1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @func: the function to be called 136 * @info: the function call argument 137 * 138 * Calls the function @func on the remote cpu. 139 * 140 * returns: @func return value or -ENXIO when the cpu is offline 141 */ 142 static int cpu_function_call(int cpu, remote_function_f func, void *info) 143 { 144 struct remote_function_call data = { 145 .p = NULL, 146 .func = func, 147 .info = info, 148 .ret = -ENXIO, /* No such CPU */ 149 }; 150 151 smp_call_function_single(cpu, remote_function, &data, 1); 152 153 return data.ret; 154 } 155 156 static inline struct perf_cpu_context * 157 __get_cpu_context(struct perf_event_context *ctx) 158 { 159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 160 } 161 162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 163 struct perf_event_context *ctx) 164 { 165 raw_spin_lock(&cpuctx->ctx.lock); 166 if (ctx) 167 raw_spin_lock(&ctx->lock); 168 } 169 170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 171 struct perf_event_context *ctx) 172 { 173 if (ctx) 174 raw_spin_unlock(&ctx->lock); 175 raw_spin_unlock(&cpuctx->ctx.lock); 176 } 177 178 #define TASK_TOMBSTONE ((void *)-1L) 179 180 static bool is_kernel_event(struct perf_event *event) 181 { 182 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 183 } 184 185 /* 186 * On task ctx scheduling... 187 * 188 * When !ctx->nr_events a task context will not be scheduled. This means 189 * we can disable the scheduler hooks (for performance) without leaving 190 * pending task ctx state. 191 * 192 * This however results in two special cases: 193 * 194 * - removing the last event from a task ctx; this is relatively straight 195 * forward and is done in __perf_remove_from_context. 196 * 197 * - adding the first event to a task ctx; this is tricky because we cannot 198 * rely on ctx->is_active and therefore cannot use event_function_call(). 199 * See perf_install_in_context(). 200 * 201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 202 */ 203 204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 205 struct perf_event_context *, void *); 206 207 struct event_function_struct { 208 struct perf_event *event; 209 event_f func; 210 void *data; 211 }; 212 213 static int event_function(void *info) 214 { 215 struct event_function_struct *efs = info; 216 struct perf_event *event = efs->event; 217 struct perf_event_context *ctx = event->ctx; 218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 219 struct perf_event_context *task_ctx = cpuctx->task_ctx; 220 int ret = 0; 221 222 lockdep_assert_irqs_disabled(); 223 224 perf_ctx_lock(cpuctx, task_ctx); 225 /* 226 * Since we do the IPI call without holding ctx->lock things can have 227 * changed, double check we hit the task we set out to hit. 228 */ 229 if (ctx->task) { 230 if (ctx->task != current) { 231 ret = -ESRCH; 232 goto unlock; 233 } 234 235 /* 236 * We only use event_function_call() on established contexts, 237 * and event_function() is only ever called when active (or 238 * rather, we'll have bailed in task_function_call() or the 239 * above ctx->task != current test), therefore we must have 240 * ctx->is_active here. 241 */ 242 WARN_ON_ONCE(!ctx->is_active); 243 /* 244 * And since we have ctx->is_active, cpuctx->task_ctx must 245 * match. 246 */ 247 WARN_ON_ONCE(task_ctx != ctx); 248 } else { 249 WARN_ON_ONCE(&cpuctx->ctx != ctx); 250 } 251 252 efs->func(event, cpuctx, ctx, efs->data); 253 unlock: 254 perf_ctx_unlock(cpuctx, task_ctx); 255 256 return ret; 257 } 258 259 static void event_function_call(struct perf_event *event, event_f func, void *data) 260 { 261 struct perf_event_context *ctx = event->ctx; 262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 263 struct event_function_struct efs = { 264 .event = event, 265 .func = func, 266 .data = data, 267 }; 268 269 if (!event->parent) { 270 /* 271 * If this is a !child event, we must hold ctx::mutex to 272 * stabilize the event->ctx relation. See 273 * perf_event_ctx_lock(). 274 */ 275 lockdep_assert_held(&ctx->mutex); 276 } 277 278 if (!task) { 279 cpu_function_call(event->cpu, event_function, &efs); 280 return; 281 } 282 283 if (task == TASK_TOMBSTONE) 284 return; 285 286 again: 287 if (!task_function_call(task, event_function, &efs)) 288 return; 289 290 raw_spin_lock_irq(&ctx->lock); 291 /* 292 * Reload the task pointer, it might have been changed by 293 * a concurrent perf_event_context_sched_out(). 294 */ 295 task = ctx->task; 296 if (task == TASK_TOMBSTONE) { 297 raw_spin_unlock_irq(&ctx->lock); 298 return; 299 } 300 if (ctx->is_active) { 301 raw_spin_unlock_irq(&ctx->lock); 302 goto again; 303 } 304 func(event, NULL, ctx, data); 305 raw_spin_unlock_irq(&ctx->lock); 306 } 307 308 /* 309 * Similar to event_function_call() + event_function(), but hard assumes IRQs 310 * are already disabled and we're on the right CPU. 311 */ 312 static void event_function_local(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 316 struct task_struct *task = READ_ONCE(ctx->task); 317 struct perf_event_context *task_ctx = NULL; 318 319 lockdep_assert_irqs_disabled(); 320 321 if (task) { 322 if (task == TASK_TOMBSTONE) 323 return; 324 325 task_ctx = ctx; 326 } 327 328 perf_ctx_lock(cpuctx, task_ctx); 329 330 task = ctx->task; 331 if (task == TASK_TOMBSTONE) 332 goto unlock; 333 334 if (task) { 335 /* 336 * We must be either inactive or active and the right task, 337 * otherwise we're screwed, since we cannot IPI to somewhere 338 * else. 339 */ 340 if (ctx->is_active) { 341 if (WARN_ON_ONCE(task != current)) 342 goto unlock; 343 344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 345 goto unlock; 346 } 347 } else { 348 WARN_ON_ONCE(&cpuctx->ctx != ctx); 349 } 350 351 func(event, cpuctx, ctx, data); 352 unlock: 353 perf_ctx_unlock(cpuctx, task_ctx); 354 } 355 356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 357 PERF_FLAG_FD_OUTPUT |\ 358 PERF_FLAG_PID_CGROUP |\ 359 PERF_FLAG_FD_CLOEXEC) 360 361 /* 362 * branch priv levels that need permission checks 363 */ 364 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 365 (PERF_SAMPLE_BRANCH_KERNEL |\ 366 PERF_SAMPLE_BRANCH_HV) 367 368 enum event_type_t { 369 EVENT_FLEXIBLE = 0x1, 370 EVENT_PINNED = 0x2, 371 EVENT_TIME = 0x4, 372 /* see ctx_resched() for details */ 373 EVENT_CPU = 0x8, 374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 375 }; 376 377 /* 378 * perf_sched_events : >0 events exist 379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 380 */ 381 382 static void perf_sched_delayed(struct work_struct *work); 383 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 385 static DEFINE_MUTEX(perf_sched_mutex); 386 static atomic_t perf_sched_count; 387 388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 389 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 391 392 static atomic_t nr_mmap_events __read_mostly; 393 static atomic_t nr_comm_events __read_mostly; 394 static atomic_t nr_namespaces_events __read_mostly; 395 static atomic_t nr_task_events __read_mostly; 396 static atomic_t nr_freq_events __read_mostly; 397 static atomic_t nr_switch_events __read_mostly; 398 static atomic_t nr_ksymbol_events __read_mostly; 399 static atomic_t nr_bpf_events __read_mostly; 400 static atomic_t nr_cgroup_events __read_mostly; 401 static atomic_t nr_text_poke_events __read_mostly; 402 static atomic_t nr_build_id_events __read_mostly; 403 404 static LIST_HEAD(pmus); 405 static DEFINE_MUTEX(pmus_lock); 406 static struct srcu_struct pmus_srcu; 407 static cpumask_var_t perf_online_mask; 408 static struct kmem_cache *perf_event_cache; 409 410 /* 411 * perf event paranoia level: 412 * -1 - not paranoid at all 413 * 0 - disallow raw tracepoint access for unpriv 414 * 1 - disallow cpu events for unpriv 415 * 2 - disallow kernel profiling for unpriv 416 */ 417 int sysctl_perf_event_paranoid __read_mostly = 2; 418 419 /* Minimum for 512 kiB + 1 user control page */ 420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 421 422 /* 423 * max perf event sample rate 424 */ 425 #define DEFAULT_MAX_SAMPLE_RATE 100000 426 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 427 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 428 429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 430 431 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 432 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 433 434 static int perf_sample_allowed_ns __read_mostly = 435 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 436 437 static void update_perf_cpu_limits(void) 438 { 439 u64 tmp = perf_sample_period_ns; 440 441 tmp *= sysctl_perf_cpu_time_max_percent; 442 tmp = div_u64(tmp, 100); 443 if (!tmp) 444 tmp = 1; 445 446 WRITE_ONCE(perf_sample_allowed_ns, tmp); 447 } 448 449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 450 451 int perf_proc_update_handler(struct ctl_table *table, int write, 452 void *buffer, size_t *lenp, loff_t *ppos) 453 { 454 int ret; 455 int perf_cpu = sysctl_perf_cpu_time_max_percent; 456 /* 457 * If throttling is disabled don't allow the write: 458 */ 459 if (write && (perf_cpu == 100 || perf_cpu == 0)) 460 return -EINVAL; 461 462 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 463 if (ret || !write) 464 return ret; 465 466 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 468 update_perf_cpu_limits(); 469 470 return 0; 471 } 472 473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 474 475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 476 void *buffer, size_t *lenp, loff_t *ppos) 477 { 478 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 479 480 if (ret || !write) 481 return ret; 482 483 if (sysctl_perf_cpu_time_max_percent == 100 || 484 sysctl_perf_cpu_time_max_percent == 0) { 485 printk(KERN_WARNING 486 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 487 WRITE_ONCE(perf_sample_allowed_ns, 0); 488 } else { 489 update_perf_cpu_limits(); 490 } 491 492 return 0; 493 } 494 495 /* 496 * perf samples are done in some very critical code paths (NMIs). 497 * If they take too much CPU time, the system can lock up and not 498 * get any real work done. This will drop the sample rate when 499 * we detect that events are taking too long. 500 */ 501 #define NR_ACCUMULATED_SAMPLES 128 502 static DEFINE_PER_CPU(u64, running_sample_length); 503 504 static u64 __report_avg; 505 static u64 __report_allowed; 506 507 static void perf_duration_warn(struct irq_work *w) 508 { 509 printk_ratelimited(KERN_INFO 510 "perf: interrupt took too long (%lld > %lld), lowering " 511 "kernel.perf_event_max_sample_rate to %d\n", 512 __report_avg, __report_allowed, 513 sysctl_perf_event_sample_rate); 514 } 515 516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 517 518 void perf_sample_event_took(u64 sample_len_ns) 519 { 520 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 521 u64 running_len; 522 u64 avg_len; 523 u32 max; 524 525 if (max_len == 0) 526 return; 527 528 /* Decay the counter by 1 average sample. */ 529 running_len = __this_cpu_read(running_sample_length); 530 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 531 running_len += sample_len_ns; 532 __this_cpu_write(running_sample_length, running_len); 533 534 /* 535 * Note: this will be biased artifically low until we have 536 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 537 * from having to maintain a count. 538 */ 539 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 540 if (avg_len <= max_len) 541 return; 542 543 __report_avg = avg_len; 544 __report_allowed = max_len; 545 546 /* 547 * Compute a throttle threshold 25% below the current duration. 548 */ 549 avg_len += avg_len / 4; 550 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 551 if (avg_len < max) 552 max /= (u32)avg_len; 553 else 554 max = 1; 555 556 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 557 WRITE_ONCE(max_samples_per_tick, max); 558 559 sysctl_perf_event_sample_rate = max * HZ; 560 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 561 562 if (!irq_work_queue(&perf_duration_work)) { 563 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 564 "kernel.perf_event_max_sample_rate to %d\n", 565 __report_avg, __report_allowed, 566 sysctl_perf_event_sample_rate); 567 } 568 } 569 570 static atomic64_t perf_event_id; 571 572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 573 enum event_type_t event_type); 574 575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 576 enum event_type_t event_type, 577 struct task_struct *task); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 #ifdef CONFIG_CGROUP_PERF 677 678 static inline bool 679 perf_cgroup_match(struct perf_event *event) 680 { 681 struct perf_event_context *ctx = event->ctx; 682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 683 684 /* @event doesn't care about cgroup */ 685 if (!event->cgrp) 686 return true; 687 688 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 689 if (!cpuctx->cgrp) 690 return false; 691 692 /* 693 * Cgroup scoping is recursive. An event enabled for a cgroup is 694 * also enabled for all its descendant cgroups. If @cpuctx's 695 * cgroup is a descendant of @event's (the test covers identity 696 * case), it's a match. 697 */ 698 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 699 event->cgrp->css.cgroup); 700 } 701 702 static inline void perf_detach_cgroup(struct perf_event *event) 703 { 704 css_put(&event->cgrp->css); 705 event->cgrp = NULL; 706 } 707 708 static inline int is_cgroup_event(struct perf_event *event) 709 { 710 return event->cgrp != NULL; 711 } 712 713 static inline u64 perf_cgroup_event_time(struct perf_event *event) 714 { 715 struct perf_cgroup_info *t; 716 717 t = per_cpu_ptr(event->cgrp->info, event->cpu); 718 return t->time; 719 } 720 721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 722 { 723 struct perf_cgroup_info *info; 724 u64 now; 725 726 now = perf_clock(); 727 728 info = this_cpu_ptr(cgrp->info); 729 730 info->time += now - info->timestamp; 731 info->timestamp = now; 732 } 733 734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 735 { 736 struct perf_cgroup *cgrp = cpuctx->cgrp; 737 struct cgroup_subsys_state *css; 738 739 if (cgrp) { 740 for (css = &cgrp->css; css; css = css->parent) { 741 cgrp = container_of(css, struct perf_cgroup, css); 742 __update_cgrp_time(cgrp); 743 } 744 } 745 } 746 747 static inline void update_cgrp_time_from_event(struct perf_event *event) 748 { 749 struct perf_cgroup *cgrp; 750 751 /* 752 * ensure we access cgroup data only when needed and 753 * when we know the cgroup is pinned (css_get) 754 */ 755 if (!is_cgroup_event(event)) 756 return; 757 758 cgrp = perf_cgroup_from_task(current, event->ctx); 759 /* 760 * Do not update time when cgroup is not active 761 */ 762 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 763 __update_cgrp_time(event->cgrp); 764 } 765 766 static inline void 767 perf_cgroup_set_timestamp(struct task_struct *task, 768 struct perf_event_context *ctx) 769 { 770 struct perf_cgroup *cgrp; 771 struct perf_cgroup_info *info; 772 struct cgroup_subsys_state *css; 773 774 /* 775 * ctx->lock held by caller 776 * ensure we do not access cgroup data 777 * unless we have the cgroup pinned (css_get) 778 */ 779 if (!task || !ctx->nr_cgroups) 780 return; 781 782 cgrp = perf_cgroup_from_task(task, ctx); 783 784 for (css = &cgrp->css; css; css = css->parent) { 785 cgrp = container_of(css, struct perf_cgroup, css); 786 info = this_cpu_ptr(cgrp->info); 787 info->timestamp = ctx->timestamp; 788 } 789 } 790 791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 792 793 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 794 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 795 796 /* 797 * reschedule events based on the cgroup constraint of task. 798 * 799 * mode SWOUT : schedule out everything 800 * mode SWIN : schedule in based on cgroup for next 801 */ 802 static void perf_cgroup_switch(struct task_struct *task, int mode) 803 { 804 struct perf_cpu_context *cpuctx; 805 struct list_head *list; 806 unsigned long flags; 807 808 /* 809 * Disable interrupts and preemption to avoid this CPU's 810 * cgrp_cpuctx_entry to change under us. 811 */ 812 local_irq_save(flags); 813 814 list = this_cpu_ptr(&cgrp_cpuctx_list); 815 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 816 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 817 818 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 819 perf_pmu_disable(cpuctx->ctx.pmu); 820 821 if (mode & PERF_CGROUP_SWOUT) { 822 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 823 /* 824 * must not be done before ctxswout due 825 * to event_filter_match() in event_sched_out() 826 */ 827 cpuctx->cgrp = NULL; 828 } 829 830 if (mode & PERF_CGROUP_SWIN) { 831 WARN_ON_ONCE(cpuctx->cgrp); 832 /* 833 * set cgrp before ctxsw in to allow 834 * event_filter_match() to not have to pass 835 * task around 836 * we pass the cpuctx->ctx to perf_cgroup_from_task() 837 * because cgorup events are only per-cpu 838 */ 839 cpuctx->cgrp = perf_cgroup_from_task(task, 840 &cpuctx->ctx); 841 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 842 } 843 perf_pmu_enable(cpuctx->ctx.pmu); 844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 845 } 846 847 local_irq_restore(flags); 848 } 849 850 static inline void perf_cgroup_sched_out(struct task_struct *task, 851 struct task_struct *next) 852 { 853 struct perf_cgroup *cgrp1; 854 struct perf_cgroup *cgrp2 = NULL; 855 856 rcu_read_lock(); 857 /* 858 * we come here when we know perf_cgroup_events > 0 859 * we do not need to pass the ctx here because we know 860 * we are holding the rcu lock 861 */ 862 cgrp1 = perf_cgroup_from_task(task, NULL); 863 cgrp2 = perf_cgroup_from_task(next, NULL); 864 865 /* 866 * only schedule out current cgroup events if we know 867 * that we are switching to a different cgroup. Otherwise, 868 * do no touch the cgroup events. 869 */ 870 if (cgrp1 != cgrp2) 871 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 872 873 rcu_read_unlock(); 874 } 875 876 static inline void perf_cgroup_sched_in(struct task_struct *prev, 877 struct task_struct *task) 878 { 879 struct perf_cgroup *cgrp1; 880 struct perf_cgroup *cgrp2 = NULL; 881 882 rcu_read_lock(); 883 /* 884 * we come here when we know perf_cgroup_events > 0 885 * we do not need to pass the ctx here because we know 886 * we are holding the rcu lock 887 */ 888 cgrp1 = perf_cgroup_from_task(task, NULL); 889 cgrp2 = perf_cgroup_from_task(prev, NULL); 890 891 /* 892 * only need to schedule in cgroup events if we are changing 893 * cgroup during ctxsw. Cgroup events were not scheduled 894 * out of ctxsw out if that was not the case. 895 */ 896 if (cgrp1 != cgrp2) 897 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 898 899 rcu_read_unlock(); 900 } 901 902 static int perf_cgroup_ensure_storage(struct perf_event *event, 903 struct cgroup_subsys_state *css) 904 { 905 struct perf_cpu_context *cpuctx; 906 struct perf_event **storage; 907 int cpu, heap_size, ret = 0; 908 909 /* 910 * Allow storage to have sufficent space for an iterator for each 911 * possibly nested cgroup plus an iterator for events with no cgroup. 912 */ 913 for (heap_size = 1; css; css = css->parent) 914 heap_size++; 915 916 for_each_possible_cpu(cpu) { 917 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 918 if (heap_size <= cpuctx->heap_size) 919 continue; 920 921 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 922 GFP_KERNEL, cpu_to_node(cpu)); 923 if (!storage) { 924 ret = -ENOMEM; 925 break; 926 } 927 928 raw_spin_lock_irq(&cpuctx->ctx.lock); 929 if (cpuctx->heap_size < heap_size) { 930 swap(cpuctx->heap, storage); 931 if (storage == cpuctx->heap_default) 932 storage = NULL; 933 cpuctx->heap_size = heap_size; 934 } 935 raw_spin_unlock_irq(&cpuctx->ctx.lock); 936 937 kfree(storage); 938 } 939 940 return ret; 941 } 942 943 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 944 struct perf_event_attr *attr, 945 struct perf_event *group_leader) 946 { 947 struct perf_cgroup *cgrp; 948 struct cgroup_subsys_state *css; 949 struct fd f = fdget(fd); 950 int ret = 0; 951 952 if (!f.file) 953 return -EBADF; 954 955 css = css_tryget_online_from_dir(f.file->f_path.dentry, 956 &perf_event_cgrp_subsys); 957 if (IS_ERR(css)) { 958 ret = PTR_ERR(css); 959 goto out; 960 } 961 962 ret = perf_cgroup_ensure_storage(event, css); 963 if (ret) 964 goto out; 965 966 cgrp = container_of(css, struct perf_cgroup, css); 967 event->cgrp = cgrp; 968 969 /* 970 * all events in a group must monitor 971 * the same cgroup because a task belongs 972 * to only one perf cgroup at a time 973 */ 974 if (group_leader && group_leader->cgrp != cgrp) { 975 perf_detach_cgroup(event); 976 ret = -EINVAL; 977 } 978 out: 979 fdput(f); 980 return ret; 981 } 982 983 static inline void 984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 985 { 986 struct perf_cgroup_info *t; 987 t = per_cpu_ptr(event->cgrp->info, event->cpu); 988 event->shadow_ctx_time = now - t->timestamp; 989 } 990 991 static inline void 992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 993 { 994 struct perf_cpu_context *cpuctx; 995 996 if (!is_cgroup_event(event)) 997 return; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 /* 1006 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1007 * matching the event's cgroup, we must do this for every new event, 1008 * because if the first would mismatch, the second would not try again 1009 * and we would leave cpuctx->cgrp unset. 1010 */ 1011 if (ctx->is_active && !cpuctx->cgrp) { 1012 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1013 1014 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1015 cpuctx->cgrp = cgrp; 1016 } 1017 1018 if (ctx->nr_cgroups++) 1019 return; 1020 1021 list_add(&cpuctx->cgrp_cpuctx_entry, 1022 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1023 } 1024 1025 static inline void 1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1027 { 1028 struct perf_cpu_context *cpuctx; 1029 1030 if (!is_cgroup_event(event)) 1031 return; 1032 1033 /* 1034 * Because cgroup events are always per-cpu events, 1035 * @ctx == &cpuctx->ctx. 1036 */ 1037 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1038 1039 if (--ctx->nr_cgroups) 1040 return; 1041 1042 if (ctx->is_active && cpuctx->cgrp) 1043 cpuctx->cgrp = NULL; 1044 1045 list_del(&cpuctx->cgrp_cpuctx_entry); 1046 } 1047 1048 #else /* !CONFIG_CGROUP_PERF */ 1049 1050 static inline bool 1051 perf_cgroup_match(struct perf_event *event) 1052 { 1053 return true; 1054 } 1055 1056 static inline void perf_detach_cgroup(struct perf_event *event) 1057 {} 1058 1059 static inline int is_cgroup_event(struct perf_event *event) 1060 { 1061 return 0; 1062 } 1063 1064 static inline void update_cgrp_time_from_event(struct perf_event *event) 1065 { 1066 } 1067 1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1069 { 1070 } 1071 1072 static inline void perf_cgroup_sched_out(struct task_struct *task, 1073 struct task_struct *next) 1074 { 1075 } 1076 1077 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1078 struct task_struct *task) 1079 { 1080 } 1081 1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1083 struct perf_event_attr *attr, 1084 struct perf_event *group_leader) 1085 { 1086 return -EINVAL; 1087 } 1088 1089 static inline void 1090 perf_cgroup_set_timestamp(struct task_struct *task, 1091 struct perf_event_context *ctx) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1097 { 1098 } 1099 1100 static inline void 1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1102 { 1103 } 1104 1105 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1106 { 1107 return 0; 1108 } 1109 1110 static inline void 1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1112 { 1113 } 1114 1115 static inline void 1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1117 { 1118 } 1119 #endif 1120 1121 /* 1122 * set default to be dependent on timer tick just 1123 * like original code 1124 */ 1125 #define PERF_CPU_HRTIMER (1000 / HZ) 1126 /* 1127 * function must be called with interrupts disabled 1128 */ 1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1130 { 1131 struct perf_cpu_context *cpuctx; 1132 bool rotations; 1133 1134 lockdep_assert_irqs_disabled(); 1135 1136 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1137 rotations = perf_rotate_context(cpuctx); 1138 1139 raw_spin_lock(&cpuctx->hrtimer_lock); 1140 if (rotations) 1141 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1142 else 1143 cpuctx->hrtimer_active = 0; 1144 raw_spin_unlock(&cpuctx->hrtimer_lock); 1145 1146 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1147 } 1148 1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1150 { 1151 struct hrtimer *timer = &cpuctx->hrtimer; 1152 struct pmu *pmu = cpuctx->ctx.pmu; 1153 u64 interval; 1154 1155 /* no multiplexing needed for SW PMU */ 1156 if (pmu->task_ctx_nr == perf_sw_context) 1157 return; 1158 1159 /* 1160 * check default is sane, if not set then force to 1161 * default interval (1/tick) 1162 */ 1163 interval = pmu->hrtimer_interval_ms; 1164 if (interval < 1) 1165 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1166 1167 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1168 1169 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1170 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1171 timer->function = perf_mux_hrtimer_handler; 1172 } 1173 1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1175 { 1176 struct hrtimer *timer = &cpuctx->hrtimer; 1177 struct pmu *pmu = cpuctx->ctx.pmu; 1178 unsigned long flags; 1179 1180 /* not for SW PMU */ 1181 if (pmu->task_ctx_nr == perf_sw_context) 1182 return 0; 1183 1184 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1185 if (!cpuctx->hrtimer_active) { 1186 cpuctx->hrtimer_active = 1; 1187 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1188 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1189 } 1190 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1191 1192 return 0; 1193 } 1194 1195 void perf_pmu_disable(struct pmu *pmu) 1196 { 1197 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1198 if (!(*count)++) 1199 pmu->pmu_disable(pmu); 1200 } 1201 1202 void perf_pmu_enable(struct pmu *pmu) 1203 { 1204 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1205 if (!--(*count)) 1206 pmu->pmu_enable(pmu); 1207 } 1208 1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1210 1211 /* 1212 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1213 * perf_event_task_tick() are fully serialized because they're strictly cpu 1214 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1215 * disabled, while perf_event_task_tick is called from IRQ context. 1216 */ 1217 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1218 { 1219 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1220 1221 lockdep_assert_irqs_disabled(); 1222 1223 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1224 1225 list_add(&ctx->active_ctx_list, head); 1226 } 1227 1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1229 { 1230 lockdep_assert_irqs_disabled(); 1231 1232 WARN_ON(list_empty(&ctx->active_ctx_list)); 1233 1234 list_del_init(&ctx->active_ctx_list); 1235 } 1236 1237 static void get_ctx(struct perf_event_context *ctx) 1238 { 1239 refcount_inc(&ctx->refcount); 1240 } 1241 1242 static void *alloc_task_ctx_data(struct pmu *pmu) 1243 { 1244 if (pmu->task_ctx_cache) 1245 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1246 1247 return NULL; 1248 } 1249 1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1251 { 1252 if (pmu->task_ctx_cache && task_ctx_data) 1253 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1254 } 1255 1256 static void free_ctx(struct rcu_head *head) 1257 { 1258 struct perf_event_context *ctx; 1259 1260 ctx = container_of(head, struct perf_event_context, rcu_head); 1261 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1262 kfree(ctx); 1263 } 1264 1265 static void put_ctx(struct perf_event_context *ctx) 1266 { 1267 if (refcount_dec_and_test(&ctx->refcount)) { 1268 if (ctx->parent_ctx) 1269 put_ctx(ctx->parent_ctx); 1270 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1271 put_task_struct(ctx->task); 1272 call_rcu(&ctx->rcu_head, free_ctx); 1273 } 1274 } 1275 1276 /* 1277 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1278 * perf_pmu_migrate_context() we need some magic. 1279 * 1280 * Those places that change perf_event::ctx will hold both 1281 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1282 * 1283 * Lock ordering is by mutex address. There are two other sites where 1284 * perf_event_context::mutex nests and those are: 1285 * 1286 * - perf_event_exit_task_context() [ child , 0 ] 1287 * perf_event_exit_event() 1288 * put_event() [ parent, 1 ] 1289 * 1290 * - perf_event_init_context() [ parent, 0 ] 1291 * inherit_task_group() 1292 * inherit_group() 1293 * inherit_event() 1294 * perf_event_alloc() 1295 * perf_init_event() 1296 * perf_try_init_event() [ child , 1 ] 1297 * 1298 * While it appears there is an obvious deadlock here -- the parent and child 1299 * nesting levels are inverted between the two. This is in fact safe because 1300 * life-time rules separate them. That is an exiting task cannot fork, and a 1301 * spawning task cannot (yet) exit. 1302 * 1303 * But remember that these are parent<->child context relations, and 1304 * migration does not affect children, therefore these two orderings should not 1305 * interact. 1306 * 1307 * The change in perf_event::ctx does not affect children (as claimed above) 1308 * because the sys_perf_event_open() case will install a new event and break 1309 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1310 * concerned with cpuctx and that doesn't have children. 1311 * 1312 * The places that change perf_event::ctx will issue: 1313 * 1314 * perf_remove_from_context(); 1315 * synchronize_rcu(); 1316 * perf_install_in_context(); 1317 * 1318 * to affect the change. The remove_from_context() + synchronize_rcu() should 1319 * quiesce the event, after which we can install it in the new location. This 1320 * means that only external vectors (perf_fops, prctl) can perturb the event 1321 * while in transit. Therefore all such accessors should also acquire 1322 * perf_event_context::mutex to serialize against this. 1323 * 1324 * However; because event->ctx can change while we're waiting to acquire 1325 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1326 * function. 1327 * 1328 * Lock order: 1329 * exec_update_lock 1330 * task_struct::perf_event_mutex 1331 * perf_event_context::mutex 1332 * perf_event::child_mutex; 1333 * perf_event_context::lock 1334 * perf_event::mmap_mutex 1335 * mmap_lock 1336 * perf_addr_filters_head::lock 1337 * 1338 * cpu_hotplug_lock 1339 * pmus_lock 1340 * cpuctx->mutex / perf_event_context::mutex 1341 */ 1342 static struct perf_event_context * 1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1344 { 1345 struct perf_event_context *ctx; 1346 1347 again: 1348 rcu_read_lock(); 1349 ctx = READ_ONCE(event->ctx); 1350 if (!refcount_inc_not_zero(&ctx->refcount)) { 1351 rcu_read_unlock(); 1352 goto again; 1353 } 1354 rcu_read_unlock(); 1355 1356 mutex_lock_nested(&ctx->mutex, nesting); 1357 if (event->ctx != ctx) { 1358 mutex_unlock(&ctx->mutex); 1359 put_ctx(ctx); 1360 goto again; 1361 } 1362 1363 return ctx; 1364 } 1365 1366 static inline struct perf_event_context * 1367 perf_event_ctx_lock(struct perf_event *event) 1368 { 1369 return perf_event_ctx_lock_nested(event, 0); 1370 } 1371 1372 static void perf_event_ctx_unlock(struct perf_event *event, 1373 struct perf_event_context *ctx) 1374 { 1375 mutex_unlock(&ctx->mutex); 1376 put_ctx(ctx); 1377 } 1378 1379 /* 1380 * This must be done under the ctx->lock, such as to serialize against 1381 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1382 * calling scheduler related locks and ctx->lock nests inside those. 1383 */ 1384 static __must_check struct perf_event_context * 1385 unclone_ctx(struct perf_event_context *ctx) 1386 { 1387 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1388 1389 lockdep_assert_held(&ctx->lock); 1390 1391 if (parent_ctx) 1392 ctx->parent_ctx = NULL; 1393 ctx->generation++; 1394 1395 return parent_ctx; 1396 } 1397 1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1399 enum pid_type type) 1400 { 1401 u32 nr; 1402 /* 1403 * only top level events have the pid namespace they were created in 1404 */ 1405 if (event->parent) 1406 event = event->parent; 1407 1408 nr = __task_pid_nr_ns(p, type, event->ns); 1409 /* avoid -1 if it is idle thread or runs in another ns */ 1410 if (!nr && !pid_alive(p)) 1411 nr = -1; 1412 return nr; 1413 } 1414 1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1416 { 1417 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1418 } 1419 1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1421 { 1422 return perf_event_pid_type(event, p, PIDTYPE_PID); 1423 } 1424 1425 /* 1426 * If we inherit events we want to return the parent event id 1427 * to userspace. 1428 */ 1429 static u64 primary_event_id(struct perf_event *event) 1430 { 1431 u64 id = event->id; 1432 1433 if (event->parent) 1434 id = event->parent->id; 1435 1436 return id; 1437 } 1438 1439 /* 1440 * Get the perf_event_context for a task and lock it. 1441 * 1442 * This has to cope with the fact that until it is locked, 1443 * the context could get moved to another task. 1444 */ 1445 static struct perf_event_context * 1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1447 { 1448 struct perf_event_context *ctx; 1449 1450 retry: 1451 /* 1452 * One of the few rules of preemptible RCU is that one cannot do 1453 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1454 * part of the read side critical section was irqs-enabled -- see 1455 * rcu_read_unlock_special(). 1456 * 1457 * Since ctx->lock nests under rq->lock we must ensure the entire read 1458 * side critical section has interrupts disabled. 1459 */ 1460 local_irq_save(*flags); 1461 rcu_read_lock(); 1462 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1463 if (ctx) { 1464 /* 1465 * If this context is a clone of another, it might 1466 * get swapped for another underneath us by 1467 * perf_event_task_sched_out, though the 1468 * rcu_read_lock() protects us from any context 1469 * getting freed. Lock the context and check if it 1470 * got swapped before we could get the lock, and retry 1471 * if so. If we locked the right context, then it 1472 * can't get swapped on us any more. 1473 */ 1474 raw_spin_lock(&ctx->lock); 1475 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1476 raw_spin_unlock(&ctx->lock); 1477 rcu_read_unlock(); 1478 local_irq_restore(*flags); 1479 goto retry; 1480 } 1481 1482 if (ctx->task == TASK_TOMBSTONE || 1483 !refcount_inc_not_zero(&ctx->refcount)) { 1484 raw_spin_unlock(&ctx->lock); 1485 ctx = NULL; 1486 } else { 1487 WARN_ON_ONCE(ctx->task != task); 1488 } 1489 } 1490 rcu_read_unlock(); 1491 if (!ctx) 1492 local_irq_restore(*flags); 1493 return ctx; 1494 } 1495 1496 /* 1497 * Get the context for a task and increment its pin_count so it 1498 * can't get swapped to another task. This also increments its 1499 * reference count so that the context can't get freed. 1500 */ 1501 static struct perf_event_context * 1502 perf_pin_task_context(struct task_struct *task, int ctxn) 1503 { 1504 struct perf_event_context *ctx; 1505 unsigned long flags; 1506 1507 ctx = perf_lock_task_context(task, ctxn, &flags); 1508 if (ctx) { 1509 ++ctx->pin_count; 1510 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1511 } 1512 return ctx; 1513 } 1514 1515 static void perf_unpin_context(struct perf_event_context *ctx) 1516 { 1517 unsigned long flags; 1518 1519 raw_spin_lock_irqsave(&ctx->lock, flags); 1520 --ctx->pin_count; 1521 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1522 } 1523 1524 /* 1525 * Update the record of the current time in a context. 1526 */ 1527 static void update_context_time(struct perf_event_context *ctx) 1528 { 1529 u64 now = perf_clock(); 1530 1531 ctx->time += now - ctx->timestamp; 1532 ctx->timestamp = now; 1533 } 1534 1535 static u64 perf_event_time(struct perf_event *event) 1536 { 1537 struct perf_event_context *ctx = event->ctx; 1538 1539 if (is_cgroup_event(event)) 1540 return perf_cgroup_event_time(event); 1541 1542 return ctx ? ctx->time : 0; 1543 } 1544 1545 static enum event_type_t get_event_type(struct perf_event *event) 1546 { 1547 struct perf_event_context *ctx = event->ctx; 1548 enum event_type_t event_type; 1549 1550 lockdep_assert_held(&ctx->lock); 1551 1552 /* 1553 * It's 'group type', really, because if our group leader is 1554 * pinned, so are we. 1555 */ 1556 if (event->group_leader != event) 1557 event = event->group_leader; 1558 1559 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1560 if (!ctx->task) 1561 event_type |= EVENT_CPU; 1562 1563 return event_type; 1564 } 1565 1566 /* 1567 * Helper function to initialize event group nodes. 1568 */ 1569 static void init_event_group(struct perf_event *event) 1570 { 1571 RB_CLEAR_NODE(&event->group_node); 1572 event->group_index = 0; 1573 } 1574 1575 /* 1576 * Extract pinned or flexible groups from the context 1577 * based on event attrs bits. 1578 */ 1579 static struct perf_event_groups * 1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1581 { 1582 if (event->attr.pinned) 1583 return &ctx->pinned_groups; 1584 else 1585 return &ctx->flexible_groups; 1586 } 1587 1588 /* 1589 * Helper function to initializes perf_event_group trees. 1590 */ 1591 static void perf_event_groups_init(struct perf_event_groups *groups) 1592 { 1593 groups->tree = RB_ROOT; 1594 groups->index = 0; 1595 } 1596 1597 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1598 { 1599 struct cgroup *cgroup = NULL; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 if (event->cgrp) 1603 cgroup = event->cgrp->css.cgroup; 1604 #endif 1605 1606 return cgroup; 1607 } 1608 1609 /* 1610 * Compare function for event groups; 1611 * 1612 * Implements complex key that first sorts by CPU and then by virtual index 1613 * which provides ordering when rotating groups for the same CPU. 1614 */ 1615 static __always_inline int 1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1617 const u64 left_group_index, const struct perf_event *right) 1618 { 1619 if (left_cpu < right->cpu) 1620 return -1; 1621 if (left_cpu > right->cpu) 1622 return 1; 1623 1624 #ifdef CONFIG_CGROUP_PERF 1625 { 1626 const struct cgroup *right_cgroup = event_cgroup(right); 1627 1628 if (left_cgroup != right_cgroup) { 1629 if (!left_cgroup) { 1630 /* 1631 * Left has no cgroup but right does, no 1632 * cgroups come first. 1633 */ 1634 return -1; 1635 } 1636 if (!right_cgroup) { 1637 /* 1638 * Right has no cgroup but left does, no 1639 * cgroups come first. 1640 */ 1641 return 1; 1642 } 1643 /* Two dissimilar cgroups, order by id. */ 1644 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1645 return -1; 1646 1647 return 1; 1648 } 1649 } 1650 #endif 1651 1652 if (left_group_index < right->group_index) 1653 return -1; 1654 if (left_group_index > right->group_index) 1655 return 1; 1656 1657 return 0; 1658 } 1659 1660 #define __node_2_pe(node) \ 1661 rb_entry((node), struct perf_event, group_node) 1662 1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1664 { 1665 struct perf_event *e = __node_2_pe(a); 1666 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1667 __node_2_pe(b)) < 0; 1668 } 1669 1670 struct __group_key { 1671 int cpu; 1672 struct cgroup *cgroup; 1673 }; 1674 1675 static inline int __group_cmp(const void *key, const struct rb_node *node) 1676 { 1677 const struct __group_key *a = key; 1678 const struct perf_event *b = __node_2_pe(node); 1679 1680 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1681 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1682 } 1683 1684 /* 1685 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1686 * key (see perf_event_groups_less). This places it last inside the CPU 1687 * subtree. 1688 */ 1689 static void 1690 perf_event_groups_insert(struct perf_event_groups *groups, 1691 struct perf_event *event) 1692 { 1693 event->group_index = ++groups->index; 1694 1695 rb_add(&event->group_node, &groups->tree, __group_less); 1696 } 1697 1698 /* 1699 * Helper function to insert event into the pinned or flexible groups. 1700 */ 1701 static void 1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1703 { 1704 struct perf_event_groups *groups; 1705 1706 groups = get_event_groups(event, ctx); 1707 perf_event_groups_insert(groups, event); 1708 } 1709 1710 /* 1711 * Delete a group from a tree. 1712 */ 1713 static void 1714 perf_event_groups_delete(struct perf_event_groups *groups, 1715 struct perf_event *event) 1716 { 1717 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1718 RB_EMPTY_ROOT(&groups->tree)); 1719 1720 rb_erase(&event->group_node, &groups->tree); 1721 init_event_group(event); 1722 } 1723 1724 /* 1725 * Helper function to delete event from its groups. 1726 */ 1727 static void 1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1729 { 1730 struct perf_event_groups *groups; 1731 1732 groups = get_event_groups(event, ctx); 1733 perf_event_groups_delete(groups, event); 1734 } 1735 1736 /* 1737 * Get the leftmost event in the cpu/cgroup subtree. 1738 */ 1739 static struct perf_event * 1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1741 struct cgroup *cgrp) 1742 { 1743 struct __group_key key = { 1744 .cpu = cpu, 1745 .cgroup = cgrp, 1746 }; 1747 struct rb_node *node; 1748 1749 node = rb_find_first(&key, &groups->tree, __group_cmp); 1750 if (node) 1751 return __node_2_pe(node); 1752 1753 return NULL; 1754 } 1755 1756 /* 1757 * Like rb_entry_next_safe() for the @cpu subtree. 1758 */ 1759 static struct perf_event * 1760 perf_event_groups_next(struct perf_event *event) 1761 { 1762 struct __group_key key = { 1763 .cpu = event->cpu, 1764 .cgroup = event_cgroup(event), 1765 }; 1766 struct rb_node *next; 1767 1768 next = rb_next_match(&key, &event->group_node, __group_cmp); 1769 if (next) 1770 return __node_2_pe(next); 1771 1772 return NULL; 1773 } 1774 1775 /* 1776 * Iterate through the whole groups tree. 1777 */ 1778 #define perf_event_groups_for_each(event, groups) \ 1779 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1780 typeof(*event), group_node); event; \ 1781 event = rb_entry_safe(rb_next(&event->group_node), \ 1782 typeof(*event), group_node)) 1783 1784 /* 1785 * Add an event from the lists for its context. 1786 * Must be called with ctx->mutex and ctx->lock held. 1787 */ 1788 static void 1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1790 { 1791 lockdep_assert_held(&ctx->lock); 1792 1793 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1794 event->attach_state |= PERF_ATTACH_CONTEXT; 1795 1796 event->tstamp = perf_event_time(event); 1797 1798 /* 1799 * If we're a stand alone event or group leader, we go to the context 1800 * list, group events are kept attached to the group so that 1801 * perf_group_detach can, at all times, locate all siblings. 1802 */ 1803 if (event->group_leader == event) { 1804 event->group_caps = event->event_caps; 1805 add_event_to_groups(event, ctx); 1806 } 1807 1808 list_add_rcu(&event->event_entry, &ctx->event_list); 1809 ctx->nr_events++; 1810 if (event->attr.inherit_stat) 1811 ctx->nr_stat++; 1812 1813 if (event->state > PERF_EVENT_STATE_OFF) 1814 perf_cgroup_event_enable(event, ctx); 1815 1816 ctx->generation++; 1817 } 1818 1819 /* 1820 * Initialize event state based on the perf_event_attr::disabled. 1821 */ 1822 static inline void perf_event__state_init(struct perf_event *event) 1823 { 1824 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1825 PERF_EVENT_STATE_INACTIVE; 1826 } 1827 1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1829 { 1830 int entry = sizeof(u64); /* value */ 1831 int size = 0; 1832 int nr = 1; 1833 1834 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1835 size += sizeof(u64); 1836 1837 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1838 size += sizeof(u64); 1839 1840 if (event->attr.read_format & PERF_FORMAT_ID) 1841 entry += sizeof(u64); 1842 1843 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1844 nr += nr_siblings; 1845 size += sizeof(u64); 1846 } 1847 1848 size += entry * nr; 1849 event->read_size = size; 1850 } 1851 1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1853 { 1854 struct perf_sample_data *data; 1855 u16 size = 0; 1856 1857 if (sample_type & PERF_SAMPLE_IP) 1858 size += sizeof(data->ip); 1859 1860 if (sample_type & PERF_SAMPLE_ADDR) 1861 size += sizeof(data->addr); 1862 1863 if (sample_type & PERF_SAMPLE_PERIOD) 1864 size += sizeof(data->period); 1865 1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1867 size += sizeof(data->weight.full); 1868 1869 if (sample_type & PERF_SAMPLE_READ) 1870 size += event->read_size; 1871 1872 if (sample_type & PERF_SAMPLE_DATA_SRC) 1873 size += sizeof(data->data_src.val); 1874 1875 if (sample_type & PERF_SAMPLE_TRANSACTION) 1876 size += sizeof(data->txn); 1877 1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1879 size += sizeof(data->phys_addr); 1880 1881 if (sample_type & PERF_SAMPLE_CGROUP) 1882 size += sizeof(data->cgroup); 1883 1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1885 size += sizeof(data->data_page_size); 1886 1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1888 size += sizeof(data->code_page_size); 1889 1890 event->header_size = size; 1891 } 1892 1893 /* 1894 * Called at perf_event creation and when events are attached/detached from a 1895 * group. 1896 */ 1897 static void perf_event__header_size(struct perf_event *event) 1898 { 1899 __perf_event_read_size(event, 1900 event->group_leader->nr_siblings); 1901 __perf_event_header_size(event, event->attr.sample_type); 1902 } 1903 1904 static void perf_event__id_header_size(struct perf_event *event) 1905 { 1906 struct perf_sample_data *data; 1907 u64 sample_type = event->attr.sample_type; 1908 u16 size = 0; 1909 1910 if (sample_type & PERF_SAMPLE_TID) 1911 size += sizeof(data->tid_entry); 1912 1913 if (sample_type & PERF_SAMPLE_TIME) 1914 size += sizeof(data->time); 1915 1916 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1917 size += sizeof(data->id); 1918 1919 if (sample_type & PERF_SAMPLE_ID) 1920 size += sizeof(data->id); 1921 1922 if (sample_type & PERF_SAMPLE_STREAM_ID) 1923 size += sizeof(data->stream_id); 1924 1925 if (sample_type & PERF_SAMPLE_CPU) 1926 size += sizeof(data->cpu_entry); 1927 1928 event->id_header_size = size; 1929 } 1930 1931 static bool perf_event_validate_size(struct perf_event *event) 1932 { 1933 /* 1934 * The values computed here will be over-written when we actually 1935 * attach the event. 1936 */ 1937 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1938 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1939 perf_event__id_header_size(event); 1940 1941 /* 1942 * Sum the lot; should not exceed the 64k limit we have on records. 1943 * Conservative limit to allow for callchains and other variable fields. 1944 */ 1945 if (event->read_size + event->header_size + 1946 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1947 return false; 1948 1949 return true; 1950 } 1951 1952 static void perf_group_attach(struct perf_event *event) 1953 { 1954 struct perf_event *group_leader = event->group_leader, *pos; 1955 1956 lockdep_assert_held(&event->ctx->lock); 1957 1958 /* 1959 * We can have double attach due to group movement in perf_event_open. 1960 */ 1961 if (event->attach_state & PERF_ATTACH_GROUP) 1962 return; 1963 1964 event->attach_state |= PERF_ATTACH_GROUP; 1965 1966 if (group_leader == event) 1967 return; 1968 1969 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1970 1971 group_leader->group_caps &= event->event_caps; 1972 1973 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1974 group_leader->nr_siblings++; 1975 1976 perf_event__header_size(group_leader); 1977 1978 for_each_sibling_event(pos, group_leader) 1979 perf_event__header_size(pos); 1980 } 1981 1982 /* 1983 * Remove an event from the lists for its context. 1984 * Must be called with ctx->mutex and ctx->lock held. 1985 */ 1986 static void 1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1988 { 1989 WARN_ON_ONCE(event->ctx != ctx); 1990 lockdep_assert_held(&ctx->lock); 1991 1992 /* 1993 * We can have double detach due to exit/hot-unplug + close. 1994 */ 1995 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1996 return; 1997 1998 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1999 2000 ctx->nr_events--; 2001 if (event->attr.inherit_stat) 2002 ctx->nr_stat--; 2003 2004 list_del_rcu(&event->event_entry); 2005 2006 if (event->group_leader == event) 2007 del_event_from_groups(event, ctx); 2008 2009 /* 2010 * If event was in error state, then keep it 2011 * that way, otherwise bogus counts will be 2012 * returned on read(). The only way to get out 2013 * of error state is by explicit re-enabling 2014 * of the event 2015 */ 2016 if (event->state > PERF_EVENT_STATE_OFF) { 2017 perf_cgroup_event_disable(event, ctx); 2018 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2019 } 2020 2021 ctx->generation++; 2022 } 2023 2024 static int 2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2026 { 2027 if (!has_aux(aux_event)) 2028 return 0; 2029 2030 if (!event->pmu->aux_output_match) 2031 return 0; 2032 2033 return event->pmu->aux_output_match(aux_event); 2034 } 2035 2036 static void put_event(struct perf_event *event); 2037 static void event_sched_out(struct perf_event *event, 2038 struct perf_cpu_context *cpuctx, 2039 struct perf_event_context *ctx); 2040 2041 static void perf_put_aux_event(struct perf_event *event) 2042 { 2043 struct perf_event_context *ctx = event->ctx; 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2045 struct perf_event *iter; 2046 2047 /* 2048 * If event uses aux_event tear down the link 2049 */ 2050 if (event->aux_event) { 2051 iter = event->aux_event; 2052 event->aux_event = NULL; 2053 put_event(iter); 2054 return; 2055 } 2056 2057 /* 2058 * If the event is an aux_event, tear down all links to 2059 * it from other events. 2060 */ 2061 for_each_sibling_event(iter, event->group_leader) { 2062 if (iter->aux_event != event) 2063 continue; 2064 2065 iter->aux_event = NULL; 2066 put_event(event); 2067 2068 /* 2069 * If it's ACTIVE, schedule it out and put it into ERROR 2070 * state so that we don't try to schedule it again. Note 2071 * that perf_event_enable() will clear the ERROR status. 2072 */ 2073 event_sched_out(iter, cpuctx, ctx); 2074 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2075 } 2076 } 2077 2078 static bool perf_need_aux_event(struct perf_event *event) 2079 { 2080 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2081 } 2082 2083 static int perf_get_aux_event(struct perf_event *event, 2084 struct perf_event *group_leader) 2085 { 2086 /* 2087 * Our group leader must be an aux event if we want to be 2088 * an aux_output. This way, the aux event will precede its 2089 * aux_output events in the group, and therefore will always 2090 * schedule first. 2091 */ 2092 if (!group_leader) 2093 return 0; 2094 2095 /* 2096 * aux_output and aux_sample_size are mutually exclusive. 2097 */ 2098 if (event->attr.aux_output && event->attr.aux_sample_size) 2099 return 0; 2100 2101 if (event->attr.aux_output && 2102 !perf_aux_output_match(event, group_leader)) 2103 return 0; 2104 2105 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2106 return 0; 2107 2108 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2109 return 0; 2110 2111 /* 2112 * Link aux_outputs to their aux event; this is undone in 2113 * perf_group_detach() by perf_put_aux_event(). When the 2114 * group in torn down, the aux_output events loose their 2115 * link to the aux_event and can't schedule any more. 2116 */ 2117 event->aux_event = group_leader; 2118 2119 return 1; 2120 } 2121 2122 static inline struct list_head *get_event_list(struct perf_event *event) 2123 { 2124 struct perf_event_context *ctx = event->ctx; 2125 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2126 } 2127 2128 /* 2129 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2130 * cannot exist on their own, schedule them out and move them into the ERROR 2131 * state. Also see _perf_event_enable(), it will not be able to recover 2132 * this ERROR state. 2133 */ 2134 static inline void perf_remove_sibling_event(struct perf_event *event) 2135 { 2136 struct perf_event_context *ctx = event->ctx; 2137 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2138 2139 event_sched_out(event, cpuctx, ctx); 2140 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2141 } 2142 2143 static void perf_group_detach(struct perf_event *event) 2144 { 2145 struct perf_event *leader = event->group_leader; 2146 struct perf_event *sibling, *tmp; 2147 struct perf_event_context *ctx = event->ctx; 2148 2149 lockdep_assert_held(&ctx->lock); 2150 2151 /* 2152 * We can have double detach due to exit/hot-unplug + close. 2153 */ 2154 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2155 return; 2156 2157 event->attach_state &= ~PERF_ATTACH_GROUP; 2158 2159 perf_put_aux_event(event); 2160 2161 /* 2162 * If this is a sibling, remove it from its group. 2163 */ 2164 if (leader != event) { 2165 list_del_init(&event->sibling_list); 2166 event->group_leader->nr_siblings--; 2167 goto out; 2168 } 2169 2170 /* 2171 * If this was a group event with sibling events then 2172 * upgrade the siblings to singleton events by adding them 2173 * to whatever list we are on. 2174 */ 2175 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2176 2177 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2178 perf_remove_sibling_event(sibling); 2179 2180 sibling->group_leader = sibling; 2181 list_del_init(&sibling->sibling_list); 2182 2183 /* Inherit group flags from the previous leader */ 2184 sibling->group_caps = event->group_caps; 2185 2186 if (!RB_EMPTY_NODE(&event->group_node)) { 2187 add_event_to_groups(sibling, event->ctx); 2188 2189 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2190 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2191 } 2192 2193 WARN_ON_ONCE(sibling->ctx != event->ctx); 2194 } 2195 2196 out: 2197 for_each_sibling_event(tmp, leader) 2198 perf_event__header_size(tmp); 2199 2200 perf_event__header_size(leader); 2201 } 2202 2203 static void sync_child_event(struct perf_event *child_event); 2204 2205 static void perf_child_detach(struct perf_event *event) 2206 { 2207 struct perf_event *parent_event = event->parent; 2208 2209 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2210 return; 2211 2212 event->attach_state &= ~PERF_ATTACH_CHILD; 2213 2214 if (WARN_ON_ONCE(!parent_event)) 2215 return; 2216 2217 lockdep_assert_held(&parent_event->child_mutex); 2218 2219 sync_child_event(event); 2220 list_del_init(&event->child_list); 2221 } 2222 2223 static bool is_orphaned_event(struct perf_event *event) 2224 { 2225 return event->state == PERF_EVENT_STATE_DEAD; 2226 } 2227 2228 static inline int __pmu_filter_match(struct perf_event *event) 2229 { 2230 struct pmu *pmu = event->pmu; 2231 return pmu->filter_match ? pmu->filter_match(event) : 1; 2232 } 2233 2234 /* 2235 * Check whether we should attempt to schedule an event group based on 2236 * PMU-specific filtering. An event group can consist of HW and SW events, 2237 * potentially with a SW leader, so we must check all the filters, to 2238 * determine whether a group is schedulable: 2239 */ 2240 static inline int pmu_filter_match(struct perf_event *event) 2241 { 2242 struct perf_event *sibling; 2243 2244 if (!__pmu_filter_match(event)) 2245 return 0; 2246 2247 for_each_sibling_event(sibling, event) { 2248 if (!__pmu_filter_match(sibling)) 2249 return 0; 2250 } 2251 2252 return 1; 2253 } 2254 2255 static inline int 2256 event_filter_match(struct perf_event *event) 2257 { 2258 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2259 perf_cgroup_match(event) && pmu_filter_match(event); 2260 } 2261 2262 static void 2263 event_sched_out(struct perf_event *event, 2264 struct perf_cpu_context *cpuctx, 2265 struct perf_event_context *ctx) 2266 { 2267 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2268 2269 WARN_ON_ONCE(event->ctx != ctx); 2270 lockdep_assert_held(&ctx->lock); 2271 2272 if (event->state != PERF_EVENT_STATE_ACTIVE) 2273 return; 2274 2275 /* 2276 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2277 * we can schedule events _OUT_ individually through things like 2278 * __perf_remove_from_context(). 2279 */ 2280 list_del_init(&event->active_list); 2281 2282 perf_pmu_disable(event->pmu); 2283 2284 event->pmu->del(event, 0); 2285 event->oncpu = -1; 2286 2287 if (READ_ONCE(event->pending_disable) >= 0) { 2288 WRITE_ONCE(event->pending_disable, -1); 2289 perf_cgroup_event_disable(event, ctx); 2290 state = PERF_EVENT_STATE_OFF; 2291 } 2292 perf_event_set_state(event, state); 2293 2294 if (!is_software_event(event)) 2295 cpuctx->active_oncpu--; 2296 if (!--ctx->nr_active) 2297 perf_event_ctx_deactivate(ctx); 2298 if (event->attr.freq && event->attr.sample_freq) 2299 ctx->nr_freq--; 2300 if (event->attr.exclusive || !cpuctx->active_oncpu) 2301 cpuctx->exclusive = 0; 2302 2303 perf_pmu_enable(event->pmu); 2304 } 2305 2306 static void 2307 group_sched_out(struct perf_event *group_event, 2308 struct perf_cpu_context *cpuctx, 2309 struct perf_event_context *ctx) 2310 { 2311 struct perf_event *event; 2312 2313 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2314 return; 2315 2316 perf_pmu_disable(ctx->pmu); 2317 2318 event_sched_out(group_event, cpuctx, ctx); 2319 2320 /* 2321 * Schedule out siblings (if any): 2322 */ 2323 for_each_sibling_event(event, group_event) 2324 event_sched_out(event, cpuctx, ctx); 2325 2326 perf_pmu_enable(ctx->pmu); 2327 } 2328 2329 #define DETACH_GROUP 0x01UL 2330 #define DETACH_CHILD 0x02UL 2331 2332 /* 2333 * Cross CPU call to remove a performance event 2334 * 2335 * We disable the event on the hardware level first. After that we 2336 * remove it from the context list. 2337 */ 2338 static void 2339 __perf_remove_from_context(struct perf_event *event, 2340 struct perf_cpu_context *cpuctx, 2341 struct perf_event_context *ctx, 2342 void *info) 2343 { 2344 unsigned long flags = (unsigned long)info; 2345 2346 if (ctx->is_active & EVENT_TIME) { 2347 update_context_time(ctx); 2348 update_cgrp_time_from_cpuctx(cpuctx); 2349 } 2350 2351 event_sched_out(event, cpuctx, ctx); 2352 if (flags & DETACH_GROUP) 2353 perf_group_detach(event); 2354 if (flags & DETACH_CHILD) 2355 perf_child_detach(event); 2356 list_del_event(event, ctx); 2357 2358 if (!ctx->nr_events && ctx->is_active) { 2359 ctx->is_active = 0; 2360 ctx->rotate_necessary = 0; 2361 if (ctx->task) { 2362 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2363 cpuctx->task_ctx = NULL; 2364 } 2365 } 2366 } 2367 2368 /* 2369 * Remove the event from a task's (or a CPU's) list of events. 2370 * 2371 * If event->ctx is a cloned context, callers must make sure that 2372 * every task struct that event->ctx->task could possibly point to 2373 * remains valid. This is OK when called from perf_release since 2374 * that only calls us on the top-level context, which can't be a clone. 2375 * When called from perf_event_exit_task, it's OK because the 2376 * context has been detached from its task. 2377 */ 2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2379 { 2380 struct perf_event_context *ctx = event->ctx; 2381 2382 lockdep_assert_held(&ctx->mutex); 2383 2384 /* 2385 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2386 * to work in the face of TASK_TOMBSTONE, unlike every other 2387 * event_function_call() user. 2388 */ 2389 raw_spin_lock_irq(&ctx->lock); 2390 if (!ctx->is_active) { 2391 __perf_remove_from_context(event, __get_cpu_context(ctx), 2392 ctx, (void *)flags); 2393 raw_spin_unlock_irq(&ctx->lock); 2394 return; 2395 } 2396 raw_spin_unlock_irq(&ctx->lock); 2397 2398 event_function_call(event, __perf_remove_from_context, (void *)flags); 2399 } 2400 2401 /* 2402 * Cross CPU call to disable a performance event 2403 */ 2404 static void __perf_event_disable(struct perf_event *event, 2405 struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 void *info) 2408 { 2409 if (event->state < PERF_EVENT_STATE_INACTIVE) 2410 return; 2411 2412 if (ctx->is_active & EVENT_TIME) { 2413 update_context_time(ctx); 2414 update_cgrp_time_from_event(event); 2415 } 2416 2417 if (event == event->group_leader) 2418 group_sched_out(event, cpuctx, ctx); 2419 else 2420 event_sched_out(event, cpuctx, ctx); 2421 2422 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2423 perf_cgroup_event_disable(event, ctx); 2424 } 2425 2426 /* 2427 * Disable an event. 2428 * 2429 * If event->ctx is a cloned context, callers must make sure that 2430 * every task struct that event->ctx->task could possibly point to 2431 * remains valid. This condition is satisfied when called through 2432 * perf_event_for_each_child or perf_event_for_each because they 2433 * hold the top-level event's child_mutex, so any descendant that 2434 * goes to exit will block in perf_event_exit_event(). 2435 * 2436 * When called from perf_pending_event it's OK because event->ctx 2437 * is the current context on this CPU and preemption is disabled, 2438 * hence we can't get into perf_event_task_sched_out for this context. 2439 */ 2440 static void _perf_event_disable(struct perf_event *event) 2441 { 2442 struct perf_event_context *ctx = event->ctx; 2443 2444 raw_spin_lock_irq(&ctx->lock); 2445 if (event->state <= PERF_EVENT_STATE_OFF) { 2446 raw_spin_unlock_irq(&ctx->lock); 2447 return; 2448 } 2449 raw_spin_unlock_irq(&ctx->lock); 2450 2451 event_function_call(event, __perf_event_disable, NULL); 2452 } 2453 2454 void perf_event_disable_local(struct perf_event *event) 2455 { 2456 event_function_local(event, __perf_event_disable, NULL); 2457 } 2458 2459 /* 2460 * Strictly speaking kernel users cannot create groups and therefore this 2461 * interface does not need the perf_event_ctx_lock() magic. 2462 */ 2463 void perf_event_disable(struct perf_event *event) 2464 { 2465 struct perf_event_context *ctx; 2466 2467 ctx = perf_event_ctx_lock(event); 2468 _perf_event_disable(event); 2469 perf_event_ctx_unlock(event, ctx); 2470 } 2471 EXPORT_SYMBOL_GPL(perf_event_disable); 2472 2473 void perf_event_disable_inatomic(struct perf_event *event) 2474 { 2475 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2476 /* can fail, see perf_pending_event_disable() */ 2477 irq_work_queue(&event->pending); 2478 } 2479 2480 static void perf_set_shadow_time(struct perf_event *event, 2481 struct perf_event_context *ctx) 2482 { 2483 /* 2484 * use the correct time source for the time snapshot 2485 * 2486 * We could get by without this by leveraging the 2487 * fact that to get to this function, the caller 2488 * has most likely already called update_context_time() 2489 * and update_cgrp_time_xx() and thus both timestamp 2490 * are identical (or very close). Given that tstamp is, 2491 * already adjusted for cgroup, we could say that: 2492 * tstamp - ctx->timestamp 2493 * is equivalent to 2494 * tstamp - cgrp->timestamp. 2495 * 2496 * Then, in perf_output_read(), the calculation would 2497 * work with no changes because: 2498 * - event is guaranteed scheduled in 2499 * - no scheduled out in between 2500 * - thus the timestamp would be the same 2501 * 2502 * But this is a bit hairy. 2503 * 2504 * So instead, we have an explicit cgroup call to remain 2505 * within the time source all along. We believe it 2506 * is cleaner and simpler to understand. 2507 */ 2508 if (is_cgroup_event(event)) 2509 perf_cgroup_set_shadow_time(event, event->tstamp); 2510 else 2511 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2512 } 2513 2514 #define MAX_INTERRUPTS (~0ULL) 2515 2516 static void perf_log_throttle(struct perf_event *event, int enable); 2517 static void perf_log_itrace_start(struct perf_event *event); 2518 2519 static int 2520 event_sched_in(struct perf_event *event, 2521 struct perf_cpu_context *cpuctx, 2522 struct perf_event_context *ctx) 2523 { 2524 int ret = 0; 2525 2526 WARN_ON_ONCE(event->ctx != ctx); 2527 2528 lockdep_assert_held(&ctx->lock); 2529 2530 if (event->state <= PERF_EVENT_STATE_OFF) 2531 return 0; 2532 2533 WRITE_ONCE(event->oncpu, smp_processor_id()); 2534 /* 2535 * Order event::oncpu write to happen before the ACTIVE state is 2536 * visible. This allows perf_event_{stop,read}() to observe the correct 2537 * ->oncpu if it sees ACTIVE. 2538 */ 2539 smp_wmb(); 2540 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2541 2542 /* 2543 * Unthrottle events, since we scheduled we might have missed several 2544 * ticks already, also for a heavily scheduling task there is little 2545 * guarantee it'll get a tick in a timely manner. 2546 */ 2547 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2548 perf_log_throttle(event, 1); 2549 event->hw.interrupts = 0; 2550 } 2551 2552 perf_pmu_disable(event->pmu); 2553 2554 perf_set_shadow_time(event, ctx); 2555 2556 perf_log_itrace_start(event); 2557 2558 if (event->pmu->add(event, PERF_EF_START)) { 2559 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2560 event->oncpu = -1; 2561 ret = -EAGAIN; 2562 goto out; 2563 } 2564 2565 if (!is_software_event(event)) 2566 cpuctx->active_oncpu++; 2567 if (!ctx->nr_active++) 2568 perf_event_ctx_activate(ctx); 2569 if (event->attr.freq && event->attr.sample_freq) 2570 ctx->nr_freq++; 2571 2572 if (event->attr.exclusive) 2573 cpuctx->exclusive = 1; 2574 2575 out: 2576 perf_pmu_enable(event->pmu); 2577 2578 return ret; 2579 } 2580 2581 static int 2582 group_sched_in(struct perf_event *group_event, 2583 struct perf_cpu_context *cpuctx, 2584 struct perf_event_context *ctx) 2585 { 2586 struct perf_event *event, *partial_group = NULL; 2587 struct pmu *pmu = ctx->pmu; 2588 2589 if (group_event->state == PERF_EVENT_STATE_OFF) 2590 return 0; 2591 2592 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2593 2594 if (event_sched_in(group_event, cpuctx, ctx)) 2595 goto error; 2596 2597 /* 2598 * Schedule in siblings as one group (if any): 2599 */ 2600 for_each_sibling_event(event, group_event) { 2601 if (event_sched_in(event, cpuctx, ctx)) { 2602 partial_group = event; 2603 goto group_error; 2604 } 2605 } 2606 2607 if (!pmu->commit_txn(pmu)) 2608 return 0; 2609 2610 group_error: 2611 /* 2612 * Groups can be scheduled in as one unit only, so undo any 2613 * partial group before returning: 2614 * The events up to the failed event are scheduled out normally. 2615 */ 2616 for_each_sibling_event(event, group_event) { 2617 if (event == partial_group) 2618 break; 2619 2620 event_sched_out(event, cpuctx, ctx); 2621 } 2622 event_sched_out(group_event, cpuctx, ctx); 2623 2624 error: 2625 pmu->cancel_txn(pmu); 2626 return -EAGAIN; 2627 } 2628 2629 /* 2630 * Work out whether we can put this event group on the CPU now. 2631 */ 2632 static int group_can_go_on(struct perf_event *event, 2633 struct perf_cpu_context *cpuctx, 2634 int can_add_hw) 2635 { 2636 /* 2637 * Groups consisting entirely of software events can always go on. 2638 */ 2639 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2640 return 1; 2641 /* 2642 * If an exclusive group is already on, no other hardware 2643 * events can go on. 2644 */ 2645 if (cpuctx->exclusive) 2646 return 0; 2647 /* 2648 * If this group is exclusive and there are already 2649 * events on the CPU, it can't go on. 2650 */ 2651 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2652 return 0; 2653 /* 2654 * Otherwise, try to add it if all previous groups were able 2655 * to go on. 2656 */ 2657 return can_add_hw; 2658 } 2659 2660 static void add_event_to_ctx(struct perf_event *event, 2661 struct perf_event_context *ctx) 2662 { 2663 list_add_event(event, ctx); 2664 perf_group_attach(event); 2665 } 2666 2667 static void ctx_sched_out(struct perf_event_context *ctx, 2668 struct perf_cpu_context *cpuctx, 2669 enum event_type_t event_type); 2670 static void 2671 ctx_sched_in(struct perf_event_context *ctx, 2672 struct perf_cpu_context *cpuctx, 2673 enum event_type_t event_type, 2674 struct task_struct *task); 2675 2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2677 struct perf_event_context *ctx, 2678 enum event_type_t event_type) 2679 { 2680 if (!cpuctx->task_ctx) 2681 return; 2682 2683 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2684 return; 2685 2686 ctx_sched_out(ctx, cpuctx, event_type); 2687 } 2688 2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2690 struct perf_event_context *ctx, 2691 struct task_struct *task) 2692 { 2693 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2694 if (ctx) 2695 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2696 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2697 if (ctx) 2698 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2699 } 2700 2701 /* 2702 * We want to maintain the following priority of scheduling: 2703 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2704 * - task pinned (EVENT_PINNED) 2705 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2706 * - task flexible (EVENT_FLEXIBLE). 2707 * 2708 * In order to avoid unscheduling and scheduling back in everything every 2709 * time an event is added, only do it for the groups of equal priority and 2710 * below. 2711 * 2712 * This can be called after a batch operation on task events, in which case 2713 * event_type is a bit mask of the types of events involved. For CPU events, 2714 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2715 */ 2716 static void ctx_resched(struct perf_cpu_context *cpuctx, 2717 struct perf_event_context *task_ctx, 2718 enum event_type_t event_type) 2719 { 2720 enum event_type_t ctx_event_type; 2721 bool cpu_event = !!(event_type & EVENT_CPU); 2722 2723 /* 2724 * If pinned groups are involved, flexible groups also need to be 2725 * scheduled out. 2726 */ 2727 if (event_type & EVENT_PINNED) 2728 event_type |= EVENT_FLEXIBLE; 2729 2730 ctx_event_type = event_type & EVENT_ALL; 2731 2732 perf_pmu_disable(cpuctx->ctx.pmu); 2733 if (task_ctx) 2734 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2735 2736 /* 2737 * Decide which cpu ctx groups to schedule out based on the types 2738 * of events that caused rescheduling: 2739 * - EVENT_CPU: schedule out corresponding groups; 2740 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2741 * - otherwise, do nothing more. 2742 */ 2743 if (cpu_event) 2744 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2745 else if (ctx_event_type & EVENT_PINNED) 2746 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2747 2748 perf_event_sched_in(cpuctx, task_ctx, current); 2749 perf_pmu_enable(cpuctx->ctx.pmu); 2750 } 2751 2752 void perf_pmu_resched(struct pmu *pmu) 2753 { 2754 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2755 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2756 2757 perf_ctx_lock(cpuctx, task_ctx); 2758 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2759 perf_ctx_unlock(cpuctx, task_ctx); 2760 } 2761 2762 /* 2763 * Cross CPU call to install and enable a performance event 2764 * 2765 * Very similar to remote_function() + event_function() but cannot assume that 2766 * things like ctx->is_active and cpuctx->task_ctx are set. 2767 */ 2768 static int __perf_install_in_context(void *info) 2769 { 2770 struct perf_event *event = info; 2771 struct perf_event_context *ctx = event->ctx; 2772 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2773 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2774 bool reprogram = true; 2775 int ret = 0; 2776 2777 raw_spin_lock(&cpuctx->ctx.lock); 2778 if (ctx->task) { 2779 raw_spin_lock(&ctx->lock); 2780 task_ctx = ctx; 2781 2782 reprogram = (ctx->task == current); 2783 2784 /* 2785 * If the task is running, it must be running on this CPU, 2786 * otherwise we cannot reprogram things. 2787 * 2788 * If its not running, we don't care, ctx->lock will 2789 * serialize against it becoming runnable. 2790 */ 2791 if (task_curr(ctx->task) && !reprogram) { 2792 ret = -ESRCH; 2793 goto unlock; 2794 } 2795 2796 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2797 } else if (task_ctx) { 2798 raw_spin_lock(&task_ctx->lock); 2799 } 2800 2801 #ifdef CONFIG_CGROUP_PERF 2802 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2803 /* 2804 * If the current cgroup doesn't match the event's 2805 * cgroup, we should not try to schedule it. 2806 */ 2807 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2808 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2809 event->cgrp->css.cgroup); 2810 } 2811 #endif 2812 2813 if (reprogram) { 2814 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2815 add_event_to_ctx(event, ctx); 2816 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2817 } else { 2818 add_event_to_ctx(event, ctx); 2819 } 2820 2821 unlock: 2822 perf_ctx_unlock(cpuctx, task_ctx); 2823 2824 return ret; 2825 } 2826 2827 static bool exclusive_event_installable(struct perf_event *event, 2828 struct perf_event_context *ctx); 2829 2830 /* 2831 * Attach a performance event to a context. 2832 * 2833 * Very similar to event_function_call, see comment there. 2834 */ 2835 static void 2836 perf_install_in_context(struct perf_event_context *ctx, 2837 struct perf_event *event, 2838 int cpu) 2839 { 2840 struct task_struct *task = READ_ONCE(ctx->task); 2841 2842 lockdep_assert_held(&ctx->mutex); 2843 2844 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2845 2846 if (event->cpu != -1) 2847 event->cpu = cpu; 2848 2849 /* 2850 * Ensures that if we can observe event->ctx, both the event and ctx 2851 * will be 'complete'. See perf_iterate_sb_cpu(). 2852 */ 2853 smp_store_release(&event->ctx, ctx); 2854 2855 /* 2856 * perf_event_attr::disabled events will not run and can be initialized 2857 * without IPI. Except when this is the first event for the context, in 2858 * that case we need the magic of the IPI to set ctx->is_active. 2859 * 2860 * The IOC_ENABLE that is sure to follow the creation of a disabled 2861 * event will issue the IPI and reprogram the hardware. 2862 */ 2863 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2864 raw_spin_lock_irq(&ctx->lock); 2865 if (ctx->task == TASK_TOMBSTONE) { 2866 raw_spin_unlock_irq(&ctx->lock); 2867 return; 2868 } 2869 add_event_to_ctx(event, ctx); 2870 raw_spin_unlock_irq(&ctx->lock); 2871 return; 2872 } 2873 2874 if (!task) { 2875 cpu_function_call(cpu, __perf_install_in_context, event); 2876 return; 2877 } 2878 2879 /* 2880 * Should not happen, we validate the ctx is still alive before calling. 2881 */ 2882 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2883 return; 2884 2885 /* 2886 * Installing events is tricky because we cannot rely on ctx->is_active 2887 * to be set in case this is the nr_events 0 -> 1 transition. 2888 * 2889 * Instead we use task_curr(), which tells us if the task is running. 2890 * However, since we use task_curr() outside of rq::lock, we can race 2891 * against the actual state. This means the result can be wrong. 2892 * 2893 * If we get a false positive, we retry, this is harmless. 2894 * 2895 * If we get a false negative, things are complicated. If we are after 2896 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2897 * value must be correct. If we're before, it doesn't matter since 2898 * perf_event_context_sched_in() will program the counter. 2899 * 2900 * However, this hinges on the remote context switch having observed 2901 * our task->perf_event_ctxp[] store, such that it will in fact take 2902 * ctx::lock in perf_event_context_sched_in(). 2903 * 2904 * We do this by task_function_call(), if the IPI fails to hit the task 2905 * we know any future context switch of task must see the 2906 * perf_event_ctpx[] store. 2907 */ 2908 2909 /* 2910 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2911 * task_cpu() load, such that if the IPI then does not find the task 2912 * running, a future context switch of that task must observe the 2913 * store. 2914 */ 2915 smp_mb(); 2916 again: 2917 if (!task_function_call(task, __perf_install_in_context, event)) 2918 return; 2919 2920 raw_spin_lock_irq(&ctx->lock); 2921 task = ctx->task; 2922 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2923 /* 2924 * Cannot happen because we already checked above (which also 2925 * cannot happen), and we hold ctx->mutex, which serializes us 2926 * against perf_event_exit_task_context(). 2927 */ 2928 raw_spin_unlock_irq(&ctx->lock); 2929 return; 2930 } 2931 /* 2932 * If the task is not running, ctx->lock will avoid it becoming so, 2933 * thus we can safely install the event. 2934 */ 2935 if (task_curr(task)) { 2936 raw_spin_unlock_irq(&ctx->lock); 2937 goto again; 2938 } 2939 add_event_to_ctx(event, ctx); 2940 raw_spin_unlock_irq(&ctx->lock); 2941 } 2942 2943 /* 2944 * Cross CPU call to enable a performance event 2945 */ 2946 static void __perf_event_enable(struct perf_event *event, 2947 struct perf_cpu_context *cpuctx, 2948 struct perf_event_context *ctx, 2949 void *info) 2950 { 2951 struct perf_event *leader = event->group_leader; 2952 struct perf_event_context *task_ctx; 2953 2954 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2955 event->state <= PERF_EVENT_STATE_ERROR) 2956 return; 2957 2958 if (ctx->is_active) 2959 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2960 2961 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2962 perf_cgroup_event_enable(event, ctx); 2963 2964 if (!ctx->is_active) 2965 return; 2966 2967 if (!event_filter_match(event)) { 2968 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2969 return; 2970 } 2971 2972 /* 2973 * If the event is in a group and isn't the group leader, 2974 * then don't put it on unless the group is on. 2975 */ 2976 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2977 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2978 return; 2979 } 2980 2981 task_ctx = cpuctx->task_ctx; 2982 if (ctx->task) 2983 WARN_ON_ONCE(task_ctx != ctx); 2984 2985 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2986 } 2987 2988 /* 2989 * Enable an event. 2990 * 2991 * If event->ctx is a cloned context, callers must make sure that 2992 * every task struct that event->ctx->task could possibly point to 2993 * remains valid. This condition is satisfied when called through 2994 * perf_event_for_each_child or perf_event_for_each as described 2995 * for perf_event_disable. 2996 */ 2997 static void _perf_event_enable(struct perf_event *event) 2998 { 2999 struct perf_event_context *ctx = event->ctx; 3000 3001 raw_spin_lock_irq(&ctx->lock); 3002 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3003 event->state < PERF_EVENT_STATE_ERROR) { 3004 out: 3005 raw_spin_unlock_irq(&ctx->lock); 3006 return; 3007 } 3008 3009 /* 3010 * If the event is in error state, clear that first. 3011 * 3012 * That way, if we see the event in error state below, we know that it 3013 * has gone back into error state, as distinct from the task having 3014 * been scheduled away before the cross-call arrived. 3015 */ 3016 if (event->state == PERF_EVENT_STATE_ERROR) { 3017 /* 3018 * Detached SIBLING events cannot leave ERROR state. 3019 */ 3020 if (event->event_caps & PERF_EV_CAP_SIBLING && 3021 event->group_leader == event) 3022 goto out; 3023 3024 event->state = PERF_EVENT_STATE_OFF; 3025 } 3026 raw_spin_unlock_irq(&ctx->lock); 3027 3028 event_function_call(event, __perf_event_enable, NULL); 3029 } 3030 3031 /* 3032 * See perf_event_disable(); 3033 */ 3034 void perf_event_enable(struct perf_event *event) 3035 { 3036 struct perf_event_context *ctx; 3037 3038 ctx = perf_event_ctx_lock(event); 3039 _perf_event_enable(event); 3040 perf_event_ctx_unlock(event, ctx); 3041 } 3042 EXPORT_SYMBOL_GPL(perf_event_enable); 3043 3044 struct stop_event_data { 3045 struct perf_event *event; 3046 unsigned int restart; 3047 }; 3048 3049 static int __perf_event_stop(void *info) 3050 { 3051 struct stop_event_data *sd = info; 3052 struct perf_event *event = sd->event; 3053 3054 /* if it's already INACTIVE, do nothing */ 3055 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3056 return 0; 3057 3058 /* matches smp_wmb() in event_sched_in() */ 3059 smp_rmb(); 3060 3061 /* 3062 * There is a window with interrupts enabled before we get here, 3063 * so we need to check again lest we try to stop another CPU's event. 3064 */ 3065 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3066 return -EAGAIN; 3067 3068 event->pmu->stop(event, PERF_EF_UPDATE); 3069 3070 /* 3071 * May race with the actual stop (through perf_pmu_output_stop()), 3072 * but it is only used for events with AUX ring buffer, and such 3073 * events will refuse to restart because of rb::aux_mmap_count==0, 3074 * see comments in perf_aux_output_begin(). 3075 * 3076 * Since this is happening on an event-local CPU, no trace is lost 3077 * while restarting. 3078 */ 3079 if (sd->restart) 3080 event->pmu->start(event, 0); 3081 3082 return 0; 3083 } 3084 3085 static int perf_event_stop(struct perf_event *event, int restart) 3086 { 3087 struct stop_event_data sd = { 3088 .event = event, 3089 .restart = restart, 3090 }; 3091 int ret = 0; 3092 3093 do { 3094 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3095 return 0; 3096 3097 /* matches smp_wmb() in event_sched_in() */ 3098 smp_rmb(); 3099 3100 /* 3101 * We only want to restart ACTIVE events, so if the event goes 3102 * inactive here (event->oncpu==-1), there's nothing more to do; 3103 * fall through with ret==-ENXIO. 3104 */ 3105 ret = cpu_function_call(READ_ONCE(event->oncpu), 3106 __perf_event_stop, &sd); 3107 } while (ret == -EAGAIN); 3108 3109 return ret; 3110 } 3111 3112 /* 3113 * In order to contain the amount of racy and tricky in the address filter 3114 * configuration management, it is a two part process: 3115 * 3116 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3117 * we update the addresses of corresponding vmas in 3118 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3119 * (p2) when an event is scheduled in (pmu::add), it calls 3120 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3121 * if the generation has changed since the previous call. 3122 * 3123 * If (p1) happens while the event is active, we restart it to force (p2). 3124 * 3125 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3126 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3127 * ioctl; 3128 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3129 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3130 * for reading; 3131 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3132 * of exec. 3133 */ 3134 void perf_event_addr_filters_sync(struct perf_event *event) 3135 { 3136 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3137 3138 if (!has_addr_filter(event)) 3139 return; 3140 3141 raw_spin_lock(&ifh->lock); 3142 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3143 event->pmu->addr_filters_sync(event); 3144 event->hw.addr_filters_gen = event->addr_filters_gen; 3145 } 3146 raw_spin_unlock(&ifh->lock); 3147 } 3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3149 3150 static int _perf_event_refresh(struct perf_event *event, int refresh) 3151 { 3152 /* 3153 * not supported on inherited events 3154 */ 3155 if (event->attr.inherit || !is_sampling_event(event)) 3156 return -EINVAL; 3157 3158 atomic_add(refresh, &event->event_limit); 3159 _perf_event_enable(event); 3160 3161 return 0; 3162 } 3163 3164 /* 3165 * See perf_event_disable() 3166 */ 3167 int perf_event_refresh(struct perf_event *event, int refresh) 3168 { 3169 struct perf_event_context *ctx; 3170 int ret; 3171 3172 ctx = perf_event_ctx_lock(event); 3173 ret = _perf_event_refresh(event, refresh); 3174 perf_event_ctx_unlock(event, ctx); 3175 3176 return ret; 3177 } 3178 EXPORT_SYMBOL_GPL(perf_event_refresh); 3179 3180 static int perf_event_modify_breakpoint(struct perf_event *bp, 3181 struct perf_event_attr *attr) 3182 { 3183 int err; 3184 3185 _perf_event_disable(bp); 3186 3187 err = modify_user_hw_breakpoint_check(bp, attr, true); 3188 3189 if (!bp->attr.disabled) 3190 _perf_event_enable(bp); 3191 3192 return err; 3193 } 3194 3195 static int perf_event_modify_attr(struct perf_event *event, 3196 struct perf_event_attr *attr) 3197 { 3198 int (*func)(struct perf_event *, struct perf_event_attr *); 3199 struct perf_event *child; 3200 int err; 3201 3202 if (event->attr.type != attr->type) 3203 return -EINVAL; 3204 3205 switch (event->attr.type) { 3206 case PERF_TYPE_BREAKPOINT: 3207 func = perf_event_modify_breakpoint; 3208 break; 3209 default: 3210 /* Place holder for future additions. */ 3211 return -EOPNOTSUPP; 3212 } 3213 3214 WARN_ON_ONCE(event->ctx->parent_ctx); 3215 3216 mutex_lock(&event->child_mutex); 3217 err = func(event, attr); 3218 if (err) 3219 goto out; 3220 list_for_each_entry(child, &event->child_list, child_list) { 3221 err = func(child, attr); 3222 if (err) 3223 goto out; 3224 } 3225 out: 3226 mutex_unlock(&event->child_mutex); 3227 return err; 3228 } 3229 3230 static void ctx_sched_out(struct perf_event_context *ctx, 3231 struct perf_cpu_context *cpuctx, 3232 enum event_type_t event_type) 3233 { 3234 struct perf_event *event, *tmp; 3235 int is_active = ctx->is_active; 3236 3237 lockdep_assert_held(&ctx->lock); 3238 3239 if (likely(!ctx->nr_events)) { 3240 /* 3241 * See __perf_remove_from_context(). 3242 */ 3243 WARN_ON_ONCE(ctx->is_active); 3244 if (ctx->task) 3245 WARN_ON_ONCE(cpuctx->task_ctx); 3246 return; 3247 } 3248 3249 ctx->is_active &= ~event_type; 3250 if (!(ctx->is_active & EVENT_ALL)) 3251 ctx->is_active = 0; 3252 3253 if (ctx->task) { 3254 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3255 if (!ctx->is_active) 3256 cpuctx->task_ctx = NULL; 3257 } 3258 3259 /* 3260 * Always update time if it was set; not only when it changes. 3261 * Otherwise we can 'forget' to update time for any but the last 3262 * context we sched out. For example: 3263 * 3264 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3265 * ctx_sched_out(.event_type = EVENT_PINNED) 3266 * 3267 * would only update time for the pinned events. 3268 */ 3269 if (is_active & EVENT_TIME) { 3270 /* update (and stop) ctx time */ 3271 update_context_time(ctx); 3272 update_cgrp_time_from_cpuctx(cpuctx); 3273 } 3274 3275 is_active ^= ctx->is_active; /* changed bits */ 3276 3277 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3278 return; 3279 3280 perf_pmu_disable(ctx->pmu); 3281 if (is_active & EVENT_PINNED) { 3282 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3283 group_sched_out(event, cpuctx, ctx); 3284 } 3285 3286 if (is_active & EVENT_FLEXIBLE) { 3287 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3288 group_sched_out(event, cpuctx, ctx); 3289 3290 /* 3291 * Since we cleared EVENT_FLEXIBLE, also clear 3292 * rotate_necessary, is will be reset by 3293 * ctx_flexible_sched_in() when needed. 3294 */ 3295 ctx->rotate_necessary = 0; 3296 } 3297 perf_pmu_enable(ctx->pmu); 3298 } 3299 3300 /* 3301 * Test whether two contexts are equivalent, i.e. whether they have both been 3302 * cloned from the same version of the same context. 3303 * 3304 * Equivalence is measured using a generation number in the context that is 3305 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3306 * and list_del_event(). 3307 */ 3308 static int context_equiv(struct perf_event_context *ctx1, 3309 struct perf_event_context *ctx2) 3310 { 3311 lockdep_assert_held(&ctx1->lock); 3312 lockdep_assert_held(&ctx2->lock); 3313 3314 /* Pinning disables the swap optimization */ 3315 if (ctx1->pin_count || ctx2->pin_count) 3316 return 0; 3317 3318 /* If ctx1 is the parent of ctx2 */ 3319 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3320 return 1; 3321 3322 /* If ctx2 is the parent of ctx1 */ 3323 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3324 return 1; 3325 3326 /* 3327 * If ctx1 and ctx2 have the same parent; we flatten the parent 3328 * hierarchy, see perf_event_init_context(). 3329 */ 3330 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3331 ctx1->parent_gen == ctx2->parent_gen) 3332 return 1; 3333 3334 /* Unmatched */ 3335 return 0; 3336 } 3337 3338 static void __perf_event_sync_stat(struct perf_event *event, 3339 struct perf_event *next_event) 3340 { 3341 u64 value; 3342 3343 if (!event->attr.inherit_stat) 3344 return; 3345 3346 /* 3347 * Update the event value, we cannot use perf_event_read() 3348 * because we're in the middle of a context switch and have IRQs 3349 * disabled, which upsets smp_call_function_single(), however 3350 * we know the event must be on the current CPU, therefore we 3351 * don't need to use it. 3352 */ 3353 if (event->state == PERF_EVENT_STATE_ACTIVE) 3354 event->pmu->read(event); 3355 3356 perf_event_update_time(event); 3357 3358 /* 3359 * In order to keep per-task stats reliable we need to flip the event 3360 * values when we flip the contexts. 3361 */ 3362 value = local64_read(&next_event->count); 3363 value = local64_xchg(&event->count, value); 3364 local64_set(&next_event->count, value); 3365 3366 swap(event->total_time_enabled, next_event->total_time_enabled); 3367 swap(event->total_time_running, next_event->total_time_running); 3368 3369 /* 3370 * Since we swizzled the values, update the user visible data too. 3371 */ 3372 perf_event_update_userpage(event); 3373 perf_event_update_userpage(next_event); 3374 } 3375 3376 static void perf_event_sync_stat(struct perf_event_context *ctx, 3377 struct perf_event_context *next_ctx) 3378 { 3379 struct perf_event *event, *next_event; 3380 3381 if (!ctx->nr_stat) 3382 return; 3383 3384 update_context_time(ctx); 3385 3386 event = list_first_entry(&ctx->event_list, 3387 struct perf_event, event_entry); 3388 3389 next_event = list_first_entry(&next_ctx->event_list, 3390 struct perf_event, event_entry); 3391 3392 while (&event->event_entry != &ctx->event_list && 3393 &next_event->event_entry != &next_ctx->event_list) { 3394 3395 __perf_event_sync_stat(event, next_event); 3396 3397 event = list_next_entry(event, event_entry); 3398 next_event = list_next_entry(next_event, event_entry); 3399 } 3400 } 3401 3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3403 struct task_struct *next) 3404 { 3405 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3406 struct perf_event_context *next_ctx; 3407 struct perf_event_context *parent, *next_parent; 3408 struct perf_cpu_context *cpuctx; 3409 int do_switch = 1; 3410 struct pmu *pmu; 3411 3412 if (likely(!ctx)) 3413 return; 3414 3415 pmu = ctx->pmu; 3416 cpuctx = __get_cpu_context(ctx); 3417 if (!cpuctx->task_ctx) 3418 return; 3419 3420 rcu_read_lock(); 3421 next_ctx = next->perf_event_ctxp[ctxn]; 3422 if (!next_ctx) 3423 goto unlock; 3424 3425 parent = rcu_dereference(ctx->parent_ctx); 3426 next_parent = rcu_dereference(next_ctx->parent_ctx); 3427 3428 /* If neither context have a parent context; they cannot be clones. */ 3429 if (!parent && !next_parent) 3430 goto unlock; 3431 3432 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3433 /* 3434 * Looks like the two contexts are clones, so we might be 3435 * able to optimize the context switch. We lock both 3436 * contexts and check that they are clones under the 3437 * lock (including re-checking that neither has been 3438 * uncloned in the meantime). It doesn't matter which 3439 * order we take the locks because no other cpu could 3440 * be trying to lock both of these tasks. 3441 */ 3442 raw_spin_lock(&ctx->lock); 3443 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3444 if (context_equiv(ctx, next_ctx)) { 3445 3446 WRITE_ONCE(ctx->task, next); 3447 WRITE_ONCE(next_ctx->task, task); 3448 3449 perf_pmu_disable(pmu); 3450 3451 if (cpuctx->sched_cb_usage && pmu->sched_task) 3452 pmu->sched_task(ctx, false); 3453 3454 /* 3455 * PMU specific parts of task perf context can require 3456 * additional synchronization. As an example of such 3457 * synchronization see implementation details of Intel 3458 * LBR call stack data profiling; 3459 */ 3460 if (pmu->swap_task_ctx) 3461 pmu->swap_task_ctx(ctx, next_ctx); 3462 else 3463 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3464 3465 perf_pmu_enable(pmu); 3466 3467 /* 3468 * RCU_INIT_POINTER here is safe because we've not 3469 * modified the ctx and the above modification of 3470 * ctx->task and ctx->task_ctx_data are immaterial 3471 * since those values are always verified under 3472 * ctx->lock which we're now holding. 3473 */ 3474 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3475 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3476 3477 do_switch = 0; 3478 3479 perf_event_sync_stat(ctx, next_ctx); 3480 } 3481 raw_spin_unlock(&next_ctx->lock); 3482 raw_spin_unlock(&ctx->lock); 3483 } 3484 unlock: 3485 rcu_read_unlock(); 3486 3487 if (do_switch) { 3488 raw_spin_lock(&ctx->lock); 3489 perf_pmu_disable(pmu); 3490 3491 if (cpuctx->sched_cb_usage && pmu->sched_task) 3492 pmu->sched_task(ctx, false); 3493 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3494 3495 perf_pmu_enable(pmu); 3496 raw_spin_unlock(&ctx->lock); 3497 } 3498 } 3499 3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3501 3502 void perf_sched_cb_dec(struct pmu *pmu) 3503 { 3504 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3505 3506 this_cpu_dec(perf_sched_cb_usages); 3507 3508 if (!--cpuctx->sched_cb_usage) 3509 list_del(&cpuctx->sched_cb_entry); 3510 } 3511 3512 3513 void perf_sched_cb_inc(struct pmu *pmu) 3514 { 3515 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3516 3517 if (!cpuctx->sched_cb_usage++) 3518 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3519 3520 this_cpu_inc(perf_sched_cb_usages); 3521 } 3522 3523 /* 3524 * This function provides the context switch callback to the lower code 3525 * layer. It is invoked ONLY when the context switch callback is enabled. 3526 * 3527 * This callback is relevant even to per-cpu events; for example multi event 3528 * PEBS requires this to provide PID/TID information. This requires we flush 3529 * all queued PEBS records before we context switch to a new task. 3530 */ 3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3532 { 3533 struct pmu *pmu; 3534 3535 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3536 3537 if (WARN_ON_ONCE(!pmu->sched_task)) 3538 return; 3539 3540 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3541 perf_pmu_disable(pmu); 3542 3543 pmu->sched_task(cpuctx->task_ctx, sched_in); 3544 3545 perf_pmu_enable(pmu); 3546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3547 } 3548 3549 static void perf_pmu_sched_task(struct task_struct *prev, 3550 struct task_struct *next, 3551 bool sched_in) 3552 { 3553 struct perf_cpu_context *cpuctx; 3554 3555 if (prev == next) 3556 return; 3557 3558 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3559 /* will be handled in perf_event_context_sched_in/out */ 3560 if (cpuctx->task_ctx) 3561 continue; 3562 3563 __perf_pmu_sched_task(cpuctx, sched_in); 3564 } 3565 } 3566 3567 static void perf_event_switch(struct task_struct *task, 3568 struct task_struct *next_prev, bool sched_in); 3569 3570 #define for_each_task_context_nr(ctxn) \ 3571 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3572 3573 /* 3574 * Called from scheduler to remove the events of the current task, 3575 * with interrupts disabled. 3576 * 3577 * We stop each event and update the event value in event->count. 3578 * 3579 * This does not protect us against NMI, but disable() 3580 * sets the disabled bit in the control field of event _before_ 3581 * accessing the event control register. If a NMI hits, then it will 3582 * not restart the event. 3583 */ 3584 void __perf_event_task_sched_out(struct task_struct *task, 3585 struct task_struct *next) 3586 { 3587 int ctxn; 3588 3589 if (__this_cpu_read(perf_sched_cb_usages)) 3590 perf_pmu_sched_task(task, next, false); 3591 3592 if (atomic_read(&nr_switch_events)) 3593 perf_event_switch(task, next, false); 3594 3595 for_each_task_context_nr(ctxn) 3596 perf_event_context_sched_out(task, ctxn, next); 3597 3598 /* 3599 * if cgroup events exist on this CPU, then we need 3600 * to check if we have to switch out PMU state. 3601 * cgroup event are system-wide mode only 3602 */ 3603 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3604 perf_cgroup_sched_out(task, next); 3605 } 3606 3607 /* 3608 * Called with IRQs disabled 3609 */ 3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3611 enum event_type_t event_type) 3612 { 3613 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3614 } 3615 3616 static bool perf_less_group_idx(const void *l, const void *r) 3617 { 3618 const struct perf_event *le = *(const struct perf_event **)l; 3619 const struct perf_event *re = *(const struct perf_event **)r; 3620 3621 return le->group_index < re->group_index; 3622 } 3623 3624 static void swap_ptr(void *l, void *r) 3625 { 3626 void **lp = l, **rp = r; 3627 3628 swap(*lp, *rp); 3629 } 3630 3631 static const struct min_heap_callbacks perf_min_heap = { 3632 .elem_size = sizeof(struct perf_event *), 3633 .less = perf_less_group_idx, 3634 .swp = swap_ptr, 3635 }; 3636 3637 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3638 { 3639 struct perf_event **itrs = heap->data; 3640 3641 if (event) { 3642 itrs[heap->nr] = event; 3643 heap->nr++; 3644 } 3645 } 3646 3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3648 struct perf_event_groups *groups, int cpu, 3649 int (*func)(struct perf_event *, void *), 3650 void *data) 3651 { 3652 #ifdef CONFIG_CGROUP_PERF 3653 struct cgroup_subsys_state *css = NULL; 3654 #endif 3655 /* Space for per CPU and/or any CPU event iterators. */ 3656 struct perf_event *itrs[2]; 3657 struct min_heap event_heap; 3658 struct perf_event **evt; 3659 int ret; 3660 3661 if (cpuctx) { 3662 event_heap = (struct min_heap){ 3663 .data = cpuctx->heap, 3664 .nr = 0, 3665 .size = cpuctx->heap_size, 3666 }; 3667 3668 lockdep_assert_held(&cpuctx->ctx.lock); 3669 3670 #ifdef CONFIG_CGROUP_PERF 3671 if (cpuctx->cgrp) 3672 css = &cpuctx->cgrp->css; 3673 #endif 3674 } else { 3675 event_heap = (struct min_heap){ 3676 .data = itrs, 3677 .nr = 0, 3678 .size = ARRAY_SIZE(itrs), 3679 }; 3680 /* Events not within a CPU context may be on any CPU. */ 3681 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3682 } 3683 evt = event_heap.data; 3684 3685 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3686 3687 #ifdef CONFIG_CGROUP_PERF 3688 for (; css; css = css->parent) 3689 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3690 #endif 3691 3692 min_heapify_all(&event_heap, &perf_min_heap); 3693 3694 while (event_heap.nr) { 3695 ret = func(*evt, data); 3696 if (ret) 3697 return ret; 3698 3699 *evt = perf_event_groups_next(*evt); 3700 if (*evt) 3701 min_heapify(&event_heap, 0, &perf_min_heap); 3702 else 3703 min_heap_pop(&event_heap, &perf_min_heap); 3704 } 3705 3706 return 0; 3707 } 3708 3709 static int merge_sched_in(struct perf_event *event, void *data) 3710 { 3711 struct perf_event_context *ctx = event->ctx; 3712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3713 int *can_add_hw = data; 3714 3715 if (event->state <= PERF_EVENT_STATE_OFF) 3716 return 0; 3717 3718 if (!event_filter_match(event)) 3719 return 0; 3720 3721 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3722 if (!group_sched_in(event, cpuctx, ctx)) 3723 list_add_tail(&event->active_list, get_event_list(event)); 3724 } 3725 3726 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3727 if (event->attr.pinned) { 3728 perf_cgroup_event_disable(event, ctx); 3729 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3730 } 3731 3732 *can_add_hw = 0; 3733 ctx->rotate_necessary = 1; 3734 perf_mux_hrtimer_restart(cpuctx); 3735 } 3736 3737 return 0; 3738 } 3739 3740 static void 3741 ctx_pinned_sched_in(struct perf_event_context *ctx, 3742 struct perf_cpu_context *cpuctx) 3743 { 3744 int can_add_hw = 1; 3745 3746 if (ctx != &cpuctx->ctx) 3747 cpuctx = NULL; 3748 3749 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3750 smp_processor_id(), 3751 merge_sched_in, &can_add_hw); 3752 } 3753 3754 static void 3755 ctx_flexible_sched_in(struct perf_event_context *ctx, 3756 struct perf_cpu_context *cpuctx) 3757 { 3758 int can_add_hw = 1; 3759 3760 if (ctx != &cpuctx->ctx) 3761 cpuctx = NULL; 3762 3763 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3764 smp_processor_id(), 3765 merge_sched_in, &can_add_hw); 3766 } 3767 3768 static void 3769 ctx_sched_in(struct perf_event_context *ctx, 3770 struct perf_cpu_context *cpuctx, 3771 enum event_type_t event_type, 3772 struct task_struct *task) 3773 { 3774 int is_active = ctx->is_active; 3775 u64 now; 3776 3777 lockdep_assert_held(&ctx->lock); 3778 3779 if (likely(!ctx->nr_events)) 3780 return; 3781 3782 ctx->is_active |= (event_type | EVENT_TIME); 3783 if (ctx->task) { 3784 if (!is_active) 3785 cpuctx->task_ctx = ctx; 3786 else 3787 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3788 } 3789 3790 is_active ^= ctx->is_active; /* changed bits */ 3791 3792 if (is_active & EVENT_TIME) { 3793 /* start ctx time */ 3794 now = perf_clock(); 3795 ctx->timestamp = now; 3796 perf_cgroup_set_timestamp(task, ctx); 3797 } 3798 3799 /* 3800 * First go through the list and put on any pinned groups 3801 * in order to give them the best chance of going on. 3802 */ 3803 if (is_active & EVENT_PINNED) 3804 ctx_pinned_sched_in(ctx, cpuctx); 3805 3806 /* Then walk through the lower prio flexible groups */ 3807 if (is_active & EVENT_FLEXIBLE) 3808 ctx_flexible_sched_in(ctx, cpuctx); 3809 } 3810 3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3812 enum event_type_t event_type, 3813 struct task_struct *task) 3814 { 3815 struct perf_event_context *ctx = &cpuctx->ctx; 3816 3817 ctx_sched_in(ctx, cpuctx, event_type, task); 3818 } 3819 3820 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3821 struct task_struct *task) 3822 { 3823 struct perf_cpu_context *cpuctx; 3824 struct pmu *pmu = ctx->pmu; 3825 3826 cpuctx = __get_cpu_context(ctx); 3827 if (cpuctx->task_ctx == ctx) { 3828 if (cpuctx->sched_cb_usage) 3829 __perf_pmu_sched_task(cpuctx, true); 3830 return; 3831 } 3832 3833 perf_ctx_lock(cpuctx, ctx); 3834 /* 3835 * We must check ctx->nr_events while holding ctx->lock, such 3836 * that we serialize against perf_install_in_context(). 3837 */ 3838 if (!ctx->nr_events) 3839 goto unlock; 3840 3841 perf_pmu_disable(pmu); 3842 /* 3843 * We want to keep the following priority order: 3844 * cpu pinned (that don't need to move), task pinned, 3845 * cpu flexible, task flexible. 3846 * 3847 * However, if task's ctx is not carrying any pinned 3848 * events, no need to flip the cpuctx's events around. 3849 */ 3850 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3851 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3852 perf_event_sched_in(cpuctx, ctx, task); 3853 3854 if (cpuctx->sched_cb_usage && pmu->sched_task) 3855 pmu->sched_task(cpuctx->task_ctx, true); 3856 3857 perf_pmu_enable(pmu); 3858 3859 unlock: 3860 perf_ctx_unlock(cpuctx, ctx); 3861 } 3862 3863 /* 3864 * Called from scheduler to add the events of the current task 3865 * with interrupts disabled. 3866 * 3867 * We restore the event value and then enable it. 3868 * 3869 * This does not protect us against NMI, but enable() 3870 * sets the enabled bit in the control field of event _before_ 3871 * accessing the event control register. If a NMI hits, then it will 3872 * keep the event running. 3873 */ 3874 void __perf_event_task_sched_in(struct task_struct *prev, 3875 struct task_struct *task) 3876 { 3877 struct perf_event_context *ctx; 3878 int ctxn; 3879 3880 /* 3881 * If cgroup events exist on this CPU, then we need to check if we have 3882 * to switch in PMU state; cgroup event are system-wide mode only. 3883 * 3884 * Since cgroup events are CPU events, we must schedule these in before 3885 * we schedule in the task events. 3886 */ 3887 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3888 perf_cgroup_sched_in(prev, task); 3889 3890 for_each_task_context_nr(ctxn) { 3891 ctx = task->perf_event_ctxp[ctxn]; 3892 if (likely(!ctx)) 3893 continue; 3894 3895 perf_event_context_sched_in(ctx, task); 3896 } 3897 3898 if (atomic_read(&nr_switch_events)) 3899 perf_event_switch(task, prev, true); 3900 3901 if (__this_cpu_read(perf_sched_cb_usages)) 3902 perf_pmu_sched_task(prev, task, true); 3903 } 3904 3905 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3906 { 3907 u64 frequency = event->attr.sample_freq; 3908 u64 sec = NSEC_PER_SEC; 3909 u64 divisor, dividend; 3910 3911 int count_fls, nsec_fls, frequency_fls, sec_fls; 3912 3913 count_fls = fls64(count); 3914 nsec_fls = fls64(nsec); 3915 frequency_fls = fls64(frequency); 3916 sec_fls = 30; 3917 3918 /* 3919 * We got @count in @nsec, with a target of sample_freq HZ 3920 * the target period becomes: 3921 * 3922 * @count * 10^9 3923 * period = ------------------- 3924 * @nsec * sample_freq 3925 * 3926 */ 3927 3928 /* 3929 * Reduce accuracy by one bit such that @a and @b converge 3930 * to a similar magnitude. 3931 */ 3932 #define REDUCE_FLS(a, b) \ 3933 do { \ 3934 if (a##_fls > b##_fls) { \ 3935 a >>= 1; \ 3936 a##_fls--; \ 3937 } else { \ 3938 b >>= 1; \ 3939 b##_fls--; \ 3940 } \ 3941 } while (0) 3942 3943 /* 3944 * Reduce accuracy until either term fits in a u64, then proceed with 3945 * the other, so that finally we can do a u64/u64 division. 3946 */ 3947 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3948 REDUCE_FLS(nsec, frequency); 3949 REDUCE_FLS(sec, count); 3950 } 3951 3952 if (count_fls + sec_fls > 64) { 3953 divisor = nsec * frequency; 3954 3955 while (count_fls + sec_fls > 64) { 3956 REDUCE_FLS(count, sec); 3957 divisor >>= 1; 3958 } 3959 3960 dividend = count * sec; 3961 } else { 3962 dividend = count * sec; 3963 3964 while (nsec_fls + frequency_fls > 64) { 3965 REDUCE_FLS(nsec, frequency); 3966 dividend >>= 1; 3967 } 3968 3969 divisor = nsec * frequency; 3970 } 3971 3972 if (!divisor) 3973 return dividend; 3974 3975 return div64_u64(dividend, divisor); 3976 } 3977 3978 static DEFINE_PER_CPU(int, perf_throttled_count); 3979 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3980 3981 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3982 { 3983 struct hw_perf_event *hwc = &event->hw; 3984 s64 period, sample_period; 3985 s64 delta; 3986 3987 period = perf_calculate_period(event, nsec, count); 3988 3989 delta = (s64)(period - hwc->sample_period); 3990 delta = (delta + 7) / 8; /* low pass filter */ 3991 3992 sample_period = hwc->sample_period + delta; 3993 3994 if (!sample_period) 3995 sample_period = 1; 3996 3997 hwc->sample_period = sample_period; 3998 3999 if (local64_read(&hwc->period_left) > 8*sample_period) { 4000 if (disable) 4001 event->pmu->stop(event, PERF_EF_UPDATE); 4002 4003 local64_set(&hwc->period_left, 0); 4004 4005 if (disable) 4006 event->pmu->start(event, PERF_EF_RELOAD); 4007 } 4008 } 4009 4010 /* 4011 * combine freq adjustment with unthrottling to avoid two passes over the 4012 * events. At the same time, make sure, having freq events does not change 4013 * the rate of unthrottling as that would introduce bias. 4014 */ 4015 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4016 int needs_unthr) 4017 { 4018 struct perf_event *event; 4019 struct hw_perf_event *hwc; 4020 u64 now, period = TICK_NSEC; 4021 s64 delta; 4022 4023 /* 4024 * only need to iterate over all events iff: 4025 * - context have events in frequency mode (needs freq adjust) 4026 * - there are events to unthrottle on this cpu 4027 */ 4028 if (!(ctx->nr_freq || needs_unthr)) 4029 return; 4030 4031 raw_spin_lock(&ctx->lock); 4032 perf_pmu_disable(ctx->pmu); 4033 4034 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4035 if (event->state != PERF_EVENT_STATE_ACTIVE) 4036 continue; 4037 4038 if (!event_filter_match(event)) 4039 continue; 4040 4041 perf_pmu_disable(event->pmu); 4042 4043 hwc = &event->hw; 4044 4045 if (hwc->interrupts == MAX_INTERRUPTS) { 4046 hwc->interrupts = 0; 4047 perf_log_throttle(event, 1); 4048 event->pmu->start(event, 0); 4049 } 4050 4051 if (!event->attr.freq || !event->attr.sample_freq) 4052 goto next; 4053 4054 /* 4055 * stop the event and update event->count 4056 */ 4057 event->pmu->stop(event, PERF_EF_UPDATE); 4058 4059 now = local64_read(&event->count); 4060 delta = now - hwc->freq_count_stamp; 4061 hwc->freq_count_stamp = now; 4062 4063 /* 4064 * restart the event 4065 * reload only if value has changed 4066 * we have stopped the event so tell that 4067 * to perf_adjust_period() to avoid stopping it 4068 * twice. 4069 */ 4070 if (delta > 0) 4071 perf_adjust_period(event, period, delta, false); 4072 4073 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4074 next: 4075 perf_pmu_enable(event->pmu); 4076 } 4077 4078 perf_pmu_enable(ctx->pmu); 4079 raw_spin_unlock(&ctx->lock); 4080 } 4081 4082 /* 4083 * Move @event to the tail of the @ctx's elegible events. 4084 */ 4085 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4086 { 4087 /* 4088 * Rotate the first entry last of non-pinned groups. Rotation might be 4089 * disabled by the inheritance code. 4090 */ 4091 if (ctx->rotate_disable) 4092 return; 4093 4094 perf_event_groups_delete(&ctx->flexible_groups, event); 4095 perf_event_groups_insert(&ctx->flexible_groups, event); 4096 } 4097 4098 /* pick an event from the flexible_groups to rotate */ 4099 static inline struct perf_event * 4100 ctx_event_to_rotate(struct perf_event_context *ctx) 4101 { 4102 struct perf_event *event; 4103 4104 /* pick the first active flexible event */ 4105 event = list_first_entry_or_null(&ctx->flexible_active, 4106 struct perf_event, active_list); 4107 4108 /* if no active flexible event, pick the first event */ 4109 if (!event) { 4110 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4111 typeof(*event), group_node); 4112 } 4113 4114 /* 4115 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4116 * finds there are unschedulable events, it will set it again. 4117 */ 4118 ctx->rotate_necessary = 0; 4119 4120 return event; 4121 } 4122 4123 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4124 { 4125 struct perf_event *cpu_event = NULL, *task_event = NULL; 4126 struct perf_event_context *task_ctx = NULL; 4127 int cpu_rotate, task_rotate; 4128 4129 /* 4130 * Since we run this from IRQ context, nobody can install new 4131 * events, thus the event count values are stable. 4132 */ 4133 4134 cpu_rotate = cpuctx->ctx.rotate_necessary; 4135 task_ctx = cpuctx->task_ctx; 4136 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4137 4138 if (!(cpu_rotate || task_rotate)) 4139 return false; 4140 4141 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4142 perf_pmu_disable(cpuctx->ctx.pmu); 4143 4144 if (task_rotate) 4145 task_event = ctx_event_to_rotate(task_ctx); 4146 if (cpu_rotate) 4147 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4148 4149 /* 4150 * As per the order given at ctx_resched() first 'pop' task flexible 4151 * and then, if needed CPU flexible. 4152 */ 4153 if (task_event || (task_ctx && cpu_event)) 4154 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4155 if (cpu_event) 4156 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4157 4158 if (task_event) 4159 rotate_ctx(task_ctx, task_event); 4160 if (cpu_event) 4161 rotate_ctx(&cpuctx->ctx, cpu_event); 4162 4163 perf_event_sched_in(cpuctx, task_ctx, current); 4164 4165 perf_pmu_enable(cpuctx->ctx.pmu); 4166 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4167 4168 return true; 4169 } 4170 4171 void perf_event_task_tick(void) 4172 { 4173 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4174 struct perf_event_context *ctx, *tmp; 4175 int throttled; 4176 4177 lockdep_assert_irqs_disabled(); 4178 4179 __this_cpu_inc(perf_throttled_seq); 4180 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4181 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4182 4183 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4184 perf_adjust_freq_unthr_context(ctx, throttled); 4185 } 4186 4187 static int event_enable_on_exec(struct perf_event *event, 4188 struct perf_event_context *ctx) 4189 { 4190 if (!event->attr.enable_on_exec) 4191 return 0; 4192 4193 event->attr.enable_on_exec = 0; 4194 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4195 return 0; 4196 4197 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4198 4199 return 1; 4200 } 4201 4202 /* 4203 * Enable all of a task's events that have been marked enable-on-exec. 4204 * This expects task == current. 4205 */ 4206 static void perf_event_enable_on_exec(int ctxn) 4207 { 4208 struct perf_event_context *ctx, *clone_ctx = NULL; 4209 enum event_type_t event_type = 0; 4210 struct perf_cpu_context *cpuctx; 4211 struct perf_event *event; 4212 unsigned long flags; 4213 int enabled = 0; 4214 4215 local_irq_save(flags); 4216 ctx = current->perf_event_ctxp[ctxn]; 4217 if (!ctx || !ctx->nr_events) 4218 goto out; 4219 4220 cpuctx = __get_cpu_context(ctx); 4221 perf_ctx_lock(cpuctx, ctx); 4222 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4223 list_for_each_entry(event, &ctx->event_list, event_entry) { 4224 enabled |= event_enable_on_exec(event, ctx); 4225 event_type |= get_event_type(event); 4226 } 4227 4228 /* 4229 * Unclone and reschedule this context if we enabled any event. 4230 */ 4231 if (enabled) { 4232 clone_ctx = unclone_ctx(ctx); 4233 ctx_resched(cpuctx, ctx, event_type); 4234 } else { 4235 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4236 } 4237 perf_ctx_unlock(cpuctx, ctx); 4238 4239 out: 4240 local_irq_restore(flags); 4241 4242 if (clone_ctx) 4243 put_ctx(clone_ctx); 4244 } 4245 4246 static void perf_remove_from_owner(struct perf_event *event); 4247 static void perf_event_exit_event(struct perf_event *event, 4248 struct perf_event_context *ctx); 4249 4250 /* 4251 * Removes all events from the current task that have been marked 4252 * remove-on-exec, and feeds their values back to parent events. 4253 */ 4254 static void perf_event_remove_on_exec(int ctxn) 4255 { 4256 struct perf_event_context *ctx, *clone_ctx = NULL; 4257 struct perf_event *event, *next; 4258 LIST_HEAD(free_list); 4259 unsigned long flags; 4260 bool modified = false; 4261 4262 ctx = perf_pin_task_context(current, ctxn); 4263 if (!ctx) 4264 return; 4265 4266 mutex_lock(&ctx->mutex); 4267 4268 if (WARN_ON_ONCE(ctx->task != current)) 4269 goto unlock; 4270 4271 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4272 if (!event->attr.remove_on_exec) 4273 continue; 4274 4275 if (!is_kernel_event(event)) 4276 perf_remove_from_owner(event); 4277 4278 modified = true; 4279 4280 perf_event_exit_event(event, ctx); 4281 } 4282 4283 raw_spin_lock_irqsave(&ctx->lock, flags); 4284 if (modified) 4285 clone_ctx = unclone_ctx(ctx); 4286 --ctx->pin_count; 4287 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4288 4289 unlock: 4290 mutex_unlock(&ctx->mutex); 4291 4292 put_ctx(ctx); 4293 if (clone_ctx) 4294 put_ctx(clone_ctx); 4295 } 4296 4297 struct perf_read_data { 4298 struct perf_event *event; 4299 bool group; 4300 int ret; 4301 }; 4302 4303 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4304 { 4305 u16 local_pkg, event_pkg; 4306 4307 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4308 int local_cpu = smp_processor_id(); 4309 4310 event_pkg = topology_physical_package_id(event_cpu); 4311 local_pkg = topology_physical_package_id(local_cpu); 4312 4313 if (event_pkg == local_pkg) 4314 return local_cpu; 4315 } 4316 4317 return event_cpu; 4318 } 4319 4320 /* 4321 * Cross CPU call to read the hardware event 4322 */ 4323 static void __perf_event_read(void *info) 4324 { 4325 struct perf_read_data *data = info; 4326 struct perf_event *sub, *event = data->event; 4327 struct perf_event_context *ctx = event->ctx; 4328 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4329 struct pmu *pmu = event->pmu; 4330 4331 /* 4332 * If this is a task context, we need to check whether it is 4333 * the current task context of this cpu. If not it has been 4334 * scheduled out before the smp call arrived. In that case 4335 * event->count would have been updated to a recent sample 4336 * when the event was scheduled out. 4337 */ 4338 if (ctx->task && cpuctx->task_ctx != ctx) 4339 return; 4340 4341 raw_spin_lock(&ctx->lock); 4342 if (ctx->is_active & EVENT_TIME) { 4343 update_context_time(ctx); 4344 update_cgrp_time_from_event(event); 4345 } 4346 4347 perf_event_update_time(event); 4348 if (data->group) 4349 perf_event_update_sibling_time(event); 4350 4351 if (event->state != PERF_EVENT_STATE_ACTIVE) 4352 goto unlock; 4353 4354 if (!data->group) { 4355 pmu->read(event); 4356 data->ret = 0; 4357 goto unlock; 4358 } 4359 4360 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4361 4362 pmu->read(event); 4363 4364 for_each_sibling_event(sub, event) { 4365 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4366 /* 4367 * Use sibling's PMU rather than @event's since 4368 * sibling could be on different (eg: software) PMU. 4369 */ 4370 sub->pmu->read(sub); 4371 } 4372 } 4373 4374 data->ret = pmu->commit_txn(pmu); 4375 4376 unlock: 4377 raw_spin_unlock(&ctx->lock); 4378 } 4379 4380 static inline u64 perf_event_count(struct perf_event *event) 4381 { 4382 return local64_read(&event->count) + atomic64_read(&event->child_count); 4383 } 4384 4385 /* 4386 * NMI-safe method to read a local event, that is an event that 4387 * is: 4388 * - either for the current task, or for this CPU 4389 * - does not have inherit set, for inherited task events 4390 * will not be local and we cannot read them atomically 4391 * - must not have a pmu::count method 4392 */ 4393 int perf_event_read_local(struct perf_event *event, u64 *value, 4394 u64 *enabled, u64 *running) 4395 { 4396 unsigned long flags; 4397 int ret = 0; 4398 4399 /* 4400 * Disabling interrupts avoids all counter scheduling (context 4401 * switches, timer based rotation and IPIs). 4402 */ 4403 local_irq_save(flags); 4404 4405 /* 4406 * It must not be an event with inherit set, we cannot read 4407 * all child counters from atomic context. 4408 */ 4409 if (event->attr.inherit) { 4410 ret = -EOPNOTSUPP; 4411 goto out; 4412 } 4413 4414 /* If this is a per-task event, it must be for current */ 4415 if ((event->attach_state & PERF_ATTACH_TASK) && 4416 event->hw.target != current) { 4417 ret = -EINVAL; 4418 goto out; 4419 } 4420 4421 /* If this is a per-CPU event, it must be for this CPU */ 4422 if (!(event->attach_state & PERF_ATTACH_TASK) && 4423 event->cpu != smp_processor_id()) { 4424 ret = -EINVAL; 4425 goto out; 4426 } 4427 4428 /* If this is a pinned event it must be running on this CPU */ 4429 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4430 ret = -EBUSY; 4431 goto out; 4432 } 4433 4434 /* 4435 * If the event is currently on this CPU, its either a per-task event, 4436 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4437 * oncpu == -1). 4438 */ 4439 if (event->oncpu == smp_processor_id()) 4440 event->pmu->read(event); 4441 4442 *value = local64_read(&event->count); 4443 if (enabled || running) { 4444 u64 now = event->shadow_ctx_time + perf_clock(); 4445 u64 __enabled, __running; 4446 4447 __perf_update_times(event, now, &__enabled, &__running); 4448 if (enabled) 4449 *enabled = __enabled; 4450 if (running) 4451 *running = __running; 4452 } 4453 out: 4454 local_irq_restore(flags); 4455 4456 return ret; 4457 } 4458 4459 static int perf_event_read(struct perf_event *event, bool group) 4460 { 4461 enum perf_event_state state = READ_ONCE(event->state); 4462 int event_cpu, ret = 0; 4463 4464 /* 4465 * If event is enabled and currently active on a CPU, update the 4466 * value in the event structure: 4467 */ 4468 again: 4469 if (state == PERF_EVENT_STATE_ACTIVE) { 4470 struct perf_read_data data; 4471 4472 /* 4473 * Orders the ->state and ->oncpu loads such that if we see 4474 * ACTIVE we must also see the right ->oncpu. 4475 * 4476 * Matches the smp_wmb() from event_sched_in(). 4477 */ 4478 smp_rmb(); 4479 4480 event_cpu = READ_ONCE(event->oncpu); 4481 if ((unsigned)event_cpu >= nr_cpu_ids) 4482 return 0; 4483 4484 data = (struct perf_read_data){ 4485 .event = event, 4486 .group = group, 4487 .ret = 0, 4488 }; 4489 4490 preempt_disable(); 4491 event_cpu = __perf_event_read_cpu(event, event_cpu); 4492 4493 /* 4494 * Purposely ignore the smp_call_function_single() return 4495 * value. 4496 * 4497 * If event_cpu isn't a valid CPU it means the event got 4498 * scheduled out and that will have updated the event count. 4499 * 4500 * Therefore, either way, we'll have an up-to-date event count 4501 * after this. 4502 */ 4503 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4504 preempt_enable(); 4505 ret = data.ret; 4506 4507 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4508 struct perf_event_context *ctx = event->ctx; 4509 unsigned long flags; 4510 4511 raw_spin_lock_irqsave(&ctx->lock, flags); 4512 state = event->state; 4513 if (state != PERF_EVENT_STATE_INACTIVE) { 4514 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4515 goto again; 4516 } 4517 4518 /* 4519 * May read while context is not active (e.g., thread is 4520 * blocked), in that case we cannot update context time 4521 */ 4522 if (ctx->is_active & EVENT_TIME) { 4523 update_context_time(ctx); 4524 update_cgrp_time_from_event(event); 4525 } 4526 4527 perf_event_update_time(event); 4528 if (group) 4529 perf_event_update_sibling_time(event); 4530 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4531 } 4532 4533 return ret; 4534 } 4535 4536 /* 4537 * Initialize the perf_event context in a task_struct: 4538 */ 4539 static void __perf_event_init_context(struct perf_event_context *ctx) 4540 { 4541 raw_spin_lock_init(&ctx->lock); 4542 mutex_init(&ctx->mutex); 4543 INIT_LIST_HEAD(&ctx->active_ctx_list); 4544 perf_event_groups_init(&ctx->pinned_groups); 4545 perf_event_groups_init(&ctx->flexible_groups); 4546 INIT_LIST_HEAD(&ctx->event_list); 4547 INIT_LIST_HEAD(&ctx->pinned_active); 4548 INIT_LIST_HEAD(&ctx->flexible_active); 4549 refcount_set(&ctx->refcount, 1); 4550 } 4551 4552 static struct perf_event_context * 4553 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4554 { 4555 struct perf_event_context *ctx; 4556 4557 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4558 if (!ctx) 4559 return NULL; 4560 4561 __perf_event_init_context(ctx); 4562 if (task) 4563 ctx->task = get_task_struct(task); 4564 ctx->pmu = pmu; 4565 4566 return ctx; 4567 } 4568 4569 static struct task_struct * 4570 find_lively_task_by_vpid(pid_t vpid) 4571 { 4572 struct task_struct *task; 4573 4574 rcu_read_lock(); 4575 if (!vpid) 4576 task = current; 4577 else 4578 task = find_task_by_vpid(vpid); 4579 if (task) 4580 get_task_struct(task); 4581 rcu_read_unlock(); 4582 4583 if (!task) 4584 return ERR_PTR(-ESRCH); 4585 4586 return task; 4587 } 4588 4589 /* 4590 * Returns a matching context with refcount and pincount. 4591 */ 4592 static struct perf_event_context * 4593 find_get_context(struct pmu *pmu, struct task_struct *task, 4594 struct perf_event *event) 4595 { 4596 struct perf_event_context *ctx, *clone_ctx = NULL; 4597 struct perf_cpu_context *cpuctx; 4598 void *task_ctx_data = NULL; 4599 unsigned long flags; 4600 int ctxn, err; 4601 int cpu = event->cpu; 4602 4603 if (!task) { 4604 /* Must be root to operate on a CPU event: */ 4605 err = perf_allow_cpu(&event->attr); 4606 if (err) 4607 return ERR_PTR(err); 4608 4609 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4610 ctx = &cpuctx->ctx; 4611 get_ctx(ctx); 4612 raw_spin_lock_irqsave(&ctx->lock, flags); 4613 ++ctx->pin_count; 4614 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4615 4616 return ctx; 4617 } 4618 4619 err = -EINVAL; 4620 ctxn = pmu->task_ctx_nr; 4621 if (ctxn < 0) 4622 goto errout; 4623 4624 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4625 task_ctx_data = alloc_task_ctx_data(pmu); 4626 if (!task_ctx_data) { 4627 err = -ENOMEM; 4628 goto errout; 4629 } 4630 } 4631 4632 retry: 4633 ctx = perf_lock_task_context(task, ctxn, &flags); 4634 if (ctx) { 4635 clone_ctx = unclone_ctx(ctx); 4636 ++ctx->pin_count; 4637 4638 if (task_ctx_data && !ctx->task_ctx_data) { 4639 ctx->task_ctx_data = task_ctx_data; 4640 task_ctx_data = NULL; 4641 } 4642 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4643 4644 if (clone_ctx) 4645 put_ctx(clone_ctx); 4646 } else { 4647 ctx = alloc_perf_context(pmu, task); 4648 err = -ENOMEM; 4649 if (!ctx) 4650 goto errout; 4651 4652 if (task_ctx_data) { 4653 ctx->task_ctx_data = task_ctx_data; 4654 task_ctx_data = NULL; 4655 } 4656 4657 err = 0; 4658 mutex_lock(&task->perf_event_mutex); 4659 /* 4660 * If it has already passed perf_event_exit_task(). 4661 * we must see PF_EXITING, it takes this mutex too. 4662 */ 4663 if (task->flags & PF_EXITING) 4664 err = -ESRCH; 4665 else if (task->perf_event_ctxp[ctxn]) 4666 err = -EAGAIN; 4667 else { 4668 get_ctx(ctx); 4669 ++ctx->pin_count; 4670 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4671 } 4672 mutex_unlock(&task->perf_event_mutex); 4673 4674 if (unlikely(err)) { 4675 put_ctx(ctx); 4676 4677 if (err == -EAGAIN) 4678 goto retry; 4679 goto errout; 4680 } 4681 } 4682 4683 free_task_ctx_data(pmu, task_ctx_data); 4684 return ctx; 4685 4686 errout: 4687 free_task_ctx_data(pmu, task_ctx_data); 4688 return ERR_PTR(err); 4689 } 4690 4691 static void perf_event_free_filter(struct perf_event *event); 4692 static void perf_event_free_bpf_prog(struct perf_event *event); 4693 4694 static void free_event_rcu(struct rcu_head *head) 4695 { 4696 struct perf_event *event; 4697 4698 event = container_of(head, struct perf_event, rcu_head); 4699 if (event->ns) 4700 put_pid_ns(event->ns); 4701 perf_event_free_filter(event); 4702 kmem_cache_free(perf_event_cache, event); 4703 } 4704 4705 static void ring_buffer_attach(struct perf_event *event, 4706 struct perf_buffer *rb); 4707 4708 static void detach_sb_event(struct perf_event *event) 4709 { 4710 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4711 4712 raw_spin_lock(&pel->lock); 4713 list_del_rcu(&event->sb_list); 4714 raw_spin_unlock(&pel->lock); 4715 } 4716 4717 static bool is_sb_event(struct perf_event *event) 4718 { 4719 struct perf_event_attr *attr = &event->attr; 4720 4721 if (event->parent) 4722 return false; 4723 4724 if (event->attach_state & PERF_ATTACH_TASK) 4725 return false; 4726 4727 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4728 attr->comm || attr->comm_exec || 4729 attr->task || attr->ksymbol || 4730 attr->context_switch || attr->text_poke || 4731 attr->bpf_event) 4732 return true; 4733 return false; 4734 } 4735 4736 static void unaccount_pmu_sb_event(struct perf_event *event) 4737 { 4738 if (is_sb_event(event)) 4739 detach_sb_event(event); 4740 } 4741 4742 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4743 { 4744 if (event->parent) 4745 return; 4746 4747 if (is_cgroup_event(event)) 4748 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4749 } 4750 4751 #ifdef CONFIG_NO_HZ_FULL 4752 static DEFINE_SPINLOCK(nr_freq_lock); 4753 #endif 4754 4755 static void unaccount_freq_event_nohz(void) 4756 { 4757 #ifdef CONFIG_NO_HZ_FULL 4758 spin_lock(&nr_freq_lock); 4759 if (atomic_dec_and_test(&nr_freq_events)) 4760 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4761 spin_unlock(&nr_freq_lock); 4762 #endif 4763 } 4764 4765 static void unaccount_freq_event(void) 4766 { 4767 if (tick_nohz_full_enabled()) 4768 unaccount_freq_event_nohz(); 4769 else 4770 atomic_dec(&nr_freq_events); 4771 } 4772 4773 static void unaccount_event(struct perf_event *event) 4774 { 4775 bool dec = false; 4776 4777 if (event->parent) 4778 return; 4779 4780 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4781 dec = true; 4782 if (event->attr.mmap || event->attr.mmap_data) 4783 atomic_dec(&nr_mmap_events); 4784 if (event->attr.build_id) 4785 atomic_dec(&nr_build_id_events); 4786 if (event->attr.comm) 4787 atomic_dec(&nr_comm_events); 4788 if (event->attr.namespaces) 4789 atomic_dec(&nr_namespaces_events); 4790 if (event->attr.cgroup) 4791 atomic_dec(&nr_cgroup_events); 4792 if (event->attr.task) 4793 atomic_dec(&nr_task_events); 4794 if (event->attr.freq) 4795 unaccount_freq_event(); 4796 if (event->attr.context_switch) { 4797 dec = true; 4798 atomic_dec(&nr_switch_events); 4799 } 4800 if (is_cgroup_event(event)) 4801 dec = true; 4802 if (has_branch_stack(event)) 4803 dec = true; 4804 if (event->attr.ksymbol) 4805 atomic_dec(&nr_ksymbol_events); 4806 if (event->attr.bpf_event) 4807 atomic_dec(&nr_bpf_events); 4808 if (event->attr.text_poke) 4809 atomic_dec(&nr_text_poke_events); 4810 4811 if (dec) { 4812 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4813 schedule_delayed_work(&perf_sched_work, HZ); 4814 } 4815 4816 unaccount_event_cpu(event, event->cpu); 4817 4818 unaccount_pmu_sb_event(event); 4819 } 4820 4821 static void perf_sched_delayed(struct work_struct *work) 4822 { 4823 mutex_lock(&perf_sched_mutex); 4824 if (atomic_dec_and_test(&perf_sched_count)) 4825 static_branch_disable(&perf_sched_events); 4826 mutex_unlock(&perf_sched_mutex); 4827 } 4828 4829 /* 4830 * The following implement mutual exclusion of events on "exclusive" pmus 4831 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4832 * at a time, so we disallow creating events that might conflict, namely: 4833 * 4834 * 1) cpu-wide events in the presence of per-task events, 4835 * 2) per-task events in the presence of cpu-wide events, 4836 * 3) two matching events on the same context. 4837 * 4838 * The former two cases are handled in the allocation path (perf_event_alloc(), 4839 * _free_event()), the latter -- before the first perf_install_in_context(). 4840 */ 4841 static int exclusive_event_init(struct perf_event *event) 4842 { 4843 struct pmu *pmu = event->pmu; 4844 4845 if (!is_exclusive_pmu(pmu)) 4846 return 0; 4847 4848 /* 4849 * Prevent co-existence of per-task and cpu-wide events on the 4850 * same exclusive pmu. 4851 * 4852 * Negative pmu::exclusive_cnt means there are cpu-wide 4853 * events on this "exclusive" pmu, positive means there are 4854 * per-task events. 4855 * 4856 * Since this is called in perf_event_alloc() path, event::ctx 4857 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4858 * to mean "per-task event", because unlike other attach states it 4859 * never gets cleared. 4860 */ 4861 if (event->attach_state & PERF_ATTACH_TASK) { 4862 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4863 return -EBUSY; 4864 } else { 4865 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4866 return -EBUSY; 4867 } 4868 4869 return 0; 4870 } 4871 4872 static void exclusive_event_destroy(struct perf_event *event) 4873 { 4874 struct pmu *pmu = event->pmu; 4875 4876 if (!is_exclusive_pmu(pmu)) 4877 return; 4878 4879 /* see comment in exclusive_event_init() */ 4880 if (event->attach_state & PERF_ATTACH_TASK) 4881 atomic_dec(&pmu->exclusive_cnt); 4882 else 4883 atomic_inc(&pmu->exclusive_cnt); 4884 } 4885 4886 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4887 { 4888 if ((e1->pmu == e2->pmu) && 4889 (e1->cpu == e2->cpu || 4890 e1->cpu == -1 || 4891 e2->cpu == -1)) 4892 return true; 4893 return false; 4894 } 4895 4896 static bool exclusive_event_installable(struct perf_event *event, 4897 struct perf_event_context *ctx) 4898 { 4899 struct perf_event *iter_event; 4900 struct pmu *pmu = event->pmu; 4901 4902 lockdep_assert_held(&ctx->mutex); 4903 4904 if (!is_exclusive_pmu(pmu)) 4905 return true; 4906 4907 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4908 if (exclusive_event_match(iter_event, event)) 4909 return false; 4910 } 4911 4912 return true; 4913 } 4914 4915 static void perf_addr_filters_splice(struct perf_event *event, 4916 struct list_head *head); 4917 4918 static void _free_event(struct perf_event *event) 4919 { 4920 irq_work_sync(&event->pending); 4921 4922 unaccount_event(event); 4923 4924 security_perf_event_free(event); 4925 4926 if (event->rb) { 4927 /* 4928 * Can happen when we close an event with re-directed output. 4929 * 4930 * Since we have a 0 refcount, perf_mmap_close() will skip 4931 * over us; possibly making our ring_buffer_put() the last. 4932 */ 4933 mutex_lock(&event->mmap_mutex); 4934 ring_buffer_attach(event, NULL); 4935 mutex_unlock(&event->mmap_mutex); 4936 } 4937 4938 if (is_cgroup_event(event)) 4939 perf_detach_cgroup(event); 4940 4941 if (!event->parent) { 4942 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4943 put_callchain_buffers(); 4944 } 4945 4946 perf_event_free_bpf_prog(event); 4947 perf_addr_filters_splice(event, NULL); 4948 kfree(event->addr_filter_ranges); 4949 4950 if (event->destroy) 4951 event->destroy(event); 4952 4953 /* 4954 * Must be after ->destroy(), due to uprobe_perf_close() using 4955 * hw.target. 4956 */ 4957 if (event->hw.target) 4958 put_task_struct(event->hw.target); 4959 4960 /* 4961 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4962 * all task references must be cleaned up. 4963 */ 4964 if (event->ctx) 4965 put_ctx(event->ctx); 4966 4967 exclusive_event_destroy(event); 4968 module_put(event->pmu->module); 4969 4970 call_rcu(&event->rcu_head, free_event_rcu); 4971 } 4972 4973 /* 4974 * Used to free events which have a known refcount of 1, such as in error paths 4975 * where the event isn't exposed yet and inherited events. 4976 */ 4977 static void free_event(struct perf_event *event) 4978 { 4979 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4980 "unexpected event refcount: %ld; ptr=%p\n", 4981 atomic_long_read(&event->refcount), event)) { 4982 /* leak to avoid use-after-free */ 4983 return; 4984 } 4985 4986 _free_event(event); 4987 } 4988 4989 /* 4990 * Remove user event from the owner task. 4991 */ 4992 static void perf_remove_from_owner(struct perf_event *event) 4993 { 4994 struct task_struct *owner; 4995 4996 rcu_read_lock(); 4997 /* 4998 * Matches the smp_store_release() in perf_event_exit_task(). If we 4999 * observe !owner it means the list deletion is complete and we can 5000 * indeed free this event, otherwise we need to serialize on 5001 * owner->perf_event_mutex. 5002 */ 5003 owner = READ_ONCE(event->owner); 5004 if (owner) { 5005 /* 5006 * Since delayed_put_task_struct() also drops the last 5007 * task reference we can safely take a new reference 5008 * while holding the rcu_read_lock(). 5009 */ 5010 get_task_struct(owner); 5011 } 5012 rcu_read_unlock(); 5013 5014 if (owner) { 5015 /* 5016 * If we're here through perf_event_exit_task() we're already 5017 * holding ctx->mutex which would be an inversion wrt. the 5018 * normal lock order. 5019 * 5020 * However we can safely take this lock because its the child 5021 * ctx->mutex. 5022 */ 5023 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5024 5025 /* 5026 * We have to re-check the event->owner field, if it is cleared 5027 * we raced with perf_event_exit_task(), acquiring the mutex 5028 * ensured they're done, and we can proceed with freeing the 5029 * event. 5030 */ 5031 if (event->owner) { 5032 list_del_init(&event->owner_entry); 5033 smp_store_release(&event->owner, NULL); 5034 } 5035 mutex_unlock(&owner->perf_event_mutex); 5036 put_task_struct(owner); 5037 } 5038 } 5039 5040 static void put_event(struct perf_event *event) 5041 { 5042 if (!atomic_long_dec_and_test(&event->refcount)) 5043 return; 5044 5045 _free_event(event); 5046 } 5047 5048 /* 5049 * Kill an event dead; while event:refcount will preserve the event 5050 * object, it will not preserve its functionality. Once the last 'user' 5051 * gives up the object, we'll destroy the thing. 5052 */ 5053 int perf_event_release_kernel(struct perf_event *event) 5054 { 5055 struct perf_event_context *ctx = event->ctx; 5056 struct perf_event *child, *tmp; 5057 LIST_HEAD(free_list); 5058 5059 /* 5060 * If we got here through err_file: fput(event_file); we will not have 5061 * attached to a context yet. 5062 */ 5063 if (!ctx) { 5064 WARN_ON_ONCE(event->attach_state & 5065 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5066 goto no_ctx; 5067 } 5068 5069 if (!is_kernel_event(event)) 5070 perf_remove_from_owner(event); 5071 5072 ctx = perf_event_ctx_lock(event); 5073 WARN_ON_ONCE(ctx->parent_ctx); 5074 perf_remove_from_context(event, DETACH_GROUP); 5075 5076 raw_spin_lock_irq(&ctx->lock); 5077 /* 5078 * Mark this event as STATE_DEAD, there is no external reference to it 5079 * anymore. 5080 * 5081 * Anybody acquiring event->child_mutex after the below loop _must_ 5082 * also see this, most importantly inherit_event() which will avoid 5083 * placing more children on the list. 5084 * 5085 * Thus this guarantees that we will in fact observe and kill _ALL_ 5086 * child events. 5087 */ 5088 event->state = PERF_EVENT_STATE_DEAD; 5089 raw_spin_unlock_irq(&ctx->lock); 5090 5091 perf_event_ctx_unlock(event, ctx); 5092 5093 again: 5094 mutex_lock(&event->child_mutex); 5095 list_for_each_entry(child, &event->child_list, child_list) { 5096 5097 /* 5098 * Cannot change, child events are not migrated, see the 5099 * comment with perf_event_ctx_lock_nested(). 5100 */ 5101 ctx = READ_ONCE(child->ctx); 5102 /* 5103 * Since child_mutex nests inside ctx::mutex, we must jump 5104 * through hoops. We start by grabbing a reference on the ctx. 5105 * 5106 * Since the event cannot get freed while we hold the 5107 * child_mutex, the context must also exist and have a !0 5108 * reference count. 5109 */ 5110 get_ctx(ctx); 5111 5112 /* 5113 * Now that we have a ctx ref, we can drop child_mutex, and 5114 * acquire ctx::mutex without fear of it going away. Then we 5115 * can re-acquire child_mutex. 5116 */ 5117 mutex_unlock(&event->child_mutex); 5118 mutex_lock(&ctx->mutex); 5119 mutex_lock(&event->child_mutex); 5120 5121 /* 5122 * Now that we hold ctx::mutex and child_mutex, revalidate our 5123 * state, if child is still the first entry, it didn't get freed 5124 * and we can continue doing so. 5125 */ 5126 tmp = list_first_entry_or_null(&event->child_list, 5127 struct perf_event, child_list); 5128 if (tmp == child) { 5129 perf_remove_from_context(child, DETACH_GROUP); 5130 list_move(&child->child_list, &free_list); 5131 /* 5132 * This matches the refcount bump in inherit_event(); 5133 * this can't be the last reference. 5134 */ 5135 put_event(event); 5136 } 5137 5138 mutex_unlock(&event->child_mutex); 5139 mutex_unlock(&ctx->mutex); 5140 put_ctx(ctx); 5141 goto again; 5142 } 5143 mutex_unlock(&event->child_mutex); 5144 5145 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5146 void *var = &child->ctx->refcount; 5147 5148 list_del(&child->child_list); 5149 free_event(child); 5150 5151 /* 5152 * Wake any perf_event_free_task() waiting for this event to be 5153 * freed. 5154 */ 5155 smp_mb(); /* pairs with wait_var_event() */ 5156 wake_up_var(var); 5157 } 5158 5159 no_ctx: 5160 put_event(event); /* Must be the 'last' reference */ 5161 return 0; 5162 } 5163 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5164 5165 /* 5166 * Called when the last reference to the file is gone. 5167 */ 5168 static int perf_release(struct inode *inode, struct file *file) 5169 { 5170 perf_event_release_kernel(file->private_data); 5171 return 0; 5172 } 5173 5174 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5175 { 5176 struct perf_event *child; 5177 u64 total = 0; 5178 5179 *enabled = 0; 5180 *running = 0; 5181 5182 mutex_lock(&event->child_mutex); 5183 5184 (void)perf_event_read(event, false); 5185 total += perf_event_count(event); 5186 5187 *enabled += event->total_time_enabled + 5188 atomic64_read(&event->child_total_time_enabled); 5189 *running += event->total_time_running + 5190 atomic64_read(&event->child_total_time_running); 5191 5192 list_for_each_entry(child, &event->child_list, child_list) { 5193 (void)perf_event_read(child, false); 5194 total += perf_event_count(child); 5195 *enabled += child->total_time_enabled; 5196 *running += child->total_time_running; 5197 } 5198 mutex_unlock(&event->child_mutex); 5199 5200 return total; 5201 } 5202 5203 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5204 { 5205 struct perf_event_context *ctx; 5206 u64 count; 5207 5208 ctx = perf_event_ctx_lock(event); 5209 count = __perf_event_read_value(event, enabled, running); 5210 perf_event_ctx_unlock(event, ctx); 5211 5212 return count; 5213 } 5214 EXPORT_SYMBOL_GPL(perf_event_read_value); 5215 5216 static int __perf_read_group_add(struct perf_event *leader, 5217 u64 read_format, u64 *values) 5218 { 5219 struct perf_event_context *ctx = leader->ctx; 5220 struct perf_event *sub; 5221 unsigned long flags; 5222 int n = 1; /* skip @nr */ 5223 int ret; 5224 5225 ret = perf_event_read(leader, true); 5226 if (ret) 5227 return ret; 5228 5229 raw_spin_lock_irqsave(&ctx->lock, flags); 5230 5231 /* 5232 * Since we co-schedule groups, {enabled,running} times of siblings 5233 * will be identical to those of the leader, so we only publish one 5234 * set. 5235 */ 5236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5237 values[n++] += leader->total_time_enabled + 5238 atomic64_read(&leader->child_total_time_enabled); 5239 } 5240 5241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5242 values[n++] += leader->total_time_running + 5243 atomic64_read(&leader->child_total_time_running); 5244 } 5245 5246 /* 5247 * Write {count,id} tuples for every sibling. 5248 */ 5249 values[n++] += perf_event_count(leader); 5250 if (read_format & PERF_FORMAT_ID) 5251 values[n++] = primary_event_id(leader); 5252 5253 for_each_sibling_event(sub, leader) { 5254 values[n++] += perf_event_count(sub); 5255 if (read_format & PERF_FORMAT_ID) 5256 values[n++] = primary_event_id(sub); 5257 } 5258 5259 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5260 return 0; 5261 } 5262 5263 static int perf_read_group(struct perf_event *event, 5264 u64 read_format, char __user *buf) 5265 { 5266 struct perf_event *leader = event->group_leader, *child; 5267 struct perf_event_context *ctx = leader->ctx; 5268 int ret; 5269 u64 *values; 5270 5271 lockdep_assert_held(&ctx->mutex); 5272 5273 values = kzalloc(event->read_size, GFP_KERNEL); 5274 if (!values) 5275 return -ENOMEM; 5276 5277 values[0] = 1 + leader->nr_siblings; 5278 5279 /* 5280 * By locking the child_mutex of the leader we effectively 5281 * lock the child list of all siblings.. XXX explain how. 5282 */ 5283 mutex_lock(&leader->child_mutex); 5284 5285 ret = __perf_read_group_add(leader, read_format, values); 5286 if (ret) 5287 goto unlock; 5288 5289 list_for_each_entry(child, &leader->child_list, child_list) { 5290 ret = __perf_read_group_add(child, read_format, values); 5291 if (ret) 5292 goto unlock; 5293 } 5294 5295 mutex_unlock(&leader->child_mutex); 5296 5297 ret = event->read_size; 5298 if (copy_to_user(buf, values, event->read_size)) 5299 ret = -EFAULT; 5300 goto out; 5301 5302 unlock: 5303 mutex_unlock(&leader->child_mutex); 5304 out: 5305 kfree(values); 5306 return ret; 5307 } 5308 5309 static int perf_read_one(struct perf_event *event, 5310 u64 read_format, char __user *buf) 5311 { 5312 u64 enabled, running; 5313 u64 values[4]; 5314 int n = 0; 5315 5316 values[n++] = __perf_event_read_value(event, &enabled, &running); 5317 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5318 values[n++] = enabled; 5319 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5320 values[n++] = running; 5321 if (read_format & PERF_FORMAT_ID) 5322 values[n++] = primary_event_id(event); 5323 5324 if (copy_to_user(buf, values, n * sizeof(u64))) 5325 return -EFAULT; 5326 5327 return n * sizeof(u64); 5328 } 5329 5330 static bool is_event_hup(struct perf_event *event) 5331 { 5332 bool no_children; 5333 5334 if (event->state > PERF_EVENT_STATE_EXIT) 5335 return false; 5336 5337 mutex_lock(&event->child_mutex); 5338 no_children = list_empty(&event->child_list); 5339 mutex_unlock(&event->child_mutex); 5340 return no_children; 5341 } 5342 5343 /* 5344 * Read the performance event - simple non blocking version for now 5345 */ 5346 static ssize_t 5347 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5348 { 5349 u64 read_format = event->attr.read_format; 5350 int ret; 5351 5352 /* 5353 * Return end-of-file for a read on an event that is in 5354 * error state (i.e. because it was pinned but it couldn't be 5355 * scheduled on to the CPU at some point). 5356 */ 5357 if (event->state == PERF_EVENT_STATE_ERROR) 5358 return 0; 5359 5360 if (count < event->read_size) 5361 return -ENOSPC; 5362 5363 WARN_ON_ONCE(event->ctx->parent_ctx); 5364 if (read_format & PERF_FORMAT_GROUP) 5365 ret = perf_read_group(event, read_format, buf); 5366 else 5367 ret = perf_read_one(event, read_format, buf); 5368 5369 return ret; 5370 } 5371 5372 static ssize_t 5373 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5374 { 5375 struct perf_event *event = file->private_data; 5376 struct perf_event_context *ctx; 5377 int ret; 5378 5379 ret = security_perf_event_read(event); 5380 if (ret) 5381 return ret; 5382 5383 ctx = perf_event_ctx_lock(event); 5384 ret = __perf_read(event, buf, count); 5385 perf_event_ctx_unlock(event, ctx); 5386 5387 return ret; 5388 } 5389 5390 static __poll_t perf_poll(struct file *file, poll_table *wait) 5391 { 5392 struct perf_event *event = file->private_data; 5393 struct perf_buffer *rb; 5394 __poll_t events = EPOLLHUP; 5395 5396 poll_wait(file, &event->waitq, wait); 5397 5398 if (is_event_hup(event)) 5399 return events; 5400 5401 /* 5402 * Pin the event->rb by taking event->mmap_mutex; otherwise 5403 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5404 */ 5405 mutex_lock(&event->mmap_mutex); 5406 rb = event->rb; 5407 if (rb) 5408 events = atomic_xchg(&rb->poll, 0); 5409 mutex_unlock(&event->mmap_mutex); 5410 return events; 5411 } 5412 5413 static void _perf_event_reset(struct perf_event *event) 5414 { 5415 (void)perf_event_read(event, false); 5416 local64_set(&event->count, 0); 5417 perf_event_update_userpage(event); 5418 } 5419 5420 /* Assume it's not an event with inherit set. */ 5421 u64 perf_event_pause(struct perf_event *event, bool reset) 5422 { 5423 struct perf_event_context *ctx; 5424 u64 count; 5425 5426 ctx = perf_event_ctx_lock(event); 5427 WARN_ON_ONCE(event->attr.inherit); 5428 _perf_event_disable(event); 5429 count = local64_read(&event->count); 5430 if (reset) 5431 local64_set(&event->count, 0); 5432 perf_event_ctx_unlock(event, ctx); 5433 5434 return count; 5435 } 5436 EXPORT_SYMBOL_GPL(perf_event_pause); 5437 5438 /* 5439 * Holding the top-level event's child_mutex means that any 5440 * descendant process that has inherited this event will block 5441 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5442 * task existence requirements of perf_event_enable/disable. 5443 */ 5444 static void perf_event_for_each_child(struct perf_event *event, 5445 void (*func)(struct perf_event *)) 5446 { 5447 struct perf_event *child; 5448 5449 WARN_ON_ONCE(event->ctx->parent_ctx); 5450 5451 mutex_lock(&event->child_mutex); 5452 func(event); 5453 list_for_each_entry(child, &event->child_list, child_list) 5454 func(child); 5455 mutex_unlock(&event->child_mutex); 5456 } 5457 5458 static void perf_event_for_each(struct perf_event *event, 5459 void (*func)(struct perf_event *)) 5460 { 5461 struct perf_event_context *ctx = event->ctx; 5462 struct perf_event *sibling; 5463 5464 lockdep_assert_held(&ctx->mutex); 5465 5466 event = event->group_leader; 5467 5468 perf_event_for_each_child(event, func); 5469 for_each_sibling_event(sibling, event) 5470 perf_event_for_each_child(sibling, func); 5471 } 5472 5473 static void __perf_event_period(struct perf_event *event, 5474 struct perf_cpu_context *cpuctx, 5475 struct perf_event_context *ctx, 5476 void *info) 5477 { 5478 u64 value = *((u64 *)info); 5479 bool active; 5480 5481 if (event->attr.freq) { 5482 event->attr.sample_freq = value; 5483 } else { 5484 event->attr.sample_period = value; 5485 event->hw.sample_period = value; 5486 } 5487 5488 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5489 if (active) { 5490 perf_pmu_disable(ctx->pmu); 5491 /* 5492 * We could be throttled; unthrottle now to avoid the tick 5493 * trying to unthrottle while we already re-started the event. 5494 */ 5495 if (event->hw.interrupts == MAX_INTERRUPTS) { 5496 event->hw.interrupts = 0; 5497 perf_log_throttle(event, 1); 5498 } 5499 event->pmu->stop(event, PERF_EF_UPDATE); 5500 } 5501 5502 local64_set(&event->hw.period_left, 0); 5503 5504 if (active) { 5505 event->pmu->start(event, PERF_EF_RELOAD); 5506 perf_pmu_enable(ctx->pmu); 5507 } 5508 } 5509 5510 static int perf_event_check_period(struct perf_event *event, u64 value) 5511 { 5512 return event->pmu->check_period(event, value); 5513 } 5514 5515 static int _perf_event_period(struct perf_event *event, u64 value) 5516 { 5517 if (!is_sampling_event(event)) 5518 return -EINVAL; 5519 5520 if (!value) 5521 return -EINVAL; 5522 5523 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5524 return -EINVAL; 5525 5526 if (perf_event_check_period(event, value)) 5527 return -EINVAL; 5528 5529 if (!event->attr.freq && (value & (1ULL << 63))) 5530 return -EINVAL; 5531 5532 event_function_call(event, __perf_event_period, &value); 5533 5534 return 0; 5535 } 5536 5537 int perf_event_period(struct perf_event *event, u64 value) 5538 { 5539 struct perf_event_context *ctx; 5540 int ret; 5541 5542 ctx = perf_event_ctx_lock(event); 5543 ret = _perf_event_period(event, value); 5544 perf_event_ctx_unlock(event, ctx); 5545 5546 return ret; 5547 } 5548 EXPORT_SYMBOL_GPL(perf_event_period); 5549 5550 static const struct file_operations perf_fops; 5551 5552 static inline int perf_fget_light(int fd, struct fd *p) 5553 { 5554 struct fd f = fdget(fd); 5555 if (!f.file) 5556 return -EBADF; 5557 5558 if (f.file->f_op != &perf_fops) { 5559 fdput(f); 5560 return -EBADF; 5561 } 5562 *p = f; 5563 return 0; 5564 } 5565 5566 static int perf_event_set_output(struct perf_event *event, 5567 struct perf_event *output_event); 5568 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5569 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5570 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5571 struct perf_event_attr *attr); 5572 5573 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5574 { 5575 void (*func)(struct perf_event *); 5576 u32 flags = arg; 5577 5578 switch (cmd) { 5579 case PERF_EVENT_IOC_ENABLE: 5580 func = _perf_event_enable; 5581 break; 5582 case PERF_EVENT_IOC_DISABLE: 5583 func = _perf_event_disable; 5584 break; 5585 case PERF_EVENT_IOC_RESET: 5586 func = _perf_event_reset; 5587 break; 5588 5589 case PERF_EVENT_IOC_REFRESH: 5590 return _perf_event_refresh(event, arg); 5591 5592 case PERF_EVENT_IOC_PERIOD: 5593 { 5594 u64 value; 5595 5596 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5597 return -EFAULT; 5598 5599 return _perf_event_period(event, value); 5600 } 5601 case PERF_EVENT_IOC_ID: 5602 { 5603 u64 id = primary_event_id(event); 5604 5605 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5606 return -EFAULT; 5607 return 0; 5608 } 5609 5610 case PERF_EVENT_IOC_SET_OUTPUT: 5611 { 5612 int ret; 5613 if (arg != -1) { 5614 struct perf_event *output_event; 5615 struct fd output; 5616 ret = perf_fget_light(arg, &output); 5617 if (ret) 5618 return ret; 5619 output_event = output.file->private_data; 5620 ret = perf_event_set_output(event, output_event); 5621 fdput(output); 5622 } else { 5623 ret = perf_event_set_output(event, NULL); 5624 } 5625 return ret; 5626 } 5627 5628 case PERF_EVENT_IOC_SET_FILTER: 5629 return perf_event_set_filter(event, (void __user *)arg); 5630 5631 case PERF_EVENT_IOC_SET_BPF: 5632 return perf_event_set_bpf_prog(event, arg); 5633 5634 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5635 struct perf_buffer *rb; 5636 5637 rcu_read_lock(); 5638 rb = rcu_dereference(event->rb); 5639 if (!rb || !rb->nr_pages) { 5640 rcu_read_unlock(); 5641 return -EINVAL; 5642 } 5643 rb_toggle_paused(rb, !!arg); 5644 rcu_read_unlock(); 5645 return 0; 5646 } 5647 5648 case PERF_EVENT_IOC_QUERY_BPF: 5649 return perf_event_query_prog_array(event, (void __user *)arg); 5650 5651 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5652 struct perf_event_attr new_attr; 5653 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5654 &new_attr); 5655 5656 if (err) 5657 return err; 5658 5659 return perf_event_modify_attr(event, &new_attr); 5660 } 5661 default: 5662 return -ENOTTY; 5663 } 5664 5665 if (flags & PERF_IOC_FLAG_GROUP) 5666 perf_event_for_each(event, func); 5667 else 5668 perf_event_for_each_child(event, func); 5669 5670 return 0; 5671 } 5672 5673 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5674 { 5675 struct perf_event *event = file->private_data; 5676 struct perf_event_context *ctx; 5677 long ret; 5678 5679 /* Treat ioctl like writes as it is likely a mutating operation. */ 5680 ret = security_perf_event_write(event); 5681 if (ret) 5682 return ret; 5683 5684 ctx = perf_event_ctx_lock(event); 5685 ret = _perf_ioctl(event, cmd, arg); 5686 perf_event_ctx_unlock(event, ctx); 5687 5688 return ret; 5689 } 5690 5691 #ifdef CONFIG_COMPAT 5692 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5693 unsigned long arg) 5694 { 5695 switch (_IOC_NR(cmd)) { 5696 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5697 case _IOC_NR(PERF_EVENT_IOC_ID): 5698 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5699 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5700 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5701 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5702 cmd &= ~IOCSIZE_MASK; 5703 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5704 } 5705 break; 5706 } 5707 return perf_ioctl(file, cmd, arg); 5708 } 5709 #else 5710 # define perf_compat_ioctl NULL 5711 #endif 5712 5713 int perf_event_task_enable(void) 5714 { 5715 struct perf_event_context *ctx; 5716 struct perf_event *event; 5717 5718 mutex_lock(¤t->perf_event_mutex); 5719 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5720 ctx = perf_event_ctx_lock(event); 5721 perf_event_for_each_child(event, _perf_event_enable); 5722 perf_event_ctx_unlock(event, ctx); 5723 } 5724 mutex_unlock(¤t->perf_event_mutex); 5725 5726 return 0; 5727 } 5728 5729 int perf_event_task_disable(void) 5730 { 5731 struct perf_event_context *ctx; 5732 struct perf_event *event; 5733 5734 mutex_lock(¤t->perf_event_mutex); 5735 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5736 ctx = perf_event_ctx_lock(event); 5737 perf_event_for_each_child(event, _perf_event_disable); 5738 perf_event_ctx_unlock(event, ctx); 5739 } 5740 mutex_unlock(¤t->perf_event_mutex); 5741 5742 return 0; 5743 } 5744 5745 static int perf_event_index(struct perf_event *event) 5746 { 5747 if (event->hw.state & PERF_HES_STOPPED) 5748 return 0; 5749 5750 if (event->state != PERF_EVENT_STATE_ACTIVE) 5751 return 0; 5752 5753 return event->pmu->event_idx(event); 5754 } 5755 5756 static void calc_timer_values(struct perf_event *event, 5757 u64 *now, 5758 u64 *enabled, 5759 u64 *running) 5760 { 5761 u64 ctx_time; 5762 5763 *now = perf_clock(); 5764 ctx_time = event->shadow_ctx_time + *now; 5765 __perf_update_times(event, ctx_time, enabled, running); 5766 } 5767 5768 static void perf_event_init_userpage(struct perf_event *event) 5769 { 5770 struct perf_event_mmap_page *userpg; 5771 struct perf_buffer *rb; 5772 5773 rcu_read_lock(); 5774 rb = rcu_dereference(event->rb); 5775 if (!rb) 5776 goto unlock; 5777 5778 userpg = rb->user_page; 5779 5780 /* Allow new userspace to detect that bit 0 is deprecated */ 5781 userpg->cap_bit0_is_deprecated = 1; 5782 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5783 userpg->data_offset = PAGE_SIZE; 5784 userpg->data_size = perf_data_size(rb); 5785 5786 unlock: 5787 rcu_read_unlock(); 5788 } 5789 5790 void __weak arch_perf_update_userpage( 5791 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5792 { 5793 } 5794 5795 /* 5796 * Callers need to ensure there can be no nesting of this function, otherwise 5797 * the seqlock logic goes bad. We can not serialize this because the arch 5798 * code calls this from NMI context. 5799 */ 5800 void perf_event_update_userpage(struct perf_event *event) 5801 { 5802 struct perf_event_mmap_page *userpg; 5803 struct perf_buffer *rb; 5804 u64 enabled, running, now; 5805 5806 rcu_read_lock(); 5807 rb = rcu_dereference(event->rb); 5808 if (!rb) 5809 goto unlock; 5810 5811 /* 5812 * compute total_time_enabled, total_time_running 5813 * based on snapshot values taken when the event 5814 * was last scheduled in. 5815 * 5816 * we cannot simply called update_context_time() 5817 * because of locking issue as we can be called in 5818 * NMI context 5819 */ 5820 calc_timer_values(event, &now, &enabled, &running); 5821 5822 userpg = rb->user_page; 5823 /* 5824 * Disable preemption to guarantee consistent time stamps are stored to 5825 * the user page. 5826 */ 5827 preempt_disable(); 5828 ++userpg->lock; 5829 barrier(); 5830 userpg->index = perf_event_index(event); 5831 userpg->offset = perf_event_count(event); 5832 if (userpg->index) 5833 userpg->offset -= local64_read(&event->hw.prev_count); 5834 5835 userpg->time_enabled = enabled + 5836 atomic64_read(&event->child_total_time_enabled); 5837 5838 userpg->time_running = running + 5839 atomic64_read(&event->child_total_time_running); 5840 5841 arch_perf_update_userpage(event, userpg, now); 5842 5843 barrier(); 5844 ++userpg->lock; 5845 preempt_enable(); 5846 unlock: 5847 rcu_read_unlock(); 5848 } 5849 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5850 5851 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5852 { 5853 struct perf_event *event = vmf->vma->vm_file->private_data; 5854 struct perf_buffer *rb; 5855 vm_fault_t ret = VM_FAULT_SIGBUS; 5856 5857 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5858 if (vmf->pgoff == 0) 5859 ret = 0; 5860 return ret; 5861 } 5862 5863 rcu_read_lock(); 5864 rb = rcu_dereference(event->rb); 5865 if (!rb) 5866 goto unlock; 5867 5868 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5869 goto unlock; 5870 5871 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5872 if (!vmf->page) 5873 goto unlock; 5874 5875 get_page(vmf->page); 5876 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5877 vmf->page->index = vmf->pgoff; 5878 5879 ret = 0; 5880 unlock: 5881 rcu_read_unlock(); 5882 5883 return ret; 5884 } 5885 5886 static void ring_buffer_attach(struct perf_event *event, 5887 struct perf_buffer *rb) 5888 { 5889 struct perf_buffer *old_rb = NULL; 5890 unsigned long flags; 5891 5892 if (event->rb) { 5893 /* 5894 * Should be impossible, we set this when removing 5895 * event->rb_entry and wait/clear when adding event->rb_entry. 5896 */ 5897 WARN_ON_ONCE(event->rcu_pending); 5898 5899 old_rb = event->rb; 5900 spin_lock_irqsave(&old_rb->event_lock, flags); 5901 list_del_rcu(&event->rb_entry); 5902 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5903 5904 event->rcu_batches = get_state_synchronize_rcu(); 5905 event->rcu_pending = 1; 5906 } 5907 5908 if (rb) { 5909 if (event->rcu_pending) { 5910 cond_synchronize_rcu(event->rcu_batches); 5911 event->rcu_pending = 0; 5912 } 5913 5914 spin_lock_irqsave(&rb->event_lock, flags); 5915 list_add_rcu(&event->rb_entry, &rb->event_list); 5916 spin_unlock_irqrestore(&rb->event_lock, flags); 5917 } 5918 5919 /* 5920 * Avoid racing with perf_mmap_close(AUX): stop the event 5921 * before swizzling the event::rb pointer; if it's getting 5922 * unmapped, its aux_mmap_count will be 0 and it won't 5923 * restart. See the comment in __perf_pmu_output_stop(). 5924 * 5925 * Data will inevitably be lost when set_output is done in 5926 * mid-air, but then again, whoever does it like this is 5927 * not in for the data anyway. 5928 */ 5929 if (has_aux(event)) 5930 perf_event_stop(event, 0); 5931 5932 rcu_assign_pointer(event->rb, rb); 5933 5934 if (old_rb) { 5935 ring_buffer_put(old_rb); 5936 /* 5937 * Since we detached before setting the new rb, so that we 5938 * could attach the new rb, we could have missed a wakeup. 5939 * Provide it now. 5940 */ 5941 wake_up_all(&event->waitq); 5942 } 5943 } 5944 5945 static void ring_buffer_wakeup(struct perf_event *event) 5946 { 5947 struct perf_buffer *rb; 5948 5949 rcu_read_lock(); 5950 rb = rcu_dereference(event->rb); 5951 if (rb) { 5952 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5953 wake_up_all(&event->waitq); 5954 } 5955 rcu_read_unlock(); 5956 } 5957 5958 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5959 { 5960 struct perf_buffer *rb; 5961 5962 rcu_read_lock(); 5963 rb = rcu_dereference(event->rb); 5964 if (rb) { 5965 if (!refcount_inc_not_zero(&rb->refcount)) 5966 rb = NULL; 5967 } 5968 rcu_read_unlock(); 5969 5970 return rb; 5971 } 5972 5973 void ring_buffer_put(struct perf_buffer *rb) 5974 { 5975 if (!refcount_dec_and_test(&rb->refcount)) 5976 return; 5977 5978 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5979 5980 call_rcu(&rb->rcu_head, rb_free_rcu); 5981 } 5982 5983 static void perf_mmap_open(struct vm_area_struct *vma) 5984 { 5985 struct perf_event *event = vma->vm_file->private_data; 5986 5987 atomic_inc(&event->mmap_count); 5988 atomic_inc(&event->rb->mmap_count); 5989 5990 if (vma->vm_pgoff) 5991 atomic_inc(&event->rb->aux_mmap_count); 5992 5993 if (event->pmu->event_mapped) 5994 event->pmu->event_mapped(event, vma->vm_mm); 5995 } 5996 5997 static void perf_pmu_output_stop(struct perf_event *event); 5998 5999 /* 6000 * A buffer can be mmap()ed multiple times; either directly through the same 6001 * event, or through other events by use of perf_event_set_output(). 6002 * 6003 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6004 * the buffer here, where we still have a VM context. This means we need 6005 * to detach all events redirecting to us. 6006 */ 6007 static void perf_mmap_close(struct vm_area_struct *vma) 6008 { 6009 struct perf_event *event = vma->vm_file->private_data; 6010 struct perf_buffer *rb = ring_buffer_get(event); 6011 struct user_struct *mmap_user = rb->mmap_user; 6012 int mmap_locked = rb->mmap_locked; 6013 unsigned long size = perf_data_size(rb); 6014 bool detach_rest = false; 6015 6016 if (event->pmu->event_unmapped) 6017 event->pmu->event_unmapped(event, vma->vm_mm); 6018 6019 /* 6020 * rb->aux_mmap_count will always drop before rb->mmap_count and 6021 * event->mmap_count, so it is ok to use event->mmap_mutex to 6022 * serialize with perf_mmap here. 6023 */ 6024 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6025 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6026 /* 6027 * Stop all AUX events that are writing to this buffer, 6028 * so that we can free its AUX pages and corresponding PMU 6029 * data. Note that after rb::aux_mmap_count dropped to zero, 6030 * they won't start any more (see perf_aux_output_begin()). 6031 */ 6032 perf_pmu_output_stop(event); 6033 6034 /* now it's safe to free the pages */ 6035 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6036 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6037 6038 /* this has to be the last one */ 6039 rb_free_aux(rb); 6040 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6041 6042 mutex_unlock(&event->mmap_mutex); 6043 } 6044 6045 if (atomic_dec_and_test(&rb->mmap_count)) 6046 detach_rest = true; 6047 6048 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6049 goto out_put; 6050 6051 ring_buffer_attach(event, NULL); 6052 mutex_unlock(&event->mmap_mutex); 6053 6054 /* If there's still other mmap()s of this buffer, we're done. */ 6055 if (!detach_rest) 6056 goto out_put; 6057 6058 /* 6059 * No other mmap()s, detach from all other events that might redirect 6060 * into the now unreachable buffer. Somewhat complicated by the 6061 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6062 */ 6063 again: 6064 rcu_read_lock(); 6065 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6066 if (!atomic_long_inc_not_zero(&event->refcount)) { 6067 /* 6068 * This event is en-route to free_event() which will 6069 * detach it and remove it from the list. 6070 */ 6071 continue; 6072 } 6073 rcu_read_unlock(); 6074 6075 mutex_lock(&event->mmap_mutex); 6076 /* 6077 * Check we didn't race with perf_event_set_output() which can 6078 * swizzle the rb from under us while we were waiting to 6079 * acquire mmap_mutex. 6080 * 6081 * If we find a different rb; ignore this event, a next 6082 * iteration will no longer find it on the list. We have to 6083 * still restart the iteration to make sure we're not now 6084 * iterating the wrong list. 6085 */ 6086 if (event->rb == rb) 6087 ring_buffer_attach(event, NULL); 6088 6089 mutex_unlock(&event->mmap_mutex); 6090 put_event(event); 6091 6092 /* 6093 * Restart the iteration; either we're on the wrong list or 6094 * destroyed its integrity by doing a deletion. 6095 */ 6096 goto again; 6097 } 6098 rcu_read_unlock(); 6099 6100 /* 6101 * It could be there's still a few 0-ref events on the list; they'll 6102 * get cleaned up by free_event() -- they'll also still have their 6103 * ref on the rb and will free it whenever they are done with it. 6104 * 6105 * Aside from that, this buffer is 'fully' detached and unmapped, 6106 * undo the VM accounting. 6107 */ 6108 6109 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6110 &mmap_user->locked_vm); 6111 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6112 free_uid(mmap_user); 6113 6114 out_put: 6115 ring_buffer_put(rb); /* could be last */ 6116 } 6117 6118 static const struct vm_operations_struct perf_mmap_vmops = { 6119 .open = perf_mmap_open, 6120 .close = perf_mmap_close, /* non mergeable */ 6121 .fault = perf_mmap_fault, 6122 .page_mkwrite = perf_mmap_fault, 6123 }; 6124 6125 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6126 { 6127 struct perf_event *event = file->private_data; 6128 unsigned long user_locked, user_lock_limit; 6129 struct user_struct *user = current_user(); 6130 struct perf_buffer *rb = NULL; 6131 unsigned long locked, lock_limit; 6132 unsigned long vma_size; 6133 unsigned long nr_pages; 6134 long user_extra = 0, extra = 0; 6135 int ret = 0, flags = 0; 6136 6137 /* 6138 * Don't allow mmap() of inherited per-task counters. This would 6139 * create a performance issue due to all children writing to the 6140 * same rb. 6141 */ 6142 if (event->cpu == -1 && event->attr.inherit) 6143 return -EINVAL; 6144 6145 if (!(vma->vm_flags & VM_SHARED)) 6146 return -EINVAL; 6147 6148 ret = security_perf_event_read(event); 6149 if (ret) 6150 return ret; 6151 6152 vma_size = vma->vm_end - vma->vm_start; 6153 6154 if (vma->vm_pgoff == 0) { 6155 nr_pages = (vma_size / PAGE_SIZE) - 1; 6156 } else { 6157 /* 6158 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6159 * mapped, all subsequent mappings should have the same size 6160 * and offset. Must be above the normal perf buffer. 6161 */ 6162 u64 aux_offset, aux_size; 6163 6164 if (!event->rb) 6165 return -EINVAL; 6166 6167 nr_pages = vma_size / PAGE_SIZE; 6168 6169 mutex_lock(&event->mmap_mutex); 6170 ret = -EINVAL; 6171 6172 rb = event->rb; 6173 if (!rb) 6174 goto aux_unlock; 6175 6176 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6177 aux_size = READ_ONCE(rb->user_page->aux_size); 6178 6179 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6180 goto aux_unlock; 6181 6182 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6183 goto aux_unlock; 6184 6185 /* already mapped with a different offset */ 6186 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6187 goto aux_unlock; 6188 6189 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6190 goto aux_unlock; 6191 6192 /* already mapped with a different size */ 6193 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6194 goto aux_unlock; 6195 6196 if (!is_power_of_2(nr_pages)) 6197 goto aux_unlock; 6198 6199 if (!atomic_inc_not_zero(&rb->mmap_count)) 6200 goto aux_unlock; 6201 6202 if (rb_has_aux(rb)) { 6203 atomic_inc(&rb->aux_mmap_count); 6204 ret = 0; 6205 goto unlock; 6206 } 6207 6208 atomic_set(&rb->aux_mmap_count, 1); 6209 user_extra = nr_pages; 6210 6211 goto accounting; 6212 } 6213 6214 /* 6215 * If we have rb pages ensure they're a power-of-two number, so we 6216 * can do bitmasks instead of modulo. 6217 */ 6218 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6219 return -EINVAL; 6220 6221 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6222 return -EINVAL; 6223 6224 WARN_ON_ONCE(event->ctx->parent_ctx); 6225 again: 6226 mutex_lock(&event->mmap_mutex); 6227 if (event->rb) { 6228 if (event->rb->nr_pages != nr_pages) { 6229 ret = -EINVAL; 6230 goto unlock; 6231 } 6232 6233 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6234 /* 6235 * Raced against perf_mmap_close() through 6236 * perf_event_set_output(). Try again, hope for better 6237 * luck. 6238 */ 6239 mutex_unlock(&event->mmap_mutex); 6240 goto again; 6241 } 6242 6243 goto unlock; 6244 } 6245 6246 user_extra = nr_pages + 1; 6247 6248 accounting: 6249 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6250 6251 /* 6252 * Increase the limit linearly with more CPUs: 6253 */ 6254 user_lock_limit *= num_online_cpus(); 6255 6256 user_locked = atomic_long_read(&user->locked_vm); 6257 6258 /* 6259 * sysctl_perf_event_mlock may have changed, so that 6260 * user->locked_vm > user_lock_limit 6261 */ 6262 if (user_locked > user_lock_limit) 6263 user_locked = user_lock_limit; 6264 user_locked += user_extra; 6265 6266 if (user_locked > user_lock_limit) { 6267 /* 6268 * charge locked_vm until it hits user_lock_limit; 6269 * charge the rest from pinned_vm 6270 */ 6271 extra = user_locked - user_lock_limit; 6272 user_extra -= extra; 6273 } 6274 6275 lock_limit = rlimit(RLIMIT_MEMLOCK); 6276 lock_limit >>= PAGE_SHIFT; 6277 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6278 6279 if ((locked > lock_limit) && perf_is_paranoid() && 6280 !capable(CAP_IPC_LOCK)) { 6281 ret = -EPERM; 6282 goto unlock; 6283 } 6284 6285 WARN_ON(!rb && event->rb); 6286 6287 if (vma->vm_flags & VM_WRITE) 6288 flags |= RING_BUFFER_WRITABLE; 6289 6290 if (!rb) { 6291 rb = rb_alloc(nr_pages, 6292 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6293 event->cpu, flags); 6294 6295 if (!rb) { 6296 ret = -ENOMEM; 6297 goto unlock; 6298 } 6299 6300 atomic_set(&rb->mmap_count, 1); 6301 rb->mmap_user = get_current_user(); 6302 rb->mmap_locked = extra; 6303 6304 ring_buffer_attach(event, rb); 6305 6306 perf_event_init_userpage(event); 6307 perf_event_update_userpage(event); 6308 } else { 6309 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6310 event->attr.aux_watermark, flags); 6311 if (!ret) 6312 rb->aux_mmap_locked = extra; 6313 } 6314 6315 unlock: 6316 if (!ret) { 6317 atomic_long_add(user_extra, &user->locked_vm); 6318 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6319 6320 atomic_inc(&event->mmap_count); 6321 } else if (rb) { 6322 atomic_dec(&rb->mmap_count); 6323 } 6324 aux_unlock: 6325 mutex_unlock(&event->mmap_mutex); 6326 6327 /* 6328 * Since pinned accounting is per vm we cannot allow fork() to copy our 6329 * vma. 6330 */ 6331 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6332 vma->vm_ops = &perf_mmap_vmops; 6333 6334 if (event->pmu->event_mapped) 6335 event->pmu->event_mapped(event, vma->vm_mm); 6336 6337 return ret; 6338 } 6339 6340 static int perf_fasync(int fd, struct file *filp, int on) 6341 { 6342 struct inode *inode = file_inode(filp); 6343 struct perf_event *event = filp->private_data; 6344 int retval; 6345 6346 inode_lock(inode); 6347 retval = fasync_helper(fd, filp, on, &event->fasync); 6348 inode_unlock(inode); 6349 6350 if (retval < 0) 6351 return retval; 6352 6353 return 0; 6354 } 6355 6356 static const struct file_operations perf_fops = { 6357 .llseek = no_llseek, 6358 .release = perf_release, 6359 .read = perf_read, 6360 .poll = perf_poll, 6361 .unlocked_ioctl = perf_ioctl, 6362 .compat_ioctl = perf_compat_ioctl, 6363 .mmap = perf_mmap, 6364 .fasync = perf_fasync, 6365 }; 6366 6367 /* 6368 * Perf event wakeup 6369 * 6370 * If there's data, ensure we set the poll() state and publish everything 6371 * to user-space before waking everybody up. 6372 */ 6373 6374 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6375 { 6376 /* only the parent has fasync state */ 6377 if (event->parent) 6378 event = event->parent; 6379 return &event->fasync; 6380 } 6381 6382 void perf_event_wakeup(struct perf_event *event) 6383 { 6384 ring_buffer_wakeup(event); 6385 6386 if (event->pending_kill) { 6387 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6388 event->pending_kill = 0; 6389 } 6390 } 6391 6392 static void perf_sigtrap(struct perf_event *event) 6393 { 6394 /* 6395 * We'd expect this to only occur if the irq_work is delayed and either 6396 * ctx->task or current has changed in the meantime. This can be the 6397 * case on architectures that do not implement arch_irq_work_raise(). 6398 */ 6399 if (WARN_ON_ONCE(event->ctx->task != current)) 6400 return; 6401 6402 /* 6403 * perf_pending_event() can race with the task exiting. 6404 */ 6405 if (current->flags & PF_EXITING) 6406 return; 6407 6408 force_sig_perf((void __user *)event->pending_addr, 6409 event->attr.type, event->attr.sig_data); 6410 } 6411 6412 static void perf_pending_event_disable(struct perf_event *event) 6413 { 6414 int cpu = READ_ONCE(event->pending_disable); 6415 6416 if (cpu < 0) 6417 return; 6418 6419 if (cpu == smp_processor_id()) { 6420 WRITE_ONCE(event->pending_disable, -1); 6421 6422 if (event->attr.sigtrap) { 6423 perf_sigtrap(event); 6424 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6425 return; 6426 } 6427 6428 perf_event_disable_local(event); 6429 return; 6430 } 6431 6432 /* 6433 * CPU-A CPU-B 6434 * 6435 * perf_event_disable_inatomic() 6436 * @pending_disable = CPU-A; 6437 * irq_work_queue(); 6438 * 6439 * sched-out 6440 * @pending_disable = -1; 6441 * 6442 * sched-in 6443 * perf_event_disable_inatomic() 6444 * @pending_disable = CPU-B; 6445 * irq_work_queue(); // FAILS 6446 * 6447 * irq_work_run() 6448 * perf_pending_event() 6449 * 6450 * But the event runs on CPU-B and wants disabling there. 6451 */ 6452 irq_work_queue_on(&event->pending, cpu); 6453 } 6454 6455 static void perf_pending_event(struct irq_work *entry) 6456 { 6457 struct perf_event *event = container_of(entry, struct perf_event, pending); 6458 int rctx; 6459 6460 rctx = perf_swevent_get_recursion_context(); 6461 /* 6462 * If we 'fail' here, that's OK, it means recursion is already disabled 6463 * and we won't recurse 'further'. 6464 */ 6465 6466 perf_pending_event_disable(event); 6467 6468 if (event->pending_wakeup) { 6469 event->pending_wakeup = 0; 6470 perf_event_wakeup(event); 6471 } 6472 6473 if (rctx >= 0) 6474 perf_swevent_put_recursion_context(rctx); 6475 } 6476 6477 /* 6478 * We assume there is only KVM supporting the callbacks. 6479 * Later on, we might change it to a list if there is 6480 * another virtualization implementation supporting the callbacks. 6481 */ 6482 struct perf_guest_info_callbacks *perf_guest_cbs; 6483 6484 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6485 { 6486 perf_guest_cbs = cbs; 6487 return 0; 6488 } 6489 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6490 6491 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6492 { 6493 perf_guest_cbs = NULL; 6494 return 0; 6495 } 6496 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6497 6498 static void 6499 perf_output_sample_regs(struct perf_output_handle *handle, 6500 struct pt_regs *regs, u64 mask) 6501 { 6502 int bit; 6503 DECLARE_BITMAP(_mask, 64); 6504 6505 bitmap_from_u64(_mask, mask); 6506 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6507 u64 val; 6508 6509 val = perf_reg_value(regs, bit); 6510 perf_output_put(handle, val); 6511 } 6512 } 6513 6514 static void perf_sample_regs_user(struct perf_regs *regs_user, 6515 struct pt_regs *regs) 6516 { 6517 if (user_mode(regs)) { 6518 regs_user->abi = perf_reg_abi(current); 6519 regs_user->regs = regs; 6520 } else if (!(current->flags & PF_KTHREAD)) { 6521 perf_get_regs_user(regs_user, regs); 6522 } else { 6523 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6524 regs_user->regs = NULL; 6525 } 6526 } 6527 6528 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6529 struct pt_regs *regs) 6530 { 6531 regs_intr->regs = regs; 6532 regs_intr->abi = perf_reg_abi(current); 6533 } 6534 6535 6536 /* 6537 * Get remaining task size from user stack pointer. 6538 * 6539 * It'd be better to take stack vma map and limit this more 6540 * precisely, but there's no way to get it safely under interrupt, 6541 * so using TASK_SIZE as limit. 6542 */ 6543 static u64 perf_ustack_task_size(struct pt_regs *regs) 6544 { 6545 unsigned long addr = perf_user_stack_pointer(regs); 6546 6547 if (!addr || addr >= TASK_SIZE) 6548 return 0; 6549 6550 return TASK_SIZE - addr; 6551 } 6552 6553 static u16 6554 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6555 struct pt_regs *regs) 6556 { 6557 u64 task_size; 6558 6559 /* No regs, no stack pointer, no dump. */ 6560 if (!regs) 6561 return 0; 6562 6563 /* 6564 * Check if we fit in with the requested stack size into the: 6565 * - TASK_SIZE 6566 * If we don't, we limit the size to the TASK_SIZE. 6567 * 6568 * - remaining sample size 6569 * If we don't, we customize the stack size to 6570 * fit in to the remaining sample size. 6571 */ 6572 6573 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6574 stack_size = min(stack_size, (u16) task_size); 6575 6576 /* Current header size plus static size and dynamic size. */ 6577 header_size += 2 * sizeof(u64); 6578 6579 /* Do we fit in with the current stack dump size? */ 6580 if ((u16) (header_size + stack_size) < header_size) { 6581 /* 6582 * If we overflow the maximum size for the sample, 6583 * we customize the stack dump size to fit in. 6584 */ 6585 stack_size = USHRT_MAX - header_size - sizeof(u64); 6586 stack_size = round_up(stack_size, sizeof(u64)); 6587 } 6588 6589 return stack_size; 6590 } 6591 6592 static void 6593 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6594 struct pt_regs *regs) 6595 { 6596 /* Case of a kernel thread, nothing to dump */ 6597 if (!regs) { 6598 u64 size = 0; 6599 perf_output_put(handle, size); 6600 } else { 6601 unsigned long sp; 6602 unsigned int rem; 6603 u64 dyn_size; 6604 mm_segment_t fs; 6605 6606 /* 6607 * We dump: 6608 * static size 6609 * - the size requested by user or the best one we can fit 6610 * in to the sample max size 6611 * data 6612 * - user stack dump data 6613 * dynamic size 6614 * - the actual dumped size 6615 */ 6616 6617 /* Static size. */ 6618 perf_output_put(handle, dump_size); 6619 6620 /* Data. */ 6621 sp = perf_user_stack_pointer(regs); 6622 fs = force_uaccess_begin(); 6623 rem = __output_copy_user(handle, (void *) sp, dump_size); 6624 force_uaccess_end(fs); 6625 dyn_size = dump_size - rem; 6626 6627 perf_output_skip(handle, rem); 6628 6629 /* Dynamic size. */ 6630 perf_output_put(handle, dyn_size); 6631 } 6632 } 6633 6634 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6635 struct perf_sample_data *data, 6636 size_t size) 6637 { 6638 struct perf_event *sampler = event->aux_event; 6639 struct perf_buffer *rb; 6640 6641 data->aux_size = 0; 6642 6643 if (!sampler) 6644 goto out; 6645 6646 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6647 goto out; 6648 6649 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6650 goto out; 6651 6652 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6653 if (!rb) 6654 goto out; 6655 6656 /* 6657 * If this is an NMI hit inside sampling code, don't take 6658 * the sample. See also perf_aux_sample_output(). 6659 */ 6660 if (READ_ONCE(rb->aux_in_sampling)) { 6661 data->aux_size = 0; 6662 } else { 6663 size = min_t(size_t, size, perf_aux_size(rb)); 6664 data->aux_size = ALIGN(size, sizeof(u64)); 6665 } 6666 ring_buffer_put(rb); 6667 6668 out: 6669 return data->aux_size; 6670 } 6671 6672 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6673 struct perf_event *event, 6674 struct perf_output_handle *handle, 6675 unsigned long size) 6676 { 6677 unsigned long flags; 6678 long ret; 6679 6680 /* 6681 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6682 * paths. If we start calling them in NMI context, they may race with 6683 * the IRQ ones, that is, for example, re-starting an event that's just 6684 * been stopped, which is why we're using a separate callback that 6685 * doesn't change the event state. 6686 * 6687 * IRQs need to be disabled to prevent IPIs from racing with us. 6688 */ 6689 local_irq_save(flags); 6690 /* 6691 * Guard against NMI hits inside the critical section; 6692 * see also perf_prepare_sample_aux(). 6693 */ 6694 WRITE_ONCE(rb->aux_in_sampling, 1); 6695 barrier(); 6696 6697 ret = event->pmu->snapshot_aux(event, handle, size); 6698 6699 barrier(); 6700 WRITE_ONCE(rb->aux_in_sampling, 0); 6701 local_irq_restore(flags); 6702 6703 return ret; 6704 } 6705 6706 static void perf_aux_sample_output(struct perf_event *event, 6707 struct perf_output_handle *handle, 6708 struct perf_sample_data *data) 6709 { 6710 struct perf_event *sampler = event->aux_event; 6711 struct perf_buffer *rb; 6712 unsigned long pad; 6713 long size; 6714 6715 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6716 return; 6717 6718 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6719 if (!rb) 6720 return; 6721 6722 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6723 6724 /* 6725 * An error here means that perf_output_copy() failed (returned a 6726 * non-zero surplus that it didn't copy), which in its current 6727 * enlightened implementation is not possible. If that changes, we'd 6728 * like to know. 6729 */ 6730 if (WARN_ON_ONCE(size < 0)) 6731 goto out_put; 6732 6733 /* 6734 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6735 * perf_prepare_sample_aux(), so should not be more than that. 6736 */ 6737 pad = data->aux_size - size; 6738 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6739 pad = 8; 6740 6741 if (pad) { 6742 u64 zero = 0; 6743 perf_output_copy(handle, &zero, pad); 6744 } 6745 6746 out_put: 6747 ring_buffer_put(rb); 6748 } 6749 6750 static void __perf_event_header__init_id(struct perf_event_header *header, 6751 struct perf_sample_data *data, 6752 struct perf_event *event) 6753 { 6754 u64 sample_type = event->attr.sample_type; 6755 6756 data->type = sample_type; 6757 header->size += event->id_header_size; 6758 6759 if (sample_type & PERF_SAMPLE_TID) { 6760 /* namespace issues */ 6761 data->tid_entry.pid = perf_event_pid(event, current); 6762 data->tid_entry.tid = perf_event_tid(event, current); 6763 } 6764 6765 if (sample_type & PERF_SAMPLE_TIME) 6766 data->time = perf_event_clock(event); 6767 6768 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6769 data->id = primary_event_id(event); 6770 6771 if (sample_type & PERF_SAMPLE_STREAM_ID) 6772 data->stream_id = event->id; 6773 6774 if (sample_type & PERF_SAMPLE_CPU) { 6775 data->cpu_entry.cpu = raw_smp_processor_id(); 6776 data->cpu_entry.reserved = 0; 6777 } 6778 } 6779 6780 void perf_event_header__init_id(struct perf_event_header *header, 6781 struct perf_sample_data *data, 6782 struct perf_event *event) 6783 { 6784 if (event->attr.sample_id_all) 6785 __perf_event_header__init_id(header, data, event); 6786 } 6787 6788 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6789 struct perf_sample_data *data) 6790 { 6791 u64 sample_type = data->type; 6792 6793 if (sample_type & PERF_SAMPLE_TID) 6794 perf_output_put(handle, data->tid_entry); 6795 6796 if (sample_type & PERF_SAMPLE_TIME) 6797 perf_output_put(handle, data->time); 6798 6799 if (sample_type & PERF_SAMPLE_ID) 6800 perf_output_put(handle, data->id); 6801 6802 if (sample_type & PERF_SAMPLE_STREAM_ID) 6803 perf_output_put(handle, data->stream_id); 6804 6805 if (sample_type & PERF_SAMPLE_CPU) 6806 perf_output_put(handle, data->cpu_entry); 6807 6808 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6809 perf_output_put(handle, data->id); 6810 } 6811 6812 void perf_event__output_id_sample(struct perf_event *event, 6813 struct perf_output_handle *handle, 6814 struct perf_sample_data *sample) 6815 { 6816 if (event->attr.sample_id_all) 6817 __perf_event__output_id_sample(handle, sample); 6818 } 6819 6820 static void perf_output_read_one(struct perf_output_handle *handle, 6821 struct perf_event *event, 6822 u64 enabled, u64 running) 6823 { 6824 u64 read_format = event->attr.read_format; 6825 u64 values[4]; 6826 int n = 0; 6827 6828 values[n++] = perf_event_count(event); 6829 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6830 values[n++] = enabled + 6831 atomic64_read(&event->child_total_time_enabled); 6832 } 6833 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6834 values[n++] = running + 6835 atomic64_read(&event->child_total_time_running); 6836 } 6837 if (read_format & PERF_FORMAT_ID) 6838 values[n++] = primary_event_id(event); 6839 6840 __output_copy(handle, values, n * sizeof(u64)); 6841 } 6842 6843 static void perf_output_read_group(struct perf_output_handle *handle, 6844 struct perf_event *event, 6845 u64 enabled, u64 running) 6846 { 6847 struct perf_event *leader = event->group_leader, *sub; 6848 u64 read_format = event->attr.read_format; 6849 u64 values[5]; 6850 int n = 0; 6851 6852 values[n++] = 1 + leader->nr_siblings; 6853 6854 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6855 values[n++] = enabled; 6856 6857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6858 values[n++] = running; 6859 6860 if ((leader != event) && 6861 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6862 leader->pmu->read(leader); 6863 6864 values[n++] = perf_event_count(leader); 6865 if (read_format & PERF_FORMAT_ID) 6866 values[n++] = primary_event_id(leader); 6867 6868 __output_copy(handle, values, n * sizeof(u64)); 6869 6870 for_each_sibling_event(sub, leader) { 6871 n = 0; 6872 6873 if ((sub != event) && 6874 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6875 sub->pmu->read(sub); 6876 6877 values[n++] = perf_event_count(sub); 6878 if (read_format & PERF_FORMAT_ID) 6879 values[n++] = primary_event_id(sub); 6880 6881 __output_copy(handle, values, n * sizeof(u64)); 6882 } 6883 } 6884 6885 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6886 PERF_FORMAT_TOTAL_TIME_RUNNING) 6887 6888 /* 6889 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6890 * 6891 * The problem is that its both hard and excessively expensive to iterate the 6892 * child list, not to mention that its impossible to IPI the children running 6893 * on another CPU, from interrupt/NMI context. 6894 */ 6895 static void perf_output_read(struct perf_output_handle *handle, 6896 struct perf_event *event) 6897 { 6898 u64 enabled = 0, running = 0, now; 6899 u64 read_format = event->attr.read_format; 6900 6901 /* 6902 * compute total_time_enabled, total_time_running 6903 * based on snapshot values taken when the event 6904 * was last scheduled in. 6905 * 6906 * we cannot simply called update_context_time() 6907 * because of locking issue as we are called in 6908 * NMI context 6909 */ 6910 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6911 calc_timer_values(event, &now, &enabled, &running); 6912 6913 if (event->attr.read_format & PERF_FORMAT_GROUP) 6914 perf_output_read_group(handle, event, enabled, running); 6915 else 6916 perf_output_read_one(handle, event, enabled, running); 6917 } 6918 6919 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6920 { 6921 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6922 } 6923 6924 void perf_output_sample(struct perf_output_handle *handle, 6925 struct perf_event_header *header, 6926 struct perf_sample_data *data, 6927 struct perf_event *event) 6928 { 6929 u64 sample_type = data->type; 6930 6931 perf_output_put(handle, *header); 6932 6933 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6934 perf_output_put(handle, data->id); 6935 6936 if (sample_type & PERF_SAMPLE_IP) 6937 perf_output_put(handle, data->ip); 6938 6939 if (sample_type & PERF_SAMPLE_TID) 6940 perf_output_put(handle, data->tid_entry); 6941 6942 if (sample_type & PERF_SAMPLE_TIME) 6943 perf_output_put(handle, data->time); 6944 6945 if (sample_type & PERF_SAMPLE_ADDR) 6946 perf_output_put(handle, data->addr); 6947 6948 if (sample_type & PERF_SAMPLE_ID) 6949 perf_output_put(handle, data->id); 6950 6951 if (sample_type & PERF_SAMPLE_STREAM_ID) 6952 perf_output_put(handle, data->stream_id); 6953 6954 if (sample_type & PERF_SAMPLE_CPU) 6955 perf_output_put(handle, data->cpu_entry); 6956 6957 if (sample_type & PERF_SAMPLE_PERIOD) 6958 perf_output_put(handle, data->period); 6959 6960 if (sample_type & PERF_SAMPLE_READ) 6961 perf_output_read(handle, event); 6962 6963 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6964 int size = 1; 6965 6966 size += data->callchain->nr; 6967 size *= sizeof(u64); 6968 __output_copy(handle, data->callchain, size); 6969 } 6970 6971 if (sample_type & PERF_SAMPLE_RAW) { 6972 struct perf_raw_record *raw = data->raw; 6973 6974 if (raw) { 6975 struct perf_raw_frag *frag = &raw->frag; 6976 6977 perf_output_put(handle, raw->size); 6978 do { 6979 if (frag->copy) { 6980 __output_custom(handle, frag->copy, 6981 frag->data, frag->size); 6982 } else { 6983 __output_copy(handle, frag->data, 6984 frag->size); 6985 } 6986 if (perf_raw_frag_last(frag)) 6987 break; 6988 frag = frag->next; 6989 } while (1); 6990 if (frag->pad) 6991 __output_skip(handle, NULL, frag->pad); 6992 } else { 6993 struct { 6994 u32 size; 6995 u32 data; 6996 } raw = { 6997 .size = sizeof(u32), 6998 .data = 0, 6999 }; 7000 perf_output_put(handle, raw); 7001 } 7002 } 7003 7004 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7005 if (data->br_stack) { 7006 size_t size; 7007 7008 size = data->br_stack->nr 7009 * sizeof(struct perf_branch_entry); 7010 7011 perf_output_put(handle, data->br_stack->nr); 7012 if (perf_sample_save_hw_index(event)) 7013 perf_output_put(handle, data->br_stack->hw_idx); 7014 perf_output_copy(handle, data->br_stack->entries, size); 7015 } else { 7016 /* 7017 * we always store at least the value of nr 7018 */ 7019 u64 nr = 0; 7020 perf_output_put(handle, nr); 7021 } 7022 } 7023 7024 if (sample_type & PERF_SAMPLE_REGS_USER) { 7025 u64 abi = data->regs_user.abi; 7026 7027 /* 7028 * If there are no regs to dump, notice it through 7029 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7030 */ 7031 perf_output_put(handle, abi); 7032 7033 if (abi) { 7034 u64 mask = event->attr.sample_regs_user; 7035 perf_output_sample_regs(handle, 7036 data->regs_user.regs, 7037 mask); 7038 } 7039 } 7040 7041 if (sample_type & PERF_SAMPLE_STACK_USER) { 7042 perf_output_sample_ustack(handle, 7043 data->stack_user_size, 7044 data->regs_user.regs); 7045 } 7046 7047 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7048 perf_output_put(handle, data->weight.full); 7049 7050 if (sample_type & PERF_SAMPLE_DATA_SRC) 7051 perf_output_put(handle, data->data_src.val); 7052 7053 if (sample_type & PERF_SAMPLE_TRANSACTION) 7054 perf_output_put(handle, data->txn); 7055 7056 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7057 u64 abi = data->regs_intr.abi; 7058 /* 7059 * If there are no regs to dump, notice it through 7060 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7061 */ 7062 perf_output_put(handle, abi); 7063 7064 if (abi) { 7065 u64 mask = event->attr.sample_regs_intr; 7066 7067 perf_output_sample_regs(handle, 7068 data->regs_intr.regs, 7069 mask); 7070 } 7071 } 7072 7073 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7074 perf_output_put(handle, data->phys_addr); 7075 7076 if (sample_type & PERF_SAMPLE_CGROUP) 7077 perf_output_put(handle, data->cgroup); 7078 7079 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7080 perf_output_put(handle, data->data_page_size); 7081 7082 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7083 perf_output_put(handle, data->code_page_size); 7084 7085 if (sample_type & PERF_SAMPLE_AUX) { 7086 perf_output_put(handle, data->aux_size); 7087 7088 if (data->aux_size) 7089 perf_aux_sample_output(event, handle, data); 7090 } 7091 7092 if (!event->attr.watermark) { 7093 int wakeup_events = event->attr.wakeup_events; 7094 7095 if (wakeup_events) { 7096 struct perf_buffer *rb = handle->rb; 7097 int events = local_inc_return(&rb->events); 7098 7099 if (events >= wakeup_events) { 7100 local_sub(wakeup_events, &rb->events); 7101 local_inc(&rb->wakeup); 7102 } 7103 } 7104 } 7105 } 7106 7107 static u64 perf_virt_to_phys(u64 virt) 7108 { 7109 u64 phys_addr = 0; 7110 struct page *p = NULL; 7111 7112 if (!virt) 7113 return 0; 7114 7115 if (virt >= TASK_SIZE) { 7116 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7117 if (virt_addr_valid((void *)(uintptr_t)virt) && 7118 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7119 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7120 } else { 7121 /* 7122 * Walking the pages tables for user address. 7123 * Interrupts are disabled, so it prevents any tear down 7124 * of the page tables. 7125 * Try IRQ-safe get_user_page_fast_only first. 7126 * If failed, leave phys_addr as 0. 7127 */ 7128 if (current->mm != NULL) { 7129 pagefault_disable(); 7130 if (get_user_page_fast_only(virt, 0, &p)) 7131 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7132 pagefault_enable(); 7133 } 7134 7135 if (p) 7136 put_page(p); 7137 } 7138 7139 return phys_addr; 7140 } 7141 7142 /* 7143 * Return the pagetable size of a given virtual address. 7144 */ 7145 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7146 { 7147 u64 size = 0; 7148 7149 #ifdef CONFIG_HAVE_FAST_GUP 7150 pgd_t *pgdp, pgd; 7151 p4d_t *p4dp, p4d; 7152 pud_t *pudp, pud; 7153 pmd_t *pmdp, pmd; 7154 pte_t *ptep, pte; 7155 7156 pgdp = pgd_offset(mm, addr); 7157 pgd = READ_ONCE(*pgdp); 7158 if (pgd_none(pgd)) 7159 return 0; 7160 7161 if (pgd_leaf(pgd)) 7162 return pgd_leaf_size(pgd); 7163 7164 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7165 p4d = READ_ONCE(*p4dp); 7166 if (!p4d_present(p4d)) 7167 return 0; 7168 7169 if (p4d_leaf(p4d)) 7170 return p4d_leaf_size(p4d); 7171 7172 pudp = pud_offset_lockless(p4dp, p4d, addr); 7173 pud = READ_ONCE(*pudp); 7174 if (!pud_present(pud)) 7175 return 0; 7176 7177 if (pud_leaf(pud)) 7178 return pud_leaf_size(pud); 7179 7180 pmdp = pmd_offset_lockless(pudp, pud, addr); 7181 pmd = READ_ONCE(*pmdp); 7182 if (!pmd_present(pmd)) 7183 return 0; 7184 7185 if (pmd_leaf(pmd)) 7186 return pmd_leaf_size(pmd); 7187 7188 ptep = pte_offset_map(&pmd, addr); 7189 pte = ptep_get_lockless(ptep); 7190 if (pte_present(pte)) 7191 size = pte_leaf_size(pte); 7192 pte_unmap(ptep); 7193 #endif /* CONFIG_HAVE_FAST_GUP */ 7194 7195 return size; 7196 } 7197 7198 static u64 perf_get_page_size(unsigned long addr) 7199 { 7200 struct mm_struct *mm; 7201 unsigned long flags; 7202 u64 size; 7203 7204 if (!addr) 7205 return 0; 7206 7207 /* 7208 * Software page-table walkers must disable IRQs, 7209 * which prevents any tear down of the page tables. 7210 */ 7211 local_irq_save(flags); 7212 7213 mm = current->mm; 7214 if (!mm) { 7215 /* 7216 * For kernel threads and the like, use init_mm so that 7217 * we can find kernel memory. 7218 */ 7219 mm = &init_mm; 7220 } 7221 7222 size = perf_get_pgtable_size(mm, addr); 7223 7224 local_irq_restore(flags); 7225 7226 return size; 7227 } 7228 7229 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7230 7231 struct perf_callchain_entry * 7232 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7233 { 7234 bool kernel = !event->attr.exclude_callchain_kernel; 7235 bool user = !event->attr.exclude_callchain_user; 7236 /* Disallow cross-task user callchains. */ 7237 bool crosstask = event->ctx->task && event->ctx->task != current; 7238 const u32 max_stack = event->attr.sample_max_stack; 7239 struct perf_callchain_entry *callchain; 7240 7241 if (!kernel && !user) 7242 return &__empty_callchain; 7243 7244 callchain = get_perf_callchain(regs, 0, kernel, user, 7245 max_stack, crosstask, true); 7246 return callchain ?: &__empty_callchain; 7247 } 7248 7249 void perf_prepare_sample(struct perf_event_header *header, 7250 struct perf_sample_data *data, 7251 struct perf_event *event, 7252 struct pt_regs *regs) 7253 { 7254 u64 sample_type = event->attr.sample_type; 7255 7256 header->type = PERF_RECORD_SAMPLE; 7257 header->size = sizeof(*header) + event->header_size; 7258 7259 header->misc = 0; 7260 header->misc |= perf_misc_flags(regs); 7261 7262 __perf_event_header__init_id(header, data, event); 7263 7264 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7265 data->ip = perf_instruction_pointer(regs); 7266 7267 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7268 int size = 1; 7269 7270 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7271 data->callchain = perf_callchain(event, regs); 7272 7273 size += data->callchain->nr; 7274 7275 header->size += size * sizeof(u64); 7276 } 7277 7278 if (sample_type & PERF_SAMPLE_RAW) { 7279 struct perf_raw_record *raw = data->raw; 7280 int size; 7281 7282 if (raw) { 7283 struct perf_raw_frag *frag = &raw->frag; 7284 u32 sum = 0; 7285 7286 do { 7287 sum += frag->size; 7288 if (perf_raw_frag_last(frag)) 7289 break; 7290 frag = frag->next; 7291 } while (1); 7292 7293 size = round_up(sum + sizeof(u32), sizeof(u64)); 7294 raw->size = size - sizeof(u32); 7295 frag->pad = raw->size - sum; 7296 } else { 7297 size = sizeof(u64); 7298 } 7299 7300 header->size += size; 7301 } 7302 7303 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7304 int size = sizeof(u64); /* nr */ 7305 if (data->br_stack) { 7306 if (perf_sample_save_hw_index(event)) 7307 size += sizeof(u64); 7308 7309 size += data->br_stack->nr 7310 * sizeof(struct perf_branch_entry); 7311 } 7312 header->size += size; 7313 } 7314 7315 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7316 perf_sample_regs_user(&data->regs_user, regs); 7317 7318 if (sample_type & PERF_SAMPLE_REGS_USER) { 7319 /* regs dump ABI info */ 7320 int size = sizeof(u64); 7321 7322 if (data->regs_user.regs) { 7323 u64 mask = event->attr.sample_regs_user; 7324 size += hweight64(mask) * sizeof(u64); 7325 } 7326 7327 header->size += size; 7328 } 7329 7330 if (sample_type & PERF_SAMPLE_STACK_USER) { 7331 /* 7332 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7333 * processed as the last one or have additional check added 7334 * in case new sample type is added, because we could eat 7335 * up the rest of the sample size. 7336 */ 7337 u16 stack_size = event->attr.sample_stack_user; 7338 u16 size = sizeof(u64); 7339 7340 stack_size = perf_sample_ustack_size(stack_size, header->size, 7341 data->regs_user.regs); 7342 7343 /* 7344 * If there is something to dump, add space for the dump 7345 * itself and for the field that tells the dynamic size, 7346 * which is how many have been actually dumped. 7347 */ 7348 if (stack_size) 7349 size += sizeof(u64) + stack_size; 7350 7351 data->stack_user_size = stack_size; 7352 header->size += size; 7353 } 7354 7355 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7356 /* regs dump ABI info */ 7357 int size = sizeof(u64); 7358 7359 perf_sample_regs_intr(&data->regs_intr, regs); 7360 7361 if (data->regs_intr.regs) { 7362 u64 mask = event->attr.sample_regs_intr; 7363 7364 size += hweight64(mask) * sizeof(u64); 7365 } 7366 7367 header->size += size; 7368 } 7369 7370 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7371 data->phys_addr = perf_virt_to_phys(data->addr); 7372 7373 #ifdef CONFIG_CGROUP_PERF 7374 if (sample_type & PERF_SAMPLE_CGROUP) { 7375 struct cgroup *cgrp; 7376 7377 /* protected by RCU */ 7378 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7379 data->cgroup = cgroup_id(cgrp); 7380 } 7381 #endif 7382 7383 /* 7384 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7385 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7386 * but the value will not dump to the userspace. 7387 */ 7388 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7389 data->data_page_size = perf_get_page_size(data->addr); 7390 7391 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7392 data->code_page_size = perf_get_page_size(data->ip); 7393 7394 if (sample_type & PERF_SAMPLE_AUX) { 7395 u64 size; 7396 7397 header->size += sizeof(u64); /* size */ 7398 7399 /* 7400 * Given the 16bit nature of header::size, an AUX sample can 7401 * easily overflow it, what with all the preceding sample bits. 7402 * Make sure this doesn't happen by using up to U16_MAX bytes 7403 * per sample in total (rounded down to 8 byte boundary). 7404 */ 7405 size = min_t(size_t, U16_MAX - header->size, 7406 event->attr.aux_sample_size); 7407 size = rounddown(size, 8); 7408 size = perf_prepare_sample_aux(event, data, size); 7409 7410 WARN_ON_ONCE(size + header->size > U16_MAX); 7411 header->size += size; 7412 } 7413 /* 7414 * If you're adding more sample types here, you likely need to do 7415 * something about the overflowing header::size, like repurpose the 7416 * lowest 3 bits of size, which should be always zero at the moment. 7417 * This raises a more important question, do we really need 512k sized 7418 * samples and why, so good argumentation is in order for whatever you 7419 * do here next. 7420 */ 7421 WARN_ON_ONCE(header->size & 7); 7422 } 7423 7424 static __always_inline int 7425 __perf_event_output(struct perf_event *event, 7426 struct perf_sample_data *data, 7427 struct pt_regs *regs, 7428 int (*output_begin)(struct perf_output_handle *, 7429 struct perf_sample_data *, 7430 struct perf_event *, 7431 unsigned int)) 7432 { 7433 struct perf_output_handle handle; 7434 struct perf_event_header header; 7435 int err; 7436 7437 /* protect the callchain buffers */ 7438 rcu_read_lock(); 7439 7440 perf_prepare_sample(&header, data, event, regs); 7441 7442 err = output_begin(&handle, data, event, header.size); 7443 if (err) 7444 goto exit; 7445 7446 perf_output_sample(&handle, &header, data, event); 7447 7448 perf_output_end(&handle); 7449 7450 exit: 7451 rcu_read_unlock(); 7452 return err; 7453 } 7454 7455 void 7456 perf_event_output_forward(struct perf_event *event, 7457 struct perf_sample_data *data, 7458 struct pt_regs *regs) 7459 { 7460 __perf_event_output(event, data, regs, perf_output_begin_forward); 7461 } 7462 7463 void 7464 perf_event_output_backward(struct perf_event *event, 7465 struct perf_sample_data *data, 7466 struct pt_regs *regs) 7467 { 7468 __perf_event_output(event, data, regs, perf_output_begin_backward); 7469 } 7470 7471 int 7472 perf_event_output(struct perf_event *event, 7473 struct perf_sample_data *data, 7474 struct pt_regs *regs) 7475 { 7476 return __perf_event_output(event, data, regs, perf_output_begin); 7477 } 7478 7479 /* 7480 * read event_id 7481 */ 7482 7483 struct perf_read_event { 7484 struct perf_event_header header; 7485 7486 u32 pid; 7487 u32 tid; 7488 }; 7489 7490 static void 7491 perf_event_read_event(struct perf_event *event, 7492 struct task_struct *task) 7493 { 7494 struct perf_output_handle handle; 7495 struct perf_sample_data sample; 7496 struct perf_read_event read_event = { 7497 .header = { 7498 .type = PERF_RECORD_READ, 7499 .misc = 0, 7500 .size = sizeof(read_event) + event->read_size, 7501 }, 7502 .pid = perf_event_pid(event, task), 7503 .tid = perf_event_tid(event, task), 7504 }; 7505 int ret; 7506 7507 perf_event_header__init_id(&read_event.header, &sample, event); 7508 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7509 if (ret) 7510 return; 7511 7512 perf_output_put(&handle, read_event); 7513 perf_output_read(&handle, event); 7514 perf_event__output_id_sample(event, &handle, &sample); 7515 7516 perf_output_end(&handle); 7517 } 7518 7519 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7520 7521 static void 7522 perf_iterate_ctx(struct perf_event_context *ctx, 7523 perf_iterate_f output, 7524 void *data, bool all) 7525 { 7526 struct perf_event *event; 7527 7528 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7529 if (!all) { 7530 if (event->state < PERF_EVENT_STATE_INACTIVE) 7531 continue; 7532 if (!event_filter_match(event)) 7533 continue; 7534 } 7535 7536 output(event, data); 7537 } 7538 } 7539 7540 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7541 { 7542 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7543 struct perf_event *event; 7544 7545 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7546 /* 7547 * Skip events that are not fully formed yet; ensure that 7548 * if we observe event->ctx, both event and ctx will be 7549 * complete enough. See perf_install_in_context(). 7550 */ 7551 if (!smp_load_acquire(&event->ctx)) 7552 continue; 7553 7554 if (event->state < PERF_EVENT_STATE_INACTIVE) 7555 continue; 7556 if (!event_filter_match(event)) 7557 continue; 7558 output(event, data); 7559 } 7560 } 7561 7562 /* 7563 * Iterate all events that need to receive side-band events. 7564 * 7565 * For new callers; ensure that account_pmu_sb_event() includes 7566 * your event, otherwise it might not get delivered. 7567 */ 7568 static void 7569 perf_iterate_sb(perf_iterate_f output, void *data, 7570 struct perf_event_context *task_ctx) 7571 { 7572 struct perf_event_context *ctx; 7573 int ctxn; 7574 7575 rcu_read_lock(); 7576 preempt_disable(); 7577 7578 /* 7579 * If we have task_ctx != NULL we only notify the task context itself. 7580 * The task_ctx is set only for EXIT events before releasing task 7581 * context. 7582 */ 7583 if (task_ctx) { 7584 perf_iterate_ctx(task_ctx, output, data, false); 7585 goto done; 7586 } 7587 7588 perf_iterate_sb_cpu(output, data); 7589 7590 for_each_task_context_nr(ctxn) { 7591 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7592 if (ctx) 7593 perf_iterate_ctx(ctx, output, data, false); 7594 } 7595 done: 7596 preempt_enable(); 7597 rcu_read_unlock(); 7598 } 7599 7600 /* 7601 * Clear all file-based filters at exec, they'll have to be 7602 * re-instated when/if these objects are mmapped again. 7603 */ 7604 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7605 { 7606 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7607 struct perf_addr_filter *filter; 7608 unsigned int restart = 0, count = 0; 7609 unsigned long flags; 7610 7611 if (!has_addr_filter(event)) 7612 return; 7613 7614 raw_spin_lock_irqsave(&ifh->lock, flags); 7615 list_for_each_entry(filter, &ifh->list, entry) { 7616 if (filter->path.dentry) { 7617 event->addr_filter_ranges[count].start = 0; 7618 event->addr_filter_ranges[count].size = 0; 7619 restart++; 7620 } 7621 7622 count++; 7623 } 7624 7625 if (restart) 7626 event->addr_filters_gen++; 7627 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7628 7629 if (restart) 7630 perf_event_stop(event, 1); 7631 } 7632 7633 void perf_event_exec(void) 7634 { 7635 struct perf_event_context *ctx; 7636 int ctxn; 7637 7638 for_each_task_context_nr(ctxn) { 7639 perf_event_enable_on_exec(ctxn); 7640 perf_event_remove_on_exec(ctxn); 7641 7642 rcu_read_lock(); 7643 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7644 if (ctx) { 7645 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7646 NULL, true); 7647 } 7648 rcu_read_unlock(); 7649 } 7650 } 7651 7652 struct remote_output { 7653 struct perf_buffer *rb; 7654 int err; 7655 }; 7656 7657 static void __perf_event_output_stop(struct perf_event *event, void *data) 7658 { 7659 struct perf_event *parent = event->parent; 7660 struct remote_output *ro = data; 7661 struct perf_buffer *rb = ro->rb; 7662 struct stop_event_data sd = { 7663 .event = event, 7664 }; 7665 7666 if (!has_aux(event)) 7667 return; 7668 7669 if (!parent) 7670 parent = event; 7671 7672 /* 7673 * In case of inheritance, it will be the parent that links to the 7674 * ring-buffer, but it will be the child that's actually using it. 7675 * 7676 * We are using event::rb to determine if the event should be stopped, 7677 * however this may race with ring_buffer_attach() (through set_output), 7678 * which will make us skip the event that actually needs to be stopped. 7679 * So ring_buffer_attach() has to stop an aux event before re-assigning 7680 * its rb pointer. 7681 */ 7682 if (rcu_dereference(parent->rb) == rb) 7683 ro->err = __perf_event_stop(&sd); 7684 } 7685 7686 static int __perf_pmu_output_stop(void *info) 7687 { 7688 struct perf_event *event = info; 7689 struct pmu *pmu = event->ctx->pmu; 7690 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7691 struct remote_output ro = { 7692 .rb = event->rb, 7693 }; 7694 7695 rcu_read_lock(); 7696 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7697 if (cpuctx->task_ctx) 7698 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7699 &ro, false); 7700 rcu_read_unlock(); 7701 7702 return ro.err; 7703 } 7704 7705 static void perf_pmu_output_stop(struct perf_event *event) 7706 { 7707 struct perf_event *iter; 7708 int err, cpu; 7709 7710 restart: 7711 rcu_read_lock(); 7712 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7713 /* 7714 * For per-CPU events, we need to make sure that neither they 7715 * nor their children are running; for cpu==-1 events it's 7716 * sufficient to stop the event itself if it's active, since 7717 * it can't have children. 7718 */ 7719 cpu = iter->cpu; 7720 if (cpu == -1) 7721 cpu = READ_ONCE(iter->oncpu); 7722 7723 if (cpu == -1) 7724 continue; 7725 7726 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7727 if (err == -EAGAIN) { 7728 rcu_read_unlock(); 7729 goto restart; 7730 } 7731 } 7732 rcu_read_unlock(); 7733 } 7734 7735 /* 7736 * task tracking -- fork/exit 7737 * 7738 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7739 */ 7740 7741 struct perf_task_event { 7742 struct task_struct *task; 7743 struct perf_event_context *task_ctx; 7744 7745 struct { 7746 struct perf_event_header header; 7747 7748 u32 pid; 7749 u32 ppid; 7750 u32 tid; 7751 u32 ptid; 7752 u64 time; 7753 } event_id; 7754 }; 7755 7756 static int perf_event_task_match(struct perf_event *event) 7757 { 7758 return event->attr.comm || event->attr.mmap || 7759 event->attr.mmap2 || event->attr.mmap_data || 7760 event->attr.task; 7761 } 7762 7763 static void perf_event_task_output(struct perf_event *event, 7764 void *data) 7765 { 7766 struct perf_task_event *task_event = data; 7767 struct perf_output_handle handle; 7768 struct perf_sample_data sample; 7769 struct task_struct *task = task_event->task; 7770 int ret, size = task_event->event_id.header.size; 7771 7772 if (!perf_event_task_match(event)) 7773 return; 7774 7775 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7776 7777 ret = perf_output_begin(&handle, &sample, event, 7778 task_event->event_id.header.size); 7779 if (ret) 7780 goto out; 7781 7782 task_event->event_id.pid = perf_event_pid(event, task); 7783 task_event->event_id.tid = perf_event_tid(event, task); 7784 7785 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7786 task_event->event_id.ppid = perf_event_pid(event, 7787 task->real_parent); 7788 task_event->event_id.ptid = perf_event_pid(event, 7789 task->real_parent); 7790 } else { /* PERF_RECORD_FORK */ 7791 task_event->event_id.ppid = perf_event_pid(event, current); 7792 task_event->event_id.ptid = perf_event_tid(event, current); 7793 } 7794 7795 task_event->event_id.time = perf_event_clock(event); 7796 7797 perf_output_put(&handle, task_event->event_id); 7798 7799 perf_event__output_id_sample(event, &handle, &sample); 7800 7801 perf_output_end(&handle); 7802 out: 7803 task_event->event_id.header.size = size; 7804 } 7805 7806 static void perf_event_task(struct task_struct *task, 7807 struct perf_event_context *task_ctx, 7808 int new) 7809 { 7810 struct perf_task_event task_event; 7811 7812 if (!atomic_read(&nr_comm_events) && 7813 !atomic_read(&nr_mmap_events) && 7814 !atomic_read(&nr_task_events)) 7815 return; 7816 7817 task_event = (struct perf_task_event){ 7818 .task = task, 7819 .task_ctx = task_ctx, 7820 .event_id = { 7821 .header = { 7822 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7823 .misc = 0, 7824 .size = sizeof(task_event.event_id), 7825 }, 7826 /* .pid */ 7827 /* .ppid */ 7828 /* .tid */ 7829 /* .ptid */ 7830 /* .time */ 7831 }, 7832 }; 7833 7834 perf_iterate_sb(perf_event_task_output, 7835 &task_event, 7836 task_ctx); 7837 } 7838 7839 void perf_event_fork(struct task_struct *task) 7840 { 7841 perf_event_task(task, NULL, 1); 7842 perf_event_namespaces(task); 7843 } 7844 7845 /* 7846 * comm tracking 7847 */ 7848 7849 struct perf_comm_event { 7850 struct task_struct *task; 7851 char *comm; 7852 int comm_size; 7853 7854 struct { 7855 struct perf_event_header header; 7856 7857 u32 pid; 7858 u32 tid; 7859 } event_id; 7860 }; 7861 7862 static int perf_event_comm_match(struct perf_event *event) 7863 { 7864 return event->attr.comm; 7865 } 7866 7867 static void perf_event_comm_output(struct perf_event *event, 7868 void *data) 7869 { 7870 struct perf_comm_event *comm_event = data; 7871 struct perf_output_handle handle; 7872 struct perf_sample_data sample; 7873 int size = comm_event->event_id.header.size; 7874 int ret; 7875 7876 if (!perf_event_comm_match(event)) 7877 return; 7878 7879 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7880 ret = perf_output_begin(&handle, &sample, event, 7881 comm_event->event_id.header.size); 7882 7883 if (ret) 7884 goto out; 7885 7886 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7887 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7888 7889 perf_output_put(&handle, comm_event->event_id); 7890 __output_copy(&handle, comm_event->comm, 7891 comm_event->comm_size); 7892 7893 perf_event__output_id_sample(event, &handle, &sample); 7894 7895 perf_output_end(&handle); 7896 out: 7897 comm_event->event_id.header.size = size; 7898 } 7899 7900 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7901 { 7902 char comm[TASK_COMM_LEN]; 7903 unsigned int size; 7904 7905 memset(comm, 0, sizeof(comm)); 7906 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7907 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7908 7909 comm_event->comm = comm; 7910 comm_event->comm_size = size; 7911 7912 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7913 7914 perf_iterate_sb(perf_event_comm_output, 7915 comm_event, 7916 NULL); 7917 } 7918 7919 void perf_event_comm(struct task_struct *task, bool exec) 7920 { 7921 struct perf_comm_event comm_event; 7922 7923 if (!atomic_read(&nr_comm_events)) 7924 return; 7925 7926 comm_event = (struct perf_comm_event){ 7927 .task = task, 7928 /* .comm */ 7929 /* .comm_size */ 7930 .event_id = { 7931 .header = { 7932 .type = PERF_RECORD_COMM, 7933 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7934 /* .size */ 7935 }, 7936 /* .pid */ 7937 /* .tid */ 7938 }, 7939 }; 7940 7941 perf_event_comm_event(&comm_event); 7942 } 7943 7944 /* 7945 * namespaces tracking 7946 */ 7947 7948 struct perf_namespaces_event { 7949 struct task_struct *task; 7950 7951 struct { 7952 struct perf_event_header header; 7953 7954 u32 pid; 7955 u32 tid; 7956 u64 nr_namespaces; 7957 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7958 } event_id; 7959 }; 7960 7961 static int perf_event_namespaces_match(struct perf_event *event) 7962 { 7963 return event->attr.namespaces; 7964 } 7965 7966 static void perf_event_namespaces_output(struct perf_event *event, 7967 void *data) 7968 { 7969 struct perf_namespaces_event *namespaces_event = data; 7970 struct perf_output_handle handle; 7971 struct perf_sample_data sample; 7972 u16 header_size = namespaces_event->event_id.header.size; 7973 int ret; 7974 7975 if (!perf_event_namespaces_match(event)) 7976 return; 7977 7978 perf_event_header__init_id(&namespaces_event->event_id.header, 7979 &sample, event); 7980 ret = perf_output_begin(&handle, &sample, event, 7981 namespaces_event->event_id.header.size); 7982 if (ret) 7983 goto out; 7984 7985 namespaces_event->event_id.pid = perf_event_pid(event, 7986 namespaces_event->task); 7987 namespaces_event->event_id.tid = perf_event_tid(event, 7988 namespaces_event->task); 7989 7990 perf_output_put(&handle, namespaces_event->event_id); 7991 7992 perf_event__output_id_sample(event, &handle, &sample); 7993 7994 perf_output_end(&handle); 7995 out: 7996 namespaces_event->event_id.header.size = header_size; 7997 } 7998 7999 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8000 struct task_struct *task, 8001 const struct proc_ns_operations *ns_ops) 8002 { 8003 struct path ns_path; 8004 struct inode *ns_inode; 8005 int error; 8006 8007 error = ns_get_path(&ns_path, task, ns_ops); 8008 if (!error) { 8009 ns_inode = ns_path.dentry->d_inode; 8010 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8011 ns_link_info->ino = ns_inode->i_ino; 8012 path_put(&ns_path); 8013 } 8014 } 8015 8016 void perf_event_namespaces(struct task_struct *task) 8017 { 8018 struct perf_namespaces_event namespaces_event; 8019 struct perf_ns_link_info *ns_link_info; 8020 8021 if (!atomic_read(&nr_namespaces_events)) 8022 return; 8023 8024 namespaces_event = (struct perf_namespaces_event){ 8025 .task = task, 8026 .event_id = { 8027 .header = { 8028 .type = PERF_RECORD_NAMESPACES, 8029 .misc = 0, 8030 .size = sizeof(namespaces_event.event_id), 8031 }, 8032 /* .pid */ 8033 /* .tid */ 8034 .nr_namespaces = NR_NAMESPACES, 8035 /* .link_info[NR_NAMESPACES] */ 8036 }, 8037 }; 8038 8039 ns_link_info = namespaces_event.event_id.link_info; 8040 8041 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8042 task, &mntns_operations); 8043 8044 #ifdef CONFIG_USER_NS 8045 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8046 task, &userns_operations); 8047 #endif 8048 #ifdef CONFIG_NET_NS 8049 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8050 task, &netns_operations); 8051 #endif 8052 #ifdef CONFIG_UTS_NS 8053 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8054 task, &utsns_operations); 8055 #endif 8056 #ifdef CONFIG_IPC_NS 8057 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8058 task, &ipcns_operations); 8059 #endif 8060 #ifdef CONFIG_PID_NS 8061 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8062 task, &pidns_operations); 8063 #endif 8064 #ifdef CONFIG_CGROUPS 8065 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8066 task, &cgroupns_operations); 8067 #endif 8068 8069 perf_iterate_sb(perf_event_namespaces_output, 8070 &namespaces_event, 8071 NULL); 8072 } 8073 8074 /* 8075 * cgroup tracking 8076 */ 8077 #ifdef CONFIG_CGROUP_PERF 8078 8079 struct perf_cgroup_event { 8080 char *path; 8081 int path_size; 8082 struct { 8083 struct perf_event_header header; 8084 u64 id; 8085 char path[]; 8086 } event_id; 8087 }; 8088 8089 static int perf_event_cgroup_match(struct perf_event *event) 8090 { 8091 return event->attr.cgroup; 8092 } 8093 8094 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8095 { 8096 struct perf_cgroup_event *cgroup_event = data; 8097 struct perf_output_handle handle; 8098 struct perf_sample_data sample; 8099 u16 header_size = cgroup_event->event_id.header.size; 8100 int ret; 8101 8102 if (!perf_event_cgroup_match(event)) 8103 return; 8104 8105 perf_event_header__init_id(&cgroup_event->event_id.header, 8106 &sample, event); 8107 ret = perf_output_begin(&handle, &sample, event, 8108 cgroup_event->event_id.header.size); 8109 if (ret) 8110 goto out; 8111 8112 perf_output_put(&handle, cgroup_event->event_id); 8113 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8114 8115 perf_event__output_id_sample(event, &handle, &sample); 8116 8117 perf_output_end(&handle); 8118 out: 8119 cgroup_event->event_id.header.size = header_size; 8120 } 8121 8122 static void perf_event_cgroup(struct cgroup *cgrp) 8123 { 8124 struct perf_cgroup_event cgroup_event; 8125 char path_enomem[16] = "//enomem"; 8126 char *pathname; 8127 size_t size; 8128 8129 if (!atomic_read(&nr_cgroup_events)) 8130 return; 8131 8132 cgroup_event = (struct perf_cgroup_event){ 8133 .event_id = { 8134 .header = { 8135 .type = PERF_RECORD_CGROUP, 8136 .misc = 0, 8137 .size = sizeof(cgroup_event.event_id), 8138 }, 8139 .id = cgroup_id(cgrp), 8140 }, 8141 }; 8142 8143 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8144 if (pathname == NULL) { 8145 cgroup_event.path = path_enomem; 8146 } else { 8147 /* just to be sure to have enough space for alignment */ 8148 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8149 cgroup_event.path = pathname; 8150 } 8151 8152 /* 8153 * Since our buffer works in 8 byte units we need to align our string 8154 * size to a multiple of 8. However, we must guarantee the tail end is 8155 * zero'd out to avoid leaking random bits to userspace. 8156 */ 8157 size = strlen(cgroup_event.path) + 1; 8158 while (!IS_ALIGNED(size, sizeof(u64))) 8159 cgroup_event.path[size++] = '\0'; 8160 8161 cgroup_event.event_id.header.size += size; 8162 cgroup_event.path_size = size; 8163 8164 perf_iterate_sb(perf_event_cgroup_output, 8165 &cgroup_event, 8166 NULL); 8167 8168 kfree(pathname); 8169 } 8170 8171 #endif 8172 8173 /* 8174 * mmap tracking 8175 */ 8176 8177 struct perf_mmap_event { 8178 struct vm_area_struct *vma; 8179 8180 const char *file_name; 8181 int file_size; 8182 int maj, min; 8183 u64 ino; 8184 u64 ino_generation; 8185 u32 prot, flags; 8186 u8 build_id[BUILD_ID_SIZE_MAX]; 8187 u32 build_id_size; 8188 8189 struct { 8190 struct perf_event_header header; 8191 8192 u32 pid; 8193 u32 tid; 8194 u64 start; 8195 u64 len; 8196 u64 pgoff; 8197 } event_id; 8198 }; 8199 8200 static int perf_event_mmap_match(struct perf_event *event, 8201 void *data) 8202 { 8203 struct perf_mmap_event *mmap_event = data; 8204 struct vm_area_struct *vma = mmap_event->vma; 8205 int executable = vma->vm_flags & VM_EXEC; 8206 8207 return (!executable && event->attr.mmap_data) || 8208 (executable && (event->attr.mmap || event->attr.mmap2)); 8209 } 8210 8211 static void perf_event_mmap_output(struct perf_event *event, 8212 void *data) 8213 { 8214 struct perf_mmap_event *mmap_event = data; 8215 struct perf_output_handle handle; 8216 struct perf_sample_data sample; 8217 int size = mmap_event->event_id.header.size; 8218 u32 type = mmap_event->event_id.header.type; 8219 bool use_build_id; 8220 int ret; 8221 8222 if (!perf_event_mmap_match(event, data)) 8223 return; 8224 8225 if (event->attr.mmap2) { 8226 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8227 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8228 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8229 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8230 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8231 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8232 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8233 } 8234 8235 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8236 ret = perf_output_begin(&handle, &sample, event, 8237 mmap_event->event_id.header.size); 8238 if (ret) 8239 goto out; 8240 8241 mmap_event->event_id.pid = perf_event_pid(event, current); 8242 mmap_event->event_id.tid = perf_event_tid(event, current); 8243 8244 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8245 8246 if (event->attr.mmap2 && use_build_id) 8247 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8248 8249 perf_output_put(&handle, mmap_event->event_id); 8250 8251 if (event->attr.mmap2) { 8252 if (use_build_id) { 8253 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8254 8255 __output_copy(&handle, size, 4); 8256 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8257 } else { 8258 perf_output_put(&handle, mmap_event->maj); 8259 perf_output_put(&handle, mmap_event->min); 8260 perf_output_put(&handle, mmap_event->ino); 8261 perf_output_put(&handle, mmap_event->ino_generation); 8262 } 8263 perf_output_put(&handle, mmap_event->prot); 8264 perf_output_put(&handle, mmap_event->flags); 8265 } 8266 8267 __output_copy(&handle, mmap_event->file_name, 8268 mmap_event->file_size); 8269 8270 perf_event__output_id_sample(event, &handle, &sample); 8271 8272 perf_output_end(&handle); 8273 out: 8274 mmap_event->event_id.header.size = size; 8275 mmap_event->event_id.header.type = type; 8276 } 8277 8278 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8279 { 8280 struct vm_area_struct *vma = mmap_event->vma; 8281 struct file *file = vma->vm_file; 8282 int maj = 0, min = 0; 8283 u64 ino = 0, gen = 0; 8284 u32 prot = 0, flags = 0; 8285 unsigned int size; 8286 char tmp[16]; 8287 char *buf = NULL; 8288 char *name; 8289 8290 if (vma->vm_flags & VM_READ) 8291 prot |= PROT_READ; 8292 if (vma->vm_flags & VM_WRITE) 8293 prot |= PROT_WRITE; 8294 if (vma->vm_flags & VM_EXEC) 8295 prot |= PROT_EXEC; 8296 8297 if (vma->vm_flags & VM_MAYSHARE) 8298 flags = MAP_SHARED; 8299 else 8300 flags = MAP_PRIVATE; 8301 8302 if (vma->vm_flags & VM_DENYWRITE) 8303 flags |= MAP_DENYWRITE; 8304 if (vma->vm_flags & VM_MAYEXEC) 8305 flags |= MAP_EXECUTABLE; 8306 if (vma->vm_flags & VM_LOCKED) 8307 flags |= MAP_LOCKED; 8308 if (is_vm_hugetlb_page(vma)) 8309 flags |= MAP_HUGETLB; 8310 8311 if (file) { 8312 struct inode *inode; 8313 dev_t dev; 8314 8315 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8316 if (!buf) { 8317 name = "//enomem"; 8318 goto cpy_name; 8319 } 8320 /* 8321 * d_path() works from the end of the rb backwards, so we 8322 * need to add enough zero bytes after the string to handle 8323 * the 64bit alignment we do later. 8324 */ 8325 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8326 if (IS_ERR(name)) { 8327 name = "//toolong"; 8328 goto cpy_name; 8329 } 8330 inode = file_inode(vma->vm_file); 8331 dev = inode->i_sb->s_dev; 8332 ino = inode->i_ino; 8333 gen = inode->i_generation; 8334 maj = MAJOR(dev); 8335 min = MINOR(dev); 8336 8337 goto got_name; 8338 } else { 8339 if (vma->vm_ops && vma->vm_ops->name) { 8340 name = (char *) vma->vm_ops->name(vma); 8341 if (name) 8342 goto cpy_name; 8343 } 8344 8345 name = (char *)arch_vma_name(vma); 8346 if (name) 8347 goto cpy_name; 8348 8349 if (vma->vm_start <= vma->vm_mm->start_brk && 8350 vma->vm_end >= vma->vm_mm->brk) { 8351 name = "[heap]"; 8352 goto cpy_name; 8353 } 8354 if (vma->vm_start <= vma->vm_mm->start_stack && 8355 vma->vm_end >= vma->vm_mm->start_stack) { 8356 name = "[stack]"; 8357 goto cpy_name; 8358 } 8359 8360 name = "//anon"; 8361 goto cpy_name; 8362 } 8363 8364 cpy_name: 8365 strlcpy(tmp, name, sizeof(tmp)); 8366 name = tmp; 8367 got_name: 8368 /* 8369 * Since our buffer works in 8 byte units we need to align our string 8370 * size to a multiple of 8. However, we must guarantee the tail end is 8371 * zero'd out to avoid leaking random bits to userspace. 8372 */ 8373 size = strlen(name)+1; 8374 while (!IS_ALIGNED(size, sizeof(u64))) 8375 name[size++] = '\0'; 8376 8377 mmap_event->file_name = name; 8378 mmap_event->file_size = size; 8379 mmap_event->maj = maj; 8380 mmap_event->min = min; 8381 mmap_event->ino = ino; 8382 mmap_event->ino_generation = gen; 8383 mmap_event->prot = prot; 8384 mmap_event->flags = flags; 8385 8386 if (!(vma->vm_flags & VM_EXEC)) 8387 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8388 8389 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8390 8391 if (atomic_read(&nr_build_id_events)) 8392 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8393 8394 perf_iterate_sb(perf_event_mmap_output, 8395 mmap_event, 8396 NULL); 8397 8398 kfree(buf); 8399 } 8400 8401 /* 8402 * Check whether inode and address range match filter criteria. 8403 */ 8404 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8405 struct file *file, unsigned long offset, 8406 unsigned long size) 8407 { 8408 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8409 if (!filter->path.dentry) 8410 return false; 8411 8412 if (d_inode(filter->path.dentry) != file_inode(file)) 8413 return false; 8414 8415 if (filter->offset > offset + size) 8416 return false; 8417 8418 if (filter->offset + filter->size < offset) 8419 return false; 8420 8421 return true; 8422 } 8423 8424 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8425 struct vm_area_struct *vma, 8426 struct perf_addr_filter_range *fr) 8427 { 8428 unsigned long vma_size = vma->vm_end - vma->vm_start; 8429 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8430 struct file *file = vma->vm_file; 8431 8432 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8433 return false; 8434 8435 if (filter->offset < off) { 8436 fr->start = vma->vm_start; 8437 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8438 } else { 8439 fr->start = vma->vm_start + filter->offset - off; 8440 fr->size = min(vma->vm_end - fr->start, filter->size); 8441 } 8442 8443 return true; 8444 } 8445 8446 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8447 { 8448 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8449 struct vm_area_struct *vma = data; 8450 struct perf_addr_filter *filter; 8451 unsigned int restart = 0, count = 0; 8452 unsigned long flags; 8453 8454 if (!has_addr_filter(event)) 8455 return; 8456 8457 if (!vma->vm_file) 8458 return; 8459 8460 raw_spin_lock_irqsave(&ifh->lock, flags); 8461 list_for_each_entry(filter, &ifh->list, entry) { 8462 if (perf_addr_filter_vma_adjust(filter, vma, 8463 &event->addr_filter_ranges[count])) 8464 restart++; 8465 8466 count++; 8467 } 8468 8469 if (restart) 8470 event->addr_filters_gen++; 8471 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8472 8473 if (restart) 8474 perf_event_stop(event, 1); 8475 } 8476 8477 /* 8478 * Adjust all task's events' filters to the new vma 8479 */ 8480 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8481 { 8482 struct perf_event_context *ctx; 8483 int ctxn; 8484 8485 /* 8486 * Data tracing isn't supported yet and as such there is no need 8487 * to keep track of anything that isn't related to executable code: 8488 */ 8489 if (!(vma->vm_flags & VM_EXEC)) 8490 return; 8491 8492 rcu_read_lock(); 8493 for_each_task_context_nr(ctxn) { 8494 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8495 if (!ctx) 8496 continue; 8497 8498 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8499 } 8500 rcu_read_unlock(); 8501 } 8502 8503 void perf_event_mmap(struct vm_area_struct *vma) 8504 { 8505 struct perf_mmap_event mmap_event; 8506 8507 if (!atomic_read(&nr_mmap_events)) 8508 return; 8509 8510 mmap_event = (struct perf_mmap_event){ 8511 .vma = vma, 8512 /* .file_name */ 8513 /* .file_size */ 8514 .event_id = { 8515 .header = { 8516 .type = PERF_RECORD_MMAP, 8517 .misc = PERF_RECORD_MISC_USER, 8518 /* .size */ 8519 }, 8520 /* .pid */ 8521 /* .tid */ 8522 .start = vma->vm_start, 8523 .len = vma->vm_end - vma->vm_start, 8524 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8525 }, 8526 /* .maj (attr_mmap2 only) */ 8527 /* .min (attr_mmap2 only) */ 8528 /* .ino (attr_mmap2 only) */ 8529 /* .ino_generation (attr_mmap2 only) */ 8530 /* .prot (attr_mmap2 only) */ 8531 /* .flags (attr_mmap2 only) */ 8532 }; 8533 8534 perf_addr_filters_adjust(vma); 8535 perf_event_mmap_event(&mmap_event); 8536 } 8537 8538 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8539 unsigned long size, u64 flags) 8540 { 8541 struct perf_output_handle handle; 8542 struct perf_sample_data sample; 8543 struct perf_aux_event { 8544 struct perf_event_header header; 8545 u64 offset; 8546 u64 size; 8547 u64 flags; 8548 } rec = { 8549 .header = { 8550 .type = PERF_RECORD_AUX, 8551 .misc = 0, 8552 .size = sizeof(rec), 8553 }, 8554 .offset = head, 8555 .size = size, 8556 .flags = flags, 8557 }; 8558 int ret; 8559 8560 perf_event_header__init_id(&rec.header, &sample, event); 8561 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8562 8563 if (ret) 8564 return; 8565 8566 perf_output_put(&handle, rec); 8567 perf_event__output_id_sample(event, &handle, &sample); 8568 8569 perf_output_end(&handle); 8570 } 8571 8572 /* 8573 * Lost/dropped samples logging 8574 */ 8575 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8576 { 8577 struct perf_output_handle handle; 8578 struct perf_sample_data sample; 8579 int ret; 8580 8581 struct { 8582 struct perf_event_header header; 8583 u64 lost; 8584 } lost_samples_event = { 8585 .header = { 8586 .type = PERF_RECORD_LOST_SAMPLES, 8587 .misc = 0, 8588 .size = sizeof(lost_samples_event), 8589 }, 8590 .lost = lost, 8591 }; 8592 8593 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8594 8595 ret = perf_output_begin(&handle, &sample, event, 8596 lost_samples_event.header.size); 8597 if (ret) 8598 return; 8599 8600 perf_output_put(&handle, lost_samples_event); 8601 perf_event__output_id_sample(event, &handle, &sample); 8602 perf_output_end(&handle); 8603 } 8604 8605 /* 8606 * context_switch tracking 8607 */ 8608 8609 struct perf_switch_event { 8610 struct task_struct *task; 8611 struct task_struct *next_prev; 8612 8613 struct { 8614 struct perf_event_header header; 8615 u32 next_prev_pid; 8616 u32 next_prev_tid; 8617 } event_id; 8618 }; 8619 8620 static int perf_event_switch_match(struct perf_event *event) 8621 { 8622 return event->attr.context_switch; 8623 } 8624 8625 static void perf_event_switch_output(struct perf_event *event, void *data) 8626 { 8627 struct perf_switch_event *se = data; 8628 struct perf_output_handle handle; 8629 struct perf_sample_data sample; 8630 int ret; 8631 8632 if (!perf_event_switch_match(event)) 8633 return; 8634 8635 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8636 if (event->ctx->task) { 8637 se->event_id.header.type = PERF_RECORD_SWITCH; 8638 se->event_id.header.size = sizeof(se->event_id.header); 8639 } else { 8640 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8641 se->event_id.header.size = sizeof(se->event_id); 8642 se->event_id.next_prev_pid = 8643 perf_event_pid(event, se->next_prev); 8644 se->event_id.next_prev_tid = 8645 perf_event_tid(event, se->next_prev); 8646 } 8647 8648 perf_event_header__init_id(&se->event_id.header, &sample, event); 8649 8650 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8651 if (ret) 8652 return; 8653 8654 if (event->ctx->task) 8655 perf_output_put(&handle, se->event_id.header); 8656 else 8657 perf_output_put(&handle, se->event_id); 8658 8659 perf_event__output_id_sample(event, &handle, &sample); 8660 8661 perf_output_end(&handle); 8662 } 8663 8664 static void perf_event_switch(struct task_struct *task, 8665 struct task_struct *next_prev, bool sched_in) 8666 { 8667 struct perf_switch_event switch_event; 8668 8669 /* N.B. caller checks nr_switch_events != 0 */ 8670 8671 switch_event = (struct perf_switch_event){ 8672 .task = task, 8673 .next_prev = next_prev, 8674 .event_id = { 8675 .header = { 8676 /* .type */ 8677 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8678 /* .size */ 8679 }, 8680 /* .next_prev_pid */ 8681 /* .next_prev_tid */ 8682 }, 8683 }; 8684 8685 if (!sched_in && task->state == TASK_RUNNING) 8686 switch_event.event_id.header.misc |= 8687 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8688 8689 perf_iterate_sb(perf_event_switch_output, 8690 &switch_event, 8691 NULL); 8692 } 8693 8694 /* 8695 * IRQ throttle logging 8696 */ 8697 8698 static void perf_log_throttle(struct perf_event *event, int enable) 8699 { 8700 struct perf_output_handle handle; 8701 struct perf_sample_data sample; 8702 int ret; 8703 8704 struct { 8705 struct perf_event_header header; 8706 u64 time; 8707 u64 id; 8708 u64 stream_id; 8709 } throttle_event = { 8710 .header = { 8711 .type = PERF_RECORD_THROTTLE, 8712 .misc = 0, 8713 .size = sizeof(throttle_event), 8714 }, 8715 .time = perf_event_clock(event), 8716 .id = primary_event_id(event), 8717 .stream_id = event->id, 8718 }; 8719 8720 if (enable) 8721 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8722 8723 perf_event_header__init_id(&throttle_event.header, &sample, event); 8724 8725 ret = perf_output_begin(&handle, &sample, event, 8726 throttle_event.header.size); 8727 if (ret) 8728 return; 8729 8730 perf_output_put(&handle, throttle_event); 8731 perf_event__output_id_sample(event, &handle, &sample); 8732 perf_output_end(&handle); 8733 } 8734 8735 /* 8736 * ksymbol register/unregister tracking 8737 */ 8738 8739 struct perf_ksymbol_event { 8740 const char *name; 8741 int name_len; 8742 struct { 8743 struct perf_event_header header; 8744 u64 addr; 8745 u32 len; 8746 u16 ksym_type; 8747 u16 flags; 8748 } event_id; 8749 }; 8750 8751 static int perf_event_ksymbol_match(struct perf_event *event) 8752 { 8753 return event->attr.ksymbol; 8754 } 8755 8756 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8757 { 8758 struct perf_ksymbol_event *ksymbol_event = data; 8759 struct perf_output_handle handle; 8760 struct perf_sample_data sample; 8761 int ret; 8762 8763 if (!perf_event_ksymbol_match(event)) 8764 return; 8765 8766 perf_event_header__init_id(&ksymbol_event->event_id.header, 8767 &sample, event); 8768 ret = perf_output_begin(&handle, &sample, event, 8769 ksymbol_event->event_id.header.size); 8770 if (ret) 8771 return; 8772 8773 perf_output_put(&handle, ksymbol_event->event_id); 8774 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8775 perf_event__output_id_sample(event, &handle, &sample); 8776 8777 perf_output_end(&handle); 8778 } 8779 8780 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8781 const char *sym) 8782 { 8783 struct perf_ksymbol_event ksymbol_event; 8784 char name[KSYM_NAME_LEN]; 8785 u16 flags = 0; 8786 int name_len; 8787 8788 if (!atomic_read(&nr_ksymbol_events)) 8789 return; 8790 8791 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8792 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8793 goto err; 8794 8795 strlcpy(name, sym, KSYM_NAME_LEN); 8796 name_len = strlen(name) + 1; 8797 while (!IS_ALIGNED(name_len, sizeof(u64))) 8798 name[name_len++] = '\0'; 8799 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8800 8801 if (unregister) 8802 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8803 8804 ksymbol_event = (struct perf_ksymbol_event){ 8805 .name = name, 8806 .name_len = name_len, 8807 .event_id = { 8808 .header = { 8809 .type = PERF_RECORD_KSYMBOL, 8810 .size = sizeof(ksymbol_event.event_id) + 8811 name_len, 8812 }, 8813 .addr = addr, 8814 .len = len, 8815 .ksym_type = ksym_type, 8816 .flags = flags, 8817 }, 8818 }; 8819 8820 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8821 return; 8822 err: 8823 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8824 } 8825 8826 /* 8827 * bpf program load/unload tracking 8828 */ 8829 8830 struct perf_bpf_event { 8831 struct bpf_prog *prog; 8832 struct { 8833 struct perf_event_header header; 8834 u16 type; 8835 u16 flags; 8836 u32 id; 8837 u8 tag[BPF_TAG_SIZE]; 8838 } event_id; 8839 }; 8840 8841 static int perf_event_bpf_match(struct perf_event *event) 8842 { 8843 return event->attr.bpf_event; 8844 } 8845 8846 static void perf_event_bpf_output(struct perf_event *event, void *data) 8847 { 8848 struct perf_bpf_event *bpf_event = data; 8849 struct perf_output_handle handle; 8850 struct perf_sample_data sample; 8851 int ret; 8852 8853 if (!perf_event_bpf_match(event)) 8854 return; 8855 8856 perf_event_header__init_id(&bpf_event->event_id.header, 8857 &sample, event); 8858 ret = perf_output_begin(&handle, data, event, 8859 bpf_event->event_id.header.size); 8860 if (ret) 8861 return; 8862 8863 perf_output_put(&handle, bpf_event->event_id); 8864 perf_event__output_id_sample(event, &handle, &sample); 8865 8866 perf_output_end(&handle); 8867 } 8868 8869 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8870 enum perf_bpf_event_type type) 8871 { 8872 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8873 int i; 8874 8875 if (prog->aux->func_cnt == 0) { 8876 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8877 (u64)(unsigned long)prog->bpf_func, 8878 prog->jited_len, unregister, 8879 prog->aux->ksym.name); 8880 } else { 8881 for (i = 0; i < prog->aux->func_cnt; i++) { 8882 struct bpf_prog *subprog = prog->aux->func[i]; 8883 8884 perf_event_ksymbol( 8885 PERF_RECORD_KSYMBOL_TYPE_BPF, 8886 (u64)(unsigned long)subprog->bpf_func, 8887 subprog->jited_len, unregister, 8888 prog->aux->ksym.name); 8889 } 8890 } 8891 } 8892 8893 void perf_event_bpf_event(struct bpf_prog *prog, 8894 enum perf_bpf_event_type type, 8895 u16 flags) 8896 { 8897 struct perf_bpf_event bpf_event; 8898 8899 if (type <= PERF_BPF_EVENT_UNKNOWN || 8900 type >= PERF_BPF_EVENT_MAX) 8901 return; 8902 8903 switch (type) { 8904 case PERF_BPF_EVENT_PROG_LOAD: 8905 case PERF_BPF_EVENT_PROG_UNLOAD: 8906 if (atomic_read(&nr_ksymbol_events)) 8907 perf_event_bpf_emit_ksymbols(prog, type); 8908 break; 8909 default: 8910 break; 8911 } 8912 8913 if (!atomic_read(&nr_bpf_events)) 8914 return; 8915 8916 bpf_event = (struct perf_bpf_event){ 8917 .prog = prog, 8918 .event_id = { 8919 .header = { 8920 .type = PERF_RECORD_BPF_EVENT, 8921 .size = sizeof(bpf_event.event_id), 8922 }, 8923 .type = type, 8924 .flags = flags, 8925 .id = prog->aux->id, 8926 }, 8927 }; 8928 8929 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8930 8931 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8932 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8933 } 8934 8935 struct perf_text_poke_event { 8936 const void *old_bytes; 8937 const void *new_bytes; 8938 size_t pad; 8939 u16 old_len; 8940 u16 new_len; 8941 8942 struct { 8943 struct perf_event_header header; 8944 8945 u64 addr; 8946 } event_id; 8947 }; 8948 8949 static int perf_event_text_poke_match(struct perf_event *event) 8950 { 8951 return event->attr.text_poke; 8952 } 8953 8954 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8955 { 8956 struct perf_text_poke_event *text_poke_event = data; 8957 struct perf_output_handle handle; 8958 struct perf_sample_data sample; 8959 u64 padding = 0; 8960 int ret; 8961 8962 if (!perf_event_text_poke_match(event)) 8963 return; 8964 8965 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8966 8967 ret = perf_output_begin(&handle, &sample, event, 8968 text_poke_event->event_id.header.size); 8969 if (ret) 8970 return; 8971 8972 perf_output_put(&handle, text_poke_event->event_id); 8973 perf_output_put(&handle, text_poke_event->old_len); 8974 perf_output_put(&handle, text_poke_event->new_len); 8975 8976 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8977 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8978 8979 if (text_poke_event->pad) 8980 __output_copy(&handle, &padding, text_poke_event->pad); 8981 8982 perf_event__output_id_sample(event, &handle, &sample); 8983 8984 perf_output_end(&handle); 8985 } 8986 8987 void perf_event_text_poke(const void *addr, const void *old_bytes, 8988 size_t old_len, const void *new_bytes, size_t new_len) 8989 { 8990 struct perf_text_poke_event text_poke_event; 8991 size_t tot, pad; 8992 8993 if (!atomic_read(&nr_text_poke_events)) 8994 return; 8995 8996 tot = sizeof(text_poke_event.old_len) + old_len; 8997 tot += sizeof(text_poke_event.new_len) + new_len; 8998 pad = ALIGN(tot, sizeof(u64)) - tot; 8999 9000 text_poke_event = (struct perf_text_poke_event){ 9001 .old_bytes = old_bytes, 9002 .new_bytes = new_bytes, 9003 .pad = pad, 9004 .old_len = old_len, 9005 .new_len = new_len, 9006 .event_id = { 9007 .header = { 9008 .type = PERF_RECORD_TEXT_POKE, 9009 .misc = PERF_RECORD_MISC_KERNEL, 9010 .size = sizeof(text_poke_event.event_id) + tot + pad, 9011 }, 9012 .addr = (unsigned long)addr, 9013 }, 9014 }; 9015 9016 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9017 } 9018 9019 void perf_event_itrace_started(struct perf_event *event) 9020 { 9021 event->attach_state |= PERF_ATTACH_ITRACE; 9022 } 9023 9024 static void perf_log_itrace_start(struct perf_event *event) 9025 { 9026 struct perf_output_handle handle; 9027 struct perf_sample_data sample; 9028 struct perf_aux_event { 9029 struct perf_event_header header; 9030 u32 pid; 9031 u32 tid; 9032 } rec; 9033 int ret; 9034 9035 if (event->parent) 9036 event = event->parent; 9037 9038 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9039 event->attach_state & PERF_ATTACH_ITRACE) 9040 return; 9041 9042 rec.header.type = PERF_RECORD_ITRACE_START; 9043 rec.header.misc = 0; 9044 rec.header.size = sizeof(rec); 9045 rec.pid = perf_event_pid(event, current); 9046 rec.tid = perf_event_tid(event, current); 9047 9048 perf_event_header__init_id(&rec.header, &sample, event); 9049 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9050 9051 if (ret) 9052 return; 9053 9054 perf_output_put(&handle, rec); 9055 perf_event__output_id_sample(event, &handle, &sample); 9056 9057 perf_output_end(&handle); 9058 } 9059 9060 static int 9061 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9062 { 9063 struct hw_perf_event *hwc = &event->hw; 9064 int ret = 0; 9065 u64 seq; 9066 9067 seq = __this_cpu_read(perf_throttled_seq); 9068 if (seq != hwc->interrupts_seq) { 9069 hwc->interrupts_seq = seq; 9070 hwc->interrupts = 1; 9071 } else { 9072 hwc->interrupts++; 9073 if (unlikely(throttle 9074 && hwc->interrupts >= max_samples_per_tick)) { 9075 __this_cpu_inc(perf_throttled_count); 9076 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9077 hwc->interrupts = MAX_INTERRUPTS; 9078 perf_log_throttle(event, 0); 9079 ret = 1; 9080 } 9081 } 9082 9083 if (event->attr.freq) { 9084 u64 now = perf_clock(); 9085 s64 delta = now - hwc->freq_time_stamp; 9086 9087 hwc->freq_time_stamp = now; 9088 9089 if (delta > 0 && delta < 2*TICK_NSEC) 9090 perf_adjust_period(event, delta, hwc->last_period, true); 9091 } 9092 9093 return ret; 9094 } 9095 9096 int perf_event_account_interrupt(struct perf_event *event) 9097 { 9098 return __perf_event_account_interrupt(event, 1); 9099 } 9100 9101 /* 9102 * Generic event overflow handling, sampling. 9103 */ 9104 9105 static int __perf_event_overflow(struct perf_event *event, 9106 int throttle, struct perf_sample_data *data, 9107 struct pt_regs *regs) 9108 { 9109 int events = atomic_read(&event->event_limit); 9110 int ret = 0; 9111 9112 /* 9113 * Non-sampling counters might still use the PMI to fold short 9114 * hardware counters, ignore those. 9115 */ 9116 if (unlikely(!is_sampling_event(event))) 9117 return 0; 9118 9119 ret = __perf_event_account_interrupt(event, throttle); 9120 9121 /* 9122 * XXX event_limit might not quite work as expected on inherited 9123 * events 9124 */ 9125 9126 event->pending_kill = POLL_IN; 9127 if (events && atomic_dec_and_test(&event->event_limit)) { 9128 ret = 1; 9129 event->pending_kill = POLL_HUP; 9130 event->pending_addr = data->addr; 9131 9132 perf_event_disable_inatomic(event); 9133 } 9134 9135 READ_ONCE(event->overflow_handler)(event, data, regs); 9136 9137 if (*perf_event_fasync(event) && event->pending_kill) { 9138 event->pending_wakeup = 1; 9139 irq_work_queue(&event->pending); 9140 } 9141 9142 return ret; 9143 } 9144 9145 int perf_event_overflow(struct perf_event *event, 9146 struct perf_sample_data *data, 9147 struct pt_regs *regs) 9148 { 9149 return __perf_event_overflow(event, 1, data, regs); 9150 } 9151 9152 /* 9153 * Generic software event infrastructure 9154 */ 9155 9156 struct swevent_htable { 9157 struct swevent_hlist *swevent_hlist; 9158 struct mutex hlist_mutex; 9159 int hlist_refcount; 9160 9161 /* Recursion avoidance in each contexts */ 9162 int recursion[PERF_NR_CONTEXTS]; 9163 }; 9164 9165 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9166 9167 /* 9168 * We directly increment event->count and keep a second value in 9169 * event->hw.period_left to count intervals. This period event 9170 * is kept in the range [-sample_period, 0] so that we can use the 9171 * sign as trigger. 9172 */ 9173 9174 u64 perf_swevent_set_period(struct perf_event *event) 9175 { 9176 struct hw_perf_event *hwc = &event->hw; 9177 u64 period = hwc->last_period; 9178 u64 nr, offset; 9179 s64 old, val; 9180 9181 hwc->last_period = hwc->sample_period; 9182 9183 again: 9184 old = val = local64_read(&hwc->period_left); 9185 if (val < 0) 9186 return 0; 9187 9188 nr = div64_u64(period + val, period); 9189 offset = nr * period; 9190 val -= offset; 9191 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9192 goto again; 9193 9194 return nr; 9195 } 9196 9197 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9198 struct perf_sample_data *data, 9199 struct pt_regs *regs) 9200 { 9201 struct hw_perf_event *hwc = &event->hw; 9202 int throttle = 0; 9203 9204 if (!overflow) 9205 overflow = perf_swevent_set_period(event); 9206 9207 if (hwc->interrupts == MAX_INTERRUPTS) 9208 return; 9209 9210 for (; overflow; overflow--) { 9211 if (__perf_event_overflow(event, throttle, 9212 data, regs)) { 9213 /* 9214 * We inhibit the overflow from happening when 9215 * hwc->interrupts == MAX_INTERRUPTS. 9216 */ 9217 break; 9218 } 9219 throttle = 1; 9220 } 9221 } 9222 9223 static void perf_swevent_event(struct perf_event *event, u64 nr, 9224 struct perf_sample_data *data, 9225 struct pt_regs *regs) 9226 { 9227 struct hw_perf_event *hwc = &event->hw; 9228 9229 local64_add(nr, &event->count); 9230 9231 if (!regs) 9232 return; 9233 9234 if (!is_sampling_event(event)) 9235 return; 9236 9237 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9238 data->period = nr; 9239 return perf_swevent_overflow(event, 1, data, regs); 9240 } else 9241 data->period = event->hw.last_period; 9242 9243 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9244 return perf_swevent_overflow(event, 1, data, regs); 9245 9246 if (local64_add_negative(nr, &hwc->period_left)) 9247 return; 9248 9249 perf_swevent_overflow(event, 0, data, regs); 9250 } 9251 9252 static int perf_exclude_event(struct perf_event *event, 9253 struct pt_regs *regs) 9254 { 9255 if (event->hw.state & PERF_HES_STOPPED) 9256 return 1; 9257 9258 if (regs) { 9259 if (event->attr.exclude_user && user_mode(regs)) 9260 return 1; 9261 9262 if (event->attr.exclude_kernel && !user_mode(regs)) 9263 return 1; 9264 } 9265 9266 return 0; 9267 } 9268 9269 static int perf_swevent_match(struct perf_event *event, 9270 enum perf_type_id type, 9271 u32 event_id, 9272 struct perf_sample_data *data, 9273 struct pt_regs *regs) 9274 { 9275 if (event->attr.type != type) 9276 return 0; 9277 9278 if (event->attr.config != event_id) 9279 return 0; 9280 9281 if (perf_exclude_event(event, regs)) 9282 return 0; 9283 9284 return 1; 9285 } 9286 9287 static inline u64 swevent_hash(u64 type, u32 event_id) 9288 { 9289 u64 val = event_id | (type << 32); 9290 9291 return hash_64(val, SWEVENT_HLIST_BITS); 9292 } 9293 9294 static inline struct hlist_head * 9295 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9296 { 9297 u64 hash = swevent_hash(type, event_id); 9298 9299 return &hlist->heads[hash]; 9300 } 9301 9302 /* For the read side: events when they trigger */ 9303 static inline struct hlist_head * 9304 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9305 { 9306 struct swevent_hlist *hlist; 9307 9308 hlist = rcu_dereference(swhash->swevent_hlist); 9309 if (!hlist) 9310 return NULL; 9311 9312 return __find_swevent_head(hlist, type, event_id); 9313 } 9314 9315 /* For the event head insertion and removal in the hlist */ 9316 static inline struct hlist_head * 9317 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9318 { 9319 struct swevent_hlist *hlist; 9320 u32 event_id = event->attr.config; 9321 u64 type = event->attr.type; 9322 9323 /* 9324 * Event scheduling is always serialized against hlist allocation 9325 * and release. Which makes the protected version suitable here. 9326 * The context lock guarantees that. 9327 */ 9328 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9329 lockdep_is_held(&event->ctx->lock)); 9330 if (!hlist) 9331 return NULL; 9332 9333 return __find_swevent_head(hlist, type, event_id); 9334 } 9335 9336 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9337 u64 nr, 9338 struct perf_sample_data *data, 9339 struct pt_regs *regs) 9340 { 9341 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9342 struct perf_event *event; 9343 struct hlist_head *head; 9344 9345 rcu_read_lock(); 9346 head = find_swevent_head_rcu(swhash, type, event_id); 9347 if (!head) 9348 goto end; 9349 9350 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9351 if (perf_swevent_match(event, type, event_id, data, regs)) 9352 perf_swevent_event(event, nr, data, regs); 9353 } 9354 end: 9355 rcu_read_unlock(); 9356 } 9357 9358 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9359 9360 int perf_swevent_get_recursion_context(void) 9361 { 9362 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9363 9364 return get_recursion_context(swhash->recursion); 9365 } 9366 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9367 9368 void perf_swevent_put_recursion_context(int rctx) 9369 { 9370 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9371 9372 put_recursion_context(swhash->recursion, rctx); 9373 } 9374 9375 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9376 { 9377 struct perf_sample_data data; 9378 9379 if (WARN_ON_ONCE(!regs)) 9380 return; 9381 9382 perf_sample_data_init(&data, addr, 0); 9383 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9384 } 9385 9386 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9387 { 9388 int rctx; 9389 9390 preempt_disable_notrace(); 9391 rctx = perf_swevent_get_recursion_context(); 9392 if (unlikely(rctx < 0)) 9393 goto fail; 9394 9395 ___perf_sw_event(event_id, nr, regs, addr); 9396 9397 perf_swevent_put_recursion_context(rctx); 9398 fail: 9399 preempt_enable_notrace(); 9400 } 9401 9402 static void perf_swevent_read(struct perf_event *event) 9403 { 9404 } 9405 9406 static int perf_swevent_add(struct perf_event *event, int flags) 9407 { 9408 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9409 struct hw_perf_event *hwc = &event->hw; 9410 struct hlist_head *head; 9411 9412 if (is_sampling_event(event)) { 9413 hwc->last_period = hwc->sample_period; 9414 perf_swevent_set_period(event); 9415 } 9416 9417 hwc->state = !(flags & PERF_EF_START); 9418 9419 head = find_swevent_head(swhash, event); 9420 if (WARN_ON_ONCE(!head)) 9421 return -EINVAL; 9422 9423 hlist_add_head_rcu(&event->hlist_entry, head); 9424 perf_event_update_userpage(event); 9425 9426 return 0; 9427 } 9428 9429 static void perf_swevent_del(struct perf_event *event, int flags) 9430 { 9431 hlist_del_rcu(&event->hlist_entry); 9432 } 9433 9434 static void perf_swevent_start(struct perf_event *event, int flags) 9435 { 9436 event->hw.state = 0; 9437 } 9438 9439 static void perf_swevent_stop(struct perf_event *event, int flags) 9440 { 9441 event->hw.state = PERF_HES_STOPPED; 9442 } 9443 9444 /* Deref the hlist from the update side */ 9445 static inline struct swevent_hlist * 9446 swevent_hlist_deref(struct swevent_htable *swhash) 9447 { 9448 return rcu_dereference_protected(swhash->swevent_hlist, 9449 lockdep_is_held(&swhash->hlist_mutex)); 9450 } 9451 9452 static void swevent_hlist_release(struct swevent_htable *swhash) 9453 { 9454 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9455 9456 if (!hlist) 9457 return; 9458 9459 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9460 kfree_rcu(hlist, rcu_head); 9461 } 9462 9463 static void swevent_hlist_put_cpu(int cpu) 9464 { 9465 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9466 9467 mutex_lock(&swhash->hlist_mutex); 9468 9469 if (!--swhash->hlist_refcount) 9470 swevent_hlist_release(swhash); 9471 9472 mutex_unlock(&swhash->hlist_mutex); 9473 } 9474 9475 static void swevent_hlist_put(void) 9476 { 9477 int cpu; 9478 9479 for_each_possible_cpu(cpu) 9480 swevent_hlist_put_cpu(cpu); 9481 } 9482 9483 static int swevent_hlist_get_cpu(int cpu) 9484 { 9485 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9486 int err = 0; 9487 9488 mutex_lock(&swhash->hlist_mutex); 9489 if (!swevent_hlist_deref(swhash) && 9490 cpumask_test_cpu(cpu, perf_online_mask)) { 9491 struct swevent_hlist *hlist; 9492 9493 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9494 if (!hlist) { 9495 err = -ENOMEM; 9496 goto exit; 9497 } 9498 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9499 } 9500 swhash->hlist_refcount++; 9501 exit: 9502 mutex_unlock(&swhash->hlist_mutex); 9503 9504 return err; 9505 } 9506 9507 static int swevent_hlist_get(void) 9508 { 9509 int err, cpu, failed_cpu; 9510 9511 mutex_lock(&pmus_lock); 9512 for_each_possible_cpu(cpu) { 9513 err = swevent_hlist_get_cpu(cpu); 9514 if (err) { 9515 failed_cpu = cpu; 9516 goto fail; 9517 } 9518 } 9519 mutex_unlock(&pmus_lock); 9520 return 0; 9521 fail: 9522 for_each_possible_cpu(cpu) { 9523 if (cpu == failed_cpu) 9524 break; 9525 swevent_hlist_put_cpu(cpu); 9526 } 9527 mutex_unlock(&pmus_lock); 9528 return err; 9529 } 9530 9531 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9532 9533 static void sw_perf_event_destroy(struct perf_event *event) 9534 { 9535 u64 event_id = event->attr.config; 9536 9537 WARN_ON(event->parent); 9538 9539 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9540 swevent_hlist_put(); 9541 } 9542 9543 static int perf_swevent_init(struct perf_event *event) 9544 { 9545 u64 event_id = event->attr.config; 9546 9547 if (event->attr.type != PERF_TYPE_SOFTWARE) 9548 return -ENOENT; 9549 9550 /* 9551 * no branch sampling for software events 9552 */ 9553 if (has_branch_stack(event)) 9554 return -EOPNOTSUPP; 9555 9556 switch (event_id) { 9557 case PERF_COUNT_SW_CPU_CLOCK: 9558 case PERF_COUNT_SW_TASK_CLOCK: 9559 return -ENOENT; 9560 9561 default: 9562 break; 9563 } 9564 9565 if (event_id >= PERF_COUNT_SW_MAX) 9566 return -ENOENT; 9567 9568 if (!event->parent) { 9569 int err; 9570 9571 err = swevent_hlist_get(); 9572 if (err) 9573 return err; 9574 9575 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9576 event->destroy = sw_perf_event_destroy; 9577 } 9578 9579 return 0; 9580 } 9581 9582 static struct pmu perf_swevent = { 9583 .task_ctx_nr = perf_sw_context, 9584 9585 .capabilities = PERF_PMU_CAP_NO_NMI, 9586 9587 .event_init = perf_swevent_init, 9588 .add = perf_swevent_add, 9589 .del = perf_swevent_del, 9590 .start = perf_swevent_start, 9591 .stop = perf_swevent_stop, 9592 .read = perf_swevent_read, 9593 }; 9594 9595 #ifdef CONFIG_EVENT_TRACING 9596 9597 static int perf_tp_filter_match(struct perf_event *event, 9598 struct perf_sample_data *data) 9599 { 9600 void *record = data->raw->frag.data; 9601 9602 /* only top level events have filters set */ 9603 if (event->parent) 9604 event = event->parent; 9605 9606 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9607 return 1; 9608 return 0; 9609 } 9610 9611 static int perf_tp_event_match(struct perf_event *event, 9612 struct perf_sample_data *data, 9613 struct pt_regs *regs) 9614 { 9615 if (event->hw.state & PERF_HES_STOPPED) 9616 return 0; 9617 /* 9618 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9619 */ 9620 if (event->attr.exclude_kernel && !user_mode(regs)) 9621 return 0; 9622 9623 if (!perf_tp_filter_match(event, data)) 9624 return 0; 9625 9626 return 1; 9627 } 9628 9629 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9630 struct trace_event_call *call, u64 count, 9631 struct pt_regs *regs, struct hlist_head *head, 9632 struct task_struct *task) 9633 { 9634 if (bpf_prog_array_valid(call)) { 9635 *(struct pt_regs **)raw_data = regs; 9636 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9637 perf_swevent_put_recursion_context(rctx); 9638 return; 9639 } 9640 } 9641 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9642 rctx, task); 9643 } 9644 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9645 9646 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9647 struct pt_regs *regs, struct hlist_head *head, int rctx, 9648 struct task_struct *task) 9649 { 9650 struct perf_sample_data data; 9651 struct perf_event *event; 9652 9653 struct perf_raw_record raw = { 9654 .frag = { 9655 .size = entry_size, 9656 .data = record, 9657 }, 9658 }; 9659 9660 perf_sample_data_init(&data, 0, 0); 9661 data.raw = &raw; 9662 9663 perf_trace_buf_update(record, event_type); 9664 9665 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9666 if (perf_tp_event_match(event, &data, regs)) 9667 perf_swevent_event(event, count, &data, regs); 9668 } 9669 9670 /* 9671 * If we got specified a target task, also iterate its context and 9672 * deliver this event there too. 9673 */ 9674 if (task && task != current) { 9675 struct perf_event_context *ctx; 9676 struct trace_entry *entry = record; 9677 9678 rcu_read_lock(); 9679 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9680 if (!ctx) 9681 goto unlock; 9682 9683 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9684 if (event->cpu != smp_processor_id()) 9685 continue; 9686 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9687 continue; 9688 if (event->attr.config != entry->type) 9689 continue; 9690 if (perf_tp_event_match(event, &data, regs)) 9691 perf_swevent_event(event, count, &data, regs); 9692 } 9693 unlock: 9694 rcu_read_unlock(); 9695 } 9696 9697 perf_swevent_put_recursion_context(rctx); 9698 } 9699 EXPORT_SYMBOL_GPL(perf_tp_event); 9700 9701 static void tp_perf_event_destroy(struct perf_event *event) 9702 { 9703 perf_trace_destroy(event); 9704 } 9705 9706 static int perf_tp_event_init(struct perf_event *event) 9707 { 9708 int err; 9709 9710 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9711 return -ENOENT; 9712 9713 /* 9714 * no branch sampling for tracepoint events 9715 */ 9716 if (has_branch_stack(event)) 9717 return -EOPNOTSUPP; 9718 9719 err = perf_trace_init(event); 9720 if (err) 9721 return err; 9722 9723 event->destroy = tp_perf_event_destroy; 9724 9725 return 0; 9726 } 9727 9728 static struct pmu perf_tracepoint = { 9729 .task_ctx_nr = perf_sw_context, 9730 9731 .event_init = perf_tp_event_init, 9732 .add = perf_trace_add, 9733 .del = perf_trace_del, 9734 .start = perf_swevent_start, 9735 .stop = perf_swevent_stop, 9736 .read = perf_swevent_read, 9737 }; 9738 9739 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9740 /* 9741 * Flags in config, used by dynamic PMU kprobe and uprobe 9742 * The flags should match following PMU_FORMAT_ATTR(). 9743 * 9744 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9745 * if not set, create kprobe/uprobe 9746 * 9747 * The following values specify a reference counter (or semaphore in the 9748 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9749 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9750 * 9751 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9752 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9753 */ 9754 enum perf_probe_config { 9755 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9756 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9757 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9758 }; 9759 9760 PMU_FORMAT_ATTR(retprobe, "config:0"); 9761 #endif 9762 9763 #ifdef CONFIG_KPROBE_EVENTS 9764 static struct attribute *kprobe_attrs[] = { 9765 &format_attr_retprobe.attr, 9766 NULL, 9767 }; 9768 9769 static struct attribute_group kprobe_format_group = { 9770 .name = "format", 9771 .attrs = kprobe_attrs, 9772 }; 9773 9774 static const struct attribute_group *kprobe_attr_groups[] = { 9775 &kprobe_format_group, 9776 NULL, 9777 }; 9778 9779 static int perf_kprobe_event_init(struct perf_event *event); 9780 static struct pmu perf_kprobe = { 9781 .task_ctx_nr = perf_sw_context, 9782 .event_init = perf_kprobe_event_init, 9783 .add = perf_trace_add, 9784 .del = perf_trace_del, 9785 .start = perf_swevent_start, 9786 .stop = perf_swevent_stop, 9787 .read = perf_swevent_read, 9788 .attr_groups = kprobe_attr_groups, 9789 }; 9790 9791 static int perf_kprobe_event_init(struct perf_event *event) 9792 { 9793 int err; 9794 bool is_retprobe; 9795 9796 if (event->attr.type != perf_kprobe.type) 9797 return -ENOENT; 9798 9799 if (!perfmon_capable()) 9800 return -EACCES; 9801 9802 /* 9803 * no branch sampling for probe events 9804 */ 9805 if (has_branch_stack(event)) 9806 return -EOPNOTSUPP; 9807 9808 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9809 err = perf_kprobe_init(event, is_retprobe); 9810 if (err) 9811 return err; 9812 9813 event->destroy = perf_kprobe_destroy; 9814 9815 return 0; 9816 } 9817 #endif /* CONFIG_KPROBE_EVENTS */ 9818 9819 #ifdef CONFIG_UPROBE_EVENTS 9820 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9821 9822 static struct attribute *uprobe_attrs[] = { 9823 &format_attr_retprobe.attr, 9824 &format_attr_ref_ctr_offset.attr, 9825 NULL, 9826 }; 9827 9828 static struct attribute_group uprobe_format_group = { 9829 .name = "format", 9830 .attrs = uprobe_attrs, 9831 }; 9832 9833 static const struct attribute_group *uprobe_attr_groups[] = { 9834 &uprobe_format_group, 9835 NULL, 9836 }; 9837 9838 static int perf_uprobe_event_init(struct perf_event *event); 9839 static struct pmu perf_uprobe = { 9840 .task_ctx_nr = perf_sw_context, 9841 .event_init = perf_uprobe_event_init, 9842 .add = perf_trace_add, 9843 .del = perf_trace_del, 9844 .start = perf_swevent_start, 9845 .stop = perf_swevent_stop, 9846 .read = perf_swevent_read, 9847 .attr_groups = uprobe_attr_groups, 9848 }; 9849 9850 static int perf_uprobe_event_init(struct perf_event *event) 9851 { 9852 int err; 9853 unsigned long ref_ctr_offset; 9854 bool is_retprobe; 9855 9856 if (event->attr.type != perf_uprobe.type) 9857 return -ENOENT; 9858 9859 if (!perfmon_capable()) 9860 return -EACCES; 9861 9862 /* 9863 * no branch sampling for probe events 9864 */ 9865 if (has_branch_stack(event)) 9866 return -EOPNOTSUPP; 9867 9868 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9869 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9870 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9871 if (err) 9872 return err; 9873 9874 event->destroy = perf_uprobe_destroy; 9875 9876 return 0; 9877 } 9878 #endif /* CONFIG_UPROBE_EVENTS */ 9879 9880 static inline void perf_tp_register(void) 9881 { 9882 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9883 #ifdef CONFIG_KPROBE_EVENTS 9884 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9885 #endif 9886 #ifdef CONFIG_UPROBE_EVENTS 9887 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9888 #endif 9889 } 9890 9891 static void perf_event_free_filter(struct perf_event *event) 9892 { 9893 ftrace_profile_free_filter(event); 9894 } 9895 9896 #ifdef CONFIG_BPF_SYSCALL 9897 static void bpf_overflow_handler(struct perf_event *event, 9898 struct perf_sample_data *data, 9899 struct pt_regs *regs) 9900 { 9901 struct bpf_perf_event_data_kern ctx = { 9902 .data = data, 9903 .event = event, 9904 }; 9905 int ret = 0; 9906 9907 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9908 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9909 goto out; 9910 rcu_read_lock(); 9911 ret = BPF_PROG_RUN(event->prog, &ctx); 9912 rcu_read_unlock(); 9913 out: 9914 __this_cpu_dec(bpf_prog_active); 9915 if (!ret) 9916 return; 9917 9918 event->orig_overflow_handler(event, data, regs); 9919 } 9920 9921 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9922 { 9923 struct bpf_prog *prog; 9924 9925 if (event->overflow_handler_context) 9926 /* hw breakpoint or kernel counter */ 9927 return -EINVAL; 9928 9929 if (event->prog) 9930 return -EEXIST; 9931 9932 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9933 if (IS_ERR(prog)) 9934 return PTR_ERR(prog); 9935 9936 if (event->attr.precise_ip && 9937 prog->call_get_stack && 9938 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9939 event->attr.exclude_callchain_kernel || 9940 event->attr.exclude_callchain_user)) { 9941 /* 9942 * On perf_event with precise_ip, calling bpf_get_stack() 9943 * may trigger unwinder warnings and occasional crashes. 9944 * bpf_get_[stack|stackid] works around this issue by using 9945 * callchain attached to perf_sample_data. If the 9946 * perf_event does not full (kernel and user) callchain 9947 * attached to perf_sample_data, do not allow attaching BPF 9948 * program that calls bpf_get_[stack|stackid]. 9949 */ 9950 bpf_prog_put(prog); 9951 return -EPROTO; 9952 } 9953 9954 event->prog = prog; 9955 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9956 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9957 return 0; 9958 } 9959 9960 static void perf_event_free_bpf_handler(struct perf_event *event) 9961 { 9962 struct bpf_prog *prog = event->prog; 9963 9964 if (!prog) 9965 return; 9966 9967 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9968 event->prog = NULL; 9969 bpf_prog_put(prog); 9970 } 9971 #else 9972 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9973 { 9974 return -EOPNOTSUPP; 9975 } 9976 static void perf_event_free_bpf_handler(struct perf_event *event) 9977 { 9978 } 9979 #endif 9980 9981 /* 9982 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9983 * with perf_event_open() 9984 */ 9985 static inline bool perf_event_is_tracing(struct perf_event *event) 9986 { 9987 if (event->pmu == &perf_tracepoint) 9988 return true; 9989 #ifdef CONFIG_KPROBE_EVENTS 9990 if (event->pmu == &perf_kprobe) 9991 return true; 9992 #endif 9993 #ifdef CONFIG_UPROBE_EVENTS 9994 if (event->pmu == &perf_uprobe) 9995 return true; 9996 #endif 9997 return false; 9998 } 9999 10000 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10001 { 10002 bool is_kprobe, is_tracepoint, is_syscall_tp; 10003 struct bpf_prog *prog; 10004 int ret; 10005 10006 if (!perf_event_is_tracing(event)) 10007 return perf_event_set_bpf_handler(event, prog_fd); 10008 10009 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10010 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10011 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10012 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10013 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10014 return -EINVAL; 10015 10016 prog = bpf_prog_get(prog_fd); 10017 if (IS_ERR(prog)) 10018 return PTR_ERR(prog); 10019 10020 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10021 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10022 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 10023 /* valid fd, but invalid bpf program type */ 10024 bpf_prog_put(prog); 10025 return -EINVAL; 10026 } 10027 10028 /* Kprobe override only works for kprobes, not uprobes. */ 10029 if (prog->kprobe_override && 10030 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 10031 bpf_prog_put(prog); 10032 return -EINVAL; 10033 } 10034 10035 if (is_tracepoint || is_syscall_tp) { 10036 int off = trace_event_get_offsets(event->tp_event); 10037 10038 if (prog->aux->max_ctx_offset > off) { 10039 bpf_prog_put(prog); 10040 return -EACCES; 10041 } 10042 } 10043 10044 ret = perf_event_attach_bpf_prog(event, prog); 10045 if (ret) 10046 bpf_prog_put(prog); 10047 return ret; 10048 } 10049 10050 static void perf_event_free_bpf_prog(struct perf_event *event) 10051 { 10052 if (!perf_event_is_tracing(event)) { 10053 perf_event_free_bpf_handler(event); 10054 return; 10055 } 10056 perf_event_detach_bpf_prog(event); 10057 } 10058 10059 #else 10060 10061 static inline void perf_tp_register(void) 10062 { 10063 } 10064 10065 static void perf_event_free_filter(struct perf_event *event) 10066 { 10067 } 10068 10069 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10070 { 10071 return -ENOENT; 10072 } 10073 10074 static void perf_event_free_bpf_prog(struct perf_event *event) 10075 { 10076 } 10077 #endif /* CONFIG_EVENT_TRACING */ 10078 10079 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10080 void perf_bp_event(struct perf_event *bp, void *data) 10081 { 10082 struct perf_sample_data sample; 10083 struct pt_regs *regs = data; 10084 10085 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10086 10087 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10088 perf_swevent_event(bp, 1, &sample, regs); 10089 } 10090 #endif 10091 10092 /* 10093 * Allocate a new address filter 10094 */ 10095 static struct perf_addr_filter * 10096 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10097 { 10098 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10099 struct perf_addr_filter *filter; 10100 10101 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10102 if (!filter) 10103 return NULL; 10104 10105 INIT_LIST_HEAD(&filter->entry); 10106 list_add_tail(&filter->entry, filters); 10107 10108 return filter; 10109 } 10110 10111 static void free_filters_list(struct list_head *filters) 10112 { 10113 struct perf_addr_filter *filter, *iter; 10114 10115 list_for_each_entry_safe(filter, iter, filters, entry) { 10116 path_put(&filter->path); 10117 list_del(&filter->entry); 10118 kfree(filter); 10119 } 10120 } 10121 10122 /* 10123 * Free existing address filters and optionally install new ones 10124 */ 10125 static void perf_addr_filters_splice(struct perf_event *event, 10126 struct list_head *head) 10127 { 10128 unsigned long flags; 10129 LIST_HEAD(list); 10130 10131 if (!has_addr_filter(event)) 10132 return; 10133 10134 /* don't bother with children, they don't have their own filters */ 10135 if (event->parent) 10136 return; 10137 10138 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10139 10140 list_splice_init(&event->addr_filters.list, &list); 10141 if (head) 10142 list_splice(head, &event->addr_filters.list); 10143 10144 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10145 10146 free_filters_list(&list); 10147 } 10148 10149 /* 10150 * Scan through mm's vmas and see if one of them matches the 10151 * @filter; if so, adjust filter's address range. 10152 * Called with mm::mmap_lock down for reading. 10153 */ 10154 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10155 struct mm_struct *mm, 10156 struct perf_addr_filter_range *fr) 10157 { 10158 struct vm_area_struct *vma; 10159 10160 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10161 if (!vma->vm_file) 10162 continue; 10163 10164 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10165 return; 10166 } 10167 } 10168 10169 /* 10170 * Update event's address range filters based on the 10171 * task's existing mappings, if any. 10172 */ 10173 static void perf_event_addr_filters_apply(struct perf_event *event) 10174 { 10175 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10176 struct task_struct *task = READ_ONCE(event->ctx->task); 10177 struct perf_addr_filter *filter; 10178 struct mm_struct *mm = NULL; 10179 unsigned int count = 0; 10180 unsigned long flags; 10181 10182 /* 10183 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10184 * will stop on the parent's child_mutex that our caller is also holding 10185 */ 10186 if (task == TASK_TOMBSTONE) 10187 return; 10188 10189 if (ifh->nr_file_filters) { 10190 mm = get_task_mm(event->ctx->task); 10191 if (!mm) 10192 goto restart; 10193 10194 mmap_read_lock(mm); 10195 } 10196 10197 raw_spin_lock_irqsave(&ifh->lock, flags); 10198 list_for_each_entry(filter, &ifh->list, entry) { 10199 if (filter->path.dentry) { 10200 /* 10201 * Adjust base offset if the filter is associated to a 10202 * binary that needs to be mapped: 10203 */ 10204 event->addr_filter_ranges[count].start = 0; 10205 event->addr_filter_ranges[count].size = 0; 10206 10207 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10208 } else { 10209 event->addr_filter_ranges[count].start = filter->offset; 10210 event->addr_filter_ranges[count].size = filter->size; 10211 } 10212 10213 count++; 10214 } 10215 10216 event->addr_filters_gen++; 10217 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10218 10219 if (ifh->nr_file_filters) { 10220 mmap_read_unlock(mm); 10221 10222 mmput(mm); 10223 } 10224 10225 restart: 10226 perf_event_stop(event, 1); 10227 } 10228 10229 /* 10230 * Address range filtering: limiting the data to certain 10231 * instruction address ranges. Filters are ioctl()ed to us from 10232 * userspace as ascii strings. 10233 * 10234 * Filter string format: 10235 * 10236 * ACTION RANGE_SPEC 10237 * where ACTION is one of the 10238 * * "filter": limit the trace to this region 10239 * * "start": start tracing from this address 10240 * * "stop": stop tracing at this address/region; 10241 * RANGE_SPEC is 10242 * * for kernel addresses: <start address>[/<size>] 10243 * * for object files: <start address>[/<size>]@</path/to/object/file> 10244 * 10245 * if <size> is not specified or is zero, the range is treated as a single 10246 * address; not valid for ACTION=="filter". 10247 */ 10248 enum { 10249 IF_ACT_NONE = -1, 10250 IF_ACT_FILTER, 10251 IF_ACT_START, 10252 IF_ACT_STOP, 10253 IF_SRC_FILE, 10254 IF_SRC_KERNEL, 10255 IF_SRC_FILEADDR, 10256 IF_SRC_KERNELADDR, 10257 }; 10258 10259 enum { 10260 IF_STATE_ACTION = 0, 10261 IF_STATE_SOURCE, 10262 IF_STATE_END, 10263 }; 10264 10265 static const match_table_t if_tokens = { 10266 { IF_ACT_FILTER, "filter" }, 10267 { IF_ACT_START, "start" }, 10268 { IF_ACT_STOP, "stop" }, 10269 { IF_SRC_FILE, "%u/%u@%s" }, 10270 { IF_SRC_KERNEL, "%u/%u" }, 10271 { IF_SRC_FILEADDR, "%u@%s" }, 10272 { IF_SRC_KERNELADDR, "%u" }, 10273 { IF_ACT_NONE, NULL }, 10274 }; 10275 10276 /* 10277 * Address filter string parser 10278 */ 10279 static int 10280 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10281 struct list_head *filters) 10282 { 10283 struct perf_addr_filter *filter = NULL; 10284 char *start, *orig, *filename = NULL; 10285 substring_t args[MAX_OPT_ARGS]; 10286 int state = IF_STATE_ACTION, token; 10287 unsigned int kernel = 0; 10288 int ret = -EINVAL; 10289 10290 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10291 if (!fstr) 10292 return -ENOMEM; 10293 10294 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10295 static const enum perf_addr_filter_action_t actions[] = { 10296 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10297 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10298 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10299 }; 10300 ret = -EINVAL; 10301 10302 if (!*start) 10303 continue; 10304 10305 /* filter definition begins */ 10306 if (state == IF_STATE_ACTION) { 10307 filter = perf_addr_filter_new(event, filters); 10308 if (!filter) 10309 goto fail; 10310 } 10311 10312 token = match_token(start, if_tokens, args); 10313 switch (token) { 10314 case IF_ACT_FILTER: 10315 case IF_ACT_START: 10316 case IF_ACT_STOP: 10317 if (state != IF_STATE_ACTION) 10318 goto fail; 10319 10320 filter->action = actions[token]; 10321 state = IF_STATE_SOURCE; 10322 break; 10323 10324 case IF_SRC_KERNELADDR: 10325 case IF_SRC_KERNEL: 10326 kernel = 1; 10327 fallthrough; 10328 10329 case IF_SRC_FILEADDR: 10330 case IF_SRC_FILE: 10331 if (state != IF_STATE_SOURCE) 10332 goto fail; 10333 10334 *args[0].to = 0; 10335 ret = kstrtoul(args[0].from, 0, &filter->offset); 10336 if (ret) 10337 goto fail; 10338 10339 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10340 *args[1].to = 0; 10341 ret = kstrtoul(args[1].from, 0, &filter->size); 10342 if (ret) 10343 goto fail; 10344 } 10345 10346 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10347 int fpos = token == IF_SRC_FILE ? 2 : 1; 10348 10349 kfree(filename); 10350 filename = match_strdup(&args[fpos]); 10351 if (!filename) { 10352 ret = -ENOMEM; 10353 goto fail; 10354 } 10355 } 10356 10357 state = IF_STATE_END; 10358 break; 10359 10360 default: 10361 goto fail; 10362 } 10363 10364 /* 10365 * Filter definition is fully parsed, validate and install it. 10366 * Make sure that it doesn't contradict itself or the event's 10367 * attribute. 10368 */ 10369 if (state == IF_STATE_END) { 10370 ret = -EINVAL; 10371 if (kernel && event->attr.exclude_kernel) 10372 goto fail; 10373 10374 /* 10375 * ACTION "filter" must have a non-zero length region 10376 * specified. 10377 */ 10378 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10379 !filter->size) 10380 goto fail; 10381 10382 if (!kernel) { 10383 if (!filename) 10384 goto fail; 10385 10386 /* 10387 * For now, we only support file-based filters 10388 * in per-task events; doing so for CPU-wide 10389 * events requires additional context switching 10390 * trickery, since same object code will be 10391 * mapped at different virtual addresses in 10392 * different processes. 10393 */ 10394 ret = -EOPNOTSUPP; 10395 if (!event->ctx->task) 10396 goto fail; 10397 10398 /* look up the path and grab its inode */ 10399 ret = kern_path(filename, LOOKUP_FOLLOW, 10400 &filter->path); 10401 if (ret) 10402 goto fail; 10403 10404 ret = -EINVAL; 10405 if (!filter->path.dentry || 10406 !S_ISREG(d_inode(filter->path.dentry) 10407 ->i_mode)) 10408 goto fail; 10409 10410 event->addr_filters.nr_file_filters++; 10411 } 10412 10413 /* ready to consume more filters */ 10414 state = IF_STATE_ACTION; 10415 filter = NULL; 10416 } 10417 } 10418 10419 if (state != IF_STATE_ACTION) 10420 goto fail; 10421 10422 kfree(filename); 10423 kfree(orig); 10424 10425 return 0; 10426 10427 fail: 10428 kfree(filename); 10429 free_filters_list(filters); 10430 kfree(orig); 10431 10432 return ret; 10433 } 10434 10435 static int 10436 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10437 { 10438 LIST_HEAD(filters); 10439 int ret; 10440 10441 /* 10442 * Since this is called in perf_ioctl() path, we're already holding 10443 * ctx::mutex. 10444 */ 10445 lockdep_assert_held(&event->ctx->mutex); 10446 10447 if (WARN_ON_ONCE(event->parent)) 10448 return -EINVAL; 10449 10450 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10451 if (ret) 10452 goto fail_clear_files; 10453 10454 ret = event->pmu->addr_filters_validate(&filters); 10455 if (ret) 10456 goto fail_free_filters; 10457 10458 /* remove existing filters, if any */ 10459 perf_addr_filters_splice(event, &filters); 10460 10461 /* install new filters */ 10462 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10463 10464 return ret; 10465 10466 fail_free_filters: 10467 free_filters_list(&filters); 10468 10469 fail_clear_files: 10470 event->addr_filters.nr_file_filters = 0; 10471 10472 return ret; 10473 } 10474 10475 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10476 { 10477 int ret = -EINVAL; 10478 char *filter_str; 10479 10480 filter_str = strndup_user(arg, PAGE_SIZE); 10481 if (IS_ERR(filter_str)) 10482 return PTR_ERR(filter_str); 10483 10484 #ifdef CONFIG_EVENT_TRACING 10485 if (perf_event_is_tracing(event)) { 10486 struct perf_event_context *ctx = event->ctx; 10487 10488 /* 10489 * Beware, here be dragons!! 10490 * 10491 * the tracepoint muck will deadlock against ctx->mutex, but 10492 * the tracepoint stuff does not actually need it. So 10493 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10494 * already have a reference on ctx. 10495 * 10496 * This can result in event getting moved to a different ctx, 10497 * but that does not affect the tracepoint state. 10498 */ 10499 mutex_unlock(&ctx->mutex); 10500 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10501 mutex_lock(&ctx->mutex); 10502 } else 10503 #endif 10504 if (has_addr_filter(event)) 10505 ret = perf_event_set_addr_filter(event, filter_str); 10506 10507 kfree(filter_str); 10508 return ret; 10509 } 10510 10511 /* 10512 * hrtimer based swevent callback 10513 */ 10514 10515 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10516 { 10517 enum hrtimer_restart ret = HRTIMER_RESTART; 10518 struct perf_sample_data data; 10519 struct pt_regs *regs; 10520 struct perf_event *event; 10521 u64 period; 10522 10523 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10524 10525 if (event->state != PERF_EVENT_STATE_ACTIVE) 10526 return HRTIMER_NORESTART; 10527 10528 event->pmu->read(event); 10529 10530 perf_sample_data_init(&data, 0, event->hw.last_period); 10531 regs = get_irq_regs(); 10532 10533 if (regs && !perf_exclude_event(event, regs)) { 10534 if (!(event->attr.exclude_idle && is_idle_task(current))) 10535 if (__perf_event_overflow(event, 1, &data, regs)) 10536 ret = HRTIMER_NORESTART; 10537 } 10538 10539 period = max_t(u64, 10000, event->hw.sample_period); 10540 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10541 10542 return ret; 10543 } 10544 10545 static void perf_swevent_start_hrtimer(struct perf_event *event) 10546 { 10547 struct hw_perf_event *hwc = &event->hw; 10548 s64 period; 10549 10550 if (!is_sampling_event(event)) 10551 return; 10552 10553 period = local64_read(&hwc->period_left); 10554 if (period) { 10555 if (period < 0) 10556 period = 10000; 10557 10558 local64_set(&hwc->period_left, 0); 10559 } else { 10560 period = max_t(u64, 10000, hwc->sample_period); 10561 } 10562 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10563 HRTIMER_MODE_REL_PINNED_HARD); 10564 } 10565 10566 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10567 { 10568 struct hw_perf_event *hwc = &event->hw; 10569 10570 if (is_sampling_event(event)) { 10571 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10572 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10573 10574 hrtimer_cancel(&hwc->hrtimer); 10575 } 10576 } 10577 10578 static void perf_swevent_init_hrtimer(struct perf_event *event) 10579 { 10580 struct hw_perf_event *hwc = &event->hw; 10581 10582 if (!is_sampling_event(event)) 10583 return; 10584 10585 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10586 hwc->hrtimer.function = perf_swevent_hrtimer; 10587 10588 /* 10589 * Since hrtimers have a fixed rate, we can do a static freq->period 10590 * mapping and avoid the whole period adjust feedback stuff. 10591 */ 10592 if (event->attr.freq) { 10593 long freq = event->attr.sample_freq; 10594 10595 event->attr.sample_period = NSEC_PER_SEC / freq; 10596 hwc->sample_period = event->attr.sample_period; 10597 local64_set(&hwc->period_left, hwc->sample_period); 10598 hwc->last_period = hwc->sample_period; 10599 event->attr.freq = 0; 10600 } 10601 } 10602 10603 /* 10604 * Software event: cpu wall time clock 10605 */ 10606 10607 static void cpu_clock_event_update(struct perf_event *event) 10608 { 10609 s64 prev; 10610 u64 now; 10611 10612 now = local_clock(); 10613 prev = local64_xchg(&event->hw.prev_count, now); 10614 local64_add(now - prev, &event->count); 10615 } 10616 10617 static void cpu_clock_event_start(struct perf_event *event, int flags) 10618 { 10619 local64_set(&event->hw.prev_count, local_clock()); 10620 perf_swevent_start_hrtimer(event); 10621 } 10622 10623 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10624 { 10625 perf_swevent_cancel_hrtimer(event); 10626 cpu_clock_event_update(event); 10627 } 10628 10629 static int cpu_clock_event_add(struct perf_event *event, int flags) 10630 { 10631 if (flags & PERF_EF_START) 10632 cpu_clock_event_start(event, flags); 10633 perf_event_update_userpage(event); 10634 10635 return 0; 10636 } 10637 10638 static void cpu_clock_event_del(struct perf_event *event, int flags) 10639 { 10640 cpu_clock_event_stop(event, flags); 10641 } 10642 10643 static void cpu_clock_event_read(struct perf_event *event) 10644 { 10645 cpu_clock_event_update(event); 10646 } 10647 10648 static int cpu_clock_event_init(struct perf_event *event) 10649 { 10650 if (event->attr.type != PERF_TYPE_SOFTWARE) 10651 return -ENOENT; 10652 10653 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10654 return -ENOENT; 10655 10656 /* 10657 * no branch sampling for software events 10658 */ 10659 if (has_branch_stack(event)) 10660 return -EOPNOTSUPP; 10661 10662 perf_swevent_init_hrtimer(event); 10663 10664 return 0; 10665 } 10666 10667 static struct pmu perf_cpu_clock = { 10668 .task_ctx_nr = perf_sw_context, 10669 10670 .capabilities = PERF_PMU_CAP_NO_NMI, 10671 10672 .event_init = cpu_clock_event_init, 10673 .add = cpu_clock_event_add, 10674 .del = cpu_clock_event_del, 10675 .start = cpu_clock_event_start, 10676 .stop = cpu_clock_event_stop, 10677 .read = cpu_clock_event_read, 10678 }; 10679 10680 /* 10681 * Software event: task time clock 10682 */ 10683 10684 static void task_clock_event_update(struct perf_event *event, u64 now) 10685 { 10686 u64 prev; 10687 s64 delta; 10688 10689 prev = local64_xchg(&event->hw.prev_count, now); 10690 delta = now - prev; 10691 local64_add(delta, &event->count); 10692 } 10693 10694 static void task_clock_event_start(struct perf_event *event, int flags) 10695 { 10696 local64_set(&event->hw.prev_count, event->ctx->time); 10697 perf_swevent_start_hrtimer(event); 10698 } 10699 10700 static void task_clock_event_stop(struct perf_event *event, int flags) 10701 { 10702 perf_swevent_cancel_hrtimer(event); 10703 task_clock_event_update(event, event->ctx->time); 10704 } 10705 10706 static int task_clock_event_add(struct perf_event *event, int flags) 10707 { 10708 if (flags & PERF_EF_START) 10709 task_clock_event_start(event, flags); 10710 perf_event_update_userpage(event); 10711 10712 return 0; 10713 } 10714 10715 static void task_clock_event_del(struct perf_event *event, int flags) 10716 { 10717 task_clock_event_stop(event, PERF_EF_UPDATE); 10718 } 10719 10720 static void task_clock_event_read(struct perf_event *event) 10721 { 10722 u64 now = perf_clock(); 10723 u64 delta = now - event->ctx->timestamp; 10724 u64 time = event->ctx->time + delta; 10725 10726 task_clock_event_update(event, time); 10727 } 10728 10729 static int task_clock_event_init(struct perf_event *event) 10730 { 10731 if (event->attr.type != PERF_TYPE_SOFTWARE) 10732 return -ENOENT; 10733 10734 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10735 return -ENOENT; 10736 10737 /* 10738 * no branch sampling for software events 10739 */ 10740 if (has_branch_stack(event)) 10741 return -EOPNOTSUPP; 10742 10743 perf_swevent_init_hrtimer(event); 10744 10745 return 0; 10746 } 10747 10748 static struct pmu perf_task_clock = { 10749 .task_ctx_nr = perf_sw_context, 10750 10751 .capabilities = PERF_PMU_CAP_NO_NMI, 10752 10753 .event_init = task_clock_event_init, 10754 .add = task_clock_event_add, 10755 .del = task_clock_event_del, 10756 .start = task_clock_event_start, 10757 .stop = task_clock_event_stop, 10758 .read = task_clock_event_read, 10759 }; 10760 10761 static void perf_pmu_nop_void(struct pmu *pmu) 10762 { 10763 } 10764 10765 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10766 { 10767 } 10768 10769 static int perf_pmu_nop_int(struct pmu *pmu) 10770 { 10771 return 0; 10772 } 10773 10774 static int perf_event_nop_int(struct perf_event *event, u64 value) 10775 { 10776 return 0; 10777 } 10778 10779 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10780 10781 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10782 { 10783 __this_cpu_write(nop_txn_flags, flags); 10784 10785 if (flags & ~PERF_PMU_TXN_ADD) 10786 return; 10787 10788 perf_pmu_disable(pmu); 10789 } 10790 10791 static int perf_pmu_commit_txn(struct pmu *pmu) 10792 { 10793 unsigned int flags = __this_cpu_read(nop_txn_flags); 10794 10795 __this_cpu_write(nop_txn_flags, 0); 10796 10797 if (flags & ~PERF_PMU_TXN_ADD) 10798 return 0; 10799 10800 perf_pmu_enable(pmu); 10801 return 0; 10802 } 10803 10804 static void perf_pmu_cancel_txn(struct pmu *pmu) 10805 { 10806 unsigned int flags = __this_cpu_read(nop_txn_flags); 10807 10808 __this_cpu_write(nop_txn_flags, 0); 10809 10810 if (flags & ~PERF_PMU_TXN_ADD) 10811 return; 10812 10813 perf_pmu_enable(pmu); 10814 } 10815 10816 static int perf_event_idx_default(struct perf_event *event) 10817 { 10818 return 0; 10819 } 10820 10821 /* 10822 * Ensures all contexts with the same task_ctx_nr have the same 10823 * pmu_cpu_context too. 10824 */ 10825 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10826 { 10827 struct pmu *pmu; 10828 10829 if (ctxn < 0) 10830 return NULL; 10831 10832 list_for_each_entry(pmu, &pmus, entry) { 10833 if (pmu->task_ctx_nr == ctxn) 10834 return pmu->pmu_cpu_context; 10835 } 10836 10837 return NULL; 10838 } 10839 10840 static void free_pmu_context(struct pmu *pmu) 10841 { 10842 /* 10843 * Static contexts such as perf_sw_context have a global lifetime 10844 * and may be shared between different PMUs. Avoid freeing them 10845 * when a single PMU is going away. 10846 */ 10847 if (pmu->task_ctx_nr > perf_invalid_context) 10848 return; 10849 10850 free_percpu(pmu->pmu_cpu_context); 10851 } 10852 10853 /* 10854 * Let userspace know that this PMU supports address range filtering: 10855 */ 10856 static ssize_t nr_addr_filters_show(struct device *dev, 10857 struct device_attribute *attr, 10858 char *page) 10859 { 10860 struct pmu *pmu = dev_get_drvdata(dev); 10861 10862 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10863 } 10864 DEVICE_ATTR_RO(nr_addr_filters); 10865 10866 static struct idr pmu_idr; 10867 10868 static ssize_t 10869 type_show(struct device *dev, struct device_attribute *attr, char *page) 10870 { 10871 struct pmu *pmu = dev_get_drvdata(dev); 10872 10873 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10874 } 10875 static DEVICE_ATTR_RO(type); 10876 10877 static ssize_t 10878 perf_event_mux_interval_ms_show(struct device *dev, 10879 struct device_attribute *attr, 10880 char *page) 10881 { 10882 struct pmu *pmu = dev_get_drvdata(dev); 10883 10884 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10885 } 10886 10887 static DEFINE_MUTEX(mux_interval_mutex); 10888 10889 static ssize_t 10890 perf_event_mux_interval_ms_store(struct device *dev, 10891 struct device_attribute *attr, 10892 const char *buf, size_t count) 10893 { 10894 struct pmu *pmu = dev_get_drvdata(dev); 10895 int timer, cpu, ret; 10896 10897 ret = kstrtoint(buf, 0, &timer); 10898 if (ret) 10899 return ret; 10900 10901 if (timer < 1) 10902 return -EINVAL; 10903 10904 /* same value, noting to do */ 10905 if (timer == pmu->hrtimer_interval_ms) 10906 return count; 10907 10908 mutex_lock(&mux_interval_mutex); 10909 pmu->hrtimer_interval_ms = timer; 10910 10911 /* update all cpuctx for this PMU */ 10912 cpus_read_lock(); 10913 for_each_online_cpu(cpu) { 10914 struct perf_cpu_context *cpuctx; 10915 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10916 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10917 10918 cpu_function_call(cpu, 10919 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10920 } 10921 cpus_read_unlock(); 10922 mutex_unlock(&mux_interval_mutex); 10923 10924 return count; 10925 } 10926 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10927 10928 static struct attribute *pmu_dev_attrs[] = { 10929 &dev_attr_type.attr, 10930 &dev_attr_perf_event_mux_interval_ms.attr, 10931 NULL, 10932 }; 10933 ATTRIBUTE_GROUPS(pmu_dev); 10934 10935 static int pmu_bus_running; 10936 static struct bus_type pmu_bus = { 10937 .name = "event_source", 10938 .dev_groups = pmu_dev_groups, 10939 }; 10940 10941 static void pmu_dev_release(struct device *dev) 10942 { 10943 kfree(dev); 10944 } 10945 10946 static int pmu_dev_alloc(struct pmu *pmu) 10947 { 10948 int ret = -ENOMEM; 10949 10950 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10951 if (!pmu->dev) 10952 goto out; 10953 10954 pmu->dev->groups = pmu->attr_groups; 10955 device_initialize(pmu->dev); 10956 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10957 if (ret) 10958 goto free_dev; 10959 10960 dev_set_drvdata(pmu->dev, pmu); 10961 pmu->dev->bus = &pmu_bus; 10962 pmu->dev->release = pmu_dev_release; 10963 ret = device_add(pmu->dev); 10964 if (ret) 10965 goto free_dev; 10966 10967 /* For PMUs with address filters, throw in an extra attribute: */ 10968 if (pmu->nr_addr_filters) 10969 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10970 10971 if (ret) 10972 goto del_dev; 10973 10974 if (pmu->attr_update) 10975 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10976 10977 if (ret) 10978 goto del_dev; 10979 10980 out: 10981 return ret; 10982 10983 del_dev: 10984 device_del(pmu->dev); 10985 10986 free_dev: 10987 put_device(pmu->dev); 10988 goto out; 10989 } 10990 10991 static struct lock_class_key cpuctx_mutex; 10992 static struct lock_class_key cpuctx_lock; 10993 10994 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10995 { 10996 int cpu, ret, max = PERF_TYPE_MAX; 10997 10998 mutex_lock(&pmus_lock); 10999 ret = -ENOMEM; 11000 pmu->pmu_disable_count = alloc_percpu(int); 11001 if (!pmu->pmu_disable_count) 11002 goto unlock; 11003 11004 pmu->type = -1; 11005 if (!name) 11006 goto skip_type; 11007 pmu->name = name; 11008 11009 if (type != PERF_TYPE_SOFTWARE) { 11010 if (type >= 0) 11011 max = type; 11012 11013 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11014 if (ret < 0) 11015 goto free_pdc; 11016 11017 WARN_ON(type >= 0 && ret != type); 11018 11019 type = ret; 11020 } 11021 pmu->type = type; 11022 11023 if (pmu_bus_running) { 11024 ret = pmu_dev_alloc(pmu); 11025 if (ret) 11026 goto free_idr; 11027 } 11028 11029 skip_type: 11030 if (pmu->task_ctx_nr == perf_hw_context) { 11031 static int hw_context_taken = 0; 11032 11033 /* 11034 * Other than systems with heterogeneous CPUs, it never makes 11035 * sense for two PMUs to share perf_hw_context. PMUs which are 11036 * uncore must use perf_invalid_context. 11037 */ 11038 if (WARN_ON_ONCE(hw_context_taken && 11039 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11040 pmu->task_ctx_nr = perf_invalid_context; 11041 11042 hw_context_taken = 1; 11043 } 11044 11045 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11046 if (pmu->pmu_cpu_context) 11047 goto got_cpu_context; 11048 11049 ret = -ENOMEM; 11050 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11051 if (!pmu->pmu_cpu_context) 11052 goto free_dev; 11053 11054 for_each_possible_cpu(cpu) { 11055 struct perf_cpu_context *cpuctx; 11056 11057 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11058 __perf_event_init_context(&cpuctx->ctx); 11059 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11060 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11061 cpuctx->ctx.pmu = pmu; 11062 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11063 11064 __perf_mux_hrtimer_init(cpuctx, cpu); 11065 11066 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11067 cpuctx->heap = cpuctx->heap_default; 11068 } 11069 11070 got_cpu_context: 11071 if (!pmu->start_txn) { 11072 if (pmu->pmu_enable) { 11073 /* 11074 * If we have pmu_enable/pmu_disable calls, install 11075 * transaction stubs that use that to try and batch 11076 * hardware accesses. 11077 */ 11078 pmu->start_txn = perf_pmu_start_txn; 11079 pmu->commit_txn = perf_pmu_commit_txn; 11080 pmu->cancel_txn = perf_pmu_cancel_txn; 11081 } else { 11082 pmu->start_txn = perf_pmu_nop_txn; 11083 pmu->commit_txn = perf_pmu_nop_int; 11084 pmu->cancel_txn = perf_pmu_nop_void; 11085 } 11086 } 11087 11088 if (!pmu->pmu_enable) { 11089 pmu->pmu_enable = perf_pmu_nop_void; 11090 pmu->pmu_disable = perf_pmu_nop_void; 11091 } 11092 11093 if (!pmu->check_period) 11094 pmu->check_period = perf_event_nop_int; 11095 11096 if (!pmu->event_idx) 11097 pmu->event_idx = perf_event_idx_default; 11098 11099 /* 11100 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11101 * since these cannot be in the IDR. This way the linear search 11102 * is fast, provided a valid software event is provided. 11103 */ 11104 if (type == PERF_TYPE_SOFTWARE || !name) 11105 list_add_rcu(&pmu->entry, &pmus); 11106 else 11107 list_add_tail_rcu(&pmu->entry, &pmus); 11108 11109 atomic_set(&pmu->exclusive_cnt, 0); 11110 ret = 0; 11111 unlock: 11112 mutex_unlock(&pmus_lock); 11113 11114 return ret; 11115 11116 free_dev: 11117 device_del(pmu->dev); 11118 put_device(pmu->dev); 11119 11120 free_idr: 11121 if (pmu->type != PERF_TYPE_SOFTWARE) 11122 idr_remove(&pmu_idr, pmu->type); 11123 11124 free_pdc: 11125 free_percpu(pmu->pmu_disable_count); 11126 goto unlock; 11127 } 11128 EXPORT_SYMBOL_GPL(perf_pmu_register); 11129 11130 void perf_pmu_unregister(struct pmu *pmu) 11131 { 11132 mutex_lock(&pmus_lock); 11133 list_del_rcu(&pmu->entry); 11134 11135 /* 11136 * We dereference the pmu list under both SRCU and regular RCU, so 11137 * synchronize against both of those. 11138 */ 11139 synchronize_srcu(&pmus_srcu); 11140 synchronize_rcu(); 11141 11142 free_percpu(pmu->pmu_disable_count); 11143 if (pmu->type != PERF_TYPE_SOFTWARE) 11144 idr_remove(&pmu_idr, pmu->type); 11145 if (pmu_bus_running) { 11146 if (pmu->nr_addr_filters) 11147 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11148 device_del(pmu->dev); 11149 put_device(pmu->dev); 11150 } 11151 free_pmu_context(pmu); 11152 mutex_unlock(&pmus_lock); 11153 } 11154 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11155 11156 static inline bool has_extended_regs(struct perf_event *event) 11157 { 11158 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11159 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11160 } 11161 11162 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11163 { 11164 struct perf_event_context *ctx = NULL; 11165 int ret; 11166 11167 if (!try_module_get(pmu->module)) 11168 return -ENODEV; 11169 11170 /* 11171 * A number of pmu->event_init() methods iterate the sibling_list to, 11172 * for example, validate if the group fits on the PMU. Therefore, 11173 * if this is a sibling event, acquire the ctx->mutex to protect 11174 * the sibling_list. 11175 */ 11176 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11177 /* 11178 * This ctx->mutex can nest when we're called through 11179 * inheritance. See the perf_event_ctx_lock_nested() comment. 11180 */ 11181 ctx = perf_event_ctx_lock_nested(event->group_leader, 11182 SINGLE_DEPTH_NESTING); 11183 BUG_ON(!ctx); 11184 } 11185 11186 event->pmu = pmu; 11187 ret = pmu->event_init(event); 11188 11189 if (ctx) 11190 perf_event_ctx_unlock(event->group_leader, ctx); 11191 11192 if (!ret) { 11193 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11194 has_extended_regs(event)) 11195 ret = -EOPNOTSUPP; 11196 11197 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11198 event_has_any_exclude_flag(event)) 11199 ret = -EINVAL; 11200 11201 if (ret && event->destroy) 11202 event->destroy(event); 11203 } 11204 11205 if (ret) 11206 module_put(pmu->module); 11207 11208 return ret; 11209 } 11210 11211 static struct pmu *perf_init_event(struct perf_event *event) 11212 { 11213 bool extended_type = false; 11214 int idx, type, ret; 11215 struct pmu *pmu; 11216 11217 idx = srcu_read_lock(&pmus_srcu); 11218 11219 /* Try parent's PMU first: */ 11220 if (event->parent && event->parent->pmu) { 11221 pmu = event->parent->pmu; 11222 ret = perf_try_init_event(pmu, event); 11223 if (!ret) 11224 goto unlock; 11225 } 11226 11227 /* 11228 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11229 * are often aliases for PERF_TYPE_RAW. 11230 */ 11231 type = event->attr.type; 11232 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11233 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11234 if (!type) { 11235 type = PERF_TYPE_RAW; 11236 } else { 11237 extended_type = true; 11238 event->attr.config &= PERF_HW_EVENT_MASK; 11239 } 11240 } 11241 11242 again: 11243 rcu_read_lock(); 11244 pmu = idr_find(&pmu_idr, type); 11245 rcu_read_unlock(); 11246 if (pmu) { 11247 if (event->attr.type != type && type != PERF_TYPE_RAW && 11248 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11249 goto fail; 11250 11251 ret = perf_try_init_event(pmu, event); 11252 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11253 type = event->attr.type; 11254 goto again; 11255 } 11256 11257 if (ret) 11258 pmu = ERR_PTR(ret); 11259 11260 goto unlock; 11261 } 11262 11263 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11264 ret = perf_try_init_event(pmu, event); 11265 if (!ret) 11266 goto unlock; 11267 11268 if (ret != -ENOENT) { 11269 pmu = ERR_PTR(ret); 11270 goto unlock; 11271 } 11272 } 11273 fail: 11274 pmu = ERR_PTR(-ENOENT); 11275 unlock: 11276 srcu_read_unlock(&pmus_srcu, idx); 11277 11278 return pmu; 11279 } 11280 11281 static void attach_sb_event(struct perf_event *event) 11282 { 11283 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11284 11285 raw_spin_lock(&pel->lock); 11286 list_add_rcu(&event->sb_list, &pel->list); 11287 raw_spin_unlock(&pel->lock); 11288 } 11289 11290 /* 11291 * We keep a list of all !task (and therefore per-cpu) events 11292 * that need to receive side-band records. 11293 * 11294 * This avoids having to scan all the various PMU per-cpu contexts 11295 * looking for them. 11296 */ 11297 static void account_pmu_sb_event(struct perf_event *event) 11298 { 11299 if (is_sb_event(event)) 11300 attach_sb_event(event); 11301 } 11302 11303 static void account_event_cpu(struct perf_event *event, int cpu) 11304 { 11305 if (event->parent) 11306 return; 11307 11308 if (is_cgroup_event(event)) 11309 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11310 } 11311 11312 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11313 static void account_freq_event_nohz(void) 11314 { 11315 #ifdef CONFIG_NO_HZ_FULL 11316 /* Lock so we don't race with concurrent unaccount */ 11317 spin_lock(&nr_freq_lock); 11318 if (atomic_inc_return(&nr_freq_events) == 1) 11319 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11320 spin_unlock(&nr_freq_lock); 11321 #endif 11322 } 11323 11324 static void account_freq_event(void) 11325 { 11326 if (tick_nohz_full_enabled()) 11327 account_freq_event_nohz(); 11328 else 11329 atomic_inc(&nr_freq_events); 11330 } 11331 11332 11333 static void account_event(struct perf_event *event) 11334 { 11335 bool inc = false; 11336 11337 if (event->parent) 11338 return; 11339 11340 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11341 inc = true; 11342 if (event->attr.mmap || event->attr.mmap_data) 11343 atomic_inc(&nr_mmap_events); 11344 if (event->attr.build_id) 11345 atomic_inc(&nr_build_id_events); 11346 if (event->attr.comm) 11347 atomic_inc(&nr_comm_events); 11348 if (event->attr.namespaces) 11349 atomic_inc(&nr_namespaces_events); 11350 if (event->attr.cgroup) 11351 atomic_inc(&nr_cgroup_events); 11352 if (event->attr.task) 11353 atomic_inc(&nr_task_events); 11354 if (event->attr.freq) 11355 account_freq_event(); 11356 if (event->attr.context_switch) { 11357 atomic_inc(&nr_switch_events); 11358 inc = true; 11359 } 11360 if (has_branch_stack(event)) 11361 inc = true; 11362 if (is_cgroup_event(event)) 11363 inc = true; 11364 if (event->attr.ksymbol) 11365 atomic_inc(&nr_ksymbol_events); 11366 if (event->attr.bpf_event) 11367 atomic_inc(&nr_bpf_events); 11368 if (event->attr.text_poke) 11369 atomic_inc(&nr_text_poke_events); 11370 11371 if (inc) { 11372 /* 11373 * We need the mutex here because static_branch_enable() 11374 * must complete *before* the perf_sched_count increment 11375 * becomes visible. 11376 */ 11377 if (atomic_inc_not_zero(&perf_sched_count)) 11378 goto enabled; 11379 11380 mutex_lock(&perf_sched_mutex); 11381 if (!atomic_read(&perf_sched_count)) { 11382 static_branch_enable(&perf_sched_events); 11383 /* 11384 * Guarantee that all CPUs observe they key change and 11385 * call the perf scheduling hooks before proceeding to 11386 * install events that need them. 11387 */ 11388 synchronize_rcu(); 11389 } 11390 /* 11391 * Now that we have waited for the sync_sched(), allow further 11392 * increments to by-pass the mutex. 11393 */ 11394 atomic_inc(&perf_sched_count); 11395 mutex_unlock(&perf_sched_mutex); 11396 } 11397 enabled: 11398 11399 account_event_cpu(event, event->cpu); 11400 11401 account_pmu_sb_event(event); 11402 } 11403 11404 /* 11405 * Allocate and initialize an event structure 11406 */ 11407 static struct perf_event * 11408 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11409 struct task_struct *task, 11410 struct perf_event *group_leader, 11411 struct perf_event *parent_event, 11412 perf_overflow_handler_t overflow_handler, 11413 void *context, int cgroup_fd) 11414 { 11415 struct pmu *pmu; 11416 struct perf_event *event; 11417 struct hw_perf_event *hwc; 11418 long err = -EINVAL; 11419 int node; 11420 11421 if ((unsigned)cpu >= nr_cpu_ids) { 11422 if (!task || cpu != -1) 11423 return ERR_PTR(-EINVAL); 11424 } 11425 if (attr->sigtrap && !task) { 11426 /* Requires a task: avoid signalling random tasks. */ 11427 return ERR_PTR(-EINVAL); 11428 } 11429 11430 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11431 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11432 node); 11433 if (!event) 11434 return ERR_PTR(-ENOMEM); 11435 11436 /* 11437 * Single events are their own group leaders, with an 11438 * empty sibling list: 11439 */ 11440 if (!group_leader) 11441 group_leader = event; 11442 11443 mutex_init(&event->child_mutex); 11444 INIT_LIST_HEAD(&event->child_list); 11445 11446 INIT_LIST_HEAD(&event->event_entry); 11447 INIT_LIST_HEAD(&event->sibling_list); 11448 INIT_LIST_HEAD(&event->active_list); 11449 init_event_group(event); 11450 INIT_LIST_HEAD(&event->rb_entry); 11451 INIT_LIST_HEAD(&event->active_entry); 11452 INIT_LIST_HEAD(&event->addr_filters.list); 11453 INIT_HLIST_NODE(&event->hlist_entry); 11454 11455 11456 init_waitqueue_head(&event->waitq); 11457 event->pending_disable = -1; 11458 init_irq_work(&event->pending, perf_pending_event); 11459 11460 mutex_init(&event->mmap_mutex); 11461 raw_spin_lock_init(&event->addr_filters.lock); 11462 11463 atomic_long_set(&event->refcount, 1); 11464 event->cpu = cpu; 11465 event->attr = *attr; 11466 event->group_leader = group_leader; 11467 event->pmu = NULL; 11468 event->oncpu = -1; 11469 11470 event->parent = parent_event; 11471 11472 event->ns = get_pid_ns(task_active_pid_ns(current)); 11473 event->id = atomic64_inc_return(&perf_event_id); 11474 11475 event->state = PERF_EVENT_STATE_INACTIVE; 11476 11477 if (event->attr.sigtrap) 11478 atomic_set(&event->event_limit, 1); 11479 11480 if (task) { 11481 event->attach_state = PERF_ATTACH_TASK; 11482 /* 11483 * XXX pmu::event_init needs to know what task to account to 11484 * and we cannot use the ctx information because we need the 11485 * pmu before we get a ctx. 11486 */ 11487 event->hw.target = get_task_struct(task); 11488 } 11489 11490 event->clock = &local_clock; 11491 if (parent_event) 11492 event->clock = parent_event->clock; 11493 11494 if (!overflow_handler && parent_event) { 11495 overflow_handler = parent_event->overflow_handler; 11496 context = parent_event->overflow_handler_context; 11497 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11498 if (overflow_handler == bpf_overflow_handler) { 11499 struct bpf_prog *prog = parent_event->prog; 11500 11501 bpf_prog_inc(prog); 11502 event->prog = prog; 11503 event->orig_overflow_handler = 11504 parent_event->orig_overflow_handler; 11505 } 11506 #endif 11507 } 11508 11509 if (overflow_handler) { 11510 event->overflow_handler = overflow_handler; 11511 event->overflow_handler_context = context; 11512 } else if (is_write_backward(event)){ 11513 event->overflow_handler = perf_event_output_backward; 11514 event->overflow_handler_context = NULL; 11515 } else { 11516 event->overflow_handler = perf_event_output_forward; 11517 event->overflow_handler_context = NULL; 11518 } 11519 11520 perf_event__state_init(event); 11521 11522 pmu = NULL; 11523 11524 hwc = &event->hw; 11525 hwc->sample_period = attr->sample_period; 11526 if (attr->freq && attr->sample_freq) 11527 hwc->sample_period = 1; 11528 hwc->last_period = hwc->sample_period; 11529 11530 local64_set(&hwc->period_left, hwc->sample_period); 11531 11532 /* 11533 * We currently do not support PERF_SAMPLE_READ on inherited events. 11534 * See perf_output_read(). 11535 */ 11536 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11537 goto err_ns; 11538 11539 if (!has_branch_stack(event)) 11540 event->attr.branch_sample_type = 0; 11541 11542 pmu = perf_init_event(event); 11543 if (IS_ERR(pmu)) { 11544 err = PTR_ERR(pmu); 11545 goto err_ns; 11546 } 11547 11548 /* 11549 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11550 * be different on other CPUs in the uncore mask. 11551 */ 11552 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11553 err = -EINVAL; 11554 goto err_pmu; 11555 } 11556 11557 if (event->attr.aux_output && 11558 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11559 err = -EOPNOTSUPP; 11560 goto err_pmu; 11561 } 11562 11563 if (cgroup_fd != -1) { 11564 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11565 if (err) 11566 goto err_pmu; 11567 } 11568 11569 err = exclusive_event_init(event); 11570 if (err) 11571 goto err_pmu; 11572 11573 if (has_addr_filter(event)) { 11574 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11575 sizeof(struct perf_addr_filter_range), 11576 GFP_KERNEL); 11577 if (!event->addr_filter_ranges) { 11578 err = -ENOMEM; 11579 goto err_per_task; 11580 } 11581 11582 /* 11583 * Clone the parent's vma offsets: they are valid until exec() 11584 * even if the mm is not shared with the parent. 11585 */ 11586 if (event->parent) { 11587 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11588 11589 raw_spin_lock_irq(&ifh->lock); 11590 memcpy(event->addr_filter_ranges, 11591 event->parent->addr_filter_ranges, 11592 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11593 raw_spin_unlock_irq(&ifh->lock); 11594 } 11595 11596 /* force hw sync on the address filters */ 11597 event->addr_filters_gen = 1; 11598 } 11599 11600 if (!event->parent) { 11601 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11602 err = get_callchain_buffers(attr->sample_max_stack); 11603 if (err) 11604 goto err_addr_filters; 11605 } 11606 } 11607 11608 err = security_perf_event_alloc(event); 11609 if (err) 11610 goto err_callchain_buffer; 11611 11612 /* symmetric to unaccount_event() in _free_event() */ 11613 account_event(event); 11614 11615 return event; 11616 11617 err_callchain_buffer: 11618 if (!event->parent) { 11619 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11620 put_callchain_buffers(); 11621 } 11622 err_addr_filters: 11623 kfree(event->addr_filter_ranges); 11624 11625 err_per_task: 11626 exclusive_event_destroy(event); 11627 11628 err_pmu: 11629 if (is_cgroup_event(event)) 11630 perf_detach_cgroup(event); 11631 if (event->destroy) 11632 event->destroy(event); 11633 module_put(pmu->module); 11634 err_ns: 11635 if (event->ns) 11636 put_pid_ns(event->ns); 11637 if (event->hw.target) 11638 put_task_struct(event->hw.target); 11639 kmem_cache_free(perf_event_cache, event); 11640 11641 return ERR_PTR(err); 11642 } 11643 11644 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11645 struct perf_event_attr *attr) 11646 { 11647 u32 size; 11648 int ret; 11649 11650 /* Zero the full structure, so that a short copy will be nice. */ 11651 memset(attr, 0, sizeof(*attr)); 11652 11653 ret = get_user(size, &uattr->size); 11654 if (ret) 11655 return ret; 11656 11657 /* ABI compatibility quirk: */ 11658 if (!size) 11659 size = PERF_ATTR_SIZE_VER0; 11660 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11661 goto err_size; 11662 11663 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11664 if (ret) { 11665 if (ret == -E2BIG) 11666 goto err_size; 11667 return ret; 11668 } 11669 11670 attr->size = size; 11671 11672 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11673 return -EINVAL; 11674 11675 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11676 return -EINVAL; 11677 11678 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11679 return -EINVAL; 11680 11681 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11682 u64 mask = attr->branch_sample_type; 11683 11684 /* only using defined bits */ 11685 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11686 return -EINVAL; 11687 11688 /* at least one branch bit must be set */ 11689 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11690 return -EINVAL; 11691 11692 /* propagate priv level, when not set for branch */ 11693 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11694 11695 /* exclude_kernel checked on syscall entry */ 11696 if (!attr->exclude_kernel) 11697 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11698 11699 if (!attr->exclude_user) 11700 mask |= PERF_SAMPLE_BRANCH_USER; 11701 11702 if (!attr->exclude_hv) 11703 mask |= PERF_SAMPLE_BRANCH_HV; 11704 /* 11705 * adjust user setting (for HW filter setup) 11706 */ 11707 attr->branch_sample_type = mask; 11708 } 11709 /* privileged levels capture (kernel, hv): check permissions */ 11710 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11711 ret = perf_allow_kernel(attr); 11712 if (ret) 11713 return ret; 11714 } 11715 } 11716 11717 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11718 ret = perf_reg_validate(attr->sample_regs_user); 11719 if (ret) 11720 return ret; 11721 } 11722 11723 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11724 if (!arch_perf_have_user_stack_dump()) 11725 return -ENOSYS; 11726 11727 /* 11728 * We have __u32 type for the size, but so far 11729 * we can only use __u16 as maximum due to the 11730 * __u16 sample size limit. 11731 */ 11732 if (attr->sample_stack_user >= USHRT_MAX) 11733 return -EINVAL; 11734 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11735 return -EINVAL; 11736 } 11737 11738 if (!attr->sample_max_stack) 11739 attr->sample_max_stack = sysctl_perf_event_max_stack; 11740 11741 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11742 ret = perf_reg_validate(attr->sample_regs_intr); 11743 11744 #ifndef CONFIG_CGROUP_PERF 11745 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11746 return -EINVAL; 11747 #endif 11748 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11749 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11750 return -EINVAL; 11751 11752 if (!attr->inherit && attr->inherit_thread) 11753 return -EINVAL; 11754 11755 if (attr->remove_on_exec && attr->enable_on_exec) 11756 return -EINVAL; 11757 11758 if (attr->sigtrap && !attr->remove_on_exec) 11759 return -EINVAL; 11760 11761 out: 11762 return ret; 11763 11764 err_size: 11765 put_user(sizeof(*attr), &uattr->size); 11766 ret = -E2BIG; 11767 goto out; 11768 } 11769 11770 static int 11771 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11772 { 11773 struct perf_buffer *rb = NULL; 11774 int ret = -EINVAL; 11775 11776 if (!output_event) 11777 goto set; 11778 11779 /* don't allow circular references */ 11780 if (event == output_event) 11781 goto out; 11782 11783 /* 11784 * Don't allow cross-cpu buffers 11785 */ 11786 if (output_event->cpu != event->cpu) 11787 goto out; 11788 11789 /* 11790 * If its not a per-cpu rb, it must be the same task. 11791 */ 11792 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11793 goto out; 11794 11795 /* 11796 * Mixing clocks in the same buffer is trouble you don't need. 11797 */ 11798 if (output_event->clock != event->clock) 11799 goto out; 11800 11801 /* 11802 * Either writing ring buffer from beginning or from end. 11803 * Mixing is not allowed. 11804 */ 11805 if (is_write_backward(output_event) != is_write_backward(event)) 11806 goto out; 11807 11808 /* 11809 * If both events generate aux data, they must be on the same PMU 11810 */ 11811 if (has_aux(event) && has_aux(output_event) && 11812 event->pmu != output_event->pmu) 11813 goto out; 11814 11815 set: 11816 mutex_lock(&event->mmap_mutex); 11817 /* Can't redirect output if we've got an active mmap() */ 11818 if (atomic_read(&event->mmap_count)) 11819 goto unlock; 11820 11821 if (output_event) { 11822 /* get the rb we want to redirect to */ 11823 rb = ring_buffer_get(output_event); 11824 if (!rb) 11825 goto unlock; 11826 } 11827 11828 ring_buffer_attach(event, rb); 11829 11830 ret = 0; 11831 unlock: 11832 mutex_unlock(&event->mmap_mutex); 11833 11834 out: 11835 return ret; 11836 } 11837 11838 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11839 { 11840 if (b < a) 11841 swap(a, b); 11842 11843 mutex_lock(a); 11844 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11845 } 11846 11847 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11848 { 11849 bool nmi_safe = false; 11850 11851 switch (clk_id) { 11852 case CLOCK_MONOTONIC: 11853 event->clock = &ktime_get_mono_fast_ns; 11854 nmi_safe = true; 11855 break; 11856 11857 case CLOCK_MONOTONIC_RAW: 11858 event->clock = &ktime_get_raw_fast_ns; 11859 nmi_safe = true; 11860 break; 11861 11862 case CLOCK_REALTIME: 11863 event->clock = &ktime_get_real_ns; 11864 break; 11865 11866 case CLOCK_BOOTTIME: 11867 event->clock = &ktime_get_boottime_ns; 11868 break; 11869 11870 case CLOCK_TAI: 11871 event->clock = &ktime_get_clocktai_ns; 11872 break; 11873 11874 default: 11875 return -EINVAL; 11876 } 11877 11878 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11879 return -EINVAL; 11880 11881 return 0; 11882 } 11883 11884 /* 11885 * Variation on perf_event_ctx_lock_nested(), except we take two context 11886 * mutexes. 11887 */ 11888 static struct perf_event_context * 11889 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11890 struct perf_event_context *ctx) 11891 { 11892 struct perf_event_context *gctx; 11893 11894 again: 11895 rcu_read_lock(); 11896 gctx = READ_ONCE(group_leader->ctx); 11897 if (!refcount_inc_not_zero(&gctx->refcount)) { 11898 rcu_read_unlock(); 11899 goto again; 11900 } 11901 rcu_read_unlock(); 11902 11903 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11904 11905 if (group_leader->ctx != gctx) { 11906 mutex_unlock(&ctx->mutex); 11907 mutex_unlock(&gctx->mutex); 11908 put_ctx(gctx); 11909 goto again; 11910 } 11911 11912 return gctx; 11913 } 11914 11915 /** 11916 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11917 * 11918 * @attr_uptr: event_id type attributes for monitoring/sampling 11919 * @pid: target pid 11920 * @cpu: target cpu 11921 * @group_fd: group leader event fd 11922 */ 11923 SYSCALL_DEFINE5(perf_event_open, 11924 struct perf_event_attr __user *, attr_uptr, 11925 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11926 { 11927 struct perf_event *group_leader = NULL, *output_event = NULL; 11928 struct perf_event *event, *sibling; 11929 struct perf_event_attr attr; 11930 struct perf_event_context *ctx, *gctx; 11931 struct file *event_file = NULL; 11932 struct fd group = {NULL, 0}; 11933 struct task_struct *task = NULL; 11934 struct pmu *pmu; 11935 int event_fd; 11936 int move_group = 0; 11937 int err; 11938 int f_flags = O_RDWR; 11939 int cgroup_fd = -1; 11940 11941 /* for future expandability... */ 11942 if (flags & ~PERF_FLAG_ALL) 11943 return -EINVAL; 11944 11945 /* Do we allow access to perf_event_open(2) ? */ 11946 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11947 if (err) 11948 return err; 11949 11950 err = perf_copy_attr(attr_uptr, &attr); 11951 if (err) 11952 return err; 11953 11954 if (!attr.exclude_kernel) { 11955 err = perf_allow_kernel(&attr); 11956 if (err) 11957 return err; 11958 } 11959 11960 if (attr.namespaces) { 11961 if (!perfmon_capable()) 11962 return -EACCES; 11963 } 11964 11965 if (attr.freq) { 11966 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11967 return -EINVAL; 11968 } else { 11969 if (attr.sample_period & (1ULL << 63)) 11970 return -EINVAL; 11971 } 11972 11973 /* Only privileged users can get physical addresses */ 11974 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11975 err = perf_allow_kernel(&attr); 11976 if (err) 11977 return err; 11978 } 11979 11980 /* REGS_INTR can leak data, lockdown must prevent this */ 11981 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 11982 err = security_locked_down(LOCKDOWN_PERF); 11983 if (err) 11984 return err; 11985 } 11986 11987 /* 11988 * In cgroup mode, the pid argument is used to pass the fd 11989 * opened to the cgroup directory in cgroupfs. The cpu argument 11990 * designates the cpu on which to monitor threads from that 11991 * cgroup. 11992 */ 11993 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11994 return -EINVAL; 11995 11996 if (flags & PERF_FLAG_FD_CLOEXEC) 11997 f_flags |= O_CLOEXEC; 11998 11999 event_fd = get_unused_fd_flags(f_flags); 12000 if (event_fd < 0) 12001 return event_fd; 12002 12003 if (group_fd != -1) { 12004 err = perf_fget_light(group_fd, &group); 12005 if (err) 12006 goto err_fd; 12007 group_leader = group.file->private_data; 12008 if (flags & PERF_FLAG_FD_OUTPUT) 12009 output_event = group_leader; 12010 if (flags & PERF_FLAG_FD_NO_GROUP) 12011 group_leader = NULL; 12012 } 12013 12014 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12015 task = find_lively_task_by_vpid(pid); 12016 if (IS_ERR(task)) { 12017 err = PTR_ERR(task); 12018 goto err_group_fd; 12019 } 12020 } 12021 12022 if (task && group_leader && 12023 group_leader->attr.inherit != attr.inherit) { 12024 err = -EINVAL; 12025 goto err_task; 12026 } 12027 12028 if (flags & PERF_FLAG_PID_CGROUP) 12029 cgroup_fd = pid; 12030 12031 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12032 NULL, NULL, cgroup_fd); 12033 if (IS_ERR(event)) { 12034 err = PTR_ERR(event); 12035 goto err_task; 12036 } 12037 12038 if (is_sampling_event(event)) { 12039 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12040 err = -EOPNOTSUPP; 12041 goto err_alloc; 12042 } 12043 } 12044 12045 /* 12046 * Special case software events and allow them to be part of 12047 * any hardware group. 12048 */ 12049 pmu = event->pmu; 12050 12051 if (attr.use_clockid) { 12052 err = perf_event_set_clock(event, attr.clockid); 12053 if (err) 12054 goto err_alloc; 12055 } 12056 12057 if (pmu->task_ctx_nr == perf_sw_context) 12058 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12059 12060 if (group_leader) { 12061 if (is_software_event(event) && 12062 !in_software_context(group_leader)) { 12063 /* 12064 * If the event is a sw event, but the group_leader 12065 * is on hw context. 12066 * 12067 * Allow the addition of software events to hw 12068 * groups, this is safe because software events 12069 * never fail to schedule. 12070 */ 12071 pmu = group_leader->ctx->pmu; 12072 } else if (!is_software_event(event) && 12073 is_software_event(group_leader) && 12074 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12075 /* 12076 * In case the group is a pure software group, and we 12077 * try to add a hardware event, move the whole group to 12078 * the hardware context. 12079 */ 12080 move_group = 1; 12081 } 12082 } 12083 12084 /* 12085 * Get the target context (task or percpu): 12086 */ 12087 ctx = find_get_context(pmu, task, event); 12088 if (IS_ERR(ctx)) { 12089 err = PTR_ERR(ctx); 12090 goto err_alloc; 12091 } 12092 12093 /* 12094 * Look up the group leader (we will attach this event to it): 12095 */ 12096 if (group_leader) { 12097 err = -EINVAL; 12098 12099 /* 12100 * Do not allow a recursive hierarchy (this new sibling 12101 * becoming part of another group-sibling): 12102 */ 12103 if (group_leader->group_leader != group_leader) 12104 goto err_context; 12105 12106 /* All events in a group should have the same clock */ 12107 if (group_leader->clock != event->clock) 12108 goto err_context; 12109 12110 /* 12111 * Make sure we're both events for the same CPU; 12112 * grouping events for different CPUs is broken; since 12113 * you can never concurrently schedule them anyhow. 12114 */ 12115 if (group_leader->cpu != event->cpu) 12116 goto err_context; 12117 12118 /* 12119 * Make sure we're both on the same task, or both 12120 * per-CPU events. 12121 */ 12122 if (group_leader->ctx->task != ctx->task) 12123 goto err_context; 12124 12125 /* 12126 * Do not allow to attach to a group in a different task 12127 * or CPU context. If we're moving SW events, we'll fix 12128 * this up later, so allow that. 12129 */ 12130 if (!move_group && group_leader->ctx != ctx) 12131 goto err_context; 12132 12133 /* 12134 * Only a group leader can be exclusive or pinned 12135 */ 12136 if (attr.exclusive || attr.pinned) 12137 goto err_context; 12138 } 12139 12140 if (output_event) { 12141 err = perf_event_set_output(event, output_event); 12142 if (err) 12143 goto err_context; 12144 } 12145 12146 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12147 f_flags); 12148 if (IS_ERR(event_file)) { 12149 err = PTR_ERR(event_file); 12150 event_file = NULL; 12151 goto err_context; 12152 } 12153 12154 if (task) { 12155 err = down_read_interruptible(&task->signal->exec_update_lock); 12156 if (err) 12157 goto err_file; 12158 12159 /* 12160 * Preserve ptrace permission check for backwards compatibility. 12161 * 12162 * We must hold exec_update_lock across this and any potential 12163 * perf_install_in_context() call for this new event to 12164 * serialize against exec() altering our credentials (and the 12165 * perf_event_exit_task() that could imply). 12166 */ 12167 err = -EACCES; 12168 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 12169 goto err_cred; 12170 } 12171 12172 if (move_group) { 12173 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12174 12175 if (gctx->task == TASK_TOMBSTONE) { 12176 err = -ESRCH; 12177 goto err_locked; 12178 } 12179 12180 /* 12181 * Check if we raced against another sys_perf_event_open() call 12182 * moving the software group underneath us. 12183 */ 12184 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12185 /* 12186 * If someone moved the group out from under us, check 12187 * if this new event wound up on the same ctx, if so 12188 * its the regular !move_group case, otherwise fail. 12189 */ 12190 if (gctx != ctx) { 12191 err = -EINVAL; 12192 goto err_locked; 12193 } else { 12194 perf_event_ctx_unlock(group_leader, gctx); 12195 move_group = 0; 12196 } 12197 } 12198 12199 /* 12200 * Failure to create exclusive events returns -EBUSY. 12201 */ 12202 err = -EBUSY; 12203 if (!exclusive_event_installable(group_leader, ctx)) 12204 goto err_locked; 12205 12206 for_each_sibling_event(sibling, group_leader) { 12207 if (!exclusive_event_installable(sibling, ctx)) 12208 goto err_locked; 12209 } 12210 } else { 12211 mutex_lock(&ctx->mutex); 12212 } 12213 12214 if (ctx->task == TASK_TOMBSTONE) { 12215 err = -ESRCH; 12216 goto err_locked; 12217 } 12218 12219 if (!perf_event_validate_size(event)) { 12220 err = -E2BIG; 12221 goto err_locked; 12222 } 12223 12224 if (!task) { 12225 /* 12226 * Check if the @cpu we're creating an event for is online. 12227 * 12228 * We use the perf_cpu_context::ctx::mutex to serialize against 12229 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12230 */ 12231 struct perf_cpu_context *cpuctx = 12232 container_of(ctx, struct perf_cpu_context, ctx); 12233 12234 if (!cpuctx->online) { 12235 err = -ENODEV; 12236 goto err_locked; 12237 } 12238 } 12239 12240 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12241 err = -EINVAL; 12242 goto err_locked; 12243 } 12244 12245 /* 12246 * Must be under the same ctx::mutex as perf_install_in_context(), 12247 * because we need to serialize with concurrent event creation. 12248 */ 12249 if (!exclusive_event_installable(event, ctx)) { 12250 err = -EBUSY; 12251 goto err_locked; 12252 } 12253 12254 WARN_ON_ONCE(ctx->parent_ctx); 12255 12256 /* 12257 * This is the point on no return; we cannot fail hereafter. This is 12258 * where we start modifying current state. 12259 */ 12260 12261 if (move_group) { 12262 /* 12263 * See perf_event_ctx_lock() for comments on the details 12264 * of swizzling perf_event::ctx. 12265 */ 12266 perf_remove_from_context(group_leader, 0); 12267 put_ctx(gctx); 12268 12269 for_each_sibling_event(sibling, group_leader) { 12270 perf_remove_from_context(sibling, 0); 12271 put_ctx(gctx); 12272 } 12273 12274 /* 12275 * Wait for everybody to stop referencing the events through 12276 * the old lists, before installing it on new lists. 12277 */ 12278 synchronize_rcu(); 12279 12280 /* 12281 * Install the group siblings before the group leader. 12282 * 12283 * Because a group leader will try and install the entire group 12284 * (through the sibling list, which is still in-tact), we can 12285 * end up with siblings installed in the wrong context. 12286 * 12287 * By installing siblings first we NO-OP because they're not 12288 * reachable through the group lists. 12289 */ 12290 for_each_sibling_event(sibling, group_leader) { 12291 perf_event__state_init(sibling); 12292 perf_install_in_context(ctx, sibling, sibling->cpu); 12293 get_ctx(ctx); 12294 } 12295 12296 /* 12297 * Removing from the context ends up with disabled 12298 * event. What we want here is event in the initial 12299 * startup state, ready to be add into new context. 12300 */ 12301 perf_event__state_init(group_leader); 12302 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12303 get_ctx(ctx); 12304 } 12305 12306 /* 12307 * Precalculate sample_data sizes; do while holding ctx::mutex such 12308 * that we're serialized against further additions and before 12309 * perf_install_in_context() which is the point the event is active and 12310 * can use these values. 12311 */ 12312 perf_event__header_size(event); 12313 perf_event__id_header_size(event); 12314 12315 event->owner = current; 12316 12317 perf_install_in_context(ctx, event, event->cpu); 12318 perf_unpin_context(ctx); 12319 12320 if (move_group) 12321 perf_event_ctx_unlock(group_leader, gctx); 12322 mutex_unlock(&ctx->mutex); 12323 12324 if (task) { 12325 up_read(&task->signal->exec_update_lock); 12326 put_task_struct(task); 12327 } 12328 12329 mutex_lock(¤t->perf_event_mutex); 12330 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12331 mutex_unlock(¤t->perf_event_mutex); 12332 12333 /* 12334 * Drop the reference on the group_event after placing the 12335 * new event on the sibling_list. This ensures destruction 12336 * of the group leader will find the pointer to itself in 12337 * perf_group_detach(). 12338 */ 12339 fdput(group); 12340 fd_install(event_fd, event_file); 12341 return event_fd; 12342 12343 err_locked: 12344 if (move_group) 12345 perf_event_ctx_unlock(group_leader, gctx); 12346 mutex_unlock(&ctx->mutex); 12347 err_cred: 12348 if (task) 12349 up_read(&task->signal->exec_update_lock); 12350 err_file: 12351 fput(event_file); 12352 err_context: 12353 perf_unpin_context(ctx); 12354 put_ctx(ctx); 12355 err_alloc: 12356 /* 12357 * If event_file is set, the fput() above will have called ->release() 12358 * and that will take care of freeing the event. 12359 */ 12360 if (!event_file) 12361 free_event(event); 12362 err_task: 12363 if (task) 12364 put_task_struct(task); 12365 err_group_fd: 12366 fdput(group); 12367 err_fd: 12368 put_unused_fd(event_fd); 12369 return err; 12370 } 12371 12372 /** 12373 * perf_event_create_kernel_counter 12374 * 12375 * @attr: attributes of the counter to create 12376 * @cpu: cpu in which the counter is bound 12377 * @task: task to profile (NULL for percpu) 12378 */ 12379 struct perf_event * 12380 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12381 struct task_struct *task, 12382 perf_overflow_handler_t overflow_handler, 12383 void *context) 12384 { 12385 struct perf_event_context *ctx; 12386 struct perf_event *event; 12387 int err; 12388 12389 /* 12390 * Grouping is not supported for kernel events, neither is 'AUX', 12391 * make sure the caller's intentions are adjusted. 12392 */ 12393 if (attr->aux_output) 12394 return ERR_PTR(-EINVAL); 12395 12396 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12397 overflow_handler, context, -1); 12398 if (IS_ERR(event)) { 12399 err = PTR_ERR(event); 12400 goto err; 12401 } 12402 12403 /* Mark owner so we could distinguish it from user events. */ 12404 event->owner = TASK_TOMBSTONE; 12405 12406 /* 12407 * Get the target context (task or percpu): 12408 */ 12409 ctx = find_get_context(event->pmu, task, event); 12410 if (IS_ERR(ctx)) { 12411 err = PTR_ERR(ctx); 12412 goto err_free; 12413 } 12414 12415 WARN_ON_ONCE(ctx->parent_ctx); 12416 mutex_lock(&ctx->mutex); 12417 if (ctx->task == TASK_TOMBSTONE) { 12418 err = -ESRCH; 12419 goto err_unlock; 12420 } 12421 12422 if (!task) { 12423 /* 12424 * Check if the @cpu we're creating an event for is online. 12425 * 12426 * We use the perf_cpu_context::ctx::mutex to serialize against 12427 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12428 */ 12429 struct perf_cpu_context *cpuctx = 12430 container_of(ctx, struct perf_cpu_context, ctx); 12431 if (!cpuctx->online) { 12432 err = -ENODEV; 12433 goto err_unlock; 12434 } 12435 } 12436 12437 if (!exclusive_event_installable(event, ctx)) { 12438 err = -EBUSY; 12439 goto err_unlock; 12440 } 12441 12442 perf_install_in_context(ctx, event, event->cpu); 12443 perf_unpin_context(ctx); 12444 mutex_unlock(&ctx->mutex); 12445 12446 return event; 12447 12448 err_unlock: 12449 mutex_unlock(&ctx->mutex); 12450 perf_unpin_context(ctx); 12451 put_ctx(ctx); 12452 err_free: 12453 free_event(event); 12454 err: 12455 return ERR_PTR(err); 12456 } 12457 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12458 12459 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12460 { 12461 struct perf_event_context *src_ctx; 12462 struct perf_event_context *dst_ctx; 12463 struct perf_event *event, *tmp; 12464 LIST_HEAD(events); 12465 12466 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12467 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12468 12469 /* 12470 * See perf_event_ctx_lock() for comments on the details 12471 * of swizzling perf_event::ctx. 12472 */ 12473 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12474 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12475 event_entry) { 12476 perf_remove_from_context(event, 0); 12477 unaccount_event_cpu(event, src_cpu); 12478 put_ctx(src_ctx); 12479 list_add(&event->migrate_entry, &events); 12480 } 12481 12482 /* 12483 * Wait for the events to quiesce before re-instating them. 12484 */ 12485 synchronize_rcu(); 12486 12487 /* 12488 * Re-instate events in 2 passes. 12489 * 12490 * Skip over group leaders and only install siblings on this first 12491 * pass, siblings will not get enabled without a leader, however a 12492 * leader will enable its siblings, even if those are still on the old 12493 * context. 12494 */ 12495 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12496 if (event->group_leader == event) 12497 continue; 12498 12499 list_del(&event->migrate_entry); 12500 if (event->state >= PERF_EVENT_STATE_OFF) 12501 event->state = PERF_EVENT_STATE_INACTIVE; 12502 account_event_cpu(event, dst_cpu); 12503 perf_install_in_context(dst_ctx, event, dst_cpu); 12504 get_ctx(dst_ctx); 12505 } 12506 12507 /* 12508 * Once all the siblings are setup properly, install the group leaders 12509 * to make it go. 12510 */ 12511 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12512 list_del(&event->migrate_entry); 12513 if (event->state >= PERF_EVENT_STATE_OFF) 12514 event->state = PERF_EVENT_STATE_INACTIVE; 12515 account_event_cpu(event, dst_cpu); 12516 perf_install_in_context(dst_ctx, event, dst_cpu); 12517 get_ctx(dst_ctx); 12518 } 12519 mutex_unlock(&dst_ctx->mutex); 12520 mutex_unlock(&src_ctx->mutex); 12521 } 12522 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12523 12524 static void sync_child_event(struct perf_event *child_event) 12525 { 12526 struct perf_event *parent_event = child_event->parent; 12527 u64 child_val; 12528 12529 if (child_event->attr.inherit_stat) { 12530 struct task_struct *task = child_event->ctx->task; 12531 12532 if (task && task != TASK_TOMBSTONE) 12533 perf_event_read_event(child_event, task); 12534 } 12535 12536 child_val = perf_event_count(child_event); 12537 12538 /* 12539 * Add back the child's count to the parent's count: 12540 */ 12541 atomic64_add(child_val, &parent_event->child_count); 12542 atomic64_add(child_event->total_time_enabled, 12543 &parent_event->child_total_time_enabled); 12544 atomic64_add(child_event->total_time_running, 12545 &parent_event->child_total_time_running); 12546 } 12547 12548 static void 12549 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12550 { 12551 struct perf_event *parent_event = event->parent; 12552 unsigned long detach_flags = 0; 12553 12554 if (parent_event) { 12555 /* 12556 * Do not destroy the 'original' grouping; because of the 12557 * context switch optimization the original events could've 12558 * ended up in a random child task. 12559 * 12560 * If we were to destroy the original group, all group related 12561 * operations would cease to function properly after this 12562 * random child dies. 12563 * 12564 * Do destroy all inherited groups, we don't care about those 12565 * and being thorough is better. 12566 */ 12567 detach_flags = DETACH_GROUP | DETACH_CHILD; 12568 mutex_lock(&parent_event->child_mutex); 12569 } 12570 12571 perf_remove_from_context(event, detach_flags); 12572 12573 raw_spin_lock_irq(&ctx->lock); 12574 if (event->state > PERF_EVENT_STATE_EXIT) 12575 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12576 raw_spin_unlock_irq(&ctx->lock); 12577 12578 /* 12579 * Child events can be freed. 12580 */ 12581 if (parent_event) { 12582 mutex_unlock(&parent_event->child_mutex); 12583 /* 12584 * Kick perf_poll() for is_event_hup(); 12585 */ 12586 perf_event_wakeup(parent_event); 12587 free_event(event); 12588 put_event(parent_event); 12589 return; 12590 } 12591 12592 /* 12593 * Parent events are governed by their filedesc, retain them. 12594 */ 12595 perf_event_wakeup(event); 12596 } 12597 12598 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12599 { 12600 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12601 struct perf_event *child_event, *next; 12602 12603 WARN_ON_ONCE(child != current); 12604 12605 child_ctx = perf_pin_task_context(child, ctxn); 12606 if (!child_ctx) 12607 return; 12608 12609 /* 12610 * In order to reduce the amount of tricky in ctx tear-down, we hold 12611 * ctx::mutex over the entire thing. This serializes against almost 12612 * everything that wants to access the ctx. 12613 * 12614 * The exception is sys_perf_event_open() / 12615 * perf_event_create_kernel_count() which does find_get_context() 12616 * without ctx::mutex (it cannot because of the move_group double mutex 12617 * lock thing). See the comments in perf_install_in_context(). 12618 */ 12619 mutex_lock(&child_ctx->mutex); 12620 12621 /* 12622 * In a single ctx::lock section, de-schedule the events and detach the 12623 * context from the task such that we cannot ever get it scheduled back 12624 * in. 12625 */ 12626 raw_spin_lock_irq(&child_ctx->lock); 12627 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12628 12629 /* 12630 * Now that the context is inactive, destroy the task <-> ctx relation 12631 * and mark the context dead. 12632 */ 12633 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12634 put_ctx(child_ctx); /* cannot be last */ 12635 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12636 put_task_struct(current); /* cannot be last */ 12637 12638 clone_ctx = unclone_ctx(child_ctx); 12639 raw_spin_unlock_irq(&child_ctx->lock); 12640 12641 if (clone_ctx) 12642 put_ctx(clone_ctx); 12643 12644 /* 12645 * Report the task dead after unscheduling the events so that we 12646 * won't get any samples after PERF_RECORD_EXIT. We can however still 12647 * get a few PERF_RECORD_READ events. 12648 */ 12649 perf_event_task(child, child_ctx, 0); 12650 12651 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12652 perf_event_exit_event(child_event, child_ctx); 12653 12654 mutex_unlock(&child_ctx->mutex); 12655 12656 put_ctx(child_ctx); 12657 } 12658 12659 /* 12660 * When a child task exits, feed back event values to parent events. 12661 * 12662 * Can be called with exec_update_lock held when called from 12663 * setup_new_exec(). 12664 */ 12665 void perf_event_exit_task(struct task_struct *child) 12666 { 12667 struct perf_event *event, *tmp; 12668 int ctxn; 12669 12670 mutex_lock(&child->perf_event_mutex); 12671 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12672 owner_entry) { 12673 list_del_init(&event->owner_entry); 12674 12675 /* 12676 * Ensure the list deletion is visible before we clear 12677 * the owner, closes a race against perf_release() where 12678 * we need to serialize on the owner->perf_event_mutex. 12679 */ 12680 smp_store_release(&event->owner, NULL); 12681 } 12682 mutex_unlock(&child->perf_event_mutex); 12683 12684 for_each_task_context_nr(ctxn) 12685 perf_event_exit_task_context(child, ctxn); 12686 12687 /* 12688 * The perf_event_exit_task_context calls perf_event_task 12689 * with child's task_ctx, which generates EXIT events for 12690 * child contexts and sets child->perf_event_ctxp[] to NULL. 12691 * At this point we need to send EXIT events to cpu contexts. 12692 */ 12693 perf_event_task(child, NULL, 0); 12694 } 12695 12696 static void perf_free_event(struct perf_event *event, 12697 struct perf_event_context *ctx) 12698 { 12699 struct perf_event *parent = event->parent; 12700 12701 if (WARN_ON_ONCE(!parent)) 12702 return; 12703 12704 mutex_lock(&parent->child_mutex); 12705 list_del_init(&event->child_list); 12706 mutex_unlock(&parent->child_mutex); 12707 12708 put_event(parent); 12709 12710 raw_spin_lock_irq(&ctx->lock); 12711 perf_group_detach(event); 12712 list_del_event(event, ctx); 12713 raw_spin_unlock_irq(&ctx->lock); 12714 free_event(event); 12715 } 12716 12717 /* 12718 * Free a context as created by inheritance by perf_event_init_task() below, 12719 * used by fork() in case of fail. 12720 * 12721 * Even though the task has never lived, the context and events have been 12722 * exposed through the child_list, so we must take care tearing it all down. 12723 */ 12724 void perf_event_free_task(struct task_struct *task) 12725 { 12726 struct perf_event_context *ctx; 12727 struct perf_event *event, *tmp; 12728 int ctxn; 12729 12730 for_each_task_context_nr(ctxn) { 12731 ctx = task->perf_event_ctxp[ctxn]; 12732 if (!ctx) 12733 continue; 12734 12735 mutex_lock(&ctx->mutex); 12736 raw_spin_lock_irq(&ctx->lock); 12737 /* 12738 * Destroy the task <-> ctx relation and mark the context dead. 12739 * 12740 * This is important because even though the task hasn't been 12741 * exposed yet the context has been (through child_list). 12742 */ 12743 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12744 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12745 put_task_struct(task); /* cannot be last */ 12746 raw_spin_unlock_irq(&ctx->lock); 12747 12748 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12749 perf_free_event(event, ctx); 12750 12751 mutex_unlock(&ctx->mutex); 12752 12753 /* 12754 * perf_event_release_kernel() could've stolen some of our 12755 * child events and still have them on its free_list. In that 12756 * case we must wait for these events to have been freed (in 12757 * particular all their references to this task must've been 12758 * dropped). 12759 * 12760 * Without this copy_process() will unconditionally free this 12761 * task (irrespective of its reference count) and 12762 * _free_event()'s put_task_struct(event->hw.target) will be a 12763 * use-after-free. 12764 * 12765 * Wait for all events to drop their context reference. 12766 */ 12767 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12768 put_ctx(ctx); /* must be last */ 12769 } 12770 } 12771 12772 void perf_event_delayed_put(struct task_struct *task) 12773 { 12774 int ctxn; 12775 12776 for_each_task_context_nr(ctxn) 12777 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12778 } 12779 12780 struct file *perf_event_get(unsigned int fd) 12781 { 12782 struct file *file = fget(fd); 12783 if (!file) 12784 return ERR_PTR(-EBADF); 12785 12786 if (file->f_op != &perf_fops) { 12787 fput(file); 12788 return ERR_PTR(-EBADF); 12789 } 12790 12791 return file; 12792 } 12793 12794 const struct perf_event *perf_get_event(struct file *file) 12795 { 12796 if (file->f_op != &perf_fops) 12797 return ERR_PTR(-EINVAL); 12798 12799 return file->private_data; 12800 } 12801 12802 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12803 { 12804 if (!event) 12805 return ERR_PTR(-EINVAL); 12806 12807 return &event->attr; 12808 } 12809 12810 /* 12811 * Inherit an event from parent task to child task. 12812 * 12813 * Returns: 12814 * - valid pointer on success 12815 * - NULL for orphaned events 12816 * - IS_ERR() on error 12817 */ 12818 static struct perf_event * 12819 inherit_event(struct perf_event *parent_event, 12820 struct task_struct *parent, 12821 struct perf_event_context *parent_ctx, 12822 struct task_struct *child, 12823 struct perf_event *group_leader, 12824 struct perf_event_context *child_ctx) 12825 { 12826 enum perf_event_state parent_state = parent_event->state; 12827 struct perf_event *child_event; 12828 unsigned long flags; 12829 12830 /* 12831 * Instead of creating recursive hierarchies of events, 12832 * we link inherited events back to the original parent, 12833 * which has a filp for sure, which we use as the reference 12834 * count: 12835 */ 12836 if (parent_event->parent) 12837 parent_event = parent_event->parent; 12838 12839 child_event = perf_event_alloc(&parent_event->attr, 12840 parent_event->cpu, 12841 child, 12842 group_leader, parent_event, 12843 NULL, NULL, -1); 12844 if (IS_ERR(child_event)) 12845 return child_event; 12846 12847 12848 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12849 !child_ctx->task_ctx_data) { 12850 struct pmu *pmu = child_event->pmu; 12851 12852 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12853 if (!child_ctx->task_ctx_data) { 12854 free_event(child_event); 12855 return ERR_PTR(-ENOMEM); 12856 } 12857 } 12858 12859 /* 12860 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12861 * must be under the same lock in order to serialize against 12862 * perf_event_release_kernel(), such that either we must observe 12863 * is_orphaned_event() or they will observe us on the child_list. 12864 */ 12865 mutex_lock(&parent_event->child_mutex); 12866 if (is_orphaned_event(parent_event) || 12867 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12868 mutex_unlock(&parent_event->child_mutex); 12869 /* task_ctx_data is freed with child_ctx */ 12870 free_event(child_event); 12871 return NULL; 12872 } 12873 12874 get_ctx(child_ctx); 12875 12876 /* 12877 * Make the child state follow the state of the parent event, 12878 * not its attr.disabled bit. We hold the parent's mutex, 12879 * so we won't race with perf_event_{en, dis}able_family. 12880 */ 12881 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12882 child_event->state = PERF_EVENT_STATE_INACTIVE; 12883 else 12884 child_event->state = PERF_EVENT_STATE_OFF; 12885 12886 if (parent_event->attr.freq) { 12887 u64 sample_period = parent_event->hw.sample_period; 12888 struct hw_perf_event *hwc = &child_event->hw; 12889 12890 hwc->sample_period = sample_period; 12891 hwc->last_period = sample_period; 12892 12893 local64_set(&hwc->period_left, sample_period); 12894 } 12895 12896 child_event->ctx = child_ctx; 12897 child_event->overflow_handler = parent_event->overflow_handler; 12898 child_event->overflow_handler_context 12899 = parent_event->overflow_handler_context; 12900 12901 /* 12902 * Precalculate sample_data sizes 12903 */ 12904 perf_event__header_size(child_event); 12905 perf_event__id_header_size(child_event); 12906 12907 /* 12908 * Link it up in the child's context: 12909 */ 12910 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12911 add_event_to_ctx(child_event, child_ctx); 12912 child_event->attach_state |= PERF_ATTACH_CHILD; 12913 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12914 12915 /* 12916 * Link this into the parent event's child list 12917 */ 12918 list_add_tail(&child_event->child_list, &parent_event->child_list); 12919 mutex_unlock(&parent_event->child_mutex); 12920 12921 return child_event; 12922 } 12923 12924 /* 12925 * Inherits an event group. 12926 * 12927 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12928 * This matches with perf_event_release_kernel() removing all child events. 12929 * 12930 * Returns: 12931 * - 0 on success 12932 * - <0 on error 12933 */ 12934 static int inherit_group(struct perf_event *parent_event, 12935 struct task_struct *parent, 12936 struct perf_event_context *parent_ctx, 12937 struct task_struct *child, 12938 struct perf_event_context *child_ctx) 12939 { 12940 struct perf_event *leader; 12941 struct perf_event *sub; 12942 struct perf_event *child_ctr; 12943 12944 leader = inherit_event(parent_event, parent, parent_ctx, 12945 child, NULL, child_ctx); 12946 if (IS_ERR(leader)) 12947 return PTR_ERR(leader); 12948 /* 12949 * @leader can be NULL here because of is_orphaned_event(). In this 12950 * case inherit_event() will create individual events, similar to what 12951 * perf_group_detach() would do anyway. 12952 */ 12953 for_each_sibling_event(sub, parent_event) { 12954 child_ctr = inherit_event(sub, parent, parent_ctx, 12955 child, leader, child_ctx); 12956 if (IS_ERR(child_ctr)) 12957 return PTR_ERR(child_ctr); 12958 12959 if (sub->aux_event == parent_event && child_ctr && 12960 !perf_get_aux_event(child_ctr, leader)) 12961 return -EINVAL; 12962 } 12963 return 0; 12964 } 12965 12966 /* 12967 * Creates the child task context and tries to inherit the event-group. 12968 * 12969 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12970 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12971 * consistent with perf_event_release_kernel() removing all child events. 12972 * 12973 * Returns: 12974 * - 0 on success 12975 * - <0 on error 12976 */ 12977 static int 12978 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12979 struct perf_event_context *parent_ctx, 12980 struct task_struct *child, int ctxn, 12981 u64 clone_flags, int *inherited_all) 12982 { 12983 int ret; 12984 struct perf_event_context *child_ctx; 12985 12986 if (!event->attr.inherit || 12987 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 12988 /* Do not inherit if sigtrap and signal handlers were cleared. */ 12989 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 12990 *inherited_all = 0; 12991 return 0; 12992 } 12993 12994 child_ctx = child->perf_event_ctxp[ctxn]; 12995 if (!child_ctx) { 12996 /* 12997 * This is executed from the parent task context, so 12998 * inherit events that have been marked for cloning. 12999 * First allocate and initialize a context for the 13000 * child. 13001 */ 13002 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13003 if (!child_ctx) 13004 return -ENOMEM; 13005 13006 child->perf_event_ctxp[ctxn] = child_ctx; 13007 } 13008 13009 ret = inherit_group(event, parent, parent_ctx, 13010 child, child_ctx); 13011 13012 if (ret) 13013 *inherited_all = 0; 13014 13015 return ret; 13016 } 13017 13018 /* 13019 * Initialize the perf_event context in task_struct 13020 */ 13021 static int perf_event_init_context(struct task_struct *child, int ctxn, 13022 u64 clone_flags) 13023 { 13024 struct perf_event_context *child_ctx, *parent_ctx; 13025 struct perf_event_context *cloned_ctx; 13026 struct perf_event *event; 13027 struct task_struct *parent = current; 13028 int inherited_all = 1; 13029 unsigned long flags; 13030 int ret = 0; 13031 13032 if (likely(!parent->perf_event_ctxp[ctxn])) 13033 return 0; 13034 13035 /* 13036 * If the parent's context is a clone, pin it so it won't get 13037 * swapped under us. 13038 */ 13039 parent_ctx = perf_pin_task_context(parent, ctxn); 13040 if (!parent_ctx) 13041 return 0; 13042 13043 /* 13044 * No need to check if parent_ctx != NULL here; since we saw 13045 * it non-NULL earlier, the only reason for it to become NULL 13046 * is if we exit, and since we're currently in the middle of 13047 * a fork we can't be exiting at the same time. 13048 */ 13049 13050 /* 13051 * Lock the parent list. No need to lock the child - not PID 13052 * hashed yet and not running, so nobody can access it. 13053 */ 13054 mutex_lock(&parent_ctx->mutex); 13055 13056 /* 13057 * We dont have to disable NMIs - we are only looking at 13058 * the list, not manipulating it: 13059 */ 13060 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13061 ret = inherit_task_group(event, parent, parent_ctx, 13062 child, ctxn, clone_flags, 13063 &inherited_all); 13064 if (ret) 13065 goto out_unlock; 13066 } 13067 13068 /* 13069 * We can't hold ctx->lock when iterating the ->flexible_group list due 13070 * to allocations, but we need to prevent rotation because 13071 * rotate_ctx() will change the list from interrupt context. 13072 */ 13073 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13074 parent_ctx->rotate_disable = 1; 13075 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13076 13077 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13078 ret = inherit_task_group(event, parent, parent_ctx, 13079 child, ctxn, clone_flags, 13080 &inherited_all); 13081 if (ret) 13082 goto out_unlock; 13083 } 13084 13085 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13086 parent_ctx->rotate_disable = 0; 13087 13088 child_ctx = child->perf_event_ctxp[ctxn]; 13089 13090 if (child_ctx && inherited_all) { 13091 /* 13092 * Mark the child context as a clone of the parent 13093 * context, or of whatever the parent is a clone of. 13094 * 13095 * Note that if the parent is a clone, the holding of 13096 * parent_ctx->lock avoids it from being uncloned. 13097 */ 13098 cloned_ctx = parent_ctx->parent_ctx; 13099 if (cloned_ctx) { 13100 child_ctx->parent_ctx = cloned_ctx; 13101 child_ctx->parent_gen = parent_ctx->parent_gen; 13102 } else { 13103 child_ctx->parent_ctx = parent_ctx; 13104 child_ctx->parent_gen = parent_ctx->generation; 13105 } 13106 get_ctx(child_ctx->parent_ctx); 13107 } 13108 13109 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13110 out_unlock: 13111 mutex_unlock(&parent_ctx->mutex); 13112 13113 perf_unpin_context(parent_ctx); 13114 put_ctx(parent_ctx); 13115 13116 return ret; 13117 } 13118 13119 /* 13120 * Initialize the perf_event context in task_struct 13121 */ 13122 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13123 { 13124 int ctxn, ret; 13125 13126 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13127 mutex_init(&child->perf_event_mutex); 13128 INIT_LIST_HEAD(&child->perf_event_list); 13129 13130 for_each_task_context_nr(ctxn) { 13131 ret = perf_event_init_context(child, ctxn, clone_flags); 13132 if (ret) { 13133 perf_event_free_task(child); 13134 return ret; 13135 } 13136 } 13137 13138 return 0; 13139 } 13140 13141 static void __init perf_event_init_all_cpus(void) 13142 { 13143 struct swevent_htable *swhash; 13144 int cpu; 13145 13146 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13147 13148 for_each_possible_cpu(cpu) { 13149 swhash = &per_cpu(swevent_htable, cpu); 13150 mutex_init(&swhash->hlist_mutex); 13151 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13152 13153 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13154 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13155 13156 #ifdef CONFIG_CGROUP_PERF 13157 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13158 #endif 13159 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13160 } 13161 } 13162 13163 static void perf_swevent_init_cpu(unsigned int cpu) 13164 { 13165 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13166 13167 mutex_lock(&swhash->hlist_mutex); 13168 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13169 struct swevent_hlist *hlist; 13170 13171 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13172 WARN_ON(!hlist); 13173 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13174 } 13175 mutex_unlock(&swhash->hlist_mutex); 13176 } 13177 13178 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13179 static void __perf_event_exit_context(void *__info) 13180 { 13181 struct perf_event_context *ctx = __info; 13182 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13183 struct perf_event *event; 13184 13185 raw_spin_lock(&ctx->lock); 13186 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13187 list_for_each_entry(event, &ctx->event_list, event_entry) 13188 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13189 raw_spin_unlock(&ctx->lock); 13190 } 13191 13192 static void perf_event_exit_cpu_context(int cpu) 13193 { 13194 struct perf_cpu_context *cpuctx; 13195 struct perf_event_context *ctx; 13196 struct pmu *pmu; 13197 13198 mutex_lock(&pmus_lock); 13199 list_for_each_entry(pmu, &pmus, entry) { 13200 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13201 ctx = &cpuctx->ctx; 13202 13203 mutex_lock(&ctx->mutex); 13204 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13205 cpuctx->online = 0; 13206 mutex_unlock(&ctx->mutex); 13207 } 13208 cpumask_clear_cpu(cpu, perf_online_mask); 13209 mutex_unlock(&pmus_lock); 13210 } 13211 #else 13212 13213 static void perf_event_exit_cpu_context(int cpu) { } 13214 13215 #endif 13216 13217 int perf_event_init_cpu(unsigned int cpu) 13218 { 13219 struct perf_cpu_context *cpuctx; 13220 struct perf_event_context *ctx; 13221 struct pmu *pmu; 13222 13223 perf_swevent_init_cpu(cpu); 13224 13225 mutex_lock(&pmus_lock); 13226 cpumask_set_cpu(cpu, perf_online_mask); 13227 list_for_each_entry(pmu, &pmus, entry) { 13228 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13229 ctx = &cpuctx->ctx; 13230 13231 mutex_lock(&ctx->mutex); 13232 cpuctx->online = 1; 13233 mutex_unlock(&ctx->mutex); 13234 } 13235 mutex_unlock(&pmus_lock); 13236 13237 return 0; 13238 } 13239 13240 int perf_event_exit_cpu(unsigned int cpu) 13241 { 13242 perf_event_exit_cpu_context(cpu); 13243 return 0; 13244 } 13245 13246 static int 13247 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13248 { 13249 int cpu; 13250 13251 for_each_online_cpu(cpu) 13252 perf_event_exit_cpu(cpu); 13253 13254 return NOTIFY_OK; 13255 } 13256 13257 /* 13258 * Run the perf reboot notifier at the very last possible moment so that 13259 * the generic watchdog code runs as long as possible. 13260 */ 13261 static struct notifier_block perf_reboot_notifier = { 13262 .notifier_call = perf_reboot, 13263 .priority = INT_MIN, 13264 }; 13265 13266 void __init perf_event_init(void) 13267 { 13268 int ret; 13269 13270 idr_init(&pmu_idr); 13271 13272 perf_event_init_all_cpus(); 13273 init_srcu_struct(&pmus_srcu); 13274 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13275 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13276 perf_pmu_register(&perf_task_clock, NULL, -1); 13277 perf_tp_register(); 13278 perf_event_init_cpu(smp_processor_id()); 13279 register_reboot_notifier(&perf_reboot_notifier); 13280 13281 ret = init_hw_breakpoint(); 13282 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13283 13284 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13285 13286 /* 13287 * Build time assertion that we keep the data_head at the intended 13288 * location. IOW, validation we got the __reserved[] size right. 13289 */ 13290 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13291 != 1024); 13292 } 13293 13294 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13295 char *page) 13296 { 13297 struct perf_pmu_events_attr *pmu_attr = 13298 container_of(attr, struct perf_pmu_events_attr, attr); 13299 13300 if (pmu_attr->event_str) 13301 return sprintf(page, "%s\n", pmu_attr->event_str); 13302 13303 return 0; 13304 } 13305 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13306 13307 static int __init perf_event_sysfs_init(void) 13308 { 13309 struct pmu *pmu; 13310 int ret; 13311 13312 mutex_lock(&pmus_lock); 13313 13314 ret = bus_register(&pmu_bus); 13315 if (ret) 13316 goto unlock; 13317 13318 list_for_each_entry(pmu, &pmus, entry) { 13319 if (!pmu->name || pmu->type < 0) 13320 continue; 13321 13322 ret = pmu_dev_alloc(pmu); 13323 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13324 } 13325 pmu_bus_running = 1; 13326 ret = 0; 13327 13328 unlock: 13329 mutex_unlock(&pmus_lock); 13330 13331 return ret; 13332 } 13333 device_initcall(perf_event_sysfs_init); 13334 13335 #ifdef CONFIG_CGROUP_PERF 13336 static struct cgroup_subsys_state * 13337 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13338 { 13339 struct perf_cgroup *jc; 13340 13341 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13342 if (!jc) 13343 return ERR_PTR(-ENOMEM); 13344 13345 jc->info = alloc_percpu(struct perf_cgroup_info); 13346 if (!jc->info) { 13347 kfree(jc); 13348 return ERR_PTR(-ENOMEM); 13349 } 13350 13351 return &jc->css; 13352 } 13353 13354 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13355 { 13356 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13357 13358 free_percpu(jc->info); 13359 kfree(jc); 13360 } 13361 13362 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13363 { 13364 perf_event_cgroup(css->cgroup); 13365 return 0; 13366 } 13367 13368 static int __perf_cgroup_move(void *info) 13369 { 13370 struct task_struct *task = info; 13371 rcu_read_lock(); 13372 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13373 rcu_read_unlock(); 13374 return 0; 13375 } 13376 13377 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13378 { 13379 struct task_struct *task; 13380 struct cgroup_subsys_state *css; 13381 13382 cgroup_taskset_for_each(task, css, tset) 13383 task_function_call(task, __perf_cgroup_move, task); 13384 } 13385 13386 struct cgroup_subsys perf_event_cgrp_subsys = { 13387 .css_alloc = perf_cgroup_css_alloc, 13388 .css_free = perf_cgroup_css_free, 13389 .css_online = perf_cgroup_css_online, 13390 .attach = perf_cgroup_attach, 13391 /* 13392 * Implicitly enable on dfl hierarchy so that perf events can 13393 * always be filtered by cgroup2 path as long as perf_event 13394 * controller is not mounted on a legacy hierarchy. 13395 */ 13396 .implicit_on_dfl = true, 13397 .threaded = true, 13398 }; 13399 #endif /* CONFIG_CGROUP_PERF */ 13400