1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 struct fd f = fdget(fd); 970 int ret = 0; 971 972 if (!fd_file(f)) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) { 978 ret = PTR_ERR(css); 979 goto out; 980 } 981 982 ret = perf_cgroup_ensure_storage(event, css); 983 if (ret) 984 goto out; 985 986 cgrp = container_of(css, struct perf_cgroup, css); 987 event->cgrp = cgrp; 988 989 /* 990 * all events in a group must monitor 991 * the same cgroup because a task belongs 992 * to only one perf cgroup at a time 993 */ 994 if (group_leader && group_leader->cgrp != cgrp) { 995 perf_detach_cgroup(event); 996 ret = -EINVAL; 997 } 998 out: 999 fdput(f); 1000 return ret; 1001 } 1002 1003 static inline void 1004 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1005 { 1006 struct perf_cpu_context *cpuctx; 1007 1008 if (!is_cgroup_event(event)) 1009 return; 1010 1011 event->pmu_ctx->nr_cgroups++; 1012 1013 /* 1014 * Because cgroup events are always per-cpu events, 1015 * @ctx == &cpuctx->ctx. 1016 */ 1017 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1023 } 1024 1025 static inline void 1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1027 { 1028 struct perf_cpu_context *cpuctx; 1029 1030 if (!is_cgroup_event(event)) 1031 return; 1032 1033 event->pmu_ctx->nr_cgroups--; 1034 1035 /* 1036 * Because cgroup events are always per-cpu events, 1037 * @ctx == &cpuctx->ctx. 1038 */ 1039 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1040 1041 if (--ctx->nr_cgroups) 1042 return; 1043 1044 cpuctx->cgrp = NULL; 1045 } 1046 1047 #else /* !CONFIG_CGROUP_PERF */ 1048 1049 static inline bool 1050 perf_cgroup_match(struct perf_event *event) 1051 { 1052 return true; 1053 } 1054 1055 static inline void perf_detach_cgroup(struct perf_event *event) 1056 {} 1057 1058 static inline int is_cgroup_event(struct perf_event *event) 1059 { 1060 return 0; 1061 } 1062 1063 static inline void update_cgrp_time_from_event(struct perf_event *event) 1064 { 1065 } 1066 1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1068 bool final) 1069 { 1070 } 1071 1072 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1073 struct perf_event_attr *attr, 1074 struct perf_event *group_leader) 1075 { 1076 return -EINVAL; 1077 } 1078 1079 static inline void 1080 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1081 { 1082 } 1083 1084 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1085 { 1086 return 0; 1087 } 1088 1089 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1090 { 1091 return 0; 1092 } 1093 1094 static inline void 1095 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1096 { 1097 } 1098 1099 static inline void 1100 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1101 { 1102 } 1103 1104 static void perf_cgroup_switch(struct task_struct *task) 1105 { 1106 } 1107 #endif 1108 1109 /* 1110 * set default to be dependent on timer tick just 1111 * like original code 1112 */ 1113 #define PERF_CPU_HRTIMER (1000 / HZ) 1114 /* 1115 * function must be called with interrupts disabled 1116 */ 1117 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1118 { 1119 struct perf_cpu_pmu_context *cpc; 1120 bool rotations; 1121 1122 lockdep_assert_irqs_disabled(); 1123 1124 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1125 rotations = perf_rotate_context(cpc); 1126 1127 raw_spin_lock(&cpc->hrtimer_lock); 1128 if (rotations) 1129 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1130 else 1131 cpc->hrtimer_active = 0; 1132 raw_spin_unlock(&cpc->hrtimer_lock); 1133 1134 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1135 } 1136 1137 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1138 { 1139 struct hrtimer *timer = &cpc->hrtimer; 1140 struct pmu *pmu = cpc->epc.pmu; 1141 u64 interval; 1142 1143 /* 1144 * check default is sane, if not set then force to 1145 * default interval (1/tick) 1146 */ 1147 interval = pmu->hrtimer_interval_ms; 1148 if (interval < 1) 1149 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1150 1151 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1152 1153 raw_spin_lock_init(&cpc->hrtimer_lock); 1154 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1155 timer->function = perf_mux_hrtimer_handler; 1156 } 1157 1158 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1159 { 1160 struct hrtimer *timer = &cpc->hrtimer; 1161 unsigned long flags; 1162 1163 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1164 if (!cpc->hrtimer_active) { 1165 cpc->hrtimer_active = 1; 1166 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1167 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1168 } 1169 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1170 1171 return 0; 1172 } 1173 1174 static int perf_mux_hrtimer_restart_ipi(void *arg) 1175 { 1176 return perf_mux_hrtimer_restart(arg); 1177 } 1178 1179 void perf_pmu_disable(struct pmu *pmu) 1180 { 1181 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1182 if (!(*count)++) 1183 pmu->pmu_disable(pmu); 1184 } 1185 1186 void perf_pmu_enable(struct pmu *pmu) 1187 { 1188 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1189 if (!--(*count)) 1190 pmu->pmu_enable(pmu); 1191 } 1192 1193 static void perf_assert_pmu_disabled(struct pmu *pmu) 1194 { 1195 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1196 } 1197 1198 static void get_ctx(struct perf_event_context *ctx) 1199 { 1200 refcount_inc(&ctx->refcount); 1201 } 1202 1203 static void *alloc_task_ctx_data(struct pmu *pmu) 1204 { 1205 if (pmu->task_ctx_cache) 1206 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1207 1208 return NULL; 1209 } 1210 1211 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1212 { 1213 if (pmu->task_ctx_cache && task_ctx_data) 1214 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1215 } 1216 1217 static void free_ctx(struct rcu_head *head) 1218 { 1219 struct perf_event_context *ctx; 1220 1221 ctx = container_of(head, struct perf_event_context, rcu_head); 1222 kfree(ctx); 1223 } 1224 1225 static void put_ctx(struct perf_event_context *ctx) 1226 { 1227 if (refcount_dec_and_test(&ctx->refcount)) { 1228 if (ctx->parent_ctx) 1229 put_ctx(ctx->parent_ctx); 1230 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1231 put_task_struct(ctx->task); 1232 call_rcu(&ctx->rcu_head, free_ctx); 1233 } 1234 } 1235 1236 /* 1237 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1238 * perf_pmu_migrate_context() we need some magic. 1239 * 1240 * Those places that change perf_event::ctx will hold both 1241 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1242 * 1243 * Lock ordering is by mutex address. There are two other sites where 1244 * perf_event_context::mutex nests and those are: 1245 * 1246 * - perf_event_exit_task_context() [ child , 0 ] 1247 * perf_event_exit_event() 1248 * put_event() [ parent, 1 ] 1249 * 1250 * - perf_event_init_context() [ parent, 0 ] 1251 * inherit_task_group() 1252 * inherit_group() 1253 * inherit_event() 1254 * perf_event_alloc() 1255 * perf_init_event() 1256 * perf_try_init_event() [ child , 1 ] 1257 * 1258 * While it appears there is an obvious deadlock here -- the parent and child 1259 * nesting levels are inverted between the two. This is in fact safe because 1260 * life-time rules separate them. That is an exiting task cannot fork, and a 1261 * spawning task cannot (yet) exit. 1262 * 1263 * But remember that these are parent<->child context relations, and 1264 * migration does not affect children, therefore these two orderings should not 1265 * interact. 1266 * 1267 * The change in perf_event::ctx does not affect children (as claimed above) 1268 * because the sys_perf_event_open() case will install a new event and break 1269 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1270 * concerned with cpuctx and that doesn't have children. 1271 * 1272 * The places that change perf_event::ctx will issue: 1273 * 1274 * perf_remove_from_context(); 1275 * synchronize_rcu(); 1276 * perf_install_in_context(); 1277 * 1278 * to affect the change. The remove_from_context() + synchronize_rcu() should 1279 * quiesce the event, after which we can install it in the new location. This 1280 * means that only external vectors (perf_fops, prctl) can perturb the event 1281 * while in transit. Therefore all such accessors should also acquire 1282 * perf_event_context::mutex to serialize against this. 1283 * 1284 * However; because event->ctx can change while we're waiting to acquire 1285 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1286 * function. 1287 * 1288 * Lock order: 1289 * exec_update_lock 1290 * task_struct::perf_event_mutex 1291 * perf_event_context::mutex 1292 * perf_event::child_mutex; 1293 * perf_event_context::lock 1294 * mmap_lock 1295 * perf_event::mmap_mutex 1296 * perf_buffer::aux_mutex 1297 * perf_addr_filters_head::lock 1298 * 1299 * cpu_hotplug_lock 1300 * pmus_lock 1301 * cpuctx->mutex / perf_event_context::mutex 1302 */ 1303 static struct perf_event_context * 1304 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1305 { 1306 struct perf_event_context *ctx; 1307 1308 again: 1309 rcu_read_lock(); 1310 ctx = READ_ONCE(event->ctx); 1311 if (!refcount_inc_not_zero(&ctx->refcount)) { 1312 rcu_read_unlock(); 1313 goto again; 1314 } 1315 rcu_read_unlock(); 1316 1317 mutex_lock_nested(&ctx->mutex, nesting); 1318 if (event->ctx != ctx) { 1319 mutex_unlock(&ctx->mutex); 1320 put_ctx(ctx); 1321 goto again; 1322 } 1323 1324 return ctx; 1325 } 1326 1327 static inline struct perf_event_context * 1328 perf_event_ctx_lock(struct perf_event *event) 1329 { 1330 return perf_event_ctx_lock_nested(event, 0); 1331 } 1332 1333 static void perf_event_ctx_unlock(struct perf_event *event, 1334 struct perf_event_context *ctx) 1335 { 1336 mutex_unlock(&ctx->mutex); 1337 put_ctx(ctx); 1338 } 1339 1340 /* 1341 * This must be done under the ctx->lock, such as to serialize against 1342 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1343 * calling scheduler related locks and ctx->lock nests inside those. 1344 */ 1345 static __must_check struct perf_event_context * 1346 unclone_ctx(struct perf_event_context *ctx) 1347 { 1348 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1349 1350 lockdep_assert_held(&ctx->lock); 1351 1352 if (parent_ctx) 1353 ctx->parent_ctx = NULL; 1354 ctx->generation++; 1355 1356 return parent_ctx; 1357 } 1358 1359 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1360 enum pid_type type) 1361 { 1362 u32 nr; 1363 /* 1364 * only top level events have the pid namespace they were created in 1365 */ 1366 if (event->parent) 1367 event = event->parent; 1368 1369 nr = __task_pid_nr_ns(p, type, event->ns); 1370 /* avoid -1 if it is idle thread or runs in another ns */ 1371 if (!nr && !pid_alive(p)) 1372 nr = -1; 1373 return nr; 1374 } 1375 1376 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1377 { 1378 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1379 } 1380 1381 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1382 { 1383 return perf_event_pid_type(event, p, PIDTYPE_PID); 1384 } 1385 1386 /* 1387 * If we inherit events we want to return the parent event id 1388 * to userspace. 1389 */ 1390 static u64 primary_event_id(struct perf_event *event) 1391 { 1392 u64 id = event->id; 1393 1394 if (event->parent) 1395 id = event->parent->id; 1396 1397 return id; 1398 } 1399 1400 /* 1401 * Get the perf_event_context for a task and lock it. 1402 * 1403 * This has to cope with the fact that until it is locked, 1404 * the context could get moved to another task. 1405 */ 1406 static struct perf_event_context * 1407 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1408 { 1409 struct perf_event_context *ctx; 1410 1411 retry: 1412 /* 1413 * One of the few rules of preemptible RCU is that one cannot do 1414 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1415 * part of the read side critical section was irqs-enabled -- see 1416 * rcu_read_unlock_special(). 1417 * 1418 * Since ctx->lock nests under rq->lock we must ensure the entire read 1419 * side critical section has interrupts disabled. 1420 */ 1421 local_irq_save(*flags); 1422 rcu_read_lock(); 1423 ctx = rcu_dereference(task->perf_event_ctxp); 1424 if (ctx) { 1425 /* 1426 * If this context is a clone of another, it might 1427 * get swapped for another underneath us by 1428 * perf_event_task_sched_out, though the 1429 * rcu_read_lock() protects us from any context 1430 * getting freed. Lock the context and check if it 1431 * got swapped before we could get the lock, and retry 1432 * if so. If we locked the right context, then it 1433 * can't get swapped on us any more. 1434 */ 1435 raw_spin_lock(&ctx->lock); 1436 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1437 raw_spin_unlock(&ctx->lock); 1438 rcu_read_unlock(); 1439 local_irq_restore(*flags); 1440 goto retry; 1441 } 1442 1443 if (ctx->task == TASK_TOMBSTONE || 1444 !refcount_inc_not_zero(&ctx->refcount)) { 1445 raw_spin_unlock(&ctx->lock); 1446 ctx = NULL; 1447 } else { 1448 WARN_ON_ONCE(ctx->task != task); 1449 } 1450 } 1451 rcu_read_unlock(); 1452 if (!ctx) 1453 local_irq_restore(*flags); 1454 return ctx; 1455 } 1456 1457 /* 1458 * Get the context for a task and increment its pin_count so it 1459 * can't get swapped to another task. This also increments its 1460 * reference count so that the context can't get freed. 1461 */ 1462 static struct perf_event_context * 1463 perf_pin_task_context(struct task_struct *task) 1464 { 1465 struct perf_event_context *ctx; 1466 unsigned long flags; 1467 1468 ctx = perf_lock_task_context(task, &flags); 1469 if (ctx) { 1470 ++ctx->pin_count; 1471 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1472 } 1473 return ctx; 1474 } 1475 1476 static void perf_unpin_context(struct perf_event_context *ctx) 1477 { 1478 unsigned long flags; 1479 1480 raw_spin_lock_irqsave(&ctx->lock, flags); 1481 --ctx->pin_count; 1482 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1483 } 1484 1485 /* 1486 * Update the record of the current time in a context. 1487 */ 1488 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1489 { 1490 u64 now = perf_clock(); 1491 1492 lockdep_assert_held(&ctx->lock); 1493 1494 if (adv) 1495 ctx->time += now - ctx->timestamp; 1496 ctx->timestamp = now; 1497 1498 /* 1499 * The above: time' = time + (now - timestamp), can be re-arranged 1500 * into: time` = now + (time - timestamp), which gives a single value 1501 * offset to compute future time without locks on. 1502 * 1503 * See perf_event_time_now(), which can be used from NMI context where 1504 * it's (obviously) not possible to acquire ctx->lock in order to read 1505 * both the above values in a consistent manner. 1506 */ 1507 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1508 } 1509 1510 static void update_context_time(struct perf_event_context *ctx) 1511 { 1512 __update_context_time(ctx, true); 1513 } 1514 1515 static u64 perf_event_time(struct perf_event *event) 1516 { 1517 struct perf_event_context *ctx = event->ctx; 1518 1519 if (unlikely(!ctx)) 1520 return 0; 1521 1522 if (is_cgroup_event(event)) 1523 return perf_cgroup_event_time(event); 1524 1525 return ctx->time; 1526 } 1527 1528 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1529 { 1530 struct perf_event_context *ctx = event->ctx; 1531 1532 if (unlikely(!ctx)) 1533 return 0; 1534 1535 if (is_cgroup_event(event)) 1536 return perf_cgroup_event_time_now(event, now); 1537 1538 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1539 return ctx->time; 1540 1541 now += READ_ONCE(ctx->timeoffset); 1542 return now; 1543 } 1544 1545 static enum event_type_t get_event_type(struct perf_event *event) 1546 { 1547 struct perf_event_context *ctx = event->ctx; 1548 enum event_type_t event_type; 1549 1550 lockdep_assert_held(&ctx->lock); 1551 1552 /* 1553 * It's 'group type', really, because if our group leader is 1554 * pinned, so are we. 1555 */ 1556 if (event->group_leader != event) 1557 event = event->group_leader; 1558 1559 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1560 if (!ctx->task) 1561 event_type |= EVENT_CPU; 1562 1563 return event_type; 1564 } 1565 1566 /* 1567 * Helper function to initialize event group nodes. 1568 */ 1569 static void init_event_group(struct perf_event *event) 1570 { 1571 RB_CLEAR_NODE(&event->group_node); 1572 event->group_index = 0; 1573 } 1574 1575 /* 1576 * Extract pinned or flexible groups from the context 1577 * based on event attrs bits. 1578 */ 1579 static struct perf_event_groups * 1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1581 { 1582 if (event->attr.pinned) 1583 return &ctx->pinned_groups; 1584 else 1585 return &ctx->flexible_groups; 1586 } 1587 1588 /* 1589 * Helper function to initializes perf_event_group trees. 1590 */ 1591 static void perf_event_groups_init(struct perf_event_groups *groups) 1592 { 1593 groups->tree = RB_ROOT; 1594 groups->index = 0; 1595 } 1596 1597 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1598 { 1599 struct cgroup *cgroup = NULL; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 if (event->cgrp) 1603 cgroup = event->cgrp->css.cgroup; 1604 #endif 1605 1606 return cgroup; 1607 } 1608 1609 /* 1610 * Compare function for event groups; 1611 * 1612 * Implements complex key that first sorts by CPU and then by virtual index 1613 * which provides ordering when rotating groups for the same CPU. 1614 */ 1615 static __always_inline int 1616 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1617 const struct cgroup *left_cgroup, const u64 left_group_index, 1618 const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 if (left_pmu) { 1626 if (left_pmu < right->pmu_ctx->pmu) 1627 return -1; 1628 if (left_pmu > right->pmu_ctx->pmu) 1629 return 1; 1630 } 1631 1632 #ifdef CONFIG_CGROUP_PERF 1633 { 1634 const struct cgroup *right_cgroup = event_cgroup(right); 1635 1636 if (left_cgroup != right_cgroup) { 1637 if (!left_cgroup) { 1638 /* 1639 * Left has no cgroup but right does, no 1640 * cgroups come first. 1641 */ 1642 return -1; 1643 } 1644 if (!right_cgroup) { 1645 /* 1646 * Right has no cgroup but left does, no 1647 * cgroups come first. 1648 */ 1649 return 1; 1650 } 1651 /* Two dissimilar cgroups, order by id. */ 1652 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1653 return -1; 1654 1655 return 1; 1656 } 1657 } 1658 #endif 1659 1660 if (left_group_index < right->group_index) 1661 return -1; 1662 if (left_group_index > right->group_index) 1663 return 1; 1664 1665 return 0; 1666 } 1667 1668 #define __node_2_pe(node) \ 1669 rb_entry((node), struct perf_event, group_node) 1670 1671 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1672 { 1673 struct perf_event *e = __node_2_pe(a); 1674 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1675 e->group_index, __node_2_pe(b)) < 0; 1676 } 1677 1678 struct __group_key { 1679 int cpu; 1680 struct pmu *pmu; 1681 struct cgroup *cgroup; 1682 }; 1683 1684 static inline int __group_cmp(const void *key, const struct rb_node *node) 1685 { 1686 const struct __group_key *a = key; 1687 const struct perf_event *b = __node_2_pe(node); 1688 1689 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1690 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1691 } 1692 1693 static inline int 1694 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1695 { 1696 const struct __group_key *a = key; 1697 const struct perf_event *b = __node_2_pe(node); 1698 1699 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1700 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1701 b->group_index, b); 1702 } 1703 1704 /* 1705 * Insert @event into @groups' tree; using 1706 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1707 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1708 */ 1709 static void 1710 perf_event_groups_insert(struct perf_event_groups *groups, 1711 struct perf_event *event) 1712 { 1713 event->group_index = ++groups->index; 1714 1715 rb_add(&event->group_node, &groups->tree, __group_less); 1716 } 1717 1718 /* 1719 * Helper function to insert event into the pinned or flexible groups. 1720 */ 1721 static void 1722 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1723 { 1724 struct perf_event_groups *groups; 1725 1726 groups = get_event_groups(event, ctx); 1727 perf_event_groups_insert(groups, event); 1728 } 1729 1730 /* 1731 * Delete a group from a tree. 1732 */ 1733 static void 1734 perf_event_groups_delete(struct perf_event_groups *groups, 1735 struct perf_event *event) 1736 { 1737 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1738 RB_EMPTY_ROOT(&groups->tree)); 1739 1740 rb_erase(&event->group_node, &groups->tree); 1741 init_event_group(event); 1742 } 1743 1744 /* 1745 * Helper function to delete event from its groups. 1746 */ 1747 static void 1748 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1749 { 1750 struct perf_event_groups *groups; 1751 1752 groups = get_event_groups(event, ctx); 1753 perf_event_groups_delete(groups, event); 1754 } 1755 1756 /* 1757 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1758 */ 1759 static struct perf_event * 1760 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1761 struct pmu *pmu, struct cgroup *cgrp) 1762 { 1763 struct __group_key key = { 1764 .cpu = cpu, 1765 .pmu = pmu, 1766 .cgroup = cgrp, 1767 }; 1768 struct rb_node *node; 1769 1770 node = rb_find_first(&key, &groups->tree, __group_cmp); 1771 if (node) 1772 return __node_2_pe(node); 1773 1774 return NULL; 1775 } 1776 1777 static struct perf_event * 1778 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1779 { 1780 struct __group_key key = { 1781 .cpu = event->cpu, 1782 .pmu = pmu, 1783 .cgroup = event_cgroup(event), 1784 }; 1785 struct rb_node *next; 1786 1787 next = rb_next_match(&key, &event->group_node, __group_cmp); 1788 if (next) 1789 return __node_2_pe(next); 1790 1791 return NULL; 1792 } 1793 1794 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1795 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1796 event; event = perf_event_groups_next(event, pmu)) 1797 1798 /* 1799 * Iterate through the whole groups tree. 1800 */ 1801 #define perf_event_groups_for_each(event, groups) \ 1802 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1803 typeof(*event), group_node); event; \ 1804 event = rb_entry_safe(rb_next(&event->group_node), \ 1805 typeof(*event), group_node)) 1806 1807 /* 1808 * Does the event attribute request inherit with PERF_SAMPLE_READ 1809 */ 1810 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1811 { 1812 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1813 } 1814 1815 /* 1816 * Add an event from the lists for its context. 1817 * Must be called with ctx->mutex and ctx->lock held. 1818 */ 1819 static void 1820 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1821 { 1822 lockdep_assert_held(&ctx->lock); 1823 1824 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1825 event->attach_state |= PERF_ATTACH_CONTEXT; 1826 1827 event->tstamp = perf_event_time(event); 1828 1829 /* 1830 * If we're a stand alone event or group leader, we go to the context 1831 * list, group events are kept attached to the group so that 1832 * perf_group_detach can, at all times, locate all siblings. 1833 */ 1834 if (event->group_leader == event) { 1835 event->group_caps = event->event_caps; 1836 add_event_to_groups(event, ctx); 1837 } 1838 1839 list_add_rcu(&event->event_entry, &ctx->event_list); 1840 ctx->nr_events++; 1841 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1842 ctx->nr_user++; 1843 if (event->attr.inherit_stat) 1844 ctx->nr_stat++; 1845 if (has_inherit_and_sample_read(&event->attr)) 1846 local_inc(&ctx->nr_no_switch_fast); 1847 1848 if (event->state > PERF_EVENT_STATE_OFF) 1849 perf_cgroup_event_enable(event, ctx); 1850 1851 ctx->generation++; 1852 event->pmu_ctx->nr_events++; 1853 } 1854 1855 /* 1856 * Initialize event state based on the perf_event_attr::disabled. 1857 */ 1858 static inline void perf_event__state_init(struct perf_event *event) 1859 { 1860 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1861 PERF_EVENT_STATE_INACTIVE; 1862 } 1863 1864 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1865 { 1866 int entry = sizeof(u64); /* value */ 1867 int size = 0; 1868 int nr = 1; 1869 1870 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1871 size += sizeof(u64); 1872 1873 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1874 size += sizeof(u64); 1875 1876 if (read_format & PERF_FORMAT_ID) 1877 entry += sizeof(u64); 1878 1879 if (read_format & PERF_FORMAT_LOST) 1880 entry += sizeof(u64); 1881 1882 if (read_format & PERF_FORMAT_GROUP) { 1883 nr += nr_siblings; 1884 size += sizeof(u64); 1885 } 1886 1887 /* 1888 * Since perf_event_validate_size() limits this to 16k and inhibits 1889 * adding more siblings, this will never overflow. 1890 */ 1891 return size + nr * entry; 1892 } 1893 1894 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1895 { 1896 struct perf_sample_data *data; 1897 u16 size = 0; 1898 1899 if (sample_type & PERF_SAMPLE_IP) 1900 size += sizeof(data->ip); 1901 1902 if (sample_type & PERF_SAMPLE_ADDR) 1903 size += sizeof(data->addr); 1904 1905 if (sample_type & PERF_SAMPLE_PERIOD) 1906 size += sizeof(data->period); 1907 1908 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1909 size += sizeof(data->weight.full); 1910 1911 if (sample_type & PERF_SAMPLE_READ) 1912 size += event->read_size; 1913 1914 if (sample_type & PERF_SAMPLE_DATA_SRC) 1915 size += sizeof(data->data_src.val); 1916 1917 if (sample_type & PERF_SAMPLE_TRANSACTION) 1918 size += sizeof(data->txn); 1919 1920 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1921 size += sizeof(data->phys_addr); 1922 1923 if (sample_type & PERF_SAMPLE_CGROUP) 1924 size += sizeof(data->cgroup); 1925 1926 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1927 size += sizeof(data->data_page_size); 1928 1929 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1930 size += sizeof(data->code_page_size); 1931 1932 event->header_size = size; 1933 } 1934 1935 /* 1936 * Called at perf_event creation and when events are attached/detached from a 1937 * group. 1938 */ 1939 static void perf_event__header_size(struct perf_event *event) 1940 { 1941 event->read_size = 1942 __perf_event_read_size(event->attr.read_format, 1943 event->group_leader->nr_siblings); 1944 __perf_event_header_size(event, event->attr.sample_type); 1945 } 1946 1947 static void perf_event__id_header_size(struct perf_event *event) 1948 { 1949 struct perf_sample_data *data; 1950 u64 sample_type = event->attr.sample_type; 1951 u16 size = 0; 1952 1953 if (sample_type & PERF_SAMPLE_TID) 1954 size += sizeof(data->tid_entry); 1955 1956 if (sample_type & PERF_SAMPLE_TIME) 1957 size += sizeof(data->time); 1958 1959 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1960 size += sizeof(data->id); 1961 1962 if (sample_type & PERF_SAMPLE_ID) 1963 size += sizeof(data->id); 1964 1965 if (sample_type & PERF_SAMPLE_STREAM_ID) 1966 size += sizeof(data->stream_id); 1967 1968 if (sample_type & PERF_SAMPLE_CPU) 1969 size += sizeof(data->cpu_entry); 1970 1971 event->id_header_size = size; 1972 } 1973 1974 /* 1975 * Check that adding an event to the group does not result in anybody 1976 * overflowing the 64k event limit imposed by the output buffer. 1977 * 1978 * Specifically, check that the read_size for the event does not exceed 16k, 1979 * read_size being the one term that grows with groups size. Since read_size 1980 * depends on per-event read_format, also (re)check the existing events. 1981 * 1982 * This leaves 48k for the constant size fields and things like callchains, 1983 * branch stacks and register sets. 1984 */ 1985 static bool perf_event_validate_size(struct perf_event *event) 1986 { 1987 struct perf_event *sibling, *group_leader = event->group_leader; 1988 1989 if (__perf_event_read_size(event->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 if (__perf_event_read_size(group_leader->attr.read_format, 1994 group_leader->nr_siblings + 1) > 16*1024) 1995 return false; 1996 1997 /* 1998 * When creating a new group leader, group_leader->ctx is initialized 1999 * after the size has been validated, but we cannot safely use 2000 * for_each_sibling_event() until group_leader->ctx is set. A new group 2001 * leader cannot have any siblings yet, so we can safely skip checking 2002 * the non-existent siblings. 2003 */ 2004 if (event == group_leader) 2005 return true; 2006 2007 for_each_sibling_event(sibling, group_leader) { 2008 if (__perf_event_read_size(sibling->attr.read_format, 2009 group_leader->nr_siblings + 1) > 16*1024) 2010 return false; 2011 } 2012 2013 return true; 2014 } 2015 2016 static void perf_group_attach(struct perf_event *event) 2017 { 2018 struct perf_event *group_leader = event->group_leader, *pos; 2019 2020 lockdep_assert_held(&event->ctx->lock); 2021 2022 /* 2023 * We can have double attach due to group movement (move_group) in 2024 * perf_event_open(). 2025 */ 2026 if (event->attach_state & PERF_ATTACH_GROUP) 2027 return; 2028 2029 event->attach_state |= PERF_ATTACH_GROUP; 2030 2031 if (group_leader == event) 2032 return; 2033 2034 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2035 2036 group_leader->group_caps &= event->event_caps; 2037 2038 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2039 group_leader->nr_siblings++; 2040 group_leader->group_generation++; 2041 2042 perf_event__header_size(group_leader); 2043 2044 for_each_sibling_event(pos, group_leader) 2045 perf_event__header_size(pos); 2046 } 2047 2048 /* 2049 * Remove an event from the lists for its context. 2050 * Must be called with ctx->mutex and ctx->lock held. 2051 */ 2052 static void 2053 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2054 { 2055 WARN_ON_ONCE(event->ctx != ctx); 2056 lockdep_assert_held(&ctx->lock); 2057 2058 /* 2059 * We can have double detach due to exit/hot-unplug + close. 2060 */ 2061 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2062 return; 2063 2064 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2065 2066 ctx->nr_events--; 2067 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2068 ctx->nr_user--; 2069 if (event->attr.inherit_stat) 2070 ctx->nr_stat--; 2071 if (has_inherit_and_sample_read(&event->attr)) 2072 local_dec(&ctx->nr_no_switch_fast); 2073 2074 list_del_rcu(&event->event_entry); 2075 2076 if (event->group_leader == event) 2077 del_event_from_groups(event, ctx); 2078 2079 /* 2080 * If event was in error state, then keep it 2081 * that way, otherwise bogus counts will be 2082 * returned on read(). The only way to get out 2083 * of error state is by explicit re-enabling 2084 * of the event 2085 */ 2086 if (event->state > PERF_EVENT_STATE_OFF) { 2087 perf_cgroup_event_disable(event, ctx); 2088 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2089 } 2090 2091 ctx->generation++; 2092 event->pmu_ctx->nr_events--; 2093 } 2094 2095 static int 2096 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2097 { 2098 if (!has_aux(aux_event)) 2099 return 0; 2100 2101 if (!event->pmu->aux_output_match) 2102 return 0; 2103 2104 return event->pmu->aux_output_match(aux_event); 2105 } 2106 2107 static void put_event(struct perf_event *event); 2108 static void event_sched_out(struct perf_event *event, 2109 struct perf_event_context *ctx); 2110 2111 static void perf_put_aux_event(struct perf_event *event) 2112 { 2113 struct perf_event_context *ctx = event->ctx; 2114 struct perf_event *iter; 2115 2116 /* 2117 * If event uses aux_event tear down the link 2118 */ 2119 if (event->aux_event) { 2120 iter = event->aux_event; 2121 event->aux_event = NULL; 2122 put_event(iter); 2123 return; 2124 } 2125 2126 /* 2127 * If the event is an aux_event, tear down all links to 2128 * it from other events. 2129 */ 2130 for_each_sibling_event(iter, event->group_leader) { 2131 if (iter->aux_event != event) 2132 continue; 2133 2134 iter->aux_event = NULL; 2135 put_event(event); 2136 2137 /* 2138 * If it's ACTIVE, schedule it out and put it into ERROR 2139 * state so that we don't try to schedule it again. Note 2140 * that perf_event_enable() will clear the ERROR status. 2141 */ 2142 event_sched_out(iter, ctx); 2143 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2144 } 2145 } 2146 2147 static bool perf_need_aux_event(struct perf_event *event) 2148 { 2149 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2150 } 2151 2152 static int perf_get_aux_event(struct perf_event *event, 2153 struct perf_event *group_leader) 2154 { 2155 /* 2156 * Our group leader must be an aux event if we want to be 2157 * an aux_output. This way, the aux event will precede its 2158 * aux_output events in the group, and therefore will always 2159 * schedule first. 2160 */ 2161 if (!group_leader) 2162 return 0; 2163 2164 /* 2165 * aux_output and aux_sample_size are mutually exclusive. 2166 */ 2167 if (event->attr.aux_output && event->attr.aux_sample_size) 2168 return 0; 2169 2170 if (event->attr.aux_output && 2171 !perf_aux_output_match(event, group_leader)) 2172 return 0; 2173 2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2175 return 0; 2176 2177 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2178 return 0; 2179 2180 /* 2181 * Link aux_outputs to their aux event; this is undone in 2182 * perf_group_detach() by perf_put_aux_event(). When the 2183 * group in torn down, the aux_output events loose their 2184 * link to the aux_event and can't schedule any more. 2185 */ 2186 event->aux_event = group_leader; 2187 2188 return 1; 2189 } 2190 2191 static inline struct list_head *get_event_list(struct perf_event *event) 2192 { 2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2194 &event->pmu_ctx->flexible_active; 2195 } 2196 2197 /* 2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2199 * cannot exist on their own, schedule them out and move them into the ERROR 2200 * state. Also see _perf_event_enable(), it will not be able to recover 2201 * this ERROR state. 2202 */ 2203 static inline void perf_remove_sibling_event(struct perf_event *event) 2204 { 2205 event_sched_out(event, event->ctx); 2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2207 } 2208 2209 static void perf_group_detach(struct perf_event *event) 2210 { 2211 struct perf_event *leader = event->group_leader; 2212 struct perf_event *sibling, *tmp; 2213 struct perf_event_context *ctx = event->ctx; 2214 2215 lockdep_assert_held(&ctx->lock); 2216 2217 /* 2218 * We can have double detach due to exit/hot-unplug + close. 2219 */ 2220 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2221 return; 2222 2223 event->attach_state &= ~PERF_ATTACH_GROUP; 2224 2225 perf_put_aux_event(event); 2226 2227 /* 2228 * If this is a sibling, remove it from its group. 2229 */ 2230 if (leader != event) { 2231 list_del_init(&event->sibling_list); 2232 event->group_leader->nr_siblings--; 2233 event->group_leader->group_generation++; 2234 goto out; 2235 } 2236 2237 /* 2238 * If this was a group event with sibling events then 2239 * upgrade the siblings to singleton events by adding them 2240 * to whatever list we are on. 2241 */ 2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2243 2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2245 perf_remove_sibling_event(sibling); 2246 2247 sibling->group_leader = sibling; 2248 list_del_init(&sibling->sibling_list); 2249 2250 /* Inherit group flags from the previous leader */ 2251 sibling->group_caps = event->group_caps; 2252 2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2254 add_event_to_groups(sibling, event->ctx); 2255 2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2257 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2258 } 2259 2260 WARN_ON_ONCE(sibling->ctx != event->ctx); 2261 } 2262 2263 out: 2264 for_each_sibling_event(tmp, leader) 2265 perf_event__header_size(tmp); 2266 2267 perf_event__header_size(leader); 2268 } 2269 2270 static void sync_child_event(struct perf_event *child_event); 2271 2272 static void perf_child_detach(struct perf_event *event) 2273 { 2274 struct perf_event *parent_event = event->parent; 2275 2276 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2277 return; 2278 2279 event->attach_state &= ~PERF_ATTACH_CHILD; 2280 2281 if (WARN_ON_ONCE(!parent_event)) 2282 return; 2283 2284 lockdep_assert_held(&parent_event->child_mutex); 2285 2286 sync_child_event(event); 2287 list_del_init(&event->child_list); 2288 } 2289 2290 static bool is_orphaned_event(struct perf_event *event) 2291 { 2292 return event->state == PERF_EVENT_STATE_DEAD; 2293 } 2294 2295 static inline int 2296 event_filter_match(struct perf_event *event) 2297 { 2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2299 perf_cgroup_match(event); 2300 } 2301 2302 static void 2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2304 { 2305 struct perf_event_pmu_context *epc = event->pmu_ctx; 2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2308 2309 // XXX cpc serialization, probably per-cpu IRQ disabled 2310 2311 WARN_ON_ONCE(event->ctx != ctx); 2312 lockdep_assert_held(&ctx->lock); 2313 2314 if (event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 /* 2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2319 * we can schedule events _OUT_ individually through things like 2320 * __perf_remove_from_context(). 2321 */ 2322 list_del_init(&event->active_list); 2323 2324 perf_pmu_disable(event->pmu); 2325 2326 event->pmu->del(event, 0); 2327 event->oncpu = -1; 2328 2329 if (event->pending_disable) { 2330 event->pending_disable = 0; 2331 perf_cgroup_event_disable(event, ctx); 2332 state = PERF_EVENT_STATE_OFF; 2333 } 2334 2335 perf_event_set_state(event, state); 2336 2337 if (!is_software_event(event)) 2338 cpc->active_oncpu--; 2339 if (event->attr.freq && event->attr.sample_freq) { 2340 ctx->nr_freq--; 2341 epc->nr_freq--; 2342 } 2343 if (event->attr.exclusive || !cpc->active_oncpu) 2344 cpc->exclusive = 0; 2345 2346 perf_pmu_enable(event->pmu); 2347 } 2348 2349 static void 2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2351 { 2352 struct perf_event *event; 2353 2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2355 return; 2356 2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2358 2359 event_sched_out(group_event, ctx); 2360 2361 /* 2362 * Schedule out siblings (if any): 2363 */ 2364 for_each_sibling_event(event, group_event) 2365 event_sched_out(event, ctx); 2366 } 2367 2368 static inline void 2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2370 { 2371 if (ctx->is_active & EVENT_TIME) { 2372 if (ctx->is_active & EVENT_FROZEN) 2373 return; 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx, final); 2376 } 2377 } 2378 2379 static inline void 2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2381 { 2382 __ctx_time_update(cpuctx, ctx, false); 2383 } 2384 2385 /* 2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2387 */ 2388 static inline void 2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2390 { 2391 ctx_time_update(cpuctx, ctx); 2392 if (ctx->is_active & EVENT_TIME) 2393 ctx->is_active |= EVENT_FROZEN; 2394 } 2395 2396 static inline void 2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2398 { 2399 if (ctx->is_active & EVENT_TIME) { 2400 if (ctx->is_active & EVENT_FROZEN) 2401 return; 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 } 2406 2407 #define DETACH_GROUP 0x01UL 2408 #define DETACH_CHILD 0x02UL 2409 #define DETACH_DEAD 0x04UL 2410 2411 /* 2412 * Cross CPU call to remove a performance event 2413 * 2414 * We disable the event on the hardware level first. After that we 2415 * remove it from the context list. 2416 */ 2417 static void 2418 __perf_remove_from_context(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2424 unsigned long flags = (unsigned long)info; 2425 2426 ctx_time_update(cpuctx, ctx); 2427 2428 /* 2429 * Ensure event_sched_out() switches to OFF, at the very least 2430 * this avoids raising perf_pending_task() at this time. 2431 */ 2432 if (flags & DETACH_DEAD) 2433 event->pending_disable = 1; 2434 event_sched_out(event, ctx); 2435 if (flags & DETACH_GROUP) 2436 perf_group_detach(event); 2437 if (flags & DETACH_CHILD) 2438 perf_child_detach(event); 2439 list_del_event(event, ctx); 2440 if (flags & DETACH_DEAD) 2441 event->state = PERF_EVENT_STATE_DEAD; 2442 2443 if (!pmu_ctx->nr_events) { 2444 pmu_ctx->rotate_necessary = 0; 2445 2446 if (ctx->task && ctx->is_active) { 2447 struct perf_cpu_pmu_context *cpc; 2448 2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2451 cpc->task_epc = NULL; 2452 } 2453 } 2454 2455 if (!ctx->nr_events && ctx->is_active) { 2456 if (ctx == &cpuctx->ctx) 2457 update_cgrp_time_from_cpuctx(cpuctx, true); 2458 2459 ctx->is_active = 0; 2460 if (ctx->task) { 2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2462 cpuctx->task_ctx = NULL; 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Remove the event from a task's (or a CPU's) list of events. 2469 * 2470 * If event->ctx is a cloned context, callers must make sure that 2471 * every task struct that event->ctx->task could possibly point to 2472 * remains valid. This is OK when called from perf_release since 2473 * that only calls us on the top-level context, which can't be a clone. 2474 * When called from perf_event_exit_task, it's OK because the 2475 * context has been detached from its task. 2476 */ 2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 lockdep_assert_held(&ctx->mutex); 2482 2483 /* 2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2485 * to work in the face of TASK_TOMBSTONE, unlike every other 2486 * event_function_call() user. 2487 */ 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (!ctx->is_active) { 2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2491 ctx, (void *)flags); 2492 raw_spin_unlock_irq(&ctx->lock); 2493 return; 2494 } 2495 raw_spin_unlock_irq(&ctx->lock); 2496 2497 event_function_call(event, __perf_remove_from_context, (void *)flags); 2498 } 2499 2500 /* 2501 * Cross CPU call to disable a performance event 2502 */ 2503 static void __perf_event_disable(struct perf_event *event, 2504 struct perf_cpu_context *cpuctx, 2505 struct perf_event_context *ctx, 2506 void *info) 2507 { 2508 if (event->state < PERF_EVENT_STATE_INACTIVE) 2509 return; 2510 2511 perf_pmu_disable(event->pmu_ctx->pmu); 2512 ctx_time_update_event(ctx, event); 2513 2514 if (event == event->group_leader) 2515 group_sched_out(event, ctx); 2516 else 2517 event_sched_out(event, ctx); 2518 2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2520 perf_cgroup_event_disable(event, ctx); 2521 2522 perf_pmu_enable(event->pmu_ctx->pmu); 2523 } 2524 2525 /* 2526 * Disable an event. 2527 * 2528 * If event->ctx is a cloned context, callers must make sure that 2529 * every task struct that event->ctx->task could possibly point to 2530 * remains valid. This condition is satisfied when called through 2531 * perf_event_for_each_child or perf_event_for_each because they 2532 * hold the top-level event's child_mutex, so any descendant that 2533 * goes to exit will block in perf_event_exit_event(). 2534 * 2535 * When called from perf_pending_disable it's OK because event->ctx 2536 * is the current context on this CPU and preemption is disabled, 2537 * hence we can't get into perf_event_task_sched_out for this context. 2538 */ 2539 static void _perf_event_disable(struct perf_event *event) 2540 { 2541 struct perf_event_context *ctx = event->ctx; 2542 2543 raw_spin_lock_irq(&ctx->lock); 2544 if (event->state <= PERF_EVENT_STATE_OFF) { 2545 raw_spin_unlock_irq(&ctx->lock); 2546 return; 2547 } 2548 raw_spin_unlock_irq(&ctx->lock); 2549 2550 event_function_call(event, __perf_event_disable, NULL); 2551 } 2552 2553 void perf_event_disable_local(struct perf_event *event) 2554 { 2555 event_function_local(event, __perf_event_disable, NULL); 2556 } 2557 2558 /* 2559 * Strictly speaking kernel users cannot create groups and therefore this 2560 * interface does not need the perf_event_ctx_lock() magic. 2561 */ 2562 void perf_event_disable(struct perf_event *event) 2563 { 2564 struct perf_event_context *ctx; 2565 2566 ctx = perf_event_ctx_lock(event); 2567 _perf_event_disable(event); 2568 perf_event_ctx_unlock(event, ctx); 2569 } 2570 EXPORT_SYMBOL_GPL(perf_event_disable); 2571 2572 void perf_event_disable_inatomic(struct perf_event *event) 2573 { 2574 event->pending_disable = 1; 2575 irq_work_queue(&event->pending_disable_irq); 2576 } 2577 2578 #define MAX_INTERRUPTS (~0ULL) 2579 2580 static void perf_log_throttle(struct perf_event *event, int enable); 2581 static void perf_log_itrace_start(struct perf_event *event); 2582 2583 static int 2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 int ret = 0; 2589 2590 WARN_ON_ONCE(event->ctx != ctx); 2591 2592 lockdep_assert_held(&ctx->lock); 2593 2594 if (event->state <= PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 WRITE_ONCE(event->oncpu, smp_processor_id()); 2598 /* 2599 * Order event::oncpu write to happen before the ACTIVE state is 2600 * visible. This allows perf_event_{stop,read}() to observe the correct 2601 * ->oncpu if it sees ACTIVE. 2602 */ 2603 smp_wmb(); 2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2605 2606 /* 2607 * Unthrottle events, since we scheduled we might have missed several 2608 * ticks already, also for a heavily scheduling task there is little 2609 * guarantee it'll get a tick in a timely manner. 2610 */ 2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2612 perf_log_throttle(event, 1); 2613 event->hw.interrupts = 0; 2614 } 2615 2616 perf_pmu_disable(event->pmu); 2617 2618 perf_log_itrace_start(event); 2619 2620 if (event->pmu->add(event, PERF_EF_START)) { 2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2622 event->oncpu = -1; 2623 ret = -EAGAIN; 2624 goto out; 2625 } 2626 2627 if (!is_software_event(event)) 2628 cpc->active_oncpu++; 2629 if (event->attr.freq && event->attr.sample_freq) { 2630 ctx->nr_freq++; 2631 epc->nr_freq++; 2632 } 2633 if (event->attr.exclusive) 2634 cpc->exclusive = 1; 2635 2636 out: 2637 perf_pmu_enable(event->pmu); 2638 2639 return ret; 2640 } 2641 2642 static int 2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2644 { 2645 struct perf_event *event, *partial_group = NULL; 2646 struct pmu *pmu = group_event->pmu_ctx->pmu; 2647 2648 if (group_event->state == PERF_EVENT_STATE_OFF) 2649 return 0; 2650 2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2652 2653 if (event_sched_in(group_event, ctx)) 2654 goto error; 2655 2656 /* 2657 * Schedule in siblings as one group (if any): 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event_sched_in(event, ctx)) { 2661 partial_group = event; 2662 goto group_error; 2663 } 2664 } 2665 2666 if (!pmu->commit_txn(pmu)) 2667 return 0; 2668 2669 group_error: 2670 /* 2671 * Groups can be scheduled in as one unit only, so undo any 2672 * partial group before returning: 2673 * The events up to the failed event are scheduled out normally. 2674 */ 2675 for_each_sibling_event(event, group_event) { 2676 if (event == partial_group) 2677 break; 2678 2679 event_sched_out(event, ctx); 2680 } 2681 event_sched_out(group_event, ctx); 2682 2683 error: 2684 pmu->cancel_txn(pmu); 2685 return -EAGAIN; 2686 } 2687 2688 /* 2689 * Work out whether we can put this event group on the CPU now. 2690 */ 2691 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2692 { 2693 struct perf_event_pmu_context *epc = event->pmu_ctx; 2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2695 2696 /* 2697 * Groups consisting entirely of software events can always go on. 2698 */ 2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2700 return 1; 2701 /* 2702 * If an exclusive group is already on, no other hardware 2703 * events can go on. 2704 */ 2705 if (cpc->exclusive) 2706 return 0; 2707 /* 2708 * If this group is exclusive and there are already 2709 * events on the CPU, it can't go on. 2710 */ 2711 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2712 return 0; 2713 /* 2714 * Otherwise, try to add it if all previous groups were able 2715 * to go on. 2716 */ 2717 return can_add_hw; 2718 } 2719 2720 static void add_event_to_ctx(struct perf_event *event, 2721 struct perf_event_context *ctx) 2722 { 2723 list_add_event(event, ctx); 2724 perf_group_attach(event); 2725 } 2726 2727 static void task_ctx_sched_out(struct perf_event_context *ctx, 2728 struct pmu *pmu, 2729 enum event_type_t event_type) 2730 { 2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2732 2733 if (!cpuctx->task_ctx) 2734 return; 2735 2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2737 return; 2738 2739 ctx_sched_out(ctx, pmu, event_type); 2740 } 2741 2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 struct pmu *pmu) 2745 { 2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2747 if (ctx) 2748 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2750 if (ctx) 2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2752 } 2753 2754 /* 2755 * We want to maintain the following priority of scheduling: 2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2757 * - task pinned (EVENT_PINNED) 2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2759 * - task flexible (EVENT_FLEXIBLE). 2760 * 2761 * In order to avoid unscheduling and scheduling back in everything every 2762 * time an event is added, only do it for the groups of equal priority and 2763 * below. 2764 * 2765 * This can be called after a batch operation on task events, in which case 2766 * event_type is a bit mask of the types of events involved. For CPU events, 2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2768 */ 2769 static void ctx_resched(struct perf_cpu_context *cpuctx, 2770 struct perf_event_context *task_ctx, 2771 struct pmu *pmu, enum event_type_t event_type) 2772 { 2773 bool cpu_event = !!(event_type & EVENT_CPU); 2774 struct perf_event_pmu_context *epc; 2775 2776 /* 2777 * If pinned groups are involved, flexible groups also need to be 2778 * scheduled out. 2779 */ 2780 if (event_type & EVENT_PINNED) 2781 event_type |= EVENT_FLEXIBLE; 2782 2783 event_type &= EVENT_ALL; 2784 2785 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 if (task_ctx) { 2789 for_each_epc(epc, task_ctx, pmu, false) 2790 perf_pmu_disable(epc->pmu); 2791 2792 task_ctx_sched_out(task_ctx, pmu, event_type); 2793 } 2794 2795 /* 2796 * Decide which cpu ctx groups to schedule out based on the types 2797 * of events that caused rescheduling: 2798 * - EVENT_CPU: schedule out corresponding groups; 2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2800 * - otherwise, do nothing more. 2801 */ 2802 if (cpu_event) 2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2804 else if (event_type & EVENT_PINNED) 2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2806 2807 perf_event_sched_in(cpuctx, task_ctx, pmu); 2808 2809 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 2812 if (task_ctx) { 2813 for_each_epc(epc, task_ctx, pmu, false) 2814 perf_pmu_enable(epc->pmu); 2815 } 2816 } 2817 2818 void perf_pmu_resched(struct pmu *pmu) 2819 { 2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2821 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2822 2823 perf_ctx_lock(cpuctx, task_ctx); 2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2825 perf_ctx_unlock(cpuctx, task_ctx); 2826 } 2827 2828 /* 2829 * Cross CPU call to install and enable a performance event 2830 * 2831 * Very similar to remote_function() + event_function() but cannot assume that 2832 * things like ctx->is_active and cpuctx->task_ctx are set. 2833 */ 2834 static int __perf_install_in_context(void *info) 2835 { 2836 struct perf_event *event = info; 2837 struct perf_event_context *ctx = event->ctx; 2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2839 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2840 bool reprogram = true; 2841 int ret = 0; 2842 2843 raw_spin_lock(&cpuctx->ctx.lock); 2844 if (ctx->task) { 2845 raw_spin_lock(&ctx->lock); 2846 task_ctx = ctx; 2847 2848 reprogram = (ctx->task == current); 2849 2850 /* 2851 * If the task is running, it must be running on this CPU, 2852 * otherwise we cannot reprogram things. 2853 * 2854 * If its not running, we don't care, ctx->lock will 2855 * serialize against it becoming runnable. 2856 */ 2857 if (task_curr(ctx->task) && !reprogram) { 2858 ret = -ESRCH; 2859 goto unlock; 2860 } 2861 2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2863 } else if (task_ctx) { 2864 raw_spin_lock(&task_ctx->lock); 2865 } 2866 2867 #ifdef CONFIG_CGROUP_PERF 2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2869 /* 2870 * If the current cgroup doesn't match the event's 2871 * cgroup, we should not try to schedule it. 2872 */ 2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2875 event->cgrp->css.cgroup); 2876 } 2877 #endif 2878 2879 if (reprogram) { 2880 ctx_time_freeze(cpuctx, ctx); 2881 add_event_to_ctx(event, ctx); 2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2883 get_event_type(event)); 2884 } else { 2885 add_event_to_ctx(event, ctx); 2886 } 2887 2888 unlock: 2889 perf_ctx_unlock(cpuctx, task_ctx); 2890 2891 return ret; 2892 } 2893 2894 static bool exclusive_event_installable(struct perf_event *event, 2895 struct perf_event_context *ctx); 2896 2897 /* 2898 * Attach a performance event to a context. 2899 * 2900 * Very similar to event_function_call, see comment there. 2901 */ 2902 static void 2903 perf_install_in_context(struct perf_event_context *ctx, 2904 struct perf_event *event, 2905 int cpu) 2906 { 2907 struct task_struct *task = READ_ONCE(ctx->task); 2908 2909 lockdep_assert_held(&ctx->mutex); 2910 2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2912 2913 if (event->cpu != -1) 2914 WARN_ON_ONCE(event->cpu != cpu); 2915 2916 /* 2917 * Ensures that if we can observe event->ctx, both the event and ctx 2918 * will be 'complete'. See perf_iterate_sb_cpu(). 2919 */ 2920 smp_store_release(&event->ctx, ctx); 2921 2922 /* 2923 * perf_event_attr::disabled events will not run and can be initialized 2924 * without IPI. Except when this is the first event for the context, in 2925 * that case we need the magic of the IPI to set ctx->is_active. 2926 * 2927 * The IOC_ENABLE that is sure to follow the creation of a disabled 2928 * event will issue the IPI and reprogram the hardware. 2929 */ 2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2931 ctx->nr_events && !is_cgroup_event(event)) { 2932 raw_spin_lock_irq(&ctx->lock); 2933 if (ctx->task == TASK_TOMBSTONE) { 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 add_event_to_ctx(event, ctx); 2938 raw_spin_unlock_irq(&ctx->lock); 2939 return; 2940 } 2941 2942 if (!task) { 2943 cpu_function_call(cpu, __perf_install_in_context, event); 2944 return; 2945 } 2946 2947 /* 2948 * Should not happen, we validate the ctx is still alive before calling. 2949 */ 2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2951 return; 2952 2953 /* 2954 * Installing events is tricky because we cannot rely on ctx->is_active 2955 * to be set in case this is the nr_events 0 -> 1 transition. 2956 * 2957 * Instead we use task_curr(), which tells us if the task is running. 2958 * However, since we use task_curr() outside of rq::lock, we can race 2959 * against the actual state. This means the result can be wrong. 2960 * 2961 * If we get a false positive, we retry, this is harmless. 2962 * 2963 * If we get a false negative, things are complicated. If we are after 2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2965 * value must be correct. If we're before, it doesn't matter since 2966 * perf_event_context_sched_in() will program the counter. 2967 * 2968 * However, this hinges on the remote context switch having observed 2969 * our task->perf_event_ctxp[] store, such that it will in fact take 2970 * ctx::lock in perf_event_context_sched_in(). 2971 * 2972 * We do this by task_function_call(), if the IPI fails to hit the task 2973 * we know any future context switch of task must see the 2974 * perf_event_ctpx[] store. 2975 */ 2976 2977 /* 2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2979 * task_cpu() load, such that if the IPI then does not find the task 2980 * running, a future context switch of that task must observe the 2981 * store. 2982 */ 2983 smp_mb(); 2984 again: 2985 if (!task_function_call(task, __perf_install_in_context, event)) 2986 return; 2987 2988 raw_spin_lock_irq(&ctx->lock); 2989 task = ctx->task; 2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2991 /* 2992 * Cannot happen because we already checked above (which also 2993 * cannot happen), and we hold ctx->mutex, which serializes us 2994 * against perf_event_exit_task_context(). 2995 */ 2996 raw_spin_unlock_irq(&ctx->lock); 2997 return; 2998 } 2999 /* 3000 * If the task is not running, ctx->lock will avoid it becoming so, 3001 * thus we can safely install the event. 3002 */ 3003 if (task_curr(task)) { 3004 raw_spin_unlock_irq(&ctx->lock); 3005 goto again; 3006 } 3007 add_event_to_ctx(event, ctx); 3008 raw_spin_unlock_irq(&ctx->lock); 3009 } 3010 3011 /* 3012 * Cross CPU call to enable a performance event 3013 */ 3014 static void __perf_event_enable(struct perf_event *event, 3015 struct perf_cpu_context *cpuctx, 3016 struct perf_event_context *ctx, 3017 void *info) 3018 { 3019 struct perf_event *leader = event->group_leader; 3020 struct perf_event_context *task_ctx; 3021 3022 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3023 event->state <= PERF_EVENT_STATE_ERROR) 3024 return; 3025 3026 ctx_time_freeze(cpuctx, ctx); 3027 3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3029 perf_cgroup_event_enable(event, ctx); 3030 3031 if (!ctx->is_active) 3032 return; 3033 3034 if (!event_filter_match(event)) 3035 return; 3036 3037 /* 3038 * If the event is in a group and isn't the group leader, 3039 * then don't put it on unless the group is on. 3040 */ 3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3042 return; 3043 3044 task_ctx = cpuctx->task_ctx; 3045 if (ctx->task) 3046 WARN_ON_ONCE(task_ctx != ctx); 3047 3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3049 } 3050 3051 /* 3052 * Enable an event. 3053 * 3054 * If event->ctx is a cloned context, callers must make sure that 3055 * every task struct that event->ctx->task could possibly point to 3056 * remains valid. This condition is satisfied when called through 3057 * perf_event_for_each_child or perf_event_for_each as described 3058 * for perf_event_disable. 3059 */ 3060 static void _perf_event_enable(struct perf_event *event) 3061 { 3062 struct perf_event_context *ctx = event->ctx; 3063 3064 raw_spin_lock_irq(&ctx->lock); 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state < PERF_EVENT_STATE_ERROR) { 3067 out: 3068 raw_spin_unlock_irq(&ctx->lock); 3069 return; 3070 } 3071 3072 /* 3073 * If the event is in error state, clear that first. 3074 * 3075 * That way, if we see the event in error state below, we know that it 3076 * has gone back into error state, as distinct from the task having 3077 * been scheduled away before the cross-call arrived. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_ERROR) { 3080 /* 3081 * Detached SIBLING events cannot leave ERROR state. 3082 */ 3083 if (event->event_caps & PERF_EV_CAP_SIBLING && 3084 event->group_leader == event) 3085 goto out; 3086 3087 event->state = PERF_EVENT_STATE_OFF; 3088 } 3089 raw_spin_unlock_irq(&ctx->lock); 3090 3091 event_function_call(event, __perf_event_enable, NULL); 3092 } 3093 3094 /* 3095 * See perf_event_disable(); 3096 */ 3097 void perf_event_enable(struct perf_event *event) 3098 { 3099 struct perf_event_context *ctx; 3100 3101 ctx = perf_event_ctx_lock(event); 3102 _perf_event_enable(event); 3103 perf_event_ctx_unlock(event, ctx); 3104 } 3105 EXPORT_SYMBOL_GPL(perf_event_enable); 3106 3107 struct stop_event_data { 3108 struct perf_event *event; 3109 unsigned int restart; 3110 }; 3111 3112 static int __perf_event_stop(void *info) 3113 { 3114 struct stop_event_data *sd = info; 3115 struct perf_event *event = sd->event; 3116 3117 /* if it's already INACTIVE, do nothing */ 3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3119 return 0; 3120 3121 /* matches smp_wmb() in event_sched_in() */ 3122 smp_rmb(); 3123 3124 /* 3125 * There is a window with interrupts enabled before we get here, 3126 * so we need to check again lest we try to stop another CPU's event. 3127 */ 3128 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3129 return -EAGAIN; 3130 3131 event->pmu->stop(event, PERF_EF_UPDATE); 3132 3133 /* 3134 * May race with the actual stop (through perf_pmu_output_stop()), 3135 * but it is only used for events with AUX ring buffer, and such 3136 * events will refuse to restart because of rb::aux_mmap_count==0, 3137 * see comments in perf_aux_output_begin(). 3138 * 3139 * Since this is happening on an event-local CPU, no trace is lost 3140 * while restarting. 3141 */ 3142 if (sd->restart) 3143 event->pmu->start(event, 0); 3144 3145 return 0; 3146 } 3147 3148 static int perf_event_stop(struct perf_event *event, int restart) 3149 { 3150 struct stop_event_data sd = { 3151 .event = event, 3152 .restart = restart, 3153 }; 3154 int ret = 0; 3155 3156 do { 3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3158 return 0; 3159 3160 /* matches smp_wmb() in event_sched_in() */ 3161 smp_rmb(); 3162 3163 /* 3164 * We only want to restart ACTIVE events, so if the event goes 3165 * inactive here (event->oncpu==-1), there's nothing more to do; 3166 * fall through with ret==-ENXIO. 3167 */ 3168 ret = cpu_function_call(READ_ONCE(event->oncpu), 3169 __perf_event_stop, &sd); 3170 } while (ret == -EAGAIN); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * In order to contain the amount of racy and tricky in the address filter 3177 * configuration management, it is a two part process: 3178 * 3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3180 * we update the addresses of corresponding vmas in 3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3182 * (p2) when an event is scheduled in (pmu::add), it calls 3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3184 * if the generation has changed since the previous call. 3185 * 3186 * If (p1) happens while the event is active, we restart it to force (p2). 3187 * 3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3190 * ioctl; 3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3193 * for reading; 3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3195 * of exec. 3196 */ 3197 void perf_event_addr_filters_sync(struct perf_event *event) 3198 { 3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3200 3201 if (!has_addr_filter(event)) 3202 return; 3203 3204 raw_spin_lock(&ifh->lock); 3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3206 event->pmu->addr_filters_sync(event); 3207 event->hw.addr_filters_gen = event->addr_filters_gen; 3208 } 3209 raw_spin_unlock(&ifh->lock); 3210 } 3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3212 3213 static int _perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 /* 3216 * not supported on inherited events 3217 */ 3218 if (event->attr.inherit || !is_sampling_event(event)) 3219 return -EINVAL; 3220 3221 atomic_add(refresh, &event->event_limit); 3222 _perf_event_enable(event); 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * See perf_event_disable() 3229 */ 3230 int perf_event_refresh(struct perf_event *event, int refresh) 3231 { 3232 struct perf_event_context *ctx; 3233 int ret; 3234 3235 ctx = perf_event_ctx_lock(event); 3236 ret = _perf_event_refresh(event, refresh); 3237 perf_event_ctx_unlock(event, ctx); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(perf_event_refresh); 3242 3243 static int perf_event_modify_breakpoint(struct perf_event *bp, 3244 struct perf_event_attr *attr) 3245 { 3246 int err; 3247 3248 _perf_event_disable(bp); 3249 3250 err = modify_user_hw_breakpoint_check(bp, attr, true); 3251 3252 if (!bp->attr.disabled) 3253 _perf_event_enable(bp); 3254 3255 return err; 3256 } 3257 3258 /* 3259 * Copy event-type-independent attributes that may be modified. 3260 */ 3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3262 const struct perf_event_attr *from) 3263 { 3264 to->sig_data = from->sig_data; 3265 } 3266 3267 static int perf_event_modify_attr(struct perf_event *event, 3268 struct perf_event_attr *attr) 3269 { 3270 int (*func)(struct perf_event *, struct perf_event_attr *); 3271 struct perf_event *child; 3272 int err; 3273 3274 if (event->attr.type != attr->type) 3275 return -EINVAL; 3276 3277 switch (event->attr.type) { 3278 case PERF_TYPE_BREAKPOINT: 3279 func = perf_event_modify_breakpoint; 3280 break; 3281 default: 3282 /* Place holder for future additions. */ 3283 return -EOPNOTSUPP; 3284 } 3285 3286 WARN_ON_ONCE(event->ctx->parent_ctx); 3287 3288 mutex_lock(&event->child_mutex); 3289 /* 3290 * Event-type-independent attributes must be copied before event-type 3291 * modification, which will validate that final attributes match the 3292 * source attributes after all relevant attributes have been copied. 3293 */ 3294 perf_event_modify_copy_attr(&event->attr, attr); 3295 err = func(event, attr); 3296 if (err) 3297 goto out; 3298 list_for_each_entry(child, &event->child_list, child_list) { 3299 perf_event_modify_copy_attr(&child->attr, attr); 3300 err = func(child, attr); 3301 if (err) 3302 goto out; 3303 } 3304 out: 3305 mutex_unlock(&event->child_mutex); 3306 return err; 3307 } 3308 3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3310 enum event_type_t event_type) 3311 { 3312 struct perf_event_context *ctx = pmu_ctx->ctx; 3313 struct perf_event *event, *tmp; 3314 struct pmu *pmu = pmu_ctx->pmu; 3315 3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3317 struct perf_cpu_pmu_context *cpc; 3318 3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3321 cpc->task_epc = NULL; 3322 } 3323 3324 if (!(event_type & EVENT_ALL)) 3325 return; 3326 3327 perf_pmu_disable(pmu); 3328 if (event_type & EVENT_PINNED) { 3329 list_for_each_entry_safe(event, tmp, 3330 &pmu_ctx->pinned_active, 3331 active_list) 3332 group_sched_out(event, ctx); 3333 } 3334 3335 if (event_type & EVENT_FLEXIBLE) { 3336 list_for_each_entry_safe(event, tmp, 3337 &pmu_ctx->flexible_active, 3338 active_list) 3339 group_sched_out(event, ctx); 3340 /* 3341 * Since we cleared EVENT_FLEXIBLE, also clear 3342 * rotate_necessary, is will be reset by 3343 * ctx_flexible_sched_in() when needed. 3344 */ 3345 pmu_ctx->rotate_necessary = 0; 3346 } 3347 perf_pmu_enable(pmu); 3348 } 3349 3350 /* 3351 * Be very careful with the @pmu argument since this will change ctx state. 3352 * The @pmu argument works for ctx_resched(), because that is symmetric in 3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3354 * 3355 * However, if you were to be asymmetrical, you could end up with messed up 3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3357 * be active. 3358 */ 3359 static void 3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3361 { 3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3363 struct perf_event_pmu_context *pmu_ctx; 3364 int is_active = ctx->is_active; 3365 bool cgroup = event_type & EVENT_CGROUP; 3366 3367 event_type &= ~EVENT_CGROUP; 3368 3369 lockdep_assert_held(&ctx->lock); 3370 3371 if (likely(!ctx->nr_events)) { 3372 /* 3373 * See __perf_remove_from_context(). 3374 */ 3375 WARN_ON_ONCE(ctx->is_active); 3376 if (ctx->task) 3377 WARN_ON_ONCE(cpuctx->task_ctx); 3378 return; 3379 } 3380 3381 /* 3382 * Always update time if it was set; not only when it changes. 3383 * Otherwise we can 'forget' to update time for any but the last 3384 * context we sched out. For example: 3385 * 3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3387 * ctx_sched_out(.event_type = EVENT_PINNED) 3388 * 3389 * would only update time for the pinned events. 3390 */ 3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3392 3393 /* 3394 * CPU-release for the below ->is_active store, 3395 * see __load_acquire() in perf_event_time_now() 3396 */ 3397 barrier(); 3398 ctx->is_active &= ~event_type; 3399 3400 if (!(ctx->is_active & EVENT_ALL)) { 3401 /* 3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3403 * does not observe a hole. perf_ctx_unlock() will clean up. 3404 */ 3405 if (ctx->is_active & EVENT_FROZEN) 3406 ctx->is_active &= EVENT_TIME_FROZEN; 3407 else 3408 ctx->is_active = 0; 3409 } 3410 3411 if (ctx->task) { 3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3413 if (!(ctx->is_active & EVENT_ALL)) 3414 cpuctx->task_ctx = NULL; 3415 } 3416 3417 is_active ^= ctx->is_active; /* changed bits */ 3418 3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3420 __pmu_ctx_sched_out(pmu_ctx, is_active); 3421 } 3422 3423 /* 3424 * Test whether two contexts are equivalent, i.e. whether they have both been 3425 * cloned from the same version of the same context. 3426 * 3427 * Equivalence is measured using a generation number in the context that is 3428 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3429 * and list_del_event(). 3430 */ 3431 static int context_equiv(struct perf_event_context *ctx1, 3432 struct perf_event_context *ctx2) 3433 { 3434 lockdep_assert_held(&ctx1->lock); 3435 lockdep_assert_held(&ctx2->lock); 3436 3437 /* Pinning disables the swap optimization */ 3438 if (ctx1->pin_count || ctx2->pin_count) 3439 return 0; 3440 3441 /* If ctx1 is the parent of ctx2 */ 3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3443 return 1; 3444 3445 /* If ctx2 is the parent of ctx1 */ 3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3447 return 1; 3448 3449 /* 3450 * If ctx1 and ctx2 have the same parent; we flatten the parent 3451 * hierarchy, see perf_event_init_context(). 3452 */ 3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3454 ctx1->parent_gen == ctx2->parent_gen) 3455 return 1; 3456 3457 /* Unmatched */ 3458 return 0; 3459 } 3460 3461 static void __perf_event_sync_stat(struct perf_event *event, 3462 struct perf_event *next_event) 3463 { 3464 u64 value; 3465 3466 if (!event->attr.inherit_stat) 3467 return; 3468 3469 /* 3470 * Update the event value, we cannot use perf_event_read() 3471 * because we're in the middle of a context switch and have IRQs 3472 * disabled, which upsets smp_call_function_single(), however 3473 * we know the event must be on the current CPU, therefore we 3474 * don't need to use it. 3475 */ 3476 if (event->state == PERF_EVENT_STATE_ACTIVE) 3477 event->pmu->read(event); 3478 3479 perf_event_update_time(event); 3480 3481 /* 3482 * In order to keep per-task stats reliable we need to flip the event 3483 * values when we flip the contexts. 3484 */ 3485 value = local64_read(&next_event->count); 3486 value = local64_xchg(&event->count, value); 3487 local64_set(&next_event->count, value); 3488 3489 swap(event->total_time_enabled, next_event->total_time_enabled); 3490 swap(event->total_time_running, next_event->total_time_running); 3491 3492 /* 3493 * Since we swizzled the values, update the user visible data too. 3494 */ 3495 perf_event_update_userpage(event); 3496 perf_event_update_userpage(next_event); 3497 } 3498 3499 static void perf_event_sync_stat(struct perf_event_context *ctx, 3500 struct perf_event_context *next_ctx) 3501 { 3502 struct perf_event *event, *next_event; 3503 3504 if (!ctx->nr_stat) 3505 return; 3506 3507 update_context_time(ctx); 3508 3509 event = list_first_entry(&ctx->event_list, 3510 struct perf_event, event_entry); 3511 3512 next_event = list_first_entry(&next_ctx->event_list, 3513 struct perf_event, event_entry); 3514 3515 while (&event->event_entry != &ctx->event_list && 3516 &next_event->event_entry != &next_ctx->event_list) { 3517 3518 __perf_event_sync_stat(event, next_event); 3519 3520 event = list_next_entry(event, event_entry); 3521 next_event = list_next_entry(next_event, event_entry); 3522 } 3523 } 3524 3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3528 !list_entry_is_head(pos1, head1, member) && \ 3529 !list_entry_is_head(pos2, head2, member); \ 3530 pos1 = list_next_entry(pos1, member), \ 3531 pos2 = list_next_entry(pos2, member)) 3532 3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3534 struct perf_event_context *next_ctx) 3535 { 3536 struct perf_event_pmu_context *prev_epc, *next_epc; 3537 3538 if (!prev_ctx->nr_task_data) 3539 return; 3540 3541 double_list_for_each_entry(prev_epc, next_epc, 3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3543 pmu_ctx_entry) { 3544 3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3546 continue; 3547 3548 /* 3549 * PMU specific parts of task perf context can require 3550 * additional synchronization. As an example of such 3551 * synchronization see implementation details of Intel 3552 * LBR call stack data profiling; 3553 */ 3554 if (prev_epc->pmu->swap_task_ctx) 3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3556 else 3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3558 } 3559 } 3560 3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3562 { 3563 struct perf_event_pmu_context *pmu_ctx; 3564 struct perf_cpu_pmu_context *cpc; 3565 3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3568 3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3571 } 3572 } 3573 3574 static void 3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3576 { 3577 struct perf_event_context *ctx = task->perf_event_ctxp; 3578 struct perf_event_context *next_ctx; 3579 struct perf_event_context *parent, *next_parent; 3580 int do_switch = 1; 3581 3582 if (likely(!ctx)) 3583 return; 3584 3585 rcu_read_lock(); 3586 next_ctx = rcu_dereference(next->perf_event_ctxp); 3587 if (!next_ctx) 3588 goto unlock; 3589 3590 parent = rcu_dereference(ctx->parent_ctx); 3591 next_parent = rcu_dereference(next_ctx->parent_ctx); 3592 3593 /* If neither context have a parent context; they cannot be clones. */ 3594 if (!parent && !next_parent) 3595 goto unlock; 3596 3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3598 /* 3599 * Looks like the two contexts are clones, so we might be 3600 * able to optimize the context switch. We lock both 3601 * contexts and check that they are clones under the 3602 * lock (including re-checking that neither has been 3603 * uncloned in the meantime). It doesn't matter which 3604 * order we take the locks because no other cpu could 3605 * be trying to lock both of these tasks. 3606 */ 3607 raw_spin_lock(&ctx->lock); 3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3609 if (context_equiv(ctx, next_ctx)) { 3610 3611 perf_ctx_disable(ctx, false); 3612 3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3614 if (local_read(&ctx->nr_no_switch_fast) || 3615 local_read(&next_ctx->nr_no_switch_fast)) { 3616 /* 3617 * Must not swap out ctx when there's pending 3618 * events that rely on the ctx->task relation. 3619 * 3620 * Likewise, when a context contains inherit + 3621 * SAMPLE_READ events they should be switched 3622 * out using the slow path so that they are 3623 * treated as if they were distinct contexts. 3624 */ 3625 raw_spin_unlock(&next_ctx->lock); 3626 rcu_read_unlock(); 3627 goto inside_switch; 3628 } 3629 3630 WRITE_ONCE(ctx->task, next); 3631 WRITE_ONCE(next_ctx->task, task); 3632 3633 perf_ctx_sched_task_cb(ctx, false); 3634 perf_event_swap_task_ctx_data(ctx, next_ctx); 3635 3636 perf_ctx_enable(ctx, false); 3637 3638 /* 3639 * RCU_INIT_POINTER here is safe because we've not 3640 * modified the ctx and the above modification of 3641 * ctx->task and ctx->task_ctx_data are immaterial 3642 * since those values are always verified under 3643 * ctx->lock which we're now holding. 3644 */ 3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3647 3648 do_switch = 0; 3649 3650 perf_event_sync_stat(ctx, next_ctx); 3651 } 3652 raw_spin_unlock(&next_ctx->lock); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 unlock: 3656 rcu_read_unlock(); 3657 3658 if (do_switch) { 3659 raw_spin_lock(&ctx->lock); 3660 perf_ctx_disable(ctx, false); 3661 3662 inside_switch: 3663 perf_ctx_sched_task_cb(ctx, false); 3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3665 3666 perf_ctx_enable(ctx, false); 3667 raw_spin_unlock(&ctx->lock); 3668 } 3669 } 3670 3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3673 3674 void perf_sched_cb_dec(struct pmu *pmu) 3675 { 3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3677 3678 this_cpu_dec(perf_sched_cb_usages); 3679 barrier(); 3680 3681 if (!--cpc->sched_cb_usage) 3682 list_del(&cpc->sched_cb_entry); 3683 } 3684 3685 3686 void perf_sched_cb_inc(struct pmu *pmu) 3687 { 3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3689 3690 if (!cpc->sched_cb_usage++) 3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3692 3693 barrier(); 3694 this_cpu_inc(perf_sched_cb_usages); 3695 } 3696 3697 /* 3698 * This function provides the context switch callback to the lower code 3699 * layer. It is invoked ONLY when the context switch callback is enabled. 3700 * 3701 * This callback is relevant even to per-cpu events; for example multi event 3702 * PEBS requires this to provide PID/TID information. This requires we flush 3703 * all queued PEBS records before we context switch to a new task. 3704 */ 3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3706 { 3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 struct pmu *pmu; 3709 3710 pmu = cpc->epc.pmu; 3711 3712 /* software PMUs will not have sched_task */ 3713 if (WARN_ON_ONCE(!pmu->sched_task)) 3714 return; 3715 3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3717 perf_pmu_disable(pmu); 3718 3719 pmu->sched_task(cpc->task_epc, sched_in); 3720 3721 perf_pmu_enable(pmu); 3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3723 } 3724 3725 static void perf_pmu_sched_task(struct task_struct *prev, 3726 struct task_struct *next, 3727 bool sched_in) 3728 { 3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3730 struct perf_cpu_pmu_context *cpc; 3731 3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3733 if (prev == next || cpuctx->task_ctx) 3734 return; 3735 3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3737 __perf_pmu_sched_task(cpc, sched_in); 3738 } 3739 3740 static void perf_event_switch(struct task_struct *task, 3741 struct task_struct *next_prev, bool sched_in); 3742 3743 /* 3744 * Called from scheduler to remove the events of the current task, 3745 * with interrupts disabled. 3746 * 3747 * We stop each event and update the event value in event->count. 3748 * 3749 * This does not protect us against NMI, but disable() 3750 * sets the disabled bit in the control field of event _before_ 3751 * accessing the event control register. If a NMI hits, then it will 3752 * not restart the event. 3753 */ 3754 void __perf_event_task_sched_out(struct task_struct *task, 3755 struct task_struct *next) 3756 { 3757 if (__this_cpu_read(perf_sched_cb_usages)) 3758 perf_pmu_sched_task(task, next, false); 3759 3760 if (atomic_read(&nr_switch_events)) 3761 perf_event_switch(task, next, false); 3762 3763 perf_event_context_sched_out(task, next); 3764 3765 /* 3766 * if cgroup events exist on this CPU, then we need 3767 * to check if we have to switch out PMU state. 3768 * cgroup event are system-wide mode only 3769 */ 3770 perf_cgroup_switch(next); 3771 } 3772 3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3774 { 3775 const struct perf_event *le = *(const struct perf_event **)l; 3776 const struct perf_event *re = *(const struct perf_event **)r; 3777 3778 return le->group_index < re->group_index; 3779 } 3780 3781 static void swap_ptr(void *l, void *r, void __always_unused *args) 3782 { 3783 void **lp = l, **rp = r; 3784 3785 swap(*lp, *rp); 3786 } 3787 3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3789 3790 static const struct min_heap_callbacks perf_min_heap = { 3791 .less = perf_less_group_idx, 3792 .swp = swap_ptr, 3793 }; 3794 3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3796 { 3797 struct perf_event **itrs = heap->data; 3798 3799 if (event) { 3800 itrs[heap->nr] = event; 3801 heap->nr++; 3802 } 3803 } 3804 3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3806 { 3807 struct perf_cpu_pmu_context *cpc; 3808 3809 if (!pmu_ctx->ctx->task) 3810 return; 3811 3812 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3813 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3814 cpc->task_epc = pmu_ctx; 3815 } 3816 3817 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3818 struct perf_event_groups *groups, int cpu, 3819 struct pmu *pmu, 3820 int (*func)(struct perf_event *, void *), 3821 void *data) 3822 { 3823 #ifdef CONFIG_CGROUP_PERF 3824 struct cgroup_subsys_state *css = NULL; 3825 #endif 3826 struct perf_cpu_context *cpuctx = NULL; 3827 /* Space for per CPU and/or any CPU event iterators. */ 3828 struct perf_event *itrs[2]; 3829 struct perf_event_min_heap event_heap; 3830 struct perf_event **evt; 3831 int ret; 3832 3833 if (pmu->filter && pmu->filter(pmu, cpu)) 3834 return 0; 3835 3836 if (!ctx->task) { 3837 cpuctx = this_cpu_ptr(&perf_cpu_context); 3838 event_heap = (struct perf_event_min_heap){ 3839 .data = cpuctx->heap, 3840 .nr = 0, 3841 .size = cpuctx->heap_size, 3842 }; 3843 3844 lockdep_assert_held(&cpuctx->ctx.lock); 3845 3846 #ifdef CONFIG_CGROUP_PERF 3847 if (cpuctx->cgrp) 3848 css = &cpuctx->cgrp->css; 3849 #endif 3850 } else { 3851 event_heap = (struct perf_event_min_heap){ 3852 .data = itrs, 3853 .nr = 0, 3854 .size = ARRAY_SIZE(itrs), 3855 }; 3856 /* Events not within a CPU context may be on any CPU. */ 3857 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3858 } 3859 evt = event_heap.data; 3860 3861 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3862 3863 #ifdef CONFIG_CGROUP_PERF 3864 for (; css; css = css->parent) 3865 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3866 #endif 3867 3868 if (event_heap.nr) { 3869 __link_epc((*evt)->pmu_ctx); 3870 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3871 } 3872 3873 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3874 3875 while (event_heap.nr) { 3876 ret = func(*evt, data); 3877 if (ret) 3878 return ret; 3879 3880 *evt = perf_event_groups_next(*evt, pmu); 3881 if (*evt) 3882 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3883 else 3884 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3885 } 3886 3887 return 0; 3888 } 3889 3890 /* 3891 * Because the userpage is strictly per-event (there is no concept of context, 3892 * so there cannot be a context indirection), every userpage must be updated 3893 * when context time starts :-( 3894 * 3895 * IOW, we must not miss EVENT_TIME edges. 3896 */ 3897 static inline bool event_update_userpage(struct perf_event *event) 3898 { 3899 if (likely(!atomic_read(&event->mmap_count))) 3900 return false; 3901 3902 perf_event_update_time(event); 3903 perf_event_update_userpage(event); 3904 3905 return true; 3906 } 3907 3908 static inline void group_update_userpage(struct perf_event *group_event) 3909 { 3910 struct perf_event *event; 3911 3912 if (!event_update_userpage(group_event)) 3913 return; 3914 3915 for_each_sibling_event(event, group_event) 3916 event_update_userpage(event); 3917 } 3918 3919 static int merge_sched_in(struct perf_event *event, void *data) 3920 { 3921 struct perf_event_context *ctx = event->ctx; 3922 int *can_add_hw = data; 3923 3924 if (event->state <= PERF_EVENT_STATE_OFF) 3925 return 0; 3926 3927 if (!event_filter_match(event)) 3928 return 0; 3929 3930 if (group_can_go_on(event, *can_add_hw)) { 3931 if (!group_sched_in(event, ctx)) 3932 list_add_tail(&event->active_list, get_event_list(event)); 3933 } 3934 3935 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3936 *can_add_hw = 0; 3937 if (event->attr.pinned) { 3938 perf_cgroup_event_disable(event, ctx); 3939 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3940 } else { 3941 struct perf_cpu_pmu_context *cpc; 3942 3943 event->pmu_ctx->rotate_necessary = 1; 3944 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3945 perf_mux_hrtimer_restart(cpc); 3946 group_update_userpage(event); 3947 } 3948 } 3949 3950 return 0; 3951 } 3952 3953 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3954 struct perf_event_groups *groups, 3955 struct pmu *pmu) 3956 { 3957 int can_add_hw = 1; 3958 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3959 merge_sched_in, &can_add_hw); 3960 } 3961 3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3963 enum event_type_t event_type) 3964 { 3965 struct perf_event_context *ctx = pmu_ctx->ctx; 3966 3967 if (event_type & EVENT_PINNED) 3968 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3969 if (event_type & EVENT_FLEXIBLE) 3970 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3971 } 3972 3973 static void 3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3975 { 3976 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3977 struct perf_event_pmu_context *pmu_ctx; 3978 int is_active = ctx->is_active; 3979 bool cgroup = event_type & EVENT_CGROUP; 3980 3981 event_type &= ~EVENT_CGROUP; 3982 3983 lockdep_assert_held(&ctx->lock); 3984 3985 if (likely(!ctx->nr_events)) 3986 return; 3987 3988 if (!(is_active & EVENT_TIME)) { 3989 /* start ctx time */ 3990 __update_context_time(ctx, false); 3991 perf_cgroup_set_timestamp(cpuctx); 3992 /* 3993 * CPU-release for the below ->is_active store, 3994 * see __load_acquire() in perf_event_time_now() 3995 */ 3996 barrier(); 3997 } 3998 3999 ctx->is_active |= (event_type | EVENT_TIME); 4000 if (ctx->task) { 4001 if (!(is_active & EVENT_ALL)) 4002 cpuctx->task_ctx = ctx; 4003 else 4004 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4005 } 4006 4007 is_active ^= ctx->is_active; /* changed bits */ 4008 4009 /* 4010 * First go through the list and put on any pinned groups 4011 * in order to give them the best chance of going on. 4012 */ 4013 if (is_active & EVENT_PINNED) { 4014 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4015 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4016 } 4017 4018 /* Then walk through the lower prio flexible groups */ 4019 if (is_active & EVENT_FLEXIBLE) { 4020 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4021 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4022 } 4023 } 4024 4025 static void perf_event_context_sched_in(struct task_struct *task) 4026 { 4027 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4028 struct perf_event_context *ctx; 4029 4030 rcu_read_lock(); 4031 ctx = rcu_dereference(task->perf_event_ctxp); 4032 if (!ctx) 4033 goto rcu_unlock; 4034 4035 if (cpuctx->task_ctx == ctx) { 4036 perf_ctx_lock(cpuctx, ctx); 4037 perf_ctx_disable(ctx, false); 4038 4039 perf_ctx_sched_task_cb(ctx, true); 4040 4041 perf_ctx_enable(ctx, false); 4042 perf_ctx_unlock(cpuctx, ctx); 4043 goto rcu_unlock; 4044 } 4045 4046 perf_ctx_lock(cpuctx, ctx); 4047 /* 4048 * We must check ctx->nr_events while holding ctx->lock, such 4049 * that we serialize against perf_install_in_context(). 4050 */ 4051 if (!ctx->nr_events) 4052 goto unlock; 4053 4054 perf_ctx_disable(ctx, false); 4055 /* 4056 * We want to keep the following priority order: 4057 * cpu pinned (that don't need to move), task pinned, 4058 * cpu flexible, task flexible. 4059 * 4060 * However, if task's ctx is not carrying any pinned 4061 * events, no need to flip the cpuctx's events around. 4062 */ 4063 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4064 perf_ctx_disable(&cpuctx->ctx, false); 4065 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4066 } 4067 4068 perf_event_sched_in(cpuctx, ctx, NULL); 4069 4070 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4071 4072 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4073 perf_ctx_enable(&cpuctx->ctx, false); 4074 4075 perf_ctx_enable(ctx, false); 4076 4077 unlock: 4078 perf_ctx_unlock(cpuctx, ctx); 4079 rcu_unlock: 4080 rcu_read_unlock(); 4081 } 4082 4083 /* 4084 * Called from scheduler to add the events of the current task 4085 * with interrupts disabled. 4086 * 4087 * We restore the event value and then enable it. 4088 * 4089 * This does not protect us against NMI, but enable() 4090 * sets the enabled bit in the control field of event _before_ 4091 * accessing the event control register. If a NMI hits, then it will 4092 * keep the event running. 4093 */ 4094 void __perf_event_task_sched_in(struct task_struct *prev, 4095 struct task_struct *task) 4096 { 4097 perf_event_context_sched_in(task); 4098 4099 if (atomic_read(&nr_switch_events)) 4100 perf_event_switch(task, prev, true); 4101 4102 if (__this_cpu_read(perf_sched_cb_usages)) 4103 perf_pmu_sched_task(prev, task, true); 4104 } 4105 4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4107 { 4108 u64 frequency = event->attr.sample_freq; 4109 u64 sec = NSEC_PER_SEC; 4110 u64 divisor, dividend; 4111 4112 int count_fls, nsec_fls, frequency_fls, sec_fls; 4113 4114 count_fls = fls64(count); 4115 nsec_fls = fls64(nsec); 4116 frequency_fls = fls64(frequency); 4117 sec_fls = 30; 4118 4119 /* 4120 * We got @count in @nsec, with a target of sample_freq HZ 4121 * the target period becomes: 4122 * 4123 * @count * 10^9 4124 * period = ------------------- 4125 * @nsec * sample_freq 4126 * 4127 */ 4128 4129 /* 4130 * Reduce accuracy by one bit such that @a and @b converge 4131 * to a similar magnitude. 4132 */ 4133 #define REDUCE_FLS(a, b) \ 4134 do { \ 4135 if (a##_fls > b##_fls) { \ 4136 a >>= 1; \ 4137 a##_fls--; \ 4138 } else { \ 4139 b >>= 1; \ 4140 b##_fls--; \ 4141 } \ 4142 } while (0) 4143 4144 /* 4145 * Reduce accuracy until either term fits in a u64, then proceed with 4146 * the other, so that finally we can do a u64/u64 division. 4147 */ 4148 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4149 REDUCE_FLS(nsec, frequency); 4150 REDUCE_FLS(sec, count); 4151 } 4152 4153 if (count_fls + sec_fls > 64) { 4154 divisor = nsec * frequency; 4155 4156 while (count_fls + sec_fls > 64) { 4157 REDUCE_FLS(count, sec); 4158 divisor >>= 1; 4159 } 4160 4161 dividend = count * sec; 4162 } else { 4163 dividend = count * sec; 4164 4165 while (nsec_fls + frequency_fls > 64) { 4166 REDUCE_FLS(nsec, frequency); 4167 dividend >>= 1; 4168 } 4169 4170 divisor = nsec * frequency; 4171 } 4172 4173 if (!divisor) 4174 return dividend; 4175 4176 return div64_u64(dividend, divisor); 4177 } 4178 4179 static DEFINE_PER_CPU(int, perf_throttled_count); 4180 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4181 4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4183 { 4184 struct hw_perf_event *hwc = &event->hw; 4185 s64 period, sample_period; 4186 s64 delta; 4187 4188 period = perf_calculate_period(event, nsec, count); 4189 4190 delta = (s64)(period - hwc->sample_period); 4191 if (delta >= 0) 4192 delta += 7; 4193 else 4194 delta -= 7; 4195 delta /= 8; /* low pass filter */ 4196 4197 sample_period = hwc->sample_period + delta; 4198 4199 if (!sample_period) 4200 sample_period = 1; 4201 4202 hwc->sample_period = sample_period; 4203 4204 if (local64_read(&hwc->period_left) > 8*sample_period) { 4205 if (disable) 4206 event->pmu->stop(event, PERF_EF_UPDATE); 4207 4208 local64_set(&hwc->period_left, 0); 4209 4210 if (disable) 4211 event->pmu->start(event, PERF_EF_RELOAD); 4212 } 4213 } 4214 4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4216 { 4217 struct perf_event *event; 4218 struct hw_perf_event *hwc; 4219 u64 now, period = TICK_NSEC; 4220 s64 delta; 4221 4222 list_for_each_entry(event, event_list, active_list) { 4223 if (event->state != PERF_EVENT_STATE_ACTIVE) 4224 continue; 4225 4226 // XXX use visit thingy to avoid the -1,cpu match 4227 if (!event_filter_match(event)) 4228 continue; 4229 4230 hwc = &event->hw; 4231 4232 if (hwc->interrupts == MAX_INTERRUPTS) { 4233 hwc->interrupts = 0; 4234 perf_log_throttle(event, 1); 4235 if (!event->attr.freq || !event->attr.sample_freq) 4236 event->pmu->start(event, 0); 4237 } 4238 4239 if (!event->attr.freq || !event->attr.sample_freq) 4240 continue; 4241 4242 /* 4243 * stop the event and update event->count 4244 */ 4245 event->pmu->stop(event, PERF_EF_UPDATE); 4246 4247 now = local64_read(&event->count); 4248 delta = now - hwc->freq_count_stamp; 4249 hwc->freq_count_stamp = now; 4250 4251 /* 4252 * restart the event 4253 * reload only if value has changed 4254 * we have stopped the event so tell that 4255 * to perf_adjust_period() to avoid stopping it 4256 * twice. 4257 */ 4258 if (delta > 0) 4259 perf_adjust_period(event, period, delta, false); 4260 4261 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4262 } 4263 } 4264 4265 /* 4266 * combine freq adjustment with unthrottling to avoid two passes over the 4267 * events. At the same time, make sure, having freq events does not change 4268 * the rate of unthrottling as that would introduce bias. 4269 */ 4270 static void 4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4272 { 4273 struct perf_event_pmu_context *pmu_ctx; 4274 4275 /* 4276 * only need to iterate over all events iff: 4277 * - context have events in frequency mode (needs freq adjust) 4278 * - there are events to unthrottle on this cpu 4279 */ 4280 if (!(ctx->nr_freq || unthrottle)) 4281 return; 4282 4283 raw_spin_lock(&ctx->lock); 4284 4285 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4286 if (!(pmu_ctx->nr_freq || unthrottle)) 4287 continue; 4288 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4289 continue; 4290 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4291 continue; 4292 4293 perf_pmu_disable(pmu_ctx->pmu); 4294 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4295 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4296 perf_pmu_enable(pmu_ctx->pmu); 4297 } 4298 4299 raw_spin_unlock(&ctx->lock); 4300 } 4301 4302 /* 4303 * Move @event to the tail of the @ctx's elegible events. 4304 */ 4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4306 { 4307 /* 4308 * Rotate the first entry last of non-pinned groups. Rotation might be 4309 * disabled by the inheritance code. 4310 */ 4311 if (ctx->rotate_disable) 4312 return; 4313 4314 perf_event_groups_delete(&ctx->flexible_groups, event); 4315 perf_event_groups_insert(&ctx->flexible_groups, event); 4316 } 4317 4318 /* pick an event from the flexible_groups to rotate */ 4319 static inline struct perf_event * 4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4321 { 4322 struct perf_event *event; 4323 struct rb_node *node; 4324 struct rb_root *tree; 4325 struct __group_key key = { 4326 .pmu = pmu_ctx->pmu, 4327 }; 4328 4329 /* pick the first active flexible event */ 4330 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4331 struct perf_event, active_list); 4332 if (event) 4333 goto out; 4334 4335 /* if no active flexible event, pick the first event */ 4336 tree = &pmu_ctx->ctx->flexible_groups.tree; 4337 4338 if (!pmu_ctx->ctx->task) { 4339 key.cpu = smp_processor_id(); 4340 4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4342 if (node) 4343 event = __node_2_pe(node); 4344 goto out; 4345 } 4346 4347 key.cpu = -1; 4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4349 if (node) { 4350 event = __node_2_pe(node); 4351 goto out; 4352 } 4353 4354 key.cpu = smp_processor_id(); 4355 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4356 if (node) 4357 event = __node_2_pe(node); 4358 4359 out: 4360 /* 4361 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4362 * finds there are unschedulable events, it will set it again. 4363 */ 4364 pmu_ctx->rotate_necessary = 0; 4365 4366 return event; 4367 } 4368 4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4370 { 4371 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4372 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4373 struct perf_event *cpu_event = NULL, *task_event = NULL; 4374 int cpu_rotate, task_rotate; 4375 struct pmu *pmu; 4376 4377 /* 4378 * Since we run this from IRQ context, nobody can install new 4379 * events, thus the event count values are stable. 4380 */ 4381 4382 cpu_epc = &cpc->epc; 4383 pmu = cpu_epc->pmu; 4384 task_epc = cpc->task_epc; 4385 4386 cpu_rotate = cpu_epc->rotate_necessary; 4387 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4388 4389 if (!(cpu_rotate || task_rotate)) 4390 return false; 4391 4392 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4393 perf_pmu_disable(pmu); 4394 4395 if (task_rotate) 4396 task_event = ctx_event_to_rotate(task_epc); 4397 if (cpu_rotate) 4398 cpu_event = ctx_event_to_rotate(cpu_epc); 4399 4400 /* 4401 * As per the order given at ctx_resched() first 'pop' task flexible 4402 * and then, if needed CPU flexible. 4403 */ 4404 if (task_event || (task_epc && cpu_event)) { 4405 update_context_time(task_epc->ctx); 4406 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4407 } 4408 4409 if (cpu_event) { 4410 update_context_time(&cpuctx->ctx); 4411 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4412 rotate_ctx(&cpuctx->ctx, cpu_event); 4413 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4414 } 4415 4416 if (task_event) 4417 rotate_ctx(task_epc->ctx, task_event); 4418 4419 if (task_event || (task_epc && cpu_event)) 4420 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4421 4422 perf_pmu_enable(pmu); 4423 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4424 4425 return true; 4426 } 4427 4428 void perf_event_task_tick(void) 4429 { 4430 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4431 struct perf_event_context *ctx; 4432 int throttled; 4433 4434 lockdep_assert_irqs_disabled(); 4435 4436 __this_cpu_inc(perf_throttled_seq); 4437 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4438 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4439 4440 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4441 4442 rcu_read_lock(); 4443 ctx = rcu_dereference(current->perf_event_ctxp); 4444 if (ctx) 4445 perf_adjust_freq_unthr_context(ctx, !!throttled); 4446 rcu_read_unlock(); 4447 } 4448 4449 static int event_enable_on_exec(struct perf_event *event, 4450 struct perf_event_context *ctx) 4451 { 4452 if (!event->attr.enable_on_exec) 4453 return 0; 4454 4455 event->attr.enable_on_exec = 0; 4456 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4457 return 0; 4458 4459 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4460 4461 return 1; 4462 } 4463 4464 /* 4465 * Enable all of a task's events that have been marked enable-on-exec. 4466 * This expects task == current. 4467 */ 4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4469 { 4470 struct perf_event_context *clone_ctx = NULL; 4471 enum event_type_t event_type = 0; 4472 struct perf_cpu_context *cpuctx; 4473 struct perf_event *event; 4474 unsigned long flags; 4475 int enabled = 0; 4476 4477 local_irq_save(flags); 4478 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4479 goto out; 4480 4481 if (!ctx->nr_events) 4482 goto out; 4483 4484 cpuctx = this_cpu_ptr(&perf_cpu_context); 4485 perf_ctx_lock(cpuctx, ctx); 4486 ctx_time_freeze(cpuctx, ctx); 4487 4488 list_for_each_entry(event, &ctx->event_list, event_entry) { 4489 enabled |= event_enable_on_exec(event, ctx); 4490 event_type |= get_event_type(event); 4491 } 4492 4493 /* 4494 * Unclone and reschedule this context if we enabled any event. 4495 */ 4496 if (enabled) { 4497 clone_ctx = unclone_ctx(ctx); 4498 ctx_resched(cpuctx, ctx, NULL, event_type); 4499 } 4500 perf_ctx_unlock(cpuctx, ctx); 4501 4502 out: 4503 local_irq_restore(flags); 4504 4505 if (clone_ctx) 4506 put_ctx(clone_ctx); 4507 } 4508 4509 static void perf_remove_from_owner(struct perf_event *event); 4510 static void perf_event_exit_event(struct perf_event *event, 4511 struct perf_event_context *ctx); 4512 4513 /* 4514 * Removes all events from the current task that have been marked 4515 * remove-on-exec, and feeds their values back to parent events. 4516 */ 4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4518 { 4519 struct perf_event_context *clone_ctx = NULL; 4520 struct perf_event *event, *next; 4521 unsigned long flags; 4522 bool modified = false; 4523 4524 mutex_lock(&ctx->mutex); 4525 4526 if (WARN_ON_ONCE(ctx->task != current)) 4527 goto unlock; 4528 4529 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4530 if (!event->attr.remove_on_exec) 4531 continue; 4532 4533 if (!is_kernel_event(event)) 4534 perf_remove_from_owner(event); 4535 4536 modified = true; 4537 4538 perf_event_exit_event(event, ctx); 4539 } 4540 4541 raw_spin_lock_irqsave(&ctx->lock, flags); 4542 if (modified) 4543 clone_ctx = unclone_ctx(ctx); 4544 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4545 4546 unlock: 4547 mutex_unlock(&ctx->mutex); 4548 4549 if (clone_ctx) 4550 put_ctx(clone_ctx); 4551 } 4552 4553 struct perf_read_data { 4554 struct perf_event *event; 4555 bool group; 4556 int ret; 4557 }; 4558 4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4560 4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4562 { 4563 int local_cpu = smp_processor_id(); 4564 u16 local_pkg, event_pkg; 4565 4566 if ((unsigned)event_cpu >= nr_cpu_ids) 4567 return event_cpu; 4568 4569 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4570 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4571 4572 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4573 return local_cpu; 4574 } 4575 4576 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4577 event_pkg = topology_physical_package_id(event_cpu); 4578 local_pkg = topology_physical_package_id(local_cpu); 4579 4580 if (event_pkg == local_pkg) 4581 return local_cpu; 4582 } 4583 4584 return event_cpu; 4585 } 4586 4587 /* 4588 * Cross CPU call to read the hardware event 4589 */ 4590 static void __perf_event_read(void *info) 4591 { 4592 struct perf_read_data *data = info; 4593 struct perf_event *sub, *event = data->event; 4594 struct perf_event_context *ctx = event->ctx; 4595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4596 struct pmu *pmu = event->pmu; 4597 4598 /* 4599 * If this is a task context, we need to check whether it is 4600 * the current task context of this cpu. If not it has been 4601 * scheduled out before the smp call arrived. In that case 4602 * event->count would have been updated to a recent sample 4603 * when the event was scheduled out. 4604 */ 4605 if (ctx->task && cpuctx->task_ctx != ctx) 4606 return; 4607 4608 raw_spin_lock(&ctx->lock); 4609 ctx_time_update_event(ctx, event); 4610 4611 perf_event_update_time(event); 4612 if (data->group) 4613 perf_event_update_sibling_time(event); 4614 4615 if (event->state != PERF_EVENT_STATE_ACTIVE) 4616 goto unlock; 4617 4618 if (!data->group) { 4619 pmu->read(event); 4620 data->ret = 0; 4621 goto unlock; 4622 } 4623 4624 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4625 4626 pmu->read(event); 4627 4628 for_each_sibling_event(sub, event) { 4629 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4630 /* 4631 * Use sibling's PMU rather than @event's since 4632 * sibling could be on different (eg: software) PMU. 4633 */ 4634 sub->pmu->read(sub); 4635 } 4636 } 4637 4638 data->ret = pmu->commit_txn(pmu); 4639 4640 unlock: 4641 raw_spin_unlock(&ctx->lock); 4642 } 4643 4644 static inline u64 perf_event_count(struct perf_event *event, bool self) 4645 { 4646 if (self) 4647 return local64_read(&event->count); 4648 4649 return local64_read(&event->count) + atomic64_read(&event->child_count); 4650 } 4651 4652 static void calc_timer_values(struct perf_event *event, 4653 u64 *now, 4654 u64 *enabled, 4655 u64 *running) 4656 { 4657 u64 ctx_time; 4658 4659 *now = perf_clock(); 4660 ctx_time = perf_event_time_now(event, *now); 4661 __perf_update_times(event, ctx_time, enabled, running); 4662 } 4663 4664 /* 4665 * NMI-safe method to read a local event, that is an event that 4666 * is: 4667 * - either for the current task, or for this CPU 4668 * - does not have inherit set, for inherited task events 4669 * will not be local and we cannot read them atomically 4670 * - must not have a pmu::count method 4671 */ 4672 int perf_event_read_local(struct perf_event *event, u64 *value, 4673 u64 *enabled, u64 *running) 4674 { 4675 unsigned long flags; 4676 int event_oncpu; 4677 int event_cpu; 4678 int ret = 0; 4679 4680 /* 4681 * Disabling interrupts avoids all counter scheduling (context 4682 * switches, timer based rotation and IPIs). 4683 */ 4684 local_irq_save(flags); 4685 4686 /* 4687 * It must not be an event with inherit set, we cannot read 4688 * all child counters from atomic context. 4689 */ 4690 if (event->attr.inherit) { 4691 ret = -EOPNOTSUPP; 4692 goto out; 4693 } 4694 4695 /* If this is a per-task event, it must be for current */ 4696 if ((event->attach_state & PERF_ATTACH_TASK) && 4697 event->hw.target != current) { 4698 ret = -EINVAL; 4699 goto out; 4700 } 4701 4702 /* 4703 * Get the event CPU numbers, and adjust them to local if the event is 4704 * a per-package event that can be read locally 4705 */ 4706 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4707 event_cpu = __perf_event_read_cpu(event, event->cpu); 4708 4709 /* If this is a per-CPU event, it must be for this CPU */ 4710 if (!(event->attach_state & PERF_ATTACH_TASK) && 4711 event_cpu != smp_processor_id()) { 4712 ret = -EINVAL; 4713 goto out; 4714 } 4715 4716 /* If this is a pinned event it must be running on this CPU */ 4717 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4718 ret = -EBUSY; 4719 goto out; 4720 } 4721 4722 /* 4723 * If the event is currently on this CPU, its either a per-task event, 4724 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4725 * oncpu == -1). 4726 */ 4727 if (event_oncpu == smp_processor_id()) 4728 event->pmu->read(event); 4729 4730 *value = local64_read(&event->count); 4731 if (enabled || running) { 4732 u64 __enabled, __running, __now; 4733 4734 calc_timer_values(event, &__now, &__enabled, &__running); 4735 if (enabled) 4736 *enabled = __enabled; 4737 if (running) 4738 *running = __running; 4739 } 4740 out: 4741 local_irq_restore(flags); 4742 4743 return ret; 4744 } 4745 4746 static int perf_event_read(struct perf_event *event, bool group) 4747 { 4748 enum perf_event_state state = READ_ONCE(event->state); 4749 int event_cpu, ret = 0; 4750 4751 /* 4752 * If event is enabled and currently active on a CPU, update the 4753 * value in the event structure: 4754 */ 4755 again: 4756 if (state == PERF_EVENT_STATE_ACTIVE) { 4757 struct perf_read_data data; 4758 4759 /* 4760 * Orders the ->state and ->oncpu loads such that if we see 4761 * ACTIVE we must also see the right ->oncpu. 4762 * 4763 * Matches the smp_wmb() from event_sched_in(). 4764 */ 4765 smp_rmb(); 4766 4767 event_cpu = READ_ONCE(event->oncpu); 4768 if ((unsigned)event_cpu >= nr_cpu_ids) 4769 return 0; 4770 4771 data = (struct perf_read_data){ 4772 .event = event, 4773 .group = group, 4774 .ret = 0, 4775 }; 4776 4777 preempt_disable(); 4778 event_cpu = __perf_event_read_cpu(event, event_cpu); 4779 4780 /* 4781 * Purposely ignore the smp_call_function_single() return 4782 * value. 4783 * 4784 * If event_cpu isn't a valid CPU it means the event got 4785 * scheduled out and that will have updated the event count. 4786 * 4787 * Therefore, either way, we'll have an up-to-date event count 4788 * after this. 4789 */ 4790 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4791 preempt_enable(); 4792 ret = data.ret; 4793 4794 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4795 struct perf_event_context *ctx = event->ctx; 4796 unsigned long flags; 4797 4798 raw_spin_lock_irqsave(&ctx->lock, flags); 4799 state = event->state; 4800 if (state != PERF_EVENT_STATE_INACTIVE) { 4801 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4802 goto again; 4803 } 4804 4805 /* 4806 * May read while context is not active (e.g., thread is 4807 * blocked), in that case we cannot update context time 4808 */ 4809 ctx_time_update_event(ctx, event); 4810 4811 perf_event_update_time(event); 4812 if (group) 4813 perf_event_update_sibling_time(event); 4814 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4815 } 4816 4817 return ret; 4818 } 4819 4820 /* 4821 * Initialize the perf_event context in a task_struct: 4822 */ 4823 static void __perf_event_init_context(struct perf_event_context *ctx) 4824 { 4825 raw_spin_lock_init(&ctx->lock); 4826 mutex_init(&ctx->mutex); 4827 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4828 perf_event_groups_init(&ctx->pinned_groups); 4829 perf_event_groups_init(&ctx->flexible_groups); 4830 INIT_LIST_HEAD(&ctx->event_list); 4831 refcount_set(&ctx->refcount, 1); 4832 } 4833 4834 static void 4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4836 { 4837 epc->pmu = pmu; 4838 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4839 INIT_LIST_HEAD(&epc->pinned_active); 4840 INIT_LIST_HEAD(&epc->flexible_active); 4841 atomic_set(&epc->refcount, 1); 4842 } 4843 4844 static struct perf_event_context * 4845 alloc_perf_context(struct task_struct *task) 4846 { 4847 struct perf_event_context *ctx; 4848 4849 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4850 if (!ctx) 4851 return NULL; 4852 4853 __perf_event_init_context(ctx); 4854 if (task) 4855 ctx->task = get_task_struct(task); 4856 4857 return ctx; 4858 } 4859 4860 static struct task_struct * 4861 find_lively_task_by_vpid(pid_t vpid) 4862 { 4863 struct task_struct *task; 4864 4865 rcu_read_lock(); 4866 if (!vpid) 4867 task = current; 4868 else 4869 task = find_task_by_vpid(vpid); 4870 if (task) 4871 get_task_struct(task); 4872 rcu_read_unlock(); 4873 4874 if (!task) 4875 return ERR_PTR(-ESRCH); 4876 4877 return task; 4878 } 4879 4880 /* 4881 * Returns a matching context with refcount and pincount. 4882 */ 4883 static struct perf_event_context * 4884 find_get_context(struct task_struct *task, struct perf_event *event) 4885 { 4886 struct perf_event_context *ctx, *clone_ctx = NULL; 4887 struct perf_cpu_context *cpuctx; 4888 unsigned long flags; 4889 int err; 4890 4891 if (!task) { 4892 /* Must be root to operate on a CPU event: */ 4893 err = perf_allow_cpu(&event->attr); 4894 if (err) 4895 return ERR_PTR(err); 4896 4897 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4898 ctx = &cpuctx->ctx; 4899 get_ctx(ctx); 4900 raw_spin_lock_irqsave(&ctx->lock, flags); 4901 ++ctx->pin_count; 4902 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4903 4904 return ctx; 4905 } 4906 4907 err = -EINVAL; 4908 retry: 4909 ctx = perf_lock_task_context(task, &flags); 4910 if (ctx) { 4911 clone_ctx = unclone_ctx(ctx); 4912 ++ctx->pin_count; 4913 4914 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4915 4916 if (clone_ctx) 4917 put_ctx(clone_ctx); 4918 } else { 4919 ctx = alloc_perf_context(task); 4920 err = -ENOMEM; 4921 if (!ctx) 4922 goto errout; 4923 4924 err = 0; 4925 mutex_lock(&task->perf_event_mutex); 4926 /* 4927 * If it has already passed perf_event_exit_task(). 4928 * we must see PF_EXITING, it takes this mutex too. 4929 */ 4930 if (task->flags & PF_EXITING) 4931 err = -ESRCH; 4932 else if (task->perf_event_ctxp) 4933 err = -EAGAIN; 4934 else { 4935 get_ctx(ctx); 4936 ++ctx->pin_count; 4937 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4938 } 4939 mutex_unlock(&task->perf_event_mutex); 4940 4941 if (unlikely(err)) { 4942 put_ctx(ctx); 4943 4944 if (err == -EAGAIN) 4945 goto retry; 4946 goto errout; 4947 } 4948 } 4949 4950 return ctx; 4951 4952 errout: 4953 return ERR_PTR(err); 4954 } 4955 4956 static struct perf_event_pmu_context * 4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4958 struct perf_event *event) 4959 { 4960 struct perf_event_pmu_context *new = NULL, *epc; 4961 void *task_ctx_data = NULL; 4962 4963 if (!ctx->task) { 4964 /* 4965 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4966 * relies on the fact that find_get_pmu_context() cannot fail 4967 * for CPU contexts. 4968 */ 4969 struct perf_cpu_pmu_context *cpc; 4970 4971 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4972 epc = &cpc->epc; 4973 raw_spin_lock_irq(&ctx->lock); 4974 if (!epc->ctx) { 4975 atomic_set(&epc->refcount, 1); 4976 epc->embedded = 1; 4977 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4978 epc->ctx = ctx; 4979 } else { 4980 WARN_ON_ONCE(epc->ctx != ctx); 4981 atomic_inc(&epc->refcount); 4982 } 4983 raw_spin_unlock_irq(&ctx->lock); 4984 return epc; 4985 } 4986 4987 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4988 if (!new) 4989 return ERR_PTR(-ENOMEM); 4990 4991 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4992 task_ctx_data = alloc_task_ctx_data(pmu); 4993 if (!task_ctx_data) { 4994 kfree(new); 4995 return ERR_PTR(-ENOMEM); 4996 } 4997 } 4998 4999 __perf_init_event_pmu_context(new, pmu); 5000 5001 /* 5002 * XXX 5003 * 5004 * lockdep_assert_held(&ctx->mutex); 5005 * 5006 * can't because perf_event_init_task() doesn't actually hold the 5007 * child_ctx->mutex. 5008 */ 5009 5010 raw_spin_lock_irq(&ctx->lock); 5011 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5012 if (epc->pmu == pmu) { 5013 WARN_ON_ONCE(epc->ctx != ctx); 5014 atomic_inc(&epc->refcount); 5015 goto found_epc; 5016 } 5017 } 5018 5019 epc = new; 5020 new = NULL; 5021 5022 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5023 epc->ctx = ctx; 5024 5025 found_epc: 5026 if (task_ctx_data && !epc->task_ctx_data) { 5027 epc->task_ctx_data = task_ctx_data; 5028 task_ctx_data = NULL; 5029 ctx->nr_task_data++; 5030 } 5031 raw_spin_unlock_irq(&ctx->lock); 5032 5033 free_task_ctx_data(pmu, task_ctx_data); 5034 kfree(new); 5035 5036 return epc; 5037 } 5038 5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5040 { 5041 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5042 } 5043 5044 static void free_epc_rcu(struct rcu_head *head) 5045 { 5046 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5047 5048 kfree(epc->task_ctx_data); 5049 kfree(epc); 5050 } 5051 5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5053 { 5054 struct perf_event_context *ctx = epc->ctx; 5055 unsigned long flags; 5056 5057 /* 5058 * XXX 5059 * 5060 * lockdep_assert_held(&ctx->mutex); 5061 * 5062 * can't because of the call-site in _free_event()/put_event() 5063 * which isn't always called under ctx->mutex. 5064 */ 5065 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5066 return; 5067 5068 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5069 5070 list_del_init(&epc->pmu_ctx_entry); 5071 epc->ctx = NULL; 5072 5073 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5074 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5075 5076 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5077 5078 if (epc->embedded) 5079 return; 5080 5081 call_rcu(&epc->rcu_head, free_epc_rcu); 5082 } 5083 5084 static void perf_event_free_filter(struct perf_event *event); 5085 5086 static void free_event_rcu(struct rcu_head *head) 5087 { 5088 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5089 5090 if (event->ns) 5091 put_pid_ns(event->ns); 5092 perf_event_free_filter(event); 5093 kmem_cache_free(perf_event_cache, event); 5094 } 5095 5096 static void ring_buffer_attach(struct perf_event *event, 5097 struct perf_buffer *rb); 5098 5099 static void detach_sb_event(struct perf_event *event) 5100 { 5101 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5102 5103 raw_spin_lock(&pel->lock); 5104 list_del_rcu(&event->sb_list); 5105 raw_spin_unlock(&pel->lock); 5106 } 5107 5108 static bool is_sb_event(struct perf_event *event) 5109 { 5110 struct perf_event_attr *attr = &event->attr; 5111 5112 if (event->parent) 5113 return false; 5114 5115 if (event->attach_state & PERF_ATTACH_TASK) 5116 return false; 5117 5118 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5119 attr->comm || attr->comm_exec || 5120 attr->task || attr->ksymbol || 5121 attr->context_switch || attr->text_poke || 5122 attr->bpf_event) 5123 return true; 5124 return false; 5125 } 5126 5127 static void unaccount_pmu_sb_event(struct perf_event *event) 5128 { 5129 if (is_sb_event(event)) 5130 detach_sb_event(event); 5131 } 5132 5133 #ifdef CONFIG_NO_HZ_FULL 5134 static DEFINE_SPINLOCK(nr_freq_lock); 5135 #endif 5136 5137 static void unaccount_freq_event_nohz(void) 5138 { 5139 #ifdef CONFIG_NO_HZ_FULL 5140 spin_lock(&nr_freq_lock); 5141 if (atomic_dec_and_test(&nr_freq_events)) 5142 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5143 spin_unlock(&nr_freq_lock); 5144 #endif 5145 } 5146 5147 static void unaccount_freq_event(void) 5148 { 5149 if (tick_nohz_full_enabled()) 5150 unaccount_freq_event_nohz(); 5151 else 5152 atomic_dec(&nr_freq_events); 5153 } 5154 5155 static void unaccount_event(struct perf_event *event) 5156 { 5157 bool dec = false; 5158 5159 if (event->parent) 5160 return; 5161 5162 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5163 dec = true; 5164 if (event->attr.mmap || event->attr.mmap_data) 5165 atomic_dec(&nr_mmap_events); 5166 if (event->attr.build_id) 5167 atomic_dec(&nr_build_id_events); 5168 if (event->attr.comm) 5169 atomic_dec(&nr_comm_events); 5170 if (event->attr.namespaces) 5171 atomic_dec(&nr_namespaces_events); 5172 if (event->attr.cgroup) 5173 atomic_dec(&nr_cgroup_events); 5174 if (event->attr.task) 5175 atomic_dec(&nr_task_events); 5176 if (event->attr.freq) 5177 unaccount_freq_event(); 5178 if (event->attr.context_switch) { 5179 dec = true; 5180 atomic_dec(&nr_switch_events); 5181 } 5182 if (is_cgroup_event(event)) 5183 dec = true; 5184 if (has_branch_stack(event)) 5185 dec = true; 5186 if (event->attr.ksymbol) 5187 atomic_dec(&nr_ksymbol_events); 5188 if (event->attr.bpf_event) 5189 atomic_dec(&nr_bpf_events); 5190 if (event->attr.text_poke) 5191 atomic_dec(&nr_text_poke_events); 5192 5193 if (dec) { 5194 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5195 schedule_delayed_work(&perf_sched_work, HZ); 5196 } 5197 5198 unaccount_pmu_sb_event(event); 5199 } 5200 5201 static void perf_sched_delayed(struct work_struct *work) 5202 { 5203 mutex_lock(&perf_sched_mutex); 5204 if (atomic_dec_and_test(&perf_sched_count)) 5205 static_branch_disable(&perf_sched_events); 5206 mutex_unlock(&perf_sched_mutex); 5207 } 5208 5209 /* 5210 * The following implement mutual exclusion of events on "exclusive" pmus 5211 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5212 * at a time, so we disallow creating events that might conflict, namely: 5213 * 5214 * 1) cpu-wide events in the presence of per-task events, 5215 * 2) per-task events in the presence of cpu-wide events, 5216 * 3) two matching events on the same perf_event_context. 5217 * 5218 * The former two cases are handled in the allocation path (perf_event_alloc(), 5219 * _free_event()), the latter -- before the first perf_install_in_context(). 5220 */ 5221 static int exclusive_event_init(struct perf_event *event) 5222 { 5223 struct pmu *pmu = event->pmu; 5224 5225 if (!is_exclusive_pmu(pmu)) 5226 return 0; 5227 5228 /* 5229 * Prevent co-existence of per-task and cpu-wide events on the 5230 * same exclusive pmu. 5231 * 5232 * Negative pmu::exclusive_cnt means there are cpu-wide 5233 * events on this "exclusive" pmu, positive means there are 5234 * per-task events. 5235 * 5236 * Since this is called in perf_event_alloc() path, event::ctx 5237 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5238 * to mean "per-task event", because unlike other attach states it 5239 * never gets cleared. 5240 */ 5241 if (event->attach_state & PERF_ATTACH_TASK) { 5242 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5243 return -EBUSY; 5244 } else { 5245 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5246 return -EBUSY; 5247 } 5248 5249 return 0; 5250 } 5251 5252 static void exclusive_event_destroy(struct perf_event *event) 5253 { 5254 struct pmu *pmu = event->pmu; 5255 5256 if (!is_exclusive_pmu(pmu)) 5257 return; 5258 5259 /* see comment in exclusive_event_init() */ 5260 if (event->attach_state & PERF_ATTACH_TASK) 5261 atomic_dec(&pmu->exclusive_cnt); 5262 else 5263 atomic_inc(&pmu->exclusive_cnt); 5264 } 5265 5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5267 { 5268 if ((e1->pmu == e2->pmu) && 5269 (e1->cpu == e2->cpu || 5270 e1->cpu == -1 || 5271 e2->cpu == -1)) 5272 return true; 5273 return false; 5274 } 5275 5276 static bool exclusive_event_installable(struct perf_event *event, 5277 struct perf_event_context *ctx) 5278 { 5279 struct perf_event *iter_event; 5280 struct pmu *pmu = event->pmu; 5281 5282 lockdep_assert_held(&ctx->mutex); 5283 5284 if (!is_exclusive_pmu(pmu)) 5285 return true; 5286 5287 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5288 if (exclusive_event_match(iter_event, event)) 5289 return false; 5290 } 5291 5292 return true; 5293 } 5294 5295 static void perf_addr_filters_splice(struct perf_event *event, 5296 struct list_head *head); 5297 5298 static void perf_pending_task_sync(struct perf_event *event) 5299 { 5300 struct callback_head *head = &event->pending_task; 5301 5302 if (!event->pending_work) 5303 return; 5304 /* 5305 * If the task is queued to the current task's queue, we 5306 * obviously can't wait for it to complete. Simply cancel it. 5307 */ 5308 if (task_work_cancel(current, head)) { 5309 event->pending_work = 0; 5310 local_dec(&event->ctx->nr_no_switch_fast); 5311 return; 5312 } 5313 5314 /* 5315 * All accesses related to the event are within the same RCU section in 5316 * perf_pending_task(). The RCU grace period before the event is freed 5317 * will make sure all those accesses are complete by then. 5318 */ 5319 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5320 } 5321 5322 static void _free_event(struct perf_event *event) 5323 { 5324 irq_work_sync(&event->pending_irq); 5325 irq_work_sync(&event->pending_disable_irq); 5326 perf_pending_task_sync(event); 5327 5328 unaccount_event(event); 5329 5330 security_perf_event_free(event); 5331 5332 if (event->rb) { 5333 /* 5334 * Can happen when we close an event with re-directed output. 5335 * 5336 * Since we have a 0 refcount, perf_mmap_close() will skip 5337 * over us; possibly making our ring_buffer_put() the last. 5338 */ 5339 mutex_lock(&event->mmap_mutex); 5340 ring_buffer_attach(event, NULL); 5341 mutex_unlock(&event->mmap_mutex); 5342 } 5343 5344 if (is_cgroup_event(event)) 5345 perf_detach_cgroup(event); 5346 5347 if (!event->parent) { 5348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5349 put_callchain_buffers(); 5350 } 5351 5352 perf_event_free_bpf_prog(event); 5353 perf_addr_filters_splice(event, NULL); 5354 kfree(event->addr_filter_ranges); 5355 5356 if (event->destroy) 5357 event->destroy(event); 5358 5359 /* 5360 * Must be after ->destroy(), due to uprobe_perf_close() using 5361 * hw.target. 5362 */ 5363 if (event->hw.target) 5364 put_task_struct(event->hw.target); 5365 5366 if (event->pmu_ctx) 5367 put_pmu_ctx(event->pmu_ctx); 5368 5369 /* 5370 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5371 * all task references must be cleaned up. 5372 */ 5373 if (event->ctx) 5374 put_ctx(event->ctx); 5375 5376 exclusive_event_destroy(event); 5377 module_put(event->pmu->module); 5378 5379 call_rcu(&event->rcu_head, free_event_rcu); 5380 } 5381 5382 /* 5383 * Used to free events which have a known refcount of 1, such as in error paths 5384 * where the event isn't exposed yet and inherited events. 5385 */ 5386 static void free_event(struct perf_event *event) 5387 { 5388 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5389 "unexpected event refcount: %ld; ptr=%p\n", 5390 atomic_long_read(&event->refcount), event)) { 5391 /* leak to avoid use-after-free */ 5392 return; 5393 } 5394 5395 _free_event(event); 5396 } 5397 5398 /* 5399 * Remove user event from the owner task. 5400 */ 5401 static void perf_remove_from_owner(struct perf_event *event) 5402 { 5403 struct task_struct *owner; 5404 5405 rcu_read_lock(); 5406 /* 5407 * Matches the smp_store_release() in perf_event_exit_task(). If we 5408 * observe !owner it means the list deletion is complete and we can 5409 * indeed free this event, otherwise we need to serialize on 5410 * owner->perf_event_mutex. 5411 */ 5412 owner = READ_ONCE(event->owner); 5413 if (owner) { 5414 /* 5415 * Since delayed_put_task_struct() also drops the last 5416 * task reference we can safely take a new reference 5417 * while holding the rcu_read_lock(). 5418 */ 5419 get_task_struct(owner); 5420 } 5421 rcu_read_unlock(); 5422 5423 if (owner) { 5424 /* 5425 * If we're here through perf_event_exit_task() we're already 5426 * holding ctx->mutex which would be an inversion wrt. the 5427 * normal lock order. 5428 * 5429 * However we can safely take this lock because its the child 5430 * ctx->mutex. 5431 */ 5432 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5433 5434 /* 5435 * We have to re-check the event->owner field, if it is cleared 5436 * we raced with perf_event_exit_task(), acquiring the mutex 5437 * ensured they're done, and we can proceed with freeing the 5438 * event. 5439 */ 5440 if (event->owner) { 5441 list_del_init(&event->owner_entry); 5442 smp_store_release(&event->owner, NULL); 5443 } 5444 mutex_unlock(&owner->perf_event_mutex); 5445 put_task_struct(owner); 5446 } 5447 } 5448 5449 static void put_event(struct perf_event *event) 5450 { 5451 if (!atomic_long_dec_and_test(&event->refcount)) 5452 return; 5453 5454 _free_event(event); 5455 } 5456 5457 /* 5458 * Kill an event dead; while event:refcount will preserve the event 5459 * object, it will not preserve its functionality. Once the last 'user' 5460 * gives up the object, we'll destroy the thing. 5461 */ 5462 int perf_event_release_kernel(struct perf_event *event) 5463 { 5464 struct perf_event_context *ctx = event->ctx; 5465 struct perf_event *child, *tmp; 5466 LIST_HEAD(free_list); 5467 5468 /* 5469 * If we got here through err_alloc: free_event(event); we will not 5470 * have attached to a context yet. 5471 */ 5472 if (!ctx) { 5473 WARN_ON_ONCE(event->attach_state & 5474 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5475 goto no_ctx; 5476 } 5477 5478 if (!is_kernel_event(event)) 5479 perf_remove_from_owner(event); 5480 5481 ctx = perf_event_ctx_lock(event); 5482 WARN_ON_ONCE(ctx->parent_ctx); 5483 5484 /* 5485 * Mark this event as STATE_DEAD, there is no external reference to it 5486 * anymore. 5487 * 5488 * Anybody acquiring event->child_mutex after the below loop _must_ 5489 * also see this, most importantly inherit_event() which will avoid 5490 * placing more children on the list. 5491 * 5492 * Thus this guarantees that we will in fact observe and kill _ALL_ 5493 * child events. 5494 */ 5495 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5496 5497 perf_event_ctx_unlock(event, ctx); 5498 5499 again: 5500 mutex_lock(&event->child_mutex); 5501 list_for_each_entry(child, &event->child_list, child_list) { 5502 void *var = NULL; 5503 5504 /* 5505 * Cannot change, child events are not migrated, see the 5506 * comment with perf_event_ctx_lock_nested(). 5507 */ 5508 ctx = READ_ONCE(child->ctx); 5509 /* 5510 * Since child_mutex nests inside ctx::mutex, we must jump 5511 * through hoops. We start by grabbing a reference on the ctx. 5512 * 5513 * Since the event cannot get freed while we hold the 5514 * child_mutex, the context must also exist and have a !0 5515 * reference count. 5516 */ 5517 get_ctx(ctx); 5518 5519 /* 5520 * Now that we have a ctx ref, we can drop child_mutex, and 5521 * acquire ctx::mutex without fear of it going away. Then we 5522 * can re-acquire child_mutex. 5523 */ 5524 mutex_unlock(&event->child_mutex); 5525 mutex_lock(&ctx->mutex); 5526 mutex_lock(&event->child_mutex); 5527 5528 /* 5529 * Now that we hold ctx::mutex and child_mutex, revalidate our 5530 * state, if child is still the first entry, it didn't get freed 5531 * and we can continue doing so. 5532 */ 5533 tmp = list_first_entry_or_null(&event->child_list, 5534 struct perf_event, child_list); 5535 if (tmp == child) { 5536 perf_remove_from_context(child, DETACH_GROUP); 5537 list_move(&child->child_list, &free_list); 5538 /* 5539 * This matches the refcount bump in inherit_event(); 5540 * this can't be the last reference. 5541 */ 5542 put_event(event); 5543 } else { 5544 var = &ctx->refcount; 5545 } 5546 5547 mutex_unlock(&event->child_mutex); 5548 mutex_unlock(&ctx->mutex); 5549 put_ctx(ctx); 5550 5551 if (var) { 5552 /* 5553 * If perf_event_free_task() has deleted all events from the 5554 * ctx while the child_mutex got released above, make sure to 5555 * notify about the preceding put_ctx(). 5556 */ 5557 smp_mb(); /* pairs with wait_var_event() */ 5558 wake_up_var(var); 5559 } 5560 goto again; 5561 } 5562 mutex_unlock(&event->child_mutex); 5563 5564 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5565 void *var = &child->ctx->refcount; 5566 5567 list_del(&child->child_list); 5568 free_event(child); 5569 5570 /* 5571 * Wake any perf_event_free_task() waiting for this event to be 5572 * freed. 5573 */ 5574 smp_mb(); /* pairs with wait_var_event() */ 5575 wake_up_var(var); 5576 } 5577 5578 no_ctx: 5579 put_event(event); /* Must be the 'last' reference */ 5580 return 0; 5581 } 5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5583 5584 /* 5585 * Called when the last reference to the file is gone. 5586 */ 5587 static int perf_release(struct inode *inode, struct file *file) 5588 { 5589 perf_event_release_kernel(file->private_data); 5590 return 0; 5591 } 5592 5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5594 { 5595 struct perf_event *child; 5596 u64 total = 0; 5597 5598 *enabled = 0; 5599 *running = 0; 5600 5601 mutex_lock(&event->child_mutex); 5602 5603 (void)perf_event_read(event, false); 5604 total += perf_event_count(event, false); 5605 5606 *enabled += event->total_time_enabled + 5607 atomic64_read(&event->child_total_time_enabled); 5608 *running += event->total_time_running + 5609 atomic64_read(&event->child_total_time_running); 5610 5611 list_for_each_entry(child, &event->child_list, child_list) { 5612 (void)perf_event_read(child, false); 5613 total += perf_event_count(child, false); 5614 *enabled += child->total_time_enabled; 5615 *running += child->total_time_running; 5616 } 5617 mutex_unlock(&event->child_mutex); 5618 5619 return total; 5620 } 5621 5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5623 { 5624 struct perf_event_context *ctx; 5625 u64 count; 5626 5627 ctx = perf_event_ctx_lock(event); 5628 count = __perf_event_read_value(event, enabled, running); 5629 perf_event_ctx_unlock(event, ctx); 5630 5631 return count; 5632 } 5633 EXPORT_SYMBOL_GPL(perf_event_read_value); 5634 5635 static int __perf_read_group_add(struct perf_event *leader, 5636 u64 read_format, u64 *values) 5637 { 5638 struct perf_event_context *ctx = leader->ctx; 5639 struct perf_event *sub, *parent; 5640 unsigned long flags; 5641 int n = 1; /* skip @nr */ 5642 int ret; 5643 5644 ret = perf_event_read(leader, true); 5645 if (ret) 5646 return ret; 5647 5648 raw_spin_lock_irqsave(&ctx->lock, flags); 5649 /* 5650 * Verify the grouping between the parent and child (inherited) 5651 * events is still in tact. 5652 * 5653 * Specifically: 5654 * - leader->ctx->lock pins leader->sibling_list 5655 * - parent->child_mutex pins parent->child_list 5656 * - parent->ctx->mutex pins parent->sibling_list 5657 * 5658 * Because parent->ctx != leader->ctx (and child_list nests inside 5659 * ctx->mutex), group destruction is not atomic between children, also 5660 * see perf_event_release_kernel(). Additionally, parent can grow the 5661 * group. 5662 * 5663 * Therefore it is possible to have parent and child groups in a 5664 * different configuration and summing over such a beast makes no sense 5665 * what so ever. 5666 * 5667 * Reject this. 5668 */ 5669 parent = leader->parent; 5670 if (parent && 5671 (parent->group_generation != leader->group_generation || 5672 parent->nr_siblings != leader->nr_siblings)) { 5673 ret = -ECHILD; 5674 goto unlock; 5675 } 5676 5677 /* 5678 * Since we co-schedule groups, {enabled,running} times of siblings 5679 * will be identical to those of the leader, so we only publish one 5680 * set. 5681 */ 5682 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5683 values[n++] += leader->total_time_enabled + 5684 atomic64_read(&leader->child_total_time_enabled); 5685 } 5686 5687 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5688 values[n++] += leader->total_time_running + 5689 atomic64_read(&leader->child_total_time_running); 5690 } 5691 5692 /* 5693 * Write {count,id} tuples for every sibling. 5694 */ 5695 values[n++] += perf_event_count(leader, false); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(leader); 5698 if (read_format & PERF_FORMAT_LOST) 5699 values[n++] = atomic64_read(&leader->lost_samples); 5700 5701 for_each_sibling_event(sub, leader) { 5702 values[n++] += perf_event_count(sub, false); 5703 if (read_format & PERF_FORMAT_ID) 5704 values[n++] = primary_event_id(sub); 5705 if (read_format & PERF_FORMAT_LOST) 5706 values[n++] = atomic64_read(&sub->lost_samples); 5707 } 5708 5709 unlock: 5710 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5711 return ret; 5712 } 5713 5714 static int perf_read_group(struct perf_event *event, 5715 u64 read_format, char __user *buf) 5716 { 5717 struct perf_event *leader = event->group_leader, *child; 5718 struct perf_event_context *ctx = leader->ctx; 5719 int ret; 5720 u64 *values; 5721 5722 lockdep_assert_held(&ctx->mutex); 5723 5724 values = kzalloc(event->read_size, GFP_KERNEL); 5725 if (!values) 5726 return -ENOMEM; 5727 5728 values[0] = 1 + leader->nr_siblings; 5729 5730 mutex_lock(&leader->child_mutex); 5731 5732 ret = __perf_read_group_add(leader, read_format, values); 5733 if (ret) 5734 goto unlock; 5735 5736 list_for_each_entry(child, &leader->child_list, child_list) { 5737 ret = __perf_read_group_add(child, read_format, values); 5738 if (ret) 5739 goto unlock; 5740 } 5741 5742 mutex_unlock(&leader->child_mutex); 5743 5744 ret = event->read_size; 5745 if (copy_to_user(buf, values, event->read_size)) 5746 ret = -EFAULT; 5747 goto out; 5748 5749 unlock: 5750 mutex_unlock(&leader->child_mutex); 5751 out: 5752 kfree(values); 5753 return ret; 5754 } 5755 5756 static int perf_read_one(struct perf_event *event, 5757 u64 read_format, char __user *buf) 5758 { 5759 u64 enabled, running; 5760 u64 values[5]; 5761 int n = 0; 5762 5763 values[n++] = __perf_event_read_value(event, &enabled, &running); 5764 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5765 values[n++] = enabled; 5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5767 values[n++] = running; 5768 if (read_format & PERF_FORMAT_ID) 5769 values[n++] = primary_event_id(event); 5770 if (read_format & PERF_FORMAT_LOST) 5771 values[n++] = atomic64_read(&event->lost_samples); 5772 5773 if (copy_to_user(buf, values, n * sizeof(u64))) 5774 return -EFAULT; 5775 5776 return n * sizeof(u64); 5777 } 5778 5779 static bool is_event_hup(struct perf_event *event) 5780 { 5781 bool no_children; 5782 5783 if (event->state > PERF_EVENT_STATE_EXIT) 5784 return false; 5785 5786 mutex_lock(&event->child_mutex); 5787 no_children = list_empty(&event->child_list); 5788 mutex_unlock(&event->child_mutex); 5789 return no_children; 5790 } 5791 5792 /* 5793 * Read the performance event - simple non blocking version for now 5794 */ 5795 static ssize_t 5796 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5797 { 5798 u64 read_format = event->attr.read_format; 5799 int ret; 5800 5801 /* 5802 * Return end-of-file for a read on an event that is in 5803 * error state (i.e. because it was pinned but it couldn't be 5804 * scheduled on to the CPU at some point). 5805 */ 5806 if (event->state == PERF_EVENT_STATE_ERROR) 5807 return 0; 5808 5809 if (count < event->read_size) 5810 return -ENOSPC; 5811 5812 WARN_ON_ONCE(event->ctx->parent_ctx); 5813 if (read_format & PERF_FORMAT_GROUP) 5814 ret = perf_read_group(event, read_format, buf); 5815 else 5816 ret = perf_read_one(event, read_format, buf); 5817 5818 return ret; 5819 } 5820 5821 static ssize_t 5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5823 { 5824 struct perf_event *event = file->private_data; 5825 struct perf_event_context *ctx; 5826 int ret; 5827 5828 ret = security_perf_event_read(event); 5829 if (ret) 5830 return ret; 5831 5832 ctx = perf_event_ctx_lock(event); 5833 ret = __perf_read(event, buf, count); 5834 perf_event_ctx_unlock(event, ctx); 5835 5836 return ret; 5837 } 5838 5839 static __poll_t perf_poll(struct file *file, poll_table *wait) 5840 { 5841 struct perf_event *event = file->private_data; 5842 struct perf_buffer *rb; 5843 __poll_t events = EPOLLHUP; 5844 5845 poll_wait(file, &event->waitq, wait); 5846 5847 if (is_event_hup(event)) 5848 return events; 5849 5850 /* 5851 * Pin the event->rb by taking event->mmap_mutex; otherwise 5852 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5853 */ 5854 mutex_lock(&event->mmap_mutex); 5855 rb = event->rb; 5856 if (rb) 5857 events = atomic_xchg(&rb->poll, 0); 5858 mutex_unlock(&event->mmap_mutex); 5859 return events; 5860 } 5861 5862 static void _perf_event_reset(struct perf_event *event) 5863 { 5864 (void)perf_event_read(event, false); 5865 local64_set(&event->count, 0); 5866 perf_event_update_userpage(event); 5867 } 5868 5869 /* Assume it's not an event with inherit set. */ 5870 u64 perf_event_pause(struct perf_event *event, bool reset) 5871 { 5872 struct perf_event_context *ctx; 5873 u64 count; 5874 5875 ctx = perf_event_ctx_lock(event); 5876 WARN_ON_ONCE(event->attr.inherit); 5877 _perf_event_disable(event); 5878 count = local64_read(&event->count); 5879 if (reset) 5880 local64_set(&event->count, 0); 5881 perf_event_ctx_unlock(event, ctx); 5882 5883 return count; 5884 } 5885 EXPORT_SYMBOL_GPL(perf_event_pause); 5886 5887 /* 5888 * Holding the top-level event's child_mutex means that any 5889 * descendant process that has inherited this event will block 5890 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5891 * task existence requirements of perf_event_enable/disable. 5892 */ 5893 static void perf_event_for_each_child(struct perf_event *event, 5894 void (*func)(struct perf_event *)) 5895 { 5896 struct perf_event *child; 5897 5898 WARN_ON_ONCE(event->ctx->parent_ctx); 5899 5900 mutex_lock(&event->child_mutex); 5901 func(event); 5902 list_for_each_entry(child, &event->child_list, child_list) 5903 func(child); 5904 mutex_unlock(&event->child_mutex); 5905 } 5906 5907 static void perf_event_for_each(struct perf_event *event, 5908 void (*func)(struct perf_event *)) 5909 { 5910 struct perf_event_context *ctx = event->ctx; 5911 struct perf_event *sibling; 5912 5913 lockdep_assert_held(&ctx->mutex); 5914 5915 event = event->group_leader; 5916 5917 perf_event_for_each_child(event, func); 5918 for_each_sibling_event(sibling, event) 5919 perf_event_for_each_child(sibling, func); 5920 } 5921 5922 static void __perf_event_period(struct perf_event *event, 5923 struct perf_cpu_context *cpuctx, 5924 struct perf_event_context *ctx, 5925 void *info) 5926 { 5927 u64 value = *((u64 *)info); 5928 bool active; 5929 5930 if (event->attr.freq) { 5931 event->attr.sample_freq = value; 5932 } else { 5933 event->attr.sample_period = value; 5934 event->hw.sample_period = value; 5935 } 5936 5937 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5938 if (active) { 5939 perf_pmu_disable(event->pmu); 5940 /* 5941 * We could be throttled; unthrottle now to avoid the tick 5942 * trying to unthrottle while we already re-started the event. 5943 */ 5944 if (event->hw.interrupts == MAX_INTERRUPTS) { 5945 event->hw.interrupts = 0; 5946 perf_log_throttle(event, 1); 5947 } 5948 event->pmu->stop(event, PERF_EF_UPDATE); 5949 } 5950 5951 local64_set(&event->hw.period_left, 0); 5952 5953 if (active) { 5954 event->pmu->start(event, PERF_EF_RELOAD); 5955 perf_pmu_enable(event->pmu); 5956 } 5957 } 5958 5959 static int perf_event_check_period(struct perf_event *event, u64 value) 5960 { 5961 return event->pmu->check_period(event, value); 5962 } 5963 5964 static int _perf_event_period(struct perf_event *event, u64 value) 5965 { 5966 if (!is_sampling_event(event)) 5967 return -EINVAL; 5968 5969 if (!value) 5970 return -EINVAL; 5971 5972 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5973 return -EINVAL; 5974 5975 if (perf_event_check_period(event, value)) 5976 return -EINVAL; 5977 5978 if (!event->attr.freq && (value & (1ULL << 63))) 5979 return -EINVAL; 5980 5981 event_function_call(event, __perf_event_period, &value); 5982 5983 return 0; 5984 } 5985 5986 int perf_event_period(struct perf_event *event, u64 value) 5987 { 5988 struct perf_event_context *ctx; 5989 int ret; 5990 5991 ctx = perf_event_ctx_lock(event); 5992 ret = _perf_event_period(event, value); 5993 perf_event_ctx_unlock(event, ctx); 5994 5995 return ret; 5996 } 5997 EXPORT_SYMBOL_GPL(perf_event_period); 5998 5999 static const struct file_operations perf_fops; 6000 6001 static inline int perf_fget_light(int fd, struct fd *p) 6002 { 6003 struct fd f = fdget(fd); 6004 if (!fd_file(f)) 6005 return -EBADF; 6006 6007 if (fd_file(f)->f_op != &perf_fops) { 6008 fdput(f); 6009 return -EBADF; 6010 } 6011 *p = f; 6012 return 0; 6013 } 6014 6015 static int perf_event_set_output(struct perf_event *event, 6016 struct perf_event *output_event); 6017 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6018 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6019 struct perf_event_attr *attr); 6020 6021 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6022 { 6023 void (*func)(struct perf_event *); 6024 u32 flags = arg; 6025 6026 switch (cmd) { 6027 case PERF_EVENT_IOC_ENABLE: 6028 func = _perf_event_enable; 6029 break; 6030 case PERF_EVENT_IOC_DISABLE: 6031 func = _perf_event_disable; 6032 break; 6033 case PERF_EVENT_IOC_RESET: 6034 func = _perf_event_reset; 6035 break; 6036 6037 case PERF_EVENT_IOC_REFRESH: 6038 return _perf_event_refresh(event, arg); 6039 6040 case PERF_EVENT_IOC_PERIOD: 6041 { 6042 u64 value; 6043 6044 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6045 return -EFAULT; 6046 6047 return _perf_event_period(event, value); 6048 } 6049 case PERF_EVENT_IOC_ID: 6050 { 6051 u64 id = primary_event_id(event); 6052 6053 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6054 return -EFAULT; 6055 return 0; 6056 } 6057 6058 case PERF_EVENT_IOC_SET_OUTPUT: 6059 { 6060 int ret; 6061 if (arg != -1) { 6062 struct perf_event *output_event; 6063 struct fd output; 6064 ret = perf_fget_light(arg, &output); 6065 if (ret) 6066 return ret; 6067 output_event = fd_file(output)->private_data; 6068 ret = perf_event_set_output(event, output_event); 6069 fdput(output); 6070 } else { 6071 ret = perf_event_set_output(event, NULL); 6072 } 6073 return ret; 6074 } 6075 6076 case PERF_EVENT_IOC_SET_FILTER: 6077 return perf_event_set_filter(event, (void __user *)arg); 6078 6079 case PERF_EVENT_IOC_SET_BPF: 6080 { 6081 struct bpf_prog *prog; 6082 int err; 6083 6084 prog = bpf_prog_get(arg); 6085 if (IS_ERR(prog)) 6086 return PTR_ERR(prog); 6087 6088 err = perf_event_set_bpf_prog(event, prog, 0); 6089 if (err) { 6090 bpf_prog_put(prog); 6091 return err; 6092 } 6093 6094 return 0; 6095 } 6096 6097 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6098 struct perf_buffer *rb; 6099 6100 rcu_read_lock(); 6101 rb = rcu_dereference(event->rb); 6102 if (!rb || !rb->nr_pages) { 6103 rcu_read_unlock(); 6104 return -EINVAL; 6105 } 6106 rb_toggle_paused(rb, !!arg); 6107 rcu_read_unlock(); 6108 return 0; 6109 } 6110 6111 case PERF_EVENT_IOC_QUERY_BPF: 6112 return perf_event_query_prog_array(event, (void __user *)arg); 6113 6114 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6115 struct perf_event_attr new_attr; 6116 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6117 &new_attr); 6118 6119 if (err) 6120 return err; 6121 6122 return perf_event_modify_attr(event, &new_attr); 6123 } 6124 default: 6125 return -ENOTTY; 6126 } 6127 6128 if (flags & PERF_IOC_FLAG_GROUP) 6129 perf_event_for_each(event, func); 6130 else 6131 perf_event_for_each_child(event, func); 6132 6133 return 0; 6134 } 6135 6136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6137 { 6138 struct perf_event *event = file->private_data; 6139 struct perf_event_context *ctx; 6140 long ret; 6141 6142 /* Treat ioctl like writes as it is likely a mutating operation. */ 6143 ret = security_perf_event_write(event); 6144 if (ret) 6145 return ret; 6146 6147 ctx = perf_event_ctx_lock(event); 6148 ret = _perf_ioctl(event, cmd, arg); 6149 perf_event_ctx_unlock(event, ctx); 6150 6151 return ret; 6152 } 6153 6154 #ifdef CONFIG_COMPAT 6155 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6156 unsigned long arg) 6157 { 6158 switch (_IOC_NR(cmd)) { 6159 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6160 case _IOC_NR(PERF_EVENT_IOC_ID): 6161 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6162 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6163 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6164 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6165 cmd &= ~IOCSIZE_MASK; 6166 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6167 } 6168 break; 6169 } 6170 return perf_ioctl(file, cmd, arg); 6171 } 6172 #else 6173 # define perf_compat_ioctl NULL 6174 #endif 6175 6176 int perf_event_task_enable(void) 6177 { 6178 struct perf_event_context *ctx; 6179 struct perf_event *event; 6180 6181 mutex_lock(¤t->perf_event_mutex); 6182 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6183 ctx = perf_event_ctx_lock(event); 6184 perf_event_for_each_child(event, _perf_event_enable); 6185 perf_event_ctx_unlock(event, ctx); 6186 } 6187 mutex_unlock(¤t->perf_event_mutex); 6188 6189 return 0; 6190 } 6191 6192 int perf_event_task_disable(void) 6193 { 6194 struct perf_event_context *ctx; 6195 struct perf_event *event; 6196 6197 mutex_lock(¤t->perf_event_mutex); 6198 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6199 ctx = perf_event_ctx_lock(event); 6200 perf_event_for_each_child(event, _perf_event_disable); 6201 perf_event_ctx_unlock(event, ctx); 6202 } 6203 mutex_unlock(¤t->perf_event_mutex); 6204 6205 return 0; 6206 } 6207 6208 static int perf_event_index(struct perf_event *event) 6209 { 6210 if (event->hw.state & PERF_HES_STOPPED) 6211 return 0; 6212 6213 if (event->state != PERF_EVENT_STATE_ACTIVE) 6214 return 0; 6215 6216 return event->pmu->event_idx(event); 6217 } 6218 6219 static void perf_event_init_userpage(struct perf_event *event) 6220 { 6221 struct perf_event_mmap_page *userpg; 6222 struct perf_buffer *rb; 6223 6224 rcu_read_lock(); 6225 rb = rcu_dereference(event->rb); 6226 if (!rb) 6227 goto unlock; 6228 6229 userpg = rb->user_page; 6230 6231 /* Allow new userspace to detect that bit 0 is deprecated */ 6232 userpg->cap_bit0_is_deprecated = 1; 6233 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6234 userpg->data_offset = PAGE_SIZE; 6235 userpg->data_size = perf_data_size(rb); 6236 6237 unlock: 6238 rcu_read_unlock(); 6239 } 6240 6241 void __weak arch_perf_update_userpage( 6242 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6243 { 6244 } 6245 6246 /* 6247 * Callers need to ensure there can be no nesting of this function, otherwise 6248 * the seqlock logic goes bad. We can not serialize this because the arch 6249 * code calls this from NMI context. 6250 */ 6251 void perf_event_update_userpage(struct perf_event *event) 6252 { 6253 struct perf_event_mmap_page *userpg; 6254 struct perf_buffer *rb; 6255 u64 enabled, running, now; 6256 6257 rcu_read_lock(); 6258 rb = rcu_dereference(event->rb); 6259 if (!rb) 6260 goto unlock; 6261 6262 /* 6263 * compute total_time_enabled, total_time_running 6264 * based on snapshot values taken when the event 6265 * was last scheduled in. 6266 * 6267 * we cannot simply called update_context_time() 6268 * because of locking issue as we can be called in 6269 * NMI context 6270 */ 6271 calc_timer_values(event, &now, &enabled, &running); 6272 6273 userpg = rb->user_page; 6274 /* 6275 * Disable preemption to guarantee consistent time stamps are stored to 6276 * the user page. 6277 */ 6278 preempt_disable(); 6279 ++userpg->lock; 6280 barrier(); 6281 userpg->index = perf_event_index(event); 6282 userpg->offset = perf_event_count(event, false); 6283 if (userpg->index) 6284 userpg->offset -= local64_read(&event->hw.prev_count); 6285 6286 userpg->time_enabled = enabled + 6287 atomic64_read(&event->child_total_time_enabled); 6288 6289 userpg->time_running = running + 6290 atomic64_read(&event->child_total_time_running); 6291 6292 arch_perf_update_userpage(event, userpg, now); 6293 6294 barrier(); 6295 ++userpg->lock; 6296 preempt_enable(); 6297 unlock: 6298 rcu_read_unlock(); 6299 } 6300 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6301 6302 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6303 { 6304 struct perf_event *event = vmf->vma->vm_file->private_data; 6305 struct perf_buffer *rb; 6306 vm_fault_t ret = VM_FAULT_SIGBUS; 6307 6308 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6309 if (vmf->pgoff == 0) 6310 ret = 0; 6311 return ret; 6312 } 6313 6314 rcu_read_lock(); 6315 rb = rcu_dereference(event->rb); 6316 if (!rb) 6317 goto unlock; 6318 6319 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6320 goto unlock; 6321 6322 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6323 if (!vmf->page) 6324 goto unlock; 6325 6326 get_page(vmf->page); 6327 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6328 vmf->page->index = vmf->pgoff; 6329 6330 ret = 0; 6331 unlock: 6332 rcu_read_unlock(); 6333 6334 return ret; 6335 } 6336 6337 static void ring_buffer_attach(struct perf_event *event, 6338 struct perf_buffer *rb) 6339 { 6340 struct perf_buffer *old_rb = NULL; 6341 unsigned long flags; 6342 6343 WARN_ON_ONCE(event->parent); 6344 6345 if (event->rb) { 6346 /* 6347 * Should be impossible, we set this when removing 6348 * event->rb_entry and wait/clear when adding event->rb_entry. 6349 */ 6350 WARN_ON_ONCE(event->rcu_pending); 6351 6352 old_rb = event->rb; 6353 spin_lock_irqsave(&old_rb->event_lock, flags); 6354 list_del_rcu(&event->rb_entry); 6355 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6356 6357 event->rcu_batches = get_state_synchronize_rcu(); 6358 event->rcu_pending = 1; 6359 } 6360 6361 if (rb) { 6362 if (event->rcu_pending) { 6363 cond_synchronize_rcu(event->rcu_batches); 6364 event->rcu_pending = 0; 6365 } 6366 6367 spin_lock_irqsave(&rb->event_lock, flags); 6368 list_add_rcu(&event->rb_entry, &rb->event_list); 6369 spin_unlock_irqrestore(&rb->event_lock, flags); 6370 } 6371 6372 /* 6373 * Avoid racing with perf_mmap_close(AUX): stop the event 6374 * before swizzling the event::rb pointer; if it's getting 6375 * unmapped, its aux_mmap_count will be 0 and it won't 6376 * restart. See the comment in __perf_pmu_output_stop(). 6377 * 6378 * Data will inevitably be lost when set_output is done in 6379 * mid-air, but then again, whoever does it like this is 6380 * not in for the data anyway. 6381 */ 6382 if (has_aux(event)) 6383 perf_event_stop(event, 0); 6384 6385 rcu_assign_pointer(event->rb, rb); 6386 6387 if (old_rb) { 6388 ring_buffer_put(old_rb); 6389 /* 6390 * Since we detached before setting the new rb, so that we 6391 * could attach the new rb, we could have missed a wakeup. 6392 * Provide it now. 6393 */ 6394 wake_up_all(&event->waitq); 6395 } 6396 } 6397 6398 static void ring_buffer_wakeup(struct perf_event *event) 6399 { 6400 struct perf_buffer *rb; 6401 6402 if (event->parent) 6403 event = event->parent; 6404 6405 rcu_read_lock(); 6406 rb = rcu_dereference(event->rb); 6407 if (rb) { 6408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6409 wake_up_all(&event->waitq); 6410 } 6411 rcu_read_unlock(); 6412 } 6413 6414 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6415 { 6416 struct perf_buffer *rb; 6417 6418 if (event->parent) 6419 event = event->parent; 6420 6421 rcu_read_lock(); 6422 rb = rcu_dereference(event->rb); 6423 if (rb) { 6424 if (!refcount_inc_not_zero(&rb->refcount)) 6425 rb = NULL; 6426 } 6427 rcu_read_unlock(); 6428 6429 return rb; 6430 } 6431 6432 void ring_buffer_put(struct perf_buffer *rb) 6433 { 6434 if (!refcount_dec_and_test(&rb->refcount)) 6435 return; 6436 6437 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6438 6439 call_rcu(&rb->rcu_head, rb_free_rcu); 6440 } 6441 6442 static void perf_mmap_open(struct vm_area_struct *vma) 6443 { 6444 struct perf_event *event = vma->vm_file->private_data; 6445 6446 atomic_inc(&event->mmap_count); 6447 atomic_inc(&event->rb->mmap_count); 6448 6449 if (vma->vm_pgoff) 6450 atomic_inc(&event->rb->aux_mmap_count); 6451 6452 if (event->pmu->event_mapped) 6453 event->pmu->event_mapped(event, vma->vm_mm); 6454 } 6455 6456 static void perf_pmu_output_stop(struct perf_event *event); 6457 6458 /* 6459 * A buffer can be mmap()ed multiple times; either directly through the same 6460 * event, or through other events by use of perf_event_set_output(). 6461 * 6462 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6463 * the buffer here, where we still have a VM context. This means we need 6464 * to detach all events redirecting to us. 6465 */ 6466 static void perf_mmap_close(struct vm_area_struct *vma) 6467 { 6468 struct perf_event *event = vma->vm_file->private_data; 6469 struct perf_buffer *rb = ring_buffer_get(event); 6470 struct user_struct *mmap_user = rb->mmap_user; 6471 int mmap_locked = rb->mmap_locked; 6472 unsigned long size = perf_data_size(rb); 6473 bool detach_rest = false; 6474 6475 if (event->pmu->event_unmapped) 6476 event->pmu->event_unmapped(event, vma->vm_mm); 6477 6478 /* 6479 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6480 * to avoid complications. 6481 */ 6482 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6483 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6484 /* 6485 * Stop all AUX events that are writing to this buffer, 6486 * so that we can free its AUX pages and corresponding PMU 6487 * data. Note that after rb::aux_mmap_count dropped to zero, 6488 * they won't start any more (see perf_aux_output_begin()). 6489 */ 6490 perf_pmu_output_stop(event); 6491 6492 /* now it's safe to free the pages */ 6493 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6494 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6495 6496 /* this has to be the last one */ 6497 rb_free_aux(rb); 6498 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6499 6500 mutex_unlock(&rb->aux_mutex); 6501 } 6502 6503 if (atomic_dec_and_test(&rb->mmap_count)) 6504 detach_rest = true; 6505 6506 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6507 goto out_put; 6508 6509 ring_buffer_attach(event, NULL); 6510 mutex_unlock(&event->mmap_mutex); 6511 6512 /* If there's still other mmap()s of this buffer, we're done. */ 6513 if (!detach_rest) 6514 goto out_put; 6515 6516 /* 6517 * No other mmap()s, detach from all other events that might redirect 6518 * into the now unreachable buffer. Somewhat complicated by the 6519 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6520 */ 6521 again: 6522 rcu_read_lock(); 6523 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6524 if (!atomic_long_inc_not_zero(&event->refcount)) { 6525 /* 6526 * This event is en-route to free_event() which will 6527 * detach it and remove it from the list. 6528 */ 6529 continue; 6530 } 6531 rcu_read_unlock(); 6532 6533 mutex_lock(&event->mmap_mutex); 6534 /* 6535 * Check we didn't race with perf_event_set_output() which can 6536 * swizzle the rb from under us while we were waiting to 6537 * acquire mmap_mutex. 6538 * 6539 * If we find a different rb; ignore this event, a next 6540 * iteration will no longer find it on the list. We have to 6541 * still restart the iteration to make sure we're not now 6542 * iterating the wrong list. 6543 */ 6544 if (event->rb == rb) 6545 ring_buffer_attach(event, NULL); 6546 6547 mutex_unlock(&event->mmap_mutex); 6548 put_event(event); 6549 6550 /* 6551 * Restart the iteration; either we're on the wrong list or 6552 * destroyed its integrity by doing a deletion. 6553 */ 6554 goto again; 6555 } 6556 rcu_read_unlock(); 6557 6558 /* 6559 * It could be there's still a few 0-ref events on the list; they'll 6560 * get cleaned up by free_event() -- they'll also still have their 6561 * ref on the rb and will free it whenever they are done with it. 6562 * 6563 * Aside from that, this buffer is 'fully' detached and unmapped, 6564 * undo the VM accounting. 6565 */ 6566 6567 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6568 &mmap_user->locked_vm); 6569 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6570 free_uid(mmap_user); 6571 6572 out_put: 6573 ring_buffer_put(rb); /* could be last */ 6574 } 6575 6576 static const struct vm_operations_struct perf_mmap_vmops = { 6577 .open = perf_mmap_open, 6578 .close = perf_mmap_close, /* non mergeable */ 6579 .fault = perf_mmap_fault, 6580 .page_mkwrite = perf_mmap_fault, 6581 }; 6582 6583 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6584 { 6585 struct perf_event *event = file->private_data; 6586 unsigned long user_locked, user_lock_limit; 6587 struct user_struct *user = current_user(); 6588 struct mutex *aux_mutex = NULL; 6589 struct perf_buffer *rb = NULL; 6590 unsigned long locked, lock_limit; 6591 unsigned long vma_size; 6592 unsigned long nr_pages; 6593 long user_extra = 0, extra = 0; 6594 int ret = 0, flags = 0; 6595 6596 /* 6597 * Don't allow mmap() of inherited per-task counters. This would 6598 * create a performance issue due to all children writing to the 6599 * same rb. 6600 */ 6601 if (event->cpu == -1 && event->attr.inherit) 6602 return -EINVAL; 6603 6604 if (!(vma->vm_flags & VM_SHARED)) 6605 return -EINVAL; 6606 6607 ret = security_perf_event_read(event); 6608 if (ret) 6609 return ret; 6610 6611 vma_size = vma->vm_end - vma->vm_start; 6612 6613 if (vma->vm_pgoff == 0) { 6614 nr_pages = (vma_size / PAGE_SIZE) - 1; 6615 } else { 6616 /* 6617 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6618 * mapped, all subsequent mappings should have the same size 6619 * and offset. Must be above the normal perf buffer. 6620 */ 6621 u64 aux_offset, aux_size; 6622 6623 if (!event->rb) 6624 return -EINVAL; 6625 6626 nr_pages = vma_size / PAGE_SIZE; 6627 if (nr_pages > INT_MAX) 6628 return -ENOMEM; 6629 6630 mutex_lock(&event->mmap_mutex); 6631 ret = -EINVAL; 6632 6633 rb = event->rb; 6634 if (!rb) 6635 goto aux_unlock; 6636 6637 aux_mutex = &rb->aux_mutex; 6638 mutex_lock(aux_mutex); 6639 6640 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6641 aux_size = READ_ONCE(rb->user_page->aux_size); 6642 6643 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6644 goto aux_unlock; 6645 6646 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6647 goto aux_unlock; 6648 6649 /* already mapped with a different offset */ 6650 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6651 goto aux_unlock; 6652 6653 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6654 goto aux_unlock; 6655 6656 /* already mapped with a different size */ 6657 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6658 goto aux_unlock; 6659 6660 if (!is_power_of_2(nr_pages)) 6661 goto aux_unlock; 6662 6663 if (!atomic_inc_not_zero(&rb->mmap_count)) 6664 goto aux_unlock; 6665 6666 if (rb_has_aux(rb)) { 6667 atomic_inc(&rb->aux_mmap_count); 6668 ret = 0; 6669 goto unlock; 6670 } 6671 6672 atomic_set(&rb->aux_mmap_count, 1); 6673 user_extra = nr_pages; 6674 6675 goto accounting; 6676 } 6677 6678 /* 6679 * If we have rb pages ensure they're a power-of-two number, so we 6680 * can do bitmasks instead of modulo. 6681 */ 6682 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6683 return -EINVAL; 6684 6685 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6686 return -EINVAL; 6687 6688 WARN_ON_ONCE(event->ctx->parent_ctx); 6689 again: 6690 mutex_lock(&event->mmap_mutex); 6691 if (event->rb) { 6692 if (data_page_nr(event->rb) != nr_pages) { 6693 ret = -EINVAL; 6694 goto unlock; 6695 } 6696 6697 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6698 /* 6699 * Raced against perf_mmap_close(); remove the 6700 * event and try again. 6701 */ 6702 ring_buffer_attach(event, NULL); 6703 mutex_unlock(&event->mmap_mutex); 6704 goto again; 6705 } 6706 6707 goto unlock; 6708 } 6709 6710 user_extra = nr_pages + 1; 6711 6712 accounting: 6713 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6714 6715 /* 6716 * Increase the limit linearly with more CPUs: 6717 */ 6718 user_lock_limit *= num_online_cpus(); 6719 6720 user_locked = atomic_long_read(&user->locked_vm); 6721 6722 /* 6723 * sysctl_perf_event_mlock may have changed, so that 6724 * user->locked_vm > user_lock_limit 6725 */ 6726 if (user_locked > user_lock_limit) 6727 user_locked = user_lock_limit; 6728 user_locked += user_extra; 6729 6730 if (user_locked > user_lock_limit) { 6731 /* 6732 * charge locked_vm until it hits user_lock_limit; 6733 * charge the rest from pinned_vm 6734 */ 6735 extra = user_locked - user_lock_limit; 6736 user_extra -= extra; 6737 } 6738 6739 lock_limit = rlimit(RLIMIT_MEMLOCK); 6740 lock_limit >>= PAGE_SHIFT; 6741 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6742 6743 if ((locked > lock_limit) && perf_is_paranoid() && 6744 !capable(CAP_IPC_LOCK)) { 6745 ret = -EPERM; 6746 goto unlock; 6747 } 6748 6749 WARN_ON(!rb && event->rb); 6750 6751 if (vma->vm_flags & VM_WRITE) 6752 flags |= RING_BUFFER_WRITABLE; 6753 6754 if (!rb) { 6755 rb = rb_alloc(nr_pages, 6756 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6757 event->cpu, flags); 6758 6759 if (!rb) { 6760 ret = -ENOMEM; 6761 goto unlock; 6762 } 6763 6764 atomic_set(&rb->mmap_count, 1); 6765 rb->mmap_user = get_current_user(); 6766 rb->mmap_locked = extra; 6767 6768 ring_buffer_attach(event, rb); 6769 6770 perf_event_update_time(event); 6771 perf_event_init_userpage(event); 6772 perf_event_update_userpage(event); 6773 } else { 6774 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6775 event->attr.aux_watermark, flags); 6776 if (!ret) 6777 rb->aux_mmap_locked = extra; 6778 } 6779 6780 unlock: 6781 if (!ret) { 6782 atomic_long_add(user_extra, &user->locked_vm); 6783 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6784 6785 atomic_inc(&event->mmap_count); 6786 } else if (rb) { 6787 atomic_dec(&rb->mmap_count); 6788 } 6789 aux_unlock: 6790 if (aux_mutex) 6791 mutex_unlock(aux_mutex); 6792 mutex_unlock(&event->mmap_mutex); 6793 6794 /* 6795 * Since pinned accounting is per vm we cannot allow fork() to copy our 6796 * vma. 6797 */ 6798 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6799 vma->vm_ops = &perf_mmap_vmops; 6800 6801 if (event->pmu->event_mapped) 6802 event->pmu->event_mapped(event, vma->vm_mm); 6803 6804 return ret; 6805 } 6806 6807 static int perf_fasync(int fd, struct file *filp, int on) 6808 { 6809 struct inode *inode = file_inode(filp); 6810 struct perf_event *event = filp->private_data; 6811 int retval; 6812 6813 inode_lock(inode); 6814 retval = fasync_helper(fd, filp, on, &event->fasync); 6815 inode_unlock(inode); 6816 6817 if (retval < 0) 6818 return retval; 6819 6820 return 0; 6821 } 6822 6823 static const struct file_operations perf_fops = { 6824 .release = perf_release, 6825 .read = perf_read, 6826 .poll = perf_poll, 6827 .unlocked_ioctl = perf_ioctl, 6828 .compat_ioctl = perf_compat_ioctl, 6829 .mmap = perf_mmap, 6830 .fasync = perf_fasync, 6831 }; 6832 6833 /* 6834 * Perf event wakeup 6835 * 6836 * If there's data, ensure we set the poll() state and publish everything 6837 * to user-space before waking everybody up. 6838 */ 6839 6840 void perf_event_wakeup(struct perf_event *event) 6841 { 6842 ring_buffer_wakeup(event); 6843 6844 if (event->pending_kill) { 6845 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6846 event->pending_kill = 0; 6847 } 6848 } 6849 6850 static void perf_sigtrap(struct perf_event *event) 6851 { 6852 /* 6853 * We'd expect this to only occur if the irq_work is delayed and either 6854 * ctx->task or current has changed in the meantime. This can be the 6855 * case on architectures that do not implement arch_irq_work_raise(). 6856 */ 6857 if (WARN_ON_ONCE(event->ctx->task != current)) 6858 return; 6859 6860 /* 6861 * Both perf_pending_task() and perf_pending_irq() can race with the 6862 * task exiting. 6863 */ 6864 if (current->flags & PF_EXITING) 6865 return; 6866 6867 send_sig_perf((void __user *)event->pending_addr, 6868 event->orig_type, event->attr.sig_data); 6869 } 6870 6871 /* 6872 * Deliver the pending work in-event-context or follow the context. 6873 */ 6874 static void __perf_pending_disable(struct perf_event *event) 6875 { 6876 int cpu = READ_ONCE(event->oncpu); 6877 6878 /* 6879 * If the event isn't running; we done. event_sched_out() will have 6880 * taken care of things. 6881 */ 6882 if (cpu < 0) 6883 return; 6884 6885 /* 6886 * Yay, we hit home and are in the context of the event. 6887 */ 6888 if (cpu == smp_processor_id()) { 6889 if (event->pending_disable) { 6890 event->pending_disable = 0; 6891 perf_event_disable_local(event); 6892 } 6893 return; 6894 } 6895 6896 /* 6897 * CPU-A CPU-B 6898 * 6899 * perf_event_disable_inatomic() 6900 * @pending_disable = CPU-A; 6901 * irq_work_queue(); 6902 * 6903 * sched-out 6904 * @pending_disable = -1; 6905 * 6906 * sched-in 6907 * perf_event_disable_inatomic() 6908 * @pending_disable = CPU-B; 6909 * irq_work_queue(); // FAILS 6910 * 6911 * irq_work_run() 6912 * perf_pending_disable() 6913 * 6914 * But the event runs on CPU-B and wants disabling there. 6915 */ 6916 irq_work_queue_on(&event->pending_disable_irq, cpu); 6917 } 6918 6919 static void perf_pending_disable(struct irq_work *entry) 6920 { 6921 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6922 int rctx; 6923 6924 /* 6925 * If we 'fail' here, that's OK, it means recursion is already disabled 6926 * and we won't recurse 'further'. 6927 */ 6928 rctx = perf_swevent_get_recursion_context(); 6929 __perf_pending_disable(event); 6930 if (rctx >= 0) 6931 perf_swevent_put_recursion_context(rctx); 6932 } 6933 6934 static void perf_pending_irq(struct irq_work *entry) 6935 { 6936 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6937 int rctx; 6938 6939 /* 6940 * If we 'fail' here, that's OK, it means recursion is already disabled 6941 * and we won't recurse 'further'. 6942 */ 6943 rctx = perf_swevent_get_recursion_context(); 6944 6945 /* 6946 * The wakeup isn't bound to the context of the event -- it can happen 6947 * irrespective of where the event is. 6948 */ 6949 if (event->pending_wakeup) { 6950 event->pending_wakeup = 0; 6951 perf_event_wakeup(event); 6952 } 6953 6954 if (rctx >= 0) 6955 perf_swevent_put_recursion_context(rctx); 6956 } 6957 6958 static void perf_pending_task(struct callback_head *head) 6959 { 6960 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6961 int rctx; 6962 6963 /* 6964 * All accesses to the event must belong to the same implicit RCU read-side 6965 * critical section as the ->pending_work reset. See comment in 6966 * perf_pending_task_sync(). 6967 */ 6968 rcu_read_lock(); 6969 /* 6970 * If we 'fail' here, that's OK, it means recursion is already disabled 6971 * and we won't recurse 'further'. 6972 */ 6973 rctx = perf_swevent_get_recursion_context(); 6974 6975 if (event->pending_work) { 6976 event->pending_work = 0; 6977 perf_sigtrap(event); 6978 local_dec(&event->ctx->nr_no_switch_fast); 6979 rcuwait_wake_up(&event->pending_work_wait); 6980 } 6981 rcu_read_unlock(); 6982 6983 if (rctx >= 0) 6984 perf_swevent_put_recursion_context(rctx); 6985 } 6986 6987 #ifdef CONFIG_GUEST_PERF_EVENTS 6988 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6989 6990 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6991 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6992 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6993 6994 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6995 { 6996 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6997 return; 6998 6999 rcu_assign_pointer(perf_guest_cbs, cbs); 7000 static_call_update(__perf_guest_state, cbs->state); 7001 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7002 7003 /* Implementing ->handle_intel_pt_intr is optional. */ 7004 if (cbs->handle_intel_pt_intr) 7005 static_call_update(__perf_guest_handle_intel_pt_intr, 7006 cbs->handle_intel_pt_intr); 7007 } 7008 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7009 7010 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7011 { 7012 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7013 return; 7014 7015 rcu_assign_pointer(perf_guest_cbs, NULL); 7016 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7017 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7018 static_call_update(__perf_guest_handle_intel_pt_intr, 7019 (void *)&__static_call_return0); 7020 synchronize_rcu(); 7021 } 7022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7023 #endif 7024 7025 static void 7026 perf_output_sample_regs(struct perf_output_handle *handle, 7027 struct pt_regs *regs, u64 mask) 7028 { 7029 int bit; 7030 DECLARE_BITMAP(_mask, 64); 7031 7032 bitmap_from_u64(_mask, mask); 7033 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7034 u64 val; 7035 7036 val = perf_reg_value(regs, bit); 7037 perf_output_put(handle, val); 7038 } 7039 } 7040 7041 static void perf_sample_regs_user(struct perf_regs *regs_user, 7042 struct pt_regs *regs) 7043 { 7044 if (user_mode(regs)) { 7045 regs_user->abi = perf_reg_abi(current); 7046 regs_user->regs = regs; 7047 } else if (!(current->flags & PF_KTHREAD)) { 7048 perf_get_regs_user(regs_user, regs); 7049 } else { 7050 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7051 regs_user->regs = NULL; 7052 } 7053 } 7054 7055 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7056 struct pt_regs *regs) 7057 { 7058 regs_intr->regs = regs; 7059 regs_intr->abi = perf_reg_abi(current); 7060 } 7061 7062 7063 /* 7064 * Get remaining task size from user stack pointer. 7065 * 7066 * It'd be better to take stack vma map and limit this more 7067 * precisely, but there's no way to get it safely under interrupt, 7068 * so using TASK_SIZE as limit. 7069 */ 7070 static u64 perf_ustack_task_size(struct pt_regs *regs) 7071 { 7072 unsigned long addr = perf_user_stack_pointer(regs); 7073 7074 if (!addr || addr >= TASK_SIZE) 7075 return 0; 7076 7077 return TASK_SIZE - addr; 7078 } 7079 7080 static u16 7081 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7082 struct pt_regs *regs) 7083 { 7084 u64 task_size; 7085 7086 /* No regs, no stack pointer, no dump. */ 7087 if (!regs) 7088 return 0; 7089 7090 /* 7091 * Check if we fit in with the requested stack size into the: 7092 * - TASK_SIZE 7093 * If we don't, we limit the size to the TASK_SIZE. 7094 * 7095 * - remaining sample size 7096 * If we don't, we customize the stack size to 7097 * fit in to the remaining sample size. 7098 */ 7099 7100 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7101 stack_size = min(stack_size, (u16) task_size); 7102 7103 /* Current header size plus static size and dynamic size. */ 7104 header_size += 2 * sizeof(u64); 7105 7106 /* Do we fit in with the current stack dump size? */ 7107 if ((u16) (header_size + stack_size) < header_size) { 7108 /* 7109 * If we overflow the maximum size for the sample, 7110 * we customize the stack dump size to fit in. 7111 */ 7112 stack_size = USHRT_MAX - header_size - sizeof(u64); 7113 stack_size = round_up(stack_size, sizeof(u64)); 7114 } 7115 7116 return stack_size; 7117 } 7118 7119 static void 7120 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7121 struct pt_regs *regs) 7122 { 7123 /* Case of a kernel thread, nothing to dump */ 7124 if (!regs) { 7125 u64 size = 0; 7126 perf_output_put(handle, size); 7127 } else { 7128 unsigned long sp; 7129 unsigned int rem; 7130 u64 dyn_size; 7131 7132 /* 7133 * We dump: 7134 * static size 7135 * - the size requested by user or the best one we can fit 7136 * in to the sample max size 7137 * data 7138 * - user stack dump data 7139 * dynamic size 7140 * - the actual dumped size 7141 */ 7142 7143 /* Static size. */ 7144 perf_output_put(handle, dump_size); 7145 7146 /* Data. */ 7147 sp = perf_user_stack_pointer(regs); 7148 rem = __output_copy_user(handle, (void *) sp, dump_size); 7149 dyn_size = dump_size - rem; 7150 7151 perf_output_skip(handle, rem); 7152 7153 /* Dynamic size. */ 7154 perf_output_put(handle, dyn_size); 7155 } 7156 } 7157 7158 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7159 struct perf_sample_data *data, 7160 size_t size) 7161 { 7162 struct perf_event *sampler = event->aux_event; 7163 struct perf_buffer *rb; 7164 7165 data->aux_size = 0; 7166 7167 if (!sampler) 7168 goto out; 7169 7170 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7171 goto out; 7172 7173 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7174 goto out; 7175 7176 rb = ring_buffer_get(sampler); 7177 if (!rb) 7178 goto out; 7179 7180 /* 7181 * If this is an NMI hit inside sampling code, don't take 7182 * the sample. See also perf_aux_sample_output(). 7183 */ 7184 if (READ_ONCE(rb->aux_in_sampling)) { 7185 data->aux_size = 0; 7186 } else { 7187 size = min_t(size_t, size, perf_aux_size(rb)); 7188 data->aux_size = ALIGN(size, sizeof(u64)); 7189 } 7190 ring_buffer_put(rb); 7191 7192 out: 7193 return data->aux_size; 7194 } 7195 7196 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7197 struct perf_event *event, 7198 struct perf_output_handle *handle, 7199 unsigned long size) 7200 { 7201 unsigned long flags; 7202 long ret; 7203 7204 /* 7205 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7206 * paths. If we start calling them in NMI context, they may race with 7207 * the IRQ ones, that is, for example, re-starting an event that's just 7208 * been stopped, which is why we're using a separate callback that 7209 * doesn't change the event state. 7210 * 7211 * IRQs need to be disabled to prevent IPIs from racing with us. 7212 */ 7213 local_irq_save(flags); 7214 /* 7215 * Guard against NMI hits inside the critical section; 7216 * see also perf_prepare_sample_aux(). 7217 */ 7218 WRITE_ONCE(rb->aux_in_sampling, 1); 7219 barrier(); 7220 7221 ret = event->pmu->snapshot_aux(event, handle, size); 7222 7223 barrier(); 7224 WRITE_ONCE(rb->aux_in_sampling, 0); 7225 local_irq_restore(flags); 7226 7227 return ret; 7228 } 7229 7230 static void perf_aux_sample_output(struct perf_event *event, 7231 struct perf_output_handle *handle, 7232 struct perf_sample_data *data) 7233 { 7234 struct perf_event *sampler = event->aux_event; 7235 struct perf_buffer *rb; 7236 unsigned long pad; 7237 long size; 7238 7239 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7240 return; 7241 7242 rb = ring_buffer_get(sampler); 7243 if (!rb) 7244 return; 7245 7246 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7247 7248 /* 7249 * An error here means that perf_output_copy() failed (returned a 7250 * non-zero surplus that it didn't copy), which in its current 7251 * enlightened implementation is not possible. If that changes, we'd 7252 * like to know. 7253 */ 7254 if (WARN_ON_ONCE(size < 0)) 7255 goto out_put; 7256 7257 /* 7258 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7259 * perf_prepare_sample_aux(), so should not be more than that. 7260 */ 7261 pad = data->aux_size - size; 7262 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7263 pad = 8; 7264 7265 if (pad) { 7266 u64 zero = 0; 7267 perf_output_copy(handle, &zero, pad); 7268 } 7269 7270 out_put: 7271 ring_buffer_put(rb); 7272 } 7273 7274 /* 7275 * A set of common sample data types saved even for non-sample records 7276 * when event->attr.sample_id_all is set. 7277 */ 7278 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7279 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7280 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7281 7282 static void __perf_event_header__init_id(struct perf_sample_data *data, 7283 struct perf_event *event, 7284 u64 sample_type) 7285 { 7286 data->type = event->attr.sample_type; 7287 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7288 7289 if (sample_type & PERF_SAMPLE_TID) { 7290 /* namespace issues */ 7291 data->tid_entry.pid = perf_event_pid(event, current); 7292 data->tid_entry.tid = perf_event_tid(event, current); 7293 } 7294 7295 if (sample_type & PERF_SAMPLE_TIME) 7296 data->time = perf_event_clock(event); 7297 7298 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7299 data->id = primary_event_id(event); 7300 7301 if (sample_type & PERF_SAMPLE_STREAM_ID) 7302 data->stream_id = event->id; 7303 7304 if (sample_type & PERF_SAMPLE_CPU) { 7305 data->cpu_entry.cpu = raw_smp_processor_id(); 7306 data->cpu_entry.reserved = 0; 7307 } 7308 } 7309 7310 void perf_event_header__init_id(struct perf_event_header *header, 7311 struct perf_sample_data *data, 7312 struct perf_event *event) 7313 { 7314 if (event->attr.sample_id_all) { 7315 header->size += event->id_header_size; 7316 __perf_event_header__init_id(data, event, event->attr.sample_type); 7317 } 7318 } 7319 7320 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7321 struct perf_sample_data *data) 7322 { 7323 u64 sample_type = data->type; 7324 7325 if (sample_type & PERF_SAMPLE_TID) 7326 perf_output_put(handle, data->tid_entry); 7327 7328 if (sample_type & PERF_SAMPLE_TIME) 7329 perf_output_put(handle, data->time); 7330 7331 if (sample_type & PERF_SAMPLE_ID) 7332 perf_output_put(handle, data->id); 7333 7334 if (sample_type & PERF_SAMPLE_STREAM_ID) 7335 perf_output_put(handle, data->stream_id); 7336 7337 if (sample_type & PERF_SAMPLE_CPU) 7338 perf_output_put(handle, data->cpu_entry); 7339 7340 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7341 perf_output_put(handle, data->id); 7342 } 7343 7344 void perf_event__output_id_sample(struct perf_event *event, 7345 struct perf_output_handle *handle, 7346 struct perf_sample_data *sample) 7347 { 7348 if (event->attr.sample_id_all) 7349 __perf_event__output_id_sample(handle, sample); 7350 } 7351 7352 static void perf_output_read_one(struct perf_output_handle *handle, 7353 struct perf_event *event, 7354 u64 enabled, u64 running) 7355 { 7356 u64 read_format = event->attr.read_format; 7357 u64 values[5]; 7358 int n = 0; 7359 7360 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7361 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7362 values[n++] = enabled + 7363 atomic64_read(&event->child_total_time_enabled); 7364 } 7365 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7366 values[n++] = running + 7367 atomic64_read(&event->child_total_time_running); 7368 } 7369 if (read_format & PERF_FORMAT_ID) 7370 values[n++] = primary_event_id(event); 7371 if (read_format & PERF_FORMAT_LOST) 7372 values[n++] = atomic64_read(&event->lost_samples); 7373 7374 __output_copy(handle, values, n * sizeof(u64)); 7375 } 7376 7377 static void perf_output_read_group(struct perf_output_handle *handle, 7378 struct perf_event *event, 7379 u64 enabled, u64 running) 7380 { 7381 struct perf_event *leader = event->group_leader, *sub; 7382 u64 read_format = event->attr.read_format; 7383 unsigned long flags; 7384 u64 values[6]; 7385 int n = 0; 7386 bool self = has_inherit_and_sample_read(&event->attr); 7387 7388 /* 7389 * Disabling interrupts avoids all counter scheduling 7390 * (context switches, timer based rotation and IPIs). 7391 */ 7392 local_irq_save(flags); 7393 7394 values[n++] = 1 + leader->nr_siblings; 7395 7396 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7397 values[n++] = enabled; 7398 7399 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7400 values[n++] = running; 7401 7402 if ((leader != event) && 7403 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7404 leader->pmu->read(leader); 7405 7406 values[n++] = perf_event_count(leader, self); 7407 if (read_format & PERF_FORMAT_ID) 7408 values[n++] = primary_event_id(leader); 7409 if (read_format & PERF_FORMAT_LOST) 7410 values[n++] = atomic64_read(&leader->lost_samples); 7411 7412 __output_copy(handle, values, n * sizeof(u64)); 7413 7414 for_each_sibling_event(sub, leader) { 7415 n = 0; 7416 7417 if ((sub != event) && 7418 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7419 sub->pmu->read(sub); 7420 7421 values[n++] = perf_event_count(sub, self); 7422 if (read_format & PERF_FORMAT_ID) 7423 values[n++] = primary_event_id(sub); 7424 if (read_format & PERF_FORMAT_LOST) 7425 values[n++] = atomic64_read(&sub->lost_samples); 7426 7427 __output_copy(handle, values, n * sizeof(u64)); 7428 } 7429 7430 local_irq_restore(flags); 7431 } 7432 7433 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7434 PERF_FORMAT_TOTAL_TIME_RUNNING) 7435 7436 /* 7437 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7438 * 7439 * The problem is that its both hard and excessively expensive to iterate the 7440 * child list, not to mention that its impossible to IPI the children running 7441 * on another CPU, from interrupt/NMI context. 7442 * 7443 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7444 * counts rather than attempting to accumulate some value across all children on 7445 * all cores. 7446 */ 7447 static void perf_output_read(struct perf_output_handle *handle, 7448 struct perf_event *event) 7449 { 7450 u64 enabled = 0, running = 0, now; 7451 u64 read_format = event->attr.read_format; 7452 7453 /* 7454 * compute total_time_enabled, total_time_running 7455 * based on snapshot values taken when the event 7456 * was last scheduled in. 7457 * 7458 * we cannot simply called update_context_time() 7459 * because of locking issue as we are called in 7460 * NMI context 7461 */ 7462 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7463 calc_timer_values(event, &now, &enabled, &running); 7464 7465 if (event->attr.read_format & PERF_FORMAT_GROUP) 7466 perf_output_read_group(handle, event, enabled, running); 7467 else 7468 perf_output_read_one(handle, event, enabled, running); 7469 } 7470 7471 void perf_output_sample(struct perf_output_handle *handle, 7472 struct perf_event_header *header, 7473 struct perf_sample_data *data, 7474 struct perf_event *event) 7475 { 7476 u64 sample_type = data->type; 7477 7478 perf_output_put(handle, *header); 7479 7480 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7481 perf_output_put(handle, data->id); 7482 7483 if (sample_type & PERF_SAMPLE_IP) 7484 perf_output_put(handle, data->ip); 7485 7486 if (sample_type & PERF_SAMPLE_TID) 7487 perf_output_put(handle, data->tid_entry); 7488 7489 if (sample_type & PERF_SAMPLE_TIME) 7490 perf_output_put(handle, data->time); 7491 7492 if (sample_type & PERF_SAMPLE_ADDR) 7493 perf_output_put(handle, data->addr); 7494 7495 if (sample_type & PERF_SAMPLE_ID) 7496 perf_output_put(handle, data->id); 7497 7498 if (sample_type & PERF_SAMPLE_STREAM_ID) 7499 perf_output_put(handle, data->stream_id); 7500 7501 if (sample_type & PERF_SAMPLE_CPU) 7502 perf_output_put(handle, data->cpu_entry); 7503 7504 if (sample_type & PERF_SAMPLE_PERIOD) 7505 perf_output_put(handle, data->period); 7506 7507 if (sample_type & PERF_SAMPLE_READ) 7508 perf_output_read(handle, event); 7509 7510 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7511 int size = 1; 7512 7513 size += data->callchain->nr; 7514 size *= sizeof(u64); 7515 __output_copy(handle, data->callchain, size); 7516 } 7517 7518 if (sample_type & PERF_SAMPLE_RAW) { 7519 struct perf_raw_record *raw = data->raw; 7520 7521 if (raw) { 7522 struct perf_raw_frag *frag = &raw->frag; 7523 7524 perf_output_put(handle, raw->size); 7525 do { 7526 if (frag->copy) { 7527 __output_custom(handle, frag->copy, 7528 frag->data, frag->size); 7529 } else { 7530 __output_copy(handle, frag->data, 7531 frag->size); 7532 } 7533 if (perf_raw_frag_last(frag)) 7534 break; 7535 frag = frag->next; 7536 } while (1); 7537 if (frag->pad) 7538 __output_skip(handle, NULL, frag->pad); 7539 } else { 7540 struct { 7541 u32 size; 7542 u32 data; 7543 } raw = { 7544 .size = sizeof(u32), 7545 .data = 0, 7546 }; 7547 perf_output_put(handle, raw); 7548 } 7549 } 7550 7551 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7552 if (data->br_stack) { 7553 size_t size; 7554 7555 size = data->br_stack->nr 7556 * sizeof(struct perf_branch_entry); 7557 7558 perf_output_put(handle, data->br_stack->nr); 7559 if (branch_sample_hw_index(event)) 7560 perf_output_put(handle, data->br_stack->hw_idx); 7561 perf_output_copy(handle, data->br_stack->entries, size); 7562 /* 7563 * Add the extension space which is appended 7564 * right after the struct perf_branch_stack. 7565 */ 7566 if (data->br_stack_cntr) { 7567 size = data->br_stack->nr * sizeof(u64); 7568 perf_output_copy(handle, data->br_stack_cntr, size); 7569 } 7570 } else { 7571 /* 7572 * we always store at least the value of nr 7573 */ 7574 u64 nr = 0; 7575 perf_output_put(handle, nr); 7576 } 7577 } 7578 7579 if (sample_type & PERF_SAMPLE_REGS_USER) { 7580 u64 abi = data->regs_user.abi; 7581 7582 /* 7583 * If there are no regs to dump, notice it through 7584 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7585 */ 7586 perf_output_put(handle, abi); 7587 7588 if (abi) { 7589 u64 mask = event->attr.sample_regs_user; 7590 perf_output_sample_regs(handle, 7591 data->regs_user.regs, 7592 mask); 7593 } 7594 } 7595 7596 if (sample_type & PERF_SAMPLE_STACK_USER) { 7597 perf_output_sample_ustack(handle, 7598 data->stack_user_size, 7599 data->regs_user.regs); 7600 } 7601 7602 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7603 perf_output_put(handle, data->weight.full); 7604 7605 if (sample_type & PERF_SAMPLE_DATA_SRC) 7606 perf_output_put(handle, data->data_src.val); 7607 7608 if (sample_type & PERF_SAMPLE_TRANSACTION) 7609 perf_output_put(handle, data->txn); 7610 7611 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7612 u64 abi = data->regs_intr.abi; 7613 /* 7614 * If there are no regs to dump, notice it through 7615 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7616 */ 7617 perf_output_put(handle, abi); 7618 7619 if (abi) { 7620 u64 mask = event->attr.sample_regs_intr; 7621 7622 perf_output_sample_regs(handle, 7623 data->regs_intr.regs, 7624 mask); 7625 } 7626 } 7627 7628 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7629 perf_output_put(handle, data->phys_addr); 7630 7631 if (sample_type & PERF_SAMPLE_CGROUP) 7632 perf_output_put(handle, data->cgroup); 7633 7634 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7635 perf_output_put(handle, data->data_page_size); 7636 7637 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7638 perf_output_put(handle, data->code_page_size); 7639 7640 if (sample_type & PERF_SAMPLE_AUX) { 7641 perf_output_put(handle, data->aux_size); 7642 7643 if (data->aux_size) 7644 perf_aux_sample_output(event, handle, data); 7645 } 7646 7647 if (!event->attr.watermark) { 7648 int wakeup_events = event->attr.wakeup_events; 7649 7650 if (wakeup_events) { 7651 struct perf_buffer *rb = handle->rb; 7652 int events = local_inc_return(&rb->events); 7653 7654 if (events >= wakeup_events) { 7655 local_sub(wakeup_events, &rb->events); 7656 local_inc(&rb->wakeup); 7657 } 7658 } 7659 } 7660 } 7661 7662 static u64 perf_virt_to_phys(u64 virt) 7663 { 7664 u64 phys_addr = 0; 7665 7666 if (!virt) 7667 return 0; 7668 7669 if (virt >= TASK_SIZE) { 7670 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7671 if (virt_addr_valid((void *)(uintptr_t)virt) && 7672 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7673 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7674 } else { 7675 /* 7676 * Walking the pages tables for user address. 7677 * Interrupts are disabled, so it prevents any tear down 7678 * of the page tables. 7679 * Try IRQ-safe get_user_page_fast_only first. 7680 * If failed, leave phys_addr as 0. 7681 */ 7682 if (current->mm != NULL) { 7683 struct page *p; 7684 7685 pagefault_disable(); 7686 if (get_user_page_fast_only(virt, 0, &p)) { 7687 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7688 put_page(p); 7689 } 7690 pagefault_enable(); 7691 } 7692 } 7693 7694 return phys_addr; 7695 } 7696 7697 /* 7698 * Return the pagetable size of a given virtual address. 7699 */ 7700 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7701 { 7702 u64 size = 0; 7703 7704 #ifdef CONFIG_HAVE_GUP_FAST 7705 pgd_t *pgdp, pgd; 7706 p4d_t *p4dp, p4d; 7707 pud_t *pudp, pud; 7708 pmd_t *pmdp, pmd; 7709 pte_t *ptep, pte; 7710 7711 pgdp = pgd_offset(mm, addr); 7712 pgd = READ_ONCE(*pgdp); 7713 if (pgd_none(pgd)) 7714 return 0; 7715 7716 if (pgd_leaf(pgd)) 7717 return pgd_leaf_size(pgd); 7718 7719 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7720 p4d = READ_ONCE(*p4dp); 7721 if (!p4d_present(p4d)) 7722 return 0; 7723 7724 if (p4d_leaf(p4d)) 7725 return p4d_leaf_size(p4d); 7726 7727 pudp = pud_offset_lockless(p4dp, p4d, addr); 7728 pud = READ_ONCE(*pudp); 7729 if (!pud_present(pud)) 7730 return 0; 7731 7732 if (pud_leaf(pud)) 7733 return pud_leaf_size(pud); 7734 7735 pmdp = pmd_offset_lockless(pudp, pud, addr); 7736 again: 7737 pmd = pmdp_get_lockless(pmdp); 7738 if (!pmd_present(pmd)) 7739 return 0; 7740 7741 if (pmd_leaf(pmd)) 7742 return pmd_leaf_size(pmd); 7743 7744 ptep = pte_offset_map(&pmd, addr); 7745 if (!ptep) 7746 goto again; 7747 7748 pte = ptep_get_lockless(ptep); 7749 if (pte_present(pte)) 7750 size = __pte_leaf_size(pmd, pte); 7751 pte_unmap(ptep); 7752 #endif /* CONFIG_HAVE_GUP_FAST */ 7753 7754 return size; 7755 } 7756 7757 static u64 perf_get_page_size(unsigned long addr) 7758 { 7759 struct mm_struct *mm; 7760 unsigned long flags; 7761 u64 size; 7762 7763 if (!addr) 7764 return 0; 7765 7766 /* 7767 * Software page-table walkers must disable IRQs, 7768 * which prevents any tear down of the page tables. 7769 */ 7770 local_irq_save(flags); 7771 7772 mm = current->mm; 7773 if (!mm) { 7774 /* 7775 * For kernel threads and the like, use init_mm so that 7776 * we can find kernel memory. 7777 */ 7778 mm = &init_mm; 7779 } 7780 7781 size = perf_get_pgtable_size(mm, addr); 7782 7783 local_irq_restore(flags); 7784 7785 return size; 7786 } 7787 7788 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7789 7790 struct perf_callchain_entry * 7791 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7792 { 7793 bool kernel = !event->attr.exclude_callchain_kernel; 7794 bool user = !event->attr.exclude_callchain_user; 7795 /* Disallow cross-task user callchains. */ 7796 bool crosstask = event->ctx->task && event->ctx->task != current; 7797 const u32 max_stack = event->attr.sample_max_stack; 7798 struct perf_callchain_entry *callchain; 7799 7800 if (!kernel && !user) 7801 return &__empty_callchain; 7802 7803 callchain = get_perf_callchain(regs, 0, kernel, user, 7804 max_stack, crosstask, true); 7805 return callchain ?: &__empty_callchain; 7806 } 7807 7808 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7809 { 7810 return d * !!(flags & s); 7811 } 7812 7813 void perf_prepare_sample(struct perf_sample_data *data, 7814 struct perf_event *event, 7815 struct pt_regs *regs) 7816 { 7817 u64 sample_type = event->attr.sample_type; 7818 u64 filtered_sample_type; 7819 7820 /* 7821 * Add the sample flags that are dependent to others. And clear the 7822 * sample flags that have already been done by the PMU driver. 7823 */ 7824 filtered_sample_type = sample_type; 7825 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7826 PERF_SAMPLE_IP); 7827 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7828 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7829 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7830 PERF_SAMPLE_REGS_USER); 7831 filtered_sample_type &= ~data->sample_flags; 7832 7833 if (filtered_sample_type == 0) { 7834 /* Make sure it has the correct data->type for output */ 7835 data->type = event->attr.sample_type; 7836 return; 7837 } 7838 7839 __perf_event_header__init_id(data, event, filtered_sample_type); 7840 7841 if (filtered_sample_type & PERF_SAMPLE_IP) { 7842 data->ip = perf_instruction_pointer(regs); 7843 data->sample_flags |= PERF_SAMPLE_IP; 7844 } 7845 7846 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7847 perf_sample_save_callchain(data, event, regs); 7848 7849 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7850 data->raw = NULL; 7851 data->dyn_size += sizeof(u64); 7852 data->sample_flags |= PERF_SAMPLE_RAW; 7853 } 7854 7855 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7856 data->br_stack = NULL; 7857 data->dyn_size += sizeof(u64); 7858 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7859 } 7860 7861 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7862 perf_sample_regs_user(&data->regs_user, regs); 7863 7864 /* 7865 * It cannot use the filtered_sample_type here as REGS_USER can be set 7866 * by STACK_USER (using __cond_set() above) and we don't want to update 7867 * the dyn_size if it's not requested by users. 7868 */ 7869 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7870 /* regs dump ABI info */ 7871 int size = sizeof(u64); 7872 7873 if (data->regs_user.regs) { 7874 u64 mask = event->attr.sample_regs_user; 7875 size += hweight64(mask) * sizeof(u64); 7876 } 7877 7878 data->dyn_size += size; 7879 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7880 } 7881 7882 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7883 /* 7884 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7885 * processed as the last one or have additional check added 7886 * in case new sample type is added, because we could eat 7887 * up the rest of the sample size. 7888 */ 7889 u16 stack_size = event->attr.sample_stack_user; 7890 u16 header_size = perf_sample_data_size(data, event); 7891 u16 size = sizeof(u64); 7892 7893 stack_size = perf_sample_ustack_size(stack_size, header_size, 7894 data->regs_user.regs); 7895 7896 /* 7897 * If there is something to dump, add space for the dump 7898 * itself and for the field that tells the dynamic size, 7899 * which is how many have been actually dumped. 7900 */ 7901 if (stack_size) 7902 size += sizeof(u64) + stack_size; 7903 7904 data->stack_user_size = stack_size; 7905 data->dyn_size += size; 7906 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7907 } 7908 7909 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7910 data->weight.full = 0; 7911 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7912 } 7913 7914 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7915 data->data_src.val = PERF_MEM_NA; 7916 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7917 } 7918 7919 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7920 data->txn = 0; 7921 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7922 } 7923 7924 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7925 data->addr = 0; 7926 data->sample_flags |= PERF_SAMPLE_ADDR; 7927 } 7928 7929 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7930 /* regs dump ABI info */ 7931 int size = sizeof(u64); 7932 7933 perf_sample_regs_intr(&data->regs_intr, regs); 7934 7935 if (data->regs_intr.regs) { 7936 u64 mask = event->attr.sample_regs_intr; 7937 7938 size += hweight64(mask) * sizeof(u64); 7939 } 7940 7941 data->dyn_size += size; 7942 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7943 } 7944 7945 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7946 data->phys_addr = perf_virt_to_phys(data->addr); 7947 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7948 } 7949 7950 #ifdef CONFIG_CGROUP_PERF 7951 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7952 struct cgroup *cgrp; 7953 7954 /* protected by RCU */ 7955 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7956 data->cgroup = cgroup_id(cgrp); 7957 data->sample_flags |= PERF_SAMPLE_CGROUP; 7958 } 7959 #endif 7960 7961 /* 7962 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7963 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7964 * but the value will not dump to the userspace. 7965 */ 7966 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7967 data->data_page_size = perf_get_page_size(data->addr); 7968 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7969 } 7970 7971 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7972 data->code_page_size = perf_get_page_size(data->ip); 7973 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7974 } 7975 7976 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7977 u64 size; 7978 u16 header_size = perf_sample_data_size(data, event); 7979 7980 header_size += sizeof(u64); /* size */ 7981 7982 /* 7983 * Given the 16bit nature of header::size, an AUX sample can 7984 * easily overflow it, what with all the preceding sample bits. 7985 * Make sure this doesn't happen by using up to U16_MAX bytes 7986 * per sample in total (rounded down to 8 byte boundary). 7987 */ 7988 size = min_t(size_t, U16_MAX - header_size, 7989 event->attr.aux_sample_size); 7990 size = rounddown(size, 8); 7991 size = perf_prepare_sample_aux(event, data, size); 7992 7993 WARN_ON_ONCE(size + header_size > U16_MAX); 7994 data->dyn_size += size + sizeof(u64); /* size above */ 7995 data->sample_flags |= PERF_SAMPLE_AUX; 7996 } 7997 } 7998 7999 void perf_prepare_header(struct perf_event_header *header, 8000 struct perf_sample_data *data, 8001 struct perf_event *event, 8002 struct pt_regs *regs) 8003 { 8004 header->type = PERF_RECORD_SAMPLE; 8005 header->size = perf_sample_data_size(data, event); 8006 header->misc = perf_misc_flags(regs); 8007 8008 /* 8009 * If you're adding more sample types here, you likely need to do 8010 * something about the overflowing header::size, like repurpose the 8011 * lowest 3 bits of size, which should be always zero at the moment. 8012 * This raises a more important question, do we really need 512k sized 8013 * samples and why, so good argumentation is in order for whatever you 8014 * do here next. 8015 */ 8016 WARN_ON_ONCE(header->size & 7); 8017 } 8018 8019 static __always_inline int 8020 __perf_event_output(struct perf_event *event, 8021 struct perf_sample_data *data, 8022 struct pt_regs *regs, 8023 int (*output_begin)(struct perf_output_handle *, 8024 struct perf_sample_data *, 8025 struct perf_event *, 8026 unsigned int)) 8027 { 8028 struct perf_output_handle handle; 8029 struct perf_event_header header; 8030 int err; 8031 8032 /* protect the callchain buffers */ 8033 rcu_read_lock(); 8034 8035 perf_prepare_sample(data, event, regs); 8036 perf_prepare_header(&header, data, event, regs); 8037 8038 err = output_begin(&handle, data, event, header.size); 8039 if (err) 8040 goto exit; 8041 8042 perf_output_sample(&handle, &header, data, event); 8043 8044 perf_output_end(&handle); 8045 8046 exit: 8047 rcu_read_unlock(); 8048 return err; 8049 } 8050 8051 void 8052 perf_event_output_forward(struct perf_event *event, 8053 struct perf_sample_data *data, 8054 struct pt_regs *regs) 8055 { 8056 __perf_event_output(event, data, regs, perf_output_begin_forward); 8057 } 8058 8059 void 8060 perf_event_output_backward(struct perf_event *event, 8061 struct perf_sample_data *data, 8062 struct pt_regs *regs) 8063 { 8064 __perf_event_output(event, data, regs, perf_output_begin_backward); 8065 } 8066 8067 int 8068 perf_event_output(struct perf_event *event, 8069 struct perf_sample_data *data, 8070 struct pt_regs *regs) 8071 { 8072 return __perf_event_output(event, data, regs, perf_output_begin); 8073 } 8074 8075 /* 8076 * read event_id 8077 */ 8078 8079 struct perf_read_event { 8080 struct perf_event_header header; 8081 8082 u32 pid; 8083 u32 tid; 8084 }; 8085 8086 static void 8087 perf_event_read_event(struct perf_event *event, 8088 struct task_struct *task) 8089 { 8090 struct perf_output_handle handle; 8091 struct perf_sample_data sample; 8092 struct perf_read_event read_event = { 8093 .header = { 8094 .type = PERF_RECORD_READ, 8095 .misc = 0, 8096 .size = sizeof(read_event) + event->read_size, 8097 }, 8098 .pid = perf_event_pid(event, task), 8099 .tid = perf_event_tid(event, task), 8100 }; 8101 int ret; 8102 8103 perf_event_header__init_id(&read_event.header, &sample, event); 8104 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8105 if (ret) 8106 return; 8107 8108 perf_output_put(&handle, read_event); 8109 perf_output_read(&handle, event); 8110 perf_event__output_id_sample(event, &handle, &sample); 8111 8112 perf_output_end(&handle); 8113 } 8114 8115 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8116 8117 static void 8118 perf_iterate_ctx(struct perf_event_context *ctx, 8119 perf_iterate_f output, 8120 void *data, bool all) 8121 { 8122 struct perf_event *event; 8123 8124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8125 if (!all) { 8126 if (event->state < PERF_EVENT_STATE_INACTIVE) 8127 continue; 8128 if (!event_filter_match(event)) 8129 continue; 8130 } 8131 8132 output(event, data); 8133 } 8134 } 8135 8136 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8137 { 8138 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8139 struct perf_event *event; 8140 8141 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8142 /* 8143 * Skip events that are not fully formed yet; ensure that 8144 * if we observe event->ctx, both event and ctx will be 8145 * complete enough. See perf_install_in_context(). 8146 */ 8147 if (!smp_load_acquire(&event->ctx)) 8148 continue; 8149 8150 if (event->state < PERF_EVENT_STATE_INACTIVE) 8151 continue; 8152 if (!event_filter_match(event)) 8153 continue; 8154 output(event, data); 8155 } 8156 } 8157 8158 /* 8159 * Iterate all events that need to receive side-band events. 8160 * 8161 * For new callers; ensure that account_pmu_sb_event() includes 8162 * your event, otherwise it might not get delivered. 8163 */ 8164 static void 8165 perf_iterate_sb(perf_iterate_f output, void *data, 8166 struct perf_event_context *task_ctx) 8167 { 8168 struct perf_event_context *ctx; 8169 8170 rcu_read_lock(); 8171 preempt_disable(); 8172 8173 /* 8174 * If we have task_ctx != NULL we only notify the task context itself. 8175 * The task_ctx is set only for EXIT events before releasing task 8176 * context. 8177 */ 8178 if (task_ctx) { 8179 perf_iterate_ctx(task_ctx, output, data, false); 8180 goto done; 8181 } 8182 8183 perf_iterate_sb_cpu(output, data); 8184 8185 ctx = rcu_dereference(current->perf_event_ctxp); 8186 if (ctx) 8187 perf_iterate_ctx(ctx, output, data, false); 8188 done: 8189 preempt_enable(); 8190 rcu_read_unlock(); 8191 } 8192 8193 /* 8194 * Clear all file-based filters at exec, they'll have to be 8195 * re-instated when/if these objects are mmapped again. 8196 */ 8197 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8198 { 8199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8200 struct perf_addr_filter *filter; 8201 unsigned int restart = 0, count = 0; 8202 unsigned long flags; 8203 8204 if (!has_addr_filter(event)) 8205 return; 8206 8207 raw_spin_lock_irqsave(&ifh->lock, flags); 8208 list_for_each_entry(filter, &ifh->list, entry) { 8209 if (filter->path.dentry) { 8210 event->addr_filter_ranges[count].start = 0; 8211 event->addr_filter_ranges[count].size = 0; 8212 restart++; 8213 } 8214 8215 count++; 8216 } 8217 8218 if (restart) 8219 event->addr_filters_gen++; 8220 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8221 8222 if (restart) 8223 perf_event_stop(event, 1); 8224 } 8225 8226 void perf_event_exec(void) 8227 { 8228 struct perf_event_context *ctx; 8229 8230 ctx = perf_pin_task_context(current); 8231 if (!ctx) 8232 return; 8233 8234 perf_event_enable_on_exec(ctx); 8235 perf_event_remove_on_exec(ctx); 8236 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8237 8238 perf_unpin_context(ctx); 8239 put_ctx(ctx); 8240 } 8241 8242 struct remote_output { 8243 struct perf_buffer *rb; 8244 int err; 8245 }; 8246 8247 static void __perf_event_output_stop(struct perf_event *event, void *data) 8248 { 8249 struct perf_event *parent = event->parent; 8250 struct remote_output *ro = data; 8251 struct perf_buffer *rb = ro->rb; 8252 struct stop_event_data sd = { 8253 .event = event, 8254 }; 8255 8256 if (!has_aux(event)) 8257 return; 8258 8259 if (!parent) 8260 parent = event; 8261 8262 /* 8263 * In case of inheritance, it will be the parent that links to the 8264 * ring-buffer, but it will be the child that's actually using it. 8265 * 8266 * We are using event::rb to determine if the event should be stopped, 8267 * however this may race with ring_buffer_attach() (through set_output), 8268 * which will make us skip the event that actually needs to be stopped. 8269 * So ring_buffer_attach() has to stop an aux event before re-assigning 8270 * its rb pointer. 8271 */ 8272 if (rcu_dereference(parent->rb) == rb) 8273 ro->err = __perf_event_stop(&sd); 8274 } 8275 8276 static int __perf_pmu_output_stop(void *info) 8277 { 8278 struct perf_event *event = info; 8279 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8280 struct remote_output ro = { 8281 .rb = event->rb, 8282 }; 8283 8284 rcu_read_lock(); 8285 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8286 if (cpuctx->task_ctx) 8287 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8288 &ro, false); 8289 rcu_read_unlock(); 8290 8291 return ro.err; 8292 } 8293 8294 static void perf_pmu_output_stop(struct perf_event *event) 8295 { 8296 struct perf_event *iter; 8297 int err, cpu; 8298 8299 restart: 8300 rcu_read_lock(); 8301 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8302 /* 8303 * For per-CPU events, we need to make sure that neither they 8304 * nor their children are running; for cpu==-1 events it's 8305 * sufficient to stop the event itself if it's active, since 8306 * it can't have children. 8307 */ 8308 cpu = iter->cpu; 8309 if (cpu == -1) 8310 cpu = READ_ONCE(iter->oncpu); 8311 8312 if (cpu == -1) 8313 continue; 8314 8315 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8316 if (err == -EAGAIN) { 8317 rcu_read_unlock(); 8318 goto restart; 8319 } 8320 } 8321 rcu_read_unlock(); 8322 } 8323 8324 /* 8325 * task tracking -- fork/exit 8326 * 8327 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8328 */ 8329 8330 struct perf_task_event { 8331 struct task_struct *task; 8332 struct perf_event_context *task_ctx; 8333 8334 struct { 8335 struct perf_event_header header; 8336 8337 u32 pid; 8338 u32 ppid; 8339 u32 tid; 8340 u32 ptid; 8341 u64 time; 8342 } event_id; 8343 }; 8344 8345 static int perf_event_task_match(struct perf_event *event) 8346 { 8347 return event->attr.comm || event->attr.mmap || 8348 event->attr.mmap2 || event->attr.mmap_data || 8349 event->attr.task; 8350 } 8351 8352 static void perf_event_task_output(struct perf_event *event, 8353 void *data) 8354 { 8355 struct perf_task_event *task_event = data; 8356 struct perf_output_handle handle; 8357 struct perf_sample_data sample; 8358 struct task_struct *task = task_event->task; 8359 int ret, size = task_event->event_id.header.size; 8360 8361 if (!perf_event_task_match(event)) 8362 return; 8363 8364 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8365 8366 ret = perf_output_begin(&handle, &sample, event, 8367 task_event->event_id.header.size); 8368 if (ret) 8369 goto out; 8370 8371 task_event->event_id.pid = perf_event_pid(event, task); 8372 task_event->event_id.tid = perf_event_tid(event, task); 8373 8374 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8375 task_event->event_id.ppid = perf_event_pid(event, 8376 task->real_parent); 8377 task_event->event_id.ptid = perf_event_pid(event, 8378 task->real_parent); 8379 } else { /* PERF_RECORD_FORK */ 8380 task_event->event_id.ppid = perf_event_pid(event, current); 8381 task_event->event_id.ptid = perf_event_tid(event, current); 8382 } 8383 8384 task_event->event_id.time = perf_event_clock(event); 8385 8386 perf_output_put(&handle, task_event->event_id); 8387 8388 perf_event__output_id_sample(event, &handle, &sample); 8389 8390 perf_output_end(&handle); 8391 out: 8392 task_event->event_id.header.size = size; 8393 } 8394 8395 static void perf_event_task(struct task_struct *task, 8396 struct perf_event_context *task_ctx, 8397 int new) 8398 { 8399 struct perf_task_event task_event; 8400 8401 if (!atomic_read(&nr_comm_events) && 8402 !atomic_read(&nr_mmap_events) && 8403 !atomic_read(&nr_task_events)) 8404 return; 8405 8406 task_event = (struct perf_task_event){ 8407 .task = task, 8408 .task_ctx = task_ctx, 8409 .event_id = { 8410 .header = { 8411 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8412 .misc = 0, 8413 .size = sizeof(task_event.event_id), 8414 }, 8415 /* .pid */ 8416 /* .ppid */ 8417 /* .tid */ 8418 /* .ptid */ 8419 /* .time */ 8420 }, 8421 }; 8422 8423 perf_iterate_sb(perf_event_task_output, 8424 &task_event, 8425 task_ctx); 8426 } 8427 8428 void perf_event_fork(struct task_struct *task) 8429 { 8430 perf_event_task(task, NULL, 1); 8431 perf_event_namespaces(task); 8432 } 8433 8434 /* 8435 * comm tracking 8436 */ 8437 8438 struct perf_comm_event { 8439 struct task_struct *task; 8440 char *comm; 8441 int comm_size; 8442 8443 struct { 8444 struct perf_event_header header; 8445 8446 u32 pid; 8447 u32 tid; 8448 } event_id; 8449 }; 8450 8451 static int perf_event_comm_match(struct perf_event *event) 8452 { 8453 return event->attr.comm; 8454 } 8455 8456 static void perf_event_comm_output(struct perf_event *event, 8457 void *data) 8458 { 8459 struct perf_comm_event *comm_event = data; 8460 struct perf_output_handle handle; 8461 struct perf_sample_data sample; 8462 int size = comm_event->event_id.header.size; 8463 int ret; 8464 8465 if (!perf_event_comm_match(event)) 8466 return; 8467 8468 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8469 ret = perf_output_begin(&handle, &sample, event, 8470 comm_event->event_id.header.size); 8471 8472 if (ret) 8473 goto out; 8474 8475 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8476 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8477 8478 perf_output_put(&handle, comm_event->event_id); 8479 __output_copy(&handle, comm_event->comm, 8480 comm_event->comm_size); 8481 8482 perf_event__output_id_sample(event, &handle, &sample); 8483 8484 perf_output_end(&handle); 8485 out: 8486 comm_event->event_id.header.size = size; 8487 } 8488 8489 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8490 { 8491 char comm[TASK_COMM_LEN]; 8492 unsigned int size; 8493 8494 memset(comm, 0, sizeof(comm)); 8495 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8496 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8497 8498 comm_event->comm = comm; 8499 comm_event->comm_size = size; 8500 8501 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8502 8503 perf_iterate_sb(perf_event_comm_output, 8504 comm_event, 8505 NULL); 8506 } 8507 8508 void perf_event_comm(struct task_struct *task, bool exec) 8509 { 8510 struct perf_comm_event comm_event; 8511 8512 if (!atomic_read(&nr_comm_events)) 8513 return; 8514 8515 comm_event = (struct perf_comm_event){ 8516 .task = task, 8517 /* .comm */ 8518 /* .comm_size */ 8519 .event_id = { 8520 .header = { 8521 .type = PERF_RECORD_COMM, 8522 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8523 /* .size */ 8524 }, 8525 /* .pid */ 8526 /* .tid */ 8527 }, 8528 }; 8529 8530 perf_event_comm_event(&comm_event); 8531 } 8532 8533 /* 8534 * namespaces tracking 8535 */ 8536 8537 struct perf_namespaces_event { 8538 struct task_struct *task; 8539 8540 struct { 8541 struct perf_event_header header; 8542 8543 u32 pid; 8544 u32 tid; 8545 u64 nr_namespaces; 8546 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8547 } event_id; 8548 }; 8549 8550 static int perf_event_namespaces_match(struct perf_event *event) 8551 { 8552 return event->attr.namespaces; 8553 } 8554 8555 static void perf_event_namespaces_output(struct perf_event *event, 8556 void *data) 8557 { 8558 struct perf_namespaces_event *namespaces_event = data; 8559 struct perf_output_handle handle; 8560 struct perf_sample_data sample; 8561 u16 header_size = namespaces_event->event_id.header.size; 8562 int ret; 8563 8564 if (!perf_event_namespaces_match(event)) 8565 return; 8566 8567 perf_event_header__init_id(&namespaces_event->event_id.header, 8568 &sample, event); 8569 ret = perf_output_begin(&handle, &sample, event, 8570 namespaces_event->event_id.header.size); 8571 if (ret) 8572 goto out; 8573 8574 namespaces_event->event_id.pid = perf_event_pid(event, 8575 namespaces_event->task); 8576 namespaces_event->event_id.tid = perf_event_tid(event, 8577 namespaces_event->task); 8578 8579 perf_output_put(&handle, namespaces_event->event_id); 8580 8581 perf_event__output_id_sample(event, &handle, &sample); 8582 8583 perf_output_end(&handle); 8584 out: 8585 namespaces_event->event_id.header.size = header_size; 8586 } 8587 8588 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8589 struct task_struct *task, 8590 const struct proc_ns_operations *ns_ops) 8591 { 8592 struct path ns_path; 8593 struct inode *ns_inode; 8594 int error; 8595 8596 error = ns_get_path(&ns_path, task, ns_ops); 8597 if (!error) { 8598 ns_inode = ns_path.dentry->d_inode; 8599 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8600 ns_link_info->ino = ns_inode->i_ino; 8601 path_put(&ns_path); 8602 } 8603 } 8604 8605 void perf_event_namespaces(struct task_struct *task) 8606 { 8607 struct perf_namespaces_event namespaces_event; 8608 struct perf_ns_link_info *ns_link_info; 8609 8610 if (!atomic_read(&nr_namespaces_events)) 8611 return; 8612 8613 namespaces_event = (struct perf_namespaces_event){ 8614 .task = task, 8615 .event_id = { 8616 .header = { 8617 .type = PERF_RECORD_NAMESPACES, 8618 .misc = 0, 8619 .size = sizeof(namespaces_event.event_id), 8620 }, 8621 /* .pid */ 8622 /* .tid */ 8623 .nr_namespaces = NR_NAMESPACES, 8624 /* .link_info[NR_NAMESPACES] */ 8625 }, 8626 }; 8627 8628 ns_link_info = namespaces_event.event_id.link_info; 8629 8630 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8631 task, &mntns_operations); 8632 8633 #ifdef CONFIG_USER_NS 8634 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8635 task, &userns_operations); 8636 #endif 8637 #ifdef CONFIG_NET_NS 8638 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8639 task, &netns_operations); 8640 #endif 8641 #ifdef CONFIG_UTS_NS 8642 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8643 task, &utsns_operations); 8644 #endif 8645 #ifdef CONFIG_IPC_NS 8646 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8647 task, &ipcns_operations); 8648 #endif 8649 #ifdef CONFIG_PID_NS 8650 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8651 task, &pidns_operations); 8652 #endif 8653 #ifdef CONFIG_CGROUPS 8654 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8655 task, &cgroupns_operations); 8656 #endif 8657 8658 perf_iterate_sb(perf_event_namespaces_output, 8659 &namespaces_event, 8660 NULL); 8661 } 8662 8663 /* 8664 * cgroup tracking 8665 */ 8666 #ifdef CONFIG_CGROUP_PERF 8667 8668 struct perf_cgroup_event { 8669 char *path; 8670 int path_size; 8671 struct { 8672 struct perf_event_header header; 8673 u64 id; 8674 char path[]; 8675 } event_id; 8676 }; 8677 8678 static int perf_event_cgroup_match(struct perf_event *event) 8679 { 8680 return event->attr.cgroup; 8681 } 8682 8683 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8684 { 8685 struct perf_cgroup_event *cgroup_event = data; 8686 struct perf_output_handle handle; 8687 struct perf_sample_data sample; 8688 u16 header_size = cgroup_event->event_id.header.size; 8689 int ret; 8690 8691 if (!perf_event_cgroup_match(event)) 8692 return; 8693 8694 perf_event_header__init_id(&cgroup_event->event_id.header, 8695 &sample, event); 8696 ret = perf_output_begin(&handle, &sample, event, 8697 cgroup_event->event_id.header.size); 8698 if (ret) 8699 goto out; 8700 8701 perf_output_put(&handle, cgroup_event->event_id); 8702 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8703 8704 perf_event__output_id_sample(event, &handle, &sample); 8705 8706 perf_output_end(&handle); 8707 out: 8708 cgroup_event->event_id.header.size = header_size; 8709 } 8710 8711 static void perf_event_cgroup(struct cgroup *cgrp) 8712 { 8713 struct perf_cgroup_event cgroup_event; 8714 char path_enomem[16] = "//enomem"; 8715 char *pathname; 8716 size_t size; 8717 8718 if (!atomic_read(&nr_cgroup_events)) 8719 return; 8720 8721 cgroup_event = (struct perf_cgroup_event){ 8722 .event_id = { 8723 .header = { 8724 .type = PERF_RECORD_CGROUP, 8725 .misc = 0, 8726 .size = sizeof(cgroup_event.event_id), 8727 }, 8728 .id = cgroup_id(cgrp), 8729 }, 8730 }; 8731 8732 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8733 if (pathname == NULL) { 8734 cgroup_event.path = path_enomem; 8735 } else { 8736 /* just to be sure to have enough space for alignment */ 8737 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8738 cgroup_event.path = pathname; 8739 } 8740 8741 /* 8742 * Since our buffer works in 8 byte units we need to align our string 8743 * size to a multiple of 8. However, we must guarantee the tail end is 8744 * zero'd out to avoid leaking random bits to userspace. 8745 */ 8746 size = strlen(cgroup_event.path) + 1; 8747 while (!IS_ALIGNED(size, sizeof(u64))) 8748 cgroup_event.path[size++] = '\0'; 8749 8750 cgroup_event.event_id.header.size += size; 8751 cgroup_event.path_size = size; 8752 8753 perf_iterate_sb(perf_event_cgroup_output, 8754 &cgroup_event, 8755 NULL); 8756 8757 kfree(pathname); 8758 } 8759 8760 #endif 8761 8762 /* 8763 * mmap tracking 8764 */ 8765 8766 struct perf_mmap_event { 8767 struct vm_area_struct *vma; 8768 8769 const char *file_name; 8770 int file_size; 8771 int maj, min; 8772 u64 ino; 8773 u64 ino_generation; 8774 u32 prot, flags; 8775 u8 build_id[BUILD_ID_SIZE_MAX]; 8776 u32 build_id_size; 8777 8778 struct { 8779 struct perf_event_header header; 8780 8781 u32 pid; 8782 u32 tid; 8783 u64 start; 8784 u64 len; 8785 u64 pgoff; 8786 } event_id; 8787 }; 8788 8789 static int perf_event_mmap_match(struct perf_event *event, 8790 void *data) 8791 { 8792 struct perf_mmap_event *mmap_event = data; 8793 struct vm_area_struct *vma = mmap_event->vma; 8794 int executable = vma->vm_flags & VM_EXEC; 8795 8796 return (!executable && event->attr.mmap_data) || 8797 (executable && (event->attr.mmap || event->attr.mmap2)); 8798 } 8799 8800 static void perf_event_mmap_output(struct perf_event *event, 8801 void *data) 8802 { 8803 struct perf_mmap_event *mmap_event = data; 8804 struct perf_output_handle handle; 8805 struct perf_sample_data sample; 8806 int size = mmap_event->event_id.header.size; 8807 u32 type = mmap_event->event_id.header.type; 8808 bool use_build_id; 8809 int ret; 8810 8811 if (!perf_event_mmap_match(event, data)) 8812 return; 8813 8814 if (event->attr.mmap2) { 8815 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8816 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8817 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8818 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8819 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8820 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8821 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8822 } 8823 8824 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8825 ret = perf_output_begin(&handle, &sample, event, 8826 mmap_event->event_id.header.size); 8827 if (ret) 8828 goto out; 8829 8830 mmap_event->event_id.pid = perf_event_pid(event, current); 8831 mmap_event->event_id.tid = perf_event_tid(event, current); 8832 8833 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8834 8835 if (event->attr.mmap2 && use_build_id) 8836 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8837 8838 perf_output_put(&handle, mmap_event->event_id); 8839 8840 if (event->attr.mmap2) { 8841 if (use_build_id) { 8842 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8843 8844 __output_copy(&handle, size, 4); 8845 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8846 } else { 8847 perf_output_put(&handle, mmap_event->maj); 8848 perf_output_put(&handle, mmap_event->min); 8849 perf_output_put(&handle, mmap_event->ino); 8850 perf_output_put(&handle, mmap_event->ino_generation); 8851 } 8852 perf_output_put(&handle, mmap_event->prot); 8853 perf_output_put(&handle, mmap_event->flags); 8854 } 8855 8856 __output_copy(&handle, mmap_event->file_name, 8857 mmap_event->file_size); 8858 8859 perf_event__output_id_sample(event, &handle, &sample); 8860 8861 perf_output_end(&handle); 8862 out: 8863 mmap_event->event_id.header.size = size; 8864 mmap_event->event_id.header.type = type; 8865 } 8866 8867 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8868 { 8869 struct vm_area_struct *vma = mmap_event->vma; 8870 struct file *file = vma->vm_file; 8871 int maj = 0, min = 0; 8872 u64 ino = 0, gen = 0; 8873 u32 prot = 0, flags = 0; 8874 unsigned int size; 8875 char tmp[16]; 8876 char *buf = NULL; 8877 char *name = NULL; 8878 8879 if (vma->vm_flags & VM_READ) 8880 prot |= PROT_READ; 8881 if (vma->vm_flags & VM_WRITE) 8882 prot |= PROT_WRITE; 8883 if (vma->vm_flags & VM_EXEC) 8884 prot |= PROT_EXEC; 8885 8886 if (vma->vm_flags & VM_MAYSHARE) 8887 flags = MAP_SHARED; 8888 else 8889 flags = MAP_PRIVATE; 8890 8891 if (vma->vm_flags & VM_LOCKED) 8892 flags |= MAP_LOCKED; 8893 if (is_vm_hugetlb_page(vma)) 8894 flags |= MAP_HUGETLB; 8895 8896 if (file) { 8897 struct inode *inode; 8898 dev_t dev; 8899 8900 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8901 if (!buf) { 8902 name = "//enomem"; 8903 goto cpy_name; 8904 } 8905 /* 8906 * d_path() works from the end of the rb backwards, so we 8907 * need to add enough zero bytes after the string to handle 8908 * the 64bit alignment we do later. 8909 */ 8910 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8911 if (IS_ERR(name)) { 8912 name = "//toolong"; 8913 goto cpy_name; 8914 } 8915 inode = file_inode(vma->vm_file); 8916 dev = inode->i_sb->s_dev; 8917 ino = inode->i_ino; 8918 gen = inode->i_generation; 8919 maj = MAJOR(dev); 8920 min = MINOR(dev); 8921 8922 goto got_name; 8923 } else { 8924 if (vma->vm_ops && vma->vm_ops->name) 8925 name = (char *) vma->vm_ops->name(vma); 8926 if (!name) 8927 name = (char *)arch_vma_name(vma); 8928 if (!name) { 8929 if (vma_is_initial_heap(vma)) 8930 name = "[heap]"; 8931 else if (vma_is_initial_stack(vma)) 8932 name = "[stack]"; 8933 else 8934 name = "//anon"; 8935 } 8936 } 8937 8938 cpy_name: 8939 strscpy(tmp, name, sizeof(tmp)); 8940 name = tmp; 8941 got_name: 8942 /* 8943 * Since our buffer works in 8 byte units we need to align our string 8944 * size to a multiple of 8. However, we must guarantee the tail end is 8945 * zero'd out to avoid leaking random bits to userspace. 8946 */ 8947 size = strlen(name)+1; 8948 while (!IS_ALIGNED(size, sizeof(u64))) 8949 name[size++] = '\0'; 8950 8951 mmap_event->file_name = name; 8952 mmap_event->file_size = size; 8953 mmap_event->maj = maj; 8954 mmap_event->min = min; 8955 mmap_event->ino = ino; 8956 mmap_event->ino_generation = gen; 8957 mmap_event->prot = prot; 8958 mmap_event->flags = flags; 8959 8960 if (!(vma->vm_flags & VM_EXEC)) 8961 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8962 8963 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8964 8965 if (atomic_read(&nr_build_id_events)) 8966 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 8967 8968 perf_iterate_sb(perf_event_mmap_output, 8969 mmap_event, 8970 NULL); 8971 8972 kfree(buf); 8973 } 8974 8975 /* 8976 * Check whether inode and address range match filter criteria. 8977 */ 8978 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8979 struct file *file, unsigned long offset, 8980 unsigned long size) 8981 { 8982 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8983 if (!filter->path.dentry) 8984 return false; 8985 8986 if (d_inode(filter->path.dentry) != file_inode(file)) 8987 return false; 8988 8989 if (filter->offset > offset + size) 8990 return false; 8991 8992 if (filter->offset + filter->size < offset) 8993 return false; 8994 8995 return true; 8996 } 8997 8998 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8999 struct vm_area_struct *vma, 9000 struct perf_addr_filter_range *fr) 9001 { 9002 unsigned long vma_size = vma->vm_end - vma->vm_start; 9003 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9004 struct file *file = vma->vm_file; 9005 9006 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9007 return false; 9008 9009 if (filter->offset < off) { 9010 fr->start = vma->vm_start; 9011 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9012 } else { 9013 fr->start = vma->vm_start + filter->offset - off; 9014 fr->size = min(vma->vm_end - fr->start, filter->size); 9015 } 9016 9017 return true; 9018 } 9019 9020 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9021 { 9022 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9023 struct vm_area_struct *vma = data; 9024 struct perf_addr_filter *filter; 9025 unsigned int restart = 0, count = 0; 9026 unsigned long flags; 9027 9028 if (!has_addr_filter(event)) 9029 return; 9030 9031 if (!vma->vm_file) 9032 return; 9033 9034 raw_spin_lock_irqsave(&ifh->lock, flags); 9035 list_for_each_entry(filter, &ifh->list, entry) { 9036 if (perf_addr_filter_vma_adjust(filter, vma, 9037 &event->addr_filter_ranges[count])) 9038 restart++; 9039 9040 count++; 9041 } 9042 9043 if (restart) 9044 event->addr_filters_gen++; 9045 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9046 9047 if (restart) 9048 perf_event_stop(event, 1); 9049 } 9050 9051 /* 9052 * Adjust all task's events' filters to the new vma 9053 */ 9054 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9055 { 9056 struct perf_event_context *ctx; 9057 9058 /* 9059 * Data tracing isn't supported yet and as such there is no need 9060 * to keep track of anything that isn't related to executable code: 9061 */ 9062 if (!(vma->vm_flags & VM_EXEC)) 9063 return; 9064 9065 rcu_read_lock(); 9066 ctx = rcu_dereference(current->perf_event_ctxp); 9067 if (ctx) 9068 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9069 rcu_read_unlock(); 9070 } 9071 9072 void perf_event_mmap(struct vm_area_struct *vma) 9073 { 9074 struct perf_mmap_event mmap_event; 9075 9076 if (!atomic_read(&nr_mmap_events)) 9077 return; 9078 9079 mmap_event = (struct perf_mmap_event){ 9080 .vma = vma, 9081 /* .file_name */ 9082 /* .file_size */ 9083 .event_id = { 9084 .header = { 9085 .type = PERF_RECORD_MMAP, 9086 .misc = PERF_RECORD_MISC_USER, 9087 /* .size */ 9088 }, 9089 /* .pid */ 9090 /* .tid */ 9091 .start = vma->vm_start, 9092 .len = vma->vm_end - vma->vm_start, 9093 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9094 }, 9095 /* .maj (attr_mmap2 only) */ 9096 /* .min (attr_mmap2 only) */ 9097 /* .ino (attr_mmap2 only) */ 9098 /* .ino_generation (attr_mmap2 only) */ 9099 /* .prot (attr_mmap2 only) */ 9100 /* .flags (attr_mmap2 only) */ 9101 }; 9102 9103 perf_addr_filters_adjust(vma); 9104 perf_event_mmap_event(&mmap_event); 9105 } 9106 9107 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9108 unsigned long size, u64 flags) 9109 { 9110 struct perf_output_handle handle; 9111 struct perf_sample_data sample; 9112 struct perf_aux_event { 9113 struct perf_event_header header; 9114 u64 offset; 9115 u64 size; 9116 u64 flags; 9117 } rec = { 9118 .header = { 9119 .type = PERF_RECORD_AUX, 9120 .misc = 0, 9121 .size = sizeof(rec), 9122 }, 9123 .offset = head, 9124 .size = size, 9125 .flags = flags, 9126 }; 9127 int ret; 9128 9129 perf_event_header__init_id(&rec.header, &sample, event); 9130 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9131 9132 if (ret) 9133 return; 9134 9135 perf_output_put(&handle, rec); 9136 perf_event__output_id_sample(event, &handle, &sample); 9137 9138 perf_output_end(&handle); 9139 } 9140 9141 /* 9142 * Lost/dropped samples logging 9143 */ 9144 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9145 { 9146 struct perf_output_handle handle; 9147 struct perf_sample_data sample; 9148 int ret; 9149 9150 struct { 9151 struct perf_event_header header; 9152 u64 lost; 9153 } lost_samples_event = { 9154 .header = { 9155 .type = PERF_RECORD_LOST_SAMPLES, 9156 .misc = 0, 9157 .size = sizeof(lost_samples_event), 9158 }, 9159 .lost = lost, 9160 }; 9161 9162 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9163 9164 ret = perf_output_begin(&handle, &sample, event, 9165 lost_samples_event.header.size); 9166 if (ret) 9167 return; 9168 9169 perf_output_put(&handle, lost_samples_event); 9170 perf_event__output_id_sample(event, &handle, &sample); 9171 perf_output_end(&handle); 9172 } 9173 9174 /* 9175 * context_switch tracking 9176 */ 9177 9178 struct perf_switch_event { 9179 struct task_struct *task; 9180 struct task_struct *next_prev; 9181 9182 struct { 9183 struct perf_event_header header; 9184 u32 next_prev_pid; 9185 u32 next_prev_tid; 9186 } event_id; 9187 }; 9188 9189 static int perf_event_switch_match(struct perf_event *event) 9190 { 9191 return event->attr.context_switch; 9192 } 9193 9194 static void perf_event_switch_output(struct perf_event *event, void *data) 9195 { 9196 struct perf_switch_event *se = data; 9197 struct perf_output_handle handle; 9198 struct perf_sample_data sample; 9199 int ret; 9200 9201 if (!perf_event_switch_match(event)) 9202 return; 9203 9204 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9205 if (event->ctx->task) { 9206 se->event_id.header.type = PERF_RECORD_SWITCH; 9207 se->event_id.header.size = sizeof(se->event_id.header); 9208 } else { 9209 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9210 se->event_id.header.size = sizeof(se->event_id); 9211 se->event_id.next_prev_pid = 9212 perf_event_pid(event, se->next_prev); 9213 se->event_id.next_prev_tid = 9214 perf_event_tid(event, se->next_prev); 9215 } 9216 9217 perf_event_header__init_id(&se->event_id.header, &sample, event); 9218 9219 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9220 if (ret) 9221 return; 9222 9223 if (event->ctx->task) 9224 perf_output_put(&handle, se->event_id.header); 9225 else 9226 perf_output_put(&handle, se->event_id); 9227 9228 perf_event__output_id_sample(event, &handle, &sample); 9229 9230 perf_output_end(&handle); 9231 } 9232 9233 static void perf_event_switch(struct task_struct *task, 9234 struct task_struct *next_prev, bool sched_in) 9235 { 9236 struct perf_switch_event switch_event; 9237 9238 /* N.B. caller checks nr_switch_events != 0 */ 9239 9240 switch_event = (struct perf_switch_event){ 9241 .task = task, 9242 .next_prev = next_prev, 9243 .event_id = { 9244 .header = { 9245 /* .type */ 9246 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9247 /* .size */ 9248 }, 9249 /* .next_prev_pid */ 9250 /* .next_prev_tid */ 9251 }, 9252 }; 9253 9254 if (!sched_in && task->on_rq) { 9255 switch_event.event_id.header.misc |= 9256 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9257 } 9258 9259 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9260 } 9261 9262 /* 9263 * IRQ throttle logging 9264 */ 9265 9266 static void perf_log_throttle(struct perf_event *event, int enable) 9267 { 9268 struct perf_output_handle handle; 9269 struct perf_sample_data sample; 9270 int ret; 9271 9272 struct { 9273 struct perf_event_header header; 9274 u64 time; 9275 u64 id; 9276 u64 stream_id; 9277 } throttle_event = { 9278 .header = { 9279 .type = PERF_RECORD_THROTTLE, 9280 .misc = 0, 9281 .size = sizeof(throttle_event), 9282 }, 9283 .time = perf_event_clock(event), 9284 .id = primary_event_id(event), 9285 .stream_id = event->id, 9286 }; 9287 9288 if (enable) 9289 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9290 9291 perf_event_header__init_id(&throttle_event.header, &sample, event); 9292 9293 ret = perf_output_begin(&handle, &sample, event, 9294 throttle_event.header.size); 9295 if (ret) 9296 return; 9297 9298 perf_output_put(&handle, throttle_event); 9299 perf_event__output_id_sample(event, &handle, &sample); 9300 perf_output_end(&handle); 9301 } 9302 9303 /* 9304 * ksymbol register/unregister tracking 9305 */ 9306 9307 struct perf_ksymbol_event { 9308 const char *name; 9309 int name_len; 9310 struct { 9311 struct perf_event_header header; 9312 u64 addr; 9313 u32 len; 9314 u16 ksym_type; 9315 u16 flags; 9316 } event_id; 9317 }; 9318 9319 static int perf_event_ksymbol_match(struct perf_event *event) 9320 { 9321 return event->attr.ksymbol; 9322 } 9323 9324 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9325 { 9326 struct perf_ksymbol_event *ksymbol_event = data; 9327 struct perf_output_handle handle; 9328 struct perf_sample_data sample; 9329 int ret; 9330 9331 if (!perf_event_ksymbol_match(event)) 9332 return; 9333 9334 perf_event_header__init_id(&ksymbol_event->event_id.header, 9335 &sample, event); 9336 ret = perf_output_begin(&handle, &sample, event, 9337 ksymbol_event->event_id.header.size); 9338 if (ret) 9339 return; 9340 9341 perf_output_put(&handle, ksymbol_event->event_id); 9342 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9343 perf_event__output_id_sample(event, &handle, &sample); 9344 9345 perf_output_end(&handle); 9346 } 9347 9348 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9349 const char *sym) 9350 { 9351 struct perf_ksymbol_event ksymbol_event; 9352 char name[KSYM_NAME_LEN]; 9353 u16 flags = 0; 9354 int name_len; 9355 9356 if (!atomic_read(&nr_ksymbol_events)) 9357 return; 9358 9359 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9360 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9361 goto err; 9362 9363 strscpy(name, sym, KSYM_NAME_LEN); 9364 name_len = strlen(name) + 1; 9365 while (!IS_ALIGNED(name_len, sizeof(u64))) 9366 name[name_len++] = '\0'; 9367 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9368 9369 if (unregister) 9370 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9371 9372 ksymbol_event = (struct perf_ksymbol_event){ 9373 .name = name, 9374 .name_len = name_len, 9375 .event_id = { 9376 .header = { 9377 .type = PERF_RECORD_KSYMBOL, 9378 .size = sizeof(ksymbol_event.event_id) + 9379 name_len, 9380 }, 9381 .addr = addr, 9382 .len = len, 9383 .ksym_type = ksym_type, 9384 .flags = flags, 9385 }, 9386 }; 9387 9388 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9389 return; 9390 err: 9391 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9392 } 9393 9394 /* 9395 * bpf program load/unload tracking 9396 */ 9397 9398 struct perf_bpf_event { 9399 struct bpf_prog *prog; 9400 struct { 9401 struct perf_event_header header; 9402 u16 type; 9403 u16 flags; 9404 u32 id; 9405 u8 tag[BPF_TAG_SIZE]; 9406 } event_id; 9407 }; 9408 9409 static int perf_event_bpf_match(struct perf_event *event) 9410 { 9411 return event->attr.bpf_event; 9412 } 9413 9414 static void perf_event_bpf_output(struct perf_event *event, void *data) 9415 { 9416 struct perf_bpf_event *bpf_event = data; 9417 struct perf_output_handle handle; 9418 struct perf_sample_data sample; 9419 int ret; 9420 9421 if (!perf_event_bpf_match(event)) 9422 return; 9423 9424 perf_event_header__init_id(&bpf_event->event_id.header, 9425 &sample, event); 9426 ret = perf_output_begin(&handle, &sample, event, 9427 bpf_event->event_id.header.size); 9428 if (ret) 9429 return; 9430 9431 perf_output_put(&handle, bpf_event->event_id); 9432 perf_event__output_id_sample(event, &handle, &sample); 9433 9434 perf_output_end(&handle); 9435 } 9436 9437 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9438 enum perf_bpf_event_type type) 9439 { 9440 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9441 int i; 9442 9443 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9444 (u64)(unsigned long)prog->bpf_func, 9445 prog->jited_len, unregister, 9446 prog->aux->ksym.name); 9447 9448 for (i = 1; i < prog->aux->func_cnt; i++) { 9449 struct bpf_prog *subprog = prog->aux->func[i]; 9450 9451 perf_event_ksymbol( 9452 PERF_RECORD_KSYMBOL_TYPE_BPF, 9453 (u64)(unsigned long)subprog->bpf_func, 9454 subprog->jited_len, unregister, 9455 subprog->aux->ksym.name); 9456 } 9457 } 9458 9459 void perf_event_bpf_event(struct bpf_prog *prog, 9460 enum perf_bpf_event_type type, 9461 u16 flags) 9462 { 9463 struct perf_bpf_event bpf_event; 9464 9465 switch (type) { 9466 case PERF_BPF_EVENT_PROG_LOAD: 9467 case PERF_BPF_EVENT_PROG_UNLOAD: 9468 if (atomic_read(&nr_ksymbol_events)) 9469 perf_event_bpf_emit_ksymbols(prog, type); 9470 break; 9471 default: 9472 return; 9473 } 9474 9475 if (!atomic_read(&nr_bpf_events)) 9476 return; 9477 9478 bpf_event = (struct perf_bpf_event){ 9479 .prog = prog, 9480 .event_id = { 9481 .header = { 9482 .type = PERF_RECORD_BPF_EVENT, 9483 .size = sizeof(bpf_event.event_id), 9484 }, 9485 .type = type, 9486 .flags = flags, 9487 .id = prog->aux->id, 9488 }, 9489 }; 9490 9491 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9492 9493 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9494 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9495 } 9496 9497 struct perf_text_poke_event { 9498 const void *old_bytes; 9499 const void *new_bytes; 9500 size_t pad; 9501 u16 old_len; 9502 u16 new_len; 9503 9504 struct { 9505 struct perf_event_header header; 9506 9507 u64 addr; 9508 } event_id; 9509 }; 9510 9511 static int perf_event_text_poke_match(struct perf_event *event) 9512 { 9513 return event->attr.text_poke; 9514 } 9515 9516 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9517 { 9518 struct perf_text_poke_event *text_poke_event = data; 9519 struct perf_output_handle handle; 9520 struct perf_sample_data sample; 9521 u64 padding = 0; 9522 int ret; 9523 9524 if (!perf_event_text_poke_match(event)) 9525 return; 9526 9527 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9528 9529 ret = perf_output_begin(&handle, &sample, event, 9530 text_poke_event->event_id.header.size); 9531 if (ret) 9532 return; 9533 9534 perf_output_put(&handle, text_poke_event->event_id); 9535 perf_output_put(&handle, text_poke_event->old_len); 9536 perf_output_put(&handle, text_poke_event->new_len); 9537 9538 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9539 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9540 9541 if (text_poke_event->pad) 9542 __output_copy(&handle, &padding, text_poke_event->pad); 9543 9544 perf_event__output_id_sample(event, &handle, &sample); 9545 9546 perf_output_end(&handle); 9547 } 9548 9549 void perf_event_text_poke(const void *addr, const void *old_bytes, 9550 size_t old_len, const void *new_bytes, size_t new_len) 9551 { 9552 struct perf_text_poke_event text_poke_event; 9553 size_t tot, pad; 9554 9555 if (!atomic_read(&nr_text_poke_events)) 9556 return; 9557 9558 tot = sizeof(text_poke_event.old_len) + old_len; 9559 tot += sizeof(text_poke_event.new_len) + new_len; 9560 pad = ALIGN(tot, sizeof(u64)) - tot; 9561 9562 text_poke_event = (struct perf_text_poke_event){ 9563 .old_bytes = old_bytes, 9564 .new_bytes = new_bytes, 9565 .pad = pad, 9566 .old_len = old_len, 9567 .new_len = new_len, 9568 .event_id = { 9569 .header = { 9570 .type = PERF_RECORD_TEXT_POKE, 9571 .misc = PERF_RECORD_MISC_KERNEL, 9572 .size = sizeof(text_poke_event.event_id) + tot + pad, 9573 }, 9574 .addr = (unsigned long)addr, 9575 }, 9576 }; 9577 9578 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9579 } 9580 9581 void perf_event_itrace_started(struct perf_event *event) 9582 { 9583 event->attach_state |= PERF_ATTACH_ITRACE; 9584 } 9585 9586 static void perf_log_itrace_start(struct perf_event *event) 9587 { 9588 struct perf_output_handle handle; 9589 struct perf_sample_data sample; 9590 struct perf_aux_event { 9591 struct perf_event_header header; 9592 u32 pid; 9593 u32 tid; 9594 } rec; 9595 int ret; 9596 9597 if (event->parent) 9598 event = event->parent; 9599 9600 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9601 event->attach_state & PERF_ATTACH_ITRACE) 9602 return; 9603 9604 rec.header.type = PERF_RECORD_ITRACE_START; 9605 rec.header.misc = 0; 9606 rec.header.size = sizeof(rec); 9607 rec.pid = perf_event_pid(event, current); 9608 rec.tid = perf_event_tid(event, current); 9609 9610 perf_event_header__init_id(&rec.header, &sample, event); 9611 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9612 9613 if (ret) 9614 return; 9615 9616 perf_output_put(&handle, rec); 9617 perf_event__output_id_sample(event, &handle, &sample); 9618 9619 perf_output_end(&handle); 9620 } 9621 9622 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9623 { 9624 struct perf_output_handle handle; 9625 struct perf_sample_data sample; 9626 struct perf_aux_event { 9627 struct perf_event_header header; 9628 u64 hw_id; 9629 } rec; 9630 int ret; 9631 9632 if (event->parent) 9633 event = event->parent; 9634 9635 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9636 rec.header.misc = 0; 9637 rec.header.size = sizeof(rec); 9638 rec.hw_id = hw_id; 9639 9640 perf_event_header__init_id(&rec.header, &sample, event); 9641 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9642 9643 if (ret) 9644 return; 9645 9646 perf_output_put(&handle, rec); 9647 perf_event__output_id_sample(event, &handle, &sample); 9648 9649 perf_output_end(&handle); 9650 } 9651 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9652 9653 static int 9654 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9655 { 9656 struct hw_perf_event *hwc = &event->hw; 9657 int ret = 0; 9658 u64 seq; 9659 9660 seq = __this_cpu_read(perf_throttled_seq); 9661 if (seq != hwc->interrupts_seq) { 9662 hwc->interrupts_seq = seq; 9663 hwc->interrupts = 1; 9664 } else { 9665 hwc->interrupts++; 9666 if (unlikely(throttle && 9667 hwc->interrupts > max_samples_per_tick)) { 9668 __this_cpu_inc(perf_throttled_count); 9669 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9670 hwc->interrupts = MAX_INTERRUPTS; 9671 perf_log_throttle(event, 0); 9672 ret = 1; 9673 } 9674 } 9675 9676 if (event->attr.freq) { 9677 u64 now = perf_clock(); 9678 s64 delta = now - hwc->freq_time_stamp; 9679 9680 hwc->freq_time_stamp = now; 9681 9682 if (delta > 0 && delta < 2*TICK_NSEC) 9683 perf_adjust_period(event, delta, hwc->last_period, true); 9684 } 9685 9686 return ret; 9687 } 9688 9689 int perf_event_account_interrupt(struct perf_event *event) 9690 { 9691 return __perf_event_account_interrupt(event, 1); 9692 } 9693 9694 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9695 { 9696 /* 9697 * Due to interrupt latency (AKA "skid"), we may enter the 9698 * kernel before taking an overflow, even if the PMU is only 9699 * counting user events. 9700 */ 9701 if (event->attr.exclude_kernel && !user_mode(regs)) 9702 return false; 9703 9704 return true; 9705 } 9706 9707 #ifdef CONFIG_BPF_SYSCALL 9708 static int bpf_overflow_handler(struct perf_event *event, 9709 struct perf_sample_data *data, 9710 struct pt_regs *regs) 9711 { 9712 struct bpf_perf_event_data_kern ctx = { 9713 .data = data, 9714 .event = event, 9715 }; 9716 struct bpf_prog *prog; 9717 int ret = 0; 9718 9719 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9720 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9721 goto out; 9722 rcu_read_lock(); 9723 prog = READ_ONCE(event->prog); 9724 if (prog) { 9725 perf_prepare_sample(data, event, regs); 9726 ret = bpf_prog_run(prog, &ctx); 9727 } 9728 rcu_read_unlock(); 9729 out: 9730 __this_cpu_dec(bpf_prog_active); 9731 9732 return ret; 9733 } 9734 9735 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9736 struct bpf_prog *prog, 9737 u64 bpf_cookie) 9738 { 9739 if (event->overflow_handler_context) 9740 /* hw breakpoint or kernel counter */ 9741 return -EINVAL; 9742 9743 if (event->prog) 9744 return -EEXIST; 9745 9746 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9747 return -EINVAL; 9748 9749 if (event->attr.precise_ip && 9750 prog->call_get_stack && 9751 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9752 event->attr.exclude_callchain_kernel || 9753 event->attr.exclude_callchain_user)) { 9754 /* 9755 * On perf_event with precise_ip, calling bpf_get_stack() 9756 * may trigger unwinder warnings and occasional crashes. 9757 * bpf_get_[stack|stackid] works around this issue by using 9758 * callchain attached to perf_sample_data. If the 9759 * perf_event does not full (kernel and user) callchain 9760 * attached to perf_sample_data, do not allow attaching BPF 9761 * program that calls bpf_get_[stack|stackid]. 9762 */ 9763 return -EPROTO; 9764 } 9765 9766 event->prog = prog; 9767 event->bpf_cookie = bpf_cookie; 9768 return 0; 9769 } 9770 9771 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9772 { 9773 struct bpf_prog *prog = event->prog; 9774 9775 if (!prog) 9776 return; 9777 9778 event->prog = NULL; 9779 bpf_prog_put(prog); 9780 } 9781 #else 9782 static inline int bpf_overflow_handler(struct perf_event *event, 9783 struct perf_sample_data *data, 9784 struct pt_regs *regs) 9785 { 9786 return 1; 9787 } 9788 9789 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9790 struct bpf_prog *prog, 9791 u64 bpf_cookie) 9792 { 9793 return -EOPNOTSUPP; 9794 } 9795 9796 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9797 { 9798 } 9799 #endif 9800 9801 /* 9802 * Generic event overflow handling, sampling. 9803 */ 9804 9805 static int __perf_event_overflow(struct perf_event *event, 9806 int throttle, struct perf_sample_data *data, 9807 struct pt_regs *regs) 9808 { 9809 int events = atomic_read(&event->event_limit); 9810 int ret = 0; 9811 9812 /* 9813 * Non-sampling counters might still use the PMI to fold short 9814 * hardware counters, ignore those. 9815 */ 9816 if (unlikely(!is_sampling_event(event))) 9817 return 0; 9818 9819 ret = __perf_event_account_interrupt(event, throttle); 9820 9821 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9822 !bpf_overflow_handler(event, data, regs)) 9823 return ret; 9824 9825 /* 9826 * XXX event_limit might not quite work as expected on inherited 9827 * events 9828 */ 9829 9830 event->pending_kill = POLL_IN; 9831 if (events && atomic_dec_and_test(&event->event_limit)) { 9832 ret = 1; 9833 event->pending_kill = POLL_HUP; 9834 perf_event_disable_inatomic(event); 9835 } 9836 9837 if (event->attr.sigtrap) { 9838 /* 9839 * The desired behaviour of sigtrap vs invalid samples is a bit 9840 * tricky; on the one hand, one should not loose the SIGTRAP if 9841 * it is the first event, on the other hand, we should also not 9842 * trigger the WARN or override the data address. 9843 */ 9844 bool valid_sample = sample_is_allowed(event, regs); 9845 unsigned int pending_id = 1; 9846 enum task_work_notify_mode notify_mode; 9847 9848 if (regs) 9849 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9850 9851 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9852 9853 if (!event->pending_work && 9854 !task_work_add(current, &event->pending_task, notify_mode)) { 9855 event->pending_work = pending_id; 9856 local_inc(&event->ctx->nr_no_switch_fast); 9857 9858 event->pending_addr = 0; 9859 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9860 event->pending_addr = data->addr; 9861 9862 } else if (event->attr.exclude_kernel && valid_sample) { 9863 /* 9864 * Should not be able to return to user space without 9865 * consuming pending_work; with exceptions: 9866 * 9867 * 1. Where !exclude_kernel, events can overflow again 9868 * in the kernel without returning to user space. 9869 * 9870 * 2. Events that can overflow again before the IRQ- 9871 * work without user space progress (e.g. hrtimer). 9872 * To approximate progress (with false negatives), 9873 * check 32-bit hash of the current IP. 9874 */ 9875 WARN_ON_ONCE(event->pending_work != pending_id); 9876 } 9877 } 9878 9879 READ_ONCE(event->overflow_handler)(event, data, regs); 9880 9881 if (*perf_event_fasync(event) && event->pending_kill) { 9882 event->pending_wakeup = 1; 9883 irq_work_queue(&event->pending_irq); 9884 } 9885 9886 return ret; 9887 } 9888 9889 int perf_event_overflow(struct perf_event *event, 9890 struct perf_sample_data *data, 9891 struct pt_regs *regs) 9892 { 9893 return __perf_event_overflow(event, 1, data, regs); 9894 } 9895 9896 /* 9897 * Generic software event infrastructure 9898 */ 9899 9900 struct swevent_htable { 9901 struct swevent_hlist *swevent_hlist; 9902 struct mutex hlist_mutex; 9903 int hlist_refcount; 9904 }; 9905 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9906 9907 /* 9908 * We directly increment event->count and keep a second value in 9909 * event->hw.period_left to count intervals. This period event 9910 * is kept in the range [-sample_period, 0] so that we can use the 9911 * sign as trigger. 9912 */ 9913 9914 u64 perf_swevent_set_period(struct perf_event *event) 9915 { 9916 struct hw_perf_event *hwc = &event->hw; 9917 u64 period = hwc->last_period; 9918 u64 nr, offset; 9919 s64 old, val; 9920 9921 hwc->last_period = hwc->sample_period; 9922 9923 old = local64_read(&hwc->period_left); 9924 do { 9925 val = old; 9926 if (val < 0) 9927 return 0; 9928 9929 nr = div64_u64(period + val, period); 9930 offset = nr * period; 9931 val -= offset; 9932 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9933 9934 return nr; 9935 } 9936 9937 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9938 struct perf_sample_data *data, 9939 struct pt_regs *regs) 9940 { 9941 struct hw_perf_event *hwc = &event->hw; 9942 int throttle = 0; 9943 9944 if (!overflow) 9945 overflow = perf_swevent_set_period(event); 9946 9947 if (hwc->interrupts == MAX_INTERRUPTS) 9948 return; 9949 9950 for (; overflow; overflow--) { 9951 if (__perf_event_overflow(event, throttle, 9952 data, regs)) { 9953 /* 9954 * We inhibit the overflow from happening when 9955 * hwc->interrupts == MAX_INTERRUPTS. 9956 */ 9957 break; 9958 } 9959 throttle = 1; 9960 } 9961 } 9962 9963 static void perf_swevent_event(struct perf_event *event, u64 nr, 9964 struct perf_sample_data *data, 9965 struct pt_regs *regs) 9966 { 9967 struct hw_perf_event *hwc = &event->hw; 9968 9969 local64_add(nr, &event->count); 9970 9971 if (!regs) 9972 return; 9973 9974 if (!is_sampling_event(event)) 9975 return; 9976 9977 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9978 data->period = nr; 9979 return perf_swevent_overflow(event, 1, data, regs); 9980 } else 9981 data->period = event->hw.last_period; 9982 9983 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9984 return perf_swevent_overflow(event, 1, data, regs); 9985 9986 if (local64_add_negative(nr, &hwc->period_left)) 9987 return; 9988 9989 perf_swevent_overflow(event, 0, data, regs); 9990 } 9991 9992 static int perf_exclude_event(struct perf_event *event, 9993 struct pt_regs *regs) 9994 { 9995 if (event->hw.state & PERF_HES_STOPPED) 9996 return 1; 9997 9998 if (regs) { 9999 if (event->attr.exclude_user && user_mode(regs)) 10000 return 1; 10001 10002 if (event->attr.exclude_kernel && !user_mode(regs)) 10003 return 1; 10004 } 10005 10006 return 0; 10007 } 10008 10009 static int perf_swevent_match(struct perf_event *event, 10010 enum perf_type_id type, 10011 u32 event_id, 10012 struct perf_sample_data *data, 10013 struct pt_regs *regs) 10014 { 10015 if (event->attr.type != type) 10016 return 0; 10017 10018 if (event->attr.config != event_id) 10019 return 0; 10020 10021 if (perf_exclude_event(event, regs)) 10022 return 0; 10023 10024 return 1; 10025 } 10026 10027 static inline u64 swevent_hash(u64 type, u32 event_id) 10028 { 10029 u64 val = event_id | (type << 32); 10030 10031 return hash_64(val, SWEVENT_HLIST_BITS); 10032 } 10033 10034 static inline struct hlist_head * 10035 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10036 { 10037 u64 hash = swevent_hash(type, event_id); 10038 10039 return &hlist->heads[hash]; 10040 } 10041 10042 /* For the read side: events when they trigger */ 10043 static inline struct hlist_head * 10044 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10045 { 10046 struct swevent_hlist *hlist; 10047 10048 hlist = rcu_dereference(swhash->swevent_hlist); 10049 if (!hlist) 10050 return NULL; 10051 10052 return __find_swevent_head(hlist, type, event_id); 10053 } 10054 10055 /* For the event head insertion and removal in the hlist */ 10056 static inline struct hlist_head * 10057 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10058 { 10059 struct swevent_hlist *hlist; 10060 u32 event_id = event->attr.config; 10061 u64 type = event->attr.type; 10062 10063 /* 10064 * Event scheduling is always serialized against hlist allocation 10065 * and release. Which makes the protected version suitable here. 10066 * The context lock guarantees that. 10067 */ 10068 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10069 lockdep_is_held(&event->ctx->lock)); 10070 if (!hlist) 10071 return NULL; 10072 10073 return __find_swevent_head(hlist, type, event_id); 10074 } 10075 10076 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10077 u64 nr, 10078 struct perf_sample_data *data, 10079 struct pt_regs *regs) 10080 { 10081 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10082 struct perf_event *event; 10083 struct hlist_head *head; 10084 10085 rcu_read_lock(); 10086 head = find_swevent_head_rcu(swhash, type, event_id); 10087 if (!head) 10088 goto end; 10089 10090 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10091 if (perf_swevent_match(event, type, event_id, data, regs)) 10092 perf_swevent_event(event, nr, data, regs); 10093 } 10094 end: 10095 rcu_read_unlock(); 10096 } 10097 10098 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10099 10100 int perf_swevent_get_recursion_context(void) 10101 { 10102 return get_recursion_context(current->perf_recursion); 10103 } 10104 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10105 10106 void perf_swevent_put_recursion_context(int rctx) 10107 { 10108 put_recursion_context(current->perf_recursion, rctx); 10109 } 10110 10111 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10112 { 10113 struct perf_sample_data data; 10114 10115 if (WARN_ON_ONCE(!regs)) 10116 return; 10117 10118 perf_sample_data_init(&data, addr, 0); 10119 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10120 } 10121 10122 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10123 { 10124 int rctx; 10125 10126 preempt_disable_notrace(); 10127 rctx = perf_swevent_get_recursion_context(); 10128 if (unlikely(rctx < 0)) 10129 goto fail; 10130 10131 ___perf_sw_event(event_id, nr, regs, addr); 10132 10133 perf_swevent_put_recursion_context(rctx); 10134 fail: 10135 preempt_enable_notrace(); 10136 } 10137 10138 static void perf_swevent_read(struct perf_event *event) 10139 { 10140 } 10141 10142 static int perf_swevent_add(struct perf_event *event, int flags) 10143 { 10144 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10145 struct hw_perf_event *hwc = &event->hw; 10146 struct hlist_head *head; 10147 10148 if (is_sampling_event(event)) { 10149 hwc->last_period = hwc->sample_period; 10150 perf_swevent_set_period(event); 10151 } 10152 10153 hwc->state = !(flags & PERF_EF_START); 10154 10155 head = find_swevent_head(swhash, event); 10156 if (WARN_ON_ONCE(!head)) 10157 return -EINVAL; 10158 10159 hlist_add_head_rcu(&event->hlist_entry, head); 10160 perf_event_update_userpage(event); 10161 10162 return 0; 10163 } 10164 10165 static void perf_swevent_del(struct perf_event *event, int flags) 10166 { 10167 hlist_del_rcu(&event->hlist_entry); 10168 } 10169 10170 static void perf_swevent_start(struct perf_event *event, int flags) 10171 { 10172 event->hw.state = 0; 10173 } 10174 10175 static void perf_swevent_stop(struct perf_event *event, int flags) 10176 { 10177 event->hw.state = PERF_HES_STOPPED; 10178 } 10179 10180 /* Deref the hlist from the update side */ 10181 static inline struct swevent_hlist * 10182 swevent_hlist_deref(struct swevent_htable *swhash) 10183 { 10184 return rcu_dereference_protected(swhash->swevent_hlist, 10185 lockdep_is_held(&swhash->hlist_mutex)); 10186 } 10187 10188 static void swevent_hlist_release(struct swevent_htable *swhash) 10189 { 10190 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10191 10192 if (!hlist) 10193 return; 10194 10195 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10196 kfree_rcu(hlist, rcu_head); 10197 } 10198 10199 static void swevent_hlist_put_cpu(int cpu) 10200 { 10201 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10202 10203 mutex_lock(&swhash->hlist_mutex); 10204 10205 if (!--swhash->hlist_refcount) 10206 swevent_hlist_release(swhash); 10207 10208 mutex_unlock(&swhash->hlist_mutex); 10209 } 10210 10211 static void swevent_hlist_put(void) 10212 { 10213 int cpu; 10214 10215 for_each_possible_cpu(cpu) 10216 swevent_hlist_put_cpu(cpu); 10217 } 10218 10219 static int swevent_hlist_get_cpu(int cpu) 10220 { 10221 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10222 int err = 0; 10223 10224 mutex_lock(&swhash->hlist_mutex); 10225 if (!swevent_hlist_deref(swhash) && 10226 cpumask_test_cpu(cpu, perf_online_mask)) { 10227 struct swevent_hlist *hlist; 10228 10229 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10230 if (!hlist) { 10231 err = -ENOMEM; 10232 goto exit; 10233 } 10234 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10235 } 10236 swhash->hlist_refcount++; 10237 exit: 10238 mutex_unlock(&swhash->hlist_mutex); 10239 10240 return err; 10241 } 10242 10243 static int swevent_hlist_get(void) 10244 { 10245 int err, cpu, failed_cpu; 10246 10247 mutex_lock(&pmus_lock); 10248 for_each_possible_cpu(cpu) { 10249 err = swevent_hlist_get_cpu(cpu); 10250 if (err) { 10251 failed_cpu = cpu; 10252 goto fail; 10253 } 10254 } 10255 mutex_unlock(&pmus_lock); 10256 return 0; 10257 fail: 10258 for_each_possible_cpu(cpu) { 10259 if (cpu == failed_cpu) 10260 break; 10261 swevent_hlist_put_cpu(cpu); 10262 } 10263 mutex_unlock(&pmus_lock); 10264 return err; 10265 } 10266 10267 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10268 10269 static void sw_perf_event_destroy(struct perf_event *event) 10270 { 10271 u64 event_id = event->attr.config; 10272 10273 WARN_ON(event->parent); 10274 10275 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10276 swevent_hlist_put(); 10277 } 10278 10279 static struct pmu perf_cpu_clock; /* fwd declaration */ 10280 static struct pmu perf_task_clock; 10281 10282 static int perf_swevent_init(struct perf_event *event) 10283 { 10284 u64 event_id = event->attr.config; 10285 10286 if (event->attr.type != PERF_TYPE_SOFTWARE) 10287 return -ENOENT; 10288 10289 /* 10290 * no branch sampling for software events 10291 */ 10292 if (has_branch_stack(event)) 10293 return -EOPNOTSUPP; 10294 10295 switch (event_id) { 10296 case PERF_COUNT_SW_CPU_CLOCK: 10297 event->attr.type = perf_cpu_clock.type; 10298 return -ENOENT; 10299 case PERF_COUNT_SW_TASK_CLOCK: 10300 event->attr.type = perf_task_clock.type; 10301 return -ENOENT; 10302 10303 default: 10304 break; 10305 } 10306 10307 if (event_id >= PERF_COUNT_SW_MAX) 10308 return -ENOENT; 10309 10310 if (!event->parent) { 10311 int err; 10312 10313 err = swevent_hlist_get(); 10314 if (err) 10315 return err; 10316 10317 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10318 event->destroy = sw_perf_event_destroy; 10319 } 10320 10321 return 0; 10322 } 10323 10324 static struct pmu perf_swevent = { 10325 .task_ctx_nr = perf_sw_context, 10326 10327 .capabilities = PERF_PMU_CAP_NO_NMI, 10328 10329 .event_init = perf_swevent_init, 10330 .add = perf_swevent_add, 10331 .del = perf_swevent_del, 10332 .start = perf_swevent_start, 10333 .stop = perf_swevent_stop, 10334 .read = perf_swevent_read, 10335 }; 10336 10337 #ifdef CONFIG_EVENT_TRACING 10338 10339 static void tp_perf_event_destroy(struct perf_event *event) 10340 { 10341 perf_trace_destroy(event); 10342 } 10343 10344 static int perf_tp_event_init(struct perf_event *event) 10345 { 10346 int err; 10347 10348 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10349 return -ENOENT; 10350 10351 /* 10352 * no branch sampling for tracepoint events 10353 */ 10354 if (has_branch_stack(event)) 10355 return -EOPNOTSUPP; 10356 10357 err = perf_trace_init(event); 10358 if (err) 10359 return err; 10360 10361 event->destroy = tp_perf_event_destroy; 10362 10363 return 0; 10364 } 10365 10366 static struct pmu perf_tracepoint = { 10367 .task_ctx_nr = perf_sw_context, 10368 10369 .event_init = perf_tp_event_init, 10370 .add = perf_trace_add, 10371 .del = perf_trace_del, 10372 .start = perf_swevent_start, 10373 .stop = perf_swevent_stop, 10374 .read = perf_swevent_read, 10375 }; 10376 10377 static int perf_tp_filter_match(struct perf_event *event, 10378 struct perf_sample_data *data) 10379 { 10380 void *record = data->raw->frag.data; 10381 10382 /* only top level events have filters set */ 10383 if (event->parent) 10384 event = event->parent; 10385 10386 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10387 return 1; 10388 return 0; 10389 } 10390 10391 static int perf_tp_event_match(struct perf_event *event, 10392 struct perf_sample_data *data, 10393 struct pt_regs *regs) 10394 { 10395 if (event->hw.state & PERF_HES_STOPPED) 10396 return 0; 10397 /* 10398 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10399 */ 10400 if (event->attr.exclude_kernel && !user_mode(regs)) 10401 return 0; 10402 10403 if (!perf_tp_filter_match(event, data)) 10404 return 0; 10405 10406 return 1; 10407 } 10408 10409 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10410 struct trace_event_call *call, u64 count, 10411 struct pt_regs *regs, struct hlist_head *head, 10412 struct task_struct *task) 10413 { 10414 if (bpf_prog_array_valid(call)) { 10415 *(struct pt_regs **)raw_data = regs; 10416 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10417 perf_swevent_put_recursion_context(rctx); 10418 return; 10419 } 10420 } 10421 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10422 rctx, task); 10423 } 10424 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10425 10426 static void __perf_tp_event_target_task(u64 count, void *record, 10427 struct pt_regs *regs, 10428 struct perf_sample_data *data, 10429 struct perf_event *event) 10430 { 10431 struct trace_entry *entry = record; 10432 10433 if (event->attr.config != entry->type) 10434 return; 10435 /* Cannot deliver synchronous signal to other task. */ 10436 if (event->attr.sigtrap) 10437 return; 10438 if (perf_tp_event_match(event, data, regs)) 10439 perf_swevent_event(event, count, data, regs); 10440 } 10441 10442 static void perf_tp_event_target_task(u64 count, void *record, 10443 struct pt_regs *regs, 10444 struct perf_sample_data *data, 10445 struct perf_event_context *ctx) 10446 { 10447 unsigned int cpu = smp_processor_id(); 10448 struct pmu *pmu = &perf_tracepoint; 10449 struct perf_event *event, *sibling; 10450 10451 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10452 __perf_tp_event_target_task(count, record, regs, data, event); 10453 for_each_sibling_event(sibling, event) 10454 __perf_tp_event_target_task(count, record, regs, data, sibling); 10455 } 10456 10457 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10458 __perf_tp_event_target_task(count, record, regs, data, event); 10459 for_each_sibling_event(sibling, event) 10460 __perf_tp_event_target_task(count, record, regs, data, sibling); 10461 } 10462 } 10463 10464 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10465 struct pt_regs *regs, struct hlist_head *head, int rctx, 10466 struct task_struct *task) 10467 { 10468 struct perf_sample_data data; 10469 struct perf_event *event; 10470 10471 struct perf_raw_record raw = { 10472 .frag = { 10473 .size = entry_size, 10474 .data = record, 10475 }, 10476 }; 10477 10478 perf_sample_data_init(&data, 0, 0); 10479 perf_sample_save_raw_data(&data, &raw); 10480 10481 perf_trace_buf_update(record, event_type); 10482 10483 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10484 if (perf_tp_event_match(event, &data, regs)) { 10485 perf_swevent_event(event, count, &data, regs); 10486 10487 /* 10488 * Here use the same on-stack perf_sample_data, 10489 * some members in data are event-specific and 10490 * need to be re-computed for different sweveents. 10491 * Re-initialize data->sample_flags safely to avoid 10492 * the problem that next event skips preparing data 10493 * because data->sample_flags is set. 10494 */ 10495 perf_sample_data_init(&data, 0, 0); 10496 perf_sample_save_raw_data(&data, &raw); 10497 } 10498 } 10499 10500 /* 10501 * If we got specified a target task, also iterate its context and 10502 * deliver this event there too. 10503 */ 10504 if (task && task != current) { 10505 struct perf_event_context *ctx; 10506 10507 rcu_read_lock(); 10508 ctx = rcu_dereference(task->perf_event_ctxp); 10509 if (!ctx) 10510 goto unlock; 10511 10512 raw_spin_lock(&ctx->lock); 10513 perf_tp_event_target_task(count, record, regs, &data, ctx); 10514 raw_spin_unlock(&ctx->lock); 10515 unlock: 10516 rcu_read_unlock(); 10517 } 10518 10519 perf_swevent_put_recursion_context(rctx); 10520 } 10521 EXPORT_SYMBOL_GPL(perf_tp_event); 10522 10523 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10524 /* 10525 * Flags in config, used by dynamic PMU kprobe and uprobe 10526 * The flags should match following PMU_FORMAT_ATTR(). 10527 * 10528 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10529 * if not set, create kprobe/uprobe 10530 * 10531 * The following values specify a reference counter (or semaphore in the 10532 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10533 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10534 * 10535 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10536 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10537 */ 10538 enum perf_probe_config { 10539 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10540 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10541 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10542 }; 10543 10544 PMU_FORMAT_ATTR(retprobe, "config:0"); 10545 #endif 10546 10547 #ifdef CONFIG_KPROBE_EVENTS 10548 static struct attribute *kprobe_attrs[] = { 10549 &format_attr_retprobe.attr, 10550 NULL, 10551 }; 10552 10553 static struct attribute_group kprobe_format_group = { 10554 .name = "format", 10555 .attrs = kprobe_attrs, 10556 }; 10557 10558 static const struct attribute_group *kprobe_attr_groups[] = { 10559 &kprobe_format_group, 10560 NULL, 10561 }; 10562 10563 static int perf_kprobe_event_init(struct perf_event *event); 10564 static struct pmu perf_kprobe = { 10565 .task_ctx_nr = perf_sw_context, 10566 .event_init = perf_kprobe_event_init, 10567 .add = perf_trace_add, 10568 .del = perf_trace_del, 10569 .start = perf_swevent_start, 10570 .stop = perf_swevent_stop, 10571 .read = perf_swevent_read, 10572 .attr_groups = kprobe_attr_groups, 10573 }; 10574 10575 static int perf_kprobe_event_init(struct perf_event *event) 10576 { 10577 int err; 10578 bool is_retprobe; 10579 10580 if (event->attr.type != perf_kprobe.type) 10581 return -ENOENT; 10582 10583 if (!perfmon_capable()) 10584 return -EACCES; 10585 10586 /* 10587 * no branch sampling for probe events 10588 */ 10589 if (has_branch_stack(event)) 10590 return -EOPNOTSUPP; 10591 10592 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10593 err = perf_kprobe_init(event, is_retprobe); 10594 if (err) 10595 return err; 10596 10597 event->destroy = perf_kprobe_destroy; 10598 10599 return 0; 10600 } 10601 #endif /* CONFIG_KPROBE_EVENTS */ 10602 10603 #ifdef CONFIG_UPROBE_EVENTS 10604 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10605 10606 static struct attribute *uprobe_attrs[] = { 10607 &format_attr_retprobe.attr, 10608 &format_attr_ref_ctr_offset.attr, 10609 NULL, 10610 }; 10611 10612 static struct attribute_group uprobe_format_group = { 10613 .name = "format", 10614 .attrs = uprobe_attrs, 10615 }; 10616 10617 static const struct attribute_group *uprobe_attr_groups[] = { 10618 &uprobe_format_group, 10619 NULL, 10620 }; 10621 10622 static int perf_uprobe_event_init(struct perf_event *event); 10623 static struct pmu perf_uprobe = { 10624 .task_ctx_nr = perf_sw_context, 10625 .event_init = perf_uprobe_event_init, 10626 .add = perf_trace_add, 10627 .del = perf_trace_del, 10628 .start = perf_swevent_start, 10629 .stop = perf_swevent_stop, 10630 .read = perf_swevent_read, 10631 .attr_groups = uprobe_attr_groups, 10632 }; 10633 10634 static int perf_uprobe_event_init(struct perf_event *event) 10635 { 10636 int err; 10637 unsigned long ref_ctr_offset; 10638 bool is_retprobe; 10639 10640 if (event->attr.type != perf_uprobe.type) 10641 return -ENOENT; 10642 10643 if (!perfmon_capable()) 10644 return -EACCES; 10645 10646 /* 10647 * no branch sampling for probe events 10648 */ 10649 if (has_branch_stack(event)) 10650 return -EOPNOTSUPP; 10651 10652 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10653 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10654 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10655 if (err) 10656 return err; 10657 10658 event->destroy = perf_uprobe_destroy; 10659 10660 return 0; 10661 } 10662 #endif /* CONFIG_UPROBE_EVENTS */ 10663 10664 static inline void perf_tp_register(void) 10665 { 10666 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10667 #ifdef CONFIG_KPROBE_EVENTS 10668 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10669 #endif 10670 #ifdef CONFIG_UPROBE_EVENTS 10671 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10672 #endif 10673 } 10674 10675 static void perf_event_free_filter(struct perf_event *event) 10676 { 10677 ftrace_profile_free_filter(event); 10678 } 10679 10680 /* 10681 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10682 * with perf_event_open() 10683 */ 10684 static inline bool perf_event_is_tracing(struct perf_event *event) 10685 { 10686 if (event->pmu == &perf_tracepoint) 10687 return true; 10688 #ifdef CONFIG_KPROBE_EVENTS 10689 if (event->pmu == &perf_kprobe) 10690 return true; 10691 #endif 10692 #ifdef CONFIG_UPROBE_EVENTS 10693 if (event->pmu == &perf_uprobe) 10694 return true; 10695 #endif 10696 return false; 10697 } 10698 10699 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10700 u64 bpf_cookie) 10701 { 10702 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10703 10704 if (!perf_event_is_tracing(event)) 10705 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10706 10707 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10708 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10709 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10710 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10711 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10712 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10713 return -EINVAL; 10714 10715 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10716 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10717 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10718 return -EINVAL; 10719 10720 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10721 /* only uprobe programs are allowed to be sleepable */ 10722 return -EINVAL; 10723 10724 /* Kprobe override only works for kprobes, not uprobes. */ 10725 if (prog->kprobe_override && !is_kprobe) 10726 return -EINVAL; 10727 10728 if (is_tracepoint || is_syscall_tp) { 10729 int off = trace_event_get_offsets(event->tp_event); 10730 10731 if (prog->aux->max_ctx_offset > off) 10732 return -EACCES; 10733 } 10734 10735 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10736 } 10737 10738 void perf_event_free_bpf_prog(struct perf_event *event) 10739 { 10740 if (!perf_event_is_tracing(event)) { 10741 perf_event_free_bpf_handler(event); 10742 return; 10743 } 10744 perf_event_detach_bpf_prog(event); 10745 } 10746 10747 #else 10748 10749 static inline void perf_tp_register(void) 10750 { 10751 } 10752 10753 static void perf_event_free_filter(struct perf_event *event) 10754 { 10755 } 10756 10757 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10758 u64 bpf_cookie) 10759 { 10760 return -ENOENT; 10761 } 10762 10763 void perf_event_free_bpf_prog(struct perf_event *event) 10764 { 10765 } 10766 #endif /* CONFIG_EVENT_TRACING */ 10767 10768 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10769 void perf_bp_event(struct perf_event *bp, void *data) 10770 { 10771 struct perf_sample_data sample; 10772 struct pt_regs *regs = data; 10773 10774 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10775 10776 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10777 perf_swevent_event(bp, 1, &sample, regs); 10778 } 10779 #endif 10780 10781 /* 10782 * Allocate a new address filter 10783 */ 10784 static struct perf_addr_filter * 10785 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10786 { 10787 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10788 struct perf_addr_filter *filter; 10789 10790 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10791 if (!filter) 10792 return NULL; 10793 10794 INIT_LIST_HEAD(&filter->entry); 10795 list_add_tail(&filter->entry, filters); 10796 10797 return filter; 10798 } 10799 10800 static void free_filters_list(struct list_head *filters) 10801 { 10802 struct perf_addr_filter *filter, *iter; 10803 10804 list_for_each_entry_safe(filter, iter, filters, entry) { 10805 path_put(&filter->path); 10806 list_del(&filter->entry); 10807 kfree(filter); 10808 } 10809 } 10810 10811 /* 10812 * Free existing address filters and optionally install new ones 10813 */ 10814 static void perf_addr_filters_splice(struct perf_event *event, 10815 struct list_head *head) 10816 { 10817 unsigned long flags; 10818 LIST_HEAD(list); 10819 10820 if (!has_addr_filter(event)) 10821 return; 10822 10823 /* don't bother with children, they don't have their own filters */ 10824 if (event->parent) 10825 return; 10826 10827 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10828 10829 list_splice_init(&event->addr_filters.list, &list); 10830 if (head) 10831 list_splice(head, &event->addr_filters.list); 10832 10833 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10834 10835 free_filters_list(&list); 10836 } 10837 10838 /* 10839 * Scan through mm's vmas and see if one of them matches the 10840 * @filter; if so, adjust filter's address range. 10841 * Called with mm::mmap_lock down for reading. 10842 */ 10843 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10844 struct mm_struct *mm, 10845 struct perf_addr_filter_range *fr) 10846 { 10847 struct vm_area_struct *vma; 10848 VMA_ITERATOR(vmi, mm, 0); 10849 10850 for_each_vma(vmi, vma) { 10851 if (!vma->vm_file) 10852 continue; 10853 10854 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10855 return; 10856 } 10857 } 10858 10859 /* 10860 * Update event's address range filters based on the 10861 * task's existing mappings, if any. 10862 */ 10863 static void perf_event_addr_filters_apply(struct perf_event *event) 10864 { 10865 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10866 struct task_struct *task = READ_ONCE(event->ctx->task); 10867 struct perf_addr_filter *filter; 10868 struct mm_struct *mm = NULL; 10869 unsigned int count = 0; 10870 unsigned long flags; 10871 10872 /* 10873 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10874 * will stop on the parent's child_mutex that our caller is also holding 10875 */ 10876 if (task == TASK_TOMBSTONE) 10877 return; 10878 10879 if (ifh->nr_file_filters) { 10880 mm = get_task_mm(task); 10881 if (!mm) 10882 goto restart; 10883 10884 mmap_read_lock(mm); 10885 } 10886 10887 raw_spin_lock_irqsave(&ifh->lock, flags); 10888 list_for_each_entry(filter, &ifh->list, entry) { 10889 if (filter->path.dentry) { 10890 /* 10891 * Adjust base offset if the filter is associated to a 10892 * binary that needs to be mapped: 10893 */ 10894 event->addr_filter_ranges[count].start = 0; 10895 event->addr_filter_ranges[count].size = 0; 10896 10897 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10898 } else { 10899 event->addr_filter_ranges[count].start = filter->offset; 10900 event->addr_filter_ranges[count].size = filter->size; 10901 } 10902 10903 count++; 10904 } 10905 10906 event->addr_filters_gen++; 10907 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10908 10909 if (ifh->nr_file_filters) { 10910 mmap_read_unlock(mm); 10911 10912 mmput(mm); 10913 } 10914 10915 restart: 10916 perf_event_stop(event, 1); 10917 } 10918 10919 /* 10920 * Address range filtering: limiting the data to certain 10921 * instruction address ranges. Filters are ioctl()ed to us from 10922 * userspace as ascii strings. 10923 * 10924 * Filter string format: 10925 * 10926 * ACTION RANGE_SPEC 10927 * where ACTION is one of the 10928 * * "filter": limit the trace to this region 10929 * * "start": start tracing from this address 10930 * * "stop": stop tracing at this address/region; 10931 * RANGE_SPEC is 10932 * * for kernel addresses: <start address>[/<size>] 10933 * * for object files: <start address>[/<size>]@</path/to/object/file> 10934 * 10935 * if <size> is not specified or is zero, the range is treated as a single 10936 * address; not valid for ACTION=="filter". 10937 */ 10938 enum { 10939 IF_ACT_NONE = -1, 10940 IF_ACT_FILTER, 10941 IF_ACT_START, 10942 IF_ACT_STOP, 10943 IF_SRC_FILE, 10944 IF_SRC_KERNEL, 10945 IF_SRC_FILEADDR, 10946 IF_SRC_KERNELADDR, 10947 }; 10948 10949 enum { 10950 IF_STATE_ACTION = 0, 10951 IF_STATE_SOURCE, 10952 IF_STATE_END, 10953 }; 10954 10955 static const match_table_t if_tokens = { 10956 { IF_ACT_FILTER, "filter" }, 10957 { IF_ACT_START, "start" }, 10958 { IF_ACT_STOP, "stop" }, 10959 { IF_SRC_FILE, "%u/%u@%s" }, 10960 { IF_SRC_KERNEL, "%u/%u" }, 10961 { IF_SRC_FILEADDR, "%u@%s" }, 10962 { IF_SRC_KERNELADDR, "%u" }, 10963 { IF_ACT_NONE, NULL }, 10964 }; 10965 10966 /* 10967 * Address filter string parser 10968 */ 10969 static int 10970 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10971 struct list_head *filters) 10972 { 10973 struct perf_addr_filter *filter = NULL; 10974 char *start, *orig, *filename = NULL; 10975 substring_t args[MAX_OPT_ARGS]; 10976 int state = IF_STATE_ACTION, token; 10977 unsigned int kernel = 0; 10978 int ret = -EINVAL; 10979 10980 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10981 if (!fstr) 10982 return -ENOMEM; 10983 10984 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10985 static const enum perf_addr_filter_action_t actions[] = { 10986 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10987 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10988 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10989 }; 10990 ret = -EINVAL; 10991 10992 if (!*start) 10993 continue; 10994 10995 /* filter definition begins */ 10996 if (state == IF_STATE_ACTION) { 10997 filter = perf_addr_filter_new(event, filters); 10998 if (!filter) 10999 goto fail; 11000 } 11001 11002 token = match_token(start, if_tokens, args); 11003 switch (token) { 11004 case IF_ACT_FILTER: 11005 case IF_ACT_START: 11006 case IF_ACT_STOP: 11007 if (state != IF_STATE_ACTION) 11008 goto fail; 11009 11010 filter->action = actions[token]; 11011 state = IF_STATE_SOURCE; 11012 break; 11013 11014 case IF_SRC_KERNELADDR: 11015 case IF_SRC_KERNEL: 11016 kernel = 1; 11017 fallthrough; 11018 11019 case IF_SRC_FILEADDR: 11020 case IF_SRC_FILE: 11021 if (state != IF_STATE_SOURCE) 11022 goto fail; 11023 11024 *args[0].to = 0; 11025 ret = kstrtoul(args[0].from, 0, &filter->offset); 11026 if (ret) 11027 goto fail; 11028 11029 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11030 *args[1].to = 0; 11031 ret = kstrtoul(args[1].from, 0, &filter->size); 11032 if (ret) 11033 goto fail; 11034 } 11035 11036 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11037 int fpos = token == IF_SRC_FILE ? 2 : 1; 11038 11039 kfree(filename); 11040 filename = match_strdup(&args[fpos]); 11041 if (!filename) { 11042 ret = -ENOMEM; 11043 goto fail; 11044 } 11045 } 11046 11047 state = IF_STATE_END; 11048 break; 11049 11050 default: 11051 goto fail; 11052 } 11053 11054 /* 11055 * Filter definition is fully parsed, validate and install it. 11056 * Make sure that it doesn't contradict itself or the event's 11057 * attribute. 11058 */ 11059 if (state == IF_STATE_END) { 11060 ret = -EINVAL; 11061 11062 /* 11063 * ACTION "filter" must have a non-zero length region 11064 * specified. 11065 */ 11066 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11067 !filter->size) 11068 goto fail; 11069 11070 if (!kernel) { 11071 if (!filename) 11072 goto fail; 11073 11074 /* 11075 * For now, we only support file-based filters 11076 * in per-task events; doing so for CPU-wide 11077 * events requires additional context switching 11078 * trickery, since same object code will be 11079 * mapped at different virtual addresses in 11080 * different processes. 11081 */ 11082 ret = -EOPNOTSUPP; 11083 if (!event->ctx->task) 11084 goto fail; 11085 11086 /* look up the path and grab its inode */ 11087 ret = kern_path(filename, LOOKUP_FOLLOW, 11088 &filter->path); 11089 if (ret) 11090 goto fail; 11091 11092 ret = -EINVAL; 11093 if (!filter->path.dentry || 11094 !S_ISREG(d_inode(filter->path.dentry) 11095 ->i_mode)) 11096 goto fail; 11097 11098 event->addr_filters.nr_file_filters++; 11099 } 11100 11101 /* ready to consume more filters */ 11102 kfree(filename); 11103 filename = NULL; 11104 state = IF_STATE_ACTION; 11105 filter = NULL; 11106 kernel = 0; 11107 } 11108 } 11109 11110 if (state != IF_STATE_ACTION) 11111 goto fail; 11112 11113 kfree(filename); 11114 kfree(orig); 11115 11116 return 0; 11117 11118 fail: 11119 kfree(filename); 11120 free_filters_list(filters); 11121 kfree(orig); 11122 11123 return ret; 11124 } 11125 11126 static int 11127 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11128 { 11129 LIST_HEAD(filters); 11130 int ret; 11131 11132 /* 11133 * Since this is called in perf_ioctl() path, we're already holding 11134 * ctx::mutex. 11135 */ 11136 lockdep_assert_held(&event->ctx->mutex); 11137 11138 if (WARN_ON_ONCE(event->parent)) 11139 return -EINVAL; 11140 11141 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11142 if (ret) 11143 goto fail_clear_files; 11144 11145 ret = event->pmu->addr_filters_validate(&filters); 11146 if (ret) 11147 goto fail_free_filters; 11148 11149 /* remove existing filters, if any */ 11150 perf_addr_filters_splice(event, &filters); 11151 11152 /* install new filters */ 11153 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11154 11155 return ret; 11156 11157 fail_free_filters: 11158 free_filters_list(&filters); 11159 11160 fail_clear_files: 11161 event->addr_filters.nr_file_filters = 0; 11162 11163 return ret; 11164 } 11165 11166 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11167 { 11168 int ret = -EINVAL; 11169 char *filter_str; 11170 11171 filter_str = strndup_user(arg, PAGE_SIZE); 11172 if (IS_ERR(filter_str)) 11173 return PTR_ERR(filter_str); 11174 11175 #ifdef CONFIG_EVENT_TRACING 11176 if (perf_event_is_tracing(event)) { 11177 struct perf_event_context *ctx = event->ctx; 11178 11179 /* 11180 * Beware, here be dragons!! 11181 * 11182 * the tracepoint muck will deadlock against ctx->mutex, but 11183 * the tracepoint stuff does not actually need it. So 11184 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11185 * already have a reference on ctx. 11186 * 11187 * This can result in event getting moved to a different ctx, 11188 * but that does not affect the tracepoint state. 11189 */ 11190 mutex_unlock(&ctx->mutex); 11191 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11192 mutex_lock(&ctx->mutex); 11193 } else 11194 #endif 11195 if (has_addr_filter(event)) 11196 ret = perf_event_set_addr_filter(event, filter_str); 11197 11198 kfree(filter_str); 11199 return ret; 11200 } 11201 11202 /* 11203 * hrtimer based swevent callback 11204 */ 11205 11206 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11207 { 11208 enum hrtimer_restart ret = HRTIMER_RESTART; 11209 struct perf_sample_data data; 11210 struct pt_regs *regs; 11211 struct perf_event *event; 11212 u64 period; 11213 11214 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11215 11216 if (event->state != PERF_EVENT_STATE_ACTIVE) 11217 return HRTIMER_NORESTART; 11218 11219 event->pmu->read(event); 11220 11221 perf_sample_data_init(&data, 0, event->hw.last_period); 11222 regs = get_irq_regs(); 11223 11224 if (regs && !perf_exclude_event(event, regs)) { 11225 if (!(event->attr.exclude_idle && is_idle_task(current))) 11226 if (__perf_event_overflow(event, 1, &data, regs)) 11227 ret = HRTIMER_NORESTART; 11228 } 11229 11230 period = max_t(u64, 10000, event->hw.sample_period); 11231 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11232 11233 return ret; 11234 } 11235 11236 static void perf_swevent_start_hrtimer(struct perf_event *event) 11237 { 11238 struct hw_perf_event *hwc = &event->hw; 11239 s64 period; 11240 11241 if (!is_sampling_event(event)) 11242 return; 11243 11244 period = local64_read(&hwc->period_left); 11245 if (period) { 11246 if (period < 0) 11247 period = 10000; 11248 11249 local64_set(&hwc->period_left, 0); 11250 } else { 11251 period = max_t(u64, 10000, hwc->sample_period); 11252 } 11253 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11254 HRTIMER_MODE_REL_PINNED_HARD); 11255 } 11256 11257 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11258 { 11259 struct hw_perf_event *hwc = &event->hw; 11260 11261 if (is_sampling_event(event)) { 11262 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11263 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11264 11265 hrtimer_cancel(&hwc->hrtimer); 11266 } 11267 } 11268 11269 static void perf_swevent_init_hrtimer(struct perf_event *event) 11270 { 11271 struct hw_perf_event *hwc = &event->hw; 11272 11273 if (!is_sampling_event(event)) 11274 return; 11275 11276 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11277 hwc->hrtimer.function = perf_swevent_hrtimer; 11278 11279 /* 11280 * Since hrtimers have a fixed rate, we can do a static freq->period 11281 * mapping and avoid the whole period adjust feedback stuff. 11282 */ 11283 if (event->attr.freq) { 11284 long freq = event->attr.sample_freq; 11285 11286 event->attr.sample_period = NSEC_PER_SEC / freq; 11287 hwc->sample_period = event->attr.sample_period; 11288 local64_set(&hwc->period_left, hwc->sample_period); 11289 hwc->last_period = hwc->sample_period; 11290 event->attr.freq = 0; 11291 } 11292 } 11293 11294 /* 11295 * Software event: cpu wall time clock 11296 */ 11297 11298 static void cpu_clock_event_update(struct perf_event *event) 11299 { 11300 s64 prev; 11301 u64 now; 11302 11303 now = local_clock(); 11304 prev = local64_xchg(&event->hw.prev_count, now); 11305 local64_add(now - prev, &event->count); 11306 } 11307 11308 static void cpu_clock_event_start(struct perf_event *event, int flags) 11309 { 11310 local64_set(&event->hw.prev_count, local_clock()); 11311 perf_swevent_start_hrtimer(event); 11312 } 11313 11314 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11315 { 11316 perf_swevent_cancel_hrtimer(event); 11317 cpu_clock_event_update(event); 11318 } 11319 11320 static int cpu_clock_event_add(struct perf_event *event, int flags) 11321 { 11322 if (flags & PERF_EF_START) 11323 cpu_clock_event_start(event, flags); 11324 perf_event_update_userpage(event); 11325 11326 return 0; 11327 } 11328 11329 static void cpu_clock_event_del(struct perf_event *event, int flags) 11330 { 11331 cpu_clock_event_stop(event, flags); 11332 } 11333 11334 static void cpu_clock_event_read(struct perf_event *event) 11335 { 11336 cpu_clock_event_update(event); 11337 } 11338 11339 static int cpu_clock_event_init(struct perf_event *event) 11340 { 11341 if (event->attr.type != perf_cpu_clock.type) 11342 return -ENOENT; 11343 11344 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11345 return -ENOENT; 11346 11347 /* 11348 * no branch sampling for software events 11349 */ 11350 if (has_branch_stack(event)) 11351 return -EOPNOTSUPP; 11352 11353 perf_swevent_init_hrtimer(event); 11354 11355 return 0; 11356 } 11357 11358 static struct pmu perf_cpu_clock = { 11359 .task_ctx_nr = perf_sw_context, 11360 11361 .capabilities = PERF_PMU_CAP_NO_NMI, 11362 .dev = PMU_NULL_DEV, 11363 11364 .event_init = cpu_clock_event_init, 11365 .add = cpu_clock_event_add, 11366 .del = cpu_clock_event_del, 11367 .start = cpu_clock_event_start, 11368 .stop = cpu_clock_event_stop, 11369 .read = cpu_clock_event_read, 11370 }; 11371 11372 /* 11373 * Software event: task time clock 11374 */ 11375 11376 static void task_clock_event_update(struct perf_event *event, u64 now) 11377 { 11378 u64 prev; 11379 s64 delta; 11380 11381 prev = local64_xchg(&event->hw.prev_count, now); 11382 delta = now - prev; 11383 local64_add(delta, &event->count); 11384 } 11385 11386 static void task_clock_event_start(struct perf_event *event, int flags) 11387 { 11388 local64_set(&event->hw.prev_count, event->ctx->time); 11389 perf_swevent_start_hrtimer(event); 11390 } 11391 11392 static void task_clock_event_stop(struct perf_event *event, int flags) 11393 { 11394 perf_swevent_cancel_hrtimer(event); 11395 task_clock_event_update(event, event->ctx->time); 11396 } 11397 11398 static int task_clock_event_add(struct perf_event *event, int flags) 11399 { 11400 if (flags & PERF_EF_START) 11401 task_clock_event_start(event, flags); 11402 perf_event_update_userpage(event); 11403 11404 return 0; 11405 } 11406 11407 static void task_clock_event_del(struct perf_event *event, int flags) 11408 { 11409 task_clock_event_stop(event, PERF_EF_UPDATE); 11410 } 11411 11412 static void task_clock_event_read(struct perf_event *event) 11413 { 11414 u64 now = perf_clock(); 11415 u64 delta = now - event->ctx->timestamp; 11416 u64 time = event->ctx->time + delta; 11417 11418 task_clock_event_update(event, time); 11419 } 11420 11421 static int task_clock_event_init(struct perf_event *event) 11422 { 11423 if (event->attr.type != perf_task_clock.type) 11424 return -ENOENT; 11425 11426 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11427 return -ENOENT; 11428 11429 /* 11430 * no branch sampling for software events 11431 */ 11432 if (has_branch_stack(event)) 11433 return -EOPNOTSUPP; 11434 11435 perf_swevent_init_hrtimer(event); 11436 11437 return 0; 11438 } 11439 11440 static struct pmu perf_task_clock = { 11441 .task_ctx_nr = perf_sw_context, 11442 11443 .capabilities = PERF_PMU_CAP_NO_NMI, 11444 .dev = PMU_NULL_DEV, 11445 11446 .event_init = task_clock_event_init, 11447 .add = task_clock_event_add, 11448 .del = task_clock_event_del, 11449 .start = task_clock_event_start, 11450 .stop = task_clock_event_stop, 11451 .read = task_clock_event_read, 11452 }; 11453 11454 static void perf_pmu_nop_void(struct pmu *pmu) 11455 { 11456 } 11457 11458 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11459 { 11460 } 11461 11462 static int perf_pmu_nop_int(struct pmu *pmu) 11463 { 11464 return 0; 11465 } 11466 11467 static int perf_event_nop_int(struct perf_event *event, u64 value) 11468 { 11469 return 0; 11470 } 11471 11472 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11473 11474 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11475 { 11476 __this_cpu_write(nop_txn_flags, flags); 11477 11478 if (flags & ~PERF_PMU_TXN_ADD) 11479 return; 11480 11481 perf_pmu_disable(pmu); 11482 } 11483 11484 static int perf_pmu_commit_txn(struct pmu *pmu) 11485 { 11486 unsigned int flags = __this_cpu_read(nop_txn_flags); 11487 11488 __this_cpu_write(nop_txn_flags, 0); 11489 11490 if (flags & ~PERF_PMU_TXN_ADD) 11491 return 0; 11492 11493 perf_pmu_enable(pmu); 11494 return 0; 11495 } 11496 11497 static void perf_pmu_cancel_txn(struct pmu *pmu) 11498 { 11499 unsigned int flags = __this_cpu_read(nop_txn_flags); 11500 11501 __this_cpu_write(nop_txn_flags, 0); 11502 11503 if (flags & ~PERF_PMU_TXN_ADD) 11504 return; 11505 11506 perf_pmu_enable(pmu); 11507 } 11508 11509 static int perf_event_idx_default(struct perf_event *event) 11510 { 11511 return 0; 11512 } 11513 11514 static void free_pmu_context(struct pmu *pmu) 11515 { 11516 free_percpu(pmu->cpu_pmu_context); 11517 } 11518 11519 /* 11520 * Let userspace know that this PMU supports address range filtering: 11521 */ 11522 static ssize_t nr_addr_filters_show(struct device *dev, 11523 struct device_attribute *attr, 11524 char *page) 11525 { 11526 struct pmu *pmu = dev_get_drvdata(dev); 11527 11528 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11529 } 11530 DEVICE_ATTR_RO(nr_addr_filters); 11531 11532 static struct idr pmu_idr; 11533 11534 static ssize_t 11535 type_show(struct device *dev, struct device_attribute *attr, char *page) 11536 { 11537 struct pmu *pmu = dev_get_drvdata(dev); 11538 11539 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11540 } 11541 static DEVICE_ATTR_RO(type); 11542 11543 static ssize_t 11544 perf_event_mux_interval_ms_show(struct device *dev, 11545 struct device_attribute *attr, 11546 char *page) 11547 { 11548 struct pmu *pmu = dev_get_drvdata(dev); 11549 11550 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11551 } 11552 11553 static DEFINE_MUTEX(mux_interval_mutex); 11554 11555 static ssize_t 11556 perf_event_mux_interval_ms_store(struct device *dev, 11557 struct device_attribute *attr, 11558 const char *buf, size_t count) 11559 { 11560 struct pmu *pmu = dev_get_drvdata(dev); 11561 int timer, cpu, ret; 11562 11563 ret = kstrtoint(buf, 0, &timer); 11564 if (ret) 11565 return ret; 11566 11567 if (timer < 1) 11568 return -EINVAL; 11569 11570 /* same value, noting to do */ 11571 if (timer == pmu->hrtimer_interval_ms) 11572 return count; 11573 11574 mutex_lock(&mux_interval_mutex); 11575 pmu->hrtimer_interval_ms = timer; 11576 11577 /* update all cpuctx for this PMU */ 11578 cpus_read_lock(); 11579 for_each_online_cpu(cpu) { 11580 struct perf_cpu_pmu_context *cpc; 11581 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11582 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11583 11584 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11585 } 11586 cpus_read_unlock(); 11587 mutex_unlock(&mux_interval_mutex); 11588 11589 return count; 11590 } 11591 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11592 11593 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11594 { 11595 switch (scope) { 11596 case PERF_PMU_SCOPE_CORE: 11597 return topology_sibling_cpumask(cpu); 11598 case PERF_PMU_SCOPE_DIE: 11599 return topology_die_cpumask(cpu); 11600 case PERF_PMU_SCOPE_CLUSTER: 11601 return topology_cluster_cpumask(cpu); 11602 case PERF_PMU_SCOPE_PKG: 11603 return topology_core_cpumask(cpu); 11604 case PERF_PMU_SCOPE_SYS_WIDE: 11605 return cpu_online_mask; 11606 } 11607 11608 return NULL; 11609 } 11610 11611 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11612 { 11613 switch (scope) { 11614 case PERF_PMU_SCOPE_CORE: 11615 return perf_online_core_mask; 11616 case PERF_PMU_SCOPE_DIE: 11617 return perf_online_die_mask; 11618 case PERF_PMU_SCOPE_CLUSTER: 11619 return perf_online_cluster_mask; 11620 case PERF_PMU_SCOPE_PKG: 11621 return perf_online_pkg_mask; 11622 case PERF_PMU_SCOPE_SYS_WIDE: 11623 return perf_online_sys_mask; 11624 } 11625 11626 return NULL; 11627 } 11628 11629 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11630 char *buf) 11631 { 11632 struct pmu *pmu = dev_get_drvdata(dev); 11633 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11634 11635 if (mask) 11636 return cpumap_print_to_pagebuf(true, buf, mask); 11637 return 0; 11638 } 11639 11640 static DEVICE_ATTR_RO(cpumask); 11641 11642 static struct attribute *pmu_dev_attrs[] = { 11643 &dev_attr_type.attr, 11644 &dev_attr_perf_event_mux_interval_ms.attr, 11645 &dev_attr_nr_addr_filters.attr, 11646 &dev_attr_cpumask.attr, 11647 NULL, 11648 }; 11649 11650 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11651 { 11652 struct device *dev = kobj_to_dev(kobj); 11653 struct pmu *pmu = dev_get_drvdata(dev); 11654 11655 if (n == 2 && !pmu->nr_addr_filters) 11656 return 0; 11657 11658 /* cpumask */ 11659 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11660 return 0; 11661 11662 return a->mode; 11663 } 11664 11665 static struct attribute_group pmu_dev_attr_group = { 11666 .is_visible = pmu_dev_is_visible, 11667 .attrs = pmu_dev_attrs, 11668 }; 11669 11670 static const struct attribute_group *pmu_dev_groups[] = { 11671 &pmu_dev_attr_group, 11672 NULL, 11673 }; 11674 11675 static int pmu_bus_running; 11676 static struct bus_type pmu_bus = { 11677 .name = "event_source", 11678 .dev_groups = pmu_dev_groups, 11679 }; 11680 11681 static void pmu_dev_release(struct device *dev) 11682 { 11683 kfree(dev); 11684 } 11685 11686 static int pmu_dev_alloc(struct pmu *pmu) 11687 { 11688 int ret = -ENOMEM; 11689 11690 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11691 if (!pmu->dev) 11692 goto out; 11693 11694 pmu->dev->groups = pmu->attr_groups; 11695 device_initialize(pmu->dev); 11696 11697 dev_set_drvdata(pmu->dev, pmu); 11698 pmu->dev->bus = &pmu_bus; 11699 pmu->dev->parent = pmu->parent; 11700 pmu->dev->release = pmu_dev_release; 11701 11702 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11703 if (ret) 11704 goto free_dev; 11705 11706 ret = device_add(pmu->dev); 11707 if (ret) 11708 goto free_dev; 11709 11710 if (pmu->attr_update) { 11711 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11712 if (ret) 11713 goto del_dev; 11714 } 11715 11716 out: 11717 return ret; 11718 11719 del_dev: 11720 device_del(pmu->dev); 11721 11722 free_dev: 11723 put_device(pmu->dev); 11724 goto out; 11725 } 11726 11727 static struct lock_class_key cpuctx_mutex; 11728 static struct lock_class_key cpuctx_lock; 11729 11730 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11731 { 11732 int cpu, ret, max = PERF_TYPE_MAX; 11733 11734 mutex_lock(&pmus_lock); 11735 ret = -ENOMEM; 11736 pmu->pmu_disable_count = alloc_percpu(int); 11737 if (!pmu->pmu_disable_count) 11738 goto unlock; 11739 11740 pmu->type = -1; 11741 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11742 ret = -EINVAL; 11743 goto free_pdc; 11744 } 11745 11746 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11747 ret = -EINVAL; 11748 goto free_pdc; 11749 } 11750 11751 pmu->name = name; 11752 11753 if (type >= 0) 11754 max = type; 11755 11756 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11757 if (ret < 0) 11758 goto free_pdc; 11759 11760 WARN_ON(type >= 0 && ret != type); 11761 11762 type = ret; 11763 pmu->type = type; 11764 11765 if (pmu_bus_running && !pmu->dev) { 11766 ret = pmu_dev_alloc(pmu); 11767 if (ret) 11768 goto free_idr; 11769 } 11770 11771 ret = -ENOMEM; 11772 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11773 if (!pmu->cpu_pmu_context) 11774 goto free_dev; 11775 11776 for_each_possible_cpu(cpu) { 11777 struct perf_cpu_pmu_context *cpc; 11778 11779 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11780 __perf_init_event_pmu_context(&cpc->epc, pmu); 11781 __perf_mux_hrtimer_init(cpc, cpu); 11782 } 11783 11784 if (!pmu->start_txn) { 11785 if (pmu->pmu_enable) { 11786 /* 11787 * If we have pmu_enable/pmu_disable calls, install 11788 * transaction stubs that use that to try and batch 11789 * hardware accesses. 11790 */ 11791 pmu->start_txn = perf_pmu_start_txn; 11792 pmu->commit_txn = perf_pmu_commit_txn; 11793 pmu->cancel_txn = perf_pmu_cancel_txn; 11794 } else { 11795 pmu->start_txn = perf_pmu_nop_txn; 11796 pmu->commit_txn = perf_pmu_nop_int; 11797 pmu->cancel_txn = perf_pmu_nop_void; 11798 } 11799 } 11800 11801 if (!pmu->pmu_enable) { 11802 pmu->pmu_enable = perf_pmu_nop_void; 11803 pmu->pmu_disable = perf_pmu_nop_void; 11804 } 11805 11806 if (!pmu->check_period) 11807 pmu->check_period = perf_event_nop_int; 11808 11809 if (!pmu->event_idx) 11810 pmu->event_idx = perf_event_idx_default; 11811 11812 list_add_rcu(&pmu->entry, &pmus); 11813 atomic_set(&pmu->exclusive_cnt, 0); 11814 ret = 0; 11815 unlock: 11816 mutex_unlock(&pmus_lock); 11817 11818 return ret; 11819 11820 free_dev: 11821 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11822 device_del(pmu->dev); 11823 put_device(pmu->dev); 11824 } 11825 11826 free_idr: 11827 idr_remove(&pmu_idr, pmu->type); 11828 11829 free_pdc: 11830 free_percpu(pmu->pmu_disable_count); 11831 goto unlock; 11832 } 11833 EXPORT_SYMBOL_GPL(perf_pmu_register); 11834 11835 void perf_pmu_unregister(struct pmu *pmu) 11836 { 11837 mutex_lock(&pmus_lock); 11838 list_del_rcu(&pmu->entry); 11839 11840 /* 11841 * We dereference the pmu list under both SRCU and regular RCU, so 11842 * synchronize against both of those. 11843 */ 11844 synchronize_srcu(&pmus_srcu); 11845 synchronize_rcu(); 11846 11847 free_percpu(pmu->pmu_disable_count); 11848 idr_remove(&pmu_idr, pmu->type); 11849 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11850 if (pmu->nr_addr_filters) 11851 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11852 device_del(pmu->dev); 11853 put_device(pmu->dev); 11854 } 11855 free_pmu_context(pmu); 11856 mutex_unlock(&pmus_lock); 11857 } 11858 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11859 11860 static inline bool has_extended_regs(struct perf_event *event) 11861 { 11862 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11863 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11864 } 11865 11866 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11867 { 11868 struct perf_event_context *ctx = NULL; 11869 int ret; 11870 11871 if (!try_module_get(pmu->module)) 11872 return -ENODEV; 11873 11874 /* 11875 * A number of pmu->event_init() methods iterate the sibling_list to, 11876 * for example, validate if the group fits on the PMU. Therefore, 11877 * if this is a sibling event, acquire the ctx->mutex to protect 11878 * the sibling_list. 11879 */ 11880 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11881 /* 11882 * This ctx->mutex can nest when we're called through 11883 * inheritance. See the perf_event_ctx_lock_nested() comment. 11884 */ 11885 ctx = perf_event_ctx_lock_nested(event->group_leader, 11886 SINGLE_DEPTH_NESTING); 11887 BUG_ON(!ctx); 11888 } 11889 11890 event->pmu = pmu; 11891 ret = pmu->event_init(event); 11892 11893 if (ctx) 11894 perf_event_ctx_unlock(event->group_leader, ctx); 11895 11896 if (!ret) { 11897 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11898 has_extended_regs(event)) 11899 ret = -EOPNOTSUPP; 11900 11901 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11902 event_has_any_exclude_flag(event)) 11903 ret = -EINVAL; 11904 11905 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 11906 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 11907 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 11908 int cpu; 11909 11910 if (pmu_cpumask && cpumask) { 11911 cpu = cpumask_any_and(pmu_cpumask, cpumask); 11912 if (cpu >= nr_cpu_ids) 11913 ret = -ENODEV; 11914 else 11915 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 11916 } else { 11917 ret = -ENODEV; 11918 } 11919 } 11920 11921 if (ret && event->destroy) 11922 event->destroy(event); 11923 } 11924 11925 if (ret) 11926 module_put(pmu->module); 11927 11928 return ret; 11929 } 11930 11931 static struct pmu *perf_init_event(struct perf_event *event) 11932 { 11933 bool extended_type = false; 11934 int idx, type, ret; 11935 struct pmu *pmu; 11936 11937 idx = srcu_read_lock(&pmus_srcu); 11938 11939 /* 11940 * Save original type before calling pmu->event_init() since certain 11941 * pmus overwrites event->attr.type to forward event to another pmu. 11942 */ 11943 event->orig_type = event->attr.type; 11944 11945 /* Try parent's PMU first: */ 11946 if (event->parent && event->parent->pmu) { 11947 pmu = event->parent->pmu; 11948 ret = perf_try_init_event(pmu, event); 11949 if (!ret) 11950 goto unlock; 11951 } 11952 11953 /* 11954 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11955 * are often aliases for PERF_TYPE_RAW. 11956 */ 11957 type = event->attr.type; 11958 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11959 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11960 if (!type) { 11961 type = PERF_TYPE_RAW; 11962 } else { 11963 extended_type = true; 11964 event->attr.config &= PERF_HW_EVENT_MASK; 11965 } 11966 } 11967 11968 again: 11969 rcu_read_lock(); 11970 pmu = idr_find(&pmu_idr, type); 11971 rcu_read_unlock(); 11972 if (pmu) { 11973 if (event->attr.type != type && type != PERF_TYPE_RAW && 11974 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11975 goto fail; 11976 11977 ret = perf_try_init_event(pmu, event); 11978 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11979 type = event->attr.type; 11980 goto again; 11981 } 11982 11983 if (ret) 11984 pmu = ERR_PTR(ret); 11985 11986 goto unlock; 11987 } 11988 11989 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11990 ret = perf_try_init_event(pmu, event); 11991 if (!ret) 11992 goto unlock; 11993 11994 if (ret != -ENOENT) { 11995 pmu = ERR_PTR(ret); 11996 goto unlock; 11997 } 11998 } 11999 fail: 12000 pmu = ERR_PTR(-ENOENT); 12001 unlock: 12002 srcu_read_unlock(&pmus_srcu, idx); 12003 12004 return pmu; 12005 } 12006 12007 static void attach_sb_event(struct perf_event *event) 12008 { 12009 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12010 12011 raw_spin_lock(&pel->lock); 12012 list_add_rcu(&event->sb_list, &pel->list); 12013 raw_spin_unlock(&pel->lock); 12014 } 12015 12016 /* 12017 * We keep a list of all !task (and therefore per-cpu) events 12018 * that need to receive side-band records. 12019 * 12020 * This avoids having to scan all the various PMU per-cpu contexts 12021 * looking for them. 12022 */ 12023 static void account_pmu_sb_event(struct perf_event *event) 12024 { 12025 if (is_sb_event(event)) 12026 attach_sb_event(event); 12027 } 12028 12029 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12030 static void account_freq_event_nohz(void) 12031 { 12032 #ifdef CONFIG_NO_HZ_FULL 12033 /* Lock so we don't race with concurrent unaccount */ 12034 spin_lock(&nr_freq_lock); 12035 if (atomic_inc_return(&nr_freq_events) == 1) 12036 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12037 spin_unlock(&nr_freq_lock); 12038 #endif 12039 } 12040 12041 static void account_freq_event(void) 12042 { 12043 if (tick_nohz_full_enabled()) 12044 account_freq_event_nohz(); 12045 else 12046 atomic_inc(&nr_freq_events); 12047 } 12048 12049 12050 static void account_event(struct perf_event *event) 12051 { 12052 bool inc = false; 12053 12054 if (event->parent) 12055 return; 12056 12057 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12058 inc = true; 12059 if (event->attr.mmap || event->attr.mmap_data) 12060 atomic_inc(&nr_mmap_events); 12061 if (event->attr.build_id) 12062 atomic_inc(&nr_build_id_events); 12063 if (event->attr.comm) 12064 atomic_inc(&nr_comm_events); 12065 if (event->attr.namespaces) 12066 atomic_inc(&nr_namespaces_events); 12067 if (event->attr.cgroup) 12068 atomic_inc(&nr_cgroup_events); 12069 if (event->attr.task) 12070 atomic_inc(&nr_task_events); 12071 if (event->attr.freq) 12072 account_freq_event(); 12073 if (event->attr.context_switch) { 12074 atomic_inc(&nr_switch_events); 12075 inc = true; 12076 } 12077 if (has_branch_stack(event)) 12078 inc = true; 12079 if (is_cgroup_event(event)) 12080 inc = true; 12081 if (event->attr.ksymbol) 12082 atomic_inc(&nr_ksymbol_events); 12083 if (event->attr.bpf_event) 12084 atomic_inc(&nr_bpf_events); 12085 if (event->attr.text_poke) 12086 atomic_inc(&nr_text_poke_events); 12087 12088 if (inc) { 12089 /* 12090 * We need the mutex here because static_branch_enable() 12091 * must complete *before* the perf_sched_count increment 12092 * becomes visible. 12093 */ 12094 if (atomic_inc_not_zero(&perf_sched_count)) 12095 goto enabled; 12096 12097 mutex_lock(&perf_sched_mutex); 12098 if (!atomic_read(&perf_sched_count)) { 12099 static_branch_enable(&perf_sched_events); 12100 /* 12101 * Guarantee that all CPUs observe they key change and 12102 * call the perf scheduling hooks before proceeding to 12103 * install events that need them. 12104 */ 12105 synchronize_rcu(); 12106 } 12107 /* 12108 * Now that we have waited for the sync_sched(), allow further 12109 * increments to by-pass the mutex. 12110 */ 12111 atomic_inc(&perf_sched_count); 12112 mutex_unlock(&perf_sched_mutex); 12113 } 12114 enabled: 12115 12116 account_pmu_sb_event(event); 12117 } 12118 12119 /* 12120 * Allocate and initialize an event structure 12121 */ 12122 static struct perf_event * 12123 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12124 struct task_struct *task, 12125 struct perf_event *group_leader, 12126 struct perf_event *parent_event, 12127 perf_overflow_handler_t overflow_handler, 12128 void *context, int cgroup_fd) 12129 { 12130 struct pmu *pmu; 12131 struct perf_event *event; 12132 struct hw_perf_event *hwc; 12133 long err = -EINVAL; 12134 int node; 12135 12136 if ((unsigned)cpu >= nr_cpu_ids) { 12137 if (!task || cpu != -1) 12138 return ERR_PTR(-EINVAL); 12139 } 12140 if (attr->sigtrap && !task) { 12141 /* Requires a task: avoid signalling random tasks. */ 12142 return ERR_PTR(-EINVAL); 12143 } 12144 12145 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12146 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12147 node); 12148 if (!event) 12149 return ERR_PTR(-ENOMEM); 12150 12151 /* 12152 * Single events are their own group leaders, with an 12153 * empty sibling list: 12154 */ 12155 if (!group_leader) 12156 group_leader = event; 12157 12158 mutex_init(&event->child_mutex); 12159 INIT_LIST_HEAD(&event->child_list); 12160 12161 INIT_LIST_HEAD(&event->event_entry); 12162 INIT_LIST_HEAD(&event->sibling_list); 12163 INIT_LIST_HEAD(&event->active_list); 12164 init_event_group(event); 12165 INIT_LIST_HEAD(&event->rb_entry); 12166 INIT_LIST_HEAD(&event->active_entry); 12167 INIT_LIST_HEAD(&event->addr_filters.list); 12168 INIT_HLIST_NODE(&event->hlist_entry); 12169 12170 12171 init_waitqueue_head(&event->waitq); 12172 init_irq_work(&event->pending_irq, perf_pending_irq); 12173 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12174 init_task_work(&event->pending_task, perf_pending_task); 12175 rcuwait_init(&event->pending_work_wait); 12176 12177 mutex_init(&event->mmap_mutex); 12178 raw_spin_lock_init(&event->addr_filters.lock); 12179 12180 atomic_long_set(&event->refcount, 1); 12181 event->cpu = cpu; 12182 event->attr = *attr; 12183 event->group_leader = group_leader; 12184 event->pmu = NULL; 12185 event->oncpu = -1; 12186 12187 event->parent = parent_event; 12188 12189 event->ns = get_pid_ns(task_active_pid_ns(current)); 12190 event->id = atomic64_inc_return(&perf_event_id); 12191 12192 event->state = PERF_EVENT_STATE_INACTIVE; 12193 12194 if (parent_event) 12195 event->event_caps = parent_event->event_caps; 12196 12197 if (task) { 12198 event->attach_state = PERF_ATTACH_TASK; 12199 /* 12200 * XXX pmu::event_init needs to know what task to account to 12201 * and we cannot use the ctx information because we need the 12202 * pmu before we get a ctx. 12203 */ 12204 event->hw.target = get_task_struct(task); 12205 } 12206 12207 event->clock = &local_clock; 12208 if (parent_event) 12209 event->clock = parent_event->clock; 12210 12211 if (!overflow_handler && parent_event) { 12212 overflow_handler = parent_event->overflow_handler; 12213 context = parent_event->overflow_handler_context; 12214 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12215 if (parent_event->prog) { 12216 struct bpf_prog *prog = parent_event->prog; 12217 12218 bpf_prog_inc(prog); 12219 event->prog = prog; 12220 } 12221 #endif 12222 } 12223 12224 if (overflow_handler) { 12225 event->overflow_handler = overflow_handler; 12226 event->overflow_handler_context = context; 12227 } else if (is_write_backward(event)){ 12228 event->overflow_handler = perf_event_output_backward; 12229 event->overflow_handler_context = NULL; 12230 } else { 12231 event->overflow_handler = perf_event_output_forward; 12232 event->overflow_handler_context = NULL; 12233 } 12234 12235 perf_event__state_init(event); 12236 12237 pmu = NULL; 12238 12239 hwc = &event->hw; 12240 hwc->sample_period = attr->sample_period; 12241 if (attr->freq && attr->sample_freq) 12242 hwc->sample_period = 1; 12243 hwc->last_period = hwc->sample_period; 12244 12245 local64_set(&hwc->period_left, hwc->sample_period); 12246 12247 /* 12248 * We do not support PERF_SAMPLE_READ on inherited events unless 12249 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12250 * collect per-thread samples. 12251 * See perf_output_read(). 12252 */ 12253 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12254 goto err_ns; 12255 12256 if (!has_branch_stack(event)) 12257 event->attr.branch_sample_type = 0; 12258 12259 pmu = perf_init_event(event); 12260 if (IS_ERR(pmu)) { 12261 err = PTR_ERR(pmu); 12262 goto err_ns; 12263 } 12264 12265 /* 12266 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12267 * events (they don't make sense as the cgroup will be different 12268 * on other CPUs in the uncore mask). 12269 */ 12270 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12271 err = -EINVAL; 12272 goto err_pmu; 12273 } 12274 12275 if (event->attr.aux_output && 12276 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12277 err = -EOPNOTSUPP; 12278 goto err_pmu; 12279 } 12280 12281 if (cgroup_fd != -1) { 12282 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12283 if (err) 12284 goto err_pmu; 12285 } 12286 12287 err = exclusive_event_init(event); 12288 if (err) 12289 goto err_pmu; 12290 12291 if (has_addr_filter(event)) { 12292 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12293 sizeof(struct perf_addr_filter_range), 12294 GFP_KERNEL); 12295 if (!event->addr_filter_ranges) { 12296 err = -ENOMEM; 12297 goto err_per_task; 12298 } 12299 12300 /* 12301 * Clone the parent's vma offsets: they are valid until exec() 12302 * even if the mm is not shared with the parent. 12303 */ 12304 if (event->parent) { 12305 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12306 12307 raw_spin_lock_irq(&ifh->lock); 12308 memcpy(event->addr_filter_ranges, 12309 event->parent->addr_filter_ranges, 12310 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12311 raw_spin_unlock_irq(&ifh->lock); 12312 } 12313 12314 /* force hw sync on the address filters */ 12315 event->addr_filters_gen = 1; 12316 } 12317 12318 if (!event->parent) { 12319 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12320 err = get_callchain_buffers(attr->sample_max_stack); 12321 if (err) 12322 goto err_addr_filters; 12323 } 12324 } 12325 12326 err = security_perf_event_alloc(event); 12327 if (err) 12328 goto err_callchain_buffer; 12329 12330 /* symmetric to unaccount_event() in _free_event() */ 12331 account_event(event); 12332 12333 return event; 12334 12335 err_callchain_buffer: 12336 if (!event->parent) { 12337 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12338 put_callchain_buffers(); 12339 } 12340 err_addr_filters: 12341 kfree(event->addr_filter_ranges); 12342 12343 err_per_task: 12344 exclusive_event_destroy(event); 12345 12346 err_pmu: 12347 if (is_cgroup_event(event)) 12348 perf_detach_cgroup(event); 12349 if (event->destroy) 12350 event->destroy(event); 12351 module_put(pmu->module); 12352 err_ns: 12353 if (event->hw.target) 12354 put_task_struct(event->hw.target); 12355 call_rcu(&event->rcu_head, free_event_rcu); 12356 12357 return ERR_PTR(err); 12358 } 12359 12360 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12361 struct perf_event_attr *attr) 12362 { 12363 u32 size; 12364 int ret; 12365 12366 /* Zero the full structure, so that a short copy will be nice. */ 12367 memset(attr, 0, sizeof(*attr)); 12368 12369 ret = get_user(size, &uattr->size); 12370 if (ret) 12371 return ret; 12372 12373 /* ABI compatibility quirk: */ 12374 if (!size) 12375 size = PERF_ATTR_SIZE_VER0; 12376 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12377 goto err_size; 12378 12379 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12380 if (ret) { 12381 if (ret == -E2BIG) 12382 goto err_size; 12383 return ret; 12384 } 12385 12386 attr->size = size; 12387 12388 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12389 return -EINVAL; 12390 12391 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12392 return -EINVAL; 12393 12394 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12395 return -EINVAL; 12396 12397 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12398 u64 mask = attr->branch_sample_type; 12399 12400 /* only using defined bits */ 12401 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12402 return -EINVAL; 12403 12404 /* at least one branch bit must be set */ 12405 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12406 return -EINVAL; 12407 12408 /* propagate priv level, when not set for branch */ 12409 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12410 12411 /* exclude_kernel checked on syscall entry */ 12412 if (!attr->exclude_kernel) 12413 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12414 12415 if (!attr->exclude_user) 12416 mask |= PERF_SAMPLE_BRANCH_USER; 12417 12418 if (!attr->exclude_hv) 12419 mask |= PERF_SAMPLE_BRANCH_HV; 12420 /* 12421 * adjust user setting (for HW filter setup) 12422 */ 12423 attr->branch_sample_type = mask; 12424 } 12425 /* privileged levels capture (kernel, hv): check permissions */ 12426 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12427 ret = perf_allow_kernel(attr); 12428 if (ret) 12429 return ret; 12430 } 12431 } 12432 12433 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12434 ret = perf_reg_validate(attr->sample_regs_user); 12435 if (ret) 12436 return ret; 12437 } 12438 12439 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12440 if (!arch_perf_have_user_stack_dump()) 12441 return -ENOSYS; 12442 12443 /* 12444 * We have __u32 type for the size, but so far 12445 * we can only use __u16 as maximum due to the 12446 * __u16 sample size limit. 12447 */ 12448 if (attr->sample_stack_user >= USHRT_MAX) 12449 return -EINVAL; 12450 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12451 return -EINVAL; 12452 } 12453 12454 if (!attr->sample_max_stack) 12455 attr->sample_max_stack = sysctl_perf_event_max_stack; 12456 12457 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12458 ret = perf_reg_validate(attr->sample_regs_intr); 12459 12460 #ifndef CONFIG_CGROUP_PERF 12461 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12462 return -EINVAL; 12463 #endif 12464 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12465 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12466 return -EINVAL; 12467 12468 if (!attr->inherit && attr->inherit_thread) 12469 return -EINVAL; 12470 12471 if (attr->remove_on_exec && attr->enable_on_exec) 12472 return -EINVAL; 12473 12474 if (attr->sigtrap && !attr->remove_on_exec) 12475 return -EINVAL; 12476 12477 out: 12478 return ret; 12479 12480 err_size: 12481 put_user(sizeof(*attr), &uattr->size); 12482 ret = -E2BIG; 12483 goto out; 12484 } 12485 12486 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12487 { 12488 if (b < a) 12489 swap(a, b); 12490 12491 mutex_lock(a); 12492 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12493 } 12494 12495 static int 12496 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12497 { 12498 struct perf_buffer *rb = NULL; 12499 int ret = -EINVAL; 12500 12501 if (!output_event) { 12502 mutex_lock(&event->mmap_mutex); 12503 goto set; 12504 } 12505 12506 /* don't allow circular references */ 12507 if (event == output_event) 12508 goto out; 12509 12510 /* 12511 * Don't allow cross-cpu buffers 12512 */ 12513 if (output_event->cpu != event->cpu) 12514 goto out; 12515 12516 /* 12517 * If its not a per-cpu rb, it must be the same task. 12518 */ 12519 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12520 goto out; 12521 12522 /* 12523 * Mixing clocks in the same buffer is trouble you don't need. 12524 */ 12525 if (output_event->clock != event->clock) 12526 goto out; 12527 12528 /* 12529 * Either writing ring buffer from beginning or from end. 12530 * Mixing is not allowed. 12531 */ 12532 if (is_write_backward(output_event) != is_write_backward(event)) 12533 goto out; 12534 12535 /* 12536 * If both events generate aux data, they must be on the same PMU 12537 */ 12538 if (has_aux(event) && has_aux(output_event) && 12539 event->pmu != output_event->pmu) 12540 goto out; 12541 12542 /* 12543 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12544 * output_event is already on rb->event_list, and the list iteration 12545 * restarts after every removal, it is guaranteed this new event is 12546 * observed *OR* if output_event is already removed, it's guaranteed we 12547 * observe !rb->mmap_count. 12548 */ 12549 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12550 set: 12551 /* Can't redirect output if we've got an active mmap() */ 12552 if (atomic_read(&event->mmap_count)) 12553 goto unlock; 12554 12555 if (output_event) { 12556 /* get the rb we want to redirect to */ 12557 rb = ring_buffer_get(output_event); 12558 if (!rb) 12559 goto unlock; 12560 12561 /* did we race against perf_mmap_close() */ 12562 if (!atomic_read(&rb->mmap_count)) { 12563 ring_buffer_put(rb); 12564 goto unlock; 12565 } 12566 } 12567 12568 ring_buffer_attach(event, rb); 12569 12570 ret = 0; 12571 unlock: 12572 mutex_unlock(&event->mmap_mutex); 12573 if (output_event) 12574 mutex_unlock(&output_event->mmap_mutex); 12575 12576 out: 12577 return ret; 12578 } 12579 12580 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12581 { 12582 bool nmi_safe = false; 12583 12584 switch (clk_id) { 12585 case CLOCK_MONOTONIC: 12586 event->clock = &ktime_get_mono_fast_ns; 12587 nmi_safe = true; 12588 break; 12589 12590 case CLOCK_MONOTONIC_RAW: 12591 event->clock = &ktime_get_raw_fast_ns; 12592 nmi_safe = true; 12593 break; 12594 12595 case CLOCK_REALTIME: 12596 event->clock = &ktime_get_real_ns; 12597 break; 12598 12599 case CLOCK_BOOTTIME: 12600 event->clock = &ktime_get_boottime_ns; 12601 break; 12602 12603 case CLOCK_TAI: 12604 event->clock = &ktime_get_clocktai_ns; 12605 break; 12606 12607 default: 12608 return -EINVAL; 12609 } 12610 12611 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12612 return -EINVAL; 12613 12614 return 0; 12615 } 12616 12617 static bool 12618 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12619 { 12620 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12621 bool is_capable = perfmon_capable(); 12622 12623 if (attr->sigtrap) { 12624 /* 12625 * perf_event_attr::sigtrap sends signals to the other task. 12626 * Require the current task to also have CAP_KILL. 12627 */ 12628 rcu_read_lock(); 12629 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12630 rcu_read_unlock(); 12631 12632 /* 12633 * If the required capabilities aren't available, checks for 12634 * ptrace permissions: upgrade to ATTACH, since sending signals 12635 * can effectively change the target task. 12636 */ 12637 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12638 } 12639 12640 /* 12641 * Preserve ptrace permission check for backwards compatibility. The 12642 * ptrace check also includes checks that the current task and other 12643 * task have matching uids, and is therefore not done here explicitly. 12644 */ 12645 return is_capable || ptrace_may_access(task, ptrace_mode); 12646 } 12647 12648 /** 12649 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12650 * 12651 * @attr_uptr: event_id type attributes for monitoring/sampling 12652 * @pid: target pid 12653 * @cpu: target cpu 12654 * @group_fd: group leader event fd 12655 * @flags: perf event open flags 12656 */ 12657 SYSCALL_DEFINE5(perf_event_open, 12658 struct perf_event_attr __user *, attr_uptr, 12659 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12660 { 12661 struct perf_event *group_leader = NULL, *output_event = NULL; 12662 struct perf_event_pmu_context *pmu_ctx; 12663 struct perf_event *event, *sibling; 12664 struct perf_event_attr attr; 12665 struct perf_event_context *ctx; 12666 struct file *event_file = NULL; 12667 struct fd group = EMPTY_FD; 12668 struct task_struct *task = NULL; 12669 struct pmu *pmu; 12670 int event_fd; 12671 int move_group = 0; 12672 int err; 12673 int f_flags = O_RDWR; 12674 int cgroup_fd = -1; 12675 12676 /* for future expandability... */ 12677 if (flags & ~PERF_FLAG_ALL) 12678 return -EINVAL; 12679 12680 err = perf_copy_attr(attr_uptr, &attr); 12681 if (err) 12682 return err; 12683 12684 /* Do we allow access to perf_event_open(2) ? */ 12685 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12686 if (err) 12687 return err; 12688 12689 if (!attr.exclude_kernel) { 12690 err = perf_allow_kernel(&attr); 12691 if (err) 12692 return err; 12693 } 12694 12695 if (attr.namespaces) { 12696 if (!perfmon_capable()) 12697 return -EACCES; 12698 } 12699 12700 if (attr.freq) { 12701 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12702 return -EINVAL; 12703 } else { 12704 if (attr.sample_period & (1ULL << 63)) 12705 return -EINVAL; 12706 } 12707 12708 /* Only privileged users can get physical addresses */ 12709 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12710 err = perf_allow_kernel(&attr); 12711 if (err) 12712 return err; 12713 } 12714 12715 /* REGS_INTR can leak data, lockdown must prevent this */ 12716 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12717 err = security_locked_down(LOCKDOWN_PERF); 12718 if (err) 12719 return err; 12720 } 12721 12722 /* 12723 * In cgroup mode, the pid argument is used to pass the fd 12724 * opened to the cgroup directory in cgroupfs. The cpu argument 12725 * designates the cpu on which to monitor threads from that 12726 * cgroup. 12727 */ 12728 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12729 return -EINVAL; 12730 12731 if (flags & PERF_FLAG_FD_CLOEXEC) 12732 f_flags |= O_CLOEXEC; 12733 12734 event_fd = get_unused_fd_flags(f_flags); 12735 if (event_fd < 0) 12736 return event_fd; 12737 12738 if (group_fd != -1) { 12739 err = perf_fget_light(group_fd, &group); 12740 if (err) 12741 goto err_fd; 12742 group_leader = fd_file(group)->private_data; 12743 if (flags & PERF_FLAG_FD_OUTPUT) 12744 output_event = group_leader; 12745 if (flags & PERF_FLAG_FD_NO_GROUP) 12746 group_leader = NULL; 12747 } 12748 12749 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12750 task = find_lively_task_by_vpid(pid); 12751 if (IS_ERR(task)) { 12752 err = PTR_ERR(task); 12753 goto err_group_fd; 12754 } 12755 } 12756 12757 if (task && group_leader && 12758 group_leader->attr.inherit != attr.inherit) { 12759 err = -EINVAL; 12760 goto err_task; 12761 } 12762 12763 if (flags & PERF_FLAG_PID_CGROUP) 12764 cgroup_fd = pid; 12765 12766 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12767 NULL, NULL, cgroup_fd); 12768 if (IS_ERR(event)) { 12769 err = PTR_ERR(event); 12770 goto err_task; 12771 } 12772 12773 if (is_sampling_event(event)) { 12774 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12775 err = -EOPNOTSUPP; 12776 goto err_alloc; 12777 } 12778 } 12779 12780 /* 12781 * Special case software events and allow them to be part of 12782 * any hardware group. 12783 */ 12784 pmu = event->pmu; 12785 12786 if (attr.use_clockid) { 12787 err = perf_event_set_clock(event, attr.clockid); 12788 if (err) 12789 goto err_alloc; 12790 } 12791 12792 if (pmu->task_ctx_nr == perf_sw_context) 12793 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12794 12795 if (task) { 12796 err = down_read_interruptible(&task->signal->exec_update_lock); 12797 if (err) 12798 goto err_alloc; 12799 12800 /* 12801 * We must hold exec_update_lock across this and any potential 12802 * perf_install_in_context() call for this new event to 12803 * serialize against exec() altering our credentials (and the 12804 * perf_event_exit_task() that could imply). 12805 */ 12806 err = -EACCES; 12807 if (!perf_check_permission(&attr, task)) 12808 goto err_cred; 12809 } 12810 12811 /* 12812 * Get the target context (task or percpu): 12813 */ 12814 ctx = find_get_context(task, event); 12815 if (IS_ERR(ctx)) { 12816 err = PTR_ERR(ctx); 12817 goto err_cred; 12818 } 12819 12820 mutex_lock(&ctx->mutex); 12821 12822 if (ctx->task == TASK_TOMBSTONE) { 12823 err = -ESRCH; 12824 goto err_locked; 12825 } 12826 12827 if (!task) { 12828 /* 12829 * Check if the @cpu we're creating an event for is online. 12830 * 12831 * We use the perf_cpu_context::ctx::mutex to serialize against 12832 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12833 */ 12834 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12835 12836 if (!cpuctx->online) { 12837 err = -ENODEV; 12838 goto err_locked; 12839 } 12840 } 12841 12842 if (group_leader) { 12843 err = -EINVAL; 12844 12845 /* 12846 * Do not allow a recursive hierarchy (this new sibling 12847 * becoming part of another group-sibling): 12848 */ 12849 if (group_leader->group_leader != group_leader) 12850 goto err_locked; 12851 12852 /* All events in a group should have the same clock */ 12853 if (group_leader->clock != event->clock) 12854 goto err_locked; 12855 12856 /* 12857 * Make sure we're both events for the same CPU; 12858 * grouping events for different CPUs is broken; since 12859 * you can never concurrently schedule them anyhow. 12860 */ 12861 if (group_leader->cpu != event->cpu) 12862 goto err_locked; 12863 12864 /* 12865 * Make sure we're both on the same context; either task or cpu. 12866 */ 12867 if (group_leader->ctx != ctx) 12868 goto err_locked; 12869 12870 /* 12871 * Only a group leader can be exclusive or pinned 12872 */ 12873 if (attr.exclusive || attr.pinned) 12874 goto err_locked; 12875 12876 if (is_software_event(event) && 12877 !in_software_context(group_leader)) { 12878 /* 12879 * If the event is a sw event, but the group_leader 12880 * is on hw context. 12881 * 12882 * Allow the addition of software events to hw 12883 * groups, this is safe because software events 12884 * never fail to schedule. 12885 * 12886 * Note the comment that goes with struct 12887 * perf_event_pmu_context. 12888 */ 12889 pmu = group_leader->pmu_ctx->pmu; 12890 } else if (!is_software_event(event)) { 12891 if (is_software_event(group_leader) && 12892 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12893 /* 12894 * In case the group is a pure software group, and we 12895 * try to add a hardware event, move the whole group to 12896 * the hardware context. 12897 */ 12898 move_group = 1; 12899 } 12900 12901 /* Don't allow group of multiple hw events from different pmus */ 12902 if (!in_software_context(group_leader) && 12903 group_leader->pmu_ctx->pmu != pmu) 12904 goto err_locked; 12905 } 12906 } 12907 12908 /* 12909 * Now that we're certain of the pmu; find the pmu_ctx. 12910 */ 12911 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12912 if (IS_ERR(pmu_ctx)) { 12913 err = PTR_ERR(pmu_ctx); 12914 goto err_locked; 12915 } 12916 event->pmu_ctx = pmu_ctx; 12917 12918 if (output_event) { 12919 err = perf_event_set_output(event, output_event); 12920 if (err) 12921 goto err_context; 12922 } 12923 12924 if (!perf_event_validate_size(event)) { 12925 err = -E2BIG; 12926 goto err_context; 12927 } 12928 12929 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12930 err = -EINVAL; 12931 goto err_context; 12932 } 12933 12934 /* 12935 * Must be under the same ctx::mutex as perf_install_in_context(), 12936 * because we need to serialize with concurrent event creation. 12937 */ 12938 if (!exclusive_event_installable(event, ctx)) { 12939 err = -EBUSY; 12940 goto err_context; 12941 } 12942 12943 WARN_ON_ONCE(ctx->parent_ctx); 12944 12945 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12946 if (IS_ERR(event_file)) { 12947 err = PTR_ERR(event_file); 12948 event_file = NULL; 12949 goto err_context; 12950 } 12951 12952 /* 12953 * This is the point on no return; we cannot fail hereafter. This is 12954 * where we start modifying current state. 12955 */ 12956 12957 if (move_group) { 12958 perf_remove_from_context(group_leader, 0); 12959 put_pmu_ctx(group_leader->pmu_ctx); 12960 12961 for_each_sibling_event(sibling, group_leader) { 12962 perf_remove_from_context(sibling, 0); 12963 put_pmu_ctx(sibling->pmu_ctx); 12964 } 12965 12966 /* 12967 * Install the group siblings before the group leader. 12968 * 12969 * Because a group leader will try and install the entire group 12970 * (through the sibling list, which is still in-tact), we can 12971 * end up with siblings installed in the wrong context. 12972 * 12973 * By installing siblings first we NO-OP because they're not 12974 * reachable through the group lists. 12975 */ 12976 for_each_sibling_event(sibling, group_leader) { 12977 sibling->pmu_ctx = pmu_ctx; 12978 get_pmu_ctx(pmu_ctx); 12979 perf_event__state_init(sibling); 12980 perf_install_in_context(ctx, sibling, sibling->cpu); 12981 } 12982 12983 /* 12984 * Removing from the context ends up with disabled 12985 * event. What we want here is event in the initial 12986 * startup state, ready to be add into new context. 12987 */ 12988 group_leader->pmu_ctx = pmu_ctx; 12989 get_pmu_ctx(pmu_ctx); 12990 perf_event__state_init(group_leader); 12991 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12992 } 12993 12994 /* 12995 * Precalculate sample_data sizes; do while holding ctx::mutex such 12996 * that we're serialized against further additions and before 12997 * perf_install_in_context() which is the point the event is active and 12998 * can use these values. 12999 */ 13000 perf_event__header_size(event); 13001 perf_event__id_header_size(event); 13002 13003 event->owner = current; 13004 13005 perf_install_in_context(ctx, event, event->cpu); 13006 perf_unpin_context(ctx); 13007 13008 mutex_unlock(&ctx->mutex); 13009 13010 if (task) { 13011 up_read(&task->signal->exec_update_lock); 13012 put_task_struct(task); 13013 } 13014 13015 mutex_lock(¤t->perf_event_mutex); 13016 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13017 mutex_unlock(¤t->perf_event_mutex); 13018 13019 /* 13020 * Drop the reference on the group_event after placing the 13021 * new event on the sibling_list. This ensures destruction 13022 * of the group leader will find the pointer to itself in 13023 * perf_group_detach(). 13024 */ 13025 fdput(group); 13026 fd_install(event_fd, event_file); 13027 return event_fd; 13028 13029 err_context: 13030 put_pmu_ctx(event->pmu_ctx); 13031 event->pmu_ctx = NULL; /* _free_event() */ 13032 err_locked: 13033 mutex_unlock(&ctx->mutex); 13034 perf_unpin_context(ctx); 13035 put_ctx(ctx); 13036 err_cred: 13037 if (task) 13038 up_read(&task->signal->exec_update_lock); 13039 err_alloc: 13040 free_event(event); 13041 err_task: 13042 if (task) 13043 put_task_struct(task); 13044 err_group_fd: 13045 fdput(group); 13046 err_fd: 13047 put_unused_fd(event_fd); 13048 return err; 13049 } 13050 13051 /** 13052 * perf_event_create_kernel_counter 13053 * 13054 * @attr: attributes of the counter to create 13055 * @cpu: cpu in which the counter is bound 13056 * @task: task to profile (NULL for percpu) 13057 * @overflow_handler: callback to trigger when we hit the event 13058 * @context: context data could be used in overflow_handler callback 13059 */ 13060 struct perf_event * 13061 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13062 struct task_struct *task, 13063 perf_overflow_handler_t overflow_handler, 13064 void *context) 13065 { 13066 struct perf_event_pmu_context *pmu_ctx; 13067 struct perf_event_context *ctx; 13068 struct perf_event *event; 13069 struct pmu *pmu; 13070 int err; 13071 13072 /* 13073 * Grouping is not supported for kernel events, neither is 'AUX', 13074 * make sure the caller's intentions are adjusted. 13075 */ 13076 if (attr->aux_output) 13077 return ERR_PTR(-EINVAL); 13078 13079 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13080 overflow_handler, context, -1); 13081 if (IS_ERR(event)) { 13082 err = PTR_ERR(event); 13083 goto err; 13084 } 13085 13086 /* Mark owner so we could distinguish it from user events. */ 13087 event->owner = TASK_TOMBSTONE; 13088 pmu = event->pmu; 13089 13090 if (pmu->task_ctx_nr == perf_sw_context) 13091 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13092 13093 /* 13094 * Get the target context (task or percpu): 13095 */ 13096 ctx = find_get_context(task, event); 13097 if (IS_ERR(ctx)) { 13098 err = PTR_ERR(ctx); 13099 goto err_alloc; 13100 } 13101 13102 WARN_ON_ONCE(ctx->parent_ctx); 13103 mutex_lock(&ctx->mutex); 13104 if (ctx->task == TASK_TOMBSTONE) { 13105 err = -ESRCH; 13106 goto err_unlock; 13107 } 13108 13109 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13110 if (IS_ERR(pmu_ctx)) { 13111 err = PTR_ERR(pmu_ctx); 13112 goto err_unlock; 13113 } 13114 event->pmu_ctx = pmu_ctx; 13115 13116 if (!task) { 13117 /* 13118 * Check if the @cpu we're creating an event for is online. 13119 * 13120 * We use the perf_cpu_context::ctx::mutex to serialize against 13121 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13122 */ 13123 struct perf_cpu_context *cpuctx = 13124 container_of(ctx, struct perf_cpu_context, ctx); 13125 if (!cpuctx->online) { 13126 err = -ENODEV; 13127 goto err_pmu_ctx; 13128 } 13129 } 13130 13131 if (!exclusive_event_installable(event, ctx)) { 13132 err = -EBUSY; 13133 goto err_pmu_ctx; 13134 } 13135 13136 perf_install_in_context(ctx, event, event->cpu); 13137 perf_unpin_context(ctx); 13138 mutex_unlock(&ctx->mutex); 13139 13140 return event; 13141 13142 err_pmu_ctx: 13143 put_pmu_ctx(pmu_ctx); 13144 event->pmu_ctx = NULL; /* _free_event() */ 13145 err_unlock: 13146 mutex_unlock(&ctx->mutex); 13147 perf_unpin_context(ctx); 13148 put_ctx(ctx); 13149 err_alloc: 13150 free_event(event); 13151 err: 13152 return ERR_PTR(err); 13153 } 13154 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13155 13156 static void __perf_pmu_remove(struct perf_event_context *ctx, 13157 int cpu, struct pmu *pmu, 13158 struct perf_event_groups *groups, 13159 struct list_head *events) 13160 { 13161 struct perf_event *event, *sibling; 13162 13163 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13164 perf_remove_from_context(event, 0); 13165 put_pmu_ctx(event->pmu_ctx); 13166 list_add(&event->migrate_entry, events); 13167 13168 for_each_sibling_event(sibling, event) { 13169 perf_remove_from_context(sibling, 0); 13170 put_pmu_ctx(sibling->pmu_ctx); 13171 list_add(&sibling->migrate_entry, events); 13172 } 13173 } 13174 } 13175 13176 static void __perf_pmu_install_event(struct pmu *pmu, 13177 struct perf_event_context *ctx, 13178 int cpu, struct perf_event *event) 13179 { 13180 struct perf_event_pmu_context *epc; 13181 struct perf_event_context *old_ctx = event->ctx; 13182 13183 get_ctx(ctx); /* normally find_get_context() */ 13184 13185 event->cpu = cpu; 13186 epc = find_get_pmu_context(pmu, ctx, event); 13187 event->pmu_ctx = epc; 13188 13189 if (event->state >= PERF_EVENT_STATE_OFF) 13190 event->state = PERF_EVENT_STATE_INACTIVE; 13191 perf_install_in_context(ctx, event, cpu); 13192 13193 /* 13194 * Now that event->ctx is updated and visible, put the old ctx. 13195 */ 13196 put_ctx(old_ctx); 13197 } 13198 13199 static void __perf_pmu_install(struct perf_event_context *ctx, 13200 int cpu, struct pmu *pmu, struct list_head *events) 13201 { 13202 struct perf_event *event, *tmp; 13203 13204 /* 13205 * Re-instate events in 2 passes. 13206 * 13207 * Skip over group leaders and only install siblings on this first 13208 * pass, siblings will not get enabled without a leader, however a 13209 * leader will enable its siblings, even if those are still on the old 13210 * context. 13211 */ 13212 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13213 if (event->group_leader == event) 13214 continue; 13215 13216 list_del(&event->migrate_entry); 13217 __perf_pmu_install_event(pmu, ctx, cpu, event); 13218 } 13219 13220 /* 13221 * Once all the siblings are setup properly, install the group leaders 13222 * to make it go. 13223 */ 13224 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13225 list_del(&event->migrate_entry); 13226 __perf_pmu_install_event(pmu, ctx, cpu, event); 13227 } 13228 } 13229 13230 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13231 { 13232 struct perf_event_context *src_ctx, *dst_ctx; 13233 LIST_HEAD(events); 13234 13235 /* 13236 * Since per-cpu context is persistent, no need to grab an extra 13237 * reference. 13238 */ 13239 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13240 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13241 13242 /* 13243 * See perf_event_ctx_lock() for comments on the details 13244 * of swizzling perf_event::ctx. 13245 */ 13246 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13247 13248 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13249 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13250 13251 if (!list_empty(&events)) { 13252 /* 13253 * Wait for the events to quiesce before re-instating them. 13254 */ 13255 synchronize_rcu(); 13256 13257 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13258 } 13259 13260 mutex_unlock(&dst_ctx->mutex); 13261 mutex_unlock(&src_ctx->mutex); 13262 } 13263 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13264 13265 static void sync_child_event(struct perf_event *child_event) 13266 { 13267 struct perf_event *parent_event = child_event->parent; 13268 u64 child_val; 13269 13270 if (child_event->attr.inherit_stat) { 13271 struct task_struct *task = child_event->ctx->task; 13272 13273 if (task && task != TASK_TOMBSTONE) 13274 perf_event_read_event(child_event, task); 13275 } 13276 13277 child_val = perf_event_count(child_event, false); 13278 13279 /* 13280 * Add back the child's count to the parent's count: 13281 */ 13282 atomic64_add(child_val, &parent_event->child_count); 13283 atomic64_add(child_event->total_time_enabled, 13284 &parent_event->child_total_time_enabled); 13285 atomic64_add(child_event->total_time_running, 13286 &parent_event->child_total_time_running); 13287 } 13288 13289 static void 13290 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13291 { 13292 struct perf_event *parent_event = event->parent; 13293 unsigned long detach_flags = 0; 13294 13295 if (parent_event) { 13296 /* 13297 * Do not destroy the 'original' grouping; because of the 13298 * context switch optimization the original events could've 13299 * ended up in a random child task. 13300 * 13301 * If we were to destroy the original group, all group related 13302 * operations would cease to function properly after this 13303 * random child dies. 13304 * 13305 * Do destroy all inherited groups, we don't care about those 13306 * and being thorough is better. 13307 */ 13308 detach_flags = DETACH_GROUP | DETACH_CHILD; 13309 mutex_lock(&parent_event->child_mutex); 13310 } 13311 13312 perf_remove_from_context(event, detach_flags); 13313 13314 raw_spin_lock_irq(&ctx->lock); 13315 if (event->state > PERF_EVENT_STATE_EXIT) 13316 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13317 raw_spin_unlock_irq(&ctx->lock); 13318 13319 /* 13320 * Child events can be freed. 13321 */ 13322 if (parent_event) { 13323 mutex_unlock(&parent_event->child_mutex); 13324 /* 13325 * Kick perf_poll() for is_event_hup(); 13326 */ 13327 perf_event_wakeup(parent_event); 13328 free_event(event); 13329 put_event(parent_event); 13330 return; 13331 } 13332 13333 /* 13334 * Parent events are governed by their filedesc, retain them. 13335 */ 13336 perf_event_wakeup(event); 13337 } 13338 13339 static void perf_event_exit_task_context(struct task_struct *child) 13340 { 13341 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13342 struct perf_event *child_event, *next; 13343 13344 WARN_ON_ONCE(child != current); 13345 13346 child_ctx = perf_pin_task_context(child); 13347 if (!child_ctx) 13348 return; 13349 13350 /* 13351 * In order to reduce the amount of tricky in ctx tear-down, we hold 13352 * ctx::mutex over the entire thing. This serializes against almost 13353 * everything that wants to access the ctx. 13354 * 13355 * The exception is sys_perf_event_open() / 13356 * perf_event_create_kernel_count() which does find_get_context() 13357 * without ctx::mutex (it cannot because of the move_group double mutex 13358 * lock thing). See the comments in perf_install_in_context(). 13359 */ 13360 mutex_lock(&child_ctx->mutex); 13361 13362 /* 13363 * In a single ctx::lock section, de-schedule the events and detach the 13364 * context from the task such that we cannot ever get it scheduled back 13365 * in. 13366 */ 13367 raw_spin_lock_irq(&child_ctx->lock); 13368 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13369 13370 /* 13371 * Now that the context is inactive, destroy the task <-> ctx relation 13372 * and mark the context dead. 13373 */ 13374 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13375 put_ctx(child_ctx); /* cannot be last */ 13376 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13377 put_task_struct(current); /* cannot be last */ 13378 13379 clone_ctx = unclone_ctx(child_ctx); 13380 raw_spin_unlock_irq(&child_ctx->lock); 13381 13382 if (clone_ctx) 13383 put_ctx(clone_ctx); 13384 13385 /* 13386 * Report the task dead after unscheduling the events so that we 13387 * won't get any samples after PERF_RECORD_EXIT. We can however still 13388 * get a few PERF_RECORD_READ events. 13389 */ 13390 perf_event_task(child, child_ctx, 0); 13391 13392 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13393 perf_event_exit_event(child_event, child_ctx); 13394 13395 mutex_unlock(&child_ctx->mutex); 13396 13397 put_ctx(child_ctx); 13398 } 13399 13400 /* 13401 * When a child task exits, feed back event values to parent events. 13402 * 13403 * Can be called with exec_update_lock held when called from 13404 * setup_new_exec(). 13405 */ 13406 void perf_event_exit_task(struct task_struct *child) 13407 { 13408 struct perf_event *event, *tmp; 13409 13410 mutex_lock(&child->perf_event_mutex); 13411 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13412 owner_entry) { 13413 list_del_init(&event->owner_entry); 13414 13415 /* 13416 * Ensure the list deletion is visible before we clear 13417 * the owner, closes a race against perf_release() where 13418 * we need to serialize on the owner->perf_event_mutex. 13419 */ 13420 smp_store_release(&event->owner, NULL); 13421 } 13422 mutex_unlock(&child->perf_event_mutex); 13423 13424 perf_event_exit_task_context(child); 13425 13426 /* 13427 * The perf_event_exit_task_context calls perf_event_task 13428 * with child's task_ctx, which generates EXIT events for 13429 * child contexts and sets child->perf_event_ctxp[] to NULL. 13430 * At this point we need to send EXIT events to cpu contexts. 13431 */ 13432 perf_event_task(child, NULL, 0); 13433 } 13434 13435 static void perf_free_event(struct perf_event *event, 13436 struct perf_event_context *ctx) 13437 { 13438 struct perf_event *parent = event->parent; 13439 13440 if (WARN_ON_ONCE(!parent)) 13441 return; 13442 13443 mutex_lock(&parent->child_mutex); 13444 list_del_init(&event->child_list); 13445 mutex_unlock(&parent->child_mutex); 13446 13447 put_event(parent); 13448 13449 raw_spin_lock_irq(&ctx->lock); 13450 perf_group_detach(event); 13451 list_del_event(event, ctx); 13452 raw_spin_unlock_irq(&ctx->lock); 13453 free_event(event); 13454 } 13455 13456 /* 13457 * Free a context as created by inheritance by perf_event_init_task() below, 13458 * used by fork() in case of fail. 13459 * 13460 * Even though the task has never lived, the context and events have been 13461 * exposed through the child_list, so we must take care tearing it all down. 13462 */ 13463 void perf_event_free_task(struct task_struct *task) 13464 { 13465 struct perf_event_context *ctx; 13466 struct perf_event *event, *tmp; 13467 13468 ctx = rcu_access_pointer(task->perf_event_ctxp); 13469 if (!ctx) 13470 return; 13471 13472 mutex_lock(&ctx->mutex); 13473 raw_spin_lock_irq(&ctx->lock); 13474 /* 13475 * Destroy the task <-> ctx relation and mark the context dead. 13476 * 13477 * This is important because even though the task hasn't been 13478 * exposed yet the context has been (through child_list). 13479 */ 13480 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13481 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13482 put_task_struct(task); /* cannot be last */ 13483 raw_spin_unlock_irq(&ctx->lock); 13484 13485 13486 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13487 perf_free_event(event, ctx); 13488 13489 mutex_unlock(&ctx->mutex); 13490 13491 /* 13492 * perf_event_release_kernel() could've stolen some of our 13493 * child events and still have them on its free_list. In that 13494 * case we must wait for these events to have been freed (in 13495 * particular all their references to this task must've been 13496 * dropped). 13497 * 13498 * Without this copy_process() will unconditionally free this 13499 * task (irrespective of its reference count) and 13500 * _free_event()'s put_task_struct(event->hw.target) will be a 13501 * use-after-free. 13502 * 13503 * Wait for all events to drop their context reference. 13504 */ 13505 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13506 put_ctx(ctx); /* must be last */ 13507 } 13508 13509 void perf_event_delayed_put(struct task_struct *task) 13510 { 13511 WARN_ON_ONCE(task->perf_event_ctxp); 13512 } 13513 13514 struct file *perf_event_get(unsigned int fd) 13515 { 13516 struct file *file = fget(fd); 13517 if (!file) 13518 return ERR_PTR(-EBADF); 13519 13520 if (file->f_op != &perf_fops) { 13521 fput(file); 13522 return ERR_PTR(-EBADF); 13523 } 13524 13525 return file; 13526 } 13527 13528 const struct perf_event *perf_get_event(struct file *file) 13529 { 13530 if (file->f_op != &perf_fops) 13531 return ERR_PTR(-EINVAL); 13532 13533 return file->private_data; 13534 } 13535 13536 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13537 { 13538 if (!event) 13539 return ERR_PTR(-EINVAL); 13540 13541 return &event->attr; 13542 } 13543 13544 int perf_allow_kernel(struct perf_event_attr *attr) 13545 { 13546 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13547 return -EACCES; 13548 13549 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13550 } 13551 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13552 13553 /* 13554 * Inherit an event from parent task to child task. 13555 * 13556 * Returns: 13557 * - valid pointer on success 13558 * - NULL for orphaned events 13559 * - IS_ERR() on error 13560 */ 13561 static struct perf_event * 13562 inherit_event(struct perf_event *parent_event, 13563 struct task_struct *parent, 13564 struct perf_event_context *parent_ctx, 13565 struct task_struct *child, 13566 struct perf_event *group_leader, 13567 struct perf_event_context *child_ctx) 13568 { 13569 enum perf_event_state parent_state = parent_event->state; 13570 struct perf_event_pmu_context *pmu_ctx; 13571 struct perf_event *child_event; 13572 unsigned long flags; 13573 13574 /* 13575 * Instead of creating recursive hierarchies of events, 13576 * we link inherited events back to the original parent, 13577 * which has a filp for sure, which we use as the reference 13578 * count: 13579 */ 13580 if (parent_event->parent) 13581 parent_event = parent_event->parent; 13582 13583 child_event = perf_event_alloc(&parent_event->attr, 13584 parent_event->cpu, 13585 child, 13586 group_leader, parent_event, 13587 NULL, NULL, -1); 13588 if (IS_ERR(child_event)) 13589 return child_event; 13590 13591 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13592 if (IS_ERR(pmu_ctx)) { 13593 free_event(child_event); 13594 return ERR_CAST(pmu_ctx); 13595 } 13596 child_event->pmu_ctx = pmu_ctx; 13597 13598 /* 13599 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13600 * must be under the same lock in order to serialize against 13601 * perf_event_release_kernel(), such that either we must observe 13602 * is_orphaned_event() or they will observe us on the child_list. 13603 */ 13604 mutex_lock(&parent_event->child_mutex); 13605 if (is_orphaned_event(parent_event) || 13606 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13607 mutex_unlock(&parent_event->child_mutex); 13608 /* task_ctx_data is freed with child_ctx */ 13609 free_event(child_event); 13610 return NULL; 13611 } 13612 13613 get_ctx(child_ctx); 13614 13615 /* 13616 * Make the child state follow the state of the parent event, 13617 * not its attr.disabled bit. We hold the parent's mutex, 13618 * so we won't race with perf_event_{en, dis}able_family. 13619 */ 13620 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13621 child_event->state = PERF_EVENT_STATE_INACTIVE; 13622 else 13623 child_event->state = PERF_EVENT_STATE_OFF; 13624 13625 if (parent_event->attr.freq) { 13626 u64 sample_period = parent_event->hw.sample_period; 13627 struct hw_perf_event *hwc = &child_event->hw; 13628 13629 hwc->sample_period = sample_period; 13630 hwc->last_period = sample_period; 13631 13632 local64_set(&hwc->period_left, sample_period); 13633 } 13634 13635 child_event->ctx = child_ctx; 13636 child_event->overflow_handler = parent_event->overflow_handler; 13637 child_event->overflow_handler_context 13638 = parent_event->overflow_handler_context; 13639 13640 /* 13641 * Precalculate sample_data sizes 13642 */ 13643 perf_event__header_size(child_event); 13644 perf_event__id_header_size(child_event); 13645 13646 /* 13647 * Link it up in the child's context: 13648 */ 13649 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13650 add_event_to_ctx(child_event, child_ctx); 13651 child_event->attach_state |= PERF_ATTACH_CHILD; 13652 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13653 13654 /* 13655 * Link this into the parent event's child list 13656 */ 13657 list_add_tail(&child_event->child_list, &parent_event->child_list); 13658 mutex_unlock(&parent_event->child_mutex); 13659 13660 return child_event; 13661 } 13662 13663 /* 13664 * Inherits an event group. 13665 * 13666 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13667 * This matches with perf_event_release_kernel() removing all child events. 13668 * 13669 * Returns: 13670 * - 0 on success 13671 * - <0 on error 13672 */ 13673 static int inherit_group(struct perf_event *parent_event, 13674 struct task_struct *parent, 13675 struct perf_event_context *parent_ctx, 13676 struct task_struct *child, 13677 struct perf_event_context *child_ctx) 13678 { 13679 struct perf_event *leader; 13680 struct perf_event *sub; 13681 struct perf_event *child_ctr; 13682 13683 leader = inherit_event(parent_event, parent, parent_ctx, 13684 child, NULL, child_ctx); 13685 if (IS_ERR(leader)) 13686 return PTR_ERR(leader); 13687 /* 13688 * @leader can be NULL here because of is_orphaned_event(). In this 13689 * case inherit_event() will create individual events, similar to what 13690 * perf_group_detach() would do anyway. 13691 */ 13692 for_each_sibling_event(sub, parent_event) { 13693 child_ctr = inherit_event(sub, parent, parent_ctx, 13694 child, leader, child_ctx); 13695 if (IS_ERR(child_ctr)) 13696 return PTR_ERR(child_ctr); 13697 13698 if (sub->aux_event == parent_event && child_ctr && 13699 !perf_get_aux_event(child_ctr, leader)) 13700 return -EINVAL; 13701 } 13702 if (leader) 13703 leader->group_generation = parent_event->group_generation; 13704 return 0; 13705 } 13706 13707 /* 13708 * Creates the child task context and tries to inherit the event-group. 13709 * 13710 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13711 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13712 * consistent with perf_event_release_kernel() removing all child events. 13713 * 13714 * Returns: 13715 * - 0 on success 13716 * - <0 on error 13717 */ 13718 static int 13719 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13720 struct perf_event_context *parent_ctx, 13721 struct task_struct *child, 13722 u64 clone_flags, int *inherited_all) 13723 { 13724 struct perf_event_context *child_ctx; 13725 int ret; 13726 13727 if (!event->attr.inherit || 13728 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13729 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13730 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13731 *inherited_all = 0; 13732 return 0; 13733 } 13734 13735 child_ctx = child->perf_event_ctxp; 13736 if (!child_ctx) { 13737 /* 13738 * This is executed from the parent task context, so 13739 * inherit events that have been marked for cloning. 13740 * First allocate and initialize a context for the 13741 * child. 13742 */ 13743 child_ctx = alloc_perf_context(child); 13744 if (!child_ctx) 13745 return -ENOMEM; 13746 13747 child->perf_event_ctxp = child_ctx; 13748 } 13749 13750 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13751 if (ret) 13752 *inherited_all = 0; 13753 13754 return ret; 13755 } 13756 13757 /* 13758 * Initialize the perf_event context in task_struct 13759 */ 13760 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13761 { 13762 struct perf_event_context *child_ctx, *parent_ctx; 13763 struct perf_event_context *cloned_ctx; 13764 struct perf_event *event; 13765 struct task_struct *parent = current; 13766 int inherited_all = 1; 13767 unsigned long flags; 13768 int ret = 0; 13769 13770 if (likely(!parent->perf_event_ctxp)) 13771 return 0; 13772 13773 /* 13774 * If the parent's context is a clone, pin it so it won't get 13775 * swapped under us. 13776 */ 13777 parent_ctx = perf_pin_task_context(parent); 13778 if (!parent_ctx) 13779 return 0; 13780 13781 /* 13782 * No need to check if parent_ctx != NULL here; since we saw 13783 * it non-NULL earlier, the only reason for it to become NULL 13784 * is if we exit, and since we're currently in the middle of 13785 * a fork we can't be exiting at the same time. 13786 */ 13787 13788 /* 13789 * Lock the parent list. No need to lock the child - not PID 13790 * hashed yet and not running, so nobody can access it. 13791 */ 13792 mutex_lock(&parent_ctx->mutex); 13793 13794 /* 13795 * We dont have to disable NMIs - we are only looking at 13796 * the list, not manipulating it: 13797 */ 13798 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13799 ret = inherit_task_group(event, parent, parent_ctx, 13800 child, clone_flags, &inherited_all); 13801 if (ret) 13802 goto out_unlock; 13803 } 13804 13805 /* 13806 * We can't hold ctx->lock when iterating the ->flexible_group list due 13807 * to allocations, but we need to prevent rotation because 13808 * rotate_ctx() will change the list from interrupt context. 13809 */ 13810 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13811 parent_ctx->rotate_disable = 1; 13812 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13813 13814 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13815 ret = inherit_task_group(event, parent, parent_ctx, 13816 child, clone_flags, &inherited_all); 13817 if (ret) 13818 goto out_unlock; 13819 } 13820 13821 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13822 parent_ctx->rotate_disable = 0; 13823 13824 child_ctx = child->perf_event_ctxp; 13825 13826 if (child_ctx && inherited_all) { 13827 /* 13828 * Mark the child context as a clone of the parent 13829 * context, or of whatever the parent is a clone of. 13830 * 13831 * Note that if the parent is a clone, the holding of 13832 * parent_ctx->lock avoids it from being uncloned. 13833 */ 13834 cloned_ctx = parent_ctx->parent_ctx; 13835 if (cloned_ctx) { 13836 child_ctx->parent_ctx = cloned_ctx; 13837 child_ctx->parent_gen = parent_ctx->parent_gen; 13838 } else { 13839 child_ctx->parent_ctx = parent_ctx; 13840 child_ctx->parent_gen = parent_ctx->generation; 13841 } 13842 get_ctx(child_ctx->parent_ctx); 13843 } 13844 13845 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13846 out_unlock: 13847 mutex_unlock(&parent_ctx->mutex); 13848 13849 perf_unpin_context(parent_ctx); 13850 put_ctx(parent_ctx); 13851 13852 return ret; 13853 } 13854 13855 /* 13856 * Initialize the perf_event context in task_struct 13857 */ 13858 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13859 { 13860 int ret; 13861 13862 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13863 child->perf_event_ctxp = NULL; 13864 mutex_init(&child->perf_event_mutex); 13865 INIT_LIST_HEAD(&child->perf_event_list); 13866 13867 ret = perf_event_init_context(child, clone_flags); 13868 if (ret) { 13869 perf_event_free_task(child); 13870 return ret; 13871 } 13872 13873 return 0; 13874 } 13875 13876 static void __init perf_event_init_all_cpus(void) 13877 { 13878 struct swevent_htable *swhash; 13879 struct perf_cpu_context *cpuctx; 13880 int cpu; 13881 13882 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13883 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 13884 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 13885 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 13886 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 13887 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 13888 13889 13890 for_each_possible_cpu(cpu) { 13891 swhash = &per_cpu(swevent_htable, cpu); 13892 mutex_init(&swhash->hlist_mutex); 13893 13894 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13895 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13896 13897 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13898 13899 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13900 __perf_event_init_context(&cpuctx->ctx); 13901 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13902 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13903 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13904 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13905 cpuctx->heap = cpuctx->heap_default; 13906 } 13907 } 13908 13909 static void perf_swevent_init_cpu(unsigned int cpu) 13910 { 13911 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13912 13913 mutex_lock(&swhash->hlist_mutex); 13914 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13915 struct swevent_hlist *hlist; 13916 13917 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13918 WARN_ON(!hlist); 13919 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13920 } 13921 mutex_unlock(&swhash->hlist_mutex); 13922 } 13923 13924 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13925 static void __perf_event_exit_context(void *__info) 13926 { 13927 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13928 struct perf_event_context *ctx = __info; 13929 struct perf_event *event; 13930 13931 raw_spin_lock(&ctx->lock); 13932 ctx_sched_out(ctx, NULL, EVENT_TIME); 13933 list_for_each_entry(event, &ctx->event_list, event_entry) 13934 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13935 raw_spin_unlock(&ctx->lock); 13936 } 13937 13938 static void perf_event_clear_cpumask(unsigned int cpu) 13939 { 13940 int target[PERF_PMU_MAX_SCOPE]; 13941 unsigned int scope; 13942 struct pmu *pmu; 13943 13944 cpumask_clear_cpu(cpu, perf_online_mask); 13945 13946 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 13947 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 13948 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 13949 13950 target[scope] = -1; 13951 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 13952 continue; 13953 13954 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 13955 continue; 13956 target[scope] = cpumask_any_but(cpumask, cpu); 13957 if (target[scope] < nr_cpu_ids) 13958 cpumask_set_cpu(target[scope], pmu_cpumask); 13959 } 13960 13961 /* migrate */ 13962 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 13963 if (pmu->scope == PERF_PMU_SCOPE_NONE || 13964 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 13965 continue; 13966 13967 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 13968 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 13969 } 13970 } 13971 13972 static void perf_event_exit_cpu_context(int cpu) 13973 { 13974 struct perf_cpu_context *cpuctx; 13975 struct perf_event_context *ctx; 13976 13977 // XXX simplify cpuctx->online 13978 mutex_lock(&pmus_lock); 13979 /* 13980 * Clear the cpumasks, and migrate to other CPUs if possible. 13981 * Must be invoked before the __perf_event_exit_context. 13982 */ 13983 perf_event_clear_cpumask(cpu); 13984 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13985 ctx = &cpuctx->ctx; 13986 13987 mutex_lock(&ctx->mutex); 13988 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13989 cpuctx->online = 0; 13990 mutex_unlock(&ctx->mutex); 13991 mutex_unlock(&pmus_lock); 13992 } 13993 #else 13994 13995 static void perf_event_exit_cpu_context(int cpu) { } 13996 13997 #endif 13998 13999 static void perf_event_setup_cpumask(unsigned int cpu) 14000 { 14001 struct cpumask *pmu_cpumask; 14002 unsigned int scope; 14003 14004 /* 14005 * Early boot stage, the cpumask hasn't been set yet. 14006 * The perf_online_<domain>_masks includes the first CPU of each domain. 14007 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14008 */ 14009 if (cpumask_empty(perf_online_mask)) { 14010 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14011 pmu_cpumask = perf_scope_cpumask(scope); 14012 if (WARN_ON_ONCE(!pmu_cpumask)) 14013 continue; 14014 cpumask_set_cpu(cpu, pmu_cpumask); 14015 } 14016 goto end; 14017 } 14018 14019 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14020 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14021 14022 pmu_cpumask = perf_scope_cpumask(scope); 14023 14024 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14025 continue; 14026 14027 if (!cpumask_empty(cpumask) && 14028 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14029 cpumask_set_cpu(cpu, pmu_cpumask); 14030 } 14031 end: 14032 cpumask_set_cpu(cpu, perf_online_mask); 14033 } 14034 14035 int perf_event_init_cpu(unsigned int cpu) 14036 { 14037 struct perf_cpu_context *cpuctx; 14038 struct perf_event_context *ctx; 14039 14040 perf_swevent_init_cpu(cpu); 14041 14042 mutex_lock(&pmus_lock); 14043 perf_event_setup_cpumask(cpu); 14044 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14045 ctx = &cpuctx->ctx; 14046 14047 mutex_lock(&ctx->mutex); 14048 cpuctx->online = 1; 14049 mutex_unlock(&ctx->mutex); 14050 mutex_unlock(&pmus_lock); 14051 14052 return 0; 14053 } 14054 14055 int perf_event_exit_cpu(unsigned int cpu) 14056 { 14057 perf_event_exit_cpu_context(cpu); 14058 return 0; 14059 } 14060 14061 static int 14062 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14063 { 14064 int cpu; 14065 14066 for_each_online_cpu(cpu) 14067 perf_event_exit_cpu(cpu); 14068 14069 return NOTIFY_OK; 14070 } 14071 14072 /* 14073 * Run the perf reboot notifier at the very last possible moment so that 14074 * the generic watchdog code runs as long as possible. 14075 */ 14076 static struct notifier_block perf_reboot_notifier = { 14077 .notifier_call = perf_reboot, 14078 .priority = INT_MIN, 14079 }; 14080 14081 void __init perf_event_init(void) 14082 { 14083 int ret; 14084 14085 idr_init(&pmu_idr); 14086 14087 perf_event_init_all_cpus(); 14088 init_srcu_struct(&pmus_srcu); 14089 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14090 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14091 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14092 perf_tp_register(); 14093 perf_event_init_cpu(smp_processor_id()); 14094 register_reboot_notifier(&perf_reboot_notifier); 14095 14096 ret = init_hw_breakpoint(); 14097 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14098 14099 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14100 14101 /* 14102 * Build time assertion that we keep the data_head at the intended 14103 * location. IOW, validation we got the __reserved[] size right. 14104 */ 14105 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14106 != 1024); 14107 } 14108 14109 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14110 char *page) 14111 { 14112 struct perf_pmu_events_attr *pmu_attr = 14113 container_of(attr, struct perf_pmu_events_attr, attr); 14114 14115 if (pmu_attr->event_str) 14116 return sprintf(page, "%s\n", pmu_attr->event_str); 14117 14118 return 0; 14119 } 14120 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14121 14122 static int __init perf_event_sysfs_init(void) 14123 { 14124 struct pmu *pmu; 14125 int ret; 14126 14127 mutex_lock(&pmus_lock); 14128 14129 ret = bus_register(&pmu_bus); 14130 if (ret) 14131 goto unlock; 14132 14133 list_for_each_entry(pmu, &pmus, entry) { 14134 if (pmu->dev) 14135 continue; 14136 14137 ret = pmu_dev_alloc(pmu); 14138 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14139 } 14140 pmu_bus_running = 1; 14141 ret = 0; 14142 14143 unlock: 14144 mutex_unlock(&pmus_lock); 14145 14146 return ret; 14147 } 14148 device_initcall(perf_event_sysfs_init); 14149 14150 #ifdef CONFIG_CGROUP_PERF 14151 static struct cgroup_subsys_state * 14152 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14153 { 14154 struct perf_cgroup *jc; 14155 14156 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14157 if (!jc) 14158 return ERR_PTR(-ENOMEM); 14159 14160 jc->info = alloc_percpu(struct perf_cgroup_info); 14161 if (!jc->info) { 14162 kfree(jc); 14163 return ERR_PTR(-ENOMEM); 14164 } 14165 14166 return &jc->css; 14167 } 14168 14169 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14170 { 14171 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14172 14173 free_percpu(jc->info); 14174 kfree(jc); 14175 } 14176 14177 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14178 { 14179 perf_event_cgroup(css->cgroup); 14180 return 0; 14181 } 14182 14183 static int __perf_cgroup_move(void *info) 14184 { 14185 struct task_struct *task = info; 14186 14187 preempt_disable(); 14188 perf_cgroup_switch(task); 14189 preempt_enable(); 14190 14191 return 0; 14192 } 14193 14194 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14195 { 14196 struct task_struct *task; 14197 struct cgroup_subsys_state *css; 14198 14199 cgroup_taskset_for_each(task, css, tset) 14200 task_function_call(task, __perf_cgroup_move, task); 14201 } 14202 14203 struct cgroup_subsys perf_event_cgrp_subsys = { 14204 .css_alloc = perf_cgroup_css_alloc, 14205 .css_free = perf_cgroup_css_free, 14206 .css_online = perf_cgroup_css_online, 14207 .attach = perf_cgroup_attach, 14208 /* 14209 * Implicitly enable on dfl hierarchy so that perf events can 14210 * always be filtered by cgroup2 path as long as perf_event 14211 * controller is not mounted on a legacy hierarchy. 14212 */ 14213 .implicit_on_dfl = true, 14214 .threaded = true, 14215 }; 14216 #endif /* CONFIG_CGROUP_PERF */ 14217 14218 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14219