xref: /linux/kernel/events/core.c (revision d7484babd2c4dcfa1ca02e7e303fab3fab529d75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 #define TASK_TOMBSTONE ((void *)-1L)
211 
212 static bool is_kernel_event(struct perf_event *event)
213 {
214 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
215 }
216 
217 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
218 
219 struct perf_event_context *perf_cpu_task_ctx(void)
220 {
221 	lockdep_assert_irqs_disabled();
222 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
223 }
224 
225 /*
226  * On task ctx scheduling...
227  *
228  * When !ctx->nr_events a task context will not be scheduled. This means
229  * we can disable the scheduler hooks (for performance) without leaving
230  * pending task ctx state.
231  *
232  * This however results in two special cases:
233  *
234  *  - removing the last event from a task ctx; this is relatively straight
235  *    forward and is done in __perf_remove_from_context.
236  *
237  *  - adding the first event to a task ctx; this is tricky because we cannot
238  *    rely on ctx->is_active and therefore cannot use event_function_call().
239  *    See perf_install_in_context().
240  *
241  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
242  */
243 
244 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
245 			struct perf_event_context *, void *);
246 
247 struct event_function_struct {
248 	struct perf_event *event;
249 	event_f func;
250 	void *data;
251 };
252 
253 static int event_function(void *info)
254 {
255 	struct event_function_struct *efs = info;
256 	struct perf_event *event = efs->event;
257 	struct perf_event_context *ctx = event->ctx;
258 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
259 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
260 	int ret = 0;
261 
262 	lockdep_assert_irqs_disabled();
263 
264 	perf_ctx_lock(cpuctx, task_ctx);
265 	/*
266 	 * Since we do the IPI call without holding ctx->lock things can have
267 	 * changed, double check we hit the task we set out to hit.
268 	 */
269 	if (ctx->task) {
270 		if (ctx->task != current) {
271 			ret = -ESRCH;
272 			goto unlock;
273 		}
274 
275 		/*
276 		 * We only use event_function_call() on established contexts,
277 		 * and event_function() is only ever called when active (or
278 		 * rather, we'll have bailed in task_function_call() or the
279 		 * above ctx->task != current test), therefore we must have
280 		 * ctx->is_active here.
281 		 */
282 		WARN_ON_ONCE(!ctx->is_active);
283 		/*
284 		 * And since we have ctx->is_active, cpuctx->task_ctx must
285 		 * match.
286 		 */
287 		WARN_ON_ONCE(task_ctx != ctx);
288 	} else {
289 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
290 	}
291 
292 	efs->func(event, cpuctx, ctx, efs->data);
293 unlock:
294 	perf_ctx_unlock(cpuctx, task_ctx);
295 
296 	return ret;
297 }
298 
299 static void event_function_call(struct perf_event *event, event_f func, void *data)
300 {
301 	struct perf_event_context *ctx = event->ctx;
302 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
303 	struct perf_cpu_context *cpuctx;
304 	struct event_function_struct efs = {
305 		.event = event,
306 		.func = func,
307 		.data = data,
308 	};
309 
310 	if (!event->parent) {
311 		/*
312 		 * If this is a !child event, we must hold ctx::mutex to
313 		 * stabilize the event->ctx relation. See
314 		 * perf_event_ctx_lock().
315 		 */
316 		lockdep_assert_held(&ctx->mutex);
317 	}
318 
319 	if (!task) {
320 		cpu_function_call(event->cpu, event_function, &efs);
321 		return;
322 	}
323 
324 	if (task == TASK_TOMBSTONE)
325 		return;
326 
327 again:
328 	if (!task_function_call(task, event_function, &efs))
329 		return;
330 
331 	local_irq_disable();
332 	cpuctx = this_cpu_ptr(&perf_cpu_context);
333 	perf_ctx_lock(cpuctx, ctx);
334 	/*
335 	 * Reload the task pointer, it might have been changed by
336 	 * a concurrent perf_event_context_sched_out().
337 	 */
338 	task = ctx->task;
339 	if (task == TASK_TOMBSTONE)
340 		goto unlock;
341 	if (ctx->is_active) {
342 		perf_ctx_unlock(cpuctx, ctx);
343 		local_irq_enable();
344 		goto again;
345 	}
346 	func(event, NULL, ctx, data);
347 unlock:
348 	perf_ctx_unlock(cpuctx, ctx);
349 	local_irq_enable();
350 }
351 
352 /*
353  * Similar to event_function_call() + event_function(), but hard assumes IRQs
354  * are already disabled and we're on the right CPU.
355  */
356 static void event_function_local(struct perf_event *event, event_f func, void *data)
357 {
358 	struct perf_event_context *ctx = event->ctx;
359 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
360 	struct task_struct *task = READ_ONCE(ctx->task);
361 	struct perf_event_context *task_ctx = NULL;
362 
363 	lockdep_assert_irqs_disabled();
364 
365 	if (task) {
366 		if (task == TASK_TOMBSTONE)
367 			return;
368 
369 		task_ctx = ctx;
370 	}
371 
372 	perf_ctx_lock(cpuctx, task_ctx);
373 
374 	task = ctx->task;
375 	if (task == TASK_TOMBSTONE)
376 		goto unlock;
377 
378 	if (task) {
379 		/*
380 		 * We must be either inactive or active and the right task,
381 		 * otherwise we're screwed, since we cannot IPI to somewhere
382 		 * else.
383 		 */
384 		if (ctx->is_active) {
385 			if (WARN_ON_ONCE(task != current))
386 				goto unlock;
387 
388 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
389 				goto unlock;
390 		}
391 	} else {
392 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
393 	}
394 
395 	func(event, cpuctx, ctx, data);
396 unlock:
397 	perf_ctx_unlock(cpuctx, task_ctx);
398 }
399 
400 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
401 		       PERF_FLAG_FD_OUTPUT  |\
402 		       PERF_FLAG_PID_CGROUP |\
403 		       PERF_FLAG_FD_CLOEXEC)
404 
405 /*
406  * branch priv levels that need permission checks
407  */
408 #define PERF_SAMPLE_BRANCH_PERM_PLM \
409 	(PERF_SAMPLE_BRANCH_KERNEL |\
410 	 PERF_SAMPLE_BRANCH_HV)
411 
412 /*
413  * perf_sched_events : >0 events exist
414  */
415 
416 static void perf_sched_delayed(struct work_struct *work);
417 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
418 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
419 static DEFINE_MUTEX(perf_sched_mutex);
420 static atomic_t perf_sched_count;
421 
422 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
423 
424 static atomic_t nr_mmap_events __read_mostly;
425 static atomic_t nr_comm_events __read_mostly;
426 static atomic_t nr_namespaces_events __read_mostly;
427 static atomic_t nr_task_events __read_mostly;
428 static atomic_t nr_freq_events __read_mostly;
429 static atomic_t nr_switch_events __read_mostly;
430 static atomic_t nr_ksymbol_events __read_mostly;
431 static atomic_t nr_bpf_events __read_mostly;
432 static atomic_t nr_cgroup_events __read_mostly;
433 static atomic_t nr_text_poke_events __read_mostly;
434 static atomic_t nr_build_id_events __read_mostly;
435 
436 static LIST_HEAD(pmus);
437 static DEFINE_MUTEX(pmus_lock);
438 static struct srcu_struct pmus_srcu;
439 static cpumask_var_t perf_online_mask;
440 static cpumask_var_t perf_online_core_mask;
441 static cpumask_var_t perf_online_die_mask;
442 static cpumask_var_t perf_online_cluster_mask;
443 static cpumask_var_t perf_online_pkg_mask;
444 static cpumask_var_t perf_online_sys_mask;
445 static struct kmem_cache *perf_event_cache;
446 
447 /*
448  * perf event paranoia level:
449  *  -1 - not paranoid at all
450  *   0 - disallow raw tracepoint access for unpriv
451  *   1 - disallow cpu events for unpriv
452  *   2 - disallow kernel profiling for unpriv
453  */
454 int sysctl_perf_event_paranoid __read_mostly = 2;
455 
456 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
457 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
458 
459 /*
460  * max perf event sample rate
461  */
462 #define DEFAULT_MAX_SAMPLE_RATE		100000
463 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
464 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
465 
466 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
467 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
470 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
471 
472 static int perf_sample_allowed_ns __read_mostly =
473 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
474 
475 static void update_perf_cpu_limits(void)
476 {
477 	u64 tmp = perf_sample_period_ns;
478 
479 	tmp *= sysctl_perf_cpu_time_max_percent;
480 	tmp = div_u64(tmp, 100);
481 	if (!tmp)
482 		tmp = 1;
483 
484 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
485 }
486 
487 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
488 
489 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
490 				       void *buffer, size_t *lenp, loff_t *ppos)
491 {
492 	int ret;
493 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
494 	/*
495 	 * If throttling is disabled don't allow the write:
496 	 */
497 	if (write && (perf_cpu == 100 || perf_cpu == 0))
498 		return -EINVAL;
499 
500 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501 	if (ret || !write)
502 		return ret;
503 
504 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
505 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
506 	update_perf_cpu_limits();
507 
508 	return 0;
509 }
510 
511 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 static const struct ctl_table events_core_sysctl_table[] = {
532 	/*
533 	 * User-space relies on this file as a feature check for
534 	 * perf_events being enabled. It's an ABI, do not remove!
535 	 */
536 	{
537 		.procname	= "perf_event_paranoid",
538 		.data		= &sysctl_perf_event_paranoid,
539 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
540 		.mode		= 0644,
541 		.proc_handler	= proc_dointvec,
542 	},
543 	{
544 		.procname	= "perf_event_mlock_kb",
545 		.data		= &sysctl_perf_event_mlock,
546 		.maxlen		= sizeof(sysctl_perf_event_mlock),
547 		.mode		= 0644,
548 		.proc_handler	= proc_dointvec,
549 	},
550 	{
551 		.procname	= "perf_event_max_sample_rate",
552 		.data		= &sysctl_perf_event_sample_rate,
553 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
554 		.mode		= 0644,
555 		.proc_handler	= perf_event_max_sample_rate_handler,
556 		.extra1		= SYSCTL_ONE,
557 	},
558 	{
559 		.procname	= "perf_cpu_time_max_percent",
560 		.data		= &sysctl_perf_cpu_time_max_percent,
561 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
562 		.mode		= 0644,
563 		.proc_handler	= perf_cpu_time_max_percent_handler,
564 		.extra1		= SYSCTL_ZERO,
565 		.extra2		= SYSCTL_ONE_HUNDRED,
566 	},
567 };
568 
569 static int __init init_events_core_sysctls(void)
570 {
571 	register_sysctl_init("kernel", events_core_sysctl_table);
572 	return 0;
573 }
574 core_initcall(init_events_core_sysctls);
575 
576 
577 /*
578  * perf samples are done in some very critical code paths (NMIs).
579  * If they take too much CPU time, the system can lock up and not
580  * get any real work done.  This will drop the sample rate when
581  * we detect that events are taking too long.
582  */
583 #define NR_ACCUMULATED_SAMPLES 128
584 static DEFINE_PER_CPU(u64, running_sample_length);
585 
586 static u64 __report_avg;
587 static u64 __report_allowed;
588 
589 static void perf_duration_warn(struct irq_work *w)
590 {
591 	printk_ratelimited(KERN_INFO
592 		"perf: interrupt took too long (%lld > %lld), lowering "
593 		"kernel.perf_event_max_sample_rate to %d\n",
594 		__report_avg, __report_allowed,
595 		sysctl_perf_event_sample_rate);
596 }
597 
598 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
599 
600 void perf_sample_event_took(u64 sample_len_ns)
601 {
602 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
603 	u64 running_len;
604 	u64 avg_len;
605 	u32 max;
606 
607 	if (max_len == 0)
608 		return;
609 
610 	/* Decay the counter by 1 average sample. */
611 	running_len = __this_cpu_read(running_sample_length);
612 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
613 	running_len += sample_len_ns;
614 	__this_cpu_write(running_sample_length, running_len);
615 
616 	/*
617 	 * Note: this will be biased artificially low until we have
618 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
619 	 * from having to maintain a count.
620 	 */
621 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
622 	if (avg_len <= max_len)
623 		return;
624 
625 	__report_avg = avg_len;
626 	__report_allowed = max_len;
627 
628 	/*
629 	 * Compute a throttle threshold 25% below the current duration.
630 	 */
631 	avg_len += avg_len / 4;
632 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
633 	if (avg_len < max)
634 		max /= (u32)avg_len;
635 	else
636 		max = 1;
637 
638 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
639 	WRITE_ONCE(max_samples_per_tick, max);
640 
641 	sysctl_perf_event_sample_rate = max * HZ;
642 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
643 
644 	if (!irq_work_queue(&perf_duration_work)) {
645 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
646 			     "kernel.perf_event_max_sample_rate to %d\n",
647 			     __report_avg, __report_allowed,
648 			     sysctl_perf_event_sample_rate);
649 	}
650 }
651 
652 static atomic64_t perf_event_id;
653 
654 static void update_context_time(struct perf_event_context *ctx);
655 static u64 perf_event_time(struct perf_event *event);
656 
657 void __weak perf_event_print_debug(void)	{ }
658 
659 static inline u64 perf_clock(void)
660 {
661 	return local_clock();
662 }
663 
664 static inline u64 perf_event_clock(struct perf_event *event)
665 {
666 	return event->clock();
667 }
668 
669 /*
670  * State based event timekeeping...
671  *
672  * The basic idea is to use event->state to determine which (if any) time
673  * fields to increment with the current delta. This means we only need to
674  * update timestamps when we change state or when they are explicitly requested
675  * (read).
676  *
677  * Event groups make things a little more complicated, but not terribly so. The
678  * rules for a group are that if the group leader is OFF the entire group is
679  * OFF, irrespective of what the group member states are. This results in
680  * __perf_effective_state().
681  *
682  * A further ramification is that when a group leader flips between OFF and
683  * !OFF, we need to update all group member times.
684  *
685  *
686  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
687  * need to make sure the relevant context time is updated before we try and
688  * update our timestamps.
689  */
690 
691 static __always_inline enum perf_event_state
692 __perf_effective_state(struct perf_event *event)
693 {
694 	struct perf_event *leader = event->group_leader;
695 
696 	if (leader->state <= PERF_EVENT_STATE_OFF)
697 		return leader->state;
698 
699 	return event->state;
700 }
701 
702 static __always_inline void
703 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
704 {
705 	enum perf_event_state state = __perf_effective_state(event);
706 	u64 delta = now - event->tstamp;
707 
708 	*enabled = event->total_time_enabled;
709 	if (state >= PERF_EVENT_STATE_INACTIVE)
710 		*enabled += delta;
711 
712 	*running = event->total_time_running;
713 	if (state >= PERF_EVENT_STATE_ACTIVE)
714 		*running += delta;
715 }
716 
717 static void perf_event_update_time(struct perf_event *event)
718 {
719 	u64 now = perf_event_time(event);
720 
721 	__perf_update_times(event, now, &event->total_time_enabled,
722 					&event->total_time_running);
723 	event->tstamp = now;
724 }
725 
726 static void perf_event_update_sibling_time(struct perf_event *leader)
727 {
728 	struct perf_event *sibling;
729 
730 	for_each_sibling_event(sibling, leader)
731 		perf_event_update_time(sibling);
732 }
733 
734 static void
735 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
736 {
737 	if (event->state == state)
738 		return;
739 
740 	perf_event_update_time(event);
741 	/*
742 	 * If a group leader gets enabled/disabled all its siblings
743 	 * are affected too.
744 	 */
745 	if ((event->state < 0) ^ (state < 0))
746 		perf_event_update_sibling_time(event);
747 
748 	WRITE_ONCE(event->state, state);
749 }
750 
751 /*
752  * UP store-release, load-acquire
753  */
754 
755 #define __store_release(ptr, val)					\
756 do {									\
757 	barrier();							\
758 	WRITE_ONCE(*(ptr), (val));					\
759 } while (0)
760 
761 #define __load_acquire(ptr)						\
762 ({									\
763 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
764 	barrier();							\
765 	___p;								\
766 })
767 
768 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
769 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
770 		if (_cgroup && !_epc->nr_cgroups)			\
771 			continue;					\
772 		else if (_pmu && _epc->pmu != _pmu)			\
773 			continue;					\
774 		else
775 
776 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
777 {
778 	struct perf_event_pmu_context *pmu_ctx;
779 
780 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
781 		perf_pmu_disable(pmu_ctx->pmu);
782 }
783 
784 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
785 {
786 	struct perf_event_pmu_context *pmu_ctx;
787 
788 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
789 		perf_pmu_enable(pmu_ctx->pmu);
790 }
791 
792 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
793 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
794 
795 #ifdef CONFIG_CGROUP_PERF
796 
797 static inline bool
798 perf_cgroup_match(struct perf_event *event)
799 {
800 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
801 
802 	/* @event doesn't care about cgroup */
803 	if (!event->cgrp)
804 		return true;
805 
806 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
807 	if (!cpuctx->cgrp)
808 		return false;
809 
810 	/*
811 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
812 	 * also enabled for all its descendant cgroups.  If @cpuctx's
813 	 * cgroup is a descendant of @event's (the test covers identity
814 	 * case), it's a match.
815 	 */
816 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
817 				    event->cgrp->css.cgroup);
818 }
819 
820 static inline void perf_detach_cgroup(struct perf_event *event)
821 {
822 	css_put(&event->cgrp->css);
823 	event->cgrp = NULL;
824 }
825 
826 static inline int is_cgroup_event(struct perf_event *event)
827 {
828 	return event->cgrp != NULL;
829 }
830 
831 static inline u64 perf_cgroup_event_time(struct perf_event *event)
832 {
833 	struct perf_cgroup_info *t;
834 
835 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
836 	return t->time;
837 }
838 
839 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
840 {
841 	struct perf_cgroup_info *t;
842 
843 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
844 	if (!__load_acquire(&t->active))
845 		return t->time;
846 	now += READ_ONCE(t->timeoffset);
847 	return now;
848 }
849 
850 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
851 {
852 	if (adv)
853 		info->time += now - info->timestamp;
854 	info->timestamp = now;
855 	/*
856 	 * see update_context_time()
857 	 */
858 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
859 }
860 
861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
862 {
863 	struct perf_cgroup *cgrp = cpuctx->cgrp;
864 	struct cgroup_subsys_state *css;
865 	struct perf_cgroup_info *info;
866 
867 	if (cgrp) {
868 		u64 now = perf_clock();
869 
870 		for (css = &cgrp->css; css; css = css->parent) {
871 			cgrp = container_of(css, struct perf_cgroup, css);
872 			info = this_cpu_ptr(cgrp->info);
873 
874 			__update_cgrp_time(info, now, true);
875 			if (final)
876 				__store_release(&info->active, 0);
877 		}
878 	}
879 }
880 
881 static inline void update_cgrp_time_from_event(struct perf_event *event)
882 {
883 	struct perf_cgroup_info *info;
884 
885 	/*
886 	 * ensure we access cgroup data only when needed and
887 	 * when we know the cgroup is pinned (css_get)
888 	 */
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	info = this_cpu_ptr(event->cgrp->info);
893 	/*
894 	 * Do not update time when cgroup is not active
895 	 */
896 	if (info->active)
897 		__update_cgrp_time(info, perf_clock(), true);
898 }
899 
900 static inline void
901 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
902 {
903 	struct perf_event_context *ctx = &cpuctx->ctx;
904 	struct perf_cgroup *cgrp = cpuctx->cgrp;
905 	struct perf_cgroup_info *info;
906 	struct cgroup_subsys_state *css;
907 
908 	/*
909 	 * ctx->lock held by caller
910 	 * ensure we do not access cgroup data
911 	 * unless we have the cgroup pinned (css_get)
912 	 */
913 	if (!cgrp)
914 		return;
915 
916 	WARN_ON_ONCE(!ctx->nr_cgroups);
917 
918 	for (css = &cgrp->css; css; css = css->parent) {
919 		cgrp = container_of(css, struct perf_cgroup, css);
920 		info = this_cpu_ptr(cgrp->info);
921 		__update_cgrp_time(info, ctx->timestamp, false);
922 		__store_release(&info->active, 1);
923 	}
924 }
925 
926 /*
927  * reschedule events based on the cgroup constraint of task.
928  */
929 static void perf_cgroup_switch(struct task_struct *task)
930 {
931 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
932 	struct perf_cgroup *cgrp;
933 
934 	/*
935 	 * cpuctx->cgrp is set when the first cgroup event enabled,
936 	 * and is cleared when the last cgroup event disabled.
937 	 */
938 	if (READ_ONCE(cpuctx->cgrp) == NULL)
939 		return;
940 
941 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
942 
943 	cgrp = perf_cgroup_from_task(task, NULL);
944 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
945 		return;
946 
947 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
948 	perf_ctx_disable(&cpuctx->ctx, true);
949 
950 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
951 	/*
952 	 * must not be done before ctxswout due
953 	 * to update_cgrp_time_from_cpuctx() in
954 	 * ctx_sched_out()
955 	 */
956 	cpuctx->cgrp = cgrp;
957 	/*
958 	 * set cgrp before ctxsw in to allow
959 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
960 	 * to not have to pass task around
961 	 */
962 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
963 
964 	perf_ctx_enable(&cpuctx->ctx, true);
965 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
966 }
967 
968 static int perf_cgroup_ensure_storage(struct perf_event *event,
969 				struct cgroup_subsys_state *css)
970 {
971 	struct perf_cpu_context *cpuctx;
972 	struct perf_event **storage;
973 	int cpu, heap_size, ret = 0;
974 
975 	/*
976 	 * Allow storage to have sufficient space for an iterator for each
977 	 * possibly nested cgroup plus an iterator for events with no cgroup.
978 	 */
979 	for (heap_size = 1; css; css = css->parent)
980 		heap_size++;
981 
982 	for_each_possible_cpu(cpu) {
983 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
984 		if (heap_size <= cpuctx->heap_size)
985 			continue;
986 
987 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
988 				       GFP_KERNEL, cpu_to_node(cpu));
989 		if (!storage) {
990 			ret = -ENOMEM;
991 			break;
992 		}
993 
994 		raw_spin_lock_irq(&cpuctx->ctx.lock);
995 		if (cpuctx->heap_size < heap_size) {
996 			swap(cpuctx->heap, storage);
997 			if (storage == cpuctx->heap_default)
998 				storage = NULL;
999 			cpuctx->heap_size = heap_size;
1000 		}
1001 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1002 
1003 		kfree(storage);
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1010 				      struct perf_event_attr *attr,
1011 				      struct perf_event *group_leader)
1012 {
1013 	struct perf_cgroup *cgrp;
1014 	struct cgroup_subsys_state *css;
1015 	CLASS(fd, f)(fd);
1016 	int ret = 0;
1017 
1018 	if (fd_empty(f))
1019 		return -EBADF;
1020 
1021 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1022 					 &perf_event_cgrp_subsys);
1023 	if (IS_ERR(css))
1024 		return PTR_ERR(css);
1025 
1026 	ret = perf_cgroup_ensure_storage(event, css);
1027 	if (ret)
1028 		return ret;
1029 
1030 	cgrp = container_of(css, struct perf_cgroup, css);
1031 	event->cgrp = cgrp;
1032 
1033 	/*
1034 	 * all events in a group must monitor
1035 	 * the same cgroup because a task belongs
1036 	 * to only one perf cgroup at a time
1037 	 */
1038 	if (group_leader && group_leader->cgrp != cgrp) {
1039 		perf_detach_cgroup(event);
1040 		ret = -EINVAL;
1041 	}
1042 	return ret;
1043 }
1044 
1045 static inline void
1046 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1047 {
1048 	struct perf_cpu_context *cpuctx;
1049 
1050 	if (!is_cgroup_event(event))
1051 		return;
1052 
1053 	event->pmu_ctx->nr_cgroups++;
1054 
1055 	/*
1056 	 * Because cgroup events are always per-cpu events,
1057 	 * @ctx == &cpuctx->ctx.
1058 	 */
1059 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1060 
1061 	if (ctx->nr_cgroups++)
1062 		return;
1063 
1064 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1065 }
1066 
1067 static inline void
1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 
1072 	if (!is_cgroup_event(event))
1073 		return;
1074 
1075 	event->pmu_ctx->nr_cgroups--;
1076 
1077 	/*
1078 	 * Because cgroup events are always per-cpu events,
1079 	 * @ctx == &cpuctx->ctx.
1080 	 */
1081 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1082 
1083 	if (--ctx->nr_cgroups)
1084 		return;
1085 
1086 	cpuctx->cgrp = NULL;
1087 }
1088 
1089 #else /* !CONFIG_CGROUP_PERF */
1090 
1091 static inline bool
1092 perf_cgroup_match(struct perf_event *event)
1093 {
1094 	return true;
1095 }
1096 
1097 static inline void perf_detach_cgroup(struct perf_event *event)
1098 {}
1099 
1100 static inline int is_cgroup_event(struct perf_event *event)
1101 {
1102 	return 0;
1103 }
1104 
1105 static inline void update_cgrp_time_from_event(struct perf_event *event)
1106 {
1107 }
1108 
1109 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1110 						bool final)
1111 {
1112 }
1113 
1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1115 				      struct perf_event_attr *attr,
1116 				      struct perf_event *group_leader)
1117 {
1118 	return -EINVAL;
1119 }
1120 
1121 static inline void
1122 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1123 {
1124 }
1125 
1126 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1127 {
1128 	return 0;
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline void
1137 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1138 {
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static void perf_cgroup_switch(struct task_struct *task)
1147 {
1148 }
1149 #endif
1150 
1151 /*
1152  * set default to be dependent on timer tick just
1153  * like original code
1154  */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157  * function must be called with interrupts disabled
1158  */
1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 	struct perf_cpu_pmu_context *cpc;
1162 	bool rotations;
1163 
1164 	lockdep_assert_irqs_disabled();
1165 
1166 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1167 	rotations = perf_rotate_context(cpc);
1168 
1169 	raw_spin_lock(&cpc->hrtimer_lock);
1170 	if (rotations)
1171 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1172 	else
1173 		cpc->hrtimer_active = 0;
1174 	raw_spin_unlock(&cpc->hrtimer_lock);
1175 
1176 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178 
1179 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1180 {
1181 	struct hrtimer *timer = &cpc->hrtimer;
1182 	struct pmu *pmu = cpc->epc.pmu;
1183 	u64 interval;
1184 
1185 	/*
1186 	 * check default is sane, if not set then force to
1187 	 * default interval (1/tick)
1188 	 */
1189 	interval = pmu->hrtimer_interval_ms;
1190 	if (interval < 1)
1191 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1192 
1193 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1194 
1195 	raw_spin_lock_init(&cpc->hrtimer_lock);
1196 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1197 		      HRTIMER_MODE_ABS_PINNED_HARD);
1198 }
1199 
1200 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1201 {
1202 	struct hrtimer *timer = &cpc->hrtimer;
1203 	unsigned long flags;
1204 
1205 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1206 	if (!cpc->hrtimer_active) {
1207 		cpc->hrtimer_active = 1;
1208 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1209 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1210 	}
1211 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1212 
1213 	return 0;
1214 }
1215 
1216 static int perf_mux_hrtimer_restart_ipi(void *arg)
1217 {
1218 	return perf_mux_hrtimer_restart(arg);
1219 }
1220 
1221 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1222 {
1223 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = &this_cpc(pmu)->pmu_disable_count;
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = &this_cpc(pmu)->pmu_disable_count;
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static void perf_assert_pmu_disabled(struct pmu *pmu)
1241 {
1242 	int *count = &this_cpc(pmu)->pmu_disable_count;
1243 	WARN_ON_ONCE(*count == 0);
1244 }
1245 
1246 static inline void perf_pmu_read(struct perf_event *event)
1247 {
1248 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1249 		event->pmu->read(event);
1250 }
1251 
1252 static void get_ctx(struct perf_event_context *ctx)
1253 {
1254 	refcount_inc(&ctx->refcount);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	kfree(ctx);
1263 }
1264 
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	}
1274 }
1275 
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()	[ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()			[ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()		[ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event()	[ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *	task_struct::perf_event_mutex
1331  *	  perf_event_context::mutex
1332  *	    perf_event::child_mutex;
1333  *	      perf_event_context::lock
1334  *	    mmap_lock
1335  *	      perf_event::mmap_mutex
1336  *	        perf_buffer::aux_mutex
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	lockdep_assert_held(&ctx->lock);
1533 
1534 	if (adv)
1535 		ctx->time += now - ctx->timestamp;
1536 	ctx->timestamp = now;
1537 
1538 	/*
1539 	 * The above: time' = time + (now - timestamp), can be re-arranged
1540 	 * into: time` = now + (time - timestamp), which gives a single value
1541 	 * offset to compute future time without locks on.
1542 	 *
1543 	 * See perf_event_time_now(), which can be used from NMI context where
1544 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1545 	 * both the above values in a consistent manner.
1546 	 */
1547 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1548 }
1549 
1550 static void update_context_time(struct perf_event_context *ctx)
1551 {
1552 	__update_context_time(ctx, true);
1553 }
1554 
1555 static u64 perf_event_time(struct perf_event *event)
1556 {
1557 	struct perf_event_context *ctx = event->ctx;
1558 
1559 	if (unlikely(!ctx))
1560 		return 0;
1561 
1562 	if (is_cgroup_event(event))
1563 		return perf_cgroup_event_time(event);
1564 
1565 	return ctx->time;
1566 }
1567 
1568 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1569 {
1570 	struct perf_event_context *ctx = event->ctx;
1571 
1572 	if (unlikely(!ctx))
1573 		return 0;
1574 
1575 	if (is_cgroup_event(event))
1576 		return perf_cgroup_event_time_now(event, now);
1577 
1578 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1579 		return ctx->time;
1580 
1581 	now += READ_ONCE(ctx->timeoffset);
1582 	return now;
1583 }
1584 
1585 static enum event_type_t get_event_type(struct perf_event *event)
1586 {
1587 	struct perf_event_context *ctx = event->ctx;
1588 	enum event_type_t event_type;
1589 
1590 	lockdep_assert_held(&ctx->lock);
1591 
1592 	/*
1593 	 * It's 'group type', really, because if our group leader is
1594 	 * pinned, so are we.
1595 	 */
1596 	if (event->group_leader != event)
1597 		event = event->group_leader;
1598 
1599 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1600 	if (!ctx->task)
1601 		event_type |= EVENT_CPU;
1602 
1603 	return event_type;
1604 }
1605 
1606 /*
1607  * Helper function to initialize event group nodes.
1608  */
1609 static void init_event_group(struct perf_event *event)
1610 {
1611 	RB_CLEAR_NODE(&event->group_node);
1612 	event->group_index = 0;
1613 }
1614 
1615 /*
1616  * Extract pinned or flexible groups from the context
1617  * based on event attrs bits.
1618  */
1619 static struct perf_event_groups *
1620 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1621 {
1622 	if (event->attr.pinned)
1623 		return &ctx->pinned_groups;
1624 	else
1625 		return &ctx->flexible_groups;
1626 }
1627 
1628 /*
1629  * Helper function to initializes perf_event_group trees.
1630  */
1631 static void perf_event_groups_init(struct perf_event_groups *groups)
1632 {
1633 	groups->tree = RB_ROOT;
1634 	groups->index = 0;
1635 }
1636 
1637 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1638 {
1639 	struct cgroup *cgroup = NULL;
1640 
1641 #ifdef CONFIG_CGROUP_PERF
1642 	if (event->cgrp)
1643 		cgroup = event->cgrp->css.cgroup;
1644 #endif
1645 
1646 	return cgroup;
1647 }
1648 
1649 /*
1650  * Compare function for event groups;
1651  *
1652  * Implements complex key that first sorts by CPU and then by virtual index
1653  * which provides ordering when rotating groups for the same CPU.
1654  */
1655 static __always_inline int
1656 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1657 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1658 		      const struct perf_event *right)
1659 {
1660 	if (left_cpu < right->cpu)
1661 		return -1;
1662 	if (left_cpu > right->cpu)
1663 		return 1;
1664 
1665 	if (left_pmu) {
1666 		if (left_pmu < right->pmu_ctx->pmu)
1667 			return -1;
1668 		if (left_pmu > right->pmu_ctx->pmu)
1669 			return 1;
1670 	}
1671 
1672 #ifdef CONFIG_CGROUP_PERF
1673 	{
1674 		const struct cgroup *right_cgroup = event_cgroup(right);
1675 
1676 		if (left_cgroup != right_cgroup) {
1677 			if (!left_cgroup) {
1678 				/*
1679 				 * Left has no cgroup but right does, no
1680 				 * cgroups come first.
1681 				 */
1682 				return -1;
1683 			}
1684 			if (!right_cgroup) {
1685 				/*
1686 				 * Right has no cgroup but left does, no
1687 				 * cgroups come first.
1688 				 */
1689 				return 1;
1690 			}
1691 			/* Two dissimilar cgroups, order by id. */
1692 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1693 				return -1;
1694 
1695 			return 1;
1696 		}
1697 	}
1698 #endif
1699 
1700 	if (left_group_index < right->group_index)
1701 		return -1;
1702 	if (left_group_index > right->group_index)
1703 		return 1;
1704 
1705 	return 0;
1706 }
1707 
1708 #define __node_2_pe(node) \
1709 	rb_entry((node), struct perf_event, group_node)
1710 
1711 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1712 {
1713 	struct perf_event *e = __node_2_pe(a);
1714 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1715 				     e->group_index, __node_2_pe(b)) < 0;
1716 }
1717 
1718 struct __group_key {
1719 	int cpu;
1720 	struct pmu *pmu;
1721 	struct cgroup *cgroup;
1722 };
1723 
1724 static inline int __group_cmp(const void *key, const struct rb_node *node)
1725 {
1726 	const struct __group_key *a = key;
1727 	const struct perf_event *b = __node_2_pe(node);
1728 
1729 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1730 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1731 }
1732 
1733 static inline int
1734 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1735 {
1736 	const struct __group_key *a = key;
1737 	const struct perf_event *b = __node_2_pe(node);
1738 
1739 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1740 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1741 				     b->group_index, b);
1742 }
1743 
1744 /*
1745  * Insert @event into @groups' tree; using
1746  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1747  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1748  */
1749 static void
1750 perf_event_groups_insert(struct perf_event_groups *groups,
1751 			 struct perf_event *event)
1752 {
1753 	event->group_index = ++groups->index;
1754 
1755 	rb_add(&event->group_node, &groups->tree, __group_less);
1756 }
1757 
1758 /*
1759  * Helper function to insert event into the pinned or flexible groups.
1760  */
1761 static void
1762 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1763 {
1764 	struct perf_event_groups *groups;
1765 
1766 	groups = get_event_groups(event, ctx);
1767 	perf_event_groups_insert(groups, event);
1768 }
1769 
1770 /*
1771  * Delete a group from a tree.
1772  */
1773 static void
1774 perf_event_groups_delete(struct perf_event_groups *groups,
1775 			 struct perf_event *event)
1776 {
1777 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1778 		     RB_EMPTY_ROOT(&groups->tree));
1779 
1780 	rb_erase(&event->group_node, &groups->tree);
1781 	init_event_group(event);
1782 }
1783 
1784 /*
1785  * Helper function to delete event from its groups.
1786  */
1787 static void
1788 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1789 {
1790 	struct perf_event_groups *groups;
1791 
1792 	groups = get_event_groups(event, ctx);
1793 	perf_event_groups_delete(groups, event);
1794 }
1795 
1796 /*
1797  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1798  */
1799 static struct perf_event *
1800 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1801 			struct pmu *pmu, struct cgroup *cgrp)
1802 {
1803 	struct __group_key key = {
1804 		.cpu = cpu,
1805 		.pmu = pmu,
1806 		.cgroup = cgrp,
1807 	};
1808 	struct rb_node *node;
1809 
1810 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1811 	if (node)
1812 		return __node_2_pe(node);
1813 
1814 	return NULL;
1815 }
1816 
1817 static struct perf_event *
1818 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1819 {
1820 	struct __group_key key = {
1821 		.cpu = event->cpu,
1822 		.pmu = pmu,
1823 		.cgroup = event_cgroup(event),
1824 	};
1825 	struct rb_node *next;
1826 
1827 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1828 	if (next)
1829 		return __node_2_pe(next);
1830 
1831 	return NULL;
1832 }
1833 
1834 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1835 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1836 	     event; event = perf_event_groups_next(event, pmu))
1837 
1838 /*
1839  * Iterate through the whole groups tree.
1840  */
1841 #define perf_event_groups_for_each(event, groups)			\
1842 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1843 				typeof(*event), group_node); event;	\
1844 		event = rb_entry_safe(rb_next(&event->group_node),	\
1845 				typeof(*event), group_node))
1846 
1847 /*
1848  * Does the event attribute request inherit with PERF_SAMPLE_READ
1849  */
1850 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1851 {
1852 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1853 }
1854 
1855 /*
1856  * Add an event from the lists for its context.
1857  * Must be called with ctx->mutex and ctx->lock held.
1858  */
1859 static void
1860 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1861 {
1862 	lockdep_assert_held(&ctx->lock);
1863 
1864 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1865 	event->attach_state |= PERF_ATTACH_CONTEXT;
1866 
1867 	event->tstamp = perf_event_time(event);
1868 
1869 	/*
1870 	 * If we're a stand alone event or group leader, we go to the context
1871 	 * list, group events are kept attached to the group so that
1872 	 * perf_group_detach can, at all times, locate all siblings.
1873 	 */
1874 	if (event->group_leader == event) {
1875 		event->group_caps = event->event_caps;
1876 		add_event_to_groups(event, ctx);
1877 	}
1878 
1879 	list_add_rcu(&event->event_entry, &ctx->event_list);
1880 	ctx->nr_events++;
1881 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1882 		ctx->nr_user++;
1883 	if (event->attr.inherit_stat)
1884 		ctx->nr_stat++;
1885 	if (has_inherit_and_sample_read(&event->attr))
1886 		local_inc(&ctx->nr_no_switch_fast);
1887 
1888 	if (event->state > PERF_EVENT_STATE_OFF)
1889 		perf_cgroup_event_enable(event, ctx);
1890 
1891 	ctx->generation++;
1892 	event->pmu_ctx->nr_events++;
1893 }
1894 
1895 /*
1896  * Initialize event state based on the perf_event_attr::disabled.
1897  */
1898 static inline void perf_event__state_init(struct perf_event *event)
1899 {
1900 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1901 					      PERF_EVENT_STATE_INACTIVE;
1902 }
1903 
1904 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1905 {
1906 	int entry = sizeof(u64); /* value */
1907 	int size = 0;
1908 	int nr = 1;
1909 
1910 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1911 		size += sizeof(u64);
1912 
1913 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1914 		size += sizeof(u64);
1915 
1916 	if (read_format & PERF_FORMAT_ID)
1917 		entry += sizeof(u64);
1918 
1919 	if (read_format & PERF_FORMAT_LOST)
1920 		entry += sizeof(u64);
1921 
1922 	if (read_format & PERF_FORMAT_GROUP) {
1923 		nr += nr_siblings;
1924 		size += sizeof(u64);
1925 	}
1926 
1927 	/*
1928 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1929 	 * adding more siblings, this will never overflow.
1930 	 */
1931 	return size + nr * entry;
1932 }
1933 
1934 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1935 {
1936 	struct perf_sample_data *data;
1937 	u16 size = 0;
1938 
1939 	if (sample_type & PERF_SAMPLE_IP)
1940 		size += sizeof(data->ip);
1941 
1942 	if (sample_type & PERF_SAMPLE_ADDR)
1943 		size += sizeof(data->addr);
1944 
1945 	if (sample_type & PERF_SAMPLE_PERIOD)
1946 		size += sizeof(data->period);
1947 
1948 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1949 		size += sizeof(data->weight.full);
1950 
1951 	if (sample_type & PERF_SAMPLE_READ)
1952 		size += event->read_size;
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1955 		size += sizeof(data->data_src.val);
1956 
1957 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1958 		size += sizeof(data->txn);
1959 
1960 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1961 		size += sizeof(data->phys_addr);
1962 
1963 	if (sample_type & PERF_SAMPLE_CGROUP)
1964 		size += sizeof(data->cgroup);
1965 
1966 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1967 		size += sizeof(data->data_page_size);
1968 
1969 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1970 		size += sizeof(data->code_page_size);
1971 
1972 	event->header_size = size;
1973 }
1974 
1975 /*
1976  * Called at perf_event creation and when events are attached/detached from a
1977  * group.
1978  */
1979 static void perf_event__header_size(struct perf_event *event)
1980 {
1981 	event->read_size =
1982 		__perf_event_read_size(event->attr.read_format,
1983 				       event->group_leader->nr_siblings);
1984 	__perf_event_header_size(event, event->attr.sample_type);
1985 }
1986 
1987 static void perf_event__id_header_size(struct perf_event *event)
1988 {
1989 	struct perf_sample_data *data;
1990 	u64 sample_type = event->attr.sample_type;
1991 	u16 size = 0;
1992 
1993 	if (sample_type & PERF_SAMPLE_TID)
1994 		size += sizeof(data->tid_entry);
1995 
1996 	if (sample_type & PERF_SAMPLE_TIME)
1997 		size += sizeof(data->time);
1998 
1999 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2000 		size += sizeof(data->id);
2001 
2002 	if (sample_type & PERF_SAMPLE_ID)
2003 		size += sizeof(data->id);
2004 
2005 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2006 		size += sizeof(data->stream_id);
2007 
2008 	if (sample_type & PERF_SAMPLE_CPU)
2009 		size += sizeof(data->cpu_entry);
2010 
2011 	event->id_header_size = size;
2012 }
2013 
2014 /*
2015  * Check that adding an event to the group does not result in anybody
2016  * overflowing the 64k event limit imposed by the output buffer.
2017  *
2018  * Specifically, check that the read_size for the event does not exceed 16k,
2019  * read_size being the one term that grows with groups size. Since read_size
2020  * depends on per-event read_format, also (re)check the existing events.
2021  *
2022  * This leaves 48k for the constant size fields and things like callchains,
2023  * branch stacks and register sets.
2024  */
2025 static bool perf_event_validate_size(struct perf_event *event)
2026 {
2027 	struct perf_event *sibling, *group_leader = event->group_leader;
2028 
2029 	if (__perf_event_read_size(event->attr.read_format,
2030 				   group_leader->nr_siblings + 1) > 16*1024)
2031 		return false;
2032 
2033 	if (__perf_event_read_size(group_leader->attr.read_format,
2034 				   group_leader->nr_siblings + 1) > 16*1024)
2035 		return false;
2036 
2037 	/*
2038 	 * When creating a new group leader, group_leader->ctx is initialized
2039 	 * after the size has been validated, but we cannot safely use
2040 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2041 	 * leader cannot have any siblings yet, so we can safely skip checking
2042 	 * the non-existent siblings.
2043 	 */
2044 	if (event == group_leader)
2045 		return true;
2046 
2047 	for_each_sibling_event(sibling, group_leader) {
2048 		if (__perf_event_read_size(sibling->attr.read_format,
2049 					   group_leader->nr_siblings + 1) > 16*1024)
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 
2056 static void perf_group_attach(struct perf_event *event)
2057 {
2058 	struct perf_event *group_leader = event->group_leader, *pos;
2059 
2060 	lockdep_assert_held(&event->ctx->lock);
2061 
2062 	/*
2063 	 * We can have double attach due to group movement (move_group) in
2064 	 * perf_event_open().
2065 	 */
2066 	if (event->attach_state & PERF_ATTACH_GROUP)
2067 		return;
2068 
2069 	event->attach_state |= PERF_ATTACH_GROUP;
2070 
2071 	if (group_leader == event)
2072 		return;
2073 
2074 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2075 
2076 	group_leader->group_caps &= event->event_caps;
2077 
2078 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2079 	group_leader->nr_siblings++;
2080 	group_leader->group_generation++;
2081 
2082 	perf_event__header_size(group_leader);
2083 
2084 	for_each_sibling_event(pos, group_leader)
2085 		perf_event__header_size(pos);
2086 }
2087 
2088 /*
2089  * Remove an event from the lists for its context.
2090  * Must be called with ctx->mutex and ctx->lock held.
2091  */
2092 static void
2093 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2094 {
2095 	WARN_ON_ONCE(event->ctx != ctx);
2096 	lockdep_assert_held(&ctx->lock);
2097 
2098 	/*
2099 	 * We can have double detach due to exit/hot-unplug + close.
2100 	 */
2101 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2102 		return;
2103 
2104 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2105 
2106 	ctx->nr_events--;
2107 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2108 		ctx->nr_user--;
2109 	if (event->attr.inherit_stat)
2110 		ctx->nr_stat--;
2111 	if (has_inherit_and_sample_read(&event->attr))
2112 		local_dec(&ctx->nr_no_switch_fast);
2113 
2114 	list_del_rcu(&event->event_entry);
2115 
2116 	if (event->group_leader == event)
2117 		del_event_from_groups(event, ctx);
2118 
2119 	/*
2120 	 * If event was in error state, then keep it
2121 	 * that way, otherwise bogus counts will be
2122 	 * returned on read(). The only way to get out
2123 	 * of error state is by explicit re-enabling
2124 	 * of the event
2125 	 */
2126 	if (event->state > PERF_EVENT_STATE_OFF) {
2127 		perf_cgroup_event_disable(event, ctx);
2128 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2129 	}
2130 
2131 	ctx->generation++;
2132 	event->pmu_ctx->nr_events--;
2133 }
2134 
2135 static int
2136 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2137 {
2138 	if (!has_aux(aux_event))
2139 		return 0;
2140 
2141 	if (!event->pmu->aux_output_match)
2142 		return 0;
2143 
2144 	return event->pmu->aux_output_match(aux_event);
2145 }
2146 
2147 static void put_event(struct perf_event *event);
2148 static void event_sched_out(struct perf_event *event,
2149 			    struct perf_event_context *ctx);
2150 
2151 static void perf_put_aux_event(struct perf_event *event)
2152 {
2153 	struct perf_event_context *ctx = event->ctx;
2154 	struct perf_event *iter;
2155 
2156 	/*
2157 	 * If event uses aux_event tear down the link
2158 	 */
2159 	if (event->aux_event) {
2160 		iter = event->aux_event;
2161 		event->aux_event = NULL;
2162 		put_event(iter);
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * If the event is an aux_event, tear down all links to
2168 	 * it from other events.
2169 	 */
2170 	for_each_sibling_event(iter, event->group_leader) {
2171 		if (iter->aux_event != event)
2172 			continue;
2173 
2174 		iter->aux_event = NULL;
2175 		put_event(event);
2176 
2177 		/*
2178 		 * If it's ACTIVE, schedule it out and put it into ERROR
2179 		 * state so that we don't try to schedule it again. Note
2180 		 * that perf_event_enable() will clear the ERROR status.
2181 		 */
2182 		event_sched_out(iter, ctx);
2183 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2184 	}
2185 }
2186 
2187 static bool perf_need_aux_event(struct perf_event *event)
2188 {
2189 	return event->attr.aux_output || has_aux_action(event);
2190 }
2191 
2192 static int perf_get_aux_event(struct perf_event *event,
2193 			      struct perf_event *group_leader)
2194 {
2195 	/*
2196 	 * Our group leader must be an aux event if we want to be
2197 	 * an aux_output. This way, the aux event will precede its
2198 	 * aux_output events in the group, and therefore will always
2199 	 * schedule first.
2200 	 */
2201 	if (!group_leader)
2202 		return 0;
2203 
2204 	/*
2205 	 * aux_output and aux_sample_size are mutually exclusive.
2206 	 */
2207 	if (event->attr.aux_output && event->attr.aux_sample_size)
2208 		return 0;
2209 
2210 	if (event->attr.aux_output &&
2211 	    !perf_aux_output_match(event, group_leader))
2212 		return 0;
2213 
2214 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2215 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2216 		return 0;
2217 
2218 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2219 		return 0;
2220 
2221 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2222 		return 0;
2223 
2224 	/*
2225 	 * Link aux_outputs to their aux event; this is undone in
2226 	 * perf_group_detach() by perf_put_aux_event(). When the
2227 	 * group in torn down, the aux_output events loose their
2228 	 * link to the aux_event and can't schedule any more.
2229 	 */
2230 	event->aux_event = group_leader;
2231 
2232 	return 1;
2233 }
2234 
2235 static inline struct list_head *get_event_list(struct perf_event *event)
2236 {
2237 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2238 				    &event->pmu_ctx->flexible_active;
2239 }
2240 
2241 /*
2242  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2243  * cannot exist on their own, schedule them out and move them into the ERROR
2244  * state. Also see _perf_event_enable(), it will not be able to recover
2245  * this ERROR state.
2246  */
2247 static inline void perf_remove_sibling_event(struct perf_event *event)
2248 {
2249 	event_sched_out(event, event->ctx);
2250 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2251 }
2252 
2253 static void perf_group_detach(struct perf_event *event)
2254 {
2255 	struct perf_event *leader = event->group_leader;
2256 	struct perf_event *sibling, *tmp;
2257 	struct perf_event_context *ctx = event->ctx;
2258 
2259 	lockdep_assert_held(&ctx->lock);
2260 
2261 	/*
2262 	 * We can have double detach due to exit/hot-unplug + close.
2263 	 */
2264 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2265 		return;
2266 
2267 	event->attach_state &= ~PERF_ATTACH_GROUP;
2268 
2269 	perf_put_aux_event(event);
2270 
2271 	/*
2272 	 * If this is a sibling, remove it from its group.
2273 	 */
2274 	if (leader != event) {
2275 		list_del_init(&event->sibling_list);
2276 		event->group_leader->nr_siblings--;
2277 		event->group_leader->group_generation++;
2278 		goto out;
2279 	}
2280 
2281 	/*
2282 	 * If this was a group event with sibling events then
2283 	 * upgrade the siblings to singleton events by adding them
2284 	 * to whatever list we are on.
2285 	 */
2286 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2287 
2288 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2289 			perf_remove_sibling_event(sibling);
2290 
2291 		sibling->group_leader = sibling;
2292 		list_del_init(&sibling->sibling_list);
2293 
2294 		/* Inherit group flags from the previous leader */
2295 		sibling->group_caps = event->group_caps;
2296 
2297 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2298 			add_event_to_groups(sibling, event->ctx);
2299 
2300 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2301 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2302 		}
2303 
2304 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2305 	}
2306 
2307 out:
2308 	for_each_sibling_event(tmp, leader)
2309 		perf_event__header_size(tmp);
2310 
2311 	perf_event__header_size(leader);
2312 }
2313 
2314 static void sync_child_event(struct perf_event *child_event);
2315 
2316 static void perf_child_detach(struct perf_event *event)
2317 {
2318 	struct perf_event *parent_event = event->parent;
2319 
2320 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2321 		return;
2322 
2323 	event->attach_state &= ~PERF_ATTACH_CHILD;
2324 
2325 	if (WARN_ON_ONCE(!parent_event))
2326 		return;
2327 
2328 	lockdep_assert_held(&parent_event->child_mutex);
2329 
2330 	sync_child_event(event);
2331 	list_del_init(&event->child_list);
2332 }
2333 
2334 static bool is_orphaned_event(struct perf_event *event)
2335 {
2336 	return event->state == PERF_EVENT_STATE_DEAD;
2337 }
2338 
2339 static inline int
2340 event_filter_match(struct perf_event *event)
2341 {
2342 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2343 	       perf_cgroup_match(event);
2344 }
2345 
2346 static void
2347 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2348 {
2349 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2350 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2351 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2352 
2353 	// XXX cpc serialization, probably per-cpu IRQ disabled
2354 
2355 	WARN_ON_ONCE(event->ctx != ctx);
2356 	lockdep_assert_held(&ctx->lock);
2357 
2358 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2359 		return;
2360 
2361 	/*
2362 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2363 	 * we can schedule events _OUT_ individually through things like
2364 	 * __perf_remove_from_context().
2365 	 */
2366 	list_del_init(&event->active_list);
2367 
2368 	perf_pmu_disable(event->pmu);
2369 
2370 	event->pmu->del(event, 0);
2371 	event->oncpu = -1;
2372 
2373 	if (event->pending_disable) {
2374 		event->pending_disable = 0;
2375 		perf_cgroup_event_disable(event, ctx);
2376 		state = PERF_EVENT_STATE_OFF;
2377 	}
2378 
2379 	perf_event_set_state(event, state);
2380 
2381 	if (!is_software_event(event))
2382 		cpc->active_oncpu--;
2383 	if (event->attr.freq && event->attr.sample_freq) {
2384 		ctx->nr_freq--;
2385 		epc->nr_freq--;
2386 	}
2387 	if (event->attr.exclusive || !cpc->active_oncpu)
2388 		cpc->exclusive = 0;
2389 
2390 	perf_pmu_enable(event->pmu);
2391 }
2392 
2393 static void
2394 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2395 {
2396 	struct perf_event *event;
2397 
2398 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2399 		return;
2400 
2401 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2402 
2403 	event_sched_out(group_event, ctx);
2404 
2405 	/*
2406 	 * Schedule out siblings (if any):
2407 	 */
2408 	for_each_sibling_event(event, group_event)
2409 		event_sched_out(event, ctx);
2410 }
2411 
2412 static inline void
2413 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2414 {
2415 	if (ctx->is_active & EVENT_TIME) {
2416 		if (ctx->is_active & EVENT_FROZEN)
2417 			return;
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_cpuctx(cpuctx, final);
2420 	}
2421 }
2422 
2423 static inline void
2424 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2425 {
2426 	__ctx_time_update(cpuctx, ctx, false);
2427 }
2428 
2429 /*
2430  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2431  */
2432 static inline void
2433 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2434 {
2435 	ctx_time_update(cpuctx, ctx);
2436 	if (ctx->is_active & EVENT_TIME)
2437 		ctx->is_active |= EVENT_FROZEN;
2438 }
2439 
2440 static inline void
2441 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2442 {
2443 	if (ctx->is_active & EVENT_TIME) {
2444 		if (ctx->is_active & EVENT_FROZEN)
2445 			return;
2446 		update_context_time(ctx);
2447 		update_cgrp_time_from_event(event);
2448 	}
2449 }
2450 
2451 #define DETACH_GROUP	0x01UL
2452 #define DETACH_CHILD	0x02UL
2453 #define DETACH_DEAD	0x04UL
2454 #define DETACH_EXIT	0x08UL
2455 
2456 /*
2457  * Cross CPU call to remove a performance event
2458  *
2459  * We disable the event on the hardware level first. After that we
2460  * remove it from the context list.
2461  */
2462 static void
2463 __perf_remove_from_context(struct perf_event *event,
2464 			   struct perf_cpu_context *cpuctx,
2465 			   struct perf_event_context *ctx,
2466 			   void *info)
2467 {
2468 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2469 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2470 	unsigned long flags = (unsigned long)info;
2471 
2472 	ctx_time_update(cpuctx, ctx);
2473 
2474 	/*
2475 	 * Ensure event_sched_out() switches to OFF, at the very least
2476 	 * this avoids raising perf_pending_task() at this time.
2477 	 */
2478 	if (flags & DETACH_EXIT)
2479 		state = PERF_EVENT_STATE_EXIT;
2480 	if (flags & DETACH_DEAD) {
2481 		event->pending_disable = 1;
2482 		state = PERF_EVENT_STATE_DEAD;
2483 	}
2484 	event_sched_out(event, ctx);
2485 	perf_event_set_state(event, min(event->state, state));
2486 	if (flags & DETACH_GROUP)
2487 		perf_group_detach(event);
2488 	if (flags & DETACH_CHILD)
2489 		perf_child_detach(event);
2490 	list_del_event(event, ctx);
2491 
2492 	if (!pmu_ctx->nr_events) {
2493 		pmu_ctx->rotate_necessary = 0;
2494 
2495 		if (ctx->task && ctx->is_active) {
2496 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2497 
2498 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2499 			cpc->task_epc = NULL;
2500 		}
2501 	}
2502 
2503 	if (!ctx->nr_events && ctx->is_active) {
2504 		if (ctx == &cpuctx->ctx)
2505 			update_cgrp_time_from_cpuctx(cpuctx, true);
2506 
2507 		ctx->is_active = 0;
2508 		if (ctx->task) {
2509 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2510 			cpuctx->task_ctx = NULL;
2511 		}
2512 	}
2513 }
2514 
2515 /*
2516  * Remove the event from a task's (or a CPU's) list of events.
2517  *
2518  * If event->ctx is a cloned context, callers must make sure that
2519  * every task struct that event->ctx->task could possibly point to
2520  * remains valid.  This is OK when called from perf_release since
2521  * that only calls us on the top-level context, which can't be a clone.
2522  * When called from perf_event_exit_task, it's OK because the
2523  * context has been detached from its task.
2524  */
2525 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2526 {
2527 	struct perf_event_context *ctx = event->ctx;
2528 
2529 	lockdep_assert_held(&ctx->mutex);
2530 
2531 	/*
2532 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2533 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2534 	 * event_function_call() user.
2535 	 */
2536 	raw_spin_lock_irq(&ctx->lock);
2537 	if (!ctx->is_active) {
2538 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2539 					   ctx, (void *)flags);
2540 		raw_spin_unlock_irq(&ctx->lock);
2541 		return;
2542 	}
2543 	raw_spin_unlock_irq(&ctx->lock);
2544 
2545 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2546 }
2547 
2548 /*
2549  * Cross CPU call to disable a performance event
2550  */
2551 static void __perf_event_disable(struct perf_event *event,
2552 				 struct perf_cpu_context *cpuctx,
2553 				 struct perf_event_context *ctx,
2554 				 void *info)
2555 {
2556 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2557 		return;
2558 
2559 	perf_pmu_disable(event->pmu_ctx->pmu);
2560 	ctx_time_update_event(ctx, event);
2561 
2562 	if (event == event->group_leader)
2563 		group_sched_out(event, ctx);
2564 	else
2565 		event_sched_out(event, ctx);
2566 
2567 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2568 	perf_cgroup_event_disable(event, ctx);
2569 
2570 	perf_pmu_enable(event->pmu_ctx->pmu);
2571 }
2572 
2573 /*
2574  * Disable an event.
2575  *
2576  * If event->ctx is a cloned context, callers must make sure that
2577  * every task struct that event->ctx->task could possibly point to
2578  * remains valid.  This condition is satisfied when called through
2579  * perf_event_for_each_child or perf_event_for_each because they
2580  * hold the top-level event's child_mutex, so any descendant that
2581  * goes to exit will block in perf_event_exit_event().
2582  *
2583  * When called from perf_pending_disable it's OK because event->ctx
2584  * is the current context on this CPU and preemption is disabled,
2585  * hence we can't get into perf_event_task_sched_out for this context.
2586  */
2587 static void _perf_event_disable(struct perf_event *event)
2588 {
2589 	struct perf_event_context *ctx = event->ctx;
2590 
2591 	raw_spin_lock_irq(&ctx->lock);
2592 	if (event->state <= PERF_EVENT_STATE_OFF) {
2593 		raw_spin_unlock_irq(&ctx->lock);
2594 		return;
2595 	}
2596 	raw_spin_unlock_irq(&ctx->lock);
2597 
2598 	event_function_call(event, __perf_event_disable, NULL);
2599 }
2600 
2601 void perf_event_disable_local(struct perf_event *event)
2602 {
2603 	event_function_local(event, __perf_event_disable, NULL);
2604 }
2605 
2606 /*
2607  * Strictly speaking kernel users cannot create groups and therefore this
2608  * interface does not need the perf_event_ctx_lock() magic.
2609  */
2610 void perf_event_disable(struct perf_event *event)
2611 {
2612 	struct perf_event_context *ctx;
2613 
2614 	ctx = perf_event_ctx_lock(event);
2615 	_perf_event_disable(event);
2616 	perf_event_ctx_unlock(event, ctx);
2617 }
2618 EXPORT_SYMBOL_GPL(perf_event_disable);
2619 
2620 void perf_event_disable_inatomic(struct perf_event *event)
2621 {
2622 	event->pending_disable = 1;
2623 	irq_work_queue(&event->pending_disable_irq);
2624 }
2625 
2626 #define MAX_INTERRUPTS (~0ULL)
2627 
2628 static void perf_log_throttle(struct perf_event *event, int enable);
2629 static void perf_log_itrace_start(struct perf_event *event);
2630 
2631 static int
2632 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2633 {
2634 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2635 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2636 	int ret = 0;
2637 
2638 	WARN_ON_ONCE(event->ctx != ctx);
2639 
2640 	lockdep_assert_held(&ctx->lock);
2641 
2642 	if (event->state <= PERF_EVENT_STATE_OFF)
2643 		return 0;
2644 
2645 	WRITE_ONCE(event->oncpu, smp_processor_id());
2646 	/*
2647 	 * Order event::oncpu write to happen before the ACTIVE state is
2648 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2649 	 * ->oncpu if it sees ACTIVE.
2650 	 */
2651 	smp_wmb();
2652 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2653 
2654 	/*
2655 	 * Unthrottle events, since we scheduled we might have missed several
2656 	 * ticks already, also for a heavily scheduling task there is little
2657 	 * guarantee it'll get a tick in a timely manner.
2658 	 */
2659 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2660 		perf_log_throttle(event, 1);
2661 		event->hw.interrupts = 0;
2662 	}
2663 
2664 	perf_pmu_disable(event->pmu);
2665 
2666 	perf_log_itrace_start(event);
2667 
2668 	if (event->pmu->add(event, PERF_EF_START)) {
2669 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2670 		event->oncpu = -1;
2671 		ret = -EAGAIN;
2672 		goto out;
2673 	}
2674 
2675 	if (!is_software_event(event))
2676 		cpc->active_oncpu++;
2677 	if (event->attr.freq && event->attr.sample_freq) {
2678 		ctx->nr_freq++;
2679 		epc->nr_freq++;
2680 	}
2681 	if (event->attr.exclusive)
2682 		cpc->exclusive = 1;
2683 
2684 out:
2685 	perf_pmu_enable(event->pmu);
2686 
2687 	return ret;
2688 }
2689 
2690 static int
2691 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2692 {
2693 	struct perf_event *event, *partial_group = NULL;
2694 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2695 
2696 	if (group_event->state == PERF_EVENT_STATE_OFF)
2697 		return 0;
2698 
2699 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2700 
2701 	if (event_sched_in(group_event, ctx))
2702 		goto error;
2703 
2704 	/*
2705 	 * Schedule in siblings as one group (if any):
2706 	 */
2707 	for_each_sibling_event(event, group_event) {
2708 		if (event_sched_in(event, ctx)) {
2709 			partial_group = event;
2710 			goto group_error;
2711 		}
2712 	}
2713 
2714 	if (!pmu->commit_txn(pmu))
2715 		return 0;
2716 
2717 group_error:
2718 	/*
2719 	 * Groups can be scheduled in as one unit only, so undo any
2720 	 * partial group before returning:
2721 	 * The events up to the failed event are scheduled out normally.
2722 	 */
2723 	for_each_sibling_event(event, group_event) {
2724 		if (event == partial_group)
2725 			break;
2726 
2727 		event_sched_out(event, ctx);
2728 	}
2729 	event_sched_out(group_event, ctx);
2730 
2731 error:
2732 	pmu->cancel_txn(pmu);
2733 	return -EAGAIN;
2734 }
2735 
2736 /*
2737  * Work out whether we can put this event group on the CPU now.
2738  */
2739 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2740 {
2741 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2742 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2743 
2744 	/*
2745 	 * Groups consisting entirely of software events can always go on.
2746 	 */
2747 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2748 		return 1;
2749 	/*
2750 	 * If an exclusive group is already on, no other hardware
2751 	 * events can go on.
2752 	 */
2753 	if (cpc->exclusive)
2754 		return 0;
2755 	/*
2756 	 * If this group is exclusive and there are already
2757 	 * events on the CPU, it can't go on.
2758 	 */
2759 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2760 		return 0;
2761 	/*
2762 	 * Otherwise, try to add it if all previous groups were able
2763 	 * to go on.
2764 	 */
2765 	return can_add_hw;
2766 }
2767 
2768 static void add_event_to_ctx(struct perf_event *event,
2769 			       struct perf_event_context *ctx)
2770 {
2771 	list_add_event(event, ctx);
2772 	perf_group_attach(event);
2773 }
2774 
2775 static void task_ctx_sched_out(struct perf_event_context *ctx,
2776 			       struct pmu *pmu,
2777 			       enum event_type_t event_type)
2778 {
2779 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2780 
2781 	if (!cpuctx->task_ctx)
2782 		return;
2783 
2784 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2785 		return;
2786 
2787 	ctx_sched_out(ctx, pmu, event_type);
2788 }
2789 
2790 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2791 				struct perf_event_context *ctx,
2792 				struct pmu *pmu)
2793 {
2794 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2795 	if (ctx)
2796 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2797 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2798 	if (ctx)
2799 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2800 }
2801 
2802 /*
2803  * We want to maintain the following priority of scheduling:
2804  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2805  *  - task pinned (EVENT_PINNED)
2806  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2807  *  - task flexible (EVENT_FLEXIBLE).
2808  *
2809  * In order to avoid unscheduling and scheduling back in everything every
2810  * time an event is added, only do it for the groups of equal priority and
2811  * below.
2812  *
2813  * This can be called after a batch operation on task events, in which case
2814  * event_type is a bit mask of the types of events involved. For CPU events,
2815  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2816  */
2817 static void ctx_resched(struct perf_cpu_context *cpuctx,
2818 			struct perf_event_context *task_ctx,
2819 			struct pmu *pmu, enum event_type_t event_type)
2820 {
2821 	bool cpu_event = !!(event_type & EVENT_CPU);
2822 	struct perf_event_pmu_context *epc;
2823 
2824 	/*
2825 	 * If pinned groups are involved, flexible groups also need to be
2826 	 * scheduled out.
2827 	 */
2828 	if (event_type & EVENT_PINNED)
2829 		event_type |= EVENT_FLEXIBLE;
2830 
2831 	event_type &= EVENT_ALL;
2832 
2833 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2834 		perf_pmu_disable(epc->pmu);
2835 
2836 	if (task_ctx) {
2837 		for_each_epc(epc, task_ctx, pmu, false)
2838 			perf_pmu_disable(epc->pmu);
2839 
2840 		task_ctx_sched_out(task_ctx, pmu, event_type);
2841 	}
2842 
2843 	/*
2844 	 * Decide which cpu ctx groups to schedule out based on the types
2845 	 * of events that caused rescheduling:
2846 	 *  - EVENT_CPU: schedule out corresponding groups;
2847 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2848 	 *  - otherwise, do nothing more.
2849 	 */
2850 	if (cpu_event)
2851 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2852 	else if (event_type & EVENT_PINNED)
2853 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2854 
2855 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2856 
2857 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2858 		perf_pmu_enable(epc->pmu);
2859 
2860 	if (task_ctx) {
2861 		for_each_epc(epc, task_ctx, pmu, false)
2862 			perf_pmu_enable(epc->pmu);
2863 	}
2864 }
2865 
2866 void perf_pmu_resched(struct pmu *pmu)
2867 {
2868 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2869 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2870 
2871 	perf_ctx_lock(cpuctx, task_ctx);
2872 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2873 	perf_ctx_unlock(cpuctx, task_ctx);
2874 }
2875 
2876 /*
2877  * Cross CPU call to install and enable a performance event
2878  *
2879  * Very similar to remote_function() + event_function() but cannot assume that
2880  * things like ctx->is_active and cpuctx->task_ctx are set.
2881  */
2882 static int  __perf_install_in_context(void *info)
2883 {
2884 	struct perf_event *event = info;
2885 	struct perf_event_context *ctx = event->ctx;
2886 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2887 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2888 	bool reprogram = true;
2889 	int ret = 0;
2890 
2891 	raw_spin_lock(&cpuctx->ctx.lock);
2892 	if (ctx->task) {
2893 		raw_spin_lock(&ctx->lock);
2894 		task_ctx = ctx;
2895 
2896 		reprogram = (ctx->task == current);
2897 
2898 		/*
2899 		 * If the task is running, it must be running on this CPU,
2900 		 * otherwise we cannot reprogram things.
2901 		 *
2902 		 * If its not running, we don't care, ctx->lock will
2903 		 * serialize against it becoming runnable.
2904 		 */
2905 		if (task_curr(ctx->task) && !reprogram) {
2906 			ret = -ESRCH;
2907 			goto unlock;
2908 		}
2909 
2910 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2911 	} else if (task_ctx) {
2912 		raw_spin_lock(&task_ctx->lock);
2913 	}
2914 
2915 #ifdef CONFIG_CGROUP_PERF
2916 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2917 		/*
2918 		 * If the current cgroup doesn't match the event's
2919 		 * cgroup, we should not try to schedule it.
2920 		 */
2921 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2922 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2923 					event->cgrp->css.cgroup);
2924 	}
2925 #endif
2926 
2927 	if (reprogram) {
2928 		ctx_time_freeze(cpuctx, ctx);
2929 		add_event_to_ctx(event, ctx);
2930 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2931 			    get_event_type(event));
2932 	} else {
2933 		add_event_to_ctx(event, ctx);
2934 	}
2935 
2936 unlock:
2937 	perf_ctx_unlock(cpuctx, task_ctx);
2938 
2939 	return ret;
2940 }
2941 
2942 static bool exclusive_event_installable(struct perf_event *event,
2943 					struct perf_event_context *ctx);
2944 
2945 /*
2946  * Attach a performance event to a context.
2947  *
2948  * Very similar to event_function_call, see comment there.
2949  */
2950 static void
2951 perf_install_in_context(struct perf_event_context *ctx,
2952 			struct perf_event *event,
2953 			int cpu)
2954 {
2955 	struct task_struct *task = READ_ONCE(ctx->task);
2956 
2957 	lockdep_assert_held(&ctx->mutex);
2958 
2959 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2960 
2961 	if (event->cpu != -1)
2962 		WARN_ON_ONCE(event->cpu != cpu);
2963 
2964 	/*
2965 	 * Ensures that if we can observe event->ctx, both the event and ctx
2966 	 * will be 'complete'. See perf_iterate_sb_cpu().
2967 	 */
2968 	smp_store_release(&event->ctx, ctx);
2969 
2970 	/*
2971 	 * perf_event_attr::disabled events will not run and can be initialized
2972 	 * without IPI. Except when this is the first event for the context, in
2973 	 * that case we need the magic of the IPI to set ctx->is_active.
2974 	 *
2975 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2976 	 * event will issue the IPI and reprogram the hardware.
2977 	 */
2978 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2979 	    ctx->nr_events && !is_cgroup_event(event)) {
2980 		raw_spin_lock_irq(&ctx->lock);
2981 		if (ctx->task == TASK_TOMBSTONE) {
2982 			raw_spin_unlock_irq(&ctx->lock);
2983 			return;
2984 		}
2985 		add_event_to_ctx(event, ctx);
2986 		raw_spin_unlock_irq(&ctx->lock);
2987 		return;
2988 	}
2989 
2990 	if (!task) {
2991 		cpu_function_call(cpu, __perf_install_in_context, event);
2992 		return;
2993 	}
2994 
2995 	/*
2996 	 * Should not happen, we validate the ctx is still alive before calling.
2997 	 */
2998 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2999 		return;
3000 
3001 	/*
3002 	 * Installing events is tricky because we cannot rely on ctx->is_active
3003 	 * to be set in case this is the nr_events 0 -> 1 transition.
3004 	 *
3005 	 * Instead we use task_curr(), which tells us if the task is running.
3006 	 * However, since we use task_curr() outside of rq::lock, we can race
3007 	 * against the actual state. This means the result can be wrong.
3008 	 *
3009 	 * If we get a false positive, we retry, this is harmless.
3010 	 *
3011 	 * If we get a false negative, things are complicated. If we are after
3012 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3013 	 * value must be correct. If we're before, it doesn't matter since
3014 	 * perf_event_context_sched_in() will program the counter.
3015 	 *
3016 	 * However, this hinges on the remote context switch having observed
3017 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3018 	 * ctx::lock in perf_event_context_sched_in().
3019 	 *
3020 	 * We do this by task_function_call(), if the IPI fails to hit the task
3021 	 * we know any future context switch of task must see the
3022 	 * perf_event_ctpx[] store.
3023 	 */
3024 
3025 	/*
3026 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3027 	 * task_cpu() load, such that if the IPI then does not find the task
3028 	 * running, a future context switch of that task must observe the
3029 	 * store.
3030 	 */
3031 	smp_mb();
3032 again:
3033 	if (!task_function_call(task, __perf_install_in_context, event))
3034 		return;
3035 
3036 	raw_spin_lock_irq(&ctx->lock);
3037 	task = ctx->task;
3038 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3039 		/*
3040 		 * Cannot happen because we already checked above (which also
3041 		 * cannot happen), and we hold ctx->mutex, which serializes us
3042 		 * against perf_event_exit_task_context().
3043 		 */
3044 		raw_spin_unlock_irq(&ctx->lock);
3045 		return;
3046 	}
3047 	/*
3048 	 * If the task is not running, ctx->lock will avoid it becoming so,
3049 	 * thus we can safely install the event.
3050 	 */
3051 	if (task_curr(task)) {
3052 		raw_spin_unlock_irq(&ctx->lock);
3053 		goto again;
3054 	}
3055 	add_event_to_ctx(event, ctx);
3056 	raw_spin_unlock_irq(&ctx->lock);
3057 }
3058 
3059 /*
3060  * Cross CPU call to enable a performance event
3061  */
3062 static void __perf_event_enable(struct perf_event *event,
3063 				struct perf_cpu_context *cpuctx,
3064 				struct perf_event_context *ctx,
3065 				void *info)
3066 {
3067 	struct perf_event *leader = event->group_leader;
3068 	struct perf_event_context *task_ctx;
3069 
3070 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3071 	    event->state <= PERF_EVENT_STATE_ERROR)
3072 		return;
3073 
3074 	ctx_time_freeze(cpuctx, ctx);
3075 
3076 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3077 	perf_cgroup_event_enable(event, ctx);
3078 
3079 	if (!ctx->is_active)
3080 		return;
3081 
3082 	if (!event_filter_match(event))
3083 		return;
3084 
3085 	/*
3086 	 * If the event is in a group and isn't the group leader,
3087 	 * then don't put it on unless the group is on.
3088 	 */
3089 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3090 		return;
3091 
3092 	task_ctx = cpuctx->task_ctx;
3093 	if (ctx->task)
3094 		WARN_ON_ONCE(task_ctx != ctx);
3095 
3096 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3097 }
3098 
3099 /*
3100  * Enable an event.
3101  *
3102  * If event->ctx is a cloned context, callers must make sure that
3103  * every task struct that event->ctx->task could possibly point to
3104  * remains valid.  This condition is satisfied when called through
3105  * perf_event_for_each_child or perf_event_for_each as described
3106  * for perf_event_disable.
3107  */
3108 static void _perf_event_enable(struct perf_event *event)
3109 {
3110 	struct perf_event_context *ctx = event->ctx;
3111 
3112 	raw_spin_lock_irq(&ctx->lock);
3113 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3114 	    event->state <  PERF_EVENT_STATE_ERROR) {
3115 out:
3116 		raw_spin_unlock_irq(&ctx->lock);
3117 		return;
3118 	}
3119 
3120 	/*
3121 	 * If the event is in error state, clear that first.
3122 	 *
3123 	 * That way, if we see the event in error state below, we know that it
3124 	 * has gone back into error state, as distinct from the task having
3125 	 * been scheduled away before the cross-call arrived.
3126 	 */
3127 	if (event->state == PERF_EVENT_STATE_ERROR) {
3128 		/*
3129 		 * Detached SIBLING events cannot leave ERROR state.
3130 		 */
3131 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3132 		    event->group_leader == event)
3133 			goto out;
3134 
3135 		event->state = PERF_EVENT_STATE_OFF;
3136 	}
3137 	raw_spin_unlock_irq(&ctx->lock);
3138 
3139 	event_function_call(event, __perf_event_enable, NULL);
3140 }
3141 
3142 /*
3143  * See perf_event_disable();
3144  */
3145 void perf_event_enable(struct perf_event *event)
3146 {
3147 	struct perf_event_context *ctx;
3148 
3149 	ctx = perf_event_ctx_lock(event);
3150 	_perf_event_enable(event);
3151 	perf_event_ctx_unlock(event, ctx);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_enable);
3154 
3155 struct stop_event_data {
3156 	struct perf_event	*event;
3157 	unsigned int		restart;
3158 };
3159 
3160 static int __perf_event_stop(void *info)
3161 {
3162 	struct stop_event_data *sd = info;
3163 	struct perf_event *event = sd->event;
3164 
3165 	/* if it's already INACTIVE, do nothing */
3166 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3167 		return 0;
3168 
3169 	/* matches smp_wmb() in event_sched_in() */
3170 	smp_rmb();
3171 
3172 	/*
3173 	 * There is a window with interrupts enabled before we get here,
3174 	 * so we need to check again lest we try to stop another CPU's event.
3175 	 */
3176 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3177 		return -EAGAIN;
3178 
3179 	event->pmu->stop(event, PERF_EF_UPDATE);
3180 
3181 	/*
3182 	 * May race with the actual stop (through perf_pmu_output_stop()),
3183 	 * but it is only used for events with AUX ring buffer, and such
3184 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3185 	 * see comments in perf_aux_output_begin().
3186 	 *
3187 	 * Since this is happening on an event-local CPU, no trace is lost
3188 	 * while restarting.
3189 	 */
3190 	if (sd->restart)
3191 		event->pmu->start(event, 0);
3192 
3193 	return 0;
3194 }
3195 
3196 static int perf_event_stop(struct perf_event *event, int restart)
3197 {
3198 	struct stop_event_data sd = {
3199 		.event		= event,
3200 		.restart	= restart,
3201 	};
3202 	int ret = 0;
3203 
3204 	do {
3205 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3206 			return 0;
3207 
3208 		/* matches smp_wmb() in event_sched_in() */
3209 		smp_rmb();
3210 
3211 		/*
3212 		 * We only want to restart ACTIVE events, so if the event goes
3213 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3214 		 * fall through with ret==-ENXIO.
3215 		 */
3216 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3217 					__perf_event_stop, &sd);
3218 	} while (ret == -EAGAIN);
3219 
3220 	return ret;
3221 }
3222 
3223 /*
3224  * In order to contain the amount of racy and tricky in the address filter
3225  * configuration management, it is a two part process:
3226  *
3227  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3228  *      we update the addresses of corresponding vmas in
3229  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3230  * (p2) when an event is scheduled in (pmu::add), it calls
3231  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3232  *      if the generation has changed since the previous call.
3233  *
3234  * If (p1) happens while the event is active, we restart it to force (p2).
3235  *
3236  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3237  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3238  *     ioctl;
3239  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3240  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3241  *     for reading;
3242  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3243  *     of exec.
3244  */
3245 void perf_event_addr_filters_sync(struct perf_event *event)
3246 {
3247 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3248 
3249 	if (!has_addr_filter(event))
3250 		return;
3251 
3252 	raw_spin_lock(&ifh->lock);
3253 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3254 		event->pmu->addr_filters_sync(event);
3255 		event->hw.addr_filters_gen = event->addr_filters_gen;
3256 	}
3257 	raw_spin_unlock(&ifh->lock);
3258 }
3259 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3260 
3261 static int _perf_event_refresh(struct perf_event *event, int refresh)
3262 {
3263 	/*
3264 	 * not supported on inherited events
3265 	 */
3266 	if (event->attr.inherit || !is_sampling_event(event))
3267 		return -EINVAL;
3268 
3269 	atomic_add(refresh, &event->event_limit);
3270 	_perf_event_enable(event);
3271 
3272 	return 0;
3273 }
3274 
3275 /*
3276  * See perf_event_disable()
3277  */
3278 int perf_event_refresh(struct perf_event *event, int refresh)
3279 {
3280 	struct perf_event_context *ctx;
3281 	int ret;
3282 
3283 	ctx = perf_event_ctx_lock(event);
3284 	ret = _perf_event_refresh(event, refresh);
3285 	perf_event_ctx_unlock(event, ctx);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(perf_event_refresh);
3290 
3291 static int perf_event_modify_breakpoint(struct perf_event *bp,
3292 					 struct perf_event_attr *attr)
3293 {
3294 	int err;
3295 
3296 	_perf_event_disable(bp);
3297 
3298 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3299 
3300 	if (!bp->attr.disabled)
3301 		_perf_event_enable(bp);
3302 
3303 	return err;
3304 }
3305 
3306 /*
3307  * Copy event-type-independent attributes that may be modified.
3308  */
3309 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3310 					const struct perf_event_attr *from)
3311 {
3312 	to->sig_data = from->sig_data;
3313 }
3314 
3315 static int perf_event_modify_attr(struct perf_event *event,
3316 				  struct perf_event_attr *attr)
3317 {
3318 	int (*func)(struct perf_event *, struct perf_event_attr *);
3319 	struct perf_event *child;
3320 	int err;
3321 
3322 	if (event->attr.type != attr->type)
3323 		return -EINVAL;
3324 
3325 	switch (event->attr.type) {
3326 	case PERF_TYPE_BREAKPOINT:
3327 		func = perf_event_modify_breakpoint;
3328 		break;
3329 	default:
3330 		/* Place holder for future additions. */
3331 		return -EOPNOTSUPP;
3332 	}
3333 
3334 	WARN_ON_ONCE(event->ctx->parent_ctx);
3335 
3336 	mutex_lock(&event->child_mutex);
3337 	/*
3338 	 * Event-type-independent attributes must be copied before event-type
3339 	 * modification, which will validate that final attributes match the
3340 	 * source attributes after all relevant attributes have been copied.
3341 	 */
3342 	perf_event_modify_copy_attr(&event->attr, attr);
3343 	err = func(event, attr);
3344 	if (err)
3345 		goto out;
3346 	list_for_each_entry(child, &event->child_list, child_list) {
3347 		perf_event_modify_copy_attr(&child->attr, attr);
3348 		err = func(child, attr);
3349 		if (err)
3350 			goto out;
3351 	}
3352 out:
3353 	mutex_unlock(&event->child_mutex);
3354 	return err;
3355 }
3356 
3357 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3358 				enum event_type_t event_type)
3359 {
3360 	struct perf_event_context *ctx = pmu_ctx->ctx;
3361 	struct perf_event *event, *tmp;
3362 	struct pmu *pmu = pmu_ctx->pmu;
3363 
3364 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3365 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3366 
3367 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3368 		cpc->task_epc = NULL;
3369 	}
3370 
3371 	if (!(event_type & EVENT_ALL))
3372 		return;
3373 
3374 	perf_pmu_disable(pmu);
3375 	if (event_type & EVENT_PINNED) {
3376 		list_for_each_entry_safe(event, tmp,
3377 					 &pmu_ctx->pinned_active,
3378 					 active_list)
3379 			group_sched_out(event, ctx);
3380 	}
3381 
3382 	if (event_type & EVENT_FLEXIBLE) {
3383 		list_for_each_entry_safe(event, tmp,
3384 					 &pmu_ctx->flexible_active,
3385 					 active_list)
3386 			group_sched_out(event, ctx);
3387 		/*
3388 		 * Since we cleared EVENT_FLEXIBLE, also clear
3389 		 * rotate_necessary, is will be reset by
3390 		 * ctx_flexible_sched_in() when needed.
3391 		 */
3392 		pmu_ctx->rotate_necessary = 0;
3393 	}
3394 	perf_pmu_enable(pmu);
3395 }
3396 
3397 /*
3398  * Be very careful with the @pmu argument since this will change ctx state.
3399  * The @pmu argument works for ctx_resched(), because that is symmetric in
3400  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3401  *
3402  * However, if you were to be asymmetrical, you could end up with messed up
3403  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3404  * be active.
3405  */
3406 static void
3407 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3408 {
3409 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3410 	struct perf_event_pmu_context *pmu_ctx;
3411 	int is_active = ctx->is_active;
3412 	bool cgroup = event_type & EVENT_CGROUP;
3413 
3414 	event_type &= ~EVENT_CGROUP;
3415 
3416 	lockdep_assert_held(&ctx->lock);
3417 
3418 	if (likely(!ctx->nr_events)) {
3419 		/*
3420 		 * See __perf_remove_from_context().
3421 		 */
3422 		WARN_ON_ONCE(ctx->is_active);
3423 		if (ctx->task)
3424 			WARN_ON_ONCE(cpuctx->task_ctx);
3425 		return;
3426 	}
3427 
3428 	/*
3429 	 * Always update time if it was set; not only when it changes.
3430 	 * Otherwise we can 'forget' to update time for any but the last
3431 	 * context we sched out. For example:
3432 	 *
3433 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3434 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3435 	 *
3436 	 * would only update time for the pinned events.
3437 	 */
3438 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3439 
3440 	/*
3441 	 * CPU-release for the below ->is_active store,
3442 	 * see __load_acquire() in perf_event_time_now()
3443 	 */
3444 	barrier();
3445 	ctx->is_active &= ~event_type;
3446 
3447 	if (!(ctx->is_active & EVENT_ALL)) {
3448 		/*
3449 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3450 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3451 		 */
3452 		if (ctx->is_active & EVENT_FROZEN)
3453 			ctx->is_active &= EVENT_TIME_FROZEN;
3454 		else
3455 			ctx->is_active = 0;
3456 	}
3457 
3458 	if (ctx->task) {
3459 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3460 		if (!(ctx->is_active & EVENT_ALL))
3461 			cpuctx->task_ctx = NULL;
3462 	}
3463 
3464 	is_active ^= ctx->is_active; /* changed bits */
3465 
3466 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3467 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3468 }
3469 
3470 /*
3471  * Test whether two contexts are equivalent, i.e. whether they have both been
3472  * cloned from the same version of the same context.
3473  *
3474  * Equivalence is measured using a generation number in the context that is
3475  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3476  * and list_del_event().
3477  */
3478 static int context_equiv(struct perf_event_context *ctx1,
3479 			 struct perf_event_context *ctx2)
3480 {
3481 	lockdep_assert_held(&ctx1->lock);
3482 	lockdep_assert_held(&ctx2->lock);
3483 
3484 	/* Pinning disables the swap optimization */
3485 	if (ctx1->pin_count || ctx2->pin_count)
3486 		return 0;
3487 
3488 	/* If ctx1 is the parent of ctx2 */
3489 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3490 		return 1;
3491 
3492 	/* If ctx2 is the parent of ctx1 */
3493 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3494 		return 1;
3495 
3496 	/*
3497 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3498 	 * hierarchy, see perf_event_init_context().
3499 	 */
3500 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3501 			ctx1->parent_gen == ctx2->parent_gen)
3502 		return 1;
3503 
3504 	/* Unmatched */
3505 	return 0;
3506 }
3507 
3508 static void __perf_event_sync_stat(struct perf_event *event,
3509 				     struct perf_event *next_event)
3510 {
3511 	u64 value;
3512 
3513 	if (!event->attr.inherit_stat)
3514 		return;
3515 
3516 	/*
3517 	 * Update the event value, we cannot use perf_event_read()
3518 	 * because we're in the middle of a context switch and have IRQs
3519 	 * disabled, which upsets smp_call_function_single(), however
3520 	 * we know the event must be on the current CPU, therefore we
3521 	 * don't need to use it.
3522 	 */
3523 	perf_pmu_read(event);
3524 
3525 	perf_event_update_time(event);
3526 
3527 	/*
3528 	 * In order to keep per-task stats reliable we need to flip the event
3529 	 * values when we flip the contexts.
3530 	 */
3531 	value = local64_read(&next_event->count);
3532 	value = local64_xchg(&event->count, value);
3533 	local64_set(&next_event->count, value);
3534 
3535 	swap(event->total_time_enabled, next_event->total_time_enabled);
3536 	swap(event->total_time_running, next_event->total_time_running);
3537 
3538 	/*
3539 	 * Since we swizzled the values, update the user visible data too.
3540 	 */
3541 	perf_event_update_userpage(event);
3542 	perf_event_update_userpage(next_event);
3543 }
3544 
3545 static void perf_event_sync_stat(struct perf_event_context *ctx,
3546 				   struct perf_event_context *next_ctx)
3547 {
3548 	struct perf_event *event, *next_event;
3549 
3550 	if (!ctx->nr_stat)
3551 		return;
3552 
3553 	update_context_time(ctx);
3554 
3555 	event = list_first_entry(&ctx->event_list,
3556 				   struct perf_event, event_entry);
3557 
3558 	next_event = list_first_entry(&next_ctx->event_list,
3559 					struct perf_event, event_entry);
3560 
3561 	while (&event->event_entry != &ctx->event_list &&
3562 	       &next_event->event_entry != &next_ctx->event_list) {
3563 
3564 		__perf_event_sync_stat(event, next_event);
3565 
3566 		event = list_next_entry(event, event_entry);
3567 		next_event = list_next_entry(next_event, event_entry);
3568 	}
3569 }
3570 
3571 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3572 				   struct task_struct *task, bool sched_in)
3573 {
3574 	struct perf_event_pmu_context *pmu_ctx;
3575 	struct perf_cpu_pmu_context *cpc;
3576 
3577 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3578 		cpc = this_cpc(pmu_ctx->pmu);
3579 
3580 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3581 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3582 	}
3583 }
3584 
3585 static void
3586 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3587 {
3588 	struct perf_event_context *ctx = task->perf_event_ctxp;
3589 	struct perf_event_context *next_ctx;
3590 	struct perf_event_context *parent, *next_parent;
3591 	int do_switch = 1;
3592 
3593 	if (likely(!ctx))
3594 		return;
3595 
3596 	rcu_read_lock();
3597 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3598 	if (!next_ctx)
3599 		goto unlock;
3600 
3601 	parent = rcu_dereference(ctx->parent_ctx);
3602 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3603 
3604 	/* If neither context have a parent context; they cannot be clones. */
3605 	if (!parent && !next_parent)
3606 		goto unlock;
3607 
3608 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3609 		/*
3610 		 * Looks like the two contexts are clones, so we might be
3611 		 * able to optimize the context switch.  We lock both
3612 		 * contexts and check that they are clones under the
3613 		 * lock (including re-checking that neither has been
3614 		 * uncloned in the meantime).  It doesn't matter which
3615 		 * order we take the locks because no other cpu could
3616 		 * be trying to lock both of these tasks.
3617 		 */
3618 		raw_spin_lock(&ctx->lock);
3619 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3620 		if (context_equiv(ctx, next_ctx)) {
3621 
3622 			perf_ctx_disable(ctx, false);
3623 
3624 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3625 			if (local_read(&ctx->nr_no_switch_fast) ||
3626 			    local_read(&next_ctx->nr_no_switch_fast)) {
3627 				/*
3628 				 * Must not swap out ctx when there's pending
3629 				 * events that rely on the ctx->task relation.
3630 				 *
3631 				 * Likewise, when a context contains inherit +
3632 				 * SAMPLE_READ events they should be switched
3633 				 * out using the slow path so that they are
3634 				 * treated as if they were distinct contexts.
3635 				 */
3636 				raw_spin_unlock(&next_ctx->lock);
3637 				rcu_read_unlock();
3638 				goto inside_switch;
3639 			}
3640 
3641 			WRITE_ONCE(ctx->task, next);
3642 			WRITE_ONCE(next_ctx->task, task);
3643 
3644 			perf_ctx_sched_task_cb(ctx, task, false);
3645 
3646 			perf_ctx_enable(ctx, false);
3647 
3648 			/*
3649 			 * RCU_INIT_POINTER here is safe because we've not
3650 			 * modified the ctx and the above modification of
3651 			 * ctx->task is immaterial since this value is
3652 			 * always verified under ctx->lock which we're now
3653 			 * holding.
3654 			 */
3655 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3656 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3657 
3658 			do_switch = 0;
3659 
3660 			perf_event_sync_stat(ctx, next_ctx);
3661 		}
3662 		raw_spin_unlock(&next_ctx->lock);
3663 		raw_spin_unlock(&ctx->lock);
3664 	}
3665 unlock:
3666 	rcu_read_unlock();
3667 
3668 	if (do_switch) {
3669 		raw_spin_lock(&ctx->lock);
3670 		perf_ctx_disable(ctx, false);
3671 
3672 inside_switch:
3673 		perf_ctx_sched_task_cb(ctx, task, false);
3674 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3675 
3676 		perf_ctx_enable(ctx, false);
3677 		raw_spin_unlock(&ctx->lock);
3678 	}
3679 }
3680 
3681 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3682 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3683 
3684 void perf_sched_cb_dec(struct pmu *pmu)
3685 {
3686 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3687 
3688 	this_cpu_dec(perf_sched_cb_usages);
3689 	barrier();
3690 
3691 	if (!--cpc->sched_cb_usage)
3692 		list_del(&cpc->sched_cb_entry);
3693 }
3694 
3695 
3696 void perf_sched_cb_inc(struct pmu *pmu)
3697 {
3698 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3699 
3700 	if (!cpc->sched_cb_usage++)
3701 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3702 
3703 	barrier();
3704 	this_cpu_inc(perf_sched_cb_usages);
3705 }
3706 
3707 /*
3708  * This function provides the context switch callback to the lower code
3709  * layer. It is invoked ONLY when the context switch callback is enabled.
3710  *
3711  * This callback is relevant even to per-cpu events; for example multi event
3712  * PEBS requires this to provide PID/TID information. This requires we flush
3713  * all queued PEBS records before we context switch to a new task.
3714  */
3715 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3716 				  struct task_struct *task, bool sched_in)
3717 {
3718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3719 	struct pmu *pmu;
3720 
3721 	pmu = cpc->epc.pmu;
3722 
3723 	/* software PMUs will not have sched_task */
3724 	if (WARN_ON_ONCE(!pmu->sched_task))
3725 		return;
3726 
3727 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3728 	perf_pmu_disable(pmu);
3729 
3730 	pmu->sched_task(cpc->task_epc, task, sched_in);
3731 
3732 	perf_pmu_enable(pmu);
3733 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3734 }
3735 
3736 static void perf_pmu_sched_task(struct task_struct *prev,
3737 				struct task_struct *next,
3738 				bool sched_in)
3739 {
3740 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3741 	struct perf_cpu_pmu_context *cpc;
3742 
3743 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3744 	if (prev == next || cpuctx->task_ctx)
3745 		return;
3746 
3747 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3748 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3749 }
3750 
3751 static void perf_event_switch(struct task_struct *task,
3752 			      struct task_struct *next_prev, bool sched_in);
3753 
3754 /*
3755  * Called from scheduler to remove the events of the current task,
3756  * with interrupts disabled.
3757  *
3758  * We stop each event and update the event value in event->count.
3759  *
3760  * This does not protect us against NMI, but disable()
3761  * sets the disabled bit in the control field of event _before_
3762  * accessing the event control register. If a NMI hits, then it will
3763  * not restart the event.
3764  */
3765 void __perf_event_task_sched_out(struct task_struct *task,
3766 				 struct task_struct *next)
3767 {
3768 	if (__this_cpu_read(perf_sched_cb_usages))
3769 		perf_pmu_sched_task(task, next, false);
3770 
3771 	if (atomic_read(&nr_switch_events))
3772 		perf_event_switch(task, next, false);
3773 
3774 	perf_event_context_sched_out(task, next);
3775 
3776 	/*
3777 	 * if cgroup events exist on this CPU, then we need
3778 	 * to check if we have to switch out PMU state.
3779 	 * cgroup event are system-wide mode only
3780 	 */
3781 	perf_cgroup_switch(next);
3782 }
3783 
3784 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3785 {
3786 	const struct perf_event *le = *(const struct perf_event **)l;
3787 	const struct perf_event *re = *(const struct perf_event **)r;
3788 
3789 	return le->group_index < re->group_index;
3790 }
3791 
3792 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3793 
3794 static const struct min_heap_callbacks perf_min_heap = {
3795 	.less = perf_less_group_idx,
3796 	.swp = NULL,
3797 };
3798 
3799 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3800 {
3801 	struct perf_event **itrs = heap->data;
3802 
3803 	if (event) {
3804 		itrs[heap->nr] = event;
3805 		heap->nr++;
3806 	}
3807 }
3808 
3809 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3810 {
3811 	struct perf_cpu_pmu_context *cpc;
3812 
3813 	if (!pmu_ctx->ctx->task)
3814 		return;
3815 
3816 	cpc = this_cpc(pmu_ctx->pmu);
3817 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3818 	cpc->task_epc = pmu_ctx;
3819 }
3820 
3821 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3822 				struct perf_event_groups *groups, int cpu,
3823 				struct pmu *pmu,
3824 				int (*func)(struct perf_event *, void *),
3825 				void *data)
3826 {
3827 #ifdef CONFIG_CGROUP_PERF
3828 	struct cgroup_subsys_state *css = NULL;
3829 #endif
3830 	struct perf_cpu_context *cpuctx = NULL;
3831 	/* Space for per CPU and/or any CPU event iterators. */
3832 	struct perf_event *itrs[2];
3833 	struct perf_event_min_heap event_heap;
3834 	struct perf_event **evt;
3835 	int ret;
3836 
3837 	if (pmu->filter && pmu->filter(pmu, cpu))
3838 		return 0;
3839 
3840 	if (!ctx->task) {
3841 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3842 		event_heap = (struct perf_event_min_heap){
3843 			.data = cpuctx->heap,
3844 			.nr = 0,
3845 			.size = cpuctx->heap_size,
3846 		};
3847 
3848 		lockdep_assert_held(&cpuctx->ctx.lock);
3849 
3850 #ifdef CONFIG_CGROUP_PERF
3851 		if (cpuctx->cgrp)
3852 			css = &cpuctx->cgrp->css;
3853 #endif
3854 	} else {
3855 		event_heap = (struct perf_event_min_heap){
3856 			.data = itrs,
3857 			.nr = 0,
3858 			.size = ARRAY_SIZE(itrs),
3859 		};
3860 		/* Events not within a CPU context may be on any CPU. */
3861 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3862 	}
3863 	evt = event_heap.data;
3864 
3865 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3866 
3867 #ifdef CONFIG_CGROUP_PERF
3868 	for (; css; css = css->parent)
3869 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3870 #endif
3871 
3872 	if (event_heap.nr) {
3873 		__link_epc((*evt)->pmu_ctx);
3874 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3875 	}
3876 
3877 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3878 
3879 	while (event_heap.nr) {
3880 		ret = func(*evt, data);
3881 		if (ret)
3882 			return ret;
3883 
3884 		*evt = perf_event_groups_next(*evt, pmu);
3885 		if (*evt)
3886 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3887 		else
3888 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 /*
3895  * Because the userpage is strictly per-event (there is no concept of context,
3896  * so there cannot be a context indirection), every userpage must be updated
3897  * when context time starts :-(
3898  *
3899  * IOW, we must not miss EVENT_TIME edges.
3900  */
3901 static inline bool event_update_userpage(struct perf_event *event)
3902 {
3903 	if (likely(!atomic_read(&event->mmap_count)))
3904 		return false;
3905 
3906 	perf_event_update_time(event);
3907 	perf_event_update_userpage(event);
3908 
3909 	return true;
3910 }
3911 
3912 static inline void group_update_userpage(struct perf_event *group_event)
3913 {
3914 	struct perf_event *event;
3915 
3916 	if (!event_update_userpage(group_event))
3917 		return;
3918 
3919 	for_each_sibling_event(event, group_event)
3920 		event_update_userpage(event);
3921 }
3922 
3923 static int merge_sched_in(struct perf_event *event, void *data)
3924 {
3925 	struct perf_event_context *ctx = event->ctx;
3926 	int *can_add_hw = data;
3927 
3928 	if (event->state <= PERF_EVENT_STATE_OFF)
3929 		return 0;
3930 
3931 	if (!event_filter_match(event))
3932 		return 0;
3933 
3934 	if (group_can_go_on(event, *can_add_hw)) {
3935 		if (!group_sched_in(event, ctx))
3936 			list_add_tail(&event->active_list, get_event_list(event));
3937 	}
3938 
3939 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3940 		*can_add_hw = 0;
3941 		if (event->attr.pinned) {
3942 			perf_cgroup_event_disable(event, ctx);
3943 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3944 
3945 			if (*perf_event_fasync(event))
3946 				event->pending_kill = POLL_HUP;
3947 
3948 			perf_event_wakeup(event);
3949 		} else {
3950 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
3951 
3952 			event->pmu_ctx->rotate_necessary = 1;
3953 			perf_mux_hrtimer_restart(cpc);
3954 			group_update_userpage(event);
3955 		}
3956 	}
3957 
3958 	return 0;
3959 }
3960 
3961 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3962 				struct perf_event_groups *groups,
3963 				struct pmu *pmu)
3964 {
3965 	int can_add_hw = 1;
3966 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3967 			   merge_sched_in, &can_add_hw);
3968 }
3969 
3970 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3971 			       enum event_type_t event_type)
3972 {
3973 	struct perf_event_context *ctx = pmu_ctx->ctx;
3974 
3975 	if (event_type & EVENT_PINNED)
3976 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3977 	if (event_type & EVENT_FLEXIBLE)
3978 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3979 }
3980 
3981 static void
3982 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3983 {
3984 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3985 	struct perf_event_pmu_context *pmu_ctx;
3986 	int is_active = ctx->is_active;
3987 	bool cgroup = event_type & EVENT_CGROUP;
3988 
3989 	event_type &= ~EVENT_CGROUP;
3990 
3991 	lockdep_assert_held(&ctx->lock);
3992 
3993 	if (likely(!ctx->nr_events))
3994 		return;
3995 
3996 	if (!(is_active & EVENT_TIME)) {
3997 		/* start ctx time */
3998 		__update_context_time(ctx, false);
3999 		perf_cgroup_set_timestamp(cpuctx);
4000 		/*
4001 		 * CPU-release for the below ->is_active store,
4002 		 * see __load_acquire() in perf_event_time_now()
4003 		 */
4004 		barrier();
4005 	}
4006 
4007 	ctx->is_active |= (event_type | EVENT_TIME);
4008 	if (ctx->task) {
4009 		if (!(is_active & EVENT_ALL))
4010 			cpuctx->task_ctx = ctx;
4011 		else
4012 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4013 	}
4014 
4015 	is_active ^= ctx->is_active; /* changed bits */
4016 
4017 	/*
4018 	 * First go through the list and put on any pinned groups
4019 	 * in order to give them the best chance of going on.
4020 	 */
4021 	if (is_active & EVENT_PINNED) {
4022 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4023 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4024 	}
4025 
4026 	/* Then walk through the lower prio flexible groups */
4027 	if (is_active & EVENT_FLEXIBLE) {
4028 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4029 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4030 	}
4031 }
4032 
4033 static void perf_event_context_sched_in(struct task_struct *task)
4034 {
4035 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4036 	struct perf_event_context *ctx;
4037 
4038 	rcu_read_lock();
4039 	ctx = rcu_dereference(task->perf_event_ctxp);
4040 	if (!ctx)
4041 		goto rcu_unlock;
4042 
4043 	if (cpuctx->task_ctx == ctx) {
4044 		perf_ctx_lock(cpuctx, ctx);
4045 		perf_ctx_disable(ctx, false);
4046 
4047 		perf_ctx_sched_task_cb(ctx, task, true);
4048 
4049 		perf_ctx_enable(ctx, false);
4050 		perf_ctx_unlock(cpuctx, ctx);
4051 		goto rcu_unlock;
4052 	}
4053 
4054 	perf_ctx_lock(cpuctx, ctx);
4055 	/*
4056 	 * We must check ctx->nr_events while holding ctx->lock, such
4057 	 * that we serialize against perf_install_in_context().
4058 	 */
4059 	if (!ctx->nr_events)
4060 		goto unlock;
4061 
4062 	perf_ctx_disable(ctx, false);
4063 	/*
4064 	 * We want to keep the following priority order:
4065 	 * cpu pinned (that don't need to move), task pinned,
4066 	 * cpu flexible, task flexible.
4067 	 *
4068 	 * However, if task's ctx is not carrying any pinned
4069 	 * events, no need to flip the cpuctx's events around.
4070 	 */
4071 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4072 		perf_ctx_disable(&cpuctx->ctx, false);
4073 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4074 	}
4075 
4076 	perf_event_sched_in(cpuctx, ctx, NULL);
4077 
4078 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4079 
4080 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4081 		perf_ctx_enable(&cpuctx->ctx, false);
4082 
4083 	perf_ctx_enable(ctx, false);
4084 
4085 unlock:
4086 	perf_ctx_unlock(cpuctx, ctx);
4087 rcu_unlock:
4088 	rcu_read_unlock();
4089 }
4090 
4091 /*
4092  * Called from scheduler to add the events of the current task
4093  * with interrupts disabled.
4094  *
4095  * We restore the event value and then enable it.
4096  *
4097  * This does not protect us against NMI, but enable()
4098  * sets the enabled bit in the control field of event _before_
4099  * accessing the event control register. If a NMI hits, then it will
4100  * keep the event running.
4101  */
4102 void __perf_event_task_sched_in(struct task_struct *prev,
4103 				struct task_struct *task)
4104 {
4105 	perf_event_context_sched_in(task);
4106 
4107 	if (atomic_read(&nr_switch_events))
4108 		perf_event_switch(task, prev, true);
4109 
4110 	if (__this_cpu_read(perf_sched_cb_usages))
4111 		perf_pmu_sched_task(prev, task, true);
4112 }
4113 
4114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4115 {
4116 	u64 frequency = event->attr.sample_freq;
4117 	u64 sec = NSEC_PER_SEC;
4118 	u64 divisor, dividend;
4119 
4120 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4121 
4122 	count_fls = fls64(count);
4123 	nsec_fls = fls64(nsec);
4124 	frequency_fls = fls64(frequency);
4125 	sec_fls = 30;
4126 
4127 	/*
4128 	 * We got @count in @nsec, with a target of sample_freq HZ
4129 	 * the target period becomes:
4130 	 *
4131 	 *             @count * 10^9
4132 	 * period = -------------------
4133 	 *          @nsec * sample_freq
4134 	 *
4135 	 */
4136 
4137 	/*
4138 	 * Reduce accuracy by one bit such that @a and @b converge
4139 	 * to a similar magnitude.
4140 	 */
4141 #define REDUCE_FLS(a, b)		\
4142 do {					\
4143 	if (a##_fls > b##_fls) {	\
4144 		a >>= 1;		\
4145 		a##_fls--;		\
4146 	} else {			\
4147 		b >>= 1;		\
4148 		b##_fls--;		\
4149 	}				\
4150 } while (0)
4151 
4152 	/*
4153 	 * Reduce accuracy until either term fits in a u64, then proceed with
4154 	 * the other, so that finally we can do a u64/u64 division.
4155 	 */
4156 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4157 		REDUCE_FLS(nsec, frequency);
4158 		REDUCE_FLS(sec, count);
4159 	}
4160 
4161 	if (count_fls + sec_fls > 64) {
4162 		divisor = nsec * frequency;
4163 
4164 		while (count_fls + sec_fls > 64) {
4165 			REDUCE_FLS(count, sec);
4166 			divisor >>= 1;
4167 		}
4168 
4169 		dividend = count * sec;
4170 	} else {
4171 		dividend = count * sec;
4172 
4173 		while (nsec_fls + frequency_fls > 64) {
4174 			REDUCE_FLS(nsec, frequency);
4175 			dividend >>= 1;
4176 		}
4177 
4178 		divisor = nsec * frequency;
4179 	}
4180 
4181 	if (!divisor)
4182 		return dividend;
4183 
4184 	return div64_u64(dividend, divisor);
4185 }
4186 
4187 static DEFINE_PER_CPU(int, perf_throttled_count);
4188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4189 
4190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4191 {
4192 	struct hw_perf_event *hwc = &event->hw;
4193 	s64 period, sample_period;
4194 	s64 delta;
4195 
4196 	period = perf_calculate_period(event, nsec, count);
4197 
4198 	delta = (s64)(period - hwc->sample_period);
4199 	if (delta >= 0)
4200 		delta += 7;
4201 	else
4202 		delta -= 7;
4203 	delta /= 8; /* low pass filter */
4204 
4205 	sample_period = hwc->sample_period + delta;
4206 
4207 	if (!sample_period)
4208 		sample_period = 1;
4209 
4210 	hwc->sample_period = sample_period;
4211 
4212 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4213 		if (disable)
4214 			event->pmu->stop(event, PERF_EF_UPDATE);
4215 
4216 		local64_set(&hwc->period_left, 0);
4217 
4218 		if (disable)
4219 			event->pmu->start(event, PERF_EF_RELOAD);
4220 	}
4221 }
4222 
4223 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4224 {
4225 	struct perf_event *event;
4226 	struct hw_perf_event *hwc;
4227 	u64 now, period = TICK_NSEC;
4228 	s64 delta;
4229 
4230 	list_for_each_entry(event, event_list, active_list) {
4231 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4232 			continue;
4233 
4234 		// XXX use visit thingy to avoid the -1,cpu match
4235 		if (!event_filter_match(event))
4236 			continue;
4237 
4238 		hwc = &event->hw;
4239 
4240 		if (hwc->interrupts == MAX_INTERRUPTS) {
4241 			hwc->interrupts = 0;
4242 			perf_log_throttle(event, 1);
4243 			if (!event->attr.freq || !event->attr.sample_freq)
4244 				event->pmu->start(event, 0);
4245 		}
4246 
4247 		if (!event->attr.freq || !event->attr.sample_freq)
4248 			continue;
4249 
4250 		/*
4251 		 * stop the event and update event->count
4252 		 */
4253 		event->pmu->stop(event, PERF_EF_UPDATE);
4254 
4255 		now = local64_read(&event->count);
4256 		delta = now - hwc->freq_count_stamp;
4257 		hwc->freq_count_stamp = now;
4258 
4259 		/*
4260 		 * restart the event
4261 		 * reload only if value has changed
4262 		 * we have stopped the event so tell that
4263 		 * to perf_adjust_period() to avoid stopping it
4264 		 * twice.
4265 		 */
4266 		if (delta > 0)
4267 			perf_adjust_period(event, period, delta, false);
4268 
4269 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4270 	}
4271 }
4272 
4273 /*
4274  * combine freq adjustment with unthrottling to avoid two passes over the
4275  * events. At the same time, make sure, having freq events does not change
4276  * the rate of unthrottling as that would introduce bias.
4277  */
4278 static void
4279 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4280 {
4281 	struct perf_event_pmu_context *pmu_ctx;
4282 
4283 	/*
4284 	 * only need to iterate over all events iff:
4285 	 * - context have events in frequency mode (needs freq adjust)
4286 	 * - there are events to unthrottle on this cpu
4287 	 */
4288 	if (!(ctx->nr_freq || unthrottle))
4289 		return;
4290 
4291 	raw_spin_lock(&ctx->lock);
4292 
4293 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4294 		if (!(pmu_ctx->nr_freq || unthrottle))
4295 			continue;
4296 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4297 			continue;
4298 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4299 			continue;
4300 
4301 		perf_pmu_disable(pmu_ctx->pmu);
4302 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4303 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4304 		perf_pmu_enable(pmu_ctx->pmu);
4305 	}
4306 
4307 	raw_spin_unlock(&ctx->lock);
4308 }
4309 
4310 /*
4311  * Move @event to the tail of the @ctx's elegible events.
4312  */
4313 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4314 {
4315 	/*
4316 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4317 	 * disabled by the inheritance code.
4318 	 */
4319 	if (ctx->rotate_disable)
4320 		return;
4321 
4322 	perf_event_groups_delete(&ctx->flexible_groups, event);
4323 	perf_event_groups_insert(&ctx->flexible_groups, event);
4324 }
4325 
4326 /* pick an event from the flexible_groups to rotate */
4327 static inline struct perf_event *
4328 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4329 {
4330 	struct perf_event *event;
4331 	struct rb_node *node;
4332 	struct rb_root *tree;
4333 	struct __group_key key = {
4334 		.pmu = pmu_ctx->pmu,
4335 	};
4336 
4337 	/* pick the first active flexible event */
4338 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4339 					 struct perf_event, active_list);
4340 	if (event)
4341 		goto out;
4342 
4343 	/* if no active flexible event, pick the first event */
4344 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4345 
4346 	if (!pmu_ctx->ctx->task) {
4347 		key.cpu = smp_processor_id();
4348 
4349 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4350 		if (node)
4351 			event = __node_2_pe(node);
4352 		goto out;
4353 	}
4354 
4355 	key.cpu = -1;
4356 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4357 	if (node) {
4358 		event = __node_2_pe(node);
4359 		goto out;
4360 	}
4361 
4362 	key.cpu = smp_processor_id();
4363 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4364 	if (node)
4365 		event = __node_2_pe(node);
4366 
4367 out:
4368 	/*
4369 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4370 	 * finds there are unschedulable events, it will set it again.
4371 	 */
4372 	pmu_ctx->rotate_necessary = 0;
4373 
4374 	return event;
4375 }
4376 
4377 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4378 {
4379 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4380 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4381 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4382 	int cpu_rotate, task_rotate;
4383 	struct pmu *pmu;
4384 
4385 	/*
4386 	 * Since we run this from IRQ context, nobody can install new
4387 	 * events, thus the event count values are stable.
4388 	 */
4389 
4390 	cpu_epc = &cpc->epc;
4391 	pmu = cpu_epc->pmu;
4392 	task_epc = cpc->task_epc;
4393 
4394 	cpu_rotate = cpu_epc->rotate_necessary;
4395 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4396 
4397 	if (!(cpu_rotate || task_rotate))
4398 		return false;
4399 
4400 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4401 	perf_pmu_disable(pmu);
4402 
4403 	if (task_rotate)
4404 		task_event = ctx_event_to_rotate(task_epc);
4405 	if (cpu_rotate)
4406 		cpu_event = ctx_event_to_rotate(cpu_epc);
4407 
4408 	/*
4409 	 * As per the order given at ctx_resched() first 'pop' task flexible
4410 	 * and then, if needed CPU flexible.
4411 	 */
4412 	if (task_event || (task_epc && cpu_event)) {
4413 		update_context_time(task_epc->ctx);
4414 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4415 	}
4416 
4417 	if (cpu_event) {
4418 		update_context_time(&cpuctx->ctx);
4419 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4420 		rotate_ctx(&cpuctx->ctx, cpu_event);
4421 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4422 	}
4423 
4424 	if (task_event)
4425 		rotate_ctx(task_epc->ctx, task_event);
4426 
4427 	if (task_event || (task_epc && cpu_event))
4428 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4429 
4430 	perf_pmu_enable(pmu);
4431 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4432 
4433 	return true;
4434 }
4435 
4436 void perf_event_task_tick(void)
4437 {
4438 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4439 	struct perf_event_context *ctx;
4440 	int throttled;
4441 
4442 	lockdep_assert_irqs_disabled();
4443 
4444 	__this_cpu_inc(perf_throttled_seq);
4445 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4446 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4447 
4448 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4449 
4450 	rcu_read_lock();
4451 	ctx = rcu_dereference(current->perf_event_ctxp);
4452 	if (ctx)
4453 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4454 	rcu_read_unlock();
4455 }
4456 
4457 static int event_enable_on_exec(struct perf_event *event,
4458 				struct perf_event_context *ctx)
4459 {
4460 	if (!event->attr.enable_on_exec)
4461 		return 0;
4462 
4463 	event->attr.enable_on_exec = 0;
4464 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4465 		return 0;
4466 
4467 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4468 
4469 	return 1;
4470 }
4471 
4472 /*
4473  * Enable all of a task's events that have been marked enable-on-exec.
4474  * This expects task == current.
4475  */
4476 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4477 {
4478 	struct perf_event_context *clone_ctx = NULL;
4479 	enum event_type_t event_type = 0;
4480 	struct perf_cpu_context *cpuctx;
4481 	struct perf_event *event;
4482 	unsigned long flags;
4483 	int enabled = 0;
4484 
4485 	local_irq_save(flags);
4486 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4487 		goto out;
4488 
4489 	if (!ctx->nr_events)
4490 		goto out;
4491 
4492 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4493 	perf_ctx_lock(cpuctx, ctx);
4494 	ctx_time_freeze(cpuctx, ctx);
4495 
4496 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4497 		enabled |= event_enable_on_exec(event, ctx);
4498 		event_type |= get_event_type(event);
4499 	}
4500 
4501 	/*
4502 	 * Unclone and reschedule this context if we enabled any event.
4503 	 */
4504 	if (enabled) {
4505 		clone_ctx = unclone_ctx(ctx);
4506 		ctx_resched(cpuctx, ctx, NULL, event_type);
4507 	}
4508 	perf_ctx_unlock(cpuctx, ctx);
4509 
4510 out:
4511 	local_irq_restore(flags);
4512 
4513 	if (clone_ctx)
4514 		put_ctx(clone_ctx);
4515 }
4516 
4517 static void perf_remove_from_owner(struct perf_event *event);
4518 static void perf_event_exit_event(struct perf_event *event,
4519 				  struct perf_event_context *ctx);
4520 
4521 /*
4522  * Removes all events from the current task that have been marked
4523  * remove-on-exec, and feeds their values back to parent events.
4524  */
4525 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4526 {
4527 	struct perf_event_context *clone_ctx = NULL;
4528 	struct perf_event *event, *next;
4529 	unsigned long flags;
4530 	bool modified = false;
4531 
4532 	mutex_lock(&ctx->mutex);
4533 
4534 	if (WARN_ON_ONCE(ctx->task != current))
4535 		goto unlock;
4536 
4537 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4538 		if (!event->attr.remove_on_exec)
4539 			continue;
4540 
4541 		if (!is_kernel_event(event))
4542 			perf_remove_from_owner(event);
4543 
4544 		modified = true;
4545 
4546 		perf_event_exit_event(event, ctx);
4547 	}
4548 
4549 	raw_spin_lock_irqsave(&ctx->lock, flags);
4550 	if (modified)
4551 		clone_ctx = unclone_ctx(ctx);
4552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4553 
4554 unlock:
4555 	mutex_unlock(&ctx->mutex);
4556 
4557 	if (clone_ctx)
4558 		put_ctx(clone_ctx);
4559 }
4560 
4561 struct perf_read_data {
4562 	struct perf_event *event;
4563 	bool group;
4564 	int ret;
4565 };
4566 
4567 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4568 
4569 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4570 {
4571 	int local_cpu = smp_processor_id();
4572 	u16 local_pkg, event_pkg;
4573 
4574 	if ((unsigned)event_cpu >= nr_cpu_ids)
4575 		return event_cpu;
4576 
4577 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4578 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4579 
4580 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4581 			return local_cpu;
4582 	}
4583 
4584 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4585 		event_pkg = topology_physical_package_id(event_cpu);
4586 		local_pkg = topology_physical_package_id(local_cpu);
4587 
4588 		if (event_pkg == local_pkg)
4589 			return local_cpu;
4590 	}
4591 
4592 	return event_cpu;
4593 }
4594 
4595 /*
4596  * Cross CPU call to read the hardware event
4597  */
4598 static void __perf_event_read(void *info)
4599 {
4600 	struct perf_read_data *data = info;
4601 	struct perf_event *sub, *event = data->event;
4602 	struct perf_event_context *ctx = event->ctx;
4603 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4604 	struct pmu *pmu = event->pmu;
4605 
4606 	/*
4607 	 * If this is a task context, we need to check whether it is
4608 	 * the current task context of this cpu.  If not it has been
4609 	 * scheduled out before the smp call arrived.  In that case
4610 	 * event->count would have been updated to a recent sample
4611 	 * when the event was scheduled out.
4612 	 */
4613 	if (ctx->task && cpuctx->task_ctx != ctx)
4614 		return;
4615 
4616 	raw_spin_lock(&ctx->lock);
4617 	ctx_time_update_event(ctx, event);
4618 
4619 	perf_event_update_time(event);
4620 	if (data->group)
4621 		perf_event_update_sibling_time(event);
4622 
4623 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4624 		goto unlock;
4625 
4626 	if (!data->group) {
4627 		pmu->read(event);
4628 		data->ret = 0;
4629 		goto unlock;
4630 	}
4631 
4632 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4633 
4634 	pmu->read(event);
4635 
4636 	for_each_sibling_event(sub, event)
4637 		perf_pmu_read(sub);
4638 
4639 	data->ret = pmu->commit_txn(pmu);
4640 
4641 unlock:
4642 	raw_spin_unlock(&ctx->lock);
4643 }
4644 
4645 static inline u64 perf_event_count(struct perf_event *event, bool self)
4646 {
4647 	if (self)
4648 		return local64_read(&event->count);
4649 
4650 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4651 }
4652 
4653 static void calc_timer_values(struct perf_event *event,
4654 				u64 *now,
4655 				u64 *enabled,
4656 				u64 *running)
4657 {
4658 	u64 ctx_time;
4659 
4660 	*now = perf_clock();
4661 	ctx_time = perf_event_time_now(event, *now);
4662 	__perf_update_times(event, ctx_time, enabled, running);
4663 }
4664 
4665 /*
4666  * NMI-safe method to read a local event, that is an event that
4667  * is:
4668  *   - either for the current task, or for this CPU
4669  *   - does not have inherit set, for inherited task events
4670  *     will not be local and we cannot read them atomically
4671  *   - must not have a pmu::count method
4672  */
4673 int perf_event_read_local(struct perf_event *event, u64 *value,
4674 			  u64 *enabled, u64 *running)
4675 {
4676 	unsigned long flags;
4677 	int event_oncpu;
4678 	int event_cpu;
4679 	int ret = 0;
4680 
4681 	/*
4682 	 * Disabling interrupts avoids all counter scheduling (context
4683 	 * switches, timer based rotation and IPIs).
4684 	 */
4685 	local_irq_save(flags);
4686 
4687 	/*
4688 	 * It must not be an event with inherit set, we cannot read
4689 	 * all child counters from atomic context.
4690 	 */
4691 	if (event->attr.inherit) {
4692 		ret = -EOPNOTSUPP;
4693 		goto out;
4694 	}
4695 
4696 	/* If this is a per-task event, it must be for current */
4697 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4698 	    event->hw.target != current) {
4699 		ret = -EINVAL;
4700 		goto out;
4701 	}
4702 
4703 	/*
4704 	 * Get the event CPU numbers, and adjust them to local if the event is
4705 	 * a per-package event that can be read locally
4706 	 */
4707 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4708 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4709 
4710 	/* If this is a per-CPU event, it must be for this CPU */
4711 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4712 	    event_cpu != smp_processor_id()) {
4713 		ret = -EINVAL;
4714 		goto out;
4715 	}
4716 
4717 	/* If this is a pinned event it must be running on this CPU */
4718 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4719 		ret = -EBUSY;
4720 		goto out;
4721 	}
4722 
4723 	/*
4724 	 * If the event is currently on this CPU, its either a per-task event,
4725 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4726 	 * oncpu == -1).
4727 	 */
4728 	if (event_oncpu == smp_processor_id())
4729 		event->pmu->read(event);
4730 
4731 	*value = local64_read(&event->count);
4732 	if (enabled || running) {
4733 		u64 __enabled, __running, __now;
4734 
4735 		calc_timer_values(event, &__now, &__enabled, &__running);
4736 		if (enabled)
4737 			*enabled = __enabled;
4738 		if (running)
4739 			*running = __running;
4740 	}
4741 out:
4742 	local_irq_restore(flags);
4743 
4744 	return ret;
4745 }
4746 
4747 static int perf_event_read(struct perf_event *event, bool group)
4748 {
4749 	enum perf_event_state state = READ_ONCE(event->state);
4750 	int event_cpu, ret = 0;
4751 
4752 	/*
4753 	 * If event is enabled and currently active on a CPU, update the
4754 	 * value in the event structure:
4755 	 */
4756 again:
4757 	if (state == PERF_EVENT_STATE_ACTIVE) {
4758 		struct perf_read_data data;
4759 
4760 		/*
4761 		 * Orders the ->state and ->oncpu loads such that if we see
4762 		 * ACTIVE we must also see the right ->oncpu.
4763 		 *
4764 		 * Matches the smp_wmb() from event_sched_in().
4765 		 */
4766 		smp_rmb();
4767 
4768 		event_cpu = READ_ONCE(event->oncpu);
4769 		if ((unsigned)event_cpu >= nr_cpu_ids)
4770 			return 0;
4771 
4772 		data = (struct perf_read_data){
4773 			.event = event,
4774 			.group = group,
4775 			.ret = 0,
4776 		};
4777 
4778 		preempt_disable();
4779 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4780 
4781 		/*
4782 		 * Purposely ignore the smp_call_function_single() return
4783 		 * value.
4784 		 *
4785 		 * If event_cpu isn't a valid CPU it means the event got
4786 		 * scheduled out and that will have updated the event count.
4787 		 *
4788 		 * Therefore, either way, we'll have an up-to-date event count
4789 		 * after this.
4790 		 */
4791 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4792 		preempt_enable();
4793 		ret = data.ret;
4794 
4795 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4796 		struct perf_event_context *ctx = event->ctx;
4797 		unsigned long flags;
4798 
4799 		raw_spin_lock_irqsave(&ctx->lock, flags);
4800 		state = event->state;
4801 		if (state != PERF_EVENT_STATE_INACTIVE) {
4802 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4803 			goto again;
4804 		}
4805 
4806 		/*
4807 		 * May read while context is not active (e.g., thread is
4808 		 * blocked), in that case we cannot update context time
4809 		 */
4810 		ctx_time_update_event(ctx, event);
4811 
4812 		perf_event_update_time(event);
4813 		if (group)
4814 			perf_event_update_sibling_time(event);
4815 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4816 	}
4817 
4818 	return ret;
4819 }
4820 
4821 /*
4822  * Initialize the perf_event context in a task_struct:
4823  */
4824 static void __perf_event_init_context(struct perf_event_context *ctx)
4825 {
4826 	raw_spin_lock_init(&ctx->lock);
4827 	mutex_init(&ctx->mutex);
4828 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4829 	perf_event_groups_init(&ctx->pinned_groups);
4830 	perf_event_groups_init(&ctx->flexible_groups);
4831 	INIT_LIST_HEAD(&ctx->event_list);
4832 	refcount_set(&ctx->refcount, 1);
4833 }
4834 
4835 static void
4836 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4837 {
4838 	epc->pmu = pmu;
4839 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4840 	INIT_LIST_HEAD(&epc->pinned_active);
4841 	INIT_LIST_HEAD(&epc->flexible_active);
4842 	atomic_set(&epc->refcount, 1);
4843 }
4844 
4845 static struct perf_event_context *
4846 alloc_perf_context(struct task_struct *task)
4847 {
4848 	struct perf_event_context *ctx;
4849 
4850 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4851 	if (!ctx)
4852 		return NULL;
4853 
4854 	__perf_event_init_context(ctx);
4855 	if (task)
4856 		ctx->task = get_task_struct(task);
4857 
4858 	return ctx;
4859 }
4860 
4861 static struct task_struct *
4862 find_lively_task_by_vpid(pid_t vpid)
4863 {
4864 	struct task_struct *task;
4865 
4866 	rcu_read_lock();
4867 	if (!vpid)
4868 		task = current;
4869 	else
4870 		task = find_task_by_vpid(vpid);
4871 	if (task)
4872 		get_task_struct(task);
4873 	rcu_read_unlock();
4874 
4875 	if (!task)
4876 		return ERR_PTR(-ESRCH);
4877 
4878 	return task;
4879 }
4880 
4881 /*
4882  * Returns a matching context with refcount and pincount.
4883  */
4884 static struct perf_event_context *
4885 find_get_context(struct task_struct *task, struct perf_event *event)
4886 {
4887 	struct perf_event_context *ctx, *clone_ctx = NULL;
4888 	struct perf_cpu_context *cpuctx;
4889 	unsigned long flags;
4890 	int err;
4891 
4892 	if (!task) {
4893 		/* Must be root to operate on a CPU event: */
4894 		err = perf_allow_cpu();
4895 		if (err)
4896 			return ERR_PTR(err);
4897 
4898 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4899 		ctx = &cpuctx->ctx;
4900 		get_ctx(ctx);
4901 		raw_spin_lock_irqsave(&ctx->lock, flags);
4902 		++ctx->pin_count;
4903 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4904 
4905 		return ctx;
4906 	}
4907 
4908 	err = -EINVAL;
4909 retry:
4910 	ctx = perf_lock_task_context(task, &flags);
4911 	if (ctx) {
4912 		clone_ctx = unclone_ctx(ctx);
4913 		++ctx->pin_count;
4914 
4915 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4916 
4917 		if (clone_ctx)
4918 			put_ctx(clone_ctx);
4919 	} else {
4920 		ctx = alloc_perf_context(task);
4921 		err = -ENOMEM;
4922 		if (!ctx)
4923 			goto errout;
4924 
4925 		err = 0;
4926 		mutex_lock(&task->perf_event_mutex);
4927 		/*
4928 		 * If it has already passed perf_event_exit_task().
4929 		 * we must see PF_EXITING, it takes this mutex too.
4930 		 */
4931 		if (task->flags & PF_EXITING)
4932 			err = -ESRCH;
4933 		else if (task->perf_event_ctxp)
4934 			err = -EAGAIN;
4935 		else {
4936 			get_ctx(ctx);
4937 			++ctx->pin_count;
4938 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4939 		}
4940 		mutex_unlock(&task->perf_event_mutex);
4941 
4942 		if (unlikely(err)) {
4943 			put_ctx(ctx);
4944 
4945 			if (err == -EAGAIN)
4946 				goto retry;
4947 			goto errout;
4948 		}
4949 	}
4950 
4951 	return ctx;
4952 
4953 errout:
4954 	return ERR_PTR(err);
4955 }
4956 
4957 static struct perf_event_pmu_context *
4958 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4959 		     struct perf_event *event)
4960 {
4961 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4962 
4963 	if (!ctx->task) {
4964 		/*
4965 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 		 * relies on the fact that find_get_pmu_context() cannot fail
4967 		 * for CPU contexts.
4968 		 */
4969 		struct perf_cpu_pmu_context *cpc;
4970 
4971 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 		epc = &cpc->epc;
4973 		raw_spin_lock_irq(&ctx->lock);
4974 		if (!epc->ctx) {
4975 			/*
4976 			 * One extra reference for the pmu; see perf_pmu_free().
4977 			 */
4978 			atomic_set(&epc->refcount, 2);
4979 			epc->embedded = 1;
4980 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4981 			epc->ctx = ctx;
4982 		} else {
4983 			WARN_ON_ONCE(epc->ctx != ctx);
4984 			atomic_inc(&epc->refcount);
4985 		}
4986 		raw_spin_unlock_irq(&ctx->lock);
4987 		return epc;
4988 	}
4989 
4990 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4991 	if (!new)
4992 		return ERR_PTR(-ENOMEM);
4993 
4994 	__perf_init_event_pmu_context(new, pmu);
4995 
4996 	/*
4997 	 * XXX
4998 	 *
4999 	 * lockdep_assert_held(&ctx->mutex);
5000 	 *
5001 	 * can't because perf_event_init_task() doesn't actually hold the
5002 	 * child_ctx->mutex.
5003 	 */
5004 
5005 	raw_spin_lock_irq(&ctx->lock);
5006 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5007 		if (epc->pmu == pmu) {
5008 			WARN_ON_ONCE(epc->ctx != ctx);
5009 			atomic_inc(&epc->refcount);
5010 			goto found_epc;
5011 		}
5012 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5013 		if (!pos && epc->pmu->type > pmu->type)
5014 			pos = epc;
5015 	}
5016 
5017 	epc = new;
5018 	new = NULL;
5019 
5020 	if (!pos)
5021 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5022 	else
5023 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5024 
5025 	epc->ctx = ctx;
5026 
5027 found_epc:
5028 	raw_spin_unlock_irq(&ctx->lock);
5029 	kfree(new);
5030 
5031 	return epc;
5032 }
5033 
5034 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5035 {
5036 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5037 }
5038 
5039 static void free_cpc_rcu(struct rcu_head *head)
5040 {
5041 	struct perf_cpu_pmu_context *cpc =
5042 		container_of(head, typeof(*cpc), epc.rcu_head);
5043 
5044 	kfree(cpc);
5045 }
5046 
5047 static void free_epc_rcu(struct rcu_head *head)
5048 {
5049 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5050 
5051 	kfree(epc);
5052 }
5053 
5054 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5055 {
5056 	struct perf_event_context *ctx = epc->ctx;
5057 	unsigned long flags;
5058 
5059 	/*
5060 	 * XXX
5061 	 *
5062 	 * lockdep_assert_held(&ctx->mutex);
5063 	 *
5064 	 * can't because of the call-site in _free_event()/put_event()
5065 	 * which isn't always called under ctx->mutex.
5066 	 */
5067 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5068 		return;
5069 
5070 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5071 
5072 	list_del_init(&epc->pmu_ctx_entry);
5073 	epc->ctx = NULL;
5074 
5075 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5076 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5077 
5078 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5079 
5080 	if (epc->embedded) {
5081 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5082 		return;
5083 	}
5084 
5085 	call_rcu(&epc->rcu_head, free_epc_rcu);
5086 }
5087 
5088 static void perf_event_free_filter(struct perf_event *event);
5089 
5090 static void free_event_rcu(struct rcu_head *head)
5091 {
5092 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5093 
5094 	if (event->ns)
5095 		put_pid_ns(event->ns);
5096 	perf_event_free_filter(event);
5097 	kmem_cache_free(perf_event_cache, event);
5098 }
5099 
5100 static void ring_buffer_attach(struct perf_event *event,
5101 			       struct perf_buffer *rb);
5102 
5103 static void detach_sb_event(struct perf_event *event)
5104 {
5105 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5106 
5107 	raw_spin_lock(&pel->lock);
5108 	list_del_rcu(&event->sb_list);
5109 	raw_spin_unlock(&pel->lock);
5110 }
5111 
5112 static bool is_sb_event(struct perf_event *event)
5113 {
5114 	struct perf_event_attr *attr = &event->attr;
5115 
5116 	if (event->parent)
5117 		return false;
5118 
5119 	if (event->attach_state & PERF_ATTACH_TASK)
5120 		return false;
5121 
5122 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5123 	    attr->comm || attr->comm_exec ||
5124 	    attr->task || attr->ksymbol ||
5125 	    attr->context_switch || attr->text_poke ||
5126 	    attr->bpf_event)
5127 		return true;
5128 	return false;
5129 }
5130 
5131 static void unaccount_pmu_sb_event(struct perf_event *event)
5132 {
5133 	if (is_sb_event(event))
5134 		detach_sb_event(event);
5135 }
5136 
5137 #ifdef CONFIG_NO_HZ_FULL
5138 static DEFINE_SPINLOCK(nr_freq_lock);
5139 #endif
5140 
5141 static void unaccount_freq_event_nohz(void)
5142 {
5143 #ifdef CONFIG_NO_HZ_FULL
5144 	spin_lock(&nr_freq_lock);
5145 	if (atomic_dec_and_test(&nr_freq_events))
5146 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5147 	spin_unlock(&nr_freq_lock);
5148 #endif
5149 }
5150 
5151 static void unaccount_freq_event(void)
5152 {
5153 	if (tick_nohz_full_enabled())
5154 		unaccount_freq_event_nohz();
5155 	else
5156 		atomic_dec(&nr_freq_events);
5157 }
5158 
5159 
5160 static struct perf_ctx_data *
5161 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5162 {
5163 	struct perf_ctx_data *cd;
5164 
5165 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5166 	if (!cd)
5167 		return NULL;
5168 
5169 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5170 	if (!cd->data) {
5171 		kfree(cd);
5172 		return NULL;
5173 	}
5174 
5175 	cd->global = global;
5176 	cd->ctx_cache = ctx_cache;
5177 	refcount_set(&cd->refcount, 1);
5178 
5179 	return cd;
5180 }
5181 
5182 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5183 {
5184 	kmem_cache_free(cd->ctx_cache, cd->data);
5185 	kfree(cd);
5186 }
5187 
5188 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5189 {
5190 	struct perf_ctx_data *cd;
5191 
5192 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5193 	free_perf_ctx_data(cd);
5194 }
5195 
5196 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5197 {
5198 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5199 }
5200 
5201 static int
5202 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5203 		     bool global)
5204 {
5205 	struct perf_ctx_data *cd, *old = NULL;
5206 
5207 	cd = alloc_perf_ctx_data(ctx_cache, global);
5208 	if (!cd)
5209 		return -ENOMEM;
5210 
5211 	for (;;) {
5212 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5213 			if (old)
5214 				perf_free_ctx_data_rcu(old);
5215 			return 0;
5216 		}
5217 
5218 		if (!old) {
5219 			/*
5220 			 * After seeing a dead @old, we raced with
5221 			 * removal and lost, try again to install @cd.
5222 			 */
5223 			continue;
5224 		}
5225 
5226 		if (refcount_inc_not_zero(&old->refcount)) {
5227 			free_perf_ctx_data(cd); /* unused */
5228 			return 0;
5229 		}
5230 
5231 		/*
5232 		 * @old is a dead object, refcount==0 is stable, try and
5233 		 * replace it with @cd.
5234 		 */
5235 	}
5236 	return 0;
5237 }
5238 
5239 static void __detach_global_ctx_data(void);
5240 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5241 static refcount_t global_ctx_data_ref;
5242 
5243 static int
5244 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5245 {
5246 	struct task_struct *g, *p;
5247 	struct perf_ctx_data *cd;
5248 	int ret;
5249 
5250 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5251 		return 0;
5252 
5253 	guard(percpu_write)(&global_ctx_data_rwsem);
5254 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5255 		return 0;
5256 again:
5257 	/* Allocate everything */
5258 	scoped_guard (rcu) {
5259 		for_each_process_thread(g, p) {
5260 			cd = rcu_dereference(p->perf_ctx_data);
5261 			if (cd && !cd->global) {
5262 				cd->global = 1;
5263 				if (!refcount_inc_not_zero(&cd->refcount))
5264 					cd = NULL;
5265 			}
5266 			if (!cd) {
5267 				get_task_struct(p);
5268 				goto alloc;
5269 			}
5270 		}
5271 	}
5272 
5273 	refcount_set(&global_ctx_data_ref, 1);
5274 
5275 	return 0;
5276 alloc:
5277 	ret = attach_task_ctx_data(p, ctx_cache, true);
5278 	put_task_struct(p);
5279 	if (ret) {
5280 		__detach_global_ctx_data();
5281 		return ret;
5282 	}
5283 	goto again;
5284 }
5285 
5286 static int
5287 attach_perf_ctx_data(struct perf_event *event)
5288 {
5289 	struct task_struct *task = event->hw.target;
5290 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5291 	int ret;
5292 
5293 	if (!ctx_cache)
5294 		return -ENOMEM;
5295 
5296 	if (task)
5297 		return attach_task_ctx_data(task, ctx_cache, false);
5298 
5299 	ret = attach_global_ctx_data(ctx_cache);
5300 	if (ret)
5301 		return ret;
5302 
5303 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5304 	return 0;
5305 }
5306 
5307 static void
5308 detach_task_ctx_data(struct task_struct *p)
5309 {
5310 	struct perf_ctx_data *cd;
5311 
5312 	scoped_guard (rcu) {
5313 		cd = rcu_dereference(p->perf_ctx_data);
5314 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5315 			return;
5316 	}
5317 
5318 	/*
5319 	 * The old ctx_data may be lost because of the race.
5320 	 * Nothing is required to do for the case.
5321 	 * See attach_task_ctx_data().
5322 	 */
5323 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5324 		perf_free_ctx_data_rcu(cd);
5325 }
5326 
5327 static void __detach_global_ctx_data(void)
5328 {
5329 	struct task_struct *g, *p;
5330 	struct perf_ctx_data *cd;
5331 
5332 again:
5333 	scoped_guard (rcu) {
5334 		for_each_process_thread(g, p) {
5335 			cd = rcu_dereference(p->perf_ctx_data);
5336 			if (!cd || !cd->global)
5337 				continue;
5338 			cd->global = 0;
5339 			get_task_struct(p);
5340 			goto detach;
5341 		}
5342 	}
5343 	return;
5344 detach:
5345 	detach_task_ctx_data(p);
5346 	put_task_struct(p);
5347 	goto again;
5348 }
5349 
5350 static void detach_global_ctx_data(void)
5351 {
5352 	if (refcount_dec_not_one(&global_ctx_data_ref))
5353 		return;
5354 
5355 	guard(percpu_write)(&global_ctx_data_rwsem);
5356 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5357 		return;
5358 
5359 	/* remove everything */
5360 	__detach_global_ctx_data();
5361 }
5362 
5363 static void detach_perf_ctx_data(struct perf_event *event)
5364 {
5365 	struct task_struct *task = event->hw.target;
5366 
5367 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5368 
5369 	if (task)
5370 		return detach_task_ctx_data(task);
5371 
5372 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5373 		detach_global_ctx_data();
5374 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5375 	}
5376 }
5377 
5378 static void unaccount_event(struct perf_event *event)
5379 {
5380 	bool dec = false;
5381 
5382 	if (event->parent)
5383 		return;
5384 
5385 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5386 		dec = true;
5387 	if (event->attr.mmap || event->attr.mmap_data)
5388 		atomic_dec(&nr_mmap_events);
5389 	if (event->attr.build_id)
5390 		atomic_dec(&nr_build_id_events);
5391 	if (event->attr.comm)
5392 		atomic_dec(&nr_comm_events);
5393 	if (event->attr.namespaces)
5394 		atomic_dec(&nr_namespaces_events);
5395 	if (event->attr.cgroup)
5396 		atomic_dec(&nr_cgroup_events);
5397 	if (event->attr.task)
5398 		atomic_dec(&nr_task_events);
5399 	if (event->attr.freq)
5400 		unaccount_freq_event();
5401 	if (event->attr.context_switch) {
5402 		dec = true;
5403 		atomic_dec(&nr_switch_events);
5404 	}
5405 	if (is_cgroup_event(event))
5406 		dec = true;
5407 	if (has_branch_stack(event))
5408 		dec = true;
5409 	if (event->attr.ksymbol)
5410 		atomic_dec(&nr_ksymbol_events);
5411 	if (event->attr.bpf_event)
5412 		atomic_dec(&nr_bpf_events);
5413 	if (event->attr.text_poke)
5414 		atomic_dec(&nr_text_poke_events);
5415 
5416 	if (dec) {
5417 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5418 			schedule_delayed_work(&perf_sched_work, HZ);
5419 	}
5420 
5421 	unaccount_pmu_sb_event(event);
5422 }
5423 
5424 static void perf_sched_delayed(struct work_struct *work)
5425 {
5426 	mutex_lock(&perf_sched_mutex);
5427 	if (atomic_dec_and_test(&perf_sched_count))
5428 		static_branch_disable(&perf_sched_events);
5429 	mutex_unlock(&perf_sched_mutex);
5430 }
5431 
5432 /*
5433  * The following implement mutual exclusion of events on "exclusive" pmus
5434  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5435  * at a time, so we disallow creating events that might conflict, namely:
5436  *
5437  *  1) cpu-wide events in the presence of per-task events,
5438  *  2) per-task events in the presence of cpu-wide events,
5439  *  3) two matching events on the same perf_event_context.
5440  *
5441  * The former two cases are handled in the allocation path (perf_event_alloc(),
5442  * _free_event()), the latter -- before the first perf_install_in_context().
5443  */
5444 static int exclusive_event_init(struct perf_event *event)
5445 {
5446 	struct pmu *pmu = event->pmu;
5447 
5448 	if (!is_exclusive_pmu(pmu))
5449 		return 0;
5450 
5451 	/*
5452 	 * Prevent co-existence of per-task and cpu-wide events on the
5453 	 * same exclusive pmu.
5454 	 *
5455 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5456 	 * events on this "exclusive" pmu, positive means there are
5457 	 * per-task events.
5458 	 *
5459 	 * Since this is called in perf_event_alloc() path, event::ctx
5460 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5461 	 * to mean "per-task event", because unlike other attach states it
5462 	 * never gets cleared.
5463 	 */
5464 	if (event->attach_state & PERF_ATTACH_TASK) {
5465 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5466 			return -EBUSY;
5467 	} else {
5468 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5469 			return -EBUSY;
5470 	}
5471 
5472 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5473 
5474 	return 0;
5475 }
5476 
5477 static void exclusive_event_destroy(struct perf_event *event)
5478 {
5479 	struct pmu *pmu = event->pmu;
5480 
5481 	/* see comment in exclusive_event_init() */
5482 	if (event->attach_state & PERF_ATTACH_TASK)
5483 		atomic_dec(&pmu->exclusive_cnt);
5484 	else
5485 		atomic_inc(&pmu->exclusive_cnt);
5486 
5487 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5488 }
5489 
5490 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5491 {
5492 	if ((e1->pmu == e2->pmu) &&
5493 	    (e1->cpu == e2->cpu ||
5494 	     e1->cpu == -1 ||
5495 	     e2->cpu == -1))
5496 		return true;
5497 	return false;
5498 }
5499 
5500 static bool exclusive_event_installable(struct perf_event *event,
5501 					struct perf_event_context *ctx)
5502 {
5503 	struct perf_event *iter_event;
5504 	struct pmu *pmu = event->pmu;
5505 
5506 	lockdep_assert_held(&ctx->mutex);
5507 
5508 	if (!is_exclusive_pmu(pmu))
5509 		return true;
5510 
5511 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5512 		if (exclusive_event_match(iter_event, event))
5513 			return false;
5514 	}
5515 
5516 	return true;
5517 }
5518 
5519 static void perf_free_addr_filters(struct perf_event *event);
5520 
5521 static void perf_pending_task_sync(struct perf_event *event)
5522 {
5523 	struct callback_head *head = &event->pending_task;
5524 
5525 	if (!event->pending_work)
5526 		return;
5527 	/*
5528 	 * If the task is queued to the current task's queue, we
5529 	 * obviously can't wait for it to complete. Simply cancel it.
5530 	 */
5531 	if (task_work_cancel(current, head)) {
5532 		event->pending_work = 0;
5533 		local_dec(&event->ctx->nr_no_switch_fast);
5534 		return;
5535 	}
5536 
5537 	/*
5538 	 * All accesses related to the event are within the same RCU section in
5539 	 * perf_pending_task(). The RCU grace period before the event is freed
5540 	 * will make sure all those accesses are complete by then.
5541 	 */
5542 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5543 }
5544 
5545 /* vs perf_event_alloc() error */
5546 static void __free_event(struct perf_event *event)
5547 {
5548 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5549 		put_callchain_buffers();
5550 
5551 	kfree(event->addr_filter_ranges);
5552 
5553 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5554 		exclusive_event_destroy(event);
5555 
5556 	if (is_cgroup_event(event))
5557 		perf_detach_cgroup(event);
5558 
5559 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5560 		detach_perf_ctx_data(event);
5561 
5562 	if (event->destroy)
5563 		event->destroy(event);
5564 
5565 	/*
5566 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5567 	 * hw.target.
5568 	 */
5569 	if (event->hw.target)
5570 		put_task_struct(event->hw.target);
5571 
5572 	if (event->pmu_ctx) {
5573 		/*
5574 		 * put_pmu_ctx() needs an event->ctx reference, because of
5575 		 * epc->ctx.
5576 		 */
5577 		WARN_ON_ONCE(!event->ctx);
5578 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5579 		put_pmu_ctx(event->pmu_ctx);
5580 	}
5581 
5582 	/*
5583 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5584 	 * particular all task references must be cleaned up.
5585 	 */
5586 	if (event->ctx)
5587 		put_ctx(event->ctx);
5588 
5589 	if (event->pmu)
5590 		module_put(event->pmu->module);
5591 
5592 	call_rcu(&event->rcu_head, free_event_rcu);
5593 }
5594 
5595 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5596 
5597 /* vs perf_event_alloc() success */
5598 static void _free_event(struct perf_event *event)
5599 {
5600 	irq_work_sync(&event->pending_irq);
5601 	irq_work_sync(&event->pending_disable_irq);
5602 	perf_pending_task_sync(event);
5603 
5604 	unaccount_event(event);
5605 
5606 	security_perf_event_free(event);
5607 
5608 	if (event->rb) {
5609 		/*
5610 		 * Can happen when we close an event with re-directed output.
5611 		 *
5612 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5613 		 * over us; possibly making our ring_buffer_put() the last.
5614 		 */
5615 		mutex_lock(&event->mmap_mutex);
5616 		ring_buffer_attach(event, NULL);
5617 		mutex_unlock(&event->mmap_mutex);
5618 	}
5619 
5620 	perf_event_free_bpf_prog(event);
5621 	perf_free_addr_filters(event);
5622 
5623 	__free_event(event);
5624 }
5625 
5626 /*
5627  * Used to free events which have a known refcount of 1, such as in error paths
5628  * where the event isn't exposed yet and inherited events.
5629  */
5630 static void free_event(struct perf_event *event)
5631 {
5632 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5633 				"unexpected event refcount: %ld; ptr=%p\n",
5634 				atomic_long_read(&event->refcount), event)) {
5635 		/* leak to avoid use-after-free */
5636 		return;
5637 	}
5638 
5639 	_free_event(event);
5640 }
5641 
5642 /*
5643  * Remove user event from the owner task.
5644  */
5645 static void perf_remove_from_owner(struct perf_event *event)
5646 {
5647 	struct task_struct *owner;
5648 
5649 	rcu_read_lock();
5650 	/*
5651 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5652 	 * observe !owner it means the list deletion is complete and we can
5653 	 * indeed free this event, otherwise we need to serialize on
5654 	 * owner->perf_event_mutex.
5655 	 */
5656 	owner = READ_ONCE(event->owner);
5657 	if (owner) {
5658 		/*
5659 		 * Since delayed_put_task_struct() also drops the last
5660 		 * task reference we can safely take a new reference
5661 		 * while holding the rcu_read_lock().
5662 		 */
5663 		get_task_struct(owner);
5664 	}
5665 	rcu_read_unlock();
5666 
5667 	if (owner) {
5668 		/*
5669 		 * If we're here through perf_event_exit_task() we're already
5670 		 * holding ctx->mutex which would be an inversion wrt. the
5671 		 * normal lock order.
5672 		 *
5673 		 * However we can safely take this lock because its the child
5674 		 * ctx->mutex.
5675 		 */
5676 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5677 
5678 		/*
5679 		 * We have to re-check the event->owner field, if it is cleared
5680 		 * we raced with perf_event_exit_task(), acquiring the mutex
5681 		 * ensured they're done, and we can proceed with freeing the
5682 		 * event.
5683 		 */
5684 		if (event->owner) {
5685 			list_del_init(&event->owner_entry);
5686 			smp_store_release(&event->owner, NULL);
5687 		}
5688 		mutex_unlock(&owner->perf_event_mutex);
5689 		put_task_struct(owner);
5690 	}
5691 }
5692 
5693 static void put_event(struct perf_event *event)
5694 {
5695 	if (!atomic_long_dec_and_test(&event->refcount))
5696 		return;
5697 
5698 	_free_event(event);
5699 }
5700 
5701 /*
5702  * Kill an event dead; while event:refcount will preserve the event
5703  * object, it will not preserve its functionality. Once the last 'user'
5704  * gives up the object, we'll destroy the thing.
5705  */
5706 int perf_event_release_kernel(struct perf_event *event)
5707 {
5708 	struct perf_event_context *ctx = event->ctx;
5709 	struct perf_event *child, *tmp;
5710 	LIST_HEAD(free_list);
5711 
5712 	/*
5713 	 * If we got here through err_alloc: free_event(event); we will not
5714 	 * have attached to a context yet.
5715 	 */
5716 	if (!ctx) {
5717 		WARN_ON_ONCE(event->attach_state &
5718 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5719 		goto no_ctx;
5720 	}
5721 
5722 	if (!is_kernel_event(event))
5723 		perf_remove_from_owner(event);
5724 
5725 	ctx = perf_event_ctx_lock(event);
5726 	WARN_ON_ONCE(ctx->parent_ctx);
5727 
5728 	/*
5729 	 * Mark this event as STATE_DEAD, there is no external reference to it
5730 	 * anymore.
5731 	 *
5732 	 * Anybody acquiring event->child_mutex after the below loop _must_
5733 	 * also see this, most importantly inherit_event() which will avoid
5734 	 * placing more children on the list.
5735 	 *
5736 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5737 	 * child events.
5738 	 */
5739 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5740 
5741 	perf_event_ctx_unlock(event, ctx);
5742 
5743 again:
5744 	mutex_lock(&event->child_mutex);
5745 	list_for_each_entry(child, &event->child_list, child_list) {
5746 		void *var = NULL;
5747 
5748 		/*
5749 		 * Cannot change, child events are not migrated, see the
5750 		 * comment with perf_event_ctx_lock_nested().
5751 		 */
5752 		ctx = READ_ONCE(child->ctx);
5753 		/*
5754 		 * Since child_mutex nests inside ctx::mutex, we must jump
5755 		 * through hoops. We start by grabbing a reference on the ctx.
5756 		 *
5757 		 * Since the event cannot get freed while we hold the
5758 		 * child_mutex, the context must also exist and have a !0
5759 		 * reference count.
5760 		 */
5761 		get_ctx(ctx);
5762 
5763 		/*
5764 		 * Now that we have a ctx ref, we can drop child_mutex, and
5765 		 * acquire ctx::mutex without fear of it going away. Then we
5766 		 * can re-acquire child_mutex.
5767 		 */
5768 		mutex_unlock(&event->child_mutex);
5769 		mutex_lock(&ctx->mutex);
5770 		mutex_lock(&event->child_mutex);
5771 
5772 		/*
5773 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5774 		 * state, if child is still the first entry, it didn't get freed
5775 		 * and we can continue doing so.
5776 		 */
5777 		tmp = list_first_entry_or_null(&event->child_list,
5778 					       struct perf_event, child_list);
5779 		if (tmp == child) {
5780 			perf_remove_from_context(child, DETACH_GROUP);
5781 			list_move(&child->child_list, &free_list);
5782 			/*
5783 			 * This matches the refcount bump in inherit_event();
5784 			 * this can't be the last reference.
5785 			 */
5786 			put_event(event);
5787 		} else {
5788 			var = &ctx->refcount;
5789 		}
5790 
5791 		mutex_unlock(&event->child_mutex);
5792 		mutex_unlock(&ctx->mutex);
5793 		put_ctx(ctx);
5794 
5795 		if (var) {
5796 			/*
5797 			 * If perf_event_free_task() has deleted all events from the
5798 			 * ctx while the child_mutex got released above, make sure to
5799 			 * notify about the preceding put_ctx().
5800 			 */
5801 			smp_mb(); /* pairs with wait_var_event() */
5802 			wake_up_var(var);
5803 		}
5804 		goto again;
5805 	}
5806 	mutex_unlock(&event->child_mutex);
5807 
5808 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5809 		void *var = &child->ctx->refcount;
5810 
5811 		list_del(&child->child_list);
5812 		free_event(child);
5813 
5814 		/*
5815 		 * Wake any perf_event_free_task() waiting for this event to be
5816 		 * freed.
5817 		 */
5818 		smp_mb(); /* pairs with wait_var_event() */
5819 		wake_up_var(var);
5820 	}
5821 
5822 no_ctx:
5823 	put_event(event); /* Must be the 'last' reference */
5824 	return 0;
5825 }
5826 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5827 
5828 /*
5829  * Called when the last reference to the file is gone.
5830  */
5831 static int perf_release(struct inode *inode, struct file *file)
5832 {
5833 	perf_event_release_kernel(file->private_data);
5834 	return 0;
5835 }
5836 
5837 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5838 {
5839 	struct perf_event *child;
5840 	u64 total = 0;
5841 
5842 	*enabled = 0;
5843 	*running = 0;
5844 
5845 	mutex_lock(&event->child_mutex);
5846 
5847 	(void)perf_event_read(event, false);
5848 	total += perf_event_count(event, false);
5849 
5850 	*enabled += event->total_time_enabled +
5851 			atomic64_read(&event->child_total_time_enabled);
5852 	*running += event->total_time_running +
5853 			atomic64_read(&event->child_total_time_running);
5854 
5855 	list_for_each_entry(child, &event->child_list, child_list) {
5856 		(void)perf_event_read(child, false);
5857 		total += perf_event_count(child, false);
5858 		*enabled += child->total_time_enabled;
5859 		*running += child->total_time_running;
5860 	}
5861 	mutex_unlock(&event->child_mutex);
5862 
5863 	return total;
5864 }
5865 
5866 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5867 {
5868 	struct perf_event_context *ctx;
5869 	u64 count;
5870 
5871 	ctx = perf_event_ctx_lock(event);
5872 	count = __perf_event_read_value(event, enabled, running);
5873 	perf_event_ctx_unlock(event, ctx);
5874 
5875 	return count;
5876 }
5877 EXPORT_SYMBOL_GPL(perf_event_read_value);
5878 
5879 static int __perf_read_group_add(struct perf_event *leader,
5880 					u64 read_format, u64 *values)
5881 {
5882 	struct perf_event_context *ctx = leader->ctx;
5883 	struct perf_event *sub, *parent;
5884 	unsigned long flags;
5885 	int n = 1; /* skip @nr */
5886 	int ret;
5887 
5888 	ret = perf_event_read(leader, true);
5889 	if (ret)
5890 		return ret;
5891 
5892 	raw_spin_lock_irqsave(&ctx->lock, flags);
5893 	/*
5894 	 * Verify the grouping between the parent and child (inherited)
5895 	 * events is still in tact.
5896 	 *
5897 	 * Specifically:
5898 	 *  - leader->ctx->lock pins leader->sibling_list
5899 	 *  - parent->child_mutex pins parent->child_list
5900 	 *  - parent->ctx->mutex pins parent->sibling_list
5901 	 *
5902 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5903 	 * ctx->mutex), group destruction is not atomic between children, also
5904 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5905 	 * group.
5906 	 *
5907 	 * Therefore it is possible to have parent and child groups in a
5908 	 * different configuration and summing over such a beast makes no sense
5909 	 * what so ever.
5910 	 *
5911 	 * Reject this.
5912 	 */
5913 	parent = leader->parent;
5914 	if (parent &&
5915 	    (parent->group_generation != leader->group_generation ||
5916 	     parent->nr_siblings != leader->nr_siblings)) {
5917 		ret = -ECHILD;
5918 		goto unlock;
5919 	}
5920 
5921 	/*
5922 	 * Since we co-schedule groups, {enabled,running} times of siblings
5923 	 * will be identical to those of the leader, so we only publish one
5924 	 * set.
5925 	 */
5926 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5927 		values[n++] += leader->total_time_enabled +
5928 			atomic64_read(&leader->child_total_time_enabled);
5929 	}
5930 
5931 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5932 		values[n++] += leader->total_time_running +
5933 			atomic64_read(&leader->child_total_time_running);
5934 	}
5935 
5936 	/*
5937 	 * Write {count,id} tuples for every sibling.
5938 	 */
5939 	values[n++] += perf_event_count(leader, false);
5940 	if (read_format & PERF_FORMAT_ID)
5941 		values[n++] = primary_event_id(leader);
5942 	if (read_format & PERF_FORMAT_LOST)
5943 		values[n++] = atomic64_read(&leader->lost_samples);
5944 
5945 	for_each_sibling_event(sub, leader) {
5946 		values[n++] += perf_event_count(sub, false);
5947 		if (read_format & PERF_FORMAT_ID)
5948 			values[n++] = primary_event_id(sub);
5949 		if (read_format & PERF_FORMAT_LOST)
5950 			values[n++] = atomic64_read(&sub->lost_samples);
5951 	}
5952 
5953 unlock:
5954 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5955 	return ret;
5956 }
5957 
5958 static int perf_read_group(struct perf_event *event,
5959 				   u64 read_format, char __user *buf)
5960 {
5961 	struct perf_event *leader = event->group_leader, *child;
5962 	struct perf_event_context *ctx = leader->ctx;
5963 	int ret;
5964 	u64 *values;
5965 
5966 	lockdep_assert_held(&ctx->mutex);
5967 
5968 	values = kzalloc(event->read_size, GFP_KERNEL);
5969 	if (!values)
5970 		return -ENOMEM;
5971 
5972 	values[0] = 1 + leader->nr_siblings;
5973 
5974 	mutex_lock(&leader->child_mutex);
5975 
5976 	ret = __perf_read_group_add(leader, read_format, values);
5977 	if (ret)
5978 		goto unlock;
5979 
5980 	list_for_each_entry(child, &leader->child_list, child_list) {
5981 		ret = __perf_read_group_add(child, read_format, values);
5982 		if (ret)
5983 			goto unlock;
5984 	}
5985 
5986 	mutex_unlock(&leader->child_mutex);
5987 
5988 	ret = event->read_size;
5989 	if (copy_to_user(buf, values, event->read_size))
5990 		ret = -EFAULT;
5991 	goto out;
5992 
5993 unlock:
5994 	mutex_unlock(&leader->child_mutex);
5995 out:
5996 	kfree(values);
5997 	return ret;
5998 }
5999 
6000 static int perf_read_one(struct perf_event *event,
6001 				 u64 read_format, char __user *buf)
6002 {
6003 	u64 enabled, running;
6004 	u64 values[5];
6005 	int n = 0;
6006 
6007 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6008 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6009 		values[n++] = enabled;
6010 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6011 		values[n++] = running;
6012 	if (read_format & PERF_FORMAT_ID)
6013 		values[n++] = primary_event_id(event);
6014 	if (read_format & PERF_FORMAT_LOST)
6015 		values[n++] = atomic64_read(&event->lost_samples);
6016 
6017 	if (copy_to_user(buf, values, n * sizeof(u64)))
6018 		return -EFAULT;
6019 
6020 	return n * sizeof(u64);
6021 }
6022 
6023 static bool is_event_hup(struct perf_event *event)
6024 {
6025 	bool no_children;
6026 
6027 	if (event->state > PERF_EVENT_STATE_EXIT)
6028 		return false;
6029 
6030 	mutex_lock(&event->child_mutex);
6031 	no_children = list_empty(&event->child_list);
6032 	mutex_unlock(&event->child_mutex);
6033 	return no_children;
6034 }
6035 
6036 /*
6037  * Read the performance event - simple non blocking version for now
6038  */
6039 static ssize_t
6040 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6041 {
6042 	u64 read_format = event->attr.read_format;
6043 	int ret;
6044 
6045 	/*
6046 	 * Return end-of-file for a read on an event that is in
6047 	 * error state (i.e. because it was pinned but it couldn't be
6048 	 * scheduled on to the CPU at some point).
6049 	 */
6050 	if (event->state == PERF_EVENT_STATE_ERROR)
6051 		return 0;
6052 
6053 	if (count < event->read_size)
6054 		return -ENOSPC;
6055 
6056 	WARN_ON_ONCE(event->ctx->parent_ctx);
6057 	if (read_format & PERF_FORMAT_GROUP)
6058 		ret = perf_read_group(event, read_format, buf);
6059 	else
6060 		ret = perf_read_one(event, read_format, buf);
6061 
6062 	return ret;
6063 }
6064 
6065 static ssize_t
6066 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6067 {
6068 	struct perf_event *event = file->private_data;
6069 	struct perf_event_context *ctx;
6070 	int ret;
6071 
6072 	ret = security_perf_event_read(event);
6073 	if (ret)
6074 		return ret;
6075 
6076 	ctx = perf_event_ctx_lock(event);
6077 	ret = __perf_read(event, buf, count);
6078 	perf_event_ctx_unlock(event, ctx);
6079 
6080 	return ret;
6081 }
6082 
6083 static __poll_t perf_poll(struct file *file, poll_table *wait)
6084 {
6085 	struct perf_event *event = file->private_data;
6086 	struct perf_buffer *rb;
6087 	__poll_t events = EPOLLHUP;
6088 
6089 	poll_wait(file, &event->waitq, wait);
6090 
6091 	if (is_event_hup(event))
6092 		return events;
6093 
6094 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6095 		     event->attr.pinned))
6096 		return events;
6097 
6098 	/*
6099 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6100 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6101 	 */
6102 	mutex_lock(&event->mmap_mutex);
6103 	rb = event->rb;
6104 	if (rb)
6105 		events = atomic_xchg(&rb->poll, 0);
6106 	mutex_unlock(&event->mmap_mutex);
6107 	return events;
6108 }
6109 
6110 static void _perf_event_reset(struct perf_event *event)
6111 {
6112 	(void)perf_event_read(event, false);
6113 	local64_set(&event->count, 0);
6114 	perf_event_update_userpage(event);
6115 }
6116 
6117 /* Assume it's not an event with inherit set. */
6118 u64 perf_event_pause(struct perf_event *event, bool reset)
6119 {
6120 	struct perf_event_context *ctx;
6121 	u64 count;
6122 
6123 	ctx = perf_event_ctx_lock(event);
6124 	WARN_ON_ONCE(event->attr.inherit);
6125 	_perf_event_disable(event);
6126 	count = local64_read(&event->count);
6127 	if (reset)
6128 		local64_set(&event->count, 0);
6129 	perf_event_ctx_unlock(event, ctx);
6130 
6131 	return count;
6132 }
6133 EXPORT_SYMBOL_GPL(perf_event_pause);
6134 
6135 /*
6136  * Holding the top-level event's child_mutex means that any
6137  * descendant process that has inherited this event will block
6138  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6139  * task existence requirements of perf_event_enable/disable.
6140  */
6141 static void perf_event_for_each_child(struct perf_event *event,
6142 					void (*func)(struct perf_event *))
6143 {
6144 	struct perf_event *child;
6145 
6146 	WARN_ON_ONCE(event->ctx->parent_ctx);
6147 
6148 	mutex_lock(&event->child_mutex);
6149 	func(event);
6150 	list_for_each_entry(child, &event->child_list, child_list)
6151 		func(child);
6152 	mutex_unlock(&event->child_mutex);
6153 }
6154 
6155 static void perf_event_for_each(struct perf_event *event,
6156 				  void (*func)(struct perf_event *))
6157 {
6158 	struct perf_event_context *ctx = event->ctx;
6159 	struct perf_event *sibling;
6160 
6161 	lockdep_assert_held(&ctx->mutex);
6162 
6163 	event = event->group_leader;
6164 
6165 	perf_event_for_each_child(event, func);
6166 	for_each_sibling_event(sibling, event)
6167 		perf_event_for_each_child(sibling, func);
6168 }
6169 
6170 static void __perf_event_period(struct perf_event *event,
6171 				struct perf_cpu_context *cpuctx,
6172 				struct perf_event_context *ctx,
6173 				void *info)
6174 {
6175 	u64 value = *((u64 *)info);
6176 	bool active;
6177 
6178 	if (event->attr.freq) {
6179 		event->attr.sample_freq = value;
6180 	} else {
6181 		event->attr.sample_period = value;
6182 		event->hw.sample_period = value;
6183 	}
6184 
6185 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6186 	if (active) {
6187 		perf_pmu_disable(event->pmu);
6188 		/*
6189 		 * We could be throttled; unthrottle now to avoid the tick
6190 		 * trying to unthrottle while we already re-started the event.
6191 		 */
6192 		if (event->hw.interrupts == MAX_INTERRUPTS) {
6193 			event->hw.interrupts = 0;
6194 			perf_log_throttle(event, 1);
6195 		}
6196 		event->pmu->stop(event, PERF_EF_UPDATE);
6197 	}
6198 
6199 	local64_set(&event->hw.period_left, 0);
6200 
6201 	if (active) {
6202 		event->pmu->start(event, PERF_EF_RELOAD);
6203 		perf_pmu_enable(event->pmu);
6204 	}
6205 }
6206 
6207 static int perf_event_check_period(struct perf_event *event, u64 value)
6208 {
6209 	return event->pmu->check_period(event, value);
6210 }
6211 
6212 static int _perf_event_period(struct perf_event *event, u64 value)
6213 {
6214 	if (!is_sampling_event(event))
6215 		return -EINVAL;
6216 
6217 	if (!value)
6218 		return -EINVAL;
6219 
6220 	if (event->attr.freq) {
6221 		if (value > sysctl_perf_event_sample_rate)
6222 			return -EINVAL;
6223 	} else {
6224 		if (perf_event_check_period(event, value))
6225 			return -EINVAL;
6226 		if (value & (1ULL << 63))
6227 			return -EINVAL;
6228 	}
6229 
6230 	event_function_call(event, __perf_event_period, &value);
6231 
6232 	return 0;
6233 }
6234 
6235 int perf_event_period(struct perf_event *event, u64 value)
6236 {
6237 	struct perf_event_context *ctx;
6238 	int ret;
6239 
6240 	ctx = perf_event_ctx_lock(event);
6241 	ret = _perf_event_period(event, value);
6242 	perf_event_ctx_unlock(event, ctx);
6243 
6244 	return ret;
6245 }
6246 EXPORT_SYMBOL_GPL(perf_event_period);
6247 
6248 static const struct file_operations perf_fops;
6249 
6250 static inline bool is_perf_file(struct fd f)
6251 {
6252 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6253 }
6254 
6255 static int perf_event_set_output(struct perf_event *event,
6256 				 struct perf_event *output_event);
6257 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6258 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6259 			  struct perf_event_attr *attr);
6260 
6261 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6262 {
6263 	void (*func)(struct perf_event *);
6264 	u32 flags = arg;
6265 
6266 	switch (cmd) {
6267 	case PERF_EVENT_IOC_ENABLE:
6268 		func = _perf_event_enable;
6269 		break;
6270 	case PERF_EVENT_IOC_DISABLE:
6271 		func = _perf_event_disable;
6272 		break;
6273 	case PERF_EVENT_IOC_RESET:
6274 		func = _perf_event_reset;
6275 		break;
6276 
6277 	case PERF_EVENT_IOC_REFRESH:
6278 		return _perf_event_refresh(event, arg);
6279 
6280 	case PERF_EVENT_IOC_PERIOD:
6281 	{
6282 		u64 value;
6283 
6284 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6285 			return -EFAULT;
6286 
6287 		return _perf_event_period(event, value);
6288 	}
6289 	case PERF_EVENT_IOC_ID:
6290 	{
6291 		u64 id = primary_event_id(event);
6292 
6293 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6294 			return -EFAULT;
6295 		return 0;
6296 	}
6297 
6298 	case PERF_EVENT_IOC_SET_OUTPUT:
6299 	{
6300 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6301 		struct perf_event *output_event = NULL;
6302 		if (arg != -1) {
6303 			if (!is_perf_file(output))
6304 				return -EBADF;
6305 			output_event = fd_file(output)->private_data;
6306 		}
6307 		return perf_event_set_output(event, output_event);
6308 	}
6309 
6310 	case PERF_EVENT_IOC_SET_FILTER:
6311 		return perf_event_set_filter(event, (void __user *)arg);
6312 
6313 	case PERF_EVENT_IOC_SET_BPF:
6314 	{
6315 		struct bpf_prog *prog;
6316 		int err;
6317 
6318 		prog = bpf_prog_get(arg);
6319 		if (IS_ERR(prog))
6320 			return PTR_ERR(prog);
6321 
6322 		err = perf_event_set_bpf_prog(event, prog, 0);
6323 		if (err) {
6324 			bpf_prog_put(prog);
6325 			return err;
6326 		}
6327 
6328 		return 0;
6329 	}
6330 
6331 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6332 		struct perf_buffer *rb;
6333 
6334 		rcu_read_lock();
6335 		rb = rcu_dereference(event->rb);
6336 		if (!rb || !rb->nr_pages) {
6337 			rcu_read_unlock();
6338 			return -EINVAL;
6339 		}
6340 		rb_toggle_paused(rb, !!arg);
6341 		rcu_read_unlock();
6342 		return 0;
6343 	}
6344 
6345 	case PERF_EVENT_IOC_QUERY_BPF:
6346 		return perf_event_query_prog_array(event, (void __user *)arg);
6347 
6348 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6349 		struct perf_event_attr new_attr;
6350 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6351 					 &new_attr);
6352 
6353 		if (err)
6354 			return err;
6355 
6356 		return perf_event_modify_attr(event,  &new_attr);
6357 	}
6358 	default:
6359 		return -ENOTTY;
6360 	}
6361 
6362 	if (flags & PERF_IOC_FLAG_GROUP)
6363 		perf_event_for_each(event, func);
6364 	else
6365 		perf_event_for_each_child(event, func);
6366 
6367 	return 0;
6368 }
6369 
6370 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6371 {
6372 	struct perf_event *event = file->private_data;
6373 	struct perf_event_context *ctx;
6374 	long ret;
6375 
6376 	/* Treat ioctl like writes as it is likely a mutating operation. */
6377 	ret = security_perf_event_write(event);
6378 	if (ret)
6379 		return ret;
6380 
6381 	ctx = perf_event_ctx_lock(event);
6382 	ret = _perf_ioctl(event, cmd, arg);
6383 	perf_event_ctx_unlock(event, ctx);
6384 
6385 	return ret;
6386 }
6387 
6388 #ifdef CONFIG_COMPAT
6389 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6390 				unsigned long arg)
6391 {
6392 	switch (_IOC_NR(cmd)) {
6393 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6394 	case _IOC_NR(PERF_EVENT_IOC_ID):
6395 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6396 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6397 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6398 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6399 			cmd &= ~IOCSIZE_MASK;
6400 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6401 		}
6402 		break;
6403 	}
6404 	return perf_ioctl(file, cmd, arg);
6405 }
6406 #else
6407 # define perf_compat_ioctl NULL
6408 #endif
6409 
6410 int perf_event_task_enable(void)
6411 {
6412 	struct perf_event_context *ctx;
6413 	struct perf_event *event;
6414 
6415 	mutex_lock(&current->perf_event_mutex);
6416 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6417 		ctx = perf_event_ctx_lock(event);
6418 		perf_event_for_each_child(event, _perf_event_enable);
6419 		perf_event_ctx_unlock(event, ctx);
6420 	}
6421 	mutex_unlock(&current->perf_event_mutex);
6422 
6423 	return 0;
6424 }
6425 
6426 int perf_event_task_disable(void)
6427 {
6428 	struct perf_event_context *ctx;
6429 	struct perf_event *event;
6430 
6431 	mutex_lock(&current->perf_event_mutex);
6432 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6433 		ctx = perf_event_ctx_lock(event);
6434 		perf_event_for_each_child(event, _perf_event_disable);
6435 		perf_event_ctx_unlock(event, ctx);
6436 	}
6437 	mutex_unlock(&current->perf_event_mutex);
6438 
6439 	return 0;
6440 }
6441 
6442 static int perf_event_index(struct perf_event *event)
6443 {
6444 	if (event->hw.state & PERF_HES_STOPPED)
6445 		return 0;
6446 
6447 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6448 		return 0;
6449 
6450 	return event->pmu->event_idx(event);
6451 }
6452 
6453 static void perf_event_init_userpage(struct perf_event *event)
6454 {
6455 	struct perf_event_mmap_page *userpg;
6456 	struct perf_buffer *rb;
6457 
6458 	rcu_read_lock();
6459 	rb = rcu_dereference(event->rb);
6460 	if (!rb)
6461 		goto unlock;
6462 
6463 	userpg = rb->user_page;
6464 
6465 	/* Allow new userspace to detect that bit 0 is deprecated */
6466 	userpg->cap_bit0_is_deprecated = 1;
6467 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6468 	userpg->data_offset = PAGE_SIZE;
6469 	userpg->data_size = perf_data_size(rb);
6470 
6471 unlock:
6472 	rcu_read_unlock();
6473 }
6474 
6475 void __weak arch_perf_update_userpage(
6476 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6477 {
6478 }
6479 
6480 /*
6481  * Callers need to ensure there can be no nesting of this function, otherwise
6482  * the seqlock logic goes bad. We can not serialize this because the arch
6483  * code calls this from NMI context.
6484  */
6485 void perf_event_update_userpage(struct perf_event *event)
6486 {
6487 	struct perf_event_mmap_page *userpg;
6488 	struct perf_buffer *rb;
6489 	u64 enabled, running, now;
6490 
6491 	rcu_read_lock();
6492 	rb = rcu_dereference(event->rb);
6493 	if (!rb)
6494 		goto unlock;
6495 
6496 	/*
6497 	 * compute total_time_enabled, total_time_running
6498 	 * based on snapshot values taken when the event
6499 	 * was last scheduled in.
6500 	 *
6501 	 * we cannot simply called update_context_time()
6502 	 * because of locking issue as we can be called in
6503 	 * NMI context
6504 	 */
6505 	calc_timer_values(event, &now, &enabled, &running);
6506 
6507 	userpg = rb->user_page;
6508 	/*
6509 	 * Disable preemption to guarantee consistent time stamps are stored to
6510 	 * the user page.
6511 	 */
6512 	preempt_disable();
6513 	++userpg->lock;
6514 	barrier();
6515 	userpg->index = perf_event_index(event);
6516 	userpg->offset = perf_event_count(event, false);
6517 	if (userpg->index)
6518 		userpg->offset -= local64_read(&event->hw.prev_count);
6519 
6520 	userpg->time_enabled = enabled +
6521 			atomic64_read(&event->child_total_time_enabled);
6522 
6523 	userpg->time_running = running +
6524 			atomic64_read(&event->child_total_time_running);
6525 
6526 	arch_perf_update_userpage(event, userpg, now);
6527 
6528 	barrier();
6529 	++userpg->lock;
6530 	preempt_enable();
6531 unlock:
6532 	rcu_read_unlock();
6533 }
6534 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6535 
6536 static void ring_buffer_attach(struct perf_event *event,
6537 			       struct perf_buffer *rb)
6538 {
6539 	struct perf_buffer *old_rb = NULL;
6540 	unsigned long flags;
6541 
6542 	WARN_ON_ONCE(event->parent);
6543 
6544 	if (event->rb) {
6545 		/*
6546 		 * Should be impossible, we set this when removing
6547 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6548 		 */
6549 		WARN_ON_ONCE(event->rcu_pending);
6550 
6551 		old_rb = event->rb;
6552 		spin_lock_irqsave(&old_rb->event_lock, flags);
6553 		list_del_rcu(&event->rb_entry);
6554 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6555 
6556 		event->rcu_batches = get_state_synchronize_rcu();
6557 		event->rcu_pending = 1;
6558 	}
6559 
6560 	if (rb) {
6561 		if (event->rcu_pending) {
6562 			cond_synchronize_rcu(event->rcu_batches);
6563 			event->rcu_pending = 0;
6564 		}
6565 
6566 		spin_lock_irqsave(&rb->event_lock, flags);
6567 		list_add_rcu(&event->rb_entry, &rb->event_list);
6568 		spin_unlock_irqrestore(&rb->event_lock, flags);
6569 	}
6570 
6571 	/*
6572 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6573 	 * before swizzling the event::rb pointer; if it's getting
6574 	 * unmapped, its aux_mmap_count will be 0 and it won't
6575 	 * restart. See the comment in __perf_pmu_output_stop().
6576 	 *
6577 	 * Data will inevitably be lost when set_output is done in
6578 	 * mid-air, but then again, whoever does it like this is
6579 	 * not in for the data anyway.
6580 	 */
6581 	if (has_aux(event))
6582 		perf_event_stop(event, 0);
6583 
6584 	rcu_assign_pointer(event->rb, rb);
6585 
6586 	if (old_rb) {
6587 		ring_buffer_put(old_rb);
6588 		/*
6589 		 * Since we detached before setting the new rb, so that we
6590 		 * could attach the new rb, we could have missed a wakeup.
6591 		 * Provide it now.
6592 		 */
6593 		wake_up_all(&event->waitq);
6594 	}
6595 }
6596 
6597 static void ring_buffer_wakeup(struct perf_event *event)
6598 {
6599 	struct perf_buffer *rb;
6600 
6601 	if (event->parent)
6602 		event = event->parent;
6603 
6604 	rcu_read_lock();
6605 	rb = rcu_dereference(event->rb);
6606 	if (rb) {
6607 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6608 			wake_up_all(&event->waitq);
6609 	}
6610 	rcu_read_unlock();
6611 }
6612 
6613 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6614 {
6615 	struct perf_buffer *rb;
6616 
6617 	if (event->parent)
6618 		event = event->parent;
6619 
6620 	rcu_read_lock();
6621 	rb = rcu_dereference(event->rb);
6622 	if (rb) {
6623 		if (!refcount_inc_not_zero(&rb->refcount))
6624 			rb = NULL;
6625 	}
6626 	rcu_read_unlock();
6627 
6628 	return rb;
6629 }
6630 
6631 void ring_buffer_put(struct perf_buffer *rb)
6632 {
6633 	if (!refcount_dec_and_test(&rb->refcount))
6634 		return;
6635 
6636 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6637 
6638 	call_rcu(&rb->rcu_head, rb_free_rcu);
6639 }
6640 
6641 static void perf_mmap_open(struct vm_area_struct *vma)
6642 {
6643 	struct perf_event *event = vma->vm_file->private_data;
6644 
6645 	atomic_inc(&event->mmap_count);
6646 	atomic_inc(&event->rb->mmap_count);
6647 
6648 	if (vma->vm_pgoff)
6649 		atomic_inc(&event->rb->aux_mmap_count);
6650 
6651 	if (event->pmu->event_mapped)
6652 		event->pmu->event_mapped(event, vma->vm_mm);
6653 }
6654 
6655 static void perf_pmu_output_stop(struct perf_event *event);
6656 
6657 /*
6658  * A buffer can be mmap()ed multiple times; either directly through the same
6659  * event, or through other events by use of perf_event_set_output().
6660  *
6661  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6662  * the buffer here, where we still have a VM context. This means we need
6663  * to detach all events redirecting to us.
6664  */
6665 static void perf_mmap_close(struct vm_area_struct *vma)
6666 {
6667 	struct perf_event *event = vma->vm_file->private_data;
6668 	struct perf_buffer *rb = ring_buffer_get(event);
6669 	struct user_struct *mmap_user = rb->mmap_user;
6670 	int mmap_locked = rb->mmap_locked;
6671 	unsigned long size = perf_data_size(rb);
6672 	bool detach_rest = false;
6673 
6674 	if (event->pmu->event_unmapped)
6675 		event->pmu->event_unmapped(event, vma->vm_mm);
6676 
6677 	/*
6678 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6679 	 * to avoid complications.
6680 	 */
6681 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6682 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6683 		/*
6684 		 * Stop all AUX events that are writing to this buffer,
6685 		 * so that we can free its AUX pages and corresponding PMU
6686 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6687 		 * they won't start any more (see perf_aux_output_begin()).
6688 		 */
6689 		perf_pmu_output_stop(event);
6690 
6691 		/* now it's safe to free the pages */
6692 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6693 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6694 
6695 		/* this has to be the last one */
6696 		rb_free_aux(rb);
6697 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6698 
6699 		mutex_unlock(&rb->aux_mutex);
6700 	}
6701 
6702 	if (atomic_dec_and_test(&rb->mmap_count))
6703 		detach_rest = true;
6704 
6705 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6706 		goto out_put;
6707 
6708 	ring_buffer_attach(event, NULL);
6709 	mutex_unlock(&event->mmap_mutex);
6710 
6711 	/* If there's still other mmap()s of this buffer, we're done. */
6712 	if (!detach_rest)
6713 		goto out_put;
6714 
6715 	/*
6716 	 * No other mmap()s, detach from all other events that might redirect
6717 	 * into the now unreachable buffer. Somewhat complicated by the
6718 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6719 	 */
6720 again:
6721 	rcu_read_lock();
6722 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6723 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6724 			/*
6725 			 * This event is en-route to free_event() which will
6726 			 * detach it and remove it from the list.
6727 			 */
6728 			continue;
6729 		}
6730 		rcu_read_unlock();
6731 
6732 		mutex_lock(&event->mmap_mutex);
6733 		/*
6734 		 * Check we didn't race with perf_event_set_output() which can
6735 		 * swizzle the rb from under us while we were waiting to
6736 		 * acquire mmap_mutex.
6737 		 *
6738 		 * If we find a different rb; ignore this event, a next
6739 		 * iteration will no longer find it on the list. We have to
6740 		 * still restart the iteration to make sure we're not now
6741 		 * iterating the wrong list.
6742 		 */
6743 		if (event->rb == rb)
6744 			ring_buffer_attach(event, NULL);
6745 
6746 		mutex_unlock(&event->mmap_mutex);
6747 		put_event(event);
6748 
6749 		/*
6750 		 * Restart the iteration; either we're on the wrong list or
6751 		 * destroyed its integrity by doing a deletion.
6752 		 */
6753 		goto again;
6754 	}
6755 	rcu_read_unlock();
6756 
6757 	/*
6758 	 * It could be there's still a few 0-ref events on the list; they'll
6759 	 * get cleaned up by free_event() -- they'll also still have their
6760 	 * ref on the rb and will free it whenever they are done with it.
6761 	 *
6762 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6763 	 * undo the VM accounting.
6764 	 */
6765 
6766 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6767 			&mmap_user->locked_vm);
6768 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6769 	free_uid(mmap_user);
6770 
6771 out_put:
6772 	ring_buffer_put(rb); /* could be last */
6773 }
6774 
6775 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6776 {
6777 	/* The first page is the user control page, others are read-only. */
6778 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6779 }
6780 
6781 static const struct vm_operations_struct perf_mmap_vmops = {
6782 	.open		= perf_mmap_open,
6783 	.close		= perf_mmap_close, /* non mergeable */
6784 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6785 };
6786 
6787 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6788 {
6789 	unsigned long nr_pages = vma_pages(vma);
6790 	int err = 0;
6791 	unsigned long pagenum;
6792 
6793 	/*
6794 	 * We map this as a VM_PFNMAP VMA.
6795 	 *
6796 	 * This is not ideal as this is designed broadly for mappings of PFNs
6797 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6798 	 * !pfn_valid(pfn).
6799 	 *
6800 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6801 	 * which would more ideally be mapped using vm_insert_page() or a
6802 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6803 	 *
6804 	 * However this won't work here, because:
6805 	 *
6806 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6807 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6808 	 *    indicate that this should be mapped CoW in order that the
6809 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6810 	 *    rest R/O as desired.
6811 	 *
6812 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6813 	 *    vm_normal_page() returning a struct page * pointer, which means
6814 	 *    vm_ops->page_mkwrite() will be invoked rather than
6815 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6816 	 *    to work around retry logic in the fault handler, however this
6817 	 *    field is no longer allowed to be used within struct page.
6818 	 *
6819 	 * 3. Having a struct page * made available in the fault logic also
6820 	 *    means that the page gets put on the rmap and becomes
6821 	 *    inappropriately accessible and subject to map and ref counting.
6822 	 *
6823 	 * Ideally we would have a mechanism that could explicitly express our
6824 	 * desires, but this is not currently the case, so we instead use
6825 	 * VM_PFNMAP.
6826 	 *
6827 	 * We manage the lifetime of these mappings with internal refcounts (see
6828 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6829 	 * this mapping is maintained correctly.
6830 	 */
6831 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6832 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6833 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6834 
6835 		if (page == NULL) {
6836 			err = -EINVAL;
6837 			break;
6838 		}
6839 
6840 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6841 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6842 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6843 		if (err)
6844 			break;
6845 	}
6846 
6847 #ifdef CONFIG_MMU
6848 	/* Clear any partial mappings on error. */
6849 	if (err)
6850 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6851 #endif
6852 
6853 	return err;
6854 }
6855 
6856 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6857 {
6858 	struct perf_event *event = file->private_data;
6859 	unsigned long user_locked, user_lock_limit;
6860 	struct user_struct *user = current_user();
6861 	struct mutex *aux_mutex = NULL;
6862 	struct perf_buffer *rb = NULL;
6863 	unsigned long locked, lock_limit;
6864 	unsigned long vma_size;
6865 	unsigned long nr_pages;
6866 	long user_extra = 0, extra = 0;
6867 	int ret, flags = 0;
6868 
6869 	/*
6870 	 * Don't allow mmap() of inherited per-task counters. This would
6871 	 * create a performance issue due to all children writing to the
6872 	 * same rb.
6873 	 */
6874 	if (event->cpu == -1 && event->attr.inherit)
6875 		return -EINVAL;
6876 
6877 	if (!(vma->vm_flags & VM_SHARED))
6878 		return -EINVAL;
6879 
6880 	ret = security_perf_event_read(event);
6881 	if (ret)
6882 		return ret;
6883 
6884 	vma_size = vma->vm_end - vma->vm_start;
6885 	nr_pages = vma_size / PAGE_SIZE;
6886 
6887 	if (nr_pages > INT_MAX)
6888 		return -ENOMEM;
6889 
6890 	if (vma_size != PAGE_SIZE * nr_pages)
6891 		return -EINVAL;
6892 
6893 	user_extra = nr_pages;
6894 
6895 	mutex_lock(&event->mmap_mutex);
6896 	ret = -EINVAL;
6897 
6898 	if (vma->vm_pgoff == 0) {
6899 		nr_pages -= 1;
6900 
6901 		/*
6902 		 * If we have rb pages ensure they're a power-of-two number, so we
6903 		 * can do bitmasks instead of modulo.
6904 		 */
6905 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6906 			goto unlock;
6907 
6908 		WARN_ON_ONCE(event->ctx->parent_ctx);
6909 
6910 		if (event->rb) {
6911 			if (data_page_nr(event->rb) != nr_pages)
6912 				goto unlock;
6913 
6914 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
6915 				/*
6916 				 * Success -- managed to mmap() the same buffer
6917 				 * multiple times.
6918 				 */
6919 				ret = 0;
6920 				/* We need the rb to map pages. */
6921 				rb = event->rb;
6922 				goto unlock;
6923 			}
6924 
6925 			/*
6926 			 * Raced against perf_mmap_close()'s
6927 			 * atomic_dec_and_mutex_lock() remove the
6928 			 * event and continue as if !event->rb
6929 			 */
6930 			ring_buffer_attach(event, NULL);
6931 		}
6932 
6933 	} else {
6934 		/*
6935 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6936 		 * mapped, all subsequent mappings should have the same size
6937 		 * and offset. Must be above the normal perf buffer.
6938 		 */
6939 		u64 aux_offset, aux_size;
6940 
6941 		rb = event->rb;
6942 		if (!rb)
6943 			goto aux_unlock;
6944 
6945 		aux_mutex = &rb->aux_mutex;
6946 		mutex_lock(aux_mutex);
6947 
6948 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6949 		aux_size = READ_ONCE(rb->user_page->aux_size);
6950 
6951 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6952 			goto aux_unlock;
6953 
6954 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6955 			goto aux_unlock;
6956 
6957 		/* already mapped with a different offset */
6958 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6959 			goto aux_unlock;
6960 
6961 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6962 			goto aux_unlock;
6963 
6964 		/* already mapped with a different size */
6965 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6966 			goto aux_unlock;
6967 
6968 		if (!is_power_of_2(nr_pages))
6969 			goto aux_unlock;
6970 
6971 		if (!atomic_inc_not_zero(&rb->mmap_count))
6972 			goto aux_unlock;
6973 
6974 		if (rb_has_aux(rb)) {
6975 			atomic_inc(&rb->aux_mmap_count);
6976 			ret = 0;
6977 			goto unlock;
6978 		}
6979 
6980 		atomic_set(&rb->aux_mmap_count, 1);
6981 	}
6982 
6983 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6984 
6985 	/*
6986 	 * Increase the limit linearly with more CPUs:
6987 	 */
6988 	user_lock_limit *= num_online_cpus();
6989 
6990 	user_locked = atomic_long_read(&user->locked_vm);
6991 
6992 	/*
6993 	 * sysctl_perf_event_mlock may have changed, so that
6994 	 *     user->locked_vm > user_lock_limit
6995 	 */
6996 	if (user_locked > user_lock_limit)
6997 		user_locked = user_lock_limit;
6998 	user_locked += user_extra;
6999 
7000 	if (user_locked > user_lock_limit) {
7001 		/*
7002 		 * charge locked_vm until it hits user_lock_limit;
7003 		 * charge the rest from pinned_vm
7004 		 */
7005 		extra = user_locked - user_lock_limit;
7006 		user_extra -= extra;
7007 	}
7008 
7009 	lock_limit = rlimit(RLIMIT_MEMLOCK);
7010 	lock_limit >>= PAGE_SHIFT;
7011 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7012 
7013 	if ((locked > lock_limit) && perf_is_paranoid() &&
7014 		!capable(CAP_IPC_LOCK)) {
7015 		ret = -EPERM;
7016 		goto unlock;
7017 	}
7018 
7019 	WARN_ON(!rb && event->rb);
7020 
7021 	if (vma->vm_flags & VM_WRITE)
7022 		flags |= RING_BUFFER_WRITABLE;
7023 
7024 	if (!rb) {
7025 		rb = rb_alloc(nr_pages,
7026 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7027 			      event->cpu, flags);
7028 
7029 		if (!rb) {
7030 			ret = -ENOMEM;
7031 			goto unlock;
7032 		}
7033 
7034 		atomic_set(&rb->mmap_count, 1);
7035 		rb->mmap_user = get_current_user();
7036 		rb->mmap_locked = extra;
7037 
7038 		ring_buffer_attach(event, rb);
7039 
7040 		perf_event_update_time(event);
7041 		perf_event_init_userpage(event);
7042 		perf_event_update_userpage(event);
7043 	} else {
7044 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7045 				   event->attr.aux_watermark, flags);
7046 		if (!ret)
7047 			rb->aux_mmap_locked = extra;
7048 	}
7049 
7050 	ret = 0;
7051 
7052 unlock:
7053 	if (!ret) {
7054 		atomic_long_add(user_extra, &user->locked_vm);
7055 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
7056 
7057 		atomic_inc(&event->mmap_count);
7058 	} else if (rb) {
7059 		atomic_dec(&rb->mmap_count);
7060 	}
7061 aux_unlock:
7062 	if (aux_mutex)
7063 		mutex_unlock(aux_mutex);
7064 	mutex_unlock(&event->mmap_mutex);
7065 
7066 	/*
7067 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7068 	 * vma.
7069 	 */
7070 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7071 	vma->vm_ops = &perf_mmap_vmops;
7072 
7073 	if (!ret)
7074 		ret = map_range(rb, vma);
7075 
7076 	if (!ret && event->pmu->event_mapped)
7077 		event->pmu->event_mapped(event, vma->vm_mm);
7078 
7079 	return ret;
7080 }
7081 
7082 static int perf_fasync(int fd, struct file *filp, int on)
7083 {
7084 	struct inode *inode = file_inode(filp);
7085 	struct perf_event *event = filp->private_data;
7086 	int retval;
7087 
7088 	inode_lock(inode);
7089 	retval = fasync_helper(fd, filp, on, &event->fasync);
7090 	inode_unlock(inode);
7091 
7092 	if (retval < 0)
7093 		return retval;
7094 
7095 	return 0;
7096 }
7097 
7098 static const struct file_operations perf_fops = {
7099 	.release		= perf_release,
7100 	.read			= perf_read,
7101 	.poll			= perf_poll,
7102 	.unlocked_ioctl		= perf_ioctl,
7103 	.compat_ioctl		= perf_compat_ioctl,
7104 	.mmap			= perf_mmap,
7105 	.fasync			= perf_fasync,
7106 };
7107 
7108 /*
7109  * Perf event wakeup
7110  *
7111  * If there's data, ensure we set the poll() state and publish everything
7112  * to user-space before waking everybody up.
7113  */
7114 
7115 void perf_event_wakeup(struct perf_event *event)
7116 {
7117 	ring_buffer_wakeup(event);
7118 
7119 	if (event->pending_kill) {
7120 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7121 		event->pending_kill = 0;
7122 	}
7123 }
7124 
7125 static void perf_sigtrap(struct perf_event *event)
7126 {
7127 	/*
7128 	 * We'd expect this to only occur if the irq_work is delayed and either
7129 	 * ctx->task or current has changed in the meantime. This can be the
7130 	 * case on architectures that do not implement arch_irq_work_raise().
7131 	 */
7132 	if (WARN_ON_ONCE(event->ctx->task != current))
7133 		return;
7134 
7135 	/*
7136 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7137 	 * task exiting.
7138 	 */
7139 	if (current->flags & PF_EXITING)
7140 		return;
7141 
7142 	send_sig_perf((void __user *)event->pending_addr,
7143 		      event->orig_type, event->attr.sig_data);
7144 }
7145 
7146 /*
7147  * Deliver the pending work in-event-context or follow the context.
7148  */
7149 static void __perf_pending_disable(struct perf_event *event)
7150 {
7151 	int cpu = READ_ONCE(event->oncpu);
7152 
7153 	/*
7154 	 * If the event isn't running; we done. event_sched_out() will have
7155 	 * taken care of things.
7156 	 */
7157 	if (cpu < 0)
7158 		return;
7159 
7160 	/*
7161 	 * Yay, we hit home and are in the context of the event.
7162 	 */
7163 	if (cpu == smp_processor_id()) {
7164 		if (event->pending_disable) {
7165 			event->pending_disable = 0;
7166 			perf_event_disable_local(event);
7167 		}
7168 		return;
7169 	}
7170 
7171 	/*
7172 	 *  CPU-A			CPU-B
7173 	 *
7174 	 *  perf_event_disable_inatomic()
7175 	 *    @pending_disable = CPU-A;
7176 	 *    irq_work_queue();
7177 	 *
7178 	 *  sched-out
7179 	 *    @pending_disable = -1;
7180 	 *
7181 	 *				sched-in
7182 	 *				perf_event_disable_inatomic()
7183 	 *				  @pending_disable = CPU-B;
7184 	 *				  irq_work_queue(); // FAILS
7185 	 *
7186 	 *  irq_work_run()
7187 	 *    perf_pending_disable()
7188 	 *
7189 	 * But the event runs on CPU-B and wants disabling there.
7190 	 */
7191 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7192 }
7193 
7194 static void perf_pending_disable(struct irq_work *entry)
7195 {
7196 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7197 	int rctx;
7198 
7199 	/*
7200 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7201 	 * and we won't recurse 'further'.
7202 	 */
7203 	rctx = perf_swevent_get_recursion_context();
7204 	__perf_pending_disable(event);
7205 	if (rctx >= 0)
7206 		perf_swevent_put_recursion_context(rctx);
7207 }
7208 
7209 static void perf_pending_irq(struct irq_work *entry)
7210 {
7211 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7212 	int rctx;
7213 
7214 	/*
7215 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7216 	 * and we won't recurse 'further'.
7217 	 */
7218 	rctx = perf_swevent_get_recursion_context();
7219 
7220 	/*
7221 	 * The wakeup isn't bound to the context of the event -- it can happen
7222 	 * irrespective of where the event is.
7223 	 */
7224 	if (event->pending_wakeup) {
7225 		event->pending_wakeup = 0;
7226 		perf_event_wakeup(event);
7227 	}
7228 
7229 	if (rctx >= 0)
7230 		perf_swevent_put_recursion_context(rctx);
7231 }
7232 
7233 static void perf_pending_task(struct callback_head *head)
7234 {
7235 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7236 	int rctx;
7237 
7238 	/*
7239 	 * All accesses to the event must belong to the same implicit RCU read-side
7240 	 * critical section as the ->pending_work reset. See comment in
7241 	 * perf_pending_task_sync().
7242 	 */
7243 	rcu_read_lock();
7244 	/*
7245 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7246 	 * and we won't recurse 'further'.
7247 	 */
7248 	rctx = perf_swevent_get_recursion_context();
7249 
7250 	if (event->pending_work) {
7251 		event->pending_work = 0;
7252 		perf_sigtrap(event);
7253 		local_dec(&event->ctx->nr_no_switch_fast);
7254 		rcuwait_wake_up(&event->pending_work_wait);
7255 	}
7256 	rcu_read_unlock();
7257 
7258 	if (rctx >= 0)
7259 		perf_swevent_put_recursion_context(rctx);
7260 }
7261 
7262 #ifdef CONFIG_GUEST_PERF_EVENTS
7263 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7264 
7265 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7266 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7267 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7268 
7269 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7270 {
7271 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7272 		return;
7273 
7274 	rcu_assign_pointer(perf_guest_cbs, cbs);
7275 	static_call_update(__perf_guest_state, cbs->state);
7276 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7277 
7278 	/* Implementing ->handle_intel_pt_intr is optional. */
7279 	if (cbs->handle_intel_pt_intr)
7280 		static_call_update(__perf_guest_handle_intel_pt_intr,
7281 				   cbs->handle_intel_pt_intr);
7282 }
7283 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7284 
7285 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7286 {
7287 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7288 		return;
7289 
7290 	rcu_assign_pointer(perf_guest_cbs, NULL);
7291 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7292 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7293 	static_call_update(__perf_guest_handle_intel_pt_intr,
7294 			   (void *)&__static_call_return0);
7295 	synchronize_rcu();
7296 }
7297 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7298 #endif
7299 
7300 static bool should_sample_guest(struct perf_event *event)
7301 {
7302 	return !event->attr.exclude_guest && perf_guest_state();
7303 }
7304 
7305 unsigned long perf_misc_flags(struct perf_event *event,
7306 			      struct pt_regs *regs)
7307 {
7308 	if (should_sample_guest(event))
7309 		return perf_arch_guest_misc_flags(regs);
7310 
7311 	return perf_arch_misc_flags(regs);
7312 }
7313 
7314 unsigned long perf_instruction_pointer(struct perf_event *event,
7315 				       struct pt_regs *regs)
7316 {
7317 	if (should_sample_guest(event))
7318 		return perf_guest_get_ip();
7319 
7320 	return perf_arch_instruction_pointer(regs);
7321 }
7322 
7323 static void
7324 perf_output_sample_regs(struct perf_output_handle *handle,
7325 			struct pt_regs *regs, u64 mask)
7326 {
7327 	int bit;
7328 	DECLARE_BITMAP(_mask, 64);
7329 
7330 	bitmap_from_u64(_mask, mask);
7331 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7332 		u64 val;
7333 
7334 		val = perf_reg_value(regs, bit);
7335 		perf_output_put(handle, val);
7336 	}
7337 }
7338 
7339 static void perf_sample_regs_user(struct perf_regs *regs_user,
7340 				  struct pt_regs *regs)
7341 {
7342 	if (user_mode(regs)) {
7343 		regs_user->abi = perf_reg_abi(current);
7344 		regs_user->regs = regs;
7345 	} else if (!(current->flags & PF_KTHREAD)) {
7346 		perf_get_regs_user(regs_user, regs);
7347 	} else {
7348 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7349 		regs_user->regs = NULL;
7350 	}
7351 }
7352 
7353 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7354 				  struct pt_regs *regs)
7355 {
7356 	regs_intr->regs = regs;
7357 	regs_intr->abi  = perf_reg_abi(current);
7358 }
7359 
7360 
7361 /*
7362  * Get remaining task size from user stack pointer.
7363  *
7364  * It'd be better to take stack vma map and limit this more
7365  * precisely, but there's no way to get it safely under interrupt,
7366  * so using TASK_SIZE as limit.
7367  */
7368 static u64 perf_ustack_task_size(struct pt_regs *regs)
7369 {
7370 	unsigned long addr = perf_user_stack_pointer(regs);
7371 
7372 	if (!addr || addr >= TASK_SIZE)
7373 		return 0;
7374 
7375 	return TASK_SIZE - addr;
7376 }
7377 
7378 static u16
7379 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7380 			struct pt_regs *regs)
7381 {
7382 	u64 task_size;
7383 
7384 	/* No regs, no stack pointer, no dump. */
7385 	if (!regs)
7386 		return 0;
7387 
7388 	/*
7389 	 * Check if we fit in with the requested stack size into the:
7390 	 * - TASK_SIZE
7391 	 *   If we don't, we limit the size to the TASK_SIZE.
7392 	 *
7393 	 * - remaining sample size
7394 	 *   If we don't, we customize the stack size to
7395 	 *   fit in to the remaining sample size.
7396 	 */
7397 
7398 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7399 	stack_size = min(stack_size, (u16) task_size);
7400 
7401 	/* Current header size plus static size and dynamic size. */
7402 	header_size += 2 * sizeof(u64);
7403 
7404 	/* Do we fit in with the current stack dump size? */
7405 	if ((u16) (header_size + stack_size) < header_size) {
7406 		/*
7407 		 * If we overflow the maximum size for the sample,
7408 		 * we customize the stack dump size to fit in.
7409 		 */
7410 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7411 		stack_size = round_up(stack_size, sizeof(u64));
7412 	}
7413 
7414 	return stack_size;
7415 }
7416 
7417 static void
7418 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7419 			  struct pt_regs *regs)
7420 {
7421 	/* Case of a kernel thread, nothing to dump */
7422 	if (!regs) {
7423 		u64 size = 0;
7424 		perf_output_put(handle, size);
7425 	} else {
7426 		unsigned long sp;
7427 		unsigned int rem;
7428 		u64 dyn_size;
7429 
7430 		/*
7431 		 * We dump:
7432 		 * static size
7433 		 *   - the size requested by user or the best one we can fit
7434 		 *     in to the sample max size
7435 		 * data
7436 		 *   - user stack dump data
7437 		 * dynamic size
7438 		 *   - the actual dumped size
7439 		 */
7440 
7441 		/* Static size. */
7442 		perf_output_put(handle, dump_size);
7443 
7444 		/* Data. */
7445 		sp = perf_user_stack_pointer(regs);
7446 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7447 		dyn_size = dump_size - rem;
7448 
7449 		perf_output_skip(handle, rem);
7450 
7451 		/* Dynamic size. */
7452 		perf_output_put(handle, dyn_size);
7453 	}
7454 }
7455 
7456 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7457 					  struct perf_sample_data *data,
7458 					  size_t size)
7459 {
7460 	struct perf_event *sampler = event->aux_event;
7461 	struct perf_buffer *rb;
7462 
7463 	data->aux_size = 0;
7464 
7465 	if (!sampler)
7466 		goto out;
7467 
7468 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7469 		goto out;
7470 
7471 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7472 		goto out;
7473 
7474 	rb = ring_buffer_get(sampler);
7475 	if (!rb)
7476 		goto out;
7477 
7478 	/*
7479 	 * If this is an NMI hit inside sampling code, don't take
7480 	 * the sample. See also perf_aux_sample_output().
7481 	 */
7482 	if (READ_ONCE(rb->aux_in_sampling)) {
7483 		data->aux_size = 0;
7484 	} else {
7485 		size = min_t(size_t, size, perf_aux_size(rb));
7486 		data->aux_size = ALIGN(size, sizeof(u64));
7487 	}
7488 	ring_buffer_put(rb);
7489 
7490 out:
7491 	return data->aux_size;
7492 }
7493 
7494 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7495                                  struct perf_event *event,
7496                                  struct perf_output_handle *handle,
7497                                  unsigned long size)
7498 {
7499 	unsigned long flags;
7500 	long ret;
7501 
7502 	/*
7503 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7504 	 * paths. If we start calling them in NMI context, they may race with
7505 	 * the IRQ ones, that is, for example, re-starting an event that's just
7506 	 * been stopped, which is why we're using a separate callback that
7507 	 * doesn't change the event state.
7508 	 *
7509 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7510 	 */
7511 	local_irq_save(flags);
7512 	/*
7513 	 * Guard against NMI hits inside the critical section;
7514 	 * see also perf_prepare_sample_aux().
7515 	 */
7516 	WRITE_ONCE(rb->aux_in_sampling, 1);
7517 	barrier();
7518 
7519 	ret = event->pmu->snapshot_aux(event, handle, size);
7520 
7521 	barrier();
7522 	WRITE_ONCE(rb->aux_in_sampling, 0);
7523 	local_irq_restore(flags);
7524 
7525 	return ret;
7526 }
7527 
7528 static void perf_aux_sample_output(struct perf_event *event,
7529 				   struct perf_output_handle *handle,
7530 				   struct perf_sample_data *data)
7531 {
7532 	struct perf_event *sampler = event->aux_event;
7533 	struct perf_buffer *rb;
7534 	unsigned long pad;
7535 	long size;
7536 
7537 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7538 		return;
7539 
7540 	rb = ring_buffer_get(sampler);
7541 	if (!rb)
7542 		return;
7543 
7544 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7545 
7546 	/*
7547 	 * An error here means that perf_output_copy() failed (returned a
7548 	 * non-zero surplus that it didn't copy), which in its current
7549 	 * enlightened implementation is not possible. If that changes, we'd
7550 	 * like to know.
7551 	 */
7552 	if (WARN_ON_ONCE(size < 0))
7553 		goto out_put;
7554 
7555 	/*
7556 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7557 	 * perf_prepare_sample_aux(), so should not be more than that.
7558 	 */
7559 	pad = data->aux_size - size;
7560 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7561 		pad = 8;
7562 
7563 	if (pad) {
7564 		u64 zero = 0;
7565 		perf_output_copy(handle, &zero, pad);
7566 	}
7567 
7568 out_put:
7569 	ring_buffer_put(rb);
7570 }
7571 
7572 /*
7573  * A set of common sample data types saved even for non-sample records
7574  * when event->attr.sample_id_all is set.
7575  */
7576 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7577 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7578 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7579 
7580 static void __perf_event_header__init_id(struct perf_sample_data *data,
7581 					 struct perf_event *event,
7582 					 u64 sample_type)
7583 {
7584 	data->type = event->attr.sample_type;
7585 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7586 
7587 	if (sample_type & PERF_SAMPLE_TID) {
7588 		/* namespace issues */
7589 		data->tid_entry.pid = perf_event_pid(event, current);
7590 		data->tid_entry.tid = perf_event_tid(event, current);
7591 	}
7592 
7593 	if (sample_type & PERF_SAMPLE_TIME)
7594 		data->time = perf_event_clock(event);
7595 
7596 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7597 		data->id = primary_event_id(event);
7598 
7599 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7600 		data->stream_id = event->id;
7601 
7602 	if (sample_type & PERF_SAMPLE_CPU) {
7603 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7604 		data->cpu_entry.reserved = 0;
7605 	}
7606 }
7607 
7608 void perf_event_header__init_id(struct perf_event_header *header,
7609 				struct perf_sample_data *data,
7610 				struct perf_event *event)
7611 {
7612 	if (event->attr.sample_id_all) {
7613 		header->size += event->id_header_size;
7614 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7615 	}
7616 }
7617 
7618 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7619 					   struct perf_sample_data *data)
7620 {
7621 	u64 sample_type = data->type;
7622 
7623 	if (sample_type & PERF_SAMPLE_TID)
7624 		perf_output_put(handle, data->tid_entry);
7625 
7626 	if (sample_type & PERF_SAMPLE_TIME)
7627 		perf_output_put(handle, data->time);
7628 
7629 	if (sample_type & PERF_SAMPLE_ID)
7630 		perf_output_put(handle, data->id);
7631 
7632 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7633 		perf_output_put(handle, data->stream_id);
7634 
7635 	if (sample_type & PERF_SAMPLE_CPU)
7636 		perf_output_put(handle, data->cpu_entry);
7637 
7638 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7639 		perf_output_put(handle, data->id);
7640 }
7641 
7642 void perf_event__output_id_sample(struct perf_event *event,
7643 				  struct perf_output_handle *handle,
7644 				  struct perf_sample_data *sample)
7645 {
7646 	if (event->attr.sample_id_all)
7647 		__perf_event__output_id_sample(handle, sample);
7648 }
7649 
7650 static void perf_output_read_one(struct perf_output_handle *handle,
7651 				 struct perf_event *event,
7652 				 u64 enabled, u64 running)
7653 {
7654 	u64 read_format = event->attr.read_format;
7655 	u64 values[5];
7656 	int n = 0;
7657 
7658 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7659 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7660 		values[n++] = enabled +
7661 			atomic64_read(&event->child_total_time_enabled);
7662 	}
7663 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7664 		values[n++] = running +
7665 			atomic64_read(&event->child_total_time_running);
7666 	}
7667 	if (read_format & PERF_FORMAT_ID)
7668 		values[n++] = primary_event_id(event);
7669 	if (read_format & PERF_FORMAT_LOST)
7670 		values[n++] = atomic64_read(&event->lost_samples);
7671 
7672 	__output_copy(handle, values, n * sizeof(u64));
7673 }
7674 
7675 static void perf_output_read_group(struct perf_output_handle *handle,
7676 				   struct perf_event *event,
7677 				   u64 enabled, u64 running)
7678 {
7679 	struct perf_event *leader = event->group_leader, *sub;
7680 	u64 read_format = event->attr.read_format;
7681 	unsigned long flags;
7682 	u64 values[6];
7683 	int n = 0;
7684 	bool self = has_inherit_and_sample_read(&event->attr);
7685 
7686 	/*
7687 	 * Disabling interrupts avoids all counter scheduling
7688 	 * (context switches, timer based rotation and IPIs).
7689 	 */
7690 	local_irq_save(flags);
7691 
7692 	values[n++] = 1 + leader->nr_siblings;
7693 
7694 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7695 		values[n++] = enabled;
7696 
7697 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7698 		values[n++] = running;
7699 
7700 	if ((leader != event) && !handle->skip_read)
7701 		perf_pmu_read(leader);
7702 
7703 	values[n++] = perf_event_count(leader, self);
7704 	if (read_format & PERF_FORMAT_ID)
7705 		values[n++] = primary_event_id(leader);
7706 	if (read_format & PERF_FORMAT_LOST)
7707 		values[n++] = atomic64_read(&leader->lost_samples);
7708 
7709 	__output_copy(handle, values, n * sizeof(u64));
7710 
7711 	for_each_sibling_event(sub, leader) {
7712 		n = 0;
7713 
7714 		if ((sub != event) && !handle->skip_read)
7715 			perf_pmu_read(sub);
7716 
7717 		values[n++] = perf_event_count(sub, self);
7718 		if (read_format & PERF_FORMAT_ID)
7719 			values[n++] = primary_event_id(sub);
7720 		if (read_format & PERF_FORMAT_LOST)
7721 			values[n++] = atomic64_read(&sub->lost_samples);
7722 
7723 		__output_copy(handle, values, n * sizeof(u64));
7724 	}
7725 
7726 	local_irq_restore(flags);
7727 }
7728 
7729 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7730 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7731 
7732 /*
7733  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7734  *
7735  * The problem is that its both hard and excessively expensive to iterate the
7736  * child list, not to mention that its impossible to IPI the children running
7737  * on another CPU, from interrupt/NMI context.
7738  *
7739  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7740  * counts rather than attempting to accumulate some value across all children on
7741  * all cores.
7742  */
7743 static void perf_output_read(struct perf_output_handle *handle,
7744 			     struct perf_event *event)
7745 {
7746 	u64 enabled = 0, running = 0, now;
7747 	u64 read_format = event->attr.read_format;
7748 
7749 	/*
7750 	 * compute total_time_enabled, total_time_running
7751 	 * based on snapshot values taken when the event
7752 	 * was last scheduled in.
7753 	 *
7754 	 * we cannot simply called update_context_time()
7755 	 * because of locking issue as we are called in
7756 	 * NMI context
7757 	 */
7758 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7759 		calc_timer_values(event, &now, &enabled, &running);
7760 
7761 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7762 		perf_output_read_group(handle, event, enabled, running);
7763 	else
7764 		perf_output_read_one(handle, event, enabled, running);
7765 }
7766 
7767 void perf_output_sample(struct perf_output_handle *handle,
7768 			struct perf_event_header *header,
7769 			struct perf_sample_data *data,
7770 			struct perf_event *event)
7771 {
7772 	u64 sample_type = data->type;
7773 
7774 	if (data->sample_flags & PERF_SAMPLE_READ)
7775 		handle->skip_read = 1;
7776 
7777 	perf_output_put(handle, *header);
7778 
7779 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7780 		perf_output_put(handle, data->id);
7781 
7782 	if (sample_type & PERF_SAMPLE_IP)
7783 		perf_output_put(handle, data->ip);
7784 
7785 	if (sample_type & PERF_SAMPLE_TID)
7786 		perf_output_put(handle, data->tid_entry);
7787 
7788 	if (sample_type & PERF_SAMPLE_TIME)
7789 		perf_output_put(handle, data->time);
7790 
7791 	if (sample_type & PERF_SAMPLE_ADDR)
7792 		perf_output_put(handle, data->addr);
7793 
7794 	if (sample_type & PERF_SAMPLE_ID)
7795 		perf_output_put(handle, data->id);
7796 
7797 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7798 		perf_output_put(handle, data->stream_id);
7799 
7800 	if (sample_type & PERF_SAMPLE_CPU)
7801 		perf_output_put(handle, data->cpu_entry);
7802 
7803 	if (sample_type & PERF_SAMPLE_PERIOD)
7804 		perf_output_put(handle, data->period);
7805 
7806 	if (sample_type & PERF_SAMPLE_READ)
7807 		perf_output_read(handle, event);
7808 
7809 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7810 		int size = 1;
7811 
7812 		size += data->callchain->nr;
7813 		size *= sizeof(u64);
7814 		__output_copy(handle, data->callchain, size);
7815 	}
7816 
7817 	if (sample_type & PERF_SAMPLE_RAW) {
7818 		struct perf_raw_record *raw = data->raw;
7819 
7820 		if (raw) {
7821 			struct perf_raw_frag *frag = &raw->frag;
7822 
7823 			perf_output_put(handle, raw->size);
7824 			do {
7825 				if (frag->copy) {
7826 					__output_custom(handle, frag->copy,
7827 							frag->data, frag->size);
7828 				} else {
7829 					__output_copy(handle, frag->data,
7830 						      frag->size);
7831 				}
7832 				if (perf_raw_frag_last(frag))
7833 					break;
7834 				frag = frag->next;
7835 			} while (1);
7836 			if (frag->pad)
7837 				__output_skip(handle, NULL, frag->pad);
7838 		} else {
7839 			struct {
7840 				u32	size;
7841 				u32	data;
7842 			} raw = {
7843 				.size = sizeof(u32),
7844 				.data = 0,
7845 			};
7846 			perf_output_put(handle, raw);
7847 		}
7848 	}
7849 
7850 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7851 		if (data->br_stack) {
7852 			size_t size;
7853 
7854 			size = data->br_stack->nr
7855 			     * sizeof(struct perf_branch_entry);
7856 
7857 			perf_output_put(handle, data->br_stack->nr);
7858 			if (branch_sample_hw_index(event))
7859 				perf_output_put(handle, data->br_stack->hw_idx);
7860 			perf_output_copy(handle, data->br_stack->entries, size);
7861 			/*
7862 			 * Add the extension space which is appended
7863 			 * right after the struct perf_branch_stack.
7864 			 */
7865 			if (data->br_stack_cntr) {
7866 				size = data->br_stack->nr * sizeof(u64);
7867 				perf_output_copy(handle, data->br_stack_cntr, size);
7868 			}
7869 		} else {
7870 			/*
7871 			 * we always store at least the value of nr
7872 			 */
7873 			u64 nr = 0;
7874 			perf_output_put(handle, nr);
7875 		}
7876 	}
7877 
7878 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7879 		u64 abi = data->regs_user.abi;
7880 
7881 		/*
7882 		 * If there are no regs to dump, notice it through
7883 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7884 		 */
7885 		perf_output_put(handle, abi);
7886 
7887 		if (abi) {
7888 			u64 mask = event->attr.sample_regs_user;
7889 			perf_output_sample_regs(handle,
7890 						data->regs_user.regs,
7891 						mask);
7892 		}
7893 	}
7894 
7895 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7896 		perf_output_sample_ustack(handle,
7897 					  data->stack_user_size,
7898 					  data->regs_user.regs);
7899 	}
7900 
7901 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7902 		perf_output_put(handle, data->weight.full);
7903 
7904 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7905 		perf_output_put(handle, data->data_src.val);
7906 
7907 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7908 		perf_output_put(handle, data->txn);
7909 
7910 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7911 		u64 abi = data->regs_intr.abi;
7912 		/*
7913 		 * If there are no regs to dump, notice it through
7914 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7915 		 */
7916 		perf_output_put(handle, abi);
7917 
7918 		if (abi) {
7919 			u64 mask = event->attr.sample_regs_intr;
7920 
7921 			perf_output_sample_regs(handle,
7922 						data->regs_intr.regs,
7923 						mask);
7924 		}
7925 	}
7926 
7927 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7928 		perf_output_put(handle, data->phys_addr);
7929 
7930 	if (sample_type & PERF_SAMPLE_CGROUP)
7931 		perf_output_put(handle, data->cgroup);
7932 
7933 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7934 		perf_output_put(handle, data->data_page_size);
7935 
7936 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7937 		perf_output_put(handle, data->code_page_size);
7938 
7939 	if (sample_type & PERF_SAMPLE_AUX) {
7940 		perf_output_put(handle, data->aux_size);
7941 
7942 		if (data->aux_size)
7943 			perf_aux_sample_output(event, handle, data);
7944 	}
7945 
7946 	if (!event->attr.watermark) {
7947 		int wakeup_events = event->attr.wakeup_events;
7948 
7949 		if (wakeup_events) {
7950 			struct perf_buffer *rb = handle->rb;
7951 			int events = local_inc_return(&rb->events);
7952 
7953 			if (events >= wakeup_events) {
7954 				local_sub(wakeup_events, &rb->events);
7955 				local_inc(&rb->wakeup);
7956 			}
7957 		}
7958 	}
7959 }
7960 
7961 static u64 perf_virt_to_phys(u64 virt)
7962 {
7963 	u64 phys_addr = 0;
7964 
7965 	if (!virt)
7966 		return 0;
7967 
7968 	if (virt >= TASK_SIZE) {
7969 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7970 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7971 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7972 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7973 	} else {
7974 		/*
7975 		 * Walking the pages tables for user address.
7976 		 * Interrupts are disabled, so it prevents any tear down
7977 		 * of the page tables.
7978 		 * Try IRQ-safe get_user_page_fast_only first.
7979 		 * If failed, leave phys_addr as 0.
7980 		 */
7981 		if (current->mm != NULL) {
7982 			struct page *p;
7983 
7984 			pagefault_disable();
7985 			if (get_user_page_fast_only(virt, 0, &p)) {
7986 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7987 				put_page(p);
7988 			}
7989 			pagefault_enable();
7990 		}
7991 	}
7992 
7993 	return phys_addr;
7994 }
7995 
7996 /*
7997  * Return the pagetable size of a given virtual address.
7998  */
7999 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8000 {
8001 	u64 size = 0;
8002 
8003 #ifdef CONFIG_HAVE_GUP_FAST
8004 	pgd_t *pgdp, pgd;
8005 	p4d_t *p4dp, p4d;
8006 	pud_t *pudp, pud;
8007 	pmd_t *pmdp, pmd;
8008 	pte_t *ptep, pte;
8009 
8010 	pgdp = pgd_offset(mm, addr);
8011 	pgd = READ_ONCE(*pgdp);
8012 	if (pgd_none(pgd))
8013 		return 0;
8014 
8015 	if (pgd_leaf(pgd))
8016 		return pgd_leaf_size(pgd);
8017 
8018 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8019 	p4d = READ_ONCE(*p4dp);
8020 	if (!p4d_present(p4d))
8021 		return 0;
8022 
8023 	if (p4d_leaf(p4d))
8024 		return p4d_leaf_size(p4d);
8025 
8026 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8027 	pud = READ_ONCE(*pudp);
8028 	if (!pud_present(pud))
8029 		return 0;
8030 
8031 	if (pud_leaf(pud))
8032 		return pud_leaf_size(pud);
8033 
8034 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8035 again:
8036 	pmd = pmdp_get_lockless(pmdp);
8037 	if (!pmd_present(pmd))
8038 		return 0;
8039 
8040 	if (pmd_leaf(pmd))
8041 		return pmd_leaf_size(pmd);
8042 
8043 	ptep = pte_offset_map(&pmd, addr);
8044 	if (!ptep)
8045 		goto again;
8046 
8047 	pte = ptep_get_lockless(ptep);
8048 	if (pte_present(pte))
8049 		size = __pte_leaf_size(pmd, pte);
8050 	pte_unmap(ptep);
8051 #endif /* CONFIG_HAVE_GUP_FAST */
8052 
8053 	return size;
8054 }
8055 
8056 static u64 perf_get_page_size(unsigned long addr)
8057 {
8058 	struct mm_struct *mm;
8059 	unsigned long flags;
8060 	u64 size;
8061 
8062 	if (!addr)
8063 		return 0;
8064 
8065 	/*
8066 	 * Software page-table walkers must disable IRQs,
8067 	 * which prevents any tear down of the page tables.
8068 	 */
8069 	local_irq_save(flags);
8070 
8071 	mm = current->mm;
8072 	if (!mm) {
8073 		/*
8074 		 * For kernel threads and the like, use init_mm so that
8075 		 * we can find kernel memory.
8076 		 */
8077 		mm = &init_mm;
8078 	}
8079 
8080 	size = perf_get_pgtable_size(mm, addr);
8081 
8082 	local_irq_restore(flags);
8083 
8084 	return size;
8085 }
8086 
8087 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8088 
8089 struct perf_callchain_entry *
8090 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8091 {
8092 	bool kernel = !event->attr.exclude_callchain_kernel;
8093 	bool user   = !event->attr.exclude_callchain_user;
8094 	/* Disallow cross-task user callchains. */
8095 	bool crosstask = event->ctx->task && event->ctx->task != current;
8096 	const u32 max_stack = event->attr.sample_max_stack;
8097 	struct perf_callchain_entry *callchain;
8098 
8099 	if (!kernel && !user)
8100 		return &__empty_callchain;
8101 
8102 	callchain = get_perf_callchain(regs, 0, kernel, user,
8103 				       max_stack, crosstask, true);
8104 	return callchain ?: &__empty_callchain;
8105 }
8106 
8107 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8108 {
8109 	return d * !!(flags & s);
8110 }
8111 
8112 void perf_prepare_sample(struct perf_sample_data *data,
8113 			 struct perf_event *event,
8114 			 struct pt_regs *regs)
8115 {
8116 	u64 sample_type = event->attr.sample_type;
8117 	u64 filtered_sample_type;
8118 
8119 	/*
8120 	 * Add the sample flags that are dependent to others.  And clear the
8121 	 * sample flags that have already been done by the PMU driver.
8122 	 */
8123 	filtered_sample_type = sample_type;
8124 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8125 					   PERF_SAMPLE_IP);
8126 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8127 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8128 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8129 					   PERF_SAMPLE_REGS_USER);
8130 	filtered_sample_type &= ~data->sample_flags;
8131 
8132 	if (filtered_sample_type == 0) {
8133 		/* Make sure it has the correct data->type for output */
8134 		data->type = event->attr.sample_type;
8135 		return;
8136 	}
8137 
8138 	__perf_event_header__init_id(data, event, filtered_sample_type);
8139 
8140 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8141 		data->ip = perf_instruction_pointer(event, regs);
8142 		data->sample_flags |= PERF_SAMPLE_IP;
8143 	}
8144 
8145 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8146 		perf_sample_save_callchain(data, event, regs);
8147 
8148 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8149 		data->raw = NULL;
8150 		data->dyn_size += sizeof(u64);
8151 		data->sample_flags |= PERF_SAMPLE_RAW;
8152 	}
8153 
8154 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8155 		data->br_stack = NULL;
8156 		data->dyn_size += sizeof(u64);
8157 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8158 	}
8159 
8160 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8161 		perf_sample_regs_user(&data->regs_user, regs);
8162 
8163 	/*
8164 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8165 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8166 	 * the dyn_size if it's not requested by users.
8167 	 */
8168 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8169 		/* regs dump ABI info */
8170 		int size = sizeof(u64);
8171 
8172 		if (data->regs_user.regs) {
8173 			u64 mask = event->attr.sample_regs_user;
8174 			size += hweight64(mask) * sizeof(u64);
8175 		}
8176 
8177 		data->dyn_size += size;
8178 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8179 	}
8180 
8181 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8182 		/*
8183 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8184 		 * processed as the last one or have additional check added
8185 		 * in case new sample type is added, because we could eat
8186 		 * up the rest of the sample size.
8187 		 */
8188 		u16 stack_size = event->attr.sample_stack_user;
8189 		u16 header_size = perf_sample_data_size(data, event);
8190 		u16 size = sizeof(u64);
8191 
8192 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8193 						     data->regs_user.regs);
8194 
8195 		/*
8196 		 * If there is something to dump, add space for the dump
8197 		 * itself and for the field that tells the dynamic size,
8198 		 * which is how many have been actually dumped.
8199 		 */
8200 		if (stack_size)
8201 			size += sizeof(u64) + stack_size;
8202 
8203 		data->stack_user_size = stack_size;
8204 		data->dyn_size += size;
8205 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8206 	}
8207 
8208 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8209 		data->weight.full = 0;
8210 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8211 	}
8212 
8213 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8214 		data->data_src.val = PERF_MEM_NA;
8215 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8216 	}
8217 
8218 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8219 		data->txn = 0;
8220 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8221 	}
8222 
8223 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8224 		data->addr = 0;
8225 		data->sample_flags |= PERF_SAMPLE_ADDR;
8226 	}
8227 
8228 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8229 		/* regs dump ABI info */
8230 		int size = sizeof(u64);
8231 
8232 		perf_sample_regs_intr(&data->regs_intr, regs);
8233 
8234 		if (data->regs_intr.regs) {
8235 			u64 mask = event->attr.sample_regs_intr;
8236 
8237 			size += hweight64(mask) * sizeof(u64);
8238 		}
8239 
8240 		data->dyn_size += size;
8241 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8242 	}
8243 
8244 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8245 		data->phys_addr = perf_virt_to_phys(data->addr);
8246 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8247 	}
8248 
8249 #ifdef CONFIG_CGROUP_PERF
8250 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8251 		struct cgroup *cgrp;
8252 
8253 		/* protected by RCU */
8254 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8255 		data->cgroup = cgroup_id(cgrp);
8256 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8257 	}
8258 #endif
8259 
8260 	/*
8261 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8262 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8263 	 * but the value will not dump to the userspace.
8264 	 */
8265 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8266 		data->data_page_size = perf_get_page_size(data->addr);
8267 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8268 	}
8269 
8270 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8271 		data->code_page_size = perf_get_page_size(data->ip);
8272 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8273 	}
8274 
8275 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8276 		u64 size;
8277 		u16 header_size = perf_sample_data_size(data, event);
8278 
8279 		header_size += sizeof(u64); /* size */
8280 
8281 		/*
8282 		 * Given the 16bit nature of header::size, an AUX sample can
8283 		 * easily overflow it, what with all the preceding sample bits.
8284 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8285 		 * per sample in total (rounded down to 8 byte boundary).
8286 		 */
8287 		size = min_t(size_t, U16_MAX - header_size,
8288 			     event->attr.aux_sample_size);
8289 		size = rounddown(size, 8);
8290 		size = perf_prepare_sample_aux(event, data, size);
8291 
8292 		WARN_ON_ONCE(size + header_size > U16_MAX);
8293 		data->dyn_size += size + sizeof(u64); /* size above */
8294 		data->sample_flags |= PERF_SAMPLE_AUX;
8295 	}
8296 }
8297 
8298 void perf_prepare_header(struct perf_event_header *header,
8299 			 struct perf_sample_data *data,
8300 			 struct perf_event *event,
8301 			 struct pt_regs *regs)
8302 {
8303 	header->type = PERF_RECORD_SAMPLE;
8304 	header->size = perf_sample_data_size(data, event);
8305 	header->misc = perf_misc_flags(event, regs);
8306 
8307 	/*
8308 	 * If you're adding more sample types here, you likely need to do
8309 	 * something about the overflowing header::size, like repurpose the
8310 	 * lowest 3 bits of size, which should be always zero at the moment.
8311 	 * This raises a more important question, do we really need 512k sized
8312 	 * samples and why, so good argumentation is in order for whatever you
8313 	 * do here next.
8314 	 */
8315 	WARN_ON_ONCE(header->size & 7);
8316 }
8317 
8318 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8319 {
8320 	if (pause) {
8321 		if (!event->hw.aux_paused) {
8322 			event->hw.aux_paused = 1;
8323 			event->pmu->stop(event, PERF_EF_PAUSE);
8324 		}
8325 	} else {
8326 		if (event->hw.aux_paused) {
8327 			event->hw.aux_paused = 0;
8328 			event->pmu->start(event, PERF_EF_RESUME);
8329 		}
8330 	}
8331 }
8332 
8333 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8334 {
8335 	struct perf_buffer *rb;
8336 
8337 	if (WARN_ON_ONCE(!event))
8338 		return;
8339 
8340 	rb = ring_buffer_get(event);
8341 	if (!rb)
8342 		return;
8343 
8344 	scoped_guard (irqsave) {
8345 		/*
8346 		 * Guard against self-recursion here. Another event could trip
8347 		 * this same from NMI context.
8348 		 */
8349 		if (READ_ONCE(rb->aux_in_pause_resume))
8350 			break;
8351 
8352 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8353 		barrier();
8354 		__perf_event_aux_pause(event, pause);
8355 		barrier();
8356 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8357 	}
8358 	ring_buffer_put(rb);
8359 }
8360 
8361 static __always_inline int
8362 __perf_event_output(struct perf_event *event,
8363 		    struct perf_sample_data *data,
8364 		    struct pt_regs *regs,
8365 		    int (*output_begin)(struct perf_output_handle *,
8366 					struct perf_sample_data *,
8367 					struct perf_event *,
8368 					unsigned int))
8369 {
8370 	struct perf_output_handle handle;
8371 	struct perf_event_header header;
8372 	int err;
8373 
8374 	/* protect the callchain buffers */
8375 	rcu_read_lock();
8376 
8377 	perf_prepare_sample(data, event, regs);
8378 	perf_prepare_header(&header, data, event, regs);
8379 
8380 	err = output_begin(&handle, data, event, header.size);
8381 	if (err)
8382 		goto exit;
8383 
8384 	perf_output_sample(&handle, &header, data, event);
8385 
8386 	perf_output_end(&handle);
8387 
8388 exit:
8389 	rcu_read_unlock();
8390 	return err;
8391 }
8392 
8393 void
8394 perf_event_output_forward(struct perf_event *event,
8395 			 struct perf_sample_data *data,
8396 			 struct pt_regs *regs)
8397 {
8398 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8399 }
8400 
8401 void
8402 perf_event_output_backward(struct perf_event *event,
8403 			   struct perf_sample_data *data,
8404 			   struct pt_regs *regs)
8405 {
8406 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8407 }
8408 
8409 int
8410 perf_event_output(struct perf_event *event,
8411 		  struct perf_sample_data *data,
8412 		  struct pt_regs *regs)
8413 {
8414 	return __perf_event_output(event, data, regs, perf_output_begin);
8415 }
8416 
8417 /*
8418  * read event_id
8419  */
8420 
8421 struct perf_read_event {
8422 	struct perf_event_header	header;
8423 
8424 	u32				pid;
8425 	u32				tid;
8426 };
8427 
8428 static void
8429 perf_event_read_event(struct perf_event *event,
8430 			struct task_struct *task)
8431 {
8432 	struct perf_output_handle handle;
8433 	struct perf_sample_data sample;
8434 	struct perf_read_event read_event = {
8435 		.header = {
8436 			.type = PERF_RECORD_READ,
8437 			.misc = 0,
8438 			.size = sizeof(read_event) + event->read_size,
8439 		},
8440 		.pid = perf_event_pid(event, task),
8441 		.tid = perf_event_tid(event, task),
8442 	};
8443 	int ret;
8444 
8445 	perf_event_header__init_id(&read_event.header, &sample, event);
8446 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8447 	if (ret)
8448 		return;
8449 
8450 	perf_output_put(&handle, read_event);
8451 	perf_output_read(&handle, event);
8452 	perf_event__output_id_sample(event, &handle, &sample);
8453 
8454 	perf_output_end(&handle);
8455 }
8456 
8457 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8458 
8459 static void
8460 perf_iterate_ctx(struct perf_event_context *ctx,
8461 		   perf_iterate_f output,
8462 		   void *data, bool all)
8463 {
8464 	struct perf_event *event;
8465 
8466 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8467 		if (!all) {
8468 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8469 				continue;
8470 			if (!event_filter_match(event))
8471 				continue;
8472 		}
8473 
8474 		output(event, data);
8475 	}
8476 }
8477 
8478 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8479 {
8480 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8481 	struct perf_event *event;
8482 
8483 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8484 		/*
8485 		 * Skip events that are not fully formed yet; ensure that
8486 		 * if we observe event->ctx, both event and ctx will be
8487 		 * complete enough. See perf_install_in_context().
8488 		 */
8489 		if (!smp_load_acquire(&event->ctx))
8490 			continue;
8491 
8492 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8493 			continue;
8494 		if (!event_filter_match(event))
8495 			continue;
8496 		output(event, data);
8497 	}
8498 }
8499 
8500 /*
8501  * Iterate all events that need to receive side-band events.
8502  *
8503  * For new callers; ensure that account_pmu_sb_event() includes
8504  * your event, otherwise it might not get delivered.
8505  */
8506 static void
8507 perf_iterate_sb(perf_iterate_f output, void *data,
8508 	       struct perf_event_context *task_ctx)
8509 {
8510 	struct perf_event_context *ctx;
8511 
8512 	rcu_read_lock();
8513 	preempt_disable();
8514 
8515 	/*
8516 	 * If we have task_ctx != NULL we only notify the task context itself.
8517 	 * The task_ctx is set only for EXIT events before releasing task
8518 	 * context.
8519 	 */
8520 	if (task_ctx) {
8521 		perf_iterate_ctx(task_ctx, output, data, false);
8522 		goto done;
8523 	}
8524 
8525 	perf_iterate_sb_cpu(output, data);
8526 
8527 	ctx = rcu_dereference(current->perf_event_ctxp);
8528 	if (ctx)
8529 		perf_iterate_ctx(ctx, output, data, false);
8530 done:
8531 	preempt_enable();
8532 	rcu_read_unlock();
8533 }
8534 
8535 /*
8536  * Clear all file-based filters at exec, they'll have to be
8537  * re-instated when/if these objects are mmapped again.
8538  */
8539 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8540 {
8541 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8542 	struct perf_addr_filter *filter;
8543 	unsigned int restart = 0, count = 0;
8544 	unsigned long flags;
8545 
8546 	if (!has_addr_filter(event))
8547 		return;
8548 
8549 	raw_spin_lock_irqsave(&ifh->lock, flags);
8550 	list_for_each_entry(filter, &ifh->list, entry) {
8551 		if (filter->path.dentry) {
8552 			event->addr_filter_ranges[count].start = 0;
8553 			event->addr_filter_ranges[count].size = 0;
8554 			restart++;
8555 		}
8556 
8557 		count++;
8558 	}
8559 
8560 	if (restart)
8561 		event->addr_filters_gen++;
8562 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8563 
8564 	if (restart)
8565 		perf_event_stop(event, 1);
8566 }
8567 
8568 void perf_event_exec(void)
8569 {
8570 	struct perf_event_context *ctx;
8571 
8572 	ctx = perf_pin_task_context(current);
8573 	if (!ctx)
8574 		return;
8575 
8576 	perf_event_enable_on_exec(ctx);
8577 	perf_event_remove_on_exec(ctx);
8578 	scoped_guard(rcu)
8579 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8580 
8581 	perf_unpin_context(ctx);
8582 	put_ctx(ctx);
8583 }
8584 
8585 struct remote_output {
8586 	struct perf_buffer	*rb;
8587 	int			err;
8588 };
8589 
8590 static void __perf_event_output_stop(struct perf_event *event, void *data)
8591 {
8592 	struct perf_event *parent = event->parent;
8593 	struct remote_output *ro = data;
8594 	struct perf_buffer *rb = ro->rb;
8595 	struct stop_event_data sd = {
8596 		.event	= event,
8597 	};
8598 
8599 	if (!has_aux(event))
8600 		return;
8601 
8602 	if (!parent)
8603 		parent = event;
8604 
8605 	/*
8606 	 * In case of inheritance, it will be the parent that links to the
8607 	 * ring-buffer, but it will be the child that's actually using it.
8608 	 *
8609 	 * We are using event::rb to determine if the event should be stopped,
8610 	 * however this may race with ring_buffer_attach() (through set_output),
8611 	 * which will make us skip the event that actually needs to be stopped.
8612 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8613 	 * its rb pointer.
8614 	 */
8615 	if (rcu_dereference(parent->rb) == rb)
8616 		ro->err = __perf_event_stop(&sd);
8617 }
8618 
8619 static int __perf_pmu_output_stop(void *info)
8620 {
8621 	struct perf_event *event = info;
8622 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8623 	struct remote_output ro = {
8624 		.rb	= event->rb,
8625 	};
8626 
8627 	rcu_read_lock();
8628 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8629 	if (cpuctx->task_ctx)
8630 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8631 				   &ro, false);
8632 	rcu_read_unlock();
8633 
8634 	return ro.err;
8635 }
8636 
8637 static void perf_pmu_output_stop(struct perf_event *event)
8638 {
8639 	struct perf_event *iter;
8640 	int err, cpu;
8641 
8642 restart:
8643 	rcu_read_lock();
8644 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8645 		/*
8646 		 * For per-CPU events, we need to make sure that neither they
8647 		 * nor their children are running; for cpu==-1 events it's
8648 		 * sufficient to stop the event itself if it's active, since
8649 		 * it can't have children.
8650 		 */
8651 		cpu = iter->cpu;
8652 		if (cpu == -1)
8653 			cpu = READ_ONCE(iter->oncpu);
8654 
8655 		if (cpu == -1)
8656 			continue;
8657 
8658 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8659 		if (err == -EAGAIN) {
8660 			rcu_read_unlock();
8661 			goto restart;
8662 		}
8663 	}
8664 	rcu_read_unlock();
8665 }
8666 
8667 /*
8668  * task tracking -- fork/exit
8669  *
8670  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8671  */
8672 
8673 struct perf_task_event {
8674 	struct task_struct		*task;
8675 	struct perf_event_context	*task_ctx;
8676 
8677 	struct {
8678 		struct perf_event_header	header;
8679 
8680 		u32				pid;
8681 		u32				ppid;
8682 		u32				tid;
8683 		u32				ptid;
8684 		u64				time;
8685 	} event_id;
8686 };
8687 
8688 static int perf_event_task_match(struct perf_event *event)
8689 {
8690 	return event->attr.comm  || event->attr.mmap ||
8691 	       event->attr.mmap2 || event->attr.mmap_data ||
8692 	       event->attr.task;
8693 }
8694 
8695 static void perf_event_task_output(struct perf_event *event,
8696 				   void *data)
8697 {
8698 	struct perf_task_event *task_event = data;
8699 	struct perf_output_handle handle;
8700 	struct perf_sample_data	sample;
8701 	struct task_struct *task = task_event->task;
8702 	int ret, size = task_event->event_id.header.size;
8703 
8704 	if (!perf_event_task_match(event))
8705 		return;
8706 
8707 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8708 
8709 	ret = perf_output_begin(&handle, &sample, event,
8710 				task_event->event_id.header.size);
8711 	if (ret)
8712 		goto out;
8713 
8714 	task_event->event_id.pid = perf_event_pid(event, task);
8715 	task_event->event_id.tid = perf_event_tid(event, task);
8716 
8717 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8718 		task_event->event_id.ppid = perf_event_pid(event,
8719 							task->real_parent);
8720 		task_event->event_id.ptid = perf_event_pid(event,
8721 							task->real_parent);
8722 	} else {  /* PERF_RECORD_FORK */
8723 		task_event->event_id.ppid = perf_event_pid(event, current);
8724 		task_event->event_id.ptid = perf_event_tid(event, current);
8725 	}
8726 
8727 	task_event->event_id.time = perf_event_clock(event);
8728 
8729 	perf_output_put(&handle, task_event->event_id);
8730 
8731 	perf_event__output_id_sample(event, &handle, &sample);
8732 
8733 	perf_output_end(&handle);
8734 out:
8735 	task_event->event_id.header.size = size;
8736 }
8737 
8738 static void perf_event_task(struct task_struct *task,
8739 			      struct perf_event_context *task_ctx,
8740 			      int new)
8741 {
8742 	struct perf_task_event task_event;
8743 
8744 	if (!atomic_read(&nr_comm_events) &&
8745 	    !atomic_read(&nr_mmap_events) &&
8746 	    !atomic_read(&nr_task_events))
8747 		return;
8748 
8749 	task_event = (struct perf_task_event){
8750 		.task	  = task,
8751 		.task_ctx = task_ctx,
8752 		.event_id    = {
8753 			.header = {
8754 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8755 				.misc = 0,
8756 				.size = sizeof(task_event.event_id),
8757 			},
8758 			/* .pid  */
8759 			/* .ppid */
8760 			/* .tid  */
8761 			/* .ptid */
8762 			/* .time */
8763 		},
8764 	};
8765 
8766 	perf_iterate_sb(perf_event_task_output,
8767 		       &task_event,
8768 		       task_ctx);
8769 }
8770 
8771 /*
8772  * Allocate data for a new task when profiling system-wide
8773  * events which require PMU specific data
8774  */
8775 static void
8776 perf_event_alloc_task_data(struct task_struct *child,
8777 			   struct task_struct *parent)
8778 {
8779 	struct kmem_cache *ctx_cache = NULL;
8780 	struct perf_ctx_data *cd;
8781 
8782 	if (!refcount_read(&global_ctx_data_ref))
8783 		return;
8784 
8785 	scoped_guard (rcu) {
8786 		cd = rcu_dereference(parent->perf_ctx_data);
8787 		if (cd)
8788 			ctx_cache = cd->ctx_cache;
8789 	}
8790 
8791 	if (!ctx_cache)
8792 		return;
8793 
8794 	guard(percpu_read)(&global_ctx_data_rwsem);
8795 	scoped_guard (rcu) {
8796 		cd = rcu_dereference(child->perf_ctx_data);
8797 		if (!cd) {
8798 			/*
8799 			 * A system-wide event may be unaccount,
8800 			 * when attaching the perf_ctx_data.
8801 			 */
8802 			if (!refcount_read(&global_ctx_data_ref))
8803 				return;
8804 			goto attach;
8805 		}
8806 
8807 		if (!cd->global) {
8808 			cd->global = 1;
8809 			refcount_inc(&cd->refcount);
8810 		}
8811 	}
8812 
8813 	return;
8814 attach:
8815 	attach_task_ctx_data(child, ctx_cache, true);
8816 }
8817 
8818 void perf_event_fork(struct task_struct *task)
8819 {
8820 	perf_event_task(task, NULL, 1);
8821 	perf_event_namespaces(task);
8822 	perf_event_alloc_task_data(task, current);
8823 }
8824 
8825 /*
8826  * comm tracking
8827  */
8828 
8829 struct perf_comm_event {
8830 	struct task_struct	*task;
8831 	char			*comm;
8832 	int			comm_size;
8833 
8834 	struct {
8835 		struct perf_event_header	header;
8836 
8837 		u32				pid;
8838 		u32				tid;
8839 	} event_id;
8840 };
8841 
8842 static int perf_event_comm_match(struct perf_event *event)
8843 {
8844 	return event->attr.comm;
8845 }
8846 
8847 static void perf_event_comm_output(struct perf_event *event,
8848 				   void *data)
8849 {
8850 	struct perf_comm_event *comm_event = data;
8851 	struct perf_output_handle handle;
8852 	struct perf_sample_data sample;
8853 	int size = comm_event->event_id.header.size;
8854 	int ret;
8855 
8856 	if (!perf_event_comm_match(event))
8857 		return;
8858 
8859 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8860 	ret = perf_output_begin(&handle, &sample, event,
8861 				comm_event->event_id.header.size);
8862 
8863 	if (ret)
8864 		goto out;
8865 
8866 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8867 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8868 
8869 	perf_output_put(&handle, comm_event->event_id);
8870 	__output_copy(&handle, comm_event->comm,
8871 				   comm_event->comm_size);
8872 
8873 	perf_event__output_id_sample(event, &handle, &sample);
8874 
8875 	perf_output_end(&handle);
8876 out:
8877 	comm_event->event_id.header.size = size;
8878 }
8879 
8880 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8881 {
8882 	char comm[TASK_COMM_LEN];
8883 	unsigned int size;
8884 
8885 	memset(comm, 0, sizeof(comm));
8886 	strscpy(comm, comm_event->task->comm);
8887 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8888 
8889 	comm_event->comm = comm;
8890 	comm_event->comm_size = size;
8891 
8892 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8893 
8894 	perf_iterate_sb(perf_event_comm_output,
8895 		       comm_event,
8896 		       NULL);
8897 }
8898 
8899 void perf_event_comm(struct task_struct *task, bool exec)
8900 {
8901 	struct perf_comm_event comm_event;
8902 
8903 	if (!atomic_read(&nr_comm_events))
8904 		return;
8905 
8906 	comm_event = (struct perf_comm_event){
8907 		.task	= task,
8908 		/* .comm      */
8909 		/* .comm_size */
8910 		.event_id  = {
8911 			.header = {
8912 				.type = PERF_RECORD_COMM,
8913 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8914 				/* .size */
8915 			},
8916 			/* .pid */
8917 			/* .tid */
8918 		},
8919 	};
8920 
8921 	perf_event_comm_event(&comm_event);
8922 }
8923 
8924 /*
8925  * namespaces tracking
8926  */
8927 
8928 struct perf_namespaces_event {
8929 	struct task_struct		*task;
8930 
8931 	struct {
8932 		struct perf_event_header	header;
8933 
8934 		u32				pid;
8935 		u32				tid;
8936 		u64				nr_namespaces;
8937 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8938 	} event_id;
8939 };
8940 
8941 static int perf_event_namespaces_match(struct perf_event *event)
8942 {
8943 	return event->attr.namespaces;
8944 }
8945 
8946 static void perf_event_namespaces_output(struct perf_event *event,
8947 					 void *data)
8948 {
8949 	struct perf_namespaces_event *namespaces_event = data;
8950 	struct perf_output_handle handle;
8951 	struct perf_sample_data sample;
8952 	u16 header_size = namespaces_event->event_id.header.size;
8953 	int ret;
8954 
8955 	if (!perf_event_namespaces_match(event))
8956 		return;
8957 
8958 	perf_event_header__init_id(&namespaces_event->event_id.header,
8959 				   &sample, event);
8960 	ret = perf_output_begin(&handle, &sample, event,
8961 				namespaces_event->event_id.header.size);
8962 	if (ret)
8963 		goto out;
8964 
8965 	namespaces_event->event_id.pid = perf_event_pid(event,
8966 							namespaces_event->task);
8967 	namespaces_event->event_id.tid = perf_event_tid(event,
8968 							namespaces_event->task);
8969 
8970 	perf_output_put(&handle, namespaces_event->event_id);
8971 
8972 	perf_event__output_id_sample(event, &handle, &sample);
8973 
8974 	perf_output_end(&handle);
8975 out:
8976 	namespaces_event->event_id.header.size = header_size;
8977 }
8978 
8979 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8980 				   struct task_struct *task,
8981 				   const struct proc_ns_operations *ns_ops)
8982 {
8983 	struct path ns_path;
8984 	struct inode *ns_inode;
8985 	int error;
8986 
8987 	error = ns_get_path(&ns_path, task, ns_ops);
8988 	if (!error) {
8989 		ns_inode = ns_path.dentry->d_inode;
8990 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8991 		ns_link_info->ino = ns_inode->i_ino;
8992 		path_put(&ns_path);
8993 	}
8994 }
8995 
8996 void perf_event_namespaces(struct task_struct *task)
8997 {
8998 	struct perf_namespaces_event namespaces_event;
8999 	struct perf_ns_link_info *ns_link_info;
9000 
9001 	if (!atomic_read(&nr_namespaces_events))
9002 		return;
9003 
9004 	namespaces_event = (struct perf_namespaces_event){
9005 		.task	= task,
9006 		.event_id  = {
9007 			.header = {
9008 				.type = PERF_RECORD_NAMESPACES,
9009 				.misc = 0,
9010 				.size = sizeof(namespaces_event.event_id),
9011 			},
9012 			/* .pid */
9013 			/* .tid */
9014 			.nr_namespaces = NR_NAMESPACES,
9015 			/* .link_info[NR_NAMESPACES] */
9016 		},
9017 	};
9018 
9019 	ns_link_info = namespaces_event.event_id.link_info;
9020 
9021 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9022 			       task, &mntns_operations);
9023 
9024 #ifdef CONFIG_USER_NS
9025 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9026 			       task, &userns_operations);
9027 #endif
9028 #ifdef CONFIG_NET_NS
9029 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9030 			       task, &netns_operations);
9031 #endif
9032 #ifdef CONFIG_UTS_NS
9033 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9034 			       task, &utsns_operations);
9035 #endif
9036 #ifdef CONFIG_IPC_NS
9037 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9038 			       task, &ipcns_operations);
9039 #endif
9040 #ifdef CONFIG_PID_NS
9041 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9042 			       task, &pidns_operations);
9043 #endif
9044 #ifdef CONFIG_CGROUPS
9045 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9046 			       task, &cgroupns_operations);
9047 #endif
9048 
9049 	perf_iterate_sb(perf_event_namespaces_output,
9050 			&namespaces_event,
9051 			NULL);
9052 }
9053 
9054 /*
9055  * cgroup tracking
9056  */
9057 #ifdef CONFIG_CGROUP_PERF
9058 
9059 struct perf_cgroup_event {
9060 	char				*path;
9061 	int				path_size;
9062 	struct {
9063 		struct perf_event_header	header;
9064 		u64				id;
9065 		char				path[];
9066 	} event_id;
9067 };
9068 
9069 static int perf_event_cgroup_match(struct perf_event *event)
9070 {
9071 	return event->attr.cgroup;
9072 }
9073 
9074 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9075 {
9076 	struct perf_cgroup_event *cgroup_event = data;
9077 	struct perf_output_handle handle;
9078 	struct perf_sample_data sample;
9079 	u16 header_size = cgroup_event->event_id.header.size;
9080 	int ret;
9081 
9082 	if (!perf_event_cgroup_match(event))
9083 		return;
9084 
9085 	perf_event_header__init_id(&cgroup_event->event_id.header,
9086 				   &sample, event);
9087 	ret = perf_output_begin(&handle, &sample, event,
9088 				cgroup_event->event_id.header.size);
9089 	if (ret)
9090 		goto out;
9091 
9092 	perf_output_put(&handle, cgroup_event->event_id);
9093 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9094 
9095 	perf_event__output_id_sample(event, &handle, &sample);
9096 
9097 	perf_output_end(&handle);
9098 out:
9099 	cgroup_event->event_id.header.size = header_size;
9100 }
9101 
9102 static void perf_event_cgroup(struct cgroup *cgrp)
9103 {
9104 	struct perf_cgroup_event cgroup_event;
9105 	char path_enomem[16] = "//enomem";
9106 	char *pathname;
9107 	size_t size;
9108 
9109 	if (!atomic_read(&nr_cgroup_events))
9110 		return;
9111 
9112 	cgroup_event = (struct perf_cgroup_event){
9113 		.event_id  = {
9114 			.header = {
9115 				.type = PERF_RECORD_CGROUP,
9116 				.misc = 0,
9117 				.size = sizeof(cgroup_event.event_id),
9118 			},
9119 			.id = cgroup_id(cgrp),
9120 		},
9121 	};
9122 
9123 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9124 	if (pathname == NULL) {
9125 		cgroup_event.path = path_enomem;
9126 	} else {
9127 		/* just to be sure to have enough space for alignment */
9128 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9129 		cgroup_event.path = pathname;
9130 	}
9131 
9132 	/*
9133 	 * Since our buffer works in 8 byte units we need to align our string
9134 	 * size to a multiple of 8. However, we must guarantee the tail end is
9135 	 * zero'd out to avoid leaking random bits to userspace.
9136 	 */
9137 	size = strlen(cgroup_event.path) + 1;
9138 	while (!IS_ALIGNED(size, sizeof(u64)))
9139 		cgroup_event.path[size++] = '\0';
9140 
9141 	cgroup_event.event_id.header.size += size;
9142 	cgroup_event.path_size = size;
9143 
9144 	perf_iterate_sb(perf_event_cgroup_output,
9145 			&cgroup_event,
9146 			NULL);
9147 
9148 	kfree(pathname);
9149 }
9150 
9151 #endif
9152 
9153 /*
9154  * mmap tracking
9155  */
9156 
9157 struct perf_mmap_event {
9158 	struct vm_area_struct	*vma;
9159 
9160 	const char		*file_name;
9161 	int			file_size;
9162 	int			maj, min;
9163 	u64			ino;
9164 	u64			ino_generation;
9165 	u32			prot, flags;
9166 	u8			build_id[BUILD_ID_SIZE_MAX];
9167 	u32			build_id_size;
9168 
9169 	struct {
9170 		struct perf_event_header	header;
9171 
9172 		u32				pid;
9173 		u32				tid;
9174 		u64				start;
9175 		u64				len;
9176 		u64				pgoff;
9177 	} event_id;
9178 };
9179 
9180 static int perf_event_mmap_match(struct perf_event *event,
9181 				 void *data)
9182 {
9183 	struct perf_mmap_event *mmap_event = data;
9184 	struct vm_area_struct *vma = mmap_event->vma;
9185 	int executable = vma->vm_flags & VM_EXEC;
9186 
9187 	return (!executable && event->attr.mmap_data) ||
9188 	       (executable && (event->attr.mmap || event->attr.mmap2));
9189 }
9190 
9191 static void perf_event_mmap_output(struct perf_event *event,
9192 				   void *data)
9193 {
9194 	struct perf_mmap_event *mmap_event = data;
9195 	struct perf_output_handle handle;
9196 	struct perf_sample_data sample;
9197 	int size = mmap_event->event_id.header.size;
9198 	u32 type = mmap_event->event_id.header.type;
9199 	bool use_build_id;
9200 	int ret;
9201 
9202 	if (!perf_event_mmap_match(event, data))
9203 		return;
9204 
9205 	if (event->attr.mmap2) {
9206 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9207 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9208 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9209 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9210 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9211 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9212 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9213 	}
9214 
9215 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9216 	ret = perf_output_begin(&handle, &sample, event,
9217 				mmap_event->event_id.header.size);
9218 	if (ret)
9219 		goto out;
9220 
9221 	mmap_event->event_id.pid = perf_event_pid(event, current);
9222 	mmap_event->event_id.tid = perf_event_tid(event, current);
9223 
9224 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9225 
9226 	if (event->attr.mmap2 && use_build_id)
9227 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9228 
9229 	perf_output_put(&handle, mmap_event->event_id);
9230 
9231 	if (event->attr.mmap2) {
9232 		if (use_build_id) {
9233 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9234 
9235 			__output_copy(&handle, size, 4);
9236 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9237 		} else {
9238 			perf_output_put(&handle, mmap_event->maj);
9239 			perf_output_put(&handle, mmap_event->min);
9240 			perf_output_put(&handle, mmap_event->ino);
9241 			perf_output_put(&handle, mmap_event->ino_generation);
9242 		}
9243 		perf_output_put(&handle, mmap_event->prot);
9244 		perf_output_put(&handle, mmap_event->flags);
9245 	}
9246 
9247 	__output_copy(&handle, mmap_event->file_name,
9248 				   mmap_event->file_size);
9249 
9250 	perf_event__output_id_sample(event, &handle, &sample);
9251 
9252 	perf_output_end(&handle);
9253 out:
9254 	mmap_event->event_id.header.size = size;
9255 	mmap_event->event_id.header.type = type;
9256 }
9257 
9258 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9259 {
9260 	struct vm_area_struct *vma = mmap_event->vma;
9261 	struct file *file = vma->vm_file;
9262 	int maj = 0, min = 0;
9263 	u64 ino = 0, gen = 0;
9264 	u32 prot = 0, flags = 0;
9265 	unsigned int size;
9266 	char tmp[16];
9267 	char *buf = NULL;
9268 	char *name = NULL;
9269 
9270 	if (vma->vm_flags & VM_READ)
9271 		prot |= PROT_READ;
9272 	if (vma->vm_flags & VM_WRITE)
9273 		prot |= PROT_WRITE;
9274 	if (vma->vm_flags & VM_EXEC)
9275 		prot |= PROT_EXEC;
9276 
9277 	if (vma->vm_flags & VM_MAYSHARE)
9278 		flags = MAP_SHARED;
9279 	else
9280 		flags = MAP_PRIVATE;
9281 
9282 	if (vma->vm_flags & VM_LOCKED)
9283 		flags |= MAP_LOCKED;
9284 	if (is_vm_hugetlb_page(vma))
9285 		flags |= MAP_HUGETLB;
9286 
9287 	if (file) {
9288 		struct inode *inode;
9289 		dev_t dev;
9290 
9291 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9292 		if (!buf) {
9293 			name = "//enomem";
9294 			goto cpy_name;
9295 		}
9296 		/*
9297 		 * d_path() works from the end of the rb backwards, so we
9298 		 * need to add enough zero bytes after the string to handle
9299 		 * the 64bit alignment we do later.
9300 		 */
9301 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9302 		if (IS_ERR(name)) {
9303 			name = "//toolong";
9304 			goto cpy_name;
9305 		}
9306 		inode = file_inode(vma->vm_file);
9307 		dev = inode->i_sb->s_dev;
9308 		ino = inode->i_ino;
9309 		gen = inode->i_generation;
9310 		maj = MAJOR(dev);
9311 		min = MINOR(dev);
9312 
9313 		goto got_name;
9314 	} else {
9315 		if (vma->vm_ops && vma->vm_ops->name)
9316 			name = (char *) vma->vm_ops->name(vma);
9317 		if (!name)
9318 			name = (char *)arch_vma_name(vma);
9319 		if (!name) {
9320 			if (vma_is_initial_heap(vma))
9321 				name = "[heap]";
9322 			else if (vma_is_initial_stack(vma))
9323 				name = "[stack]";
9324 			else
9325 				name = "//anon";
9326 		}
9327 	}
9328 
9329 cpy_name:
9330 	strscpy(tmp, name);
9331 	name = tmp;
9332 got_name:
9333 	/*
9334 	 * Since our buffer works in 8 byte units we need to align our string
9335 	 * size to a multiple of 8. However, we must guarantee the tail end is
9336 	 * zero'd out to avoid leaking random bits to userspace.
9337 	 */
9338 	size = strlen(name)+1;
9339 	while (!IS_ALIGNED(size, sizeof(u64)))
9340 		name[size++] = '\0';
9341 
9342 	mmap_event->file_name = name;
9343 	mmap_event->file_size = size;
9344 	mmap_event->maj = maj;
9345 	mmap_event->min = min;
9346 	mmap_event->ino = ino;
9347 	mmap_event->ino_generation = gen;
9348 	mmap_event->prot = prot;
9349 	mmap_event->flags = flags;
9350 
9351 	if (!(vma->vm_flags & VM_EXEC))
9352 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9353 
9354 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9355 
9356 	if (atomic_read(&nr_build_id_events))
9357 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9358 
9359 	perf_iterate_sb(perf_event_mmap_output,
9360 		       mmap_event,
9361 		       NULL);
9362 
9363 	kfree(buf);
9364 }
9365 
9366 /*
9367  * Check whether inode and address range match filter criteria.
9368  */
9369 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9370 				     struct file *file, unsigned long offset,
9371 				     unsigned long size)
9372 {
9373 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9374 	if (!filter->path.dentry)
9375 		return false;
9376 
9377 	if (d_inode(filter->path.dentry) != file_inode(file))
9378 		return false;
9379 
9380 	if (filter->offset > offset + size)
9381 		return false;
9382 
9383 	if (filter->offset + filter->size < offset)
9384 		return false;
9385 
9386 	return true;
9387 }
9388 
9389 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9390 					struct vm_area_struct *vma,
9391 					struct perf_addr_filter_range *fr)
9392 {
9393 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9394 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9395 	struct file *file = vma->vm_file;
9396 
9397 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9398 		return false;
9399 
9400 	if (filter->offset < off) {
9401 		fr->start = vma->vm_start;
9402 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9403 	} else {
9404 		fr->start = vma->vm_start + filter->offset - off;
9405 		fr->size = min(vma->vm_end - fr->start, filter->size);
9406 	}
9407 
9408 	return true;
9409 }
9410 
9411 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9412 {
9413 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9414 	struct vm_area_struct *vma = data;
9415 	struct perf_addr_filter *filter;
9416 	unsigned int restart = 0, count = 0;
9417 	unsigned long flags;
9418 
9419 	if (!has_addr_filter(event))
9420 		return;
9421 
9422 	if (!vma->vm_file)
9423 		return;
9424 
9425 	raw_spin_lock_irqsave(&ifh->lock, flags);
9426 	list_for_each_entry(filter, &ifh->list, entry) {
9427 		if (perf_addr_filter_vma_adjust(filter, vma,
9428 						&event->addr_filter_ranges[count]))
9429 			restart++;
9430 
9431 		count++;
9432 	}
9433 
9434 	if (restart)
9435 		event->addr_filters_gen++;
9436 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9437 
9438 	if (restart)
9439 		perf_event_stop(event, 1);
9440 }
9441 
9442 /*
9443  * Adjust all task's events' filters to the new vma
9444  */
9445 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9446 {
9447 	struct perf_event_context *ctx;
9448 
9449 	/*
9450 	 * Data tracing isn't supported yet and as such there is no need
9451 	 * to keep track of anything that isn't related to executable code:
9452 	 */
9453 	if (!(vma->vm_flags & VM_EXEC))
9454 		return;
9455 
9456 	rcu_read_lock();
9457 	ctx = rcu_dereference(current->perf_event_ctxp);
9458 	if (ctx)
9459 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9460 	rcu_read_unlock();
9461 }
9462 
9463 void perf_event_mmap(struct vm_area_struct *vma)
9464 {
9465 	struct perf_mmap_event mmap_event;
9466 
9467 	if (!atomic_read(&nr_mmap_events))
9468 		return;
9469 
9470 	mmap_event = (struct perf_mmap_event){
9471 		.vma	= vma,
9472 		/* .file_name */
9473 		/* .file_size */
9474 		.event_id  = {
9475 			.header = {
9476 				.type = PERF_RECORD_MMAP,
9477 				.misc = PERF_RECORD_MISC_USER,
9478 				/* .size */
9479 			},
9480 			/* .pid */
9481 			/* .tid */
9482 			.start  = vma->vm_start,
9483 			.len    = vma->vm_end - vma->vm_start,
9484 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9485 		},
9486 		/* .maj (attr_mmap2 only) */
9487 		/* .min (attr_mmap2 only) */
9488 		/* .ino (attr_mmap2 only) */
9489 		/* .ino_generation (attr_mmap2 only) */
9490 		/* .prot (attr_mmap2 only) */
9491 		/* .flags (attr_mmap2 only) */
9492 	};
9493 
9494 	perf_addr_filters_adjust(vma);
9495 	perf_event_mmap_event(&mmap_event);
9496 }
9497 
9498 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9499 			  unsigned long size, u64 flags)
9500 {
9501 	struct perf_output_handle handle;
9502 	struct perf_sample_data sample;
9503 	struct perf_aux_event {
9504 		struct perf_event_header	header;
9505 		u64				offset;
9506 		u64				size;
9507 		u64				flags;
9508 	} rec = {
9509 		.header = {
9510 			.type = PERF_RECORD_AUX,
9511 			.misc = 0,
9512 			.size = sizeof(rec),
9513 		},
9514 		.offset		= head,
9515 		.size		= size,
9516 		.flags		= flags,
9517 	};
9518 	int ret;
9519 
9520 	perf_event_header__init_id(&rec.header, &sample, event);
9521 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9522 
9523 	if (ret)
9524 		return;
9525 
9526 	perf_output_put(&handle, rec);
9527 	perf_event__output_id_sample(event, &handle, &sample);
9528 
9529 	perf_output_end(&handle);
9530 }
9531 
9532 /*
9533  * Lost/dropped samples logging
9534  */
9535 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9536 {
9537 	struct perf_output_handle handle;
9538 	struct perf_sample_data sample;
9539 	int ret;
9540 
9541 	struct {
9542 		struct perf_event_header	header;
9543 		u64				lost;
9544 	} lost_samples_event = {
9545 		.header = {
9546 			.type = PERF_RECORD_LOST_SAMPLES,
9547 			.misc = 0,
9548 			.size = sizeof(lost_samples_event),
9549 		},
9550 		.lost		= lost,
9551 	};
9552 
9553 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9554 
9555 	ret = perf_output_begin(&handle, &sample, event,
9556 				lost_samples_event.header.size);
9557 	if (ret)
9558 		return;
9559 
9560 	perf_output_put(&handle, lost_samples_event);
9561 	perf_event__output_id_sample(event, &handle, &sample);
9562 	perf_output_end(&handle);
9563 }
9564 
9565 /*
9566  * context_switch tracking
9567  */
9568 
9569 struct perf_switch_event {
9570 	struct task_struct	*task;
9571 	struct task_struct	*next_prev;
9572 
9573 	struct {
9574 		struct perf_event_header	header;
9575 		u32				next_prev_pid;
9576 		u32				next_prev_tid;
9577 	} event_id;
9578 };
9579 
9580 static int perf_event_switch_match(struct perf_event *event)
9581 {
9582 	return event->attr.context_switch;
9583 }
9584 
9585 static void perf_event_switch_output(struct perf_event *event, void *data)
9586 {
9587 	struct perf_switch_event *se = data;
9588 	struct perf_output_handle handle;
9589 	struct perf_sample_data sample;
9590 	int ret;
9591 
9592 	if (!perf_event_switch_match(event))
9593 		return;
9594 
9595 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9596 	if (event->ctx->task) {
9597 		se->event_id.header.type = PERF_RECORD_SWITCH;
9598 		se->event_id.header.size = sizeof(se->event_id.header);
9599 	} else {
9600 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9601 		se->event_id.header.size = sizeof(se->event_id);
9602 		se->event_id.next_prev_pid =
9603 					perf_event_pid(event, se->next_prev);
9604 		se->event_id.next_prev_tid =
9605 					perf_event_tid(event, se->next_prev);
9606 	}
9607 
9608 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9609 
9610 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9611 	if (ret)
9612 		return;
9613 
9614 	if (event->ctx->task)
9615 		perf_output_put(&handle, se->event_id.header);
9616 	else
9617 		perf_output_put(&handle, se->event_id);
9618 
9619 	perf_event__output_id_sample(event, &handle, &sample);
9620 
9621 	perf_output_end(&handle);
9622 }
9623 
9624 static void perf_event_switch(struct task_struct *task,
9625 			      struct task_struct *next_prev, bool sched_in)
9626 {
9627 	struct perf_switch_event switch_event;
9628 
9629 	/* N.B. caller checks nr_switch_events != 0 */
9630 
9631 	switch_event = (struct perf_switch_event){
9632 		.task		= task,
9633 		.next_prev	= next_prev,
9634 		.event_id	= {
9635 			.header = {
9636 				/* .type */
9637 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9638 				/* .size */
9639 			},
9640 			/* .next_prev_pid */
9641 			/* .next_prev_tid */
9642 		},
9643 	};
9644 
9645 	if (!sched_in && task_is_runnable(task)) {
9646 		switch_event.event_id.header.misc |=
9647 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9648 	}
9649 
9650 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9651 }
9652 
9653 /*
9654  * IRQ throttle logging
9655  */
9656 
9657 static void perf_log_throttle(struct perf_event *event, int enable)
9658 {
9659 	struct perf_output_handle handle;
9660 	struct perf_sample_data sample;
9661 	int ret;
9662 
9663 	struct {
9664 		struct perf_event_header	header;
9665 		u64				time;
9666 		u64				id;
9667 		u64				stream_id;
9668 	} throttle_event = {
9669 		.header = {
9670 			.type = PERF_RECORD_THROTTLE,
9671 			.misc = 0,
9672 			.size = sizeof(throttle_event),
9673 		},
9674 		.time		= perf_event_clock(event),
9675 		.id		= primary_event_id(event),
9676 		.stream_id	= event->id,
9677 	};
9678 
9679 	if (enable)
9680 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9681 
9682 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9683 
9684 	ret = perf_output_begin(&handle, &sample, event,
9685 				throttle_event.header.size);
9686 	if (ret)
9687 		return;
9688 
9689 	perf_output_put(&handle, throttle_event);
9690 	perf_event__output_id_sample(event, &handle, &sample);
9691 	perf_output_end(&handle);
9692 }
9693 
9694 /*
9695  * ksymbol register/unregister tracking
9696  */
9697 
9698 struct perf_ksymbol_event {
9699 	const char	*name;
9700 	int		name_len;
9701 	struct {
9702 		struct perf_event_header        header;
9703 		u64				addr;
9704 		u32				len;
9705 		u16				ksym_type;
9706 		u16				flags;
9707 	} event_id;
9708 };
9709 
9710 static int perf_event_ksymbol_match(struct perf_event *event)
9711 {
9712 	return event->attr.ksymbol;
9713 }
9714 
9715 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9716 {
9717 	struct perf_ksymbol_event *ksymbol_event = data;
9718 	struct perf_output_handle handle;
9719 	struct perf_sample_data sample;
9720 	int ret;
9721 
9722 	if (!perf_event_ksymbol_match(event))
9723 		return;
9724 
9725 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9726 				   &sample, event);
9727 	ret = perf_output_begin(&handle, &sample, event,
9728 				ksymbol_event->event_id.header.size);
9729 	if (ret)
9730 		return;
9731 
9732 	perf_output_put(&handle, ksymbol_event->event_id);
9733 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9734 	perf_event__output_id_sample(event, &handle, &sample);
9735 
9736 	perf_output_end(&handle);
9737 }
9738 
9739 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9740 			const char *sym)
9741 {
9742 	struct perf_ksymbol_event ksymbol_event;
9743 	char name[KSYM_NAME_LEN];
9744 	u16 flags = 0;
9745 	int name_len;
9746 
9747 	if (!atomic_read(&nr_ksymbol_events))
9748 		return;
9749 
9750 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9751 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9752 		goto err;
9753 
9754 	strscpy(name, sym);
9755 	name_len = strlen(name) + 1;
9756 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9757 		name[name_len++] = '\0';
9758 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9759 
9760 	if (unregister)
9761 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9762 
9763 	ksymbol_event = (struct perf_ksymbol_event){
9764 		.name = name,
9765 		.name_len = name_len,
9766 		.event_id = {
9767 			.header = {
9768 				.type = PERF_RECORD_KSYMBOL,
9769 				.size = sizeof(ksymbol_event.event_id) +
9770 					name_len,
9771 			},
9772 			.addr = addr,
9773 			.len = len,
9774 			.ksym_type = ksym_type,
9775 			.flags = flags,
9776 		},
9777 	};
9778 
9779 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9780 	return;
9781 err:
9782 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9783 }
9784 
9785 /*
9786  * bpf program load/unload tracking
9787  */
9788 
9789 struct perf_bpf_event {
9790 	struct bpf_prog	*prog;
9791 	struct {
9792 		struct perf_event_header        header;
9793 		u16				type;
9794 		u16				flags;
9795 		u32				id;
9796 		u8				tag[BPF_TAG_SIZE];
9797 	} event_id;
9798 };
9799 
9800 static int perf_event_bpf_match(struct perf_event *event)
9801 {
9802 	return event->attr.bpf_event;
9803 }
9804 
9805 static void perf_event_bpf_output(struct perf_event *event, void *data)
9806 {
9807 	struct perf_bpf_event *bpf_event = data;
9808 	struct perf_output_handle handle;
9809 	struct perf_sample_data sample;
9810 	int ret;
9811 
9812 	if (!perf_event_bpf_match(event))
9813 		return;
9814 
9815 	perf_event_header__init_id(&bpf_event->event_id.header,
9816 				   &sample, event);
9817 	ret = perf_output_begin(&handle, &sample, event,
9818 				bpf_event->event_id.header.size);
9819 	if (ret)
9820 		return;
9821 
9822 	perf_output_put(&handle, bpf_event->event_id);
9823 	perf_event__output_id_sample(event, &handle, &sample);
9824 
9825 	perf_output_end(&handle);
9826 }
9827 
9828 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9829 					 enum perf_bpf_event_type type)
9830 {
9831 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9832 	int i;
9833 
9834 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9835 			   (u64)(unsigned long)prog->bpf_func,
9836 			   prog->jited_len, unregister,
9837 			   prog->aux->ksym.name);
9838 
9839 	for (i = 1; i < prog->aux->func_cnt; i++) {
9840 		struct bpf_prog *subprog = prog->aux->func[i];
9841 
9842 		perf_event_ksymbol(
9843 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9844 			(u64)(unsigned long)subprog->bpf_func,
9845 			subprog->jited_len, unregister,
9846 			subprog->aux->ksym.name);
9847 	}
9848 }
9849 
9850 void perf_event_bpf_event(struct bpf_prog *prog,
9851 			  enum perf_bpf_event_type type,
9852 			  u16 flags)
9853 {
9854 	struct perf_bpf_event bpf_event;
9855 
9856 	switch (type) {
9857 	case PERF_BPF_EVENT_PROG_LOAD:
9858 	case PERF_BPF_EVENT_PROG_UNLOAD:
9859 		if (atomic_read(&nr_ksymbol_events))
9860 			perf_event_bpf_emit_ksymbols(prog, type);
9861 		break;
9862 	default:
9863 		return;
9864 	}
9865 
9866 	if (!atomic_read(&nr_bpf_events))
9867 		return;
9868 
9869 	bpf_event = (struct perf_bpf_event){
9870 		.prog = prog,
9871 		.event_id = {
9872 			.header = {
9873 				.type = PERF_RECORD_BPF_EVENT,
9874 				.size = sizeof(bpf_event.event_id),
9875 			},
9876 			.type = type,
9877 			.flags = flags,
9878 			.id = prog->aux->id,
9879 		},
9880 	};
9881 
9882 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9883 
9884 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9885 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9886 }
9887 
9888 struct perf_text_poke_event {
9889 	const void		*old_bytes;
9890 	const void		*new_bytes;
9891 	size_t			pad;
9892 	u16			old_len;
9893 	u16			new_len;
9894 
9895 	struct {
9896 		struct perf_event_header	header;
9897 
9898 		u64				addr;
9899 	} event_id;
9900 };
9901 
9902 static int perf_event_text_poke_match(struct perf_event *event)
9903 {
9904 	return event->attr.text_poke;
9905 }
9906 
9907 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9908 {
9909 	struct perf_text_poke_event *text_poke_event = data;
9910 	struct perf_output_handle handle;
9911 	struct perf_sample_data sample;
9912 	u64 padding = 0;
9913 	int ret;
9914 
9915 	if (!perf_event_text_poke_match(event))
9916 		return;
9917 
9918 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9919 
9920 	ret = perf_output_begin(&handle, &sample, event,
9921 				text_poke_event->event_id.header.size);
9922 	if (ret)
9923 		return;
9924 
9925 	perf_output_put(&handle, text_poke_event->event_id);
9926 	perf_output_put(&handle, text_poke_event->old_len);
9927 	perf_output_put(&handle, text_poke_event->new_len);
9928 
9929 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9930 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9931 
9932 	if (text_poke_event->pad)
9933 		__output_copy(&handle, &padding, text_poke_event->pad);
9934 
9935 	perf_event__output_id_sample(event, &handle, &sample);
9936 
9937 	perf_output_end(&handle);
9938 }
9939 
9940 void perf_event_text_poke(const void *addr, const void *old_bytes,
9941 			  size_t old_len, const void *new_bytes, size_t new_len)
9942 {
9943 	struct perf_text_poke_event text_poke_event;
9944 	size_t tot, pad;
9945 
9946 	if (!atomic_read(&nr_text_poke_events))
9947 		return;
9948 
9949 	tot  = sizeof(text_poke_event.old_len) + old_len;
9950 	tot += sizeof(text_poke_event.new_len) + new_len;
9951 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9952 
9953 	text_poke_event = (struct perf_text_poke_event){
9954 		.old_bytes    = old_bytes,
9955 		.new_bytes    = new_bytes,
9956 		.pad          = pad,
9957 		.old_len      = old_len,
9958 		.new_len      = new_len,
9959 		.event_id  = {
9960 			.header = {
9961 				.type = PERF_RECORD_TEXT_POKE,
9962 				.misc = PERF_RECORD_MISC_KERNEL,
9963 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9964 			},
9965 			.addr = (unsigned long)addr,
9966 		},
9967 	};
9968 
9969 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9970 }
9971 
9972 void perf_event_itrace_started(struct perf_event *event)
9973 {
9974 	event->attach_state |= PERF_ATTACH_ITRACE;
9975 }
9976 
9977 static void perf_log_itrace_start(struct perf_event *event)
9978 {
9979 	struct perf_output_handle handle;
9980 	struct perf_sample_data sample;
9981 	struct perf_aux_event {
9982 		struct perf_event_header        header;
9983 		u32				pid;
9984 		u32				tid;
9985 	} rec;
9986 	int ret;
9987 
9988 	if (event->parent)
9989 		event = event->parent;
9990 
9991 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9992 	    event->attach_state & PERF_ATTACH_ITRACE)
9993 		return;
9994 
9995 	rec.header.type	= PERF_RECORD_ITRACE_START;
9996 	rec.header.misc	= 0;
9997 	rec.header.size	= sizeof(rec);
9998 	rec.pid	= perf_event_pid(event, current);
9999 	rec.tid	= perf_event_tid(event, current);
10000 
10001 	perf_event_header__init_id(&rec.header, &sample, event);
10002 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10003 
10004 	if (ret)
10005 		return;
10006 
10007 	perf_output_put(&handle, rec);
10008 	perf_event__output_id_sample(event, &handle, &sample);
10009 
10010 	perf_output_end(&handle);
10011 }
10012 
10013 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10014 {
10015 	struct perf_output_handle handle;
10016 	struct perf_sample_data sample;
10017 	struct perf_aux_event {
10018 		struct perf_event_header        header;
10019 		u64				hw_id;
10020 	} rec;
10021 	int ret;
10022 
10023 	if (event->parent)
10024 		event = event->parent;
10025 
10026 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10027 	rec.header.misc	= 0;
10028 	rec.header.size	= sizeof(rec);
10029 	rec.hw_id	= hw_id;
10030 
10031 	perf_event_header__init_id(&rec.header, &sample, event);
10032 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10033 
10034 	if (ret)
10035 		return;
10036 
10037 	perf_output_put(&handle, rec);
10038 	perf_event__output_id_sample(event, &handle, &sample);
10039 
10040 	perf_output_end(&handle);
10041 }
10042 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10043 
10044 static int
10045 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10046 {
10047 	struct hw_perf_event *hwc = &event->hw;
10048 	int ret = 0;
10049 	u64 seq;
10050 
10051 	seq = __this_cpu_read(perf_throttled_seq);
10052 	if (seq != hwc->interrupts_seq) {
10053 		hwc->interrupts_seq = seq;
10054 		hwc->interrupts = 1;
10055 	} else {
10056 		hwc->interrupts++;
10057 		if (unlikely(throttle &&
10058 			     hwc->interrupts > max_samples_per_tick)) {
10059 			__this_cpu_inc(perf_throttled_count);
10060 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10061 			hwc->interrupts = MAX_INTERRUPTS;
10062 			perf_log_throttle(event, 0);
10063 			ret = 1;
10064 		}
10065 	}
10066 
10067 	if (event->attr.freq) {
10068 		u64 now = perf_clock();
10069 		s64 delta = now - hwc->freq_time_stamp;
10070 
10071 		hwc->freq_time_stamp = now;
10072 
10073 		if (delta > 0 && delta < 2*TICK_NSEC)
10074 			perf_adjust_period(event, delta, hwc->last_period, true);
10075 	}
10076 
10077 	return ret;
10078 }
10079 
10080 int perf_event_account_interrupt(struct perf_event *event)
10081 {
10082 	return __perf_event_account_interrupt(event, 1);
10083 }
10084 
10085 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10086 {
10087 	/*
10088 	 * Due to interrupt latency (AKA "skid"), we may enter the
10089 	 * kernel before taking an overflow, even if the PMU is only
10090 	 * counting user events.
10091 	 */
10092 	if (event->attr.exclude_kernel && !user_mode(regs))
10093 		return false;
10094 
10095 	return true;
10096 }
10097 
10098 #ifdef CONFIG_BPF_SYSCALL
10099 static int bpf_overflow_handler(struct perf_event *event,
10100 				struct perf_sample_data *data,
10101 				struct pt_regs *regs)
10102 {
10103 	struct bpf_perf_event_data_kern ctx = {
10104 		.data = data,
10105 		.event = event,
10106 	};
10107 	struct bpf_prog *prog;
10108 	int ret = 0;
10109 
10110 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10111 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10112 		goto out;
10113 	rcu_read_lock();
10114 	prog = READ_ONCE(event->prog);
10115 	if (prog) {
10116 		perf_prepare_sample(data, event, regs);
10117 		ret = bpf_prog_run(prog, &ctx);
10118 	}
10119 	rcu_read_unlock();
10120 out:
10121 	__this_cpu_dec(bpf_prog_active);
10122 
10123 	return ret;
10124 }
10125 
10126 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10127 					     struct bpf_prog *prog,
10128 					     u64 bpf_cookie)
10129 {
10130 	if (event->overflow_handler_context)
10131 		/* hw breakpoint or kernel counter */
10132 		return -EINVAL;
10133 
10134 	if (event->prog)
10135 		return -EEXIST;
10136 
10137 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10138 		return -EINVAL;
10139 
10140 	if (event->attr.precise_ip &&
10141 	    prog->call_get_stack &&
10142 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10143 	     event->attr.exclude_callchain_kernel ||
10144 	     event->attr.exclude_callchain_user)) {
10145 		/*
10146 		 * On perf_event with precise_ip, calling bpf_get_stack()
10147 		 * may trigger unwinder warnings and occasional crashes.
10148 		 * bpf_get_[stack|stackid] works around this issue by using
10149 		 * callchain attached to perf_sample_data. If the
10150 		 * perf_event does not full (kernel and user) callchain
10151 		 * attached to perf_sample_data, do not allow attaching BPF
10152 		 * program that calls bpf_get_[stack|stackid].
10153 		 */
10154 		return -EPROTO;
10155 	}
10156 
10157 	event->prog = prog;
10158 	event->bpf_cookie = bpf_cookie;
10159 	return 0;
10160 }
10161 
10162 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10163 {
10164 	struct bpf_prog *prog = event->prog;
10165 
10166 	if (!prog)
10167 		return;
10168 
10169 	event->prog = NULL;
10170 	bpf_prog_put(prog);
10171 }
10172 #else
10173 static inline int bpf_overflow_handler(struct perf_event *event,
10174 				       struct perf_sample_data *data,
10175 				       struct pt_regs *regs)
10176 {
10177 	return 1;
10178 }
10179 
10180 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10181 					     struct bpf_prog *prog,
10182 					     u64 bpf_cookie)
10183 {
10184 	return -EOPNOTSUPP;
10185 }
10186 
10187 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10188 {
10189 }
10190 #endif
10191 
10192 /*
10193  * Generic event overflow handling, sampling.
10194  */
10195 
10196 static int __perf_event_overflow(struct perf_event *event,
10197 				 int throttle, struct perf_sample_data *data,
10198 				 struct pt_regs *regs)
10199 {
10200 	int events = atomic_read(&event->event_limit);
10201 	int ret = 0;
10202 
10203 	/*
10204 	 * Non-sampling counters might still use the PMI to fold short
10205 	 * hardware counters, ignore those.
10206 	 */
10207 	if (unlikely(!is_sampling_event(event)))
10208 		return 0;
10209 
10210 	ret = __perf_event_account_interrupt(event, throttle);
10211 
10212 	if (event->attr.aux_pause)
10213 		perf_event_aux_pause(event->aux_event, true);
10214 
10215 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10216 	    !bpf_overflow_handler(event, data, regs))
10217 		goto out;
10218 
10219 	/*
10220 	 * XXX event_limit might not quite work as expected on inherited
10221 	 * events
10222 	 */
10223 
10224 	event->pending_kill = POLL_IN;
10225 	if (events && atomic_dec_and_test(&event->event_limit)) {
10226 		ret = 1;
10227 		event->pending_kill = POLL_HUP;
10228 		perf_event_disable_inatomic(event);
10229 	}
10230 
10231 	if (event->attr.sigtrap) {
10232 		/*
10233 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10234 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10235 		 * it is the first event, on the other hand, we should also not
10236 		 * trigger the WARN or override the data address.
10237 		 */
10238 		bool valid_sample = sample_is_allowed(event, regs);
10239 		unsigned int pending_id = 1;
10240 		enum task_work_notify_mode notify_mode;
10241 
10242 		if (regs)
10243 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10244 
10245 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10246 
10247 		if (!event->pending_work &&
10248 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10249 			event->pending_work = pending_id;
10250 			local_inc(&event->ctx->nr_no_switch_fast);
10251 
10252 			event->pending_addr = 0;
10253 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10254 				event->pending_addr = data->addr;
10255 
10256 		} else if (event->attr.exclude_kernel && valid_sample) {
10257 			/*
10258 			 * Should not be able to return to user space without
10259 			 * consuming pending_work; with exceptions:
10260 			 *
10261 			 *  1. Where !exclude_kernel, events can overflow again
10262 			 *     in the kernel without returning to user space.
10263 			 *
10264 			 *  2. Events that can overflow again before the IRQ-
10265 			 *     work without user space progress (e.g. hrtimer).
10266 			 *     To approximate progress (with false negatives),
10267 			 *     check 32-bit hash of the current IP.
10268 			 */
10269 			WARN_ON_ONCE(event->pending_work != pending_id);
10270 		}
10271 	}
10272 
10273 	READ_ONCE(event->overflow_handler)(event, data, regs);
10274 
10275 	if (*perf_event_fasync(event) && event->pending_kill) {
10276 		event->pending_wakeup = 1;
10277 		irq_work_queue(&event->pending_irq);
10278 	}
10279 out:
10280 	if (event->attr.aux_resume)
10281 		perf_event_aux_pause(event->aux_event, false);
10282 
10283 	return ret;
10284 }
10285 
10286 int perf_event_overflow(struct perf_event *event,
10287 			struct perf_sample_data *data,
10288 			struct pt_regs *regs)
10289 {
10290 	return __perf_event_overflow(event, 1, data, regs);
10291 }
10292 
10293 /*
10294  * Generic software event infrastructure
10295  */
10296 
10297 struct swevent_htable {
10298 	struct swevent_hlist		*swevent_hlist;
10299 	struct mutex			hlist_mutex;
10300 	int				hlist_refcount;
10301 };
10302 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10303 
10304 /*
10305  * We directly increment event->count and keep a second value in
10306  * event->hw.period_left to count intervals. This period event
10307  * is kept in the range [-sample_period, 0] so that we can use the
10308  * sign as trigger.
10309  */
10310 
10311 u64 perf_swevent_set_period(struct perf_event *event)
10312 {
10313 	struct hw_perf_event *hwc = &event->hw;
10314 	u64 period = hwc->last_period;
10315 	u64 nr, offset;
10316 	s64 old, val;
10317 
10318 	hwc->last_period = hwc->sample_period;
10319 
10320 	old = local64_read(&hwc->period_left);
10321 	do {
10322 		val = old;
10323 		if (val < 0)
10324 			return 0;
10325 
10326 		nr = div64_u64(period + val, period);
10327 		offset = nr * period;
10328 		val -= offset;
10329 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10330 
10331 	return nr;
10332 }
10333 
10334 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10335 				    struct perf_sample_data *data,
10336 				    struct pt_regs *regs)
10337 {
10338 	struct hw_perf_event *hwc = &event->hw;
10339 	int throttle = 0;
10340 
10341 	if (!overflow)
10342 		overflow = perf_swevent_set_period(event);
10343 
10344 	if (hwc->interrupts == MAX_INTERRUPTS)
10345 		return;
10346 
10347 	for (; overflow; overflow--) {
10348 		if (__perf_event_overflow(event, throttle,
10349 					    data, regs)) {
10350 			/*
10351 			 * We inhibit the overflow from happening when
10352 			 * hwc->interrupts == MAX_INTERRUPTS.
10353 			 */
10354 			break;
10355 		}
10356 		throttle = 1;
10357 	}
10358 }
10359 
10360 static void perf_swevent_event(struct perf_event *event, u64 nr,
10361 			       struct perf_sample_data *data,
10362 			       struct pt_regs *regs)
10363 {
10364 	struct hw_perf_event *hwc = &event->hw;
10365 
10366 	local64_add(nr, &event->count);
10367 
10368 	if (!regs)
10369 		return;
10370 
10371 	if (!is_sampling_event(event))
10372 		return;
10373 
10374 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10375 		data->period = nr;
10376 		return perf_swevent_overflow(event, 1, data, regs);
10377 	} else
10378 		data->period = event->hw.last_period;
10379 
10380 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10381 		return perf_swevent_overflow(event, 1, data, regs);
10382 
10383 	if (local64_add_negative(nr, &hwc->period_left))
10384 		return;
10385 
10386 	perf_swevent_overflow(event, 0, data, regs);
10387 }
10388 
10389 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10390 {
10391 	if (event->hw.state & PERF_HES_STOPPED)
10392 		return 1;
10393 
10394 	if (regs) {
10395 		if (event->attr.exclude_user && user_mode(regs))
10396 			return 1;
10397 
10398 		if (event->attr.exclude_kernel && !user_mode(regs))
10399 			return 1;
10400 	}
10401 
10402 	return 0;
10403 }
10404 
10405 static int perf_swevent_match(struct perf_event *event,
10406 				enum perf_type_id type,
10407 				u32 event_id,
10408 				struct perf_sample_data *data,
10409 				struct pt_regs *regs)
10410 {
10411 	if (event->attr.type != type)
10412 		return 0;
10413 
10414 	if (event->attr.config != event_id)
10415 		return 0;
10416 
10417 	if (perf_exclude_event(event, regs))
10418 		return 0;
10419 
10420 	return 1;
10421 }
10422 
10423 static inline u64 swevent_hash(u64 type, u32 event_id)
10424 {
10425 	u64 val = event_id | (type << 32);
10426 
10427 	return hash_64(val, SWEVENT_HLIST_BITS);
10428 }
10429 
10430 static inline struct hlist_head *
10431 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10432 {
10433 	u64 hash = swevent_hash(type, event_id);
10434 
10435 	return &hlist->heads[hash];
10436 }
10437 
10438 /* For the read side: events when they trigger */
10439 static inline struct hlist_head *
10440 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10441 {
10442 	struct swevent_hlist *hlist;
10443 
10444 	hlist = rcu_dereference(swhash->swevent_hlist);
10445 	if (!hlist)
10446 		return NULL;
10447 
10448 	return __find_swevent_head(hlist, type, event_id);
10449 }
10450 
10451 /* For the event head insertion and removal in the hlist */
10452 static inline struct hlist_head *
10453 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10454 {
10455 	struct swevent_hlist *hlist;
10456 	u32 event_id = event->attr.config;
10457 	u64 type = event->attr.type;
10458 
10459 	/*
10460 	 * Event scheduling is always serialized against hlist allocation
10461 	 * and release. Which makes the protected version suitable here.
10462 	 * The context lock guarantees that.
10463 	 */
10464 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10465 					  lockdep_is_held(&event->ctx->lock));
10466 	if (!hlist)
10467 		return NULL;
10468 
10469 	return __find_swevent_head(hlist, type, event_id);
10470 }
10471 
10472 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10473 				    u64 nr,
10474 				    struct perf_sample_data *data,
10475 				    struct pt_regs *regs)
10476 {
10477 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10478 	struct perf_event *event;
10479 	struct hlist_head *head;
10480 
10481 	rcu_read_lock();
10482 	head = find_swevent_head_rcu(swhash, type, event_id);
10483 	if (!head)
10484 		goto end;
10485 
10486 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10487 		if (perf_swevent_match(event, type, event_id, data, regs))
10488 			perf_swevent_event(event, nr, data, regs);
10489 	}
10490 end:
10491 	rcu_read_unlock();
10492 }
10493 
10494 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10495 
10496 int perf_swevent_get_recursion_context(void)
10497 {
10498 	return get_recursion_context(current->perf_recursion);
10499 }
10500 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10501 
10502 void perf_swevent_put_recursion_context(int rctx)
10503 {
10504 	put_recursion_context(current->perf_recursion, rctx);
10505 }
10506 
10507 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10508 {
10509 	struct perf_sample_data data;
10510 
10511 	if (WARN_ON_ONCE(!regs))
10512 		return;
10513 
10514 	perf_sample_data_init(&data, addr, 0);
10515 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10516 }
10517 
10518 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10519 {
10520 	int rctx;
10521 
10522 	preempt_disable_notrace();
10523 	rctx = perf_swevent_get_recursion_context();
10524 	if (unlikely(rctx < 0))
10525 		goto fail;
10526 
10527 	___perf_sw_event(event_id, nr, regs, addr);
10528 
10529 	perf_swevent_put_recursion_context(rctx);
10530 fail:
10531 	preempt_enable_notrace();
10532 }
10533 
10534 static void perf_swevent_read(struct perf_event *event)
10535 {
10536 }
10537 
10538 static int perf_swevent_add(struct perf_event *event, int flags)
10539 {
10540 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10541 	struct hw_perf_event *hwc = &event->hw;
10542 	struct hlist_head *head;
10543 
10544 	if (is_sampling_event(event)) {
10545 		hwc->last_period = hwc->sample_period;
10546 		perf_swevent_set_period(event);
10547 	}
10548 
10549 	hwc->state = !(flags & PERF_EF_START);
10550 
10551 	head = find_swevent_head(swhash, event);
10552 	if (WARN_ON_ONCE(!head))
10553 		return -EINVAL;
10554 
10555 	hlist_add_head_rcu(&event->hlist_entry, head);
10556 	perf_event_update_userpage(event);
10557 
10558 	return 0;
10559 }
10560 
10561 static void perf_swevent_del(struct perf_event *event, int flags)
10562 {
10563 	hlist_del_rcu(&event->hlist_entry);
10564 }
10565 
10566 static void perf_swevent_start(struct perf_event *event, int flags)
10567 {
10568 	event->hw.state = 0;
10569 }
10570 
10571 static void perf_swevent_stop(struct perf_event *event, int flags)
10572 {
10573 	event->hw.state = PERF_HES_STOPPED;
10574 }
10575 
10576 /* Deref the hlist from the update side */
10577 static inline struct swevent_hlist *
10578 swevent_hlist_deref(struct swevent_htable *swhash)
10579 {
10580 	return rcu_dereference_protected(swhash->swevent_hlist,
10581 					 lockdep_is_held(&swhash->hlist_mutex));
10582 }
10583 
10584 static void swevent_hlist_release(struct swevent_htable *swhash)
10585 {
10586 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10587 
10588 	if (!hlist)
10589 		return;
10590 
10591 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10592 	kfree_rcu(hlist, rcu_head);
10593 }
10594 
10595 static void swevent_hlist_put_cpu(int cpu)
10596 {
10597 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10598 
10599 	mutex_lock(&swhash->hlist_mutex);
10600 
10601 	if (!--swhash->hlist_refcount)
10602 		swevent_hlist_release(swhash);
10603 
10604 	mutex_unlock(&swhash->hlist_mutex);
10605 }
10606 
10607 static void swevent_hlist_put(void)
10608 {
10609 	int cpu;
10610 
10611 	for_each_possible_cpu(cpu)
10612 		swevent_hlist_put_cpu(cpu);
10613 }
10614 
10615 static int swevent_hlist_get_cpu(int cpu)
10616 {
10617 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10618 	int err = 0;
10619 
10620 	mutex_lock(&swhash->hlist_mutex);
10621 	if (!swevent_hlist_deref(swhash) &&
10622 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10623 		struct swevent_hlist *hlist;
10624 
10625 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10626 		if (!hlist) {
10627 			err = -ENOMEM;
10628 			goto exit;
10629 		}
10630 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10631 	}
10632 	swhash->hlist_refcount++;
10633 exit:
10634 	mutex_unlock(&swhash->hlist_mutex);
10635 
10636 	return err;
10637 }
10638 
10639 static int swevent_hlist_get(void)
10640 {
10641 	int err, cpu, failed_cpu;
10642 
10643 	mutex_lock(&pmus_lock);
10644 	for_each_possible_cpu(cpu) {
10645 		err = swevent_hlist_get_cpu(cpu);
10646 		if (err) {
10647 			failed_cpu = cpu;
10648 			goto fail;
10649 		}
10650 	}
10651 	mutex_unlock(&pmus_lock);
10652 	return 0;
10653 fail:
10654 	for_each_possible_cpu(cpu) {
10655 		if (cpu == failed_cpu)
10656 			break;
10657 		swevent_hlist_put_cpu(cpu);
10658 	}
10659 	mutex_unlock(&pmus_lock);
10660 	return err;
10661 }
10662 
10663 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10664 
10665 static void sw_perf_event_destroy(struct perf_event *event)
10666 {
10667 	u64 event_id = event->attr.config;
10668 
10669 	WARN_ON(event->parent);
10670 
10671 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10672 	swevent_hlist_put();
10673 }
10674 
10675 static struct pmu perf_cpu_clock; /* fwd declaration */
10676 static struct pmu perf_task_clock;
10677 
10678 static int perf_swevent_init(struct perf_event *event)
10679 {
10680 	u64 event_id = event->attr.config;
10681 
10682 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10683 		return -ENOENT;
10684 
10685 	/*
10686 	 * no branch sampling for software events
10687 	 */
10688 	if (has_branch_stack(event))
10689 		return -EOPNOTSUPP;
10690 
10691 	switch (event_id) {
10692 	case PERF_COUNT_SW_CPU_CLOCK:
10693 		event->attr.type = perf_cpu_clock.type;
10694 		return -ENOENT;
10695 	case PERF_COUNT_SW_TASK_CLOCK:
10696 		event->attr.type = perf_task_clock.type;
10697 		return -ENOENT;
10698 
10699 	default:
10700 		break;
10701 	}
10702 
10703 	if (event_id >= PERF_COUNT_SW_MAX)
10704 		return -ENOENT;
10705 
10706 	if (!event->parent) {
10707 		int err;
10708 
10709 		err = swevent_hlist_get();
10710 		if (err)
10711 			return err;
10712 
10713 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10714 		event->destroy = sw_perf_event_destroy;
10715 	}
10716 
10717 	return 0;
10718 }
10719 
10720 static struct pmu perf_swevent = {
10721 	.task_ctx_nr	= perf_sw_context,
10722 
10723 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10724 
10725 	.event_init	= perf_swevent_init,
10726 	.add		= perf_swevent_add,
10727 	.del		= perf_swevent_del,
10728 	.start		= perf_swevent_start,
10729 	.stop		= perf_swevent_stop,
10730 	.read		= perf_swevent_read,
10731 };
10732 
10733 #ifdef CONFIG_EVENT_TRACING
10734 
10735 static void tp_perf_event_destroy(struct perf_event *event)
10736 {
10737 	perf_trace_destroy(event);
10738 }
10739 
10740 static int perf_tp_event_init(struct perf_event *event)
10741 {
10742 	int err;
10743 
10744 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10745 		return -ENOENT;
10746 
10747 	/*
10748 	 * no branch sampling for tracepoint events
10749 	 */
10750 	if (has_branch_stack(event))
10751 		return -EOPNOTSUPP;
10752 
10753 	err = perf_trace_init(event);
10754 	if (err)
10755 		return err;
10756 
10757 	event->destroy = tp_perf_event_destroy;
10758 
10759 	return 0;
10760 }
10761 
10762 static struct pmu perf_tracepoint = {
10763 	.task_ctx_nr	= perf_sw_context,
10764 
10765 	.event_init	= perf_tp_event_init,
10766 	.add		= perf_trace_add,
10767 	.del		= perf_trace_del,
10768 	.start		= perf_swevent_start,
10769 	.stop		= perf_swevent_stop,
10770 	.read		= perf_swevent_read,
10771 };
10772 
10773 static int perf_tp_filter_match(struct perf_event *event,
10774 				struct perf_raw_record *raw)
10775 {
10776 	void *record = raw->frag.data;
10777 
10778 	/* only top level events have filters set */
10779 	if (event->parent)
10780 		event = event->parent;
10781 
10782 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10783 		return 1;
10784 	return 0;
10785 }
10786 
10787 static int perf_tp_event_match(struct perf_event *event,
10788 				struct perf_raw_record *raw,
10789 				struct pt_regs *regs)
10790 {
10791 	if (event->hw.state & PERF_HES_STOPPED)
10792 		return 0;
10793 	/*
10794 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10795 	 */
10796 	if (event->attr.exclude_kernel && !user_mode(regs))
10797 		return 0;
10798 
10799 	if (!perf_tp_filter_match(event, raw))
10800 		return 0;
10801 
10802 	return 1;
10803 }
10804 
10805 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10806 			       struct trace_event_call *call, u64 count,
10807 			       struct pt_regs *regs, struct hlist_head *head,
10808 			       struct task_struct *task)
10809 {
10810 	if (bpf_prog_array_valid(call)) {
10811 		*(struct pt_regs **)raw_data = regs;
10812 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10813 			perf_swevent_put_recursion_context(rctx);
10814 			return;
10815 		}
10816 	}
10817 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10818 		      rctx, task);
10819 }
10820 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10821 
10822 static void __perf_tp_event_target_task(u64 count, void *record,
10823 					struct pt_regs *regs,
10824 					struct perf_sample_data *data,
10825 					struct perf_raw_record *raw,
10826 					struct perf_event *event)
10827 {
10828 	struct trace_entry *entry = record;
10829 
10830 	if (event->attr.config != entry->type)
10831 		return;
10832 	/* Cannot deliver synchronous signal to other task. */
10833 	if (event->attr.sigtrap)
10834 		return;
10835 	if (perf_tp_event_match(event, raw, regs)) {
10836 		perf_sample_data_init(data, 0, 0);
10837 		perf_sample_save_raw_data(data, event, raw);
10838 		perf_swevent_event(event, count, data, regs);
10839 	}
10840 }
10841 
10842 static void perf_tp_event_target_task(u64 count, void *record,
10843 				      struct pt_regs *regs,
10844 				      struct perf_sample_data *data,
10845 				      struct perf_raw_record *raw,
10846 				      struct perf_event_context *ctx)
10847 {
10848 	unsigned int cpu = smp_processor_id();
10849 	struct pmu *pmu = &perf_tracepoint;
10850 	struct perf_event *event, *sibling;
10851 
10852 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10853 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10854 		for_each_sibling_event(sibling, event)
10855 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10856 	}
10857 
10858 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10859 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10860 		for_each_sibling_event(sibling, event)
10861 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10862 	}
10863 }
10864 
10865 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10866 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10867 		   struct task_struct *task)
10868 {
10869 	struct perf_sample_data data;
10870 	struct perf_event *event;
10871 
10872 	struct perf_raw_record raw = {
10873 		.frag = {
10874 			.size = entry_size,
10875 			.data = record,
10876 		},
10877 	};
10878 
10879 	perf_trace_buf_update(record, event_type);
10880 
10881 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10882 		if (perf_tp_event_match(event, &raw, regs)) {
10883 			/*
10884 			 * Here use the same on-stack perf_sample_data,
10885 			 * some members in data are event-specific and
10886 			 * need to be re-computed for different sweveents.
10887 			 * Re-initialize data->sample_flags safely to avoid
10888 			 * the problem that next event skips preparing data
10889 			 * because data->sample_flags is set.
10890 			 */
10891 			perf_sample_data_init(&data, 0, 0);
10892 			perf_sample_save_raw_data(&data, event, &raw);
10893 			perf_swevent_event(event, count, &data, regs);
10894 		}
10895 	}
10896 
10897 	/*
10898 	 * If we got specified a target task, also iterate its context and
10899 	 * deliver this event there too.
10900 	 */
10901 	if (task && task != current) {
10902 		struct perf_event_context *ctx;
10903 
10904 		rcu_read_lock();
10905 		ctx = rcu_dereference(task->perf_event_ctxp);
10906 		if (!ctx)
10907 			goto unlock;
10908 
10909 		raw_spin_lock(&ctx->lock);
10910 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10911 		raw_spin_unlock(&ctx->lock);
10912 unlock:
10913 		rcu_read_unlock();
10914 	}
10915 
10916 	perf_swevent_put_recursion_context(rctx);
10917 }
10918 EXPORT_SYMBOL_GPL(perf_tp_event);
10919 
10920 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10921 /*
10922  * Flags in config, used by dynamic PMU kprobe and uprobe
10923  * The flags should match following PMU_FORMAT_ATTR().
10924  *
10925  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10926  *                               if not set, create kprobe/uprobe
10927  *
10928  * The following values specify a reference counter (or semaphore in the
10929  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10930  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10931  *
10932  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10933  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10934  */
10935 enum perf_probe_config {
10936 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10937 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10938 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10939 };
10940 
10941 PMU_FORMAT_ATTR(retprobe, "config:0");
10942 #endif
10943 
10944 #ifdef CONFIG_KPROBE_EVENTS
10945 static struct attribute *kprobe_attrs[] = {
10946 	&format_attr_retprobe.attr,
10947 	NULL,
10948 };
10949 
10950 static struct attribute_group kprobe_format_group = {
10951 	.name = "format",
10952 	.attrs = kprobe_attrs,
10953 };
10954 
10955 static const struct attribute_group *kprobe_attr_groups[] = {
10956 	&kprobe_format_group,
10957 	NULL,
10958 };
10959 
10960 static int perf_kprobe_event_init(struct perf_event *event);
10961 static struct pmu perf_kprobe = {
10962 	.task_ctx_nr	= perf_sw_context,
10963 	.event_init	= perf_kprobe_event_init,
10964 	.add		= perf_trace_add,
10965 	.del		= perf_trace_del,
10966 	.start		= perf_swevent_start,
10967 	.stop		= perf_swevent_stop,
10968 	.read		= perf_swevent_read,
10969 	.attr_groups	= kprobe_attr_groups,
10970 };
10971 
10972 static int perf_kprobe_event_init(struct perf_event *event)
10973 {
10974 	int err;
10975 	bool is_retprobe;
10976 
10977 	if (event->attr.type != perf_kprobe.type)
10978 		return -ENOENT;
10979 
10980 	if (!perfmon_capable())
10981 		return -EACCES;
10982 
10983 	/*
10984 	 * no branch sampling for probe events
10985 	 */
10986 	if (has_branch_stack(event))
10987 		return -EOPNOTSUPP;
10988 
10989 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10990 	err = perf_kprobe_init(event, is_retprobe);
10991 	if (err)
10992 		return err;
10993 
10994 	event->destroy = perf_kprobe_destroy;
10995 
10996 	return 0;
10997 }
10998 #endif /* CONFIG_KPROBE_EVENTS */
10999 
11000 #ifdef CONFIG_UPROBE_EVENTS
11001 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11002 
11003 static struct attribute *uprobe_attrs[] = {
11004 	&format_attr_retprobe.attr,
11005 	&format_attr_ref_ctr_offset.attr,
11006 	NULL,
11007 };
11008 
11009 static struct attribute_group uprobe_format_group = {
11010 	.name = "format",
11011 	.attrs = uprobe_attrs,
11012 };
11013 
11014 static const struct attribute_group *uprobe_attr_groups[] = {
11015 	&uprobe_format_group,
11016 	NULL,
11017 };
11018 
11019 static int perf_uprobe_event_init(struct perf_event *event);
11020 static struct pmu perf_uprobe = {
11021 	.task_ctx_nr	= perf_sw_context,
11022 	.event_init	= perf_uprobe_event_init,
11023 	.add		= perf_trace_add,
11024 	.del		= perf_trace_del,
11025 	.start		= perf_swevent_start,
11026 	.stop		= perf_swevent_stop,
11027 	.read		= perf_swevent_read,
11028 	.attr_groups	= uprobe_attr_groups,
11029 };
11030 
11031 static int perf_uprobe_event_init(struct perf_event *event)
11032 {
11033 	int err;
11034 	unsigned long ref_ctr_offset;
11035 	bool is_retprobe;
11036 
11037 	if (event->attr.type != perf_uprobe.type)
11038 		return -ENOENT;
11039 
11040 	if (!perfmon_capable())
11041 		return -EACCES;
11042 
11043 	/*
11044 	 * no branch sampling for probe events
11045 	 */
11046 	if (has_branch_stack(event))
11047 		return -EOPNOTSUPP;
11048 
11049 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11050 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11051 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11052 	if (err)
11053 		return err;
11054 
11055 	event->destroy = perf_uprobe_destroy;
11056 
11057 	return 0;
11058 }
11059 #endif /* CONFIG_UPROBE_EVENTS */
11060 
11061 static inline void perf_tp_register(void)
11062 {
11063 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11064 #ifdef CONFIG_KPROBE_EVENTS
11065 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11066 #endif
11067 #ifdef CONFIG_UPROBE_EVENTS
11068 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11069 #endif
11070 }
11071 
11072 static void perf_event_free_filter(struct perf_event *event)
11073 {
11074 	ftrace_profile_free_filter(event);
11075 }
11076 
11077 /*
11078  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11079  * with perf_event_open()
11080  */
11081 static inline bool perf_event_is_tracing(struct perf_event *event)
11082 {
11083 	if (event->pmu == &perf_tracepoint)
11084 		return true;
11085 #ifdef CONFIG_KPROBE_EVENTS
11086 	if (event->pmu == &perf_kprobe)
11087 		return true;
11088 #endif
11089 #ifdef CONFIG_UPROBE_EVENTS
11090 	if (event->pmu == &perf_uprobe)
11091 		return true;
11092 #endif
11093 	return false;
11094 }
11095 
11096 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11097 			    u64 bpf_cookie)
11098 {
11099 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11100 
11101 	if (!perf_event_is_tracing(event))
11102 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11103 
11104 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11105 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11106 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11107 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11108 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11109 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11110 		return -EINVAL;
11111 
11112 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11113 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11114 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11115 		return -EINVAL;
11116 
11117 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11118 		/* only uprobe programs are allowed to be sleepable */
11119 		return -EINVAL;
11120 
11121 	/* Kprobe override only works for kprobes, not uprobes. */
11122 	if (prog->kprobe_override && !is_kprobe)
11123 		return -EINVAL;
11124 
11125 	if (is_tracepoint || is_syscall_tp) {
11126 		int off = trace_event_get_offsets(event->tp_event);
11127 
11128 		if (prog->aux->max_ctx_offset > off)
11129 			return -EACCES;
11130 	}
11131 
11132 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11133 }
11134 
11135 void perf_event_free_bpf_prog(struct perf_event *event)
11136 {
11137 	if (!event->prog)
11138 		return;
11139 
11140 	if (!perf_event_is_tracing(event)) {
11141 		perf_event_free_bpf_handler(event);
11142 		return;
11143 	}
11144 	perf_event_detach_bpf_prog(event);
11145 }
11146 
11147 #else
11148 
11149 static inline void perf_tp_register(void)
11150 {
11151 }
11152 
11153 static void perf_event_free_filter(struct perf_event *event)
11154 {
11155 }
11156 
11157 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11158 			    u64 bpf_cookie)
11159 {
11160 	return -ENOENT;
11161 }
11162 
11163 void perf_event_free_bpf_prog(struct perf_event *event)
11164 {
11165 }
11166 #endif /* CONFIG_EVENT_TRACING */
11167 
11168 #ifdef CONFIG_HAVE_HW_BREAKPOINT
11169 void perf_bp_event(struct perf_event *bp, void *data)
11170 {
11171 	struct perf_sample_data sample;
11172 	struct pt_regs *regs = data;
11173 
11174 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11175 
11176 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11177 		perf_swevent_event(bp, 1, &sample, regs);
11178 }
11179 #endif
11180 
11181 /*
11182  * Allocate a new address filter
11183  */
11184 static struct perf_addr_filter *
11185 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11186 {
11187 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11188 	struct perf_addr_filter *filter;
11189 
11190 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11191 	if (!filter)
11192 		return NULL;
11193 
11194 	INIT_LIST_HEAD(&filter->entry);
11195 	list_add_tail(&filter->entry, filters);
11196 
11197 	return filter;
11198 }
11199 
11200 static void free_filters_list(struct list_head *filters)
11201 {
11202 	struct perf_addr_filter *filter, *iter;
11203 
11204 	list_for_each_entry_safe(filter, iter, filters, entry) {
11205 		path_put(&filter->path);
11206 		list_del(&filter->entry);
11207 		kfree(filter);
11208 	}
11209 }
11210 
11211 /*
11212  * Free existing address filters and optionally install new ones
11213  */
11214 static void perf_addr_filters_splice(struct perf_event *event,
11215 				     struct list_head *head)
11216 {
11217 	unsigned long flags;
11218 	LIST_HEAD(list);
11219 
11220 	if (!has_addr_filter(event))
11221 		return;
11222 
11223 	/* don't bother with children, they don't have their own filters */
11224 	if (event->parent)
11225 		return;
11226 
11227 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11228 
11229 	list_splice_init(&event->addr_filters.list, &list);
11230 	if (head)
11231 		list_splice(head, &event->addr_filters.list);
11232 
11233 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11234 
11235 	free_filters_list(&list);
11236 }
11237 
11238 static void perf_free_addr_filters(struct perf_event *event)
11239 {
11240 	/*
11241 	 * Used during free paths, there is no concurrency.
11242 	 */
11243 	if (list_empty(&event->addr_filters.list))
11244 		return;
11245 
11246 	perf_addr_filters_splice(event, NULL);
11247 }
11248 
11249 /*
11250  * Scan through mm's vmas and see if one of them matches the
11251  * @filter; if so, adjust filter's address range.
11252  * Called with mm::mmap_lock down for reading.
11253  */
11254 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11255 				   struct mm_struct *mm,
11256 				   struct perf_addr_filter_range *fr)
11257 {
11258 	struct vm_area_struct *vma;
11259 	VMA_ITERATOR(vmi, mm, 0);
11260 
11261 	for_each_vma(vmi, vma) {
11262 		if (!vma->vm_file)
11263 			continue;
11264 
11265 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11266 			return;
11267 	}
11268 }
11269 
11270 /*
11271  * Update event's address range filters based on the
11272  * task's existing mappings, if any.
11273  */
11274 static void perf_event_addr_filters_apply(struct perf_event *event)
11275 {
11276 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11277 	struct task_struct *task = READ_ONCE(event->ctx->task);
11278 	struct perf_addr_filter *filter;
11279 	struct mm_struct *mm = NULL;
11280 	unsigned int count = 0;
11281 	unsigned long flags;
11282 
11283 	/*
11284 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11285 	 * will stop on the parent's child_mutex that our caller is also holding
11286 	 */
11287 	if (task == TASK_TOMBSTONE)
11288 		return;
11289 
11290 	if (ifh->nr_file_filters) {
11291 		mm = get_task_mm(task);
11292 		if (!mm)
11293 			goto restart;
11294 
11295 		mmap_read_lock(mm);
11296 	}
11297 
11298 	raw_spin_lock_irqsave(&ifh->lock, flags);
11299 	list_for_each_entry(filter, &ifh->list, entry) {
11300 		if (filter->path.dentry) {
11301 			/*
11302 			 * Adjust base offset if the filter is associated to a
11303 			 * binary that needs to be mapped:
11304 			 */
11305 			event->addr_filter_ranges[count].start = 0;
11306 			event->addr_filter_ranges[count].size = 0;
11307 
11308 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11309 		} else {
11310 			event->addr_filter_ranges[count].start = filter->offset;
11311 			event->addr_filter_ranges[count].size  = filter->size;
11312 		}
11313 
11314 		count++;
11315 	}
11316 
11317 	event->addr_filters_gen++;
11318 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11319 
11320 	if (ifh->nr_file_filters) {
11321 		mmap_read_unlock(mm);
11322 
11323 		mmput(mm);
11324 	}
11325 
11326 restart:
11327 	perf_event_stop(event, 1);
11328 }
11329 
11330 /*
11331  * Address range filtering: limiting the data to certain
11332  * instruction address ranges. Filters are ioctl()ed to us from
11333  * userspace as ascii strings.
11334  *
11335  * Filter string format:
11336  *
11337  * ACTION RANGE_SPEC
11338  * where ACTION is one of the
11339  *  * "filter": limit the trace to this region
11340  *  * "start": start tracing from this address
11341  *  * "stop": stop tracing at this address/region;
11342  * RANGE_SPEC is
11343  *  * for kernel addresses: <start address>[/<size>]
11344  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11345  *
11346  * if <size> is not specified or is zero, the range is treated as a single
11347  * address; not valid for ACTION=="filter".
11348  */
11349 enum {
11350 	IF_ACT_NONE = -1,
11351 	IF_ACT_FILTER,
11352 	IF_ACT_START,
11353 	IF_ACT_STOP,
11354 	IF_SRC_FILE,
11355 	IF_SRC_KERNEL,
11356 	IF_SRC_FILEADDR,
11357 	IF_SRC_KERNELADDR,
11358 };
11359 
11360 enum {
11361 	IF_STATE_ACTION = 0,
11362 	IF_STATE_SOURCE,
11363 	IF_STATE_END,
11364 };
11365 
11366 static const match_table_t if_tokens = {
11367 	{ IF_ACT_FILTER,	"filter" },
11368 	{ IF_ACT_START,		"start" },
11369 	{ IF_ACT_STOP,		"stop" },
11370 	{ IF_SRC_FILE,		"%u/%u@%s" },
11371 	{ IF_SRC_KERNEL,	"%u/%u" },
11372 	{ IF_SRC_FILEADDR,	"%u@%s" },
11373 	{ IF_SRC_KERNELADDR,	"%u" },
11374 	{ IF_ACT_NONE,		NULL },
11375 };
11376 
11377 /*
11378  * Address filter string parser
11379  */
11380 static int
11381 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11382 			     struct list_head *filters)
11383 {
11384 	struct perf_addr_filter *filter = NULL;
11385 	char *start, *orig, *filename = NULL;
11386 	substring_t args[MAX_OPT_ARGS];
11387 	int state = IF_STATE_ACTION, token;
11388 	unsigned int kernel = 0;
11389 	int ret = -EINVAL;
11390 
11391 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11392 	if (!fstr)
11393 		return -ENOMEM;
11394 
11395 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11396 		static const enum perf_addr_filter_action_t actions[] = {
11397 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11398 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11399 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11400 		};
11401 		ret = -EINVAL;
11402 
11403 		if (!*start)
11404 			continue;
11405 
11406 		/* filter definition begins */
11407 		if (state == IF_STATE_ACTION) {
11408 			filter = perf_addr_filter_new(event, filters);
11409 			if (!filter)
11410 				goto fail;
11411 		}
11412 
11413 		token = match_token(start, if_tokens, args);
11414 		switch (token) {
11415 		case IF_ACT_FILTER:
11416 		case IF_ACT_START:
11417 		case IF_ACT_STOP:
11418 			if (state != IF_STATE_ACTION)
11419 				goto fail;
11420 
11421 			filter->action = actions[token];
11422 			state = IF_STATE_SOURCE;
11423 			break;
11424 
11425 		case IF_SRC_KERNELADDR:
11426 		case IF_SRC_KERNEL:
11427 			kernel = 1;
11428 			fallthrough;
11429 
11430 		case IF_SRC_FILEADDR:
11431 		case IF_SRC_FILE:
11432 			if (state != IF_STATE_SOURCE)
11433 				goto fail;
11434 
11435 			*args[0].to = 0;
11436 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11437 			if (ret)
11438 				goto fail;
11439 
11440 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11441 				*args[1].to = 0;
11442 				ret = kstrtoul(args[1].from, 0, &filter->size);
11443 				if (ret)
11444 					goto fail;
11445 			}
11446 
11447 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11448 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11449 
11450 				kfree(filename);
11451 				filename = match_strdup(&args[fpos]);
11452 				if (!filename) {
11453 					ret = -ENOMEM;
11454 					goto fail;
11455 				}
11456 			}
11457 
11458 			state = IF_STATE_END;
11459 			break;
11460 
11461 		default:
11462 			goto fail;
11463 		}
11464 
11465 		/*
11466 		 * Filter definition is fully parsed, validate and install it.
11467 		 * Make sure that it doesn't contradict itself or the event's
11468 		 * attribute.
11469 		 */
11470 		if (state == IF_STATE_END) {
11471 			ret = -EINVAL;
11472 
11473 			/*
11474 			 * ACTION "filter" must have a non-zero length region
11475 			 * specified.
11476 			 */
11477 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11478 			    !filter->size)
11479 				goto fail;
11480 
11481 			if (!kernel) {
11482 				if (!filename)
11483 					goto fail;
11484 
11485 				/*
11486 				 * For now, we only support file-based filters
11487 				 * in per-task events; doing so for CPU-wide
11488 				 * events requires additional context switching
11489 				 * trickery, since same object code will be
11490 				 * mapped at different virtual addresses in
11491 				 * different processes.
11492 				 */
11493 				ret = -EOPNOTSUPP;
11494 				if (!event->ctx->task)
11495 					goto fail;
11496 
11497 				/* look up the path and grab its inode */
11498 				ret = kern_path(filename, LOOKUP_FOLLOW,
11499 						&filter->path);
11500 				if (ret)
11501 					goto fail;
11502 
11503 				ret = -EINVAL;
11504 				if (!filter->path.dentry ||
11505 				    !S_ISREG(d_inode(filter->path.dentry)
11506 					     ->i_mode))
11507 					goto fail;
11508 
11509 				event->addr_filters.nr_file_filters++;
11510 			}
11511 
11512 			/* ready to consume more filters */
11513 			kfree(filename);
11514 			filename = NULL;
11515 			state = IF_STATE_ACTION;
11516 			filter = NULL;
11517 			kernel = 0;
11518 		}
11519 	}
11520 
11521 	if (state != IF_STATE_ACTION)
11522 		goto fail;
11523 
11524 	kfree(filename);
11525 	kfree(orig);
11526 
11527 	return 0;
11528 
11529 fail:
11530 	kfree(filename);
11531 	free_filters_list(filters);
11532 	kfree(orig);
11533 
11534 	return ret;
11535 }
11536 
11537 static int
11538 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11539 {
11540 	LIST_HEAD(filters);
11541 	int ret;
11542 
11543 	/*
11544 	 * Since this is called in perf_ioctl() path, we're already holding
11545 	 * ctx::mutex.
11546 	 */
11547 	lockdep_assert_held(&event->ctx->mutex);
11548 
11549 	if (WARN_ON_ONCE(event->parent))
11550 		return -EINVAL;
11551 
11552 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11553 	if (ret)
11554 		goto fail_clear_files;
11555 
11556 	ret = event->pmu->addr_filters_validate(&filters);
11557 	if (ret)
11558 		goto fail_free_filters;
11559 
11560 	/* remove existing filters, if any */
11561 	perf_addr_filters_splice(event, &filters);
11562 
11563 	/* install new filters */
11564 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11565 
11566 	return ret;
11567 
11568 fail_free_filters:
11569 	free_filters_list(&filters);
11570 
11571 fail_clear_files:
11572 	event->addr_filters.nr_file_filters = 0;
11573 
11574 	return ret;
11575 }
11576 
11577 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11578 {
11579 	int ret = -EINVAL;
11580 	char *filter_str;
11581 
11582 	filter_str = strndup_user(arg, PAGE_SIZE);
11583 	if (IS_ERR(filter_str))
11584 		return PTR_ERR(filter_str);
11585 
11586 #ifdef CONFIG_EVENT_TRACING
11587 	if (perf_event_is_tracing(event)) {
11588 		struct perf_event_context *ctx = event->ctx;
11589 
11590 		/*
11591 		 * Beware, here be dragons!!
11592 		 *
11593 		 * the tracepoint muck will deadlock against ctx->mutex, but
11594 		 * the tracepoint stuff does not actually need it. So
11595 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11596 		 * already have a reference on ctx.
11597 		 *
11598 		 * This can result in event getting moved to a different ctx,
11599 		 * but that does not affect the tracepoint state.
11600 		 */
11601 		mutex_unlock(&ctx->mutex);
11602 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11603 		mutex_lock(&ctx->mutex);
11604 	} else
11605 #endif
11606 	if (has_addr_filter(event))
11607 		ret = perf_event_set_addr_filter(event, filter_str);
11608 
11609 	kfree(filter_str);
11610 	return ret;
11611 }
11612 
11613 /*
11614  * hrtimer based swevent callback
11615  */
11616 
11617 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11618 {
11619 	enum hrtimer_restart ret = HRTIMER_RESTART;
11620 	struct perf_sample_data data;
11621 	struct pt_regs *regs;
11622 	struct perf_event *event;
11623 	u64 period;
11624 
11625 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11626 
11627 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11628 		return HRTIMER_NORESTART;
11629 
11630 	event->pmu->read(event);
11631 
11632 	perf_sample_data_init(&data, 0, event->hw.last_period);
11633 	regs = get_irq_regs();
11634 
11635 	if (regs && !perf_exclude_event(event, regs)) {
11636 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11637 			if (__perf_event_overflow(event, 1, &data, regs))
11638 				ret = HRTIMER_NORESTART;
11639 	}
11640 
11641 	period = max_t(u64, 10000, event->hw.sample_period);
11642 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11643 
11644 	return ret;
11645 }
11646 
11647 static void perf_swevent_start_hrtimer(struct perf_event *event)
11648 {
11649 	struct hw_perf_event *hwc = &event->hw;
11650 	s64 period;
11651 
11652 	if (!is_sampling_event(event))
11653 		return;
11654 
11655 	period = local64_read(&hwc->period_left);
11656 	if (period) {
11657 		if (period < 0)
11658 			period = 10000;
11659 
11660 		local64_set(&hwc->period_left, 0);
11661 	} else {
11662 		period = max_t(u64, 10000, hwc->sample_period);
11663 	}
11664 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11665 		      HRTIMER_MODE_REL_PINNED_HARD);
11666 }
11667 
11668 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11669 {
11670 	struct hw_perf_event *hwc = &event->hw;
11671 
11672 	if (is_sampling_event(event)) {
11673 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11674 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11675 
11676 		hrtimer_cancel(&hwc->hrtimer);
11677 	}
11678 }
11679 
11680 static void perf_swevent_init_hrtimer(struct perf_event *event)
11681 {
11682 	struct hw_perf_event *hwc = &event->hw;
11683 
11684 	if (!is_sampling_event(event))
11685 		return;
11686 
11687 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11688 
11689 	/*
11690 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11691 	 * mapping and avoid the whole period adjust feedback stuff.
11692 	 */
11693 	if (event->attr.freq) {
11694 		long freq = event->attr.sample_freq;
11695 
11696 		event->attr.sample_period = NSEC_PER_SEC / freq;
11697 		hwc->sample_period = event->attr.sample_period;
11698 		local64_set(&hwc->period_left, hwc->sample_period);
11699 		hwc->last_period = hwc->sample_period;
11700 		event->attr.freq = 0;
11701 	}
11702 }
11703 
11704 /*
11705  * Software event: cpu wall time clock
11706  */
11707 
11708 static void cpu_clock_event_update(struct perf_event *event)
11709 {
11710 	s64 prev;
11711 	u64 now;
11712 
11713 	now = local_clock();
11714 	prev = local64_xchg(&event->hw.prev_count, now);
11715 	local64_add(now - prev, &event->count);
11716 }
11717 
11718 static void cpu_clock_event_start(struct perf_event *event, int flags)
11719 {
11720 	local64_set(&event->hw.prev_count, local_clock());
11721 	perf_swevent_start_hrtimer(event);
11722 }
11723 
11724 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11725 {
11726 	perf_swevent_cancel_hrtimer(event);
11727 	cpu_clock_event_update(event);
11728 }
11729 
11730 static int cpu_clock_event_add(struct perf_event *event, int flags)
11731 {
11732 	if (flags & PERF_EF_START)
11733 		cpu_clock_event_start(event, flags);
11734 	perf_event_update_userpage(event);
11735 
11736 	return 0;
11737 }
11738 
11739 static void cpu_clock_event_del(struct perf_event *event, int flags)
11740 {
11741 	cpu_clock_event_stop(event, flags);
11742 }
11743 
11744 static void cpu_clock_event_read(struct perf_event *event)
11745 {
11746 	cpu_clock_event_update(event);
11747 }
11748 
11749 static int cpu_clock_event_init(struct perf_event *event)
11750 {
11751 	if (event->attr.type != perf_cpu_clock.type)
11752 		return -ENOENT;
11753 
11754 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11755 		return -ENOENT;
11756 
11757 	/*
11758 	 * no branch sampling for software events
11759 	 */
11760 	if (has_branch_stack(event))
11761 		return -EOPNOTSUPP;
11762 
11763 	perf_swevent_init_hrtimer(event);
11764 
11765 	return 0;
11766 }
11767 
11768 static struct pmu perf_cpu_clock = {
11769 	.task_ctx_nr	= perf_sw_context,
11770 
11771 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11772 	.dev		= PMU_NULL_DEV,
11773 
11774 	.event_init	= cpu_clock_event_init,
11775 	.add		= cpu_clock_event_add,
11776 	.del		= cpu_clock_event_del,
11777 	.start		= cpu_clock_event_start,
11778 	.stop		= cpu_clock_event_stop,
11779 	.read		= cpu_clock_event_read,
11780 };
11781 
11782 /*
11783  * Software event: task time clock
11784  */
11785 
11786 static void task_clock_event_update(struct perf_event *event, u64 now)
11787 {
11788 	u64 prev;
11789 	s64 delta;
11790 
11791 	prev = local64_xchg(&event->hw.prev_count, now);
11792 	delta = now - prev;
11793 	local64_add(delta, &event->count);
11794 }
11795 
11796 static void task_clock_event_start(struct perf_event *event, int flags)
11797 {
11798 	local64_set(&event->hw.prev_count, event->ctx->time);
11799 	perf_swevent_start_hrtimer(event);
11800 }
11801 
11802 static void task_clock_event_stop(struct perf_event *event, int flags)
11803 {
11804 	perf_swevent_cancel_hrtimer(event);
11805 	task_clock_event_update(event, event->ctx->time);
11806 }
11807 
11808 static int task_clock_event_add(struct perf_event *event, int flags)
11809 {
11810 	if (flags & PERF_EF_START)
11811 		task_clock_event_start(event, flags);
11812 	perf_event_update_userpage(event);
11813 
11814 	return 0;
11815 }
11816 
11817 static void task_clock_event_del(struct perf_event *event, int flags)
11818 {
11819 	task_clock_event_stop(event, PERF_EF_UPDATE);
11820 }
11821 
11822 static void task_clock_event_read(struct perf_event *event)
11823 {
11824 	u64 now = perf_clock();
11825 	u64 delta = now - event->ctx->timestamp;
11826 	u64 time = event->ctx->time + delta;
11827 
11828 	task_clock_event_update(event, time);
11829 }
11830 
11831 static int task_clock_event_init(struct perf_event *event)
11832 {
11833 	if (event->attr.type != perf_task_clock.type)
11834 		return -ENOENT;
11835 
11836 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11837 		return -ENOENT;
11838 
11839 	/*
11840 	 * no branch sampling for software events
11841 	 */
11842 	if (has_branch_stack(event))
11843 		return -EOPNOTSUPP;
11844 
11845 	perf_swevent_init_hrtimer(event);
11846 
11847 	return 0;
11848 }
11849 
11850 static struct pmu perf_task_clock = {
11851 	.task_ctx_nr	= perf_sw_context,
11852 
11853 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11854 	.dev		= PMU_NULL_DEV,
11855 
11856 	.event_init	= task_clock_event_init,
11857 	.add		= task_clock_event_add,
11858 	.del		= task_clock_event_del,
11859 	.start		= task_clock_event_start,
11860 	.stop		= task_clock_event_stop,
11861 	.read		= task_clock_event_read,
11862 };
11863 
11864 static void perf_pmu_nop_void(struct pmu *pmu)
11865 {
11866 }
11867 
11868 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11869 {
11870 }
11871 
11872 static int perf_pmu_nop_int(struct pmu *pmu)
11873 {
11874 	return 0;
11875 }
11876 
11877 static int perf_event_nop_int(struct perf_event *event, u64 value)
11878 {
11879 	return 0;
11880 }
11881 
11882 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11883 
11884 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11885 {
11886 	__this_cpu_write(nop_txn_flags, flags);
11887 
11888 	if (flags & ~PERF_PMU_TXN_ADD)
11889 		return;
11890 
11891 	perf_pmu_disable(pmu);
11892 }
11893 
11894 static int perf_pmu_commit_txn(struct pmu *pmu)
11895 {
11896 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11897 
11898 	__this_cpu_write(nop_txn_flags, 0);
11899 
11900 	if (flags & ~PERF_PMU_TXN_ADD)
11901 		return 0;
11902 
11903 	perf_pmu_enable(pmu);
11904 	return 0;
11905 }
11906 
11907 static void perf_pmu_cancel_txn(struct pmu *pmu)
11908 {
11909 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11910 
11911 	__this_cpu_write(nop_txn_flags, 0);
11912 
11913 	if (flags & ~PERF_PMU_TXN_ADD)
11914 		return;
11915 
11916 	perf_pmu_enable(pmu);
11917 }
11918 
11919 static int perf_event_idx_default(struct perf_event *event)
11920 {
11921 	return 0;
11922 }
11923 
11924 /*
11925  * Let userspace know that this PMU supports address range filtering:
11926  */
11927 static ssize_t nr_addr_filters_show(struct device *dev,
11928 				    struct device_attribute *attr,
11929 				    char *page)
11930 {
11931 	struct pmu *pmu = dev_get_drvdata(dev);
11932 
11933 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
11934 }
11935 DEVICE_ATTR_RO(nr_addr_filters);
11936 
11937 static struct idr pmu_idr;
11938 
11939 static ssize_t
11940 type_show(struct device *dev, struct device_attribute *attr, char *page)
11941 {
11942 	struct pmu *pmu = dev_get_drvdata(dev);
11943 
11944 	return sysfs_emit(page, "%d\n", pmu->type);
11945 }
11946 static DEVICE_ATTR_RO(type);
11947 
11948 static ssize_t
11949 perf_event_mux_interval_ms_show(struct device *dev,
11950 				struct device_attribute *attr,
11951 				char *page)
11952 {
11953 	struct pmu *pmu = dev_get_drvdata(dev);
11954 
11955 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
11956 }
11957 
11958 static DEFINE_MUTEX(mux_interval_mutex);
11959 
11960 static ssize_t
11961 perf_event_mux_interval_ms_store(struct device *dev,
11962 				 struct device_attribute *attr,
11963 				 const char *buf, size_t count)
11964 {
11965 	struct pmu *pmu = dev_get_drvdata(dev);
11966 	int timer, cpu, ret;
11967 
11968 	ret = kstrtoint(buf, 0, &timer);
11969 	if (ret)
11970 		return ret;
11971 
11972 	if (timer < 1)
11973 		return -EINVAL;
11974 
11975 	/* same value, noting to do */
11976 	if (timer == pmu->hrtimer_interval_ms)
11977 		return count;
11978 
11979 	mutex_lock(&mux_interval_mutex);
11980 	pmu->hrtimer_interval_ms = timer;
11981 
11982 	/* update all cpuctx for this PMU */
11983 	cpus_read_lock();
11984 	for_each_online_cpu(cpu) {
11985 		struct perf_cpu_pmu_context *cpc;
11986 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11987 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11988 
11989 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11990 	}
11991 	cpus_read_unlock();
11992 	mutex_unlock(&mux_interval_mutex);
11993 
11994 	return count;
11995 }
11996 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11997 
11998 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11999 {
12000 	switch (scope) {
12001 	case PERF_PMU_SCOPE_CORE:
12002 		return topology_sibling_cpumask(cpu);
12003 	case PERF_PMU_SCOPE_DIE:
12004 		return topology_die_cpumask(cpu);
12005 	case PERF_PMU_SCOPE_CLUSTER:
12006 		return topology_cluster_cpumask(cpu);
12007 	case PERF_PMU_SCOPE_PKG:
12008 		return topology_core_cpumask(cpu);
12009 	case PERF_PMU_SCOPE_SYS_WIDE:
12010 		return cpu_online_mask;
12011 	}
12012 
12013 	return NULL;
12014 }
12015 
12016 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12017 {
12018 	switch (scope) {
12019 	case PERF_PMU_SCOPE_CORE:
12020 		return perf_online_core_mask;
12021 	case PERF_PMU_SCOPE_DIE:
12022 		return perf_online_die_mask;
12023 	case PERF_PMU_SCOPE_CLUSTER:
12024 		return perf_online_cluster_mask;
12025 	case PERF_PMU_SCOPE_PKG:
12026 		return perf_online_pkg_mask;
12027 	case PERF_PMU_SCOPE_SYS_WIDE:
12028 		return perf_online_sys_mask;
12029 	}
12030 
12031 	return NULL;
12032 }
12033 
12034 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12035 			    char *buf)
12036 {
12037 	struct pmu *pmu = dev_get_drvdata(dev);
12038 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12039 
12040 	if (mask)
12041 		return cpumap_print_to_pagebuf(true, buf, mask);
12042 	return 0;
12043 }
12044 
12045 static DEVICE_ATTR_RO(cpumask);
12046 
12047 static struct attribute *pmu_dev_attrs[] = {
12048 	&dev_attr_type.attr,
12049 	&dev_attr_perf_event_mux_interval_ms.attr,
12050 	&dev_attr_nr_addr_filters.attr,
12051 	&dev_attr_cpumask.attr,
12052 	NULL,
12053 };
12054 
12055 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12056 {
12057 	struct device *dev = kobj_to_dev(kobj);
12058 	struct pmu *pmu = dev_get_drvdata(dev);
12059 
12060 	if (n == 2 && !pmu->nr_addr_filters)
12061 		return 0;
12062 
12063 	/* cpumask */
12064 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12065 		return 0;
12066 
12067 	return a->mode;
12068 }
12069 
12070 static struct attribute_group pmu_dev_attr_group = {
12071 	.is_visible = pmu_dev_is_visible,
12072 	.attrs = pmu_dev_attrs,
12073 };
12074 
12075 static const struct attribute_group *pmu_dev_groups[] = {
12076 	&pmu_dev_attr_group,
12077 	NULL,
12078 };
12079 
12080 static int pmu_bus_running;
12081 static struct bus_type pmu_bus = {
12082 	.name		= "event_source",
12083 	.dev_groups	= pmu_dev_groups,
12084 };
12085 
12086 static void pmu_dev_release(struct device *dev)
12087 {
12088 	kfree(dev);
12089 }
12090 
12091 static int pmu_dev_alloc(struct pmu *pmu)
12092 {
12093 	int ret = -ENOMEM;
12094 
12095 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12096 	if (!pmu->dev)
12097 		goto out;
12098 
12099 	pmu->dev->groups = pmu->attr_groups;
12100 	device_initialize(pmu->dev);
12101 
12102 	dev_set_drvdata(pmu->dev, pmu);
12103 	pmu->dev->bus = &pmu_bus;
12104 	pmu->dev->parent = pmu->parent;
12105 	pmu->dev->release = pmu_dev_release;
12106 
12107 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12108 	if (ret)
12109 		goto free_dev;
12110 
12111 	ret = device_add(pmu->dev);
12112 	if (ret)
12113 		goto free_dev;
12114 
12115 	if (pmu->attr_update) {
12116 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12117 		if (ret)
12118 			goto del_dev;
12119 	}
12120 
12121 out:
12122 	return ret;
12123 
12124 del_dev:
12125 	device_del(pmu->dev);
12126 
12127 free_dev:
12128 	put_device(pmu->dev);
12129 	pmu->dev = NULL;
12130 	goto out;
12131 }
12132 
12133 static struct lock_class_key cpuctx_mutex;
12134 static struct lock_class_key cpuctx_lock;
12135 
12136 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12137 {
12138 	void *tmp, *val = idr_find(idr, id);
12139 
12140 	if (val != old)
12141 		return false;
12142 
12143 	tmp = idr_replace(idr, new, id);
12144 	if (IS_ERR(tmp))
12145 		return false;
12146 
12147 	WARN_ON_ONCE(tmp != val);
12148 	return true;
12149 }
12150 
12151 static void perf_pmu_free(struct pmu *pmu)
12152 {
12153 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12154 		if (pmu->nr_addr_filters)
12155 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12156 		device_del(pmu->dev);
12157 		put_device(pmu->dev);
12158 	}
12159 
12160 	if (pmu->cpu_pmu_context) {
12161 		int cpu;
12162 
12163 		for_each_possible_cpu(cpu) {
12164 			struct perf_cpu_pmu_context *cpc;
12165 
12166 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12167 			if (!cpc)
12168 				continue;
12169 			if (cpc->epc.embedded) {
12170 				/* refcount managed */
12171 				put_pmu_ctx(&cpc->epc);
12172 				continue;
12173 			}
12174 			kfree(cpc);
12175 		}
12176 		free_percpu(pmu->cpu_pmu_context);
12177 	}
12178 }
12179 
12180 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12181 
12182 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12183 {
12184 	int cpu, max = PERF_TYPE_MAX;
12185 
12186 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12187 	guard(mutex)(&pmus_lock);
12188 
12189 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12190 		return -EINVAL;
12191 
12192 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12193 		      "Can not register a pmu with an invalid scope.\n"))
12194 		return -EINVAL;
12195 
12196 	pmu->name = name;
12197 
12198 	if (type >= 0)
12199 		max = type;
12200 
12201 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12202 	if (pmu_type.id < 0)
12203 		return pmu_type.id;
12204 
12205 	WARN_ON(type >= 0 && pmu_type.id != type);
12206 
12207 	pmu->type = pmu_type.id;
12208 	atomic_set(&pmu->exclusive_cnt, 0);
12209 
12210 	if (pmu_bus_running && !pmu->dev) {
12211 		int ret = pmu_dev_alloc(pmu);
12212 		if (ret)
12213 			return ret;
12214 	}
12215 
12216 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12217 	if (!pmu->cpu_pmu_context)
12218 		return -ENOMEM;
12219 
12220 	for_each_possible_cpu(cpu) {
12221 		struct perf_cpu_pmu_context *cpc =
12222 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12223 				     GFP_KERNEL | __GFP_ZERO,
12224 				     cpu_to_node(cpu));
12225 
12226 		if (!cpc)
12227 			return -ENOMEM;
12228 
12229 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12230 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12231 		__perf_mux_hrtimer_init(cpc, cpu);
12232 	}
12233 
12234 	if (!pmu->start_txn) {
12235 		if (pmu->pmu_enable) {
12236 			/*
12237 			 * If we have pmu_enable/pmu_disable calls, install
12238 			 * transaction stubs that use that to try and batch
12239 			 * hardware accesses.
12240 			 */
12241 			pmu->start_txn  = perf_pmu_start_txn;
12242 			pmu->commit_txn = perf_pmu_commit_txn;
12243 			pmu->cancel_txn = perf_pmu_cancel_txn;
12244 		} else {
12245 			pmu->start_txn  = perf_pmu_nop_txn;
12246 			pmu->commit_txn = perf_pmu_nop_int;
12247 			pmu->cancel_txn = perf_pmu_nop_void;
12248 		}
12249 	}
12250 
12251 	if (!pmu->pmu_enable) {
12252 		pmu->pmu_enable  = perf_pmu_nop_void;
12253 		pmu->pmu_disable = perf_pmu_nop_void;
12254 	}
12255 
12256 	if (!pmu->check_period)
12257 		pmu->check_period = perf_event_nop_int;
12258 
12259 	if (!pmu->event_idx)
12260 		pmu->event_idx = perf_event_idx_default;
12261 
12262 	/*
12263 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12264 	 */
12265 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12266 		return -EINVAL;
12267 	list_add_rcu(&pmu->entry, &pmus);
12268 
12269 	take_idr_id(pmu_type);
12270 	_pmu = no_free_ptr(pmu); // let it rip
12271 	return 0;
12272 }
12273 EXPORT_SYMBOL_GPL(perf_pmu_register);
12274 
12275 void perf_pmu_unregister(struct pmu *pmu)
12276 {
12277 	scoped_guard (mutex, &pmus_lock) {
12278 		list_del_rcu(&pmu->entry);
12279 		idr_remove(&pmu_idr, pmu->type);
12280 	}
12281 
12282 	/*
12283 	 * We dereference the pmu list under both SRCU and regular RCU, so
12284 	 * synchronize against both of those.
12285 	 */
12286 	synchronize_srcu(&pmus_srcu);
12287 	synchronize_rcu();
12288 
12289 	perf_pmu_free(pmu);
12290 }
12291 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12292 
12293 static inline bool has_extended_regs(struct perf_event *event)
12294 {
12295 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12296 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12297 }
12298 
12299 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12300 {
12301 	struct perf_event_context *ctx = NULL;
12302 	int ret;
12303 
12304 	if (!try_module_get(pmu->module))
12305 		return -ENODEV;
12306 
12307 	/*
12308 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12309 	 * for example, validate if the group fits on the PMU. Therefore,
12310 	 * if this is a sibling event, acquire the ctx->mutex to protect
12311 	 * the sibling_list.
12312 	 */
12313 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12314 		/*
12315 		 * This ctx->mutex can nest when we're called through
12316 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12317 		 */
12318 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12319 						 SINGLE_DEPTH_NESTING);
12320 		BUG_ON(!ctx);
12321 	}
12322 
12323 	event->pmu = pmu;
12324 	ret = pmu->event_init(event);
12325 
12326 	if (ctx)
12327 		perf_event_ctx_unlock(event->group_leader, ctx);
12328 
12329 	if (ret)
12330 		goto err_pmu;
12331 
12332 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12333 	    has_extended_regs(event)) {
12334 		ret = -EOPNOTSUPP;
12335 		goto err_destroy;
12336 	}
12337 
12338 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12339 	    event_has_any_exclude_flag(event)) {
12340 		ret = -EINVAL;
12341 		goto err_destroy;
12342 	}
12343 
12344 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12345 		const struct cpumask *cpumask;
12346 		struct cpumask *pmu_cpumask;
12347 		int cpu;
12348 
12349 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12350 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12351 
12352 		ret = -ENODEV;
12353 		if (!pmu_cpumask || !cpumask)
12354 			goto err_destroy;
12355 
12356 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12357 		if (cpu >= nr_cpu_ids)
12358 			goto err_destroy;
12359 
12360 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12361 	}
12362 
12363 	return 0;
12364 
12365 err_destroy:
12366 	if (event->destroy) {
12367 		event->destroy(event);
12368 		event->destroy = NULL;
12369 	}
12370 
12371 err_pmu:
12372 	event->pmu = NULL;
12373 	module_put(pmu->module);
12374 	return ret;
12375 }
12376 
12377 static struct pmu *perf_init_event(struct perf_event *event)
12378 {
12379 	bool extended_type = false;
12380 	struct pmu *pmu;
12381 	int type, ret;
12382 
12383 	guard(srcu)(&pmus_srcu);
12384 
12385 	/*
12386 	 * Save original type before calling pmu->event_init() since certain
12387 	 * pmus overwrites event->attr.type to forward event to another pmu.
12388 	 */
12389 	event->orig_type = event->attr.type;
12390 
12391 	/* Try parent's PMU first: */
12392 	if (event->parent && event->parent->pmu) {
12393 		pmu = event->parent->pmu;
12394 		ret = perf_try_init_event(pmu, event);
12395 		if (!ret)
12396 			return pmu;
12397 	}
12398 
12399 	/*
12400 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12401 	 * are often aliases for PERF_TYPE_RAW.
12402 	 */
12403 	type = event->attr.type;
12404 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12405 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12406 		if (!type) {
12407 			type = PERF_TYPE_RAW;
12408 		} else {
12409 			extended_type = true;
12410 			event->attr.config &= PERF_HW_EVENT_MASK;
12411 		}
12412 	}
12413 
12414 again:
12415 	scoped_guard (rcu)
12416 		pmu = idr_find(&pmu_idr, type);
12417 	if (pmu) {
12418 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12419 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12420 			return ERR_PTR(-ENOENT);
12421 
12422 		ret = perf_try_init_event(pmu, event);
12423 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12424 			type = event->attr.type;
12425 			goto again;
12426 		}
12427 
12428 		if (ret)
12429 			return ERR_PTR(ret);
12430 
12431 		return pmu;
12432 	}
12433 
12434 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12435 		ret = perf_try_init_event(pmu, event);
12436 		if (!ret)
12437 			return pmu;
12438 
12439 		if (ret != -ENOENT)
12440 			return ERR_PTR(ret);
12441 	}
12442 
12443 	return ERR_PTR(-ENOENT);
12444 }
12445 
12446 static void attach_sb_event(struct perf_event *event)
12447 {
12448 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12449 
12450 	raw_spin_lock(&pel->lock);
12451 	list_add_rcu(&event->sb_list, &pel->list);
12452 	raw_spin_unlock(&pel->lock);
12453 }
12454 
12455 /*
12456  * We keep a list of all !task (and therefore per-cpu) events
12457  * that need to receive side-band records.
12458  *
12459  * This avoids having to scan all the various PMU per-cpu contexts
12460  * looking for them.
12461  */
12462 static void account_pmu_sb_event(struct perf_event *event)
12463 {
12464 	if (is_sb_event(event))
12465 		attach_sb_event(event);
12466 }
12467 
12468 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12469 static void account_freq_event_nohz(void)
12470 {
12471 #ifdef CONFIG_NO_HZ_FULL
12472 	/* Lock so we don't race with concurrent unaccount */
12473 	spin_lock(&nr_freq_lock);
12474 	if (atomic_inc_return(&nr_freq_events) == 1)
12475 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12476 	spin_unlock(&nr_freq_lock);
12477 #endif
12478 }
12479 
12480 static void account_freq_event(void)
12481 {
12482 	if (tick_nohz_full_enabled())
12483 		account_freq_event_nohz();
12484 	else
12485 		atomic_inc(&nr_freq_events);
12486 }
12487 
12488 
12489 static void account_event(struct perf_event *event)
12490 {
12491 	bool inc = false;
12492 
12493 	if (event->parent)
12494 		return;
12495 
12496 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12497 		inc = true;
12498 	if (event->attr.mmap || event->attr.mmap_data)
12499 		atomic_inc(&nr_mmap_events);
12500 	if (event->attr.build_id)
12501 		atomic_inc(&nr_build_id_events);
12502 	if (event->attr.comm)
12503 		atomic_inc(&nr_comm_events);
12504 	if (event->attr.namespaces)
12505 		atomic_inc(&nr_namespaces_events);
12506 	if (event->attr.cgroup)
12507 		atomic_inc(&nr_cgroup_events);
12508 	if (event->attr.task)
12509 		atomic_inc(&nr_task_events);
12510 	if (event->attr.freq)
12511 		account_freq_event();
12512 	if (event->attr.context_switch) {
12513 		atomic_inc(&nr_switch_events);
12514 		inc = true;
12515 	}
12516 	if (has_branch_stack(event))
12517 		inc = true;
12518 	if (is_cgroup_event(event))
12519 		inc = true;
12520 	if (event->attr.ksymbol)
12521 		atomic_inc(&nr_ksymbol_events);
12522 	if (event->attr.bpf_event)
12523 		atomic_inc(&nr_bpf_events);
12524 	if (event->attr.text_poke)
12525 		atomic_inc(&nr_text_poke_events);
12526 
12527 	if (inc) {
12528 		/*
12529 		 * We need the mutex here because static_branch_enable()
12530 		 * must complete *before* the perf_sched_count increment
12531 		 * becomes visible.
12532 		 */
12533 		if (atomic_inc_not_zero(&perf_sched_count))
12534 			goto enabled;
12535 
12536 		mutex_lock(&perf_sched_mutex);
12537 		if (!atomic_read(&perf_sched_count)) {
12538 			static_branch_enable(&perf_sched_events);
12539 			/*
12540 			 * Guarantee that all CPUs observe they key change and
12541 			 * call the perf scheduling hooks before proceeding to
12542 			 * install events that need them.
12543 			 */
12544 			synchronize_rcu();
12545 		}
12546 		/*
12547 		 * Now that we have waited for the sync_sched(), allow further
12548 		 * increments to by-pass the mutex.
12549 		 */
12550 		atomic_inc(&perf_sched_count);
12551 		mutex_unlock(&perf_sched_mutex);
12552 	}
12553 enabled:
12554 
12555 	account_pmu_sb_event(event);
12556 }
12557 
12558 /*
12559  * Allocate and initialize an event structure
12560  */
12561 static struct perf_event *
12562 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12563 		 struct task_struct *task,
12564 		 struct perf_event *group_leader,
12565 		 struct perf_event *parent_event,
12566 		 perf_overflow_handler_t overflow_handler,
12567 		 void *context, int cgroup_fd)
12568 {
12569 	struct pmu *pmu;
12570 	struct hw_perf_event *hwc;
12571 	long err = -EINVAL;
12572 	int node;
12573 
12574 	if ((unsigned)cpu >= nr_cpu_ids) {
12575 		if (!task || cpu != -1)
12576 			return ERR_PTR(-EINVAL);
12577 	}
12578 	if (attr->sigtrap && !task) {
12579 		/* Requires a task: avoid signalling random tasks. */
12580 		return ERR_PTR(-EINVAL);
12581 	}
12582 
12583 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12584 	struct perf_event *event __free(__free_event) =
12585 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12586 	if (!event)
12587 		return ERR_PTR(-ENOMEM);
12588 
12589 	/*
12590 	 * Single events are their own group leaders, with an
12591 	 * empty sibling list:
12592 	 */
12593 	if (!group_leader)
12594 		group_leader = event;
12595 
12596 	mutex_init(&event->child_mutex);
12597 	INIT_LIST_HEAD(&event->child_list);
12598 
12599 	INIT_LIST_HEAD(&event->event_entry);
12600 	INIT_LIST_HEAD(&event->sibling_list);
12601 	INIT_LIST_HEAD(&event->active_list);
12602 	init_event_group(event);
12603 	INIT_LIST_HEAD(&event->rb_entry);
12604 	INIT_LIST_HEAD(&event->active_entry);
12605 	INIT_LIST_HEAD(&event->addr_filters.list);
12606 	INIT_HLIST_NODE(&event->hlist_entry);
12607 
12608 
12609 	init_waitqueue_head(&event->waitq);
12610 	init_irq_work(&event->pending_irq, perf_pending_irq);
12611 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12612 	init_task_work(&event->pending_task, perf_pending_task);
12613 	rcuwait_init(&event->pending_work_wait);
12614 
12615 	mutex_init(&event->mmap_mutex);
12616 	raw_spin_lock_init(&event->addr_filters.lock);
12617 
12618 	atomic_long_set(&event->refcount, 1);
12619 	event->cpu		= cpu;
12620 	event->attr		= *attr;
12621 	event->group_leader	= group_leader;
12622 	event->pmu		= NULL;
12623 	event->oncpu		= -1;
12624 
12625 	event->parent		= parent_event;
12626 
12627 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12628 	event->id		= atomic64_inc_return(&perf_event_id);
12629 
12630 	event->state		= PERF_EVENT_STATE_INACTIVE;
12631 
12632 	if (parent_event)
12633 		event->event_caps = parent_event->event_caps;
12634 
12635 	if (task) {
12636 		event->attach_state = PERF_ATTACH_TASK;
12637 		/*
12638 		 * XXX pmu::event_init needs to know what task to account to
12639 		 * and we cannot use the ctx information because we need the
12640 		 * pmu before we get a ctx.
12641 		 */
12642 		event->hw.target = get_task_struct(task);
12643 	}
12644 
12645 	event->clock = &local_clock;
12646 	if (parent_event)
12647 		event->clock = parent_event->clock;
12648 
12649 	if (!overflow_handler && parent_event) {
12650 		overflow_handler = parent_event->overflow_handler;
12651 		context = parent_event->overflow_handler_context;
12652 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12653 		if (parent_event->prog) {
12654 			struct bpf_prog *prog = parent_event->prog;
12655 
12656 			bpf_prog_inc(prog);
12657 			event->prog = prog;
12658 		}
12659 #endif
12660 	}
12661 
12662 	if (overflow_handler) {
12663 		event->overflow_handler	= overflow_handler;
12664 		event->overflow_handler_context = context;
12665 	} else if (is_write_backward(event)){
12666 		event->overflow_handler = perf_event_output_backward;
12667 		event->overflow_handler_context = NULL;
12668 	} else {
12669 		event->overflow_handler = perf_event_output_forward;
12670 		event->overflow_handler_context = NULL;
12671 	}
12672 
12673 	perf_event__state_init(event);
12674 
12675 	pmu = NULL;
12676 
12677 	hwc = &event->hw;
12678 	hwc->sample_period = attr->sample_period;
12679 	if (attr->freq && attr->sample_freq)
12680 		hwc->sample_period = 1;
12681 	hwc->last_period = hwc->sample_period;
12682 
12683 	local64_set(&hwc->period_left, hwc->sample_period);
12684 
12685 	/*
12686 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12687 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12688 	 * collect per-thread samples.
12689 	 * See perf_output_read().
12690 	 */
12691 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12692 		return ERR_PTR(-EINVAL);
12693 
12694 	if (!has_branch_stack(event))
12695 		event->attr.branch_sample_type = 0;
12696 
12697 	pmu = perf_init_event(event);
12698 	if (IS_ERR(pmu))
12699 		return (void*)pmu;
12700 
12701 	/*
12702 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12703 	 * The attach should be right after the perf_init_event().
12704 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12705 	 * perf_ctx_data because of the other errors between them.
12706 	 */
12707 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12708 		err = attach_perf_ctx_data(event);
12709 		if (err)
12710 			return ERR_PTR(err);
12711 	}
12712 
12713 	/*
12714 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12715 	 * events (they don't make sense as the cgroup will be different
12716 	 * on other CPUs in the uncore mask).
12717 	 */
12718 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12719 		return ERR_PTR(-EINVAL);
12720 
12721 	if (event->attr.aux_output &&
12722 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12723 	     event->attr.aux_pause || event->attr.aux_resume))
12724 		return ERR_PTR(-EOPNOTSUPP);
12725 
12726 	if (event->attr.aux_pause && event->attr.aux_resume)
12727 		return ERR_PTR(-EINVAL);
12728 
12729 	if (event->attr.aux_start_paused) {
12730 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12731 			return ERR_PTR(-EOPNOTSUPP);
12732 		event->hw.aux_paused = 1;
12733 	}
12734 
12735 	if (cgroup_fd != -1) {
12736 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12737 		if (err)
12738 			return ERR_PTR(err);
12739 	}
12740 
12741 	err = exclusive_event_init(event);
12742 	if (err)
12743 		return ERR_PTR(err);
12744 
12745 	if (has_addr_filter(event)) {
12746 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12747 						    sizeof(struct perf_addr_filter_range),
12748 						    GFP_KERNEL);
12749 		if (!event->addr_filter_ranges)
12750 			return ERR_PTR(-ENOMEM);
12751 
12752 		/*
12753 		 * Clone the parent's vma offsets: they are valid until exec()
12754 		 * even if the mm is not shared with the parent.
12755 		 */
12756 		if (event->parent) {
12757 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12758 
12759 			raw_spin_lock_irq(&ifh->lock);
12760 			memcpy(event->addr_filter_ranges,
12761 			       event->parent->addr_filter_ranges,
12762 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12763 			raw_spin_unlock_irq(&ifh->lock);
12764 		}
12765 
12766 		/* force hw sync on the address filters */
12767 		event->addr_filters_gen = 1;
12768 	}
12769 
12770 	if (!event->parent) {
12771 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12772 			err = get_callchain_buffers(attr->sample_max_stack);
12773 			if (err)
12774 				return ERR_PTR(err);
12775 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12776 		}
12777 	}
12778 
12779 	err = security_perf_event_alloc(event);
12780 	if (err)
12781 		return ERR_PTR(err);
12782 
12783 	/* symmetric to unaccount_event() in _free_event() */
12784 	account_event(event);
12785 
12786 	return_ptr(event);
12787 }
12788 
12789 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12790 			  struct perf_event_attr *attr)
12791 {
12792 	u32 size;
12793 	int ret;
12794 
12795 	/* Zero the full structure, so that a short copy will be nice. */
12796 	memset(attr, 0, sizeof(*attr));
12797 
12798 	ret = get_user(size, &uattr->size);
12799 	if (ret)
12800 		return ret;
12801 
12802 	/* ABI compatibility quirk: */
12803 	if (!size)
12804 		size = PERF_ATTR_SIZE_VER0;
12805 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12806 		goto err_size;
12807 
12808 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12809 	if (ret) {
12810 		if (ret == -E2BIG)
12811 			goto err_size;
12812 		return ret;
12813 	}
12814 
12815 	attr->size = size;
12816 
12817 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12818 		return -EINVAL;
12819 
12820 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12821 		return -EINVAL;
12822 
12823 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12824 		return -EINVAL;
12825 
12826 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12827 		u64 mask = attr->branch_sample_type;
12828 
12829 		/* only using defined bits */
12830 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12831 			return -EINVAL;
12832 
12833 		/* at least one branch bit must be set */
12834 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12835 			return -EINVAL;
12836 
12837 		/* propagate priv level, when not set for branch */
12838 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12839 
12840 			/* exclude_kernel checked on syscall entry */
12841 			if (!attr->exclude_kernel)
12842 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12843 
12844 			if (!attr->exclude_user)
12845 				mask |= PERF_SAMPLE_BRANCH_USER;
12846 
12847 			if (!attr->exclude_hv)
12848 				mask |= PERF_SAMPLE_BRANCH_HV;
12849 			/*
12850 			 * adjust user setting (for HW filter setup)
12851 			 */
12852 			attr->branch_sample_type = mask;
12853 		}
12854 		/* privileged levels capture (kernel, hv): check permissions */
12855 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12856 			ret = perf_allow_kernel();
12857 			if (ret)
12858 				return ret;
12859 		}
12860 	}
12861 
12862 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12863 		ret = perf_reg_validate(attr->sample_regs_user);
12864 		if (ret)
12865 			return ret;
12866 	}
12867 
12868 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12869 		if (!arch_perf_have_user_stack_dump())
12870 			return -ENOSYS;
12871 
12872 		/*
12873 		 * We have __u32 type for the size, but so far
12874 		 * we can only use __u16 as maximum due to the
12875 		 * __u16 sample size limit.
12876 		 */
12877 		if (attr->sample_stack_user >= USHRT_MAX)
12878 			return -EINVAL;
12879 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12880 			return -EINVAL;
12881 	}
12882 
12883 	if (!attr->sample_max_stack)
12884 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12885 
12886 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12887 		ret = perf_reg_validate(attr->sample_regs_intr);
12888 
12889 #ifndef CONFIG_CGROUP_PERF
12890 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12891 		return -EINVAL;
12892 #endif
12893 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12894 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12895 		return -EINVAL;
12896 
12897 	if (!attr->inherit && attr->inherit_thread)
12898 		return -EINVAL;
12899 
12900 	if (attr->remove_on_exec && attr->enable_on_exec)
12901 		return -EINVAL;
12902 
12903 	if (attr->sigtrap && !attr->remove_on_exec)
12904 		return -EINVAL;
12905 
12906 out:
12907 	return ret;
12908 
12909 err_size:
12910 	put_user(sizeof(*attr), &uattr->size);
12911 	ret = -E2BIG;
12912 	goto out;
12913 }
12914 
12915 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12916 {
12917 	if (b < a)
12918 		swap(a, b);
12919 
12920 	mutex_lock(a);
12921 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12922 }
12923 
12924 static int
12925 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12926 {
12927 	struct perf_buffer *rb = NULL;
12928 	int ret = -EINVAL;
12929 
12930 	if (!output_event) {
12931 		mutex_lock(&event->mmap_mutex);
12932 		goto set;
12933 	}
12934 
12935 	/* don't allow circular references */
12936 	if (event == output_event)
12937 		goto out;
12938 
12939 	/*
12940 	 * Don't allow cross-cpu buffers
12941 	 */
12942 	if (output_event->cpu != event->cpu)
12943 		goto out;
12944 
12945 	/*
12946 	 * If its not a per-cpu rb, it must be the same task.
12947 	 */
12948 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12949 		goto out;
12950 
12951 	/*
12952 	 * Mixing clocks in the same buffer is trouble you don't need.
12953 	 */
12954 	if (output_event->clock != event->clock)
12955 		goto out;
12956 
12957 	/*
12958 	 * Either writing ring buffer from beginning or from end.
12959 	 * Mixing is not allowed.
12960 	 */
12961 	if (is_write_backward(output_event) != is_write_backward(event))
12962 		goto out;
12963 
12964 	/*
12965 	 * If both events generate aux data, they must be on the same PMU
12966 	 */
12967 	if (has_aux(event) && has_aux(output_event) &&
12968 	    event->pmu != output_event->pmu)
12969 		goto out;
12970 
12971 	/*
12972 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12973 	 * output_event is already on rb->event_list, and the list iteration
12974 	 * restarts after every removal, it is guaranteed this new event is
12975 	 * observed *OR* if output_event is already removed, it's guaranteed we
12976 	 * observe !rb->mmap_count.
12977 	 */
12978 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12979 set:
12980 	/* Can't redirect output if we've got an active mmap() */
12981 	if (atomic_read(&event->mmap_count))
12982 		goto unlock;
12983 
12984 	if (output_event) {
12985 		/* get the rb we want to redirect to */
12986 		rb = ring_buffer_get(output_event);
12987 		if (!rb)
12988 			goto unlock;
12989 
12990 		/* did we race against perf_mmap_close() */
12991 		if (!atomic_read(&rb->mmap_count)) {
12992 			ring_buffer_put(rb);
12993 			goto unlock;
12994 		}
12995 	}
12996 
12997 	ring_buffer_attach(event, rb);
12998 
12999 	ret = 0;
13000 unlock:
13001 	mutex_unlock(&event->mmap_mutex);
13002 	if (output_event)
13003 		mutex_unlock(&output_event->mmap_mutex);
13004 
13005 out:
13006 	return ret;
13007 }
13008 
13009 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13010 {
13011 	bool nmi_safe = false;
13012 
13013 	switch (clk_id) {
13014 	case CLOCK_MONOTONIC:
13015 		event->clock = &ktime_get_mono_fast_ns;
13016 		nmi_safe = true;
13017 		break;
13018 
13019 	case CLOCK_MONOTONIC_RAW:
13020 		event->clock = &ktime_get_raw_fast_ns;
13021 		nmi_safe = true;
13022 		break;
13023 
13024 	case CLOCK_REALTIME:
13025 		event->clock = &ktime_get_real_ns;
13026 		break;
13027 
13028 	case CLOCK_BOOTTIME:
13029 		event->clock = &ktime_get_boottime_ns;
13030 		break;
13031 
13032 	case CLOCK_TAI:
13033 		event->clock = &ktime_get_clocktai_ns;
13034 		break;
13035 
13036 	default:
13037 		return -EINVAL;
13038 	}
13039 
13040 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13041 		return -EINVAL;
13042 
13043 	return 0;
13044 }
13045 
13046 static bool
13047 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13048 {
13049 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13050 	bool is_capable = perfmon_capable();
13051 
13052 	if (attr->sigtrap) {
13053 		/*
13054 		 * perf_event_attr::sigtrap sends signals to the other task.
13055 		 * Require the current task to also have CAP_KILL.
13056 		 */
13057 		rcu_read_lock();
13058 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13059 		rcu_read_unlock();
13060 
13061 		/*
13062 		 * If the required capabilities aren't available, checks for
13063 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13064 		 * can effectively change the target task.
13065 		 */
13066 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13067 	}
13068 
13069 	/*
13070 	 * Preserve ptrace permission check for backwards compatibility. The
13071 	 * ptrace check also includes checks that the current task and other
13072 	 * task have matching uids, and is therefore not done here explicitly.
13073 	 */
13074 	return is_capable || ptrace_may_access(task, ptrace_mode);
13075 }
13076 
13077 /**
13078  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13079  *
13080  * @attr_uptr:	event_id type attributes for monitoring/sampling
13081  * @pid:		target pid
13082  * @cpu:		target cpu
13083  * @group_fd:		group leader event fd
13084  * @flags:		perf event open flags
13085  */
13086 SYSCALL_DEFINE5(perf_event_open,
13087 		struct perf_event_attr __user *, attr_uptr,
13088 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13089 {
13090 	struct perf_event *group_leader = NULL, *output_event = NULL;
13091 	struct perf_event_pmu_context *pmu_ctx;
13092 	struct perf_event *event, *sibling;
13093 	struct perf_event_attr attr;
13094 	struct perf_event_context *ctx;
13095 	struct file *event_file = NULL;
13096 	struct task_struct *task = NULL;
13097 	struct pmu *pmu;
13098 	int event_fd;
13099 	int move_group = 0;
13100 	int err;
13101 	int f_flags = O_RDWR;
13102 	int cgroup_fd = -1;
13103 
13104 	/* for future expandability... */
13105 	if (flags & ~PERF_FLAG_ALL)
13106 		return -EINVAL;
13107 
13108 	err = perf_copy_attr(attr_uptr, &attr);
13109 	if (err)
13110 		return err;
13111 
13112 	/* Do we allow access to perf_event_open(2) ? */
13113 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13114 	if (err)
13115 		return err;
13116 
13117 	if (!attr.exclude_kernel) {
13118 		err = perf_allow_kernel();
13119 		if (err)
13120 			return err;
13121 	}
13122 
13123 	if (attr.namespaces) {
13124 		if (!perfmon_capable())
13125 			return -EACCES;
13126 	}
13127 
13128 	if (attr.freq) {
13129 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13130 			return -EINVAL;
13131 	} else {
13132 		if (attr.sample_period & (1ULL << 63))
13133 			return -EINVAL;
13134 	}
13135 
13136 	/* Only privileged users can get physical addresses */
13137 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13138 		err = perf_allow_kernel();
13139 		if (err)
13140 			return err;
13141 	}
13142 
13143 	/* REGS_INTR can leak data, lockdown must prevent this */
13144 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13145 		err = security_locked_down(LOCKDOWN_PERF);
13146 		if (err)
13147 			return err;
13148 	}
13149 
13150 	/*
13151 	 * In cgroup mode, the pid argument is used to pass the fd
13152 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13153 	 * designates the cpu on which to monitor threads from that
13154 	 * cgroup.
13155 	 */
13156 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13157 		return -EINVAL;
13158 
13159 	if (flags & PERF_FLAG_FD_CLOEXEC)
13160 		f_flags |= O_CLOEXEC;
13161 
13162 	event_fd = get_unused_fd_flags(f_flags);
13163 	if (event_fd < 0)
13164 		return event_fd;
13165 
13166 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13167 	if (group_fd != -1) {
13168 		if (!is_perf_file(group)) {
13169 			err = -EBADF;
13170 			goto err_fd;
13171 		}
13172 		group_leader = fd_file(group)->private_data;
13173 		if (flags & PERF_FLAG_FD_OUTPUT)
13174 			output_event = group_leader;
13175 		if (flags & PERF_FLAG_FD_NO_GROUP)
13176 			group_leader = NULL;
13177 	}
13178 
13179 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13180 		task = find_lively_task_by_vpid(pid);
13181 		if (IS_ERR(task)) {
13182 			err = PTR_ERR(task);
13183 			goto err_fd;
13184 		}
13185 	}
13186 
13187 	if (task && group_leader &&
13188 	    group_leader->attr.inherit != attr.inherit) {
13189 		err = -EINVAL;
13190 		goto err_task;
13191 	}
13192 
13193 	if (flags & PERF_FLAG_PID_CGROUP)
13194 		cgroup_fd = pid;
13195 
13196 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13197 				 NULL, NULL, cgroup_fd);
13198 	if (IS_ERR(event)) {
13199 		err = PTR_ERR(event);
13200 		goto err_task;
13201 	}
13202 
13203 	if (is_sampling_event(event)) {
13204 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13205 			err = -EOPNOTSUPP;
13206 			goto err_alloc;
13207 		}
13208 	}
13209 
13210 	/*
13211 	 * Special case software events and allow them to be part of
13212 	 * any hardware group.
13213 	 */
13214 	pmu = event->pmu;
13215 
13216 	if (attr.use_clockid) {
13217 		err = perf_event_set_clock(event, attr.clockid);
13218 		if (err)
13219 			goto err_alloc;
13220 	}
13221 
13222 	if (pmu->task_ctx_nr == perf_sw_context)
13223 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13224 
13225 	if (task) {
13226 		err = down_read_interruptible(&task->signal->exec_update_lock);
13227 		if (err)
13228 			goto err_alloc;
13229 
13230 		/*
13231 		 * We must hold exec_update_lock across this and any potential
13232 		 * perf_install_in_context() call for this new event to
13233 		 * serialize against exec() altering our credentials (and the
13234 		 * perf_event_exit_task() that could imply).
13235 		 */
13236 		err = -EACCES;
13237 		if (!perf_check_permission(&attr, task))
13238 			goto err_cred;
13239 	}
13240 
13241 	/*
13242 	 * Get the target context (task or percpu):
13243 	 */
13244 	ctx = find_get_context(task, event);
13245 	if (IS_ERR(ctx)) {
13246 		err = PTR_ERR(ctx);
13247 		goto err_cred;
13248 	}
13249 
13250 	mutex_lock(&ctx->mutex);
13251 
13252 	if (ctx->task == TASK_TOMBSTONE) {
13253 		err = -ESRCH;
13254 		goto err_locked;
13255 	}
13256 
13257 	if (!task) {
13258 		/*
13259 		 * Check if the @cpu we're creating an event for is online.
13260 		 *
13261 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13262 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13263 		 */
13264 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13265 
13266 		if (!cpuctx->online) {
13267 			err = -ENODEV;
13268 			goto err_locked;
13269 		}
13270 	}
13271 
13272 	if (group_leader) {
13273 		err = -EINVAL;
13274 
13275 		/*
13276 		 * Do not allow a recursive hierarchy (this new sibling
13277 		 * becoming part of another group-sibling):
13278 		 */
13279 		if (group_leader->group_leader != group_leader)
13280 			goto err_locked;
13281 
13282 		/* All events in a group should have the same clock */
13283 		if (group_leader->clock != event->clock)
13284 			goto err_locked;
13285 
13286 		/*
13287 		 * Make sure we're both events for the same CPU;
13288 		 * grouping events for different CPUs is broken; since
13289 		 * you can never concurrently schedule them anyhow.
13290 		 */
13291 		if (group_leader->cpu != event->cpu)
13292 			goto err_locked;
13293 
13294 		/*
13295 		 * Make sure we're both on the same context; either task or cpu.
13296 		 */
13297 		if (group_leader->ctx != ctx)
13298 			goto err_locked;
13299 
13300 		/*
13301 		 * Only a group leader can be exclusive or pinned
13302 		 */
13303 		if (attr.exclusive || attr.pinned)
13304 			goto err_locked;
13305 
13306 		if (is_software_event(event) &&
13307 		    !in_software_context(group_leader)) {
13308 			/*
13309 			 * If the event is a sw event, but the group_leader
13310 			 * is on hw context.
13311 			 *
13312 			 * Allow the addition of software events to hw
13313 			 * groups, this is safe because software events
13314 			 * never fail to schedule.
13315 			 *
13316 			 * Note the comment that goes with struct
13317 			 * perf_event_pmu_context.
13318 			 */
13319 			pmu = group_leader->pmu_ctx->pmu;
13320 		} else if (!is_software_event(event)) {
13321 			if (is_software_event(group_leader) &&
13322 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13323 				/*
13324 				 * In case the group is a pure software group, and we
13325 				 * try to add a hardware event, move the whole group to
13326 				 * the hardware context.
13327 				 */
13328 				move_group = 1;
13329 			}
13330 
13331 			/* Don't allow group of multiple hw events from different pmus */
13332 			if (!in_software_context(group_leader) &&
13333 			    group_leader->pmu_ctx->pmu != pmu)
13334 				goto err_locked;
13335 		}
13336 	}
13337 
13338 	/*
13339 	 * Now that we're certain of the pmu; find the pmu_ctx.
13340 	 */
13341 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13342 	if (IS_ERR(pmu_ctx)) {
13343 		err = PTR_ERR(pmu_ctx);
13344 		goto err_locked;
13345 	}
13346 	event->pmu_ctx = pmu_ctx;
13347 
13348 	if (output_event) {
13349 		err = perf_event_set_output(event, output_event);
13350 		if (err)
13351 			goto err_context;
13352 	}
13353 
13354 	if (!perf_event_validate_size(event)) {
13355 		err = -E2BIG;
13356 		goto err_context;
13357 	}
13358 
13359 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13360 		err = -EINVAL;
13361 		goto err_context;
13362 	}
13363 
13364 	/*
13365 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13366 	 * because we need to serialize with concurrent event creation.
13367 	 */
13368 	if (!exclusive_event_installable(event, ctx)) {
13369 		err = -EBUSY;
13370 		goto err_context;
13371 	}
13372 
13373 	WARN_ON_ONCE(ctx->parent_ctx);
13374 
13375 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13376 	if (IS_ERR(event_file)) {
13377 		err = PTR_ERR(event_file);
13378 		event_file = NULL;
13379 		goto err_context;
13380 	}
13381 
13382 	/*
13383 	 * This is the point on no return; we cannot fail hereafter. This is
13384 	 * where we start modifying current state.
13385 	 */
13386 
13387 	if (move_group) {
13388 		perf_remove_from_context(group_leader, 0);
13389 		put_pmu_ctx(group_leader->pmu_ctx);
13390 
13391 		for_each_sibling_event(sibling, group_leader) {
13392 			perf_remove_from_context(sibling, 0);
13393 			put_pmu_ctx(sibling->pmu_ctx);
13394 		}
13395 
13396 		/*
13397 		 * Install the group siblings before the group leader.
13398 		 *
13399 		 * Because a group leader will try and install the entire group
13400 		 * (through the sibling list, which is still in-tact), we can
13401 		 * end up with siblings installed in the wrong context.
13402 		 *
13403 		 * By installing siblings first we NO-OP because they're not
13404 		 * reachable through the group lists.
13405 		 */
13406 		for_each_sibling_event(sibling, group_leader) {
13407 			sibling->pmu_ctx = pmu_ctx;
13408 			get_pmu_ctx(pmu_ctx);
13409 			perf_event__state_init(sibling);
13410 			perf_install_in_context(ctx, sibling, sibling->cpu);
13411 		}
13412 
13413 		/*
13414 		 * Removing from the context ends up with disabled
13415 		 * event. What we want here is event in the initial
13416 		 * startup state, ready to be add into new context.
13417 		 */
13418 		group_leader->pmu_ctx = pmu_ctx;
13419 		get_pmu_ctx(pmu_ctx);
13420 		perf_event__state_init(group_leader);
13421 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13422 	}
13423 
13424 	/*
13425 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13426 	 * that we're serialized against further additions and before
13427 	 * perf_install_in_context() which is the point the event is active and
13428 	 * can use these values.
13429 	 */
13430 	perf_event__header_size(event);
13431 	perf_event__id_header_size(event);
13432 
13433 	event->owner = current;
13434 
13435 	perf_install_in_context(ctx, event, event->cpu);
13436 	perf_unpin_context(ctx);
13437 
13438 	mutex_unlock(&ctx->mutex);
13439 
13440 	if (task) {
13441 		up_read(&task->signal->exec_update_lock);
13442 		put_task_struct(task);
13443 	}
13444 
13445 	mutex_lock(&current->perf_event_mutex);
13446 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13447 	mutex_unlock(&current->perf_event_mutex);
13448 
13449 	/*
13450 	 * File reference in group guarantees that group_leader has been
13451 	 * kept alive until we place the new event on the sibling_list.
13452 	 * This ensures destruction of the group leader will find
13453 	 * the pointer to itself in perf_group_detach().
13454 	 */
13455 	fd_install(event_fd, event_file);
13456 	return event_fd;
13457 
13458 err_context:
13459 	put_pmu_ctx(event->pmu_ctx);
13460 	event->pmu_ctx = NULL; /* _free_event() */
13461 err_locked:
13462 	mutex_unlock(&ctx->mutex);
13463 	perf_unpin_context(ctx);
13464 	put_ctx(ctx);
13465 err_cred:
13466 	if (task)
13467 		up_read(&task->signal->exec_update_lock);
13468 err_alloc:
13469 	free_event(event);
13470 err_task:
13471 	if (task)
13472 		put_task_struct(task);
13473 err_fd:
13474 	put_unused_fd(event_fd);
13475 	return err;
13476 }
13477 
13478 /**
13479  * perf_event_create_kernel_counter
13480  *
13481  * @attr: attributes of the counter to create
13482  * @cpu: cpu in which the counter is bound
13483  * @task: task to profile (NULL for percpu)
13484  * @overflow_handler: callback to trigger when we hit the event
13485  * @context: context data could be used in overflow_handler callback
13486  */
13487 struct perf_event *
13488 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13489 				 struct task_struct *task,
13490 				 perf_overflow_handler_t overflow_handler,
13491 				 void *context)
13492 {
13493 	struct perf_event_pmu_context *pmu_ctx;
13494 	struct perf_event_context *ctx;
13495 	struct perf_event *event;
13496 	struct pmu *pmu;
13497 	int err;
13498 
13499 	/*
13500 	 * Grouping is not supported for kernel events, neither is 'AUX',
13501 	 * make sure the caller's intentions are adjusted.
13502 	 */
13503 	if (attr->aux_output || attr->aux_action)
13504 		return ERR_PTR(-EINVAL);
13505 
13506 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13507 				 overflow_handler, context, -1);
13508 	if (IS_ERR(event)) {
13509 		err = PTR_ERR(event);
13510 		goto err;
13511 	}
13512 
13513 	/* Mark owner so we could distinguish it from user events. */
13514 	event->owner = TASK_TOMBSTONE;
13515 	pmu = event->pmu;
13516 
13517 	if (pmu->task_ctx_nr == perf_sw_context)
13518 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13519 
13520 	/*
13521 	 * Get the target context (task or percpu):
13522 	 */
13523 	ctx = find_get_context(task, event);
13524 	if (IS_ERR(ctx)) {
13525 		err = PTR_ERR(ctx);
13526 		goto err_alloc;
13527 	}
13528 
13529 	WARN_ON_ONCE(ctx->parent_ctx);
13530 	mutex_lock(&ctx->mutex);
13531 	if (ctx->task == TASK_TOMBSTONE) {
13532 		err = -ESRCH;
13533 		goto err_unlock;
13534 	}
13535 
13536 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13537 	if (IS_ERR(pmu_ctx)) {
13538 		err = PTR_ERR(pmu_ctx);
13539 		goto err_unlock;
13540 	}
13541 	event->pmu_ctx = pmu_ctx;
13542 
13543 	if (!task) {
13544 		/*
13545 		 * Check if the @cpu we're creating an event for is online.
13546 		 *
13547 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13548 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13549 		 */
13550 		struct perf_cpu_context *cpuctx =
13551 			container_of(ctx, struct perf_cpu_context, ctx);
13552 		if (!cpuctx->online) {
13553 			err = -ENODEV;
13554 			goto err_pmu_ctx;
13555 		}
13556 	}
13557 
13558 	if (!exclusive_event_installable(event, ctx)) {
13559 		err = -EBUSY;
13560 		goto err_pmu_ctx;
13561 	}
13562 
13563 	perf_install_in_context(ctx, event, event->cpu);
13564 	perf_unpin_context(ctx);
13565 	mutex_unlock(&ctx->mutex);
13566 
13567 	return event;
13568 
13569 err_pmu_ctx:
13570 	put_pmu_ctx(pmu_ctx);
13571 	event->pmu_ctx = NULL; /* _free_event() */
13572 err_unlock:
13573 	mutex_unlock(&ctx->mutex);
13574 	perf_unpin_context(ctx);
13575 	put_ctx(ctx);
13576 err_alloc:
13577 	free_event(event);
13578 err:
13579 	return ERR_PTR(err);
13580 }
13581 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13582 
13583 static void __perf_pmu_remove(struct perf_event_context *ctx,
13584 			      int cpu, struct pmu *pmu,
13585 			      struct perf_event_groups *groups,
13586 			      struct list_head *events)
13587 {
13588 	struct perf_event *event, *sibling;
13589 
13590 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13591 		perf_remove_from_context(event, 0);
13592 		put_pmu_ctx(event->pmu_ctx);
13593 		list_add(&event->migrate_entry, events);
13594 
13595 		for_each_sibling_event(sibling, event) {
13596 			perf_remove_from_context(sibling, 0);
13597 			put_pmu_ctx(sibling->pmu_ctx);
13598 			list_add(&sibling->migrate_entry, events);
13599 		}
13600 	}
13601 }
13602 
13603 static void __perf_pmu_install_event(struct pmu *pmu,
13604 				     struct perf_event_context *ctx,
13605 				     int cpu, struct perf_event *event)
13606 {
13607 	struct perf_event_pmu_context *epc;
13608 	struct perf_event_context *old_ctx = event->ctx;
13609 
13610 	get_ctx(ctx); /* normally find_get_context() */
13611 
13612 	event->cpu = cpu;
13613 	epc = find_get_pmu_context(pmu, ctx, event);
13614 	event->pmu_ctx = epc;
13615 
13616 	if (event->state >= PERF_EVENT_STATE_OFF)
13617 		event->state = PERF_EVENT_STATE_INACTIVE;
13618 	perf_install_in_context(ctx, event, cpu);
13619 
13620 	/*
13621 	 * Now that event->ctx is updated and visible, put the old ctx.
13622 	 */
13623 	put_ctx(old_ctx);
13624 }
13625 
13626 static void __perf_pmu_install(struct perf_event_context *ctx,
13627 			       int cpu, struct pmu *pmu, struct list_head *events)
13628 {
13629 	struct perf_event *event, *tmp;
13630 
13631 	/*
13632 	 * Re-instate events in 2 passes.
13633 	 *
13634 	 * Skip over group leaders and only install siblings on this first
13635 	 * pass, siblings will not get enabled without a leader, however a
13636 	 * leader will enable its siblings, even if those are still on the old
13637 	 * context.
13638 	 */
13639 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13640 		if (event->group_leader == event)
13641 			continue;
13642 
13643 		list_del(&event->migrate_entry);
13644 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13645 	}
13646 
13647 	/*
13648 	 * Once all the siblings are setup properly, install the group leaders
13649 	 * to make it go.
13650 	 */
13651 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13652 		list_del(&event->migrate_entry);
13653 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13654 	}
13655 }
13656 
13657 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13658 {
13659 	struct perf_event_context *src_ctx, *dst_ctx;
13660 	LIST_HEAD(events);
13661 
13662 	/*
13663 	 * Since per-cpu context is persistent, no need to grab an extra
13664 	 * reference.
13665 	 */
13666 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13667 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13668 
13669 	/*
13670 	 * See perf_event_ctx_lock() for comments on the details
13671 	 * of swizzling perf_event::ctx.
13672 	 */
13673 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13674 
13675 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13676 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13677 
13678 	if (!list_empty(&events)) {
13679 		/*
13680 		 * Wait for the events to quiesce before re-instating them.
13681 		 */
13682 		synchronize_rcu();
13683 
13684 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13685 	}
13686 
13687 	mutex_unlock(&dst_ctx->mutex);
13688 	mutex_unlock(&src_ctx->mutex);
13689 }
13690 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13691 
13692 static void sync_child_event(struct perf_event *child_event)
13693 {
13694 	struct perf_event *parent_event = child_event->parent;
13695 	u64 child_val;
13696 
13697 	if (child_event->attr.inherit_stat) {
13698 		struct task_struct *task = child_event->ctx->task;
13699 
13700 		if (task && task != TASK_TOMBSTONE)
13701 			perf_event_read_event(child_event, task);
13702 	}
13703 
13704 	child_val = perf_event_count(child_event, false);
13705 
13706 	/*
13707 	 * Add back the child's count to the parent's count:
13708 	 */
13709 	atomic64_add(child_val, &parent_event->child_count);
13710 	atomic64_add(child_event->total_time_enabled,
13711 		     &parent_event->child_total_time_enabled);
13712 	atomic64_add(child_event->total_time_running,
13713 		     &parent_event->child_total_time_running);
13714 }
13715 
13716 static void
13717 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13718 {
13719 	struct perf_event *parent_event = event->parent;
13720 	unsigned long detach_flags = 0;
13721 
13722 	if (parent_event) {
13723 		/*
13724 		 * Do not destroy the 'original' grouping; because of the
13725 		 * context switch optimization the original events could've
13726 		 * ended up in a random child task.
13727 		 *
13728 		 * If we were to destroy the original group, all group related
13729 		 * operations would cease to function properly after this
13730 		 * random child dies.
13731 		 *
13732 		 * Do destroy all inherited groups, we don't care about those
13733 		 * and being thorough is better.
13734 		 */
13735 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13736 		mutex_lock(&parent_event->child_mutex);
13737 	}
13738 
13739 	perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13740 
13741 	/*
13742 	 * Child events can be freed.
13743 	 */
13744 	if (parent_event) {
13745 		mutex_unlock(&parent_event->child_mutex);
13746 		/*
13747 		 * Kick perf_poll() for is_event_hup();
13748 		 */
13749 		perf_event_wakeup(parent_event);
13750 		free_event(event);
13751 		put_event(parent_event);
13752 		return;
13753 	}
13754 
13755 	/*
13756 	 * Parent events are governed by their filedesc, retain them.
13757 	 */
13758 	perf_event_wakeup(event);
13759 }
13760 
13761 static void perf_event_exit_task_context(struct task_struct *child)
13762 {
13763 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13764 	struct perf_event *child_event, *next;
13765 
13766 	WARN_ON_ONCE(child != current);
13767 
13768 	child_ctx = perf_pin_task_context(child);
13769 	if (!child_ctx)
13770 		return;
13771 
13772 	/*
13773 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13774 	 * ctx::mutex over the entire thing. This serializes against almost
13775 	 * everything that wants to access the ctx.
13776 	 *
13777 	 * The exception is sys_perf_event_open() /
13778 	 * perf_event_create_kernel_count() which does find_get_context()
13779 	 * without ctx::mutex (it cannot because of the move_group double mutex
13780 	 * lock thing). See the comments in perf_install_in_context().
13781 	 */
13782 	mutex_lock(&child_ctx->mutex);
13783 
13784 	/*
13785 	 * In a single ctx::lock section, de-schedule the events and detach the
13786 	 * context from the task such that we cannot ever get it scheduled back
13787 	 * in.
13788 	 */
13789 	raw_spin_lock_irq(&child_ctx->lock);
13790 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13791 
13792 	/*
13793 	 * Now that the context is inactive, destroy the task <-> ctx relation
13794 	 * and mark the context dead.
13795 	 */
13796 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13797 	put_ctx(child_ctx); /* cannot be last */
13798 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13799 	put_task_struct(current); /* cannot be last */
13800 
13801 	clone_ctx = unclone_ctx(child_ctx);
13802 	raw_spin_unlock_irq(&child_ctx->lock);
13803 
13804 	if (clone_ctx)
13805 		put_ctx(clone_ctx);
13806 
13807 	/*
13808 	 * Report the task dead after unscheduling the events so that we
13809 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13810 	 * get a few PERF_RECORD_READ events.
13811 	 */
13812 	perf_event_task(child, child_ctx, 0);
13813 
13814 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13815 		perf_event_exit_event(child_event, child_ctx);
13816 
13817 	mutex_unlock(&child_ctx->mutex);
13818 
13819 	put_ctx(child_ctx);
13820 }
13821 
13822 /*
13823  * When a child task exits, feed back event values to parent events.
13824  *
13825  * Can be called with exec_update_lock held when called from
13826  * setup_new_exec().
13827  */
13828 void perf_event_exit_task(struct task_struct *child)
13829 {
13830 	struct perf_event *event, *tmp;
13831 
13832 	mutex_lock(&child->perf_event_mutex);
13833 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13834 				 owner_entry) {
13835 		list_del_init(&event->owner_entry);
13836 
13837 		/*
13838 		 * Ensure the list deletion is visible before we clear
13839 		 * the owner, closes a race against perf_release() where
13840 		 * we need to serialize on the owner->perf_event_mutex.
13841 		 */
13842 		smp_store_release(&event->owner, NULL);
13843 	}
13844 	mutex_unlock(&child->perf_event_mutex);
13845 
13846 	perf_event_exit_task_context(child);
13847 
13848 	/*
13849 	 * The perf_event_exit_task_context calls perf_event_task
13850 	 * with child's task_ctx, which generates EXIT events for
13851 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13852 	 * At this point we need to send EXIT events to cpu contexts.
13853 	 */
13854 	perf_event_task(child, NULL, 0);
13855 
13856 	/*
13857 	 * Detach the perf_ctx_data for the system-wide event.
13858 	 */
13859 	guard(percpu_read)(&global_ctx_data_rwsem);
13860 	detach_task_ctx_data(child);
13861 }
13862 
13863 static void perf_free_event(struct perf_event *event,
13864 			    struct perf_event_context *ctx)
13865 {
13866 	struct perf_event *parent = event->parent;
13867 
13868 	if (WARN_ON_ONCE(!parent))
13869 		return;
13870 
13871 	mutex_lock(&parent->child_mutex);
13872 	list_del_init(&event->child_list);
13873 	mutex_unlock(&parent->child_mutex);
13874 
13875 	put_event(parent);
13876 
13877 	raw_spin_lock_irq(&ctx->lock);
13878 	perf_group_detach(event);
13879 	list_del_event(event, ctx);
13880 	raw_spin_unlock_irq(&ctx->lock);
13881 	free_event(event);
13882 }
13883 
13884 /*
13885  * Free a context as created by inheritance by perf_event_init_task() below,
13886  * used by fork() in case of fail.
13887  *
13888  * Even though the task has never lived, the context and events have been
13889  * exposed through the child_list, so we must take care tearing it all down.
13890  */
13891 void perf_event_free_task(struct task_struct *task)
13892 {
13893 	struct perf_event_context *ctx;
13894 	struct perf_event *event, *tmp;
13895 
13896 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13897 	if (!ctx)
13898 		return;
13899 
13900 	mutex_lock(&ctx->mutex);
13901 	raw_spin_lock_irq(&ctx->lock);
13902 	/*
13903 	 * Destroy the task <-> ctx relation and mark the context dead.
13904 	 *
13905 	 * This is important because even though the task hasn't been
13906 	 * exposed yet the context has been (through child_list).
13907 	 */
13908 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13909 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13910 	put_task_struct(task); /* cannot be last */
13911 	raw_spin_unlock_irq(&ctx->lock);
13912 
13913 
13914 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13915 		perf_free_event(event, ctx);
13916 
13917 	mutex_unlock(&ctx->mutex);
13918 
13919 	/*
13920 	 * perf_event_release_kernel() could've stolen some of our
13921 	 * child events and still have them on its free_list. In that
13922 	 * case we must wait for these events to have been freed (in
13923 	 * particular all their references to this task must've been
13924 	 * dropped).
13925 	 *
13926 	 * Without this copy_process() will unconditionally free this
13927 	 * task (irrespective of its reference count) and
13928 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13929 	 * use-after-free.
13930 	 *
13931 	 * Wait for all events to drop their context reference.
13932 	 */
13933 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13934 	put_ctx(ctx); /* must be last */
13935 }
13936 
13937 void perf_event_delayed_put(struct task_struct *task)
13938 {
13939 	WARN_ON_ONCE(task->perf_event_ctxp);
13940 }
13941 
13942 struct file *perf_event_get(unsigned int fd)
13943 {
13944 	struct file *file = fget(fd);
13945 	if (!file)
13946 		return ERR_PTR(-EBADF);
13947 
13948 	if (file->f_op != &perf_fops) {
13949 		fput(file);
13950 		return ERR_PTR(-EBADF);
13951 	}
13952 
13953 	return file;
13954 }
13955 
13956 const struct perf_event *perf_get_event(struct file *file)
13957 {
13958 	if (file->f_op != &perf_fops)
13959 		return ERR_PTR(-EINVAL);
13960 
13961 	return file->private_data;
13962 }
13963 
13964 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13965 {
13966 	if (!event)
13967 		return ERR_PTR(-EINVAL);
13968 
13969 	return &event->attr;
13970 }
13971 
13972 int perf_allow_kernel(void)
13973 {
13974 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13975 		return -EACCES;
13976 
13977 	return security_perf_event_open(PERF_SECURITY_KERNEL);
13978 }
13979 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13980 
13981 /*
13982  * Inherit an event from parent task to child task.
13983  *
13984  * Returns:
13985  *  - valid pointer on success
13986  *  - NULL for orphaned events
13987  *  - IS_ERR() on error
13988  */
13989 static struct perf_event *
13990 inherit_event(struct perf_event *parent_event,
13991 	      struct task_struct *parent,
13992 	      struct perf_event_context *parent_ctx,
13993 	      struct task_struct *child,
13994 	      struct perf_event *group_leader,
13995 	      struct perf_event_context *child_ctx)
13996 {
13997 	enum perf_event_state parent_state = parent_event->state;
13998 	struct perf_event_pmu_context *pmu_ctx;
13999 	struct perf_event *child_event;
14000 	unsigned long flags;
14001 
14002 	/*
14003 	 * Instead of creating recursive hierarchies of events,
14004 	 * we link inherited events back to the original parent,
14005 	 * which has a filp for sure, which we use as the reference
14006 	 * count:
14007 	 */
14008 	if (parent_event->parent)
14009 		parent_event = parent_event->parent;
14010 
14011 	child_event = perf_event_alloc(&parent_event->attr,
14012 					   parent_event->cpu,
14013 					   child,
14014 					   group_leader, parent_event,
14015 					   NULL, NULL, -1);
14016 	if (IS_ERR(child_event))
14017 		return child_event;
14018 
14019 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14020 	if (IS_ERR(pmu_ctx)) {
14021 		free_event(child_event);
14022 		return ERR_CAST(pmu_ctx);
14023 	}
14024 	child_event->pmu_ctx = pmu_ctx;
14025 
14026 	/*
14027 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14028 	 * must be under the same lock in order to serialize against
14029 	 * perf_event_release_kernel(), such that either we must observe
14030 	 * is_orphaned_event() or they will observe us on the child_list.
14031 	 */
14032 	mutex_lock(&parent_event->child_mutex);
14033 	if (is_orphaned_event(parent_event) ||
14034 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14035 		mutex_unlock(&parent_event->child_mutex);
14036 		free_event(child_event);
14037 		return NULL;
14038 	}
14039 
14040 	get_ctx(child_ctx);
14041 
14042 	/*
14043 	 * Make the child state follow the state of the parent event,
14044 	 * not its attr.disabled bit.  We hold the parent's mutex,
14045 	 * so we won't race with perf_event_{en, dis}able_family.
14046 	 */
14047 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14048 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14049 	else
14050 		child_event->state = PERF_EVENT_STATE_OFF;
14051 
14052 	if (parent_event->attr.freq) {
14053 		u64 sample_period = parent_event->hw.sample_period;
14054 		struct hw_perf_event *hwc = &child_event->hw;
14055 
14056 		hwc->sample_period = sample_period;
14057 		hwc->last_period   = sample_period;
14058 
14059 		local64_set(&hwc->period_left, sample_period);
14060 	}
14061 
14062 	child_event->ctx = child_ctx;
14063 	child_event->overflow_handler = parent_event->overflow_handler;
14064 	child_event->overflow_handler_context
14065 		= parent_event->overflow_handler_context;
14066 
14067 	/*
14068 	 * Precalculate sample_data sizes
14069 	 */
14070 	perf_event__header_size(child_event);
14071 	perf_event__id_header_size(child_event);
14072 
14073 	/*
14074 	 * Link it up in the child's context:
14075 	 */
14076 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14077 	add_event_to_ctx(child_event, child_ctx);
14078 	child_event->attach_state |= PERF_ATTACH_CHILD;
14079 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14080 
14081 	/*
14082 	 * Link this into the parent event's child list
14083 	 */
14084 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14085 	mutex_unlock(&parent_event->child_mutex);
14086 
14087 	return child_event;
14088 }
14089 
14090 /*
14091  * Inherits an event group.
14092  *
14093  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14094  * This matches with perf_event_release_kernel() removing all child events.
14095  *
14096  * Returns:
14097  *  - 0 on success
14098  *  - <0 on error
14099  */
14100 static int inherit_group(struct perf_event *parent_event,
14101 	      struct task_struct *parent,
14102 	      struct perf_event_context *parent_ctx,
14103 	      struct task_struct *child,
14104 	      struct perf_event_context *child_ctx)
14105 {
14106 	struct perf_event *leader;
14107 	struct perf_event *sub;
14108 	struct perf_event *child_ctr;
14109 
14110 	leader = inherit_event(parent_event, parent, parent_ctx,
14111 				 child, NULL, child_ctx);
14112 	if (IS_ERR(leader))
14113 		return PTR_ERR(leader);
14114 	/*
14115 	 * @leader can be NULL here because of is_orphaned_event(). In this
14116 	 * case inherit_event() will create individual events, similar to what
14117 	 * perf_group_detach() would do anyway.
14118 	 */
14119 	for_each_sibling_event(sub, parent_event) {
14120 		child_ctr = inherit_event(sub, parent, parent_ctx,
14121 					    child, leader, child_ctx);
14122 		if (IS_ERR(child_ctr))
14123 			return PTR_ERR(child_ctr);
14124 
14125 		if (sub->aux_event == parent_event && child_ctr &&
14126 		    !perf_get_aux_event(child_ctr, leader))
14127 			return -EINVAL;
14128 	}
14129 	if (leader)
14130 		leader->group_generation = parent_event->group_generation;
14131 	return 0;
14132 }
14133 
14134 /*
14135  * Creates the child task context and tries to inherit the event-group.
14136  *
14137  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14138  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14139  * consistent with perf_event_release_kernel() removing all child events.
14140  *
14141  * Returns:
14142  *  - 0 on success
14143  *  - <0 on error
14144  */
14145 static int
14146 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14147 		   struct perf_event_context *parent_ctx,
14148 		   struct task_struct *child,
14149 		   u64 clone_flags, int *inherited_all)
14150 {
14151 	struct perf_event_context *child_ctx;
14152 	int ret;
14153 
14154 	if (!event->attr.inherit ||
14155 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14156 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14157 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14158 		*inherited_all = 0;
14159 		return 0;
14160 	}
14161 
14162 	child_ctx = child->perf_event_ctxp;
14163 	if (!child_ctx) {
14164 		/*
14165 		 * This is executed from the parent task context, so
14166 		 * inherit events that have been marked for cloning.
14167 		 * First allocate and initialize a context for the
14168 		 * child.
14169 		 */
14170 		child_ctx = alloc_perf_context(child);
14171 		if (!child_ctx)
14172 			return -ENOMEM;
14173 
14174 		child->perf_event_ctxp = child_ctx;
14175 	}
14176 
14177 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14178 	if (ret)
14179 		*inherited_all = 0;
14180 
14181 	return ret;
14182 }
14183 
14184 /*
14185  * Initialize the perf_event context in task_struct
14186  */
14187 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14188 {
14189 	struct perf_event_context *child_ctx, *parent_ctx;
14190 	struct perf_event_context *cloned_ctx;
14191 	struct perf_event *event;
14192 	struct task_struct *parent = current;
14193 	int inherited_all = 1;
14194 	unsigned long flags;
14195 	int ret = 0;
14196 
14197 	if (likely(!parent->perf_event_ctxp))
14198 		return 0;
14199 
14200 	/*
14201 	 * If the parent's context is a clone, pin it so it won't get
14202 	 * swapped under us.
14203 	 */
14204 	parent_ctx = perf_pin_task_context(parent);
14205 	if (!parent_ctx)
14206 		return 0;
14207 
14208 	/*
14209 	 * No need to check if parent_ctx != NULL here; since we saw
14210 	 * it non-NULL earlier, the only reason for it to become NULL
14211 	 * is if we exit, and since we're currently in the middle of
14212 	 * a fork we can't be exiting at the same time.
14213 	 */
14214 
14215 	/*
14216 	 * Lock the parent list. No need to lock the child - not PID
14217 	 * hashed yet and not running, so nobody can access it.
14218 	 */
14219 	mutex_lock(&parent_ctx->mutex);
14220 
14221 	/*
14222 	 * We dont have to disable NMIs - we are only looking at
14223 	 * the list, not manipulating it:
14224 	 */
14225 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14226 		ret = inherit_task_group(event, parent, parent_ctx,
14227 					 child, clone_flags, &inherited_all);
14228 		if (ret)
14229 			goto out_unlock;
14230 	}
14231 
14232 	/*
14233 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14234 	 * to allocations, but we need to prevent rotation because
14235 	 * rotate_ctx() will change the list from interrupt context.
14236 	 */
14237 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14238 	parent_ctx->rotate_disable = 1;
14239 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14240 
14241 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14242 		ret = inherit_task_group(event, parent, parent_ctx,
14243 					 child, clone_flags, &inherited_all);
14244 		if (ret)
14245 			goto out_unlock;
14246 	}
14247 
14248 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14249 	parent_ctx->rotate_disable = 0;
14250 
14251 	child_ctx = child->perf_event_ctxp;
14252 
14253 	if (child_ctx && inherited_all) {
14254 		/*
14255 		 * Mark the child context as a clone of the parent
14256 		 * context, or of whatever the parent is a clone of.
14257 		 *
14258 		 * Note that if the parent is a clone, the holding of
14259 		 * parent_ctx->lock avoids it from being uncloned.
14260 		 */
14261 		cloned_ctx = parent_ctx->parent_ctx;
14262 		if (cloned_ctx) {
14263 			child_ctx->parent_ctx = cloned_ctx;
14264 			child_ctx->parent_gen = parent_ctx->parent_gen;
14265 		} else {
14266 			child_ctx->parent_ctx = parent_ctx;
14267 			child_ctx->parent_gen = parent_ctx->generation;
14268 		}
14269 		get_ctx(child_ctx->parent_ctx);
14270 	}
14271 
14272 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14273 out_unlock:
14274 	mutex_unlock(&parent_ctx->mutex);
14275 
14276 	perf_unpin_context(parent_ctx);
14277 	put_ctx(parent_ctx);
14278 
14279 	return ret;
14280 }
14281 
14282 /*
14283  * Initialize the perf_event context in task_struct
14284  */
14285 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14286 {
14287 	int ret;
14288 
14289 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14290 	child->perf_event_ctxp = NULL;
14291 	mutex_init(&child->perf_event_mutex);
14292 	INIT_LIST_HEAD(&child->perf_event_list);
14293 	child->perf_ctx_data = NULL;
14294 
14295 	ret = perf_event_init_context(child, clone_flags);
14296 	if (ret) {
14297 		perf_event_free_task(child);
14298 		return ret;
14299 	}
14300 
14301 	return 0;
14302 }
14303 
14304 static void __init perf_event_init_all_cpus(void)
14305 {
14306 	struct swevent_htable *swhash;
14307 	struct perf_cpu_context *cpuctx;
14308 	int cpu;
14309 
14310 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14311 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14312 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14313 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14314 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14315 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14316 
14317 
14318 	for_each_possible_cpu(cpu) {
14319 		swhash = &per_cpu(swevent_htable, cpu);
14320 		mutex_init(&swhash->hlist_mutex);
14321 
14322 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14323 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14324 
14325 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14326 
14327 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14328 		__perf_event_init_context(&cpuctx->ctx);
14329 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14330 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14331 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14332 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14333 		cpuctx->heap = cpuctx->heap_default;
14334 	}
14335 }
14336 
14337 static void perf_swevent_init_cpu(unsigned int cpu)
14338 {
14339 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14340 
14341 	mutex_lock(&swhash->hlist_mutex);
14342 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14343 		struct swevent_hlist *hlist;
14344 
14345 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14346 		WARN_ON(!hlist);
14347 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14348 	}
14349 	mutex_unlock(&swhash->hlist_mutex);
14350 }
14351 
14352 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14353 static void __perf_event_exit_context(void *__info)
14354 {
14355 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14356 	struct perf_event_context *ctx = __info;
14357 	struct perf_event *event;
14358 
14359 	raw_spin_lock(&ctx->lock);
14360 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14361 	list_for_each_entry(event, &ctx->event_list, event_entry)
14362 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14363 	raw_spin_unlock(&ctx->lock);
14364 }
14365 
14366 static void perf_event_clear_cpumask(unsigned int cpu)
14367 {
14368 	int target[PERF_PMU_MAX_SCOPE];
14369 	unsigned int scope;
14370 	struct pmu *pmu;
14371 
14372 	cpumask_clear_cpu(cpu, perf_online_mask);
14373 
14374 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14375 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14376 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14377 
14378 		target[scope] = -1;
14379 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14380 			continue;
14381 
14382 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14383 			continue;
14384 		target[scope] = cpumask_any_but(cpumask, cpu);
14385 		if (target[scope] < nr_cpu_ids)
14386 			cpumask_set_cpu(target[scope], pmu_cpumask);
14387 	}
14388 
14389 	/* migrate */
14390 	list_for_each_entry(pmu, &pmus, entry) {
14391 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14392 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14393 			continue;
14394 
14395 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14396 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14397 	}
14398 }
14399 
14400 static void perf_event_exit_cpu_context(int cpu)
14401 {
14402 	struct perf_cpu_context *cpuctx;
14403 	struct perf_event_context *ctx;
14404 
14405 	// XXX simplify cpuctx->online
14406 	mutex_lock(&pmus_lock);
14407 	/*
14408 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14409 	 * Must be invoked before the __perf_event_exit_context.
14410 	 */
14411 	perf_event_clear_cpumask(cpu);
14412 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14413 	ctx = &cpuctx->ctx;
14414 
14415 	mutex_lock(&ctx->mutex);
14416 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14417 	cpuctx->online = 0;
14418 	mutex_unlock(&ctx->mutex);
14419 	mutex_unlock(&pmus_lock);
14420 }
14421 #else
14422 
14423 static void perf_event_exit_cpu_context(int cpu) { }
14424 
14425 #endif
14426 
14427 static void perf_event_setup_cpumask(unsigned int cpu)
14428 {
14429 	struct cpumask *pmu_cpumask;
14430 	unsigned int scope;
14431 
14432 	/*
14433 	 * Early boot stage, the cpumask hasn't been set yet.
14434 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14435 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14436 	 */
14437 	if (cpumask_empty(perf_online_mask)) {
14438 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14439 			pmu_cpumask = perf_scope_cpumask(scope);
14440 			if (WARN_ON_ONCE(!pmu_cpumask))
14441 				continue;
14442 			cpumask_set_cpu(cpu, pmu_cpumask);
14443 		}
14444 		goto end;
14445 	}
14446 
14447 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14448 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14449 
14450 		pmu_cpumask = perf_scope_cpumask(scope);
14451 
14452 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14453 			continue;
14454 
14455 		if (!cpumask_empty(cpumask) &&
14456 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14457 			cpumask_set_cpu(cpu, pmu_cpumask);
14458 	}
14459 end:
14460 	cpumask_set_cpu(cpu, perf_online_mask);
14461 }
14462 
14463 int perf_event_init_cpu(unsigned int cpu)
14464 {
14465 	struct perf_cpu_context *cpuctx;
14466 	struct perf_event_context *ctx;
14467 
14468 	perf_swevent_init_cpu(cpu);
14469 
14470 	mutex_lock(&pmus_lock);
14471 	perf_event_setup_cpumask(cpu);
14472 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14473 	ctx = &cpuctx->ctx;
14474 
14475 	mutex_lock(&ctx->mutex);
14476 	cpuctx->online = 1;
14477 	mutex_unlock(&ctx->mutex);
14478 	mutex_unlock(&pmus_lock);
14479 
14480 	return 0;
14481 }
14482 
14483 int perf_event_exit_cpu(unsigned int cpu)
14484 {
14485 	perf_event_exit_cpu_context(cpu);
14486 	return 0;
14487 }
14488 
14489 static int
14490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14491 {
14492 	int cpu;
14493 
14494 	for_each_online_cpu(cpu)
14495 		perf_event_exit_cpu(cpu);
14496 
14497 	return NOTIFY_OK;
14498 }
14499 
14500 /*
14501  * Run the perf reboot notifier at the very last possible moment so that
14502  * the generic watchdog code runs as long as possible.
14503  */
14504 static struct notifier_block perf_reboot_notifier = {
14505 	.notifier_call = perf_reboot,
14506 	.priority = INT_MIN,
14507 };
14508 
14509 void __init perf_event_init(void)
14510 {
14511 	int ret;
14512 
14513 	idr_init(&pmu_idr);
14514 
14515 	perf_event_init_all_cpus();
14516 	init_srcu_struct(&pmus_srcu);
14517 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14518 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14519 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14520 	perf_tp_register();
14521 	perf_event_init_cpu(smp_processor_id());
14522 	register_reboot_notifier(&perf_reboot_notifier);
14523 
14524 	ret = init_hw_breakpoint();
14525 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14526 
14527 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14528 
14529 	/*
14530 	 * Build time assertion that we keep the data_head at the intended
14531 	 * location.  IOW, validation we got the __reserved[] size right.
14532 	 */
14533 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14534 		     != 1024);
14535 }
14536 
14537 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14538 			      char *page)
14539 {
14540 	struct perf_pmu_events_attr *pmu_attr =
14541 		container_of(attr, struct perf_pmu_events_attr, attr);
14542 
14543 	if (pmu_attr->event_str)
14544 		return sprintf(page, "%s\n", pmu_attr->event_str);
14545 
14546 	return 0;
14547 }
14548 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14549 
14550 static int __init perf_event_sysfs_init(void)
14551 {
14552 	struct pmu *pmu;
14553 	int ret;
14554 
14555 	mutex_lock(&pmus_lock);
14556 
14557 	ret = bus_register(&pmu_bus);
14558 	if (ret)
14559 		goto unlock;
14560 
14561 	list_for_each_entry(pmu, &pmus, entry) {
14562 		if (pmu->dev)
14563 			continue;
14564 
14565 		ret = pmu_dev_alloc(pmu);
14566 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14567 	}
14568 	pmu_bus_running = 1;
14569 	ret = 0;
14570 
14571 unlock:
14572 	mutex_unlock(&pmus_lock);
14573 
14574 	return ret;
14575 }
14576 device_initcall(perf_event_sysfs_init);
14577 
14578 #ifdef CONFIG_CGROUP_PERF
14579 static struct cgroup_subsys_state *
14580 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14581 {
14582 	struct perf_cgroup *jc;
14583 
14584 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14585 	if (!jc)
14586 		return ERR_PTR(-ENOMEM);
14587 
14588 	jc->info = alloc_percpu(struct perf_cgroup_info);
14589 	if (!jc->info) {
14590 		kfree(jc);
14591 		return ERR_PTR(-ENOMEM);
14592 	}
14593 
14594 	return &jc->css;
14595 }
14596 
14597 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14598 {
14599 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14600 
14601 	free_percpu(jc->info);
14602 	kfree(jc);
14603 }
14604 
14605 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14606 {
14607 	perf_event_cgroup(css->cgroup);
14608 	return 0;
14609 }
14610 
14611 static int __perf_cgroup_move(void *info)
14612 {
14613 	struct task_struct *task = info;
14614 
14615 	preempt_disable();
14616 	perf_cgroup_switch(task);
14617 	preempt_enable();
14618 
14619 	return 0;
14620 }
14621 
14622 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14623 {
14624 	struct task_struct *task;
14625 	struct cgroup_subsys_state *css;
14626 
14627 	cgroup_taskset_for_each(task, css, tset)
14628 		task_function_call(task, __perf_cgroup_move, task);
14629 }
14630 
14631 struct cgroup_subsys perf_event_cgrp_subsys = {
14632 	.css_alloc	= perf_cgroup_css_alloc,
14633 	.css_free	= perf_cgroup_css_free,
14634 	.css_online	= perf_cgroup_css_online,
14635 	.attach		= perf_cgroup_attach,
14636 	/*
14637 	 * Implicitly enable on dfl hierarchy so that perf events can
14638 	 * always be filtered by cgroup2 path as long as perf_event
14639 	 * controller is not mounted on a legacy hierarchy.
14640 	 */
14641 	.implicit_on_dfl = true,
14642 	.threaded	= true,
14643 };
14644 #endif /* CONFIG_CGROUP_PERF */
14645 
14646 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14647