xref: /linux/kernel/events/core.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was preemptible -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section is non-preemptible.
1058 	 */
1059 	preempt_disable();
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 			rcu_read_unlock();
1077 			preempt_enable();
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	preempt_enable();
1088 	return ctx;
1089 }
1090 
1091 /*
1092  * Get the context for a task and increment its pin_count so it
1093  * can't get swapped to another task.  This also increments its
1094  * reference count so that the context can't get freed.
1095  */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 	struct perf_event_context *ctx;
1100 	unsigned long flags;
1101 
1102 	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 	if (ctx) {
1104 		++ctx->pin_count;
1105 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 	}
1107 	return ctx;
1108 }
1109 
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&ctx->lock, flags);
1115 	--ctx->pin_count;
1116 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118 
1119 /*
1120  * Update the record of the current time in a context.
1121  */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 	u64 now = perf_clock();
1125 
1126 	ctx->time += now - ctx->timestamp;
1127 	ctx->timestamp = now;
1128 }
1129 
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 	struct perf_event_context *ctx = event->ctx;
1133 
1134 	if (is_cgroup_event(event))
1135 		return perf_cgroup_event_time(event);
1136 
1137 	return ctx ? ctx->time : 0;
1138 }
1139 
1140 /*
1141  * Update the total_time_enabled and total_time_running fields for a event.
1142  * The caller of this function needs to hold the ctx->lock.
1143  */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 	struct perf_event_context *ctx = event->ctx;
1147 	u64 run_end;
1148 
1149 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 		return;
1152 	/*
1153 	 * in cgroup mode, time_enabled represents
1154 	 * the time the event was enabled AND active
1155 	 * tasks were in the monitored cgroup. This is
1156 	 * independent of the activity of the context as
1157 	 * there may be a mix of cgroup and non-cgroup events.
1158 	 *
1159 	 * That is why we treat cgroup events differently
1160 	 * here.
1161 	 */
1162 	if (is_cgroup_event(event))
1163 		run_end = perf_cgroup_event_time(event);
1164 	else if (ctx->is_active)
1165 		run_end = ctx->time;
1166 	else
1167 		run_end = event->tstamp_stopped;
1168 
1169 	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 
1171 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 		run_end = event->tstamp_stopped;
1173 	else
1174 		run_end = perf_event_time(event);
1175 
1176 	event->total_time_running = run_end - event->tstamp_running;
1177 
1178 }
1179 
1180 /*
1181  * Update total_time_enabled and total_time_running for all events in a group.
1182  */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 	struct perf_event *event;
1186 
1187 	update_event_times(leader);
1188 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 		update_event_times(event);
1190 }
1191 
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 	if (event->attr.pinned)
1196 		return &ctx->pinned_groups;
1197 	else
1198 		return &ctx->flexible_groups;
1199 }
1200 
1201 /*
1202  * Add a event from the lists for its context.
1203  * Must be called with ctx->mutex and ctx->lock held.
1204  */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 
1211 	/*
1212 	 * If we're a stand alone event or group leader, we go to the context
1213 	 * list, group events are kept attached to the group so that
1214 	 * perf_group_detach can, at all times, locate all siblings.
1215 	 */
1216 	if (event->group_leader == event) {
1217 		struct list_head *list;
1218 
1219 		if (is_software_event(event))
1220 			event->group_flags |= PERF_GROUP_SOFTWARE;
1221 
1222 		list = ctx_group_list(event, ctx);
1223 		list_add_tail(&event->group_entry, list);
1224 	}
1225 
1226 	if (is_cgroup_event(event))
1227 		ctx->nr_cgroups++;
1228 
1229 	list_add_rcu(&event->event_entry, &ctx->event_list);
1230 	ctx->nr_events++;
1231 	if (event->attr.inherit_stat)
1232 		ctx->nr_stat++;
1233 
1234 	ctx->generation++;
1235 }
1236 
1237 /*
1238  * Initialize event state based on the perf_event_attr::disabled.
1239  */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 					      PERF_EVENT_STATE_INACTIVE;
1244 }
1245 
1246 /*
1247  * Called at perf_event creation and when events are attached/detached from a
1248  * group.
1249  */
1250 static void perf_event__read_size(struct perf_event *event)
1251 {
1252 	int entry = sizeof(u64); /* value */
1253 	int size = 0;
1254 	int nr = 1;
1255 
1256 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 		size += sizeof(u64);
1258 
1259 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 		size += sizeof(u64);
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_ID)
1263 		entry += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 		nr += event->group_leader->nr_siblings;
1267 		size += sizeof(u64);
1268 	}
1269 
1270 	size += entry * nr;
1271 	event->read_size = size;
1272 }
1273 
1274 static void perf_event__header_size(struct perf_event *event)
1275 {
1276 	struct perf_sample_data *data;
1277 	u64 sample_type = event->attr.sample_type;
1278 	u16 size = 0;
1279 
1280 	perf_event__read_size(event);
1281 
1282 	if (sample_type & PERF_SAMPLE_IP)
1283 		size += sizeof(data->ip);
1284 
1285 	if (sample_type & PERF_SAMPLE_ADDR)
1286 		size += sizeof(data->addr);
1287 
1288 	if (sample_type & PERF_SAMPLE_PERIOD)
1289 		size += sizeof(data->period);
1290 
1291 	if (sample_type & PERF_SAMPLE_WEIGHT)
1292 		size += sizeof(data->weight);
1293 
1294 	if (sample_type & PERF_SAMPLE_READ)
1295 		size += event->read_size;
1296 
1297 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 		size += sizeof(data->data_src.val);
1299 
1300 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 		size += sizeof(data->txn);
1302 
1303 	event->header_size = size;
1304 }
1305 
1306 static void perf_event__id_header_size(struct perf_event *event)
1307 {
1308 	struct perf_sample_data *data;
1309 	u64 sample_type = event->attr.sample_type;
1310 	u16 size = 0;
1311 
1312 	if (sample_type & PERF_SAMPLE_TID)
1313 		size += sizeof(data->tid_entry);
1314 
1315 	if (sample_type & PERF_SAMPLE_TIME)
1316 		size += sizeof(data->time);
1317 
1318 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 		size += sizeof(data->id);
1320 
1321 	if (sample_type & PERF_SAMPLE_ID)
1322 		size += sizeof(data->id);
1323 
1324 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 		size += sizeof(data->stream_id);
1326 
1327 	if (sample_type & PERF_SAMPLE_CPU)
1328 		size += sizeof(data->cpu_entry);
1329 
1330 	event->id_header_size = size;
1331 }
1332 
1333 static void perf_group_attach(struct perf_event *event)
1334 {
1335 	struct perf_event *group_leader = event->group_leader, *pos;
1336 
1337 	/*
1338 	 * We can have double attach due to group movement in perf_event_open.
1339 	 */
1340 	if (event->attach_state & PERF_ATTACH_GROUP)
1341 		return;
1342 
1343 	event->attach_state |= PERF_ATTACH_GROUP;
1344 
1345 	if (group_leader == event)
1346 		return;
1347 
1348 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349 
1350 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 			!is_software_event(event))
1352 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353 
1354 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 	group_leader->nr_siblings++;
1356 
1357 	perf_event__header_size(group_leader);
1358 
1359 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 		perf_event__header_size(pos);
1361 }
1362 
1363 /*
1364  * Remove a event from the lists for its context.
1365  * Must be called with ctx->mutex and ctx->lock held.
1366  */
1367 static void
1368 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 	struct perf_cpu_context *cpuctx;
1371 
1372 	WARN_ON_ONCE(event->ctx != ctx);
1373 	lockdep_assert_held(&ctx->lock);
1374 
1375 	/*
1376 	 * We can have double detach due to exit/hot-unplug + close.
1377 	 */
1378 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379 		return;
1380 
1381 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382 
1383 	if (is_cgroup_event(event)) {
1384 		ctx->nr_cgroups--;
1385 		cpuctx = __get_cpu_context(ctx);
1386 		/*
1387 		 * if there are no more cgroup events
1388 		 * then cler cgrp to avoid stale pointer
1389 		 * in update_cgrp_time_from_cpuctx()
1390 		 */
1391 		if (!ctx->nr_cgroups)
1392 			cpuctx->cgrp = NULL;
1393 	}
1394 
1395 	ctx->nr_events--;
1396 	if (event->attr.inherit_stat)
1397 		ctx->nr_stat--;
1398 
1399 	list_del_rcu(&event->event_entry);
1400 
1401 	if (event->group_leader == event)
1402 		list_del_init(&event->group_entry);
1403 
1404 	update_group_times(event);
1405 
1406 	/*
1407 	 * If event was in error state, then keep it
1408 	 * that way, otherwise bogus counts will be
1409 	 * returned on read(). The only way to get out
1410 	 * of error state is by explicit re-enabling
1411 	 * of the event
1412 	 */
1413 	if (event->state > PERF_EVENT_STATE_OFF)
1414 		event->state = PERF_EVENT_STATE_OFF;
1415 
1416 	ctx->generation++;
1417 }
1418 
1419 static void perf_group_detach(struct perf_event *event)
1420 {
1421 	struct perf_event *sibling, *tmp;
1422 	struct list_head *list = NULL;
1423 
1424 	/*
1425 	 * We can have double detach due to exit/hot-unplug + close.
1426 	 */
1427 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 		return;
1429 
1430 	event->attach_state &= ~PERF_ATTACH_GROUP;
1431 
1432 	/*
1433 	 * If this is a sibling, remove it from its group.
1434 	 */
1435 	if (event->group_leader != event) {
1436 		list_del_init(&event->group_entry);
1437 		event->group_leader->nr_siblings--;
1438 		goto out;
1439 	}
1440 
1441 	if (!list_empty(&event->group_entry))
1442 		list = &event->group_entry;
1443 
1444 	/*
1445 	 * If this was a group event with sibling events then
1446 	 * upgrade the siblings to singleton events by adding them
1447 	 * to whatever list we are on.
1448 	 */
1449 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 		if (list)
1451 			list_move_tail(&sibling->group_entry, list);
1452 		sibling->group_leader = sibling;
1453 
1454 		/* Inherit group flags from the previous leader */
1455 		sibling->group_flags = event->group_flags;
1456 
1457 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458 	}
1459 
1460 out:
1461 	perf_event__header_size(event->group_leader);
1462 
1463 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 		perf_event__header_size(tmp);
1465 }
1466 
1467 /*
1468  * User event without the task.
1469  */
1470 static bool is_orphaned_event(struct perf_event *event)
1471 {
1472 	return event && !is_kernel_event(event) && !event->owner;
1473 }
1474 
1475 /*
1476  * Event has a parent but parent's task finished and it's
1477  * alive only because of children holding refference.
1478  */
1479 static bool is_orphaned_child(struct perf_event *event)
1480 {
1481 	return is_orphaned_event(event->parent);
1482 }
1483 
1484 static void orphans_remove_work(struct work_struct *work);
1485 
1486 static void schedule_orphans_remove(struct perf_event_context *ctx)
1487 {
1488 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 		return;
1490 
1491 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 		get_ctx(ctx);
1493 		ctx->orphans_remove_sched = true;
1494 	}
1495 }
1496 
1497 static int __init perf_workqueue_init(void)
1498 {
1499 	perf_wq = create_singlethread_workqueue("perf");
1500 	WARN(!perf_wq, "failed to create perf workqueue\n");
1501 	return perf_wq ? 0 : -1;
1502 }
1503 
1504 core_initcall(perf_workqueue_init);
1505 
1506 static inline int pmu_filter_match(struct perf_event *event)
1507 {
1508 	struct pmu *pmu = event->pmu;
1509 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1510 }
1511 
1512 static inline int
1513 event_filter_match(struct perf_event *event)
1514 {
1515 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 }
1518 
1519 static void
1520 event_sched_out(struct perf_event *event,
1521 		  struct perf_cpu_context *cpuctx,
1522 		  struct perf_event_context *ctx)
1523 {
1524 	u64 tstamp = perf_event_time(event);
1525 	u64 delta;
1526 
1527 	WARN_ON_ONCE(event->ctx != ctx);
1528 	lockdep_assert_held(&ctx->lock);
1529 
1530 	/*
1531 	 * An event which could not be activated because of
1532 	 * filter mismatch still needs to have its timings
1533 	 * maintained, otherwise bogus information is return
1534 	 * via read() for time_enabled, time_running:
1535 	 */
1536 	if (event->state == PERF_EVENT_STATE_INACTIVE
1537 	    && !event_filter_match(event)) {
1538 		delta = tstamp - event->tstamp_stopped;
1539 		event->tstamp_running += delta;
1540 		event->tstamp_stopped = tstamp;
1541 	}
1542 
1543 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 		return;
1545 
1546 	perf_pmu_disable(event->pmu);
1547 
1548 	event->state = PERF_EVENT_STATE_INACTIVE;
1549 	if (event->pending_disable) {
1550 		event->pending_disable = 0;
1551 		event->state = PERF_EVENT_STATE_OFF;
1552 	}
1553 	event->tstamp_stopped = tstamp;
1554 	event->pmu->del(event, 0);
1555 	event->oncpu = -1;
1556 
1557 	if (!is_software_event(event))
1558 		cpuctx->active_oncpu--;
1559 	if (!--ctx->nr_active)
1560 		perf_event_ctx_deactivate(ctx);
1561 	if (event->attr.freq && event->attr.sample_freq)
1562 		ctx->nr_freq--;
1563 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564 		cpuctx->exclusive = 0;
1565 
1566 	if (is_orphaned_child(event))
1567 		schedule_orphans_remove(ctx);
1568 
1569 	perf_pmu_enable(event->pmu);
1570 }
1571 
1572 static void
1573 group_sched_out(struct perf_event *group_event,
1574 		struct perf_cpu_context *cpuctx,
1575 		struct perf_event_context *ctx)
1576 {
1577 	struct perf_event *event;
1578 	int state = group_event->state;
1579 
1580 	event_sched_out(group_event, cpuctx, ctx);
1581 
1582 	/*
1583 	 * Schedule out siblings (if any):
1584 	 */
1585 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 		event_sched_out(event, cpuctx, ctx);
1587 
1588 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 		cpuctx->exclusive = 0;
1590 }
1591 
1592 struct remove_event {
1593 	struct perf_event *event;
1594 	bool detach_group;
1595 };
1596 
1597 /*
1598  * Cross CPU call to remove a performance event
1599  *
1600  * We disable the event on the hardware level first. After that we
1601  * remove it from the context list.
1602  */
1603 static int __perf_remove_from_context(void *info)
1604 {
1605 	struct remove_event *re = info;
1606 	struct perf_event *event = re->event;
1607 	struct perf_event_context *ctx = event->ctx;
1608 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609 
1610 	raw_spin_lock(&ctx->lock);
1611 	event_sched_out(event, cpuctx, ctx);
1612 	if (re->detach_group)
1613 		perf_group_detach(event);
1614 	list_del_event(event, ctx);
1615 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 		ctx->is_active = 0;
1617 		cpuctx->task_ctx = NULL;
1618 	}
1619 	raw_spin_unlock(&ctx->lock);
1620 
1621 	return 0;
1622 }
1623 
1624 
1625 /*
1626  * Remove the event from a task's (or a CPU's) list of events.
1627  *
1628  * CPU events are removed with a smp call. For task events we only
1629  * call when the task is on a CPU.
1630  *
1631  * If event->ctx is a cloned context, callers must make sure that
1632  * every task struct that event->ctx->task could possibly point to
1633  * remains valid.  This is OK when called from perf_release since
1634  * that only calls us on the top-level context, which can't be a clone.
1635  * When called from perf_event_exit_task, it's OK because the
1636  * context has been detached from its task.
1637  */
1638 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1639 {
1640 	struct perf_event_context *ctx = event->ctx;
1641 	struct task_struct *task = ctx->task;
1642 	struct remove_event re = {
1643 		.event = event,
1644 		.detach_group = detach_group,
1645 	};
1646 
1647 	lockdep_assert_held(&ctx->mutex);
1648 
1649 	if (!task) {
1650 		/*
1651 		 * Per cpu events are removed via an smp call. The removal can
1652 		 * fail if the CPU is currently offline, but in that case we
1653 		 * already called __perf_remove_from_context from
1654 		 * perf_event_exit_cpu.
1655 		 */
1656 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1657 		return;
1658 	}
1659 
1660 retry:
1661 	if (!task_function_call(task, __perf_remove_from_context, &re))
1662 		return;
1663 
1664 	raw_spin_lock_irq(&ctx->lock);
1665 	/*
1666 	 * If we failed to find a running task, but find the context active now
1667 	 * that we've acquired the ctx->lock, retry.
1668 	 */
1669 	if (ctx->is_active) {
1670 		raw_spin_unlock_irq(&ctx->lock);
1671 		/*
1672 		 * Reload the task pointer, it might have been changed by
1673 		 * a concurrent perf_event_context_sched_out().
1674 		 */
1675 		task = ctx->task;
1676 		goto retry;
1677 	}
1678 
1679 	/*
1680 	 * Since the task isn't running, its safe to remove the event, us
1681 	 * holding the ctx->lock ensures the task won't get scheduled in.
1682 	 */
1683 	if (detach_group)
1684 		perf_group_detach(event);
1685 	list_del_event(event, ctx);
1686 	raw_spin_unlock_irq(&ctx->lock);
1687 }
1688 
1689 /*
1690  * Cross CPU call to disable a performance event
1691  */
1692 int __perf_event_disable(void *info)
1693 {
1694 	struct perf_event *event = info;
1695 	struct perf_event_context *ctx = event->ctx;
1696 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 
1698 	/*
1699 	 * If this is a per-task event, need to check whether this
1700 	 * event's task is the current task on this cpu.
1701 	 *
1702 	 * Can trigger due to concurrent perf_event_context_sched_out()
1703 	 * flipping contexts around.
1704 	 */
1705 	if (ctx->task && cpuctx->task_ctx != ctx)
1706 		return -EINVAL;
1707 
1708 	raw_spin_lock(&ctx->lock);
1709 
1710 	/*
1711 	 * If the event is on, turn it off.
1712 	 * If it is in error state, leave it in error state.
1713 	 */
1714 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715 		update_context_time(ctx);
1716 		update_cgrp_time_from_event(event);
1717 		update_group_times(event);
1718 		if (event == event->group_leader)
1719 			group_sched_out(event, cpuctx, ctx);
1720 		else
1721 			event_sched_out(event, cpuctx, ctx);
1722 		event->state = PERF_EVENT_STATE_OFF;
1723 	}
1724 
1725 	raw_spin_unlock(&ctx->lock);
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Disable a event.
1732  *
1733  * If event->ctx is a cloned context, callers must make sure that
1734  * every task struct that event->ctx->task could possibly point to
1735  * remains valid.  This condition is satisifed when called through
1736  * perf_event_for_each_child or perf_event_for_each because they
1737  * hold the top-level event's child_mutex, so any descendant that
1738  * goes to exit will block in sync_child_event.
1739  * When called from perf_pending_event it's OK because event->ctx
1740  * is the current context on this CPU and preemption is disabled,
1741  * hence we can't get into perf_event_task_sched_out for this context.
1742  */
1743 static void _perf_event_disable(struct perf_event *event)
1744 {
1745 	struct perf_event_context *ctx = event->ctx;
1746 	struct task_struct *task = ctx->task;
1747 
1748 	if (!task) {
1749 		/*
1750 		 * Disable the event on the cpu that it's on
1751 		 */
1752 		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 		return;
1754 	}
1755 
1756 retry:
1757 	if (!task_function_call(task, __perf_event_disable, event))
1758 		return;
1759 
1760 	raw_spin_lock_irq(&ctx->lock);
1761 	/*
1762 	 * If the event is still active, we need to retry the cross-call.
1763 	 */
1764 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765 		raw_spin_unlock_irq(&ctx->lock);
1766 		/*
1767 		 * Reload the task pointer, it might have been changed by
1768 		 * a concurrent perf_event_context_sched_out().
1769 		 */
1770 		task = ctx->task;
1771 		goto retry;
1772 	}
1773 
1774 	/*
1775 	 * Since we have the lock this context can't be scheduled
1776 	 * in, so we can change the state safely.
1777 	 */
1778 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 		update_group_times(event);
1780 		event->state = PERF_EVENT_STATE_OFF;
1781 	}
1782 	raw_spin_unlock_irq(&ctx->lock);
1783 }
1784 
1785 /*
1786  * Strictly speaking kernel users cannot create groups and therefore this
1787  * interface does not need the perf_event_ctx_lock() magic.
1788  */
1789 void perf_event_disable(struct perf_event *event)
1790 {
1791 	struct perf_event_context *ctx;
1792 
1793 	ctx = perf_event_ctx_lock(event);
1794 	_perf_event_disable(event);
1795 	perf_event_ctx_unlock(event, ctx);
1796 }
1797 EXPORT_SYMBOL_GPL(perf_event_disable);
1798 
1799 static void perf_set_shadow_time(struct perf_event *event,
1800 				 struct perf_event_context *ctx,
1801 				 u64 tstamp)
1802 {
1803 	/*
1804 	 * use the correct time source for the time snapshot
1805 	 *
1806 	 * We could get by without this by leveraging the
1807 	 * fact that to get to this function, the caller
1808 	 * has most likely already called update_context_time()
1809 	 * and update_cgrp_time_xx() and thus both timestamp
1810 	 * are identical (or very close). Given that tstamp is,
1811 	 * already adjusted for cgroup, we could say that:
1812 	 *    tstamp - ctx->timestamp
1813 	 * is equivalent to
1814 	 *    tstamp - cgrp->timestamp.
1815 	 *
1816 	 * Then, in perf_output_read(), the calculation would
1817 	 * work with no changes because:
1818 	 * - event is guaranteed scheduled in
1819 	 * - no scheduled out in between
1820 	 * - thus the timestamp would be the same
1821 	 *
1822 	 * But this is a bit hairy.
1823 	 *
1824 	 * So instead, we have an explicit cgroup call to remain
1825 	 * within the time time source all along. We believe it
1826 	 * is cleaner and simpler to understand.
1827 	 */
1828 	if (is_cgroup_event(event))
1829 		perf_cgroup_set_shadow_time(event, tstamp);
1830 	else
1831 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1832 }
1833 
1834 #define MAX_INTERRUPTS (~0ULL)
1835 
1836 static void perf_log_throttle(struct perf_event *event, int enable);
1837 static void perf_log_itrace_start(struct perf_event *event);
1838 
1839 static int
1840 event_sched_in(struct perf_event *event,
1841 		 struct perf_cpu_context *cpuctx,
1842 		 struct perf_event_context *ctx)
1843 {
1844 	u64 tstamp = perf_event_time(event);
1845 	int ret = 0;
1846 
1847 	lockdep_assert_held(&ctx->lock);
1848 
1849 	if (event->state <= PERF_EVENT_STATE_OFF)
1850 		return 0;
1851 
1852 	event->state = PERF_EVENT_STATE_ACTIVE;
1853 	event->oncpu = smp_processor_id();
1854 
1855 	/*
1856 	 * Unthrottle events, since we scheduled we might have missed several
1857 	 * ticks already, also for a heavily scheduling task there is little
1858 	 * guarantee it'll get a tick in a timely manner.
1859 	 */
1860 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 		perf_log_throttle(event, 1);
1862 		event->hw.interrupts = 0;
1863 	}
1864 
1865 	/*
1866 	 * The new state must be visible before we turn it on in the hardware:
1867 	 */
1868 	smp_wmb();
1869 
1870 	perf_pmu_disable(event->pmu);
1871 
1872 	perf_set_shadow_time(event, ctx, tstamp);
1873 
1874 	perf_log_itrace_start(event);
1875 
1876 	if (event->pmu->add(event, PERF_EF_START)) {
1877 		event->state = PERF_EVENT_STATE_INACTIVE;
1878 		event->oncpu = -1;
1879 		ret = -EAGAIN;
1880 		goto out;
1881 	}
1882 
1883 	event->tstamp_running += tstamp - event->tstamp_stopped;
1884 
1885 	if (!is_software_event(event))
1886 		cpuctx->active_oncpu++;
1887 	if (!ctx->nr_active++)
1888 		perf_event_ctx_activate(ctx);
1889 	if (event->attr.freq && event->attr.sample_freq)
1890 		ctx->nr_freq++;
1891 
1892 	if (event->attr.exclusive)
1893 		cpuctx->exclusive = 1;
1894 
1895 	if (is_orphaned_child(event))
1896 		schedule_orphans_remove(ctx);
1897 
1898 out:
1899 	perf_pmu_enable(event->pmu);
1900 
1901 	return ret;
1902 }
1903 
1904 static int
1905 group_sched_in(struct perf_event *group_event,
1906 	       struct perf_cpu_context *cpuctx,
1907 	       struct perf_event_context *ctx)
1908 {
1909 	struct perf_event *event, *partial_group = NULL;
1910 	struct pmu *pmu = ctx->pmu;
1911 	u64 now = ctx->time;
1912 	bool simulate = false;
1913 
1914 	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 		return 0;
1916 
1917 	pmu->start_txn(pmu);
1918 
1919 	if (event_sched_in(group_event, cpuctx, ctx)) {
1920 		pmu->cancel_txn(pmu);
1921 		perf_mux_hrtimer_restart(cpuctx);
1922 		return -EAGAIN;
1923 	}
1924 
1925 	/*
1926 	 * Schedule in siblings as one group (if any):
1927 	 */
1928 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929 		if (event_sched_in(event, cpuctx, ctx)) {
1930 			partial_group = event;
1931 			goto group_error;
1932 		}
1933 	}
1934 
1935 	if (!pmu->commit_txn(pmu))
1936 		return 0;
1937 
1938 group_error:
1939 	/*
1940 	 * Groups can be scheduled in as one unit only, so undo any
1941 	 * partial group before returning:
1942 	 * The events up to the failed event are scheduled out normally,
1943 	 * tstamp_stopped will be updated.
1944 	 *
1945 	 * The failed events and the remaining siblings need to have
1946 	 * their timings updated as if they had gone thru event_sched_in()
1947 	 * and event_sched_out(). This is required to get consistent timings
1948 	 * across the group. This also takes care of the case where the group
1949 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 	 * the time the event was actually stopped, such that time delta
1951 	 * calculation in update_event_times() is correct.
1952 	 */
1953 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 		if (event == partial_group)
1955 			simulate = true;
1956 
1957 		if (simulate) {
1958 			event->tstamp_running += now - event->tstamp_stopped;
1959 			event->tstamp_stopped = now;
1960 		} else {
1961 			event_sched_out(event, cpuctx, ctx);
1962 		}
1963 	}
1964 	event_sched_out(group_event, cpuctx, ctx);
1965 
1966 	pmu->cancel_txn(pmu);
1967 
1968 	perf_mux_hrtimer_restart(cpuctx);
1969 
1970 	return -EAGAIN;
1971 }
1972 
1973 /*
1974  * Work out whether we can put this event group on the CPU now.
1975  */
1976 static int group_can_go_on(struct perf_event *event,
1977 			   struct perf_cpu_context *cpuctx,
1978 			   int can_add_hw)
1979 {
1980 	/*
1981 	 * Groups consisting entirely of software events can always go on.
1982 	 */
1983 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 		return 1;
1985 	/*
1986 	 * If an exclusive group is already on, no other hardware
1987 	 * events can go on.
1988 	 */
1989 	if (cpuctx->exclusive)
1990 		return 0;
1991 	/*
1992 	 * If this group is exclusive and there are already
1993 	 * events on the CPU, it can't go on.
1994 	 */
1995 	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 		return 0;
1997 	/*
1998 	 * Otherwise, try to add it if all previous groups were able
1999 	 * to go on.
2000 	 */
2001 	return can_add_hw;
2002 }
2003 
2004 static void add_event_to_ctx(struct perf_event *event,
2005 			       struct perf_event_context *ctx)
2006 {
2007 	u64 tstamp = perf_event_time(event);
2008 
2009 	list_add_event(event, ctx);
2010 	perf_group_attach(event);
2011 	event->tstamp_enabled = tstamp;
2012 	event->tstamp_running = tstamp;
2013 	event->tstamp_stopped = tstamp;
2014 }
2015 
2016 static void task_ctx_sched_out(struct perf_event_context *ctx);
2017 static void
2018 ctx_sched_in(struct perf_event_context *ctx,
2019 	     struct perf_cpu_context *cpuctx,
2020 	     enum event_type_t event_type,
2021 	     struct task_struct *task);
2022 
2023 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 				struct perf_event_context *ctx,
2025 				struct task_struct *task)
2026 {
2027 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 	if (ctx)
2029 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 	if (ctx)
2032 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033 }
2034 
2035 /*
2036  * Cross CPU call to install and enable a performance event
2037  *
2038  * Must be called with ctx->mutex held
2039  */
2040 static int  __perf_install_in_context(void *info)
2041 {
2042 	struct perf_event *event = info;
2043 	struct perf_event_context *ctx = event->ctx;
2044 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 	struct task_struct *task = current;
2047 
2048 	perf_ctx_lock(cpuctx, task_ctx);
2049 	perf_pmu_disable(cpuctx->ctx.pmu);
2050 
2051 	/*
2052 	 * If there was an active task_ctx schedule it out.
2053 	 */
2054 	if (task_ctx)
2055 		task_ctx_sched_out(task_ctx);
2056 
2057 	/*
2058 	 * If the context we're installing events in is not the
2059 	 * active task_ctx, flip them.
2060 	 */
2061 	if (ctx->task && task_ctx != ctx) {
2062 		if (task_ctx)
2063 			raw_spin_unlock(&task_ctx->lock);
2064 		raw_spin_lock(&ctx->lock);
2065 		task_ctx = ctx;
2066 	}
2067 
2068 	if (task_ctx) {
2069 		cpuctx->task_ctx = task_ctx;
2070 		task = task_ctx->task;
2071 	}
2072 
2073 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2074 
2075 	update_context_time(ctx);
2076 	/*
2077 	 * update cgrp time only if current cgrp
2078 	 * matches event->cgrp. Must be done before
2079 	 * calling add_event_to_ctx()
2080 	 */
2081 	update_cgrp_time_from_event(event);
2082 
2083 	add_event_to_ctx(event, ctx);
2084 
2085 	/*
2086 	 * Schedule everything back in
2087 	 */
2088 	perf_event_sched_in(cpuctx, task_ctx, task);
2089 
2090 	perf_pmu_enable(cpuctx->ctx.pmu);
2091 	perf_ctx_unlock(cpuctx, task_ctx);
2092 
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Attach a performance event to a context
2098  *
2099  * First we add the event to the list with the hardware enable bit
2100  * in event->hw_config cleared.
2101  *
2102  * If the event is attached to a task which is on a CPU we use a smp
2103  * call to enable it in the task context. The task might have been
2104  * scheduled away, but we check this in the smp call again.
2105  */
2106 static void
2107 perf_install_in_context(struct perf_event_context *ctx,
2108 			struct perf_event *event,
2109 			int cpu)
2110 {
2111 	struct task_struct *task = ctx->task;
2112 
2113 	lockdep_assert_held(&ctx->mutex);
2114 
2115 	event->ctx = ctx;
2116 	if (event->cpu != -1)
2117 		event->cpu = cpu;
2118 
2119 	if (!task) {
2120 		/*
2121 		 * Per cpu events are installed via an smp call and
2122 		 * the install is always successful.
2123 		 */
2124 		cpu_function_call(cpu, __perf_install_in_context, event);
2125 		return;
2126 	}
2127 
2128 retry:
2129 	if (!task_function_call(task, __perf_install_in_context, event))
2130 		return;
2131 
2132 	raw_spin_lock_irq(&ctx->lock);
2133 	/*
2134 	 * If we failed to find a running task, but find the context active now
2135 	 * that we've acquired the ctx->lock, retry.
2136 	 */
2137 	if (ctx->is_active) {
2138 		raw_spin_unlock_irq(&ctx->lock);
2139 		/*
2140 		 * Reload the task pointer, it might have been changed by
2141 		 * a concurrent perf_event_context_sched_out().
2142 		 */
2143 		task = ctx->task;
2144 		goto retry;
2145 	}
2146 
2147 	/*
2148 	 * Since the task isn't running, its safe to add the event, us holding
2149 	 * the ctx->lock ensures the task won't get scheduled in.
2150 	 */
2151 	add_event_to_ctx(event, ctx);
2152 	raw_spin_unlock_irq(&ctx->lock);
2153 }
2154 
2155 /*
2156  * Put a event into inactive state and update time fields.
2157  * Enabling the leader of a group effectively enables all
2158  * the group members that aren't explicitly disabled, so we
2159  * have to update their ->tstamp_enabled also.
2160  * Note: this works for group members as well as group leaders
2161  * since the non-leader members' sibling_lists will be empty.
2162  */
2163 static void __perf_event_mark_enabled(struct perf_event *event)
2164 {
2165 	struct perf_event *sub;
2166 	u64 tstamp = perf_event_time(event);
2167 
2168 	event->state = PERF_EVENT_STATE_INACTIVE;
2169 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2170 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2173 	}
2174 }
2175 
2176 /*
2177  * Cross CPU call to enable a performance event
2178  */
2179 static int __perf_event_enable(void *info)
2180 {
2181 	struct perf_event *event = info;
2182 	struct perf_event_context *ctx = event->ctx;
2183 	struct perf_event *leader = event->group_leader;
2184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185 	int err;
2186 
2187 	/*
2188 	 * There's a time window between 'ctx->is_active' check
2189 	 * in perf_event_enable function and this place having:
2190 	 *   - IRQs on
2191 	 *   - ctx->lock unlocked
2192 	 *
2193 	 * where the task could be killed and 'ctx' deactivated
2194 	 * by perf_event_exit_task.
2195 	 */
2196 	if (!ctx->is_active)
2197 		return -EINVAL;
2198 
2199 	raw_spin_lock(&ctx->lock);
2200 	update_context_time(ctx);
2201 
2202 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203 		goto unlock;
2204 
2205 	/*
2206 	 * set current task's cgroup time reference point
2207 	 */
2208 	perf_cgroup_set_timestamp(current, ctx);
2209 
2210 	__perf_event_mark_enabled(event);
2211 
2212 	if (!event_filter_match(event)) {
2213 		if (is_cgroup_event(event))
2214 			perf_cgroup_defer_enabled(event);
2215 		goto unlock;
2216 	}
2217 
2218 	/*
2219 	 * If the event is in a group and isn't the group leader,
2220 	 * then don't put it on unless the group is on.
2221 	 */
2222 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223 		goto unlock;
2224 
2225 	if (!group_can_go_on(event, cpuctx, 1)) {
2226 		err = -EEXIST;
2227 	} else {
2228 		if (event == leader)
2229 			err = group_sched_in(event, cpuctx, ctx);
2230 		else
2231 			err = event_sched_in(event, cpuctx, ctx);
2232 	}
2233 
2234 	if (err) {
2235 		/*
2236 		 * If this event can't go on and it's part of a
2237 		 * group, then the whole group has to come off.
2238 		 */
2239 		if (leader != event) {
2240 			group_sched_out(leader, cpuctx, ctx);
2241 			perf_mux_hrtimer_restart(cpuctx);
2242 		}
2243 		if (leader->attr.pinned) {
2244 			update_group_times(leader);
2245 			leader->state = PERF_EVENT_STATE_ERROR;
2246 		}
2247 	}
2248 
2249 unlock:
2250 	raw_spin_unlock(&ctx->lock);
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * Enable a event.
2257  *
2258  * If event->ctx is a cloned context, callers must make sure that
2259  * every task struct that event->ctx->task could possibly point to
2260  * remains valid.  This condition is satisfied when called through
2261  * perf_event_for_each_child or perf_event_for_each as described
2262  * for perf_event_disable.
2263  */
2264 static void _perf_event_enable(struct perf_event *event)
2265 {
2266 	struct perf_event_context *ctx = event->ctx;
2267 	struct task_struct *task = ctx->task;
2268 
2269 	if (!task) {
2270 		/*
2271 		 * Enable the event on the cpu that it's on
2272 		 */
2273 		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 		return;
2275 	}
2276 
2277 	raw_spin_lock_irq(&ctx->lock);
2278 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 		goto out;
2280 
2281 	/*
2282 	 * If the event is in error state, clear that first.
2283 	 * That way, if we see the event in error state below, we
2284 	 * know that it has gone back into error state, as distinct
2285 	 * from the task having been scheduled away before the
2286 	 * cross-call arrived.
2287 	 */
2288 	if (event->state == PERF_EVENT_STATE_ERROR)
2289 		event->state = PERF_EVENT_STATE_OFF;
2290 
2291 retry:
2292 	if (!ctx->is_active) {
2293 		__perf_event_mark_enabled(event);
2294 		goto out;
2295 	}
2296 
2297 	raw_spin_unlock_irq(&ctx->lock);
2298 
2299 	if (!task_function_call(task, __perf_event_enable, event))
2300 		return;
2301 
2302 	raw_spin_lock_irq(&ctx->lock);
2303 
2304 	/*
2305 	 * If the context is active and the event is still off,
2306 	 * we need to retry the cross-call.
2307 	 */
2308 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 		/*
2310 		 * task could have been flipped by a concurrent
2311 		 * perf_event_context_sched_out()
2312 		 */
2313 		task = ctx->task;
2314 		goto retry;
2315 	}
2316 
2317 out:
2318 	raw_spin_unlock_irq(&ctx->lock);
2319 }
2320 
2321 /*
2322  * See perf_event_disable();
2323  */
2324 void perf_event_enable(struct perf_event *event)
2325 {
2326 	struct perf_event_context *ctx;
2327 
2328 	ctx = perf_event_ctx_lock(event);
2329 	_perf_event_enable(event);
2330 	perf_event_ctx_unlock(event, ctx);
2331 }
2332 EXPORT_SYMBOL_GPL(perf_event_enable);
2333 
2334 static int _perf_event_refresh(struct perf_event *event, int refresh)
2335 {
2336 	/*
2337 	 * not supported on inherited events
2338 	 */
2339 	if (event->attr.inherit || !is_sampling_event(event))
2340 		return -EINVAL;
2341 
2342 	atomic_add(refresh, &event->event_limit);
2343 	_perf_event_enable(event);
2344 
2345 	return 0;
2346 }
2347 
2348 /*
2349  * See perf_event_disable()
2350  */
2351 int perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 	struct perf_event_context *ctx;
2354 	int ret;
2355 
2356 	ctx = perf_event_ctx_lock(event);
2357 	ret = _perf_event_refresh(event, refresh);
2358 	perf_event_ctx_unlock(event, ctx);
2359 
2360 	return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(perf_event_refresh);
2363 
2364 static void ctx_sched_out(struct perf_event_context *ctx,
2365 			  struct perf_cpu_context *cpuctx,
2366 			  enum event_type_t event_type)
2367 {
2368 	struct perf_event *event;
2369 	int is_active = ctx->is_active;
2370 
2371 	ctx->is_active &= ~event_type;
2372 	if (likely(!ctx->nr_events))
2373 		return;
2374 
2375 	update_context_time(ctx);
2376 	update_cgrp_time_from_cpuctx(cpuctx);
2377 	if (!ctx->nr_active)
2378 		return;
2379 
2380 	perf_pmu_disable(ctx->pmu);
2381 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 			group_sched_out(event, cpuctx, ctx);
2384 	}
2385 
2386 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388 			group_sched_out(event, cpuctx, ctx);
2389 	}
2390 	perf_pmu_enable(ctx->pmu);
2391 }
2392 
2393 /*
2394  * Test whether two contexts are equivalent, i.e. whether they have both been
2395  * cloned from the same version of the same context.
2396  *
2397  * Equivalence is measured using a generation number in the context that is
2398  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399  * and list_del_event().
2400  */
2401 static int context_equiv(struct perf_event_context *ctx1,
2402 			 struct perf_event_context *ctx2)
2403 {
2404 	lockdep_assert_held(&ctx1->lock);
2405 	lockdep_assert_held(&ctx2->lock);
2406 
2407 	/* Pinning disables the swap optimization */
2408 	if (ctx1->pin_count || ctx2->pin_count)
2409 		return 0;
2410 
2411 	/* If ctx1 is the parent of ctx2 */
2412 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 		return 1;
2414 
2415 	/* If ctx2 is the parent of ctx1 */
2416 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 		return 1;
2418 
2419 	/*
2420 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 	 * hierarchy, see perf_event_init_context().
2422 	 */
2423 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 			ctx1->parent_gen == ctx2->parent_gen)
2425 		return 1;
2426 
2427 	/* Unmatched */
2428 	return 0;
2429 }
2430 
2431 static void __perf_event_sync_stat(struct perf_event *event,
2432 				     struct perf_event *next_event)
2433 {
2434 	u64 value;
2435 
2436 	if (!event->attr.inherit_stat)
2437 		return;
2438 
2439 	/*
2440 	 * Update the event value, we cannot use perf_event_read()
2441 	 * because we're in the middle of a context switch and have IRQs
2442 	 * disabled, which upsets smp_call_function_single(), however
2443 	 * we know the event must be on the current CPU, therefore we
2444 	 * don't need to use it.
2445 	 */
2446 	switch (event->state) {
2447 	case PERF_EVENT_STATE_ACTIVE:
2448 		event->pmu->read(event);
2449 		/* fall-through */
2450 
2451 	case PERF_EVENT_STATE_INACTIVE:
2452 		update_event_times(event);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	/*
2460 	 * In order to keep per-task stats reliable we need to flip the event
2461 	 * values when we flip the contexts.
2462 	 */
2463 	value = local64_read(&next_event->count);
2464 	value = local64_xchg(&event->count, value);
2465 	local64_set(&next_event->count, value);
2466 
2467 	swap(event->total_time_enabled, next_event->total_time_enabled);
2468 	swap(event->total_time_running, next_event->total_time_running);
2469 
2470 	/*
2471 	 * Since we swizzled the values, update the user visible data too.
2472 	 */
2473 	perf_event_update_userpage(event);
2474 	perf_event_update_userpage(next_event);
2475 }
2476 
2477 static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 				   struct perf_event_context *next_ctx)
2479 {
2480 	struct perf_event *event, *next_event;
2481 
2482 	if (!ctx->nr_stat)
2483 		return;
2484 
2485 	update_context_time(ctx);
2486 
2487 	event = list_first_entry(&ctx->event_list,
2488 				   struct perf_event, event_entry);
2489 
2490 	next_event = list_first_entry(&next_ctx->event_list,
2491 					struct perf_event, event_entry);
2492 
2493 	while (&event->event_entry != &ctx->event_list &&
2494 	       &next_event->event_entry != &next_ctx->event_list) {
2495 
2496 		__perf_event_sync_stat(event, next_event);
2497 
2498 		event = list_next_entry(event, event_entry);
2499 		next_event = list_next_entry(next_event, event_entry);
2500 	}
2501 }
2502 
2503 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 					 struct task_struct *next)
2505 {
2506 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507 	struct perf_event_context *next_ctx;
2508 	struct perf_event_context *parent, *next_parent;
2509 	struct perf_cpu_context *cpuctx;
2510 	int do_switch = 1;
2511 
2512 	if (likely(!ctx))
2513 		return;
2514 
2515 	cpuctx = __get_cpu_context(ctx);
2516 	if (!cpuctx->task_ctx)
2517 		return;
2518 
2519 	rcu_read_lock();
2520 	next_ctx = next->perf_event_ctxp[ctxn];
2521 	if (!next_ctx)
2522 		goto unlock;
2523 
2524 	parent = rcu_dereference(ctx->parent_ctx);
2525 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2526 
2527 	/* If neither context have a parent context; they cannot be clones. */
2528 	if (!parent && !next_parent)
2529 		goto unlock;
2530 
2531 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 		/*
2533 		 * Looks like the two contexts are clones, so we might be
2534 		 * able to optimize the context switch.  We lock both
2535 		 * contexts and check that they are clones under the
2536 		 * lock (including re-checking that neither has been
2537 		 * uncloned in the meantime).  It doesn't matter which
2538 		 * order we take the locks because no other cpu could
2539 		 * be trying to lock both of these tasks.
2540 		 */
2541 		raw_spin_lock(&ctx->lock);
2542 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543 		if (context_equiv(ctx, next_ctx)) {
2544 			/*
2545 			 * XXX do we need a memory barrier of sorts
2546 			 * wrt to rcu_dereference() of perf_event_ctxp
2547 			 */
2548 			task->perf_event_ctxp[ctxn] = next_ctx;
2549 			next->perf_event_ctxp[ctxn] = ctx;
2550 			ctx->task = next;
2551 			next_ctx->task = task;
2552 
2553 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554 
2555 			do_switch = 0;
2556 
2557 			perf_event_sync_stat(ctx, next_ctx);
2558 		}
2559 		raw_spin_unlock(&next_ctx->lock);
2560 		raw_spin_unlock(&ctx->lock);
2561 	}
2562 unlock:
2563 	rcu_read_unlock();
2564 
2565 	if (do_switch) {
2566 		raw_spin_lock(&ctx->lock);
2567 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568 		cpuctx->task_ctx = NULL;
2569 		raw_spin_unlock(&ctx->lock);
2570 	}
2571 }
2572 
2573 void perf_sched_cb_dec(struct pmu *pmu)
2574 {
2575 	this_cpu_dec(perf_sched_cb_usages);
2576 }
2577 
2578 void perf_sched_cb_inc(struct pmu *pmu)
2579 {
2580 	this_cpu_inc(perf_sched_cb_usages);
2581 }
2582 
2583 /*
2584  * This function provides the context switch callback to the lower code
2585  * layer. It is invoked ONLY when the context switch callback is enabled.
2586  */
2587 static void perf_pmu_sched_task(struct task_struct *prev,
2588 				struct task_struct *next,
2589 				bool sched_in)
2590 {
2591 	struct perf_cpu_context *cpuctx;
2592 	struct pmu *pmu;
2593 	unsigned long flags;
2594 
2595 	if (prev == next)
2596 		return;
2597 
2598 	local_irq_save(flags);
2599 
2600 	rcu_read_lock();
2601 
2602 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 		if (pmu->sched_task) {
2604 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605 
2606 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607 
2608 			perf_pmu_disable(pmu);
2609 
2610 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2611 
2612 			perf_pmu_enable(pmu);
2613 
2614 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 		}
2616 	}
2617 
2618 	rcu_read_unlock();
2619 
2620 	local_irq_restore(flags);
2621 }
2622 
2623 static void perf_event_switch(struct task_struct *task,
2624 			      struct task_struct *next_prev, bool sched_in);
2625 
2626 #define for_each_task_context_nr(ctxn)					\
2627 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628 
2629 /*
2630  * Called from scheduler to remove the events of the current task,
2631  * with interrupts disabled.
2632  *
2633  * We stop each event and update the event value in event->count.
2634  *
2635  * This does not protect us against NMI, but disable()
2636  * sets the disabled bit in the control field of event _before_
2637  * accessing the event control register. If a NMI hits, then it will
2638  * not restart the event.
2639  */
2640 void __perf_event_task_sched_out(struct task_struct *task,
2641 				 struct task_struct *next)
2642 {
2643 	int ctxn;
2644 
2645 	if (__this_cpu_read(perf_sched_cb_usages))
2646 		perf_pmu_sched_task(task, next, false);
2647 
2648 	if (atomic_read(&nr_switch_events))
2649 		perf_event_switch(task, next, false);
2650 
2651 	for_each_task_context_nr(ctxn)
2652 		perf_event_context_sched_out(task, ctxn, next);
2653 
2654 	/*
2655 	 * if cgroup events exist on this CPU, then we need
2656 	 * to check if we have to switch out PMU state.
2657 	 * cgroup event are system-wide mode only
2658 	 */
2659 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660 		perf_cgroup_sched_out(task, next);
2661 }
2662 
2663 static void task_ctx_sched_out(struct perf_event_context *ctx)
2664 {
2665 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666 
2667 	if (!cpuctx->task_ctx)
2668 		return;
2669 
2670 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 		return;
2672 
2673 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 	cpuctx->task_ctx = NULL;
2675 }
2676 
2677 /*
2678  * Called with IRQs disabled
2679  */
2680 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 			      enum event_type_t event_type)
2682 {
2683 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 }
2685 
2686 static void
2687 ctx_pinned_sched_in(struct perf_event_context *ctx,
2688 		    struct perf_cpu_context *cpuctx)
2689 {
2690 	struct perf_event *event;
2691 
2692 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 		if (event->state <= PERF_EVENT_STATE_OFF)
2694 			continue;
2695 		if (!event_filter_match(event))
2696 			continue;
2697 
2698 		/* may need to reset tstamp_enabled */
2699 		if (is_cgroup_event(event))
2700 			perf_cgroup_mark_enabled(event, ctx);
2701 
2702 		if (group_can_go_on(event, cpuctx, 1))
2703 			group_sched_in(event, cpuctx, ctx);
2704 
2705 		/*
2706 		 * If this pinned group hasn't been scheduled,
2707 		 * put it in error state.
2708 		 */
2709 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 			update_group_times(event);
2711 			event->state = PERF_EVENT_STATE_ERROR;
2712 		}
2713 	}
2714 }
2715 
2716 static void
2717 ctx_flexible_sched_in(struct perf_event_context *ctx,
2718 		      struct perf_cpu_context *cpuctx)
2719 {
2720 	struct perf_event *event;
2721 	int can_add_hw = 1;
2722 
2723 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 		/* Ignore events in OFF or ERROR state */
2725 		if (event->state <= PERF_EVENT_STATE_OFF)
2726 			continue;
2727 		/*
2728 		 * Listen to the 'cpu' scheduling filter constraint
2729 		 * of events:
2730 		 */
2731 		if (!event_filter_match(event))
2732 			continue;
2733 
2734 		/* may need to reset tstamp_enabled */
2735 		if (is_cgroup_event(event))
2736 			perf_cgroup_mark_enabled(event, ctx);
2737 
2738 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739 			if (group_sched_in(event, cpuctx, ctx))
2740 				can_add_hw = 0;
2741 		}
2742 	}
2743 }
2744 
2745 static void
2746 ctx_sched_in(struct perf_event_context *ctx,
2747 	     struct perf_cpu_context *cpuctx,
2748 	     enum event_type_t event_type,
2749 	     struct task_struct *task)
2750 {
2751 	u64 now;
2752 	int is_active = ctx->is_active;
2753 
2754 	ctx->is_active |= event_type;
2755 	if (likely(!ctx->nr_events))
2756 		return;
2757 
2758 	now = perf_clock();
2759 	ctx->timestamp = now;
2760 	perf_cgroup_set_timestamp(task, ctx);
2761 	/*
2762 	 * First go through the list and put on any pinned groups
2763 	 * in order to give them the best chance of going on.
2764 	 */
2765 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766 		ctx_pinned_sched_in(ctx, cpuctx);
2767 
2768 	/* Then walk through the lower prio flexible groups */
2769 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770 		ctx_flexible_sched_in(ctx, cpuctx);
2771 }
2772 
2773 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2774 			     enum event_type_t event_type,
2775 			     struct task_struct *task)
2776 {
2777 	struct perf_event_context *ctx = &cpuctx->ctx;
2778 
2779 	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 }
2781 
2782 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 					struct task_struct *task)
2784 {
2785 	struct perf_cpu_context *cpuctx;
2786 
2787 	cpuctx = __get_cpu_context(ctx);
2788 	if (cpuctx->task_ctx == ctx)
2789 		return;
2790 
2791 	perf_ctx_lock(cpuctx, ctx);
2792 	perf_pmu_disable(ctx->pmu);
2793 	/*
2794 	 * We want to keep the following priority order:
2795 	 * cpu pinned (that don't need to move), task pinned,
2796 	 * cpu flexible, task flexible.
2797 	 */
2798 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799 
2800 	if (ctx->nr_events)
2801 		cpuctx->task_ctx = ctx;
2802 
2803 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804 
2805 	perf_pmu_enable(ctx->pmu);
2806 	perf_ctx_unlock(cpuctx, ctx);
2807 }
2808 
2809 /*
2810  * Called from scheduler to add the events of the current task
2811  * with interrupts disabled.
2812  *
2813  * We restore the event value and then enable it.
2814  *
2815  * This does not protect us against NMI, but enable()
2816  * sets the enabled bit in the control field of event _before_
2817  * accessing the event control register. If a NMI hits, then it will
2818  * keep the event running.
2819  */
2820 void __perf_event_task_sched_in(struct task_struct *prev,
2821 				struct task_struct *task)
2822 {
2823 	struct perf_event_context *ctx;
2824 	int ctxn;
2825 
2826 	for_each_task_context_nr(ctxn) {
2827 		ctx = task->perf_event_ctxp[ctxn];
2828 		if (likely(!ctx))
2829 			continue;
2830 
2831 		perf_event_context_sched_in(ctx, task);
2832 	}
2833 	/*
2834 	 * if cgroup events exist on this CPU, then we need
2835 	 * to check if we have to switch in PMU state.
2836 	 * cgroup event are system-wide mode only
2837 	 */
2838 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 		perf_cgroup_sched_in(prev, task);
2840 
2841 	if (atomic_read(&nr_switch_events))
2842 		perf_event_switch(task, prev, true);
2843 
2844 	if (__this_cpu_read(perf_sched_cb_usages))
2845 		perf_pmu_sched_task(prev, task, true);
2846 }
2847 
2848 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849 {
2850 	u64 frequency = event->attr.sample_freq;
2851 	u64 sec = NSEC_PER_SEC;
2852 	u64 divisor, dividend;
2853 
2854 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2855 
2856 	count_fls = fls64(count);
2857 	nsec_fls = fls64(nsec);
2858 	frequency_fls = fls64(frequency);
2859 	sec_fls = 30;
2860 
2861 	/*
2862 	 * We got @count in @nsec, with a target of sample_freq HZ
2863 	 * the target period becomes:
2864 	 *
2865 	 *             @count * 10^9
2866 	 * period = -------------------
2867 	 *          @nsec * sample_freq
2868 	 *
2869 	 */
2870 
2871 	/*
2872 	 * Reduce accuracy by one bit such that @a and @b converge
2873 	 * to a similar magnitude.
2874 	 */
2875 #define REDUCE_FLS(a, b)		\
2876 do {					\
2877 	if (a##_fls > b##_fls) {	\
2878 		a >>= 1;		\
2879 		a##_fls--;		\
2880 	} else {			\
2881 		b >>= 1;		\
2882 		b##_fls--;		\
2883 	}				\
2884 } while (0)
2885 
2886 	/*
2887 	 * Reduce accuracy until either term fits in a u64, then proceed with
2888 	 * the other, so that finally we can do a u64/u64 division.
2889 	 */
2890 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 		REDUCE_FLS(nsec, frequency);
2892 		REDUCE_FLS(sec, count);
2893 	}
2894 
2895 	if (count_fls + sec_fls > 64) {
2896 		divisor = nsec * frequency;
2897 
2898 		while (count_fls + sec_fls > 64) {
2899 			REDUCE_FLS(count, sec);
2900 			divisor >>= 1;
2901 		}
2902 
2903 		dividend = count * sec;
2904 	} else {
2905 		dividend = count * sec;
2906 
2907 		while (nsec_fls + frequency_fls > 64) {
2908 			REDUCE_FLS(nsec, frequency);
2909 			dividend >>= 1;
2910 		}
2911 
2912 		divisor = nsec * frequency;
2913 	}
2914 
2915 	if (!divisor)
2916 		return dividend;
2917 
2918 	return div64_u64(dividend, divisor);
2919 }
2920 
2921 static DEFINE_PER_CPU(int, perf_throttled_count);
2922 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923 
2924 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925 {
2926 	struct hw_perf_event *hwc = &event->hw;
2927 	s64 period, sample_period;
2928 	s64 delta;
2929 
2930 	period = perf_calculate_period(event, nsec, count);
2931 
2932 	delta = (s64)(period - hwc->sample_period);
2933 	delta = (delta + 7) / 8; /* low pass filter */
2934 
2935 	sample_period = hwc->sample_period + delta;
2936 
2937 	if (!sample_period)
2938 		sample_period = 1;
2939 
2940 	hwc->sample_period = sample_period;
2941 
2942 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 		if (disable)
2944 			event->pmu->stop(event, PERF_EF_UPDATE);
2945 
2946 		local64_set(&hwc->period_left, 0);
2947 
2948 		if (disable)
2949 			event->pmu->start(event, PERF_EF_RELOAD);
2950 	}
2951 }
2952 
2953 /*
2954  * combine freq adjustment with unthrottling to avoid two passes over the
2955  * events. At the same time, make sure, having freq events does not change
2956  * the rate of unthrottling as that would introduce bias.
2957  */
2958 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 					   int needs_unthr)
2960 {
2961 	struct perf_event *event;
2962 	struct hw_perf_event *hwc;
2963 	u64 now, period = TICK_NSEC;
2964 	s64 delta;
2965 
2966 	/*
2967 	 * only need to iterate over all events iff:
2968 	 * - context have events in frequency mode (needs freq adjust)
2969 	 * - there are events to unthrottle on this cpu
2970 	 */
2971 	if (!(ctx->nr_freq || needs_unthr))
2972 		return;
2973 
2974 	raw_spin_lock(&ctx->lock);
2975 	perf_pmu_disable(ctx->pmu);
2976 
2977 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 			continue;
2980 
2981 		if (!event_filter_match(event))
2982 			continue;
2983 
2984 		perf_pmu_disable(event->pmu);
2985 
2986 		hwc = &event->hw;
2987 
2988 		if (hwc->interrupts == MAX_INTERRUPTS) {
2989 			hwc->interrupts = 0;
2990 			perf_log_throttle(event, 1);
2991 			event->pmu->start(event, 0);
2992 		}
2993 
2994 		if (!event->attr.freq || !event->attr.sample_freq)
2995 			goto next;
2996 
2997 		/*
2998 		 * stop the event and update event->count
2999 		 */
3000 		event->pmu->stop(event, PERF_EF_UPDATE);
3001 
3002 		now = local64_read(&event->count);
3003 		delta = now - hwc->freq_count_stamp;
3004 		hwc->freq_count_stamp = now;
3005 
3006 		/*
3007 		 * restart the event
3008 		 * reload only if value has changed
3009 		 * we have stopped the event so tell that
3010 		 * to perf_adjust_period() to avoid stopping it
3011 		 * twice.
3012 		 */
3013 		if (delta > 0)
3014 			perf_adjust_period(event, period, delta, false);
3015 
3016 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 	next:
3018 		perf_pmu_enable(event->pmu);
3019 	}
3020 
3021 	perf_pmu_enable(ctx->pmu);
3022 	raw_spin_unlock(&ctx->lock);
3023 }
3024 
3025 /*
3026  * Round-robin a context's events:
3027  */
3028 static void rotate_ctx(struct perf_event_context *ctx)
3029 {
3030 	/*
3031 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 	 * disabled by the inheritance code.
3033 	 */
3034 	if (!ctx->rotate_disable)
3035 		list_rotate_left(&ctx->flexible_groups);
3036 }
3037 
3038 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039 {
3040 	struct perf_event_context *ctx = NULL;
3041 	int rotate = 0;
3042 
3043 	if (cpuctx->ctx.nr_events) {
3044 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 			rotate = 1;
3046 	}
3047 
3048 	ctx = cpuctx->task_ctx;
3049 	if (ctx && ctx->nr_events) {
3050 		if (ctx->nr_events != ctx->nr_active)
3051 			rotate = 1;
3052 	}
3053 
3054 	if (!rotate)
3055 		goto done;
3056 
3057 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3058 	perf_pmu_disable(cpuctx->ctx.pmu);
3059 
3060 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 	if (ctx)
3062 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3063 
3064 	rotate_ctx(&cpuctx->ctx);
3065 	if (ctx)
3066 		rotate_ctx(ctx);
3067 
3068 	perf_event_sched_in(cpuctx, ctx, current);
3069 
3070 	perf_pmu_enable(cpuctx->ctx.pmu);
3071 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072 done:
3073 
3074 	return rotate;
3075 }
3076 
3077 #ifdef CONFIG_NO_HZ_FULL
3078 bool perf_event_can_stop_tick(void)
3079 {
3080 	if (atomic_read(&nr_freq_events) ||
3081 	    __this_cpu_read(perf_throttled_count))
3082 		return false;
3083 	else
3084 		return true;
3085 }
3086 #endif
3087 
3088 void perf_event_task_tick(void)
3089 {
3090 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 	struct perf_event_context *ctx, *tmp;
3092 	int throttled;
3093 
3094 	WARN_ON(!irqs_disabled());
3095 
3096 	__this_cpu_inc(perf_throttled_seq);
3097 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098 
3099 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100 		perf_adjust_freq_unthr_context(ctx, throttled);
3101 }
3102 
3103 static int event_enable_on_exec(struct perf_event *event,
3104 				struct perf_event_context *ctx)
3105 {
3106 	if (!event->attr.enable_on_exec)
3107 		return 0;
3108 
3109 	event->attr.enable_on_exec = 0;
3110 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 		return 0;
3112 
3113 	__perf_event_mark_enabled(event);
3114 
3115 	return 1;
3116 }
3117 
3118 /*
3119  * Enable all of a task's events that have been marked enable-on-exec.
3120  * This expects task == current.
3121  */
3122 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123 {
3124 	struct perf_event_context *clone_ctx = NULL;
3125 	struct perf_event *event;
3126 	unsigned long flags;
3127 	int enabled = 0;
3128 	int ret;
3129 
3130 	local_irq_save(flags);
3131 	if (!ctx || !ctx->nr_events)
3132 		goto out;
3133 
3134 	/*
3135 	 * We must ctxsw out cgroup events to avoid conflict
3136 	 * when invoking perf_task_event_sched_in() later on
3137 	 * in this function. Otherwise we end up trying to
3138 	 * ctxswin cgroup events which are already scheduled
3139 	 * in.
3140 	 */
3141 	perf_cgroup_sched_out(current, NULL);
3142 
3143 	raw_spin_lock(&ctx->lock);
3144 	task_ctx_sched_out(ctx);
3145 
3146 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 		ret = event_enable_on_exec(event, ctx);
3148 		if (ret)
3149 			enabled = 1;
3150 	}
3151 
3152 	/*
3153 	 * Unclone this context if we enabled any event.
3154 	 */
3155 	if (enabled)
3156 		clone_ctx = unclone_ctx(ctx);
3157 
3158 	raw_spin_unlock(&ctx->lock);
3159 
3160 	/*
3161 	 * Also calls ctxswin for cgroup events, if any:
3162 	 */
3163 	perf_event_context_sched_in(ctx, ctx->task);
3164 out:
3165 	local_irq_restore(flags);
3166 
3167 	if (clone_ctx)
3168 		put_ctx(clone_ctx);
3169 }
3170 
3171 void perf_event_exec(void)
3172 {
3173 	struct perf_event_context *ctx;
3174 	int ctxn;
3175 
3176 	rcu_read_lock();
3177 	for_each_task_context_nr(ctxn) {
3178 		ctx = current->perf_event_ctxp[ctxn];
3179 		if (!ctx)
3180 			continue;
3181 
3182 		perf_event_enable_on_exec(ctx);
3183 	}
3184 	rcu_read_unlock();
3185 }
3186 
3187 /*
3188  * Cross CPU call to read the hardware event
3189  */
3190 static void __perf_event_read(void *info)
3191 {
3192 	struct perf_event *event = info;
3193 	struct perf_event_context *ctx = event->ctx;
3194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3195 
3196 	/*
3197 	 * If this is a task context, we need to check whether it is
3198 	 * the current task context of this cpu.  If not it has been
3199 	 * scheduled out before the smp call arrived.  In that case
3200 	 * event->count would have been updated to a recent sample
3201 	 * when the event was scheduled out.
3202 	 */
3203 	if (ctx->task && cpuctx->task_ctx != ctx)
3204 		return;
3205 
3206 	raw_spin_lock(&ctx->lock);
3207 	if (ctx->is_active) {
3208 		update_context_time(ctx);
3209 		update_cgrp_time_from_event(event);
3210 	}
3211 	update_event_times(event);
3212 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 		event->pmu->read(event);
3214 	raw_spin_unlock(&ctx->lock);
3215 }
3216 
3217 static inline u64 perf_event_count(struct perf_event *event)
3218 {
3219 	if (event->pmu->count)
3220 		return event->pmu->count(event);
3221 
3222 	return __perf_event_count(event);
3223 }
3224 
3225 static u64 perf_event_read(struct perf_event *event)
3226 {
3227 	/*
3228 	 * If event is enabled and currently active on a CPU, update the
3229 	 * value in the event structure:
3230 	 */
3231 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3232 		smp_call_function_single(event->oncpu,
3233 					 __perf_event_read, event, 1);
3234 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3235 		struct perf_event_context *ctx = event->ctx;
3236 		unsigned long flags;
3237 
3238 		raw_spin_lock_irqsave(&ctx->lock, flags);
3239 		/*
3240 		 * may read while context is not active
3241 		 * (e.g., thread is blocked), in that case
3242 		 * we cannot update context time
3243 		 */
3244 		if (ctx->is_active) {
3245 			update_context_time(ctx);
3246 			update_cgrp_time_from_event(event);
3247 		}
3248 		update_event_times(event);
3249 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3250 	}
3251 
3252 	return perf_event_count(event);
3253 }
3254 
3255 /*
3256  * Initialize the perf_event context in a task_struct:
3257  */
3258 static void __perf_event_init_context(struct perf_event_context *ctx)
3259 {
3260 	raw_spin_lock_init(&ctx->lock);
3261 	mutex_init(&ctx->mutex);
3262 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3263 	INIT_LIST_HEAD(&ctx->pinned_groups);
3264 	INIT_LIST_HEAD(&ctx->flexible_groups);
3265 	INIT_LIST_HEAD(&ctx->event_list);
3266 	atomic_set(&ctx->refcount, 1);
3267 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3268 }
3269 
3270 static struct perf_event_context *
3271 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3272 {
3273 	struct perf_event_context *ctx;
3274 
3275 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3276 	if (!ctx)
3277 		return NULL;
3278 
3279 	__perf_event_init_context(ctx);
3280 	if (task) {
3281 		ctx->task = task;
3282 		get_task_struct(task);
3283 	}
3284 	ctx->pmu = pmu;
3285 
3286 	return ctx;
3287 }
3288 
3289 static struct task_struct *
3290 find_lively_task_by_vpid(pid_t vpid)
3291 {
3292 	struct task_struct *task;
3293 	int err;
3294 
3295 	rcu_read_lock();
3296 	if (!vpid)
3297 		task = current;
3298 	else
3299 		task = find_task_by_vpid(vpid);
3300 	if (task)
3301 		get_task_struct(task);
3302 	rcu_read_unlock();
3303 
3304 	if (!task)
3305 		return ERR_PTR(-ESRCH);
3306 
3307 	/* Reuse ptrace permission checks for now. */
3308 	err = -EACCES;
3309 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3310 		goto errout;
3311 
3312 	return task;
3313 errout:
3314 	put_task_struct(task);
3315 	return ERR_PTR(err);
3316 
3317 }
3318 
3319 /*
3320  * Returns a matching context with refcount and pincount.
3321  */
3322 static struct perf_event_context *
3323 find_get_context(struct pmu *pmu, struct task_struct *task,
3324 		struct perf_event *event)
3325 {
3326 	struct perf_event_context *ctx, *clone_ctx = NULL;
3327 	struct perf_cpu_context *cpuctx;
3328 	void *task_ctx_data = NULL;
3329 	unsigned long flags;
3330 	int ctxn, err;
3331 	int cpu = event->cpu;
3332 
3333 	if (!task) {
3334 		/* Must be root to operate on a CPU event: */
3335 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3336 			return ERR_PTR(-EACCES);
3337 
3338 		/*
3339 		 * We could be clever and allow to attach a event to an
3340 		 * offline CPU and activate it when the CPU comes up, but
3341 		 * that's for later.
3342 		 */
3343 		if (!cpu_online(cpu))
3344 			return ERR_PTR(-ENODEV);
3345 
3346 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3347 		ctx = &cpuctx->ctx;
3348 		get_ctx(ctx);
3349 		++ctx->pin_count;
3350 
3351 		return ctx;
3352 	}
3353 
3354 	err = -EINVAL;
3355 	ctxn = pmu->task_ctx_nr;
3356 	if (ctxn < 0)
3357 		goto errout;
3358 
3359 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3360 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3361 		if (!task_ctx_data) {
3362 			err = -ENOMEM;
3363 			goto errout;
3364 		}
3365 	}
3366 
3367 retry:
3368 	ctx = perf_lock_task_context(task, ctxn, &flags);
3369 	if (ctx) {
3370 		clone_ctx = unclone_ctx(ctx);
3371 		++ctx->pin_count;
3372 
3373 		if (task_ctx_data && !ctx->task_ctx_data) {
3374 			ctx->task_ctx_data = task_ctx_data;
3375 			task_ctx_data = NULL;
3376 		}
3377 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3378 
3379 		if (clone_ctx)
3380 			put_ctx(clone_ctx);
3381 	} else {
3382 		ctx = alloc_perf_context(pmu, task);
3383 		err = -ENOMEM;
3384 		if (!ctx)
3385 			goto errout;
3386 
3387 		if (task_ctx_data) {
3388 			ctx->task_ctx_data = task_ctx_data;
3389 			task_ctx_data = NULL;
3390 		}
3391 
3392 		err = 0;
3393 		mutex_lock(&task->perf_event_mutex);
3394 		/*
3395 		 * If it has already passed perf_event_exit_task().
3396 		 * we must see PF_EXITING, it takes this mutex too.
3397 		 */
3398 		if (task->flags & PF_EXITING)
3399 			err = -ESRCH;
3400 		else if (task->perf_event_ctxp[ctxn])
3401 			err = -EAGAIN;
3402 		else {
3403 			get_ctx(ctx);
3404 			++ctx->pin_count;
3405 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3406 		}
3407 		mutex_unlock(&task->perf_event_mutex);
3408 
3409 		if (unlikely(err)) {
3410 			put_ctx(ctx);
3411 
3412 			if (err == -EAGAIN)
3413 				goto retry;
3414 			goto errout;
3415 		}
3416 	}
3417 
3418 	kfree(task_ctx_data);
3419 	return ctx;
3420 
3421 errout:
3422 	kfree(task_ctx_data);
3423 	return ERR_PTR(err);
3424 }
3425 
3426 static void perf_event_free_filter(struct perf_event *event);
3427 static void perf_event_free_bpf_prog(struct perf_event *event);
3428 
3429 static void free_event_rcu(struct rcu_head *head)
3430 {
3431 	struct perf_event *event;
3432 
3433 	event = container_of(head, struct perf_event, rcu_head);
3434 	if (event->ns)
3435 		put_pid_ns(event->ns);
3436 	perf_event_free_filter(event);
3437 	kfree(event);
3438 }
3439 
3440 static void ring_buffer_attach(struct perf_event *event,
3441 			       struct ring_buffer *rb);
3442 
3443 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3444 {
3445 	if (event->parent)
3446 		return;
3447 
3448 	if (is_cgroup_event(event))
3449 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3450 }
3451 
3452 static void unaccount_event(struct perf_event *event)
3453 {
3454 	if (event->parent)
3455 		return;
3456 
3457 	if (event->attach_state & PERF_ATTACH_TASK)
3458 		static_key_slow_dec_deferred(&perf_sched_events);
3459 	if (event->attr.mmap || event->attr.mmap_data)
3460 		atomic_dec(&nr_mmap_events);
3461 	if (event->attr.comm)
3462 		atomic_dec(&nr_comm_events);
3463 	if (event->attr.task)
3464 		atomic_dec(&nr_task_events);
3465 	if (event->attr.freq)
3466 		atomic_dec(&nr_freq_events);
3467 	if (event->attr.context_switch) {
3468 		static_key_slow_dec_deferred(&perf_sched_events);
3469 		atomic_dec(&nr_switch_events);
3470 	}
3471 	if (is_cgroup_event(event))
3472 		static_key_slow_dec_deferred(&perf_sched_events);
3473 	if (has_branch_stack(event))
3474 		static_key_slow_dec_deferred(&perf_sched_events);
3475 
3476 	unaccount_event_cpu(event, event->cpu);
3477 }
3478 
3479 /*
3480  * The following implement mutual exclusion of events on "exclusive" pmus
3481  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3482  * at a time, so we disallow creating events that might conflict, namely:
3483  *
3484  *  1) cpu-wide events in the presence of per-task events,
3485  *  2) per-task events in the presence of cpu-wide events,
3486  *  3) two matching events on the same context.
3487  *
3488  * The former two cases are handled in the allocation path (perf_event_alloc(),
3489  * __free_event()), the latter -- before the first perf_install_in_context().
3490  */
3491 static int exclusive_event_init(struct perf_event *event)
3492 {
3493 	struct pmu *pmu = event->pmu;
3494 
3495 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3496 		return 0;
3497 
3498 	/*
3499 	 * Prevent co-existence of per-task and cpu-wide events on the
3500 	 * same exclusive pmu.
3501 	 *
3502 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3503 	 * events on this "exclusive" pmu, positive means there are
3504 	 * per-task events.
3505 	 *
3506 	 * Since this is called in perf_event_alloc() path, event::ctx
3507 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3508 	 * to mean "per-task event", because unlike other attach states it
3509 	 * never gets cleared.
3510 	 */
3511 	if (event->attach_state & PERF_ATTACH_TASK) {
3512 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3513 			return -EBUSY;
3514 	} else {
3515 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3516 			return -EBUSY;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static void exclusive_event_destroy(struct perf_event *event)
3523 {
3524 	struct pmu *pmu = event->pmu;
3525 
3526 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3527 		return;
3528 
3529 	/* see comment in exclusive_event_init() */
3530 	if (event->attach_state & PERF_ATTACH_TASK)
3531 		atomic_dec(&pmu->exclusive_cnt);
3532 	else
3533 		atomic_inc(&pmu->exclusive_cnt);
3534 }
3535 
3536 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3537 {
3538 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3539 	    (e1->cpu == e2->cpu ||
3540 	     e1->cpu == -1 ||
3541 	     e2->cpu == -1))
3542 		return true;
3543 	return false;
3544 }
3545 
3546 /* Called under the same ctx::mutex as perf_install_in_context() */
3547 static bool exclusive_event_installable(struct perf_event *event,
3548 					struct perf_event_context *ctx)
3549 {
3550 	struct perf_event *iter_event;
3551 	struct pmu *pmu = event->pmu;
3552 
3553 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3554 		return true;
3555 
3556 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3557 		if (exclusive_event_match(iter_event, event))
3558 			return false;
3559 	}
3560 
3561 	return true;
3562 }
3563 
3564 static void __free_event(struct perf_event *event)
3565 {
3566 	if (!event->parent) {
3567 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3568 			put_callchain_buffers();
3569 	}
3570 
3571 	perf_event_free_bpf_prog(event);
3572 
3573 	if (event->destroy)
3574 		event->destroy(event);
3575 
3576 	if (event->ctx)
3577 		put_ctx(event->ctx);
3578 
3579 	if (event->pmu) {
3580 		exclusive_event_destroy(event);
3581 		module_put(event->pmu->module);
3582 	}
3583 
3584 	call_rcu(&event->rcu_head, free_event_rcu);
3585 }
3586 
3587 static void _free_event(struct perf_event *event)
3588 {
3589 	irq_work_sync(&event->pending);
3590 
3591 	unaccount_event(event);
3592 
3593 	if (event->rb) {
3594 		/*
3595 		 * Can happen when we close an event with re-directed output.
3596 		 *
3597 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3598 		 * over us; possibly making our ring_buffer_put() the last.
3599 		 */
3600 		mutex_lock(&event->mmap_mutex);
3601 		ring_buffer_attach(event, NULL);
3602 		mutex_unlock(&event->mmap_mutex);
3603 	}
3604 
3605 	if (is_cgroup_event(event))
3606 		perf_detach_cgroup(event);
3607 
3608 	__free_event(event);
3609 }
3610 
3611 /*
3612  * Used to free events which have a known refcount of 1, such as in error paths
3613  * where the event isn't exposed yet and inherited events.
3614  */
3615 static void free_event(struct perf_event *event)
3616 {
3617 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3618 				"unexpected event refcount: %ld; ptr=%p\n",
3619 				atomic_long_read(&event->refcount), event)) {
3620 		/* leak to avoid use-after-free */
3621 		return;
3622 	}
3623 
3624 	_free_event(event);
3625 }
3626 
3627 /*
3628  * Remove user event from the owner task.
3629  */
3630 static void perf_remove_from_owner(struct perf_event *event)
3631 {
3632 	struct task_struct *owner;
3633 
3634 	rcu_read_lock();
3635 	owner = ACCESS_ONCE(event->owner);
3636 	/*
3637 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3638 	 * !owner it means the list deletion is complete and we can indeed
3639 	 * free this event, otherwise we need to serialize on
3640 	 * owner->perf_event_mutex.
3641 	 */
3642 	smp_read_barrier_depends();
3643 	if (owner) {
3644 		/*
3645 		 * Since delayed_put_task_struct() also drops the last
3646 		 * task reference we can safely take a new reference
3647 		 * while holding the rcu_read_lock().
3648 		 */
3649 		get_task_struct(owner);
3650 	}
3651 	rcu_read_unlock();
3652 
3653 	if (owner) {
3654 		/*
3655 		 * If we're here through perf_event_exit_task() we're already
3656 		 * holding ctx->mutex which would be an inversion wrt. the
3657 		 * normal lock order.
3658 		 *
3659 		 * However we can safely take this lock because its the child
3660 		 * ctx->mutex.
3661 		 */
3662 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3663 
3664 		/*
3665 		 * We have to re-check the event->owner field, if it is cleared
3666 		 * we raced with perf_event_exit_task(), acquiring the mutex
3667 		 * ensured they're done, and we can proceed with freeing the
3668 		 * event.
3669 		 */
3670 		if (event->owner)
3671 			list_del_init(&event->owner_entry);
3672 		mutex_unlock(&owner->perf_event_mutex);
3673 		put_task_struct(owner);
3674 	}
3675 }
3676 
3677 static void put_event(struct perf_event *event)
3678 {
3679 	struct perf_event_context *ctx;
3680 
3681 	if (!atomic_long_dec_and_test(&event->refcount))
3682 		return;
3683 
3684 	if (!is_kernel_event(event))
3685 		perf_remove_from_owner(event);
3686 
3687 	/*
3688 	 * There are two ways this annotation is useful:
3689 	 *
3690 	 *  1) there is a lock recursion from perf_event_exit_task
3691 	 *     see the comment there.
3692 	 *
3693 	 *  2) there is a lock-inversion with mmap_sem through
3694 	 *     perf_event_read_group(), which takes faults while
3695 	 *     holding ctx->mutex, however this is called after
3696 	 *     the last filedesc died, so there is no possibility
3697 	 *     to trigger the AB-BA case.
3698 	 */
3699 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3700 	WARN_ON_ONCE(ctx->parent_ctx);
3701 	perf_remove_from_context(event, true);
3702 	perf_event_ctx_unlock(event, ctx);
3703 
3704 	_free_event(event);
3705 }
3706 
3707 int perf_event_release_kernel(struct perf_event *event)
3708 {
3709 	put_event(event);
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3713 
3714 /*
3715  * Called when the last reference to the file is gone.
3716  */
3717 static int perf_release(struct inode *inode, struct file *file)
3718 {
3719 	put_event(file->private_data);
3720 	return 0;
3721 }
3722 
3723 /*
3724  * Remove all orphanes events from the context.
3725  */
3726 static void orphans_remove_work(struct work_struct *work)
3727 {
3728 	struct perf_event_context *ctx;
3729 	struct perf_event *event, *tmp;
3730 
3731 	ctx = container_of(work, struct perf_event_context,
3732 			   orphans_remove.work);
3733 
3734 	mutex_lock(&ctx->mutex);
3735 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3736 		struct perf_event *parent_event = event->parent;
3737 
3738 		if (!is_orphaned_child(event))
3739 			continue;
3740 
3741 		perf_remove_from_context(event, true);
3742 
3743 		mutex_lock(&parent_event->child_mutex);
3744 		list_del_init(&event->child_list);
3745 		mutex_unlock(&parent_event->child_mutex);
3746 
3747 		free_event(event);
3748 		put_event(parent_event);
3749 	}
3750 
3751 	raw_spin_lock_irq(&ctx->lock);
3752 	ctx->orphans_remove_sched = false;
3753 	raw_spin_unlock_irq(&ctx->lock);
3754 	mutex_unlock(&ctx->mutex);
3755 
3756 	put_ctx(ctx);
3757 }
3758 
3759 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3760 {
3761 	struct perf_event *child;
3762 	u64 total = 0;
3763 
3764 	*enabled = 0;
3765 	*running = 0;
3766 
3767 	mutex_lock(&event->child_mutex);
3768 	total += perf_event_read(event);
3769 	*enabled += event->total_time_enabled +
3770 			atomic64_read(&event->child_total_time_enabled);
3771 	*running += event->total_time_running +
3772 			atomic64_read(&event->child_total_time_running);
3773 
3774 	list_for_each_entry(child, &event->child_list, child_list) {
3775 		total += perf_event_read(child);
3776 		*enabled += child->total_time_enabled;
3777 		*running += child->total_time_running;
3778 	}
3779 	mutex_unlock(&event->child_mutex);
3780 
3781 	return total;
3782 }
3783 EXPORT_SYMBOL_GPL(perf_event_read_value);
3784 
3785 static int perf_event_read_group(struct perf_event *event,
3786 				   u64 read_format, char __user *buf)
3787 {
3788 	struct perf_event *leader = event->group_leader, *sub;
3789 	struct perf_event_context *ctx = leader->ctx;
3790 	int n = 0, size = 0, ret;
3791 	u64 count, enabled, running;
3792 	u64 values[5];
3793 
3794 	lockdep_assert_held(&ctx->mutex);
3795 
3796 	count = perf_event_read_value(leader, &enabled, &running);
3797 
3798 	values[n++] = 1 + leader->nr_siblings;
3799 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3800 		values[n++] = enabled;
3801 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3802 		values[n++] = running;
3803 	values[n++] = count;
3804 	if (read_format & PERF_FORMAT_ID)
3805 		values[n++] = primary_event_id(leader);
3806 
3807 	size = n * sizeof(u64);
3808 
3809 	if (copy_to_user(buf, values, size))
3810 		return -EFAULT;
3811 
3812 	ret = size;
3813 
3814 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3815 		n = 0;
3816 
3817 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3818 		if (read_format & PERF_FORMAT_ID)
3819 			values[n++] = primary_event_id(sub);
3820 
3821 		size = n * sizeof(u64);
3822 
3823 		if (copy_to_user(buf + ret, values, size)) {
3824 			return -EFAULT;
3825 		}
3826 
3827 		ret += size;
3828 	}
3829 
3830 	return ret;
3831 }
3832 
3833 static int perf_event_read_one(struct perf_event *event,
3834 				 u64 read_format, char __user *buf)
3835 {
3836 	u64 enabled, running;
3837 	u64 values[4];
3838 	int n = 0;
3839 
3840 	values[n++] = perf_event_read_value(event, &enabled, &running);
3841 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3842 		values[n++] = enabled;
3843 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3844 		values[n++] = running;
3845 	if (read_format & PERF_FORMAT_ID)
3846 		values[n++] = primary_event_id(event);
3847 
3848 	if (copy_to_user(buf, values, n * sizeof(u64)))
3849 		return -EFAULT;
3850 
3851 	return n * sizeof(u64);
3852 }
3853 
3854 static bool is_event_hup(struct perf_event *event)
3855 {
3856 	bool no_children;
3857 
3858 	if (event->state != PERF_EVENT_STATE_EXIT)
3859 		return false;
3860 
3861 	mutex_lock(&event->child_mutex);
3862 	no_children = list_empty(&event->child_list);
3863 	mutex_unlock(&event->child_mutex);
3864 	return no_children;
3865 }
3866 
3867 /*
3868  * Read the performance event - simple non blocking version for now
3869  */
3870 static ssize_t
3871 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3872 {
3873 	u64 read_format = event->attr.read_format;
3874 	int ret;
3875 
3876 	/*
3877 	 * Return end-of-file for a read on a event that is in
3878 	 * error state (i.e. because it was pinned but it couldn't be
3879 	 * scheduled on to the CPU at some point).
3880 	 */
3881 	if (event->state == PERF_EVENT_STATE_ERROR)
3882 		return 0;
3883 
3884 	if (count < event->read_size)
3885 		return -ENOSPC;
3886 
3887 	WARN_ON_ONCE(event->ctx->parent_ctx);
3888 	if (read_format & PERF_FORMAT_GROUP)
3889 		ret = perf_event_read_group(event, read_format, buf);
3890 	else
3891 		ret = perf_event_read_one(event, read_format, buf);
3892 
3893 	return ret;
3894 }
3895 
3896 static ssize_t
3897 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3898 {
3899 	struct perf_event *event = file->private_data;
3900 	struct perf_event_context *ctx;
3901 	int ret;
3902 
3903 	ctx = perf_event_ctx_lock(event);
3904 	ret = perf_read_hw(event, buf, count);
3905 	perf_event_ctx_unlock(event, ctx);
3906 
3907 	return ret;
3908 }
3909 
3910 static unsigned int perf_poll(struct file *file, poll_table *wait)
3911 {
3912 	struct perf_event *event = file->private_data;
3913 	struct ring_buffer *rb;
3914 	unsigned int events = POLLHUP;
3915 
3916 	poll_wait(file, &event->waitq, wait);
3917 
3918 	if (is_event_hup(event))
3919 		return events;
3920 
3921 	/*
3922 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3923 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3924 	 */
3925 	mutex_lock(&event->mmap_mutex);
3926 	rb = event->rb;
3927 	if (rb)
3928 		events = atomic_xchg(&rb->poll, 0);
3929 	mutex_unlock(&event->mmap_mutex);
3930 	return events;
3931 }
3932 
3933 static void _perf_event_reset(struct perf_event *event)
3934 {
3935 	(void)perf_event_read(event);
3936 	local64_set(&event->count, 0);
3937 	perf_event_update_userpage(event);
3938 }
3939 
3940 /*
3941  * Holding the top-level event's child_mutex means that any
3942  * descendant process that has inherited this event will block
3943  * in sync_child_event if it goes to exit, thus satisfying the
3944  * task existence requirements of perf_event_enable/disable.
3945  */
3946 static void perf_event_for_each_child(struct perf_event *event,
3947 					void (*func)(struct perf_event *))
3948 {
3949 	struct perf_event *child;
3950 
3951 	WARN_ON_ONCE(event->ctx->parent_ctx);
3952 
3953 	mutex_lock(&event->child_mutex);
3954 	func(event);
3955 	list_for_each_entry(child, &event->child_list, child_list)
3956 		func(child);
3957 	mutex_unlock(&event->child_mutex);
3958 }
3959 
3960 static void perf_event_for_each(struct perf_event *event,
3961 				  void (*func)(struct perf_event *))
3962 {
3963 	struct perf_event_context *ctx = event->ctx;
3964 	struct perf_event *sibling;
3965 
3966 	lockdep_assert_held(&ctx->mutex);
3967 
3968 	event = event->group_leader;
3969 
3970 	perf_event_for_each_child(event, func);
3971 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3972 		perf_event_for_each_child(sibling, func);
3973 }
3974 
3975 struct period_event {
3976 	struct perf_event *event;
3977 	u64 value;
3978 };
3979 
3980 static int __perf_event_period(void *info)
3981 {
3982 	struct period_event *pe = info;
3983 	struct perf_event *event = pe->event;
3984 	struct perf_event_context *ctx = event->ctx;
3985 	u64 value = pe->value;
3986 	bool active;
3987 
3988 	raw_spin_lock(&ctx->lock);
3989 	if (event->attr.freq) {
3990 		event->attr.sample_freq = value;
3991 	} else {
3992 		event->attr.sample_period = value;
3993 		event->hw.sample_period = value;
3994 	}
3995 
3996 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3997 	if (active) {
3998 		perf_pmu_disable(ctx->pmu);
3999 		event->pmu->stop(event, PERF_EF_UPDATE);
4000 	}
4001 
4002 	local64_set(&event->hw.period_left, 0);
4003 
4004 	if (active) {
4005 		event->pmu->start(event, PERF_EF_RELOAD);
4006 		perf_pmu_enable(ctx->pmu);
4007 	}
4008 	raw_spin_unlock(&ctx->lock);
4009 
4010 	return 0;
4011 }
4012 
4013 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4014 {
4015 	struct period_event pe = { .event = event, };
4016 	struct perf_event_context *ctx = event->ctx;
4017 	struct task_struct *task;
4018 	u64 value;
4019 
4020 	if (!is_sampling_event(event))
4021 		return -EINVAL;
4022 
4023 	if (copy_from_user(&value, arg, sizeof(value)))
4024 		return -EFAULT;
4025 
4026 	if (!value)
4027 		return -EINVAL;
4028 
4029 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4030 		return -EINVAL;
4031 
4032 	task = ctx->task;
4033 	pe.value = value;
4034 
4035 	if (!task) {
4036 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4037 		return 0;
4038 	}
4039 
4040 retry:
4041 	if (!task_function_call(task, __perf_event_period, &pe))
4042 		return 0;
4043 
4044 	raw_spin_lock_irq(&ctx->lock);
4045 	if (ctx->is_active) {
4046 		raw_spin_unlock_irq(&ctx->lock);
4047 		task = ctx->task;
4048 		goto retry;
4049 	}
4050 
4051 	__perf_event_period(&pe);
4052 	raw_spin_unlock_irq(&ctx->lock);
4053 
4054 	return 0;
4055 }
4056 
4057 static const struct file_operations perf_fops;
4058 
4059 static inline int perf_fget_light(int fd, struct fd *p)
4060 {
4061 	struct fd f = fdget(fd);
4062 	if (!f.file)
4063 		return -EBADF;
4064 
4065 	if (f.file->f_op != &perf_fops) {
4066 		fdput(f);
4067 		return -EBADF;
4068 	}
4069 	*p = f;
4070 	return 0;
4071 }
4072 
4073 static int perf_event_set_output(struct perf_event *event,
4074 				 struct perf_event *output_event);
4075 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4076 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4077 
4078 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4079 {
4080 	void (*func)(struct perf_event *);
4081 	u32 flags = arg;
4082 
4083 	switch (cmd) {
4084 	case PERF_EVENT_IOC_ENABLE:
4085 		func = _perf_event_enable;
4086 		break;
4087 	case PERF_EVENT_IOC_DISABLE:
4088 		func = _perf_event_disable;
4089 		break;
4090 	case PERF_EVENT_IOC_RESET:
4091 		func = _perf_event_reset;
4092 		break;
4093 
4094 	case PERF_EVENT_IOC_REFRESH:
4095 		return _perf_event_refresh(event, arg);
4096 
4097 	case PERF_EVENT_IOC_PERIOD:
4098 		return perf_event_period(event, (u64 __user *)arg);
4099 
4100 	case PERF_EVENT_IOC_ID:
4101 	{
4102 		u64 id = primary_event_id(event);
4103 
4104 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4105 			return -EFAULT;
4106 		return 0;
4107 	}
4108 
4109 	case PERF_EVENT_IOC_SET_OUTPUT:
4110 	{
4111 		int ret;
4112 		if (arg != -1) {
4113 			struct perf_event *output_event;
4114 			struct fd output;
4115 			ret = perf_fget_light(arg, &output);
4116 			if (ret)
4117 				return ret;
4118 			output_event = output.file->private_data;
4119 			ret = perf_event_set_output(event, output_event);
4120 			fdput(output);
4121 		} else {
4122 			ret = perf_event_set_output(event, NULL);
4123 		}
4124 		return ret;
4125 	}
4126 
4127 	case PERF_EVENT_IOC_SET_FILTER:
4128 		return perf_event_set_filter(event, (void __user *)arg);
4129 
4130 	case PERF_EVENT_IOC_SET_BPF:
4131 		return perf_event_set_bpf_prog(event, arg);
4132 
4133 	default:
4134 		return -ENOTTY;
4135 	}
4136 
4137 	if (flags & PERF_IOC_FLAG_GROUP)
4138 		perf_event_for_each(event, func);
4139 	else
4140 		perf_event_for_each_child(event, func);
4141 
4142 	return 0;
4143 }
4144 
4145 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4146 {
4147 	struct perf_event *event = file->private_data;
4148 	struct perf_event_context *ctx;
4149 	long ret;
4150 
4151 	ctx = perf_event_ctx_lock(event);
4152 	ret = _perf_ioctl(event, cmd, arg);
4153 	perf_event_ctx_unlock(event, ctx);
4154 
4155 	return ret;
4156 }
4157 
4158 #ifdef CONFIG_COMPAT
4159 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4160 				unsigned long arg)
4161 {
4162 	switch (_IOC_NR(cmd)) {
4163 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4164 	case _IOC_NR(PERF_EVENT_IOC_ID):
4165 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4166 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4167 			cmd &= ~IOCSIZE_MASK;
4168 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4169 		}
4170 		break;
4171 	}
4172 	return perf_ioctl(file, cmd, arg);
4173 }
4174 #else
4175 # define perf_compat_ioctl NULL
4176 #endif
4177 
4178 int perf_event_task_enable(void)
4179 {
4180 	struct perf_event_context *ctx;
4181 	struct perf_event *event;
4182 
4183 	mutex_lock(&current->perf_event_mutex);
4184 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4185 		ctx = perf_event_ctx_lock(event);
4186 		perf_event_for_each_child(event, _perf_event_enable);
4187 		perf_event_ctx_unlock(event, ctx);
4188 	}
4189 	mutex_unlock(&current->perf_event_mutex);
4190 
4191 	return 0;
4192 }
4193 
4194 int perf_event_task_disable(void)
4195 {
4196 	struct perf_event_context *ctx;
4197 	struct perf_event *event;
4198 
4199 	mutex_lock(&current->perf_event_mutex);
4200 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4201 		ctx = perf_event_ctx_lock(event);
4202 		perf_event_for_each_child(event, _perf_event_disable);
4203 		perf_event_ctx_unlock(event, ctx);
4204 	}
4205 	mutex_unlock(&current->perf_event_mutex);
4206 
4207 	return 0;
4208 }
4209 
4210 static int perf_event_index(struct perf_event *event)
4211 {
4212 	if (event->hw.state & PERF_HES_STOPPED)
4213 		return 0;
4214 
4215 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4216 		return 0;
4217 
4218 	return event->pmu->event_idx(event);
4219 }
4220 
4221 static void calc_timer_values(struct perf_event *event,
4222 				u64 *now,
4223 				u64 *enabled,
4224 				u64 *running)
4225 {
4226 	u64 ctx_time;
4227 
4228 	*now = perf_clock();
4229 	ctx_time = event->shadow_ctx_time + *now;
4230 	*enabled = ctx_time - event->tstamp_enabled;
4231 	*running = ctx_time - event->tstamp_running;
4232 }
4233 
4234 static void perf_event_init_userpage(struct perf_event *event)
4235 {
4236 	struct perf_event_mmap_page *userpg;
4237 	struct ring_buffer *rb;
4238 
4239 	rcu_read_lock();
4240 	rb = rcu_dereference(event->rb);
4241 	if (!rb)
4242 		goto unlock;
4243 
4244 	userpg = rb->user_page;
4245 
4246 	/* Allow new userspace to detect that bit 0 is deprecated */
4247 	userpg->cap_bit0_is_deprecated = 1;
4248 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4249 	userpg->data_offset = PAGE_SIZE;
4250 	userpg->data_size = perf_data_size(rb);
4251 
4252 unlock:
4253 	rcu_read_unlock();
4254 }
4255 
4256 void __weak arch_perf_update_userpage(
4257 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4258 {
4259 }
4260 
4261 /*
4262  * Callers need to ensure there can be no nesting of this function, otherwise
4263  * the seqlock logic goes bad. We can not serialize this because the arch
4264  * code calls this from NMI context.
4265  */
4266 void perf_event_update_userpage(struct perf_event *event)
4267 {
4268 	struct perf_event_mmap_page *userpg;
4269 	struct ring_buffer *rb;
4270 	u64 enabled, running, now;
4271 
4272 	rcu_read_lock();
4273 	rb = rcu_dereference(event->rb);
4274 	if (!rb)
4275 		goto unlock;
4276 
4277 	/*
4278 	 * compute total_time_enabled, total_time_running
4279 	 * based on snapshot values taken when the event
4280 	 * was last scheduled in.
4281 	 *
4282 	 * we cannot simply called update_context_time()
4283 	 * because of locking issue as we can be called in
4284 	 * NMI context
4285 	 */
4286 	calc_timer_values(event, &now, &enabled, &running);
4287 
4288 	userpg = rb->user_page;
4289 	/*
4290 	 * Disable preemption so as to not let the corresponding user-space
4291 	 * spin too long if we get preempted.
4292 	 */
4293 	preempt_disable();
4294 	++userpg->lock;
4295 	barrier();
4296 	userpg->index = perf_event_index(event);
4297 	userpg->offset = perf_event_count(event);
4298 	if (userpg->index)
4299 		userpg->offset -= local64_read(&event->hw.prev_count);
4300 
4301 	userpg->time_enabled = enabled +
4302 			atomic64_read(&event->child_total_time_enabled);
4303 
4304 	userpg->time_running = running +
4305 			atomic64_read(&event->child_total_time_running);
4306 
4307 	arch_perf_update_userpage(event, userpg, now);
4308 
4309 	barrier();
4310 	++userpg->lock;
4311 	preempt_enable();
4312 unlock:
4313 	rcu_read_unlock();
4314 }
4315 
4316 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4317 {
4318 	struct perf_event *event = vma->vm_file->private_data;
4319 	struct ring_buffer *rb;
4320 	int ret = VM_FAULT_SIGBUS;
4321 
4322 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4323 		if (vmf->pgoff == 0)
4324 			ret = 0;
4325 		return ret;
4326 	}
4327 
4328 	rcu_read_lock();
4329 	rb = rcu_dereference(event->rb);
4330 	if (!rb)
4331 		goto unlock;
4332 
4333 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4334 		goto unlock;
4335 
4336 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4337 	if (!vmf->page)
4338 		goto unlock;
4339 
4340 	get_page(vmf->page);
4341 	vmf->page->mapping = vma->vm_file->f_mapping;
4342 	vmf->page->index   = vmf->pgoff;
4343 
4344 	ret = 0;
4345 unlock:
4346 	rcu_read_unlock();
4347 
4348 	return ret;
4349 }
4350 
4351 static void ring_buffer_attach(struct perf_event *event,
4352 			       struct ring_buffer *rb)
4353 {
4354 	struct ring_buffer *old_rb = NULL;
4355 	unsigned long flags;
4356 
4357 	if (event->rb) {
4358 		/*
4359 		 * Should be impossible, we set this when removing
4360 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4361 		 */
4362 		WARN_ON_ONCE(event->rcu_pending);
4363 
4364 		old_rb = event->rb;
4365 		spin_lock_irqsave(&old_rb->event_lock, flags);
4366 		list_del_rcu(&event->rb_entry);
4367 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4368 
4369 		event->rcu_batches = get_state_synchronize_rcu();
4370 		event->rcu_pending = 1;
4371 	}
4372 
4373 	if (rb) {
4374 		if (event->rcu_pending) {
4375 			cond_synchronize_rcu(event->rcu_batches);
4376 			event->rcu_pending = 0;
4377 		}
4378 
4379 		spin_lock_irqsave(&rb->event_lock, flags);
4380 		list_add_rcu(&event->rb_entry, &rb->event_list);
4381 		spin_unlock_irqrestore(&rb->event_lock, flags);
4382 	}
4383 
4384 	rcu_assign_pointer(event->rb, rb);
4385 
4386 	if (old_rb) {
4387 		ring_buffer_put(old_rb);
4388 		/*
4389 		 * Since we detached before setting the new rb, so that we
4390 		 * could attach the new rb, we could have missed a wakeup.
4391 		 * Provide it now.
4392 		 */
4393 		wake_up_all(&event->waitq);
4394 	}
4395 }
4396 
4397 static void ring_buffer_wakeup(struct perf_event *event)
4398 {
4399 	struct ring_buffer *rb;
4400 
4401 	rcu_read_lock();
4402 	rb = rcu_dereference(event->rb);
4403 	if (rb) {
4404 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4405 			wake_up_all(&event->waitq);
4406 	}
4407 	rcu_read_unlock();
4408 }
4409 
4410 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4411 {
4412 	struct ring_buffer *rb;
4413 
4414 	rcu_read_lock();
4415 	rb = rcu_dereference(event->rb);
4416 	if (rb) {
4417 		if (!atomic_inc_not_zero(&rb->refcount))
4418 			rb = NULL;
4419 	}
4420 	rcu_read_unlock();
4421 
4422 	return rb;
4423 }
4424 
4425 void ring_buffer_put(struct ring_buffer *rb)
4426 {
4427 	if (!atomic_dec_and_test(&rb->refcount))
4428 		return;
4429 
4430 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4431 
4432 	call_rcu(&rb->rcu_head, rb_free_rcu);
4433 }
4434 
4435 static void perf_mmap_open(struct vm_area_struct *vma)
4436 {
4437 	struct perf_event *event = vma->vm_file->private_data;
4438 
4439 	atomic_inc(&event->mmap_count);
4440 	atomic_inc(&event->rb->mmap_count);
4441 
4442 	if (vma->vm_pgoff)
4443 		atomic_inc(&event->rb->aux_mmap_count);
4444 
4445 	if (event->pmu->event_mapped)
4446 		event->pmu->event_mapped(event);
4447 }
4448 
4449 /*
4450  * A buffer can be mmap()ed multiple times; either directly through the same
4451  * event, or through other events by use of perf_event_set_output().
4452  *
4453  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4454  * the buffer here, where we still have a VM context. This means we need
4455  * to detach all events redirecting to us.
4456  */
4457 static void perf_mmap_close(struct vm_area_struct *vma)
4458 {
4459 	struct perf_event *event = vma->vm_file->private_data;
4460 
4461 	struct ring_buffer *rb = ring_buffer_get(event);
4462 	struct user_struct *mmap_user = rb->mmap_user;
4463 	int mmap_locked = rb->mmap_locked;
4464 	unsigned long size = perf_data_size(rb);
4465 
4466 	if (event->pmu->event_unmapped)
4467 		event->pmu->event_unmapped(event);
4468 
4469 	/*
4470 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4471 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4472 	 * serialize with perf_mmap here.
4473 	 */
4474 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4475 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4476 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4477 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4478 
4479 		rb_free_aux(rb);
4480 		mutex_unlock(&event->mmap_mutex);
4481 	}
4482 
4483 	atomic_dec(&rb->mmap_count);
4484 
4485 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4486 		goto out_put;
4487 
4488 	ring_buffer_attach(event, NULL);
4489 	mutex_unlock(&event->mmap_mutex);
4490 
4491 	/* If there's still other mmap()s of this buffer, we're done. */
4492 	if (atomic_read(&rb->mmap_count))
4493 		goto out_put;
4494 
4495 	/*
4496 	 * No other mmap()s, detach from all other events that might redirect
4497 	 * into the now unreachable buffer. Somewhat complicated by the
4498 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4499 	 */
4500 again:
4501 	rcu_read_lock();
4502 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4503 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4504 			/*
4505 			 * This event is en-route to free_event() which will
4506 			 * detach it and remove it from the list.
4507 			 */
4508 			continue;
4509 		}
4510 		rcu_read_unlock();
4511 
4512 		mutex_lock(&event->mmap_mutex);
4513 		/*
4514 		 * Check we didn't race with perf_event_set_output() which can
4515 		 * swizzle the rb from under us while we were waiting to
4516 		 * acquire mmap_mutex.
4517 		 *
4518 		 * If we find a different rb; ignore this event, a next
4519 		 * iteration will no longer find it on the list. We have to
4520 		 * still restart the iteration to make sure we're not now
4521 		 * iterating the wrong list.
4522 		 */
4523 		if (event->rb == rb)
4524 			ring_buffer_attach(event, NULL);
4525 
4526 		mutex_unlock(&event->mmap_mutex);
4527 		put_event(event);
4528 
4529 		/*
4530 		 * Restart the iteration; either we're on the wrong list or
4531 		 * destroyed its integrity by doing a deletion.
4532 		 */
4533 		goto again;
4534 	}
4535 	rcu_read_unlock();
4536 
4537 	/*
4538 	 * It could be there's still a few 0-ref events on the list; they'll
4539 	 * get cleaned up by free_event() -- they'll also still have their
4540 	 * ref on the rb and will free it whenever they are done with it.
4541 	 *
4542 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4543 	 * undo the VM accounting.
4544 	 */
4545 
4546 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4547 	vma->vm_mm->pinned_vm -= mmap_locked;
4548 	free_uid(mmap_user);
4549 
4550 out_put:
4551 	ring_buffer_put(rb); /* could be last */
4552 }
4553 
4554 static const struct vm_operations_struct perf_mmap_vmops = {
4555 	.open		= perf_mmap_open,
4556 	.close		= perf_mmap_close, /* non mergable */
4557 	.fault		= perf_mmap_fault,
4558 	.page_mkwrite	= perf_mmap_fault,
4559 };
4560 
4561 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4562 {
4563 	struct perf_event *event = file->private_data;
4564 	unsigned long user_locked, user_lock_limit;
4565 	struct user_struct *user = current_user();
4566 	unsigned long locked, lock_limit;
4567 	struct ring_buffer *rb = NULL;
4568 	unsigned long vma_size;
4569 	unsigned long nr_pages;
4570 	long user_extra = 0, extra = 0;
4571 	int ret = 0, flags = 0;
4572 
4573 	/*
4574 	 * Don't allow mmap() of inherited per-task counters. This would
4575 	 * create a performance issue due to all children writing to the
4576 	 * same rb.
4577 	 */
4578 	if (event->cpu == -1 && event->attr.inherit)
4579 		return -EINVAL;
4580 
4581 	if (!(vma->vm_flags & VM_SHARED))
4582 		return -EINVAL;
4583 
4584 	vma_size = vma->vm_end - vma->vm_start;
4585 
4586 	if (vma->vm_pgoff == 0) {
4587 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4588 	} else {
4589 		/*
4590 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4591 		 * mapped, all subsequent mappings should have the same size
4592 		 * and offset. Must be above the normal perf buffer.
4593 		 */
4594 		u64 aux_offset, aux_size;
4595 
4596 		if (!event->rb)
4597 			return -EINVAL;
4598 
4599 		nr_pages = vma_size / PAGE_SIZE;
4600 
4601 		mutex_lock(&event->mmap_mutex);
4602 		ret = -EINVAL;
4603 
4604 		rb = event->rb;
4605 		if (!rb)
4606 			goto aux_unlock;
4607 
4608 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4609 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4610 
4611 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4612 			goto aux_unlock;
4613 
4614 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4615 			goto aux_unlock;
4616 
4617 		/* already mapped with a different offset */
4618 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4619 			goto aux_unlock;
4620 
4621 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4622 			goto aux_unlock;
4623 
4624 		/* already mapped with a different size */
4625 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4626 			goto aux_unlock;
4627 
4628 		if (!is_power_of_2(nr_pages))
4629 			goto aux_unlock;
4630 
4631 		if (!atomic_inc_not_zero(&rb->mmap_count))
4632 			goto aux_unlock;
4633 
4634 		if (rb_has_aux(rb)) {
4635 			atomic_inc(&rb->aux_mmap_count);
4636 			ret = 0;
4637 			goto unlock;
4638 		}
4639 
4640 		atomic_set(&rb->aux_mmap_count, 1);
4641 		user_extra = nr_pages;
4642 
4643 		goto accounting;
4644 	}
4645 
4646 	/*
4647 	 * If we have rb pages ensure they're a power-of-two number, so we
4648 	 * can do bitmasks instead of modulo.
4649 	 */
4650 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4651 		return -EINVAL;
4652 
4653 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4654 		return -EINVAL;
4655 
4656 	WARN_ON_ONCE(event->ctx->parent_ctx);
4657 again:
4658 	mutex_lock(&event->mmap_mutex);
4659 	if (event->rb) {
4660 		if (event->rb->nr_pages != nr_pages) {
4661 			ret = -EINVAL;
4662 			goto unlock;
4663 		}
4664 
4665 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4666 			/*
4667 			 * Raced against perf_mmap_close() through
4668 			 * perf_event_set_output(). Try again, hope for better
4669 			 * luck.
4670 			 */
4671 			mutex_unlock(&event->mmap_mutex);
4672 			goto again;
4673 		}
4674 
4675 		goto unlock;
4676 	}
4677 
4678 	user_extra = nr_pages + 1;
4679 
4680 accounting:
4681 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4682 
4683 	/*
4684 	 * Increase the limit linearly with more CPUs:
4685 	 */
4686 	user_lock_limit *= num_online_cpus();
4687 
4688 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4689 
4690 	if (user_locked > user_lock_limit)
4691 		extra = user_locked - user_lock_limit;
4692 
4693 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4694 	lock_limit >>= PAGE_SHIFT;
4695 	locked = vma->vm_mm->pinned_vm + extra;
4696 
4697 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4698 		!capable(CAP_IPC_LOCK)) {
4699 		ret = -EPERM;
4700 		goto unlock;
4701 	}
4702 
4703 	WARN_ON(!rb && event->rb);
4704 
4705 	if (vma->vm_flags & VM_WRITE)
4706 		flags |= RING_BUFFER_WRITABLE;
4707 
4708 	if (!rb) {
4709 		rb = rb_alloc(nr_pages,
4710 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4711 			      event->cpu, flags);
4712 
4713 		if (!rb) {
4714 			ret = -ENOMEM;
4715 			goto unlock;
4716 		}
4717 
4718 		atomic_set(&rb->mmap_count, 1);
4719 		rb->mmap_user = get_current_user();
4720 		rb->mmap_locked = extra;
4721 
4722 		ring_buffer_attach(event, rb);
4723 
4724 		perf_event_init_userpage(event);
4725 		perf_event_update_userpage(event);
4726 	} else {
4727 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4728 				   event->attr.aux_watermark, flags);
4729 		if (!ret)
4730 			rb->aux_mmap_locked = extra;
4731 	}
4732 
4733 unlock:
4734 	if (!ret) {
4735 		atomic_long_add(user_extra, &user->locked_vm);
4736 		vma->vm_mm->pinned_vm += extra;
4737 
4738 		atomic_inc(&event->mmap_count);
4739 	} else if (rb) {
4740 		atomic_dec(&rb->mmap_count);
4741 	}
4742 aux_unlock:
4743 	mutex_unlock(&event->mmap_mutex);
4744 
4745 	/*
4746 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4747 	 * vma.
4748 	 */
4749 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4750 	vma->vm_ops = &perf_mmap_vmops;
4751 
4752 	if (event->pmu->event_mapped)
4753 		event->pmu->event_mapped(event);
4754 
4755 	return ret;
4756 }
4757 
4758 static int perf_fasync(int fd, struct file *filp, int on)
4759 {
4760 	struct inode *inode = file_inode(filp);
4761 	struct perf_event *event = filp->private_data;
4762 	int retval;
4763 
4764 	mutex_lock(&inode->i_mutex);
4765 	retval = fasync_helper(fd, filp, on, &event->fasync);
4766 	mutex_unlock(&inode->i_mutex);
4767 
4768 	if (retval < 0)
4769 		return retval;
4770 
4771 	return 0;
4772 }
4773 
4774 static const struct file_operations perf_fops = {
4775 	.llseek			= no_llseek,
4776 	.release		= perf_release,
4777 	.read			= perf_read,
4778 	.poll			= perf_poll,
4779 	.unlocked_ioctl		= perf_ioctl,
4780 	.compat_ioctl		= perf_compat_ioctl,
4781 	.mmap			= perf_mmap,
4782 	.fasync			= perf_fasync,
4783 };
4784 
4785 /*
4786  * Perf event wakeup
4787  *
4788  * If there's data, ensure we set the poll() state and publish everything
4789  * to user-space before waking everybody up.
4790  */
4791 
4792 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4793 {
4794 	/* only the parent has fasync state */
4795 	if (event->parent)
4796 		event = event->parent;
4797 	return &event->fasync;
4798 }
4799 
4800 void perf_event_wakeup(struct perf_event *event)
4801 {
4802 	ring_buffer_wakeup(event);
4803 
4804 	if (event->pending_kill) {
4805 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4806 		event->pending_kill = 0;
4807 	}
4808 }
4809 
4810 static void perf_pending_event(struct irq_work *entry)
4811 {
4812 	struct perf_event *event = container_of(entry,
4813 			struct perf_event, pending);
4814 	int rctx;
4815 
4816 	rctx = perf_swevent_get_recursion_context();
4817 	/*
4818 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4819 	 * and we won't recurse 'further'.
4820 	 */
4821 
4822 	if (event->pending_disable) {
4823 		event->pending_disable = 0;
4824 		__perf_event_disable(event);
4825 	}
4826 
4827 	if (event->pending_wakeup) {
4828 		event->pending_wakeup = 0;
4829 		perf_event_wakeup(event);
4830 	}
4831 
4832 	if (rctx >= 0)
4833 		perf_swevent_put_recursion_context(rctx);
4834 }
4835 
4836 /*
4837  * We assume there is only KVM supporting the callbacks.
4838  * Later on, we might change it to a list if there is
4839  * another virtualization implementation supporting the callbacks.
4840  */
4841 struct perf_guest_info_callbacks *perf_guest_cbs;
4842 
4843 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4844 {
4845 	perf_guest_cbs = cbs;
4846 	return 0;
4847 }
4848 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4849 
4850 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4851 {
4852 	perf_guest_cbs = NULL;
4853 	return 0;
4854 }
4855 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4856 
4857 static void
4858 perf_output_sample_regs(struct perf_output_handle *handle,
4859 			struct pt_regs *regs, u64 mask)
4860 {
4861 	int bit;
4862 
4863 	for_each_set_bit(bit, (const unsigned long *) &mask,
4864 			 sizeof(mask) * BITS_PER_BYTE) {
4865 		u64 val;
4866 
4867 		val = perf_reg_value(regs, bit);
4868 		perf_output_put(handle, val);
4869 	}
4870 }
4871 
4872 static void perf_sample_regs_user(struct perf_regs *regs_user,
4873 				  struct pt_regs *regs,
4874 				  struct pt_regs *regs_user_copy)
4875 {
4876 	if (user_mode(regs)) {
4877 		regs_user->abi = perf_reg_abi(current);
4878 		regs_user->regs = regs;
4879 	} else if (current->mm) {
4880 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4881 	} else {
4882 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4883 		regs_user->regs = NULL;
4884 	}
4885 }
4886 
4887 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4888 				  struct pt_regs *regs)
4889 {
4890 	regs_intr->regs = regs;
4891 	regs_intr->abi  = perf_reg_abi(current);
4892 }
4893 
4894 
4895 /*
4896  * Get remaining task size from user stack pointer.
4897  *
4898  * It'd be better to take stack vma map and limit this more
4899  * precisly, but there's no way to get it safely under interrupt,
4900  * so using TASK_SIZE as limit.
4901  */
4902 static u64 perf_ustack_task_size(struct pt_regs *regs)
4903 {
4904 	unsigned long addr = perf_user_stack_pointer(regs);
4905 
4906 	if (!addr || addr >= TASK_SIZE)
4907 		return 0;
4908 
4909 	return TASK_SIZE - addr;
4910 }
4911 
4912 static u16
4913 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4914 			struct pt_regs *regs)
4915 {
4916 	u64 task_size;
4917 
4918 	/* No regs, no stack pointer, no dump. */
4919 	if (!regs)
4920 		return 0;
4921 
4922 	/*
4923 	 * Check if we fit in with the requested stack size into the:
4924 	 * - TASK_SIZE
4925 	 *   If we don't, we limit the size to the TASK_SIZE.
4926 	 *
4927 	 * - remaining sample size
4928 	 *   If we don't, we customize the stack size to
4929 	 *   fit in to the remaining sample size.
4930 	 */
4931 
4932 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4933 	stack_size = min(stack_size, (u16) task_size);
4934 
4935 	/* Current header size plus static size and dynamic size. */
4936 	header_size += 2 * sizeof(u64);
4937 
4938 	/* Do we fit in with the current stack dump size? */
4939 	if ((u16) (header_size + stack_size) < header_size) {
4940 		/*
4941 		 * If we overflow the maximum size for the sample,
4942 		 * we customize the stack dump size to fit in.
4943 		 */
4944 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4945 		stack_size = round_up(stack_size, sizeof(u64));
4946 	}
4947 
4948 	return stack_size;
4949 }
4950 
4951 static void
4952 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4953 			  struct pt_regs *regs)
4954 {
4955 	/* Case of a kernel thread, nothing to dump */
4956 	if (!regs) {
4957 		u64 size = 0;
4958 		perf_output_put(handle, size);
4959 	} else {
4960 		unsigned long sp;
4961 		unsigned int rem;
4962 		u64 dyn_size;
4963 
4964 		/*
4965 		 * We dump:
4966 		 * static size
4967 		 *   - the size requested by user or the best one we can fit
4968 		 *     in to the sample max size
4969 		 * data
4970 		 *   - user stack dump data
4971 		 * dynamic size
4972 		 *   - the actual dumped size
4973 		 */
4974 
4975 		/* Static size. */
4976 		perf_output_put(handle, dump_size);
4977 
4978 		/* Data. */
4979 		sp = perf_user_stack_pointer(regs);
4980 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4981 		dyn_size = dump_size - rem;
4982 
4983 		perf_output_skip(handle, rem);
4984 
4985 		/* Dynamic size. */
4986 		perf_output_put(handle, dyn_size);
4987 	}
4988 }
4989 
4990 static void __perf_event_header__init_id(struct perf_event_header *header,
4991 					 struct perf_sample_data *data,
4992 					 struct perf_event *event)
4993 {
4994 	u64 sample_type = event->attr.sample_type;
4995 
4996 	data->type = sample_type;
4997 	header->size += event->id_header_size;
4998 
4999 	if (sample_type & PERF_SAMPLE_TID) {
5000 		/* namespace issues */
5001 		data->tid_entry.pid = perf_event_pid(event, current);
5002 		data->tid_entry.tid = perf_event_tid(event, current);
5003 	}
5004 
5005 	if (sample_type & PERF_SAMPLE_TIME)
5006 		data->time = perf_event_clock(event);
5007 
5008 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5009 		data->id = primary_event_id(event);
5010 
5011 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5012 		data->stream_id = event->id;
5013 
5014 	if (sample_type & PERF_SAMPLE_CPU) {
5015 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5016 		data->cpu_entry.reserved = 0;
5017 	}
5018 }
5019 
5020 void perf_event_header__init_id(struct perf_event_header *header,
5021 				struct perf_sample_data *data,
5022 				struct perf_event *event)
5023 {
5024 	if (event->attr.sample_id_all)
5025 		__perf_event_header__init_id(header, data, event);
5026 }
5027 
5028 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5029 					   struct perf_sample_data *data)
5030 {
5031 	u64 sample_type = data->type;
5032 
5033 	if (sample_type & PERF_SAMPLE_TID)
5034 		perf_output_put(handle, data->tid_entry);
5035 
5036 	if (sample_type & PERF_SAMPLE_TIME)
5037 		perf_output_put(handle, data->time);
5038 
5039 	if (sample_type & PERF_SAMPLE_ID)
5040 		perf_output_put(handle, data->id);
5041 
5042 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5043 		perf_output_put(handle, data->stream_id);
5044 
5045 	if (sample_type & PERF_SAMPLE_CPU)
5046 		perf_output_put(handle, data->cpu_entry);
5047 
5048 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5049 		perf_output_put(handle, data->id);
5050 }
5051 
5052 void perf_event__output_id_sample(struct perf_event *event,
5053 				  struct perf_output_handle *handle,
5054 				  struct perf_sample_data *sample)
5055 {
5056 	if (event->attr.sample_id_all)
5057 		__perf_event__output_id_sample(handle, sample);
5058 }
5059 
5060 static void perf_output_read_one(struct perf_output_handle *handle,
5061 				 struct perf_event *event,
5062 				 u64 enabled, u64 running)
5063 {
5064 	u64 read_format = event->attr.read_format;
5065 	u64 values[4];
5066 	int n = 0;
5067 
5068 	values[n++] = perf_event_count(event);
5069 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5070 		values[n++] = enabled +
5071 			atomic64_read(&event->child_total_time_enabled);
5072 	}
5073 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5074 		values[n++] = running +
5075 			atomic64_read(&event->child_total_time_running);
5076 	}
5077 	if (read_format & PERF_FORMAT_ID)
5078 		values[n++] = primary_event_id(event);
5079 
5080 	__output_copy(handle, values, n * sizeof(u64));
5081 }
5082 
5083 /*
5084  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5085  */
5086 static void perf_output_read_group(struct perf_output_handle *handle,
5087 			    struct perf_event *event,
5088 			    u64 enabled, u64 running)
5089 {
5090 	struct perf_event *leader = event->group_leader, *sub;
5091 	u64 read_format = event->attr.read_format;
5092 	u64 values[5];
5093 	int n = 0;
5094 
5095 	values[n++] = 1 + leader->nr_siblings;
5096 
5097 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5098 		values[n++] = enabled;
5099 
5100 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5101 		values[n++] = running;
5102 
5103 	if (leader != event)
5104 		leader->pmu->read(leader);
5105 
5106 	values[n++] = perf_event_count(leader);
5107 	if (read_format & PERF_FORMAT_ID)
5108 		values[n++] = primary_event_id(leader);
5109 
5110 	__output_copy(handle, values, n * sizeof(u64));
5111 
5112 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5113 		n = 0;
5114 
5115 		if ((sub != event) &&
5116 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5117 			sub->pmu->read(sub);
5118 
5119 		values[n++] = perf_event_count(sub);
5120 		if (read_format & PERF_FORMAT_ID)
5121 			values[n++] = primary_event_id(sub);
5122 
5123 		__output_copy(handle, values, n * sizeof(u64));
5124 	}
5125 }
5126 
5127 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5128 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5129 
5130 static void perf_output_read(struct perf_output_handle *handle,
5131 			     struct perf_event *event)
5132 {
5133 	u64 enabled = 0, running = 0, now;
5134 	u64 read_format = event->attr.read_format;
5135 
5136 	/*
5137 	 * compute total_time_enabled, total_time_running
5138 	 * based on snapshot values taken when the event
5139 	 * was last scheduled in.
5140 	 *
5141 	 * we cannot simply called update_context_time()
5142 	 * because of locking issue as we are called in
5143 	 * NMI context
5144 	 */
5145 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5146 		calc_timer_values(event, &now, &enabled, &running);
5147 
5148 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5149 		perf_output_read_group(handle, event, enabled, running);
5150 	else
5151 		perf_output_read_one(handle, event, enabled, running);
5152 }
5153 
5154 void perf_output_sample(struct perf_output_handle *handle,
5155 			struct perf_event_header *header,
5156 			struct perf_sample_data *data,
5157 			struct perf_event *event)
5158 {
5159 	u64 sample_type = data->type;
5160 
5161 	perf_output_put(handle, *header);
5162 
5163 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5164 		perf_output_put(handle, data->id);
5165 
5166 	if (sample_type & PERF_SAMPLE_IP)
5167 		perf_output_put(handle, data->ip);
5168 
5169 	if (sample_type & PERF_SAMPLE_TID)
5170 		perf_output_put(handle, data->tid_entry);
5171 
5172 	if (sample_type & PERF_SAMPLE_TIME)
5173 		perf_output_put(handle, data->time);
5174 
5175 	if (sample_type & PERF_SAMPLE_ADDR)
5176 		perf_output_put(handle, data->addr);
5177 
5178 	if (sample_type & PERF_SAMPLE_ID)
5179 		perf_output_put(handle, data->id);
5180 
5181 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5182 		perf_output_put(handle, data->stream_id);
5183 
5184 	if (sample_type & PERF_SAMPLE_CPU)
5185 		perf_output_put(handle, data->cpu_entry);
5186 
5187 	if (sample_type & PERF_SAMPLE_PERIOD)
5188 		perf_output_put(handle, data->period);
5189 
5190 	if (sample_type & PERF_SAMPLE_READ)
5191 		perf_output_read(handle, event);
5192 
5193 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5194 		if (data->callchain) {
5195 			int size = 1;
5196 
5197 			if (data->callchain)
5198 				size += data->callchain->nr;
5199 
5200 			size *= sizeof(u64);
5201 
5202 			__output_copy(handle, data->callchain, size);
5203 		} else {
5204 			u64 nr = 0;
5205 			perf_output_put(handle, nr);
5206 		}
5207 	}
5208 
5209 	if (sample_type & PERF_SAMPLE_RAW) {
5210 		if (data->raw) {
5211 			perf_output_put(handle, data->raw->size);
5212 			__output_copy(handle, data->raw->data,
5213 					   data->raw->size);
5214 		} else {
5215 			struct {
5216 				u32	size;
5217 				u32	data;
5218 			} raw = {
5219 				.size = sizeof(u32),
5220 				.data = 0,
5221 			};
5222 			perf_output_put(handle, raw);
5223 		}
5224 	}
5225 
5226 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5227 		if (data->br_stack) {
5228 			size_t size;
5229 
5230 			size = data->br_stack->nr
5231 			     * sizeof(struct perf_branch_entry);
5232 
5233 			perf_output_put(handle, data->br_stack->nr);
5234 			perf_output_copy(handle, data->br_stack->entries, size);
5235 		} else {
5236 			/*
5237 			 * we always store at least the value of nr
5238 			 */
5239 			u64 nr = 0;
5240 			perf_output_put(handle, nr);
5241 		}
5242 	}
5243 
5244 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5245 		u64 abi = data->regs_user.abi;
5246 
5247 		/*
5248 		 * If there are no regs to dump, notice it through
5249 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5250 		 */
5251 		perf_output_put(handle, abi);
5252 
5253 		if (abi) {
5254 			u64 mask = event->attr.sample_regs_user;
5255 			perf_output_sample_regs(handle,
5256 						data->regs_user.regs,
5257 						mask);
5258 		}
5259 	}
5260 
5261 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5262 		perf_output_sample_ustack(handle,
5263 					  data->stack_user_size,
5264 					  data->regs_user.regs);
5265 	}
5266 
5267 	if (sample_type & PERF_SAMPLE_WEIGHT)
5268 		perf_output_put(handle, data->weight);
5269 
5270 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5271 		perf_output_put(handle, data->data_src.val);
5272 
5273 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5274 		perf_output_put(handle, data->txn);
5275 
5276 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5277 		u64 abi = data->regs_intr.abi;
5278 		/*
5279 		 * If there are no regs to dump, notice it through
5280 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5281 		 */
5282 		perf_output_put(handle, abi);
5283 
5284 		if (abi) {
5285 			u64 mask = event->attr.sample_regs_intr;
5286 
5287 			perf_output_sample_regs(handle,
5288 						data->regs_intr.regs,
5289 						mask);
5290 		}
5291 	}
5292 
5293 	if (!event->attr.watermark) {
5294 		int wakeup_events = event->attr.wakeup_events;
5295 
5296 		if (wakeup_events) {
5297 			struct ring_buffer *rb = handle->rb;
5298 			int events = local_inc_return(&rb->events);
5299 
5300 			if (events >= wakeup_events) {
5301 				local_sub(wakeup_events, &rb->events);
5302 				local_inc(&rb->wakeup);
5303 			}
5304 		}
5305 	}
5306 }
5307 
5308 void perf_prepare_sample(struct perf_event_header *header,
5309 			 struct perf_sample_data *data,
5310 			 struct perf_event *event,
5311 			 struct pt_regs *regs)
5312 {
5313 	u64 sample_type = event->attr.sample_type;
5314 
5315 	header->type = PERF_RECORD_SAMPLE;
5316 	header->size = sizeof(*header) + event->header_size;
5317 
5318 	header->misc = 0;
5319 	header->misc |= perf_misc_flags(regs);
5320 
5321 	__perf_event_header__init_id(header, data, event);
5322 
5323 	if (sample_type & PERF_SAMPLE_IP)
5324 		data->ip = perf_instruction_pointer(regs);
5325 
5326 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5327 		int size = 1;
5328 
5329 		data->callchain = perf_callchain(event, regs);
5330 
5331 		if (data->callchain)
5332 			size += data->callchain->nr;
5333 
5334 		header->size += size * sizeof(u64);
5335 	}
5336 
5337 	if (sample_type & PERF_SAMPLE_RAW) {
5338 		int size = sizeof(u32);
5339 
5340 		if (data->raw)
5341 			size += data->raw->size;
5342 		else
5343 			size += sizeof(u32);
5344 
5345 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5346 		header->size += size;
5347 	}
5348 
5349 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5350 		int size = sizeof(u64); /* nr */
5351 		if (data->br_stack) {
5352 			size += data->br_stack->nr
5353 			      * sizeof(struct perf_branch_entry);
5354 		}
5355 		header->size += size;
5356 	}
5357 
5358 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5359 		perf_sample_regs_user(&data->regs_user, regs,
5360 				      &data->regs_user_copy);
5361 
5362 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5363 		/* regs dump ABI info */
5364 		int size = sizeof(u64);
5365 
5366 		if (data->regs_user.regs) {
5367 			u64 mask = event->attr.sample_regs_user;
5368 			size += hweight64(mask) * sizeof(u64);
5369 		}
5370 
5371 		header->size += size;
5372 	}
5373 
5374 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5375 		/*
5376 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5377 		 * processed as the last one or have additional check added
5378 		 * in case new sample type is added, because we could eat
5379 		 * up the rest of the sample size.
5380 		 */
5381 		u16 stack_size = event->attr.sample_stack_user;
5382 		u16 size = sizeof(u64);
5383 
5384 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5385 						     data->regs_user.regs);
5386 
5387 		/*
5388 		 * If there is something to dump, add space for the dump
5389 		 * itself and for the field that tells the dynamic size,
5390 		 * which is how many have been actually dumped.
5391 		 */
5392 		if (stack_size)
5393 			size += sizeof(u64) + stack_size;
5394 
5395 		data->stack_user_size = stack_size;
5396 		header->size += size;
5397 	}
5398 
5399 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5400 		/* regs dump ABI info */
5401 		int size = sizeof(u64);
5402 
5403 		perf_sample_regs_intr(&data->regs_intr, regs);
5404 
5405 		if (data->regs_intr.regs) {
5406 			u64 mask = event->attr.sample_regs_intr;
5407 
5408 			size += hweight64(mask) * sizeof(u64);
5409 		}
5410 
5411 		header->size += size;
5412 	}
5413 }
5414 
5415 void perf_event_output(struct perf_event *event,
5416 			struct perf_sample_data *data,
5417 			struct pt_regs *regs)
5418 {
5419 	struct perf_output_handle handle;
5420 	struct perf_event_header header;
5421 
5422 	/* protect the callchain buffers */
5423 	rcu_read_lock();
5424 
5425 	perf_prepare_sample(&header, data, event, regs);
5426 
5427 	if (perf_output_begin(&handle, event, header.size))
5428 		goto exit;
5429 
5430 	perf_output_sample(&handle, &header, data, event);
5431 
5432 	perf_output_end(&handle);
5433 
5434 exit:
5435 	rcu_read_unlock();
5436 }
5437 
5438 /*
5439  * read event_id
5440  */
5441 
5442 struct perf_read_event {
5443 	struct perf_event_header	header;
5444 
5445 	u32				pid;
5446 	u32				tid;
5447 };
5448 
5449 static void
5450 perf_event_read_event(struct perf_event *event,
5451 			struct task_struct *task)
5452 {
5453 	struct perf_output_handle handle;
5454 	struct perf_sample_data sample;
5455 	struct perf_read_event read_event = {
5456 		.header = {
5457 			.type = PERF_RECORD_READ,
5458 			.misc = 0,
5459 			.size = sizeof(read_event) + event->read_size,
5460 		},
5461 		.pid = perf_event_pid(event, task),
5462 		.tid = perf_event_tid(event, task),
5463 	};
5464 	int ret;
5465 
5466 	perf_event_header__init_id(&read_event.header, &sample, event);
5467 	ret = perf_output_begin(&handle, event, read_event.header.size);
5468 	if (ret)
5469 		return;
5470 
5471 	perf_output_put(&handle, read_event);
5472 	perf_output_read(&handle, event);
5473 	perf_event__output_id_sample(event, &handle, &sample);
5474 
5475 	perf_output_end(&handle);
5476 }
5477 
5478 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5479 
5480 static void
5481 perf_event_aux_ctx(struct perf_event_context *ctx,
5482 		   perf_event_aux_output_cb output,
5483 		   void *data)
5484 {
5485 	struct perf_event *event;
5486 
5487 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5488 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5489 			continue;
5490 		if (!event_filter_match(event))
5491 			continue;
5492 		output(event, data);
5493 	}
5494 }
5495 
5496 static void
5497 perf_event_aux(perf_event_aux_output_cb output, void *data,
5498 	       struct perf_event_context *task_ctx)
5499 {
5500 	struct perf_cpu_context *cpuctx;
5501 	struct perf_event_context *ctx;
5502 	struct pmu *pmu;
5503 	int ctxn;
5504 
5505 	rcu_read_lock();
5506 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5507 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5508 		if (cpuctx->unique_pmu != pmu)
5509 			goto next;
5510 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5511 		if (task_ctx)
5512 			goto next;
5513 		ctxn = pmu->task_ctx_nr;
5514 		if (ctxn < 0)
5515 			goto next;
5516 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5517 		if (ctx)
5518 			perf_event_aux_ctx(ctx, output, data);
5519 next:
5520 		put_cpu_ptr(pmu->pmu_cpu_context);
5521 	}
5522 
5523 	if (task_ctx) {
5524 		preempt_disable();
5525 		perf_event_aux_ctx(task_ctx, output, data);
5526 		preempt_enable();
5527 	}
5528 	rcu_read_unlock();
5529 }
5530 
5531 /*
5532  * task tracking -- fork/exit
5533  *
5534  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5535  */
5536 
5537 struct perf_task_event {
5538 	struct task_struct		*task;
5539 	struct perf_event_context	*task_ctx;
5540 
5541 	struct {
5542 		struct perf_event_header	header;
5543 
5544 		u32				pid;
5545 		u32				ppid;
5546 		u32				tid;
5547 		u32				ptid;
5548 		u64				time;
5549 	} event_id;
5550 };
5551 
5552 static int perf_event_task_match(struct perf_event *event)
5553 {
5554 	return event->attr.comm  || event->attr.mmap ||
5555 	       event->attr.mmap2 || event->attr.mmap_data ||
5556 	       event->attr.task;
5557 }
5558 
5559 static void perf_event_task_output(struct perf_event *event,
5560 				   void *data)
5561 {
5562 	struct perf_task_event *task_event = data;
5563 	struct perf_output_handle handle;
5564 	struct perf_sample_data	sample;
5565 	struct task_struct *task = task_event->task;
5566 	int ret, size = task_event->event_id.header.size;
5567 
5568 	if (!perf_event_task_match(event))
5569 		return;
5570 
5571 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5572 
5573 	ret = perf_output_begin(&handle, event,
5574 				task_event->event_id.header.size);
5575 	if (ret)
5576 		goto out;
5577 
5578 	task_event->event_id.pid = perf_event_pid(event, task);
5579 	task_event->event_id.ppid = perf_event_pid(event, current);
5580 
5581 	task_event->event_id.tid = perf_event_tid(event, task);
5582 	task_event->event_id.ptid = perf_event_tid(event, current);
5583 
5584 	task_event->event_id.time = perf_event_clock(event);
5585 
5586 	perf_output_put(&handle, task_event->event_id);
5587 
5588 	perf_event__output_id_sample(event, &handle, &sample);
5589 
5590 	perf_output_end(&handle);
5591 out:
5592 	task_event->event_id.header.size = size;
5593 }
5594 
5595 static void perf_event_task(struct task_struct *task,
5596 			      struct perf_event_context *task_ctx,
5597 			      int new)
5598 {
5599 	struct perf_task_event task_event;
5600 
5601 	if (!atomic_read(&nr_comm_events) &&
5602 	    !atomic_read(&nr_mmap_events) &&
5603 	    !atomic_read(&nr_task_events))
5604 		return;
5605 
5606 	task_event = (struct perf_task_event){
5607 		.task	  = task,
5608 		.task_ctx = task_ctx,
5609 		.event_id    = {
5610 			.header = {
5611 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5612 				.misc = 0,
5613 				.size = sizeof(task_event.event_id),
5614 			},
5615 			/* .pid  */
5616 			/* .ppid */
5617 			/* .tid  */
5618 			/* .ptid */
5619 			/* .time */
5620 		},
5621 	};
5622 
5623 	perf_event_aux(perf_event_task_output,
5624 		       &task_event,
5625 		       task_ctx);
5626 }
5627 
5628 void perf_event_fork(struct task_struct *task)
5629 {
5630 	perf_event_task(task, NULL, 1);
5631 }
5632 
5633 /*
5634  * comm tracking
5635  */
5636 
5637 struct perf_comm_event {
5638 	struct task_struct	*task;
5639 	char			*comm;
5640 	int			comm_size;
5641 
5642 	struct {
5643 		struct perf_event_header	header;
5644 
5645 		u32				pid;
5646 		u32				tid;
5647 	} event_id;
5648 };
5649 
5650 static int perf_event_comm_match(struct perf_event *event)
5651 {
5652 	return event->attr.comm;
5653 }
5654 
5655 static void perf_event_comm_output(struct perf_event *event,
5656 				   void *data)
5657 {
5658 	struct perf_comm_event *comm_event = data;
5659 	struct perf_output_handle handle;
5660 	struct perf_sample_data sample;
5661 	int size = comm_event->event_id.header.size;
5662 	int ret;
5663 
5664 	if (!perf_event_comm_match(event))
5665 		return;
5666 
5667 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5668 	ret = perf_output_begin(&handle, event,
5669 				comm_event->event_id.header.size);
5670 
5671 	if (ret)
5672 		goto out;
5673 
5674 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5675 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5676 
5677 	perf_output_put(&handle, comm_event->event_id);
5678 	__output_copy(&handle, comm_event->comm,
5679 				   comm_event->comm_size);
5680 
5681 	perf_event__output_id_sample(event, &handle, &sample);
5682 
5683 	perf_output_end(&handle);
5684 out:
5685 	comm_event->event_id.header.size = size;
5686 }
5687 
5688 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5689 {
5690 	char comm[TASK_COMM_LEN];
5691 	unsigned int size;
5692 
5693 	memset(comm, 0, sizeof(comm));
5694 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5695 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5696 
5697 	comm_event->comm = comm;
5698 	comm_event->comm_size = size;
5699 
5700 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5701 
5702 	perf_event_aux(perf_event_comm_output,
5703 		       comm_event,
5704 		       NULL);
5705 }
5706 
5707 void perf_event_comm(struct task_struct *task, bool exec)
5708 {
5709 	struct perf_comm_event comm_event;
5710 
5711 	if (!atomic_read(&nr_comm_events))
5712 		return;
5713 
5714 	comm_event = (struct perf_comm_event){
5715 		.task	= task,
5716 		/* .comm      */
5717 		/* .comm_size */
5718 		.event_id  = {
5719 			.header = {
5720 				.type = PERF_RECORD_COMM,
5721 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5722 				/* .size */
5723 			},
5724 			/* .pid */
5725 			/* .tid */
5726 		},
5727 	};
5728 
5729 	perf_event_comm_event(&comm_event);
5730 }
5731 
5732 /*
5733  * mmap tracking
5734  */
5735 
5736 struct perf_mmap_event {
5737 	struct vm_area_struct	*vma;
5738 
5739 	const char		*file_name;
5740 	int			file_size;
5741 	int			maj, min;
5742 	u64			ino;
5743 	u64			ino_generation;
5744 	u32			prot, flags;
5745 
5746 	struct {
5747 		struct perf_event_header	header;
5748 
5749 		u32				pid;
5750 		u32				tid;
5751 		u64				start;
5752 		u64				len;
5753 		u64				pgoff;
5754 	} event_id;
5755 };
5756 
5757 static int perf_event_mmap_match(struct perf_event *event,
5758 				 void *data)
5759 {
5760 	struct perf_mmap_event *mmap_event = data;
5761 	struct vm_area_struct *vma = mmap_event->vma;
5762 	int executable = vma->vm_flags & VM_EXEC;
5763 
5764 	return (!executable && event->attr.mmap_data) ||
5765 	       (executable && (event->attr.mmap || event->attr.mmap2));
5766 }
5767 
5768 static void perf_event_mmap_output(struct perf_event *event,
5769 				   void *data)
5770 {
5771 	struct perf_mmap_event *mmap_event = data;
5772 	struct perf_output_handle handle;
5773 	struct perf_sample_data sample;
5774 	int size = mmap_event->event_id.header.size;
5775 	int ret;
5776 
5777 	if (!perf_event_mmap_match(event, data))
5778 		return;
5779 
5780 	if (event->attr.mmap2) {
5781 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5782 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5783 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5784 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5785 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5786 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5787 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5788 	}
5789 
5790 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5791 	ret = perf_output_begin(&handle, event,
5792 				mmap_event->event_id.header.size);
5793 	if (ret)
5794 		goto out;
5795 
5796 	mmap_event->event_id.pid = perf_event_pid(event, current);
5797 	mmap_event->event_id.tid = perf_event_tid(event, current);
5798 
5799 	perf_output_put(&handle, mmap_event->event_id);
5800 
5801 	if (event->attr.mmap2) {
5802 		perf_output_put(&handle, mmap_event->maj);
5803 		perf_output_put(&handle, mmap_event->min);
5804 		perf_output_put(&handle, mmap_event->ino);
5805 		perf_output_put(&handle, mmap_event->ino_generation);
5806 		perf_output_put(&handle, mmap_event->prot);
5807 		perf_output_put(&handle, mmap_event->flags);
5808 	}
5809 
5810 	__output_copy(&handle, mmap_event->file_name,
5811 				   mmap_event->file_size);
5812 
5813 	perf_event__output_id_sample(event, &handle, &sample);
5814 
5815 	perf_output_end(&handle);
5816 out:
5817 	mmap_event->event_id.header.size = size;
5818 }
5819 
5820 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5821 {
5822 	struct vm_area_struct *vma = mmap_event->vma;
5823 	struct file *file = vma->vm_file;
5824 	int maj = 0, min = 0;
5825 	u64 ino = 0, gen = 0;
5826 	u32 prot = 0, flags = 0;
5827 	unsigned int size;
5828 	char tmp[16];
5829 	char *buf = NULL;
5830 	char *name;
5831 
5832 	if (file) {
5833 		struct inode *inode;
5834 		dev_t dev;
5835 
5836 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5837 		if (!buf) {
5838 			name = "//enomem";
5839 			goto cpy_name;
5840 		}
5841 		/*
5842 		 * d_path() works from the end of the rb backwards, so we
5843 		 * need to add enough zero bytes after the string to handle
5844 		 * the 64bit alignment we do later.
5845 		 */
5846 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5847 		if (IS_ERR(name)) {
5848 			name = "//toolong";
5849 			goto cpy_name;
5850 		}
5851 		inode = file_inode(vma->vm_file);
5852 		dev = inode->i_sb->s_dev;
5853 		ino = inode->i_ino;
5854 		gen = inode->i_generation;
5855 		maj = MAJOR(dev);
5856 		min = MINOR(dev);
5857 
5858 		if (vma->vm_flags & VM_READ)
5859 			prot |= PROT_READ;
5860 		if (vma->vm_flags & VM_WRITE)
5861 			prot |= PROT_WRITE;
5862 		if (vma->vm_flags & VM_EXEC)
5863 			prot |= PROT_EXEC;
5864 
5865 		if (vma->vm_flags & VM_MAYSHARE)
5866 			flags = MAP_SHARED;
5867 		else
5868 			flags = MAP_PRIVATE;
5869 
5870 		if (vma->vm_flags & VM_DENYWRITE)
5871 			flags |= MAP_DENYWRITE;
5872 		if (vma->vm_flags & VM_MAYEXEC)
5873 			flags |= MAP_EXECUTABLE;
5874 		if (vma->vm_flags & VM_LOCKED)
5875 			flags |= MAP_LOCKED;
5876 		if (vma->vm_flags & VM_HUGETLB)
5877 			flags |= MAP_HUGETLB;
5878 
5879 		goto got_name;
5880 	} else {
5881 		if (vma->vm_ops && vma->vm_ops->name) {
5882 			name = (char *) vma->vm_ops->name(vma);
5883 			if (name)
5884 				goto cpy_name;
5885 		}
5886 
5887 		name = (char *)arch_vma_name(vma);
5888 		if (name)
5889 			goto cpy_name;
5890 
5891 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5892 				vma->vm_end >= vma->vm_mm->brk) {
5893 			name = "[heap]";
5894 			goto cpy_name;
5895 		}
5896 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5897 				vma->vm_end >= vma->vm_mm->start_stack) {
5898 			name = "[stack]";
5899 			goto cpy_name;
5900 		}
5901 
5902 		name = "//anon";
5903 		goto cpy_name;
5904 	}
5905 
5906 cpy_name:
5907 	strlcpy(tmp, name, sizeof(tmp));
5908 	name = tmp;
5909 got_name:
5910 	/*
5911 	 * Since our buffer works in 8 byte units we need to align our string
5912 	 * size to a multiple of 8. However, we must guarantee the tail end is
5913 	 * zero'd out to avoid leaking random bits to userspace.
5914 	 */
5915 	size = strlen(name)+1;
5916 	while (!IS_ALIGNED(size, sizeof(u64)))
5917 		name[size++] = '\0';
5918 
5919 	mmap_event->file_name = name;
5920 	mmap_event->file_size = size;
5921 	mmap_event->maj = maj;
5922 	mmap_event->min = min;
5923 	mmap_event->ino = ino;
5924 	mmap_event->ino_generation = gen;
5925 	mmap_event->prot = prot;
5926 	mmap_event->flags = flags;
5927 
5928 	if (!(vma->vm_flags & VM_EXEC))
5929 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5930 
5931 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5932 
5933 	perf_event_aux(perf_event_mmap_output,
5934 		       mmap_event,
5935 		       NULL);
5936 
5937 	kfree(buf);
5938 }
5939 
5940 void perf_event_mmap(struct vm_area_struct *vma)
5941 {
5942 	struct perf_mmap_event mmap_event;
5943 
5944 	if (!atomic_read(&nr_mmap_events))
5945 		return;
5946 
5947 	mmap_event = (struct perf_mmap_event){
5948 		.vma	= vma,
5949 		/* .file_name */
5950 		/* .file_size */
5951 		.event_id  = {
5952 			.header = {
5953 				.type = PERF_RECORD_MMAP,
5954 				.misc = PERF_RECORD_MISC_USER,
5955 				/* .size */
5956 			},
5957 			/* .pid */
5958 			/* .tid */
5959 			.start  = vma->vm_start,
5960 			.len    = vma->vm_end - vma->vm_start,
5961 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5962 		},
5963 		/* .maj (attr_mmap2 only) */
5964 		/* .min (attr_mmap2 only) */
5965 		/* .ino (attr_mmap2 only) */
5966 		/* .ino_generation (attr_mmap2 only) */
5967 		/* .prot (attr_mmap2 only) */
5968 		/* .flags (attr_mmap2 only) */
5969 	};
5970 
5971 	perf_event_mmap_event(&mmap_event);
5972 }
5973 
5974 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5975 			  unsigned long size, u64 flags)
5976 {
5977 	struct perf_output_handle handle;
5978 	struct perf_sample_data sample;
5979 	struct perf_aux_event {
5980 		struct perf_event_header	header;
5981 		u64				offset;
5982 		u64				size;
5983 		u64				flags;
5984 	} rec = {
5985 		.header = {
5986 			.type = PERF_RECORD_AUX,
5987 			.misc = 0,
5988 			.size = sizeof(rec),
5989 		},
5990 		.offset		= head,
5991 		.size		= size,
5992 		.flags		= flags,
5993 	};
5994 	int ret;
5995 
5996 	perf_event_header__init_id(&rec.header, &sample, event);
5997 	ret = perf_output_begin(&handle, event, rec.header.size);
5998 
5999 	if (ret)
6000 		return;
6001 
6002 	perf_output_put(&handle, rec);
6003 	perf_event__output_id_sample(event, &handle, &sample);
6004 
6005 	perf_output_end(&handle);
6006 }
6007 
6008 /*
6009  * Lost/dropped samples logging
6010  */
6011 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6012 {
6013 	struct perf_output_handle handle;
6014 	struct perf_sample_data sample;
6015 	int ret;
6016 
6017 	struct {
6018 		struct perf_event_header	header;
6019 		u64				lost;
6020 	} lost_samples_event = {
6021 		.header = {
6022 			.type = PERF_RECORD_LOST_SAMPLES,
6023 			.misc = 0,
6024 			.size = sizeof(lost_samples_event),
6025 		},
6026 		.lost		= lost,
6027 	};
6028 
6029 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6030 
6031 	ret = perf_output_begin(&handle, event,
6032 				lost_samples_event.header.size);
6033 	if (ret)
6034 		return;
6035 
6036 	perf_output_put(&handle, lost_samples_event);
6037 	perf_event__output_id_sample(event, &handle, &sample);
6038 	perf_output_end(&handle);
6039 }
6040 
6041 /*
6042  * context_switch tracking
6043  */
6044 
6045 struct perf_switch_event {
6046 	struct task_struct	*task;
6047 	struct task_struct	*next_prev;
6048 
6049 	struct {
6050 		struct perf_event_header	header;
6051 		u32				next_prev_pid;
6052 		u32				next_prev_tid;
6053 	} event_id;
6054 };
6055 
6056 static int perf_event_switch_match(struct perf_event *event)
6057 {
6058 	return event->attr.context_switch;
6059 }
6060 
6061 static void perf_event_switch_output(struct perf_event *event, void *data)
6062 {
6063 	struct perf_switch_event *se = data;
6064 	struct perf_output_handle handle;
6065 	struct perf_sample_data sample;
6066 	int ret;
6067 
6068 	if (!perf_event_switch_match(event))
6069 		return;
6070 
6071 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6072 	if (event->ctx->task) {
6073 		se->event_id.header.type = PERF_RECORD_SWITCH;
6074 		se->event_id.header.size = sizeof(se->event_id.header);
6075 	} else {
6076 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6077 		se->event_id.header.size = sizeof(se->event_id);
6078 		se->event_id.next_prev_pid =
6079 					perf_event_pid(event, se->next_prev);
6080 		se->event_id.next_prev_tid =
6081 					perf_event_tid(event, se->next_prev);
6082 	}
6083 
6084 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6085 
6086 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6087 	if (ret)
6088 		return;
6089 
6090 	if (event->ctx->task)
6091 		perf_output_put(&handle, se->event_id.header);
6092 	else
6093 		perf_output_put(&handle, se->event_id);
6094 
6095 	perf_event__output_id_sample(event, &handle, &sample);
6096 
6097 	perf_output_end(&handle);
6098 }
6099 
6100 static void perf_event_switch(struct task_struct *task,
6101 			      struct task_struct *next_prev, bool sched_in)
6102 {
6103 	struct perf_switch_event switch_event;
6104 
6105 	/* N.B. caller checks nr_switch_events != 0 */
6106 
6107 	switch_event = (struct perf_switch_event){
6108 		.task		= task,
6109 		.next_prev	= next_prev,
6110 		.event_id	= {
6111 			.header = {
6112 				/* .type */
6113 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6114 				/* .size */
6115 			},
6116 			/* .next_prev_pid */
6117 			/* .next_prev_tid */
6118 		},
6119 	};
6120 
6121 	perf_event_aux(perf_event_switch_output,
6122 		       &switch_event,
6123 		       NULL);
6124 }
6125 
6126 /*
6127  * IRQ throttle logging
6128  */
6129 
6130 static void perf_log_throttle(struct perf_event *event, int enable)
6131 {
6132 	struct perf_output_handle handle;
6133 	struct perf_sample_data sample;
6134 	int ret;
6135 
6136 	struct {
6137 		struct perf_event_header	header;
6138 		u64				time;
6139 		u64				id;
6140 		u64				stream_id;
6141 	} throttle_event = {
6142 		.header = {
6143 			.type = PERF_RECORD_THROTTLE,
6144 			.misc = 0,
6145 			.size = sizeof(throttle_event),
6146 		},
6147 		.time		= perf_event_clock(event),
6148 		.id		= primary_event_id(event),
6149 		.stream_id	= event->id,
6150 	};
6151 
6152 	if (enable)
6153 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6154 
6155 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6156 
6157 	ret = perf_output_begin(&handle, event,
6158 				throttle_event.header.size);
6159 	if (ret)
6160 		return;
6161 
6162 	perf_output_put(&handle, throttle_event);
6163 	perf_event__output_id_sample(event, &handle, &sample);
6164 	perf_output_end(&handle);
6165 }
6166 
6167 static void perf_log_itrace_start(struct perf_event *event)
6168 {
6169 	struct perf_output_handle handle;
6170 	struct perf_sample_data sample;
6171 	struct perf_aux_event {
6172 		struct perf_event_header        header;
6173 		u32				pid;
6174 		u32				tid;
6175 	} rec;
6176 	int ret;
6177 
6178 	if (event->parent)
6179 		event = event->parent;
6180 
6181 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6182 	    event->hw.itrace_started)
6183 		return;
6184 
6185 	rec.header.type	= PERF_RECORD_ITRACE_START;
6186 	rec.header.misc	= 0;
6187 	rec.header.size	= sizeof(rec);
6188 	rec.pid	= perf_event_pid(event, current);
6189 	rec.tid	= perf_event_tid(event, current);
6190 
6191 	perf_event_header__init_id(&rec.header, &sample, event);
6192 	ret = perf_output_begin(&handle, event, rec.header.size);
6193 
6194 	if (ret)
6195 		return;
6196 
6197 	perf_output_put(&handle, rec);
6198 	perf_event__output_id_sample(event, &handle, &sample);
6199 
6200 	perf_output_end(&handle);
6201 }
6202 
6203 /*
6204  * Generic event overflow handling, sampling.
6205  */
6206 
6207 static int __perf_event_overflow(struct perf_event *event,
6208 				   int throttle, struct perf_sample_data *data,
6209 				   struct pt_regs *regs)
6210 {
6211 	int events = atomic_read(&event->event_limit);
6212 	struct hw_perf_event *hwc = &event->hw;
6213 	u64 seq;
6214 	int ret = 0;
6215 
6216 	/*
6217 	 * Non-sampling counters might still use the PMI to fold short
6218 	 * hardware counters, ignore those.
6219 	 */
6220 	if (unlikely(!is_sampling_event(event)))
6221 		return 0;
6222 
6223 	seq = __this_cpu_read(perf_throttled_seq);
6224 	if (seq != hwc->interrupts_seq) {
6225 		hwc->interrupts_seq = seq;
6226 		hwc->interrupts = 1;
6227 	} else {
6228 		hwc->interrupts++;
6229 		if (unlikely(throttle
6230 			     && hwc->interrupts >= max_samples_per_tick)) {
6231 			__this_cpu_inc(perf_throttled_count);
6232 			hwc->interrupts = MAX_INTERRUPTS;
6233 			perf_log_throttle(event, 0);
6234 			tick_nohz_full_kick();
6235 			ret = 1;
6236 		}
6237 	}
6238 
6239 	if (event->attr.freq) {
6240 		u64 now = perf_clock();
6241 		s64 delta = now - hwc->freq_time_stamp;
6242 
6243 		hwc->freq_time_stamp = now;
6244 
6245 		if (delta > 0 && delta < 2*TICK_NSEC)
6246 			perf_adjust_period(event, delta, hwc->last_period, true);
6247 	}
6248 
6249 	/*
6250 	 * XXX event_limit might not quite work as expected on inherited
6251 	 * events
6252 	 */
6253 
6254 	event->pending_kill = POLL_IN;
6255 	if (events && atomic_dec_and_test(&event->event_limit)) {
6256 		ret = 1;
6257 		event->pending_kill = POLL_HUP;
6258 		event->pending_disable = 1;
6259 		irq_work_queue(&event->pending);
6260 	}
6261 
6262 	if (event->overflow_handler)
6263 		event->overflow_handler(event, data, regs);
6264 	else
6265 		perf_event_output(event, data, regs);
6266 
6267 	if (*perf_event_fasync(event) && event->pending_kill) {
6268 		event->pending_wakeup = 1;
6269 		irq_work_queue(&event->pending);
6270 	}
6271 
6272 	return ret;
6273 }
6274 
6275 int perf_event_overflow(struct perf_event *event,
6276 			  struct perf_sample_data *data,
6277 			  struct pt_regs *regs)
6278 {
6279 	return __perf_event_overflow(event, 1, data, regs);
6280 }
6281 
6282 /*
6283  * Generic software event infrastructure
6284  */
6285 
6286 struct swevent_htable {
6287 	struct swevent_hlist		*swevent_hlist;
6288 	struct mutex			hlist_mutex;
6289 	int				hlist_refcount;
6290 
6291 	/* Recursion avoidance in each contexts */
6292 	int				recursion[PERF_NR_CONTEXTS];
6293 
6294 	/* Keeps track of cpu being initialized/exited */
6295 	bool				online;
6296 };
6297 
6298 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6299 
6300 /*
6301  * We directly increment event->count and keep a second value in
6302  * event->hw.period_left to count intervals. This period event
6303  * is kept in the range [-sample_period, 0] so that we can use the
6304  * sign as trigger.
6305  */
6306 
6307 u64 perf_swevent_set_period(struct perf_event *event)
6308 {
6309 	struct hw_perf_event *hwc = &event->hw;
6310 	u64 period = hwc->last_period;
6311 	u64 nr, offset;
6312 	s64 old, val;
6313 
6314 	hwc->last_period = hwc->sample_period;
6315 
6316 again:
6317 	old = val = local64_read(&hwc->period_left);
6318 	if (val < 0)
6319 		return 0;
6320 
6321 	nr = div64_u64(period + val, period);
6322 	offset = nr * period;
6323 	val -= offset;
6324 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6325 		goto again;
6326 
6327 	return nr;
6328 }
6329 
6330 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6331 				    struct perf_sample_data *data,
6332 				    struct pt_regs *regs)
6333 {
6334 	struct hw_perf_event *hwc = &event->hw;
6335 	int throttle = 0;
6336 
6337 	if (!overflow)
6338 		overflow = perf_swevent_set_period(event);
6339 
6340 	if (hwc->interrupts == MAX_INTERRUPTS)
6341 		return;
6342 
6343 	for (; overflow; overflow--) {
6344 		if (__perf_event_overflow(event, throttle,
6345 					    data, regs)) {
6346 			/*
6347 			 * We inhibit the overflow from happening when
6348 			 * hwc->interrupts == MAX_INTERRUPTS.
6349 			 */
6350 			break;
6351 		}
6352 		throttle = 1;
6353 	}
6354 }
6355 
6356 static void perf_swevent_event(struct perf_event *event, u64 nr,
6357 			       struct perf_sample_data *data,
6358 			       struct pt_regs *regs)
6359 {
6360 	struct hw_perf_event *hwc = &event->hw;
6361 
6362 	local64_add(nr, &event->count);
6363 
6364 	if (!regs)
6365 		return;
6366 
6367 	if (!is_sampling_event(event))
6368 		return;
6369 
6370 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6371 		data->period = nr;
6372 		return perf_swevent_overflow(event, 1, data, regs);
6373 	} else
6374 		data->period = event->hw.last_period;
6375 
6376 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6377 		return perf_swevent_overflow(event, 1, data, regs);
6378 
6379 	if (local64_add_negative(nr, &hwc->period_left))
6380 		return;
6381 
6382 	perf_swevent_overflow(event, 0, data, regs);
6383 }
6384 
6385 static int perf_exclude_event(struct perf_event *event,
6386 			      struct pt_regs *regs)
6387 {
6388 	if (event->hw.state & PERF_HES_STOPPED)
6389 		return 1;
6390 
6391 	if (regs) {
6392 		if (event->attr.exclude_user && user_mode(regs))
6393 			return 1;
6394 
6395 		if (event->attr.exclude_kernel && !user_mode(regs))
6396 			return 1;
6397 	}
6398 
6399 	return 0;
6400 }
6401 
6402 static int perf_swevent_match(struct perf_event *event,
6403 				enum perf_type_id type,
6404 				u32 event_id,
6405 				struct perf_sample_data *data,
6406 				struct pt_regs *regs)
6407 {
6408 	if (event->attr.type != type)
6409 		return 0;
6410 
6411 	if (event->attr.config != event_id)
6412 		return 0;
6413 
6414 	if (perf_exclude_event(event, regs))
6415 		return 0;
6416 
6417 	return 1;
6418 }
6419 
6420 static inline u64 swevent_hash(u64 type, u32 event_id)
6421 {
6422 	u64 val = event_id | (type << 32);
6423 
6424 	return hash_64(val, SWEVENT_HLIST_BITS);
6425 }
6426 
6427 static inline struct hlist_head *
6428 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6429 {
6430 	u64 hash = swevent_hash(type, event_id);
6431 
6432 	return &hlist->heads[hash];
6433 }
6434 
6435 /* For the read side: events when they trigger */
6436 static inline struct hlist_head *
6437 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6438 {
6439 	struct swevent_hlist *hlist;
6440 
6441 	hlist = rcu_dereference(swhash->swevent_hlist);
6442 	if (!hlist)
6443 		return NULL;
6444 
6445 	return __find_swevent_head(hlist, type, event_id);
6446 }
6447 
6448 /* For the event head insertion and removal in the hlist */
6449 static inline struct hlist_head *
6450 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6451 {
6452 	struct swevent_hlist *hlist;
6453 	u32 event_id = event->attr.config;
6454 	u64 type = event->attr.type;
6455 
6456 	/*
6457 	 * Event scheduling is always serialized against hlist allocation
6458 	 * and release. Which makes the protected version suitable here.
6459 	 * The context lock guarantees that.
6460 	 */
6461 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6462 					  lockdep_is_held(&event->ctx->lock));
6463 	if (!hlist)
6464 		return NULL;
6465 
6466 	return __find_swevent_head(hlist, type, event_id);
6467 }
6468 
6469 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6470 				    u64 nr,
6471 				    struct perf_sample_data *data,
6472 				    struct pt_regs *regs)
6473 {
6474 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6475 	struct perf_event *event;
6476 	struct hlist_head *head;
6477 
6478 	rcu_read_lock();
6479 	head = find_swevent_head_rcu(swhash, type, event_id);
6480 	if (!head)
6481 		goto end;
6482 
6483 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6484 		if (perf_swevent_match(event, type, event_id, data, regs))
6485 			perf_swevent_event(event, nr, data, regs);
6486 	}
6487 end:
6488 	rcu_read_unlock();
6489 }
6490 
6491 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6492 
6493 int perf_swevent_get_recursion_context(void)
6494 {
6495 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6496 
6497 	return get_recursion_context(swhash->recursion);
6498 }
6499 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6500 
6501 inline void perf_swevent_put_recursion_context(int rctx)
6502 {
6503 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6504 
6505 	put_recursion_context(swhash->recursion, rctx);
6506 }
6507 
6508 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6509 {
6510 	struct perf_sample_data data;
6511 
6512 	if (WARN_ON_ONCE(!regs))
6513 		return;
6514 
6515 	perf_sample_data_init(&data, addr, 0);
6516 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6517 }
6518 
6519 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6520 {
6521 	int rctx;
6522 
6523 	preempt_disable_notrace();
6524 	rctx = perf_swevent_get_recursion_context();
6525 	if (unlikely(rctx < 0))
6526 		goto fail;
6527 
6528 	___perf_sw_event(event_id, nr, regs, addr);
6529 
6530 	perf_swevent_put_recursion_context(rctx);
6531 fail:
6532 	preempt_enable_notrace();
6533 }
6534 
6535 static void perf_swevent_read(struct perf_event *event)
6536 {
6537 }
6538 
6539 static int perf_swevent_add(struct perf_event *event, int flags)
6540 {
6541 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6542 	struct hw_perf_event *hwc = &event->hw;
6543 	struct hlist_head *head;
6544 
6545 	if (is_sampling_event(event)) {
6546 		hwc->last_period = hwc->sample_period;
6547 		perf_swevent_set_period(event);
6548 	}
6549 
6550 	hwc->state = !(flags & PERF_EF_START);
6551 
6552 	head = find_swevent_head(swhash, event);
6553 	if (!head) {
6554 		/*
6555 		 * We can race with cpu hotplug code. Do not
6556 		 * WARN if the cpu just got unplugged.
6557 		 */
6558 		WARN_ON_ONCE(swhash->online);
6559 		return -EINVAL;
6560 	}
6561 
6562 	hlist_add_head_rcu(&event->hlist_entry, head);
6563 	perf_event_update_userpage(event);
6564 
6565 	return 0;
6566 }
6567 
6568 static void perf_swevent_del(struct perf_event *event, int flags)
6569 {
6570 	hlist_del_rcu(&event->hlist_entry);
6571 }
6572 
6573 static void perf_swevent_start(struct perf_event *event, int flags)
6574 {
6575 	event->hw.state = 0;
6576 }
6577 
6578 static void perf_swevent_stop(struct perf_event *event, int flags)
6579 {
6580 	event->hw.state = PERF_HES_STOPPED;
6581 }
6582 
6583 /* Deref the hlist from the update side */
6584 static inline struct swevent_hlist *
6585 swevent_hlist_deref(struct swevent_htable *swhash)
6586 {
6587 	return rcu_dereference_protected(swhash->swevent_hlist,
6588 					 lockdep_is_held(&swhash->hlist_mutex));
6589 }
6590 
6591 static void swevent_hlist_release(struct swevent_htable *swhash)
6592 {
6593 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6594 
6595 	if (!hlist)
6596 		return;
6597 
6598 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6599 	kfree_rcu(hlist, rcu_head);
6600 }
6601 
6602 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6603 {
6604 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6605 
6606 	mutex_lock(&swhash->hlist_mutex);
6607 
6608 	if (!--swhash->hlist_refcount)
6609 		swevent_hlist_release(swhash);
6610 
6611 	mutex_unlock(&swhash->hlist_mutex);
6612 }
6613 
6614 static void swevent_hlist_put(struct perf_event *event)
6615 {
6616 	int cpu;
6617 
6618 	for_each_possible_cpu(cpu)
6619 		swevent_hlist_put_cpu(event, cpu);
6620 }
6621 
6622 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6623 {
6624 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6625 	int err = 0;
6626 
6627 	mutex_lock(&swhash->hlist_mutex);
6628 
6629 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6630 		struct swevent_hlist *hlist;
6631 
6632 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6633 		if (!hlist) {
6634 			err = -ENOMEM;
6635 			goto exit;
6636 		}
6637 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6638 	}
6639 	swhash->hlist_refcount++;
6640 exit:
6641 	mutex_unlock(&swhash->hlist_mutex);
6642 
6643 	return err;
6644 }
6645 
6646 static int swevent_hlist_get(struct perf_event *event)
6647 {
6648 	int err;
6649 	int cpu, failed_cpu;
6650 
6651 	get_online_cpus();
6652 	for_each_possible_cpu(cpu) {
6653 		err = swevent_hlist_get_cpu(event, cpu);
6654 		if (err) {
6655 			failed_cpu = cpu;
6656 			goto fail;
6657 		}
6658 	}
6659 	put_online_cpus();
6660 
6661 	return 0;
6662 fail:
6663 	for_each_possible_cpu(cpu) {
6664 		if (cpu == failed_cpu)
6665 			break;
6666 		swevent_hlist_put_cpu(event, cpu);
6667 	}
6668 
6669 	put_online_cpus();
6670 	return err;
6671 }
6672 
6673 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6674 
6675 static void sw_perf_event_destroy(struct perf_event *event)
6676 {
6677 	u64 event_id = event->attr.config;
6678 
6679 	WARN_ON(event->parent);
6680 
6681 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6682 	swevent_hlist_put(event);
6683 }
6684 
6685 static int perf_swevent_init(struct perf_event *event)
6686 {
6687 	u64 event_id = event->attr.config;
6688 
6689 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6690 		return -ENOENT;
6691 
6692 	/*
6693 	 * no branch sampling for software events
6694 	 */
6695 	if (has_branch_stack(event))
6696 		return -EOPNOTSUPP;
6697 
6698 	switch (event_id) {
6699 	case PERF_COUNT_SW_CPU_CLOCK:
6700 	case PERF_COUNT_SW_TASK_CLOCK:
6701 		return -ENOENT;
6702 
6703 	default:
6704 		break;
6705 	}
6706 
6707 	if (event_id >= PERF_COUNT_SW_MAX)
6708 		return -ENOENT;
6709 
6710 	if (!event->parent) {
6711 		int err;
6712 
6713 		err = swevent_hlist_get(event);
6714 		if (err)
6715 			return err;
6716 
6717 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6718 		event->destroy = sw_perf_event_destroy;
6719 	}
6720 
6721 	return 0;
6722 }
6723 
6724 static struct pmu perf_swevent = {
6725 	.task_ctx_nr	= perf_sw_context,
6726 
6727 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6728 
6729 	.event_init	= perf_swevent_init,
6730 	.add		= perf_swevent_add,
6731 	.del		= perf_swevent_del,
6732 	.start		= perf_swevent_start,
6733 	.stop		= perf_swevent_stop,
6734 	.read		= perf_swevent_read,
6735 };
6736 
6737 #ifdef CONFIG_EVENT_TRACING
6738 
6739 static int perf_tp_filter_match(struct perf_event *event,
6740 				struct perf_sample_data *data)
6741 {
6742 	void *record = data->raw->data;
6743 
6744 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6745 		return 1;
6746 	return 0;
6747 }
6748 
6749 static int perf_tp_event_match(struct perf_event *event,
6750 				struct perf_sample_data *data,
6751 				struct pt_regs *regs)
6752 {
6753 	if (event->hw.state & PERF_HES_STOPPED)
6754 		return 0;
6755 	/*
6756 	 * All tracepoints are from kernel-space.
6757 	 */
6758 	if (event->attr.exclude_kernel)
6759 		return 0;
6760 
6761 	if (!perf_tp_filter_match(event, data))
6762 		return 0;
6763 
6764 	return 1;
6765 }
6766 
6767 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6768 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6769 		   struct task_struct *task)
6770 {
6771 	struct perf_sample_data data;
6772 	struct perf_event *event;
6773 
6774 	struct perf_raw_record raw = {
6775 		.size = entry_size,
6776 		.data = record,
6777 	};
6778 
6779 	perf_sample_data_init(&data, addr, 0);
6780 	data.raw = &raw;
6781 
6782 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6783 		if (perf_tp_event_match(event, &data, regs))
6784 			perf_swevent_event(event, count, &data, regs);
6785 	}
6786 
6787 	/*
6788 	 * If we got specified a target task, also iterate its context and
6789 	 * deliver this event there too.
6790 	 */
6791 	if (task && task != current) {
6792 		struct perf_event_context *ctx;
6793 		struct trace_entry *entry = record;
6794 
6795 		rcu_read_lock();
6796 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6797 		if (!ctx)
6798 			goto unlock;
6799 
6800 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6801 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6802 				continue;
6803 			if (event->attr.config != entry->type)
6804 				continue;
6805 			if (perf_tp_event_match(event, &data, regs))
6806 				perf_swevent_event(event, count, &data, regs);
6807 		}
6808 unlock:
6809 		rcu_read_unlock();
6810 	}
6811 
6812 	perf_swevent_put_recursion_context(rctx);
6813 }
6814 EXPORT_SYMBOL_GPL(perf_tp_event);
6815 
6816 static void tp_perf_event_destroy(struct perf_event *event)
6817 {
6818 	perf_trace_destroy(event);
6819 }
6820 
6821 static int perf_tp_event_init(struct perf_event *event)
6822 {
6823 	int err;
6824 
6825 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6826 		return -ENOENT;
6827 
6828 	/*
6829 	 * no branch sampling for tracepoint events
6830 	 */
6831 	if (has_branch_stack(event))
6832 		return -EOPNOTSUPP;
6833 
6834 	err = perf_trace_init(event);
6835 	if (err)
6836 		return err;
6837 
6838 	event->destroy = tp_perf_event_destroy;
6839 
6840 	return 0;
6841 }
6842 
6843 static struct pmu perf_tracepoint = {
6844 	.task_ctx_nr	= perf_sw_context,
6845 
6846 	.event_init	= perf_tp_event_init,
6847 	.add		= perf_trace_add,
6848 	.del		= perf_trace_del,
6849 	.start		= perf_swevent_start,
6850 	.stop		= perf_swevent_stop,
6851 	.read		= perf_swevent_read,
6852 };
6853 
6854 static inline void perf_tp_register(void)
6855 {
6856 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6857 }
6858 
6859 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6860 {
6861 	char *filter_str;
6862 	int ret;
6863 
6864 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6865 		return -EINVAL;
6866 
6867 	filter_str = strndup_user(arg, PAGE_SIZE);
6868 	if (IS_ERR(filter_str))
6869 		return PTR_ERR(filter_str);
6870 
6871 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6872 
6873 	kfree(filter_str);
6874 	return ret;
6875 }
6876 
6877 static void perf_event_free_filter(struct perf_event *event)
6878 {
6879 	ftrace_profile_free_filter(event);
6880 }
6881 
6882 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6883 {
6884 	struct bpf_prog *prog;
6885 
6886 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6887 		return -EINVAL;
6888 
6889 	if (event->tp_event->prog)
6890 		return -EEXIST;
6891 
6892 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6893 		/* bpf programs can only be attached to u/kprobes */
6894 		return -EINVAL;
6895 
6896 	prog = bpf_prog_get(prog_fd);
6897 	if (IS_ERR(prog))
6898 		return PTR_ERR(prog);
6899 
6900 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6901 		/* valid fd, but invalid bpf program type */
6902 		bpf_prog_put(prog);
6903 		return -EINVAL;
6904 	}
6905 
6906 	event->tp_event->prog = prog;
6907 
6908 	return 0;
6909 }
6910 
6911 static void perf_event_free_bpf_prog(struct perf_event *event)
6912 {
6913 	struct bpf_prog *prog;
6914 
6915 	if (!event->tp_event)
6916 		return;
6917 
6918 	prog = event->tp_event->prog;
6919 	if (prog) {
6920 		event->tp_event->prog = NULL;
6921 		bpf_prog_put(prog);
6922 	}
6923 }
6924 
6925 #else
6926 
6927 static inline void perf_tp_register(void)
6928 {
6929 }
6930 
6931 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6932 {
6933 	return -ENOENT;
6934 }
6935 
6936 static void perf_event_free_filter(struct perf_event *event)
6937 {
6938 }
6939 
6940 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6941 {
6942 	return -ENOENT;
6943 }
6944 
6945 static void perf_event_free_bpf_prog(struct perf_event *event)
6946 {
6947 }
6948 #endif /* CONFIG_EVENT_TRACING */
6949 
6950 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6951 void perf_bp_event(struct perf_event *bp, void *data)
6952 {
6953 	struct perf_sample_data sample;
6954 	struct pt_regs *regs = data;
6955 
6956 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6957 
6958 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6959 		perf_swevent_event(bp, 1, &sample, regs);
6960 }
6961 #endif
6962 
6963 /*
6964  * hrtimer based swevent callback
6965  */
6966 
6967 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6968 {
6969 	enum hrtimer_restart ret = HRTIMER_RESTART;
6970 	struct perf_sample_data data;
6971 	struct pt_regs *regs;
6972 	struct perf_event *event;
6973 	u64 period;
6974 
6975 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6976 
6977 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6978 		return HRTIMER_NORESTART;
6979 
6980 	event->pmu->read(event);
6981 
6982 	perf_sample_data_init(&data, 0, event->hw.last_period);
6983 	regs = get_irq_regs();
6984 
6985 	if (regs && !perf_exclude_event(event, regs)) {
6986 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6987 			if (__perf_event_overflow(event, 1, &data, regs))
6988 				ret = HRTIMER_NORESTART;
6989 	}
6990 
6991 	period = max_t(u64, 10000, event->hw.sample_period);
6992 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6993 
6994 	return ret;
6995 }
6996 
6997 static void perf_swevent_start_hrtimer(struct perf_event *event)
6998 {
6999 	struct hw_perf_event *hwc = &event->hw;
7000 	s64 period;
7001 
7002 	if (!is_sampling_event(event))
7003 		return;
7004 
7005 	period = local64_read(&hwc->period_left);
7006 	if (period) {
7007 		if (period < 0)
7008 			period = 10000;
7009 
7010 		local64_set(&hwc->period_left, 0);
7011 	} else {
7012 		period = max_t(u64, 10000, hwc->sample_period);
7013 	}
7014 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7015 		      HRTIMER_MODE_REL_PINNED);
7016 }
7017 
7018 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7019 {
7020 	struct hw_perf_event *hwc = &event->hw;
7021 
7022 	if (is_sampling_event(event)) {
7023 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7024 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7025 
7026 		hrtimer_cancel(&hwc->hrtimer);
7027 	}
7028 }
7029 
7030 static void perf_swevent_init_hrtimer(struct perf_event *event)
7031 {
7032 	struct hw_perf_event *hwc = &event->hw;
7033 
7034 	if (!is_sampling_event(event))
7035 		return;
7036 
7037 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7038 	hwc->hrtimer.function = perf_swevent_hrtimer;
7039 
7040 	/*
7041 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7042 	 * mapping and avoid the whole period adjust feedback stuff.
7043 	 */
7044 	if (event->attr.freq) {
7045 		long freq = event->attr.sample_freq;
7046 
7047 		event->attr.sample_period = NSEC_PER_SEC / freq;
7048 		hwc->sample_period = event->attr.sample_period;
7049 		local64_set(&hwc->period_left, hwc->sample_period);
7050 		hwc->last_period = hwc->sample_period;
7051 		event->attr.freq = 0;
7052 	}
7053 }
7054 
7055 /*
7056  * Software event: cpu wall time clock
7057  */
7058 
7059 static void cpu_clock_event_update(struct perf_event *event)
7060 {
7061 	s64 prev;
7062 	u64 now;
7063 
7064 	now = local_clock();
7065 	prev = local64_xchg(&event->hw.prev_count, now);
7066 	local64_add(now - prev, &event->count);
7067 }
7068 
7069 static void cpu_clock_event_start(struct perf_event *event, int flags)
7070 {
7071 	local64_set(&event->hw.prev_count, local_clock());
7072 	perf_swevent_start_hrtimer(event);
7073 }
7074 
7075 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7076 {
7077 	perf_swevent_cancel_hrtimer(event);
7078 	cpu_clock_event_update(event);
7079 }
7080 
7081 static int cpu_clock_event_add(struct perf_event *event, int flags)
7082 {
7083 	if (flags & PERF_EF_START)
7084 		cpu_clock_event_start(event, flags);
7085 	perf_event_update_userpage(event);
7086 
7087 	return 0;
7088 }
7089 
7090 static void cpu_clock_event_del(struct perf_event *event, int flags)
7091 {
7092 	cpu_clock_event_stop(event, flags);
7093 }
7094 
7095 static void cpu_clock_event_read(struct perf_event *event)
7096 {
7097 	cpu_clock_event_update(event);
7098 }
7099 
7100 static int cpu_clock_event_init(struct perf_event *event)
7101 {
7102 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7103 		return -ENOENT;
7104 
7105 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7106 		return -ENOENT;
7107 
7108 	/*
7109 	 * no branch sampling for software events
7110 	 */
7111 	if (has_branch_stack(event))
7112 		return -EOPNOTSUPP;
7113 
7114 	perf_swevent_init_hrtimer(event);
7115 
7116 	return 0;
7117 }
7118 
7119 static struct pmu perf_cpu_clock = {
7120 	.task_ctx_nr	= perf_sw_context,
7121 
7122 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7123 
7124 	.event_init	= cpu_clock_event_init,
7125 	.add		= cpu_clock_event_add,
7126 	.del		= cpu_clock_event_del,
7127 	.start		= cpu_clock_event_start,
7128 	.stop		= cpu_clock_event_stop,
7129 	.read		= cpu_clock_event_read,
7130 };
7131 
7132 /*
7133  * Software event: task time clock
7134  */
7135 
7136 static void task_clock_event_update(struct perf_event *event, u64 now)
7137 {
7138 	u64 prev;
7139 	s64 delta;
7140 
7141 	prev = local64_xchg(&event->hw.prev_count, now);
7142 	delta = now - prev;
7143 	local64_add(delta, &event->count);
7144 }
7145 
7146 static void task_clock_event_start(struct perf_event *event, int flags)
7147 {
7148 	local64_set(&event->hw.prev_count, event->ctx->time);
7149 	perf_swevent_start_hrtimer(event);
7150 }
7151 
7152 static void task_clock_event_stop(struct perf_event *event, int flags)
7153 {
7154 	perf_swevent_cancel_hrtimer(event);
7155 	task_clock_event_update(event, event->ctx->time);
7156 }
7157 
7158 static int task_clock_event_add(struct perf_event *event, int flags)
7159 {
7160 	if (flags & PERF_EF_START)
7161 		task_clock_event_start(event, flags);
7162 	perf_event_update_userpage(event);
7163 
7164 	return 0;
7165 }
7166 
7167 static void task_clock_event_del(struct perf_event *event, int flags)
7168 {
7169 	task_clock_event_stop(event, PERF_EF_UPDATE);
7170 }
7171 
7172 static void task_clock_event_read(struct perf_event *event)
7173 {
7174 	u64 now = perf_clock();
7175 	u64 delta = now - event->ctx->timestamp;
7176 	u64 time = event->ctx->time + delta;
7177 
7178 	task_clock_event_update(event, time);
7179 }
7180 
7181 static int task_clock_event_init(struct perf_event *event)
7182 {
7183 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7184 		return -ENOENT;
7185 
7186 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7187 		return -ENOENT;
7188 
7189 	/*
7190 	 * no branch sampling for software events
7191 	 */
7192 	if (has_branch_stack(event))
7193 		return -EOPNOTSUPP;
7194 
7195 	perf_swevent_init_hrtimer(event);
7196 
7197 	return 0;
7198 }
7199 
7200 static struct pmu perf_task_clock = {
7201 	.task_ctx_nr	= perf_sw_context,
7202 
7203 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7204 
7205 	.event_init	= task_clock_event_init,
7206 	.add		= task_clock_event_add,
7207 	.del		= task_clock_event_del,
7208 	.start		= task_clock_event_start,
7209 	.stop		= task_clock_event_stop,
7210 	.read		= task_clock_event_read,
7211 };
7212 
7213 static void perf_pmu_nop_void(struct pmu *pmu)
7214 {
7215 }
7216 
7217 static int perf_pmu_nop_int(struct pmu *pmu)
7218 {
7219 	return 0;
7220 }
7221 
7222 static void perf_pmu_start_txn(struct pmu *pmu)
7223 {
7224 	perf_pmu_disable(pmu);
7225 }
7226 
7227 static int perf_pmu_commit_txn(struct pmu *pmu)
7228 {
7229 	perf_pmu_enable(pmu);
7230 	return 0;
7231 }
7232 
7233 static void perf_pmu_cancel_txn(struct pmu *pmu)
7234 {
7235 	perf_pmu_enable(pmu);
7236 }
7237 
7238 static int perf_event_idx_default(struct perf_event *event)
7239 {
7240 	return 0;
7241 }
7242 
7243 /*
7244  * Ensures all contexts with the same task_ctx_nr have the same
7245  * pmu_cpu_context too.
7246  */
7247 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7248 {
7249 	struct pmu *pmu;
7250 
7251 	if (ctxn < 0)
7252 		return NULL;
7253 
7254 	list_for_each_entry(pmu, &pmus, entry) {
7255 		if (pmu->task_ctx_nr == ctxn)
7256 			return pmu->pmu_cpu_context;
7257 	}
7258 
7259 	return NULL;
7260 }
7261 
7262 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7263 {
7264 	int cpu;
7265 
7266 	for_each_possible_cpu(cpu) {
7267 		struct perf_cpu_context *cpuctx;
7268 
7269 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7270 
7271 		if (cpuctx->unique_pmu == old_pmu)
7272 			cpuctx->unique_pmu = pmu;
7273 	}
7274 }
7275 
7276 static void free_pmu_context(struct pmu *pmu)
7277 {
7278 	struct pmu *i;
7279 
7280 	mutex_lock(&pmus_lock);
7281 	/*
7282 	 * Like a real lame refcount.
7283 	 */
7284 	list_for_each_entry(i, &pmus, entry) {
7285 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7286 			update_pmu_context(i, pmu);
7287 			goto out;
7288 		}
7289 	}
7290 
7291 	free_percpu(pmu->pmu_cpu_context);
7292 out:
7293 	mutex_unlock(&pmus_lock);
7294 }
7295 static struct idr pmu_idr;
7296 
7297 static ssize_t
7298 type_show(struct device *dev, struct device_attribute *attr, char *page)
7299 {
7300 	struct pmu *pmu = dev_get_drvdata(dev);
7301 
7302 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7303 }
7304 static DEVICE_ATTR_RO(type);
7305 
7306 static ssize_t
7307 perf_event_mux_interval_ms_show(struct device *dev,
7308 				struct device_attribute *attr,
7309 				char *page)
7310 {
7311 	struct pmu *pmu = dev_get_drvdata(dev);
7312 
7313 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7314 }
7315 
7316 static DEFINE_MUTEX(mux_interval_mutex);
7317 
7318 static ssize_t
7319 perf_event_mux_interval_ms_store(struct device *dev,
7320 				 struct device_attribute *attr,
7321 				 const char *buf, size_t count)
7322 {
7323 	struct pmu *pmu = dev_get_drvdata(dev);
7324 	int timer, cpu, ret;
7325 
7326 	ret = kstrtoint(buf, 0, &timer);
7327 	if (ret)
7328 		return ret;
7329 
7330 	if (timer < 1)
7331 		return -EINVAL;
7332 
7333 	/* same value, noting to do */
7334 	if (timer == pmu->hrtimer_interval_ms)
7335 		return count;
7336 
7337 	mutex_lock(&mux_interval_mutex);
7338 	pmu->hrtimer_interval_ms = timer;
7339 
7340 	/* update all cpuctx for this PMU */
7341 	get_online_cpus();
7342 	for_each_online_cpu(cpu) {
7343 		struct perf_cpu_context *cpuctx;
7344 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7345 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7346 
7347 		cpu_function_call(cpu,
7348 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7349 	}
7350 	put_online_cpus();
7351 	mutex_unlock(&mux_interval_mutex);
7352 
7353 	return count;
7354 }
7355 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7356 
7357 static struct attribute *pmu_dev_attrs[] = {
7358 	&dev_attr_type.attr,
7359 	&dev_attr_perf_event_mux_interval_ms.attr,
7360 	NULL,
7361 };
7362 ATTRIBUTE_GROUPS(pmu_dev);
7363 
7364 static int pmu_bus_running;
7365 static struct bus_type pmu_bus = {
7366 	.name		= "event_source",
7367 	.dev_groups	= pmu_dev_groups,
7368 };
7369 
7370 static void pmu_dev_release(struct device *dev)
7371 {
7372 	kfree(dev);
7373 }
7374 
7375 static int pmu_dev_alloc(struct pmu *pmu)
7376 {
7377 	int ret = -ENOMEM;
7378 
7379 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7380 	if (!pmu->dev)
7381 		goto out;
7382 
7383 	pmu->dev->groups = pmu->attr_groups;
7384 	device_initialize(pmu->dev);
7385 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7386 	if (ret)
7387 		goto free_dev;
7388 
7389 	dev_set_drvdata(pmu->dev, pmu);
7390 	pmu->dev->bus = &pmu_bus;
7391 	pmu->dev->release = pmu_dev_release;
7392 	ret = device_add(pmu->dev);
7393 	if (ret)
7394 		goto free_dev;
7395 
7396 out:
7397 	return ret;
7398 
7399 free_dev:
7400 	put_device(pmu->dev);
7401 	goto out;
7402 }
7403 
7404 static struct lock_class_key cpuctx_mutex;
7405 static struct lock_class_key cpuctx_lock;
7406 
7407 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7408 {
7409 	int cpu, ret;
7410 
7411 	mutex_lock(&pmus_lock);
7412 	ret = -ENOMEM;
7413 	pmu->pmu_disable_count = alloc_percpu(int);
7414 	if (!pmu->pmu_disable_count)
7415 		goto unlock;
7416 
7417 	pmu->type = -1;
7418 	if (!name)
7419 		goto skip_type;
7420 	pmu->name = name;
7421 
7422 	if (type < 0) {
7423 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7424 		if (type < 0) {
7425 			ret = type;
7426 			goto free_pdc;
7427 		}
7428 	}
7429 	pmu->type = type;
7430 
7431 	if (pmu_bus_running) {
7432 		ret = pmu_dev_alloc(pmu);
7433 		if (ret)
7434 			goto free_idr;
7435 	}
7436 
7437 skip_type:
7438 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7439 	if (pmu->pmu_cpu_context)
7440 		goto got_cpu_context;
7441 
7442 	ret = -ENOMEM;
7443 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7444 	if (!pmu->pmu_cpu_context)
7445 		goto free_dev;
7446 
7447 	for_each_possible_cpu(cpu) {
7448 		struct perf_cpu_context *cpuctx;
7449 
7450 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7451 		__perf_event_init_context(&cpuctx->ctx);
7452 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7453 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7454 		cpuctx->ctx.pmu = pmu;
7455 
7456 		__perf_mux_hrtimer_init(cpuctx, cpu);
7457 
7458 		cpuctx->unique_pmu = pmu;
7459 	}
7460 
7461 got_cpu_context:
7462 	if (!pmu->start_txn) {
7463 		if (pmu->pmu_enable) {
7464 			/*
7465 			 * If we have pmu_enable/pmu_disable calls, install
7466 			 * transaction stubs that use that to try and batch
7467 			 * hardware accesses.
7468 			 */
7469 			pmu->start_txn  = perf_pmu_start_txn;
7470 			pmu->commit_txn = perf_pmu_commit_txn;
7471 			pmu->cancel_txn = perf_pmu_cancel_txn;
7472 		} else {
7473 			pmu->start_txn  = perf_pmu_nop_void;
7474 			pmu->commit_txn = perf_pmu_nop_int;
7475 			pmu->cancel_txn = perf_pmu_nop_void;
7476 		}
7477 	}
7478 
7479 	if (!pmu->pmu_enable) {
7480 		pmu->pmu_enable  = perf_pmu_nop_void;
7481 		pmu->pmu_disable = perf_pmu_nop_void;
7482 	}
7483 
7484 	if (!pmu->event_idx)
7485 		pmu->event_idx = perf_event_idx_default;
7486 
7487 	list_add_rcu(&pmu->entry, &pmus);
7488 	atomic_set(&pmu->exclusive_cnt, 0);
7489 	ret = 0;
7490 unlock:
7491 	mutex_unlock(&pmus_lock);
7492 
7493 	return ret;
7494 
7495 free_dev:
7496 	device_del(pmu->dev);
7497 	put_device(pmu->dev);
7498 
7499 free_idr:
7500 	if (pmu->type >= PERF_TYPE_MAX)
7501 		idr_remove(&pmu_idr, pmu->type);
7502 
7503 free_pdc:
7504 	free_percpu(pmu->pmu_disable_count);
7505 	goto unlock;
7506 }
7507 EXPORT_SYMBOL_GPL(perf_pmu_register);
7508 
7509 void perf_pmu_unregister(struct pmu *pmu)
7510 {
7511 	mutex_lock(&pmus_lock);
7512 	list_del_rcu(&pmu->entry);
7513 	mutex_unlock(&pmus_lock);
7514 
7515 	/*
7516 	 * We dereference the pmu list under both SRCU and regular RCU, so
7517 	 * synchronize against both of those.
7518 	 */
7519 	synchronize_srcu(&pmus_srcu);
7520 	synchronize_rcu();
7521 
7522 	free_percpu(pmu->pmu_disable_count);
7523 	if (pmu->type >= PERF_TYPE_MAX)
7524 		idr_remove(&pmu_idr, pmu->type);
7525 	device_del(pmu->dev);
7526 	put_device(pmu->dev);
7527 	free_pmu_context(pmu);
7528 }
7529 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7530 
7531 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7532 {
7533 	struct perf_event_context *ctx = NULL;
7534 	int ret;
7535 
7536 	if (!try_module_get(pmu->module))
7537 		return -ENODEV;
7538 
7539 	if (event->group_leader != event) {
7540 		/*
7541 		 * This ctx->mutex can nest when we're called through
7542 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7543 		 */
7544 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7545 						 SINGLE_DEPTH_NESTING);
7546 		BUG_ON(!ctx);
7547 	}
7548 
7549 	event->pmu = pmu;
7550 	ret = pmu->event_init(event);
7551 
7552 	if (ctx)
7553 		perf_event_ctx_unlock(event->group_leader, ctx);
7554 
7555 	if (ret)
7556 		module_put(pmu->module);
7557 
7558 	return ret;
7559 }
7560 
7561 struct pmu *perf_init_event(struct perf_event *event)
7562 {
7563 	struct pmu *pmu = NULL;
7564 	int idx;
7565 	int ret;
7566 
7567 	idx = srcu_read_lock(&pmus_srcu);
7568 
7569 	rcu_read_lock();
7570 	pmu = idr_find(&pmu_idr, event->attr.type);
7571 	rcu_read_unlock();
7572 	if (pmu) {
7573 		ret = perf_try_init_event(pmu, event);
7574 		if (ret)
7575 			pmu = ERR_PTR(ret);
7576 		goto unlock;
7577 	}
7578 
7579 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7580 		ret = perf_try_init_event(pmu, event);
7581 		if (!ret)
7582 			goto unlock;
7583 
7584 		if (ret != -ENOENT) {
7585 			pmu = ERR_PTR(ret);
7586 			goto unlock;
7587 		}
7588 	}
7589 	pmu = ERR_PTR(-ENOENT);
7590 unlock:
7591 	srcu_read_unlock(&pmus_srcu, idx);
7592 
7593 	return pmu;
7594 }
7595 
7596 static void account_event_cpu(struct perf_event *event, int cpu)
7597 {
7598 	if (event->parent)
7599 		return;
7600 
7601 	if (is_cgroup_event(event))
7602 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7603 }
7604 
7605 static void account_event(struct perf_event *event)
7606 {
7607 	if (event->parent)
7608 		return;
7609 
7610 	if (event->attach_state & PERF_ATTACH_TASK)
7611 		static_key_slow_inc(&perf_sched_events.key);
7612 	if (event->attr.mmap || event->attr.mmap_data)
7613 		atomic_inc(&nr_mmap_events);
7614 	if (event->attr.comm)
7615 		atomic_inc(&nr_comm_events);
7616 	if (event->attr.task)
7617 		atomic_inc(&nr_task_events);
7618 	if (event->attr.freq) {
7619 		if (atomic_inc_return(&nr_freq_events) == 1)
7620 			tick_nohz_full_kick_all();
7621 	}
7622 	if (event->attr.context_switch) {
7623 		atomic_inc(&nr_switch_events);
7624 		static_key_slow_inc(&perf_sched_events.key);
7625 	}
7626 	if (has_branch_stack(event))
7627 		static_key_slow_inc(&perf_sched_events.key);
7628 	if (is_cgroup_event(event))
7629 		static_key_slow_inc(&perf_sched_events.key);
7630 
7631 	account_event_cpu(event, event->cpu);
7632 }
7633 
7634 /*
7635  * Allocate and initialize a event structure
7636  */
7637 static struct perf_event *
7638 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7639 		 struct task_struct *task,
7640 		 struct perf_event *group_leader,
7641 		 struct perf_event *parent_event,
7642 		 perf_overflow_handler_t overflow_handler,
7643 		 void *context, int cgroup_fd)
7644 {
7645 	struct pmu *pmu;
7646 	struct perf_event *event;
7647 	struct hw_perf_event *hwc;
7648 	long err = -EINVAL;
7649 
7650 	if ((unsigned)cpu >= nr_cpu_ids) {
7651 		if (!task || cpu != -1)
7652 			return ERR_PTR(-EINVAL);
7653 	}
7654 
7655 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7656 	if (!event)
7657 		return ERR_PTR(-ENOMEM);
7658 
7659 	/*
7660 	 * Single events are their own group leaders, with an
7661 	 * empty sibling list:
7662 	 */
7663 	if (!group_leader)
7664 		group_leader = event;
7665 
7666 	mutex_init(&event->child_mutex);
7667 	INIT_LIST_HEAD(&event->child_list);
7668 
7669 	INIT_LIST_HEAD(&event->group_entry);
7670 	INIT_LIST_HEAD(&event->event_entry);
7671 	INIT_LIST_HEAD(&event->sibling_list);
7672 	INIT_LIST_HEAD(&event->rb_entry);
7673 	INIT_LIST_HEAD(&event->active_entry);
7674 	INIT_HLIST_NODE(&event->hlist_entry);
7675 
7676 
7677 	init_waitqueue_head(&event->waitq);
7678 	init_irq_work(&event->pending, perf_pending_event);
7679 
7680 	mutex_init(&event->mmap_mutex);
7681 
7682 	atomic_long_set(&event->refcount, 1);
7683 	event->cpu		= cpu;
7684 	event->attr		= *attr;
7685 	event->group_leader	= group_leader;
7686 	event->pmu		= NULL;
7687 	event->oncpu		= -1;
7688 
7689 	event->parent		= parent_event;
7690 
7691 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7692 	event->id		= atomic64_inc_return(&perf_event_id);
7693 
7694 	event->state		= PERF_EVENT_STATE_INACTIVE;
7695 
7696 	if (task) {
7697 		event->attach_state = PERF_ATTACH_TASK;
7698 		/*
7699 		 * XXX pmu::event_init needs to know what task to account to
7700 		 * and we cannot use the ctx information because we need the
7701 		 * pmu before we get a ctx.
7702 		 */
7703 		event->hw.target = task;
7704 	}
7705 
7706 	event->clock = &local_clock;
7707 	if (parent_event)
7708 		event->clock = parent_event->clock;
7709 
7710 	if (!overflow_handler && parent_event) {
7711 		overflow_handler = parent_event->overflow_handler;
7712 		context = parent_event->overflow_handler_context;
7713 	}
7714 
7715 	event->overflow_handler	= overflow_handler;
7716 	event->overflow_handler_context = context;
7717 
7718 	perf_event__state_init(event);
7719 
7720 	pmu = NULL;
7721 
7722 	hwc = &event->hw;
7723 	hwc->sample_period = attr->sample_period;
7724 	if (attr->freq && attr->sample_freq)
7725 		hwc->sample_period = 1;
7726 	hwc->last_period = hwc->sample_period;
7727 
7728 	local64_set(&hwc->period_left, hwc->sample_period);
7729 
7730 	/*
7731 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7732 	 */
7733 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7734 		goto err_ns;
7735 
7736 	if (!has_branch_stack(event))
7737 		event->attr.branch_sample_type = 0;
7738 
7739 	if (cgroup_fd != -1) {
7740 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7741 		if (err)
7742 			goto err_ns;
7743 	}
7744 
7745 	pmu = perf_init_event(event);
7746 	if (!pmu)
7747 		goto err_ns;
7748 	else if (IS_ERR(pmu)) {
7749 		err = PTR_ERR(pmu);
7750 		goto err_ns;
7751 	}
7752 
7753 	err = exclusive_event_init(event);
7754 	if (err)
7755 		goto err_pmu;
7756 
7757 	if (!event->parent) {
7758 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7759 			err = get_callchain_buffers();
7760 			if (err)
7761 				goto err_per_task;
7762 		}
7763 	}
7764 
7765 	return event;
7766 
7767 err_per_task:
7768 	exclusive_event_destroy(event);
7769 
7770 err_pmu:
7771 	if (event->destroy)
7772 		event->destroy(event);
7773 	module_put(pmu->module);
7774 err_ns:
7775 	if (is_cgroup_event(event))
7776 		perf_detach_cgroup(event);
7777 	if (event->ns)
7778 		put_pid_ns(event->ns);
7779 	kfree(event);
7780 
7781 	return ERR_PTR(err);
7782 }
7783 
7784 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7785 			  struct perf_event_attr *attr)
7786 {
7787 	u32 size;
7788 	int ret;
7789 
7790 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7791 		return -EFAULT;
7792 
7793 	/*
7794 	 * zero the full structure, so that a short copy will be nice.
7795 	 */
7796 	memset(attr, 0, sizeof(*attr));
7797 
7798 	ret = get_user(size, &uattr->size);
7799 	if (ret)
7800 		return ret;
7801 
7802 	if (size > PAGE_SIZE)	/* silly large */
7803 		goto err_size;
7804 
7805 	if (!size)		/* abi compat */
7806 		size = PERF_ATTR_SIZE_VER0;
7807 
7808 	if (size < PERF_ATTR_SIZE_VER0)
7809 		goto err_size;
7810 
7811 	/*
7812 	 * If we're handed a bigger struct than we know of,
7813 	 * ensure all the unknown bits are 0 - i.e. new
7814 	 * user-space does not rely on any kernel feature
7815 	 * extensions we dont know about yet.
7816 	 */
7817 	if (size > sizeof(*attr)) {
7818 		unsigned char __user *addr;
7819 		unsigned char __user *end;
7820 		unsigned char val;
7821 
7822 		addr = (void __user *)uattr + sizeof(*attr);
7823 		end  = (void __user *)uattr + size;
7824 
7825 		for (; addr < end; addr++) {
7826 			ret = get_user(val, addr);
7827 			if (ret)
7828 				return ret;
7829 			if (val)
7830 				goto err_size;
7831 		}
7832 		size = sizeof(*attr);
7833 	}
7834 
7835 	ret = copy_from_user(attr, uattr, size);
7836 	if (ret)
7837 		return -EFAULT;
7838 
7839 	if (attr->__reserved_1)
7840 		return -EINVAL;
7841 
7842 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7843 		return -EINVAL;
7844 
7845 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7846 		return -EINVAL;
7847 
7848 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7849 		u64 mask = attr->branch_sample_type;
7850 
7851 		/* only using defined bits */
7852 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7853 			return -EINVAL;
7854 
7855 		/* at least one branch bit must be set */
7856 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7857 			return -EINVAL;
7858 
7859 		/* propagate priv level, when not set for branch */
7860 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7861 
7862 			/* exclude_kernel checked on syscall entry */
7863 			if (!attr->exclude_kernel)
7864 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7865 
7866 			if (!attr->exclude_user)
7867 				mask |= PERF_SAMPLE_BRANCH_USER;
7868 
7869 			if (!attr->exclude_hv)
7870 				mask |= PERF_SAMPLE_BRANCH_HV;
7871 			/*
7872 			 * adjust user setting (for HW filter setup)
7873 			 */
7874 			attr->branch_sample_type = mask;
7875 		}
7876 		/* privileged levels capture (kernel, hv): check permissions */
7877 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7878 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7879 			return -EACCES;
7880 	}
7881 
7882 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7883 		ret = perf_reg_validate(attr->sample_regs_user);
7884 		if (ret)
7885 			return ret;
7886 	}
7887 
7888 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7889 		if (!arch_perf_have_user_stack_dump())
7890 			return -ENOSYS;
7891 
7892 		/*
7893 		 * We have __u32 type for the size, but so far
7894 		 * we can only use __u16 as maximum due to the
7895 		 * __u16 sample size limit.
7896 		 */
7897 		if (attr->sample_stack_user >= USHRT_MAX)
7898 			ret = -EINVAL;
7899 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7900 			ret = -EINVAL;
7901 	}
7902 
7903 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7904 		ret = perf_reg_validate(attr->sample_regs_intr);
7905 out:
7906 	return ret;
7907 
7908 err_size:
7909 	put_user(sizeof(*attr), &uattr->size);
7910 	ret = -E2BIG;
7911 	goto out;
7912 }
7913 
7914 static int
7915 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7916 {
7917 	struct ring_buffer *rb = NULL;
7918 	int ret = -EINVAL;
7919 
7920 	if (!output_event)
7921 		goto set;
7922 
7923 	/* don't allow circular references */
7924 	if (event == output_event)
7925 		goto out;
7926 
7927 	/*
7928 	 * Don't allow cross-cpu buffers
7929 	 */
7930 	if (output_event->cpu != event->cpu)
7931 		goto out;
7932 
7933 	/*
7934 	 * If its not a per-cpu rb, it must be the same task.
7935 	 */
7936 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7937 		goto out;
7938 
7939 	/*
7940 	 * Mixing clocks in the same buffer is trouble you don't need.
7941 	 */
7942 	if (output_event->clock != event->clock)
7943 		goto out;
7944 
7945 	/*
7946 	 * If both events generate aux data, they must be on the same PMU
7947 	 */
7948 	if (has_aux(event) && has_aux(output_event) &&
7949 	    event->pmu != output_event->pmu)
7950 		goto out;
7951 
7952 set:
7953 	mutex_lock(&event->mmap_mutex);
7954 	/* Can't redirect output if we've got an active mmap() */
7955 	if (atomic_read(&event->mmap_count))
7956 		goto unlock;
7957 
7958 	if (output_event) {
7959 		/* get the rb we want to redirect to */
7960 		rb = ring_buffer_get(output_event);
7961 		if (!rb)
7962 			goto unlock;
7963 	}
7964 
7965 	ring_buffer_attach(event, rb);
7966 
7967 	ret = 0;
7968 unlock:
7969 	mutex_unlock(&event->mmap_mutex);
7970 
7971 out:
7972 	return ret;
7973 }
7974 
7975 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7976 {
7977 	if (b < a)
7978 		swap(a, b);
7979 
7980 	mutex_lock(a);
7981 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7982 }
7983 
7984 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7985 {
7986 	bool nmi_safe = false;
7987 
7988 	switch (clk_id) {
7989 	case CLOCK_MONOTONIC:
7990 		event->clock = &ktime_get_mono_fast_ns;
7991 		nmi_safe = true;
7992 		break;
7993 
7994 	case CLOCK_MONOTONIC_RAW:
7995 		event->clock = &ktime_get_raw_fast_ns;
7996 		nmi_safe = true;
7997 		break;
7998 
7999 	case CLOCK_REALTIME:
8000 		event->clock = &ktime_get_real_ns;
8001 		break;
8002 
8003 	case CLOCK_BOOTTIME:
8004 		event->clock = &ktime_get_boot_ns;
8005 		break;
8006 
8007 	case CLOCK_TAI:
8008 		event->clock = &ktime_get_tai_ns;
8009 		break;
8010 
8011 	default:
8012 		return -EINVAL;
8013 	}
8014 
8015 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8016 		return -EINVAL;
8017 
8018 	return 0;
8019 }
8020 
8021 /**
8022  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8023  *
8024  * @attr_uptr:	event_id type attributes for monitoring/sampling
8025  * @pid:		target pid
8026  * @cpu:		target cpu
8027  * @group_fd:		group leader event fd
8028  */
8029 SYSCALL_DEFINE5(perf_event_open,
8030 		struct perf_event_attr __user *, attr_uptr,
8031 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8032 {
8033 	struct perf_event *group_leader = NULL, *output_event = NULL;
8034 	struct perf_event *event, *sibling;
8035 	struct perf_event_attr attr;
8036 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8037 	struct file *event_file = NULL;
8038 	struct fd group = {NULL, 0};
8039 	struct task_struct *task = NULL;
8040 	struct pmu *pmu;
8041 	int event_fd;
8042 	int move_group = 0;
8043 	int err;
8044 	int f_flags = O_RDWR;
8045 	int cgroup_fd = -1;
8046 
8047 	/* for future expandability... */
8048 	if (flags & ~PERF_FLAG_ALL)
8049 		return -EINVAL;
8050 
8051 	err = perf_copy_attr(attr_uptr, &attr);
8052 	if (err)
8053 		return err;
8054 
8055 	if (!attr.exclude_kernel) {
8056 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8057 			return -EACCES;
8058 	}
8059 
8060 	if (attr.freq) {
8061 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8062 			return -EINVAL;
8063 	} else {
8064 		if (attr.sample_period & (1ULL << 63))
8065 			return -EINVAL;
8066 	}
8067 
8068 	/*
8069 	 * In cgroup mode, the pid argument is used to pass the fd
8070 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8071 	 * designates the cpu on which to monitor threads from that
8072 	 * cgroup.
8073 	 */
8074 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8075 		return -EINVAL;
8076 
8077 	if (flags & PERF_FLAG_FD_CLOEXEC)
8078 		f_flags |= O_CLOEXEC;
8079 
8080 	event_fd = get_unused_fd_flags(f_flags);
8081 	if (event_fd < 0)
8082 		return event_fd;
8083 
8084 	if (group_fd != -1) {
8085 		err = perf_fget_light(group_fd, &group);
8086 		if (err)
8087 			goto err_fd;
8088 		group_leader = group.file->private_data;
8089 		if (flags & PERF_FLAG_FD_OUTPUT)
8090 			output_event = group_leader;
8091 		if (flags & PERF_FLAG_FD_NO_GROUP)
8092 			group_leader = NULL;
8093 	}
8094 
8095 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8096 		task = find_lively_task_by_vpid(pid);
8097 		if (IS_ERR(task)) {
8098 			err = PTR_ERR(task);
8099 			goto err_group_fd;
8100 		}
8101 	}
8102 
8103 	if (task && group_leader &&
8104 	    group_leader->attr.inherit != attr.inherit) {
8105 		err = -EINVAL;
8106 		goto err_task;
8107 	}
8108 
8109 	get_online_cpus();
8110 
8111 	if (flags & PERF_FLAG_PID_CGROUP)
8112 		cgroup_fd = pid;
8113 
8114 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8115 				 NULL, NULL, cgroup_fd);
8116 	if (IS_ERR(event)) {
8117 		err = PTR_ERR(event);
8118 		goto err_cpus;
8119 	}
8120 
8121 	if (is_sampling_event(event)) {
8122 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8123 			err = -ENOTSUPP;
8124 			goto err_alloc;
8125 		}
8126 	}
8127 
8128 	account_event(event);
8129 
8130 	/*
8131 	 * Special case software events and allow them to be part of
8132 	 * any hardware group.
8133 	 */
8134 	pmu = event->pmu;
8135 
8136 	if (attr.use_clockid) {
8137 		err = perf_event_set_clock(event, attr.clockid);
8138 		if (err)
8139 			goto err_alloc;
8140 	}
8141 
8142 	if (group_leader &&
8143 	    (is_software_event(event) != is_software_event(group_leader))) {
8144 		if (is_software_event(event)) {
8145 			/*
8146 			 * If event and group_leader are not both a software
8147 			 * event, and event is, then group leader is not.
8148 			 *
8149 			 * Allow the addition of software events to !software
8150 			 * groups, this is safe because software events never
8151 			 * fail to schedule.
8152 			 */
8153 			pmu = group_leader->pmu;
8154 		} else if (is_software_event(group_leader) &&
8155 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8156 			/*
8157 			 * In case the group is a pure software group, and we
8158 			 * try to add a hardware event, move the whole group to
8159 			 * the hardware context.
8160 			 */
8161 			move_group = 1;
8162 		}
8163 	}
8164 
8165 	/*
8166 	 * Get the target context (task or percpu):
8167 	 */
8168 	ctx = find_get_context(pmu, task, event);
8169 	if (IS_ERR(ctx)) {
8170 		err = PTR_ERR(ctx);
8171 		goto err_alloc;
8172 	}
8173 
8174 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8175 		err = -EBUSY;
8176 		goto err_context;
8177 	}
8178 
8179 	if (task) {
8180 		put_task_struct(task);
8181 		task = NULL;
8182 	}
8183 
8184 	/*
8185 	 * Look up the group leader (we will attach this event to it):
8186 	 */
8187 	if (group_leader) {
8188 		err = -EINVAL;
8189 
8190 		/*
8191 		 * Do not allow a recursive hierarchy (this new sibling
8192 		 * becoming part of another group-sibling):
8193 		 */
8194 		if (group_leader->group_leader != group_leader)
8195 			goto err_context;
8196 
8197 		/* All events in a group should have the same clock */
8198 		if (group_leader->clock != event->clock)
8199 			goto err_context;
8200 
8201 		/*
8202 		 * Do not allow to attach to a group in a different
8203 		 * task or CPU context:
8204 		 */
8205 		if (move_group) {
8206 			/*
8207 			 * Make sure we're both on the same task, or both
8208 			 * per-cpu events.
8209 			 */
8210 			if (group_leader->ctx->task != ctx->task)
8211 				goto err_context;
8212 
8213 			/*
8214 			 * Make sure we're both events for the same CPU;
8215 			 * grouping events for different CPUs is broken; since
8216 			 * you can never concurrently schedule them anyhow.
8217 			 */
8218 			if (group_leader->cpu != event->cpu)
8219 				goto err_context;
8220 		} else {
8221 			if (group_leader->ctx != ctx)
8222 				goto err_context;
8223 		}
8224 
8225 		/*
8226 		 * Only a group leader can be exclusive or pinned
8227 		 */
8228 		if (attr.exclusive || attr.pinned)
8229 			goto err_context;
8230 	}
8231 
8232 	if (output_event) {
8233 		err = perf_event_set_output(event, output_event);
8234 		if (err)
8235 			goto err_context;
8236 	}
8237 
8238 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8239 					f_flags);
8240 	if (IS_ERR(event_file)) {
8241 		err = PTR_ERR(event_file);
8242 		goto err_context;
8243 	}
8244 
8245 	if (move_group) {
8246 		gctx = group_leader->ctx;
8247 
8248 		/*
8249 		 * See perf_event_ctx_lock() for comments on the details
8250 		 * of swizzling perf_event::ctx.
8251 		 */
8252 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8253 
8254 		perf_remove_from_context(group_leader, false);
8255 
8256 		list_for_each_entry(sibling, &group_leader->sibling_list,
8257 				    group_entry) {
8258 			perf_remove_from_context(sibling, false);
8259 			put_ctx(gctx);
8260 		}
8261 	} else {
8262 		mutex_lock(&ctx->mutex);
8263 	}
8264 
8265 	WARN_ON_ONCE(ctx->parent_ctx);
8266 
8267 	if (move_group) {
8268 		/*
8269 		 * Wait for everybody to stop referencing the events through
8270 		 * the old lists, before installing it on new lists.
8271 		 */
8272 		synchronize_rcu();
8273 
8274 		/*
8275 		 * Install the group siblings before the group leader.
8276 		 *
8277 		 * Because a group leader will try and install the entire group
8278 		 * (through the sibling list, which is still in-tact), we can
8279 		 * end up with siblings installed in the wrong context.
8280 		 *
8281 		 * By installing siblings first we NO-OP because they're not
8282 		 * reachable through the group lists.
8283 		 */
8284 		list_for_each_entry(sibling, &group_leader->sibling_list,
8285 				    group_entry) {
8286 			perf_event__state_init(sibling);
8287 			perf_install_in_context(ctx, sibling, sibling->cpu);
8288 			get_ctx(ctx);
8289 		}
8290 
8291 		/*
8292 		 * Removing from the context ends up with disabled
8293 		 * event. What we want here is event in the initial
8294 		 * startup state, ready to be add into new context.
8295 		 */
8296 		perf_event__state_init(group_leader);
8297 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8298 		get_ctx(ctx);
8299 	}
8300 
8301 	if (!exclusive_event_installable(event, ctx)) {
8302 		err = -EBUSY;
8303 		mutex_unlock(&ctx->mutex);
8304 		fput(event_file);
8305 		goto err_context;
8306 	}
8307 
8308 	perf_install_in_context(ctx, event, event->cpu);
8309 	perf_unpin_context(ctx);
8310 
8311 	if (move_group) {
8312 		mutex_unlock(&gctx->mutex);
8313 		put_ctx(gctx);
8314 	}
8315 	mutex_unlock(&ctx->mutex);
8316 
8317 	put_online_cpus();
8318 
8319 	event->owner = current;
8320 
8321 	mutex_lock(&current->perf_event_mutex);
8322 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8323 	mutex_unlock(&current->perf_event_mutex);
8324 
8325 	/*
8326 	 * Precalculate sample_data sizes
8327 	 */
8328 	perf_event__header_size(event);
8329 	perf_event__id_header_size(event);
8330 
8331 	/*
8332 	 * Drop the reference on the group_event after placing the
8333 	 * new event on the sibling_list. This ensures destruction
8334 	 * of the group leader will find the pointer to itself in
8335 	 * perf_group_detach().
8336 	 */
8337 	fdput(group);
8338 	fd_install(event_fd, event_file);
8339 	return event_fd;
8340 
8341 err_context:
8342 	perf_unpin_context(ctx);
8343 	put_ctx(ctx);
8344 err_alloc:
8345 	free_event(event);
8346 err_cpus:
8347 	put_online_cpus();
8348 err_task:
8349 	if (task)
8350 		put_task_struct(task);
8351 err_group_fd:
8352 	fdput(group);
8353 err_fd:
8354 	put_unused_fd(event_fd);
8355 	return err;
8356 }
8357 
8358 /**
8359  * perf_event_create_kernel_counter
8360  *
8361  * @attr: attributes of the counter to create
8362  * @cpu: cpu in which the counter is bound
8363  * @task: task to profile (NULL for percpu)
8364  */
8365 struct perf_event *
8366 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8367 				 struct task_struct *task,
8368 				 perf_overflow_handler_t overflow_handler,
8369 				 void *context)
8370 {
8371 	struct perf_event_context *ctx;
8372 	struct perf_event *event;
8373 	int err;
8374 
8375 	/*
8376 	 * Get the target context (task or percpu):
8377 	 */
8378 
8379 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8380 				 overflow_handler, context, -1);
8381 	if (IS_ERR(event)) {
8382 		err = PTR_ERR(event);
8383 		goto err;
8384 	}
8385 
8386 	/* Mark owner so we could distinguish it from user events. */
8387 	event->owner = EVENT_OWNER_KERNEL;
8388 
8389 	account_event(event);
8390 
8391 	ctx = find_get_context(event->pmu, task, event);
8392 	if (IS_ERR(ctx)) {
8393 		err = PTR_ERR(ctx);
8394 		goto err_free;
8395 	}
8396 
8397 	WARN_ON_ONCE(ctx->parent_ctx);
8398 	mutex_lock(&ctx->mutex);
8399 	if (!exclusive_event_installable(event, ctx)) {
8400 		mutex_unlock(&ctx->mutex);
8401 		perf_unpin_context(ctx);
8402 		put_ctx(ctx);
8403 		err = -EBUSY;
8404 		goto err_free;
8405 	}
8406 
8407 	perf_install_in_context(ctx, event, cpu);
8408 	perf_unpin_context(ctx);
8409 	mutex_unlock(&ctx->mutex);
8410 
8411 	return event;
8412 
8413 err_free:
8414 	free_event(event);
8415 err:
8416 	return ERR_PTR(err);
8417 }
8418 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8419 
8420 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8421 {
8422 	struct perf_event_context *src_ctx;
8423 	struct perf_event_context *dst_ctx;
8424 	struct perf_event *event, *tmp;
8425 	LIST_HEAD(events);
8426 
8427 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8428 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8429 
8430 	/*
8431 	 * See perf_event_ctx_lock() for comments on the details
8432 	 * of swizzling perf_event::ctx.
8433 	 */
8434 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8435 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8436 				 event_entry) {
8437 		perf_remove_from_context(event, false);
8438 		unaccount_event_cpu(event, src_cpu);
8439 		put_ctx(src_ctx);
8440 		list_add(&event->migrate_entry, &events);
8441 	}
8442 
8443 	/*
8444 	 * Wait for the events to quiesce before re-instating them.
8445 	 */
8446 	synchronize_rcu();
8447 
8448 	/*
8449 	 * Re-instate events in 2 passes.
8450 	 *
8451 	 * Skip over group leaders and only install siblings on this first
8452 	 * pass, siblings will not get enabled without a leader, however a
8453 	 * leader will enable its siblings, even if those are still on the old
8454 	 * context.
8455 	 */
8456 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8457 		if (event->group_leader == event)
8458 			continue;
8459 
8460 		list_del(&event->migrate_entry);
8461 		if (event->state >= PERF_EVENT_STATE_OFF)
8462 			event->state = PERF_EVENT_STATE_INACTIVE;
8463 		account_event_cpu(event, dst_cpu);
8464 		perf_install_in_context(dst_ctx, event, dst_cpu);
8465 		get_ctx(dst_ctx);
8466 	}
8467 
8468 	/*
8469 	 * Once all the siblings are setup properly, install the group leaders
8470 	 * to make it go.
8471 	 */
8472 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8473 		list_del(&event->migrate_entry);
8474 		if (event->state >= PERF_EVENT_STATE_OFF)
8475 			event->state = PERF_EVENT_STATE_INACTIVE;
8476 		account_event_cpu(event, dst_cpu);
8477 		perf_install_in_context(dst_ctx, event, dst_cpu);
8478 		get_ctx(dst_ctx);
8479 	}
8480 	mutex_unlock(&dst_ctx->mutex);
8481 	mutex_unlock(&src_ctx->mutex);
8482 }
8483 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8484 
8485 static void sync_child_event(struct perf_event *child_event,
8486 			       struct task_struct *child)
8487 {
8488 	struct perf_event *parent_event = child_event->parent;
8489 	u64 child_val;
8490 
8491 	if (child_event->attr.inherit_stat)
8492 		perf_event_read_event(child_event, child);
8493 
8494 	child_val = perf_event_count(child_event);
8495 
8496 	/*
8497 	 * Add back the child's count to the parent's count:
8498 	 */
8499 	atomic64_add(child_val, &parent_event->child_count);
8500 	atomic64_add(child_event->total_time_enabled,
8501 		     &parent_event->child_total_time_enabled);
8502 	atomic64_add(child_event->total_time_running,
8503 		     &parent_event->child_total_time_running);
8504 
8505 	/*
8506 	 * Remove this event from the parent's list
8507 	 */
8508 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8509 	mutex_lock(&parent_event->child_mutex);
8510 	list_del_init(&child_event->child_list);
8511 	mutex_unlock(&parent_event->child_mutex);
8512 
8513 	/*
8514 	 * Make sure user/parent get notified, that we just
8515 	 * lost one event.
8516 	 */
8517 	perf_event_wakeup(parent_event);
8518 
8519 	/*
8520 	 * Release the parent event, if this was the last
8521 	 * reference to it.
8522 	 */
8523 	put_event(parent_event);
8524 }
8525 
8526 static void
8527 __perf_event_exit_task(struct perf_event *child_event,
8528 			 struct perf_event_context *child_ctx,
8529 			 struct task_struct *child)
8530 {
8531 	/*
8532 	 * Do not destroy the 'original' grouping; because of the context
8533 	 * switch optimization the original events could've ended up in a
8534 	 * random child task.
8535 	 *
8536 	 * If we were to destroy the original group, all group related
8537 	 * operations would cease to function properly after this random
8538 	 * child dies.
8539 	 *
8540 	 * Do destroy all inherited groups, we don't care about those
8541 	 * and being thorough is better.
8542 	 */
8543 	perf_remove_from_context(child_event, !!child_event->parent);
8544 
8545 	/*
8546 	 * It can happen that the parent exits first, and has events
8547 	 * that are still around due to the child reference. These
8548 	 * events need to be zapped.
8549 	 */
8550 	if (child_event->parent) {
8551 		sync_child_event(child_event, child);
8552 		free_event(child_event);
8553 	} else {
8554 		child_event->state = PERF_EVENT_STATE_EXIT;
8555 		perf_event_wakeup(child_event);
8556 	}
8557 }
8558 
8559 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8560 {
8561 	struct perf_event *child_event, *next;
8562 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8563 	unsigned long flags;
8564 
8565 	if (likely(!child->perf_event_ctxp[ctxn])) {
8566 		perf_event_task(child, NULL, 0);
8567 		return;
8568 	}
8569 
8570 	local_irq_save(flags);
8571 	/*
8572 	 * We can't reschedule here because interrupts are disabled,
8573 	 * and either child is current or it is a task that can't be
8574 	 * scheduled, so we are now safe from rescheduling changing
8575 	 * our context.
8576 	 */
8577 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8578 
8579 	/*
8580 	 * Take the context lock here so that if find_get_context is
8581 	 * reading child->perf_event_ctxp, we wait until it has
8582 	 * incremented the context's refcount before we do put_ctx below.
8583 	 */
8584 	raw_spin_lock(&child_ctx->lock);
8585 	task_ctx_sched_out(child_ctx);
8586 	child->perf_event_ctxp[ctxn] = NULL;
8587 
8588 	/*
8589 	 * If this context is a clone; unclone it so it can't get
8590 	 * swapped to another process while we're removing all
8591 	 * the events from it.
8592 	 */
8593 	clone_ctx = unclone_ctx(child_ctx);
8594 	update_context_time(child_ctx);
8595 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8596 
8597 	if (clone_ctx)
8598 		put_ctx(clone_ctx);
8599 
8600 	/*
8601 	 * Report the task dead after unscheduling the events so that we
8602 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8603 	 * get a few PERF_RECORD_READ events.
8604 	 */
8605 	perf_event_task(child, child_ctx, 0);
8606 
8607 	/*
8608 	 * We can recurse on the same lock type through:
8609 	 *
8610 	 *   __perf_event_exit_task()
8611 	 *     sync_child_event()
8612 	 *       put_event()
8613 	 *         mutex_lock(&ctx->mutex)
8614 	 *
8615 	 * But since its the parent context it won't be the same instance.
8616 	 */
8617 	mutex_lock(&child_ctx->mutex);
8618 
8619 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8620 		__perf_event_exit_task(child_event, child_ctx, child);
8621 
8622 	mutex_unlock(&child_ctx->mutex);
8623 
8624 	put_ctx(child_ctx);
8625 }
8626 
8627 /*
8628  * When a child task exits, feed back event values to parent events.
8629  */
8630 void perf_event_exit_task(struct task_struct *child)
8631 {
8632 	struct perf_event *event, *tmp;
8633 	int ctxn;
8634 
8635 	mutex_lock(&child->perf_event_mutex);
8636 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8637 				 owner_entry) {
8638 		list_del_init(&event->owner_entry);
8639 
8640 		/*
8641 		 * Ensure the list deletion is visible before we clear
8642 		 * the owner, closes a race against perf_release() where
8643 		 * we need to serialize on the owner->perf_event_mutex.
8644 		 */
8645 		smp_wmb();
8646 		event->owner = NULL;
8647 	}
8648 	mutex_unlock(&child->perf_event_mutex);
8649 
8650 	for_each_task_context_nr(ctxn)
8651 		perf_event_exit_task_context(child, ctxn);
8652 }
8653 
8654 static void perf_free_event(struct perf_event *event,
8655 			    struct perf_event_context *ctx)
8656 {
8657 	struct perf_event *parent = event->parent;
8658 
8659 	if (WARN_ON_ONCE(!parent))
8660 		return;
8661 
8662 	mutex_lock(&parent->child_mutex);
8663 	list_del_init(&event->child_list);
8664 	mutex_unlock(&parent->child_mutex);
8665 
8666 	put_event(parent);
8667 
8668 	raw_spin_lock_irq(&ctx->lock);
8669 	perf_group_detach(event);
8670 	list_del_event(event, ctx);
8671 	raw_spin_unlock_irq(&ctx->lock);
8672 	free_event(event);
8673 }
8674 
8675 /*
8676  * Free an unexposed, unused context as created by inheritance by
8677  * perf_event_init_task below, used by fork() in case of fail.
8678  *
8679  * Not all locks are strictly required, but take them anyway to be nice and
8680  * help out with the lockdep assertions.
8681  */
8682 void perf_event_free_task(struct task_struct *task)
8683 {
8684 	struct perf_event_context *ctx;
8685 	struct perf_event *event, *tmp;
8686 	int ctxn;
8687 
8688 	for_each_task_context_nr(ctxn) {
8689 		ctx = task->perf_event_ctxp[ctxn];
8690 		if (!ctx)
8691 			continue;
8692 
8693 		mutex_lock(&ctx->mutex);
8694 again:
8695 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8696 				group_entry)
8697 			perf_free_event(event, ctx);
8698 
8699 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8700 				group_entry)
8701 			perf_free_event(event, ctx);
8702 
8703 		if (!list_empty(&ctx->pinned_groups) ||
8704 				!list_empty(&ctx->flexible_groups))
8705 			goto again;
8706 
8707 		mutex_unlock(&ctx->mutex);
8708 
8709 		put_ctx(ctx);
8710 	}
8711 }
8712 
8713 void perf_event_delayed_put(struct task_struct *task)
8714 {
8715 	int ctxn;
8716 
8717 	for_each_task_context_nr(ctxn)
8718 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8719 }
8720 
8721 /*
8722  * inherit a event from parent task to child task:
8723  */
8724 static struct perf_event *
8725 inherit_event(struct perf_event *parent_event,
8726 	      struct task_struct *parent,
8727 	      struct perf_event_context *parent_ctx,
8728 	      struct task_struct *child,
8729 	      struct perf_event *group_leader,
8730 	      struct perf_event_context *child_ctx)
8731 {
8732 	enum perf_event_active_state parent_state = parent_event->state;
8733 	struct perf_event *child_event;
8734 	unsigned long flags;
8735 
8736 	/*
8737 	 * Instead of creating recursive hierarchies of events,
8738 	 * we link inherited events back to the original parent,
8739 	 * which has a filp for sure, which we use as the reference
8740 	 * count:
8741 	 */
8742 	if (parent_event->parent)
8743 		parent_event = parent_event->parent;
8744 
8745 	child_event = perf_event_alloc(&parent_event->attr,
8746 					   parent_event->cpu,
8747 					   child,
8748 					   group_leader, parent_event,
8749 					   NULL, NULL, -1);
8750 	if (IS_ERR(child_event))
8751 		return child_event;
8752 
8753 	if (is_orphaned_event(parent_event) ||
8754 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8755 		free_event(child_event);
8756 		return NULL;
8757 	}
8758 
8759 	get_ctx(child_ctx);
8760 
8761 	/*
8762 	 * Make the child state follow the state of the parent event,
8763 	 * not its attr.disabled bit.  We hold the parent's mutex,
8764 	 * so we won't race with perf_event_{en, dis}able_family.
8765 	 */
8766 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8767 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8768 	else
8769 		child_event->state = PERF_EVENT_STATE_OFF;
8770 
8771 	if (parent_event->attr.freq) {
8772 		u64 sample_period = parent_event->hw.sample_period;
8773 		struct hw_perf_event *hwc = &child_event->hw;
8774 
8775 		hwc->sample_period = sample_period;
8776 		hwc->last_period   = sample_period;
8777 
8778 		local64_set(&hwc->period_left, sample_period);
8779 	}
8780 
8781 	child_event->ctx = child_ctx;
8782 	child_event->overflow_handler = parent_event->overflow_handler;
8783 	child_event->overflow_handler_context
8784 		= parent_event->overflow_handler_context;
8785 
8786 	/*
8787 	 * Precalculate sample_data sizes
8788 	 */
8789 	perf_event__header_size(child_event);
8790 	perf_event__id_header_size(child_event);
8791 
8792 	/*
8793 	 * Link it up in the child's context:
8794 	 */
8795 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8796 	add_event_to_ctx(child_event, child_ctx);
8797 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8798 
8799 	/*
8800 	 * Link this into the parent event's child list
8801 	 */
8802 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8803 	mutex_lock(&parent_event->child_mutex);
8804 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8805 	mutex_unlock(&parent_event->child_mutex);
8806 
8807 	return child_event;
8808 }
8809 
8810 static int inherit_group(struct perf_event *parent_event,
8811 	      struct task_struct *parent,
8812 	      struct perf_event_context *parent_ctx,
8813 	      struct task_struct *child,
8814 	      struct perf_event_context *child_ctx)
8815 {
8816 	struct perf_event *leader;
8817 	struct perf_event *sub;
8818 	struct perf_event *child_ctr;
8819 
8820 	leader = inherit_event(parent_event, parent, parent_ctx,
8821 				 child, NULL, child_ctx);
8822 	if (IS_ERR(leader))
8823 		return PTR_ERR(leader);
8824 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8825 		child_ctr = inherit_event(sub, parent, parent_ctx,
8826 					    child, leader, child_ctx);
8827 		if (IS_ERR(child_ctr))
8828 			return PTR_ERR(child_ctr);
8829 	}
8830 	return 0;
8831 }
8832 
8833 static int
8834 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8835 		   struct perf_event_context *parent_ctx,
8836 		   struct task_struct *child, int ctxn,
8837 		   int *inherited_all)
8838 {
8839 	int ret;
8840 	struct perf_event_context *child_ctx;
8841 
8842 	if (!event->attr.inherit) {
8843 		*inherited_all = 0;
8844 		return 0;
8845 	}
8846 
8847 	child_ctx = child->perf_event_ctxp[ctxn];
8848 	if (!child_ctx) {
8849 		/*
8850 		 * This is executed from the parent task context, so
8851 		 * inherit events that have been marked for cloning.
8852 		 * First allocate and initialize a context for the
8853 		 * child.
8854 		 */
8855 
8856 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8857 		if (!child_ctx)
8858 			return -ENOMEM;
8859 
8860 		child->perf_event_ctxp[ctxn] = child_ctx;
8861 	}
8862 
8863 	ret = inherit_group(event, parent, parent_ctx,
8864 			    child, child_ctx);
8865 
8866 	if (ret)
8867 		*inherited_all = 0;
8868 
8869 	return ret;
8870 }
8871 
8872 /*
8873  * Initialize the perf_event context in task_struct
8874  */
8875 static int perf_event_init_context(struct task_struct *child, int ctxn)
8876 {
8877 	struct perf_event_context *child_ctx, *parent_ctx;
8878 	struct perf_event_context *cloned_ctx;
8879 	struct perf_event *event;
8880 	struct task_struct *parent = current;
8881 	int inherited_all = 1;
8882 	unsigned long flags;
8883 	int ret = 0;
8884 
8885 	if (likely(!parent->perf_event_ctxp[ctxn]))
8886 		return 0;
8887 
8888 	/*
8889 	 * If the parent's context is a clone, pin it so it won't get
8890 	 * swapped under us.
8891 	 */
8892 	parent_ctx = perf_pin_task_context(parent, ctxn);
8893 	if (!parent_ctx)
8894 		return 0;
8895 
8896 	/*
8897 	 * No need to check if parent_ctx != NULL here; since we saw
8898 	 * it non-NULL earlier, the only reason for it to become NULL
8899 	 * is if we exit, and since we're currently in the middle of
8900 	 * a fork we can't be exiting at the same time.
8901 	 */
8902 
8903 	/*
8904 	 * Lock the parent list. No need to lock the child - not PID
8905 	 * hashed yet and not running, so nobody can access it.
8906 	 */
8907 	mutex_lock(&parent_ctx->mutex);
8908 
8909 	/*
8910 	 * We dont have to disable NMIs - we are only looking at
8911 	 * the list, not manipulating it:
8912 	 */
8913 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8914 		ret = inherit_task_group(event, parent, parent_ctx,
8915 					 child, ctxn, &inherited_all);
8916 		if (ret)
8917 			break;
8918 	}
8919 
8920 	/*
8921 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8922 	 * to allocations, but we need to prevent rotation because
8923 	 * rotate_ctx() will change the list from interrupt context.
8924 	 */
8925 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8926 	parent_ctx->rotate_disable = 1;
8927 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8928 
8929 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8930 		ret = inherit_task_group(event, parent, parent_ctx,
8931 					 child, ctxn, &inherited_all);
8932 		if (ret)
8933 			break;
8934 	}
8935 
8936 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8937 	parent_ctx->rotate_disable = 0;
8938 
8939 	child_ctx = child->perf_event_ctxp[ctxn];
8940 
8941 	if (child_ctx && inherited_all) {
8942 		/*
8943 		 * Mark the child context as a clone of the parent
8944 		 * context, or of whatever the parent is a clone of.
8945 		 *
8946 		 * Note that if the parent is a clone, the holding of
8947 		 * parent_ctx->lock avoids it from being uncloned.
8948 		 */
8949 		cloned_ctx = parent_ctx->parent_ctx;
8950 		if (cloned_ctx) {
8951 			child_ctx->parent_ctx = cloned_ctx;
8952 			child_ctx->parent_gen = parent_ctx->parent_gen;
8953 		} else {
8954 			child_ctx->parent_ctx = parent_ctx;
8955 			child_ctx->parent_gen = parent_ctx->generation;
8956 		}
8957 		get_ctx(child_ctx->parent_ctx);
8958 	}
8959 
8960 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8961 	mutex_unlock(&parent_ctx->mutex);
8962 
8963 	perf_unpin_context(parent_ctx);
8964 	put_ctx(parent_ctx);
8965 
8966 	return ret;
8967 }
8968 
8969 /*
8970  * Initialize the perf_event context in task_struct
8971  */
8972 int perf_event_init_task(struct task_struct *child)
8973 {
8974 	int ctxn, ret;
8975 
8976 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8977 	mutex_init(&child->perf_event_mutex);
8978 	INIT_LIST_HEAD(&child->perf_event_list);
8979 
8980 	for_each_task_context_nr(ctxn) {
8981 		ret = perf_event_init_context(child, ctxn);
8982 		if (ret) {
8983 			perf_event_free_task(child);
8984 			return ret;
8985 		}
8986 	}
8987 
8988 	return 0;
8989 }
8990 
8991 static void __init perf_event_init_all_cpus(void)
8992 {
8993 	struct swevent_htable *swhash;
8994 	int cpu;
8995 
8996 	for_each_possible_cpu(cpu) {
8997 		swhash = &per_cpu(swevent_htable, cpu);
8998 		mutex_init(&swhash->hlist_mutex);
8999 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9000 	}
9001 }
9002 
9003 static void perf_event_init_cpu(int cpu)
9004 {
9005 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9006 
9007 	mutex_lock(&swhash->hlist_mutex);
9008 	swhash->online = true;
9009 	if (swhash->hlist_refcount > 0) {
9010 		struct swevent_hlist *hlist;
9011 
9012 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9013 		WARN_ON(!hlist);
9014 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9015 	}
9016 	mutex_unlock(&swhash->hlist_mutex);
9017 }
9018 
9019 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
9020 static void __perf_event_exit_context(void *__info)
9021 {
9022 	struct remove_event re = { .detach_group = true };
9023 	struct perf_event_context *ctx = __info;
9024 
9025 	rcu_read_lock();
9026 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9027 		__perf_remove_from_context(&re);
9028 	rcu_read_unlock();
9029 }
9030 
9031 static void perf_event_exit_cpu_context(int cpu)
9032 {
9033 	struct perf_event_context *ctx;
9034 	struct pmu *pmu;
9035 	int idx;
9036 
9037 	idx = srcu_read_lock(&pmus_srcu);
9038 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9039 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9040 
9041 		mutex_lock(&ctx->mutex);
9042 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9043 		mutex_unlock(&ctx->mutex);
9044 	}
9045 	srcu_read_unlock(&pmus_srcu, idx);
9046 }
9047 
9048 static void perf_event_exit_cpu(int cpu)
9049 {
9050 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9051 
9052 	perf_event_exit_cpu_context(cpu);
9053 
9054 	mutex_lock(&swhash->hlist_mutex);
9055 	swhash->online = false;
9056 	swevent_hlist_release(swhash);
9057 	mutex_unlock(&swhash->hlist_mutex);
9058 }
9059 #else
9060 static inline void perf_event_exit_cpu(int cpu) { }
9061 #endif
9062 
9063 static int
9064 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9065 {
9066 	int cpu;
9067 
9068 	for_each_online_cpu(cpu)
9069 		perf_event_exit_cpu(cpu);
9070 
9071 	return NOTIFY_OK;
9072 }
9073 
9074 /*
9075  * Run the perf reboot notifier at the very last possible moment so that
9076  * the generic watchdog code runs as long as possible.
9077  */
9078 static struct notifier_block perf_reboot_notifier = {
9079 	.notifier_call = perf_reboot,
9080 	.priority = INT_MIN,
9081 };
9082 
9083 static int
9084 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9085 {
9086 	unsigned int cpu = (long)hcpu;
9087 
9088 	switch (action & ~CPU_TASKS_FROZEN) {
9089 
9090 	case CPU_UP_PREPARE:
9091 	case CPU_DOWN_FAILED:
9092 		perf_event_init_cpu(cpu);
9093 		break;
9094 
9095 	case CPU_UP_CANCELED:
9096 	case CPU_DOWN_PREPARE:
9097 		perf_event_exit_cpu(cpu);
9098 		break;
9099 	default:
9100 		break;
9101 	}
9102 
9103 	return NOTIFY_OK;
9104 }
9105 
9106 void __init perf_event_init(void)
9107 {
9108 	int ret;
9109 
9110 	idr_init(&pmu_idr);
9111 
9112 	perf_event_init_all_cpus();
9113 	init_srcu_struct(&pmus_srcu);
9114 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9115 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9116 	perf_pmu_register(&perf_task_clock, NULL, -1);
9117 	perf_tp_register();
9118 	perf_cpu_notifier(perf_cpu_notify);
9119 	register_reboot_notifier(&perf_reboot_notifier);
9120 
9121 	ret = init_hw_breakpoint();
9122 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9123 
9124 	/* do not patch jump label more than once per second */
9125 	jump_label_rate_limit(&perf_sched_events, HZ);
9126 
9127 	/*
9128 	 * Build time assertion that we keep the data_head at the intended
9129 	 * location.  IOW, validation we got the __reserved[] size right.
9130 	 */
9131 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9132 		     != 1024);
9133 }
9134 
9135 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9136 			      char *page)
9137 {
9138 	struct perf_pmu_events_attr *pmu_attr =
9139 		container_of(attr, struct perf_pmu_events_attr, attr);
9140 
9141 	if (pmu_attr->event_str)
9142 		return sprintf(page, "%s\n", pmu_attr->event_str);
9143 
9144 	return 0;
9145 }
9146 
9147 static int __init perf_event_sysfs_init(void)
9148 {
9149 	struct pmu *pmu;
9150 	int ret;
9151 
9152 	mutex_lock(&pmus_lock);
9153 
9154 	ret = bus_register(&pmu_bus);
9155 	if (ret)
9156 		goto unlock;
9157 
9158 	list_for_each_entry(pmu, &pmus, entry) {
9159 		if (!pmu->name || pmu->type < 0)
9160 			continue;
9161 
9162 		ret = pmu_dev_alloc(pmu);
9163 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9164 	}
9165 	pmu_bus_running = 1;
9166 	ret = 0;
9167 
9168 unlock:
9169 	mutex_unlock(&pmus_lock);
9170 
9171 	return ret;
9172 }
9173 device_initcall(perf_event_sysfs_init);
9174 
9175 #ifdef CONFIG_CGROUP_PERF
9176 static struct cgroup_subsys_state *
9177 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9178 {
9179 	struct perf_cgroup *jc;
9180 
9181 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9182 	if (!jc)
9183 		return ERR_PTR(-ENOMEM);
9184 
9185 	jc->info = alloc_percpu(struct perf_cgroup_info);
9186 	if (!jc->info) {
9187 		kfree(jc);
9188 		return ERR_PTR(-ENOMEM);
9189 	}
9190 
9191 	return &jc->css;
9192 }
9193 
9194 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9195 {
9196 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9197 
9198 	free_percpu(jc->info);
9199 	kfree(jc);
9200 }
9201 
9202 static int __perf_cgroup_move(void *info)
9203 {
9204 	struct task_struct *task = info;
9205 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9206 	return 0;
9207 }
9208 
9209 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9210 			       struct cgroup_taskset *tset)
9211 {
9212 	struct task_struct *task;
9213 
9214 	cgroup_taskset_for_each(task, tset)
9215 		task_function_call(task, __perf_cgroup_move, task);
9216 }
9217 
9218 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9219 			     struct cgroup_subsys_state *old_css,
9220 			     struct task_struct *task)
9221 {
9222 	/*
9223 	 * cgroup_exit() is called in the copy_process() failure path.
9224 	 * Ignore this case since the task hasn't ran yet, this avoids
9225 	 * trying to poke a half freed task state from generic code.
9226 	 */
9227 	if (!(task->flags & PF_EXITING))
9228 		return;
9229 
9230 	task_function_call(task, __perf_cgroup_move, task);
9231 }
9232 
9233 struct cgroup_subsys perf_event_cgrp_subsys = {
9234 	.css_alloc	= perf_cgroup_css_alloc,
9235 	.css_free	= perf_cgroup_css_free,
9236 	.exit		= perf_cgroup_exit,
9237 	.attach		= perf_cgroup_attach,
9238 };
9239 #endif /* CONFIG_CGROUP_PERF */
9240