xref: /linux/kernel/events/core.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40 #include <linux/cgroup.h>
41 
42 #include "internal.h"
43 
44 #include <asm/irq_regs.h>
45 
46 struct remote_function_call {
47 	struct task_struct	*p;
48 	int			(*func)(void *info);
49 	void			*info;
50 	int			ret;
51 };
52 
53 static void remote_function(void *data)
54 {
55 	struct remote_function_call *tfc = data;
56 	struct task_struct *p = tfc->p;
57 
58 	if (p) {
59 		tfc->ret = -EAGAIN;
60 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
61 			return;
62 	}
63 
64 	tfc->ret = tfc->func(tfc->info);
65 }
66 
67 /**
68  * task_function_call - call a function on the cpu on which a task runs
69  * @p:		the task to evaluate
70  * @func:	the function to be called
71  * @info:	the function call argument
72  *
73  * Calls the function @func when the task is currently running. This might
74  * be on the current CPU, which just calls the function directly
75  *
76  * returns: @func return value, or
77  *	    -ESRCH  - when the process isn't running
78  *	    -EAGAIN - when the process moved away
79  */
80 static int
81 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
82 {
83 	struct remote_function_call data = {
84 		.p	= p,
85 		.func	= func,
86 		.info	= info,
87 		.ret	= -ESRCH, /* No such (running) process */
88 	};
89 
90 	if (task_curr(p))
91 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
92 
93 	return data.ret;
94 }
95 
96 /**
97  * cpu_function_call - call a function on the cpu
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func on the remote cpu.
102  *
103  * returns: @func return value or -ENXIO when the cpu is offline
104  */
105 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= NULL,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -ENXIO, /* No such CPU */
112 	};
113 
114 	smp_call_function_single(cpu, remote_function, &data, 1);
115 
116 	return data.ret;
117 }
118 
119 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
120 		       PERF_FLAG_FD_OUTPUT  |\
121 		       PERF_FLAG_PID_CGROUP)
122 
123 /*
124  * branch priv levels that need permission checks
125  */
126 #define PERF_SAMPLE_BRANCH_PERM_PLM \
127 	(PERF_SAMPLE_BRANCH_KERNEL |\
128 	 PERF_SAMPLE_BRANCH_HV)
129 
130 enum event_type_t {
131 	EVENT_FLEXIBLE = 0x1,
132 	EVENT_PINNED = 0x2,
133 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
134 };
135 
136 /*
137  * perf_sched_events : >0 events exist
138  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
139  */
140 struct static_key_deferred perf_sched_events __read_mostly;
141 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
142 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
143 
144 static atomic_t nr_mmap_events __read_mostly;
145 static atomic_t nr_comm_events __read_mostly;
146 static atomic_t nr_task_events __read_mostly;
147 
148 static LIST_HEAD(pmus);
149 static DEFINE_MUTEX(pmus_lock);
150 static struct srcu_struct pmus_srcu;
151 
152 /*
153  * perf event paranoia level:
154  *  -1 - not paranoid at all
155  *   0 - disallow raw tracepoint access for unpriv
156  *   1 - disallow cpu events for unpriv
157  *   2 - disallow kernel profiling for unpriv
158  */
159 int sysctl_perf_event_paranoid __read_mostly = 1;
160 
161 /* Minimum for 512 kiB + 1 user control page */
162 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
163 
164 /*
165  * max perf event sample rate
166  */
167 #define DEFAULT_MAX_SAMPLE_RATE 100000
168 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
169 static int max_samples_per_tick __read_mostly =
170 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
171 
172 int perf_proc_update_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
177 
178 	if (ret || !write)
179 		return ret;
180 
181 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
182 
183 	return 0;
184 }
185 
186 static atomic64_t perf_event_id;
187 
188 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
189 			      enum event_type_t event_type);
190 
191 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
192 			     enum event_type_t event_type,
193 			     struct task_struct *task);
194 
195 static void update_context_time(struct perf_event_context *ctx);
196 static u64 perf_event_time(struct perf_event *event);
197 
198 static void ring_buffer_attach(struct perf_event *event,
199 			       struct ring_buffer *rb);
200 
201 void __weak perf_event_print_debug(void)	{ }
202 
203 extern __weak const char *perf_pmu_name(void)
204 {
205 	return "pmu";
206 }
207 
208 static inline u64 perf_clock(void)
209 {
210 	return local_clock();
211 }
212 
213 static inline struct perf_cpu_context *
214 __get_cpu_context(struct perf_event_context *ctx)
215 {
216 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
217 }
218 
219 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
220 			  struct perf_event_context *ctx)
221 {
222 	raw_spin_lock(&cpuctx->ctx.lock);
223 	if (ctx)
224 		raw_spin_lock(&ctx->lock);
225 }
226 
227 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
228 			    struct perf_event_context *ctx)
229 {
230 	if (ctx)
231 		raw_spin_unlock(&ctx->lock);
232 	raw_spin_unlock(&cpuctx->ctx.lock);
233 }
234 
235 #ifdef CONFIG_CGROUP_PERF
236 
237 /*
238  * perf_cgroup_info keeps track of time_enabled for a cgroup.
239  * This is a per-cpu dynamically allocated data structure.
240  */
241 struct perf_cgroup_info {
242 	u64				time;
243 	u64				timestamp;
244 };
245 
246 struct perf_cgroup {
247 	struct cgroup_subsys_state	css;
248 	struct perf_cgroup_info	__percpu *info;
249 };
250 
251 /*
252  * Must ensure cgroup is pinned (css_get) before calling
253  * this function. In other words, we cannot call this function
254  * if there is no cgroup event for the current CPU context.
255  */
256 static inline struct perf_cgroup *
257 perf_cgroup_from_task(struct task_struct *task)
258 {
259 	return container_of(task_subsys_state(task, perf_subsys_id),
260 			struct perf_cgroup, css);
261 }
262 
263 static inline bool
264 perf_cgroup_match(struct perf_event *event)
265 {
266 	struct perf_event_context *ctx = event->ctx;
267 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
268 
269 	/* @event doesn't care about cgroup */
270 	if (!event->cgrp)
271 		return true;
272 
273 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
274 	if (!cpuctx->cgrp)
275 		return false;
276 
277 	/*
278 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
279 	 * also enabled for all its descendant cgroups.  If @cpuctx's
280 	 * cgroup is a descendant of @event's (the test covers identity
281 	 * case), it's a match.
282 	 */
283 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
284 				    event->cgrp->css.cgroup);
285 }
286 
287 static inline bool perf_tryget_cgroup(struct perf_event *event)
288 {
289 	return css_tryget(&event->cgrp->css);
290 }
291 
292 static inline void perf_put_cgroup(struct perf_event *event)
293 {
294 	css_put(&event->cgrp->css);
295 }
296 
297 static inline void perf_detach_cgroup(struct perf_event *event)
298 {
299 	perf_put_cgroup(event);
300 	event->cgrp = NULL;
301 }
302 
303 static inline int is_cgroup_event(struct perf_event *event)
304 {
305 	return event->cgrp != NULL;
306 }
307 
308 static inline u64 perf_cgroup_event_time(struct perf_event *event)
309 {
310 	struct perf_cgroup_info *t;
311 
312 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
313 	return t->time;
314 }
315 
316 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
317 {
318 	struct perf_cgroup_info *info;
319 	u64 now;
320 
321 	now = perf_clock();
322 
323 	info = this_cpu_ptr(cgrp->info);
324 
325 	info->time += now - info->timestamp;
326 	info->timestamp = now;
327 }
328 
329 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
330 {
331 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
332 	if (cgrp_out)
333 		__update_cgrp_time(cgrp_out);
334 }
335 
336 static inline void update_cgrp_time_from_event(struct perf_event *event)
337 {
338 	struct perf_cgroup *cgrp;
339 
340 	/*
341 	 * ensure we access cgroup data only when needed and
342 	 * when we know the cgroup is pinned (css_get)
343 	 */
344 	if (!is_cgroup_event(event))
345 		return;
346 
347 	cgrp = perf_cgroup_from_task(current);
348 	/*
349 	 * Do not update time when cgroup is not active
350 	 */
351 	if (cgrp == event->cgrp)
352 		__update_cgrp_time(event->cgrp);
353 }
354 
355 static inline void
356 perf_cgroup_set_timestamp(struct task_struct *task,
357 			  struct perf_event_context *ctx)
358 {
359 	struct perf_cgroup *cgrp;
360 	struct perf_cgroup_info *info;
361 
362 	/*
363 	 * ctx->lock held by caller
364 	 * ensure we do not access cgroup data
365 	 * unless we have the cgroup pinned (css_get)
366 	 */
367 	if (!task || !ctx->nr_cgroups)
368 		return;
369 
370 	cgrp = perf_cgroup_from_task(task);
371 	info = this_cpu_ptr(cgrp->info);
372 	info->timestamp = ctx->timestamp;
373 }
374 
375 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
376 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
377 
378 /*
379  * reschedule events based on the cgroup constraint of task.
380  *
381  * mode SWOUT : schedule out everything
382  * mode SWIN : schedule in based on cgroup for next
383  */
384 void perf_cgroup_switch(struct task_struct *task, int mode)
385 {
386 	struct perf_cpu_context *cpuctx;
387 	struct pmu *pmu;
388 	unsigned long flags;
389 
390 	/*
391 	 * disable interrupts to avoid geting nr_cgroup
392 	 * changes via __perf_event_disable(). Also
393 	 * avoids preemption.
394 	 */
395 	local_irq_save(flags);
396 
397 	/*
398 	 * we reschedule only in the presence of cgroup
399 	 * constrained events.
400 	 */
401 	rcu_read_lock();
402 
403 	list_for_each_entry_rcu(pmu, &pmus, entry) {
404 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
405 		if (cpuctx->unique_pmu != pmu)
406 			continue; /* ensure we process each cpuctx once */
407 
408 		/*
409 		 * perf_cgroup_events says at least one
410 		 * context on this CPU has cgroup events.
411 		 *
412 		 * ctx->nr_cgroups reports the number of cgroup
413 		 * events for a context.
414 		 */
415 		if (cpuctx->ctx.nr_cgroups > 0) {
416 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
417 			perf_pmu_disable(cpuctx->ctx.pmu);
418 
419 			if (mode & PERF_CGROUP_SWOUT) {
420 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
421 				/*
422 				 * must not be done before ctxswout due
423 				 * to event_filter_match() in event_sched_out()
424 				 */
425 				cpuctx->cgrp = NULL;
426 			}
427 
428 			if (mode & PERF_CGROUP_SWIN) {
429 				WARN_ON_ONCE(cpuctx->cgrp);
430 				/*
431 				 * set cgrp before ctxsw in to allow
432 				 * event_filter_match() to not have to pass
433 				 * task around
434 				 */
435 				cpuctx->cgrp = perf_cgroup_from_task(task);
436 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
437 			}
438 			perf_pmu_enable(cpuctx->ctx.pmu);
439 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
440 		}
441 	}
442 
443 	rcu_read_unlock();
444 
445 	local_irq_restore(flags);
446 }
447 
448 static inline void perf_cgroup_sched_out(struct task_struct *task,
449 					 struct task_struct *next)
450 {
451 	struct perf_cgroup *cgrp1;
452 	struct perf_cgroup *cgrp2 = NULL;
453 
454 	/*
455 	 * we come here when we know perf_cgroup_events > 0
456 	 */
457 	cgrp1 = perf_cgroup_from_task(task);
458 
459 	/*
460 	 * next is NULL when called from perf_event_enable_on_exec()
461 	 * that will systematically cause a cgroup_switch()
462 	 */
463 	if (next)
464 		cgrp2 = perf_cgroup_from_task(next);
465 
466 	/*
467 	 * only schedule out current cgroup events if we know
468 	 * that we are switching to a different cgroup. Otherwise,
469 	 * do no touch the cgroup events.
470 	 */
471 	if (cgrp1 != cgrp2)
472 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
473 }
474 
475 static inline void perf_cgroup_sched_in(struct task_struct *prev,
476 					struct task_struct *task)
477 {
478 	struct perf_cgroup *cgrp1;
479 	struct perf_cgroup *cgrp2 = NULL;
480 
481 	/*
482 	 * we come here when we know perf_cgroup_events > 0
483 	 */
484 	cgrp1 = perf_cgroup_from_task(task);
485 
486 	/* prev can never be NULL */
487 	cgrp2 = perf_cgroup_from_task(prev);
488 
489 	/*
490 	 * only need to schedule in cgroup events if we are changing
491 	 * cgroup during ctxsw. Cgroup events were not scheduled
492 	 * out of ctxsw out if that was not the case.
493 	 */
494 	if (cgrp1 != cgrp2)
495 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
496 }
497 
498 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
499 				      struct perf_event_attr *attr,
500 				      struct perf_event *group_leader)
501 {
502 	struct perf_cgroup *cgrp;
503 	struct cgroup_subsys_state *css;
504 	struct fd f = fdget(fd);
505 	int ret = 0;
506 
507 	if (!f.file)
508 		return -EBADF;
509 
510 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
511 	if (IS_ERR(css)) {
512 		ret = PTR_ERR(css);
513 		goto out;
514 	}
515 
516 	cgrp = container_of(css, struct perf_cgroup, css);
517 	event->cgrp = cgrp;
518 
519 	/* must be done before we fput() the file */
520 	if (!perf_tryget_cgroup(event)) {
521 		event->cgrp = NULL;
522 		ret = -ENOENT;
523 		goto out;
524 	}
525 
526 	/*
527 	 * all events in a group must monitor
528 	 * the same cgroup because a task belongs
529 	 * to only one perf cgroup at a time
530 	 */
531 	if (group_leader && group_leader->cgrp != cgrp) {
532 		perf_detach_cgroup(event);
533 		ret = -EINVAL;
534 	}
535 out:
536 	fdput(f);
537 	return ret;
538 }
539 
540 static inline void
541 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
542 {
543 	struct perf_cgroup_info *t;
544 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
545 	event->shadow_ctx_time = now - t->timestamp;
546 }
547 
548 static inline void
549 perf_cgroup_defer_enabled(struct perf_event *event)
550 {
551 	/*
552 	 * when the current task's perf cgroup does not match
553 	 * the event's, we need to remember to call the
554 	 * perf_mark_enable() function the first time a task with
555 	 * a matching perf cgroup is scheduled in.
556 	 */
557 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
558 		event->cgrp_defer_enabled = 1;
559 }
560 
561 static inline void
562 perf_cgroup_mark_enabled(struct perf_event *event,
563 			 struct perf_event_context *ctx)
564 {
565 	struct perf_event *sub;
566 	u64 tstamp = perf_event_time(event);
567 
568 	if (!event->cgrp_defer_enabled)
569 		return;
570 
571 	event->cgrp_defer_enabled = 0;
572 
573 	event->tstamp_enabled = tstamp - event->total_time_enabled;
574 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
575 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
576 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
577 			sub->cgrp_defer_enabled = 0;
578 		}
579 	}
580 }
581 #else /* !CONFIG_CGROUP_PERF */
582 
583 static inline bool
584 perf_cgroup_match(struct perf_event *event)
585 {
586 	return true;
587 }
588 
589 static inline void perf_detach_cgroup(struct perf_event *event)
590 {}
591 
592 static inline int is_cgroup_event(struct perf_event *event)
593 {
594 	return 0;
595 }
596 
597 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
598 {
599 	return 0;
600 }
601 
602 static inline void update_cgrp_time_from_event(struct perf_event *event)
603 {
604 }
605 
606 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
607 {
608 }
609 
610 static inline void perf_cgroup_sched_out(struct task_struct *task,
611 					 struct task_struct *next)
612 {
613 }
614 
615 static inline void perf_cgroup_sched_in(struct task_struct *prev,
616 					struct task_struct *task)
617 {
618 }
619 
620 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
621 				      struct perf_event_attr *attr,
622 				      struct perf_event *group_leader)
623 {
624 	return -EINVAL;
625 }
626 
627 static inline void
628 perf_cgroup_set_timestamp(struct task_struct *task,
629 			  struct perf_event_context *ctx)
630 {
631 }
632 
633 void
634 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
635 {
636 }
637 
638 static inline void
639 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
640 {
641 }
642 
643 static inline u64 perf_cgroup_event_time(struct perf_event *event)
644 {
645 	return 0;
646 }
647 
648 static inline void
649 perf_cgroup_defer_enabled(struct perf_event *event)
650 {
651 }
652 
653 static inline void
654 perf_cgroup_mark_enabled(struct perf_event *event,
655 			 struct perf_event_context *ctx)
656 {
657 }
658 #endif
659 
660 void perf_pmu_disable(struct pmu *pmu)
661 {
662 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
663 	if (!(*count)++)
664 		pmu->pmu_disable(pmu);
665 }
666 
667 void perf_pmu_enable(struct pmu *pmu)
668 {
669 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
670 	if (!--(*count))
671 		pmu->pmu_enable(pmu);
672 }
673 
674 static DEFINE_PER_CPU(struct list_head, rotation_list);
675 
676 /*
677  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
678  * because they're strictly cpu affine and rotate_start is called with IRQs
679  * disabled, while rotate_context is called from IRQ context.
680  */
681 static void perf_pmu_rotate_start(struct pmu *pmu)
682 {
683 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
684 	struct list_head *head = &__get_cpu_var(rotation_list);
685 
686 	WARN_ON(!irqs_disabled());
687 
688 	if (list_empty(&cpuctx->rotation_list))
689 		list_add(&cpuctx->rotation_list, head);
690 }
691 
692 static void get_ctx(struct perf_event_context *ctx)
693 {
694 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
695 }
696 
697 static void put_ctx(struct perf_event_context *ctx)
698 {
699 	if (atomic_dec_and_test(&ctx->refcount)) {
700 		if (ctx->parent_ctx)
701 			put_ctx(ctx->parent_ctx);
702 		if (ctx->task)
703 			put_task_struct(ctx->task);
704 		kfree_rcu(ctx, rcu_head);
705 	}
706 }
707 
708 static void unclone_ctx(struct perf_event_context *ctx)
709 {
710 	if (ctx->parent_ctx) {
711 		put_ctx(ctx->parent_ctx);
712 		ctx->parent_ctx = NULL;
713 	}
714 }
715 
716 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
717 {
718 	/*
719 	 * only top level events have the pid namespace they were created in
720 	 */
721 	if (event->parent)
722 		event = event->parent;
723 
724 	return task_tgid_nr_ns(p, event->ns);
725 }
726 
727 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
728 {
729 	/*
730 	 * only top level events have the pid namespace they were created in
731 	 */
732 	if (event->parent)
733 		event = event->parent;
734 
735 	return task_pid_nr_ns(p, event->ns);
736 }
737 
738 /*
739  * If we inherit events we want to return the parent event id
740  * to userspace.
741  */
742 static u64 primary_event_id(struct perf_event *event)
743 {
744 	u64 id = event->id;
745 
746 	if (event->parent)
747 		id = event->parent->id;
748 
749 	return id;
750 }
751 
752 /*
753  * Get the perf_event_context for a task and lock it.
754  * This has to cope with with the fact that until it is locked,
755  * the context could get moved to another task.
756  */
757 static struct perf_event_context *
758 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
759 {
760 	struct perf_event_context *ctx;
761 
762 	rcu_read_lock();
763 retry:
764 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
765 	if (ctx) {
766 		/*
767 		 * If this context is a clone of another, it might
768 		 * get swapped for another underneath us by
769 		 * perf_event_task_sched_out, though the
770 		 * rcu_read_lock() protects us from any context
771 		 * getting freed.  Lock the context and check if it
772 		 * got swapped before we could get the lock, and retry
773 		 * if so.  If we locked the right context, then it
774 		 * can't get swapped on us any more.
775 		 */
776 		raw_spin_lock_irqsave(&ctx->lock, *flags);
777 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
778 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
779 			goto retry;
780 		}
781 
782 		if (!atomic_inc_not_zero(&ctx->refcount)) {
783 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 			ctx = NULL;
785 		}
786 	}
787 	rcu_read_unlock();
788 	return ctx;
789 }
790 
791 /*
792  * Get the context for a task and increment its pin_count so it
793  * can't get swapped to another task.  This also increments its
794  * reference count so that the context can't get freed.
795  */
796 static struct perf_event_context *
797 perf_pin_task_context(struct task_struct *task, int ctxn)
798 {
799 	struct perf_event_context *ctx;
800 	unsigned long flags;
801 
802 	ctx = perf_lock_task_context(task, ctxn, &flags);
803 	if (ctx) {
804 		++ctx->pin_count;
805 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
806 	}
807 	return ctx;
808 }
809 
810 static void perf_unpin_context(struct perf_event_context *ctx)
811 {
812 	unsigned long flags;
813 
814 	raw_spin_lock_irqsave(&ctx->lock, flags);
815 	--ctx->pin_count;
816 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
817 }
818 
819 /*
820  * Update the record of the current time in a context.
821  */
822 static void update_context_time(struct perf_event_context *ctx)
823 {
824 	u64 now = perf_clock();
825 
826 	ctx->time += now - ctx->timestamp;
827 	ctx->timestamp = now;
828 }
829 
830 static u64 perf_event_time(struct perf_event *event)
831 {
832 	struct perf_event_context *ctx = event->ctx;
833 
834 	if (is_cgroup_event(event))
835 		return perf_cgroup_event_time(event);
836 
837 	return ctx ? ctx->time : 0;
838 }
839 
840 /*
841  * Update the total_time_enabled and total_time_running fields for a event.
842  * The caller of this function needs to hold the ctx->lock.
843  */
844 static void update_event_times(struct perf_event *event)
845 {
846 	struct perf_event_context *ctx = event->ctx;
847 	u64 run_end;
848 
849 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
850 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
851 		return;
852 	/*
853 	 * in cgroup mode, time_enabled represents
854 	 * the time the event was enabled AND active
855 	 * tasks were in the monitored cgroup. This is
856 	 * independent of the activity of the context as
857 	 * there may be a mix of cgroup and non-cgroup events.
858 	 *
859 	 * That is why we treat cgroup events differently
860 	 * here.
861 	 */
862 	if (is_cgroup_event(event))
863 		run_end = perf_cgroup_event_time(event);
864 	else if (ctx->is_active)
865 		run_end = ctx->time;
866 	else
867 		run_end = event->tstamp_stopped;
868 
869 	event->total_time_enabled = run_end - event->tstamp_enabled;
870 
871 	if (event->state == PERF_EVENT_STATE_INACTIVE)
872 		run_end = event->tstamp_stopped;
873 	else
874 		run_end = perf_event_time(event);
875 
876 	event->total_time_running = run_end - event->tstamp_running;
877 
878 }
879 
880 /*
881  * Update total_time_enabled and total_time_running for all events in a group.
882  */
883 static void update_group_times(struct perf_event *leader)
884 {
885 	struct perf_event *event;
886 
887 	update_event_times(leader);
888 	list_for_each_entry(event, &leader->sibling_list, group_entry)
889 		update_event_times(event);
890 }
891 
892 static struct list_head *
893 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
894 {
895 	if (event->attr.pinned)
896 		return &ctx->pinned_groups;
897 	else
898 		return &ctx->flexible_groups;
899 }
900 
901 /*
902  * Add a event from the lists for its context.
903  * Must be called with ctx->mutex and ctx->lock held.
904  */
905 static void
906 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
907 {
908 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
909 	event->attach_state |= PERF_ATTACH_CONTEXT;
910 
911 	/*
912 	 * If we're a stand alone event or group leader, we go to the context
913 	 * list, group events are kept attached to the group so that
914 	 * perf_group_detach can, at all times, locate all siblings.
915 	 */
916 	if (event->group_leader == event) {
917 		struct list_head *list;
918 
919 		if (is_software_event(event))
920 			event->group_flags |= PERF_GROUP_SOFTWARE;
921 
922 		list = ctx_group_list(event, ctx);
923 		list_add_tail(&event->group_entry, list);
924 	}
925 
926 	if (is_cgroup_event(event))
927 		ctx->nr_cgroups++;
928 
929 	if (has_branch_stack(event))
930 		ctx->nr_branch_stack++;
931 
932 	list_add_rcu(&event->event_entry, &ctx->event_list);
933 	if (!ctx->nr_events)
934 		perf_pmu_rotate_start(ctx->pmu);
935 	ctx->nr_events++;
936 	if (event->attr.inherit_stat)
937 		ctx->nr_stat++;
938 }
939 
940 /*
941  * Initialize event state based on the perf_event_attr::disabled.
942  */
943 static inline void perf_event__state_init(struct perf_event *event)
944 {
945 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
946 					      PERF_EVENT_STATE_INACTIVE;
947 }
948 
949 /*
950  * Called at perf_event creation and when events are attached/detached from a
951  * group.
952  */
953 static void perf_event__read_size(struct perf_event *event)
954 {
955 	int entry = sizeof(u64); /* value */
956 	int size = 0;
957 	int nr = 1;
958 
959 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
960 		size += sizeof(u64);
961 
962 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
963 		size += sizeof(u64);
964 
965 	if (event->attr.read_format & PERF_FORMAT_ID)
966 		entry += sizeof(u64);
967 
968 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
969 		nr += event->group_leader->nr_siblings;
970 		size += sizeof(u64);
971 	}
972 
973 	size += entry * nr;
974 	event->read_size = size;
975 }
976 
977 static void perf_event__header_size(struct perf_event *event)
978 {
979 	struct perf_sample_data *data;
980 	u64 sample_type = event->attr.sample_type;
981 	u16 size = 0;
982 
983 	perf_event__read_size(event);
984 
985 	if (sample_type & PERF_SAMPLE_IP)
986 		size += sizeof(data->ip);
987 
988 	if (sample_type & PERF_SAMPLE_ADDR)
989 		size += sizeof(data->addr);
990 
991 	if (sample_type & PERF_SAMPLE_PERIOD)
992 		size += sizeof(data->period);
993 
994 	if (sample_type & PERF_SAMPLE_WEIGHT)
995 		size += sizeof(data->weight);
996 
997 	if (sample_type & PERF_SAMPLE_READ)
998 		size += event->read_size;
999 
1000 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1001 		size += sizeof(data->data_src.val);
1002 
1003 	event->header_size = size;
1004 }
1005 
1006 static void perf_event__id_header_size(struct perf_event *event)
1007 {
1008 	struct perf_sample_data *data;
1009 	u64 sample_type = event->attr.sample_type;
1010 	u16 size = 0;
1011 
1012 	if (sample_type & PERF_SAMPLE_TID)
1013 		size += sizeof(data->tid_entry);
1014 
1015 	if (sample_type & PERF_SAMPLE_TIME)
1016 		size += sizeof(data->time);
1017 
1018 	if (sample_type & PERF_SAMPLE_ID)
1019 		size += sizeof(data->id);
1020 
1021 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1022 		size += sizeof(data->stream_id);
1023 
1024 	if (sample_type & PERF_SAMPLE_CPU)
1025 		size += sizeof(data->cpu_entry);
1026 
1027 	event->id_header_size = size;
1028 }
1029 
1030 static void perf_group_attach(struct perf_event *event)
1031 {
1032 	struct perf_event *group_leader = event->group_leader, *pos;
1033 
1034 	/*
1035 	 * We can have double attach due to group movement in perf_event_open.
1036 	 */
1037 	if (event->attach_state & PERF_ATTACH_GROUP)
1038 		return;
1039 
1040 	event->attach_state |= PERF_ATTACH_GROUP;
1041 
1042 	if (group_leader == event)
1043 		return;
1044 
1045 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1046 			!is_software_event(event))
1047 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1048 
1049 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1050 	group_leader->nr_siblings++;
1051 
1052 	perf_event__header_size(group_leader);
1053 
1054 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1055 		perf_event__header_size(pos);
1056 }
1057 
1058 /*
1059  * Remove a event from the lists for its context.
1060  * Must be called with ctx->mutex and ctx->lock held.
1061  */
1062 static void
1063 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 	struct perf_cpu_context *cpuctx;
1066 	/*
1067 	 * We can have double detach due to exit/hot-unplug + close.
1068 	 */
1069 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1070 		return;
1071 
1072 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1073 
1074 	if (is_cgroup_event(event)) {
1075 		ctx->nr_cgroups--;
1076 		cpuctx = __get_cpu_context(ctx);
1077 		/*
1078 		 * if there are no more cgroup events
1079 		 * then cler cgrp to avoid stale pointer
1080 		 * in update_cgrp_time_from_cpuctx()
1081 		 */
1082 		if (!ctx->nr_cgroups)
1083 			cpuctx->cgrp = NULL;
1084 	}
1085 
1086 	if (has_branch_stack(event))
1087 		ctx->nr_branch_stack--;
1088 
1089 	ctx->nr_events--;
1090 	if (event->attr.inherit_stat)
1091 		ctx->nr_stat--;
1092 
1093 	list_del_rcu(&event->event_entry);
1094 
1095 	if (event->group_leader == event)
1096 		list_del_init(&event->group_entry);
1097 
1098 	update_group_times(event);
1099 
1100 	/*
1101 	 * If event was in error state, then keep it
1102 	 * that way, otherwise bogus counts will be
1103 	 * returned on read(). The only way to get out
1104 	 * of error state is by explicit re-enabling
1105 	 * of the event
1106 	 */
1107 	if (event->state > PERF_EVENT_STATE_OFF)
1108 		event->state = PERF_EVENT_STATE_OFF;
1109 }
1110 
1111 static void perf_group_detach(struct perf_event *event)
1112 {
1113 	struct perf_event *sibling, *tmp;
1114 	struct list_head *list = NULL;
1115 
1116 	/*
1117 	 * We can have double detach due to exit/hot-unplug + close.
1118 	 */
1119 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1120 		return;
1121 
1122 	event->attach_state &= ~PERF_ATTACH_GROUP;
1123 
1124 	/*
1125 	 * If this is a sibling, remove it from its group.
1126 	 */
1127 	if (event->group_leader != event) {
1128 		list_del_init(&event->group_entry);
1129 		event->group_leader->nr_siblings--;
1130 		goto out;
1131 	}
1132 
1133 	if (!list_empty(&event->group_entry))
1134 		list = &event->group_entry;
1135 
1136 	/*
1137 	 * If this was a group event with sibling events then
1138 	 * upgrade the siblings to singleton events by adding them
1139 	 * to whatever list we are on.
1140 	 */
1141 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1142 		if (list)
1143 			list_move_tail(&sibling->group_entry, list);
1144 		sibling->group_leader = sibling;
1145 
1146 		/* Inherit group flags from the previous leader */
1147 		sibling->group_flags = event->group_flags;
1148 	}
1149 
1150 out:
1151 	perf_event__header_size(event->group_leader);
1152 
1153 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1154 		perf_event__header_size(tmp);
1155 }
1156 
1157 static inline int
1158 event_filter_match(struct perf_event *event)
1159 {
1160 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1161 	    && perf_cgroup_match(event);
1162 }
1163 
1164 static void
1165 event_sched_out(struct perf_event *event,
1166 		  struct perf_cpu_context *cpuctx,
1167 		  struct perf_event_context *ctx)
1168 {
1169 	u64 tstamp = perf_event_time(event);
1170 	u64 delta;
1171 	/*
1172 	 * An event which could not be activated because of
1173 	 * filter mismatch still needs to have its timings
1174 	 * maintained, otherwise bogus information is return
1175 	 * via read() for time_enabled, time_running:
1176 	 */
1177 	if (event->state == PERF_EVENT_STATE_INACTIVE
1178 	    && !event_filter_match(event)) {
1179 		delta = tstamp - event->tstamp_stopped;
1180 		event->tstamp_running += delta;
1181 		event->tstamp_stopped = tstamp;
1182 	}
1183 
1184 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1185 		return;
1186 
1187 	event->state = PERF_EVENT_STATE_INACTIVE;
1188 	if (event->pending_disable) {
1189 		event->pending_disable = 0;
1190 		event->state = PERF_EVENT_STATE_OFF;
1191 	}
1192 	event->tstamp_stopped = tstamp;
1193 	event->pmu->del(event, 0);
1194 	event->oncpu = -1;
1195 
1196 	if (!is_software_event(event))
1197 		cpuctx->active_oncpu--;
1198 	ctx->nr_active--;
1199 	if (event->attr.freq && event->attr.sample_freq)
1200 		ctx->nr_freq--;
1201 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1202 		cpuctx->exclusive = 0;
1203 }
1204 
1205 static void
1206 group_sched_out(struct perf_event *group_event,
1207 		struct perf_cpu_context *cpuctx,
1208 		struct perf_event_context *ctx)
1209 {
1210 	struct perf_event *event;
1211 	int state = group_event->state;
1212 
1213 	event_sched_out(group_event, cpuctx, ctx);
1214 
1215 	/*
1216 	 * Schedule out siblings (if any):
1217 	 */
1218 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1219 		event_sched_out(event, cpuctx, ctx);
1220 
1221 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1222 		cpuctx->exclusive = 0;
1223 }
1224 
1225 /*
1226  * Cross CPU call to remove a performance event
1227  *
1228  * We disable the event on the hardware level first. After that we
1229  * remove it from the context list.
1230  */
1231 static int __perf_remove_from_context(void *info)
1232 {
1233 	struct perf_event *event = info;
1234 	struct perf_event_context *ctx = event->ctx;
1235 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1236 
1237 	raw_spin_lock(&ctx->lock);
1238 	event_sched_out(event, cpuctx, ctx);
1239 	list_del_event(event, ctx);
1240 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1241 		ctx->is_active = 0;
1242 		cpuctx->task_ctx = NULL;
1243 	}
1244 	raw_spin_unlock(&ctx->lock);
1245 
1246 	return 0;
1247 }
1248 
1249 
1250 /*
1251  * Remove the event from a task's (or a CPU's) list of events.
1252  *
1253  * CPU events are removed with a smp call. For task events we only
1254  * call when the task is on a CPU.
1255  *
1256  * If event->ctx is a cloned context, callers must make sure that
1257  * every task struct that event->ctx->task could possibly point to
1258  * remains valid.  This is OK when called from perf_release since
1259  * that only calls us on the top-level context, which can't be a clone.
1260  * When called from perf_event_exit_task, it's OK because the
1261  * context has been detached from its task.
1262  */
1263 static void perf_remove_from_context(struct perf_event *event)
1264 {
1265 	struct perf_event_context *ctx = event->ctx;
1266 	struct task_struct *task = ctx->task;
1267 
1268 	lockdep_assert_held(&ctx->mutex);
1269 
1270 	if (!task) {
1271 		/*
1272 		 * Per cpu events are removed via an smp call and
1273 		 * the removal is always successful.
1274 		 */
1275 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1276 		return;
1277 	}
1278 
1279 retry:
1280 	if (!task_function_call(task, __perf_remove_from_context, event))
1281 		return;
1282 
1283 	raw_spin_lock_irq(&ctx->lock);
1284 	/*
1285 	 * If we failed to find a running task, but find the context active now
1286 	 * that we've acquired the ctx->lock, retry.
1287 	 */
1288 	if (ctx->is_active) {
1289 		raw_spin_unlock_irq(&ctx->lock);
1290 		goto retry;
1291 	}
1292 
1293 	/*
1294 	 * Since the task isn't running, its safe to remove the event, us
1295 	 * holding the ctx->lock ensures the task won't get scheduled in.
1296 	 */
1297 	list_del_event(event, ctx);
1298 	raw_spin_unlock_irq(&ctx->lock);
1299 }
1300 
1301 /*
1302  * Cross CPU call to disable a performance event
1303  */
1304 int __perf_event_disable(void *info)
1305 {
1306 	struct perf_event *event = info;
1307 	struct perf_event_context *ctx = event->ctx;
1308 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1309 
1310 	/*
1311 	 * If this is a per-task event, need to check whether this
1312 	 * event's task is the current task on this cpu.
1313 	 *
1314 	 * Can trigger due to concurrent perf_event_context_sched_out()
1315 	 * flipping contexts around.
1316 	 */
1317 	if (ctx->task && cpuctx->task_ctx != ctx)
1318 		return -EINVAL;
1319 
1320 	raw_spin_lock(&ctx->lock);
1321 
1322 	/*
1323 	 * If the event is on, turn it off.
1324 	 * If it is in error state, leave it in error state.
1325 	 */
1326 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1327 		update_context_time(ctx);
1328 		update_cgrp_time_from_event(event);
1329 		update_group_times(event);
1330 		if (event == event->group_leader)
1331 			group_sched_out(event, cpuctx, ctx);
1332 		else
1333 			event_sched_out(event, cpuctx, ctx);
1334 		event->state = PERF_EVENT_STATE_OFF;
1335 	}
1336 
1337 	raw_spin_unlock(&ctx->lock);
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  * Disable a event.
1344  *
1345  * If event->ctx is a cloned context, callers must make sure that
1346  * every task struct that event->ctx->task could possibly point to
1347  * remains valid.  This condition is satisifed when called through
1348  * perf_event_for_each_child or perf_event_for_each because they
1349  * hold the top-level event's child_mutex, so any descendant that
1350  * goes to exit will block in sync_child_event.
1351  * When called from perf_pending_event it's OK because event->ctx
1352  * is the current context on this CPU and preemption is disabled,
1353  * hence we can't get into perf_event_task_sched_out for this context.
1354  */
1355 void perf_event_disable(struct perf_event *event)
1356 {
1357 	struct perf_event_context *ctx = event->ctx;
1358 	struct task_struct *task = ctx->task;
1359 
1360 	if (!task) {
1361 		/*
1362 		 * Disable the event on the cpu that it's on
1363 		 */
1364 		cpu_function_call(event->cpu, __perf_event_disable, event);
1365 		return;
1366 	}
1367 
1368 retry:
1369 	if (!task_function_call(task, __perf_event_disable, event))
1370 		return;
1371 
1372 	raw_spin_lock_irq(&ctx->lock);
1373 	/*
1374 	 * If the event is still active, we need to retry the cross-call.
1375 	 */
1376 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1377 		raw_spin_unlock_irq(&ctx->lock);
1378 		/*
1379 		 * Reload the task pointer, it might have been changed by
1380 		 * a concurrent perf_event_context_sched_out().
1381 		 */
1382 		task = ctx->task;
1383 		goto retry;
1384 	}
1385 
1386 	/*
1387 	 * Since we have the lock this context can't be scheduled
1388 	 * in, so we can change the state safely.
1389 	 */
1390 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1391 		update_group_times(event);
1392 		event->state = PERF_EVENT_STATE_OFF;
1393 	}
1394 	raw_spin_unlock_irq(&ctx->lock);
1395 }
1396 EXPORT_SYMBOL_GPL(perf_event_disable);
1397 
1398 static void perf_set_shadow_time(struct perf_event *event,
1399 				 struct perf_event_context *ctx,
1400 				 u64 tstamp)
1401 {
1402 	/*
1403 	 * use the correct time source for the time snapshot
1404 	 *
1405 	 * We could get by without this by leveraging the
1406 	 * fact that to get to this function, the caller
1407 	 * has most likely already called update_context_time()
1408 	 * and update_cgrp_time_xx() and thus both timestamp
1409 	 * are identical (or very close). Given that tstamp is,
1410 	 * already adjusted for cgroup, we could say that:
1411 	 *    tstamp - ctx->timestamp
1412 	 * is equivalent to
1413 	 *    tstamp - cgrp->timestamp.
1414 	 *
1415 	 * Then, in perf_output_read(), the calculation would
1416 	 * work with no changes because:
1417 	 * - event is guaranteed scheduled in
1418 	 * - no scheduled out in between
1419 	 * - thus the timestamp would be the same
1420 	 *
1421 	 * But this is a bit hairy.
1422 	 *
1423 	 * So instead, we have an explicit cgroup call to remain
1424 	 * within the time time source all along. We believe it
1425 	 * is cleaner and simpler to understand.
1426 	 */
1427 	if (is_cgroup_event(event))
1428 		perf_cgroup_set_shadow_time(event, tstamp);
1429 	else
1430 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1431 }
1432 
1433 #define MAX_INTERRUPTS (~0ULL)
1434 
1435 static void perf_log_throttle(struct perf_event *event, int enable);
1436 
1437 static int
1438 event_sched_in(struct perf_event *event,
1439 		 struct perf_cpu_context *cpuctx,
1440 		 struct perf_event_context *ctx)
1441 {
1442 	u64 tstamp = perf_event_time(event);
1443 
1444 	if (event->state <= PERF_EVENT_STATE_OFF)
1445 		return 0;
1446 
1447 	event->state = PERF_EVENT_STATE_ACTIVE;
1448 	event->oncpu = smp_processor_id();
1449 
1450 	/*
1451 	 * Unthrottle events, since we scheduled we might have missed several
1452 	 * ticks already, also for a heavily scheduling task there is little
1453 	 * guarantee it'll get a tick in a timely manner.
1454 	 */
1455 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1456 		perf_log_throttle(event, 1);
1457 		event->hw.interrupts = 0;
1458 	}
1459 
1460 	/*
1461 	 * The new state must be visible before we turn it on in the hardware:
1462 	 */
1463 	smp_wmb();
1464 
1465 	if (event->pmu->add(event, PERF_EF_START)) {
1466 		event->state = PERF_EVENT_STATE_INACTIVE;
1467 		event->oncpu = -1;
1468 		return -EAGAIN;
1469 	}
1470 
1471 	event->tstamp_running += tstamp - event->tstamp_stopped;
1472 
1473 	perf_set_shadow_time(event, ctx, tstamp);
1474 
1475 	if (!is_software_event(event))
1476 		cpuctx->active_oncpu++;
1477 	ctx->nr_active++;
1478 	if (event->attr.freq && event->attr.sample_freq)
1479 		ctx->nr_freq++;
1480 
1481 	if (event->attr.exclusive)
1482 		cpuctx->exclusive = 1;
1483 
1484 	return 0;
1485 }
1486 
1487 static int
1488 group_sched_in(struct perf_event *group_event,
1489 	       struct perf_cpu_context *cpuctx,
1490 	       struct perf_event_context *ctx)
1491 {
1492 	struct perf_event *event, *partial_group = NULL;
1493 	struct pmu *pmu = group_event->pmu;
1494 	u64 now = ctx->time;
1495 	bool simulate = false;
1496 
1497 	if (group_event->state == PERF_EVENT_STATE_OFF)
1498 		return 0;
1499 
1500 	pmu->start_txn(pmu);
1501 
1502 	if (event_sched_in(group_event, cpuctx, ctx)) {
1503 		pmu->cancel_txn(pmu);
1504 		return -EAGAIN;
1505 	}
1506 
1507 	/*
1508 	 * Schedule in siblings as one group (if any):
1509 	 */
1510 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1511 		if (event_sched_in(event, cpuctx, ctx)) {
1512 			partial_group = event;
1513 			goto group_error;
1514 		}
1515 	}
1516 
1517 	if (!pmu->commit_txn(pmu))
1518 		return 0;
1519 
1520 group_error:
1521 	/*
1522 	 * Groups can be scheduled in as one unit only, so undo any
1523 	 * partial group before returning:
1524 	 * The events up to the failed event are scheduled out normally,
1525 	 * tstamp_stopped will be updated.
1526 	 *
1527 	 * The failed events and the remaining siblings need to have
1528 	 * their timings updated as if they had gone thru event_sched_in()
1529 	 * and event_sched_out(). This is required to get consistent timings
1530 	 * across the group. This also takes care of the case where the group
1531 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1532 	 * the time the event was actually stopped, such that time delta
1533 	 * calculation in update_event_times() is correct.
1534 	 */
1535 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1536 		if (event == partial_group)
1537 			simulate = true;
1538 
1539 		if (simulate) {
1540 			event->tstamp_running += now - event->tstamp_stopped;
1541 			event->tstamp_stopped = now;
1542 		} else {
1543 			event_sched_out(event, cpuctx, ctx);
1544 		}
1545 	}
1546 	event_sched_out(group_event, cpuctx, ctx);
1547 
1548 	pmu->cancel_txn(pmu);
1549 
1550 	return -EAGAIN;
1551 }
1552 
1553 /*
1554  * Work out whether we can put this event group on the CPU now.
1555  */
1556 static int group_can_go_on(struct perf_event *event,
1557 			   struct perf_cpu_context *cpuctx,
1558 			   int can_add_hw)
1559 {
1560 	/*
1561 	 * Groups consisting entirely of software events can always go on.
1562 	 */
1563 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1564 		return 1;
1565 	/*
1566 	 * If an exclusive group is already on, no other hardware
1567 	 * events can go on.
1568 	 */
1569 	if (cpuctx->exclusive)
1570 		return 0;
1571 	/*
1572 	 * If this group is exclusive and there are already
1573 	 * events on the CPU, it can't go on.
1574 	 */
1575 	if (event->attr.exclusive && cpuctx->active_oncpu)
1576 		return 0;
1577 	/*
1578 	 * Otherwise, try to add it if all previous groups were able
1579 	 * to go on.
1580 	 */
1581 	return can_add_hw;
1582 }
1583 
1584 static void add_event_to_ctx(struct perf_event *event,
1585 			       struct perf_event_context *ctx)
1586 {
1587 	u64 tstamp = perf_event_time(event);
1588 
1589 	list_add_event(event, ctx);
1590 	perf_group_attach(event);
1591 	event->tstamp_enabled = tstamp;
1592 	event->tstamp_running = tstamp;
1593 	event->tstamp_stopped = tstamp;
1594 }
1595 
1596 static void task_ctx_sched_out(struct perf_event_context *ctx);
1597 static void
1598 ctx_sched_in(struct perf_event_context *ctx,
1599 	     struct perf_cpu_context *cpuctx,
1600 	     enum event_type_t event_type,
1601 	     struct task_struct *task);
1602 
1603 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1604 				struct perf_event_context *ctx,
1605 				struct task_struct *task)
1606 {
1607 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1608 	if (ctx)
1609 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1610 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1611 	if (ctx)
1612 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1613 }
1614 
1615 /*
1616  * Cross CPU call to install and enable a performance event
1617  *
1618  * Must be called with ctx->mutex held
1619  */
1620 static int  __perf_install_in_context(void *info)
1621 {
1622 	struct perf_event *event = info;
1623 	struct perf_event_context *ctx = event->ctx;
1624 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1625 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1626 	struct task_struct *task = current;
1627 
1628 	perf_ctx_lock(cpuctx, task_ctx);
1629 	perf_pmu_disable(cpuctx->ctx.pmu);
1630 
1631 	/*
1632 	 * If there was an active task_ctx schedule it out.
1633 	 */
1634 	if (task_ctx)
1635 		task_ctx_sched_out(task_ctx);
1636 
1637 	/*
1638 	 * If the context we're installing events in is not the
1639 	 * active task_ctx, flip them.
1640 	 */
1641 	if (ctx->task && task_ctx != ctx) {
1642 		if (task_ctx)
1643 			raw_spin_unlock(&task_ctx->lock);
1644 		raw_spin_lock(&ctx->lock);
1645 		task_ctx = ctx;
1646 	}
1647 
1648 	if (task_ctx) {
1649 		cpuctx->task_ctx = task_ctx;
1650 		task = task_ctx->task;
1651 	}
1652 
1653 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1654 
1655 	update_context_time(ctx);
1656 	/*
1657 	 * update cgrp time only if current cgrp
1658 	 * matches event->cgrp. Must be done before
1659 	 * calling add_event_to_ctx()
1660 	 */
1661 	update_cgrp_time_from_event(event);
1662 
1663 	add_event_to_ctx(event, ctx);
1664 
1665 	/*
1666 	 * Schedule everything back in
1667 	 */
1668 	perf_event_sched_in(cpuctx, task_ctx, task);
1669 
1670 	perf_pmu_enable(cpuctx->ctx.pmu);
1671 	perf_ctx_unlock(cpuctx, task_ctx);
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Attach a performance event to a context
1678  *
1679  * First we add the event to the list with the hardware enable bit
1680  * in event->hw_config cleared.
1681  *
1682  * If the event is attached to a task which is on a CPU we use a smp
1683  * call to enable it in the task context. The task might have been
1684  * scheduled away, but we check this in the smp call again.
1685  */
1686 static void
1687 perf_install_in_context(struct perf_event_context *ctx,
1688 			struct perf_event *event,
1689 			int cpu)
1690 {
1691 	struct task_struct *task = ctx->task;
1692 
1693 	lockdep_assert_held(&ctx->mutex);
1694 
1695 	event->ctx = ctx;
1696 	if (event->cpu != -1)
1697 		event->cpu = cpu;
1698 
1699 	if (!task) {
1700 		/*
1701 		 * Per cpu events are installed via an smp call and
1702 		 * the install is always successful.
1703 		 */
1704 		cpu_function_call(cpu, __perf_install_in_context, event);
1705 		return;
1706 	}
1707 
1708 retry:
1709 	if (!task_function_call(task, __perf_install_in_context, event))
1710 		return;
1711 
1712 	raw_spin_lock_irq(&ctx->lock);
1713 	/*
1714 	 * If we failed to find a running task, but find the context active now
1715 	 * that we've acquired the ctx->lock, retry.
1716 	 */
1717 	if (ctx->is_active) {
1718 		raw_spin_unlock_irq(&ctx->lock);
1719 		goto retry;
1720 	}
1721 
1722 	/*
1723 	 * Since the task isn't running, its safe to add the event, us holding
1724 	 * the ctx->lock ensures the task won't get scheduled in.
1725 	 */
1726 	add_event_to_ctx(event, ctx);
1727 	raw_spin_unlock_irq(&ctx->lock);
1728 }
1729 
1730 /*
1731  * Put a event into inactive state and update time fields.
1732  * Enabling the leader of a group effectively enables all
1733  * the group members that aren't explicitly disabled, so we
1734  * have to update their ->tstamp_enabled also.
1735  * Note: this works for group members as well as group leaders
1736  * since the non-leader members' sibling_lists will be empty.
1737  */
1738 static void __perf_event_mark_enabled(struct perf_event *event)
1739 {
1740 	struct perf_event *sub;
1741 	u64 tstamp = perf_event_time(event);
1742 
1743 	event->state = PERF_EVENT_STATE_INACTIVE;
1744 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1745 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1746 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1747 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1748 	}
1749 }
1750 
1751 /*
1752  * Cross CPU call to enable a performance event
1753  */
1754 static int __perf_event_enable(void *info)
1755 {
1756 	struct perf_event *event = info;
1757 	struct perf_event_context *ctx = event->ctx;
1758 	struct perf_event *leader = event->group_leader;
1759 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1760 	int err;
1761 
1762 	if (WARN_ON_ONCE(!ctx->is_active))
1763 		return -EINVAL;
1764 
1765 	raw_spin_lock(&ctx->lock);
1766 	update_context_time(ctx);
1767 
1768 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1769 		goto unlock;
1770 
1771 	/*
1772 	 * set current task's cgroup time reference point
1773 	 */
1774 	perf_cgroup_set_timestamp(current, ctx);
1775 
1776 	__perf_event_mark_enabled(event);
1777 
1778 	if (!event_filter_match(event)) {
1779 		if (is_cgroup_event(event))
1780 			perf_cgroup_defer_enabled(event);
1781 		goto unlock;
1782 	}
1783 
1784 	/*
1785 	 * If the event is in a group and isn't the group leader,
1786 	 * then don't put it on unless the group is on.
1787 	 */
1788 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1789 		goto unlock;
1790 
1791 	if (!group_can_go_on(event, cpuctx, 1)) {
1792 		err = -EEXIST;
1793 	} else {
1794 		if (event == leader)
1795 			err = group_sched_in(event, cpuctx, ctx);
1796 		else
1797 			err = event_sched_in(event, cpuctx, ctx);
1798 	}
1799 
1800 	if (err) {
1801 		/*
1802 		 * If this event can't go on and it's part of a
1803 		 * group, then the whole group has to come off.
1804 		 */
1805 		if (leader != event)
1806 			group_sched_out(leader, cpuctx, ctx);
1807 		if (leader->attr.pinned) {
1808 			update_group_times(leader);
1809 			leader->state = PERF_EVENT_STATE_ERROR;
1810 		}
1811 	}
1812 
1813 unlock:
1814 	raw_spin_unlock(&ctx->lock);
1815 
1816 	return 0;
1817 }
1818 
1819 /*
1820  * Enable a event.
1821  *
1822  * If event->ctx is a cloned context, callers must make sure that
1823  * every task struct that event->ctx->task could possibly point to
1824  * remains valid.  This condition is satisfied when called through
1825  * perf_event_for_each_child or perf_event_for_each as described
1826  * for perf_event_disable.
1827  */
1828 void perf_event_enable(struct perf_event *event)
1829 {
1830 	struct perf_event_context *ctx = event->ctx;
1831 	struct task_struct *task = ctx->task;
1832 
1833 	if (!task) {
1834 		/*
1835 		 * Enable the event on the cpu that it's on
1836 		 */
1837 		cpu_function_call(event->cpu, __perf_event_enable, event);
1838 		return;
1839 	}
1840 
1841 	raw_spin_lock_irq(&ctx->lock);
1842 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1843 		goto out;
1844 
1845 	/*
1846 	 * If the event is in error state, clear that first.
1847 	 * That way, if we see the event in error state below, we
1848 	 * know that it has gone back into error state, as distinct
1849 	 * from the task having been scheduled away before the
1850 	 * cross-call arrived.
1851 	 */
1852 	if (event->state == PERF_EVENT_STATE_ERROR)
1853 		event->state = PERF_EVENT_STATE_OFF;
1854 
1855 retry:
1856 	if (!ctx->is_active) {
1857 		__perf_event_mark_enabled(event);
1858 		goto out;
1859 	}
1860 
1861 	raw_spin_unlock_irq(&ctx->lock);
1862 
1863 	if (!task_function_call(task, __perf_event_enable, event))
1864 		return;
1865 
1866 	raw_spin_lock_irq(&ctx->lock);
1867 
1868 	/*
1869 	 * If the context is active and the event is still off,
1870 	 * we need to retry the cross-call.
1871 	 */
1872 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1873 		/*
1874 		 * task could have been flipped by a concurrent
1875 		 * perf_event_context_sched_out()
1876 		 */
1877 		task = ctx->task;
1878 		goto retry;
1879 	}
1880 
1881 out:
1882 	raw_spin_unlock_irq(&ctx->lock);
1883 }
1884 EXPORT_SYMBOL_GPL(perf_event_enable);
1885 
1886 int perf_event_refresh(struct perf_event *event, int refresh)
1887 {
1888 	/*
1889 	 * not supported on inherited events
1890 	 */
1891 	if (event->attr.inherit || !is_sampling_event(event))
1892 		return -EINVAL;
1893 
1894 	atomic_add(refresh, &event->event_limit);
1895 	perf_event_enable(event);
1896 
1897 	return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(perf_event_refresh);
1900 
1901 static void ctx_sched_out(struct perf_event_context *ctx,
1902 			  struct perf_cpu_context *cpuctx,
1903 			  enum event_type_t event_type)
1904 {
1905 	struct perf_event *event;
1906 	int is_active = ctx->is_active;
1907 
1908 	ctx->is_active &= ~event_type;
1909 	if (likely(!ctx->nr_events))
1910 		return;
1911 
1912 	update_context_time(ctx);
1913 	update_cgrp_time_from_cpuctx(cpuctx);
1914 	if (!ctx->nr_active)
1915 		return;
1916 
1917 	perf_pmu_disable(ctx->pmu);
1918 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1919 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1920 			group_sched_out(event, cpuctx, ctx);
1921 	}
1922 
1923 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1924 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1925 			group_sched_out(event, cpuctx, ctx);
1926 	}
1927 	perf_pmu_enable(ctx->pmu);
1928 }
1929 
1930 /*
1931  * Test whether two contexts are equivalent, i.e. whether they
1932  * have both been cloned from the same version of the same context
1933  * and they both have the same number of enabled events.
1934  * If the number of enabled events is the same, then the set
1935  * of enabled events should be the same, because these are both
1936  * inherited contexts, therefore we can't access individual events
1937  * in them directly with an fd; we can only enable/disable all
1938  * events via prctl, or enable/disable all events in a family
1939  * via ioctl, which will have the same effect on both contexts.
1940  */
1941 static int context_equiv(struct perf_event_context *ctx1,
1942 			 struct perf_event_context *ctx2)
1943 {
1944 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1945 		&& ctx1->parent_gen == ctx2->parent_gen
1946 		&& !ctx1->pin_count && !ctx2->pin_count;
1947 }
1948 
1949 static void __perf_event_sync_stat(struct perf_event *event,
1950 				     struct perf_event *next_event)
1951 {
1952 	u64 value;
1953 
1954 	if (!event->attr.inherit_stat)
1955 		return;
1956 
1957 	/*
1958 	 * Update the event value, we cannot use perf_event_read()
1959 	 * because we're in the middle of a context switch and have IRQs
1960 	 * disabled, which upsets smp_call_function_single(), however
1961 	 * we know the event must be on the current CPU, therefore we
1962 	 * don't need to use it.
1963 	 */
1964 	switch (event->state) {
1965 	case PERF_EVENT_STATE_ACTIVE:
1966 		event->pmu->read(event);
1967 		/* fall-through */
1968 
1969 	case PERF_EVENT_STATE_INACTIVE:
1970 		update_event_times(event);
1971 		break;
1972 
1973 	default:
1974 		break;
1975 	}
1976 
1977 	/*
1978 	 * In order to keep per-task stats reliable we need to flip the event
1979 	 * values when we flip the contexts.
1980 	 */
1981 	value = local64_read(&next_event->count);
1982 	value = local64_xchg(&event->count, value);
1983 	local64_set(&next_event->count, value);
1984 
1985 	swap(event->total_time_enabled, next_event->total_time_enabled);
1986 	swap(event->total_time_running, next_event->total_time_running);
1987 
1988 	/*
1989 	 * Since we swizzled the values, update the user visible data too.
1990 	 */
1991 	perf_event_update_userpage(event);
1992 	perf_event_update_userpage(next_event);
1993 }
1994 
1995 #define list_next_entry(pos, member) \
1996 	list_entry(pos->member.next, typeof(*pos), member)
1997 
1998 static void perf_event_sync_stat(struct perf_event_context *ctx,
1999 				   struct perf_event_context *next_ctx)
2000 {
2001 	struct perf_event *event, *next_event;
2002 
2003 	if (!ctx->nr_stat)
2004 		return;
2005 
2006 	update_context_time(ctx);
2007 
2008 	event = list_first_entry(&ctx->event_list,
2009 				   struct perf_event, event_entry);
2010 
2011 	next_event = list_first_entry(&next_ctx->event_list,
2012 					struct perf_event, event_entry);
2013 
2014 	while (&event->event_entry != &ctx->event_list &&
2015 	       &next_event->event_entry != &next_ctx->event_list) {
2016 
2017 		__perf_event_sync_stat(event, next_event);
2018 
2019 		event = list_next_entry(event, event_entry);
2020 		next_event = list_next_entry(next_event, event_entry);
2021 	}
2022 }
2023 
2024 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2025 					 struct task_struct *next)
2026 {
2027 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2028 	struct perf_event_context *next_ctx;
2029 	struct perf_event_context *parent;
2030 	struct perf_cpu_context *cpuctx;
2031 	int do_switch = 1;
2032 
2033 	if (likely(!ctx))
2034 		return;
2035 
2036 	cpuctx = __get_cpu_context(ctx);
2037 	if (!cpuctx->task_ctx)
2038 		return;
2039 
2040 	rcu_read_lock();
2041 	parent = rcu_dereference(ctx->parent_ctx);
2042 	next_ctx = next->perf_event_ctxp[ctxn];
2043 	if (parent && next_ctx &&
2044 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2045 		/*
2046 		 * Looks like the two contexts are clones, so we might be
2047 		 * able to optimize the context switch.  We lock both
2048 		 * contexts and check that they are clones under the
2049 		 * lock (including re-checking that neither has been
2050 		 * uncloned in the meantime).  It doesn't matter which
2051 		 * order we take the locks because no other cpu could
2052 		 * be trying to lock both of these tasks.
2053 		 */
2054 		raw_spin_lock(&ctx->lock);
2055 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2056 		if (context_equiv(ctx, next_ctx)) {
2057 			/*
2058 			 * XXX do we need a memory barrier of sorts
2059 			 * wrt to rcu_dereference() of perf_event_ctxp
2060 			 */
2061 			task->perf_event_ctxp[ctxn] = next_ctx;
2062 			next->perf_event_ctxp[ctxn] = ctx;
2063 			ctx->task = next;
2064 			next_ctx->task = task;
2065 			do_switch = 0;
2066 
2067 			perf_event_sync_stat(ctx, next_ctx);
2068 		}
2069 		raw_spin_unlock(&next_ctx->lock);
2070 		raw_spin_unlock(&ctx->lock);
2071 	}
2072 	rcu_read_unlock();
2073 
2074 	if (do_switch) {
2075 		raw_spin_lock(&ctx->lock);
2076 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2077 		cpuctx->task_ctx = NULL;
2078 		raw_spin_unlock(&ctx->lock);
2079 	}
2080 }
2081 
2082 #define for_each_task_context_nr(ctxn)					\
2083 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2084 
2085 /*
2086  * Called from scheduler to remove the events of the current task,
2087  * with interrupts disabled.
2088  *
2089  * We stop each event and update the event value in event->count.
2090  *
2091  * This does not protect us against NMI, but disable()
2092  * sets the disabled bit in the control field of event _before_
2093  * accessing the event control register. If a NMI hits, then it will
2094  * not restart the event.
2095  */
2096 void __perf_event_task_sched_out(struct task_struct *task,
2097 				 struct task_struct *next)
2098 {
2099 	int ctxn;
2100 
2101 	for_each_task_context_nr(ctxn)
2102 		perf_event_context_sched_out(task, ctxn, next);
2103 
2104 	/*
2105 	 * if cgroup events exist on this CPU, then we need
2106 	 * to check if we have to switch out PMU state.
2107 	 * cgroup event are system-wide mode only
2108 	 */
2109 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2110 		perf_cgroup_sched_out(task, next);
2111 }
2112 
2113 static void task_ctx_sched_out(struct perf_event_context *ctx)
2114 {
2115 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2116 
2117 	if (!cpuctx->task_ctx)
2118 		return;
2119 
2120 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2121 		return;
2122 
2123 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2124 	cpuctx->task_ctx = NULL;
2125 }
2126 
2127 /*
2128  * Called with IRQs disabled
2129  */
2130 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2131 			      enum event_type_t event_type)
2132 {
2133 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2134 }
2135 
2136 static void
2137 ctx_pinned_sched_in(struct perf_event_context *ctx,
2138 		    struct perf_cpu_context *cpuctx)
2139 {
2140 	struct perf_event *event;
2141 
2142 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2143 		if (event->state <= PERF_EVENT_STATE_OFF)
2144 			continue;
2145 		if (!event_filter_match(event))
2146 			continue;
2147 
2148 		/* may need to reset tstamp_enabled */
2149 		if (is_cgroup_event(event))
2150 			perf_cgroup_mark_enabled(event, ctx);
2151 
2152 		if (group_can_go_on(event, cpuctx, 1))
2153 			group_sched_in(event, cpuctx, ctx);
2154 
2155 		/*
2156 		 * If this pinned group hasn't been scheduled,
2157 		 * put it in error state.
2158 		 */
2159 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2160 			update_group_times(event);
2161 			event->state = PERF_EVENT_STATE_ERROR;
2162 		}
2163 	}
2164 }
2165 
2166 static void
2167 ctx_flexible_sched_in(struct perf_event_context *ctx,
2168 		      struct perf_cpu_context *cpuctx)
2169 {
2170 	struct perf_event *event;
2171 	int can_add_hw = 1;
2172 
2173 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2174 		/* Ignore events in OFF or ERROR state */
2175 		if (event->state <= PERF_EVENT_STATE_OFF)
2176 			continue;
2177 		/*
2178 		 * Listen to the 'cpu' scheduling filter constraint
2179 		 * of events:
2180 		 */
2181 		if (!event_filter_match(event))
2182 			continue;
2183 
2184 		/* may need to reset tstamp_enabled */
2185 		if (is_cgroup_event(event))
2186 			perf_cgroup_mark_enabled(event, ctx);
2187 
2188 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2189 			if (group_sched_in(event, cpuctx, ctx))
2190 				can_add_hw = 0;
2191 		}
2192 	}
2193 }
2194 
2195 static void
2196 ctx_sched_in(struct perf_event_context *ctx,
2197 	     struct perf_cpu_context *cpuctx,
2198 	     enum event_type_t event_type,
2199 	     struct task_struct *task)
2200 {
2201 	u64 now;
2202 	int is_active = ctx->is_active;
2203 
2204 	ctx->is_active |= event_type;
2205 	if (likely(!ctx->nr_events))
2206 		return;
2207 
2208 	now = perf_clock();
2209 	ctx->timestamp = now;
2210 	perf_cgroup_set_timestamp(task, ctx);
2211 	/*
2212 	 * First go through the list and put on any pinned groups
2213 	 * in order to give them the best chance of going on.
2214 	 */
2215 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2216 		ctx_pinned_sched_in(ctx, cpuctx);
2217 
2218 	/* Then walk through the lower prio flexible groups */
2219 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2220 		ctx_flexible_sched_in(ctx, cpuctx);
2221 }
2222 
2223 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2224 			     enum event_type_t event_type,
2225 			     struct task_struct *task)
2226 {
2227 	struct perf_event_context *ctx = &cpuctx->ctx;
2228 
2229 	ctx_sched_in(ctx, cpuctx, event_type, task);
2230 }
2231 
2232 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2233 					struct task_struct *task)
2234 {
2235 	struct perf_cpu_context *cpuctx;
2236 
2237 	cpuctx = __get_cpu_context(ctx);
2238 	if (cpuctx->task_ctx == ctx)
2239 		return;
2240 
2241 	perf_ctx_lock(cpuctx, ctx);
2242 	perf_pmu_disable(ctx->pmu);
2243 	/*
2244 	 * We want to keep the following priority order:
2245 	 * cpu pinned (that don't need to move), task pinned,
2246 	 * cpu flexible, task flexible.
2247 	 */
2248 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2249 
2250 	if (ctx->nr_events)
2251 		cpuctx->task_ctx = ctx;
2252 
2253 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2254 
2255 	perf_pmu_enable(ctx->pmu);
2256 	perf_ctx_unlock(cpuctx, ctx);
2257 
2258 	/*
2259 	 * Since these rotations are per-cpu, we need to ensure the
2260 	 * cpu-context we got scheduled on is actually rotating.
2261 	 */
2262 	perf_pmu_rotate_start(ctx->pmu);
2263 }
2264 
2265 /*
2266  * When sampling the branck stack in system-wide, it may be necessary
2267  * to flush the stack on context switch. This happens when the branch
2268  * stack does not tag its entries with the pid of the current task.
2269  * Otherwise it becomes impossible to associate a branch entry with a
2270  * task. This ambiguity is more likely to appear when the branch stack
2271  * supports priv level filtering and the user sets it to monitor only
2272  * at the user level (which could be a useful measurement in system-wide
2273  * mode). In that case, the risk is high of having a branch stack with
2274  * branch from multiple tasks. Flushing may mean dropping the existing
2275  * entries or stashing them somewhere in the PMU specific code layer.
2276  *
2277  * This function provides the context switch callback to the lower code
2278  * layer. It is invoked ONLY when there is at least one system-wide context
2279  * with at least one active event using taken branch sampling.
2280  */
2281 static void perf_branch_stack_sched_in(struct task_struct *prev,
2282 				       struct task_struct *task)
2283 {
2284 	struct perf_cpu_context *cpuctx;
2285 	struct pmu *pmu;
2286 	unsigned long flags;
2287 
2288 	/* no need to flush branch stack if not changing task */
2289 	if (prev == task)
2290 		return;
2291 
2292 	local_irq_save(flags);
2293 
2294 	rcu_read_lock();
2295 
2296 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2297 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2298 
2299 		/*
2300 		 * check if the context has at least one
2301 		 * event using PERF_SAMPLE_BRANCH_STACK
2302 		 */
2303 		if (cpuctx->ctx.nr_branch_stack > 0
2304 		    && pmu->flush_branch_stack) {
2305 
2306 			pmu = cpuctx->ctx.pmu;
2307 
2308 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2309 
2310 			perf_pmu_disable(pmu);
2311 
2312 			pmu->flush_branch_stack();
2313 
2314 			perf_pmu_enable(pmu);
2315 
2316 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2317 		}
2318 	}
2319 
2320 	rcu_read_unlock();
2321 
2322 	local_irq_restore(flags);
2323 }
2324 
2325 /*
2326  * Called from scheduler to add the events of the current task
2327  * with interrupts disabled.
2328  *
2329  * We restore the event value and then enable it.
2330  *
2331  * This does not protect us against NMI, but enable()
2332  * sets the enabled bit in the control field of event _before_
2333  * accessing the event control register. If a NMI hits, then it will
2334  * keep the event running.
2335  */
2336 void __perf_event_task_sched_in(struct task_struct *prev,
2337 				struct task_struct *task)
2338 {
2339 	struct perf_event_context *ctx;
2340 	int ctxn;
2341 
2342 	for_each_task_context_nr(ctxn) {
2343 		ctx = task->perf_event_ctxp[ctxn];
2344 		if (likely(!ctx))
2345 			continue;
2346 
2347 		perf_event_context_sched_in(ctx, task);
2348 	}
2349 	/*
2350 	 * if cgroup events exist on this CPU, then we need
2351 	 * to check if we have to switch in PMU state.
2352 	 * cgroup event are system-wide mode only
2353 	 */
2354 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2355 		perf_cgroup_sched_in(prev, task);
2356 
2357 	/* check for system-wide branch_stack events */
2358 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2359 		perf_branch_stack_sched_in(prev, task);
2360 }
2361 
2362 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2363 {
2364 	u64 frequency = event->attr.sample_freq;
2365 	u64 sec = NSEC_PER_SEC;
2366 	u64 divisor, dividend;
2367 
2368 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2369 
2370 	count_fls = fls64(count);
2371 	nsec_fls = fls64(nsec);
2372 	frequency_fls = fls64(frequency);
2373 	sec_fls = 30;
2374 
2375 	/*
2376 	 * We got @count in @nsec, with a target of sample_freq HZ
2377 	 * the target period becomes:
2378 	 *
2379 	 *             @count * 10^9
2380 	 * period = -------------------
2381 	 *          @nsec * sample_freq
2382 	 *
2383 	 */
2384 
2385 	/*
2386 	 * Reduce accuracy by one bit such that @a and @b converge
2387 	 * to a similar magnitude.
2388 	 */
2389 #define REDUCE_FLS(a, b)		\
2390 do {					\
2391 	if (a##_fls > b##_fls) {	\
2392 		a >>= 1;		\
2393 		a##_fls--;		\
2394 	} else {			\
2395 		b >>= 1;		\
2396 		b##_fls--;		\
2397 	}				\
2398 } while (0)
2399 
2400 	/*
2401 	 * Reduce accuracy until either term fits in a u64, then proceed with
2402 	 * the other, so that finally we can do a u64/u64 division.
2403 	 */
2404 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2405 		REDUCE_FLS(nsec, frequency);
2406 		REDUCE_FLS(sec, count);
2407 	}
2408 
2409 	if (count_fls + sec_fls > 64) {
2410 		divisor = nsec * frequency;
2411 
2412 		while (count_fls + sec_fls > 64) {
2413 			REDUCE_FLS(count, sec);
2414 			divisor >>= 1;
2415 		}
2416 
2417 		dividend = count * sec;
2418 	} else {
2419 		dividend = count * sec;
2420 
2421 		while (nsec_fls + frequency_fls > 64) {
2422 			REDUCE_FLS(nsec, frequency);
2423 			dividend >>= 1;
2424 		}
2425 
2426 		divisor = nsec * frequency;
2427 	}
2428 
2429 	if (!divisor)
2430 		return dividend;
2431 
2432 	return div64_u64(dividend, divisor);
2433 }
2434 
2435 static DEFINE_PER_CPU(int, perf_throttled_count);
2436 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2437 
2438 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2439 {
2440 	struct hw_perf_event *hwc = &event->hw;
2441 	s64 period, sample_period;
2442 	s64 delta;
2443 
2444 	period = perf_calculate_period(event, nsec, count);
2445 
2446 	delta = (s64)(period - hwc->sample_period);
2447 	delta = (delta + 7) / 8; /* low pass filter */
2448 
2449 	sample_period = hwc->sample_period + delta;
2450 
2451 	if (!sample_period)
2452 		sample_period = 1;
2453 
2454 	hwc->sample_period = sample_period;
2455 
2456 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2457 		if (disable)
2458 			event->pmu->stop(event, PERF_EF_UPDATE);
2459 
2460 		local64_set(&hwc->period_left, 0);
2461 
2462 		if (disable)
2463 			event->pmu->start(event, PERF_EF_RELOAD);
2464 	}
2465 }
2466 
2467 /*
2468  * combine freq adjustment with unthrottling to avoid two passes over the
2469  * events. At the same time, make sure, having freq events does not change
2470  * the rate of unthrottling as that would introduce bias.
2471  */
2472 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2473 					   int needs_unthr)
2474 {
2475 	struct perf_event *event;
2476 	struct hw_perf_event *hwc;
2477 	u64 now, period = TICK_NSEC;
2478 	s64 delta;
2479 
2480 	/*
2481 	 * only need to iterate over all events iff:
2482 	 * - context have events in frequency mode (needs freq adjust)
2483 	 * - there are events to unthrottle on this cpu
2484 	 */
2485 	if (!(ctx->nr_freq || needs_unthr))
2486 		return;
2487 
2488 	raw_spin_lock(&ctx->lock);
2489 	perf_pmu_disable(ctx->pmu);
2490 
2491 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2492 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2493 			continue;
2494 
2495 		if (!event_filter_match(event))
2496 			continue;
2497 
2498 		hwc = &event->hw;
2499 
2500 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2501 			hwc->interrupts = 0;
2502 			perf_log_throttle(event, 1);
2503 			event->pmu->start(event, 0);
2504 		}
2505 
2506 		if (!event->attr.freq || !event->attr.sample_freq)
2507 			continue;
2508 
2509 		/*
2510 		 * stop the event and update event->count
2511 		 */
2512 		event->pmu->stop(event, PERF_EF_UPDATE);
2513 
2514 		now = local64_read(&event->count);
2515 		delta = now - hwc->freq_count_stamp;
2516 		hwc->freq_count_stamp = now;
2517 
2518 		/*
2519 		 * restart the event
2520 		 * reload only if value has changed
2521 		 * we have stopped the event so tell that
2522 		 * to perf_adjust_period() to avoid stopping it
2523 		 * twice.
2524 		 */
2525 		if (delta > 0)
2526 			perf_adjust_period(event, period, delta, false);
2527 
2528 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2529 	}
2530 
2531 	perf_pmu_enable(ctx->pmu);
2532 	raw_spin_unlock(&ctx->lock);
2533 }
2534 
2535 /*
2536  * Round-robin a context's events:
2537  */
2538 static void rotate_ctx(struct perf_event_context *ctx)
2539 {
2540 	/*
2541 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2542 	 * disabled by the inheritance code.
2543 	 */
2544 	if (!ctx->rotate_disable)
2545 		list_rotate_left(&ctx->flexible_groups);
2546 }
2547 
2548 /*
2549  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2550  * because they're strictly cpu affine and rotate_start is called with IRQs
2551  * disabled, while rotate_context is called from IRQ context.
2552  */
2553 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2554 {
2555 	struct perf_event_context *ctx = NULL;
2556 	int rotate = 0, remove = 1;
2557 
2558 	if (cpuctx->ctx.nr_events) {
2559 		remove = 0;
2560 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2561 			rotate = 1;
2562 	}
2563 
2564 	ctx = cpuctx->task_ctx;
2565 	if (ctx && ctx->nr_events) {
2566 		remove = 0;
2567 		if (ctx->nr_events != ctx->nr_active)
2568 			rotate = 1;
2569 	}
2570 
2571 	if (!rotate)
2572 		goto done;
2573 
2574 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2575 	perf_pmu_disable(cpuctx->ctx.pmu);
2576 
2577 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2578 	if (ctx)
2579 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2580 
2581 	rotate_ctx(&cpuctx->ctx);
2582 	if (ctx)
2583 		rotate_ctx(ctx);
2584 
2585 	perf_event_sched_in(cpuctx, ctx, current);
2586 
2587 	perf_pmu_enable(cpuctx->ctx.pmu);
2588 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2589 done:
2590 	if (remove)
2591 		list_del_init(&cpuctx->rotation_list);
2592 }
2593 
2594 void perf_event_task_tick(void)
2595 {
2596 	struct list_head *head = &__get_cpu_var(rotation_list);
2597 	struct perf_cpu_context *cpuctx, *tmp;
2598 	struct perf_event_context *ctx;
2599 	int throttled;
2600 
2601 	WARN_ON(!irqs_disabled());
2602 
2603 	__this_cpu_inc(perf_throttled_seq);
2604 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2605 
2606 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2607 		ctx = &cpuctx->ctx;
2608 		perf_adjust_freq_unthr_context(ctx, throttled);
2609 
2610 		ctx = cpuctx->task_ctx;
2611 		if (ctx)
2612 			perf_adjust_freq_unthr_context(ctx, throttled);
2613 
2614 		if (cpuctx->jiffies_interval == 1 ||
2615 				!(jiffies % cpuctx->jiffies_interval))
2616 			perf_rotate_context(cpuctx);
2617 	}
2618 }
2619 
2620 static int event_enable_on_exec(struct perf_event *event,
2621 				struct perf_event_context *ctx)
2622 {
2623 	if (!event->attr.enable_on_exec)
2624 		return 0;
2625 
2626 	event->attr.enable_on_exec = 0;
2627 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2628 		return 0;
2629 
2630 	__perf_event_mark_enabled(event);
2631 
2632 	return 1;
2633 }
2634 
2635 /*
2636  * Enable all of a task's events that have been marked enable-on-exec.
2637  * This expects task == current.
2638  */
2639 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2640 {
2641 	struct perf_event *event;
2642 	unsigned long flags;
2643 	int enabled = 0;
2644 	int ret;
2645 
2646 	local_irq_save(flags);
2647 	if (!ctx || !ctx->nr_events)
2648 		goto out;
2649 
2650 	/*
2651 	 * We must ctxsw out cgroup events to avoid conflict
2652 	 * when invoking perf_task_event_sched_in() later on
2653 	 * in this function. Otherwise we end up trying to
2654 	 * ctxswin cgroup events which are already scheduled
2655 	 * in.
2656 	 */
2657 	perf_cgroup_sched_out(current, NULL);
2658 
2659 	raw_spin_lock(&ctx->lock);
2660 	task_ctx_sched_out(ctx);
2661 
2662 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2663 		ret = event_enable_on_exec(event, ctx);
2664 		if (ret)
2665 			enabled = 1;
2666 	}
2667 
2668 	/*
2669 	 * Unclone this context if we enabled any event.
2670 	 */
2671 	if (enabled)
2672 		unclone_ctx(ctx);
2673 
2674 	raw_spin_unlock(&ctx->lock);
2675 
2676 	/*
2677 	 * Also calls ctxswin for cgroup events, if any:
2678 	 */
2679 	perf_event_context_sched_in(ctx, ctx->task);
2680 out:
2681 	local_irq_restore(flags);
2682 }
2683 
2684 /*
2685  * Cross CPU call to read the hardware event
2686  */
2687 static void __perf_event_read(void *info)
2688 {
2689 	struct perf_event *event = info;
2690 	struct perf_event_context *ctx = event->ctx;
2691 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2692 
2693 	/*
2694 	 * If this is a task context, we need to check whether it is
2695 	 * the current task context of this cpu.  If not it has been
2696 	 * scheduled out before the smp call arrived.  In that case
2697 	 * event->count would have been updated to a recent sample
2698 	 * when the event was scheduled out.
2699 	 */
2700 	if (ctx->task && cpuctx->task_ctx != ctx)
2701 		return;
2702 
2703 	raw_spin_lock(&ctx->lock);
2704 	if (ctx->is_active) {
2705 		update_context_time(ctx);
2706 		update_cgrp_time_from_event(event);
2707 	}
2708 	update_event_times(event);
2709 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2710 		event->pmu->read(event);
2711 	raw_spin_unlock(&ctx->lock);
2712 }
2713 
2714 static inline u64 perf_event_count(struct perf_event *event)
2715 {
2716 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2717 }
2718 
2719 static u64 perf_event_read(struct perf_event *event)
2720 {
2721 	/*
2722 	 * If event is enabled and currently active on a CPU, update the
2723 	 * value in the event structure:
2724 	 */
2725 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2726 		smp_call_function_single(event->oncpu,
2727 					 __perf_event_read, event, 1);
2728 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2729 		struct perf_event_context *ctx = event->ctx;
2730 		unsigned long flags;
2731 
2732 		raw_spin_lock_irqsave(&ctx->lock, flags);
2733 		/*
2734 		 * may read while context is not active
2735 		 * (e.g., thread is blocked), in that case
2736 		 * we cannot update context time
2737 		 */
2738 		if (ctx->is_active) {
2739 			update_context_time(ctx);
2740 			update_cgrp_time_from_event(event);
2741 		}
2742 		update_event_times(event);
2743 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2744 	}
2745 
2746 	return perf_event_count(event);
2747 }
2748 
2749 /*
2750  * Initialize the perf_event context in a task_struct:
2751  */
2752 static void __perf_event_init_context(struct perf_event_context *ctx)
2753 {
2754 	raw_spin_lock_init(&ctx->lock);
2755 	mutex_init(&ctx->mutex);
2756 	INIT_LIST_HEAD(&ctx->pinned_groups);
2757 	INIT_LIST_HEAD(&ctx->flexible_groups);
2758 	INIT_LIST_HEAD(&ctx->event_list);
2759 	atomic_set(&ctx->refcount, 1);
2760 }
2761 
2762 static struct perf_event_context *
2763 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2764 {
2765 	struct perf_event_context *ctx;
2766 
2767 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2768 	if (!ctx)
2769 		return NULL;
2770 
2771 	__perf_event_init_context(ctx);
2772 	if (task) {
2773 		ctx->task = task;
2774 		get_task_struct(task);
2775 	}
2776 	ctx->pmu = pmu;
2777 
2778 	return ctx;
2779 }
2780 
2781 static struct task_struct *
2782 find_lively_task_by_vpid(pid_t vpid)
2783 {
2784 	struct task_struct *task;
2785 	int err;
2786 
2787 	rcu_read_lock();
2788 	if (!vpid)
2789 		task = current;
2790 	else
2791 		task = find_task_by_vpid(vpid);
2792 	if (task)
2793 		get_task_struct(task);
2794 	rcu_read_unlock();
2795 
2796 	if (!task)
2797 		return ERR_PTR(-ESRCH);
2798 
2799 	/* Reuse ptrace permission checks for now. */
2800 	err = -EACCES;
2801 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2802 		goto errout;
2803 
2804 	return task;
2805 errout:
2806 	put_task_struct(task);
2807 	return ERR_PTR(err);
2808 
2809 }
2810 
2811 /*
2812  * Returns a matching context with refcount and pincount.
2813  */
2814 static struct perf_event_context *
2815 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2816 {
2817 	struct perf_event_context *ctx;
2818 	struct perf_cpu_context *cpuctx;
2819 	unsigned long flags;
2820 	int ctxn, err;
2821 
2822 	if (!task) {
2823 		/* Must be root to operate on a CPU event: */
2824 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2825 			return ERR_PTR(-EACCES);
2826 
2827 		/*
2828 		 * We could be clever and allow to attach a event to an
2829 		 * offline CPU and activate it when the CPU comes up, but
2830 		 * that's for later.
2831 		 */
2832 		if (!cpu_online(cpu))
2833 			return ERR_PTR(-ENODEV);
2834 
2835 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2836 		ctx = &cpuctx->ctx;
2837 		get_ctx(ctx);
2838 		++ctx->pin_count;
2839 
2840 		return ctx;
2841 	}
2842 
2843 	err = -EINVAL;
2844 	ctxn = pmu->task_ctx_nr;
2845 	if (ctxn < 0)
2846 		goto errout;
2847 
2848 retry:
2849 	ctx = perf_lock_task_context(task, ctxn, &flags);
2850 	if (ctx) {
2851 		unclone_ctx(ctx);
2852 		++ctx->pin_count;
2853 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2854 	} else {
2855 		ctx = alloc_perf_context(pmu, task);
2856 		err = -ENOMEM;
2857 		if (!ctx)
2858 			goto errout;
2859 
2860 		err = 0;
2861 		mutex_lock(&task->perf_event_mutex);
2862 		/*
2863 		 * If it has already passed perf_event_exit_task().
2864 		 * we must see PF_EXITING, it takes this mutex too.
2865 		 */
2866 		if (task->flags & PF_EXITING)
2867 			err = -ESRCH;
2868 		else if (task->perf_event_ctxp[ctxn])
2869 			err = -EAGAIN;
2870 		else {
2871 			get_ctx(ctx);
2872 			++ctx->pin_count;
2873 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2874 		}
2875 		mutex_unlock(&task->perf_event_mutex);
2876 
2877 		if (unlikely(err)) {
2878 			put_ctx(ctx);
2879 
2880 			if (err == -EAGAIN)
2881 				goto retry;
2882 			goto errout;
2883 		}
2884 	}
2885 
2886 	return ctx;
2887 
2888 errout:
2889 	return ERR_PTR(err);
2890 }
2891 
2892 static void perf_event_free_filter(struct perf_event *event);
2893 
2894 static void free_event_rcu(struct rcu_head *head)
2895 {
2896 	struct perf_event *event;
2897 
2898 	event = container_of(head, struct perf_event, rcu_head);
2899 	if (event->ns)
2900 		put_pid_ns(event->ns);
2901 	perf_event_free_filter(event);
2902 	kfree(event);
2903 }
2904 
2905 static void ring_buffer_put(struct ring_buffer *rb);
2906 
2907 static void free_event(struct perf_event *event)
2908 {
2909 	irq_work_sync(&event->pending);
2910 
2911 	if (!event->parent) {
2912 		if (event->attach_state & PERF_ATTACH_TASK)
2913 			static_key_slow_dec_deferred(&perf_sched_events);
2914 		if (event->attr.mmap || event->attr.mmap_data)
2915 			atomic_dec(&nr_mmap_events);
2916 		if (event->attr.comm)
2917 			atomic_dec(&nr_comm_events);
2918 		if (event->attr.task)
2919 			atomic_dec(&nr_task_events);
2920 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2921 			put_callchain_buffers();
2922 		if (is_cgroup_event(event)) {
2923 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2924 			static_key_slow_dec_deferred(&perf_sched_events);
2925 		}
2926 
2927 		if (has_branch_stack(event)) {
2928 			static_key_slow_dec_deferred(&perf_sched_events);
2929 			/* is system-wide event */
2930 			if (!(event->attach_state & PERF_ATTACH_TASK))
2931 				atomic_dec(&per_cpu(perf_branch_stack_events,
2932 						    event->cpu));
2933 		}
2934 	}
2935 
2936 	if (event->rb) {
2937 		ring_buffer_put(event->rb);
2938 		event->rb = NULL;
2939 	}
2940 
2941 	if (is_cgroup_event(event))
2942 		perf_detach_cgroup(event);
2943 
2944 	if (event->destroy)
2945 		event->destroy(event);
2946 
2947 	if (event->ctx)
2948 		put_ctx(event->ctx);
2949 
2950 	call_rcu(&event->rcu_head, free_event_rcu);
2951 }
2952 
2953 int perf_event_release_kernel(struct perf_event *event)
2954 {
2955 	struct perf_event_context *ctx = event->ctx;
2956 
2957 	WARN_ON_ONCE(ctx->parent_ctx);
2958 	/*
2959 	 * There are two ways this annotation is useful:
2960 	 *
2961 	 *  1) there is a lock recursion from perf_event_exit_task
2962 	 *     see the comment there.
2963 	 *
2964 	 *  2) there is a lock-inversion with mmap_sem through
2965 	 *     perf_event_read_group(), which takes faults while
2966 	 *     holding ctx->mutex, however this is called after
2967 	 *     the last filedesc died, so there is no possibility
2968 	 *     to trigger the AB-BA case.
2969 	 */
2970 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2971 	raw_spin_lock_irq(&ctx->lock);
2972 	perf_group_detach(event);
2973 	raw_spin_unlock_irq(&ctx->lock);
2974 	perf_remove_from_context(event);
2975 	mutex_unlock(&ctx->mutex);
2976 
2977 	free_event(event);
2978 
2979 	return 0;
2980 }
2981 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2982 
2983 /*
2984  * Called when the last reference to the file is gone.
2985  */
2986 static void put_event(struct perf_event *event)
2987 {
2988 	struct task_struct *owner;
2989 
2990 	if (!atomic_long_dec_and_test(&event->refcount))
2991 		return;
2992 
2993 	rcu_read_lock();
2994 	owner = ACCESS_ONCE(event->owner);
2995 	/*
2996 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2997 	 * !owner it means the list deletion is complete and we can indeed
2998 	 * free this event, otherwise we need to serialize on
2999 	 * owner->perf_event_mutex.
3000 	 */
3001 	smp_read_barrier_depends();
3002 	if (owner) {
3003 		/*
3004 		 * Since delayed_put_task_struct() also drops the last
3005 		 * task reference we can safely take a new reference
3006 		 * while holding the rcu_read_lock().
3007 		 */
3008 		get_task_struct(owner);
3009 	}
3010 	rcu_read_unlock();
3011 
3012 	if (owner) {
3013 		mutex_lock(&owner->perf_event_mutex);
3014 		/*
3015 		 * We have to re-check the event->owner field, if it is cleared
3016 		 * we raced with perf_event_exit_task(), acquiring the mutex
3017 		 * ensured they're done, and we can proceed with freeing the
3018 		 * event.
3019 		 */
3020 		if (event->owner)
3021 			list_del_init(&event->owner_entry);
3022 		mutex_unlock(&owner->perf_event_mutex);
3023 		put_task_struct(owner);
3024 	}
3025 
3026 	perf_event_release_kernel(event);
3027 }
3028 
3029 static int perf_release(struct inode *inode, struct file *file)
3030 {
3031 	put_event(file->private_data);
3032 	return 0;
3033 }
3034 
3035 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3036 {
3037 	struct perf_event *child;
3038 	u64 total = 0;
3039 
3040 	*enabled = 0;
3041 	*running = 0;
3042 
3043 	mutex_lock(&event->child_mutex);
3044 	total += perf_event_read(event);
3045 	*enabled += event->total_time_enabled +
3046 			atomic64_read(&event->child_total_time_enabled);
3047 	*running += event->total_time_running +
3048 			atomic64_read(&event->child_total_time_running);
3049 
3050 	list_for_each_entry(child, &event->child_list, child_list) {
3051 		total += perf_event_read(child);
3052 		*enabled += child->total_time_enabled;
3053 		*running += child->total_time_running;
3054 	}
3055 	mutex_unlock(&event->child_mutex);
3056 
3057 	return total;
3058 }
3059 EXPORT_SYMBOL_GPL(perf_event_read_value);
3060 
3061 static int perf_event_read_group(struct perf_event *event,
3062 				   u64 read_format, char __user *buf)
3063 {
3064 	struct perf_event *leader = event->group_leader, *sub;
3065 	int n = 0, size = 0, ret = -EFAULT;
3066 	struct perf_event_context *ctx = leader->ctx;
3067 	u64 values[5];
3068 	u64 count, enabled, running;
3069 
3070 	mutex_lock(&ctx->mutex);
3071 	count = perf_event_read_value(leader, &enabled, &running);
3072 
3073 	values[n++] = 1 + leader->nr_siblings;
3074 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3075 		values[n++] = enabled;
3076 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3077 		values[n++] = running;
3078 	values[n++] = count;
3079 	if (read_format & PERF_FORMAT_ID)
3080 		values[n++] = primary_event_id(leader);
3081 
3082 	size = n * sizeof(u64);
3083 
3084 	if (copy_to_user(buf, values, size))
3085 		goto unlock;
3086 
3087 	ret = size;
3088 
3089 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3090 		n = 0;
3091 
3092 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3093 		if (read_format & PERF_FORMAT_ID)
3094 			values[n++] = primary_event_id(sub);
3095 
3096 		size = n * sizeof(u64);
3097 
3098 		if (copy_to_user(buf + ret, values, size)) {
3099 			ret = -EFAULT;
3100 			goto unlock;
3101 		}
3102 
3103 		ret += size;
3104 	}
3105 unlock:
3106 	mutex_unlock(&ctx->mutex);
3107 
3108 	return ret;
3109 }
3110 
3111 static int perf_event_read_one(struct perf_event *event,
3112 				 u64 read_format, char __user *buf)
3113 {
3114 	u64 enabled, running;
3115 	u64 values[4];
3116 	int n = 0;
3117 
3118 	values[n++] = perf_event_read_value(event, &enabled, &running);
3119 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3120 		values[n++] = enabled;
3121 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3122 		values[n++] = running;
3123 	if (read_format & PERF_FORMAT_ID)
3124 		values[n++] = primary_event_id(event);
3125 
3126 	if (copy_to_user(buf, values, n * sizeof(u64)))
3127 		return -EFAULT;
3128 
3129 	return n * sizeof(u64);
3130 }
3131 
3132 /*
3133  * Read the performance event - simple non blocking version for now
3134  */
3135 static ssize_t
3136 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3137 {
3138 	u64 read_format = event->attr.read_format;
3139 	int ret;
3140 
3141 	/*
3142 	 * Return end-of-file for a read on a event that is in
3143 	 * error state (i.e. because it was pinned but it couldn't be
3144 	 * scheduled on to the CPU at some point).
3145 	 */
3146 	if (event->state == PERF_EVENT_STATE_ERROR)
3147 		return 0;
3148 
3149 	if (count < event->read_size)
3150 		return -ENOSPC;
3151 
3152 	WARN_ON_ONCE(event->ctx->parent_ctx);
3153 	if (read_format & PERF_FORMAT_GROUP)
3154 		ret = perf_event_read_group(event, read_format, buf);
3155 	else
3156 		ret = perf_event_read_one(event, read_format, buf);
3157 
3158 	return ret;
3159 }
3160 
3161 static ssize_t
3162 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3163 {
3164 	struct perf_event *event = file->private_data;
3165 
3166 	return perf_read_hw(event, buf, count);
3167 }
3168 
3169 static unsigned int perf_poll(struct file *file, poll_table *wait)
3170 {
3171 	struct perf_event *event = file->private_data;
3172 	struct ring_buffer *rb;
3173 	unsigned int events = POLL_HUP;
3174 
3175 	/*
3176 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3177 	 * grabs the rb reference but perf_event_set_output() overrides it.
3178 	 * Here is the timeline for two threads T1, T2:
3179 	 * t0: T1, rb = rcu_dereference(event->rb)
3180 	 * t1: T2, old_rb = event->rb
3181 	 * t2: T2, event->rb = new rb
3182 	 * t3: T2, ring_buffer_detach(old_rb)
3183 	 * t4: T1, ring_buffer_attach(rb1)
3184 	 * t5: T1, poll_wait(event->waitq)
3185 	 *
3186 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3187 	 * thereby ensuring that the assignment of the new ring buffer
3188 	 * and the detachment of the old buffer appear atomic to perf_poll()
3189 	 */
3190 	mutex_lock(&event->mmap_mutex);
3191 
3192 	rcu_read_lock();
3193 	rb = rcu_dereference(event->rb);
3194 	if (rb) {
3195 		ring_buffer_attach(event, rb);
3196 		events = atomic_xchg(&rb->poll, 0);
3197 	}
3198 	rcu_read_unlock();
3199 
3200 	mutex_unlock(&event->mmap_mutex);
3201 
3202 	poll_wait(file, &event->waitq, wait);
3203 
3204 	return events;
3205 }
3206 
3207 static void perf_event_reset(struct perf_event *event)
3208 {
3209 	(void)perf_event_read(event);
3210 	local64_set(&event->count, 0);
3211 	perf_event_update_userpage(event);
3212 }
3213 
3214 /*
3215  * Holding the top-level event's child_mutex means that any
3216  * descendant process that has inherited this event will block
3217  * in sync_child_event if it goes to exit, thus satisfying the
3218  * task existence requirements of perf_event_enable/disable.
3219  */
3220 static void perf_event_for_each_child(struct perf_event *event,
3221 					void (*func)(struct perf_event *))
3222 {
3223 	struct perf_event *child;
3224 
3225 	WARN_ON_ONCE(event->ctx->parent_ctx);
3226 	mutex_lock(&event->child_mutex);
3227 	func(event);
3228 	list_for_each_entry(child, &event->child_list, child_list)
3229 		func(child);
3230 	mutex_unlock(&event->child_mutex);
3231 }
3232 
3233 static void perf_event_for_each(struct perf_event *event,
3234 				  void (*func)(struct perf_event *))
3235 {
3236 	struct perf_event_context *ctx = event->ctx;
3237 	struct perf_event *sibling;
3238 
3239 	WARN_ON_ONCE(ctx->parent_ctx);
3240 	mutex_lock(&ctx->mutex);
3241 	event = event->group_leader;
3242 
3243 	perf_event_for_each_child(event, func);
3244 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3245 		perf_event_for_each_child(sibling, func);
3246 	mutex_unlock(&ctx->mutex);
3247 }
3248 
3249 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3250 {
3251 	struct perf_event_context *ctx = event->ctx;
3252 	int ret = 0;
3253 	u64 value;
3254 
3255 	if (!is_sampling_event(event))
3256 		return -EINVAL;
3257 
3258 	if (copy_from_user(&value, arg, sizeof(value)))
3259 		return -EFAULT;
3260 
3261 	if (!value)
3262 		return -EINVAL;
3263 
3264 	raw_spin_lock_irq(&ctx->lock);
3265 	if (event->attr.freq) {
3266 		if (value > sysctl_perf_event_sample_rate) {
3267 			ret = -EINVAL;
3268 			goto unlock;
3269 		}
3270 
3271 		event->attr.sample_freq = value;
3272 	} else {
3273 		event->attr.sample_period = value;
3274 		event->hw.sample_period = value;
3275 	}
3276 unlock:
3277 	raw_spin_unlock_irq(&ctx->lock);
3278 
3279 	return ret;
3280 }
3281 
3282 static const struct file_operations perf_fops;
3283 
3284 static inline int perf_fget_light(int fd, struct fd *p)
3285 {
3286 	struct fd f = fdget(fd);
3287 	if (!f.file)
3288 		return -EBADF;
3289 
3290 	if (f.file->f_op != &perf_fops) {
3291 		fdput(f);
3292 		return -EBADF;
3293 	}
3294 	*p = f;
3295 	return 0;
3296 }
3297 
3298 static int perf_event_set_output(struct perf_event *event,
3299 				 struct perf_event *output_event);
3300 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3301 
3302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3303 {
3304 	struct perf_event *event = file->private_data;
3305 	void (*func)(struct perf_event *);
3306 	u32 flags = arg;
3307 
3308 	switch (cmd) {
3309 	case PERF_EVENT_IOC_ENABLE:
3310 		func = perf_event_enable;
3311 		break;
3312 	case PERF_EVENT_IOC_DISABLE:
3313 		func = perf_event_disable;
3314 		break;
3315 	case PERF_EVENT_IOC_RESET:
3316 		func = perf_event_reset;
3317 		break;
3318 
3319 	case PERF_EVENT_IOC_REFRESH:
3320 		return perf_event_refresh(event, arg);
3321 
3322 	case PERF_EVENT_IOC_PERIOD:
3323 		return perf_event_period(event, (u64 __user *)arg);
3324 
3325 	case PERF_EVENT_IOC_SET_OUTPUT:
3326 	{
3327 		int ret;
3328 		if (arg != -1) {
3329 			struct perf_event *output_event;
3330 			struct fd output;
3331 			ret = perf_fget_light(arg, &output);
3332 			if (ret)
3333 				return ret;
3334 			output_event = output.file->private_data;
3335 			ret = perf_event_set_output(event, output_event);
3336 			fdput(output);
3337 		} else {
3338 			ret = perf_event_set_output(event, NULL);
3339 		}
3340 		return ret;
3341 	}
3342 
3343 	case PERF_EVENT_IOC_SET_FILTER:
3344 		return perf_event_set_filter(event, (void __user *)arg);
3345 
3346 	default:
3347 		return -ENOTTY;
3348 	}
3349 
3350 	if (flags & PERF_IOC_FLAG_GROUP)
3351 		perf_event_for_each(event, func);
3352 	else
3353 		perf_event_for_each_child(event, func);
3354 
3355 	return 0;
3356 }
3357 
3358 int perf_event_task_enable(void)
3359 {
3360 	struct perf_event *event;
3361 
3362 	mutex_lock(&current->perf_event_mutex);
3363 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3364 		perf_event_for_each_child(event, perf_event_enable);
3365 	mutex_unlock(&current->perf_event_mutex);
3366 
3367 	return 0;
3368 }
3369 
3370 int perf_event_task_disable(void)
3371 {
3372 	struct perf_event *event;
3373 
3374 	mutex_lock(&current->perf_event_mutex);
3375 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3376 		perf_event_for_each_child(event, perf_event_disable);
3377 	mutex_unlock(&current->perf_event_mutex);
3378 
3379 	return 0;
3380 }
3381 
3382 static int perf_event_index(struct perf_event *event)
3383 {
3384 	if (event->hw.state & PERF_HES_STOPPED)
3385 		return 0;
3386 
3387 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3388 		return 0;
3389 
3390 	return event->pmu->event_idx(event);
3391 }
3392 
3393 static void calc_timer_values(struct perf_event *event,
3394 				u64 *now,
3395 				u64 *enabled,
3396 				u64 *running)
3397 {
3398 	u64 ctx_time;
3399 
3400 	*now = perf_clock();
3401 	ctx_time = event->shadow_ctx_time + *now;
3402 	*enabled = ctx_time - event->tstamp_enabled;
3403 	*running = ctx_time - event->tstamp_running;
3404 }
3405 
3406 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3407 {
3408 }
3409 
3410 /*
3411  * Callers need to ensure there can be no nesting of this function, otherwise
3412  * the seqlock logic goes bad. We can not serialize this because the arch
3413  * code calls this from NMI context.
3414  */
3415 void perf_event_update_userpage(struct perf_event *event)
3416 {
3417 	struct perf_event_mmap_page *userpg;
3418 	struct ring_buffer *rb;
3419 	u64 enabled, running, now;
3420 
3421 	rcu_read_lock();
3422 	/*
3423 	 * compute total_time_enabled, total_time_running
3424 	 * based on snapshot values taken when the event
3425 	 * was last scheduled in.
3426 	 *
3427 	 * we cannot simply called update_context_time()
3428 	 * because of locking issue as we can be called in
3429 	 * NMI context
3430 	 */
3431 	calc_timer_values(event, &now, &enabled, &running);
3432 	rb = rcu_dereference(event->rb);
3433 	if (!rb)
3434 		goto unlock;
3435 
3436 	userpg = rb->user_page;
3437 
3438 	/*
3439 	 * Disable preemption so as to not let the corresponding user-space
3440 	 * spin too long if we get preempted.
3441 	 */
3442 	preempt_disable();
3443 	++userpg->lock;
3444 	barrier();
3445 	userpg->index = perf_event_index(event);
3446 	userpg->offset = perf_event_count(event);
3447 	if (userpg->index)
3448 		userpg->offset -= local64_read(&event->hw.prev_count);
3449 
3450 	userpg->time_enabled = enabled +
3451 			atomic64_read(&event->child_total_time_enabled);
3452 
3453 	userpg->time_running = running +
3454 			atomic64_read(&event->child_total_time_running);
3455 
3456 	arch_perf_update_userpage(userpg, now);
3457 
3458 	barrier();
3459 	++userpg->lock;
3460 	preempt_enable();
3461 unlock:
3462 	rcu_read_unlock();
3463 }
3464 
3465 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3466 {
3467 	struct perf_event *event = vma->vm_file->private_data;
3468 	struct ring_buffer *rb;
3469 	int ret = VM_FAULT_SIGBUS;
3470 
3471 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3472 		if (vmf->pgoff == 0)
3473 			ret = 0;
3474 		return ret;
3475 	}
3476 
3477 	rcu_read_lock();
3478 	rb = rcu_dereference(event->rb);
3479 	if (!rb)
3480 		goto unlock;
3481 
3482 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3483 		goto unlock;
3484 
3485 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3486 	if (!vmf->page)
3487 		goto unlock;
3488 
3489 	get_page(vmf->page);
3490 	vmf->page->mapping = vma->vm_file->f_mapping;
3491 	vmf->page->index   = vmf->pgoff;
3492 
3493 	ret = 0;
3494 unlock:
3495 	rcu_read_unlock();
3496 
3497 	return ret;
3498 }
3499 
3500 static void ring_buffer_attach(struct perf_event *event,
3501 			       struct ring_buffer *rb)
3502 {
3503 	unsigned long flags;
3504 
3505 	if (!list_empty(&event->rb_entry))
3506 		return;
3507 
3508 	spin_lock_irqsave(&rb->event_lock, flags);
3509 	if (!list_empty(&event->rb_entry))
3510 		goto unlock;
3511 
3512 	list_add(&event->rb_entry, &rb->event_list);
3513 unlock:
3514 	spin_unlock_irqrestore(&rb->event_lock, flags);
3515 }
3516 
3517 static void ring_buffer_detach(struct perf_event *event,
3518 			       struct ring_buffer *rb)
3519 {
3520 	unsigned long flags;
3521 
3522 	if (list_empty(&event->rb_entry))
3523 		return;
3524 
3525 	spin_lock_irqsave(&rb->event_lock, flags);
3526 	list_del_init(&event->rb_entry);
3527 	wake_up_all(&event->waitq);
3528 	spin_unlock_irqrestore(&rb->event_lock, flags);
3529 }
3530 
3531 static void ring_buffer_wakeup(struct perf_event *event)
3532 {
3533 	struct ring_buffer *rb;
3534 
3535 	rcu_read_lock();
3536 	rb = rcu_dereference(event->rb);
3537 	if (!rb)
3538 		goto unlock;
3539 
3540 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3541 		wake_up_all(&event->waitq);
3542 
3543 unlock:
3544 	rcu_read_unlock();
3545 }
3546 
3547 static void rb_free_rcu(struct rcu_head *rcu_head)
3548 {
3549 	struct ring_buffer *rb;
3550 
3551 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3552 	rb_free(rb);
3553 }
3554 
3555 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3556 {
3557 	struct ring_buffer *rb;
3558 
3559 	rcu_read_lock();
3560 	rb = rcu_dereference(event->rb);
3561 	if (rb) {
3562 		if (!atomic_inc_not_zero(&rb->refcount))
3563 			rb = NULL;
3564 	}
3565 	rcu_read_unlock();
3566 
3567 	return rb;
3568 }
3569 
3570 static void ring_buffer_put(struct ring_buffer *rb)
3571 {
3572 	struct perf_event *event, *n;
3573 	unsigned long flags;
3574 
3575 	if (!atomic_dec_and_test(&rb->refcount))
3576 		return;
3577 
3578 	spin_lock_irqsave(&rb->event_lock, flags);
3579 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3580 		list_del_init(&event->rb_entry);
3581 		wake_up_all(&event->waitq);
3582 	}
3583 	spin_unlock_irqrestore(&rb->event_lock, flags);
3584 
3585 	call_rcu(&rb->rcu_head, rb_free_rcu);
3586 }
3587 
3588 static void perf_mmap_open(struct vm_area_struct *vma)
3589 {
3590 	struct perf_event *event = vma->vm_file->private_data;
3591 
3592 	atomic_inc(&event->mmap_count);
3593 }
3594 
3595 static void perf_mmap_close(struct vm_area_struct *vma)
3596 {
3597 	struct perf_event *event = vma->vm_file->private_data;
3598 
3599 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3600 		unsigned long size = perf_data_size(event->rb);
3601 		struct user_struct *user = event->mmap_user;
3602 		struct ring_buffer *rb = event->rb;
3603 
3604 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3605 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3606 		rcu_assign_pointer(event->rb, NULL);
3607 		ring_buffer_detach(event, rb);
3608 		mutex_unlock(&event->mmap_mutex);
3609 
3610 		ring_buffer_put(rb);
3611 		free_uid(user);
3612 	}
3613 }
3614 
3615 static const struct vm_operations_struct perf_mmap_vmops = {
3616 	.open		= perf_mmap_open,
3617 	.close		= perf_mmap_close,
3618 	.fault		= perf_mmap_fault,
3619 	.page_mkwrite	= perf_mmap_fault,
3620 };
3621 
3622 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3623 {
3624 	struct perf_event *event = file->private_data;
3625 	unsigned long user_locked, user_lock_limit;
3626 	struct user_struct *user = current_user();
3627 	unsigned long locked, lock_limit;
3628 	struct ring_buffer *rb;
3629 	unsigned long vma_size;
3630 	unsigned long nr_pages;
3631 	long user_extra, extra;
3632 	int ret = 0, flags = 0;
3633 
3634 	/*
3635 	 * Don't allow mmap() of inherited per-task counters. This would
3636 	 * create a performance issue due to all children writing to the
3637 	 * same rb.
3638 	 */
3639 	if (event->cpu == -1 && event->attr.inherit)
3640 		return -EINVAL;
3641 
3642 	if (!(vma->vm_flags & VM_SHARED))
3643 		return -EINVAL;
3644 
3645 	vma_size = vma->vm_end - vma->vm_start;
3646 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3647 
3648 	/*
3649 	 * If we have rb pages ensure they're a power-of-two number, so we
3650 	 * can do bitmasks instead of modulo.
3651 	 */
3652 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3653 		return -EINVAL;
3654 
3655 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3656 		return -EINVAL;
3657 
3658 	if (vma->vm_pgoff != 0)
3659 		return -EINVAL;
3660 
3661 	WARN_ON_ONCE(event->ctx->parent_ctx);
3662 	mutex_lock(&event->mmap_mutex);
3663 	if (event->rb) {
3664 		if (event->rb->nr_pages == nr_pages)
3665 			atomic_inc(&event->rb->refcount);
3666 		else
3667 			ret = -EINVAL;
3668 		goto unlock;
3669 	}
3670 
3671 	user_extra = nr_pages + 1;
3672 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3673 
3674 	/*
3675 	 * Increase the limit linearly with more CPUs:
3676 	 */
3677 	user_lock_limit *= num_online_cpus();
3678 
3679 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3680 
3681 	extra = 0;
3682 	if (user_locked > user_lock_limit)
3683 		extra = user_locked - user_lock_limit;
3684 
3685 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3686 	lock_limit >>= PAGE_SHIFT;
3687 	locked = vma->vm_mm->pinned_vm + extra;
3688 
3689 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3690 		!capable(CAP_IPC_LOCK)) {
3691 		ret = -EPERM;
3692 		goto unlock;
3693 	}
3694 
3695 	WARN_ON(event->rb);
3696 
3697 	if (vma->vm_flags & VM_WRITE)
3698 		flags |= RING_BUFFER_WRITABLE;
3699 
3700 	rb = rb_alloc(nr_pages,
3701 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3702 		event->cpu, flags);
3703 
3704 	if (!rb) {
3705 		ret = -ENOMEM;
3706 		goto unlock;
3707 	}
3708 	rcu_assign_pointer(event->rb, rb);
3709 
3710 	atomic_long_add(user_extra, &user->locked_vm);
3711 	event->mmap_locked = extra;
3712 	event->mmap_user = get_current_user();
3713 	vma->vm_mm->pinned_vm += event->mmap_locked;
3714 
3715 	perf_event_update_userpage(event);
3716 
3717 unlock:
3718 	if (!ret)
3719 		atomic_inc(&event->mmap_count);
3720 	mutex_unlock(&event->mmap_mutex);
3721 
3722 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3723 	vma->vm_ops = &perf_mmap_vmops;
3724 
3725 	return ret;
3726 }
3727 
3728 static int perf_fasync(int fd, struct file *filp, int on)
3729 {
3730 	struct inode *inode = file_inode(filp);
3731 	struct perf_event *event = filp->private_data;
3732 	int retval;
3733 
3734 	mutex_lock(&inode->i_mutex);
3735 	retval = fasync_helper(fd, filp, on, &event->fasync);
3736 	mutex_unlock(&inode->i_mutex);
3737 
3738 	if (retval < 0)
3739 		return retval;
3740 
3741 	return 0;
3742 }
3743 
3744 static const struct file_operations perf_fops = {
3745 	.llseek			= no_llseek,
3746 	.release		= perf_release,
3747 	.read			= perf_read,
3748 	.poll			= perf_poll,
3749 	.unlocked_ioctl		= perf_ioctl,
3750 	.compat_ioctl		= perf_ioctl,
3751 	.mmap			= perf_mmap,
3752 	.fasync			= perf_fasync,
3753 };
3754 
3755 /*
3756  * Perf event wakeup
3757  *
3758  * If there's data, ensure we set the poll() state and publish everything
3759  * to user-space before waking everybody up.
3760  */
3761 
3762 void perf_event_wakeup(struct perf_event *event)
3763 {
3764 	ring_buffer_wakeup(event);
3765 
3766 	if (event->pending_kill) {
3767 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3768 		event->pending_kill = 0;
3769 	}
3770 }
3771 
3772 static void perf_pending_event(struct irq_work *entry)
3773 {
3774 	struct perf_event *event = container_of(entry,
3775 			struct perf_event, pending);
3776 
3777 	if (event->pending_disable) {
3778 		event->pending_disable = 0;
3779 		__perf_event_disable(event);
3780 	}
3781 
3782 	if (event->pending_wakeup) {
3783 		event->pending_wakeup = 0;
3784 		perf_event_wakeup(event);
3785 	}
3786 }
3787 
3788 /*
3789  * We assume there is only KVM supporting the callbacks.
3790  * Later on, we might change it to a list if there is
3791  * another virtualization implementation supporting the callbacks.
3792  */
3793 struct perf_guest_info_callbacks *perf_guest_cbs;
3794 
3795 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3796 {
3797 	perf_guest_cbs = cbs;
3798 	return 0;
3799 }
3800 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3801 
3802 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3803 {
3804 	perf_guest_cbs = NULL;
3805 	return 0;
3806 }
3807 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3808 
3809 static void
3810 perf_output_sample_regs(struct perf_output_handle *handle,
3811 			struct pt_regs *regs, u64 mask)
3812 {
3813 	int bit;
3814 
3815 	for_each_set_bit(bit, (const unsigned long *) &mask,
3816 			 sizeof(mask) * BITS_PER_BYTE) {
3817 		u64 val;
3818 
3819 		val = perf_reg_value(regs, bit);
3820 		perf_output_put(handle, val);
3821 	}
3822 }
3823 
3824 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3825 				  struct pt_regs *regs)
3826 {
3827 	if (!user_mode(regs)) {
3828 		if (current->mm)
3829 			regs = task_pt_regs(current);
3830 		else
3831 			regs = NULL;
3832 	}
3833 
3834 	if (regs) {
3835 		regs_user->regs = regs;
3836 		regs_user->abi  = perf_reg_abi(current);
3837 	}
3838 }
3839 
3840 /*
3841  * Get remaining task size from user stack pointer.
3842  *
3843  * It'd be better to take stack vma map and limit this more
3844  * precisly, but there's no way to get it safely under interrupt,
3845  * so using TASK_SIZE as limit.
3846  */
3847 static u64 perf_ustack_task_size(struct pt_regs *regs)
3848 {
3849 	unsigned long addr = perf_user_stack_pointer(regs);
3850 
3851 	if (!addr || addr >= TASK_SIZE)
3852 		return 0;
3853 
3854 	return TASK_SIZE - addr;
3855 }
3856 
3857 static u16
3858 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3859 			struct pt_regs *regs)
3860 {
3861 	u64 task_size;
3862 
3863 	/* No regs, no stack pointer, no dump. */
3864 	if (!regs)
3865 		return 0;
3866 
3867 	/*
3868 	 * Check if we fit in with the requested stack size into the:
3869 	 * - TASK_SIZE
3870 	 *   If we don't, we limit the size to the TASK_SIZE.
3871 	 *
3872 	 * - remaining sample size
3873 	 *   If we don't, we customize the stack size to
3874 	 *   fit in to the remaining sample size.
3875 	 */
3876 
3877 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3878 	stack_size = min(stack_size, (u16) task_size);
3879 
3880 	/* Current header size plus static size and dynamic size. */
3881 	header_size += 2 * sizeof(u64);
3882 
3883 	/* Do we fit in with the current stack dump size? */
3884 	if ((u16) (header_size + stack_size) < header_size) {
3885 		/*
3886 		 * If we overflow the maximum size for the sample,
3887 		 * we customize the stack dump size to fit in.
3888 		 */
3889 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3890 		stack_size = round_up(stack_size, sizeof(u64));
3891 	}
3892 
3893 	return stack_size;
3894 }
3895 
3896 static void
3897 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3898 			  struct pt_regs *regs)
3899 {
3900 	/* Case of a kernel thread, nothing to dump */
3901 	if (!regs) {
3902 		u64 size = 0;
3903 		perf_output_put(handle, size);
3904 	} else {
3905 		unsigned long sp;
3906 		unsigned int rem;
3907 		u64 dyn_size;
3908 
3909 		/*
3910 		 * We dump:
3911 		 * static size
3912 		 *   - the size requested by user or the best one we can fit
3913 		 *     in to the sample max size
3914 		 * data
3915 		 *   - user stack dump data
3916 		 * dynamic size
3917 		 *   - the actual dumped size
3918 		 */
3919 
3920 		/* Static size. */
3921 		perf_output_put(handle, dump_size);
3922 
3923 		/* Data. */
3924 		sp = perf_user_stack_pointer(regs);
3925 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3926 		dyn_size = dump_size - rem;
3927 
3928 		perf_output_skip(handle, rem);
3929 
3930 		/* Dynamic size. */
3931 		perf_output_put(handle, dyn_size);
3932 	}
3933 }
3934 
3935 static void __perf_event_header__init_id(struct perf_event_header *header,
3936 					 struct perf_sample_data *data,
3937 					 struct perf_event *event)
3938 {
3939 	u64 sample_type = event->attr.sample_type;
3940 
3941 	data->type = sample_type;
3942 	header->size += event->id_header_size;
3943 
3944 	if (sample_type & PERF_SAMPLE_TID) {
3945 		/* namespace issues */
3946 		data->tid_entry.pid = perf_event_pid(event, current);
3947 		data->tid_entry.tid = perf_event_tid(event, current);
3948 	}
3949 
3950 	if (sample_type & PERF_SAMPLE_TIME)
3951 		data->time = perf_clock();
3952 
3953 	if (sample_type & PERF_SAMPLE_ID)
3954 		data->id = primary_event_id(event);
3955 
3956 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3957 		data->stream_id = event->id;
3958 
3959 	if (sample_type & PERF_SAMPLE_CPU) {
3960 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3961 		data->cpu_entry.reserved = 0;
3962 	}
3963 }
3964 
3965 void perf_event_header__init_id(struct perf_event_header *header,
3966 				struct perf_sample_data *data,
3967 				struct perf_event *event)
3968 {
3969 	if (event->attr.sample_id_all)
3970 		__perf_event_header__init_id(header, data, event);
3971 }
3972 
3973 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3974 					   struct perf_sample_data *data)
3975 {
3976 	u64 sample_type = data->type;
3977 
3978 	if (sample_type & PERF_SAMPLE_TID)
3979 		perf_output_put(handle, data->tid_entry);
3980 
3981 	if (sample_type & PERF_SAMPLE_TIME)
3982 		perf_output_put(handle, data->time);
3983 
3984 	if (sample_type & PERF_SAMPLE_ID)
3985 		perf_output_put(handle, data->id);
3986 
3987 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3988 		perf_output_put(handle, data->stream_id);
3989 
3990 	if (sample_type & PERF_SAMPLE_CPU)
3991 		perf_output_put(handle, data->cpu_entry);
3992 }
3993 
3994 void perf_event__output_id_sample(struct perf_event *event,
3995 				  struct perf_output_handle *handle,
3996 				  struct perf_sample_data *sample)
3997 {
3998 	if (event->attr.sample_id_all)
3999 		__perf_event__output_id_sample(handle, sample);
4000 }
4001 
4002 static void perf_output_read_one(struct perf_output_handle *handle,
4003 				 struct perf_event *event,
4004 				 u64 enabled, u64 running)
4005 {
4006 	u64 read_format = event->attr.read_format;
4007 	u64 values[4];
4008 	int n = 0;
4009 
4010 	values[n++] = perf_event_count(event);
4011 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4012 		values[n++] = enabled +
4013 			atomic64_read(&event->child_total_time_enabled);
4014 	}
4015 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4016 		values[n++] = running +
4017 			atomic64_read(&event->child_total_time_running);
4018 	}
4019 	if (read_format & PERF_FORMAT_ID)
4020 		values[n++] = primary_event_id(event);
4021 
4022 	__output_copy(handle, values, n * sizeof(u64));
4023 }
4024 
4025 /*
4026  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4027  */
4028 static void perf_output_read_group(struct perf_output_handle *handle,
4029 			    struct perf_event *event,
4030 			    u64 enabled, u64 running)
4031 {
4032 	struct perf_event *leader = event->group_leader, *sub;
4033 	u64 read_format = event->attr.read_format;
4034 	u64 values[5];
4035 	int n = 0;
4036 
4037 	values[n++] = 1 + leader->nr_siblings;
4038 
4039 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4040 		values[n++] = enabled;
4041 
4042 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4043 		values[n++] = running;
4044 
4045 	if (leader != event)
4046 		leader->pmu->read(leader);
4047 
4048 	values[n++] = perf_event_count(leader);
4049 	if (read_format & PERF_FORMAT_ID)
4050 		values[n++] = primary_event_id(leader);
4051 
4052 	__output_copy(handle, values, n * sizeof(u64));
4053 
4054 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4055 		n = 0;
4056 
4057 		if (sub != event)
4058 			sub->pmu->read(sub);
4059 
4060 		values[n++] = perf_event_count(sub);
4061 		if (read_format & PERF_FORMAT_ID)
4062 			values[n++] = primary_event_id(sub);
4063 
4064 		__output_copy(handle, values, n * sizeof(u64));
4065 	}
4066 }
4067 
4068 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4069 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4070 
4071 static void perf_output_read(struct perf_output_handle *handle,
4072 			     struct perf_event *event)
4073 {
4074 	u64 enabled = 0, running = 0, now;
4075 	u64 read_format = event->attr.read_format;
4076 
4077 	/*
4078 	 * compute total_time_enabled, total_time_running
4079 	 * based on snapshot values taken when the event
4080 	 * was last scheduled in.
4081 	 *
4082 	 * we cannot simply called update_context_time()
4083 	 * because of locking issue as we are called in
4084 	 * NMI context
4085 	 */
4086 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4087 		calc_timer_values(event, &now, &enabled, &running);
4088 
4089 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4090 		perf_output_read_group(handle, event, enabled, running);
4091 	else
4092 		perf_output_read_one(handle, event, enabled, running);
4093 }
4094 
4095 void perf_output_sample(struct perf_output_handle *handle,
4096 			struct perf_event_header *header,
4097 			struct perf_sample_data *data,
4098 			struct perf_event *event)
4099 {
4100 	u64 sample_type = data->type;
4101 
4102 	perf_output_put(handle, *header);
4103 
4104 	if (sample_type & PERF_SAMPLE_IP)
4105 		perf_output_put(handle, data->ip);
4106 
4107 	if (sample_type & PERF_SAMPLE_TID)
4108 		perf_output_put(handle, data->tid_entry);
4109 
4110 	if (sample_type & PERF_SAMPLE_TIME)
4111 		perf_output_put(handle, data->time);
4112 
4113 	if (sample_type & PERF_SAMPLE_ADDR)
4114 		perf_output_put(handle, data->addr);
4115 
4116 	if (sample_type & PERF_SAMPLE_ID)
4117 		perf_output_put(handle, data->id);
4118 
4119 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4120 		perf_output_put(handle, data->stream_id);
4121 
4122 	if (sample_type & PERF_SAMPLE_CPU)
4123 		perf_output_put(handle, data->cpu_entry);
4124 
4125 	if (sample_type & PERF_SAMPLE_PERIOD)
4126 		perf_output_put(handle, data->period);
4127 
4128 	if (sample_type & PERF_SAMPLE_READ)
4129 		perf_output_read(handle, event);
4130 
4131 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4132 		if (data->callchain) {
4133 			int size = 1;
4134 
4135 			if (data->callchain)
4136 				size += data->callchain->nr;
4137 
4138 			size *= sizeof(u64);
4139 
4140 			__output_copy(handle, data->callchain, size);
4141 		} else {
4142 			u64 nr = 0;
4143 			perf_output_put(handle, nr);
4144 		}
4145 	}
4146 
4147 	if (sample_type & PERF_SAMPLE_RAW) {
4148 		if (data->raw) {
4149 			perf_output_put(handle, data->raw->size);
4150 			__output_copy(handle, data->raw->data,
4151 					   data->raw->size);
4152 		} else {
4153 			struct {
4154 				u32	size;
4155 				u32	data;
4156 			} raw = {
4157 				.size = sizeof(u32),
4158 				.data = 0,
4159 			};
4160 			perf_output_put(handle, raw);
4161 		}
4162 	}
4163 
4164 	if (!event->attr.watermark) {
4165 		int wakeup_events = event->attr.wakeup_events;
4166 
4167 		if (wakeup_events) {
4168 			struct ring_buffer *rb = handle->rb;
4169 			int events = local_inc_return(&rb->events);
4170 
4171 			if (events >= wakeup_events) {
4172 				local_sub(wakeup_events, &rb->events);
4173 				local_inc(&rb->wakeup);
4174 			}
4175 		}
4176 	}
4177 
4178 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4179 		if (data->br_stack) {
4180 			size_t size;
4181 
4182 			size = data->br_stack->nr
4183 			     * sizeof(struct perf_branch_entry);
4184 
4185 			perf_output_put(handle, data->br_stack->nr);
4186 			perf_output_copy(handle, data->br_stack->entries, size);
4187 		} else {
4188 			/*
4189 			 * we always store at least the value of nr
4190 			 */
4191 			u64 nr = 0;
4192 			perf_output_put(handle, nr);
4193 		}
4194 	}
4195 
4196 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4197 		u64 abi = data->regs_user.abi;
4198 
4199 		/*
4200 		 * If there are no regs to dump, notice it through
4201 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4202 		 */
4203 		perf_output_put(handle, abi);
4204 
4205 		if (abi) {
4206 			u64 mask = event->attr.sample_regs_user;
4207 			perf_output_sample_regs(handle,
4208 						data->regs_user.regs,
4209 						mask);
4210 		}
4211 	}
4212 
4213 	if (sample_type & PERF_SAMPLE_STACK_USER)
4214 		perf_output_sample_ustack(handle,
4215 					  data->stack_user_size,
4216 					  data->regs_user.regs);
4217 
4218 	if (sample_type & PERF_SAMPLE_WEIGHT)
4219 		perf_output_put(handle, data->weight);
4220 
4221 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4222 		perf_output_put(handle, data->data_src.val);
4223 }
4224 
4225 void perf_prepare_sample(struct perf_event_header *header,
4226 			 struct perf_sample_data *data,
4227 			 struct perf_event *event,
4228 			 struct pt_regs *regs)
4229 {
4230 	u64 sample_type = event->attr.sample_type;
4231 
4232 	header->type = PERF_RECORD_SAMPLE;
4233 	header->size = sizeof(*header) + event->header_size;
4234 
4235 	header->misc = 0;
4236 	header->misc |= perf_misc_flags(regs);
4237 
4238 	__perf_event_header__init_id(header, data, event);
4239 
4240 	if (sample_type & PERF_SAMPLE_IP)
4241 		data->ip = perf_instruction_pointer(regs);
4242 
4243 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4244 		int size = 1;
4245 
4246 		data->callchain = perf_callchain(event, regs);
4247 
4248 		if (data->callchain)
4249 			size += data->callchain->nr;
4250 
4251 		header->size += size * sizeof(u64);
4252 	}
4253 
4254 	if (sample_type & PERF_SAMPLE_RAW) {
4255 		int size = sizeof(u32);
4256 
4257 		if (data->raw)
4258 			size += data->raw->size;
4259 		else
4260 			size += sizeof(u32);
4261 
4262 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4263 		header->size += size;
4264 	}
4265 
4266 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4267 		int size = sizeof(u64); /* nr */
4268 		if (data->br_stack) {
4269 			size += data->br_stack->nr
4270 			      * sizeof(struct perf_branch_entry);
4271 		}
4272 		header->size += size;
4273 	}
4274 
4275 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4276 		/* regs dump ABI info */
4277 		int size = sizeof(u64);
4278 
4279 		perf_sample_regs_user(&data->regs_user, regs);
4280 
4281 		if (data->regs_user.regs) {
4282 			u64 mask = event->attr.sample_regs_user;
4283 			size += hweight64(mask) * sizeof(u64);
4284 		}
4285 
4286 		header->size += size;
4287 	}
4288 
4289 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4290 		/*
4291 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4292 		 * processed as the last one or have additional check added
4293 		 * in case new sample type is added, because we could eat
4294 		 * up the rest of the sample size.
4295 		 */
4296 		struct perf_regs_user *uregs = &data->regs_user;
4297 		u16 stack_size = event->attr.sample_stack_user;
4298 		u16 size = sizeof(u64);
4299 
4300 		if (!uregs->abi)
4301 			perf_sample_regs_user(uregs, regs);
4302 
4303 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4304 						     uregs->regs);
4305 
4306 		/*
4307 		 * If there is something to dump, add space for the dump
4308 		 * itself and for the field that tells the dynamic size,
4309 		 * which is how many have been actually dumped.
4310 		 */
4311 		if (stack_size)
4312 			size += sizeof(u64) + stack_size;
4313 
4314 		data->stack_user_size = stack_size;
4315 		header->size += size;
4316 	}
4317 }
4318 
4319 static void perf_event_output(struct perf_event *event,
4320 				struct perf_sample_data *data,
4321 				struct pt_regs *regs)
4322 {
4323 	struct perf_output_handle handle;
4324 	struct perf_event_header header;
4325 
4326 	/* protect the callchain buffers */
4327 	rcu_read_lock();
4328 
4329 	perf_prepare_sample(&header, data, event, regs);
4330 
4331 	if (perf_output_begin(&handle, event, header.size))
4332 		goto exit;
4333 
4334 	perf_output_sample(&handle, &header, data, event);
4335 
4336 	perf_output_end(&handle);
4337 
4338 exit:
4339 	rcu_read_unlock();
4340 }
4341 
4342 /*
4343  * read event_id
4344  */
4345 
4346 struct perf_read_event {
4347 	struct perf_event_header	header;
4348 
4349 	u32				pid;
4350 	u32				tid;
4351 };
4352 
4353 static void
4354 perf_event_read_event(struct perf_event *event,
4355 			struct task_struct *task)
4356 {
4357 	struct perf_output_handle handle;
4358 	struct perf_sample_data sample;
4359 	struct perf_read_event read_event = {
4360 		.header = {
4361 			.type = PERF_RECORD_READ,
4362 			.misc = 0,
4363 			.size = sizeof(read_event) + event->read_size,
4364 		},
4365 		.pid = perf_event_pid(event, task),
4366 		.tid = perf_event_tid(event, task),
4367 	};
4368 	int ret;
4369 
4370 	perf_event_header__init_id(&read_event.header, &sample, event);
4371 	ret = perf_output_begin(&handle, event, read_event.header.size);
4372 	if (ret)
4373 		return;
4374 
4375 	perf_output_put(&handle, read_event);
4376 	perf_output_read(&handle, event);
4377 	perf_event__output_id_sample(event, &handle, &sample);
4378 
4379 	perf_output_end(&handle);
4380 }
4381 
4382 /*
4383  * task tracking -- fork/exit
4384  *
4385  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4386  */
4387 
4388 struct perf_task_event {
4389 	struct task_struct		*task;
4390 	struct perf_event_context	*task_ctx;
4391 
4392 	struct {
4393 		struct perf_event_header	header;
4394 
4395 		u32				pid;
4396 		u32				ppid;
4397 		u32				tid;
4398 		u32				ptid;
4399 		u64				time;
4400 	} event_id;
4401 };
4402 
4403 static void perf_event_task_output(struct perf_event *event,
4404 				     struct perf_task_event *task_event)
4405 {
4406 	struct perf_output_handle handle;
4407 	struct perf_sample_data	sample;
4408 	struct task_struct *task = task_event->task;
4409 	int ret, size = task_event->event_id.header.size;
4410 
4411 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4412 
4413 	ret = perf_output_begin(&handle, event,
4414 				task_event->event_id.header.size);
4415 	if (ret)
4416 		goto out;
4417 
4418 	task_event->event_id.pid = perf_event_pid(event, task);
4419 	task_event->event_id.ppid = perf_event_pid(event, current);
4420 
4421 	task_event->event_id.tid = perf_event_tid(event, task);
4422 	task_event->event_id.ptid = perf_event_tid(event, current);
4423 
4424 	perf_output_put(&handle, task_event->event_id);
4425 
4426 	perf_event__output_id_sample(event, &handle, &sample);
4427 
4428 	perf_output_end(&handle);
4429 out:
4430 	task_event->event_id.header.size = size;
4431 }
4432 
4433 static int perf_event_task_match(struct perf_event *event)
4434 {
4435 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4436 		return 0;
4437 
4438 	if (!event_filter_match(event))
4439 		return 0;
4440 
4441 	if (event->attr.comm || event->attr.mmap ||
4442 	    event->attr.mmap_data || event->attr.task)
4443 		return 1;
4444 
4445 	return 0;
4446 }
4447 
4448 static void perf_event_task_ctx(struct perf_event_context *ctx,
4449 				  struct perf_task_event *task_event)
4450 {
4451 	struct perf_event *event;
4452 
4453 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454 		if (perf_event_task_match(event))
4455 			perf_event_task_output(event, task_event);
4456 	}
4457 }
4458 
4459 static void perf_event_task_event(struct perf_task_event *task_event)
4460 {
4461 	struct perf_cpu_context *cpuctx;
4462 	struct perf_event_context *ctx;
4463 	struct pmu *pmu;
4464 	int ctxn;
4465 
4466 	rcu_read_lock();
4467 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4468 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4469 		if (cpuctx->unique_pmu != pmu)
4470 			goto next;
4471 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4472 
4473 		ctx = task_event->task_ctx;
4474 		if (!ctx) {
4475 			ctxn = pmu->task_ctx_nr;
4476 			if (ctxn < 0)
4477 				goto next;
4478 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4479 			if (ctx)
4480 				perf_event_task_ctx(ctx, task_event);
4481 		}
4482 next:
4483 		put_cpu_ptr(pmu->pmu_cpu_context);
4484 	}
4485 	if (task_event->task_ctx)
4486 		perf_event_task_ctx(task_event->task_ctx, task_event);
4487 
4488 	rcu_read_unlock();
4489 }
4490 
4491 static void perf_event_task(struct task_struct *task,
4492 			      struct perf_event_context *task_ctx,
4493 			      int new)
4494 {
4495 	struct perf_task_event task_event;
4496 
4497 	if (!atomic_read(&nr_comm_events) &&
4498 	    !atomic_read(&nr_mmap_events) &&
4499 	    !atomic_read(&nr_task_events))
4500 		return;
4501 
4502 	task_event = (struct perf_task_event){
4503 		.task	  = task,
4504 		.task_ctx = task_ctx,
4505 		.event_id    = {
4506 			.header = {
4507 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4508 				.misc = 0,
4509 				.size = sizeof(task_event.event_id),
4510 			},
4511 			/* .pid  */
4512 			/* .ppid */
4513 			/* .tid  */
4514 			/* .ptid */
4515 			.time = perf_clock(),
4516 		},
4517 	};
4518 
4519 	perf_event_task_event(&task_event);
4520 }
4521 
4522 void perf_event_fork(struct task_struct *task)
4523 {
4524 	perf_event_task(task, NULL, 1);
4525 }
4526 
4527 /*
4528  * comm tracking
4529  */
4530 
4531 struct perf_comm_event {
4532 	struct task_struct	*task;
4533 	char			*comm;
4534 	int			comm_size;
4535 
4536 	struct {
4537 		struct perf_event_header	header;
4538 
4539 		u32				pid;
4540 		u32				tid;
4541 	} event_id;
4542 };
4543 
4544 static void perf_event_comm_output(struct perf_event *event,
4545 				     struct perf_comm_event *comm_event)
4546 {
4547 	struct perf_output_handle handle;
4548 	struct perf_sample_data sample;
4549 	int size = comm_event->event_id.header.size;
4550 	int ret;
4551 
4552 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4553 	ret = perf_output_begin(&handle, event,
4554 				comm_event->event_id.header.size);
4555 
4556 	if (ret)
4557 		goto out;
4558 
4559 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4560 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4561 
4562 	perf_output_put(&handle, comm_event->event_id);
4563 	__output_copy(&handle, comm_event->comm,
4564 				   comm_event->comm_size);
4565 
4566 	perf_event__output_id_sample(event, &handle, &sample);
4567 
4568 	perf_output_end(&handle);
4569 out:
4570 	comm_event->event_id.header.size = size;
4571 }
4572 
4573 static int perf_event_comm_match(struct perf_event *event)
4574 {
4575 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4576 		return 0;
4577 
4578 	if (!event_filter_match(event))
4579 		return 0;
4580 
4581 	if (event->attr.comm)
4582 		return 1;
4583 
4584 	return 0;
4585 }
4586 
4587 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4588 				  struct perf_comm_event *comm_event)
4589 {
4590 	struct perf_event *event;
4591 
4592 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4593 		if (perf_event_comm_match(event))
4594 			perf_event_comm_output(event, comm_event);
4595 	}
4596 }
4597 
4598 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4599 {
4600 	struct perf_cpu_context *cpuctx;
4601 	struct perf_event_context *ctx;
4602 	char comm[TASK_COMM_LEN];
4603 	unsigned int size;
4604 	struct pmu *pmu;
4605 	int ctxn;
4606 
4607 	memset(comm, 0, sizeof(comm));
4608 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4609 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4610 
4611 	comm_event->comm = comm;
4612 	comm_event->comm_size = size;
4613 
4614 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4615 	rcu_read_lock();
4616 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4617 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4618 		if (cpuctx->unique_pmu != pmu)
4619 			goto next;
4620 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4621 
4622 		ctxn = pmu->task_ctx_nr;
4623 		if (ctxn < 0)
4624 			goto next;
4625 
4626 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4627 		if (ctx)
4628 			perf_event_comm_ctx(ctx, comm_event);
4629 next:
4630 		put_cpu_ptr(pmu->pmu_cpu_context);
4631 	}
4632 	rcu_read_unlock();
4633 }
4634 
4635 void perf_event_comm(struct task_struct *task)
4636 {
4637 	struct perf_comm_event comm_event;
4638 	struct perf_event_context *ctx;
4639 	int ctxn;
4640 
4641 	rcu_read_lock();
4642 	for_each_task_context_nr(ctxn) {
4643 		ctx = task->perf_event_ctxp[ctxn];
4644 		if (!ctx)
4645 			continue;
4646 
4647 		perf_event_enable_on_exec(ctx);
4648 	}
4649 	rcu_read_unlock();
4650 
4651 	if (!atomic_read(&nr_comm_events))
4652 		return;
4653 
4654 	comm_event = (struct perf_comm_event){
4655 		.task	= task,
4656 		/* .comm      */
4657 		/* .comm_size */
4658 		.event_id  = {
4659 			.header = {
4660 				.type = PERF_RECORD_COMM,
4661 				.misc = 0,
4662 				/* .size */
4663 			},
4664 			/* .pid */
4665 			/* .tid */
4666 		},
4667 	};
4668 
4669 	perf_event_comm_event(&comm_event);
4670 }
4671 
4672 /*
4673  * mmap tracking
4674  */
4675 
4676 struct perf_mmap_event {
4677 	struct vm_area_struct	*vma;
4678 
4679 	const char		*file_name;
4680 	int			file_size;
4681 
4682 	struct {
4683 		struct perf_event_header	header;
4684 
4685 		u32				pid;
4686 		u32				tid;
4687 		u64				start;
4688 		u64				len;
4689 		u64				pgoff;
4690 	} event_id;
4691 };
4692 
4693 static void perf_event_mmap_output(struct perf_event *event,
4694 				     struct perf_mmap_event *mmap_event)
4695 {
4696 	struct perf_output_handle handle;
4697 	struct perf_sample_data sample;
4698 	int size = mmap_event->event_id.header.size;
4699 	int ret;
4700 
4701 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4702 	ret = perf_output_begin(&handle, event,
4703 				mmap_event->event_id.header.size);
4704 	if (ret)
4705 		goto out;
4706 
4707 	mmap_event->event_id.pid = perf_event_pid(event, current);
4708 	mmap_event->event_id.tid = perf_event_tid(event, current);
4709 
4710 	perf_output_put(&handle, mmap_event->event_id);
4711 	__output_copy(&handle, mmap_event->file_name,
4712 				   mmap_event->file_size);
4713 
4714 	perf_event__output_id_sample(event, &handle, &sample);
4715 
4716 	perf_output_end(&handle);
4717 out:
4718 	mmap_event->event_id.header.size = size;
4719 }
4720 
4721 static int perf_event_mmap_match(struct perf_event *event,
4722 				   struct perf_mmap_event *mmap_event,
4723 				   int executable)
4724 {
4725 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4726 		return 0;
4727 
4728 	if (!event_filter_match(event))
4729 		return 0;
4730 
4731 	if ((!executable && event->attr.mmap_data) ||
4732 	    (executable && event->attr.mmap))
4733 		return 1;
4734 
4735 	return 0;
4736 }
4737 
4738 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4739 				  struct perf_mmap_event *mmap_event,
4740 				  int executable)
4741 {
4742 	struct perf_event *event;
4743 
4744 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4745 		if (perf_event_mmap_match(event, mmap_event, executable))
4746 			perf_event_mmap_output(event, mmap_event);
4747 	}
4748 }
4749 
4750 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4751 {
4752 	struct perf_cpu_context *cpuctx;
4753 	struct perf_event_context *ctx;
4754 	struct vm_area_struct *vma = mmap_event->vma;
4755 	struct file *file = vma->vm_file;
4756 	unsigned int size;
4757 	char tmp[16];
4758 	char *buf = NULL;
4759 	const char *name;
4760 	struct pmu *pmu;
4761 	int ctxn;
4762 
4763 	memset(tmp, 0, sizeof(tmp));
4764 
4765 	if (file) {
4766 		/*
4767 		 * d_path works from the end of the rb backwards, so we
4768 		 * need to add enough zero bytes after the string to handle
4769 		 * the 64bit alignment we do later.
4770 		 */
4771 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4772 		if (!buf) {
4773 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4774 			goto got_name;
4775 		}
4776 		name = d_path(&file->f_path, buf, PATH_MAX);
4777 		if (IS_ERR(name)) {
4778 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4779 			goto got_name;
4780 		}
4781 	} else {
4782 		if (arch_vma_name(mmap_event->vma)) {
4783 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4784 				       sizeof(tmp) - 1);
4785 			tmp[sizeof(tmp) - 1] = '\0';
4786 			goto got_name;
4787 		}
4788 
4789 		if (!vma->vm_mm) {
4790 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4791 			goto got_name;
4792 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4793 				vma->vm_end >= vma->vm_mm->brk) {
4794 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4795 			goto got_name;
4796 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4797 				vma->vm_end >= vma->vm_mm->start_stack) {
4798 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4799 			goto got_name;
4800 		}
4801 
4802 		name = strncpy(tmp, "//anon", sizeof(tmp));
4803 		goto got_name;
4804 	}
4805 
4806 got_name:
4807 	size = ALIGN(strlen(name)+1, sizeof(u64));
4808 
4809 	mmap_event->file_name = name;
4810 	mmap_event->file_size = size;
4811 
4812 	if (!(vma->vm_flags & VM_EXEC))
4813 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4814 
4815 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4816 
4817 	rcu_read_lock();
4818 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4819 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4820 		if (cpuctx->unique_pmu != pmu)
4821 			goto next;
4822 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4823 					vma->vm_flags & VM_EXEC);
4824 
4825 		ctxn = pmu->task_ctx_nr;
4826 		if (ctxn < 0)
4827 			goto next;
4828 
4829 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4830 		if (ctx) {
4831 			perf_event_mmap_ctx(ctx, mmap_event,
4832 					vma->vm_flags & VM_EXEC);
4833 		}
4834 next:
4835 		put_cpu_ptr(pmu->pmu_cpu_context);
4836 	}
4837 	rcu_read_unlock();
4838 
4839 	kfree(buf);
4840 }
4841 
4842 void perf_event_mmap(struct vm_area_struct *vma)
4843 {
4844 	struct perf_mmap_event mmap_event;
4845 
4846 	if (!atomic_read(&nr_mmap_events))
4847 		return;
4848 
4849 	mmap_event = (struct perf_mmap_event){
4850 		.vma	= vma,
4851 		/* .file_name */
4852 		/* .file_size */
4853 		.event_id  = {
4854 			.header = {
4855 				.type = PERF_RECORD_MMAP,
4856 				.misc = PERF_RECORD_MISC_USER,
4857 				/* .size */
4858 			},
4859 			/* .pid */
4860 			/* .tid */
4861 			.start  = vma->vm_start,
4862 			.len    = vma->vm_end - vma->vm_start,
4863 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4864 		},
4865 	};
4866 
4867 	perf_event_mmap_event(&mmap_event);
4868 }
4869 
4870 /*
4871  * IRQ throttle logging
4872  */
4873 
4874 static void perf_log_throttle(struct perf_event *event, int enable)
4875 {
4876 	struct perf_output_handle handle;
4877 	struct perf_sample_data sample;
4878 	int ret;
4879 
4880 	struct {
4881 		struct perf_event_header	header;
4882 		u64				time;
4883 		u64				id;
4884 		u64				stream_id;
4885 	} throttle_event = {
4886 		.header = {
4887 			.type = PERF_RECORD_THROTTLE,
4888 			.misc = 0,
4889 			.size = sizeof(throttle_event),
4890 		},
4891 		.time		= perf_clock(),
4892 		.id		= primary_event_id(event),
4893 		.stream_id	= event->id,
4894 	};
4895 
4896 	if (enable)
4897 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4898 
4899 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4900 
4901 	ret = perf_output_begin(&handle, event,
4902 				throttle_event.header.size);
4903 	if (ret)
4904 		return;
4905 
4906 	perf_output_put(&handle, throttle_event);
4907 	perf_event__output_id_sample(event, &handle, &sample);
4908 	perf_output_end(&handle);
4909 }
4910 
4911 /*
4912  * Generic event overflow handling, sampling.
4913  */
4914 
4915 static int __perf_event_overflow(struct perf_event *event,
4916 				   int throttle, struct perf_sample_data *data,
4917 				   struct pt_regs *regs)
4918 {
4919 	int events = atomic_read(&event->event_limit);
4920 	struct hw_perf_event *hwc = &event->hw;
4921 	u64 seq;
4922 	int ret = 0;
4923 
4924 	/*
4925 	 * Non-sampling counters might still use the PMI to fold short
4926 	 * hardware counters, ignore those.
4927 	 */
4928 	if (unlikely(!is_sampling_event(event)))
4929 		return 0;
4930 
4931 	seq = __this_cpu_read(perf_throttled_seq);
4932 	if (seq != hwc->interrupts_seq) {
4933 		hwc->interrupts_seq = seq;
4934 		hwc->interrupts = 1;
4935 	} else {
4936 		hwc->interrupts++;
4937 		if (unlikely(throttle
4938 			     && hwc->interrupts >= max_samples_per_tick)) {
4939 			__this_cpu_inc(perf_throttled_count);
4940 			hwc->interrupts = MAX_INTERRUPTS;
4941 			perf_log_throttle(event, 0);
4942 			ret = 1;
4943 		}
4944 	}
4945 
4946 	if (event->attr.freq) {
4947 		u64 now = perf_clock();
4948 		s64 delta = now - hwc->freq_time_stamp;
4949 
4950 		hwc->freq_time_stamp = now;
4951 
4952 		if (delta > 0 && delta < 2*TICK_NSEC)
4953 			perf_adjust_period(event, delta, hwc->last_period, true);
4954 	}
4955 
4956 	/*
4957 	 * XXX event_limit might not quite work as expected on inherited
4958 	 * events
4959 	 */
4960 
4961 	event->pending_kill = POLL_IN;
4962 	if (events && atomic_dec_and_test(&event->event_limit)) {
4963 		ret = 1;
4964 		event->pending_kill = POLL_HUP;
4965 		event->pending_disable = 1;
4966 		irq_work_queue(&event->pending);
4967 	}
4968 
4969 	if (event->overflow_handler)
4970 		event->overflow_handler(event, data, regs);
4971 	else
4972 		perf_event_output(event, data, regs);
4973 
4974 	if (event->fasync && event->pending_kill) {
4975 		event->pending_wakeup = 1;
4976 		irq_work_queue(&event->pending);
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 int perf_event_overflow(struct perf_event *event,
4983 			  struct perf_sample_data *data,
4984 			  struct pt_regs *regs)
4985 {
4986 	return __perf_event_overflow(event, 1, data, regs);
4987 }
4988 
4989 /*
4990  * Generic software event infrastructure
4991  */
4992 
4993 struct swevent_htable {
4994 	struct swevent_hlist		*swevent_hlist;
4995 	struct mutex			hlist_mutex;
4996 	int				hlist_refcount;
4997 
4998 	/* Recursion avoidance in each contexts */
4999 	int				recursion[PERF_NR_CONTEXTS];
5000 };
5001 
5002 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5003 
5004 /*
5005  * We directly increment event->count and keep a second value in
5006  * event->hw.period_left to count intervals. This period event
5007  * is kept in the range [-sample_period, 0] so that we can use the
5008  * sign as trigger.
5009  */
5010 
5011 static u64 perf_swevent_set_period(struct perf_event *event)
5012 {
5013 	struct hw_perf_event *hwc = &event->hw;
5014 	u64 period = hwc->last_period;
5015 	u64 nr, offset;
5016 	s64 old, val;
5017 
5018 	hwc->last_period = hwc->sample_period;
5019 
5020 again:
5021 	old = val = local64_read(&hwc->period_left);
5022 	if (val < 0)
5023 		return 0;
5024 
5025 	nr = div64_u64(period + val, period);
5026 	offset = nr * period;
5027 	val -= offset;
5028 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5029 		goto again;
5030 
5031 	return nr;
5032 }
5033 
5034 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5035 				    struct perf_sample_data *data,
5036 				    struct pt_regs *regs)
5037 {
5038 	struct hw_perf_event *hwc = &event->hw;
5039 	int throttle = 0;
5040 
5041 	if (!overflow)
5042 		overflow = perf_swevent_set_period(event);
5043 
5044 	if (hwc->interrupts == MAX_INTERRUPTS)
5045 		return;
5046 
5047 	for (; overflow; overflow--) {
5048 		if (__perf_event_overflow(event, throttle,
5049 					    data, regs)) {
5050 			/*
5051 			 * We inhibit the overflow from happening when
5052 			 * hwc->interrupts == MAX_INTERRUPTS.
5053 			 */
5054 			break;
5055 		}
5056 		throttle = 1;
5057 	}
5058 }
5059 
5060 static void perf_swevent_event(struct perf_event *event, u64 nr,
5061 			       struct perf_sample_data *data,
5062 			       struct pt_regs *regs)
5063 {
5064 	struct hw_perf_event *hwc = &event->hw;
5065 
5066 	local64_add(nr, &event->count);
5067 
5068 	if (!regs)
5069 		return;
5070 
5071 	if (!is_sampling_event(event))
5072 		return;
5073 
5074 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5075 		data->period = nr;
5076 		return perf_swevent_overflow(event, 1, data, regs);
5077 	} else
5078 		data->period = event->hw.last_period;
5079 
5080 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5081 		return perf_swevent_overflow(event, 1, data, regs);
5082 
5083 	if (local64_add_negative(nr, &hwc->period_left))
5084 		return;
5085 
5086 	perf_swevent_overflow(event, 0, data, regs);
5087 }
5088 
5089 static int perf_exclude_event(struct perf_event *event,
5090 			      struct pt_regs *regs)
5091 {
5092 	if (event->hw.state & PERF_HES_STOPPED)
5093 		return 1;
5094 
5095 	if (regs) {
5096 		if (event->attr.exclude_user && user_mode(regs))
5097 			return 1;
5098 
5099 		if (event->attr.exclude_kernel && !user_mode(regs))
5100 			return 1;
5101 	}
5102 
5103 	return 0;
5104 }
5105 
5106 static int perf_swevent_match(struct perf_event *event,
5107 				enum perf_type_id type,
5108 				u32 event_id,
5109 				struct perf_sample_data *data,
5110 				struct pt_regs *regs)
5111 {
5112 	if (event->attr.type != type)
5113 		return 0;
5114 
5115 	if (event->attr.config != event_id)
5116 		return 0;
5117 
5118 	if (perf_exclude_event(event, regs))
5119 		return 0;
5120 
5121 	return 1;
5122 }
5123 
5124 static inline u64 swevent_hash(u64 type, u32 event_id)
5125 {
5126 	u64 val = event_id | (type << 32);
5127 
5128 	return hash_64(val, SWEVENT_HLIST_BITS);
5129 }
5130 
5131 static inline struct hlist_head *
5132 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5133 {
5134 	u64 hash = swevent_hash(type, event_id);
5135 
5136 	return &hlist->heads[hash];
5137 }
5138 
5139 /* For the read side: events when they trigger */
5140 static inline struct hlist_head *
5141 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5142 {
5143 	struct swevent_hlist *hlist;
5144 
5145 	hlist = rcu_dereference(swhash->swevent_hlist);
5146 	if (!hlist)
5147 		return NULL;
5148 
5149 	return __find_swevent_head(hlist, type, event_id);
5150 }
5151 
5152 /* For the event head insertion and removal in the hlist */
5153 static inline struct hlist_head *
5154 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5155 {
5156 	struct swevent_hlist *hlist;
5157 	u32 event_id = event->attr.config;
5158 	u64 type = event->attr.type;
5159 
5160 	/*
5161 	 * Event scheduling is always serialized against hlist allocation
5162 	 * and release. Which makes the protected version suitable here.
5163 	 * The context lock guarantees that.
5164 	 */
5165 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5166 					  lockdep_is_held(&event->ctx->lock));
5167 	if (!hlist)
5168 		return NULL;
5169 
5170 	return __find_swevent_head(hlist, type, event_id);
5171 }
5172 
5173 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5174 				    u64 nr,
5175 				    struct perf_sample_data *data,
5176 				    struct pt_regs *regs)
5177 {
5178 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5179 	struct perf_event *event;
5180 	struct hlist_head *head;
5181 
5182 	rcu_read_lock();
5183 	head = find_swevent_head_rcu(swhash, type, event_id);
5184 	if (!head)
5185 		goto end;
5186 
5187 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5188 		if (perf_swevent_match(event, type, event_id, data, regs))
5189 			perf_swevent_event(event, nr, data, regs);
5190 	}
5191 end:
5192 	rcu_read_unlock();
5193 }
5194 
5195 int perf_swevent_get_recursion_context(void)
5196 {
5197 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5198 
5199 	return get_recursion_context(swhash->recursion);
5200 }
5201 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5202 
5203 inline void perf_swevent_put_recursion_context(int rctx)
5204 {
5205 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5206 
5207 	put_recursion_context(swhash->recursion, rctx);
5208 }
5209 
5210 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5211 {
5212 	struct perf_sample_data data;
5213 	int rctx;
5214 
5215 	preempt_disable_notrace();
5216 	rctx = perf_swevent_get_recursion_context();
5217 	if (rctx < 0)
5218 		return;
5219 
5220 	perf_sample_data_init(&data, addr, 0);
5221 
5222 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5223 
5224 	perf_swevent_put_recursion_context(rctx);
5225 	preempt_enable_notrace();
5226 }
5227 
5228 static void perf_swevent_read(struct perf_event *event)
5229 {
5230 }
5231 
5232 static int perf_swevent_add(struct perf_event *event, int flags)
5233 {
5234 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5235 	struct hw_perf_event *hwc = &event->hw;
5236 	struct hlist_head *head;
5237 
5238 	if (is_sampling_event(event)) {
5239 		hwc->last_period = hwc->sample_period;
5240 		perf_swevent_set_period(event);
5241 	}
5242 
5243 	hwc->state = !(flags & PERF_EF_START);
5244 
5245 	head = find_swevent_head(swhash, event);
5246 	if (WARN_ON_ONCE(!head))
5247 		return -EINVAL;
5248 
5249 	hlist_add_head_rcu(&event->hlist_entry, head);
5250 
5251 	return 0;
5252 }
5253 
5254 static void perf_swevent_del(struct perf_event *event, int flags)
5255 {
5256 	hlist_del_rcu(&event->hlist_entry);
5257 }
5258 
5259 static void perf_swevent_start(struct perf_event *event, int flags)
5260 {
5261 	event->hw.state = 0;
5262 }
5263 
5264 static void perf_swevent_stop(struct perf_event *event, int flags)
5265 {
5266 	event->hw.state = PERF_HES_STOPPED;
5267 }
5268 
5269 /* Deref the hlist from the update side */
5270 static inline struct swevent_hlist *
5271 swevent_hlist_deref(struct swevent_htable *swhash)
5272 {
5273 	return rcu_dereference_protected(swhash->swevent_hlist,
5274 					 lockdep_is_held(&swhash->hlist_mutex));
5275 }
5276 
5277 static void swevent_hlist_release(struct swevent_htable *swhash)
5278 {
5279 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5280 
5281 	if (!hlist)
5282 		return;
5283 
5284 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5285 	kfree_rcu(hlist, rcu_head);
5286 }
5287 
5288 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5289 {
5290 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5291 
5292 	mutex_lock(&swhash->hlist_mutex);
5293 
5294 	if (!--swhash->hlist_refcount)
5295 		swevent_hlist_release(swhash);
5296 
5297 	mutex_unlock(&swhash->hlist_mutex);
5298 }
5299 
5300 static void swevent_hlist_put(struct perf_event *event)
5301 {
5302 	int cpu;
5303 
5304 	if (event->cpu != -1) {
5305 		swevent_hlist_put_cpu(event, event->cpu);
5306 		return;
5307 	}
5308 
5309 	for_each_possible_cpu(cpu)
5310 		swevent_hlist_put_cpu(event, cpu);
5311 }
5312 
5313 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5314 {
5315 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5316 	int err = 0;
5317 
5318 	mutex_lock(&swhash->hlist_mutex);
5319 
5320 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5321 		struct swevent_hlist *hlist;
5322 
5323 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5324 		if (!hlist) {
5325 			err = -ENOMEM;
5326 			goto exit;
5327 		}
5328 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5329 	}
5330 	swhash->hlist_refcount++;
5331 exit:
5332 	mutex_unlock(&swhash->hlist_mutex);
5333 
5334 	return err;
5335 }
5336 
5337 static int swevent_hlist_get(struct perf_event *event)
5338 {
5339 	int err;
5340 	int cpu, failed_cpu;
5341 
5342 	if (event->cpu != -1)
5343 		return swevent_hlist_get_cpu(event, event->cpu);
5344 
5345 	get_online_cpus();
5346 	for_each_possible_cpu(cpu) {
5347 		err = swevent_hlist_get_cpu(event, cpu);
5348 		if (err) {
5349 			failed_cpu = cpu;
5350 			goto fail;
5351 		}
5352 	}
5353 	put_online_cpus();
5354 
5355 	return 0;
5356 fail:
5357 	for_each_possible_cpu(cpu) {
5358 		if (cpu == failed_cpu)
5359 			break;
5360 		swevent_hlist_put_cpu(event, cpu);
5361 	}
5362 
5363 	put_online_cpus();
5364 	return err;
5365 }
5366 
5367 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5368 
5369 static void sw_perf_event_destroy(struct perf_event *event)
5370 {
5371 	u64 event_id = event->attr.config;
5372 
5373 	WARN_ON(event->parent);
5374 
5375 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5376 	swevent_hlist_put(event);
5377 }
5378 
5379 static int perf_swevent_init(struct perf_event *event)
5380 {
5381 	u64 event_id = event->attr.config;
5382 
5383 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5384 		return -ENOENT;
5385 
5386 	/*
5387 	 * no branch sampling for software events
5388 	 */
5389 	if (has_branch_stack(event))
5390 		return -EOPNOTSUPP;
5391 
5392 	switch (event_id) {
5393 	case PERF_COUNT_SW_CPU_CLOCK:
5394 	case PERF_COUNT_SW_TASK_CLOCK:
5395 		return -ENOENT;
5396 
5397 	default:
5398 		break;
5399 	}
5400 
5401 	if (event_id >= PERF_COUNT_SW_MAX)
5402 		return -ENOENT;
5403 
5404 	if (!event->parent) {
5405 		int err;
5406 
5407 		err = swevent_hlist_get(event);
5408 		if (err)
5409 			return err;
5410 
5411 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5412 		event->destroy = sw_perf_event_destroy;
5413 	}
5414 
5415 	return 0;
5416 }
5417 
5418 static int perf_swevent_event_idx(struct perf_event *event)
5419 {
5420 	return 0;
5421 }
5422 
5423 static struct pmu perf_swevent = {
5424 	.task_ctx_nr	= perf_sw_context,
5425 
5426 	.event_init	= perf_swevent_init,
5427 	.add		= perf_swevent_add,
5428 	.del		= perf_swevent_del,
5429 	.start		= perf_swevent_start,
5430 	.stop		= perf_swevent_stop,
5431 	.read		= perf_swevent_read,
5432 
5433 	.event_idx	= perf_swevent_event_idx,
5434 };
5435 
5436 #ifdef CONFIG_EVENT_TRACING
5437 
5438 static int perf_tp_filter_match(struct perf_event *event,
5439 				struct perf_sample_data *data)
5440 {
5441 	void *record = data->raw->data;
5442 
5443 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5444 		return 1;
5445 	return 0;
5446 }
5447 
5448 static int perf_tp_event_match(struct perf_event *event,
5449 				struct perf_sample_data *data,
5450 				struct pt_regs *regs)
5451 {
5452 	if (event->hw.state & PERF_HES_STOPPED)
5453 		return 0;
5454 	/*
5455 	 * All tracepoints are from kernel-space.
5456 	 */
5457 	if (event->attr.exclude_kernel)
5458 		return 0;
5459 
5460 	if (!perf_tp_filter_match(event, data))
5461 		return 0;
5462 
5463 	return 1;
5464 }
5465 
5466 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5467 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5468 		   struct task_struct *task)
5469 {
5470 	struct perf_sample_data data;
5471 	struct perf_event *event;
5472 
5473 	struct perf_raw_record raw = {
5474 		.size = entry_size,
5475 		.data = record,
5476 	};
5477 
5478 	perf_sample_data_init(&data, addr, 0);
5479 	data.raw = &raw;
5480 
5481 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5482 		if (perf_tp_event_match(event, &data, regs))
5483 			perf_swevent_event(event, count, &data, regs);
5484 	}
5485 
5486 	/*
5487 	 * If we got specified a target task, also iterate its context and
5488 	 * deliver this event there too.
5489 	 */
5490 	if (task && task != current) {
5491 		struct perf_event_context *ctx;
5492 		struct trace_entry *entry = record;
5493 
5494 		rcu_read_lock();
5495 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5496 		if (!ctx)
5497 			goto unlock;
5498 
5499 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5500 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5501 				continue;
5502 			if (event->attr.config != entry->type)
5503 				continue;
5504 			if (perf_tp_event_match(event, &data, regs))
5505 				perf_swevent_event(event, count, &data, regs);
5506 		}
5507 unlock:
5508 		rcu_read_unlock();
5509 	}
5510 
5511 	perf_swevent_put_recursion_context(rctx);
5512 }
5513 EXPORT_SYMBOL_GPL(perf_tp_event);
5514 
5515 static void tp_perf_event_destroy(struct perf_event *event)
5516 {
5517 	perf_trace_destroy(event);
5518 }
5519 
5520 static int perf_tp_event_init(struct perf_event *event)
5521 {
5522 	int err;
5523 
5524 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5525 		return -ENOENT;
5526 
5527 	/*
5528 	 * no branch sampling for tracepoint events
5529 	 */
5530 	if (has_branch_stack(event))
5531 		return -EOPNOTSUPP;
5532 
5533 	err = perf_trace_init(event);
5534 	if (err)
5535 		return err;
5536 
5537 	event->destroy = tp_perf_event_destroy;
5538 
5539 	return 0;
5540 }
5541 
5542 static struct pmu perf_tracepoint = {
5543 	.task_ctx_nr	= perf_sw_context,
5544 
5545 	.event_init	= perf_tp_event_init,
5546 	.add		= perf_trace_add,
5547 	.del		= perf_trace_del,
5548 	.start		= perf_swevent_start,
5549 	.stop		= perf_swevent_stop,
5550 	.read		= perf_swevent_read,
5551 
5552 	.event_idx	= perf_swevent_event_idx,
5553 };
5554 
5555 static inline void perf_tp_register(void)
5556 {
5557 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5558 }
5559 
5560 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5561 {
5562 	char *filter_str;
5563 	int ret;
5564 
5565 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5566 		return -EINVAL;
5567 
5568 	filter_str = strndup_user(arg, PAGE_SIZE);
5569 	if (IS_ERR(filter_str))
5570 		return PTR_ERR(filter_str);
5571 
5572 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5573 
5574 	kfree(filter_str);
5575 	return ret;
5576 }
5577 
5578 static void perf_event_free_filter(struct perf_event *event)
5579 {
5580 	ftrace_profile_free_filter(event);
5581 }
5582 
5583 #else
5584 
5585 static inline void perf_tp_register(void)
5586 {
5587 }
5588 
5589 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5590 {
5591 	return -ENOENT;
5592 }
5593 
5594 static void perf_event_free_filter(struct perf_event *event)
5595 {
5596 }
5597 
5598 #endif /* CONFIG_EVENT_TRACING */
5599 
5600 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5601 void perf_bp_event(struct perf_event *bp, void *data)
5602 {
5603 	struct perf_sample_data sample;
5604 	struct pt_regs *regs = data;
5605 
5606 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5607 
5608 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5609 		perf_swevent_event(bp, 1, &sample, regs);
5610 }
5611 #endif
5612 
5613 /*
5614  * hrtimer based swevent callback
5615  */
5616 
5617 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5618 {
5619 	enum hrtimer_restart ret = HRTIMER_RESTART;
5620 	struct perf_sample_data data;
5621 	struct pt_regs *regs;
5622 	struct perf_event *event;
5623 	u64 period;
5624 
5625 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5626 
5627 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5628 		return HRTIMER_NORESTART;
5629 
5630 	event->pmu->read(event);
5631 
5632 	perf_sample_data_init(&data, 0, event->hw.last_period);
5633 	regs = get_irq_regs();
5634 
5635 	if (regs && !perf_exclude_event(event, regs)) {
5636 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5637 			if (__perf_event_overflow(event, 1, &data, regs))
5638 				ret = HRTIMER_NORESTART;
5639 	}
5640 
5641 	period = max_t(u64, 10000, event->hw.sample_period);
5642 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5643 
5644 	return ret;
5645 }
5646 
5647 static void perf_swevent_start_hrtimer(struct perf_event *event)
5648 {
5649 	struct hw_perf_event *hwc = &event->hw;
5650 	s64 period;
5651 
5652 	if (!is_sampling_event(event))
5653 		return;
5654 
5655 	period = local64_read(&hwc->period_left);
5656 	if (period) {
5657 		if (period < 0)
5658 			period = 10000;
5659 
5660 		local64_set(&hwc->period_left, 0);
5661 	} else {
5662 		period = max_t(u64, 10000, hwc->sample_period);
5663 	}
5664 	__hrtimer_start_range_ns(&hwc->hrtimer,
5665 				ns_to_ktime(period), 0,
5666 				HRTIMER_MODE_REL_PINNED, 0);
5667 }
5668 
5669 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5670 {
5671 	struct hw_perf_event *hwc = &event->hw;
5672 
5673 	if (is_sampling_event(event)) {
5674 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5675 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5676 
5677 		hrtimer_cancel(&hwc->hrtimer);
5678 	}
5679 }
5680 
5681 static void perf_swevent_init_hrtimer(struct perf_event *event)
5682 {
5683 	struct hw_perf_event *hwc = &event->hw;
5684 
5685 	if (!is_sampling_event(event))
5686 		return;
5687 
5688 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5689 	hwc->hrtimer.function = perf_swevent_hrtimer;
5690 
5691 	/*
5692 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5693 	 * mapping and avoid the whole period adjust feedback stuff.
5694 	 */
5695 	if (event->attr.freq) {
5696 		long freq = event->attr.sample_freq;
5697 
5698 		event->attr.sample_period = NSEC_PER_SEC / freq;
5699 		hwc->sample_period = event->attr.sample_period;
5700 		local64_set(&hwc->period_left, hwc->sample_period);
5701 		hwc->last_period = hwc->sample_period;
5702 		event->attr.freq = 0;
5703 	}
5704 }
5705 
5706 /*
5707  * Software event: cpu wall time clock
5708  */
5709 
5710 static void cpu_clock_event_update(struct perf_event *event)
5711 {
5712 	s64 prev;
5713 	u64 now;
5714 
5715 	now = local_clock();
5716 	prev = local64_xchg(&event->hw.prev_count, now);
5717 	local64_add(now - prev, &event->count);
5718 }
5719 
5720 static void cpu_clock_event_start(struct perf_event *event, int flags)
5721 {
5722 	local64_set(&event->hw.prev_count, local_clock());
5723 	perf_swevent_start_hrtimer(event);
5724 }
5725 
5726 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5727 {
5728 	perf_swevent_cancel_hrtimer(event);
5729 	cpu_clock_event_update(event);
5730 }
5731 
5732 static int cpu_clock_event_add(struct perf_event *event, int flags)
5733 {
5734 	if (flags & PERF_EF_START)
5735 		cpu_clock_event_start(event, flags);
5736 
5737 	return 0;
5738 }
5739 
5740 static void cpu_clock_event_del(struct perf_event *event, int flags)
5741 {
5742 	cpu_clock_event_stop(event, flags);
5743 }
5744 
5745 static void cpu_clock_event_read(struct perf_event *event)
5746 {
5747 	cpu_clock_event_update(event);
5748 }
5749 
5750 static int cpu_clock_event_init(struct perf_event *event)
5751 {
5752 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5753 		return -ENOENT;
5754 
5755 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5756 		return -ENOENT;
5757 
5758 	/*
5759 	 * no branch sampling for software events
5760 	 */
5761 	if (has_branch_stack(event))
5762 		return -EOPNOTSUPP;
5763 
5764 	perf_swevent_init_hrtimer(event);
5765 
5766 	return 0;
5767 }
5768 
5769 static struct pmu perf_cpu_clock = {
5770 	.task_ctx_nr	= perf_sw_context,
5771 
5772 	.event_init	= cpu_clock_event_init,
5773 	.add		= cpu_clock_event_add,
5774 	.del		= cpu_clock_event_del,
5775 	.start		= cpu_clock_event_start,
5776 	.stop		= cpu_clock_event_stop,
5777 	.read		= cpu_clock_event_read,
5778 
5779 	.event_idx	= perf_swevent_event_idx,
5780 };
5781 
5782 /*
5783  * Software event: task time clock
5784  */
5785 
5786 static void task_clock_event_update(struct perf_event *event, u64 now)
5787 {
5788 	u64 prev;
5789 	s64 delta;
5790 
5791 	prev = local64_xchg(&event->hw.prev_count, now);
5792 	delta = now - prev;
5793 	local64_add(delta, &event->count);
5794 }
5795 
5796 static void task_clock_event_start(struct perf_event *event, int flags)
5797 {
5798 	local64_set(&event->hw.prev_count, event->ctx->time);
5799 	perf_swevent_start_hrtimer(event);
5800 }
5801 
5802 static void task_clock_event_stop(struct perf_event *event, int flags)
5803 {
5804 	perf_swevent_cancel_hrtimer(event);
5805 	task_clock_event_update(event, event->ctx->time);
5806 }
5807 
5808 static int task_clock_event_add(struct perf_event *event, int flags)
5809 {
5810 	if (flags & PERF_EF_START)
5811 		task_clock_event_start(event, flags);
5812 
5813 	return 0;
5814 }
5815 
5816 static void task_clock_event_del(struct perf_event *event, int flags)
5817 {
5818 	task_clock_event_stop(event, PERF_EF_UPDATE);
5819 }
5820 
5821 static void task_clock_event_read(struct perf_event *event)
5822 {
5823 	u64 now = perf_clock();
5824 	u64 delta = now - event->ctx->timestamp;
5825 	u64 time = event->ctx->time + delta;
5826 
5827 	task_clock_event_update(event, time);
5828 }
5829 
5830 static int task_clock_event_init(struct perf_event *event)
5831 {
5832 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5833 		return -ENOENT;
5834 
5835 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5836 		return -ENOENT;
5837 
5838 	/*
5839 	 * no branch sampling for software events
5840 	 */
5841 	if (has_branch_stack(event))
5842 		return -EOPNOTSUPP;
5843 
5844 	perf_swevent_init_hrtimer(event);
5845 
5846 	return 0;
5847 }
5848 
5849 static struct pmu perf_task_clock = {
5850 	.task_ctx_nr	= perf_sw_context,
5851 
5852 	.event_init	= task_clock_event_init,
5853 	.add		= task_clock_event_add,
5854 	.del		= task_clock_event_del,
5855 	.start		= task_clock_event_start,
5856 	.stop		= task_clock_event_stop,
5857 	.read		= task_clock_event_read,
5858 
5859 	.event_idx	= perf_swevent_event_idx,
5860 };
5861 
5862 static void perf_pmu_nop_void(struct pmu *pmu)
5863 {
5864 }
5865 
5866 static int perf_pmu_nop_int(struct pmu *pmu)
5867 {
5868 	return 0;
5869 }
5870 
5871 static void perf_pmu_start_txn(struct pmu *pmu)
5872 {
5873 	perf_pmu_disable(pmu);
5874 }
5875 
5876 static int perf_pmu_commit_txn(struct pmu *pmu)
5877 {
5878 	perf_pmu_enable(pmu);
5879 	return 0;
5880 }
5881 
5882 static void perf_pmu_cancel_txn(struct pmu *pmu)
5883 {
5884 	perf_pmu_enable(pmu);
5885 }
5886 
5887 static int perf_event_idx_default(struct perf_event *event)
5888 {
5889 	return event->hw.idx + 1;
5890 }
5891 
5892 /*
5893  * Ensures all contexts with the same task_ctx_nr have the same
5894  * pmu_cpu_context too.
5895  */
5896 static void *find_pmu_context(int ctxn)
5897 {
5898 	struct pmu *pmu;
5899 
5900 	if (ctxn < 0)
5901 		return NULL;
5902 
5903 	list_for_each_entry(pmu, &pmus, entry) {
5904 		if (pmu->task_ctx_nr == ctxn)
5905 			return pmu->pmu_cpu_context;
5906 	}
5907 
5908 	return NULL;
5909 }
5910 
5911 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5912 {
5913 	int cpu;
5914 
5915 	for_each_possible_cpu(cpu) {
5916 		struct perf_cpu_context *cpuctx;
5917 
5918 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5919 
5920 		if (cpuctx->unique_pmu == old_pmu)
5921 			cpuctx->unique_pmu = pmu;
5922 	}
5923 }
5924 
5925 static void free_pmu_context(struct pmu *pmu)
5926 {
5927 	struct pmu *i;
5928 
5929 	mutex_lock(&pmus_lock);
5930 	/*
5931 	 * Like a real lame refcount.
5932 	 */
5933 	list_for_each_entry(i, &pmus, entry) {
5934 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5935 			update_pmu_context(i, pmu);
5936 			goto out;
5937 		}
5938 	}
5939 
5940 	free_percpu(pmu->pmu_cpu_context);
5941 out:
5942 	mutex_unlock(&pmus_lock);
5943 }
5944 static struct idr pmu_idr;
5945 
5946 static ssize_t
5947 type_show(struct device *dev, struct device_attribute *attr, char *page)
5948 {
5949 	struct pmu *pmu = dev_get_drvdata(dev);
5950 
5951 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5952 }
5953 
5954 static struct device_attribute pmu_dev_attrs[] = {
5955        __ATTR_RO(type),
5956        __ATTR_NULL,
5957 };
5958 
5959 static int pmu_bus_running;
5960 static struct bus_type pmu_bus = {
5961 	.name		= "event_source",
5962 	.dev_attrs	= pmu_dev_attrs,
5963 };
5964 
5965 static void pmu_dev_release(struct device *dev)
5966 {
5967 	kfree(dev);
5968 }
5969 
5970 static int pmu_dev_alloc(struct pmu *pmu)
5971 {
5972 	int ret = -ENOMEM;
5973 
5974 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5975 	if (!pmu->dev)
5976 		goto out;
5977 
5978 	pmu->dev->groups = pmu->attr_groups;
5979 	device_initialize(pmu->dev);
5980 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5981 	if (ret)
5982 		goto free_dev;
5983 
5984 	dev_set_drvdata(pmu->dev, pmu);
5985 	pmu->dev->bus = &pmu_bus;
5986 	pmu->dev->release = pmu_dev_release;
5987 	ret = device_add(pmu->dev);
5988 	if (ret)
5989 		goto free_dev;
5990 
5991 out:
5992 	return ret;
5993 
5994 free_dev:
5995 	put_device(pmu->dev);
5996 	goto out;
5997 }
5998 
5999 static struct lock_class_key cpuctx_mutex;
6000 static struct lock_class_key cpuctx_lock;
6001 
6002 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6003 {
6004 	int cpu, ret;
6005 
6006 	mutex_lock(&pmus_lock);
6007 	ret = -ENOMEM;
6008 	pmu->pmu_disable_count = alloc_percpu(int);
6009 	if (!pmu->pmu_disable_count)
6010 		goto unlock;
6011 
6012 	pmu->type = -1;
6013 	if (!name)
6014 		goto skip_type;
6015 	pmu->name = name;
6016 
6017 	if (type < 0) {
6018 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6019 		if (type < 0) {
6020 			ret = type;
6021 			goto free_pdc;
6022 		}
6023 	}
6024 	pmu->type = type;
6025 
6026 	if (pmu_bus_running) {
6027 		ret = pmu_dev_alloc(pmu);
6028 		if (ret)
6029 			goto free_idr;
6030 	}
6031 
6032 skip_type:
6033 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6034 	if (pmu->pmu_cpu_context)
6035 		goto got_cpu_context;
6036 
6037 	ret = -ENOMEM;
6038 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6039 	if (!pmu->pmu_cpu_context)
6040 		goto free_dev;
6041 
6042 	for_each_possible_cpu(cpu) {
6043 		struct perf_cpu_context *cpuctx;
6044 
6045 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6046 		__perf_event_init_context(&cpuctx->ctx);
6047 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6048 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6049 		cpuctx->ctx.type = cpu_context;
6050 		cpuctx->ctx.pmu = pmu;
6051 		cpuctx->jiffies_interval = 1;
6052 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6053 		cpuctx->unique_pmu = pmu;
6054 	}
6055 
6056 got_cpu_context:
6057 	if (!pmu->start_txn) {
6058 		if (pmu->pmu_enable) {
6059 			/*
6060 			 * If we have pmu_enable/pmu_disable calls, install
6061 			 * transaction stubs that use that to try and batch
6062 			 * hardware accesses.
6063 			 */
6064 			pmu->start_txn  = perf_pmu_start_txn;
6065 			pmu->commit_txn = perf_pmu_commit_txn;
6066 			pmu->cancel_txn = perf_pmu_cancel_txn;
6067 		} else {
6068 			pmu->start_txn  = perf_pmu_nop_void;
6069 			pmu->commit_txn = perf_pmu_nop_int;
6070 			pmu->cancel_txn = perf_pmu_nop_void;
6071 		}
6072 	}
6073 
6074 	if (!pmu->pmu_enable) {
6075 		pmu->pmu_enable  = perf_pmu_nop_void;
6076 		pmu->pmu_disable = perf_pmu_nop_void;
6077 	}
6078 
6079 	if (!pmu->event_idx)
6080 		pmu->event_idx = perf_event_idx_default;
6081 
6082 	list_add_rcu(&pmu->entry, &pmus);
6083 	ret = 0;
6084 unlock:
6085 	mutex_unlock(&pmus_lock);
6086 
6087 	return ret;
6088 
6089 free_dev:
6090 	device_del(pmu->dev);
6091 	put_device(pmu->dev);
6092 
6093 free_idr:
6094 	if (pmu->type >= PERF_TYPE_MAX)
6095 		idr_remove(&pmu_idr, pmu->type);
6096 
6097 free_pdc:
6098 	free_percpu(pmu->pmu_disable_count);
6099 	goto unlock;
6100 }
6101 
6102 void perf_pmu_unregister(struct pmu *pmu)
6103 {
6104 	mutex_lock(&pmus_lock);
6105 	list_del_rcu(&pmu->entry);
6106 	mutex_unlock(&pmus_lock);
6107 
6108 	/*
6109 	 * We dereference the pmu list under both SRCU and regular RCU, so
6110 	 * synchronize against both of those.
6111 	 */
6112 	synchronize_srcu(&pmus_srcu);
6113 	synchronize_rcu();
6114 
6115 	free_percpu(pmu->pmu_disable_count);
6116 	if (pmu->type >= PERF_TYPE_MAX)
6117 		idr_remove(&pmu_idr, pmu->type);
6118 	device_del(pmu->dev);
6119 	put_device(pmu->dev);
6120 	free_pmu_context(pmu);
6121 }
6122 
6123 struct pmu *perf_init_event(struct perf_event *event)
6124 {
6125 	struct pmu *pmu = NULL;
6126 	int idx;
6127 	int ret;
6128 
6129 	idx = srcu_read_lock(&pmus_srcu);
6130 
6131 	rcu_read_lock();
6132 	pmu = idr_find(&pmu_idr, event->attr.type);
6133 	rcu_read_unlock();
6134 	if (pmu) {
6135 		event->pmu = pmu;
6136 		ret = pmu->event_init(event);
6137 		if (ret)
6138 			pmu = ERR_PTR(ret);
6139 		goto unlock;
6140 	}
6141 
6142 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6143 		event->pmu = pmu;
6144 		ret = pmu->event_init(event);
6145 		if (!ret)
6146 			goto unlock;
6147 
6148 		if (ret != -ENOENT) {
6149 			pmu = ERR_PTR(ret);
6150 			goto unlock;
6151 		}
6152 	}
6153 	pmu = ERR_PTR(-ENOENT);
6154 unlock:
6155 	srcu_read_unlock(&pmus_srcu, idx);
6156 
6157 	return pmu;
6158 }
6159 
6160 /*
6161  * Allocate and initialize a event structure
6162  */
6163 static struct perf_event *
6164 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6165 		 struct task_struct *task,
6166 		 struct perf_event *group_leader,
6167 		 struct perf_event *parent_event,
6168 		 perf_overflow_handler_t overflow_handler,
6169 		 void *context)
6170 {
6171 	struct pmu *pmu;
6172 	struct perf_event *event;
6173 	struct hw_perf_event *hwc;
6174 	long err;
6175 
6176 	if ((unsigned)cpu >= nr_cpu_ids) {
6177 		if (!task || cpu != -1)
6178 			return ERR_PTR(-EINVAL);
6179 	}
6180 
6181 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6182 	if (!event)
6183 		return ERR_PTR(-ENOMEM);
6184 
6185 	/*
6186 	 * Single events are their own group leaders, with an
6187 	 * empty sibling list:
6188 	 */
6189 	if (!group_leader)
6190 		group_leader = event;
6191 
6192 	mutex_init(&event->child_mutex);
6193 	INIT_LIST_HEAD(&event->child_list);
6194 
6195 	INIT_LIST_HEAD(&event->group_entry);
6196 	INIT_LIST_HEAD(&event->event_entry);
6197 	INIT_LIST_HEAD(&event->sibling_list);
6198 	INIT_LIST_HEAD(&event->rb_entry);
6199 
6200 	init_waitqueue_head(&event->waitq);
6201 	init_irq_work(&event->pending, perf_pending_event);
6202 
6203 	mutex_init(&event->mmap_mutex);
6204 
6205 	atomic_long_set(&event->refcount, 1);
6206 	event->cpu		= cpu;
6207 	event->attr		= *attr;
6208 	event->group_leader	= group_leader;
6209 	event->pmu		= NULL;
6210 	event->oncpu		= -1;
6211 
6212 	event->parent		= parent_event;
6213 
6214 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6215 	event->id		= atomic64_inc_return(&perf_event_id);
6216 
6217 	event->state		= PERF_EVENT_STATE_INACTIVE;
6218 
6219 	if (task) {
6220 		event->attach_state = PERF_ATTACH_TASK;
6221 
6222 		if (attr->type == PERF_TYPE_TRACEPOINT)
6223 			event->hw.tp_target = task;
6224 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6225 		/*
6226 		 * hw_breakpoint is a bit difficult here..
6227 		 */
6228 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6229 			event->hw.bp_target = task;
6230 #endif
6231 	}
6232 
6233 	if (!overflow_handler && parent_event) {
6234 		overflow_handler = parent_event->overflow_handler;
6235 		context = parent_event->overflow_handler_context;
6236 	}
6237 
6238 	event->overflow_handler	= overflow_handler;
6239 	event->overflow_handler_context = context;
6240 
6241 	perf_event__state_init(event);
6242 
6243 	pmu = NULL;
6244 
6245 	hwc = &event->hw;
6246 	hwc->sample_period = attr->sample_period;
6247 	if (attr->freq && attr->sample_freq)
6248 		hwc->sample_period = 1;
6249 	hwc->last_period = hwc->sample_period;
6250 
6251 	local64_set(&hwc->period_left, hwc->sample_period);
6252 
6253 	/*
6254 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6255 	 */
6256 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6257 		goto done;
6258 
6259 	pmu = perf_init_event(event);
6260 
6261 done:
6262 	err = 0;
6263 	if (!pmu)
6264 		err = -EINVAL;
6265 	else if (IS_ERR(pmu))
6266 		err = PTR_ERR(pmu);
6267 
6268 	if (err) {
6269 		if (event->ns)
6270 			put_pid_ns(event->ns);
6271 		kfree(event);
6272 		return ERR_PTR(err);
6273 	}
6274 
6275 	if (!event->parent) {
6276 		if (event->attach_state & PERF_ATTACH_TASK)
6277 			static_key_slow_inc(&perf_sched_events.key);
6278 		if (event->attr.mmap || event->attr.mmap_data)
6279 			atomic_inc(&nr_mmap_events);
6280 		if (event->attr.comm)
6281 			atomic_inc(&nr_comm_events);
6282 		if (event->attr.task)
6283 			atomic_inc(&nr_task_events);
6284 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6285 			err = get_callchain_buffers();
6286 			if (err) {
6287 				free_event(event);
6288 				return ERR_PTR(err);
6289 			}
6290 		}
6291 		if (has_branch_stack(event)) {
6292 			static_key_slow_inc(&perf_sched_events.key);
6293 			if (!(event->attach_state & PERF_ATTACH_TASK))
6294 				atomic_inc(&per_cpu(perf_branch_stack_events,
6295 						    event->cpu));
6296 		}
6297 	}
6298 
6299 	return event;
6300 }
6301 
6302 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6303 			  struct perf_event_attr *attr)
6304 {
6305 	u32 size;
6306 	int ret;
6307 
6308 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6309 		return -EFAULT;
6310 
6311 	/*
6312 	 * zero the full structure, so that a short copy will be nice.
6313 	 */
6314 	memset(attr, 0, sizeof(*attr));
6315 
6316 	ret = get_user(size, &uattr->size);
6317 	if (ret)
6318 		return ret;
6319 
6320 	if (size > PAGE_SIZE)	/* silly large */
6321 		goto err_size;
6322 
6323 	if (!size)		/* abi compat */
6324 		size = PERF_ATTR_SIZE_VER0;
6325 
6326 	if (size < PERF_ATTR_SIZE_VER0)
6327 		goto err_size;
6328 
6329 	/*
6330 	 * If we're handed a bigger struct than we know of,
6331 	 * ensure all the unknown bits are 0 - i.e. new
6332 	 * user-space does not rely on any kernel feature
6333 	 * extensions we dont know about yet.
6334 	 */
6335 	if (size > sizeof(*attr)) {
6336 		unsigned char __user *addr;
6337 		unsigned char __user *end;
6338 		unsigned char val;
6339 
6340 		addr = (void __user *)uattr + sizeof(*attr);
6341 		end  = (void __user *)uattr + size;
6342 
6343 		for (; addr < end; addr++) {
6344 			ret = get_user(val, addr);
6345 			if (ret)
6346 				return ret;
6347 			if (val)
6348 				goto err_size;
6349 		}
6350 		size = sizeof(*attr);
6351 	}
6352 
6353 	ret = copy_from_user(attr, uattr, size);
6354 	if (ret)
6355 		return -EFAULT;
6356 
6357 	if (attr->__reserved_1)
6358 		return -EINVAL;
6359 
6360 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6361 		return -EINVAL;
6362 
6363 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6364 		return -EINVAL;
6365 
6366 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6367 		u64 mask = attr->branch_sample_type;
6368 
6369 		/* only using defined bits */
6370 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6371 			return -EINVAL;
6372 
6373 		/* at least one branch bit must be set */
6374 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6375 			return -EINVAL;
6376 
6377 		/* kernel level capture: check permissions */
6378 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6379 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6380 			return -EACCES;
6381 
6382 		/* propagate priv level, when not set for branch */
6383 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6384 
6385 			/* exclude_kernel checked on syscall entry */
6386 			if (!attr->exclude_kernel)
6387 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6388 
6389 			if (!attr->exclude_user)
6390 				mask |= PERF_SAMPLE_BRANCH_USER;
6391 
6392 			if (!attr->exclude_hv)
6393 				mask |= PERF_SAMPLE_BRANCH_HV;
6394 			/*
6395 			 * adjust user setting (for HW filter setup)
6396 			 */
6397 			attr->branch_sample_type = mask;
6398 		}
6399 	}
6400 
6401 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6402 		ret = perf_reg_validate(attr->sample_regs_user);
6403 		if (ret)
6404 			return ret;
6405 	}
6406 
6407 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6408 		if (!arch_perf_have_user_stack_dump())
6409 			return -ENOSYS;
6410 
6411 		/*
6412 		 * We have __u32 type for the size, but so far
6413 		 * we can only use __u16 as maximum due to the
6414 		 * __u16 sample size limit.
6415 		 */
6416 		if (attr->sample_stack_user >= USHRT_MAX)
6417 			ret = -EINVAL;
6418 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6419 			ret = -EINVAL;
6420 	}
6421 
6422 out:
6423 	return ret;
6424 
6425 err_size:
6426 	put_user(sizeof(*attr), &uattr->size);
6427 	ret = -E2BIG;
6428 	goto out;
6429 }
6430 
6431 static int
6432 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6433 {
6434 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6435 	int ret = -EINVAL;
6436 
6437 	if (!output_event)
6438 		goto set;
6439 
6440 	/* don't allow circular references */
6441 	if (event == output_event)
6442 		goto out;
6443 
6444 	/*
6445 	 * Don't allow cross-cpu buffers
6446 	 */
6447 	if (output_event->cpu != event->cpu)
6448 		goto out;
6449 
6450 	/*
6451 	 * If its not a per-cpu rb, it must be the same task.
6452 	 */
6453 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6454 		goto out;
6455 
6456 set:
6457 	mutex_lock(&event->mmap_mutex);
6458 	/* Can't redirect output if we've got an active mmap() */
6459 	if (atomic_read(&event->mmap_count))
6460 		goto unlock;
6461 
6462 	if (output_event) {
6463 		/* get the rb we want to redirect to */
6464 		rb = ring_buffer_get(output_event);
6465 		if (!rb)
6466 			goto unlock;
6467 	}
6468 
6469 	old_rb = event->rb;
6470 	rcu_assign_pointer(event->rb, rb);
6471 	if (old_rb)
6472 		ring_buffer_detach(event, old_rb);
6473 	ret = 0;
6474 unlock:
6475 	mutex_unlock(&event->mmap_mutex);
6476 
6477 	if (old_rb)
6478 		ring_buffer_put(old_rb);
6479 out:
6480 	return ret;
6481 }
6482 
6483 /**
6484  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6485  *
6486  * @attr_uptr:	event_id type attributes for monitoring/sampling
6487  * @pid:		target pid
6488  * @cpu:		target cpu
6489  * @group_fd:		group leader event fd
6490  */
6491 SYSCALL_DEFINE5(perf_event_open,
6492 		struct perf_event_attr __user *, attr_uptr,
6493 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6494 {
6495 	struct perf_event *group_leader = NULL, *output_event = NULL;
6496 	struct perf_event *event, *sibling;
6497 	struct perf_event_attr attr;
6498 	struct perf_event_context *ctx;
6499 	struct file *event_file = NULL;
6500 	struct fd group = {NULL, 0};
6501 	struct task_struct *task = NULL;
6502 	struct pmu *pmu;
6503 	int event_fd;
6504 	int move_group = 0;
6505 	int err;
6506 
6507 	/* for future expandability... */
6508 	if (flags & ~PERF_FLAG_ALL)
6509 		return -EINVAL;
6510 
6511 	err = perf_copy_attr(attr_uptr, &attr);
6512 	if (err)
6513 		return err;
6514 
6515 	if (!attr.exclude_kernel) {
6516 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6517 			return -EACCES;
6518 	}
6519 
6520 	if (attr.freq) {
6521 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6522 			return -EINVAL;
6523 	}
6524 
6525 	/*
6526 	 * In cgroup mode, the pid argument is used to pass the fd
6527 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6528 	 * designates the cpu on which to monitor threads from that
6529 	 * cgroup.
6530 	 */
6531 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6532 		return -EINVAL;
6533 
6534 	event_fd = get_unused_fd();
6535 	if (event_fd < 0)
6536 		return event_fd;
6537 
6538 	if (group_fd != -1) {
6539 		err = perf_fget_light(group_fd, &group);
6540 		if (err)
6541 			goto err_fd;
6542 		group_leader = group.file->private_data;
6543 		if (flags & PERF_FLAG_FD_OUTPUT)
6544 			output_event = group_leader;
6545 		if (flags & PERF_FLAG_FD_NO_GROUP)
6546 			group_leader = NULL;
6547 	}
6548 
6549 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6550 		task = find_lively_task_by_vpid(pid);
6551 		if (IS_ERR(task)) {
6552 			err = PTR_ERR(task);
6553 			goto err_group_fd;
6554 		}
6555 	}
6556 
6557 	get_online_cpus();
6558 
6559 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6560 				 NULL, NULL);
6561 	if (IS_ERR(event)) {
6562 		err = PTR_ERR(event);
6563 		goto err_task;
6564 	}
6565 
6566 	if (flags & PERF_FLAG_PID_CGROUP) {
6567 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6568 		if (err)
6569 			goto err_alloc;
6570 		/*
6571 		 * one more event:
6572 		 * - that has cgroup constraint on event->cpu
6573 		 * - that may need work on context switch
6574 		 */
6575 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6576 		static_key_slow_inc(&perf_sched_events.key);
6577 	}
6578 
6579 	/*
6580 	 * Special case software events and allow them to be part of
6581 	 * any hardware group.
6582 	 */
6583 	pmu = event->pmu;
6584 
6585 	if (group_leader &&
6586 	    (is_software_event(event) != is_software_event(group_leader))) {
6587 		if (is_software_event(event)) {
6588 			/*
6589 			 * If event and group_leader are not both a software
6590 			 * event, and event is, then group leader is not.
6591 			 *
6592 			 * Allow the addition of software events to !software
6593 			 * groups, this is safe because software events never
6594 			 * fail to schedule.
6595 			 */
6596 			pmu = group_leader->pmu;
6597 		} else if (is_software_event(group_leader) &&
6598 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6599 			/*
6600 			 * In case the group is a pure software group, and we
6601 			 * try to add a hardware event, move the whole group to
6602 			 * the hardware context.
6603 			 */
6604 			move_group = 1;
6605 		}
6606 	}
6607 
6608 	/*
6609 	 * Get the target context (task or percpu):
6610 	 */
6611 	ctx = find_get_context(pmu, task, event->cpu);
6612 	if (IS_ERR(ctx)) {
6613 		err = PTR_ERR(ctx);
6614 		goto err_alloc;
6615 	}
6616 
6617 	if (task) {
6618 		put_task_struct(task);
6619 		task = NULL;
6620 	}
6621 
6622 	/*
6623 	 * Look up the group leader (we will attach this event to it):
6624 	 */
6625 	if (group_leader) {
6626 		err = -EINVAL;
6627 
6628 		/*
6629 		 * Do not allow a recursive hierarchy (this new sibling
6630 		 * becoming part of another group-sibling):
6631 		 */
6632 		if (group_leader->group_leader != group_leader)
6633 			goto err_context;
6634 		/*
6635 		 * Do not allow to attach to a group in a different
6636 		 * task or CPU context:
6637 		 */
6638 		if (move_group) {
6639 			if (group_leader->ctx->type != ctx->type)
6640 				goto err_context;
6641 		} else {
6642 			if (group_leader->ctx != ctx)
6643 				goto err_context;
6644 		}
6645 
6646 		/*
6647 		 * Only a group leader can be exclusive or pinned
6648 		 */
6649 		if (attr.exclusive || attr.pinned)
6650 			goto err_context;
6651 	}
6652 
6653 	if (output_event) {
6654 		err = perf_event_set_output(event, output_event);
6655 		if (err)
6656 			goto err_context;
6657 	}
6658 
6659 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6660 	if (IS_ERR(event_file)) {
6661 		err = PTR_ERR(event_file);
6662 		goto err_context;
6663 	}
6664 
6665 	if (move_group) {
6666 		struct perf_event_context *gctx = group_leader->ctx;
6667 
6668 		mutex_lock(&gctx->mutex);
6669 		perf_remove_from_context(group_leader);
6670 
6671 		/*
6672 		 * Removing from the context ends up with disabled
6673 		 * event. What we want here is event in the initial
6674 		 * startup state, ready to be add into new context.
6675 		 */
6676 		perf_event__state_init(group_leader);
6677 		list_for_each_entry(sibling, &group_leader->sibling_list,
6678 				    group_entry) {
6679 			perf_remove_from_context(sibling);
6680 			perf_event__state_init(sibling);
6681 			put_ctx(gctx);
6682 		}
6683 		mutex_unlock(&gctx->mutex);
6684 		put_ctx(gctx);
6685 	}
6686 
6687 	WARN_ON_ONCE(ctx->parent_ctx);
6688 	mutex_lock(&ctx->mutex);
6689 
6690 	if (move_group) {
6691 		synchronize_rcu();
6692 		perf_install_in_context(ctx, group_leader, event->cpu);
6693 		get_ctx(ctx);
6694 		list_for_each_entry(sibling, &group_leader->sibling_list,
6695 				    group_entry) {
6696 			perf_install_in_context(ctx, sibling, event->cpu);
6697 			get_ctx(ctx);
6698 		}
6699 	}
6700 
6701 	perf_install_in_context(ctx, event, event->cpu);
6702 	++ctx->generation;
6703 	perf_unpin_context(ctx);
6704 	mutex_unlock(&ctx->mutex);
6705 
6706 	put_online_cpus();
6707 
6708 	event->owner = current;
6709 
6710 	mutex_lock(&current->perf_event_mutex);
6711 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6712 	mutex_unlock(&current->perf_event_mutex);
6713 
6714 	/*
6715 	 * Precalculate sample_data sizes
6716 	 */
6717 	perf_event__header_size(event);
6718 	perf_event__id_header_size(event);
6719 
6720 	/*
6721 	 * Drop the reference on the group_event after placing the
6722 	 * new event on the sibling_list. This ensures destruction
6723 	 * of the group leader will find the pointer to itself in
6724 	 * perf_group_detach().
6725 	 */
6726 	fdput(group);
6727 	fd_install(event_fd, event_file);
6728 	return event_fd;
6729 
6730 err_context:
6731 	perf_unpin_context(ctx);
6732 	put_ctx(ctx);
6733 err_alloc:
6734 	free_event(event);
6735 err_task:
6736 	put_online_cpus();
6737 	if (task)
6738 		put_task_struct(task);
6739 err_group_fd:
6740 	fdput(group);
6741 err_fd:
6742 	put_unused_fd(event_fd);
6743 	return err;
6744 }
6745 
6746 /**
6747  * perf_event_create_kernel_counter
6748  *
6749  * @attr: attributes of the counter to create
6750  * @cpu: cpu in which the counter is bound
6751  * @task: task to profile (NULL for percpu)
6752  */
6753 struct perf_event *
6754 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6755 				 struct task_struct *task,
6756 				 perf_overflow_handler_t overflow_handler,
6757 				 void *context)
6758 {
6759 	struct perf_event_context *ctx;
6760 	struct perf_event *event;
6761 	int err;
6762 
6763 	/*
6764 	 * Get the target context (task or percpu):
6765 	 */
6766 
6767 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6768 				 overflow_handler, context);
6769 	if (IS_ERR(event)) {
6770 		err = PTR_ERR(event);
6771 		goto err;
6772 	}
6773 
6774 	ctx = find_get_context(event->pmu, task, cpu);
6775 	if (IS_ERR(ctx)) {
6776 		err = PTR_ERR(ctx);
6777 		goto err_free;
6778 	}
6779 
6780 	WARN_ON_ONCE(ctx->parent_ctx);
6781 	mutex_lock(&ctx->mutex);
6782 	perf_install_in_context(ctx, event, cpu);
6783 	++ctx->generation;
6784 	perf_unpin_context(ctx);
6785 	mutex_unlock(&ctx->mutex);
6786 
6787 	return event;
6788 
6789 err_free:
6790 	free_event(event);
6791 err:
6792 	return ERR_PTR(err);
6793 }
6794 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6795 
6796 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6797 {
6798 	struct perf_event_context *src_ctx;
6799 	struct perf_event_context *dst_ctx;
6800 	struct perf_event *event, *tmp;
6801 	LIST_HEAD(events);
6802 
6803 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6804 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6805 
6806 	mutex_lock(&src_ctx->mutex);
6807 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6808 				 event_entry) {
6809 		perf_remove_from_context(event);
6810 		put_ctx(src_ctx);
6811 		list_add(&event->event_entry, &events);
6812 	}
6813 	mutex_unlock(&src_ctx->mutex);
6814 
6815 	synchronize_rcu();
6816 
6817 	mutex_lock(&dst_ctx->mutex);
6818 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6819 		list_del(&event->event_entry);
6820 		if (event->state >= PERF_EVENT_STATE_OFF)
6821 			event->state = PERF_EVENT_STATE_INACTIVE;
6822 		perf_install_in_context(dst_ctx, event, dst_cpu);
6823 		get_ctx(dst_ctx);
6824 	}
6825 	mutex_unlock(&dst_ctx->mutex);
6826 }
6827 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6828 
6829 static void sync_child_event(struct perf_event *child_event,
6830 			       struct task_struct *child)
6831 {
6832 	struct perf_event *parent_event = child_event->parent;
6833 	u64 child_val;
6834 
6835 	if (child_event->attr.inherit_stat)
6836 		perf_event_read_event(child_event, child);
6837 
6838 	child_val = perf_event_count(child_event);
6839 
6840 	/*
6841 	 * Add back the child's count to the parent's count:
6842 	 */
6843 	atomic64_add(child_val, &parent_event->child_count);
6844 	atomic64_add(child_event->total_time_enabled,
6845 		     &parent_event->child_total_time_enabled);
6846 	atomic64_add(child_event->total_time_running,
6847 		     &parent_event->child_total_time_running);
6848 
6849 	/*
6850 	 * Remove this event from the parent's list
6851 	 */
6852 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6853 	mutex_lock(&parent_event->child_mutex);
6854 	list_del_init(&child_event->child_list);
6855 	mutex_unlock(&parent_event->child_mutex);
6856 
6857 	/*
6858 	 * Release the parent event, if this was the last
6859 	 * reference to it.
6860 	 */
6861 	put_event(parent_event);
6862 }
6863 
6864 static void
6865 __perf_event_exit_task(struct perf_event *child_event,
6866 			 struct perf_event_context *child_ctx,
6867 			 struct task_struct *child)
6868 {
6869 	if (child_event->parent) {
6870 		raw_spin_lock_irq(&child_ctx->lock);
6871 		perf_group_detach(child_event);
6872 		raw_spin_unlock_irq(&child_ctx->lock);
6873 	}
6874 
6875 	perf_remove_from_context(child_event);
6876 
6877 	/*
6878 	 * It can happen that the parent exits first, and has events
6879 	 * that are still around due to the child reference. These
6880 	 * events need to be zapped.
6881 	 */
6882 	if (child_event->parent) {
6883 		sync_child_event(child_event, child);
6884 		free_event(child_event);
6885 	}
6886 }
6887 
6888 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6889 {
6890 	struct perf_event *child_event, *tmp;
6891 	struct perf_event_context *child_ctx;
6892 	unsigned long flags;
6893 
6894 	if (likely(!child->perf_event_ctxp[ctxn])) {
6895 		perf_event_task(child, NULL, 0);
6896 		return;
6897 	}
6898 
6899 	local_irq_save(flags);
6900 	/*
6901 	 * We can't reschedule here because interrupts are disabled,
6902 	 * and either child is current or it is a task that can't be
6903 	 * scheduled, so we are now safe from rescheduling changing
6904 	 * our context.
6905 	 */
6906 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6907 
6908 	/*
6909 	 * Take the context lock here so that if find_get_context is
6910 	 * reading child->perf_event_ctxp, we wait until it has
6911 	 * incremented the context's refcount before we do put_ctx below.
6912 	 */
6913 	raw_spin_lock(&child_ctx->lock);
6914 	task_ctx_sched_out(child_ctx);
6915 	child->perf_event_ctxp[ctxn] = NULL;
6916 	/*
6917 	 * If this context is a clone; unclone it so it can't get
6918 	 * swapped to another process while we're removing all
6919 	 * the events from it.
6920 	 */
6921 	unclone_ctx(child_ctx);
6922 	update_context_time(child_ctx);
6923 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6924 
6925 	/*
6926 	 * Report the task dead after unscheduling the events so that we
6927 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6928 	 * get a few PERF_RECORD_READ events.
6929 	 */
6930 	perf_event_task(child, child_ctx, 0);
6931 
6932 	/*
6933 	 * We can recurse on the same lock type through:
6934 	 *
6935 	 *   __perf_event_exit_task()
6936 	 *     sync_child_event()
6937 	 *       put_event()
6938 	 *         mutex_lock(&ctx->mutex)
6939 	 *
6940 	 * But since its the parent context it won't be the same instance.
6941 	 */
6942 	mutex_lock(&child_ctx->mutex);
6943 
6944 again:
6945 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6946 				 group_entry)
6947 		__perf_event_exit_task(child_event, child_ctx, child);
6948 
6949 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6950 				 group_entry)
6951 		__perf_event_exit_task(child_event, child_ctx, child);
6952 
6953 	/*
6954 	 * If the last event was a group event, it will have appended all
6955 	 * its siblings to the list, but we obtained 'tmp' before that which
6956 	 * will still point to the list head terminating the iteration.
6957 	 */
6958 	if (!list_empty(&child_ctx->pinned_groups) ||
6959 	    !list_empty(&child_ctx->flexible_groups))
6960 		goto again;
6961 
6962 	mutex_unlock(&child_ctx->mutex);
6963 
6964 	put_ctx(child_ctx);
6965 }
6966 
6967 /*
6968  * When a child task exits, feed back event values to parent events.
6969  */
6970 void perf_event_exit_task(struct task_struct *child)
6971 {
6972 	struct perf_event *event, *tmp;
6973 	int ctxn;
6974 
6975 	mutex_lock(&child->perf_event_mutex);
6976 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6977 				 owner_entry) {
6978 		list_del_init(&event->owner_entry);
6979 
6980 		/*
6981 		 * Ensure the list deletion is visible before we clear
6982 		 * the owner, closes a race against perf_release() where
6983 		 * we need to serialize on the owner->perf_event_mutex.
6984 		 */
6985 		smp_wmb();
6986 		event->owner = NULL;
6987 	}
6988 	mutex_unlock(&child->perf_event_mutex);
6989 
6990 	for_each_task_context_nr(ctxn)
6991 		perf_event_exit_task_context(child, ctxn);
6992 }
6993 
6994 static void perf_free_event(struct perf_event *event,
6995 			    struct perf_event_context *ctx)
6996 {
6997 	struct perf_event *parent = event->parent;
6998 
6999 	if (WARN_ON_ONCE(!parent))
7000 		return;
7001 
7002 	mutex_lock(&parent->child_mutex);
7003 	list_del_init(&event->child_list);
7004 	mutex_unlock(&parent->child_mutex);
7005 
7006 	put_event(parent);
7007 
7008 	perf_group_detach(event);
7009 	list_del_event(event, ctx);
7010 	free_event(event);
7011 }
7012 
7013 /*
7014  * free an unexposed, unused context as created by inheritance by
7015  * perf_event_init_task below, used by fork() in case of fail.
7016  */
7017 void perf_event_free_task(struct task_struct *task)
7018 {
7019 	struct perf_event_context *ctx;
7020 	struct perf_event *event, *tmp;
7021 	int ctxn;
7022 
7023 	for_each_task_context_nr(ctxn) {
7024 		ctx = task->perf_event_ctxp[ctxn];
7025 		if (!ctx)
7026 			continue;
7027 
7028 		mutex_lock(&ctx->mutex);
7029 again:
7030 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7031 				group_entry)
7032 			perf_free_event(event, ctx);
7033 
7034 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7035 				group_entry)
7036 			perf_free_event(event, ctx);
7037 
7038 		if (!list_empty(&ctx->pinned_groups) ||
7039 				!list_empty(&ctx->flexible_groups))
7040 			goto again;
7041 
7042 		mutex_unlock(&ctx->mutex);
7043 
7044 		put_ctx(ctx);
7045 	}
7046 }
7047 
7048 void perf_event_delayed_put(struct task_struct *task)
7049 {
7050 	int ctxn;
7051 
7052 	for_each_task_context_nr(ctxn)
7053 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7054 }
7055 
7056 /*
7057  * inherit a event from parent task to child task:
7058  */
7059 static struct perf_event *
7060 inherit_event(struct perf_event *parent_event,
7061 	      struct task_struct *parent,
7062 	      struct perf_event_context *parent_ctx,
7063 	      struct task_struct *child,
7064 	      struct perf_event *group_leader,
7065 	      struct perf_event_context *child_ctx)
7066 {
7067 	struct perf_event *child_event;
7068 	unsigned long flags;
7069 
7070 	/*
7071 	 * Instead of creating recursive hierarchies of events,
7072 	 * we link inherited events back to the original parent,
7073 	 * which has a filp for sure, which we use as the reference
7074 	 * count:
7075 	 */
7076 	if (parent_event->parent)
7077 		parent_event = parent_event->parent;
7078 
7079 	child_event = perf_event_alloc(&parent_event->attr,
7080 					   parent_event->cpu,
7081 					   child,
7082 					   group_leader, parent_event,
7083 				           NULL, NULL);
7084 	if (IS_ERR(child_event))
7085 		return child_event;
7086 
7087 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7088 		free_event(child_event);
7089 		return NULL;
7090 	}
7091 
7092 	get_ctx(child_ctx);
7093 
7094 	/*
7095 	 * Make the child state follow the state of the parent event,
7096 	 * not its attr.disabled bit.  We hold the parent's mutex,
7097 	 * so we won't race with perf_event_{en, dis}able_family.
7098 	 */
7099 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7100 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7101 	else
7102 		child_event->state = PERF_EVENT_STATE_OFF;
7103 
7104 	if (parent_event->attr.freq) {
7105 		u64 sample_period = parent_event->hw.sample_period;
7106 		struct hw_perf_event *hwc = &child_event->hw;
7107 
7108 		hwc->sample_period = sample_period;
7109 		hwc->last_period   = sample_period;
7110 
7111 		local64_set(&hwc->period_left, sample_period);
7112 	}
7113 
7114 	child_event->ctx = child_ctx;
7115 	child_event->overflow_handler = parent_event->overflow_handler;
7116 	child_event->overflow_handler_context
7117 		= parent_event->overflow_handler_context;
7118 
7119 	/*
7120 	 * Precalculate sample_data sizes
7121 	 */
7122 	perf_event__header_size(child_event);
7123 	perf_event__id_header_size(child_event);
7124 
7125 	/*
7126 	 * Link it up in the child's context:
7127 	 */
7128 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7129 	add_event_to_ctx(child_event, child_ctx);
7130 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7131 
7132 	/*
7133 	 * Link this into the parent event's child list
7134 	 */
7135 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7136 	mutex_lock(&parent_event->child_mutex);
7137 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7138 	mutex_unlock(&parent_event->child_mutex);
7139 
7140 	return child_event;
7141 }
7142 
7143 static int inherit_group(struct perf_event *parent_event,
7144 	      struct task_struct *parent,
7145 	      struct perf_event_context *parent_ctx,
7146 	      struct task_struct *child,
7147 	      struct perf_event_context *child_ctx)
7148 {
7149 	struct perf_event *leader;
7150 	struct perf_event *sub;
7151 	struct perf_event *child_ctr;
7152 
7153 	leader = inherit_event(parent_event, parent, parent_ctx,
7154 				 child, NULL, child_ctx);
7155 	if (IS_ERR(leader))
7156 		return PTR_ERR(leader);
7157 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7158 		child_ctr = inherit_event(sub, parent, parent_ctx,
7159 					    child, leader, child_ctx);
7160 		if (IS_ERR(child_ctr))
7161 			return PTR_ERR(child_ctr);
7162 	}
7163 	return 0;
7164 }
7165 
7166 static int
7167 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7168 		   struct perf_event_context *parent_ctx,
7169 		   struct task_struct *child, int ctxn,
7170 		   int *inherited_all)
7171 {
7172 	int ret;
7173 	struct perf_event_context *child_ctx;
7174 
7175 	if (!event->attr.inherit) {
7176 		*inherited_all = 0;
7177 		return 0;
7178 	}
7179 
7180 	child_ctx = child->perf_event_ctxp[ctxn];
7181 	if (!child_ctx) {
7182 		/*
7183 		 * This is executed from the parent task context, so
7184 		 * inherit events that have been marked for cloning.
7185 		 * First allocate and initialize a context for the
7186 		 * child.
7187 		 */
7188 
7189 		child_ctx = alloc_perf_context(event->pmu, child);
7190 		if (!child_ctx)
7191 			return -ENOMEM;
7192 
7193 		child->perf_event_ctxp[ctxn] = child_ctx;
7194 	}
7195 
7196 	ret = inherit_group(event, parent, parent_ctx,
7197 			    child, child_ctx);
7198 
7199 	if (ret)
7200 		*inherited_all = 0;
7201 
7202 	return ret;
7203 }
7204 
7205 /*
7206  * Initialize the perf_event context in task_struct
7207  */
7208 int perf_event_init_context(struct task_struct *child, int ctxn)
7209 {
7210 	struct perf_event_context *child_ctx, *parent_ctx;
7211 	struct perf_event_context *cloned_ctx;
7212 	struct perf_event *event;
7213 	struct task_struct *parent = current;
7214 	int inherited_all = 1;
7215 	unsigned long flags;
7216 	int ret = 0;
7217 
7218 	if (likely(!parent->perf_event_ctxp[ctxn]))
7219 		return 0;
7220 
7221 	/*
7222 	 * If the parent's context is a clone, pin it so it won't get
7223 	 * swapped under us.
7224 	 */
7225 	parent_ctx = perf_pin_task_context(parent, ctxn);
7226 
7227 	/*
7228 	 * No need to check if parent_ctx != NULL here; since we saw
7229 	 * it non-NULL earlier, the only reason for it to become NULL
7230 	 * is if we exit, and since we're currently in the middle of
7231 	 * a fork we can't be exiting at the same time.
7232 	 */
7233 
7234 	/*
7235 	 * Lock the parent list. No need to lock the child - not PID
7236 	 * hashed yet and not running, so nobody can access it.
7237 	 */
7238 	mutex_lock(&parent_ctx->mutex);
7239 
7240 	/*
7241 	 * We dont have to disable NMIs - we are only looking at
7242 	 * the list, not manipulating it:
7243 	 */
7244 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7245 		ret = inherit_task_group(event, parent, parent_ctx,
7246 					 child, ctxn, &inherited_all);
7247 		if (ret)
7248 			break;
7249 	}
7250 
7251 	/*
7252 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7253 	 * to allocations, but we need to prevent rotation because
7254 	 * rotate_ctx() will change the list from interrupt context.
7255 	 */
7256 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7257 	parent_ctx->rotate_disable = 1;
7258 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7259 
7260 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7261 		ret = inherit_task_group(event, parent, parent_ctx,
7262 					 child, ctxn, &inherited_all);
7263 		if (ret)
7264 			break;
7265 	}
7266 
7267 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7268 	parent_ctx->rotate_disable = 0;
7269 
7270 	child_ctx = child->perf_event_ctxp[ctxn];
7271 
7272 	if (child_ctx && inherited_all) {
7273 		/*
7274 		 * Mark the child context as a clone of the parent
7275 		 * context, or of whatever the parent is a clone of.
7276 		 *
7277 		 * Note that if the parent is a clone, the holding of
7278 		 * parent_ctx->lock avoids it from being uncloned.
7279 		 */
7280 		cloned_ctx = parent_ctx->parent_ctx;
7281 		if (cloned_ctx) {
7282 			child_ctx->parent_ctx = cloned_ctx;
7283 			child_ctx->parent_gen = parent_ctx->parent_gen;
7284 		} else {
7285 			child_ctx->parent_ctx = parent_ctx;
7286 			child_ctx->parent_gen = parent_ctx->generation;
7287 		}
7288 		get_ctx(child_ctx->parent_ctx);
7289 	}
7290 
7291 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7292 	mutex_unlock(&parent_ctx->mutex);
7293 
7294 	perf_unpin_context(parent_ctx);
7295 	put_ctx(parent_ctx);
7296 
7297 	return ret;
7298 }
7299 
7300 /*
7301  * Initialize the perf_event context in task_struct
7302  */
7303 int perf_event_init_task(struct task_struct *child)
7304 {
7305 	int ctxn, ret;
7306 
7307 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7308 	mutex_init(&child->perf_event_mutex);
7309 	INIT_LIST_HEAD(&child->perf_event_list);
7310 
7311 	for_each_task_context_nr(ctxn) {
7312 		ret = perf_event_init_context(child, ctxn);
7313 		if (ret)
7314 			return ret;
7315 	}
7316 
7317 	return 0;
7318 }
7319 
7320 static void __init perf_event_init_all_cpus(void)
7321 {
7322 	struct swevent_htable *swhash;
7323 	int cpu;
7324 
7325 	for_each_possible_cpu(cpu) {
7326 		swhash = &per_cpu(swevent_htable, cpu);
7327 		mutex_init(&swhash->hlist_mutex);
7328 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7329 	}
7330 }
7331 
7332 static void __cpuinit perf_event_init_cpu(int cpu)
7333 {
7334 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7335 
7336 	mutex_lock(&swhash->hlist_mutex);
7337 	if (swhash->hlist_refcount > 0) {
7338 		struct swevent_hlist *hlist;
7339 
7340 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7341 		WARN_ON(!hlist);
7342 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7343 	}
7344 	mutex_unlock(&swhash->hlist_mutex);
7345 }
7346 
7347 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7348 static void perf_pmu_rotate_stop(struct pmu *pmu)
7349 {
7350 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7351 
7352 	WARN_ON(!irqs_disabled());
7353 
7354 	list_del_init(&cpuctx->rotation_list);
7355 }
7356 
7357 static void __perf_event_exit_context(void *__info)
7358 {
7359 	struct perf_event_context *ctx = __info;
7360 	struct perf_event *event, *tmp;
7361 
7362 	perf_pmu_rotate_stop(ctx->pmu);
7363 
7364 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7365 		__perf_remove_from_context(event);
7366 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7367 		__perf_remove_from_context(event);
7368 }
7369 
7370 static void perf_event_exit_cpu_context(int cpu)
7371 {
7372 	struct perf_event_context *ctx;
7373 	struct pmu *pmu;
7374 	int idx;
7375 
7376 	idx = srcu_read_lock(&pmus_srcu);
7377 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7378 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7379 
7380 		mutex_lock(&ctx->mutex);
7381 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7382 		mutex_unlock(&ctx->mutex);
7383 	}
7384 	srcu_read_unlock(&pmus_srcu, idx);
7385 }
7386 
7387 static void perf_event_exit_cpu(int cpu)
7388 {
7389 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7390 
7391 	mutex_lock(&swhash->hlist_mutex);
7392 	swevent_hlist_release(swhash);
7393 	mutex_unlock(&swhash->hlist_mutex);
7394 
7395 	perf_event_exit_cpu_context(cpu);
7396 }
7397 #else
7398 static inline void perf_event_exit_cpu(int cpu) { }
7399 #endif
7400 
7401 static int
7402 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7403 {
7404 	int cpu;
7405 
7406 	for_each_online_cpu(cpu)
7407 		perf_event_exit_cpu(cpu);
7408 
7409 	return NOTIFY_OK;
7410 }
7411 
7412 /*
7413  * Run the perf reboot notifier at the very last possible moment so that
7414  * the generic watchdog code runs as long as possible.
7415  */
7416 static struct notifier_block perf_reboot_notifier = {
7417 	.notifier_call = perf_reboot,
7418 	.priority = INT_MIN,
7419 };
7420 
7421 static int __cpuinit
7422 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7423 {
7424 	unsigned int cpu = (long)hcpu;
7425 
7426 	switch (action & ~CPU_TASKS_FROZEN) {
7427 
7428 	case CPU_UP_PREPARE:
7429 	case CPU_DOWN_FAILED:
7430 		perf_event_init_cpu(cpu);
7431 		break;
7432 
7433 	case CPU_UP_CANCELED:
7434 	case CPU_DOWN_PREPARE:
7435 		perf_event_exit_cpu(cpu);
7436 		break;
7437 
7438 	default:
7439 		break;
7440 	}
7441 
7442 	return NOTIFY_OK;
7443 }
7444 
7445 void __init perf_event_init(void)
7446 {
7447 	int ret;
7448 
7449 	idr_init(&pmu_idr);
7450 
7451 	perf_event_init_all_cpus();
7452 	init_srcu_struct(&pmus_srcu);
7453 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7454 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7455 	perf_pmu_register(&perf_task_clock, NULL, -1);
7456 	perf_tp_register();
7457 	perf_cpu_notifier(perf_cpu_notify);
7458 	register_reboot_notifier(&perf_reboot_notifier);
7459 
7460 	ret = init_hw_breakpoint();
7461 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7462 
7463 	/* do not patch jump label more than once per second */
7464 	jump_label_rate_limit(&perf_sched_events, HZ);
7465 
7466 	/*
7467 	 * Build time assertion that we keep the data_head at the intended
7468 	 * location.  IOW, validation we got the __reserved[] size right.
7469 	 */
7470 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7471 		     != 1024);
7472 }
7473 
7474 static int __init perf_event_sysfs_init(void)
7475 {
7476 	struct pmu *pmu;
7477 	int ret;
7478 
7479 	mutex_lock(&pmus_lock);
7480 
7481 	ret = bus_register(&pmu_bus);
7482 	if (ret)
7483 		goto unlock;
7484 
7485 	list_for_each_entry(pmu, &pmus, entry) {
7486 		if (!pmu->name || pmu->type < 0)
7487 			continue;
7488 
7489 		ret = pmu_dev_alloc(pmu);
7490 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7491 	}
7492 	pmu_bus_running = 1;
7493 	ret = 0;
7494 
7495 unlock:
7496 	mutex_unlock(&pmus_lock);
7497 
7498 	return ret;
7499 }
7500 device_initcall(perf_event_sysfs_init);
7501 
7502 #ifdef CONFIG_CGROUP_PERF
7503 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7504 {
7505 	struct perf_cgroup *jc;
7506 
7507 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7508 	if (!jc)
7509 		return ERR_PTR(-ENOMEM);
7510 
7511 	jc->info = alloc_percpu(struct perf_cgroup_info);
7512 	if (!jc->info) {
7513 		kfree(jc);
7514 		return ERR_PTR(-ENOMEM);
7515 	}
7516 
7517 	return &jc->css;
7518 }
7519 
7520 static void perf_cgroup_css_free(struct cgroup *cont)
7521 {
7522 	struct perf_cgroup *jc;
7523 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7524 			  struct perf_cgroup, css);
7525 	free_percpu(jc->info);
7526 	kfree(jc);
7527 }
7528 
7529 static int __perf_cgroup_move(void *info)
7530 {
7531 	struct task_struct *task = info;
7532 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7533 	return 0;
7534 }
7535 
7536 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7537 {
7538 	struct task_struct *task;
7539 
7540 	cgroup_taskset_for_each(task, cgrp, tset)
7541 		task_function_call(task, __perf_cgroup_move, task);
7542 }
7543 
7544 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7545 			     struct task_struct *task)
7546 {
7547 	/*
7548 	 * cgroup_exit() is called in the copy_process() failure path.
7549 	 * Ignore this case since the task hasn't ran yet, this avoids
7550 	 * trying to poke a half freed task state from generic code.
7551 	 */
7552 	if (!(task->flags & PF_EXITING))
7553 		return;
7554 
7555 	task_function_call(task, __perf_cgroup_move, task);
7556 }
7557 
7558 struct cgroup_subsys perf_subsys = {
7559 	.name		= "perf_event",
7560 	.subsys_id	= perf_subsys_id,
7561 	.css_alloc	= perf_cgroup_css_alloc,
7562 	.css_free	= perf_cgroup_css_free,
7563 	.exit		= perf_cgroup_exit,
7564 	.attach		= perf_cgroup_attach,
7565 };
7566 #endif /* CONFIG_CGROUP_PERF */
7567