1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/mm_types.h> 40 41 #include "internal.h" 42 43 #include <asm/irq_regs.h> 44 45 struct remote_function_call { 46 struct task_struct *p; 47 int (*func)(void *info); 48 void *info; 49 int ret; 50 }; 51 52 static void remote_function(void *data) 53 { 54 struct remote_function_call *tfc = data; 55 struct task_struct *p = tfc->p; 56 57 if (p) { 58 tfc->ret = -EAGAIN; 59 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 60 return; 61 } 62 63 tfc->ret = tfc->func(tfc->info); 64 } 65 66 /** 67 * task_function_call - call a function on the cpu on which a task runs 68 * @p: the task to evaluate 69 * @func: the function to be called 70 * @info: the function call argument 71 * 72 * Calls the function @func when the task is currently running. This might 73 * be on the current CPU, which just calls the function directly 74 * 75 * returns: @func return value, or 76 * -ESRCH - when the process isn't running 77 * -EAGAIN - when the process moved away 78 */ 79 static int 80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 81 { 82 struct remote_function_call data = { 83 .p = p, 84 .func = func, 85 .info = info, 86 .ret = -ESRCH, /* No such (running) process */ 87 }; 88 89 if (task_curr(p)) 90 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 91 92 return data.ret; 93 } 94 95 /** 96 * cpu_function_call - call a function on the cpu 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func on the remote cpu. 101 * 102 * returns: @func return value or -ENXIO when the cpu is offline 103 */ 104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 105 { 106 struct remote_function_call data = { 107 .p = NULL, 108 .func = func, 109 .info = info, 110 .ret = -ENXIO, /* No such CPU */ 111 }; 112 113 smp_call_function_single(cpu, remote_function, &data, 1); 114 115 return data.ret; 116 } 117 118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 119 PERF_FLAG_FD_OUTPUT |\ 120 PERF_FLAG_PID_CGROUP) 121 122 /* 123 * branch priv levels that need permission checks 124 */ 125 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 126 (PERF_SAMPLE_BRANCH_KERNEL |\ 127 PERF_SAMPLE_BRANCH_HV) 128 129 enum event_type_t { 130 EVENT_FLEXIBLE = 0x1, 131 EVENT_PINNED = 0x2, 132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 133 }; 134 135 /* 136 * perf_sched_events : >0 events exist 137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 138 */ 139 struct static_key_deferred perf_sched_events __read_mostly; 140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 142 143 static atomic_t nr_mmap_events __read_mostly; 144 static atomic_t nr_comm_events __read_mostly; 145 static atomic_t nr_task_events __read_mostly; 146 147 static LIST_HEAD(pmus); 148 static DEFINE_MUTEX(pmus_lock); 149 static struct srcu_struct pmus_srcu; 150 151 /* 152 * perf event paranoia level: 153 * -1 - not paranoid at all 154 * 0 - disallow raw tracepoint access for unpriv 155 * 1 - disallow cpu events for unpriv 156 * 2 - disallow kernel profiling for unpriv 157 */ 158 int sysctl_perf_event_paranoid __read_mostly = 1; 159 160 /* Minimum for 512 kiB + 1 user control page */ 161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 162 163 /* 164 * max perf event sample rate 165 */ 166 #define DEFAULT_MAX_SAMPLE_RATE 100000 167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 168 static int max_samples_per_tick __read_mostly = 169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 170 171 int perf_proc_update_handler(struct ctl_table *table, int write, 172 void __user *buffer, size_t *lenp, 173 loff_t *ppos) 174 { 175 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 176 177 if (ret || !write) 178 return ret; 179 180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 181 182 return 0; 183 } 184 185 static atomic64_t perf_event_id; 186 187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 188 enum event_type_t event_type); 189 190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 191 enum event_type_t event_type, 192 struct task_struct *task); 193 194 static void update_context_time(struct perf_event_context *ctx); 195 static u64 perf_event_time(struct perf_event *event); 196 197 static void ring_buffer_attach(struct perf_event *event, 198 struct ring_buffer *rb); 199 200 void __weak perf_event_print_debug(void) { } 201 202 extern __weak const char *perf_pmu_name(void) 203 { 204 return "pmu"; 205 } 206 207 static inline u64 perf_clock(void) 208 { 209 return local_clock(); 210 } 211 212 static inline struct perf_cpu_context * 213 __get_cpu_context(struct perf_event_context *ctx) 214 { 215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 216 } 217 218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 219 struct perf_event_context *ctx) 220 { 221 raw_spin_lock(&cpuctx->ctx.lock); 222 if (ctx) 223 raw_spin_lock(&ctx->lock); 224 } 225 226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 227 struct perf_event_context *ctx) 228 { 229 if (ctx) 230 raw_spin_unlock(&ctx->lock); 231 raw_spin_unlock(&cpuctx->ctx.lock); 232 } 233 234 #ifdef CONFIG_CGROUP_PERF 235 236 /* 237 * Must ensure cgroup is pinned (css_get) before calling 238 * this function. In other words, we cannot call this function 239 * if there is no cgroup event for the current CPU context. 240 */ 241 static inline struct perf_cgroup * 242 perf_cgroup_from_task(struct task_struct *task) 243 { 244 return container_of(task_subsys_state(task, perf_subsys_id), 245 struct perf_cgroup, css); 246 } 247 248 static inline bool 249 perf_cgroup_match(struct perf_event *event) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 253 254 return !event->cgrp || event->cgrp == cpuctx->cgrp; 255 } 256 257 static inline bool perf_tryget_cgroup(struct perf_event *event) 258 { 259 return css_tryget(&event->cgrp->css); 260 } 261 262 static inline void perf_put_cgroup(struct perf_event *event) 263 { 264 css_put(&event->cgrp->css); 265 } 266 267 static inline void perf_detach_cgroup(struct perf_event *event) 268 { 269 perf_put_cgroup(event); 270 event->cgrp = NULL; 271 } 272 273 static inline int is_cgroup_event(struct perf_event *event) 274 { 275 return event->cgrp != NULL; 276 } 277 278 static inline u64 perf_cgroup_event_time(struct perf_event *event) 279 { 280 struct perf_cgroup_info *t; 281 282 t = per_cpu_ptr(event->cgrp->info, event->cpu); 283 return t->time; 284 } 285 286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 287 { 288 struct perf_cgroup_info *info; 289 u64 now; 290 291 now = perf_clock(); 292 293 info = this_cpu_ptr(cgrp->info); 294 295 info->time += now - info->timestamp; 296 info->timestamp = now; 297 } 298 299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 300 { 301 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 302 if (cgrp_out) 303 __update_cgrp_time(cgrp_out); 304 } 305 306 static inline void update_cgrp_time_from_event(struct perf_event *event) 307 { 308 struct perf_cgroup *cgrp; 309 310 /* 311 * ensure we access cgroup data only when needed and 312 * when we know the cgroup is pinned (css_get) 313 */ 314 if (!is_cgroup_event(event)) 315 return; 316 317 cgrp = perf_cgroup_from_task(current); 318 /* 319 * Do not update time when cgroup is not active 320 */ 321 if (cgrp == event->cgrp) 322 __update_cgrp_time(event->cgrp); 323 } 324 325 static inline void 326 perf_cgroup_set_timestamp(struct task_struct *task, 327 struct perf_event_context *ctx) 328 { 329 struct perf_cgroup *cgrp; 330 struct perf_cgroup_info *info; 331 332 /* 333 * ctx->lock held by caller 334 * ensure we do not access cgroup data 335 * unless we have the cgroup pinned (css_get) 336 */ 337 if (!task || !ctx->nr_cgroups) 338 return; 339 340 cgrp = perf_cgroup_from_task(task); 341 info = this_cpu_ptr(cgrp->info); 342 info->timestamp = ctx->timestamp; 343 } 344 345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 347 348 /* 349 * reschedule events based on the cgroup constraint of task. 350 * 351 * mode SWOUT : schedule out everything 352 * mode SWIN : schedule in based on cgroup for next 353 */ 354 void perf_cgroup_switch(struct task_struct *task, int mode) 355 { 356 struct perf_cpu_context *cpuctx; 357 struct pmu *pmu; 358 unsigned long flags; 359 360 /* 361 * disable interrupts to avoid geting nr_cgroup 362 * changes via __perf_event_disable(). Also 363 * avoids preemption. 364 */ 365 local_irq_save(flags); 366 367 /* 368 * we reschedule only in the presence of cgroup 369 * constrained events. 370 */ 371 rcu_read_lock(); 372 373 list_for_each_entry_rcu(pmu, &pmus, entry) { 374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 375 if (cpuctx->unique_pmu != pmu) 376 continue; /* ensure we process each cpuctx once */ 377 378 /* 379 * perf_cgroup_events says at least one 380 * context on this CPU has cgroup events. 381 * 382 * ctx->nr_cgroups reports the number of cgroup 383 * events for a context. 384 */ 385 if (cpuctx->ctx.nr_cgroups > 0) { 386 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 387 perf_pmu_disable(cpuctx->ctx.pmu); 388 389 if (mode & PERF_CGROUP_SWOUT) { 390 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 391 /* 392 * must not be done before ctxswout due 393 * to event_filter_match() in event_sched_out() 394 */ 395 cpuctx->cgrp = NULL; 396 } 397 398 if (mode & PERF_CGROUP_SWIN) { 399 WARN_ON_ONCE(cpuctx->cgrp); 400 /* 401 * set cgrp before ctxsw in to allow 402 * event_filter_match() to not have to pass 403 * task around 404 */ 405 cpuctx->cgrp = perf_cgroup_from_task(task); 406 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 407 } 408 perf_pmu_enable(cpuctx->ctx.pmu); 409 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 410 } 411 } 412 413 rcu_read_unlock(); 414 415 local_irq_restore(flags); 416 } 417 418 static inline void perf_cgroup_sched_out(struct task_struct *task, 419 struct task_struct *next) 420 { 421 struct perf_cgroup *cgrp1; 422 struct perf_cgroup *cgrp2 = NULL; 423 424 /* 425 * we come here when we know perf_cgroup_events > 0 426 */ 427 cgrp1 = perf_cgroup_from_task(task); 428 429 /* 430 * next is NULL when called from perf_event_enable_on_exec() 431 * that will systematically cause a cgroup_switch() 432 */ 433 if (next) 434 cgrp2 = perf_cgroup_from_task(next); 435 436 /* 437 * only schedule out current cgroup events if we know 438 * that we are switching to a different cgroup. Otherwise, 439 * do no touch the cgroup events. 440 */ 441 if (cgrp1 != cgrp2) 442 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 443 } 444 445 static inline void perf_cgroup_sched_in(struct task_struct *prev, 446 struct task_struct *task) 447 { 448 struct perf_cgroup *cgrp1; 449 struct perf_cgroup *cgrp2 = NULL; 450 451 /* 452 * we come here when we know perf_cgroup_events > 0 453 */ 454 cgrp1 = perf_cgroup_from_task(task); 455 456 /* prev can never be NULL */ 457 cgrp2 = perf_cgroup_from_task(prev); 458 459 /* 460 * only need to schedule in cgroup events if we are changing 461 * cgroup during ctxsw. Cgroup events were not scheduled 462 * out of ctxsw out if that was not the case. 463 */ 464 if (cgrp1 != cgrp2) 465 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 466 } 467 468 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 469 struct perf_event_attr *attr, 470 struct perf_event *group_leader) 471 { 472 struct perf_cgroup *cgrp; 473 struct cgroup_subsys_state *css; 474 struct fd f = fdget(fd); 475 int ret = 0; 476 477 if (!f.file) 478 return -EBADF; 479 480 css = cgroup_css_from_dir(f.file, perf_subsys_id); 481 if (IS_ERR(css)) { 482 ret = PTR_ERR(css); 483 goto out; 484 } 485 486 cgrp = container_of(css, struct perf_cgroup, css); 487 event->cgrp = cgrp; 488 489 /* must be done before we fput() the file */ 490 if (!perf_tryget_cgroup(event)) { 491 event->cgrp = NULL; 492 ret = -ENOENT; 493 goto out; 494 } 495 496 /* 497 * all events in a group must monitor 498 * the same cgroup because a task belongs 499 * to only one perf cgroup at a time 500 */ 501 if (group_leader && group_leader->cgrp != cgrp) { 502 perf_detach_cgroup(event); 503 ret = -EINVAL; 504 } 505 out: 506 fdput(f); 507 return ret; 508 } 509 510 static inline void 511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 512 { 513 struct perf_cgroup_info *t; 514 t = per_cpu_ptr(event->cgrp->info, event->cpu); 515 event->shadow_ctx_time = now - t->timestamp; 516 } 517 518 static inline void 519 perf_cgroup_defer_enabled(struct perf_event *event) 520 { 521 /* 522 * when the current task's perf cgroup does not match 523 * the event's, we need to remember to call the 524 * perf_mark_enable() function the first time a task with 525 * a matching perf cgroup is scheduled in. 526 */ 527 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 528 event->cgrp_defer_enabled = 1; 529 } 530 531 static inline void 532 perf_cgroup_mark_enabled(struct perf_event *event, 533 struct perf_event_context *ctx) 534 { 535 struct perf_event *sub; 536 u64 tstamp = perf_event_time(event); 537 538 if (!event->cgrp_defer_enabled) 539 return; 540 541 event->cgrp_defer_enabled = 0; 542 543 event->tstamp_enabled = tstamp - event->total_time_enabled; 544 list_for_each_entry(sub, &event->sibling_list, group_entry) { 545 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 546 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 547 sub->cgrp_defer_enabled = 0; 548 } 549 } 550 } 551 #else /* !CONFIG_CGROUP_PERF */ 552 553 static inline bool 554 perf_cgroup_match(struct perf_event *event) 555 { 556 return true; 557 } 558 559 static inline void perf_detach_cgroup(struct perf_event *event) 560 {} 561 562 static inline int is_cgroup_event(struct perf_event *event) 563 { 564 return 0; 565 } 566 567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 568 { 569 return 0; 570 } 571 572 static inline void update_cgrp_time_from_event(struct perf_event *event) 573 { 574 } 575 576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 577 { 578 } 579 580 static inline void perf_cgroup_sched_out(struct task_struct *task, 581 struct task_struct *next) 582 { 583 } 584 585 static inline void perf_cgroup_sched_in(struct task_struct *prev, 586 struct task_struct *task) 587 { 588 } 589 590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 591 struct perf_event_attr *attr, 592 struct perf_event *group_leader) 593 { 594 return -EINVAL; 595 } 596 597 static inline void 598 perf_cgroup_set_timestamp(struct task_struct *task, 599 struct perf_event_context *ctx) 600 { 601 } 602 603 void 604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 605 { 606 } 607 608 static inline void 609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 610 { 611 } 612 613 static inline u64 perf_cgroup_event_time(struct perf_event *event) 614 { 615 return 0; 616 } 617 618 static inline void 619 perf_cgroup_defer_enabled(struct perf_event *event) 620 { 621 } 622 623 static inline void 624 perf_cgroup_mark_enabled(struct perf_event *event, 625 struct perf_event_context *ctx) 626 { 627 } 628 #endif 629 630 void perf_pmu_disable(struct pmu *pmu) 631 { 632 int *count = this_cpu_ptr(pmu->pmu_disable_count); 633 if (!(*count)++) 634 pmu->pmu_disable(pmu); 635 } 636 637 void perf_pmu_enable(struct pmu *pmu) 638 { 639 int *count = this_cpu_ptr(pmu->pmu_disable_count); 640 if (!--(*count)) 641 pmu->pmu_enable(pmu); 642 } 643 644 static DEFINE_PER_CPU(struct list_head, rotation_list); 645 646 /* 647 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 648 * because they're strictly cpu affine and rotate_start is called with IRQs 649 * disabled, while rotate_context is called from IRQ context. 650 */ 651 static void perf_pmu_rotate_start(struct pmu *pmu) 652 { 653 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 654 struct list_head *head = &__get_cpu_var(rotation_list); 655 656 WARN_ON(!irqs_disabled()); 657 658 if (list_empty(&cpuctx->rotation_list)) 659 list_add(&cpuctx->rotation_list, head); 660 } 661 662 static void get_ctx(struct perf_event_context *ctx) 663 { 664 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 665 } 666 667 static void put_ctx(struct perf_event_context *ctx) 668 { 669 if (atomic_dec_and_test(&ctx->refcount)) { 670 if (ctx->parent_ctx) 671 put_ctx(ctx->parent_ctx); 672 if (ctx->task) 673 put_task_struct(ctx->task); 674 kfree_rcu(ctx, rcu_head); 675 } 676 } 677 678 static void unclone_ctx(struct perf_event_context *ctx) 679 { 680 if (ctx->parent_ctx) { 681 put_ctx(ctx->parent_ctx); 682 ctx->parent_ctx = NULL; 683 } 684 } 685 686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 687 { 688 /* 689 * only top level events have the pid namespace they were created in 690 */ 691 if (event->parent) 692 event = event->parent; 693 694 return task_tgid_nr_ns(p, event->ns); 695 } 696 697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 698 { 699 /* 700 * only top level events have the pid namespace they were created in 701 */ 702 if (event->parent) 703 event = event->parent; 704 705 return task_pid_nr_ns(p, event->ns); 706 } 707 708 /* 709 * If we inherit events we want to return the parent event id 710 * to userspace. 711 */ 712 static u64 primary_event_id(struct perf_event *event) 713 { 714 u64 id = event->id; 715 716 if (event->parent) 717 id = event->parent->id; 718 719 return id; 720 } 721 722 /* 723 * Get the perf_event_context for a task and lock it. 724 * This has to cope with with the fact that until it is locked, 725 * the context could get moved to another task. 726 */ 727 static struct perf_event_context * 728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 729 { 730 struct perf_event_context *ctx; 731 732 rcu_read_lock(); 733 retry: 734 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 735 if (ctx) { 736 /* 737 * If this context is a clone of another, it might 738 * get swapped for another underneath us by 739 * perf_event_task_sched_out, though the 740 * rcu_read_lock() protects us from any context 741 * getting freed. Lock the context and check if it 742 * got swapped before we could get the lock, and retry 743 * if so. If we locked the right context, then it 744 * can't get swapped on us any more. 745 */ 746 raw_spin_lock_irqsave(&ctx->lock, *flags); 747 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 748 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 749 goto retry; 750 } 751 752 if (!atomic_inc_not_zero(&ctx->refcount)) { 753 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 754 ctx = NULL; 755 } 756 } 757 rcu_read_unlock(); 758 return ctx; 759 } 760 761 /* 762 * Get the context for a task and increment its pin_count so it 763 * can't get swapped to another task. This also increments its 764 * reference count so that the context can't get freed. 765 */ 766 static struct perf_event_context * 767 perf_pin_task_context(struct task_struct *task, int ctxn) 768 { 769 struct perf_event_context *ctx; 770 unsigned long flags; 771 772 ctx = perf_lock_task_context(task, ctxn, &flags); 773 if (ctx) { 774 ++ctx->pin_count; 775 raw_spin_unlock_irqrestore(&ctx->lock, flags); 776 } 777 return ctx; 778 } 779 780 static void perf_unpin_context(struct perf_event_context *ctx) 781 { 782 unsigned long flags; 783 784 raw_spin_lock_irqsave(&ctx->lock, flags); 785 --ctx->pin_count; 786 raw_spin_unlock_irqrestore(&ctx->lock, flags); 787 } 788 789 /* 790 * Update the record of the current time in a context. 791 */ 792 static void update_context_time(struct perf_event_context *ctx) 793 { 794 u64 now = perf_clock(); 795 796 ctx->time += now - ctx->timestamp; 797 ctx->timestamp = now; 798 } 799 800 static u64 perf_event_time(struct perf_event *event) 801 { 802 struct perf_event_context *ctx = event->ctx; 803 804 if (is_cgroup_event(event)) 805 return perf_cgroup_event_time(event); 806 807 return ctx ? ctx->time : 0; 808 } 809 810 /* 811 * Update the total_time_enabled and total_time_running fields for a event. 812 * The caller of this function needs to hold the ctx->lock. 813 */ 814 static void update_event_times(struct perf_event *event) 815 { 816 struct perf_event_context *ctx = event->ctx; 817 u64 run_end; 818 819 if (event->state < PERF_EVENT_STATE_INACTIVE || 820 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 821 return; 822 /* 823 * in cgroup mode, time_enabled represents 824 * the time the event was enabled AND active 825 * tasks were in the monitored cgroup. This is 826 * independent of the activity of the context as 827 * there may be a mix of cgroup and non-cgroup events. 828 * 829 * That is why we treat cgroup events differently 830 * here. 831 */ 832 if (is_cgroup_event(event)) 833 run_end = perf_cgroup_event_time(event); 834 else if (ctx->is_active) 835 run_end = ctx->time; 836 else 837 run_end = event->tstamp_stopped; 838 839 event->total_time_enabled = run_end - event->tstamp_enabled; 840 841 if (event->state == PERF_EVENT_STATE_INACTIVE) 842 run_end = event->tstamp_stopped; 843 else 844 run_end = perf_event_time(event); 845 846 event->total_time_running = run_end - event->tstamp_running; 847 848 } 849 850 /* 851 * Update total_time_enabled and total_time_running for all events in a group. 852 */ 853 static void update_group_times(struct perf_event *leader) 854 { 855 struct perf_event *event; 856 857 update_event_times(leader); 858 list_for_each_entry(event, &leader->sibling_list, group_entry) 859 update_event_times(event); 860 } 861 862 static struct list_head * 863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 864 { 865 if (event->attr.pinned) 866 return &ctx->pinned_groups; 867 else 868 return &ctx->flexible_groups; 869 } 870 871 /* 872 * Add a event from the lists for its context. 873 * Must be called with ctx->mutex and ctx->lock held. 874 */ 875 static void 876 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 877 { 878 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 879 event->attach_state |= PERF_ATTACH_CONTEXT; 880 881 /* 882 * If we're a stand alone event or group leader, we go to the context 883 * list, group events are kept attached to the group so that 884 * perf_group_detach can, at all times, locate all siblings. 885 */ 886 if (event->group_leader == event) { 887 struct list_head *list; 888 889 if (is_software_event(event)) 890 event->group_flags |= PERF_GROUP_SOFTWARE; 891 892 list = ctx_group_list(event, ctx); 893 list_add_tail(&event->group_entry, list); 894 } 895 896 if (is_cgroup_event(event)) 897 ctx->nr_cgroups++; 898 899 if (has_branch_stack(event)) 900 ctx->nr_branch_stack++; 901 902 list_add_rcu(&event->event_entry, &ctx->event_list); 903 if (!ctx->nr_events) 904 perf_pmu_rotate_start(ctx->pmu); 905 ctx->nr_events++; 906 if (event->attr.inherit_stat) 907 ctx->nr_stat++; 908 } 909 910 /* 911 * Initialize event state based on the perf_event_attr::disabled. 912 */ 913 static inline void perf_event__state_init(struct perf_event *event) 914 { 915 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 916 PERF_EVENT_STATE_INACTIVE; 917 } 918 919 /* 920 * Called at perf_event creation and when events are attached/detached from a 921 * group. 922 */ 923 static void perf_event__read_size(struct perf_event *event) 924 { 925 int entry = sizeof(u64); /* value */ 926 int size = 0; 927 int nr = 1; 928 929 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 930 size += sizeof(u64); 931 932 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 933 size += sizeof(u64); 934 935 if (event->attr.read_format & PERF_FORMAT_ID) 936 entry += sizeof(u64); 937 938 if (event->attr.read_format & PERF_FORMAT_GROUP) { 939 nr += event->group_leader->nr_siblings; 940 size += sizeof(u64); 941 } 942 943 size += entry * nr; 944 event->read_size = size; 945 } 946 947 static void perf_event__header_size(struct perf_event *event) 948 { 949 struct perf_sample_data *data; 950 u64 sample_type = event->attr.sample_type; 951 u16 size = 0; 952 953 perf_event__read_size(event); 954 955 if (sample_type & PERF_SAMPLE_IP) 956 size += sizeof(data->ip); 957 958 if (sample_type & PERF_SAMPLE_ADDR) 959 size += sizeof(data->addr); 960 961 if (sample_type & PERF_SAMPLE_PERIOD) 962 size += sizeof(data->period); 963 964 if (sample_type & PERF_SAMPLE_READ) 965 size += event->read_size; 966 967 event->header_size = size; 968 } 969 970 static void perf_event__id_header_size(struct perf_event *event) 971 { 972 struct perf_sample_data *data; 973 u64 sample_type = event->attr.sample_type; 974 u16 size = 0; 975 976 if (sample_type & PERF_SAMPLE_TID) 977 size += sizeof(data->tid_entry); 978 979 if (sample_type & PERF_SAMPLE_TIME) 980 size += sizeof(data->time); 981 982 if (sample_type & PERF_SAMPLE_ID) 983 size += sizeof(data->id); 984 985 if (sample_type & PERF_SAMPLE_STREAM_ID) 986 size += sizeof(data->stream_id); 987 988 if (sample_type & PERF_SAMPLE_CPU) 989 size += sizeof(data->cpu_entry); 990 991 event->id_header_size = size; 992 } 993 994 static void perf_group_attach(struct perf_event *event) 995 { 996 struct perf_event *group_leader = event->group_leader, *pos; 997 998 /* 999 * We can have double attach due to group movement in perf_event_open. 1000 */ 1001 if (event->attach_state & PERF_ATTACH_GROUP) 1002 return; 1003 1004 event->attach_state |= PERF_ATTACH_GROUP; 1005 1006 if (group_leader == event) 1007 return; 1008 1009 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1010 !is_software_event(event)) 1011 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1012 1013 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1014 group_leader->nr_siblings++; 1015 1016 perf_event__header_size(group_leader); 1017 1018 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1019 perf_event__header_size(pos); 1020 } 1021 1022 /* 1023 * Remove a event from the lists for its context. 1024 * Must be called with ctx->mutex and ctx->lock held. 1025 */ 1026 static void 1027 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 /* 1031 * We can have double detach due to exit/hot-unplug + close. 1032 */ 1033 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1034 return; 1035 1036 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1037 1038 if (is_cgroup_event(event)) { 1039 ctx->nr_cgroups--; 1040 cpuctx = __get_cpu_context(ctx); 1041 /* 1042 * if there are no more cgroup events 1043 * then cler cgrp to avoid stale pointer 1044 * in update_cgrp_time_from_cpuctx() 1045 */ 1046 if (!ctx->nr_cgroups) 1047 cpuctx->cgrp = NULL; 1048 } 1049 1050 if (has_branch_stack(event)) 1051 ctx->nr_branch_stack--; 1052 1053 ctx->nr_events--; 1054 if (event->attr.inherit_stat) 1055 ctx->nr_stat--; 1056 1057 list_del_rcu(&event->event_entry); 1058 1059 if (event->group_leader == event) 1060 list_del_init(&event->group_entry); 1061 1062 update_group_times(event); 1063 1064 /* 1065 * If event was in error state, then keep it 1066 * that way, otherwise bogus counts will be 1067 * returned on read(). The only way to get out 1068 * of error state is by explicit re-enabling 1069 * of the event 1070 */ 1071 if (event->state > PERF_EVENT_STATE_OFF) 1072 event->state = PERF_EVENT_STATE_OFF; 1073 } 1074 1075 static void perf_group_detach(struct perf_event *event) 1076 { 1077 struct perf_event *sibling, *tmp; 1078 struct list_head *list = NULL; 1079 1080 /* 1081 * We can have double detach due to exit/hot-unplug + close. 1082 */ 1083 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1084 return; 1085 1086 event->attach_state &= ~PERF_ATTACH_GROUP; 1087 1088 /* 1089 * If this is a sibling, remove it from its group. 1090 */ 1091 if (event->group_leader != event) { 1092 list_del_init(&event->group_entry); 1093 event->group_leader->nr_siblings--; 1094 goto out; 1095 } 1096 1097 if (!list_empty(&event->group_entry)) 1098 list = &event->group_entry; 1099 1100 /* 1101 * If this was a group event with sibling events then 1102 * upgrade the siblings to singleton events by adding them 1103 * to whatever list we are on. 1104 */ 1105 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1106 if (list) 1107 list_move_tail(&sibling->group_entry, list); 1108 sibling->group_leader = sibling; 1109 1110 /* Inherit group flags from the previous leader */ 1111 sibling->group_flags = event->group_flags; 1112 } 1113 1114 out: 1115 perf_event__header_size(event->group_leader); 1116 1117 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1118 perf_event__header_size(tmp); 1119 } 1120 1121 static inline int 1122 event_filter_match(struct perf_event *event) 1123 { 1124 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1125 && perf_cgroup_match(event); 1126 } 1127 1128 static void 1129 event_sched_out(struct perf_event *event, 1130 struct perf_cpu_context *cpuctx, 1131 struct perf_event_context *ctx) 1132 { 1133 u64 tstamp = perf_event_time(event); 1134 u64 delta; 1135 /* 1136 * An event which could not be activated because of 1137 * filter mismatch still needs to have its timings 1138 * maintained, otherwise bogus information is return 1139 * via read() for time_enabled, time_running: 1140 */ 1141 if (event->state == PERF_EVENT_STATE_INACTIVE 1142 && !event_filter_match(event)) { 1143 delta = tstamp - event->tstamp_stopped; 1144 event->tstamp_running += delta; 1145 event->tstamp_stopped = tstamp; 1146 } 1147 1148 if (event->state != PERF_EVENT_STATE_ACTIVE) 1149 return; 1150 1151 event->state = PERF_EVENT_STATE_INACTIVE; 1152 if (event->pending_disable) { 1153 event->pending_disable = 0; 1154 event->state = PERF_EVENT_STATE_OFF; 1155 } 1156 event->tstamp_stopped = tstamp; 1157 event->pmu->del(event, 0); 1158 event->oncpu = -1; 1159 1160 if (!is_software_event(event)) 1161 cpuctx->active_oncpu--; 1162 ctx->nr_active--; 1163 if (event->attr.freq && event->attr.sample_freq) 1164 ctx->nr_freq--; 1165 if (event->attr.exclusive || !cpuctx->active_oncpu) 1166 cpuctx->exclusive = 0; 1167 } 1168 1169 static void 1170 group_sched_out(struct perf_event *group_event, 1171 struct perf_cpu_context *cpuctx, 1172 struct perf_event_context *ctx) 1173 { 1174 struct perf_event *event; 1175 int state = group_event->state; 1176 1177 event_sched_out(group_event, cpuctx, ctx); 1178 1179 /* 1180 * Schedule out siblings (if any): 1181 */ 1182 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1183 event_sched_out(event, cpuctx, ctx); 1184 1185 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1186 cpuctx->exclusive = 0; 1187 } 1188 1189 /* 1190 * Cross CPU call to remove a performance event 1191 * 1192 * We disable the event on the hardware level first. After that we 1193 * remove it from the context list. 1194 */ 1195 static int __perf_remove_from_context(void *info) 1196 { 1197 struct perf_event *event = info; 1198 struct perf_event_context *ctx = event->ctx; 1199 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1200 1201 raw_spin_lock(&ctx->lock); 1202 event_sched_out(event, cpuctx, ctx); 1203 list_del_event(event, ctx); 1204 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1205 ctx->is_active = 0; 1206 cpuctx->task_ctx = NULL; 1207 } 1208 raw_spin_unlock(&ctx->lock); 1209 1210 return 0; 1211 } 1212 1213 1214 /* 1215 * Remove the event from a task's (or a CPU's) list of events. 1216 * 1217 * CPU events are removed with a smp call. For task events we only 1218 * call when the task is on a CPU. 1219 * 1220 * If event->ctx is a cloned context, callers must make sure that 1221 * every task struct that event->ctx->task could possibly point to 1222 * remains valid. This is OK when called from perf_release since 1223 * that only calls us on the top-level context, which can't be a clone. 1224 * When called from perf_event_exit_task, it's OK because the 1225 * context has been detached from its task. 1226 */ 1227 static void perf_remove_from_context(struct perf_event *event) 1228 { 1229 struct perf_event_context *ctx = event->ctx; 1230 struct task_struct *task = ctx->task; 1231 1232 lockdep_assert_held(&ctx->mutex); 1233 1234 if (!task) { 1235 /* 1236 * Per cpu events are removed via an smp call and 1237 * the removal is always successful. 1238 */ 1239 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1240 return; 1241 } 1242 1243 retry: 1244 if (!task_function_call(task, __perf_remove_from_context, event)) 1245 return; 1246 1247 raw_spin_lock_irq(&ctx->lock); 1248 /* 1249 * If we failed to find a running task, but find the context active now 1250 * that we've acquired the ctx->lock, retry. 1251 */ 1252 if (ctx->is_active) { 1253 raw_spin_unlock_irq(&ctx->lock); 1254 goto retry; 1255 } 1256 1257 /* 1258 * Since the task isn't running, its safe to remove the event, us 1259 * holding the ctx->lock ensures the task won't get scheduled in. 1260 */ 1261 list_del_event(event, ctx); 1262 raw_spin_unlock_irq(&ctx->lock); 1263 } 1264 1265 /* 1266 * Cross CPU call to disable a performance event 1267 */ 1268 int __perf_event_disable(void *info) 1269 { 1270 struct perf_event *event = info; 1271 struct perf_event_context *ctx = event->ctx; 1272 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1273 1274 /* 1275 * If this is a per-task event, need to check whether this 1276 * event's task is the current task on this cpu. 1277 * 1278 * Can trigger due to concurrent perf_event_context_sched_out() 1279 * flipping contexts around. 1280 */ 1281 if (ctx->task && cpuctx->task_ctx != ctx) 1282 return -EINVAL; 1283 1284 raw_spin_lock(&ctx->lock); 1285 1286 /* 1287 * If the event is on, turn it off. 1288 * If it is in error state, leave it in error state. 1289 */ 1290 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1291 update_context_time(ctx); 1292 update_cgrp_time_from_event(event); 1293 update_group_times(event); 1294 if (event == event->group_leader) 1295 group_sched_out(event, cpuctx, ctx); 1296 else 1297 event_sched_out(event, cpuctx, ctx); 1298 event->state = PERF_EVENT_STATE_OFF; 1299 } 1300 1301 raw_spin_unlock(&ctx->lock); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * Disable a event. 1308 * 1309 * If event->ctx is a cloned context, callers must make sure that 1310 * every task struct that event->ctx->task could possibly point to 1311 * remains valid. This condition is satisifed when called through 1312 * perf_event_for_each_child or perf_event_for_each because they 1313 * hold the top-level event's child_mutex, so any descendant that 1314 * goes to exit will block in sync_child_event. 1315 * When called from perf_pending_event it's OK because event->ctx 1316 * is the current context on this CPU and preemption is disabled, 1317 * hence we can't get into perf_event_task_sched_out for this context. 1318 */ 1319 void perf_event_disable(struct perf_event *event) 1320 { 1321 struct perf_event_context *ctx = event->ctx; 1322 struct task_struct *task = ctx->task; 1323 1324 if (!task) { 1325 /* 1326 * Disable the event on the cpu that it's on 1327 */ 1328 cpu_function_call(event->cpu, __perf_event_disable, event); 1329 return; 1330 } 1331 1332 retry: 1333 if (!task_function_call(task, __perf_event_disable, event)) 1334 return; 1335 1336 raw_spin_lock_irq(&ctx->lock); 1337 /* 1338 * If the event is still active, we need to retry the cross-call. 1339 */ 1340 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1341 raw_spin_unlock_irq(&ctx->lock); 1342 /* 1343 * Reload the task pointer, it might have been changed by 1344 * a concurrent perf_event_context_sched_out(). 1345 */ 1346 task = ctx->task; 1347 goto retry; 1348 } 1349 1350 /* 1351 * Since we have the lock this context can't be scheduled 1352 * in, so we can change the state safely. 1353 */ 1354 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1355 update_group_times(event); 1356 event->state = PERF_EVENT_STATE_OFF; 1357 } 1358 raw_spin_unlock_irq(&ctx->lock); 1359 } 1360 EXPORT_SYMBOL_GPL(perf_event_disable); 1361 1362 static void perf_set_shadow_time(struct perf_event *event, 1363 struct perf_event_context *ctx, 1364 u64 tstamp) 1365 { 1366 /* 1367 * use the correct time source for the time snapshot 1368 * 1369 * We could get by without this by leveraging the 1370 * fact that to get to this function, the caller 1371 * has most likely already called update_context_time() 1372 * and update_cgrp_time_xx() and thus both timestamp 1373 * are identical (or very close). Given that tstamp is, 1374 * already adjusted for cgroup, we could say that: 1375 * tstamp - ctx->timestamp 1376 * is equivalent to 1377 * tstamp - cgrp->timestamp. 1378 * 1379 * Then, in perf_output_read(), the calculation would 1380 * work with no changes because: 1381 * - event is guaranteed scheduled in 1382 * - no scheduled out in between 1383 * - thus the timestamp would be the same 1384 * 1385 * But this is a bit hairy. 1386 * 1387 * So instead, we have an explicit cgroup call to remain 1388 * within the time time source all along. We believe it 1389 * is cleaner and simpler to understand. 1390 */ 1391 if (is_cgroup_event(event)) 1392 perf_cgroup_set_shadow_time(event, tstamp); 1393 else 1394 event->shadow_ctx_time = tstamp - ctx->timestamp; 1395 } 1396 1397 #define MAX_INTERRUPTS (~0ULL) 1398 1399 static void perf_log_throttle(struct perf_event *event, int enable); 1400 1401 static int 1402 event_sched_in(struct perf_event *event, 1403 struct perf_cpu_context *cpuctx, 1404 struct perf_event_context *ctx) 1405 { 1406 u64 tstamp = perf_event_time(event); 1407 1408 if (event->state <= PERF_EVENT_STATE_OFF) 1409 return 0; 1410 1411 event->state = PERF_EVENT_STATE_ACTIVE; 1412 event->oncpu = smp_processor_id(); 1413 1414 /* 1415 * Unthrottle events, since we scheduled we might have missed several 1416 * ticks already, also for a heavily scheduling task there is little 1417 * guarantee it'll get a tick in a timely manner. 1418 */ 1419 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1420 perf_log_throttle(event, 1); 1421 event->hw.interrupts = 0; 1422 } 1423 1424 /* 1425 * The new state must be visible before we turn it on in the hardware: 1426 */ 1427 smp_wmb(); 1428 1429 if (event->pmu->add(event, PERF_EF_START)) { 1430 event->state = PERF_EVENT_STATE_INACTIVE; 1431 event->oncpu = -1; 1432 return -EAGAIN; 1433 } 1434 1435 event->tstamp_running += tstamp - event->tstamp_stopped; 1436 1437 perf_set_shadow_time(event, ctx, tstamp); 1438 1439 if (!is_software_event(event)) 1440 cpuctx->active_oncpu++; 1441 ctx->nr_active++; 1442 if (event->attr.freq && event->attr.sample_freq) 1443 ctx->nr_freq++; 1444 1445 if (event->attr.exclusive) 1446 cpuctx->exclusive = 1; 1447 1448 return 0; 1449 } 1450 1451 static int 1452 group_sched_in(struct perf_event *group_event, 1453 struct perf_cpu_context *cpuctx, 1454 struct perf_event_context *ctx) 1455 { 1456 struct perf_event *event, *partial_group = NULL; 1457 struct pmu *pmu = group_event->pmu; 1458 u64 now = ctx->time; 1459 bool simulate = false; 1460 1461 if (group_event->state == PERF_EVENT_STATE_OFF) 1462 return 0; 1463 1464 pmu->start_txn(pmu); 1465 1466 if (event_sched_in(group_event, cpuctx, ctx)) { 1467 pmu->cancel_txn(pmu); 1468 return -EAGAIN; 1469 } 1470 1471 /* 1472 * Schedule in siblings as one group (if any): 1473 */ 1474 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1475 if (event_sched_in(event, cpuctx, ctx)) { 1476 partial_group = event; 1477 goto group_error; 1478 } 1479 } 1480 1481 if (!pmu->commit_txn(pmu)) 1482 return 0; 1483 1484 group_error: 1485 /* 1486 * Groups can be scheduled in as one unit only, so undo any 1487 * partial group before returning: 1488 * The events up to the failed event are scheduled out normally, 1489 * tstamp_stopped will be updated. 1490 * 1491 * The failed events and the remaining siblings need to have 1492 * their timings updated as if they had gone thru event_sched_in() 1493 * and event_sched_out(). This is required to get consistent timings 1494 * across the group. This also takes care of the case where the group 1495 * could never be scheduled by ensuring tstamp_stopped is set to mark 1496 * the time the event was actually stopped, such that time delta 1497 * calculation in update_event_times() is correct. 1498 */ 1499 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1500 if (event == partial_group) 1501 simulate = true; 1502 1503 if (simulate) { 1504 event->tstamp_running += now - event->tstamp_stopped; 1505 event->tstamp_stopped = now; 1506 } else { 1507 event_sched_out(event, cpuctx, ctx); 1508 } 1509 } 1510 event_sched_out(group_event, cpuctx, ctx); 1511 1512 pmu->cancel_txn(pmu); 1513 1514 return -EAGAIN; 1515 } 1516 1517 /* 1518 * Work out whether we can put this event group on the CPU now. 1519 */ 1520 static int group_can_go_on(struct perf_event *event, 1521 struct perf_cpu_context *cpuctx, 1522 int can_add_hw) 1523 { 1524 /* 1525 * Groups consisting entirely of software events can always go on. 1526 */ 1527 if (event->group_flags & PERF_GROUP_SOFTWARE) 1528 return 1; 1529 /* 1530 * If an exclusive group is already on, no other hardware 1531 * events can go on. 1532 */ 1533 if (cpuctx->exclusive) 1534 return 0; 1535 /* 1536 * If this group is exclusive and there are already 1537 * events on the CPU, it can't go on. 1538 */ 1539 if (event->attr.exclusive && cpuctx->active_oncpu) 1540 return 0; 1541 /* 1542 * Otherwise, try to add it if all previous groups were able 1543 * to go on. 1544 */ 1545 return can_add_hw; 1546 } 1547 1548 static void add_event_to_ctx(struct perf_event *event, 1549 struct perf_event_context *ctx) 1550 { 1551 u64 tstamp = perf_event_time(event); 1552 1553 list_add_event(event, ctx); 1554 perf_group_attach(event); 1555 event->tstamp_enabled = tstamp; 1556 event->tstamp_running = tstamp; 1557 event->tstamp_stopped = tstamp; 1558 } 1559 1560 static void task_ctx_sched_out(struct perf_event_context *ctx); 1561 static void 1562 ctx_sched_in(struct perf_event_context *ctx, 1563 struct perf_cpu_context *cpuctx, 1564 enum event_type_t event_type, 1565 struct task_struct *task); 1566 1567 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1568 struct perf_event_context *ctx, 1569 struct task_struct *task) 1570 { 1571 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1572 if (ctx) 1573 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1574 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1575 if (ctx) 1576 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1577 } 1578 1579 /* 1580 * Cross CPU call to install and enable a performance event 1581 * 1582 * Must be called with ctx->mutex held 1583 */ 1584 static int __perf_install_in_context(void *info) 1585 { 1586 struct perf_event *event = info; 1587 struct perf_event_context *ctx = event->ctx; 1588 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1589 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1590 struct task_struct *task = current; 1591 1592 perf_ctx_lock(cpuctx, task_ctx); 1593 perf_pmu_disable(cpuctx->ctx.pmu); 1594 1595 /* 1596 * If there was an active task_ctx schedule it out. 1597 */ 1598 if (task_ctx) 1599 task_ctx_sched_out(task_ctx); 1600 1601 /* 1602 * If the context we're installing events in is not the 1603 * active task_ctx, flip them. 1604 */ 1605 if (ctx->task && task_ctx != ctx) { 1606 if (task_ctx) 1607 raw_spin_unlock(&task_ctx->lock); 1608 raw_spin_lock(&ctx->lock); 1609 task_ctx = ctx; 1610 } 1611 1612 if (task_ctx) { 1613 cpuctx->task_ctx = task_ctx; 1614 task = task_ctx->task; 1615 } 1616 1617 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1618 1619 update_context_time(ctx); 1620 /* 1621 * update cgrp time only if current cgrp 1622 * matches event->cgrp. Must be done before 1623 * calling add_event_to_ctx() 1624 */ 1625 update_cgrp_time_from_event(event); 1626 1627 add_event_to_ctx(event, ctx); 1628 1629 /* 1630 * Schedule everything back in 1631 */ 1632 perf_event_sched_in(cpuctx, task_ctx, task); 1633 1634 perf_pmu_enable(cpuctx->ctx.pmu); 1635 perf_ctx_unlock(cpuctx, task_ctx); 1636 1637 return 0; 1638 } 1639 1640 /* 1641 * Attach a performance event to a context 1642 * 1643 * First we add the event to the list with the hardware enable bit 1644 * in event->hw_config cleared. 1645 * 1646 * If the event is attached to a task which is on a CPU we use a smp 1647 * call to enable it in the task context. The task might have been 1648 * scheduled away, but we check this in the smp call again. 1649 */ 1650 static void 1651 perf_install_in_context(struct perf_event_context *ctx, 1652 struct perf_event *event, 1653 int cpu) 1654 { 1655 struct task_struct *task = ctx->task; 1656 1657 lockdep_assert_held(&ctx->mutex); 1658 1659 event->ctx = ctx; 1660 if (event->cpu != -1) 1661 event->cpu = cpu; 1662 1663 if (!task) { 1664 /* 1665 * Per cpu events are installed via an smp call and 1666 * the install is always successful. 1667 */ 1668 cpu_function_call(cpu, __perf_install_in_context, event); 1669 return; 1670 } 1671 1672 retry: 1673 if (!task_function_call(task, __perf_install_in_context, event)) 1674 return; 1675 1676 raw_spin_lock_irq(&ctx->lock); 1677 /* 1678 * If we failed to find a running task, but find the context active now 1679 * that we've acquired the ctx->lock, retry. 1680 */ 1681 if (ctx->is_active) { 1682 raw_spin_unlock_irq(&ctx->lock); 1683 goto retry; 1684 } 1685 1686 /* 1687 * Since the task isn't running, its safe to add the event, us holding 1688 * the ctx->lock ensures the task won't get scheduled in. 1689 */ 1690 add_event_to_ctx(event, ctx); 1691 raw_spin_unlock_irq(&ctx->lock); 1692 } 1693 1694 /* 1695 * Put a event into inactive state and update time fields. 1696 * Enabling the leader of a group effectively enables all 1697 * the group members that aren't explicitly disabled, so we 1698 * have to update their ->tstamp_enabled also. 1699 * Note: this works for group members as well as group leaders 1700 * since the non-leader members' sibling_lists will be empty. 1701 */ 1702 static void __perf_event_mark_enabled(struct perf_event *event) 1703 { 1704 struct perf_event *sub; 1705 u64 tstamp = perf_event_time(event); 1706 1707 event->state = PERF_EVENT_STATE_INACTIVE; 1708 event->tstamp_enabled = tstamp - event->total_time_enabled; 1709 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1710 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1711 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1712 } 1713 } 1714 1715 /* 1716 * Cross CPU call to enable a performance event 1717 */ 1718 static int __perf_event_enable(void *info) 1719 { 1720 struct perf_event *event = info; 1721 struct perf_event_context *ctx = event->ctx; 1722 struct perf_event *leader = event->group_leader; 1723 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1724 int err; 1725 1726 if (WARN_ON_ONCE(!ctx->is_active)) 1727 return -EINVAL; 1728 1729 raw_spin_lock(&ctx->lock); 1730 update_context_time(ctx); 1731 1732 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1733 goto unlock; 1734 1735 /* 1736 * set current task's cgroup time reference point 1737 */ 1738 perf_cgroup_set_timestamp(current, ctx); 1739 1740 __perf_event_mark_enabled(event); 1741 1742 if (!event_filter_match(event)) { 1743 if (is_cgroup_event(event)) 1744 perf_cgroup_defer_enabled(event); 1745 goto unlock; 1746 } 1747 1748 /* 1749 * If the event is in a group and isn't the group leader, 1750 * then don't put it on unless the group is on. 1751 */ 1752 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1753 goto unlock; 1754 1755 if (!group_can_go_on(event, cpuctx, 1)) { 1756 err = -EEXIST; 1757 } else { 1758 if (event == leader) 1759 err = group_sched_in(event, cpuctx, ctx); 1760 else 1761 err = event_sched_in(event, cpuctx, ctx); 1762 } 1763 1764 if (err) { 1765 /* 1766 * If this event can't go on and it's part of a 1767 * group, then the whole group has to come off. 1768 */ 1769 if (leader != event) 1770 group_sched_out(leader, cpuctx, ctx); 1771 if (leader->attr.pinned) { 1772 update_group_times(leader); 1773 leader->state = PERF_EVENT_STATE_ERROR; 1774 } 1775 } 1776 1777 unlock: 1778 raw_spin_unlock(&ctx->lock); 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * Enable a event. 1785 * 1786 * If event->ctx is a cloned context, callers must make sure that 1787 * every task struct that event->ctx->task could possibly point to 1788 * remains valid. This condition is satisfied when called through 1789 * perf_event_for_each_child or perf_event_for_each as described 1790 * for perf_event_disable. 1791 */ 1792 void perf_event_enable(struct perf_event *event) 1793 { 1794 struct perf_event_context *ctx = event->ctx; 1795 struct task_struct *task = ctx->task; 1796 1797 if (!task) { 1798 /* 1799 * Enable the event on the cpu that it's on 1800 */ 1801 cpu_function_call(event->cpu, __perf_event_enable, event); 1802 return; 1803 } 1804 1805 raw_spin_lock_irq(&ctx->lock); 1806 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1807 goto out; 1808 1809 /* 1810 * If the event is in error state, clear that first. 1811 * That way, if we see the event in error state below, we 1812 * know that it has gone back into error state, as distinct 1813 * from the task having been scheduled away before the 1814 * cross-call arrived. 1815 */ 1816 if (event->state == PERF_EVENT_STATE_ERROR) 1817 event->state = PERF_EVENT_STATE_OFF; 1818 1819 retry: 1820 if (!ctx->is_active) { 1821 __perf_event_mark_enabled(event); 1822 goto out; 1823 } 1824 1825 raw_spin_unlock_irq(&ctx->lock); 1826 1827 if (!task_function_call(task, __perf_event_enable, event)) 1828 return; 1829 1830 raw_spin_lock_irq(&ctx->lock); 1831 1832 /* 1833 * If the context is active and the event is still off, 1834 * we need to retry the cross-call. 1835 */ 1836 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1837 /* 1838 * task could have been flipped by a concurrent 1839 * perf_event_context_sched_out() 1840 */ 1841 task = ctx->task; 1842 goto retry; 1843 } 1844 1845 out: 1846 raw_spin_unlock_irq(&ctx->lock); 1847 } 1848 EXPORT_SYMBOL_GPL(perf_event_enable); 1849 1850 int perf_event_refresh(struct perf_event *event, int refresh) 1851 { 1852 /* 1853 * not supported on inherited events 1854 */ 1855 if (event->attr.inherit || !is_sampling_event(event)) 1856 return -EINVAL; 1857 1858 atomic_add(refresh, &event->event_limit); 1859 perf_event_enable(event); 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL_GPL(perf_event_refresh); 1864 1865 static void ctx_sched_out(struct perf_event_context *ctx, 1866 struct perf_cpu_context *cpuctx, 1867 enum event_type_t event_type) 1868 { 1869 struct perf_event *event; 1870 int is_active = ctx->is_active; 1871 1872 ctx->is_active &= ~event_type; 1873 if (likely(!ctx->nr_events)) 1874 return; 1875 1876 update_context_time(ctx); 1877 update_cgrp_time_from_cpuctx(cpuctx); 1878 if (!ctx->nr_active) 1879 return; 1880 1881 perf_pmu_disable(ctx->pmu); 1882 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1883 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1884 group_sched_out(event, cpuctx, ctx); 1885 } 1886 1887 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1888 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1889 group_sched_out(event, cpuctx, ctx); 1890 } 1891 perf_pmu_enable(ctx->pmu); 1892 } 1893 1894 /* 1895 * Test whether two contexts are equivalent, i.e. whether they 1896 * have both been cloned from the same version of the same context 1897 * and they both have the same number of enabled events. 1898 * If the number of enabled events is the same, then the set 1899 * of enabled events should be the same, because these are both 1900 * inherited contexts, therefore we can't access individual events 1901 * in them directly with an fd; we can only enable/disable all 1902 * events via prctl, or enable/disable all events in a family 1903 * via ioctl, which will have the same effect on both contexts. 1904 */ 1905 static int context_equiv(struct perf_event_context *ctx1, 1906 struct perf_event_context *ctx2) 1907 { 1908 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1909 && ctx1->parent_gen == ctx2->parent_gen 1910 && !ctx1->pin_count && !ctx2->pin_count; 1911 } 1912 1913 static void __perf_event_sync_stat(struct perf_event *event, 1914 struct perf_event *next_event) 1915 { 1916 u64 value; 1917 1918 if (!event->attr.inherit_stat) 1919 return; 1920 1921 /* 1922 * Update the event value, we cannot use perf_event_read() 1923 * because we're in the middle of a context switch and have IRQs 1924 * disabled, which upsets smp_call_function_single(), however 1925 * we know the event must be on the current CPU, therefore we 1926 * don't need to use it. 1927 */ 1928 switch (event->state) { 1929 case PERF_EVENT_STATE_ACTIVE: 1930 event->pmu->read(event); 1931 /* fall-through */ 1932 1933 case PERF_EVENT_STATE_INACTIVE: 1934 update_event_times(event); 1935 break; 1936 1937 default: 1938 break; 1939 } 1940 1941 /* 1942 * In order to keep per-task stats reliable we need to flip the event 1943 * values when we flip the contexts. 1944 */ 1945 value = local64_read(&next_event->count); 1946 value = local64_xchg(&event->count, value); 1947 local64_set(&next_event->count, value); 1948 1949 swap(event->total_time_enabled, next_event->total_time_enabled); 1950 swap(event->total_time_running, next_event->total_time_running); 1951 1952 /* 1953 * Since we swizzled the values, update the user visible data too. 1954 */ 1955 perf_event_update_userpage(event); 1956 perf_event_update_userpage(next_event); 1957 } 1958 1959 #define list_next_entry(pos, member) \ 1960 list_entry(pos->member.next, typeof(*pos), member) 1961 1962 static void perf_event_sync_stat(struct perf_event_context *ctx, 1963 struct perf_event_context *next_ctx) 1964 { 1965 struct perf_event *event, *next_event; 1966 1967 if (!ctx->nr_stat) 1968 return; 1969 1970 update_context_time(ctx); 1971 1972 event = list_first_entry(&ctx->event_list, 1973 struct perf_event, event_entry); 1974 1975 next_event = list_first_entry(&next_ctx->event_list, 1976 struct perf_event, event_entry); 1977 1978 while (&event->event_entry != &ctx->event_list && 1979 &next_event->event_entry != &next_ctx->event_list) { 1980 1981 __perf_event_sync_stat(event, next_event); 1982 1983 event = list_next_entry(event, event_entry); 1984 next_event = list_next_entry(next_event, event_entry); 1985 } 1986 } 1987 1988 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1989 struct task_struct *next) 1990 { 1991 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1992 struct perf_event_context *next_ctx; 1993 struct perf_event_context *parent; 1994 struct perf_cpu_context *cpuctx; 1995 int do_switch = 1; 1996 1997 if (likely(!ctx)) 1998 return; 1999 2000 cpuctx = __get_cpu_context(ctx); 2001 if (!cpuctx->task_ctx) 2002 return; 2003 2004 rcu_read_lock(); 2005 parent = rcu_dereference(ctx->parent_ctx); 2006 next_ctx = next->perf_event_ctxp[ctxn]; 2007 if (parent && next_ctx && 2008 rcu_dereference(next_ctx->parent_ctx) == parent) { 2009 /* 2010 * Looks like the two contexts are clones, so we might be 2011 * able to optimize the context switch. We lock both 2012 * contexts and check that they are clones under the 2013 * lock (including re-checking that neither has been 2014 * uncloned in the meantime). It doesn't matter which 2015 * order we take the locks because no other cpu could 2016 * be trying to lock both of these tasks. 2017 */ 2018 raw_spin_lock(&ctx->lock); 2019 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2020 if (context_equiv(ctx, next_ctx)) { 2021 /* 2022 * XXX do we need a memory barrier of sorts 2023 * wrt to rcu_dereference() of perf_event_ctxp 2024 */ 2025 task->perf_event_ctxp[ctxn] = next_ctx; 2026 next->perf_event_ctxp[ctxn] = ctx; 2027 ctx->task = next; 2028 next_ctx->task = task; 2029 do_switch = 0; 2030 2031 perf_event_sync_stat(ctx, next_ctx); 2032 } 2033 raw_spin_unlock(&next_ctx->lock); 2034 raw_spin_unlock(&ctx->lock); 2035 } 2036 rcu_read_unlock(); 2037 2038 if (do_switch) { 2039 raw_spin_lock(&ctx->lock); 2040 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2041 cpuctx->task_ctx = NULL; 2042 raw_spin_unlock(&ctx->lock); 2043 } 2044 } 2045 2046 #define for_each_task_context_nr(ctxn) \ 2047 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2048 2049 /* 2050 * Called from scheduler to remove the events of the current task, 2051 * with interrupts disabled. 2052 * 2053 * We stop each event and update the event value in event->count. 2054 * 2055 * This does not protect us against NMI, but disable() 2056 * sets the disabled bit in the control field of event _before_ 2057 * accessing the event control register. If a NMI hits, then it will 2058 * not restart the event. 2059 */ 2060 void __perf_event_task_sched_out(struct task_struct *task, 2061 struct task_struct *next) 2062 { 2063 int ctxn; 2064 2065 for_each_task_context_nr(ctxn) 2066 perf_event_context_sched_out(task, ctxn, next); 2067 2068 /* 2069 * if cgroup events exist on this CPU, then we need 2070 * to check if we have to switch out PMU state. 2071 * cgroup event are system-wide mode only 2072 */ 2073 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2074 perf_cgroup_sched_out(task, next); 2075 } 2076 2077 static void task_ctx_sched_out(struct perf_event_context *ctx) 2078 { 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2080 2081 if (!cpuctx->task_ctx) 2082 return; 2083 2084 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2085 return; 2086 2087 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2088 cpuctx->task_ctx = NULL; 2089 } 2090 2091 /* 2092 * Called with IRQs disabled 2093 */ 2094 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2095 enum event_type_t event_type) 2096 { 2097 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2098 } 2099 2100 static void 2101 ctx_pinned_sched_in(struct perf_event_context *ctx, 2102 struct perf_cpu_context *cpuctx) 2103 { 2104 struct perf_event *event; 2105 2106 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2107 if (event->state <= PERF_EVENT_STATE_OFF) 2108 continue; 2109 if (!event_filter_match(event)) 2110 continue; 2111 2112 /* may need to reset tstamp_enabled */ 2113 if (is_cgroup_event(event)) 2114 perf_cgroup_mark_enabled(event, ctx); 2115 2116 if (group_can_go_on(event, cpuctx, 1)) 2117 group_sched_in(event, cpuctx, ctx); 2118 2119 /* 2120 * If this pinned group hasn't been scheduled, 2121 * put it in error state. 2122 */ 2123 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2124 update_group_times(event); 2125 event->state = PERF_EVENT_STATE_ERROR; 2126 } 2127 } 2128 } 2129 2130 static void 2131 ctx_flexible_sched_in(struct perf_event_context *ctx, 2132 struct perf_cpu_context *cpuctx) 2133 { 2134 struct perf_event *event; 2135 int can_add_hw = 1; 2136 2137 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2138 /* Ignore events in OFF or ERROR state */ 2139 if (event->state <= PERF_EVENT_STATE_OFF) 2140 continue; 2141 /* 2142 * Listen to the 'cpu' scheduling filter constraint 2143 * of events: 2144 */ 2145 if (!event_filter_match(event)) 2146 continue; 2147 2148 /* may need to reset tstamp_enabled */ 2149 if (is_cgroup_event(event)) 2150 perf_cgroup_mark_enabled(event, ctx); 2151 2152 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2153 if (group_sched_in(event, cpuctx, ctx)) 2154 can_add_hw = 0; 2155 } 2156 } 2157 } 2158 2159 static void 2160 ctx_sched_in(struct perf_event_context *ctx, 2161 struct perf_cpu_context *cpuctx, 2162 enum event_type_t event_type, 2163 struct task_struct *task) 2164 { 2165 u64 now; 2166 int is_active = ctx->is_active; 2167 2168 ctx->is_active |= event_type; 2169 if (likely(!ctx->nr_events)) 2170 return; 2171 2172 now = perf_clock(); 2173 ctx->timestamp = now; 2174 perf_cgroup_set_timestamp(task, ctx); 2175 /* 2176 * First go through the list and put on any pinned groups 2177 * in order to give them the best chance of going on. 2178 */ 2179 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2180 ctx_pinned_sched_in(ctx, cpuctx); 2181 2182 /* Then walk through the lower prio flexible groups */ 2183 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2184 ctx_flexible_sched_in(ctx, cpuctx); 2185 } 2186 2187 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2188 enum event_type_t event_type, 2189 struct task_struct *task) 2190 { 2191 struct perf_event_context *ctx = &cpuctx->ctx; 2192 2193 ctx_sched_in(ctx, cpuctx, event_type, task); 2194 } 2195 2196 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2197 struct task_struct *task) 2198 { 2199 struct perf_cpu_context *cpuctx; 2200 2201 cpuctx = __get_cpu_context(ctx); 2202 if (cpuctx->task_ctx == ctx) 2203 return; 2204 2205 perf_ctx_lock(cpuctx, ctx); 2206 perf_pmu_disable(ctx->pmu); 2207 /* 2208 * We want to keep the following priority order: 2209 * cpu pinned (that don't need to move), task pinned, 2210 * cpu flexible, task flexible. 2211 */ 2212 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2213 2214 if (ctx->nr_events) 2215 cpuctx->task_ctx = ctx; 2216 2217 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2218 2219 perf_pmu_enable(ctx->pmu); 2220 perf_ctx_unlock(cpuctx, ctx); 2221 2222 /* 2223 * Since these rotations are per-cpu, we need to ensure the 2224 * cpu-context we got scheduled on is actually rotating. 2225 */ 2226 perf_pmu_rotate_start(ctx->pmu); 2227 } 2228 2229 /* 2230 * When sampling the branck stack in system-wide, it may be necessary 2231 * to flush the stack on context switch. This happens when the branch 2232 * stack does not tag its entries with the pid of the current task. 2233 * Otherwise it becomes impossible to associate a branch entry with a 2234 * task. This ambiguity is more likely to appear when the branch stack 2235 * supports priv level filtering and the user sets it to monitor only 2236 * at the user level (which could be a useful measurement in system-wide 2237 * mode). In that case, the risk is high of having a branch stack with 2238 * branch from multiple tasks. Flushing may mean dropping the existing 2239 * entries or stashing them somewhere in the PMU specific code layer. 2240 * 2241 * This function provides the context switch callback to the lower code 2242 * layer. It is invoked ONLY when there is at least one system-wide context 2243 * with at least one active event using taken branch sampling. 2244 */ 2245 static void perf_branch_stack_sched_in(struct task_struct *prev, 2246 struct task_struct *task) 2247 { 2248 struct perf_cpu_context *cpuctx; 2249 struct pmu *pmu; 2250 unsigned long flags; 2251 2252 /* no need to flush branch stack if not changing task */ 2253 if (prev == task) 2254 return; 2255 2256 local_irq_save(flags); 2257 2258 rcu_read_lock(); 2259 2260 list_for_each_entry_rcu(pmu, &pmus, entry) { 2261 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2262 2263 /* 2264 * check if the context has at least one 2265 * event using PERF_SAMPLE_BRANCH_STACK 2266 */ 2267 if (cpuctx->ctx.nr_branch_stack > 0 2268 && pmu->flush_branch_stack) { 2269 2270 pmu = cpuctx->ctx.pmu; 2271 2272 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2273 2274 perf_pmu_disable(pmu); 2275 2276 pmu->flush_branch_stack(); 2277 2278 perf_pmu_enable(pmu); 2279 2280 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2281 } 2282 } 2283 2284 rcu_read_unlock(); 2285 2286 local_irq_restore(flags); 2287 } 2288 2289 /* 2290 * Called from scheduler to add the events of the current task 2291 * with interrupts disabled. 2292 * 2293 * We restore the event value and then enable it. 2294 * 2295 * This does not protect us against NMI, but enable() 2296 * sets the enabled bit in the control field of event _before_ 2297 * accessing the event control register. If a NMI hits, then it will 2298 * keep the event running. 2299 */ 2300 void __perf_event_task_sched_in(struct task_struct *prev, 2301 struct task_struct *task) 2302 { 2303 struct perf_event_context *ctx; 2304 int ctxn; 2305 2306 for_each_task_context_nr(ctxn) { 2307 ctx = task->perf_event_ctxp[ctxn]; 2308 if (likely(!ctx)) 2309 continue; 2310 2311 perf_event_context_sched_in(ctx, task); 2312 } 2313 /* 2314 * if cgroup events exist on this CPU, then we need 2315 * to check if we have to switch in PMU state. 2316 * cgroup event are system-wide mode only 2317 */ 2318 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2319 perf_cgroup_sched_in(prev, task); 2320 2321 /* check for system-wide branch_stack events */ 2322 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2323 perf_branch_stack_sched_in(prev, task); 2324 } 2325 2326 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2327 { 2328 u64 frequency = event->attr.sample_freq; 2329 u64 sec = NSEC_PER_SEC; 2330 u64 divisor, dividend; 2331 2332 int count_fls, nsec_fls, frequency_fls, sec_fls; 2333 2334 count_fls = fls64(count); 2335 nsec_fls = fls64(nsec); 2336 frequency_fls = fls64(frequency); 2337 sec_fls = 30; 2338 2339 /* 2340 * We got @count in @nsec, with a target of sample_freq HZ 2341 * the target period becomes: 2342 * 2343 * @count * 10^9 2344 * period = ------------------- 2345 * @nsec * sample_freq 2346 * 2347 */ 2348 2349 /* 2350 * Reduce accuracy by one bit such that @a and @b converge 2351 * to a similar magnitude. 2352 */ 2353 #define REDUCE_FLS(a, b) \ 2354 do { \ 2355 if (a##_fls > b##_fls) { \ 2356 a >>= 1; \ 2357 a##_fls--; \ 2358 } else { \ 2359 b >>= 1; \ 2360 b##_fls--; \ 2361 } \ 2362 } while (0) 2363 2364 /* 2365 * Reduce accuracy until either term fits in a u64, then proceed with 2366 * the other, so that finally we can do a u64/u64 division. 2367 */ 2368 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2369 REDUCE_FLS(nsec, frequency); 2370 REDUCE_FLS(sec, count); 2371 } 2372 2373 if (count_fls + sec_fls > 64) { 2374 divisor = nsec * frequency; 2375 2376 while (count_fls + sec_fls > 64) { 2377 REDUCE_FLS(count, sec); 2378 divisor >>= 1; 2379 } 2380 2381 dividend = count * sec; 2382 } else { 2383 dividend = count * sec; 2384 2385 while (nsec_fls + frequency_fls > 64) { 2386 REDUCE_FLS(nsec, frequency); 2387 dividend >>= 1; 2388 } 2389 2390 divisor = nsec * frequency; 2391 } 2392 2393 if (!divisor) 2394 return dividend; 2395 2396 return div64_u64(dividend, divisor); 2397 } 2398 2399 static DEFINE_PER_CPU(int, perf_throttled_count); 2400 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2401 2402 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2403 { 2404 struct hw_perf_event *hwc = &event->hw; 2405 s64 period, sample_period; 2406 s64 delta; 2407 2408 period = perf_calculate_period(event, nsec, count); 2409 2410 delta = (s64)(period - hwc->sample_period); 2411 delta = (delta + 7) / 8; /* low pass filter */ 2412 2413 sample_period = hwc->sample_period + delta; 2414 2415 if (!sample_period) 2416 sample_period = 1; 2417 2418 hwc->sample_period = sample_period; 2419 2420 if (local64_read(&hwc->period_left) > 8*sample_period) { 2421 if (disable) 2422 event->pmu->stop(event, PERF_EF_UPDATE); 2423 2424 local64_set(&hwc->period_left, 0); 2425 2426 if (disable) 2427 event->pmu->start(event, PERF_EF_RELOAD); 2428 } 2429 } 2430 2431 /* 2432 * combine freq adjustment with unthrottling to avoid two passes over the 2433 * events. At the same time, make sure, having freq events does not change 2434 * the rate of unthrottling as that would introduce bias. 2435 */ 2436 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2437 int needs_unthr) 2438 { 2439 struct perf_event *event; 2440 struct hw_perf_event *hwc; 2441 u64 now, period = TICK_NSEC; 2442 s64 delta; 2443 2444 /* 2445 * only need to iterate over all events iff: 2446 * - context have events in frequency mode (needs freq adjust) 2447 * - there are events to unthrottle on this cpu 2448 */ 2449 if (!(ctx->nr_freq || needs_unthr)) 2450 return; 2451 2452 raw_spin_lock(&ctx->lock); 2453 perf_pmu_disable(ctx->pmu); 2454 2455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2456 if (event->state != PERF_EVENT_STATE_ACTIVE) 2457 continue; 2458 2459 if (!event_filter_match(event)) 2460 continue; 2461 2462 hwc = &event->hw; 2463 2464 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2465 hwc->interrupts = 0; 2466 perf_log_throttle(event, 1); 2467 event->pmu->start(event, 0); 2468 } 2469 2470 if (!event->attr.freq || !event->attr.sample_freq) 2471 continue; 2472 2473 /* 2474 * stop the event and update event->count 2475 */ 2476 event->pmu->stop(event, PERF_EF_UPDATE); 2477 2478 now = local64_read(&event->count); 2479 delta = now - hwc->freq_count_stamp; 2480 hwc->freq_count_stamp = now; 2481 2482 /* 2483 * restart the event 2484 * reload only if value has changed 2485 * we have stopped the event so tell that 2486 * to perf_adjust_period() to avoid stopping it 2487 * twice. 2488 */ 2489 if (delta > 0) 2490 perf_adjust_period(event, period, delta, false); 2491 2492 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2493 } 2494 2495 perf_pmu_enable(ctx->pmu); 2496 raw_spin_unlock(&ctx->lock); 2497 } 2498 2499 /* 2500 * Round-robin a context's events: 2501 */ 2502 static void rotate_ctx(struct perf_event_context *ctx) 2503 { 2504 /* 2505 * Rotate the first entry last of non-pinned groups. Rotation might be 2506 * disabled by the inheritance code. 2507 */ 2508 if (!ctx->rotate_disable) 2509 list_rotate_left(&ctx->flexible_groups); 2510 } 2511 2512 /* 2513 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2514 * because they're strictly cpu affine and rotate_start is called with IRQs 2515 * disabled, while rotate_context is called from IRQ context. 2516 */ 2517 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2518 { 2519 struct perf_event_context *ctx = NULL; 2520 int rotate = 0, remove = 1; 2521 2522 if (cpuctx->ctx.nr_events) { 2523 remove = 0; 2524 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2525 rotate = 1; 2526 } 2527 2528 ctx = cpuctx->task_ctx; 2529 if (ctx && ctx->nr_events) { 2530 remove = 0; 2531 if (ctx->nr_events != ctx->nr_active) 2532 rotate = 1; 2533 } 2534 2535 if (!rotate) 2536 goto done; 2537 2538 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2539 perf_pmu_disable(cpuctx->ctx.pmu); 2540 2541 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2542 if (ctx) 2543 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2544 2545 rotate_ctx(&cpuctx->ctx); 2546 if (ctx) 2547 rotate_ctx(ctx); 2548 2549 perf_event_sched_in(cpuctx, ctx, current); 2550 2551 perf_pmu_enable(cpuctx->ctx.pmu); 2552 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2553 done: 2554 if (remove) 2555 list_del_init(&cpuctx->rotation_list); 2556 } 2557 2558 void perf_event_task_tick(void) 2559 { 2560 struct list_head *head = &__get_cpu_var(rotation_list); 2561 struct perf_cpu_context *cpuctx, *tmp; 2562 struct perf_event_context *ctx; 2563 int throttled; 2564 2565 WARN_ON(!irqs_disabled()); 2566 2567 __this_cpu_inc(perf_throttled_seq); 2568 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2569 2570 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2571 ctx = &cpuctx->ctx; 2572 perf_adjust_freq_unthr_context(ctx, throttled); 2573 2574 ctx = cpuctx->task_ctx; 2575 if (ctx) 2576 perf_adjust_freq_unthr_context(ctx, throttled); 2577 2578 if (cpuctx->jiffies_interval == 1 || 2579 !(jiffies % cpuctx->jiffies_interval)) 2580 perf_rotate_context(cpuctx); 2581 } 2582 } 2583 2584 static int event_enable_on_exec(struct perf_event *event, 2585 struct perf_event_context *ctx) 2586 { 2587 if (!event->attr.enable_on_exec) 2588 return 0; 2589 2590 event->attr.enable_on_exec = 0; 2591 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2592 return 0; 2593 2594 __perf_event_mark_enabled(event); 2595 2596 return 1; 2597 } 2598 2599 /* 2600 * Enable all of a task's events that have been marked enable-on-exec. 2601 * This expects task == current. 2602 */ 2603 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2604 { 2605 struct perf_event *event; 2606 unsigned long flags; 2607 int enabled = 0; 2608 int ret; 2609 2610 local_irq_save(flags); 2611 if (!ctx || !ctx->nr_events) 2612 goto out; 2613 2614 /* 2615 * We must ctxsw out cgroup events to avoid conflict 2616 * when invoking perf_task_event_sched_in() later on 2617 * in this function. Otherwise we end up trying to 2618 * ctxswin cgroup events which are already scheduled 2619 * in. 2620 */ 2621 perf_cgroup_sched_out(current, NULL); 2622 2623 raw_spin_lock(&ctx->lock); 2624 task_ctx_sched_out(ctx); 2625 2626 list_for_each_entry(event, &ctx->event_list, event_entry) { 2627 ret = event_enable_on_exec(event, ctx); 2628 if (ret) 2629 enabled = 1; 2630 } 2631 2632 /* 2633 * Unclone this context if we enabled any event. 2634 */ 2635 if (enabled) 2636 unclone_ctx(ctx); 2637 2638 raw_spin_unlock(&ctx->lock); 2639 2640 /* 2641 * Also calls ctxswin for cgroup events, if any: 2642 */ 2643 perf_event_context_sched_in(ctx, ctx->task); 2644 out: 2645 local_irq_restore(flags); 2646 } 2647 2648 /* 2649 * Cross CPU call to read the hardware event 2650 */ 2651 static void __perf_event_read(void *info) 2652 { 2653 struct perf_event *event = info; 2654 struct perf_event_context *ctx = event->ctx; 2655 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2656 2657 /* 2658 * If this is a task context, we need to check whether it is 2659 * the current task context of this cpu. If not it has been 2660 * scheduled out before the smp call arrived. In that case 2661 * event->count would have been updated to a recent sample 2662 * when the event was scheduled out. 2663 */ 2664 if (ctx->task && cpuctx->task_ctx != ctx) 2665 return; 2666 2667 raw_spin_lock(&ctx->lock); 2668 if (ctx->is_active) { 2669 update_context_time(ctx); 2670 update_cgrp_time_from_event(event); 2671 } 2672 update_event_times(event); 2673 if (event->state == PERF_EVENT_STATE_ACTIVE) 2674 event->pmu->read(event); 2675 raw_spin_unlock(&ctx->lock); 2676 } 2677 2678 static inline u64 perf_event_count(struct perf_event *event) 2679 { 2680 return local64_read(&event->count) + atomic64_read(&event->child_count); 2681 } 2682 2683 static u64 perf_event_read(struct perf_event *event) 2684 { 2685 /* 2686 * If event is enabled and currently active on a CPU, update the 2687 * value in the event structure: 2688 */ 2689 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2690 smp_call_function_single(event->oncpu, 2691 __perf_event_read, event, 1); 2692 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2693 struct perf_event_context *ctx = event->ctx; 2694 unsigned long flags; 2695 2696 raw_spin_lock_irqsave(&ctx->lock, flags); 2697 /* 2698 * may read while context is not active 2699 * (e.g., thread is blocked), in that case 2700 * we cannot update context time 2701 */ 2702 if (ctx->is_active) { 2703 update_context_time(ctx); 2704 update_cgrp_time_from_event(event); 2705 } 2706 update_event_times(event); 2707 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2708 } 2709 2710 return perf_event_count(event); 2711 } 2712 2713 /* 2714 * Initialize the perf_event context in a task_struct: 2715 */ 2716 static void __perf_event_init_context(struct perf_event_context *ctx) 2717 { 2718 raw_spin_lock_init(&ctx->lock); 2719 mutex_init(&ctx->mutex); 2720 INIT_LIST_HEAD(&ctx->pinned_groups); 2721 INIT_LIST_HEAD(&ctx->flexible_groups); 2722 INIT_LIST_HEAD(&ctx->event_list); 2723 atomic_set(&ctx->refcount, 1); 2724 } 2725 2726 static struct perf_event_context * 2727 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2728 { 2729 struct perf_event_context *ctx; 2730 2731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2732 if (!ctx) 2733 return NULL; 2734 2735 __perf_event_init_context(ctx); 2736 if (task) { 2737 ctx->task = task; 2738 get_task_struct(task); 2739 } 2740 ctx->pmu = pmu; 2741 2742 return ctx; 2743 } 2744 2745 static struct task_struct * 2746 find_lively_task_by_vpid(pid_t vpid) 2747 { 2748 struct task_struct *task; 2749 int err; 2750 2751 rcu_read_lock(); 2752 if (!vpid) 2753 task = current; 2754 else 2755 task = find_task_by_vpid(vpid); 2756 if (task) 2757 get_task_struct(task); 2758 rcu_read_unlock(); 2759 2760 if (!task) 2761 return ERR_PTR(-ESRCH); 2762 2763 /* Reuse ptrace permission checks for now. */ 2764 err = -EACCES; 2765 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2766 goto errout; 2767 2768 return task; 2769 errout: 2770 put_task_struct(task); 2771 return ERR_PTR(err); 2772 2773 } 2774 2775 /* 2776 * Returns a matching context with refcount and pincount. 2777 */ 2778 static struct perf_event_context * 2779 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2780 { 2781 struct perf_event_context *ctx; 2782 struct perf_cpu_context *cpuctx; 2783 unsigned long flags; 2784 int ctxn, err; 2785 2786 if (!task) { 2787 /* Must be root to operate on a CPU event: */ 2788 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2789 return ERR_PTR(-EACCES); 2790 2791 /* 2792 * We could be clever and allow to attach a event to an 2793 * offline CPU and activate it when the CPU comes up, but 2794 * that's for later. 2795 */ 2796 if (!cpu_online(cpu)) 2797 return ERR_PTR(-ENODEV); 2798 2799 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2800 ctx = &cpuctx->ctx; 2801 get_ctx(ctx); 2802 ++ctx->pin_count; 2803 2804 return ctx; 2805 } 2806 2807 err = -EINVAL; 2808 ctxn = pmu->task_ctx_nr; 2809 if (ctxn < 0) 2810 goto errout; 2811 2812 retry: 2813 ctx = perf_lock_task_context(task, ctxn, &flags); 2814 if (ctx) { 2815 unclone_ctx(ctx); 2816 ++ctx->pin_count; 2817 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2818 } else { 2819 ctx = alloc_perf_context(pmu, task); 2820 err = -ENOMEM; 2821 if (!ctx) 2822 goto errout; 2823 2824 err = 0; 2825 mutex_lock(&task->perf_event_mutex); 2826 /* 2827 * If it has already passed perf_event_exit_task(). 2828 * we must see PF_EXITING, it takes this mutex too. 2829 */ 2830 if (task->flags & PF_EXITING) 2831 err = -ESRCH; 2832 else if (task->perf_event_ctxp[ctxn]) 2833 err = -EAGAIN; 2834 else { 2835 get_ctx(ctx); 2836 ++ctx->pin_count; 2837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2838 } 2839 mutex_unlock(&task->perf_event_mutex); 2840 2841 if (unlikely(err)) { 2842 put_ctx(ctx); 2843 2844 if (err == -EAGAIN) 2845 goto retry; 2846 goto errout; 2847 } 2848 } 2849 2850 return ctx; 2851 2852 errout: 2853 return ERR_PTR(err); 2854 } 2855 2856 static void perf_event_free_filter(struct perf_event *event); 2857 2858 static void free_event_rcu(struct rcu_head *head) 2859 { 2860 struct perf_event *event; 2861 2862 event = container_of(head, struct perf_event, rcu_head); 2863 if (event->ns) 2864 put_pid_ns(event->ns); 2865 perf_event_free_filter(event); 2866 kfree(event); 2867 } 2868 2869 static void ring_buffer_put(struct ring_buffer *rb); 2870 2871 static void free_event(struct perf_event *event) 2872 { 2873 irq_work_sync(&event->pending); 2874 2875 if (!event->parent) { 2876 if (event->attach_state & PERF_ATTACH_TASK) 2877 static_key_slow_dec_deferred(&perf_sched_events); 2878 if (event->attr.mmap || event->attr.mmap_data) 2879 atomic_dec(&nr_mmap_events); 2880 if (event->attr.comm) 2881 atomic_dec(&nr_comm_events); 2882 if (event->attr.task) 2883 atomic_dec(&nr_task_events); 2884 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2885 put_callchain_buffers(); 2886 if (is_cgroup_event(event)) { 2887 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2888 static_key_slow_dec_deferred(&perf_sched_events); 2889 } 2890 2891 if (has_branch_stack(event)) { 2892 static_key_slow_dec_deferred(&perf_sched_events); 2893 /* is system-wide event */ 2894 if (!(event->attach_state & PERF_ATTACH_TASK)) 2895 atomic_dec(&per_cpu(perf_branch_stack_events, 2896 event->cpu)); 2897 } 2898 } 2899 2900 if (event->rb) { 2901 ring_buffer_put(event->rb); 2902 event->rb = NULL; 2903 } 2904 2905 if (is_cgroup_event(event)) 2906 perf_detach_cgroup(event); 2907 2908 if (event->destroy) 2909 event->destroy(event); 2910 2911 if (event->ctx) 2912 put_ctx(event->ctx); 2913 2914 call_rcu(&event->rcu_head, free_event_rcu); 2915 } 2916 2917 int perf_event_release_kernel(struct perf_event *event) 2918 { 2919 struct perf_event_context *ctx = event->ctx; 2920 2921 WARN_ON_ONCE(ctx->parent_ctx); 2922 /* 2923 * There are two ways this annotation is useful: 2924 * 2925 * 1) there is a lock recursion from perf_event_exit_task 2926 * see the comment there. 2927 * 2928 * 2) there is a lock-inversion with mmap_sem through 2929 * perf_event_read_group(), which takes faults while 2930 * holding ctx->mutex, however this is called after 2931 * the last filedesc died, so there is no possibility 2932 * to trigger the AB-BA case. 2933 */ 2934 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2935 raw_spin_lock_irq(&ctx->lock); 2936 perf_group_detach(event); 2937 raw_spin_unlock_irq(&ctx->lock); 2938 perf_remove_from_context(event); 2939 mutex_unlock(&ctx->mutex); 2940 2941 free_event(event); 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2946 2947 /* 2948 * Called when the last reference to the file is gone. 2949 */ 2950 static void put_event(struct perf_event *event) 2951 { 2952 struct task_struct *owner; 2953 2954 if (!atomic_long_dec_and_test(&event->refcount)) 2955 return; 2956 2957 rcu_read_lock(); 2958 owner = ACCESS_ONCE(event->owner); 2959 /* 2960 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2961 * !owner it means the list deletion is complete and we can indeed 2962 * free this event, otherwise we need to serialize on 2963 * owner->perf_event_mutex. 2964 */ 2965 smp_read_barrier_depends(); 2966 if (owner) { 2967 /* 2968 * Since delayed_put_task_struct() also drops the last 2969 * task reference we can safely take a new reference 2970 * while holding the rcu_read_lock(). 2971 */ 2972 get_task_struct(owner); 2973 } 2974 rcu_read_unlock(); 2975 2976 if (owner) { 2977 mutex_lock(&owner->perf_event_mutex); 2978 /* 2979 * We have to re-check the event->owner field, if it is cleared 2980 * we raced with perf_event_exit_task(), acquiring the mutex 2981 * ensured they're done, and we can proceed with freeing the 2982 * event. 2983 */ 2984 if (event->owner) 2985 list_del_init(&event->owner_entry); 2986 mutex_unlock(&owner->perf_event_mutex); 2987 put_task_struct(owner); 2988 } 2989 2990 perf_event_release_kernel(event); 2991 } 2992 2993 static int perf_release(struct inode *inode, struct file *file) 2994 { 2995 put_event(file->private_data); 2996 return 0; 2997 } 2998 2999 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3000 { 3001 struct perf_event *child; 3002 u64 total = 0; 3003 3004 *enabled = 0; 3005 *running = 0; 3006 3007 mutex_lock(&event->child_mutex); 3008 total += perf_event_read(event); 3009 *enabled += event->total_time_enabled + 3010 atomic64_read(&event->child_total_time_enabled); 3011 *running += event->total_time_running + 3012 atomic64_read(&event->child_total_time_running); 3013 3014 list_for_each_entry(child, &event->child_list, child_list) { 3015 total += perf_event_read(child); 3016 *enabled += child->total_time_enabled; 3017 *running += child->total_time_running; 3018 } 3019 mutex_unlock(&event->child_mutex); 3020 3021 return total; 3022 } 3023 EXPORT_SYMBOL_GPL(perf_event_read_value); 3024 3025 static int perf_event_read_group(struct perf_event *event, 3026 u64 read_format, char __user *buf) 3027 { 3028 struct perf_event *leader = event->group_leader, *sub; 3029 int n = 0, size = 0, ret = -EFAULT; 3030 struct perf_event_context *ctx = leader->ctx; 3031 u64 values[5]; 3032 u64 count, enabled, running; 3033 3034 mutex_lock(&ctx->mutex); 3035 count = perf_event_read_value(leader, &enabled, &running); 3036 3037 values[n++] = 1 + leader->nr_siblings; 3038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3039 values[n++] = enabled; 3040 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3041 values[n++] = running; 3042 values[n++] = count; 3043 if (read_format & PERF_FORMAT_ID) 3044 values[n++] = primary_event_id(leader); 3045 3046 size = n * sizeof(u64); 3047 3048 if (copy_to_user(buf, values, size)) 3049 goto unlock; 3050 3051 ret = size; 3052 3053 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3054 n = 0; 3055 3056 values[n++] = perf_event_read_value(sub, &enabled, &running); 3057 if (read_format & PERF_FORMAT_ID) 3058 values[n++] = primary_event_id(sub); 3059 3060 size = n * sizeof(u64); 3061 3062 if (copy_to_user(buf + ret, values, size)) { 3063 ret = -EFAULT; 3064 goto unlock; 3065 } 3066 3067 ret += size; 3068 } 3069 unlock: 3070 mutex_unlock(&ctx->mutex); 3071 3072 return ret; 3073 } 3074 3075 static int perf_event_read_one(struct perf_event *event, 3076 u64 read_format, char __user *buf) 3077 { 3078 u64 enabled, running; 3079 u64 values[4]; 3080 int n = 0; 3081 3082 values[n++] = perf_event_read_value(event, &enabled, &running); 3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3084 values[n++] = enabled; 3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3086 values[n++] = running; 3087 if (read_format & PERF_FORMAT_ID) 3088 values[n++] = primary_event_id(event); 3089 3090 if (copy_to_user(buf, values, n * sizeof(u64))) 3091 return -EFAULT; 3092 3093 return n * sizeof(u64); 3094 } 3095 3096 /* 3097 * Read the performance event - simple non blocking version for now 3098 */ 3099 static ssize_t 3100 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3101 { 3102 u64 read_format = event->attr.read_format; 3103 int ret; 3104 3105 /* 3106 * Return end-of-file for a read on a event that is in 3107 * error state (i.e. because it was pinned but it couldn't be 3108 * scheduled on to the CPU at some point). 3109 */ 3110 if (event->state == PERF_EVENT_STATE_ERROR) 3111 return 0; 3112 3113 if (count < event->read_size) 3114 return -ENOSPC; 3115 3116 WARN_ON_ONCE(event->ctx->parent_ctx); 3117 if (read_format & PERF_FORMAT_GROUP) 3118 ret = perf_event_read_group(event, read_format, buf); 3119 else 3120 ret = perf_event_read_one(event, read_format, buf); 3121 3122 return ret; 3123 } 3124 3125 static ssize_t 3126 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3127 { 3128 struct perf_event *event = file->private_data; 3129 3130 return perf_read_hw(event, buf, count); 3131 } 3132 3133 static unsigned int perf_poll(struct file *file, poll_table *wait) 3134 { 3135 struct perf_event *event = file->private_data; 3136 struct ring_buffer *rb; 3137 unsigned int events = POLL_HUP; 3138 3139 /* 3140 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3141 * grabs the rb reference but perf_event_set_output() overrides it. 3142 * Here is the timeline for two threads T1, T2: 3143 * t0: T1, rb = rcu_dereference(event->rb) 3144 * t1: T2, old_rb = event->rb 3145 * t2: T2, event->rb = new rb 3146 * t3: T2, ring_buffer_detach(old_rb) 3147 * t4: T1, ring_buffer_attach(rb1) 3148 * t5: T1, poll_wait(event->waitq) 3149 * 3150 * To avoid this problem, we grab mmap_mutex in perf_poll() 3151 * thereby ensuring that the assignment of the new ring buffer 3152 * and the detachment of the old buffer appear atomic to perf_poll() 3153 */ 3154 mutex_lock(&event->mmap_mutex); 3155 3156 rcu_read_lock(); 3157 rb = rcu_dereference(event->rb); 3158 if (rb) { 3159 ring_buffer_attach(event, rb); 3160 events = atomic_xchg(&rb->poll, 0); 3161 } 3162 rcu_read_unlock(); 3163 3164 mutex_unlock(&event->mmap_mutex); 3165 3166 poll_wait(file, &event->waitq, wait); 3167 3168 return events; 3169 } 3170 3171 static void perf_event_reset(struct perf_event *event) 3172 { 3173 (void)perf_event_read(event); 3174 local64_set(&event->count, 0); 3175 perf_event_update_userpage(event); 3176 } 3177 3178 /* 3179 * Holding the top-level event's child_mutex means that any 3180 * descendant process that has inherited this event will block 3181 * in sync_child_event if it goes to exit, thus satisfying the 3182 * task existence requirements of perf_event_enable/disable. 3183 */ 3184 static void perf_event_for_each_child(struct perf_event *event, 3185 void (*func)(struct perf_event *)) 3186 { 3187 struct perf_event *child; 3188 3189 WARN_ON_ONCE(event->ctx->parent_ctx); 3190 mutex_lock(&event->child_mutex); 3191 func(event); 3192 list_for_each_entry(child, &event->child_list, child_list) 3193 func(child); 3194 mutex_unlock(&event->child_mutex); 3195 } 3196 3197 static void perf_event_for_each(struct perf_event *event, 3198 void (*func)(struct perf_event *)) 3199 { 3200 struct perf_event_context *ctx = event->ctx; 3201 struct perf_event *sibling; 3202 3203 WARN_ON_ONCE(ctx->parent_ctx); 3204 mutex_lock(&ctx->mutex); 3205 event = event->group_leader; 3206 3207 perf_event_for_each_child(event, func); 3208 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3209 perf_event_for_each_child(sibling, func); 3210 mutex_unlock(&ctx->mutex); 3211 } 3212 3213 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3214 { 3215 struct perf_event_context *ctx = event->ctx; 3216 int ret = 0; 3217 u64 value; 3218 3219 if (!is_sampling_event(event)) 3220 return -EINVAL; 3221 3222 if (copy_from_user(&value, arg, sizeof(value))) 3223 return -EFAULT; 3224 3225 if (!value) 3226 return -EINVAL; 3227 3228 raw_spin_lock_irq(&ctx->lock); 3229 if (event->attr.freq) { 3230 if (value > sysctl_perf_event_sample_rate) { 3231 ret = -EINVAL; 3232 goto unlock; 3233 } 3234 3235 event->attr.sample_freq = value; 3236 } else { 3237 event->attr.sample_period = value; 3238 event->hw.sample_period = value; 3239 } 3240 unlock: 3241 raw_spin_unlock_irq(&ctx->lock); 3242 3243 return ret; 3244 } 3245 3246 static const struct file_operations perf_fops; 3247 3248 static inline int perf_fget_light(int fd, struct fd *p) 3249 { 3250 struct fd f = fdget(fd); 3251 if (!f.file) 3252 return -EBADF; 3253 3254 if (f.file->f_op != &perf_fops) { 3255 fdput(f); 3256 return -EBADF; 3257 } 3258 *p = f; 3259 return 0; 3260 } 3261 3262 static int perf_event_set_output(struct perf_event *event, 3263 struct perf_event *output_event); 3264 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3265 3266 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3267 { 3268 struct perf_event *event = file->private_data; 3269 void (*func)(struct perf_event *); 3270 u32 flags = arg; 3271 3272 switch (cmd) { 3273 case PERF_EVENT_IOC_ENABLE: 3274 func = perf_event_enable; 3275 break; 3276 case PERF_EVENT_IOC_DISABLE: 3277 func = perf_event_disable; 3278 break; 3279 case PERF_EVENT_IOC_RESET: 3280 func = perf_event_reset; 3281 break; 3282 3283 case PERF_EVENT_IOC_REFRESH: 3284 return perf_event_refresh(event, arg); 3285 3286 case PERF_EVENT_IOC_PERIOD: 3287 return perf_event_period(event, (u64 __user *)arg); 3288 3289 case PERF_EVENT_IOC_SET_OUTPUT: 3290 { 3291 int ret; 3292 if (arg != -1) { 3293 struct perf_event *output_event; 3294 struct fd output; 3295 ret = perf_fget_light(arg, &output); 3296 if (ret) 3297 return ret; 3298 output_event = output.file->private_data; 3299 ret = perf_event_set_output(event, output_event); 3300 fdput(output); 3301 } else { 3302 ret = perf_event_set_output(event, NULL); 3303 } 3304 return ret; 3305 } 3306 3307 case PERF_EVENT_IOC_SET_FILTER: 3308 return perf_event_set_filter(event, (void __user *)arg); 3309 3310 default: 3311 return -ENOTTY; 3312 } 3313 3314 if (flags & PERF_IOC_FLAG_GROUP) 3315 perf_event_for_each(event, func); 3316 else 3317 perf_event_for_each_child(event, func); 3318 3319 return 0; 3320 } 3321 3322 int perf_event_task_enable(void) 3323 { 3324 struct perf_event *event; 3325 3326 mutex_lock(¤t->perf_event_mutex); 3327 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3328 perf_event_for_each_child(event, perf_event_enable); 3329 mutex_unlock(¤t->perf_event_mutex); 3330 3331 return 0; 3332 } 3333 3334 int perf_event_task_disable(void) 3335 { 3336 struct perf_event *event; 3337 3338 mutex_lock(¤t->perf_event_mutex); 3339 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3340 perf_event_for_each_child(event, perf_event_disable); 3341 mutex_unlock(¤t->perf_event_mutex); 3342 3343 return 0; 3344 } 3345 3346 static int perf_event_index(struct perf_event *event) 3347 { 3348 if (event->hw.state & PERF_HES_STOPPED) 3349 return 0; 3350 3351 if (event->state != PERF_EVENT_STATE_ACTIVE) 3352 return 0; 3353 3354 return event->pmu->event_idx(event); 3355 } 3356 3357 static void calc_timer_values(struct perf_event *event, 3358 u64 *now, 3359 u64 *enabled, 3360 u64 *running) 3361 { 3362 u64 ctx_time; 3363 3364 *now = perf_clock(); 3365 ctx_time = event->shadow_ctx_time + *now; 3366 *enabled = ctx_time - event->tstamp_enabled; 3367 *running = ctx_time - event->tstamp_running; 3368 } 3369 3370 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3371 { 3372 } 3373 3374 /* 3375 * Callers need to ensure there can be no nesting of this function, otherwise 3376 * the seqlock logic goes bad. We can not serialize this because the arch 3377 * code calls this from NMI context. 3378 */ 3379 void perf_event_update_userpage(struct perf_event *event) 3380 { 3381 struct perf_event_mmap_page *userpg; 3382 struct ring_buffer *rb; 3383 u64 enabled, running, now; 3384 3385 rcu_read_lock(); 3386 /* 3387 * compute total_time_enabled, total_time_running 3388 * based on snapshot values taken when the event 3389 * was last scheduled in. 3390 * 3391 * we cannot simply called update_context_time() 3392 * because of locking issue as we can be called in 3393 * NMI context 3394 */ 3395 calc_timer_values(event, &now, &enabled, &running); 3396 rb = rcu_dereference(event->rb); 3397 if (!rb) 3398 goto unlock; 3399 3400 userpg = rb->user_page; 3401 3402 /* 3403 * Disable preemption so as to not let the corresponding user-space 3404 * spin too long if we get preempted. 3405 */ 3406 preempt_disable(); 3407 ++userpg->lock; 3408 barrier(); 3409 userpg->index = perf_event_index(event); 3410 userpg->offset = perf_event_count(event); 3411 if (userpg->index) 3412 userpg->offset -= local64_read(&event->hw.prev_count); 3413 3414 userpg->time_enabled = enabled + 3415 atomic64_read(&event->child_total_time_enabled); 3416 3417 userpg->time_running = running + 3418 atomic64_read(&event->child_total_time_running); 3419 3420 arch_perf_update_userpage(userpg, now); 3421 3422 barrier(); 3423 ++userpg->lock; 3424 preempt_enable(); 3425 unlock: 3426 rcu_read_unlock(); 3427 } 3428 3429 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3430 { 3431 struct perf_event *event = vma->vm_file->private_data; 3432 struct ring_buffer *rb; 3433 int ret = VM_FAULT_SIGBUS; 3434 3435 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3436 if (vmf->pgoff == 0) 3437 ret = 0; 3438 return ret; 3439 } 3440 3441 rcu_read_lock(); 3442 rb = rcu_dereference(event->rb); 3443 if (!rb) 3444 goto unlock; 3445 3446 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3447 goto unlock; 3448 3449 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3450 if (!vmf->page) 3451 goto unlock; 3452 3453 get_page(vmf->page); 3454 vmf->page->mapping = vma->vm_file->f_mapping; 3455 vmf->page->index = vmf->pgoff; 3456 3457 ret = 0; 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 return ret; 3462 } 3463 3464 static void ring_buffer_attach(struct perf_event *event, 3465 struct ring_buffer *rb) 3466 { 3467 unsigned long flags; 3468 3469 if (!list_empty(&event->rb_entry)) 3470 return; 3471 3472 spin_lock_irqsave(&rb->event_lock, flags); 3473 if (!list_empty(&event->rb_entry)) 3474 goto unlock; 3475 3476 list_add(&event->rb_entry, &rb->event_list); 3477 unlock: 3478 spin_unlock_irqrestore(&rb->event_lock, flags); 3479 } 3480 3481 static void ring_buffer_detach(struct perf_event *event, 3482 struct ring_buffer *rb) 3483 { 3484 unsigned long flags; 3485 3486 if (list_empty(&event->rb_entry)) 3487 return; 3488 3489 spin_lock_irqsave(&rb->event_lock, flags); 3490 list_del_init(&event->rb_entry); 3491 wake_up_all(&event->waitq); 3492 spin_unlock_irqrestore(&rb->event_lock, flags); 3493 } 3494 3495 static void ring_buffer_wakeup(struct perf_event *event) 3496 { 3497 struct ring_buffer *rb; 3498 3499 rcu_read_lock(); 3500 rb = rcu_dereference(event->rb); 3501 if (!rb) 3502 goto unlock; 3503 3504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3505 wake_up_all(&event->waitq); 3506 3507 unlock: 3508 rcu_read_unlock(); 3509 } 3510 3511 static void rb_free_rcu(struct rcu_head *rcu_head) 3512 { 3513 struct ring_buffer *rb; 3514 3515 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3516 rb_free(rb); 3517 } 3518 3519 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3520 { 3521 struct ring_buffer *rb; 3522 3523 rcu_read_lock(); 3524 rb = rcu_dereference(event->rb); 3525 if (rb) { 3526 if (!atomic_inc_not_zero(&rb->refcount)) 3527 rb = NULL; 3528 } 3529 rcu_read_unlock(); 3530 3531 return rb; 3532 } 3533 3534 static void ring_buffer_put(struct ring_buffer *rb) 3535 { 3536 struct perf_event *event, *n; 3537 unsigned long flags; 3538 3539 if (!atomic_dec_and_test(&rb->refcount)) 3540 return; 3541 3542 spin_lock_irqsave(&rb->event_lock, flags); 3543 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3544 list_del_init(&event->rb_entry); 3545 wake_up_all(&event->waitq); 3546 } 3547 spin_unlock_irqrestore(&rb->event_lock, flags); 3548 3549 call_rcu(&rb->rcu_head, rb_free_rcu); 3550 } 3551 3552 static void perf_mmap_open(struct vm_area_struct *vma) 3553 { 3554 struct perf_event *event = vma->vm_file->private_data; 3555 3556 atomic_inc(&event->mmap_count); 3557 } 3558 3559 static void perf_mmap_close(struct vm_area_struct *vma) 3560 { 3561 struct perf_event *event = vma->vm_file->private_data; 3562 3563 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3564 unsigned long size = perf_data_size(event->rb); 3565 struct user_struct *user = event->mmap_user; 3566 struct ring_buffer *rb = event->rb; 3567 3568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3569 vma->vm_mm->pinned_vm -= event->mmap_locked; 3570 rcu_assign_pointer(event->rb, NULL); 3571 ring_buffer_detach(event, rb); 3572 mutex_unlock(&event->mmap_mutex); 3573 3574 ring_buffer_put(rb); 3575 free_uid(user); 3576 } 3577 } 3578 3579 static const struct vm_operations_struct perf_mmap_vmops = { 3580 .open = perf_mmap_open, 3581 .close = perf_mmap_close, 3582 .fault = perf_mmap_fault, 3583 .page_mkwrite = perf_mmap_fault, 3584 }; 3585 3586 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3587 { 3588 struct perf_event *event = file->private_data; 3589 unsigned long user_locked, user_lock_limit; 3590 struct user_struct *user = current_user(); 3591 unsigned long locked, lock_limit; 3592 struct ring_buffer *rb; 3593 unsigned long vma_size; 3594 unsigned long nr_pages; 3595 long user_extra, extra; 3596 int ret = 0, flags = 0; 3597 3598 /* 3599 * Don't allow mmap() of inherited per-task counters. This would 3600 * create a performance issue due to all children writing to the 3601 * same rb. 3602 */ 3603 if (event->cpu == -1 && event->attr.inherit) 3604 return -EINVAL; 3605 3606 if (!(vma->vm_flags & VM_SHARED)) 3607 return -EINVAL; 3608 3609 vma_size = vma->vm_end - vma->vm_start; 3610 nr_pages = (vma_size / PAGE_SIZE) - 1; 3611 3612 /* 3613 * If we have rb pages ensure they're a power-of-two number, so we 3614 * can do bitmasks instead of modulo. 3615 */ 3616 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3617 return -EINVAL; 3618 3619 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3620 return -EINVAL; 3621 3622 if (vma->vm_pgoff != 0) 3623 return -EINVAL; 3624 3625 WARN_ON_ONCE(event->ctx->parent_ctx); 3626 mutex_lock(&event->mmap_mutex); 3627 if (event->rb) { 3628 if (event->rb->nr_pages == nr_pages) 3629 atomic_inc(&event->rb->refcount); 3630 else 3631 ret = -EINVAL; 3632 goto unlock; 3633 } 3634 3635 user_extra = nr_pages + 1; 3636 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3637 3638 /* 3639 * Increase the limit linearly with more CPUs: 3640 */ 3641 user_lock_limit *= num_online_cpus(); 3642 3643 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3644 3645 extra = 0; 3646 if (user_locked > user_lock_limit) 3647 extra = user_locked - user_lock_limit; 3648 3649 lock_limit = rlimit(RLIMIT_MEMLOCK); 3650 lock_limit >>= PAGE_SHIFT; 3651 locked = vma->vm_mm->pinned_vm + extra; 3652 3653 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3654 !capable(CAP_IPC_LOCK)) { 3655 ret = -EPERM; 3656 goto unlock; 3657 } 3658 3659 WARN_ON(event->rb); 3660 3661 if (vma->vm_flags & VM_WRITE) 3662 flags |= RING_BUFFER_WRITABLE; 3663 3664 rb = rb_alloc(nr_pages, 3665 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3666 event->cpu, flags); 3667 3668 if (!rb) { 3669 ret = -ENOMEM; 3670 goto unlock; 3671 } 3672 rcu_assign_pointer(event->rb, rb); 3673 3674 atomic_long_add(user_extra, &user->locked_vm); 3675 event->mmap_locked = extra; 3676 event->mmap_user = get_current_user(); 3677 vma->vm_mm->pinned_vm += event->mmap_locked; 3678 3679 perf_event_update_userpage(event); 3680 3681 unlock: 3682 if (!ret) 3683 atomic_inc(&event->mmap_count); 3684 mutex_unlock(&event->mmap_mutex); 3685 3686 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3687 vma->vm_ops = &perf_mmap_vmops; 3688 3689 return ret; 3690 } 3691 3692 static int perf_fasync(int fd, struct file *filp, int on) 3693 { 3694 struct inode *inode = file_inode(filp); 3695 struct perf_event *event = filp->private_data; 3696 int retval; 3697 3698 mutex_lock(&inode->i_mutex); 3699 retval = fasync_helper(fd, filp, on, &event->fasync); 3700 mutex_unlock(&inode->i_mutex); 3701 3702 if (retval < 0) 3703 return retval; 3704 3705 return 0; 3706 } 3707 3708 static const struct file_operations perf_fops = { 3709 .llseek = no_llseek, 3710 .release = perf_release, 3711 .read = perf_read, 3712 .poll = perf_poll, 3713 .unlocked_ioctl = perf_ioctl, 3714 .compat_ioctl = perf_ioctl, 3715 .mmap = perf_mmap, 3716 .fasync = perf_fasync, 3717 }; 3718 3719 /* 3720 * Perf event wakeup 3721 * 3722 * If there's data, ensure we set the poll() state and publish everything 3723 * to user-space before waking everybody up. 3724 */ 3725 3726 void perf_event_wakeup(struct perf_event *event) 3727 { 3728 ring_buffer_wakeup(event); 3729 3730 if (event->pending_kill) { 3731 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3732 event->pending_kill = 0; 3733 } 3734 } 3735 3736 static void perf_pending_event(struct irq_work *entry) 3737 { 3738 struct perf_event *event = container_of(entry, 3739 struct perf_event, pending); 3740 3741 if (event->pending_disable) { 3742 event->pending_disable = 0; 3743 __perf_event_disable(event); 3744 } 3745 3746 if (event->pending_wakeup) { 3747 event->pending_wakeup = 0; 3748 perf_event_wakeup(event); 3749 } 3750 } 3751 3752 /* 3753 * We assume there is only KVM supporting the callbacks. 3754 * Later on, we might change it to a list if there is 3755 * another virtualization implementation supporting the callbacks. 3756 */ 3757 struct perf_guest_info_callbacks *perf_guest_cbs; 3758 3759 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3760 { 3761 perf_guest_cbs = cbs; 3762 return 0; 3763 } 3764 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3765 3766 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3767 { 3768 perf_guest_cbs = NULL; 3769 return 0; 3770 } 3771 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3772 3773 static void 3774 perf_output_sample_regs(struct perf_output_handle *handle, 3775 struct pt_regs *regs, u64 mask) 3776 { 3777 int bit; 3778 3779 for_each_set_bit(bit, (const unsigned long *) &mask, 3780 sizeof(mask) * BITS_PER_BYTE) { 3781 u64 val; 3782 3783 val = perf_reg_value(regs, bit); 3784 perf_output_put(handle, val); 3785 } 3786 } 3787 3788 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 3789 struct pt_regs *regs) 3790 { 3791 if (!user_mode(regs)) { 3792 if (current->mm) 3793 regs = task_pt_regs(current); 3794 else 3795 regs = NULL; 3796 } 3797 3798 if (regs) { 3799 regs_user->regs = regs; 3800 regs_user->abi = perf_reg_abi(current); 3801 } 3802 } 3803 3804 /* 3805 * Get remaining task size from user stack pointer. 3806 * 3807 * It'd be better to take stack vma map and limit this more 3808 * precisly, but there's no way to get it safely under interrupt, 3809 * so using TASK_SIZE as limit. 3810 */ 3811 static u64 perf_ustack_task_size(struct pt_regs *regs) 3812 { 3813 unsigned long addr = perf_user_stack_pointer(regs); 3814 3815 if (!addr || addr >= TASK_SIZE) 3816 return 0; 3817 3818 return TASK_SIZE - addr; 3819 } 3820 3821 static u16 3822 perf_sample_ustack_size(u16 stack_size, u16 header_size, 3823 struct pt_regs *regs) 3824 { 3825 u64 task_size; 3826 3827 /* No regs, no stack pointer, no dump. */ 3828 if (!regs) 3829 return 0; 3830 3831 /* 3832 * Check if we fit in with the requested stack size into the: 3833 * - TASK_SIZE 3834 * If we don't, we limit the size to the TASK_SIZE. 3835 * 3836 * - remaining sample size 3837 * If we don't, we customize the stack size to 3838 * fit in to the remaining sample size. 3839 */ 3840 3841 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 3842 stack_size = min(stack_size, (u16) task_size); 3843 3844 /* Current header size plus static size and dynamic size. */ 3845 header_size += 2 * sizeof(u64); 3846 3847 /* Do we fit in with the current stack dump size? */ 3848 if ((u16) (header_size + stack_size) < header_size) { 3849 /* 3850 * If we overflow the maximum size for the sample, 3851 * we customize the stack dump size to fit in. 3852 */ 3853 stack_size = USHRT_MAX - header_size - sizeof(u64); 3854 stack_size = round_up(stack_size, sizeof(u64)); 3855 } 3856 3857 return stack_size; 3858 } 3859 3860 static void 3861 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 3862 struct pt_regs *regs) 3863 { 3864 /* Case of a kernel thread, nothing to dump */ 3865 if (!regs) { 3866 u64 size = 0; 3867 perf_output_put(handle, size); 3868 } else { 3869 unsigned long sp; 3870 unsigned int rem; 3871 u64 dyn_size; 3872 3873 /* 3874 * We dump: 3875 * static size 3876 * - the size requested by user or the best one we can fit 3877 * in to the sample max size 3878 * data 3879 * - user stack dump data 3880 * dynamic size 3881 * - the actual dumped size 3882 */ 3883 3884 /* Static size. */ 3885 perf_output_put(handle, dump_size); 3886 3887 /* Data. */ 3888 sp = perf_user_stack_pointer(regs); 3889 rem = __output_copy_user(handle, (void *) sp, dump_size); 3890 dyn_size = dump_size - rem; 3891 3892 perf_output_skip(handle, rem); 3893 3894 /* Dynamic size. */ 3895 perf_output_put(handle, dyn_size); 3896 } 3897 } 3898 3899 static void __perf_event_header__init_id(struct perf_event_header *header, 3900 struct perf_sample_data *data, 3901 struct perf_event *event) 3902 { 3903 u64 sample_type = event->attr.sample_type; 3904 3905 data->type = sample_type; 3906 header->size += event->id_header_size; 3907 3908 if (sample_type & PERF_SAMPLE_TID) { 3909 /* namespace issues */ 3910 data->tid_entry.pid = perf_event_pid(event, current); 3911 data->tid_entry.tid = perf_event_tid(event, current); 3912 } 3913 3914 if (sample_type & PERF_SAMPLE_TIME) 3915 data->time = perf_clock(); 3916 3917 if (sample_type & PERF_SAMPLE_ID) 3918 data->id = primary_event_id(event); 3919 3920 if (sample_type & PERF_SAMPLE_STREAM_ID) 3921 data->stream_id = event->id; 3922 3923 if (sample_type & PERF_SAMPLE_CPU) { 3924 data->cpu_entry.cpu = raw_smp_processor_id(); 3925 data->cpu_entry.reserved = 0; 3926 } 3927 } 3928 3929 void perf_event_header__init_id(struct perf_event_header *header, 3930 struct perf_sample_data *data, 3931 struct perf_event *event) 3932 { 3933 if (event->attr.sample_id_all) 3934 __perf_event_header__init_id(header, data, event); 3935 } 3936 3937 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3938 struct perf_sample_data *data) 3939 { 3940 u64 sample_type = data->type; 3941 3942 if (sample_type & PERF_SAMPLE_TID) 3943 perf_output_put(handle, data->tid_entry); 3944 3945 if (sample_type & PERF_SAMPLE_TIME) 3946 perf_output_put(handle, data->time); 3947 3948 if (sample_type & PERF_SAMPLE_ID) 3949 perf_output_put(handle, data->id); 3950 3951 if (sample_type & PERF_SAMPLE_STREAM_ID) 3952 perf_output_put(handle, data->stream_id); 3953 3954 if (sample_type & PERF_SAMPLE_CPU) 3955 perf_output_put(handle, data->cpu_entry); 3956 } 3957 3958 void perf_event__output_id_sample(struct perf_event *event, 3959 struct perf_output_handle *handle, 3960 struct perf_sample_data *sample) 3961 { 3962 if (event->attr.sample_id_all) 3963 __perf_event__output_id_sample(handle, sample); 3964 } 3965 3966 static void perf_output_read_one(struct perf_output_handle *handle, 3967 struct perf_event *event, 3968 u64 enabled, u64 running) 3969 { 3970 u64 read_format = event->attr.read_format; 3971 u64 values[4]; 3972 int n = 0; 3973 3974 values[n++] = perf_event_count(event); 3975 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3976 values[n++] = enabled + 3977 atomic64_read(&event->child_total_time_enabled); 3978 } 3979 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3980 values[n++] = running + 3981 atomic64_read(&event->child_total_time_running); 3982 } 3983 if (read_format & PERF_FORMAT_ID) 3984 values[n++] = primary_event_id(event); 3985 3986 __output_copy(handle, values, n * sizeof(u64)); 3987 } 3988 3989 /* 3990 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3991 */ 3992 static void perf_output_read_group(struct perf_output_handle *handle, 3993 struct perf_event *event, 3994 u64 enabled, u64 running) 3995 { 3996 struct perf_event *leader = event->group_leader, *sub; 3997 u64 read_format = event->attr.read_format; 3998 u64 values[5]; 3999 int n = 0; 4000 4001 values[n++] = 1 + leader->nr_siblings; 4002 4003 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4004 values[n++] = enabled; 4005 4006 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4007 values[n++] = running; 4008 4009 if (leader != event) 4010 leader->pmu->read(leader); 4011 4012 values[n++] = perf_event_count(leader); 4013 if (read_format & PERF_FORMAT_ID) 4014 values[n++] = primary_event_id(leader); 4015 4016 __output_copy(handle, values, n * sizeof(u64)); 4017 4018 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4019 n = 0; 4020 4021 if (sub != event) 4022 sub->pmu->read(sub); 4023 4024 values[n++] = perf_event_count(sub); 4025 if (read_format & PERF_FORMAT_ID) 4026 values[n++] = primary_event_id(sub); 4027 4028 __output_copy(handle, values, n * sizeof(u64)); 4029 } 4030 } 4031 4032 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4033 PERF_FORMAT_TOTAL_TIME_RUNNING) 4034 4035 static void perf_output_read(struct perf_output_handle *handle, 4036 struct perf_event *event) 4037 { 4038 u64 enabled = 0, running = 0, now; 4039 u64 read_format = event->attr.read_format; 4040 4041 /* 4042 * compute total_time_enabled, total_time_running 4043 * based on snapshot values taken when the event 4044 * was last scheduled in. 4045 * 4046 * we cannot simply called update_context_time() 4047 * because of locking issue as we are called in 4048 * NMI context 4049 */ 4050 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4051 calc_timer_values(event, &now, &enabled, &running); 4052 4053 if (event->attr.read_format & PERF_FORMAT_GROUP) 4054 perf_output_read_group(handle, event, enabled, running); 4055 else 4056 perf_output_read_one(handle, event, enabled, running); 4057 } 4058 4059 void perf_output_sample(struct perf_output_handle *handle, 4060 struct perf_event_header *header, 4061 struct perf_sample_data *data, 4062 struct perf_event *event) 4063 { 4064 u64 sample_type = data->type; 4065 4066 perf_output_put(handle, *header); 4067 4068 if (sample_type & PERF_SAMPLE_IP) 4069 perf_output_put(handle, data->ip); 4070 4071 if (sample_type & PERF_SAMPLE_TID) 4072 perf_output_put(handle, data->tid_entry); 4073 4074 if (sample_type & PERF_SAMPLE_TIME) 4075 perf_output_put(handle, data->time); 4076 4077 if (sample_type & PERF_SAMPLE_ADDR) 4078 perf_output_put(handle, data->addr); 4079 4080 if (sample_type & PERF_SAMPLE_ID) 4081 perf_output_put(handle, data->id); 4082 4083 if (sample_type & PERF_SAMPLE_STREAM_ID) 4084 perf_output_put(handle, data->stream_id); 4085 4086 if (sample_type & PERF_SAMPLE_CPU) 4087 perf_output_put(handle, data->cpu_entry); 4088 4089 if (sample_type & PERF_SAMPLE_PERIOD) 4090 perf_output_put(handle, data->period); 4091 4092 if (sample_type & PERF_SAMPLE_READ) 4093 perf_output_read(handle, event); 4094 4095 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4096 if (data->callchain) { 4097 int size = 1; 4098 4099 if (data->callchain) 4100 size += data->callchain->nr; 4101 4102 size *= sizeof(u64); 4103 4104 __output_copy(handle, data->callchain, size); 4105 } else { 4106 u64 nr = 0; 4107 perf_output_put(handle, nr); 4108 } 4109 } 4110 4111 if (sample_type & PERF_SAMPLE_RAW) { 4112 if (data->raw) { 4113 perf_output_put(handle, data->raw->size); 4114 __output_copy(handle, data->raw->data, 4115 data->raw->size); 4116 } else { 4117 struct { 4118 u32 size; 4119 u32 data; 4120 } raw = { 4121 .size = sizeof(u32), 4122 .data = 0, 4123 }; 4124 perf_output_put(handle, raw); 4125 } 4126 } 4127 4128 if (!event->attr.watermark) { 4129 int wakeup_events = event->attr.wakeup_events; 4130 4131 if (wakeup_events) { 4132 struct ring_buffer *rb = handle->rb; 4133 int events = local_inc_return(&rb->events); 4134 4135 if (events >= wakeup_events) { 4136 local_sub(wakeup_events, &rb->events); 4137 local_inc(&rb->wakeup); 4138 } 4139 } 4140 } 4141 4142 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4143 if (data->br_stack) { 4144 size_t size; 4145 4146 size = data->br_stack->nr 4147 * sizeof(struct perf_branch_entry); 4148 4149 perf_output_put(handle, data->br_stack->nr); 4150 perf_output_copy(handle, data->br_stack->entries, size); 4151 } else { 4152 /* 4153 * we always store at least the value of nr 4154 */ 4155 u64 nr = 0; 4156 perf_output_put(handle, nr); 4157 } 4158 } 4159 4160 if (sample_type & PERF_SAMPLE_REGS_USER) { 4161 u64 abi = data->regs_user.abi; 4162 4163 /* 4164 * If there are no regs to dump, notice it through 4165 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4166 */ 4167 perf_output_put(handle, abi); 4168 4169 if (abi) { 4170 u64 mask = event->attr.sample_regs_user; 4171 perf_output_sample_regs(handle, 4172 data->regs_user.regs, 4173 mask); 4174 } 4175 } 4176 4177 if (sample_type & PERF_SAMPLE_STACK_USER) 4178 perf_output_sample_ustack(handle, 4179 data->stack_user_size, 4180 data->regs_user.regs); 4181 } 4182 4183 void perf_prepare_sample(struct perf_event_header *header, 4184 struct perf_sample_data *data, 4185 struct perf_event *event, 4186 struct pt_regs *regs) 4187 { 4188 u64 sample_type = event->attr.sample_type; 4189 4190 header->type = PERF_RECORD_SAMPLE; 4191 header->size = sizeof(*header) + event->header_size; 4192 4193 header->misc = 0; 4194 header->misc |= perf_misc_flags(regs); 4195 4196 __perf_event_header__init_id(header, data, event); 4197 4198 if (sample_type & PERF_SAMPLE_IP) 4199 data->ip = perf_instruction_pointer(regs); 4200 4201 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4202 int size = 1; 4203 4204 data->callchain = perf_callchain(event, regs); 4205 4206 if (data->callchain) 4207 size += data->callchain->nr; 4208 4209 header->size += size * sizeof(u64); 4210 } 4211 4212 if (sample_type & PERF_SAMPLE_RAW) { 4213 int size = sizeof(u32); 4214 4215 if (data->raw) 4216 size += data->raw->size; 4217 else 4218 size += sizeof(u32); 4219 4220 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4221 header->size += size; 4222 } 4223 4224 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4225 int size = sizeof(u64); /* nr */ 4226 if (data->br_stack) { 4227 size += data->br_stack->nr 4228 * sizeof(struct perf_branch_entry); 4229 } 4230 header->size += size; 4231 } 4232 4233 if (sample_type & PERF_SAMPLE_REGS_USER) { 4234 /* regs dump ABI info */ 4235 int size = sizeof(u64); 4236 4237 perf_sample_regs_user(&data->regs_user, regs); 4238 4239 if (data->regs_user.regs) { 4240 u64 mask = event->attr.sample_regs_user; 4241 size += hweight64(mask) * sizeof(u64); 4242 } 4243 4244 header->size += size; 4245 } 4246 4247 if (sample_type & PERF_SAMPLE_STACK_USER) { 4248 /* 4249 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4250 * processed as the last one or have additional check added 4251 * in case new sample type is added, because we could eat 4252 * up the rest of the sample size. 4253 */ 4254 struct perf_regs_user *uregs = &data->regs_user; 4255 u16 stack_size = event->attr.sample_stack_user; 4256 u16 size = sizeof(u64); 4257 4258 if (!uregs->abi) 4259 perf_sample_regs_user(uregs, regs); 4260 4261 stack_size = perf_sample_ustack_size(stack_size, header->size, 4262 uregs->regs); 4263 4264 /* 4265 * If there is something to dump, add space for the dump 4266 * itself and for the field that tells the dynamic size, 4267 * which is how many have been actually dumped. 4268 */ 4269 if (stack_size) 4270 size += sizeof(u64) + stack_size; 4271 4272 data->stack_user_size = stack_size; 4273 header->size += size; 4274 } 4275 } 4276 4277 static void perf_event_output(struct perf_event *event, 4278 struct perf_sample_data *data, 4279 struct pt_regs *regs) 4280 { 4281 struct perf_output_handle handle; 4282 struct perf_event_header header; 4283 4284 /* protect the callchain buffers */ 4285 rcu_read_lock(); 4286 4287 perf_prepare_sample(&header, data, event, regs); 4288 4289 if (perf_output_begin(&handle, event, header.size)) 4290 goto exit; 4291 4292 perf_output_sample(&handle, &header, data, event); 4293 4294 perf_output_end(&handle); 4295 4296 exit: 4297 rcu_read_unlock(); 4298 } 4299 4300 /* 4301 * read event_id 4302 */ 4303 4304 struct perf_read_event { 4305 struct perf_event_header header; 4306 4307 u32 pid; 4308 u32 tid; 4309 }; 4310 4311 static void 4312 perf_event_read_event(struct perf_event *event, 4313 struct task_struct *task) 4314 { 4315 struct perf_output_handle handle; 4316 struct perf_sample_data sample; 4317 struct perf_read_event read_event = { 4318 .header = { 4319 .type = PERF_RECORD_READ, 4320 .misc = 0, 4321 .size = sizeof(read_event) + event->read_size, 4322 }, 4323 .pid = perf_event_pid(event, task), 4324 .tid = perf_event_tid(event, task), 4325 }; 4326 int ret; 4327 4328 perf_event_header__init_id(&read_event.header, &sample, event); 4329 ret = perf_output_begin(&handle, event, read_event.header.size); 4330 if (ret) 4331 return; 4332 4333 perf_output_put(&handle, read_event); 4334 perf_output_read(&handle, event); 4335 perf_event__output_id_sample(event, &handle, &sample); 4336 4337 perf_output_end(&handle); 4338 } 4339 4340 /* 4341 * task tracking -- fork/exit 4342 * 4343 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4344 */ 4345 4346 struct perf_task_event { 4347 struct task_struct *task; 4348 struct perf_event_context *task_ctx; 4349 4350 struct { 4351 struct perf_event_header header; 4352 4353 u32 pid; 4354 u32 ppid; 4355 u32 tid; 4356 u32 ptid; 4357 u64 time; 4358 } event_id; 4359 }; 4360 4361 static void perf_event_task_output(struct perf_event *event, 4362 struct perf_task_event *task_event) 4363 { 4364 struct perf_output_handle handle; 4365 struct perf_sample_data sample; 4366 struct task_struct *task = task_event->task; 4367 int ret, size = task_event->event_id.header.size; 4368 4369 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4370 4371 ret = perf_output_begin(&handle, event, 4372 task_event->event_id.header.size); 4373 if (ret) 4374 goto out; 4375 4376 task_event->event_id.pid = perf_event_pid(event, task); 4377 task_event->event_id.ppid = perf_event_pid(event, current); 4378 4379 task_event->event_id.tid = perf_event_tid(event, task); 4380 task_event->event_id.ptid = perf_event_tid(event, current); 4381 4382 perf_output_put(&handle, task_event->event_id); 4383 4384 perf_event__output_id_sample(event, &handle, &sample); 4385 4386 perf_output_end(&handle); 4387 out: 4388 task_event->event_id.header.size = size; 4389 } 4390 4391 static int perf_event_task_match(struct perf_event *event) 4392 { 4393 if (event->state < PERF_EVENT_STATE_INACTIVE) 4394 return 0; 4395 4396 if (!event_filter_match(event)) 4397 return 0; 4398 4399 if (event->attr.comm || event->attr.mmap || 4400 event->attr.mmap_data || event->attr.task) 4401 return 1; 4402 4403 return 0; 4404 } 4405 4406 static void perf_event_task_ctx(struct perf_event_context *ctx, 4407 struct perf_task_event *task_event) 4408 { 4409 struct perf_event *event; 4410 4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4412 if (perf_event_task_match(event)) 4413 perf_event_task_output(event, task_event); 4414 } 4415 } 4416 4417 static void perf_event_task_event(struct perf_task_event *task_event) 4418 { 4419 struct perf_cpu_context *cpuctx; 4420 struct perf_event_context *ctx; 4421 struct pmu *pmu; 4422 int ctxn; 4423 4424 rcu_read_lock(); 4425 list_for_each_entry_rcu(pmu, &pmus, entry) { 4426 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4427 if (cpuctx->unique_pmu != pmu) 4428 goto next; 4429 perf_event_task_ctx(&cpuctx->ctx, task_event); 4430 4431 ctx = task_event->task_ctx; 4432 if (!ctx) { 4433 ctxn = pmu->task_ctx_nr; 4434 if (ctxn < 0) 4435 goto next; 4436 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4437 if (ctx) 4438 perf_event_task_ctx(ctx, task_event); 4439 } 4440 next: 4441 put_cpu_ptr(pmu->pmu_cpu_context); 4442 } 4443 if (task_event->task_ctx) 4444 perf_event_task_ctx(task_event->task_ctx, task_event); 4445 4446 rcu_read_unlock(); 4447 } 4448 4449 static void perf_event_task(struct task_struct *task, 4450 struct perf_event_context *task_ctx, 4451 int new) 4452 { 4453 struct perf_task_event task_event; 4454 4455 if (!atomic_read(&nr_comm_events) && 4456 !atomic_read(&nr_mmap_events) && 4457 !atomic_read(&nr_task_events)) 4458 return; 4459 4460 task_event = (struct perf_task_event){ 4461 .task = task, 4462 .task_ctx = task_ctx, 4463 .event_id = { 4464 .header = { 4465 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4466 .misc = 0, 4467 .size = sizeof(task_event.event_id), 4468 }, 4469 /* .pid */ 4470 /* .ppid */ 4471 /* .tid */ 4472 /* .ptid */ 4473 .time = perf_clock(), 4474 }, 4475 }; 4476 4477 perf_event_task_event(&task_event); 4478 } 4479 4480 void perf_event_fork(struct task_struct *task) 4481 { 4482 perf_event_task(task, NULL, 1); 4483 } 4484 4485 /* 4486 * comm tracking 4487 */ 4488 4489 struct perf_comm_event { 4490 struct task_struct *task; 4491 char *comm; 4492 int comm_size; 4493 4494 struct { 4495 struct perf_event_header header; 4496 4497 u32 pid; 4498 u32 tid; 4499 } event_id; 4500 }; 4501 4502 static void perf_event_comm_output(struct perf_event *event, 4503 struct perf_comm_event *comm_event) 4504 { 4505 struct perf_output_handle handle; 4506 struct perf_sample_data sample; 4507 int size = comm_event->event_id.header.size; 4508 int ret; 4509 4510 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4511 ret = perf_output_begin(&handle, event, 4512 comm_event->event_id.header.size); 4513 4514 if (ret) 4515 goto out; 4516 4517 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4518 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4519 4520 perf_output_put(&handle, comm_event->event_id); 4521 __output_copy(&handle, comm_event->comm, 4522 comm_event->comm_size); 4523 4524 perf_event__output_id_sample(event, &handle, &sample); 4525 4526 perf_output_end(&handle); 4527 out: 4528 comm_event->event_id.header.size = size; 4529 } 4530 4531 static int perf_event_comm_match(struct perf_event *event) 4532 { 4533 if (event->state < PERF_EVENT_STATE_INACTIVE) 4534 return 0; 4535 4536 if (!event_filter_match(event)) 4537 return 0; 4538 4539 if (event->attr.comm) 4540 return 1; 4541 4542 return 0; 4543 } 4544 4545 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4546 struct perf_comm_event *comm_event) 4547 { 4548 struct perf_event *event; 4549 4550 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4551 if (perf_event_comm_match(event)) 4552 perf_event_comm_output(event, comm_event); 4553 } 4554 } 4555 4556 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4557 { 4558 struct perf_cpu_context *cpuctx; 4559 struct perf_event_context *ctx; 4560 char comm[TASK_COMM_LEN]; 4561 unsigned int size; 4562 struct pmu *pmu; 4563 int ctxn; 4564 4565 memset(comm, 0, sizeof(comm)); 4566 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4567 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4568 4569 comm_event->comm = comm; 4570 comm_event->comm_size = size; 4571 4572 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4573 rcu_read_lock(); 4574 list_for_each_entry_rcu(pmu, &pmus, entry) { 4575 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4576 if (cpuctx->unique_pmu != pmu) 4577 goto next; 4578 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4579 4580 ctxn = pmu->task_ctx_nr; 4581 if (ctxn < 0) 4582 goto next; 4583 4584 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4585 if (ctx) 4586 perf_event_comm_ctx(ctx, comm_event); 4587 next: 4588 put_cpu_ptr(pmu->pmu_cpu_context); 4589 } 4590 rcu_read_unlock(); 4591 } 4592 4593 void perf_event_comm(struct task_struct *task) 4594 { 4595 struct perf_comm_event comm_event; 4596 struct perf_event_context *ctx; 4597 int ctxn; 4598 4599 rcu_read_lock(); 4600 for_each_task_context_nr(ctxn) { 4601 ctx = task->perf_event_ctxp[ctxn]; 4602 if (!ctx) 4603 continue; 4604 4605 perf_event_enable_on_exec(ctx); 4606 } 4607 rcu_read_unlock(); 4608 4609 if (!atomic_read(&nr_comm_events)) 4610 return; 4611 4612 comm_event = (struct perf_comm_event){ 4613 .task = task, 4614 /* .comm */ 4615 /* .comm_size */ 4616 .event_id = { 4617 .header = { 4618 .type = PERF_RECORD_COMM, 4619 .misc = 0, 4620 /* .size */ 4621 }, 4622 /* .pid */ 4623 /* .tid */ 4624 }, 4625 }; 4626 4627 perf_event_comm_event(&comm_event); 4628 } 4629 4630 /* 4631 * mmap tracking 4632 */ 4633 4634 struct perf_mmap_event { 4635 struct vm_area_struct *vma; 4636 4637 const char *file_name; 4638 int file_size; 4639 4640 struct { 4641 struct perf_event_header header; 4642 4643 u32 pid; 4644 u32 tid; 4645 u64 start; 4646 u64 len; 4647 u64 pgoff; 4648 } event_id; 4649 }; 4650 4651 static void perf_event_mmap_output(struct perf_event *event, 4652 struct perf_mmap_event *mmap_event) 4653 { 4654 struct perf_output_handle handle; 4655 struct perf_sample_data sample; 4656 int size = mmap_event->event_id.header.size; 4657 int ret; 4658 4659 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4660 ret = perf_output_begin(&handle, event, 4661 mmap_event->event_id.header.size); 4662 if (ret) 4663 goto out; 4664 4665 mmap_event->event_id.pid = perf_event_pid(event, current); 4666 mmap_event->event_id.tid = perf_event_tid(event, current); 4667 4668 perf_output_put(&handle, mmap_event->event_id); 4669 __output_copy(&handle, mmap_event->file_name, 4670 mmap_event->file_size); 4671 4672 perf_event__output_id_sample(event, &handle, &sample); 4673 4674 perf_output_end(&handle); 4675 out: 4676 mmap_event->event_id.header.size = size; 4677 } 4678 4679 static int perf_event_mmap_match(struct perf_event *event, 4680 struct perf_mmap_event *mmap_event, 4681 int executable) 4682 { 4683 if (event->state < PERF_EVENT_STATE_INACTIVE) 4684 return 0; 4685 4686 if (!event_filter_match(event)) 4687 return 0; 4688 4689 if ((!executable && event->attr.mmap_data) || 4690 (executable && event->attr.mmap)) 4691 return 1; 4692 4693 return 0; 4694 } 4695 4696 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4697 struct perf_mmap_event *mmap_event, 4698 int executable) 4699 { 4700 struct perf_event *event; 4701 4702 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4703 if (perf_event_mmap_match(event, mmap_event, executable)) 4704 perf_event_mmap_output(event, mmap_event); 4705 } 4706 } 4707 4708 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4709 { 4710 struct perf_cpu_context *cpuctx; 4711 struct perf_event_context *ctx; 4712 struct vm_area_struct *vma = mmap_event->vma; 4713 struct file *file = vma->vm_file; 4714 unsigned int size; 4715 char tmp[16]; 4716 char *buf = NULL; 4717 const char *name; 4718 struct pmu *pmu; 4719 int ctxn; 4720 4721 memset(tmp, 0, sizeof(tmp)); 4722 4723 if (file) { 4724 /* 4725 * d_path works from the end of the rb backwards, so we 4726 * need to add enough zero bytes after the string to handle 4727 * the 64bit alignment we do later. 4728 */ 4729 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4730 if (!buf) { 4731 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4732 goto got_name; 4733 } 4734 name = d_path(&file->f_path, buf, PATH_MAX); 4735 if (IS_ERR(name)) { 4736 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4737 goto got_name; 4738 } 4739 } else { 4740 if (arch_vma_name(mmap_event->vma)) { 4741 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4742 sizeof(tmp) - 1); 4743 tmp[sizeof(tmp) - 1] = '\0'; 4744 goto got_name; 4745 } 4746 4747 if (!vma->vm_mm) { 4748 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4749 goto got_name; 4750 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4751 vma->vm_end >= vma->vm_mm->brk) { 4752 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4753 goto got_name; 4754 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4755 vma->vm_end >= vma->vm_mm->start_stack) { 4756 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4757 goto got_name; 4758 } 4759 4760 name = strncpy(tmp, "//anon", sizeof(tmp)); 4761 goto got_name; 4762 } 4763 4764 got_name: 4765 size = ALIGN(strlen(name)+1, sizeof(u64)); 4766 4767 mmap_event->file_name = name; 4768 mmap_event->file_size = size; 4769 4770 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4771 4772 rcu_read_lock(); 4773 list_for_each_entry_rcu(pmu, &pmus, entry) { 4774 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4775 if (cpuctx->unique_pmu != pmu) 4776 goto next; 4777 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4778 vma->vm_flags & VM_EXEC); 4779 4780 ctxn = pmu->task_ctx_nr; 4781 if (ctxn < 0) 4782 goto next; 4783 4784 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4785 if (ctx) { 4786 perf_event_mmap_ctx(ctx, mmap_event, 4787 vma->vm_flags & VM_EXEC); 4788 } 4789 next: 4790 put_cpu_ptr(pmu->pmu_cpu_context); 4791 } 4792 rcu_read_unlock(); 4793 4794 kfree(buf); 4795 } 4796 4797 void perf_event_mmap(struct vm_area_struct *vma) 4798 { 4799 struct perf_mmap_event mmap_event; 4800 4801 if (!atomic_read(&nr_mmap_events)) 4802 return; 4803 4804 mmap_event = (struct perf_mmap_event){ 4805 .vma = vma, 4806 /* .file_name */ 4807 /* .file_size */ 4808 .event_id = { 4809 .header = { 4810 .type = PERF_RECORD_MMAP, 4811 .misc = PERF_RECORD_MISC_USER, 4812 /* .size */ 4813 }, 4814 /* .pid */ 4815 /* .tid */ 4816 .start = vma->vm_start, 4817 .len = vma->vm_end - vma->vm_start, 4818 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4819 }, 4820 }; 4821 4822 perf_event_mmap_event(&mmap_event); 4823 } 4824 4825 /* 4826 * IRQ throttle logging 4827 */ 4828 4829 static void perf_log_throttle(struct perf_event *event, int enable) 4830 { 4831 struct perf_output_handle handle; 4832 struct perf_sample_data sample; 4833 int ret; 4834 4835 struct { 4836 struct perf_event_header header; 4837 u64 time; 4838 u64 id; 4839 u64 stream_id; 4840 } throttle_event = { 4841 .header = { 4842 .type = PERF_RECORD_THROTTLE, 4843 .misc = 0, 4844 .size = sizeof(throttle_event), 4845 }, 4846 .time = perf_clock(), 4847 .id = primary_event_id(event), 4848 .stream_id = event->id, 4849 }; 4850 4851 if (enable) 4852 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4853 4854 perf_event_header__init_id(&throttle_event.header, &sample, event); 4855 4856 ret = perf_output_begin(&handle, event, 4857 throttle_event.header.size); 4858 if (ret) 4859 return; 4860 4861 perf_output_put(&handle, throttle_event); 4862 perf_event__output_id_sample(event, &handle, &sample); 4863 perf_output_end(&handle); 4864 } 4865 4866 /* 4867 * Generic event overflow handling, sampling. 4868 */ 4869 4870 static int __perf_event_overflow(struct perf_event *event, 4871 int throttle, struct perf_sample_data *data, 4872 struct pt_regs *regs) 4873 { 4874 int events = atomic_read(&event->event_limit); 4875 struct hw_perf_event *hwc = &event->hw; 4876 u64 seq; 4877 int ret = 0; 4878 4879 /* 4880 * Non-sampling counters might still use the PMI to fold short 4881 * hardware counters, ignore those. 4882 */ 4883 if (unlikely(!is_sampling_event(event))) 4884 return 0; 4885 4886 seq = __this_cpu_read(perf_throttled_seq); 4887 if (seq != hwc->interrupts_seq) { 4888 hwc->interrupts_seq = seq; 4889 hwc->interrupts = 1; 4890 } else { 4891 hwc->interrupts++; 4892 if (unlikely(throttle 4893 && hwc->interrupts >= max_samples_per_tick)) { 4894 __this_cpu_inc(perf_throttled_count); 4895 hwc->interrupts = MAX_INTERRUPTS; 4896 perf_log_throttle(event, 0); 4897 ret = 1; 4898 } 4899 } 4900 4901 if (event->attr.freq) { 4902 u64 now = perf_clock(); 4903 s64 delta = now - hwc->freq_time_stamp; 4904 4905 hwc->freq_time_stamp = now; 4906 4907 if (delta > 0 && delta < 2*TICK_NSEC) 4908 perf_adjust_period(event, delta, hwc->last_period, true); 4909 } 4910 4911 /* 4912 * XXX event_limit might not quite work as expected on inherited 4913 * events 4914 */ 4915 4916 event->pending_kill = POLL_IN; 4917 if (events && atomic_dec_and_test(&event->event_limit)) { 4918 ret = 1; 4919 event->pending_kill = POLL_HUP; 4920 event->pending_disable = 1; 4921 irq_work_queue(&event->pending); 4922 } 4923 4924 if (event->overflow_handler) 4925 event->overflow_handler(event, data, regs); 4926 else 4927 perf_event_output(event, data, regs); 4928 4929 if (event->fasync && event->pending_kill) { 4930 event->pending_wakeup = 1; 4931 irq_work_queue(&event->pending); 4932 } 4933 4934 return ret; 4935 } 4936 4937 int perf_event_overflow(struct perf_event *event, 4938 struct perf_sample_data *data, 4939 struct pt_regs *regs) 4940 { 4941 return __perf_event_overflow(event, 1, data, regs); 4942 } 4943 4944 /* 4945 * Generic software event infrastructure 4946 */ 4947 4948 struct swevent_htable { 4949 struct swevent_hlist *swevent_hlist; 4950 struct mutex hlist_mutex; 4951 int hlist_refcount; 4952 4953 /* Recursion avoidance in each contexts */ 4954 int recursion[PERF_NR_CONTEXTS]; 4955 }; 4956 4957 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4958 4959 /* 4960 * We directly increment event->count and keep a second value in 4961 * event->hw.period_left to count intervals. This period event 4962 * is kept in the range [-sample_period, 0] so that we can use the 4963 * sign as trigger. 4964 */ 4965 4966 static u64 perf_swevent_set_period(struct perf_event *event) 4967 { 4968 struct hw_perf_event *hwc = &event->hw; 4969 u64 period = hwc->last_period; 4970 u64 nr, offset; 4971 s64 old, val; 4972 4973 hwc->last_period = hwc->sample_period; 4974 4975 again: 4976 old = val = local64_read(&hwc->period_left); 4977 if (val < 0) 4978 return 0; 4979 4980 nr = div64_u64(period + val, period); 4981 offset = nr * period; 4982 val -= offset; 4983 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4984 goto again; 4985 4986 return nr; 4987 } 4988 4989 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4990 struct perf_sample_data *data, 4991 struct pt_regs *regs) 4992 { 4993 struct hw_perf_event *hwc = &event->hw; 4994 int throttle = 0; 4995 4996 if (!overflow) 4997 overflow = perf_swevent_set_period(event); 4998 4999 if (hwc->interrupts == MAX_INTERRUPTS) 5000 return; 5001 5002 for (; overflow; overflow--) { 5003 if (__perf_event_overflow(event, throttle, 5004 data, regs)) { 5005 /* 5006 * We inhibit the overflow from happening when 5007 * hwc->interrupts == MAX_INTERRUPTS. 5008 */ 5009 break; 5010 } 5011 throttle = 1; 5012 } 5013 } 5014 5015 static void perf_swevent_event(struct perf_event *event, u64 nr, 5016 struct perf_sample_data *data, 5017 struct pt_regs *regs) 5018 { 5019 struct hw_perf_event *hwc = &event->hw; 5020 5021 local64_add(nr, &event->count); 5022 5023 if (!regs) 5024 return; 5025 5026 if (!is_sampling_event(event)) 5027 return; 5028 5029 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5030 data->period = nr; 5031 return perf_swevent_overflow(event, 1, data, regs); 5032 } else 5033 data->period = event->hw.last_period; 5034 5035 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5036 return perf_swevent_overflow(event, 1, data, regs); 5037 5038 if (local64_add_negative(nr, &hwc->period_left)) 5039 return; 5040 5041 perf_swevent_overflow(event, 0, data, regs); 5042 } 5043 5044 static int perf_exclude_event(struct perf_event *event, 5045 struct pt_regs *regs) 5046 { 5047 if (event->hw.state & PERF_HES_STOPPED) 5048 return 1; 5049 5050 if (regs) { 5051 if (event->attr.exclude_user && user_mode(regs)) 5052 return 1; 5053 5054 if (event->attr.exclude_kernel && !user_mode(regs)) 5055 return 1; 5056 } 5057 5058 return 0; 5059 } 5060 5061 static int perf_swevent_match(struct perf_event *event, 5062 enum perf_type_id type, 5063 u32 event_id, 5064 struct perf_sample_data *data, 5065 struct pt_regs *regs) 5066 { 5067 if (event->attr.type != type) 5068 return 0; 5069 5070 if (event->attr.config != event_id) 5071 return 0; 5072 5073 if (perf_exclude_event(event, regs)) 5074 return 0; 5075 5076 return 1; 5077 } 5078 5079 static inline u64 swevent_hash(u64 type, u32 event_id) 5080 { 5081 u64 val = event_id | (type << 32); 5082 5083 return hash_64(val, SWEVENT_HLIST_BITS); 5084 } 5085 5086 static inline struct hlist_head * 5087 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5088 { 5089 u64 hash = swevent_hash(type, event_id); 5090 5091 return &hlist->heads[hash]; 5092 } 5093 5094 /* For the read side: events when they trigger */ 5095 static inline struct hlist_head * 5096 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5097 { 5098 struct swevent_hlist *hlist; 5099 5100 hlist = rcu_dereference(swhash->swevent_hlist); 5101 if (!hlist) 5102 return NULL; 5103 5104 return __find_swevent_head(hlist, type, event_id); 5105 } 5106 5107 /* For the event head insertion and removal in the hlist */ 5108 static inline struct hlist_head * 5109 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5110 { 5111 struct swevent_hlist *hlist; 5112 u32 event_id = event->attr.config; 5113 u64 type = event->attr.type; 5114 5115 /* 5116 * Event scheduling is always serialized against hlist allocation 5117 * and release. Which makes the protected version suitable here. 5118 * The context lock guarantees that. 5119 */ 5120 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5121 lockdep_is_held(&event->ctx->lock)); 5122 if (!hlist) 5123 return NULL; 5124 5125 return __find_swevent_head(hlist, type, event_id); 5126 } 5127 5128 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5129 u64 nr, 5130 struct perf_sample_data *data, 5131 struct pt_regs *regs) 5132 { 5133 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5134 struct perf_event *event; 5135 struct hlist_head *head; 5136 5137 rcu_read_lock(); 5138 head = find_swevent_head_rcu(swhash, type, event_id); 5139 if (!head) 5140 goto end; 5141 5142 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5143 if (perf_swevent_match(event, type, event_id, data, regs)) 5144 perf_swevent_event(event, nr, data, regs); 5145 } 5146 end: 5147 rcu_read_unlock(); 5148 } 5149 5150 int perf_swevent_get_recursion_context(void) 5151 { 5152 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5153 5154 return get_recursion_context(swhash->recursion); 5155 } 5156 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5157 5158 inline void perf_swevent_put_recursion_context(int rctx) 5159 { 5160 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5161 5162 put_recursion_context(swhash->recursion, rctx); 5163 } 5164 5165 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5166 { 5167 struct perf_sample_data data; 5168 int rctx; 5169 5170 preempt_disable_notrace(); 5171 rctx = perf_swevent_get_recursion_context(); 5172 if (rctx < 0) 5173 return; 5174 5175 perf_sample_data_init(&data, addr, 0); 5176 5177 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5178 5179 perf_swevent_put_recursion_context(rctx); 5180 preempt_enable_notrace(); 5181 } 5182 5183 static void perf_swevent_read(struct perf_event *event) 5184 { 5185 } 5186 5187 static int perf_swevent_add(struct perf_event *event, int flags) 5188 { 5189 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5190 struct hw_perf_event *hwc = &event->hw; 5191 struct hlist_head *head; 5192 5193 if (is_sampling_event(event)) { 5194 hwc->last_period = hwc->sample_period; 5195 perf_swevent_set_period(event); 5196 } 5197 5198 hwc->state = !(flags & PERF_EF_START); 5199 5200 head = find_swevent_head(swhash, event); 5201 if (WARN_ON_ONCE(!head)) 5202 return -EINVAL; 5203 5204 hlist_add_head_rcu(&event->hlist_entry, head); 5205 5206 return 0; 5207 } 5208 5209 static void perf_swevent_del(struct perf_event *event, int flags) 5210 { 5211 hlist_del_rcu(&event->hlist_entry); 5212 } 5213 5214 static void perf_swevent_start(struct perf_event *event, int flags) 5215 { 5216 event->hw.state = 0; 5217 } 5218 5219 static void perf_swevent_stop(struct perf_event *event, int flags) 5220 { 5221 event->hw.state = PERF_HES_STOPPED; 5222 } 5223 5224 /* Deref the hlist from the update side */ 5225 static inline struct swevent_hlist * 5226 swevent_hlist_deref(struct swevent_htable *swhash) 5227 { 5228 return rcu_dereference_protected(swhash->swevent_hlist, 5229 lockdep_is_held(&swhash->hlist_mutex)); 5230 } 5231 5232 static void swevent_hlist_release(struct swevent_htable *swhash) 5233 { 5234 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5235 5236 if (!hlist) 5237 return; 5238 5239 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5240 kfree_rcu(hlist, rcu_head); 5241 } 5242 5243 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5244 { 5245 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5246 5247 mutex_lock(&swhash->hlist_mutex); 5248 5249 if (!--swhash->hlist_refcount) 5250 swevent_hlist_release(swhash); 5251 5252 mutex_unlock(&swhash->hlist_mutex); 5253 } 5254 5255 static void swevent_hlist_put(struct perf_event *event) 5256 { 5257 int cpu; 5258 5259 if (event->cpu != -1) { 5260 swevent_hlist_put_cpu(event, event->cpu); 5261 return; 5262 } 5263 5264 for_each_possible_cpu(cpu) 5265 swevent_hlist_put_cpu(event, cpu); 5266 } 5267 5268 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5269 { 5270 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5271 int err = 0; 5272 5273 mutex_lock(&swhash->hlist_mutex); 5274 5275 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5276 struct swevent_hlist *hlist; 5277 5278 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5279 if (!hlist) { 5280 err = -ENOMEM; 5281 goto exit; 5282 } 5283 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5284 } 5285 swhash->hlist_refcount++; 5286 exit: 5287 mutex_unlock(&swhash->hlist_mutex); 5288 5289 return err; 5290 } 5291 5292 static int swevent_hlist_get(struct perf_event *event) 5293 { 5294 int err; 5295 int cpu, failed_cpu; 5296 5297 if (event->cpu != -1) 5298 return swevent_hlist_get_cpu(event, event->cpu); 5299 5300 get_online_cpus(); 5301 for_each_possible_cpu(cpu) { 5302 err = swevent_hlist_get_cpu(event, cpu); 5303 if (err) { 5304 failed_cpu = cpu; 5305 goto fail; 5306 } 5307 } 5308 put_online_cpus(); 5309 5310 return 0; 5311 fail: 5312 for_each_possible_cpu(cpu) { 5313 if (cpu == failed_cpu) 5314 break; 5315 swevent_hlist_put_cpu(event, cpu); 5316 } 5317 5318 put_online_cpus(); 5319 return err; 5320 } 5321 5322 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5323 5324 static void sw_perf_event_destroy(struct perf_event *event) 5325 { 5326 u64 event_id = event->attr.config; 5327 5328 WARN_ON(event->parent); 5329 5330 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5331 swevent_hlist_put(event); 5332 } 5333 5334 static int perf_swevent_init(struct perf_event *event) 5335 { 5336 u64 event_id = event->attr.config; 5337 5338 if (event->attr.type != PERF_TYPE_SOFTWARE) 5339 return -ENOENT; 5340 5341 /* 5342 * no branch sampling for software events 5343 */ 5344 if (has_branch_stack(event)) 5345 return -EOPNOTSUPP; 5346 5347 switch (event_id) { 5348 case PERF_COUNT_SW_CPU_CLOCK: 5349 case PERF_COUNT_SW_TASK_CLOCK: 5350 return -ENOENT; 5351 5352 default: 5353 break; 5354 } 5355 5356 if (event_id >= PERF_COUNT_SW_MAX) 5357 return -ENOENT; 5358 5359 if (!event->parent) { 5360 int err; 5361 5362 err = swevent_hlist_get(event); 5363 if (err) 5364 return err; 5365 5366 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5367 event->destroy = sw_perf_event_destroy; 5368 } 5369 5370 return 0; 5371 } 5372 5373 static int perf_swevent_event_idx(struct perf_event *event) 5374 { 5375 return 0; 5376 } 5377 5378 static struct pmu perf_swevent = { 5379 .task_ctx_nr = perf_sw_context, 5380 5381 .event_init = perf_swevent_init, 5382 .add = perf_swevent_add, 5383 .del = perf_swevent_del, 5384 .start = perf_swevent_start, 5385 .stop = perf_swevent_stop, 5386 .read = perf_swevent_read, 5387 5388 .event_idx = perf_swevent_event_idx, 5389 }; 5390 5391 #ifdef CONFIG_EVENT_TRACING 5392 5393 static int perf_tp_filter_match(struct perf_event *event, 5394 struct perf_sample_data *data) 5395 { 5396 void *record = data->raw->data; 5397 5398 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5399 return 1; 5400 return 0; 5401 } 5402 5403 static int perf_tp_event_match(struct perf_event *event, 5404 struct perf_sample_data *data, 5405 struct pt_regs *regs) 5406 { 5407 if (event->hw.state & PERF_HES_STOPPED) 5408 return 0; 5409 /* 5410 * All tracepoints are from kernel-space. 5411 */ 5412 if (event->attr.exclude_kernel) 5413 return 0; 5414 5415 if (!perf_tp_filter_match(event, data)) 5416 return 0; 5417 5418 return 1; 5419 } 5420 5421 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5422 struct pt_regs *regs, struct hlist_head *head, int rctx, 5423 struct task_struct *task) 5424 { 5425 struct perf_sample_data data; 5426 struct perf_event *event; 5427 5428 struct perf_raw_record raw = { 5429 .size = entry_size, 5430 .data = record, 5431 }; 5432 5433 perf_sample_data_init(&data, addr, 0); 5434 data.raw = &raw; 5435 5436 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5437 if (perf_tp_event_match(event, &data, regs)) 5438 perf_swevent_event(event, count, &data, regs); 5439 } 5440 5441 /* 5442 * If we got specified a target task, also iterate its context and 5443 * deliver this event there too. 5444 */ 5445 if (task && task != current) { 5446 struct perf_event_context *ctx; 5447 struct trace_entry *entry = record; 5448 5449 rcu_read_lock(); 5450 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5451 if (!ctx) 5452 goto unlock; 5453 5454 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5455 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5456 continue; 5457 if (event->attr.config != entry->type) 5458 continue; 5459 if (perf_tp_event_match(event, &data, regs)) 5460 perf_swevent_event(event, count, &data, regs); 5461 } 5462 unlock: 5463 rcu_read_unlock(); 5464 } 5465 5466 perf_swevent_put_recursion_context(rctx); 5467 } 5468 EXPORT_SYMBOL_GPL(perf_tp_event); 5469 5470 static void tp_perf_event_destroy(struct perf_event *event) 5471 { 5472 perf_trace_destroy(event); 5473 } 5474 5475 static int perf_tp_event_init(struct perf_event *event) 5476 { 5477 int err; 5478 5479 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5480 return -ENOENT; 5481 5482 /* 5483 * no branch sampling for tracepoint events 5484 */ 5485 if (has_branch_stack(event)) 5486 return -EOPNOTSUPP; 5487 5488 err = perf_trace_init(event); 5489 if (err) 5490 return err; 5491 5492 event->destroy = tp_perf_event_destroy; 5493 5494 return 0; 5495 } 5496 5497 static struct pmu perf_tracepoint = { 5498 .task_ctx_nr = perf_sw_context, 5499 5500 .event_init = perf_tp_event_init, 5501 .add = perf_trace_add, 5502 .del = perf_trace_del, 5503 .start = perf_swevent_start, 5504 .stop = perf_swevent_stop, 5505 .read = perf_swevent_read, 5506 5507 .event_idx = perf_swevent_event_idx, 5508 }; 5509 5510 static inline void perf_tp_register(void) 5511 { 5512 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5513 } 5514 5515 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5516 { 5517 char *filter_str; 5518 int ret; 5519 5520 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5521 return -EINVAL; 5522 5523 filter_str = strndup_user(arg, PAGE_SIZE); 5524 if (IS_ERR(filter_str)) 5525 return PTR_ERR(filter_str); 5526 5527 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5528 5529 kfree(filter_str); 5530 return ret; 5531 } 5532 5533 static void perf_event_free_filter(struct perf_event *event) 5534 { 5535 ftrace_profile_free_filter(event); 5536 } 5537 5538 #else 5539 5540 static inline void perf_tp_register(void) 5541 { 5542 } 5543 5544 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5545 { 5546 return -ENOENT; 5547 } 5548 5549 static void perf_event_free_filter(struct perf_event *event) 5550 { 5551 } 5552 5553 #endif /* CONFIG_EVENT_TRACING */ 5554 5555 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5556 void perf_bp_event(struct perf_event *bp, void *data) 5557 { 5558 struct perf_sample_data sample; 5559 struct pt_regs *regs = data; 5560 5561 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5562 5563 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5564 perf_swevent_event(bp, 1, &sample, regs); 5565 } 5566 #endif 5567 5568 /* 5569 * hrtimer based swevent callback 5570 */ 5571 5572 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5573 { 5574 enum hrtimer_restart ret = HRTIMER_RESTART; 5575 struct perf_sample_data data; 5576 struct pt_regs *regs; 5577 struct perf_event *event; 5578 u64 period; 5579 5580 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5581 5582 if (event->state != PERF_EVENT_STATE_ACTIVE) 5583 return HRTIMER_NORESTART; 5584 5585 event->pmu->read(event); 5586 5587 perf_sample_data_init(&data, 0, event->hw.last_period); 5588 regs = get_irq_regs(); 5589 5590 if (regs && !perf_exclude_event(event, regs)) { 5591 if (!(event->attr.exclude_idle && is_idle_task(current))) 5592 if (__perf_event_overflow(event, 1, &data, regs)) 5593 ret = HRTIMER_NORESTART; 5594 } 5595 5596 period = max_t(u64, 10000, event->hw.sample_period); 5597 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5598 5599 return ret; 5600 } 5601 5602 static void perf_swevent_start_hrtimer(struct perf_event *event) 5603 { 5604 struct hw_perf_event *hwc = &event->hw; 5605 s64 period; 5606 5607 if (!is_sampling_event(event)) 5608 return; 5609 5610 period = local64_read(&hwc->period_left); 5611 if (period) { 5612 if (period < 0) 5613 period = 10000; 5614 5615 local64_set(&hwc->period_left, 0); 5616 } else { 5617 period = max_t(u64, 10000, hwc->sample_period); 5618 } 5619 __hrtimer_start_range_ns(&hwc->hrtimer, 5620 ns_to_ktime(period), 0, 5621 HRTIMER_MODE_REL_PINNED, 0); 5622 } 5623 5624 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5625 { 5626 struct hw_perf_event *hwc = &event->hw; 5627 5628 if (is_sampling_event(event)) { 5629 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5630 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5631 5632 hrtimer_cancel(&hwc->hrtimer); 5633 } 5634 } 5635 5636 static void perf_swevent_init_hrtimer(struct perf_event *event) 5637 { 5638 struct hw_perf_event *hwc = &event->hw; 5639 5640 if (!is_sampling_event(event)) 5641 return; 5642 5643 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5644 hwc->hrtimer.function = perf_swevent_hrtimer; 5645 5646 /* 5647 * Since hrtimers have a fixed rate, we can do a static freq->period 5648 * mapping and avoid the whole period adjust feedback stuff. 5649 */ 5650 if (event->attr.freq) { 5651 long freq = event->attr.sample_freq; 5652 5653 event->attr.sample_period = NSEC_PER_SEC / freq; 5654 hwc->sample_period = event->attr.sample_period; 5655 local64_set(&hwc->period_left, hwc->sample_period); 5656 hwc->last_period = hwc->sample_period; 5657 event->attr.freq = 0; 5658 } 5659 } 5660 5661 /* 5662 * Software event: cpu wall time clock 5663 */ 5664 5665 static void cpu_clock_event_update(struct perf_event *event) 5666 { 5667 s64 prev; 5668 u64 now; 5669 5670 now = local_clock(); 5671 prev = local64_xchg(&event->hw.prev_count, now); 5672 local64_add(now - prev, &event->count); 5673 } 5674 5675 static void cpu_clock_event_start(struct perf_event *event, int flags) 5676 { 5677 local64_set(&event->hw.prev_count, local_clock()); 5678 perf_swevent_start_hrtimer(event); 5679 } 5680 5681 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5682 { 5683 perf_swevent_cancel_hrtimer(event); 5684 cpu_clock_event_update(event); 5685 } 5686 5687 static int cpu_clock_event_add(struct perf_event *event, int flags) 5688 { 5689 if (flags & PERF_EF_START) 5690 cpu_clock_event_start(event, flags); 5691 5692 return 0; 5693 } 5694 5695 static void cpu_clock_event_del(struct perf_event *event, int flags) 5696 { 5697 cpu_clock_event_stop(event, flags); 5698 } 5699 5700 static void cpu_clock_event_read(struct perf_event *event) 5701 { 5702 cpu_clock_event_update(event); 5703 } 5704 5705 static int cpu_clock_event_init(struct perf_event *event) 5706 { 5707 if (event->attr.type != PERF_TYPE_SOFTWARE) 5708 return -ENOENT; 5709 5710 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5711 return -ENOENT; 5712 5713 /* 5714 * no branch sampling for software events 5715 */ 5716 if (has_branch_stack(event)) 5717 return -EOPNOTSUPP; 5718 5719 perf_swevent_init_hrtimer(event); 5720 5721 return 0; 5722 } 5723 5724 static struct pmu perf_cpu_clock = { 5725 .task_ctx_nr = perf_sw_context, 5726 5727 .event_init = cpu_clock_event_init, 5728 .add = cpu_clock_event_add, 5729 .del = cpu_clock_event_del, 5730 .start = cpu_clock_event_start, 5731 .stop = cpu_clock_event_stop, 5732 .read = cpu_clock_event_read, 5733 5734 .event_idx = perf_swevent_event_idx, 5735 }; 5736 5737 /* 5738 * Software event: task time clock 5739 */ 5740 5741 static void task_clock_event_update(struct perf_event *event, u64 now) 5742 { 5743 u64 prev; 5744 s64 delta; 5745 5746 prev = local64_xchg(&event->hw.prev_count, now); 5747 delta = now - prev; 5748 local64_add(delta, &event->count); 5749 } 5750 5751 static void task_clock_event_start(struct perf_event *event, int flags) 5752 { 5753 local64_set(&event->hw.prev_count, event->ctx->time); 5754 perf_swevent_start_hrtimer(event); 5755 } 5756 5757 static void task_clock_event_stop(struct perf_event *event, int flags) 5758 { 5759 perf_swevent_cancel_hrtimer(event); 5760 task_clock_event_update(event, event->ctx->time); 5761 } 5762 5763 static int task_clock_event_add(struct perf_event *event, int flags) 5764 { 5765 if (flags & PERF_EF_START) 5766 task_clock_event_start(event, flags); 5767 5768 return 0; 5769 } 5770 5771 static void task_clock_event_del(struct perf_event *event, int flags) 5772 { 5773 task_clock_event_stop(event, PERF_EF_UPDATE); 5774 } 5775 5776 static void task_clock_event_read(struct perf_event *event) 5777 { 5778 u64 now = perf_clock(); 5779 u64 delta = now - event->ctx->timestamp; 5780 u64 time = event->ctx->time + delta; 5781 5782 task_clock_event_update(event, time); 5783 } 5784 5785 static int task_clock_event_init(struct perf_event *event) 5786 { 5787 if (event->attr.type != PERF_TYPE_SOFTWARE) 5788 return -ENOENT; 5789 5790 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5791 return -ENOENT; 5792 5793 /* 5794 * no branch sampling for software events 5795 */ 5796 if (has_branch_stack(event)) 5797 return -EOPNOTSUPP; 5798 5799 perf_swevent_init_hrtimer(event); 5800 5801 return 0; 5802 } 5803 5804 static struct pmu perf_task_clock = { 5805 .task_ctx_nr = perf_sw_context, 5806 5807 .event_init = task_clock_event_init, 5808 .add = task_clock_event_add, 5809 .del = task_clock_event_del, 5810 .start = task_clock_event_start, 5811 .stop = task_clock_event_stop, 5812 .read = task_clock_event_read, 5813 5814 .event_idx = perf_swevent_event_idx, 5815 }; 5816 5817 static void perf_pmu_nop_void(struct pmu *pmu) 5818 { 5819 } 5820 5821 static int perf_pmu_nop_int(struct pmu *pmu) 5822 { 5823 return 0; 5824 } 5825 5826 static void perf_pmu_start_txn(struct pmu *pmu) 5827 { 5828 perf_pmu_disable(pmu); 5829 } 5830 5831 static int perf_pmu_commit_txn(struct pmu *pmu) 5832 { 5833 perf_pmu_enable(pmu); 5834 return 0; 5835 } 5836 5837 static void perf_pmu_cancel_txn(struct pmu *pmu) 5838 { 5839 perf_pmu_enable(pmu); 5840 } 5841 5842 static int perf_event_idx_default(struct perf_event *event) 5843 { 5844 return event->hw.idx + 1; 5845 } 5846 5847 /* 5848 * Ensures all contexts with the same task_ctx_nr have the same 5849 * pmu_cpu_context too. 5850 */ 5851 static void *find_pmu_context(int ctxn) 5852 { 5853 struct pmu *pmu; 5854 5855 if (ctxn < 0) 5856 return NULL; 5857 5858 list_for_each_entry(pmu, &pmus, entry) { 5859 if (pmu->task_ctx_nr == ctxn) 5860 return pmu->pmu_cpu_context; 5861 } 5862 5863 return NULL; 5864 } 5865 5866 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5867 { 5868 int cpu; 5869 5870 for_each_possible_cpu(cpu) { 5871 struct perf_cpu_context *cpuctx; 5872 5873 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5874 5875 if (cpuctx->unique_pmu == old_pmu) 5876 cpuctx->unique_pmu = pmu; 5877 } 5878 } 5879 5880 static void free_pmu_context(struct pmu *pmu) 5881 { 5882 struct pmu *i; 5883 5884 mutex_lock(&pmus_lock); 5885 /* 5886 * Like a real lame refcount. 5887 */ 5888 list_for_each_entry(i, &pmus, entry) { 5889 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5890 update_pmu_context(i, pmu); 5891 goto out; 5892 } 5893 } 5894 5895 free_percpu(pmu->pmu_cpu_context); 5896 out: 5897 mutex_unlock(&pmus_lock); 5898 } 5899 static struct idr pmu_idr; 5900 5901 static ssize_t 5902 type_show(struct device *dev, struct device_attribute *attr, char *page) 5903 { 5904 struct pmu *pmu = dev_get_drvdata(dev); 5905 5906 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5907 } 5908 5909 static struct device_attribute pmu_dev_attrs[] = { 5910 __ATTR_RO(type), 5911 __ATTR_NULL, 5912 }; 5913 5914 static int pmu_bus_running; 5915 static struct bus_type pmu_bus = { 5916 .name = "event_source", 5917 .dev_attrs = pmu_dev_attrs, 5918 }; 5919 5920 static void pmu_dev_release(struct device *dev) 5921 { 5922 kfree(dev); 5923 } 5924 5925 static int pmu_dev_alloc(struct pmu *pmu) 5926 { 5927 int ret = -ENOMEM; 5928 5929 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5930 if (!pmu->dev) 5931 goto out; 5932 5933 pmu->dev->groups = pmu->attr_groups; 5934 device_initialize(pmu->dev); 5935 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5936 if (ret) 5937 goto free_dev; 5938 5939 dev_set_drvdata(pmu->dev, pmu); 5940 pmu->dev->bus = &pmu_bus; 5941 pmu->dev->release = pmu_dev_release; 5942 ret = device_add(pmu->dev); 5943 if (ret) 5944 goto free_dev; 5945 5946 out: 5947 return ret; 5948 5949 free_dev: 5950 put_device(pmu->dev); 5951 goto out; 5952 } 5953 5954 static struct lock_class_key cpuctx_mutex; 5955 static struct lock_class_key cpuctx_lock; 5956 5957 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5958 { 5959 int cpu, ret; 5960 5961 mutex_lock(&pmus_lock); 5962 ret = -ENOMEM; 5963 pmu->pmu_disable_count = alloc_percpu(int); 5964 if (!pmu->pmu_disable_count) 5965 goto unlock; 5966 5967 pmu->type = -1; 5968 if (!name) 5969 goto skip_type; 5970 pmu->name = name; 5971 5972 if (type < 0) { 5973 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 5974 if (type < 0) { 5975 ret = type; 5976 goto free_pdc; 5977 } 5978 } 5979 pmu->type = type; 5980 5981 if (pmu_bus_running) { 5982 ret = pmu_dev_alloc(pmu); 5983 if (ret) 5984 goto free_idr; 5985 } 5986 5987 skip_type: 5988 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5989 if (pmu->pmu_cpu_context) 5990 goto got_cpu_context; 5991 5992 ret = -ENOMEM; 5993 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5994 if (!pmu->pmu_cpu_context) 5995 goto free_dev; 5996 5997 for_each_possible_cpu(cpu) { 5998 struct perf_cpu_context *cpuctx; 5999 6000 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6001 __perf_event_init_context(&cpuctx->ctx); 6002 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6003 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6004 cpuctx->ctx.type = cpu_context; 6005 cpuctx->ctx.pmu = pmu; 6006 cpuctx->jiffies_interval = 1; 6007 INIT_LIST_HEAD(&cpuctx->rotation_list); 6008 cpuctx->unique_pmu = pmu; 6009 } 6010 6011 got_cpu_context: 6012 if (!pmu->start_txn) { 6013 if (pmu->pmu_enable) { 6014 /* 6015 * If we have pmu_enable/pmu_disable calls, install 6016 * transaction stubs that use that to try and batch 6017 * hardware accesses. 6018 */ 6019 pmu->start_txn = perf_pmu_start_txn; 6020 pmu->commit_txn = perf_pmu_commit_txn; 6021 pmu->cancel_txn = perf_pmu_cancel_txn; 6022 } else { 6023 pmu->start_txn = perf_pmu_nop_void; 6024 pmu->commit_txn = perf_pmu_nop_int; 6025 pmu->cancel_txn = perf_pmu_nop_void; 6026 } 6027 } 6028 6029 if (!pmu->pmu_enable) { 6030 pmu->pmu_enable = perf_pmu_nop_void; 6031 pmu->pmu_disable = perf_pmu_nop_void; 6032 } 6033 6034 if (!pmu->event_idx) 6035 pmu->event_idx = perf_event_idx_default; 6036 6037 list_add_rcu(&pmu->entry, &pmus); 6038 ret = 0; 6039 unlock: 6040 mutex_unlock(&pmus_lock); 6041 6042 return ret; 6043 6044 free_dev: 6045 device_del(pmu->dev); 6046 put_device(pmu->dev); 6047 6048 free_idr: 6049 if (pmu->type >= PERF_TYPE_MAX) 6050 idr_remove(&pmu_idr, pmu->type); 6051 6052 free_pdc: 6053 free_percpu(pmu->pmu_disable_count); 6054 goto unlock; 6055 } 6056 6057 void perf_pmu_unregister(struct pmu *pmu) 6058 { 6059 mutex_lock(&pmus_lock); 6060 list_del_rcu(&pmu->entry); 6061 mutex_unlock(&pmus_lock); 6062 6063 /* 6064 * We dereference the pmu list under both SRCU and regular RCU, so 6065 * synchronize against both of those. 6066 */ 6067 synchronize_srcu(&pmus_srcu); 6068 synchronize_rcu(); 6069 6070 free_percpu(pmu->pmu_disable_count); 6071 if (pmu->type >= PERF_TYPE_MAX) 6072 idr_remove(&pmu_idr, pmu->type); 6073 device_del(pmu->dev); 6074 put_device(pmu->dev); 6075 free_pmu_context(pmu); 6076 } 6077 6078 struct pmu *perf_init_event(struct perf_event *event) 6079 { 6080 struct pmu *pmu = NULL; 6081 int idx; 6082 int ret; 6083 6084 idx = srcu_read_lock(&pmus_srcu); 6085 6086 rcu_read_lock(); 6087 pmu = idr_find(&pmu_idr, event->attr.type); 6088 rcu_read_unlock(); 6089 if (pmu) { 6090 event->pmu = pmu; 6091 ret = pmu->event_init(event); 6092 if (ret) 6093 pmu = ERR_PTR(ret); 6094 goto unlock; 6095 } 6096 6097 list_for_each_entry_rcu(pmu, &pmus, entry) { 6098 event->pmu = pmu; 6099 ret = pmu->event_init(event); 6100 if (!ret) 6101 goto unlock; 6102 6103 if (ret != -ENOENT) { 6104 pmu = ERR_PTR(ret); 6105 goto unlock; 6106 } 6107 } 6108 pmu = ERR_PTR(-ENOENT); 6109 unlock: 6110 srcu_read_unlock(&pmus_srcu, idx); 6111 6112 return pmu; 6113 } 6114 6115 /* 6116 * Allocate and initialize a event structure 6117 */ 6118 static struct perf_event * 6119 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6120 struct task_struct *task, 6121 struct perf_event *group_leader, 6122 struct perf_event *parent_event, 6123 perf_overflow_handler_t overflow_handler, 6124 void *context) 6125 { 6126 struct pmu *pmu; 6127 struct perf_event *event; 6128 struct hw_perf_event *hwc; 6129 long err; 6130 6131 if ((unsigned)cpu >= nr_cpu_ids) { 6132 if (!task || cpu != -1) 6133 return ERR_PTR(-EINVAL); 6134 } 6135 6136 event = kzalloc(sizeof(*event), GFP_KERNEL); 6137 if (!event) 6138 return ERR_PTR(-ENOMEM); 6139 6140 /* 6141 * Single events are their own group leaders, with an 6142 * empty sibling list: 6143 */ 6144 if (!group_leader) 6145 group_leader = event; 6146 6147 mutex_init(&event->child_mutex); 6148 INIT_LIST_HEAD(&event->child_list); 6149 6150 INIT_LIST_HEAD(&event->group_entry); 6151 INIT_LIST_HEAD(&event->event_entry); 6152 INIT_LIST_HEAD(&event->sibling_list); 6153 INIT_LIST_HEAD(&event->rb_entry); 6154 6155 init_waitqueue_head(&event->waitq); 6156 init_irq_work(&event->pending, perf_pending_event); 6157 6158 mutex_init(&event->mmap_mutex); 6159 6160 atomic_long_set(&event->refcount, 1); 6161 event->cpu = cpu; 6162 event->attr = *attr; 6163 event->group_leader = group_leader; 6164 event->pmu = NULL; 6165 event->oncpu = -1; 6166 6167 event->parent = parent_event; 6168 6169 event->ns = get_pid_ns(task_active_pid_ns(current)); 6170 event->id = atomic64_inc_return(&perf_event_id); 6171 6172 event->state = PERF_EVENT_STATE_INACTIVE; 6173 6174 if (task) { 6175 event->attach_state = PERF_ATTACH_TASK; 6176 6177 if (attr->type == PERF_TYPE_TRACEPOINT) 6178 event->hw.tp_target = task; 6179 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6180 /* 6181 * hw_breakpoint is a bit difficult here.. 6182 */ 6183 else if (attr->type == PERF_TYPE_BREAKPOINT) 6184 event->hw.bp_target = task; 6185 #endif 6186 } 6187 6188 if (!overflow_handler && parent_event) { 6189 overflow_handler = parent_event->overflow_handler; 6190 context = parent_event->overflow_handler_context; 6191 } 6192 6193 event->overflow_handler = overflow_handler; 6194 event->overflow_handler_context = context; 6195 6196 perf_event__state_init(event); 6197 6198 pmu = NULL; 6199 6200 hwc = &event->hw; 6201 hwc->sample_period = attr->sample_period; 6202 if (attr->freq && attr->sample_freq) 6203 hwc->sample_period = 1; 6204 hwc->last_period = hwc->sample_period; 6205 6206 local64_set(&hwc->period_left, hwc->sample_period); 6207 6208 /* 6209 * we currently do not support PERF_FORMAT_GROUP on inherited events 6210 */ 6211 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6212 goto done; 6213 6214 pmu = perf_init_event(event); 6215 6216 done: 6217 err = 0; 6218 if (!pmu) 6219 err = -EINVAL; 6220 else if (IS_ERR(pmu)) 6221 err = PTR_ERR(pmu); 6222 6223 if (err) { 6224 if (event->ns) 6225 put_pid_ns(event->ns); 6226 kfree(event); 6227 return ERR_PTR(err); 6228 } 6229 6230 if (!event->parent) { 6231 if (event->attach_state & PERF_ATTACH_TASK) 6232 static_key_slow_inc(&perf_sched_events.key); 6233 if (event->attr.mmap || event->attr.mmap_data) 6234 atomic_inc(&nr_mmap_events); 6235 if (event->attr.comm) 6236 atomic_inc(&nr_comm_events); 6237 if (event->attr.task) 6238 atomic_inc(&nr_task_events); 6239 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6240 err = get_callchain_buffers(); 6241 if (err) { 6242 free_event(event); 6243 return ERR_PTR(err); 6244 } 6245 } 6246 if (has_branch_stack(event)) { 6247 static_key_slow_inc(&perf_sched_events.key); 6248 if (!(event->attach_state & PERF_ATTACH_TASK)) 6249 atomic_inc(&per_cpu(perf_branch_stack_events, 6250 event->cpu)); 6251 } 6252 } 6253 6254 return event; 6255 } 6256 6257 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6258 struct perf_event_attr *attr) 6259 { 6260 u32 size; 6261 int ret; 6262 6263 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6264 return -EFAULT; 6265 6266 /* 6267 * zero the full structure, so that a short copy will be nice. 6268 */ 6269 memset(attr, 0, sizeof(*attr)); 6270 6271 ret = get_user(size, &uattr->size); 6272 if (ret) 6273 return ret; 6274 6275 if (size > PAGE_SIZE) /* silly large */ 6276 goto err_size; 6277 6278 if (!size) /* abi compat */ 6279 size = PERF_ATTR_SIZE_VER0; 6280 6281 if (size < PERF_ATTR_SIZE_VER0) 6282 goto err_size; 6283 6284 /* 6285 * If we're handed a bigger struct than we know of, 6286 * ensure all the unknown bits are 0 - i.e. new 6287 * user-space does not rely on any kernel feature 6288 * extensions we dont know about yet. 6289 */ 6290 if (size > sizeof(*attr)) { 6291 unsigned char __user *addr; 6292 unsigned char __user *end; 6293 unsigned char val; 6294 6295 addr = (void __user *)uattr + sizeof(*attr); 6296 end = (void __user *)uattr + size; 6297 6298 for (; addr < end; addr++) { 6299 ret = get_user(val, addr); 6300 if (ret) 6301 return ret; 6302 if (val) 6303 goto err_size; 6304 } 6305 size = sizeof(*attr); 6306 } 6307 6308 ret = copy_from_user(attr, uattr, size); 6309 if (ret) 6310 return -EFAULT; 6311 6312 if (attr->__reserved_1) 6313 return -EINVAL; 6314 6315 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6316 return -EINVAL; 6317 6318 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6319 return -EINVAL; 6320 6321 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6322 u64 mask = attr->branch_sample_type; 6323 6324 /* only using defined bits */ 6325 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6326 return -EINVAL; 6327 6328 /* at least one branch bit must be set */ 6329 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6330 return -EINVAL; 6331 6332 /* kernel level capture: check permissions */ 6333 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6334 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6335 return -EACCES; 6336 6337 /* propagate priv level, when not set for branch */ 6338 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6339 6340 /* exclude_kernel checked on syscall entry */ 6341 if (!attr->exclude_kernel) 6342 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6343 6344 if (!attr->exclude_user) 6345 mask |= PERF_SAMPLE_BRANCH_USER; 6346 6347 if (!attr->exclude_hv) 6348 mask |= PERF_SAMPLE_BRANCH_HV; 6349 /* 6350 * adjust user setting (for HW filter setup) 6351 */ 6352 attr->branch_sample_type = mask; 6353 } 6354 } 6355 6356 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6357 ret = perf_reg_validate(attr->sample_regs_user); 6358 if (ret) 6359 return ret; 6360 } 6361 6362 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6363 if (!arch_perf_have_user_stack_dump()) 6364 return -ENOSYS; 6365 6366 /* 6367 * We have __u32 type for the size, but so far 6368 * we can only use __u16 as maximum due to the 6369 * __u16 sample size limit. 6370 */ 6371 if (attr->sample_stack_user >= USHRT_MAX) 6372 ret = -EINVAL; 6373 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6374 ret = -EINVAL; 6375 } 6376 6377 out: 6378 return ret; 6379 6380 err_size: 6381 put_user(sizeof(*attr), &uattr->size); 6382 ret = -E2BIG; 6383 goto out; 6384 } 6385 6386 static int 6387 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6388 { 6389 struct ring_buffer *rb = NULL, *old_rb = NULL; 6390 int ret = -EINVAL; 6391 6392 if (!output_event) 6393 goto set; 6394 6395 /* don't allow circular references */ 6396 if (event == output_event) 6397 goto out; 6398 6399 /* 6400 * Don't allow cross-cpu buffers 6401 */ 6402 if (output_event->cpu != event->cpu) 6403 goto out; 6404 6405 /* 6406 * If its not a per-cpu rb, it must be the same task. 6407 */ 6408 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6409 goto out; 6410 6411 set: 6412 mutex_lock(&event->mmap_mutex); 6413 /* Can't redirect output if we've got an active mmap() */ 6414 if (atomic_read(&event->mmap_count)) 6415 goto unlock; 6416 6417 if (output_event) { 6418 /* get the rb we want to redirect to */ 6419 rb = ring_buffer_get(output_event); 6420 if (!rb) 6421 goto unlock; 6422 } 6423 6424 old_rb = event->rb; 6425 rcu_assign_pointer(event->rb, rb); 6426 if (old_rb) 6427 ring_buffer_detach(event, old_rb); 6428 ret = 0; 6429 unlock: 6430 mutex_unlock(&event->mmap_mutex); 6431 6432 if (old_rb) 6433 ring_buffer_put(old_rb); 6434 out: 6435 return ret; 6436 } 6437 6438 /** 6439 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6440 * 6441 * @attr_uptr: event_id type attributes for monitoring/sampling 6442 * @pid: target pid 6443 * @cpu: target cpu 6444 * @group_fd: group leader event fd 6445 */ 6446 SYSCALL_DEFINE5(perf_event_open, 6447 struct perf_event_attr __user *, attr_uptr, 6448 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6449 { 6450 struct perf_event *group_leader = NULL, *output_event = NULL; 6451 struct perf_event *event, *sibling; 6452 struct perf_event_attr attr; 6453 struct perf_event_context *ctx; 6454 struct file *event_file = NULL; 6455 struct fd group = {NULL, 0}; 6456 struct task_struct *task = NULL; 6457 struct pmu *pmu; 6458 int event_fd; 6459 int move_group = 0; 6460 int err; 6461 6462 /* for future expandability... */ 6463 if (flags & ~PERF_FLAG_ALL) 6464 return -EINVAL; 6465 6466 err = perf_copy_attr(attr_uptr, &attr); 6467 if (err) 6468 return err; 6469 6470 if (!attr.exclude_kernel) { 6471 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6472 return -EACCES; 6473 } 6474 6475 if (attr.freq) { 6476 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6477 return -EINVAL; 6478 } 6479 6480 /* 6481 * In cgroup mode, the pid argument is used to pass the fd 6482 * opened to the cgroup directory in cgroupfs. The cpu argument 6483 * designates the cpu on which to monitor threads from that 6484 * cgroup. 6485 */ 6486 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6487 return -EINVAL; 6488 6489 event_fd = get_unused_fd(); 6490 if (event_fd < 0) 6491 return event_fd; 6492 6493 if (group_fd != -1) { 6494 err = perf_fget_light(group_fd, &group); 6495 if (err) 6496 goto err_fd; 6497 group_leader = group.file->private_data; 6498 if (flags & PERF_FLAG_FD_OUTPUT) 6499 output_event = group_leader; 6500 if (flags & PERF_FLAG_FD_NO_GROUP) 6501 group_leader = NULL; 6502 } 6503 6504 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6505 task = find_lively_task_by_vpid(pid); 6506 if (IS_ERR(task)) { 6507 err = PTR_ERR(task); 6508 goto err_group_fd; 6509 } 6510 } 6511 6512 get_online_cpus(); 6513 6514 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6515 NULL, NULL); 6516 if (IS_ERR(event)) { 6517 err = PTR_ERR(event); 6518 goto err_task; 6519 } 6520 6521 if (flags & PERF_FLAG_PID_CGROUP) { 6522 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6523 if (err) 6524 goto err_alloc; 6525 /* 6526 * one more event: 6527 * - that has cgroup constraint on event->cpu 6528 * - that may need work on context switch 6529 */ 6530 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6531 static_key_slow_inc(&perf_sched_events.key); 6532 } 6533 6534 /* 6535 * Special case software events and allow them to be part of 6536 * any hardware group. 6537 */ 6538 pmu = event->pmu; 6539 6540 if (group_leader && 6541 (is_software_event(event) != is_software_event(group_leader))) { 6542 if (is_software_event(event)) { 6543 /* 6544 * If event and group_leader are not both a software 6545 * event, and event is, then group leader is not. 6546 * 6547 * Allow the addition of software events to !software 6548 * groups, this is safe because software events never 6549 * fail to schedule. 6550 */ 6551 pmu = group_leader->pmu; 6552 } else if (is_software_event(group_leader) && 6553 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6554 /* 6555 * In case the group is a pure software group, and we 6556 * try to add a hardware event, move the whole group to 6557 * the hardware context. 6558 */ 6559 move_group = 1; 6560 } 6561 } 6562 6563 /* 6564 * Get the target context (task or percpu): 6565 */ 6566 ctx = find_get_context(pmu, task, event->cpu); 6567 if (IS_ERR(ctx)) { 6568 err = PTR_ERR(ctx); 6569 goto err_alloc; 6570 } 6571 6572 if (task) { 6573 put_task_struct(task); 6574 task = NULL; 6575 } 6576 6577 /* 6578 * Look up the group leader (we will attach this event to it): 6579 */ 6580 if (group_leader) { 6581 err = -EINVAL; 6582 6583 /* 6584 * Do not allow a recursive hierarchy (this new sibling 6585 * becoming part of another group-sibling): 6586 */ 6587 if (group_leader->group_leader != group_leader) 6588 goto err_context; 6589 /* 6590 * Do not allow to attach to a group in a different 6591 * task or CPU context: 6592 */ 6593 if (move_group) { 6594 if (group_leader->ctx->type != ctx->type) 6595 goto err_context; 6596 } else { 6597 if (group_leader->ctx != ctx) 6598 goto err_context; 6599 } 6600 6601 /* 6602 * Only a group leader can be exclusive or pinned 6603 */ 6604 if (attr.exclusive || attr.pinned) 6605 goto err_context; 6606 } 6607 6608 if (output_event) { 6609 err = perf_event_set_output(event, output_event); 6610 if (err) 6611 goto err_context; 6612 } 6613 6614 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6615 if (IS_ERR(event_file)) { 6616 err = PTR_ERR(event_file); 6617 goto err_context; 6618 } 6619 6620 if (move_group) { 6621 struct perf_event_context *gctx = group_leader->ctx; 6622 6623 mutex_lock(&gctx->mutex); 6624 perf_remove_from_context(group_leader); 6625 6626 /* 6627 * Removing from the context ends up with disabled 6628 * event. What we want here is event in the initial 6629 * startup state, ready to be add into new context. 6630 */ 6631 perf_event__state_init(group_leader); 6632 list_for_each_entry(sibling, &group_leader->sibling_list, 6633 group_entry) { 6634 perf_remove_from_context(sibling); 6635 perf_event__state_init(sibling); 6636 put_ctx(gctx); 6637 } 6638 mutex_unlock(&gctx->mutex); 6639 put_ctx(gctx); 6640 } 6641 6642 WARN_ON_ONCE(ctx->parent_ctx); 6643 mutex_lock(&ctx->mutex); 6644 6645 if (move_group) { 6646 synchronize_rcu(); 6647 perf_install_in_context(ctx, group_leader, event->cpu); 6648 get_ctx(ctx); 6649 list_for_each_entry(sibling, &group_leader->sibling_list, 6650 group_entry) { 6651 perf_install_in_context(ctx, sibling, event->cpu); 6652 get_ctx(ctx); 6653 } 6654 } 6655 6656 perf_install_in_context(ctx, event, event->cpu); 6657 ++ctx->generation; 6658 perf_unpin_context(ctx); 6659 mutex_unlock(&ctx->mutex); 6660 6661 put_online_cpus(); 6662 6663 event->owner = current; 6664 6665 mutex_lock(¤t->perf_event_mutex); 6666 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6667 mutex_unlock(¤t->perf_event_mutex); 6668 6669 /* 6670 * Precalculate sample_data sizes 6671 */ 6672 perf_event__header_size(event); 6673 perf_event__id_header_size(event); 6674 6675 /* 6676 * Drop the reference on the group_event after placing the 6677 * new event on the sibling_list. This ensures destruction 6678 * of the group leader will find the pointer to itself in 6679 * perf_group_detach(). 6680 */ 6681 fdput(group); 6682 fd_install(event_fd, event_file); 6683 return event_fd; 6684 6685 err_context: 6686 perf_unpin_context(ctx); 6687 put_ctx(ctx); 6688 err_alloc: 6689 free_event(event); 6690 err_task: 6691 put_online_cpus(); 6692 if (task) 6693 put_task_struct(task); 6694 err_group_fd: 6695 fdput(group); 6696 err_fd: 6697 put_unused_fd(event_fd); 6698 return err; 6699 } 6700 6701 /** 6702 * perf_event_create_kernel_counter 6703 * 6704 * @attr: attributes of the counter to create 6705 * @cpu: cpu in which the counter is bound 6706 * @task: task to profile (NULL for percpu) 6707 */ 6708 struct perf_event * 6709 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6710 struct task_struct *task, 6711 perf_overflow_handler_t overflow_handler, 6712 void *context) 6713 { 6714 struct perf_event_context *ctx; 6715 struct perf_event *event; 6716 int err; 6717 6718 /* 6719 * Get the target context (task or percpu): 6720 */ 6721 6722 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6723 overflow_handler, context); 6724 if (IS_ERR(event)) { 6725 err = PTR_ERR(event); 6726 goto err; 6727 } 6728 6729 ctx = find_get_context(event->pmu, task, cpu); 6730 if (IS_ERR(ctx)) { 6731 err = PTR_ERR(ctx); 6732 goto err_free; 6733 } 6734 6735 WARN_ON_ONCE(ctx->parent_ctx); 6736 mutex_lock(&ctx->mutex); 6737 perf_install_in_context(ctx, event, cpu); 6738 ++ctx->generation; 6739 perf_unpin_context(ctx); 6740 mutex_unlock(&ctx->mutex); 6741 6742 return event; 6743 6744 err_free: 6745 free_event(event); 6746 err: 6747 return ERR_PTR(err); 6748 } 6749 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6750 6751 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6752 { 6753 struct perf_event_context *src_ctx; 6754 struct perf_event_context *dst_ctx; 6755 struct perf_event *event, *tmp; 6756 LIST_HEAD(events); 6757 6758 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6759 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6760 6761 mutex_lock(&src_ctx->mutex); 6762 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6763 event_entry) { 6764 perf_remove_from_context(event); 6765 put_ctx(src_ctx); 6766 list_add(&event->event_entry, &events); 6767 } 6768 mutex_unlock(&src_ctx->mutex); 6769 6770 synchronize_rcu(); 6771 6772 mutex_lock(&dst_ctx->mutex); 6773 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6774 list_del(&event->event_entry); 6775 if (event->state >= PERF_EVENT_STATE_OFF) 6776 event->state = PERF_EVENT_STATE_INACTIVE; 6777 perf_install_in_context(dst_ctx, event, dst_cpu); 6778 get_ctx(dst_ctx); 6779 } 6780 mutex_unlock(&dst_ctx->mutex); 6781 } 6782 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6783 6784 static void sync_child_event(struct perf_event *child_event, 6785 struct task_struct *child) 6786 { 6787 struct perf_event *parent_event = child_event->parent; 6788 u64 child_val; 6789 6790 if (child_event->attr.inherit_stat) 6791 perf_event_read_event(child_event, child); 6792 6793 child_val = perf_event_count(child_event); 6794 6795 /* 6796 * Add back the child's count to the parent's count: 6797 */ 6798 atomic64_add(child_val, &parent_event->child_count); 6799 atomic64_add(child_event->total_time_enabled, 6800 &parent_event->child_total_time_enabled); 6801 atomic64_add(child_event->total_time_running, 6802 &parent_event->child_total_time_running); 6803 6804 /* 6805 * Remove this event from the parent's list 6806 */ 6807 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6808 mutex_lock(&parent_event->child_mutex); 6809 list_del_init(&child_event->child_list); 6810 mutex_unlock(&parent_event->child_mutex); 6811 6812 /* 6813 * Release the parent event, if this was the last 6814 * reference to it. 6815 */ 6816 put_event(parent_event); 6817 } 6818 6819 static void 6820 __perf_event_exit_task(struct perf_event *child_event, 6821 struct perf_event_context *child_ctx, 6822 struct task_struct *child) 6823 { 6824 if (child_event->parent) { 6825 raw_spin_lock_irq(&child_ctx->lock); 6826 perf_group_detach(child_event); 6827 raw_spin_unlock_irq(&child_ctx->lock); 6828 } 6829 6830 perf_remove_from_context(child_event); 6831 6832 /* 6833 * It can happen that the parent exits first, and has events 6834 * that are still around due to the child reference. These 6835 * events need to be zapped. 6836 */ 6837 if (child_event->parent) { 6838 sync_child_event(child_event, child); 6839 free_event(child_event); 6840 } 6841 } 6842 6843 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6844 { 6845 struct perf_event *child_event, *tmp; 6846 struct perf_event_context *child_ctx; 6847 unsigned long flags; 6848 6849 if (likely(!child->perf_event_ctxp[ctxn])) { 6850 perf_event_task(child, NULL, 0); 6851 return; 6852 } 6853 6854 local_irq_save(flags); 6855 /* 6856 * We can't reschedule here because interrupts are disabled, 6857 * and either child is current or it is a task that can't be 6858 * scheduled, so we are now safe from rescheduling changing 6859 * our context. 6860 */ 6861 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6862 6863 /* 6864 * Take the context lock here so that if find_get_context is 6865 * reading child->perf_event_ctxp, we wait until it has 6866 * incremented the context's refcount before we do put_ctx below. 6867 */ 6868 raw_spin_lock(&child_ctx->lock); 6869 task_ctx_sched_out(child_ctx); 6870 child->perf_event_ctxp[ctxn] = NULL; 6871 /* 6872 * If this context is a clone; unclone it so it can't get 6873 * swapped to another process while we're removing all 6874 * the events from it. 6875 */ 6876 unclone_ctx(child_ctx); 6877 update_context_time(child_ctx); 6878 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6879 6880 /* 6881 * Report the task dead after unscheduling the events so that we 6882 * won't get any samples after PERF_RECORD_EXIT. We can however still 6883 * get a few PERF_RECORD_READ events. 6884 */ 6885 perf_event_task(child, child_ctx, 0); 6886 6887 /* 6888 * We can recurse on the same lock type through: 6889 * 6890 * __perf_event_exit_task() 6891 * sync_child_event() 6892 * put_event() 6893 * mutex_lock(&ctx->mutex) 6894 * 6895 * But since its the parent context it won't be the same instance. 6896 */ 6897 mutex_lock(&child_ctx->mutex); 6898 6899 again: 6900 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6901 group_entry) 6902 __perf_event_exit_task(child_event, child_ctx, child); 6903 6904 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6905 group_entry) 6906 __perf_event_exit_task(child_event, child_ctx, child); 6907 6908 /* 6909 * If the last event was a group event, it will have appended all 6910 * its siblings to the list, but we obtained 'tmp' before that which 6911 * will still point to the list head terminating the iteration. 6912 */ 6913 if (!list_empty(&child_ctx->pinned_groups) || 6914 !list_empty(&child_ctx->flexible_groups)) 6915 goto again; 6916 6917 mutex_unlock(&child_ctx->mutex); 6918 6919 put_ctx(child_ctx); 6920 } 6921 6922 /* 6923 * When a child task exits, feed back event values to parent events. 6924 */ 6925 void perf_event_exit_task(struct task_struct *child) 6926 { 6927 struct perf_event *event, *tmp; 6928 int ctxn; 6929 6930 mutex_lock(&child->perf_event_mutex); 6931 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6932 owner_entry) { 6933 list_del_init(&event->owner_entry); 6934 6935 /* 6936 * Ensure the list deletion is visible before we clear 6937 * the owner, closes a race against perf_release() where 6938 * we need to serialize on the owner->perf_event_mutex. 6939 */ 6940 smp_wmb(); 6941 event->owner = NULL; 6942 } 6943 mutex_unlock(&child->perf_event_mutex); 6944 6945 for_each_task_context_nr(ctxn) 6946 perf_event_exit_task_context(child, ctxn); 6947 } 6948 6949 static void perf_free_event(struct perf_event *event, 6950 struct perf_event_context *ctx) 6951 { 6952 struct perf_event *parent = event->parent; 6953 6954 if (WARN_ON_ONCE(!parent)) 6955 return; 6956 6957 mutex_lock(&parent->child_mutex); 6958 list_del_init(&event->child_list); 6959 mutex_unlock(&parent->child_mutex); 6960 6961 put_event(parent); 6962 6963 perf_group_detach(event); 6964 list_del_event(event, ctx); 6965 free_event(event); 6966 } 6967 6968 /* 6969 * free an unexposed, unused context as created by inheritance by 6970 * perf_event_init_task below, used by fork() in case of fail. 6971 */ 6972 void perf_event_free_task(struct task_struct *task) 6973 { 6974 struct perf_event_context *ctx; 6975 struct perf_event *event, *tmp; 6976 int ctxn; 6977 6978 for_each_task_context_nr(ctxn) { 6979 ctx = task->perf_event_ctxp[ctxn]; 6980 if (!ctx) 6981 continue; 6982 6983 mutex_lock(&ctx->mutex); 6984 again: 6985 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6986 group_entry) 6987 perf_free_event(event, ctx); 6988 6989 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6990 group_entry) 6991 perf_free_event(event, ctx); 6992 6993 if (!list_empty(&ctx->pinned_groups) || 6994 !list_empty(&ctx->flexible_groups)) 6995 goto again; 6996 6997 mutex_unlock(&ctx->mutex); 6998 6999 put_ctx(ctx); 7000 } 7001 } 7002 7003 void perf_event_delayed_put(struct task_struct *task) 7004 { 7005 int ctxn; 7006 7007 for_each_task_context_nr(ctxn) 7008 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7009 } 7010 7011 /* 7012 * inherit a event from parent task to child task: 7013 */ 7014 static struct perf_event * 7015 inherit_event(struct perf_event *parent_event, 7016 struct task_struct *parent, 7017 struct perf_event_context *parent_ctx, 7018 struct task_struct *child, 7019 struct perf_event *group_leader, 7020 struct perf_event_context *child_ctx) 7021 { 7022 struct perf_event *child_event; 7023 unsigned long flags; 7024 7025 /* 7026 * Instead of creating recursive hierarchies of events, 7027 * we link inherited events back to the original parent, 7028 * which has a filp for sure, which we use as the reference 7029 * count: 7030 */ 7031 if (parent_event->parent) 7032 parent_event = parent_event->parent; 7033 7034 child_event = perf_event_alloc(&parent_event->attr, 7035 parent_event->cpu, 7036 child, 7037 group_leader, parent_event, 7038 NULL, NULL); 7039 if (IS_ERR(child_event)) 7040 return child_event; 7041 7042 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7043 free_event(child_event); 7044 return NULL; 7045 } 7046 7047 get_ctx(child_ctx); 7048 7049 /* 7050 * Make the child state follow the state of the parent event, 7051 * not its attr.disabled bit. We hold the parent's mutex, 7052 * so we won't race with perf_event_{en, dis}able_family. 7053 */ 7054 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7055 child_event->state = PERF_EVENT_STATE_INACTIVE; 7056 else 7057 child_event->state = PERF_EVENT_STATE_OFF; 7058 7059 if (parent_event->attr.freq) { 7060 u64 sample_period = parent_event->hw.sample_period; 7061 struct hw_perf_event *hwc = &child_event->hw; 7062 7063 hwc->sample_period = sample_period; 7064 hwc->last_period = sample_period; 7065 7066 local64_set(&hwc->period_left, sample_period); 7067 } 7068 7069 child_event->ctx = child_ctx; 7070 child_event->overflow_handler = parent_event->overflow_handler; 7071 child_event->overflow_handler_context 7072 = parent_event->overflow_handler_context; 7073 7074 /* 7075 * Precalculate sample_data sizes 7076 */ 7077 perf_event__header_size(child_event); 7078 perf_event__id_header_size(child_event); 7079 7080 /* 7081 * Link it up in the child's context: 7082 */ 7083 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7084 add_event_to_ctx(child_event, child_ctx); 7085 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7086 7087 /* 7088 * Link this into the parent event's child list 7089 */ 7090 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7091 mutex_lock(&parent_event->child_mutex); 7092 list_add_tail(&child_event->child_list, &parent_event->child_list); 7093 mutex_unlock(&parent_event->child_mutex); 7094 7095 return child_event; 7096 } 7097 7098 static int inherit_group(struct perf_event *parent_event, 7099 struct task_struct *parent, 7100 struct perf_event_context *parent_ctx, 7101 struct task_struct *child, 7102 struct perf_event_context *child_ctx) 7103 { 7104 struct perf_event *leader; 7105 struct perf_event *sub; 7106 struct perf_event *child_ctr; 7107 7108 leader = inherit_event(parent_event, parent, parent_ctx, 7109 child, NULL, child_ctx); 7110 if (IS_ERR(leader)) 7111 return PTR_ERR(leader); 7112 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7113 child_ctr = inherit_event(sub, parent, parent_ctx, 7114 child, leader, child_ctx); 7115 if (IS_ERR(child_ctr)) 7116 return PTR_ERR(child_ctr); 7117 } 7118 return 0; 7119 } 7120 7121 static int 7122 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7123 struct perf_event_context *parent_ctx, 7124 struct task_struct *child, int ctxn, 7125 int *inherited_all) 7126 { 7127 int ret; 7128 struct perf_event_context *child_ctx; 7129 7130 if (!event->attr.inherit) { 7131 *inherited_all = 0; 7132 return 0; 7133 } 7134 7135 child_ctx = child->perf_event_ctxp[ctxn]; 7136 if (!child_ctx) { 7137 /* 7138 * This is executed from the parent task context, so 7139 * inherit events that have been marked for cloning. 7140 * First allocate and initialize a context for the 7141 * child. 7142 */ 7143 7144 child_ctx = alloc_perf_context(event->pmu, child); 7145 if (!child_ctx) 7146 return -ENOMEM; 7147 7148 child->perf_event_ctxp[ctxn] = child_ctx; 7149 } 7150 7151 ret = inherit_group(event, parent, parent_ctx, 7152 child, child_ctx); 7153 7154 if (ret) 7155 *inherited_all = 0; 7156 7157 return ret; 7158 } 7159 7160 /* 7161 * Initialize the perf_event context in task_struct 7162 */ 7163 int perf_event_init_context(struct task_struct *child, int ctxn) 7164 { 7165 struct perf_event_context *child_ctx, *parent_ctx; 7166 struct perf_event_context *cloned_ctx; 7167 struct perf_event *event; 7168 struct task_struct *parent = current; 7169 int inherited_all = 1; 7170 unsigned long flags; 7171 int ret = 0; 7172 7173 if (likely(!parent->perf_event_ctxp[ctxn])) 7174 return 0; 7175 7176 /* 7177 * If the parent's context is a clone, pin it so it won't get 7178 * swapped under us. 7179 */ 7180 parent_ctx = perf_pin_task_context(parent, ctxn); 7181 7182 /* 7183 * No need to check if parent_ctx != NULL here; since we saw 7184 * it non-NULL earlier, the only reason for it to become NULL 7185 * is if we exit, and since we're currently in the middle of 7186 * a fork we can't be exiting at the same time. 7187 */ 7188 7189 /* 7190 * Lock the parent list. No need to lock the child - not PID 7191 * hashed yet and not running, so nobody can access it. 7192 */ 7193 mutex_lock(&parent_ctx->mutex); 7194 7195 /* 7196 * We dont have to disable NMIs - we are only looking at 7197 * the list, not manipulating it: 7198 */ 7199 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7200 ret = inherit_task_group(event, parent, parent_ctx, 7201 child, ctxn, &inherited_all); 7202 if (ret) 7203 break; 7204 } 7205 7206 /* 7207 * We can't hold ctx->lock when iterating the ->flexible_group list due 7208 * to allocations, but we need to prevent rotation because 7209 * rotate_ctx() will change the list from interrupt context. 7210 */ 7211 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7212 parent_ctx->rotate_disable = 1; 7213 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7214 7215 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7216 ret = inherit_task_group(event, parent, parent_ctx, 7217 child, ctxn, &inherited_all); 7218 if (ret) 7219 break; 7220 } 7221 7222 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7223 parent_ctx->rotate_disable = 0; 7224 7225 child_ctx = child->perf_event_ctxp[ctxn]; 7226 7227 if (child_ctx && inherited_all) { 7228 /* 7229 * Mark the child context as a clone of the parent 7230 * context, or of whatever the parent is a clone of. 7231 * 7232 * Note that if the parent is a clone, the holding of 7233 * parent_ctx->lock avoids it from being uncloned. 7234 */ 7235 cloned_ctx = parent_ctx->parent_ctx; 7236 if (cloned_ctx) { 7237 child_ctx->parent_ctx = cloned_ctx; 7238 child_ctx->parent_gen = parent_ctx->parent_gen; 7239 } else { 7240 child_ctx->parent_ctx = parent_ctx; 7241 child_ctx->parent_gen = parent_ctx->generation; 7242 } 7243 get_ctx(child_ctx->parent_ctx); 7244 } 7245 7246 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7247 mutex_unlock(&parent_ctx->mutex); 7248 7249 perf_unpin_context(parent_ctx); 7250 put_ctx(parent_ctx); 7251 7252 return ret; 7253 } 7254 7255 /* 7256 * Initialize the perf_event context in task_struct 7257 */ 7258 int perf_event_init_task(struct task_struct *child) 7259 { 7260 int ctxn, ret; 7261 7262 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7263 mutex_init(&child->perf_event_mutex); 7264 INIT_LIST_HEAD(&child->perf_event_list); 7265 7266 for_each_task_context_nr(ctxn) { 7267 ret = perf_event_init_context(child, ctxn); 7268 if (ret) 7269 return ret; 7270 } 7271 7272 return 0; 7273 } 7274 7275 static void __init perf_event_init_all_cpus(void) 7276 { 7277 struct swevent_htable *swhash; 7278 int cpu; 7279 7280 for_each_possible_cpu(cpu) { 7281 swhash = &per_cpu(swevent_htable, cpu); 7282 mutex_init(&swhash->hlist_mutex); 7283 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7284 } 7285 } 7286 7287 static void __cpuinit perf_event_init_cpu(int cpu) 7288 { 7289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7290 7291 mutex_lock(&swhash->hlist_mutex); 7292 if (swhash->hlist_refcount > 0) { 7293 struct swevent_hlist *hlist; 7294 7295 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7296 WARN_ON(!hlist); 7297 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7298 } 7299 mutex_unlock(&swhash->hlist_mutex); 7300 } 7301 7302 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7303 static void perf_pmu_rotate_stop(struct pmu *pmu) 7304 { 7305 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7306 7307 WARN_ON(!irqs_disabled()); 7308 7309 list_del_init(&cpuctx->rotation_list); 7310 } 7311 7312 static void __perf_event_exit_context(void *__info) 7313 { 7314 struct perf_event_context *ctx = __info; 7315 struct perf_event *event, *tmp; 7316 7317 perf_pmu_rotate_stop(ctx->pmu); 7318 7319 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7320 __perf_remove_from_context(event); 7321 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7322 __perf_remove_from_context(event); 7323 } 7324 7325 static void perf_event_exit_cpu_context(int cpu) 7326 { 7327 struct perf_event_context *ctx; 7328 struct pmu *pmu; 7329 int idx; 7330 7331 idx = srcu_read_lock(&pmus_srcu); 7332 list_for_each_entry_rcu(pmu, &pmus, entry) { 7333 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7334 7335 mutex_lock(&ctx->mutex); 7336 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7337 mutex_unlock(&ctx->mutex); 7338 } 7339 srcu_read_unlock(&pmus_srcu, idx); 7340 } 7341 7342 static void perf_event_exit_cpu(int cpu) 7343 { 7344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7345 7346 mutex_lock(&swhash->hlist_mutex); 7347 swevent_hlist_release(swhash); 7348 mutex_unlock(&swhash->hlist_mutex); 7349 7350 perf_event_exit_cpu_context(cpu); 7351 } 7352 #else 7353 static inline void perf_event_exit_cpu(int cpu) { } 7354 #endif 7355 7356 static int 7357 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7358 { 7359 int cpu; 7360 7361 for_each_online_cpu(cpu) 7362 perf_event_exit_cpu(cpu); 7363 7364 return NOTIFY_OK; 7365 } 7366 7367 /* 7368 * Run the perf reboot notifier at the very last possible moment so that 7369 * the generic watchdog code runs as long as possible. 7370 */ 7371 static struct notifier_block perf_reboot_notifier = { 7372 .notifier_call = perf_reboot, 7373 .priority = INT_MIN, 7374 }; 7375 7376 static int __cpuinit 7377 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7378 { 7379 unsigned int cpu = (long)hcpu; 7380 7381 switch (action & ~CPU_TASKS_FROZEN) { 7382 7383 case CPU_UP_PREPARE: 7384 case CPU_DOWN_FAILED: 7385 perf_event_init_cpu(cpu); 7386 break; 7387 7388 case CPU_UP_CANCELED: 7389 case CPU_DOWN_PREPARE: 7390 perf_event_exit_cpu(cpu); 7391 break; 7392 7393 default: 7394 break; 7395 } 7396 7397 return NOTIFY_OK; 7398 } 7399 7400 void __init perf_event_init(void) 7401 { 7402 int ret; 7403 7404 idr_init(&pmu_idr); 7405 7406 perf_event_init_all_cpus(); 7407 init_srcu_struct(&pmus_srcu); 7408 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7409 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7410 perf_pmu_register(&perf_task_clock, NULL, -1); 7411 perf_tp_register(); 7412 perf_cpu_notifier(perf_cpu_notify); 7413 register_reboot_notifier(&perf_reboot_notifier); 7414 7415 ret = init_hw_breakpoint(); 7416 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7417 7418 /* do not patch jump label more than once per second */ 7419 jump_label_rate_limit(&perf_sched_events, HZ); 7420 7421 /* 7422 * Build time assertion that we keep the data_head at the intended 7423 * location. IOW, validation we got the __reserved[] size right. 7424 */ 7425 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7426 != 1024); 7427 } 7428 7429 static int __init perf_event_sysfs_init(void) 7430 { 7431 struct pmu *pmu; 7432 int ret; 7433 7434 mutex_lock(&pmus_lock); 7435 7436 ret = bus_register(&pmu_bus); 7437 if (ret) 7438 goto unlock; 7439 7440 list_for_each_entry(pmu, &pmus, entry) { 7441 if (!pmu->name || pmu->type < 0) 7442 continue; 7443 7444 ret = pmu_dev_alloc(pmu); 7445 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7446 } 7447 pmu_bus_running = 1; 7448 ret = 0; 7449 7450 unlock: 7451 mutex_unlock(&pmus_lock); 7452 7453 return ret; 7454 } 7455 device_initcall(perf_event_sysfs_init); 7456 7457 #ifdef CONFIG_CGROUP_PERF 7458 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) 7459 { 7460 struct perf_cgroup *jc; 7461 7462 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7463 if (!jc) 7464 return ERR_PTR(-ENOMEM); 7465 7466 jc->info = alloc_percpu(struct perf_cgroup_info); 7467 if (!jc->info) { 7468 kfree(jc); 7469 return ERR_PTR(-ENOMEM); 7470 } 7471 7472 return &jc->css; 7473 } 7474 7475 static void perf_cgroup_css_free(struct cgroup *cont) 7476 { 7477 struct perf_cgroup *jc; 7478 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7479 struct perf_cgroup, css); 7480 free_percpu(jc->info); 7481 kfree(jc); 7482 } 7483 7484 static int __perf_cgroup_move(void *info) 7485 { 7486 struct task_struct *task = info; 7487 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7488 return 0; 7489 } 7490 7491 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7492 { 7493 struct task_struct *task; 7494 7495 cgroup_taskset_for_each(task, cgrp, tset) 7496 task_function_call(task, __perf_cgroup_move, task); 7497 } 7498 7499 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7500 struct task_struct *task) 7501 { 7502 /* 7503 * cgroup_exit() is called in the copy_process() failure path. 7504 * Ignore this case since the task hasn't ran yet, this avoids 7505 * trying to poke a half freed task state from generic code. 7506 */ 7507 if (!(task->flags & PF_EXITING)) 7508 return; 7509 7510 task_function_call(task, __perf_cgroup_move, task); 7511 } 7512 7513 struct cgroup_subsys perf_subsys = { 7514 .name = "perf_event", 7515 .subsys_id = perf_subsys_id, 7516 .css_alloc = perf_cgroup_css_alloc, 7517 .css_free = perf_cgroup_css_free, 7518 .exit = perf_cgroup_exit, 7519 .attach = perf_cgroup_attach, 7520 7521 /* 7522 * perf_event cgroup doesn't handle nesting correctly. 7523 * ctx->nr_cgroups adjustments should be propagated through the 7524 * cgroup hierarchy. Fix it and remove the following. 7525 */ 7526 .broken_hierarchy = true, 7527 }; 7528 #endif /* CONFIG_CGROUP_PERF */ 7529