_event_read,
5733 
5734 	.event_idx	= perf_swevent_event_idx,
5735 };
5736 
5737 /*
5738  * Software event: task time clock
5739  */
5740 
5741 static void task_clock_event_update(struct perf_event *event, u64 now)
5742 {
5743 	u64 prev;
5744 	s64 delta;
5745 
5746 	prev = local64_xchg(&event->hw.prev_count, now);
5747 	delta = now - prev;
5748 	local64_add(delta, &event->count);
5749 }
5750 
5751 static void task_clock_event_start(struct perf_event *event, int flags)
5752 {
5753 	local64_set(&event->hw.prev_count, event->ctx->time);
5754 	perf_swevent_start_hrtimer(event);
5755 }
5756 
5757 static void task_clock_event_stop(struct perf_event *event, int flags)
5758 {
5759 	perf_swevent_cancel_hrtimer(event);
5760 	task_clock_event_update(event, event->ctx->time);
5761 }
5762 
5763 static int task_clock_event_add(struct perf_event *event, int flags)
5764 {
5765 	if (flags & PERF_EF_START)
5766 		task_clock_event_start(event, flags);
5767 
5768 	return 0;
5769 }
5770 
5771 static void task_clock_event_del(struct perf_event *event, int flags)
5772 {
5773 	task_clock_event_stop(event, PERF_EF_UPDATE);
5774 }
5775 
5776 static void task_clock_event_read(struct perf_event *event)
5777 {
5778 	u64 now = perf_clock();
5779 	u64 delta = now - event->ctx->timestamp;
5780 	u64 time = event->ctx->time + delta;
5781 
5782 	task_clock_event_update(event, time);
5783 }
5784 
5785 static int task_clock_event_init(struct perf_event *event)
5786 {
5787 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5788 		return -ENOENT;
5789 
5790 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5791 		return -ENOENT;
5792 
5793 	/*
5794 	 * no branch sampling for software events
5795 	 */
5796 	if (has_branch_stack(event))
5797 		return -EOPNOTSUPP;
5798 
5799 	perf_swevent_init_hrtimer(event);
5800 
5801 	return 0;
5802 }
5803 
5804 static struct pmu perf_task_clock = {
5805 	.task_ctx_nr	= perf_sw_context,
5806 
5807 	.event_init	= task_clock_event_init,
5808 	.add		= task_clock_event_add,
5809 	.del		= task_clock_event_del,
5810 	.start		= task_clock_event_start,
5811 	.stop		= task_clock_event_stop,
5812 	.read		= task_clock_event_read,
5813 
5814 	.event_idx	= perf_swevent_event_idx,
5815 };
5816 
5817 static void perf_pmu_nop_void(struct pmu *pmu)
5818 {
5819 }
5820 
5821 static int perf_pmu_nop_int(struct pmu *pmu)
5822 {
5823 	return 0;
5824 }
5825 
5826 static void perf_pmu_start_txn(struct pmu *pmu)
5827 {
5828 	perf_pmu_disable(pmu);
5829 }
5830 
5831 static int perf_pmu_commit_txn(struct pmu *pmu)
5832 {
5833 	perf_pmu_enable(pmu);
5834 	return 0;
5835 }
5836 
5837 static void perf_pmu_cancel_txn(struct pmu *pmu)
5838 {
5839 	perf_pmu_enable(pmu);
5840 }
5841 
5842 static int perf_event_idx_default(struct perf_event *event)
5843 {
5844 	return event->hw.idx + 1;
5845 }
5846 
5847 /*
5848  * Ensures all contexts with the same task_ctx_nr have the same
5849  * pmu_cpu_context too.
5850  */
5851 static void *find_pmu_context(int ctxn)
5852 {
5853 	struct pmu *pmu;
5854 
5855 	if (ctxn < 0)
5856 		return NULL;
5857 
5858 	list_for_each_entry(pmu, &pmus, entry) {
5859 		if (pmu->task_ctx_nr == ctxn)
5860 			return pmu->pmu_cpu_context;
5861 	}
5862 
5863 	return NULL;
5864 }
5865 
5866 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5867 {
5868 	int cpu;
5869 
5870 	for_each_possible_cpu(cpu) {
5871 		struct perf_cpu_context *cpuctx;
5872 
5873 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5874 
5875 		if (cpuctx->unique_pmu == old_pmu)
5876 			cpuctx->unique_pmu = pmu;
5877 	}
5878 }
5879 
5880 static void free_pmu_context(struct pmu *pmu)
5881 {
5882 	struct pmu *i;
5883 
5884 	mutex_lock(&pmus_lock);
5885 	/*
5886 	 * Like a real lame refcount.
5887 	 */
5888 	list_for_each_entry(i, &pmus, entry) {
5889 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5890 			update_pmu_context(i, pmu);
5891 			goto out;
5892 		}
5893 	}
5894 
5895 	free_percpu(pmu->pmu_cpu_context);
5896 out:
5897 	mutex_unlock(&pmus_lock);
5898 }
5899 static struct idr pmu_idr;
5900 
5901 static ssize_t
5902 type_show(struct device *dev, struct device_attribute *attr, char *page)
5903 {
5904 	struct pmu *pmu = dev_get_drvdata(dev);
5905 
5906 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5907 }
5908 
5909 static struct device_attribute pmu_dev_attrs[] = {
5910        __ATTR_RO(type),
5911        __ATTR_NULL,
5912 };
5913 
5914 static int pmu_bus_running;
5915 static struct bus_type pmu_bus = {
5916 	.name		= "event_source",
5917 	.dev_attrs	= pmu_dev_attrs,
5918 };
5919 
5920 static void pmu_dev_release(struct device *dev)
5921 {
5922 	kfree(dev);
5923 }
5924 
5925 static int pmu_dev_alloc(struct pmu *pmu)
5926 {
5927 	int ret = -ENOMEM;
5928 
5929 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5930 	if (!pmu->dev)
5931 		goto out;
5932 
5933 	pmu->dev->groups = pmu->attr_groups;
5934 	device_initialize(pmu->dev);
5935 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5936 	if (ret)
5937 		goto free_dev;
5938 
5939 	dev_set_drvdata(pmu->dev, pmu);
5940 	pmu->dev->bus = &pmu_bus;
5941 	pmu->dev->release = pmu_dev_release;
5942 	ret = device_add(pmu->dev);
5943 	if (ret)
5944 		goto free_dev;
5945 
5946 out:
5947 	return ret;
5948 
5949 free_dev:
5950 	put_device(pmu->dev);
5951 	goto out;
5952 }
5953 
5954 static struct lock_class_key cpuctx_mutex;
5955 static struct lock_class_key cpuctx_lock;
5956 
5957 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5958 {
5959 	int cpu, ret;
5960 
5961 	mutex_lock(&pmus_lock);
5962 	ret = -ENOMEM;
5963 	pmu->pmu_disable_count = alloc_percpu(int);
5964 	if (!pmu->pmu_disable_count)
5965 		goto unlock;
5966 
5967 	pmu->type = -1;
5968 	if (!name)
5969 		goto skip_type;
5970 	pmu->name = name;
5971 
5972 	if (type < 0) {
5973 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5974 		if (type < 0) {
5975 			ret = type;
5976 			goto free_pdc;
5977 		}
5978 	}
5979 	pmu->type = type;
5980 
5981 	if (pmu_bus_running) {
5982 		ret = pmu_dev_alloc(pmu);
5983 		if (ret)
5984 			goto free_idr;
5985 	}
5986 
5987 skip_type:
5988 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5989 	if (pmu->pmu_cpu_context)
5990 		goto got_cpu_context;
5991 
5992 	ret = -ENOMEM;
5993 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5994 	if (!pmu->pmu_cpu_context)
5995 		goto free_dev;
5996 
5997 	for_each_possible_cpu(cpu) {
5998 		struct perf_cpu_context *cpuctx;
5999 
6000 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6001 		__perf_event_init_context(&cpuctx->ctx);
6002 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6003 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6004 		cpuctx->ctx.type = cpu_context;
6005 		cpuctx->ctx.pmu = pmu;
6006 		cpuctx->jiffies_interval = 1;
6007 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6008 		cpuctx->unique_pmu = pmu;
6009 	}
6010 
6011 got_cpu_context:
6012 	if (!pmu->start_txn) {
6013 		if (pmu->pmu_enable) {
6014 			/*
6015 			 * If we have pmu_enable/pmu_disable calls, install
6016 			 * transaction stubs that use that to try and batch
6017 			 * hardware accesses.
6018 			 */
6019 			pmu->start_txn  = perf_pmu_start_txn;
6020 			pmu->commit_txn = perf_pmu_commit_txn;
6021 			pmu->cancel_txn = perf_pmu_cancel_txn;
6022 		} else {
6023 			pmu->start_txn  = perf_pmu_nop_void;
6024 			pmu->commit_txn = perf_pmu_nop_int;
6025 			pmu->cancel_txn = perf_pmu_nop_void;
6026 		}
6027 	}
6028 
6029 	if (!pmu->pmu_enable) {
6030 		pmu->pmu_enable  = perf_pmu_nop_void;
6031 		pmu->pmu_disable = perf_pmu_nop_void;
6032 	}
6033 
6034 	if (!pmu->event_idx)
6035 		pmu->event_idx = perf_event_idx_default;
6036 
6037 	list_add_rcu(&pmu->entry, &pmus);
6038 	ret = 0;
6039 unlock:
6040 	mutex_unlock(&pmus_lock);
6041 
6042 	return ret;
6043 
6044 free_dev:
6045 	device_del(pmu->dev);
6046 	put_device(pmu->dev);
6047 
6048 free_idr:
6049 	if (pmu->type >= PERF_TYPE_MAX)
6050 		idr_remove(&pmu_idr, pmu->type);
6051 
6052 free_pdc:
6053 	free_percpu(pmu->pmu_disable_count);
6054 	goto unlock;
6055 }
6056 
6057 void perf_pmu_unregister(struct pmu *pmu)
6058 {
6059 	mutex_lock(&pmus_lock);
6060 	list_del_rcu(&pmu->entry);
6061 	mutex_unlock(&pmus_lock);
6062 
6063 	/*
6064 	 * We dereference the pmu list under both SRCU and regular RCU, so
6065 	 * synchronize against both of those.
6066 	 */
6067 	synchronize_srcu(&pmus_srcu);
6068 	synchronize_rcu();
6069 
6070 	free_percpu(pmu->pmu_disable_count);
6071 	if (pmu->type >= PERF_TYPE_MAX)
6072 		idr_remove(&pmu_idr, pmu->type);
6073 	device_del(pmu->dev);
6074 	put_device(pmu->dev);
6075 	free_pmu_context(pmu);
6076 }
6077 
6078 struct pmu *perf_init_event(struct perf_event *event)
6079 {
6080 	struct pmu *pmu = NULL;
6081 	int idx;
6082 	int ret;
6083 
6084 	idx = srcu_read_lock(&pmus_srcu);
6085 
6086 	rcu_read_lock();
6087 	pmu = idr_find(&pmu_idr, event->attr.type);
6088 	rcu_read_unlock();
6089 	if (pmu) {
6090 		event->pmu = pmu;
6091 		ret = pmu->event_init(event);
6092 		if (ret)
6093 			pmu = ERR_PTR(ret);
6094 		goto unlock;
6095 	}
6096 
6097 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6098 		event->pmu = pmu;
6099 		ret = pmu->event_init(event);
6100 		if (!ret)
6101 			goto unlock;
6102 
6103 		if (ret != -ENOENT) {
6104 			pmu = ERR_PTR(ret);
6105 			goto unlock;
6106 		}
6107 	}
6108 	pmu = ERR_PTR(-ENOENT);
6109 unlock:
6110 	srcu_read_unlock(&pmus_srcu, idx);
6111 
6112 	return pmu;
6113 }
6114 
6115 /*
6116  * Allocate and initialize a event structure
6117  */
6118 static struct perf_event *
6119 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6120 		 struct task_struct *task,
6121 		 struct perf_event *group_leader,
6122 		 struct perf_event *parent_event,
6123 		 perf_overflow_handler_t overflow_handler,
6124 		 void *context)
6125 {
6126 	struct pmu *pmu;
6127 	struct perf_event *event;
6128 	struct hw_perf_event *hwc;
6129 	long err;
6130 
6131 	if ((unsigned)cpu >= nr_cpu_ids) {
6132 		if (!task || cpu != -1)
6133 			return ERR_PTR(-EINVAL);
6134 	}
6135 
6136 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6137 	if (!event)
6138 		return ERR_PTR(-ENOMEM);
6139 
6140 	/*
6141 	 * Single events are their own group leaders, with an
6142 	 * empty sibling list:
6143 	 */
6144 	if (!group_leader)
6145 		group_leader = event;
6146 
6147 	mutex_init(&event->child_mutex);
6148 	INIT_LIST_HEAD(&event->child_list);
6149 
6150 	INIT_LIST_HEAD(&event->group_entry);
6151 	INIT_LIST_HEAD(&event->event_entry);
6152 	INIT_LIST_HEAD(&event->sibling_list);
6153 	INIT_LIST_HEAD(&event->rb_entry);
6154 
6155 	init_waitqueue_head(&event->waitq);
6156 	init_irq_work(&event->pending, perf_pending_event);
6157 
6158 	mutex_init(&event->mmap_mutex);
6159 
6160 	atomic_long_set(&event->refcount, 1);
6161 	event->cpu		= cpu;
6162 	event->attr		= *attr;
6163 	event->group_leader	= group_leader;
6164 	event->pmu		= NULL;
6165 	event->oncpu		= -1;
6166 
6167 	event->parent		= parent_event;
6168 
6169 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6170 	event->id		= atomic64_inc_return(&perf_event_id);
6171 
6172 	event->state		= PERF_EVENT_STATE_INACTIVE;
6173 
6174 	if (task) {
6175 		event->attach_state = PERF_ATTACH_TASK;
6176 
6177 		if (attr->type == PERF_TYPE_TRACEPOINT)
6178 			event->hw.tp_target = task;
6179 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6180 		/*
6181 		 * hw_breakpoint is a bit difficult here..
6182 		 */
6183 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6184 			event->hw.bp_target = task;
6185 #endif
6186 	}
6187 
6188 	if (!overflow_handler && parent_event) {
6189 		overflow_handler = parent_event->overflow_handler;
6190 		context = parent_event->overflow_handler_context;
6191 	}
6192 
6193 	event->overflow_handler	= overflow_handler;
6194 	event->overflow_handler_context = context;
6195 
6196 	perf_event__state_init(event);
6197 
6198 	pmu = NULL;
6199 
6200 	hwc = &event->hw;
6201 	hwc->sample_period = attr->sample_period;
6202 	if (attr->freq && attr->sample_freq)
6203 		hwc->sample_period = 1;
6204 	hwc->last_period = hwc->sample_period;
6205 
6206 	local64_set(&hwc->period_left, hwc->sample_period);
6207 
6208 	/*
6209 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6210 	 */
6211 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6212 		goto done;
6213 
6214 	pmu = perf_init_event(event);
6215 
6216 done:
6217 	err = 0;
6218 	if (!pmu)
6219 		err = -EINVAL;
6220 	else if (IS_ERR(pmu))
6221 		err = PTR_ERR(pmu);
6222 
6223 	if (err) {
6224 		if (event->ns)
6225 			put_pid_ns(event->ns);
6226 		kfree(event);
6227 		return ERR_PTR(err);
6228 	}
6229 
6230 	if (!event->parent) {
6231 		if (event->attach_state & PERF_ATTACH_TASK)
6232 			static_key_slow_inc(&perf_sched_events.key);
6233 		if (event->attr.mmap || event->attr.mmap_data)
6234 			atomic_inc(&nr_mmap_events);
6235 		if (event->attr.comm)
6236 			atomic_inc(&nr_comm_events);
6237 		if (event->attr.task)
6238 			atomic_inc(&nr_task_events);
6239 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6240 			err = get_callchain_buffers();
6241 			if (err) {
6242 				free_event(event);
6243 				return ERR_PTR(err);
6244 			}
6245 		}
6246 		if (has_branch_stack(event)) {
6247 			static_key_slow_inc(&perf_sched_events.key);
6248 			if (!(event->attach_state & PERF_ATTACH_TASK))
6249 				atomic_inc(&per_cpu(perf_branch_stack_events,
6250 						    event->cpu));
6251 		}
6252 	}
6253 
6254 	return event;
6255 }
6256 
6257 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6258 			  struct perf_event_attr *attr)
6259 {
6260 	u32 size;
6261 	int ret;
6262 
6263 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6264 		return -EFAULT;
6265 
6266 	/*
6267 	 * zero the full structure, so that a short copy will be nice.
6268 	 */
6269 	memset(attr, 0, sizeof(*attr));
6270 
6271 	ret = get_user(size, &uattr->size);
6272 	if (ret)
6273 		return ret;
6274 
6275 	if (size > PAGE_SIZE)	/* silly large */
6276 		goto err_size;
6277 
6278 	if (!size)		/* abi compat */
6279 		size = PERF_ATTR_SIZE_VER0;
6280 
6281 	if (size < PERF_ATTR_SIZE_VER0)
6282 		goto err_size;
6283 
6284 	/*
6285 	 * If we're handed a bigger struct than we know of,
6286 	 * ensure all the unknown bits are 0 - i.e. new
6287 	 * user-space does not rely on any kernel feature
6288 	 * extensions we dont know about yet.
6289 	 */
6290 	if (size > sizeof(*attr)) {
6291 		unsigned char __user *addr;
6292 		unsigned char __user *end;
6293 		unsigned char val;
6294 
6295 		addr = (void __user *)uattr + sizeof(*attr);
6296 		end  = (void __user *)uattr + size;
6297 
6298 		for (; addr < end; addr++) {
6299 			ret = get_user(val, addr);
6300 			if (ret)
6301 				return ret;
6302 			if (val)
6303 				goto err_size;
6304 		}
6305 		size = sizeof(*attr);
6306 	}
6307 
6308 	ret = copy_from_user(attr, uattr, size);
6309 	if (ret)
6310 		return -EFAULT;
6311 
6312 	if (attr->__reserved_1)
6313 		return -EINVAL;
6314 
6315 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6316 		return -EINVAL;
6317 
6318 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6319 		return -EINVAL;
6320 
6321 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6322 		u64 mask = attr->branch_sample_type;
6323 
6324 		/* only using defined bits */
6325 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6326 			return -EINVAL;
6327 
6328 		/* at least one branch bit must be set */
6329 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6330 			return -EINVAL;
6331 
6332 		/* kernel level capture: check permissions */
6333 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6334 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6335 			return -EACCES;
6336 
6337 		/* propagate priv level, when not set for branch */
6338 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6339 
6340 			/* exclude_kernel checked on syscall entry */
6341 			if (!attr->exclude_kernel)
6342 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6343 
6344 			if (!attr->exclude_user)
6345 				mask |= PERF_SAMPLE_BRANCH_USER;
6346 
6347 			if (!attr->exclude_hv)
6348 				mask |= PERF_SAMPLE_BRANCH_HV;
6349 			/*
6350 			 * adjust user setting (for HW filter setup)
6351 			 */
6352 			attr->branch_sample_type = mask;
6353 		}
6354 	}
6355 
6356 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6357 		ret = perf_reg_validate(attr->sample_regs_user);
6358 		if (ret)
6359 			return ret;
6360 	}
6361 
6362 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6363 		if (!arch_perf_have_user_stack_dump())
6364 			return -ENOSYS;
6365 
6366 		/*
6367 		 * We have __u32 type for the size, but so far
6368 		 * we can only use __u16 as maximum due to the
6369 		 * __u16 sample size limit.
6370 		 */
6371 		if (attr->sample_stack_user >= USHRT_MAX)
6372 			ret = -EINVAL;
6373 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6374 			ret = -EINVAL;
6375 	}
6376 
6377 out:
6378 	return ret;
6379 
6380 err_size:
6381 	put_user(sizeof(*attr), &uattr->size);
6382 	ret = -E2BIG;
6383 	goto out;
6384 }
6385 
6386 static int
6387 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6388 {
6389 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6390 	int ret = -EINVAL;
6391 
6392 	if (!output_event)
6393 		goto set;
6394 
6395 	/* don't allow circular references */
6396 	if (event == output_event)
6397 		goto out;
6398 
6399 	/*
6400 	 * Don't allow cross-cpu buffers
6401 	 */
6402 	if (output_event->cpu != event->cpu)
6403 		goto out;
6404 
6405 	/*
6406 	 * If its not a per-cpu rb, it must be the same task.
6407 	 */
6408 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6409 		goto out;
6410 
6411 set:
6412 	mutex_lock(&event->mmap_mutex);
6413 	/* Can't redirect output if we've got an active mmap() */
6414 	if (atomic_read(&event->mmap_count))
6415 		goto unlock;
6416 
6417 	if (output_event) {
6418 		/* get the rb we want to redirect to */
6419 		rb = ring_buffer_get(output_event);
6420 		if (!rb)
6421 			goto unlock;
6422 	}
6423 
6424 	old_rb = event->rb;
6425 	rcu_assign_pointer(event->rb, rb);
6426 	if (old_rb)
6427 		ring_buffer_detach(event, old_rb);
6428 	ret = 0;
6429 unlock:
6430 	mutex_unlock(&event->mmap_mutex);
6431 
6432 	if (old_rb)
6433 		ring_buffer_put(old_rb);
6434 out:
6435 	return ret;
6436 }
6437 
6438 /**
6439  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6440  *
6441  * @attr_uptr:	event_id type attributes for monitoring/sampling
6442  * @pid:		target pid
6443  * @cpu:		target cpu
6444  * @group_fd:		group leader event fd
6445  */
6446 SYSCALL_DEFINE5(perf_event_open,
6447 		struct perf_event_attr __user *, attr_uptr,
6448 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6449 {
6450 	struct perf_event *group_leader = NULL, *output_event = NULL;
6451 	struct perf_event *event, *sibling;
6452 	struct perf_event_attr attr;
6453 	struct perf_event_context *ctx;
6454 	struct file *event_file = NULL;
6455 	struct fd group = {NULL, 0};
6456 	struct task_struct *task = NULL;
6457 	struct pmu *pmu;
6458 	int event_fd;
6459 	int move_group = 0;
6460 	int err;
6461 
6462 	/* for future expandability... */
6463 	if (flags & ~PERF_FLAG_ALL)
6464 		return -EINVAL;
6465 
6466 	err = perf_copy_attr(attr_uptr, &attr);
6467 	if (err)
6468 		return err;
6469 
6470 	if (!attr.exclude_kernel) {
6471 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6472 			return -EACCES;
6473 	}
6474 
6475 	if (attr.freq) {
6476 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6477 			return -EINVAL;
6478 	}
6479 
6480 	/*
6481 	 * In cgroup mode, the pid argument is used to pass the fd
6482 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6483 	 * designates the cpu on which to monitor threads from that
6484 	 * cgroup.
6485 	 */
6486 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6487 		return -EINVAL;
6488 
6489 	event_fd = get_unused_fd();
6490 	if (event_fd < 0)
6491 		return event_fd;
6492 
6493 	if (group_fd != -1) {
6494 		err = perf_fget_light(group_fd, &group);
6495 		if (err)
6496 			goto err_fd;
6497 		group_leader = group.file->private_data;
6498 		if (flags & PERF_FLAG_FD_OUTPUT)
6499 			output_event = group_leader;
6500 		if (flags & PERF_FLAG_FD_NO_GROUP)
6501 			group_leader = NULL;
6502 	}
6503 
6504 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6505 		task = find_lively_task_by_vpid(pid);
6506 		if (IS_ERR(task)) {
6507 			err = PTR_ERR(task);
6508 			goto err_group_fd;
6509 		}
6510 	}
6511 
6512 	get_online_cpus();
6513 
6514 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6515 				 NULL, NULL);
6516 	if (IS_ERR(event)) {
6517 		err = PTR_ERR(event);
6518 		goto err_task;
6519 	}
6520 
6521 	if (flags & PERF_FLAG_PID_CGROUP) {
6522 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6523 		if (err)
6524 			goto err_alloc;
6525 		/*
6526 		 * one more event:
6527 		 * - that has cgroup constraint on event->cpu
6528 		 * - that may need work on context switch
6529 		 */
6530 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6531 		static_key_slow_inc(&perf_sched_events.key);
6532 	}
6533 
6534 	/*
6535 	 * Special case software events and allow them to be part of
6536 	 * any hardware group.
6537 	 */
6538 	pmu = event->pmu;
6539 
6540 	if (group_leader &&
6541 	    (is_software_event(event) != is_software_event(group_leader))) {
6542 		if (is_software_event(event)) {
6543 			/*
6544 			 * If event and group_leader are not both a software
6545 			 * event, and event is, then group leader is not.
6546 			 *
6547 			 * Allow the addition of software events to !software
6548 			 * groups, this is safe because software events never
6549 			 * fail to schedule.
6550 			 */
6551 			pmu = group_leader->pmu;
6552 		} else if (is_software_event(group_leader) &&
6553 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6554 			/*
6555 			 * In case the group is a pure software group, and we
6556 			 * try to add a hardware event, move the whole group to
6557 			 * the hardware context.
6558 			 */
6559 			move_group = 1;
6560 		}
6561 	}
6562 
6563 	/*
6564 	 * Get the target context (task or percpu):
6565 	 */
6566 	ctx = find_get_context(pmu, task, event->cpu);
6567 	if (IS_ERR(ctx)) {
6568 		err = PTR_ERR(ctx);
6569 		goto err_alloc;
6570 	}
6571 
6572 	if (task) {
6573 		put_task_struct(task);
6574 		task = NULL;
6575 	}
6576 
6577 	/*
6578 	 * Look up the group leader (we will attach this event to it):
6579 	 */
6580 	if (group_leader) {
6581 		err = -EINVAL;
6582 
6583 		/*
6584 		 * Do not allow a recursive hierarchy (this new sibling
6585 		 * becoming part of another group-sibling):
6586 		 */
6587 		if (group_leader->group_leader != group_leader)
6588 			goto err_context;
6589 		/*
6590 		 * Do not allow to attach to a group in a different
6591 		 * task or CPU context:
6592 		 */
6593 		if (move_group) {
6594 			if (group_leader->ctx->type != ctx->type)
6595 				goto err_context;
6596 		} else {
6597 			if (group_leader->ctx != ctx)
6598 				goto err_context;
6599 		}
6600 
6601 		/*
6602 		 * Only a group leader can be exclusive or pinned
6603 		 */
6604 		if (attr.exclusive || attr.pinned)
6605 			goto err_context;
6606 	}
6607 
6608 	if (output_event) {
6609 		err = perf_event_set_output(event, output_event);
6610 		if (err)
6611 			goto err_context;
6612 	}
6613 
6614 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6615 	if (IS_ERR(event_file)) {
6616 		err = PTR_ERR(event_file);
6617 		goto err_context;
6618 	}
6619 
6620 	if (move_group) {
6621 		struct perf_event_context *gctx = group_leader->ctx;
6622 
6623 		mutex_lock(&gctx->mutex);
6624 		perf_remove_from_context(group_leader);
6625 
6626 		/*
6627 		 * Removing from the context ends up with disabled
6628 		 * event. What we want here is event in the initial
6629 		 * startup state, ready to be add into new context.
6630 		 */
6631 		perf_event__state_init(group_leader);
6632 		list_for_each_entry(sibling, &group_leader->sibling_list,
6633 				    group_entry) {
6634 			perf_remove_from_context(sibling);
6635 			perf_event__state_init(sibling);
6636 			put_ctx(gctx);
6637 		}
6638 		mutex_unlock(&gctx->mutex);
6639 		put_ctx(gctx);
6640 	}
6641 
6642 	WARN_ON_ONCE(ctx->parent_ctx);
6643 	mutex_lock(&ctx->mutex);
6644 
6645 	if (move_group) {
6646 		synchronize_rcu();
6647 		perf_install_in_context(ctx, group_leader, event->cpu);
6648 		get_ctx(ctx);
6649 		list_for_each_entry(sibling, &group_leader->sibling_list,
6650 				    group_entry) {
6651 			perf_install_in_context(ctx, sibling, event->cpu);
6652 			get_ctx(ctx);
6653 		}
6654 	}
6655 
6656 	perf_install_in_context(ctx, event, event->cpu);
6657 	++ctx->generation;
6658 	perf_unpin_context(ctx);
6659 	mutex_unlock(&ctx->mutex);
6660 
6661 	put_online_cpus();
6662 
6663 	event->owner = current;
6664 
6665 	mutex_lock(&current->perf_event_mutex);
6666 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6667 	mutex_unlock(&current->perf_event_mutex);
6668 
6669 	/*
6670 	 * Precalculate sample_data sizes
6671 	 */
6672 	perf_event__header_size(event);
6673 	perf_event__id_header_size(event);
6674 
6675 	/*
6676 	 * Drop the reference on the group_event after placing the
6677 	 * new event on the sibling_list. This ensures destruction
6678 	 * of the group leader will find the pointer to itself in
6679 	 * perf_group_detach().
6680 	 */
6681 	fdput(group);
6682 	fd_install(event_fd, event_file);
6683 	return event_fd;
6684 
6685 err_context:
6686 	perf_unpin_context(ctx);
6687 	put_ctx(ctx);
6688 err_alloc:
6689 	free_event(event);
6690 err_task:
6691 	put_online_cpus();
6692 	if (task)
6693 		put_task_struct(task);
6694 err_group_fd:
6695 	fdput(group);
6696 err_fd:
6697 	put_unused_fd(event_fd);
6698 	return err;
6699 }
6700 
6701 /**
6702  * perf_event_create_kernel_counter
6703  *
6704  * @attr: attributes of the counter to create
6705  * @cpu: cpu in which the counter is bound
6706  * @task: task to profile (NULL for percpu)
6707  */
6708 struct perf_event *
6709 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6710 				 struct task_struct *task,
6711 				 perf_overflow_handler_t overflow_handler,
6712 				 void *context)
6713 {
6714 	struct perf_event_context *ctx;
6715 	struct perf_event *event;
6716 	int err;
6717 
6718 	/*
6719 	 * Get the target context (task or percpu):
6720 	 */
6721 
6722 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6723 				 overflow_handler, context);
6724 	if (IS_ERR(event)) {
6725 		err = PTR_ERR(event);
6726 		goto err;
6727 	}
6728 
6729 	ctx = find_get_context(event->pmu, task, cpu);
6730 	if (IS_ERR(ctx)) {
6731 		err = PTR_ERR(ctx);
6732 		goto err_free;
6733 	}
6734 
6735 	WARN_ON_ONCE(ctx->parent_ctx);
6736 	mutex_lock(&ctx->mutex);
6737 	perf_install_in_context(ctx, event, cpu);
6738 	++ctx->generation;
6739 	perf_unpin_context(ctx);
6740 	mutex_unlock(&ctx->mutex);
6741 
6742 	return event;
6743 
6744 err_free:
6745 	free_event(event);
6746 err:
6747 	return ERR_PTR(err);
6748 }
6749 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6750 
6751 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6752 {
6753 	struct perf_event_context *src_ctx;
6754 	struct perf_event_context *dst_ctx;
6755 	struct perf_event *event, *tmp;
6756 	LIST_HEAD(events);
6757 
6758 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6759 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6760 
6761 	mutex_lock(&src_ctx->mutex);
6762 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6763 				 event_entry) {
6764 		perf_remove_from_context(event);
6765 		put_ctx(src_ctx);
6766 		list_add(&event->event_entry, &events);
6767 	}
6768 	mutex_unlock(&src_ctx->mutex);
6769 
6770 	synchronize_rcu();
6771 
6772 	mutex_lock(&dst_ctx->mutex);
6773 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6774 		list_del(&event->event_entry);
6775 		if (event->state >= PERF_EVENT_STATE_OFF)
6776 			event->state = PERF_EVENT_STATE_INACTIVE;
6777 		perf_install_in_context(dst_ctx, event, dst_cpu);
6778 		get_ctx(dst_ctx);
6779 	}
6780 	mutex_unlock(&dst_ctx->mutex);
6781 }
6782 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6783 
6784 static void sync_child_event(struct perf_event *child_event,
6785 			       struct task_struct *child)
6786 {
6787 	struct perf_event *parent_event = child_event->parent;
6788 	u64 child_val;
6789 
6790 	if (child_event->attr.inherit_stat)
6791 		perf_event_read_event(child_event, child);
6792 
6793 	child_val = perf_event_count(child_event);
6794 
6795 	/*
6796 	 * Add back the child's count to the parent's count:
6797 	 */
6798 	atomic64_add(child_val, &parent_event->child_count);
6799 	atomic64_add(child_event->total_time_enabled,
6800 		     &parent_event->child_total_time_enabled);
6801 	atomic64_add(child_event->total_time_running,
6802 		     &parent_event->child_total_time_running);
6803 
6804 	/*
6805 	 * Remove this event from the parent's list
6806 	 */
6807 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6808 	mutex_lock(&parent_event->child_mutex);
6809 	list_del_init(&child_event->child_list);
6810 	mutex_unlock(&parent_event->child_mutex);
6811 
6812 	/*
6813 	 * Release the parent event, if this was the last
6814 	 * reference to it.
6815 	 */
6816 	put_event(parent_event);
6817 }
6818 
6819 static void
6820 __perf_event_exit_task(struct perf_event *child_event,
6821 			 struct perf_event_context *child_ctx,
6822 			 struct task_struct *child)
6823 {
6824 	if (child_event->parent) {
6825 		raw_spin_lock_irq(&child_ctx->lock);
6826 		perf_group_detach(child_event);
6827 		raw_spin_unlock_irq(&child_ctx->lock);
6828 	}
6829 
6830 	perf_remove_from_context(child_event);
6831 
6832 	/*
6833 	 * It can happen that the parent exits first, and has events
6834 	 * that are still around due to the child reference. These
6835 	 * events need to be zapped.
6836 	 */
6837 	if (child_event->parent) {
6838 		sync_child_event(child_event, child);
6839 		free_event(child_event);
6840 	}
6841 }
6842 
6843 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6844 {
6845 	struct perf_event *child_event, *tmp;
6846 	struct perf_event_context *child_ctx;
6847 	unsigned long flags;
6848 
6849 	if (likely(!child->perf_event_ctxp[ctxn])) {
6850 		perf_event_task(child, NULL, 0);
6851 		return;
6852 	}
6853 
6854 	local_irq_save(flags);
6855 	/*
6856 	 * We can't reschedule here because interrupts are disabled,
6857 	 * and either child is current or it is a task that can't be
6858 	 * scheduled, so we are now safe from rescheduling changing
6859 	 * our context.
6860 	 */
6861 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6862 
6863 	/*
6864 	 * Take the context lock here so that if find_get_context is
6865 	 * reading child->perf_event_ctxp, we wait until it has
6866 	 * incremented the context's refcount before we do put_ctx below.
6867 	 */
6868 	raw_spin_lock(&child_ctx->lock);
6869 	task_ctx_sched_out(child_ctx);
6870 	child->perf_event_ctxp[ctxn] = NULL;
6871 	/*
6872 	 * If this context is a clone; unclone it so it can't get
6873 	 * swapped to another process while we're removing all
6874 	 * the events from it.
6875 	 */
6876 	unclone_ctx(child_ctx);
6877 	update_context_time(child_ctx);
6878 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6879 
6880 	/*
6881 	 * Report the task dead after unscheduling the events so that we
6882 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6883 	 * get a few PERF_RECORD_READ events.
6884 	 */
6885 	perf_event_task(child, child_ctx, 0);
6886 
6887 	/*
6888 	 * We can recurse on the same lock type through:
6889 	 *
6890 	 *   __perf_event_exit_task()
6891 	 *     sync_child_event()
6892 	 *       put_event()
6893 	 *         mutex_lock(&ctx->mutex)
6894 	 *
6895 	 * But since its the parent context it won't be the same instance.
6896 	 */
6897 	mutex_lock(&child_ctx->mutex);
6898 
6899 again:
6900 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6901 				 group_entry)
6902 		__perf_event_exit_task(child_event, child_ctx, child);
6903 
6904 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6905 				 group_entry)
6906 		__perf_event_exit_task(child_event, child_ctx, child);
6907 
6908 	/*
6909 	 * If the last event was a group event, it will have appended all
6910 	 * its siblings to the list, but we obtained 'tmp' before that which
6911 	 * will still point to the list head terminating the iteration.
6912 	 */
6913 	if (!list_empty(&child_ctx->pinned_groups) ||
6914 	    !list_empty(&child_ctx->flexible_groups))
6915 		goto again;
6916 
6917 	mutex_unlock(&child_ctx->mutex);
6918 
6919 	put_ctx(child_ctx);
6920 }
6921 
6922 /*
6923  * When a child task exits, feed back event values to parent events.
6924  */
6925 void perf_event_exit_task(struct task_struct *child)
6926 {
6927 	struct perf_event *event, *tmp;
6928 	int ctxn;
6929 
6930 	mutex_lock(&child->perf_event_mutex);
6931 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6932 				 owner_entry) {
6933 		list_del_init(&event->owner_entry);
6934 
6935 		/*
6936 		 * Ensure the list deletion is visible before we clear
6937 		 * the owner, closes a race against perf_release() where
6938 		 * we need to serialize on the owner->perf_event_mutex.
6939 		 */
6940 		smp_wmb();
6941 		event->owner = NULL;
6942 	}
6943 	mutex_unlock(&child->perf_event_mutex);
6944 
6945 	for_each_task_context_nr(ctxn)
6946 		perf_event_exit_task_context(child, ctxn);
6947 }
6948 
6949 static void perf_free_event(struct perf_event *event,
6950 			    struct perf_event_context *ctx)
6951 {
6952 	struct perf_event *parent = event->parent;
6953 
6954 	if (WARN_ON_ONCE(!parent))
6955 		return;
6956 
6957 	mutex_lock(&parent->child_mutex);
6958 	list_del_init(&event->child_list);
6959 	mutex_unlock(&parent->child_mutex);
6960 
6961 	put_event(parent);
6962 
6963 	perf_group_detach(event);
6964 	list_del_event(event, ctx);
6965 	free_event(event);
6966 }
6967 
6968 /*
6969  * free an unexposed, unused context as created by inheritance by
6970  * perf_event_init_task below, used by fork() in case of fail.
6971  */
6972 void perf_event_free_task(struct task_struct *task)
6973 {
6974 	struct perf_event_context *ctx;
6975 	struct perf_event *event, *tmp;
6976 	int ctxn;
6977 
6978 	for_each_task_context_nr(ctxn) {
6979 		ctx = task->perf_event_ctxp[ctxn];
6980 		if (!ctx)
6981 			continue;
6982 
6983 		mutex_lock(&ctx->mutex);
6984 again:
6985 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6986 				group_entry)
6987 			perf_free_event(event, ctx);
6988 
6989 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6990 				group_entry)
6991 			perf_free_event(event, ctx);
6992 
6993 		if (!list_empty(&ctx->pinned_groups) ||
6994 				!list_empty(&ctx->flexible_groups))
6995 			goto again;
6996 
6997 		mutex_unlock(&ctx->mutex);
6998 
6999 		put_ctx(ctx);
7000 	}
7001 }
7002 
7003 void perf_event_delayed_put(struct task_struct *task)
7004 {
7005 	int ctxn;
7006 
7007 	for_each_task_context_nr(ctxn)
7008 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7009 }
7010 
7011 /*
7012  * inherit a event from parent task to child task:
7013  */
7014 static struct perf_event *
7015 inherit_event(struct perf_event *parent_event,
7016 	      struct task_struct *parent,
7017 	      struct perf_event_context *parent_ctx,
7018 	      struct task_struct *child,
7019 	      struct perf_event *group_leader,
7020 	      struct perf_event_context *child_ctx)
7021 {
7022 	struct perf_event *child_event;
7023 	unsigned long flags;
7024 
7025 	/*
7026 	 * Instead of creating recursive hierarchies of events,
7027 	 * we link inherited events back to the original parent,
7028 	 * which has a filp for sure, which we use as the reference
7029 	 * count:
7030 	 */
7031 	if (parent_event->parent)
7032 		parent_event = parent_event->parent;
7033 
7034 	child_event = perf_event_alloc(&parent_event->attr,
7035 					   parent_event->cpu,
7036 					   child,
7037 					   group_leader, parent_event,
7038 				           NULL, NULL);
7039 	if (IS_ERR(child_event))
7040 		return child_event;
7041 
7042 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7043 		free_event(child_event);
7044 		return NULL;
7045 	}
7046 
7047 	get_ctx(child_ctx);
7048 
7049 	/*
7050 	 * Make the child state follow the state of the parent event,
7051 	 * not its attr.disabled bit.  We hold the parent's mutex,
7052 	 * so we won't race with perf_event_{en, dis}able_family.
7053 	 */
7054 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7055 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7056 	else
7057 		child_event->state = PERF_EVENT_STATE_OFF;
7058 
7059 	if (parent_event->attr.freq) {
7060 		u64 sample_period = parent_event->hw.sample_period;
7061 		struct hw_perf_event *hwc = &child_event->hw;
7062 
7063 		hwc->sample_period = sample_period;
7064 		hwc->last_period   = sample_period;
7065 
7066 		local64_set(&hwc->period_left, sample_period);
7067 	}
7068 
7069 	child_event->ctx = child_ctx;
7070 	child_event->overflow_handler = parent_event->overflow_handler;
7071 	child_event->overflow_handler_context
7072 		= parent_event->overflow_handler_context;
7073 
7074 	/*
7075 	 * Precalculate sample_data sizes
7076 	 */
7077 	perf_event__header_size(child_event);
7078 	perf_event__id_header_size(child_event);
7079 
7080 	/*
7081 	 * Link it up in the child's context:
7082 	 */
7083 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7084 	add_event_to_ctx(child_event, child_ctx);
7085 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7086 
7087 	/*
7088 	 * Link this into the parent event's child list
7089 	 */
7090 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7091 	mutex_lock(&parent_event->child_mutex);
7092 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7093 	mutex_unlock(&parent_event->child_mutex);
7094 
7095 	return child_event;
7096 }
7097 
7098 static int inherit_group(struct perf_event *parent_event,
7099 	      struct task_struct *parent,
7100 	      struct perf_event_context *parent_ctx,
7101 	      struct task_struct *child,
7102 	      struct perf_event_context *child_ctx)
7103 {
7104 	struct perf_event *leader;
7105 	struct perf_event *sub;
7106 	struct perf_event *child_ctr;
7107 
7108 	leader = inherit_event(parent_event, parent, parent_ctx,
7109 				 child, NULL, child_ctx);
7110 	if (IS_ERR(leader))
7111 		return PTR_ERR(leader);
7112 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7113 		child_ctr = inherit_event(sub, parent, parent_ctx,
7114 					    child, leader, child_ctx);
7115 		if (IS_ERR(child_ctr))
7116 			return PTR_ERR(child_ctr);
7117 	}
7118 	return 0;
7119 }
7120 
7121 static int
7122 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7123 		   struct perf_event_context *parent_ctx,
7124 		   struct task_struct *child, int ctxn,
7125 		   int *inherited_all)
7126 {
7127 	int ret;
7128 	struct perf_event_context *child_ctx;
7129 
7130 	if (!event->attr.inherit) {
7131 		*inherited_all = 0;
7132 		return 0;
7133 	}
7134 
7135 	child_ctx = child->perf_event_ctxp[ctxn];
7136 	if (!child_ctx) {
7137 		/*
7138 		 * This is executed from the parent task context, so
7139 		 * inherit events that have been marked for cloning.
7140 		 * First allocate and initialize a context for the
7141 		 * child.
7142 		 */
7143 
7144 		child_ctx = alloc_perf_context(event->pmu, child);
7145 		if (!child_ctx)
7146 			return -ENOMEM;
7147 
7148 		child->perf_event_ctxp[ctxn] = child_ctx;
7149 	}
7150 
7151 	ret = inherit_group(event, parent, parent_ctx,
7152 			    child, child_ctx);
7153 
7154 	if (ret)
7155 		*inherited_all = 0;
7156 
7157 	return ret;
7158 }
7159 
7160 /*
7161  * Initialize the perf_event context in task_struct
7162  */
7163 int perf_event_init_context(struct task_struct *child, int ctxn)
7164 {
7165 	struct perf_event_context *child_ctx, *parent_ctx;
7166 	struct perf_event_context *cloned_ctx;
7167 	struct perf_event *event;
7168 	struct task_struct *parent = current;
7169 	int inherited_all = 1;
7170 	unsigned long flags;
7171 	int ret = 0;
7172 
7173 	if (likely(!parent->perf_event_ctxp[ctxn]))
7174 		return 0;
7175 
7176 	/*
7177 	 * If the parent's context is a clone, pin it so it won't get
7178 	 * swapped under us.
7179 	 */
7180 	parent_ctx = perf_pin_task_context(parent, ctxn);
7181 
7182 	/*
7183 	 * No need to check if parent_ctx != NULL here; since we saw
7184 	 * it non-NULL earlier, the only reason for it to become NULL
7185 	 * is if we exit, and since we're currently in the middle of
7186 	 * a fork we can't be exiting at the same time.
7187 	 */
7188 
7189 	/*
7190 	 * Lock the parent list. No need to lock the child - not PID
7191 	 * hashed yet and not running, so nobody can access it.
7192 	 */
7193 	mutex_lock(&parent_ctx->mutex);
7194 
7195 	/*
7196 	 * We dont have to disable NMIs - we are only looking at
7197 	 * the list, not manipulating it:
7198 	 */
7199 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7200 		ret = inherit_task_group(event, parent, parent_ctx,
7201 					 child, ctxn, &inherited_all);
7202 		if (ret)
7203 			break;
7204 	}
7205 
7206 	/*
7207 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7208 	 * to allocations, but we need to prevent rotation because
7209 	 * rotate_ctx() will change the list from interrupt context.
7210 	 */
7211 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7212 	parent_ctx->rotate_disable = 1;
7213 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7214 
7215 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7216 		ret = inherit_task_group(event, parent, parent_ctx,
7217 					 child, ctxn, &inherited_all);
7218 		if (ret)
7219 			break;
7220 	}
7221 
7222 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7223 	parent_ctx->rotate_disable = 0;
7224 
7225 	child_ctx = child->perf_event_ctxp[ctxn];
7226 
7227 	if (child_ctx && inherited_all) {
7228 		/*
7229 		 * Mark the child context as a clone of the parent
7230 		 * context, or of whatever the parent is a clone of.
7231 		 *
7232 		 * Note that if the parent is a clone, the holding of
7233 		 * parent_ctx->lock avoids it from being uncloned.
7234 		 */
7235 		cloned_ctx = parent_ctx->parent_ctx;
7236 		if (cloned_ctx) {
7237 			child_ctx->parent_ctx = cloned_ctx;
7238 			child_ctx->parent_gen = parent_ctx->parent_gen;
7239 		} else {
7240 			child_ctx->parent_ctx = parent_ctx;
7241 			child_ctx->parent_gen = parent_ctx->generation;
7242 		}
7243 		get_ctx(child_ctx->parent_ctx);
7244 	}
7245 
7246 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7247 	mutex_unlock(&parent_ctx->mutex);
7248 
7249 	perf_unpin_context(parent_ctx);
7250 	put_ctx(parent_ctx);
7251 
7252 	return ret;
7253 }
7254 
7255 /*
7256  * Initialize the perf_event context in task_struct
7257  */
7258 int perf_event_init_task(struct task_struct *child)
7259 {
7260 	int ctxn, ret;
7261 
7262 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7263 	mutex_init(&child->perf_event_mutex);
7264 	INIT_LIST_HEAD(&child->perf_event_list);
7265 
7266 	for_each_task_context_nr(ctxn) {
7267 		ret = perf_event_init_context(child, ctxn);
7268 		if (ret)
7269 			return ret;
7270 	}
7271 
7272 	return 0;
7273 }
7274 
7275 static void __init perf_event_init_all_cpus(void)
7276 {
7277 	struct swevent_htable *swhash;
7278 	int cpu;
7279 
7280 	for_each_possible_cpu(cpu) {
7281 		swhash = &per_cpu(swevent_htable, cpu);
7282 		mutex_init(&swhash->hlist_mutex);
7283 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7284 	}
7285 }
7286 
7287 static void __cpuinit perf_event_init_cpu(int cpu)
7288 {
7289 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7290 
7291 	mutex_lock(&swhash->hlist_mutex);
7292 	if (swhash->hlist_refcount > 0) {
7293 		struct swevent_hlist *hlist;
7294 
7295 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7296 		WARN_ON(!hlist);
7297 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7298 	}
7299 	mutex_unlock(&swhash->hlist_mutex);
7300 }
7301 
7302 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7303 static void perf_pmu_rotate_stop(struct pmu *pmu)
7304 {
7305 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7306 
7307 	WARN_ON(!irqs_disabled());
7308 
7309 	list_del_init(&cpuctx->rotation_list);
7310 }
7311 
7312 static void __perf_event_exit_context(void *__info)
7313 {
7314 	struct perf_event_context *ctx = __info;
7315 	struct perf_event *event, *tmp;
7316 
7317 	perf_pmu_rotate_stop(ctx->pmu);
7318 
7319 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7320 		__perf_remove_from_context(event);
7321 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7322 		__perf_remove_from_context(event);
7323 }
7324 
7325 static void perf_event_exit_cpu_context(int cpu)
7326 {
7327 	struct perf_event_context *ctx;
7328 	struct pmu *pmu;
7329 	int idx;
7330 
7331 	idx = srcu_read_lock(&pmus_srcu);
7332 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7333 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7334 
7335 		mutex_lock(&ctx->mutex);
7336 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7337 		mutex_unlock(&ctx->mutex);
7338 	}
7339 	srcu_read_unlock(&pmus_srcu, idx);
7340 }
7341 
7342 static void perf_event_exit_cpu(int cpu)
7343 {
7344 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7345 
7346 	mutex_lock(&swhash->hlist_mutex);
7347 	swevent_hlist_release(swhash);
7348 	mutex_unlock(&swhash->hlist_mutex);
7349 
7350 	perf_event_exit_cpu_context(cpu);
7351 }
7352 #else
7353 static inline void perf_event_exit_cpu(int cpu) { }
7354 #endif
7355 
7356 static int
7357 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7358 {
7359 	int cpu;
7360 
7361 	for_each_online_cpu(cpu)
7362 		perf_event_exit_cpu(cpu);
7363 
7364 	return NOTIFY_OK;
7365 }
7366 
7367 /*
7368  * Run the perf reboot notifier at the very last possible moment so that
7369  * the generic watchdog code runs as long as possible.
7370  */
7371 static struct notifier_block perf_reboot_notifier = {
7372 	.notifier_call = perf_reboot,
7373 	.priority = INT_MIN,
7374 };
7375 
7376 static int __cpuinit
7377 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7378 {
7379 	unsigned int cpu = (long)hcpu;
7380 
7381 	switch (action & ~CPU_TASKS_FROZEN) {
7382 
7383 	case CPU_UP_PREPARE:
7384 	case CPU_DOWN_FAILED:
7385 		perf_event_init_cpu(cpu);
7386 		break;
7387 
7388 	case CPU_UP_CANCELED:
7389 	case CPU_DOWN_PREPARE:
7390 		perf_event_exit_cpu(cpu);
7391 		break;
7392 
7393 	default:
7394 		break;
7395 	}
7396 
7397 	return NOTIFY_OK;
7398 }
7399 
7400 void __init perf_event_init(void)
7401 {
7402 	int ret;
7403 
7404 	idr_init(&pmu_idr);
7405 
7406 	perf_event_init_all_cpus();
7407 	init_srcu_struct(&pmus_srcu);
7408 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7409 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7410 	perf_pmu_register(&perf_task_clock, NULL, -1);
7411 	perf_tp_register();
7412 	perf_cpu_notifier(perf_cpu_notify);
7413 	register_reboot_notifier(&perf_reboot_notifier);
7414 
7415 	ret = init_hw_breakpoint();
7416 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7417 
7418 	/* do not patch jump label more than once per second */
7419 	jump_label_rate_limit(&perf_sched_events, HZ);
7420 
7421 	/*
7422 	 * Build time assertion that we keep the data_head at the intended
7423 	 * location.  IOW, validation we got the __reserved[] size right.
7424 	 */
7425 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7426 		     != 1024);
7427 }
7428 
7429 static int __init perf_event_sysfs_init(void)
7430 {
7431 	struct pmu *pmu;
7432 	int ret;
7433 
7434 	mutex_lock(&pmus_lock);
7435 
7436 	ret = bus_register(&pmu_bus);
7437 	if (ret)
7438 		goto unlock;
7439 
7440 	list_for_each_entry(pmu, &pmus, entry) {
7441 		if (!pmu->name || pmu->type < 0)
7442 			continue;
7443 
7444 		ret = pmu_dev_alloc(pmu);
7445 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7446 	}
7447 	pmu_bus_running = 1;
7448 	ret = 0;
7449 
7450 unlock:
7451 	mutex_unlock(&pmus_lock);
7452 
7453 	return ret;
7454 }
7455 device_initcall(perf_event_sysfs_init);
7456 
7457 #ifdef CONFIG_CGROUP_PERF
7458 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7459 {
7460 	struct perf_cgroup *jc;
7461 
7462 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7463 	if (!jc)
7464 		return ERR_PTR(-ENOMEM);
7465 
7466 	jc->info = alloc_percpu(struct perf_cgroup_info);
7467 	if (!jc->info) {
7468 		kfree(jc);
7469 		return ERR_PTR(-ENOMEM);
7470 	}
7471 
7472 	return &jc->css;
7473 }
7474 
7475 static void perf_cgroup_css_free(struct cgroup *cont)
7476 {
7477 	struct perf_cgroup *jc;
7478 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7479 			  struct perf_cgroup, css);
7480 	free_percpu(jc->info);
7481 	kfree(jc);
7482 }
7483 
7484 static int __perf_cgroup_move(void *info)
7485 {
7486 	struct task_struct *task = info;
7487 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7488 	return 0;
7489 }
7490 
7491 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7492 {
7493 	struct task_struct *task;
7494 
7495 	cgroup_taskset_for_each(task, cgrp, tset)
7496 		task_function_call(task, __perf_cgroup_move, task);
7497 }
7498 
7499 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7500 			     struct task_struct *task)
7501 {
7502 	/*
7503 	 * cgroup_exit() is called in the copy_process() failure path.
7504 	 * Ignore this case since the task hasn't ran yet, this avoids
7505 	 * trying to poke a half freed task state from generic code.
7506 	 */
7507 	if (!(task->flags & PF_EXITING))
7508 		return;
7509 
7510 	task_function_call(task, __perf_cgroup_move, task);
7511 }
7512 
7513 struct cgroup_subsys perf_subsys = {
7514 	.name		= "perf_event",
7515 	.subsys_id	= perf_subsys_id,
7516 	.css_alloc	= perf_cgroup_css_alloc,
7517 	.css_free	= perf_cgroup_css_free,
7518 	.exit		= perf_cgroup_exit,
7519 	.attach		= perf_cgroup_attach,
7520 
7521 	/*
7522 	 * perf_event cgroup doesn't handle nesting correctly.
7523 	 * ctx->nr_cgroups adjustments should be propagated through the
7524 	 * cgroup hierarchy.  Fix it and remove the following.
7525 	 */
7526 	.broken_hierarchy = true,
7527 };
7528 #endif /* CONFIG_CGROUP_PERF */
7529