xref: /linux/kernel/events/core.c (revision bc05aa6e13a717e1abff6f863f7ba82b14556df4)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	if (add && ctx->nr_cgroups++)
952 		return;
953 	else if (!add && --ctx->nr_cgroups)
954 		return;
955 	/*
956 	 * Because cgroup events are always per-cpu events,
957 	 * this will always be called from the right CPU.
958 	 */
959 	cpuctx = __get_cpu_context(ctx);
960 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
961 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
962 	if (add) {
963 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
964 
965 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	} else {
969 		list_del(cpuctx_entry);
970 		cpuctx->cgrp = NULL;
971 	}
972 }
973 
974 #else /* !CONFIG_CGROUP_PERF */
975 
976 static inline bool
977 perf_cgroup_match(struct perf_event *event)
978 {
979 	return true;
980 }
981 
982 static inline void perf_detach_cgroup(struct perf_event *event)
983 {}
984 
985 static inline int is_cgroup_event(struct perf_event *event)
986 {
987 	return 0;
988 }
989 
990 static inline void update_cgrp_time_from_event(struct perf_event *event)
991 {
992 }
993 
994 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
995 {
996 }
997 
998 static inline void perf_cgroup_sched_out(struct task_struct *task,
999 					 struct task_struct *next)
1000 {
1001 }
1002 
1003 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1004 					struct task_struct *task)
1005 {
1006 }
1007 
1008 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1009 				      struct perf_event_attr *attr,
1010 				      struct perf_event *group_leader)
1011 {
1012 	return -EINVAL;
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_timestamp(struct task_struct *task,
1017 			  struct perf_event_context *ctx)
1018 {
1019 }
1020 
1021 void
1022 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1023 {
1024 }
1025 
1026 static inline void
1027 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1028 {
1029 }
1030 
1031 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1032 {
1033 	return 0;
1034 }
1035 
1036 static inline void
1037 list_update_cgroup_event(struct perf_event *event,
1038 			 struct perf_event_context *ctx, bool add)
1039 {
1040 }
1041 
1042 #endif
1043 
1044 /*
1045  * set default to be dependent on timer tick just
1046  * like original code
1047  */
1048 #define PERF_CPU_HRTIMER (1000 / HZ)
1049 /*
1050  * function must be called with interrupts disabled
1051  */
1052 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1053 {
1054 	struct perf_cpu_context *cpuctx;
1055 	int rotations = 0;
1056 
1057 	lockdep_assert_irqs_disabled();
1058 
1059 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1060 	rotations = perf_rotate_context(cpuctx);
1061 
1062 	raw_spin_lock(&cpuctx->hrtimer_lock);
1063 	if (rotations)
1064 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1065 	else
1066 		cpuctx->hrtimer_active = 0;
1067 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1068 
1069 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1070 }
1071 
1072 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1073 {
1074 	struct hrtimer *timer = &cpuctx->hrtimer;
1075 	struct pmu *pmu = cpuctx->ctx.pmu;
1076 	u64 interval;
1077 
1078 	/* no multiplexing needed for SW PMU */
1079 	if (pmu->task_ctx_nr == perf_sw_context)
1080 		return;
1081 
1082 	/*
1083 	 * check default is sane, if not set then force to
1084 	 * default interval (1/tick)
1085 	 */
1086 	interval = pmu->hrtimer_interval_ms;
1087 	if (interval < 1)
1088 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1089 
1090 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1091 
1092 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1093 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1094 	timer->function = perf_mux_hrtimer_handler;
1095 }
1096 
1097 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1098 {
1099 	struct hrtimer *timer = &cpuctx->hrtimer;
1100 	struct pmu *pmu = cpuctx->ctx.pmu;
1101 	unsigned long flags;
1102 
1103 	/* not for SW PMU */
1104 	if (pmu->task_ctx_nr == perf_sw_context)
1105 		return 0;
1106 
1107 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1108 	if (!cpuctx->hrtimer_active) {
1109 		cpuctx->hrtimer_active = 1;
1110 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1111 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1112 	}
1113 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1114 
1115 	return 0;
1116 }
1117 
1118 void perf_pmu_disable(struct pmu *pmu)
1119 {
1120 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1121 	if (!(*count)++)
1122 		pmu->pmu_disable(pmu);
1123 }
1124 
1125 void perf_pmu_enable(struct pmu *pmu)
1126 {
1127 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1128 	if (!--(*count))
1129 		pmu->pmu_enable(pmu);
1130 }
1131 
1132 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1133 
1134 /*
1135  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1136  * perf_event_task_tick() are fully serialized because they're strictly cpu
1137  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1138  * disabled, while perf_event_task_tick is called from IRQ context.
1139  */
1140 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1141 {
1142 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1143 
1144 	lockdep_assert_irqs_disabled();
1145 
1146 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1147 
1148 	list_add(&ctx->active_ctx_list, head);
1149 }
1150 
1151 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1152 {
1153 	lockdep_assert_irqs_disabled();
1154 
1155 	WARN_ON(list_empty(&ctx->active_ctx_list));
1156 
1157 	list_del_init(&ctx->active_ctx_list);
1158 }
1159 
1160 static void get_ctx(struct perf_event_context *ctx)
1161 {
1162 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1163 }
1164 
1165 static void free_ctx(struct rcu_head *head)
1166 {
1167 	struct perf_event_context *ctx;
1168 
1169 	ctx = container_of(head, struct perf_event_context, rcu_head);
1170 	kfree(ctx->task_ctx_data);
1171 	kfree(ctx);
1172 }
1173 
1174 static void put_ctx(struct perf_event_context *ctx)
1175 {
1176 	if (atomic_dec_and_test(&ctx->refcount)) {
1177 		if (ctx->parent_ctx)
1178 			put_ctx(ctx->parent_ctx);
1179 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1180 			put_task_struct(ctx->task);
1181 		call_rcu(&ctx->rcu_head, free_ctx);
1182 	}
1183 }
1184 
1185 /*
1186  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1187  * perf_pmu_migrate_context() we need some magic.
1188  *
1189  * Those places that change perf_event::ctx will hold both
1190  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1191  *
1192  * Lock ordering is by mutex address. There are two other sites where
1193  * perf_event_context::mutex nests and those are:
1194  *
1195  *  - perf_event_exit_task_context()	[ child , 0 ]
1196  *      perf_event_exit_event()
1197  *        put_event()			[ parent, 1 ]
1198  *
1199  *  - perf_event_init_context()		[ parent, 0 ]
1200  *      inherit_task_group()
1201  *        inherit_group()
1202  *          inherit_event()
1203  *            perf_event_alloc()
1204  *              perf_init_event()
1205  *                perf_try_init_event()	[ child , 1 ]
1206  *
1207  * While it appears there is an obvious deadlock here -- the parent and child
1208  * nesting levels are inverted between the two. This is in fact safe because
1209  * life-time rules separate them. That is an exiting task cannot fork, and a
1210  * spawning task cannot (yet) exit.
1211  *
1212  * But remember that that these are parent<->child context relations, and
1213  * migration does not affect children, therefore these two orderings should not
1214  * interact.
1215  *
1216  * The change in perf_event::ctx does not affect children (as claimed above)
1217  * because the sys_perf_event_open() case will install a new event and break
1218  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1219  * concerned with cpuctx and that doesn't have children.
1220  *
1221  * The places that change perf_event::ctx will issue:
1222  *
1223  *   perf_remove_from_context();
1224  *   synchronize_rcu();
1225  *   perf_install_in_context();
1226  *
1227  * to affect the change. The remove_from_context() + synchronize_rcu() should
1228  * quiesce the event, after which we can install it in the new location. This
1229  * means that only external vectors (perf_fops, prctl) can perturb the event
1230  * while in transit. Therefore all such accessors should also acquire
1231  * perf_event_context::mutex to serialize against this.
1232  *
1233  * However; because event->ctx can change while we're waiting to acquire
1234  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1235  * function.
1236  *
1237  * Lock order:
1238  *    cred_guard_mutex
1239  *	task_struct::perf_event_mutex
1240  *	  perf_event_context::mutex
1241  *	    perf_event::child_mutex;
1242  *	      perf_event_context::lock
1243  *	    perf_event::mmap_mutex
1244  *	    mmap_sem
1245  *
1246  *    cpu_hotplug_lock
1247  *      pmus_lock
1248  *	  cpuctx->mutex / perf_event_context::mutex
1249  */
1250 static struct perf_event_context *
1251 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1252 {
1253 	struct perf_event_context *ctx;
1254 
1255 again:
1256 	rcu_read_lock();
1257 	ctx = READ_ONCE(event->ctx);
1258 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1259 		rcu_read_unlock();
1260 		goto again;
1261 	}
1262 	rcu_read_unlock();
1263 
1264 	mutex_lock_nested(&ctx->mutex, nesting);
1265 	if (event->ctx != ctx) {
1266 		mutex_unlock(&ctx->mutex);
1267 		put_ctx(ctx);
1268 		goto again;
1269 	}
1270 
1271 	return ctx;
1272 }
1273 
1274 static inline struct perf_event_context *
1275 perf_event_ctx_lock(struct perf_event *event)
1276 {
1277 	return perf_event_ctx_lock_nested(event, 0);
1278 }
1279 
1280 static void perf_event_ctx_unlock(struct perf_event *event,
1281 				  struct perf_event_context *ctx)
1282 {
1283 	mutex_unlock(&ctx->mutex);
1284 	put_ctx(ctx);
1285 }
1286 
1287 /*
1288  * This must be done under the ctx->lock, such as to serialize against
1289  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1290  * calling scheduler related locks and ctx->lock nests inside those.
1291  */
1292 static __must_check struct perf_event_context *
1293 unclone_ctx(struct perf_event_context *ctx)
1294 {
1295 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1296 
1297 	lockdep_assert_held(&ctx->lock);
1298 
1299 	if (parent_ctx)
1300 		ctx->parent_ctx = NULL;
1301 	ctx->generation++;
1302 
1303 	return parent_ctx;
1304 }
1305 
1306 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1307 				enum pid_type type)
1308 {
1309 	u32 nr;
1310 	/*
1311 	 * only top level events have the pid namespace they were created in
1312 	 */
1313 	if (event->parent)
1314 		event = event->parent;
1315 
1316 	nr = __task_pid_nr_ns(p, type, event->ns);
1317 	/* avoid -1 if it is idle thread or runs in another ns */
1318 	if (!nr && !pid_alive(p))
1319 		nr = -1;
1320 	return nr;
1321 }
1322 
1323 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1324 {
1325 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1326 }
1327 
1328 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1329 {
1330 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1331 }
1332 
1333 /*
1334  * If we inherit events we want to return the parent event id
1335  * to userspace.
1336  */
1337 static u64 primary_event_id(struct perf_event *event)
1338 {
1339 	u64 id = event->id;
1340 
1341 	if (event->parent)
1342 		id = event->parent->id;
1343 
1344 	return id;
1345 }
1346 
1347 /*
1348  * Get the perf_event_context for a task and lock it.
1349  *
1350  * This has to cope with with the fact that until it is locked,
1351  * the context could get moved to another task.
1352  */
1353 static struct perf_event_context *
1354 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1355 {
1356 	struct perf_event_context *ctx;
1357 
1358 retry:
1359 	/*
1360 	 * One of the few rules of preemptible RCU is that one cannot do
1361 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1362 	 * part of the read side critical section was irqs-enabled -- see
1363 	 * rcu_read_unlock_special().
1364 	 *
1365 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1366 	 * side critical section has interrupts disabled.
1367 	 */
1368 	local_irq_save(*flags);
1369 	rcu_read_lock();
1370 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1371 	if (ctx) {
1372 		/*
1373 		 * If this context is a clone of another, it might
1374 		 * get swapped for another underneath us by
1375 		 * perf_event_task_sched_out, though the
1376 		 * rcu_read_lock() protects us from any context
1377 		 * getting freed.  Lock the context and check if it
1378 		 * got swapped before we could get the lock, and retry
1379 		 * if so.  If we locked the right context, then it
1380 		 * can't get swapped on us any more.
1381 		 */
1382 		raw_spin_lock(&ctx->lock);
1383 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1384 			raw_spin_unlock(&ctx->lock);
1385 			rcu_read_unlock();
1386 			local_irq_restore(*flags);
1387 			goto retry;
1388 		}
1389 
1390 		if (ctx->task == TASK_TOMBSTONE ||
1391 		    !atomic_inc_not_zero(&ctx->refcount)) {
1392 			raw_spin_unlock(&ctx->lock);
1393 			ctx = NULL;
1394 		} else {
1395 			WARN_ON_ONCE(ctx->task != task);
1396 		}
1397 	}
1398 	rcu_read_unlock();
1399 	if (!ctx)
1400 		local_irq_restore(*flags);
1401 	return ctx;
1402 }
1403 
1404 /*
1405  * Get the context for a task and increment its pin_count so it
1406  * can't get swapped to another task.  This also increments its
1407  * reference count so that the context can't get freed.
1408  */
1409 static struct perf_event_context *
1410 perf_pin_task_context(struct task_struct *task, int ctxn)
1411 {
1412 	struct perf_event_context *ctx;
1413 	unsigned long flags;
1414 
1415 	ctx = perf_lock_task_context(task, ctxn, &flags);
1416 	if (ctx) {
1417 		++ctx->pin_count;
1418 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 	}
1420 	return ctx;
1421 }
1422 
1423 static void perf_unpin_context(struct perf_event_context *ctx)
1424 {
1425 	unsigned long flags;
1426 
1427 	raw_spin_lock_irqsave(&ctx->lock, flags);
1428 	--ctx->pin_count;
1429 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1430 }
1431 
1432 /*
1433  * Update the record of the current time in a context.
1434  */
1435 static void update_context_time(struct perf_event_context *ctx)
1436 {
1437 	u64 now = perf_clock();
1438 
1439 	ctx->time += now - ctx->timestamp;
1440 	ctx->timestamp = now;
1441 }
1442 
1443 static u64 perf_event_time(struct perf_event *event)
1444 {
1445 	struct perf_event_context *ctx = event->ctx;
1446 
1447 	if (is_cgroup_event(event))
1448 		return perf_cgroup_event_time(event);
1449 
1450 	return ctx ? ctx->time : 0;
1451 }
1452 
1453 static enum event_type_t get_event_type(struct perf_event *event)
1454 {
1455 	struct perf_event_context *ctx = event->ctx;
1456 	enum event_type_t event_type;
1457 
1458 	lockdep_assert_held(&ctx->lock);
1459 
1460 	/*
1461 	 * It's 'group type', really, because if our group leader is
1462 	 * pinned, so are we.
1463 	 */
1464 	if (event->group_leader != event)
1465 		event = event->group_leader;
1466 
1467 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 	if (!ctx->task)
1469 		event_type |= EVENT_CPU;
1470 
1471 	return event_type;
1472 }
1473 
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 	if (event->attr.pinned)
1478 		return &ctx->pinned_groups;
1479 	else
1480 		return &ctx->flexible_groups;
1481 }
1482 
1483 /*
1484  * Add a event from the lists for its context.
1485  * Must be called with ctx->mutex and ctx->lock held.
1486  */
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489 {
1490 	lockdep_assert_held(&ctx->lock);
1491 
1492 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 	event->attach_state |= PERF_ATTACH_CONTEXT;
1494 
1495 	event->tstamp = perf_event_time(event);
1496 
1497 	/*
1498 	 * If we're a stand alone event or group leader, we go to the context
1499 	 * list, group events are kept attached to the group so that
1500 	 * perf_group_detach can, at all times, locate all siblings.
1501 	 */
1502 	if (event->group_leader == event) {
1503 		struct list_head *list;
1504 
1505 		event->group_caps = event->event_caps;
1506 
1507 		list = ctx_group_list(event, ctx);
1508 		list_add_tail(&event->group_entry, list);
1509 	}
1510 
1511 	list_update_cgroup_event(event, ctx, true);
1512 
1513 	list_add_rcu(&event->event_entry, &ctx->event_list);
1514 	ctx->nr_events++;
1515 	if (event->attr.inherit_stat)
1516 		ctx->nr_stat++;
1517 
1518 	ctx->generation++;
1519 }
1520 
1521 /*
1522  * Initialize event state based on the perf_event_attr::disabled.
1523  */
1524 static inline void perf_event__state_init(struct perf_event *event)
1525 {
1526 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527 					      PERF_EVENT_STATE_INACTIVE;
1528 }
1529 
1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 {
1532 	int entry = sizeof(u64); /* value */
1533 	int size = 0;
1534 	int nr = 1;
1535 
1536 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537 		size += sizeof(u64);
1538 
1539 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540 		size += sizeof(u64);
1541 
1542 	if (event->attr.read_format & PERF_FORMAT_ID)
1543 		entry += sizeof(u64);
1544 
1545 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546 		nr += nr_siblings;
1547 		size += sizeof(u64);
1548 	}
1549 
1550 	size += entry * nr;
1551 	event->read_size = size;
1552 }
1553 
1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 {
1556 	struct perf_sample_data *data;
1557 	u16 size = 0;
1558 
1559 	if (sample_type & PERF_SAMPLE_IP)
1560 		size += sizeof(data->ip);
1561 
1562 	if (sample_type & PERF_SAMPLE_ADDR)
1563 		size += sizeof(data->addr);
1564 
1565 	if (sample_type & PERF_SAMPLE_PERIOD)
1566 		size += sizeof(data->period);
1567 
1568 	if (sample_type & PERF_SAMPLE_WEIGHT)
1569 		size += sizeof(data->weight);
1570 
1571 	if (sample_type & PERF_SAMPLE_READ)
1572 		size += event->read_size;
1573 
1574 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1575 		size += sizeof(data->data_src.val);
1576 
1577 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1578 		size += sizeof(data->txn);
1579 
1580 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581 		size += sizeof(data->phys_addr);
1582 
1583 	event->header_size = size;
1584 }
1585 
1586 /*
1587  * Called at perf_event creation and when events are attached/detached from a
1588  * group.
1589  */
1590 static void perf_event__header_size(struct perf_event *event)
1591 {
1592 	__perf_event_read_size(event,
1593 			       event->group_leader->nr_siblings);
1594 	__perf_event_header_size(event, event->attr.sample_type);
1595 }
1596 
1597 static void perf_event__id_header_size(struct perf_event *event)
1598 {
1599 	struct perf_sample_data *data;
1600 	u64 sample_type = event->attr.sample_type;
1601 	u16 size = 0;
1602 
1603 	if (sample_type & PERF_SAMPLE_TID)
1604 		size += sizeof(data->tid_entry);
1605 
1606 	if (sample_type & PERF_SAMPLE_TIME)
1607 		size += sizeof(data->time);
1608 
1609 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610 		size += sizeof(data->id);
1611 
1612 	if (sample_type & PERF_SAMPLE_ID)
1613 		size += sizeof(data->id);
1614 
1615 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1616 		size += sizeof(data->stream_id);
1617 
1618 	if (sample_type & PERF_SAMPLE_CPU)
1619 		size += sizeof(data->cpu_entry);
1620 
1621 	event->id_header_size = size;
1622 }
1623 
1624 static bool perf_event_validate_size(struct perf_event *event)
1625 {
1626 	/*
1627 	 * The values computed here will be over-written when we actually
1628 	 * attach the event.
1629 	 */
1630 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632 	perf_event__id_header_size(event);
1633 
1634 	/*
1635 	 * Sum the lot; should not exceed the 64k limit we have on records.
1636 	 * Conservative limit to allow for callchains and other variable fields.
1637 	 */
1638 	if (event->read_size + event->header_size +
1639 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640 		return false;
1641 
1642 	return true;
1643 }
1644 
1645 static void perf_group_attach(struct perf_event *event)
1646 {
1647 	struct perf_event *group_leader = event->group_leader, *pos;
1648 
1649 	lockdep_assert_held(&event->ctx->lock);
1650 
1651 	/*
1652 	 * We can have double attach due to group movement in perf_event_open.
1653 	 */
1654 	if (event->attach_state & PERF_ATTACH_GROUP)
1655 		return;
1656 
1657 	event->attach_state |= PERF_ATTACH_GROUP;
1658 
1659 	if (group_leader == event)
1660 		return;
1661 
1662 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663 
1664 	group_leader->group_caps &= event->event_caps;
1665 
1666 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667 	group_leader->nr_siblings++;
1668 
1669 	perf_event__header_size(group_leader);
1670 
1671 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672 		perf_event__header_size(pos);
1673 }
1674 
1675 /*
1676  * Remove a event from the lists for its context.
1677  * Must be called with ctx->mutex and ctx->lock held.
1678  */
1679 static void
1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682 	WARN_ON_ONCE(event->ctx != ctx);
1683 	lockdep_assert_held(&ctx->lock);
1684 
1685 	/*
1686 	 * We can have double detach due to exit/hot-unplug + close.
1687 	 */
1688 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689 		return;
1690 
1691 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692 
1693 	list_update_cgroup_event(event, ctx, false);
1694 
1695 	ctx->nr_events--;
1696 	if (event->attr.inherit_stat)
1697 		ctx->nr_stat--;
1698 
1699 	list_del_rcu(&event->event_entry);
1700 
1701 	if (event->group_leader == event)
1702 		list_del_init(&event->group_entry);
1703 
1704 	/*
1705 	 * If event was in error state, then keep it
1706 	 * that way, otherwise bogus counts will be
1707 	 * returned on read(). The only way to get out
1708 	 * of error state is by explicit re-enabling
1709 	 * of the event
1710 	 */
1711 	if (event->state > PERF_EVENT_STATE_OFF)
1712 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1713 
1714 	ctx->generation++;
1715 }
1716 
1717 static void perf_group_detach(struct perf_event *event)
1718 {
1719 	struct perf_event *sibling, *tmp;
1720 	struct list_head *list = NULL;
1721 
1722 	lockdep_assert_held(&event->ctx->lock);
1723 
1724 	/*
1725 	 * We can have double detach due to exit/hot-unplug + close.
1726 	 */
1727 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 		return;
1729 
1730 	event->attach_state &= ~PERF_ATTACH_GROUP;
1731 
1732 	/*
1733 	 * If this is a sibling, remove it from its group.
1734 	 */
1735 	if (event->group_leader != event) {
1736 		list_del_init(&event->group_entry);
1737 		event->group_leader->nr_siblings--;
1738 		goto out;
1739 	}
1740 
1741 	if (!list_empty(&event->group_entry))
1742 		list = &event->group_entry;
1743 
1744 	/*
1745 	 * If this was a group event with sibling events then
1746 	 * upgrade the siblings to singleton events by adding them
1747 	 * to whatever list we are on.
1748 	 */
1749 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 		if (list)
1751 			list_move_tail(&sibling->group_entry, list);
1752 		sibling->group_leader = sibling;
1753 
1754 		/* Inherit group flags from the previous leader */
1755 		sibling->group_caps = event->group_caps;
1756 
1757 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1758 	}
1759 
1760 out:
1761 	perf_event__header_size(event->group_leader);
1762 
1763 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 		perf_event__header_size(tmp);
1765 }
1766 
1767 static bool is_orphaned_event(struct perf_event *event)
1768 {
1769 	return event->state == PERF_EVENT_STATE_DEAD;
1770 }
1771 
1772 static inline int __pmu_filter_match(struct perf_event *event)
1773 {
1774 	struct pmu *pmu = event->pmu;
1775 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1776 }
1777 
1778 /*
1779  * Check whether we should attempt to schedule an event group based on
1780  * PMU-specific filtering. An event group can consist of HW and SW events,
1781  * potentially with a SW leader, so we must check all the filters, to
1782  * determine whether a group is schedulable:
1783  */
1784 static inline int pmu_filter_match(struct perf_event *event)
1785 {
1786 	struct perf_event *child;
1787 
1788 	if (!__pmu_filter_match(event))
1789 		return 0;
1790 
1791 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 		if (!__pmu_filter_match(child))
1793 			return 0;
1794 	}
1795 
1796 	return 1;
1797 }
1798 
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1801 {
1802 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 	       perf_cgroup_match(event) && pmu_filter_match(event);
1804 }
1805 
1806 static void
1807 event_sched_out(struct perf_event *event,
1808 		  struct perf_cpu_context *cpuctx,
1809 		  struct perf_event_context *ctx)
1810 {
1811 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1812 
1813 	WARN_ON_ONCE(event->ctx != ctx);
1814 	lockdep_assert_held(&ctx->lock);
1815 
1816 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1817 		return;
1818 
1819 	perf_pmu_disable(event->pmu);
1820 
1821 	event->pmu->del(event, 0);
1822 	event->oncpu = -1;
1823 
1824 	if (event->pending_disable) {
1825 		event->pending_disable = 0;
1826 		state = PERF_EVENT_STATE_OFF;
1827 	}
1828 	perf_event_set_state(event, state);
1829 
1830 	if (!is_software_event(event))
1831 		cpuctx->active_oncpu--;
1832 	if (!--ctx->nr_active)
1833 		perf_event_ctx_deactivate(ctx);
1834 	if (event->attr.freq && event->attr.sample_freq)
1835 		ctx->nr_freq--;
1836 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1837 		cpuctx->exclusive = 0;
1838 
1839 	perf_pmu_enable(event->pmu);
1840 }
1841 
1842 static void
1843 group_sched_out(struct perf_event *group_event,
1844 		struct perf_cpu_context *cpuctx,
1845 		struct perf_event_context *ctx)
1846 {
1847 	struct perf_event *event;
1848 
1849 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1850 		return;
1851 
1852 	perf_pmu_disable(ctx->pmu);
1853 
1854 	event_sched_out(group_event, cpuctx, ctx);
1855 
1856 	/*
1857 	 * Schedule out siblings (if any):
1858 	 */
1859 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1860 		event_sched_out(event, cpuctx, ctx);
1861 
1862 	perf_pmu_enable(ctx->pmu);
1863 
1864 	if (group_event->attr.exclusive)
1865 		cpuctx->exclusive = 0;
1866 }
1867 
1868 #define DETACH_GROUP	0x01UL
1869 
1870 /*
1871  * Cross CPU call to remove a performance event
1872  *
1873  * We disable the event on the hardware level first. After that we
1874  * remove it from the context list.
1875  */
1876 static void
1877 __perf_remove_from_context(struct perf_event *event,
1878 			   struct perf_cpu_context *cpuctx,
1879 			   struct perf_event_context *ctx,
1880 			   void *info)
1881 {
1882 	unsigned long flags = (unsigned long)info;
1883 
1884 	if (ctx->is_active & EVENT_TIME) {
1885 		update_context_time(ctx);
1886 		update_cgrp_time_from_cpuctx(cpuctx);
1887 	}
1888 
1889 	event_sched_out(event, cpuctx, ctx);
1890 	if (flags & DETACH_GROUP)
1891 		perf_group_detach(event);
1892 	list_del_event(event, ctx);
1893 
1894 	if (!ctx->nr_events && ctx->is_active) {
1895 		ctx->is_active = 0;
1896 		if (ctx->task) {
1897 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1898 			cpuctx->task_ctx = NULL;
1899 		}
1900 	}
1901 }
1902 
1903 /*
1904  * Remove the event from a task's (or a CPU's) list of events.
1905  *
1906  * If event->ctx is a cloned context, callers must make sure that
1907  * every task struct that event->ctx->task could possibly point to
1908  * remains valid.  This is OK when called from perf_release since
1909  * that only calls us on the top-level context, which can't be a clone.
1910  * When called from perf_event_exit_task, it's OK because the
1911  * context has been detached from its task.
1912  */
1913 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1914 {
1915 	struct perf_event_context *ctx = event->ctx;
1916 
1917 	lockdep_assert_held(&ctx->mutex);
1918 
1919 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1920 
1921 	/*
1922 	 * The above event_function_call() can NO-OP when it hits
1923 	 * TASK_TOMBSTONE. In that case we must already have been detached
1924 	 * from the context (by perf_event_exit_event()) but the grouping
1925 	 * might still be in-tact.
1926 	 */
1927 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1928 	if ((flags & DETACH_GROUP) &&
1929 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1930 		/*
1931 		 * Since in that case we cannot possibly be scheduled, simply
1932 		 * detach now.
1933 		 */
1934 		raw_spin_lock_irq(&ctx->lock);
1935 		perf_group_detach(event);
1936 		raw_spin_unlock_irq(&ctx->lock);
1937 	}
1938 }
1939 
1940 /*
1941  * Cross CPU call to disable a performance event
1942  */
1943 static void __perf_event_disable(struct perf_event *event,
1944 				 struct perf_cpu_context *cpuctx,
1945 				 struct perf_event_context *ctx,
1946 				 void *info)
1947 {
1948 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1949 		return;
1950 
1951 	if (ctx->is_active & EVENT_TIME) {
1952 		update_context_time(ctx);
1953 		update_cgrp_time_from_event(event);
1954 	}
1955 
1956 	if (event == event->group_leader)
1957 		group_sched_out(event, cpuctx, ctx);
1958 	else
1959 		event_sched_out(event, cpuctx, ctx);
1960 
1961 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1962 }
1963 
1964 /*
1965  * Disable a event.
1966  *
1967  * If event->ctx is a cloned context, callers must make sure that
1968  * every task struct that event->ctx->task could possibly point to
1969  * remains valid.  This condition is satisifed when called through
1970  * perf_event_for_each_child or perf_event_for_each because they
1971  * hold the top-level event's child_mutex, so any descendant that
1972  * goes to exit will block in perf_event_exit_event().
1973  *
1974  * When called from perf_pending_event it's OK because event->ctx
1975  * is the current context on this CPU and preemption is disabled,
1976  * hence we can't get into perf_event_task_sched_out for this context.
1977  */
1978 static void _perf_event_disable(struct perf_event *event)
1979 {
1980 	struct perf_event_context *ctx = event->ctx;
1981 
1982 	raw_spin_lock_irq(&ctx->lock);
1983 	if (event->state <= PERF_EVENT_STATE_OFF) {
1984 		raw_spin_unlock_irq(&ctx->lock);
1985 		return;
1986 	}
1987 	raw_spin_unlock_irq(&ctx->lock);
1988 
1989 	event_function_call(event, __perf_event_disable, NULL);
1990 }
1991 
1992 void perf_event_disable_local(struct perf_event *event)
1993 {
1994 	event_function_local(event, __perf_event_disable, NULL);
1995 }
1996 
1997 /*
1998  * Strictly speaking kernel users cannot create groups and therefore this
1999  * interface does not need the perf_event_ctx_lock() magic.
2000  */
2001 void perf_event_disable(struct perf_event *event)
2002 {
2003 	struct perf_event_context *ctx;
2004 
2005 	ctx = perf_event_ctx_lock(event);
2006 	_perf_event_disable(event);
2007 	perf_event_ctx_unlock(event, ctx);
2008 }
2009 EXPORT_SYMBOL_GPL(perf_event_disable);
2010 
2011 void perf_event_disable_inatomic(struct perf_event *event)
2012 {
2013 	event->pending_disable = 1;
2014 	irq_work_queue(&event->pending);
2015 }
2016 
2017 static void perf_set_shadow_time(struct perf_event *event,
2018 				 struct perf_event_context *ctx)
2019 {
2020 	/*
2021 	 * use the correct time source for the time snapshot
2022 	 *
2023 	 * We could get by without this by leveraging the
2024 	 * fact that to get to this function, the caller
2025 	 * has most likely already called update_context_time()
2026 	 * and update_cgrp_time_xx() and thus both timestamp
2027 	 * are identical (or very close). Given that tstamp is,
2028 	 * already adjusted for cgroup, we could say that:
2029 	 *    tstamp - ctx->timestamp
2030 	 * is equivalent to
2031 	 *    tstamp - cgrp->timestamp.
2032 	 *
2033 	 * Then, in perf_output_read(), the calculation would
2034 	 * work with no changes because:
2035 	 * - event is guaranteed scheduled in
2036 	 * - no scheduled out in between
2037 	 * - thus the timestamp would be the same
2038 	 *
2039 	 * But this is a bit hairy.
2040 	 *
2041 	 * So instead, we have an explicit cgroup call to remain
2042 	 * within the time time source all along. We believe it
2043 	 * is cleaner and simpler to understand.
2044 	 */
2045 	if (is_cgroup_event(event))
2046 		perf_cgroup_set_shadow_time(event, event->tstamp);
2047 	else
2048 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2049 }
2050 
2051 #define MAX_INTERRUPTS (~0ULL)
2052 
2053 static void perf_log_throttle(struct perf_event *event, int enable);
2054 static void perf_log_itrace_start(struct perf_event *event);
2055 
2056 static int
2057 event_sched_in(struct perf_event *event,
2058 		 struct perf_cpu_context *cpuctx,
2059 		 struct perf_event_context *ctx)
2060 {
2061 	int ret = 0;
2062 
2063 	lockdep_assert_held(&ctx->lock);
2064 
2065 	if (event->state <= PERF_EVENT_STATE_OFF)
2066 		return 0;
2067 
2068 	WRITE_ONCE(event->oncpu, smp_processor_id());
2069 	/*
2070 	 * Order event::oncpu write to happen before the ACTIVE state is
2071 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2072 	 * ->oncpu if it sees ACTIVE.
2073 	 */
2074 	smp_wmb();
2075 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2076 
2077 	/*
2078 	 * Unthrottle events, since we scheduled we might have missed several
2079 	 * ticks already, also for a heavily scheduling task there is little
2080 	 * guarantee it'll get a tick in a timely manner.
2081 	 */
2082 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2083 		perf_log_throttle(event, 1);
2084 		event->hw.interrupts = 0;
2085 	}
2086 
2087 	perf_pmu_disable(event->pmu);
2088 
2089 	perf_set_shadow_time(event, ctx);
2090 
2091 	perf_log_itrace_start(event);
2092 
2093 	if (event->pmu->add(event, PERF_EF_START)) {
2094 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2095 		event->oncpu = -1;
2096 		ret = -EAGAIN;
2097 		goto out;
2098 	}
2099 
2100 	if (!is_software_event(event))
2101 		cpuctx->active_oncpu++;
2102 	if (!ctx->nr_active++)
2103 		perf_event_ctx_activate(ctx);
2104 	if (event->attr.freq && event->attr.sample_freq)
2105 		ctx->nr_freq++;
2106 
2107 	if (event->attr.exclusive)
2108 		cpuctx->exclusive = 1;
2109 
2110 out:
2111 	perf_pmu_enable(event->pmu);
2112 
2113 	return ret;
2114 }
2115 
2116 static int
2117 group_sched_in(struct perf_event *group_event,
2118 	       struct perf_cpu_context *cpuctx,
2119 	       struct perf_event_context *ctx)
2120 {
2121 	struct perf_event *event, *partial_group = NULL;
2122 	struct pmu *pmu = ctx->pmu;
2123 
2124 	if (group_event->state == PERF_EVENT_STATE_OFF)
2125 		return 0;
2126 
2127 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2128 
2129 	if (event_sched_in(group_event, cpuctx, ctx)) {
2130 		pmu->cancel_txn(pmu);
2131 		perf_mux_hrtimer_restart(cpuctx);
2132 		return -EAGAIN;
2133 	}
2134 
2135 	/*
2136 	 * Schedule in siblings as one group (if any):
2137 	 */
2138 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2139 		if (event_sched_in(event, cpuctx, ctx)) {
2140 			partial_group = event;
2141 			goto group_error;
2142 		}
2143 	}
2144 
2145 	if (!pmu->commit_txn(pmu))
2146 		return 0;
2147 
2148 group_error:
2149 	/*
2150 	 * Groups can be scheduled in as one unit only, so undo any
2151 	 * partial group before returning:
2152 	 * The events up to the failed event are scheduled out normally.
2153 	 */
2154 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155 		if (event == partial_group)
2156 			break;
2157 
2158 		event_sched_out(event, cpuctx, ctx);
2159 	}
2160 	event_sched_out(group_event, cpuctx, ctx);
2161 
2162 	pmu->cancel_txn(pmu);
2163 
2164 	perf_mux_hrtimer_restart(cpuctx);
2165 
2166 	return -EAGAIN;
2167 }
2168 
2169 /*
2170  * Work out whether we can put this event group on the CPU now.
2171  */
2172 static int group_can_go_on(struct perf_event *event,
2173 			   struct perf_cpu_context *cpuctx,
2174 			   int can_add_hw)
2175 {
2176 	/*
2177 	 * Groups consisting entirely of software events can always go on.
2178 	 */
2179 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2180 		return 1;
2181 	/*
2182 	 * If an exclusive group is already on, no other hardware
2183 	 * events can go on.
2184 	 */
2185 	if (cpuctx->exclusive)
2186 		return 0;
2187 	/*
2188 	 * If this group is exclusive and there are already
2189 	 * events on the CPU, it can't go on.
2190 	 */
2191 	if (event->attr.exclusive && cpuctx->active_oncpu)
2192 		return 0;
2193 	/*
2194 	 * Otherwise, try to add it if all previous groups were able
2195 	 * to go on.
2196 	 */
2197 	return can_add_hw;
2198 }
2199 
2200 static void add_event_to_ctx(struct perf_event *event,
2201 			       struct perf_event_context *ctx)
2202 {
2203 	list_add_event(event, ctx);
2204 	perf_group_attach(event);
2205 }
2206 
2207 static void ctx_sched_out(struct perf_event_context *ctx,
2208 			  struct perf_cpu_context *cpuctx,
2209 			  enum event_type_t event_type);
2210 static void
2211 ctx_sched_in(struct perf_event_context *ctx,
2212 	     struct perf_cpu_context *cpuctx,
2213 	     enum event_type_t event_type,
2214 	     struct task_struct *task);
2215 
2216 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2217 			       struct perf_event_context *ctx,
2218 			       enum event_type_t event_type)
2219 {
2220 	if (!cpuctx->task_ctx)
2221 		return;
2222 
2223 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2224 		return;
2225 
2226 	ctx_sched_out(ctx, cpuctx, event_type);
2227 }
2228 
2229 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2230 				struct perf_event_context *ctx,
2231 				struct task_struct *task)
2232 {
2233 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2234 	if (ctx)
2235 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2236 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2237 	if (ctx)
2238 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2239 }
2240 
2241 /*
2242  * We want to maintain the following priority of scheduling:
2243  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2244  *  - task pinned (EVENT_PINNED)
2245  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2246  *  - task flexible (EVENT_FLEXIBLE).
2247  *
2248  * In order to avoid unscheduling and scheduling back in everything every
2249  * time an event is added, only do it for the groups of equal priority and
2250  * below.
2251  *
2252  * This can be called after a batch operation on task events, in which case
2253  * event_type is a bit mask of the types of events involved. For CPU events,
2254  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2255  */
2256 static void ctx_resched(struct perf_cpu_context *cpuctx,
2257 			struct perf_event_context *task_ctx,
2258 			enum event_type_t event_type)
2259 {
2260 	enum event_type_t ctx_event_type;
2261 	bool cpu_event = !!(event_type & EVENT_CPU);
2262 
2263 	/*
2264 	 * If pinned groups are involved, flexible groups also need to be
2265 	 * scheduled out.
2266 	 */
2267 	if (event_type & EVENT_PINNED)
2268 		event_type |= EVENT_FLEXIBLE;
2269 
2270 	ctx_event_type = event_type & EVENT_ALL;
2271 
2272 	perf_pmu_disable(cpuctx->ctx.pmu);
2273 	if (task_ctx)
2274 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2275 
2276 	/*
2277 	 * Decide which cpu ctx groups to schedule out based on the types
2278 	 * of events that caused rescheduling:
2279 	 *  - EVENT_CPU: schedule out corresponding groups;
2280 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2281 	 *  - otherwise, do nothing more.
2282 	 */
2283 	if (cpu_event)
2284 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2285 	else if (ctx_event_type & EVENT_PINNED)
2286 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2287 
2288 	perf_event_sched_in(cpuctx, task_ctx, current);
2289 	perf_pmu_enable(cpuctx->ctx.pmu);
2290 }
2291 
2292 /*
2293  * Cross CPU call to install and enable a performance event
2294  *
2295  * Very similar to remote_function() + event_function() but cannot assume that
2296  * things like ctx->is_active and cpuctx->task_ctx are set.
2297  */
2298 static int  __perf_install_in_context(void *info)
2299 {
2300 	struct perf_event *event = info;
2301 	struct perf_event_context *ctx = event->ctx;
2302 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2303 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2304 	bool reprogram = true;
2305 	int ret = 0;
2306 
2307 	raw_spin_lock(&cpuctx->ctx.lock);
2308 	if (ctx->task) {
2309 		raw_spin_lock(&ctx->lock);
2310 		task_ctx = ctx;
2311 
2312 		reprogram = (ctx->task == current);
2313 
2314 		/*
2315 		 * If the task is running, it must be running on this CPU,
2316 		 * otherwise we cannot reprogram things.
2317 		 *
2318 		 * If its not running, we don't care, ctx->lock will
2319 		 * serialize against it becoming runnable.
2320 		 */
2321 		if (task_curr(ctx->task) && !reprogram) {
2322 			ret = -ESRCH;
2323 			goto unlock;
2324 		}
2325 
2326 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2327 	} else if (task_ctx) {
2328 		raw_spin_lock(&task_ctx->lock);
2329 	}
2330 
2331 	if (reprogram) {
2332 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2333 		add_event_to_ctx(event, ctx);
2334 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2335 	} else {
2336 		add_event_to_ctx(event, ctx);
2337 	}
2338 
2339 unlock:
2340 	perf_ctx_unlock(cpuctx, task_ctx);
2341 
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Attach a performance event to a context.
2347  *
2348  * Very similar to event_function_call, see comment there.
2349  */
2350 static void
2351 perf_install_in_context(struct perf_event_context *ctx,
2352 			struct perf_event *event,
2353 			int cpu)
2354 {
2355 	struct task_struct *task = READ_ONCE(ctx->task);
2356 
2357 	lockdep_assert_held(&ctx->mutex);
2358 
2359 	if (event->cpu != -1)
2360 		event->cpu = cpu;
2361 
2362 	/*
2363 	 * Ensures that if we can observe event->ctx, both the event and ctx
2364 	 * will be 'complete'. See perf_iterate_sb_cpu().
2365 	 */
2366 	smp_store_release(&event->ctx, ctx);
2367 
2368 	if (!task) {
2369 		cpu_function_call(cpu, __perf_install_in_context, event);
2370 		return;
2371 	}
2372 
2373 	/*
2374 	 * Should not happen, we validate the ctx is still alive before calling.
2375 	 */
2376 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2377 		return;
2378 
2379 	/*
2380 	 * Installing events is tricky because we cannot rely on ctx->is_active
2381 	 * to be set in case this is the nr_events 0 -> 1 transition.
2382 	 *
2383 	 * Instead we use task_curr(), which tells us if the task is running.
2384 	 * However, since we use task_curr() outside of rq::lock, we can race
2385 	 * against the actual state. This means the result can be wrong.
2386 	 *
2387 	 * If we get a false positive, we retry, this is harmless.
2388 	 *
2389 	 * If we get a false negative, things are complicated. If we are after
2390 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2391 	 * value must be correct. If we're before, it doesn't matter since
2392 	 * perf_event_context_sched_in() will program the counter.
2393 	 *
2394 	 * However, this hinges on the remote context switch having observed
2395 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2396 	 * ctx::lock in perf_event_context_sched_in().
2397 	 *
2398 	 * We do this by task_function_call(), if the IPI fails to hit the task
2399 	 * we know any future context switch of task must see the
2400 	 * perf_event_ctpx[] store.
2401 	 */
2402 
2403 	/*
2404 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2405 	 * task_cpu() load, such that if the IPI then does not find the task
2406 	 * running, a future context switch of that task must observe the
2407 	 * store.
2408 	 */
2409 	smp_mb();
2410 again:
2411 	if (!task_function_call(task, __perf_install_in_context, event))
2412 		return;
2413 
2414 	raw_spin_lock_irq(&ctx->lock);
2415 	task = ctx->task;
2416 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2417 		/*
2418 		 * Cannot happen because we already checked above (which also
2419 		 * cannot happen), and we hold ctx->mutex, which serializes us
2420 		 * against perf_event_exit_task_context().
2421 		 */
2422 		raw_spin_unlock_irq(&ctx->lock);
2423 		return;
2424 	}
2425 	/*
2426 	 * If the task is not running, ctx->lock will avoid it becoming so,
2427 	 * thus we can safely install the event.
2428 	 */
2429 	if (task_curr(task)) {
2430 		raw_spin_unlock_irq(&ctx->lock);
2431 		goto again;
2432 	}
2433 	add_event_to_ctx(event, ctx);
2434 	raw_spin_unlock_irq(&ctx->lock);
2435 }
2436 
2437 /*
2438  * Cross CPU call to enable a performance event
2439  */
2440 static void __perf_event_enable(struct perf_event *event,
2441 				struct perf_cpu_context *cpuctx,
2442 				struct perf_event_context *ctx,
2443 				void *info)
2444 {
2445 	struct perf_event *leader = event->group_leader;
2446 	struct perf_event_context *task_ctx;
2447 
2448 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2449 	    event->state <= PERF_EVENT_STATE_ERROR)
2450 		return;
2451 
2452 	if (ctx->is_active)
2453 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2454 
2455 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2456 
2457 	if (!ctx->is_active)
2458 		return;
2459 
2460 	if (!event_filter_match(event)) {
2461 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2462 		return;
2463 	}
2464 
2465 	/*
2466 	 * If the event is in a group and isn't the group leader,
2467 	 * then don't put it on unless the group is on.
2468 	 */
2469 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2470 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2471 		return;
2472 	}
2473 
2474 	task_ctx = cpuctx->task_ctx;
2475 	if (ctx->task)
2476 		WARN_ON_ONCE(task_ctx != ctx);
2477 
2478 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2479 }
2480 
2481 /*
2482  * Enable a event.
2483  *
2484  * If event->ctx is a cloned context, callers must make sure that
2485  * every task struct that event->ctx->task could possibly point to
2486  * remains valid.  This condition is satisfied when called through
2487  * perf_event_for_each_child or perf_event_for_each as described
2488  * for perf_event_disable.
2489  */
2490 static void _perf_event_enable(struct perf_event *event)
2491 {
2492 	struct perf_event_context *ctx = event->ctx;
2493 
2494 	raw_spin_lock_irq(&ctx->lock);
2495 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2496 	    event->state <  PERF_EVENT_STATE_ERROR) {
2497 		raw_spin_unlock_irq(&ctx->lock);
2498 		return;
2499 	}
2500 
2501 	/*
2502 	 * If the event is in error state, clear that first.
2503 	 *
2504 	 * That way, if we see the event in error state below, we know that it
2505 	 * has gone back into error state, as distinct from the task having
2506 	 * been scheduled away before the cross-call arrived.
2507 	 */
2508 	if (event->state == PERF_EVENT_STATE_ERROR)
2509 		event->state = PERF_EVENT_STATE_OFF;
2510 	raw_spin_unlock_irq(&ctx->lock);
2511 
2512 	event_function_call(event, __perf_event_enable, NULL);
2513 }
2514 
2515 /*
2516  * See perf_event_disable();
2517  */
2518 void perf_event_enable(struct perf_event *event)
2519 {
2520 	struct perf_event_context *ctx;
2521 
2522 	ctx = perf_event_ctx_lock(event);
2523 	_perf_event_enable(event);
2524 	perf_event_ctx_unlock(event, ctx);
2525 }
2526 EXPORT_SYMBOL_GPL(perf_event_enable);
2527 
2528 struct stop_event_data {
2529 	struct perf_event	*event;
2530 	unsigned int		restart;
2531 };
2532 
2533 static int __perf_event_stop(void *info)
2534 {
2535 	struct stop_event_data *sd = info;
2536 	struct perf_event *event = sd->event;
2537 
2538 	/* if it's already INACTIVE, do nothing */
2539 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2540 		return 0;
2541 
2542 	/* matches smp_wmb() in event_sched_in() */
2543 	smp_rmb();
2544 
2545 	/*
2546 	 * There is a window with interrupts enabled before we get here,
2547 	 * so we need to check again lest we try to stop another CPU's event.
2548 	 */
2549 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2550 		return -EAGAIN;
2551 
2552 	event->pmu->stop(event, PERF_EF_UPDATE);
2553 
2554 	/*
2555 	 * May race with the actual stop (through perf_pmu_output_stop()),
2556 	 * but it is only used for events with AUX ring buffer, and such
2557 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2558 	 * see comments in perf_aux_output_begin().
2559 	 *
2560 	 * Since this is happening on a event-local CPU, no trace is lost
2561 	 * while restarting.
2562 	 */
2563 	if (sd->restart)
2564 		event->pmu->start(event, 0);
2565 
2566 	return 0;
2567 }
2568 
2569 static int perf_event_stop(struct perf_event *event, int restart)
2570 {
2571 	struct stop_event_data sd = {
2572 		.event		= event,
2573 		.restart	= restart,
2574 	};
2575 	int ret = 0;
2576 
2577 	do {
2578 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579 			return 0;
2580 
2581 		/* matches smp_wmb() in event_sched_in() */
2582 		smp_rmb();
2583 
2584 		/*
2585 		 * We only want to restart ACTIVE events, so if the event goes
2586 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2587 		 * fall through with ret==-ENXIO.
2588 		 */
2589 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2590 					__perf_event_stop, &sd);
2591 	} while (ret == -EAGAIN);
2592 
2593 	return ret;
2594 }
2595 
2596 /*
2597  * In order to contain the amount of racy and tricky in the address filter
2598  * configuration management, it is a two part process:
2599  *
2600  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2601  *      we update the addresses of corresponding vmas in
2602  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2603  * (p2) when an event is scheduled in (pmu::add), it calls
2604  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2605  *      if the generation has changed since the previous call.
2606  *
2607  * If (p1) happens while the event is active, we restart it to force (p2).
2608  *
2609  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2610  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2611  *     ioctl;
2612  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2613  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2614  *     for reading;
2615  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2616  *     of exec.
2617  */
2618 void perf_event_addr_filters_sync(struct perf_event *event)
2619 {
2620 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2621 
2622 	if (!has_addr_filter(event))
2623 		return;
2624 
2625 	raw_spin_lock(&ifh->lock);
2626 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2627 		event->pmu->addr_filters_sync(event);
2628 		event->hw.addr_filters_gen = event->addr_filters_gen;
2629 	}
2630 	raw_spin_unlock(&ifh->lock);
2631 }
2632 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2633 
2634 static int _perf_event_refresh(struct perf_event *event, int refresh)
2635 {
2636 	/*
2637 	 * not supported on inherited events
2638 	 */
2639 	if (event->attr.inherit || !is_sampling_event(event))
2640 		return -EINVAL;
2641 
2642 	atomic_add(refresh, &event->event_limit);
2643 	_perf_event_enable(event);
2644 
2645 	return 0;
2646 }
2647 
2648 /*
2649  * See perf_event_disable()
2650  */
2651 int perf_event_refresh(struct perf_event *event, int refresh)
2652 {
2653 	struct perf_event_context *ctx;
2654 	int ret;
2655 
2656 	ctx = perf_event_ctx_lock(event);
2657 	ret = _perf_event_refresh(event, refresh);
2658 	perf_event_ctx_unlock(event, ctx);
2659 
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(perf_event_refresh);
2663 
2664 static void ctx_sched_out(struct perf_event_context *ctx,
2665 			  struct perf_cpu_context *cpuctx,
2666 			  enum event_type_t event_type)
2667 {
2668 	int is_active = ctx->is_active;
2669 	struct perf_event *event;
2670 
2671 	lockdep_assert_held(&ctx->lock);
2672 
2673 	if (likely(!ctx->nr_events)) {
2674 		/*
2675 		 * See __perf_remove_from_context().
2676 		 */
2677 		WARN_ON_ONCE(ctx->is_active);
2678 		if (ctx->task)
2679 			WARN_ON_ONCE(cpuctx->task_ctx);
2680 		return;
2681 	}
2682 
2683 	ctx->is_active &= ~event_type;
2684 	if (!(ctx->is_active & EVENT_ALL))
2685 		ctx->is_active = 0;
2686 
2687 	if (ctx->task) {
2688 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2689 		if (!ctx->is_active)
2690 			cpuctx->task_ctx = NULL;
2691 	}
2692 
2693 	/*
2694 	 * Always update time if it was set; not only when it changes.
2695 	 * Otherwise we can 'forget' to update time for any but the last
2696 	 * context we sched out. For example:
2697 	 *
2698 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2699 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2700 	 *
2701 	 * would only update time for the pinned events.
2702 	 */
2703 	if (is_active & EVENT_TIME) {
2704 		/* update (and stop) ctx time */
2705 		update_context_time(ctx);
2706 		update_cgrp_time_from_cpuctx(cpuctx);
2707 	}
2708 
2709 	is_active ^= ctx->is_active; /* changed bits */
2710 
2711 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2712 		return;
2713 
2714 	perf_pmu_disable(ctx->pmu);
2715 	if (is_active & EVENT_PINNED) {
2716 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2717 			group_sched_out(event, cpuctx, ctx);
2718 	}
2719 
2720 	if (is_active & EVENT_FLEXIBLE) {
2721 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2722 			group_sched_out(event, cpuctx, ctx);
2723 	}
2724 	perf_pmu_enable(ctx->pmu);
2725 }
2726 
2727 /*
2728  * Test whether two contexts are equivalent, i.e. whether they have both been
2729  * cloned from the same version of the same context.
2730  *
2731  * Equivalence is measured using a generation number in the context that is
2732  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2733  * and list_del_event().
2734  */
2735 static int context_equiv(struct perf_event_context *ctx1,
2736 			 struct perf_event_context *ctx2)
2737 {
2738 	lockdep_assert_held(&ctx1->lock);
2739 	lockdep_assert_held(&ctx2->lock);
2740 
2741 	/* Pinning disables the swap optimization */
2742 	if (ctx1->pin_count || ctx2->pin_count)
2743 		return 0;
2744 
2745 	/* If ctx1 is the parent of ctx2 */
2746 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2747 		return 1;
2748 
2749 	/* If ctx2 is the parent of ctx1 */
2750 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2751 		return 1;
2752 
2753 	/*
2754 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2755 	 * hierarchy, see perf_event_init_context().
2756 	 */
2757 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2758 			ctx1->parent_gen == ctx2->parent_gen)
2759 		return 1;
2760 
2761 	/* Unmatched */
2762 	return 0;
2763 }
2764 
2765 static void __perf_event_sync_stat(struct perf_event *event,
2766 				     struct perf_event *next_event)
2767 {
2768 	u64 value;
2769 
2770 	if (!event->attr.inherit_stat)
2771 		return;
2772 
2773 	/*
2774 	 * Update the event value, we cannot use perf_event_read()
2775 	 * because we're in the middle of a context switch and have IRQs
2776 	 * disabled, which upsets smp_call_function_single(), however
2777 	 * we know the event must be on the current CPU, therefore we
2778 	 * don't need to use it.
2779 	 */
2780 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2781 		event->pmu->read(event);
2782 
2783 	perf_event_update_time(event);
2784 
2785 	/*
2786 	 * In order to keep per-task stats reliable we need to flip the event
2787 	 * values when we flip the contexts.
2788 	 */
2789 	value = local64_read(&next_event->count);
2790 	value = local64_xchg(&event->count, value);
2791 	local64_set(&next_event->count, value);
2792 
2793 	swap(event->total_time_enabled, next_event->total_time_enabled);
2794 	swap(event->total_time_running, next_event->total_time_running);
2795 
2796 	/*
2797 	 * Since we swizzled the values, update the user visible data too.
2798 	 */
2799 	perf_event_update_userpage(event);
2800 	perf_event_update_userpage(next_event);
2801 }
2802 
2803 static void perf_event_sync_stat(struct perf_event_context *ctx,
2804 				   struct perf_event_context *next_ctx)
2805 {
2806 	struct perf_event *event, *next_event;
2807 
2808 	if (!ctx->nr_stat)
2809 		return;
2810 
2811 	update_context_time(ctx);
2812 
2813 	event = list_first_entry(&ctx->event_list,
2814 				   struct perf_event, event_entry);
2815 
2816 	next_event = list_first_entry(&next_ctx->event_list,
2817 					struct perf_event, event_entry);
2818 
2819 	while (&event->event_entry != &ctx->event_list &&
2820 	       &next_event->event_entry != &next_ctx->event_list) {
2821 
2822 		__perf_event_sync_stat(event, next_event);
2823 
2824 		event = list_next_entry(event, event_entry);
2825 		next_event = list_next_entry(next_event, event_entry);
2826 	}
2827 }
2828 
2829 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2830 					 struct task_struct *next)
2831 {
2832 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2833 	struct perf_event_context *next_ctx;
2834 	struct perf_event_context *parent, *next_parent;
2835 	struct perf_cpu_context *cpuctx;
2836 	int do_switch = 1;
2837 
2838 	if (likely(!ctx))
2839 		return;
2840 
2841 	cpuctx = __get_cpu_context(ctx);
2842 	if (!cpuctx->task_ctx)
2843 		return;
2844 
2845 	rcu_read_lock();
2846 	next_ctx = next->perf_event_ctxp[ctxn];
2847 	if (!next_ctx)
2848 		goto unlock;
2849 
2850 	parent = rcu_dereference(ctx->parent_ctx);
2851 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2852 
2853 	/* If neither context have a parent context; they cannot be clones. */
2854 	if (!parent && !next_parent)
2855 		goto unlock;
2856 
2857 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2858 		/*
2859 		 * Looks like the two contexts are clones, so we might be
2860 		 * able to optimize the context switch.  We lock both
2861 		 * contexts and check that they are clones under the
2862 		 * lock (including re-checking that neither has been
2863 		 * uncloned in the meantime).  It doesn't matter which
2864 		 * order we take the locks because no other cpu could
2865 		 * be trying to lock both of these tasks.
2866 		 */
2867 		raw_spin_lock(&ctx->lock);
2868 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2869 		if (context_equiv(ctx, next_ctx)) {
2870 			WRITE_ONCE(ctx->task, next);
2871 			WRITE_ONCE(next_ctx->task, task);
2872 
2873 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2874 
2875 			/*
2876 			 * RCU_INIT_POINTER here is safe because we've not
2877 			 * modified the ctx and the above modification of
2878 			 * ctx->task and ctx->task_ctx_data are immaterial
2879 			 * since those values are always verified under
2880 			 * ctx->lock which we're now holding.
2881 			 */
2882 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2883 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2884 
2885 			do_switch = 0;
2886 
2887 			perf_event_sync_stat(ctx, next_ctx);
2888 		}
2889 		raw_spin_unlock(&next_ctx->lock);
2890 		raw_spin_unlock(&ctx->lock);
2891 	}
2892 unlock:
2893 	rcu_read_unlock();
2894 
2895 	if (do_switch) {
2896 		raw_spin_lock(&ctx->lock);
2897 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2898 		raw_spin_unlock(&ctx->lock);
2899 	}
2900 }
2901 
2902 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2903 
2904 void perf_sched_cb_dec(struct pmu *pmu)
2905 {
2906 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2907 
2908 	this_cpu_dec(perf_sched_cb_usages);
2909 
2910 	if (!--cpuctx->sched_cb_usage)
2911 		list_del(&cpuctx->sched_cb_entry);
2912 }
2913 
2914 
2915 void perf_sched_cb_inc(struct pmu *pmu)
2916 {
2917 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2918 
2919 	if (!cpuctx->sched_cb_usage++)
2920 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2921 
2922 	this_cpu_inc(perf_sched_cb_usages);
2923 }
2924 
2925 /*
2926  * This function provides the context switch callback to the lower code
2927  * layer. It is invoked ONLY when the context switch callback is enabled.
2928  *
2929  * This callback is relevant even to per-cpu events; for example multi event
2930  * PEBS requires this to provide PID/TID information. This requires we flush
2931  * all queued PEBS records before we context switch to a new task.
2932  */
2933 static void perf_pmu_sched_task(struct task_struct *prev,
2934 				struct task_struct *next,
2935 				bool sched_in)
2936 {
2937 	struct perf_cpu_context *cpuctx;
2938 	struct pmu *pmu;
2939 
2940 	if (prev == next)
2941 		return;
2942 
2943 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2944 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2945 
2946 		if (WARN_ON_ONCE(!pmu->sched_task))
2947 			continue;
2948 
2949 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2950 		perf_pmu_disable(pmu);
2951 
2952 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2953 
2954 		perf_pmu_enable(pmu);
2955 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2956 	}
2957 }
2958 
2959 static void perf_event_switch(struct task_struct *task,
2960 			      struct task_struct *next_prev, bool sched_in);
2961 
2962 #define for_each_task_context_nr(ctxn)					\
2963 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2964 
2965 /*
2966  * Called from scheduler to remove the events of the current task,
2967  * with interrupts disabled.
2968  *
2969  * We stop each event and update the event value in event->count.
2970  *
2971  * This does not protect us against NMI, but disable()
2972  * sets the disabled bit in the control field of event _before_
2973  * accessing the event control register. If a NMI hits, then it will
2974  * not restart the event.
2975  */
2976 void __perf_event_task_sched_out(struct task_struct *task,
2977 				 struct task_struct *next)
2978 {
2979 	int ctxn;
2980 
2981 	if (__this_cpu_read(perf_sched_cb_usages))
2982 		perf_pmu_sched_task(task, next, false);
2983 
2984 	if (atomic_read(&nr_switch_events))
2985 		perf_event_switch(task, next, false);
2986 
2987 	for_each_task_context_nr(ctxn)
2988 		perf_event_context_sched_out(task, ctxn, next);
2989 
2990 	/*
2991 	 * if cgroup events exist on this CPU, then we need
2992 	 * to check if we have to switch out PMU state.
2993 	 * cgroup event are system-wide mode only
2994 	 */
2995 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2996 		perf_cgroup_sched_out(task, next);
2997 }
2998 
2999 /*
3000  * Called with IRQs disabled
3001  */
3002 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3003 			      enum event_type_t event_type)
3004 {
3005 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3006 }
3007 
3008 static void
3009 ctx_pinned_sched_in(struct perf_event_context *ctx,
3010 		    struct perf_cpu_context *cpuctx)
3011 {
3012 	struct perf_event *event;
3013 
3014 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3015 		if (event->state <= PERF_EVENT_STATE_OFF)
3016 			continue;
3017 		if (!event_filter_match(event))
3018 			continue;
3019 
3020 		if (group_can_go_on(event, cpuctx, 1))
3021 			group_sched_in(event, cpuctx, ctx);
3022 
3023 		/*
3024 		 * If this pinned group hasn't been scheduled,
3025 		 * put it in error state.
3026 		 */
3027 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3028 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3029 	}
3030 }
3031 
3032 static void
3033 ctx_flexible_sched_in(struct perf_event_context *ctx,
3034 		      struct perf_cpu_context *cpuctx)
3035 {
3036 	struct perf_event *event;
3037 	int can_add_hw = 1;
3038 
3039 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3040 		/* Ignore events in OFF or ERROR state */
3041 		if (event->state <= PERF_EVENT_STATE_OFF)
3042 			continue;
3043 		/*
3044 		 * Listen to the 'cpu' scheduling filter constraint
3045 		 * of events:
3046 		 */
3047 		if (!event_filter_match(event))
3048 			continue;
3049 
3050 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3051 			if (group_sched_in(event, cpuctx, ctx))
3052 				can_add_hw = 0;
3053 		}
3054 	}
3055 }
3056 
3057 static void
3058 ctx_sched_in(struct perf_event_context *ctx,
3059 	     struct perf_cpu_context *cpuctx,
3060 	     enum event_type_t event_type,
3061 	     struct task_struct *task)
3062 {
3063 	int is_active = ctx->is_active;
3064 	u64 now;
3065 
3066 	lockdep_assert_held(&ctx->lock);
3067 
3068 	if (likely(!ctx->nr_events))
3069 		return;
3070 
3071 	ctx->is_active |= (event_type | EVENT_TIME);
3072 	if (ctx->task) {
3073 		if (!is_active)
3074 			cpuctx->task_ctx = ctx;
3075 		else
3076 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3077 	}
3078 
3079 	is_active ^= ctx->is_active; /* changed bits */
3080 
3081 	if (is_active & EVENT_TIME) {
3082 		/* start ctx time */
3083 		now = perf_clock();
3084 		ctx->timestamp = now;
3085 		perf_cgroup_set_timestamp(task, ctx);
3086 	}
3087 
3088 	/*
3089 	 * First go through the list and put on any pinned groups
3090 	 * in order to give them the best chance of going on.
3091 	 */
3092 	if (is_active & EVENT_PINNED)
3093 		ctx_pinned_sched_in(ctx, cpuctx);
3094 
3095 	/* Then walk through the lower prio flexible groups */
3096 	if (is_active & EVENT_FLEXIBLE)
3097 		ctx_flexible_sched_in(ctx, cpuctx);
3098 }
3099 
3100 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3101 			     enum event_type_t event_type,
3102 			     struct task_struct *task)
3103 {
3104 	struct perf_event_context *ctx = &cpuctx->ctx;
3105 
3106 	ctx_sched_in(ctx, cpuctx, event_type, task);
3107 }
3108 
3109 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3110 					struct task_struct *task)
3111 {
3112 	struct perf_cpu_context *cpuctx;
3113 
3114 	cpuctx = __get_cpu_context(ctx);
3115 	if (cpuctx->task_ctx == ctx)
3116 		return;
3117 
3118 	perf_ctx_lock(cpuctx, ctx);
3119 	/*
3120 	 * We must check ctx->nr_events while holding ctx->lock, such
3121 	 * that we serialize against perf_install_in_context().
3122 	 */
3123 	if (!ctx->nr_events)
3124 		goto unlock;
3125 
3126 	perf_pmu_disable(ctx->pmu);
3127 	/*
3128 	 * We want to keep the following priority order:
3129 	 * cpu pinned (that don't need to move), task pinned,
3130 	 * cpu flexible, task flexible.
3131 	 *
3132 	 * However, if task's ctx is not carrying any pinned
3133 	 * events, no need to flip the cpuctx's events around.
3134 	 */
3135 	if (!list_empty(&ctx->pinned_groups))
3136 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3137 	perf_event_sched_in(cpuctx, ctx, task);
3138 	perf_pmu_enable(ctx->pmu);
3139 
3140 unlock:
3141 	perf_ctx_unlock(cpuctx, ctx);
3142 }
3143 
3144 /*
3145  * Called from scheduler to add the events of the current task
3146  * with interrupts disabled.
3147  *
3148  * We restore the event value and then enable it.
3149  *
3150  * This does not protect us against NMI, but enable()
3151  * sets the enabled bit in the control field of event _before_
3152  * accessing the event control register. If a NMI hits, then it will
3153  * keep the event running.
3154  */
3155 void __perf_event_task_sched_in(struct task_struct *prev,
3156 				struct task_struct *task)
3157 {
3158 	struct perf_event_context *ctx;
3159 	int ctxn;
3160 
3161 	/*
3162 	 * If cgroup events exist on this CPU, then we need to check if we have
3163 	 * to switch in PMU state; cgroup event are system-wide mode only.
3164 	 *
3165 	 * Since cgroup events are CPU events, we must schedule these in before
3166 	 * we schedule in the task events.
3167 	 */
3168 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3169 		perf_cgroup_sched_in(prev, task);
3170 
3171 	for_each_task_context_nr(ctxn) {
3172 		ctx = task->perf_event_ctxp[ctxn];
3173 		if (likely(!ctx))
3174 			continue;
3175 
3176 		perf_event_context_sched_in(ctx, task);
3177 	}
3178 
3179 	if (atomic_read(&nr_switch_events))
3180 		perf_event_switch(task, prev, true);
3181 
3182 	if (__this_cpu_read(perf_sched_cb_usages))
3183 		perf_pmu_sched_task(prev, task, true);
3184 }
3185 
3186 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3187 {
3188 	u64 frequency = event->attr.sample_freq;
3189 	u64 sec = NSEC_PER_SEC;
3190 	u64 divisor, dividend;
3191 
3192 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3193 
3194 	count_fls = fls64(count);
3195 	nsec_fls = fls64(nsec);
3196 	frequency_fls = fls64(frequency);
3197 	sec_fls = 30;
3198 
3199 	/*
3200 	 * We got @count in @nsec, with a target of sample_freq HZ
3201 	 * the target period becomes:
3202 	 *
3203 	 *             @count * 10^9
3204 	 * period = -------------------
3205 	 *          @nsec * sample_freq
3206 	 *
3207 	 */
3208 
3209 	/*
3210 	 * Reduce accuracy by one bit such that @a and @b converge
3211 	 * to a similar magnitude.
3212 	 */
3213 #define REDUCE_FLS(a, b)		\
3214 do {					\
3215 	if (a##_fls > b##_fls) {	\
3216 		a >>= 1;		\
3217 		a##_fls--;		\
3218 	} else {			\
3219 		b >>= 1;		\
3220 		b##_fls--;		\
3221 	}				\
3222 } while (0)
3223 
3224 	/*
3225 	 * Reduce accuracy until either term fits in a u64, then proceed with
3226 	 * the other, so that finally we can do a u64/u64 division.
3227 	 */
3228 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3229 		REDUCE_FLS(nsec, frequency);
3230 		REDUCE_FLS(sec, count);
3231 	}
3232 
3233 	if (count_fls + sec_fls > 64) {
3234 		divisor = nsec * frequency;
3235 
3236 		while (count_fls + sec_fls > 64) {
3237 			REDUCE_FLS(count, sec);
3238 			divisor >>= 1;
3239 		}
3240 
3241 		dividend = count * sec;
3242 	} else {
3243 		dividend = count * sec;
3244 
3245 		while (nsec_fls + frequency_fls > 64) {
3246 			REDUCE_FLS(nsec, frequency);
3247 			dividend >>= 1;
3248 		}
3249 
3250 		divisor = nsec * frequency;
3251 	}
3252 
3253 	if (!divisor)
3254 		return dividend;
3255 
3256 	return div64_u64(dividend, divisor);
3257 }
3258 
3259 static DEFINE_PER_CPU(int, perf_throttled_count);
3260 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3261 
3262 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3263 {
3264 	struct hw_perf_event *hwc = &event->hw;
3265 	s64 period, sample_period;
3266 	s64 delta;
3267 
3268 	period = perf_calculate_period(event, nsec, count);
3269 
3270 	delta = (s64)(period - hwc->sample_period);
3271 	delta = (delta + 7) / 8; /* low pass filter */
3272 
3273 	sample_period = hwc->sample_period + delta;
3274 
3275 	if (!sample_period)
3276 		sample_period = 1;
3277 
3278 	hwc->sample_period = sample_period;
3279 
3280 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3281 		if (disable)
3282 			event->pmu->stop(event, PERF_EF_UPDATE);
3283 
3284 		local64_set(&hwc->period_left, 0);
3285 
3286 		if (disable)
3287 			event->pmu->start(event, PERF_EF_RELOAD);
3288 	}
3289 }
3290 
3291 /*
3292  * combine freq adjustment with unthrottling to avoid two passes over the
3293  * events. At the same time, make sure, having freq events does not change
3294  * the rate of unthrottling as that would introduce bias.
3295  */
3296 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3297 					   int needs_unthr)
3298 {
3299 	struct perf_event *event;
3300 	struct hw_perf_event *hwc;
3301 	u64 now, period = TICK_NSEC;
3302 	s64 delta;
3303 
3304 	/*
3305 	 * only need to iterate over all events iff:
3306 	 * - context have events in frequency mode (needs freq adjust)
3307 	 * - there are events to unthrottle on this cpu
3308 	 */
3309 	if (!(ctx->nr_freq || needs_unthr))
3310 		return;
3311 
3312 	raw_spin_lock(&ctx->lock);
3313 	perf_pmu_disable(ctx->pmu);
3314 
3315 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3316 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3317 			continue;
3318 
3319 		if (!event_filter_match(event))
3320 			continue;
3321 
3322 		perf_pmu_disable(event->pmu);
3323 
3324 		hwc = &event->hw;
3325 
3326 		if (hwc->interrupts == MAX_INTERRUPTS) {
3327 			hwc->interrupts = 0;
3328 			perf_log_throttle(event, 1);
3329 			event->pmu->start(event, 0);
3330 		}
3331 
3332 		if (!event->attr.freq || !event->attr.sample_freq)
3333 			goto next;
3334 
3335 		/*
3336 		 * stop the event and update event->count
3337 		 */
3338 		event->pmu->stop(event, PERF_EF_UPDATE);
3339 
3340 		now = local64_read(&event->count);
3341 		delta = now - hwc->freq_count_stamp;
3342 		hwc->freq_count_stamp = now;
3343 
3344 		/*
3345 		 * restart the event
3346 		 * reload only if value has changed
3347 		 * we have stopped the event so tell that
3348 		 * to perf_adjust_period() to avoid stopping it
3349 		 * twice.
3350 		 */
3351 		if (delta > 0)
3352 			perf_adjust_period(event, period, delta, false);
3353 
3354 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3355 	next:
3356 		perf_pmu_enable(event->pmu);
3357 	}
3358 
3359 	perf_pmu_enable(ctx->pmu);
3360 	raw_spin_unlock(&ctx->lock);
3361 }
3362 
3363 /*
3364  * Round-robin a context's events:
3365  */
3366 static void rotate_ctx(struct perf_event_context *ctx)
3367 {
3368 	/*
3369 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3370 	 * disabled by the inheritance code.
3371 	 */
3372 	if (!ctx->rotate_disable)
3373 		list_rotate_left(&ctx->flexible_groups);
3374 }
3375 
3376 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3377 {
3378 	struct perf_event_context *ctx = NULL;
3379 	int rotate = 0;
3380 
3381 	if (cpuctx->ctx.nr_events) {
3382 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3383 			rotate = 1;
3384 	}
3385 
3386 	ctx = cpuctx->task_ctx;
3387 	if (ctx && ctx->nr_events) {
3388 		if (ctx->nr_events != ctx->nr_active)
3389 			rotate = 1;
3390 	}
3391 
3392 	if (!rotate)
3393 		goto done;
3394 
3395 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3396 	perf_pmu_disable(cpuctx->ctx.pmu);
3397 
3398 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3399 	if (ctx)
3400 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3401 
3402 	rotate_ctx(&cpuctx->ctx);
3403 	if (ctx)
3404 		rotate_ctx(ctx);
3405 
3406 	perf_event_sched_in(cpuctx, ctx, current);
3407 
3408 	perf_pmu_enable(cpuctx->ctx.pmu);
3409 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3410 done:
3411 
3412 	return rotate;
3413 }
3414 
3415 void perf_event_task_tick(void)
3416 {
3417 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3418 	struct perf_event_context *ctx, *tmp;
3419 	int throttled;
3420 
3421 	lockdep_assert_irqs_disabled();
3422 
3423 	__this_cpu_inc(perf_throttled_seq);
3424 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3425 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3426 
3427 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3428 		perf_adjust_freq_unthr_context(ctx, throttled);
3429 }
3430 
3431 static int event_enable_on_exec(struct perf_event *event,
3432 				struct perf_event_context *ctx)
3433 {
3434 	if (!event->attr.enable_on_exec)
3435 		return 0;
3436 
3437 	event->attr.enable_on_exec = 0;
3438 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3439 		return 0;
3440 
3441 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3442 
3443 	return 1;
3444 }
3445 
3446 /*
3447  * Enable all of a task's events that have been marked enable-on-exec.
3448  * This expects task == current.
3449  */
3450 static void perf_event_enable_on_exec(int ctxn)
3451 {
3452 	struct perf_event_context *ctx, *clone_ctx = NULL;
3453 	enum event_type_t event_type = 0;
3454 	struct perf_cpu_context *cpuctx;
3455 	struct perf_event *event;
3456 	unsigned long flags;
3457 	int enabled = 0;
3458 
3459 	local_irq_save(flags);
3460 	ctx = current->perf_event_ctxp[ctxn];
3461 	if (!ctx || !ctx->nr_events)
3462 		goto out;
3463 
3464 	cpuctx = __get_cpu_context(ctx);
3465 	perf_ctx_lock(cpuctx, ctx);
3466 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3467 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3468 		enabled |= event_enable_on_exec(event, ctx);
3469 		event_type |= get_event_type(event);
3470 	}
3471 
3472 	/*
3473 	 * Unclone and reschedule this context if we enabled any event.
3474 	 */
3475 	if (enabled) {
3476 		clone_ctx = unclone_ctx(ctx);
3477 		ctx_resched(cpuctx, ctx, event_type);
3478 	} else {
3479 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3480 	}
3481 	perf_ctx_unlock(cpuctx, ctx);
3482 
3483 out:
3484 	local_irq_restore(flags);
3485 
3486 	if (clone_ctx)
3487 		put_ctx(clone_ctx);
3488 }
3489 
3490 struct perf_read_data {
3491 	struct perf_event *event;
3492 	bool group;
3493 	int ret;
3494 };
3495 
3496 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3497 {
3498 	u16 local_pkg, event_pkg;
3499 
3500 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3501 		int local_cpu = smp_processor_id();
3502 
3503 		event_pkg = topology_physical_package_id(event_cpu);
3504 		local_pkg = topology_physical_package_id(local_cpu);
3505 
3506 		if (event_pkg == local_pkg)
3507 			return local_cpu;
3508 	}
3509 
3510 	return event_cpu;
3511 }
3512 
3513 /*
3514  * Cross CPU call to read the hardware event
3515  */
3516 static void __perf_event_read(void *info)
3517 {
3518 	struct perf_read_data *data = info;
3519 	struct perf_event *sub, *event = data->event;
3520 	struct perf_event_context *ctx = event->ctx;
3521 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3522 	struct pmu *pmu = event->pmu;
3523 
3524 	/*
3525 	 * If this is a task context, we need to check whether it is
3526 	 * the current task context of this cpu.  If not it has been
3527 	 * scheduled out before the smp call arrived.  In that case
3528 	 * event->count would have been updated to a recent sample
3529 	 * when the event was scheduled out.
3530 	 */
3531 	if (ctx->task && cpuctx->task_ctx != ctx)
3532 		return;
3533 
3534 	raw_spin_lock(&ctx->lock);
3535 	if (ctx->is_active & EVENT_TIME) {
3536 		update_context_time(ctx);
3537 		update_cgrp_time_from_event(event);
3538 	}
3539 
3540 	perf_event_update_time(event);
3541 	if (data->group)
3542 		perf_event_update_sibling_time(event);
3543 
3544 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3545 		goto unlock;
3546 
3547 	if (!data->group) {
3548 		pmu->read(event);
3549 		data->ret = 0;
3550 		goto unlock;
3551 	}
3552 
3553 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3554 
3555 	pmu->read(event);
3556 
3557 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3558 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3559 			/*
3560 			 * Use sibling's PMU rather than @event's since
3561 			 * sibling could be on different (eg: software) PMU.
3562 			 */
3563 			sub->pmu->read(sub);
3564 		}
3565 	}
3566 
3567 	data->ret = pmu->commit_txn(pmu);
3568 
3569 unlock:
3570 	raw_spin_unlock(&ctx->lock);
3571 }
3572 
3573 static inline u64 perf_event_count(struct perf_event *event)
3574 {
3575 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3576 }
3577 
3578 /*
3579  * NMI-safe method to read a local event, that is an event that
3580  * is:
3581  *   - either for the current task, or for this CPU
3582  *   - does not have inherit set, for inherited task events
3583  *     will not be local and we cannot read them atomically
3584  *   - must not have a pmu::count method
3585  */
3586 int perf_event_read_local(struct perf_event *event, u64 *value,
3587 			  u64 *enabled, u64 *running)
3588 {
3589 	unsigned long flags;
3590 	int ret = 0;
3591 
3592 	/*
3593 	 * Disabling interrupts avoids all counter scheduling (context
3594 	 * switches, timer based rotation and IPIs).
3595 	 */
3596 	local_irq_save(flags);
3597 
3598 	/*
3599 	 * It must not be an event with inherit set, we cannot read
3600 	 * all child counters from atomic context.
3601 	 */
3602 	if (event->attr.inherit) {
3603 		ret = -EOPNOTSUPP;
3604 		goto out;
3605 	}
3606 
3607 	/* If this is a per-task event, it must be for current */
3608 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3609 	    event->hw.target != current) {
3610 		ret = -EINVAL;
3611 		goto out;
3612 	}
3613 
3614 	/* If this is a per-CPU event, it must be for this CPU */
3615 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3616 	    event->cpu != smp_processor_id()) {
3617 		ret = -EINVAL;
3618 		goto out;
3619 	}
3620 
3621 	/*
3622 	 * If the event is currently on this CPU, its either a per-task event,
3623 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3624 	 * oncpu == -1).
3625 	 */
3626 	if (event->oncpu == smp_processor_id())
3627 		event->pmu->read(event);
3628 
3629 	*value = local64_read(&event->count);
3630 	if (enabled || running) {
3631 		u64 now = event->shadow_ctx_time + perf_clock();
3632 		u64 __enabled, __running;
3633 
3634 		__perf_update_times(event, now, &__enabled, &__running);
3635 		if (enabled)
3636 			*enabled = __enabled;
3637 		if (running)
3638 			*running = __running;
3639 	}
3640 out:
3641 	local_irq_restore(flags);
3642 
3643 	return ret;
3644 }
3645 
3646 static int perf_event_read(struct perf_event *event, bool group)
3647 {
3648 	enum perf_event_state state = READ_ONCE(event->state);
3649 	int event_cpu, ret = 0;
3650 
3651 	/*
3652 	 * If event is enabled and currently active on a CPU, update the
3653 	 * value in the event structure:
3654 	 */
3655 again:
3656 	if (state == PERF_EVENT_STATE_ACTIVE) {
3657 		struct perf_read_data data;
3658 
3659 		/*
3660 		 * Orders the ->state and ->oncpu loads such that if we see
3661 		 * ACTIVE we must also see the right ->oncpu.
3662 		 *
3663 		 * Matches the smp_wmb() from event_sched_in().
3664 		 */
3665 		smp_rmb();
3666 
3667 		event_cpu = READ_ONCE(event->oncpu);
3668 		if ((unsigned)event_cpu >= nr_cpu_ids)
3669 			return 0;
3670 
3671 		data = (struct perf_read_data){
3672 			.event = event,
3673 			.group = group,
3674 			.ret = 0,
3675 		};
3676 
3677 		preempt_disable();
3678 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3679 
3680 		/*
3681 		 * Purposely ignore the smp_call_function_single() return
3682 		 * value.
3683 		 *
3684 		 * If event_cpu isn't a valid CPU it means the event got
3685 		 * scheduled out and that will have updated the event count.
3686 		 *
3687 		 * Therefore, either way, we'll have an up-to-date event count
3688 		 * after this.
3689 		 */
3690 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3691 		preempt_enable();
3692 		ret = data.ret;
3693 
3694 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3695 		struct perf_event_context *ctx = event->ctx;
3696 		unsigned long flags;
3697 
3698 		raw_spin_lock_irqsave(&ctx->lock, flags);
3699 		state = event->state;
3700 		if (state != PERF_EVENT_STATE_INACTIVE) {
3701 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3702 			goto again;
3703 		}
3704 
3705 		/*
3706 		 * May read while context is not active (e.g., thread is
3707 		 * blocked), in that case we cannot update context time
3708 		 */
3709 		if (ctx->is_active & EVENT_TIME) {
3710 			update_context_time(ctx);
3711 			update_cgrp_time_from_event(event);
3712 		}
3713 
3714 		perf_event_update_time(event);
3715 		if (group)
3716 			perf_event_update_sibling_time(event);
3717 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3718 	}
3719 
3720 	return ret;
3721 }
3722 
3723 /*
3724  * Initialize the perf_event context in a task_struct:
3725  */
3726 static void __perf_event_init_context(struct perf_event_context *ctx)
3727 {
3728 	raw_spin_lock_init(&ctx->lock);
3729 	mutex_init(&ctx->mutex);
3730 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3731 	INIT_LIST_HEAD(&ctx->pinned_groups);
3732 	INIT_LIST_HEAD(&ctx->flexible_groups);
3733 	INIT_LIST_HEAD(&ctx->event_list);
3734 	atomic_set(&ctx->refcount, 1);
3735 }
3736 
3737 static struct perf_event_context *
3738 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3739 {
3740 	struct perf_event_context *ctx;
3741 
3742 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3743 	if (!ctx)
3744 		return NULL;
3745 
3746 	__perf_event_init_context(ctx);
3747 	if (task) {
3748 		ctx->task = task;
3749 		get_task_struct(task);
3750 	}
3751 	ctx->pmu = pmu;
3752 
3753 	return ctx;
3754 }
3755 
3756 static struct task_struct *
3757 find_lively_task_by_vpid(pid_t vpid)
3758 {
3759 	struct task_struct *task;
3760 
3761 	rcu_read_lock();
3762 	if (!vpid)
3763 		task = current;
3764 	else
3765 		task = find_task_by_vpid(vpid);
3766 	if (task)
3767 		get_task_struct(task);
3768 	rcu_read_unlock();
3769 
3770 	if (!task)
3771 		return ERR_PTR(-ESRCH);
3772 
3773 	return task;
3774 }
3775 
3776 /*
3777  * Returns a matching context with refcount and pincount.
3778  */
3779 static struct perf_event_context *
3780 find_get_context(struct pmu *pmu, struct task_struct *task,
3781 		struct perf_event *event)
3782 {
3783 	struct perf_event_context *ctx, *clone_ctx = NULL;
3784 	struct perf_cpu_context *cpuctx;
3785 	void *task_ctx_data = NULL;
3786 	unsigned long flags;
3787 	int ctxn, err;
3788 	int cpu = event->cpu;
3789 
3790 	if (!task) {
3791 		/* Must be root to operate on a CPU event: */
3792 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3793 			return ERR_PTR(-EACCES);
3794 
3795 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3796 		ctx = &cpuctx->ctx;
3797 		get_ctx(ctx);
3798 		++ctx->pin_count;
3799 
3800 		return ctx;
3801 	}
3802 
3803 	err = -EINVAL;
3804 	ctxn = pmu->task_ctx_nr;
3805 	if (ctxn < 0)
3806 		goto errout;
3807 
3808 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3809 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3810 		if (!task_ctx_data) {
3811 			err = -ENOMEM;
3812 			goto errout;
3813 		}
3814 	}
3815 
3816 retry:
3817 	ctx = perf_lock_task_context(task, ctxn, &flags);
3818 	if (ctx) {
3819 		clone_ctx = unclone_ctx(ctx);
3820 		++ctx->pin_count;
3821 
3822 		if (task_ctx_data && !ctx->task_ctx_data) {
3823 			ctx->task_ctx_data = task_ctx_data;
3824 			task_ctx_data = NULL;
3825 		}
3826 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3827 
3828 		if (clone_ctx)
3829 			put_ctx(clone_ctx);
3830 	} else {
3831 		ctx = alloc_perf_context(pmu, task);
3832 		err = -ENOMEM;
3833 		if (!ctx)
3834 			goto errout;
3835 
3836 		if (task_ctx_data) {
3837 			ctx->task_ctx_data = task_ctx_data;
3838 			task_ctx_data = NULL;
3839 		}
3840 
3841 		err = 0;
3842 		mutex_lock(&task->perf_event_mutex);
3843 		/*
3844 		 * If it has already passed perf_event_exit_task().
3845 		 * we must see PF_EXITING, it takes this mutex too.
3846 		 */
3847 		if (task->flags & PF_EXITING)
3848 			err = -ESRCH;
3849 		else if (task->perf_event_ctxp[ctxn])
3850 			err = -EAGAIN;
3851 		else {
3852 			get_ctx(ctx);
3853 			++ctx->pin_count;
3854 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3855 		}
3856 		mutex_unlock(&task->perf_event_mutex);
3857 
3858 		if (unlikely(err)) {
3859 			put_ctx(ctx);
3860 
3861 			if (err == -EAGAIN)
3862 				goto retry;
3863 			goto errout;
3864 		}
3865 	}
3866 
3867 	kfree(task_ctx_data);
3868 	return ctx;
3869 
3870 errout:
3871 	kfree(task_ctx_data);
3872 	return ERR_PTR(err);
3873 }
3874 
3875 static void perf_event_free_filter(struct perf_event *event);
3876 static void perf_event_free_bpf_prog(struct perf_event *event);
3877 
3878 static void free_event_rcu(struct rcu_head *head)
3879 {
3880 	struct perf_event *event;
3881 
3882 	event = container_of(head, struct perf_event, rcu_head);
3883 	if (event->ns)
3884 		put_pid_ns(event->ns);
3885 	perf_event_free_filter(event);
3886 	kfree(event);
3887 }
3888 
3889 static void ring_buffer_attach(struct perf_event *event,
3890 			       struct ring_buffer *rb);
3891 
3892 static void detach_sb_event(struct perf_event *event)
3893 {
3894 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3895 
3896 	raw_spin_lock(&pel->lock);
3897 	list_del_rcu(&event->sb_list);
3898 	raw_spin_unlock(&pel->lock);
3899 }
3900 
3901 static bool is_sb_event(struct perf_event *event)
3902 {
3903 	struct perf_event_attr *attr = &event->attr;
3904 
3905 	if (event->parent)
3906 		return false;
3907 
3908 	if (event->attach_state & PERF_ATTACH_TASK)
3909 		return false;
3910 
3911 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3912 	    attr->comm || attr->comm_exec ||
3913 	    attr->task ||
3914 	    attr->context_switch)
3915 		return true;
3916 	return false;
3917 }
3918 
3919 static void unaccount_pmu_sb_event(struct perf_event *event)
3920 {
3921 	if (is_sb_event(event))
3922 		detach_sb_event(event);
3923 }
3924 
3925 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3926 {
3927 	if (event->parent)
3928 		return;
3929 
3930 	if (is_cgroup_event(event))
3931 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3932 }
3933 
3934 #ifdef CONFIG_NO_HZ_FULL
3935 static DEFINE_SPINLOCK(nr_freq_lock);
3936 #endif
3937 
3938 static void unaccount_freq_event_nohz(void)
3939 {
3940 #ifdef CONFIG_NO_HZ_FULL
3941 	spin_lock(&nr_freq_lock);
3942 	if (atomic_dec_and_test(&nr_freq_events))
3943 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3944 	spin_unlock(&nr_freq_lock);
3945 #endif
3946 }
3947 
3948 static void unaccount_freq_event(void)
3949 {
3950 	if (tick_nohz_full_enabled())
3951 		unaccount_freq_event_nohz();
3952 	else
3953 		atomic_dec(&nr_freq_events);
3954 }
3955 
3956 static void unaccount_event(struct perf_event *event)
3957 {
3958 	bool dec = false;
3959 
3960 	if (event->parent)
3961 		return;
3962 
3963 	if (event->attach_state & PERF_ATTACH_TASK)
3964 		dec = true;
3965 	if (event->attr.mmap || event->attr.mmap_data)
3966 		atomic_dec(&nr_mmap_events);
3967 	if (event->attr.comm)
3968 		atomic_dec(&nr_comm_events);
3969 	if (event->attr.namespaces)
3970 		atomic_dec(&nr_namespaces_events);
3971 	if (event->attr.task)
3972 		atomic_dec(&nr_task_events);
3973 	if (event->attr.freq)
3974 		unaccount_freq_event();
3975 	if (event->attr.context_switch) {
3976 		dec = true;
3977 		atomic_dec(&nr_switch_events);
3978 	}
3979 	if (is_cgroup_event(event))
3980 		dec = true;
3981 	if (has_branch_stack(event))
3982 		dec = true;
3983 
3984 	if (dec) {
3985 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3986 			schedule_delayed_work(&perf_sched_work, HZ);
3987 	}
3988 
3989 	unaccount_event_cpu(event, event->cpu);
3990 
3991 	unaccount_pmu_sb_event(event);
3992 }
3993 
3994 static void perf_sched_delayed(struct work_struct *work)
3995 {
3996 	mutex_lock(&perf_sched_mutex);
3997 	if (atomic_dec_and_test(&perf_sched_count))
3998 		static_branch_disable(&perf_sched_events);
3999 	mutex_unlock(&perf_sched_mutex);
4000 }
4001 
4002 /*
4003  * The following implement mutual exclusion of events on "exclusive" pmus
4004  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4005  * at a time, so we disallow creating events that might conflict, namely:
4006  *
4007  *  1) cpu-wide events in the presence of per-task events,
4008  *  2) per-task events in the presence of cpu-wide events,
4009  *  3) two matching events on the same context.
4010  *
4011  * The former two cases are handled in the allocation path (perf_event_alloc(),
4012  * _free_event()), the latter -- before the first perf_install_in_context().
4013  */
4014 static int exclusive_event_init(struct perf_event *event)
4015 {
4016 	struct pmu *pmu = event->pmu;
4017 
4018 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4019 		return 0;
4020 
4021 	/*
4022 	 * Prevent co-existence of per-task and cpu-wide events on the
4023 	 * same exclusive pmu.
4024 	 *
4025 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4026 	 * events on this "exclusive" pmu, positive means there are
4027 	 * per-task events.
4028 	 *
4029 	 * Since this is called in perf_event_alloc() path, event::ctx
4030 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4031 	 * to mean "per-task event", because unlike other attach states it
4032 	 * never gets cleared.
4033 	 */
4034 	if (event->attach_state & PERF_ATTACH_TASK) {
4035 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4036 			return -EBUSY;
4037 	} else {
4038 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4039 			return -EBUSY;
4040 	}
4041 
4042 	return 0;
4043 }
4044 
4045 static void exclusive_event_destroy(struct perf_event *event)
4046 {
4047 	struct pmu *pmu = event->pmu;
4048 
4049 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4050 		return;
4051 
4052 	/* see comment in exclusive_event_init() */
4053 	if (event->attach_state & PERF_ATTACH_TASK)
4054 		atomic_dec(&pmu->exclusive_cnt);
4055 	else
4056 		atomic_inc(&pmu->exclusive_cnt);
4057 }
4058 
4059 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4060 {
4061 	if ((e1->pmu == e2->pmu) &&
4062 	    (e1->cpu == e2->cpu ||
4063 	     e1->cpu == -1 ||
4064 	     e2->cpu == -1))
4065 		return true;
4066 	return false;
4067 }
4068 
4069 /* Called under the same ctx::mutex as perf_install_in_context() */
4070 static bool exclusive_event_installable(struct perf_event *event,
4071 					struct perf_event_context *ctx)
4072 {
4073 	struct perf_event *iter_event;
4074 	struct pmu *pmu = event->pmu;
4075 
4076 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4077 		return true;
4078 
4079 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4080 		if (exclusive_event_match(iter_event, event))
4081 			return false;
4082 	}
4083 
4084 	return true;
4085 }
4086 
4087 static void perf_addr_filters_splice(struct perf_event *event,
4088 				       struct list_head *head);
4089 
4090 static void _free_event(struct perf_event *event)
4091 {
4092 	irq_work_sync(&event->pending);
4093 
4094 	unaccount_event(event);
4095 
4096 	if (event->rb) {
4097 		/*
4098 		 * Can happen when we close an event with re-directed output.
4099 		 *
4100 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4101 		 * over us; possibly making our ring_buffer_put() the last.
4102 		 */
4103 		mutex_lock(&event->mmap_mutex);
4104 		ring_buffer_attach(event, NULL);
4105 		mutex_unlock(&event->mmap_mutex);
4106 	}
4107 
4108 	if (is_cgroup_event(event))
4109 		perf_detach_cgroup(event);
4110 
4111 	if (!event->parent) {
4112 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4113 			put_callchain_buffers();
4114 	}
4115 
4116 	perf_event_free_bpf_prog(event);
4117 	perf_addr_filters_splice(event, NULL);
4118 	kfree(event->addr_filters_offs);
4119 
4120 	if (event->destroy)
4121 		event->destroy(event);
4122 
4123 	if (event->ctx)
4124 		put_ctx(event->ctx);
4125 
4126 	exclusive_event_destroy(event);
4127 	module_put(event->pmu->module);
4128 
4129 	call_rcu(&event->rcu_head, free_event_rcu);
4130 }
4131 
4132 /*
4133  * Used to free events which have a known refcount of 1, such as in error paths
4134  * where the event isn't exposed yet and inherited events.
4135  */
4136 static void free_event(struct perf_event *event)
4137 {
4138 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4139 				"unexpected event refcount: %ld; ptr=%p\n",
4140 				atomic_long_read(&event->refcount), event)) {
4141 		/* leak to avoid use-after-free */
4142 		return;
4143 	}
4144 
4145 	_free_event(event);
4146 }
4147 
4148 /*
4149  * Remove user event from the owner task.
4150  */
4151 static void perf_remove_from_owner(struct perf_event *event)
4152 {
4153 	struct task_struct *owner;
4154 
4155 	rcu_read_lock();
4156 	/*
4157 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4158 	 * observe !owner it means the list deletion is complete and we can
4159 	 * indeed free this event, otherwise we need to serialize on
4160 	 * owner->perf_event_mutex.
4161 	 */
4162 	owner = READ_ONCE(event->owner);
4163 	if (owner) {
4164 		/*
4165 		 * Since delayed_put_task_struct() also drops the last
4166 		 * task reference we can safely take a new reference
4167 		 * while holding the rcu_read_lock().
4168 		 */
4169 		get_task_struct(owner);
4170 	}
4171 	rcu_read_unlock();
4172 
4173 	if (owner) {
4174 		/*
4175 		 * If we're here through perf_event_exit_task() we're already
4176 		 * holding ctx->mutex which would be an inversion wrt. the
4177 		 * normal lock order.
4178 		 *
4179 		 * However we can safely take this lock because its the child
4180 		 * ctx->mutex.
4181 		 */
4182 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4183 
4184 		/*
4185 		 * We have to re-check the event->owner field, if it is cleared
4186 		 * we raced with perf_event_exit_task(), acquiring the mutex
4187 		 * ensured they're done, and we can proceed with freeing the
4188 		 * event.
4189 		 */
4190 		if (event->owner) {
4191 			list_del_init(&event->owner_entry);
4192 			smp_store_release(&event->owner, NULL);
4193 		}
4194 		mutex_unlock(&owner->perf_event_mutex);
4195 		put_task_struct(owner);
4196 	}
4197 }
4198 
4199 static void put_event(struct perf_event *event)
4200 {
4201 	if (!atomic_long_dec_and_test(&event->refcount))
4202 		return;
4203 
4204 	_free_event(event);
4205 }
4206 
4207 /*
4208  * Kill an event dead; while event:refcount will preserve the event
4209  * object, it will not preserve its functionality. Once the last 'user'
4210  * gives up the object, we'll destroy the thing.
4211  */
4212 int perf_event_release_kernel(struct perf_event *event)
4213 {
4214 	struct perf_event_context *ctx = event->ctx;
4215 	struct perf_event *child, *tmp;
4216 	LIST_HEAD(free_list);
4217 
4218 	/*
4219 	 * If we got here through err_file: fput(event_file); we will not have
4220 	 * attached to a context yet.
4221 	 */
4222 	if (!ctx) {
4223 		WARN_ON_ONCE(event->attach_state &
4224 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4225 		goto no_ctx;
4226 	}
4227 
4228 	if (!is_kernel_event(event))
4229 		perf_remove_from_owner(event);
4230 
4231 	ctx = perf_event_ctx_lock(event);
4232 	WARN_ON_ONCE(ctx->parent_ctx);
4233 	perf_remove_from_context(event, DETACH_GROUP);
4234 
4235 	raw_spin_lock_irq(&ctx->lock);
4236 	/*
4237 	 * Mark this event as STATE_DEAD, there is no external reference to it
4238 	 * anymore.
4239 	 *
4240 	 * Anybody acquiring event->child_mutex after the below loop _must_
4241 	 * also see this, most importantly inherit_event() which will avoid
4242 	 * placing more children on the list.
4243 	 *
4244 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4245 	 * child events.
4246 	 */
4247 	event->state = PERF_EVENT_STATE_DEAD;
4248 	raw_spin_unlock_irq(&ctx->lock);
4249 
4250 	perf_event_ctx_unlock(event, ctx);
4251 
4252 again:
4253 	mutex_lock(&event->child_mutex);
4254 	list_for_each_entry(child, &event->child_list, child_list) {
4255 
4256 		/*
4257 		 * Cannot change, child events are not migrated, see the
4258 		 * comment with perf_event_ctx_lock_nested().
4259 		 */
4260 		ctx = READ_ONCE(child->ctx);
4261 		/*
4262 		 * Since child_mutex nests inside ctx::mutex, we must jump
4263 		 * through hoops. We start by grabbing a reference on the ctx.
4264 		 *
4265 		 * Since the event cannot get freed while we hold the
4266 		 * child_mutex, the context must also exist and have a !0
4267 		 * reference count.
4268 		 */
4269 		get_ctx(ctx);
4270 
4271 		/*
4272 		 * Now that we have a ctx ref, we can drop child_mutex, and
4273 		 * acquire ctx::mutex without fear of it going away. Then we
4274 		 * can re-acquire child_mutex.
4275 		 */
4276 		mutex_unlock(&event->child_mutex);
4277 		mutex_lock(&ctx->mutex);
4278 		mutex_lock(&event->child_mutex);
4279 
4280 		/*
4281 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4282 		 * state, if child is still the first entry, it didn't get freed
4283 		 * and we can continue doing so.
4284 		 */
4285 		tmp = list_first_entry_or_null(&event->child_list,
4286 					       struct perf_event, child_list);
4287 		if (tmp == child) {
4288 			perf_remove_from_context(child, DETACH_GROUP);
4289 			list_move(&child->child_list, &free_list);
4290 			/*
4291 			 * This matches the refcount bump in inherit_event();
4292 			 * this can't be the last reference.
4293 			 */
4294 			put_event(event);
4295 		}
4296 
4297 		mutex_unlock(&event->child_mutex);
4298 		mutex_unlock(&ctx->mutex);
4299 		put_ctx(ctx);
4300 		goto again;
4301 	}
4302 	mutex_unlock(&event->child_mutex);
4303 
4304 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4305 		list_del(&child->child_list);
4306 		free_event(child);
4307 	}
4308 
4309 no_ctx:
4310 	put_event(event); /* Must be the 'last' reference */
4311 	return 0;
4312 }
4313 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4314 
4315 /*
4316  * Called when the last reference to the file is gone.
4317  */
4318 static int perf_release(struct inode *inode, struct file *file)
4319 {
4320 	perf_event_release_kernel(file->private_data);
4321 	return 0;
4322 }
4323 
4324 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4325 {
4326 	struct perf_event *child;
4327 	u64 total = 0;
4328 
4329 	*enabled = 0;
4330 	*running = 0;
4331 
4332 	mutex_lock(&event->child_mutex);
4333 
4334 	(void)perf_event_read(event, false);
4335 	total += perf_event_count(event);
4336 
4337 	*enabled += event->total_time_enabled +
4338 			atomic64_read(&event->child_total_time_enabled);
4339 	*running += event->total_time_running +
4340 			atomic64_read(&event->child_total_time_running);
4341 
4342 	list_for_each_entry(child, &event->child_list, child_list) {
4343 		(void)perf_event_read(child, false);
4344 		total += perf_event_count(child);
4345 		*enabled += child->total_time_enabled;
4346 		*running += child->total_time_running;
4347 	}
4348 	mutex_unlock(&event->child_mutex);
4349 
4350 	return total;
4351 }
4352 
4353 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4354 {
4355 	struct perf_event_context *ctx;
4356 	u64 count;
4357 
4358 	ctx = perf_event_ctx_lock(event);
4359 	count = __perf_event_read_value(event, enabled, running);
4360 	perf_event_ctx_unlock(event, ctx);
4361 
4362 	return count;
4363 }
4364 EXPORT_SYMBOL_GPL(perf_event_read_value);
4365 
4366 static int __perf_read_group_add(struct perf_event *leader,
4367 					u64 read_format, u64 *values)
4368 {
4369 	struct perf_event_context *ctx = leader->ctx;
4370 	struct perf_event *sub;
4371 	unsigned long flags;
4372 	int n = 1; /* skip @nr */
4373 	int ret;
4374 
4375 	ret = perf_event_read(leader, true);
4376 	if (ret)
4377 		return ret;
4378 
4379 	raw_spin_lock_irqsave(&ctx->lock, flags);
4380 
4381 	/*
4382 	 * Since we co-schedule groups, {enabled,running} times of siblings
4383 	 * will be identical to those of the leader, so we only publish one
4384 	 * set.
4385 	 */
4386 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4387 		values[n++] += leader->total_time_enabled +
4388 			atomic64_read(&leader->child_total_time_enabled);
4389 	}
4390 
4391 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4392 		values[n++] += leader->total_time_running +
4393 			atomic64_read(&leader->child_total_time_running);
4394 	}
4395 
4396 	/*
4397 	 * Write {count,id} tuples for every sibling.
4398 	 */
4399 	values[n++] += perf_event_count(leader);
4400 	if (read_format & PERF_FORMAT_ID)
4401 		values[n++] = primary_event_id(leader);
4402 
4403 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4404 		values[n++] += perf_event_count(sub);
4405 		if (read_format & PERF_FORMAT_ID)
4406 			values[n++] = primary_event_id(sub);
4407 	}
4408 
4409 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4410 	return 0;
4411 }
4412 
4413 static int perf_read_group(struct perf_event *event,
4414 				   u64 read_format, char __user *buf)
4415 {
4416 	struct perf_event *leader = event->group_leader, *child;
4417 	struct perf_event_context *ctx = leader->ctx;
4418 	int ret;
4419 	u64 *values;
4420 
4421 	lockdep_assert_held(&ctx->mutex);
4422 
4423 	values = kzalloc(event->read_size, GFP_KERNEL);
4424 	if (!values)
4425 		return -ENOMEM;
4426 
4427 	values[0] = 1 + leader->nr_siblings;
4428 
4429 	/*
4430 	 * By locking the child_mutex of the leader we effectively
4431 	 * lock the child list of all siblings.. XXX explain how.
4432 	 */
4433 	mutex_lock(&leader->child_mutex);
4434 
4435 	ret = __perf_read_group_add(leader, read_format, values);
4436 	if (ret)
4437 		goto unlock;
4438 
4439 	list_for_each_entry(child, &leader->child_list, child_list) {
4440 		ret = __perf_read_group_add(child, read_format, values);
4441 		if (ret)
4442 			goto unlock;
4443 	}
4444 
4445 	mutex_unlock(&leader->child_mutex);
4446 
4447 	ret = event->read_size;
4448 	if (copy_to_user(buf, values, event->read_size))
4449 		ret = -EFAULT;
4450 	goto out;
4451 
4452 unlock:
4453 	mutex_unlock(&leader->child_mutex);
4454 out:
4455 	kfree(values);
4456 	return ret;
4457 }
4458 
4459 static int perf_read_one(struct perf_event *event,
4460 				 u64 read_format, char __user *buf)
4461 {
4462 	u64 enabled, running;
4463 	u64 values[4];
4464 	int n = 0;
4465 
4466 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4467 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4468 		values[n++] = enabled;
4469 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4470 		values[n++] = running;
4471 	if (read_format & PERF_FORMAT_ID)
4472 		values[n++] = primary_event_id(event);
4473 
4474 	if (copy_to_user(buf, values, n * sizeof(u64)))
4475 		return -EFAULT;
4476 
4477 	return n * sizeof(u64);
4478 }
4479 
4480 static bool is_event_hup(struct perf_event *event)
4481 {
4482 	bool no_children;
4483 
4484 	if (event->state > PERF_EVENT_STATE_EXIT)
4485 		return false;
4486 
4487 	mutex_lock(&event->child_mutex);
4488 	no_children = list_empty(&event->child_list);
4489 	mutex_unlock(&event->child_mutex);
4490 	return no_children;
4491 }
4492 
4493 /*
4494  * Read the performance event - simple non blocking version for now
4495  */
4496 static ssize_t
4497 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4498 {
4499 	u64 read_format = event->attr.read_format;
4500 	int ret;
4501 
4502 	/*
4503 	 * Return end-of-file for a read on a event that is in
4504 	 * error state (i.e. because it was pinned but it couldn't be
4505 	 * scheduled on to the CPU at some point).
4506 	 */
4507 	if (event->state == PERF_EVENT_STATE_ERROR)
4508 		return 0;
4509 
4510 	if (count < event->read_size)
4511 		return -ENOSPC;
4512 
4513 	WARN_ON_ONCE(event->ctx->parent_ctx);
4514 	if (read_format & PERF_FORMAT_GROUP)
4515 		ret = perf_read_group(event, read_format, buf);
4516 	else
4517 		ret = perf_read_one(event, read_format, buf);
4518 
4519 	return ret;
4520 }
4521 
4522 static ssize_t
4523 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4524 {
4525 	struct perf_event *event = file->private_data;
4526 	struct perf_event_context *ctx;
4527 	int ret;
4528 
4529 	ctx = perf_event_ctx_lock(event);
4530 	ret = __perf_read(event, buf, count);
4531 	perf_event_ctx_unlock(event, ctx);
4532 
4533 	return ret;
4534 }
4535 
4536 static __poll_t perf_poll(struct file *file, poll_table *wait)
4537 {
4538 	struct perf_event *event = file->private_data;
4539 	struct ring_buffer *rb;
4540 	__poll_t events = EPOLLHUP;
4541 
4542 	poll_wait(file, &event->waitq, wait);
4543 
4544 	if (is_event_hup(event))
4545 		return events;
4546 
4547 	/*
4548 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4549 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4550 	 */
4551 	mutex_lock(&event->mmap_mutex);
4552 	rb = event->rb;
4553 	if (rb)
4554 		events = atomic_xchg(&rb->poll, 0);
4555 	mutex_unlock(&event->mmap_mutex);
4556 	return events;
4557 }
4558 
4559 static void _perf_event_reset(struct perf_event *event)
4560 {
4561 	(void)perf_event_read(event, false);
4562 	local64_set(&event->count, 0);
4563 	perf_event_update_userpage(event);
4564 }
4565 
4566 /*
4567  * Holding the top-level event's child_mutex means that any
4568  * descendant process that has inherited this event will block
4569  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4570  * task existence requirements of perf_event_enable/disable.
4571  */
4572 static void perf_event_for_each_child(struct perf_event *event,
4573 					void (*func)(struct perf_event *))
4574 {
4575 	struct perf_event *child;
4576 
4577 	WARN_ON_ONCE(event->ctx->parent_ctx);
4578 
4579 	mutex_lock(&event->child_mutex);
4580 	func(event);
4581 	list_for_each_entry(child, &event->child_list, child_list)
4582 		func(child);
4583 	mutex_unlock(&event->child_mutex);
4584 }
4585 
4586 static void perf_event_for_each(struct perf_event *event,
4587 				  void (*func)(struct perf_event *))
4588 {
4589 	struct perf_event_context *ctx = event->ctx;
4590 	struct perf_event *sibling;
4591 
4592 	lockdep_assert_held(&ctx->mutex);
4593 
4594 	event = event->group_leader;
4595 
4596 	perf_event_for_each_child(event, func);
4597 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4598 		perf_event_for_each_child(sibling, func);
4599 }
4600 
4601 static void __perf_event_period(struct perf_event *event,
4602 				struct perf_cpu_context *cpuctx,
4603 				struct perf_event_context *ctx,
4604 				void *info)
4605 {
4606 	u64 value = *((u64 *)info);
4607 	bool active;
4608 
4609 	if (event->attr.freq) {
4610 		event->attr.sample_freq = value;
4611 	} else {
4612 		event->attr.sample_period = value;
4613 		event->hw.sample_period = value;
4614 	}
4615 
4616 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4617 	if (active) {
4618 		perf_pmu_disable(ctx->pmu);
4619 		/*
4620 		 * We could be throttled; unthrottle now to avoid the tick
4621 		 * trying to unthrottle while we already re-started the event.
4622 		 */
4623 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4624 			event->hw.interrupts = 0;
4625 			perf_log_throttle(event, 1);
4626 		}
4627 		event->pmu->stop(event, PERF_EF_UPDATE);
4628 	}
4629 
4630 	local64_set(&event->hw.period_left, 0);
4631 
4632 	if (active) {
4633 		event->pmu->start(event, PERF_EF_RELOAD);
4634 		perf_pmu_enable(ctx->pmu);
4635 	}
4636 }
4637 
4638 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4639 {
4640 	u64 value;
4641 
4642 	if (!is_sampling_event(event))
4643 		return -EINVAL;
4644 
4645 	if (copy_from_user(&value, arg, sizeof(value)))
4646 		return -EFAULT;
4647 
4648 	if (!value)
4649 		return -EINVAL;
4650 
4651 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4652 		return -EINVAL;
4653 
4654 	event_function_call(event, __perf_event_period, &value);
4655 
4656 	return 0;
4657 }
4658 
4659 static const struct file_operations perf_fops;
4660 
4661 static inline int perf_fget_light(int fd, struct fd *p)
4662 {
4663 	struct fd f = fdget(fd);
4664 	if (!f.file)
4665 		return -EBADF;
4666 
4667 	if (f.file->f_op != &perf_fops) {
4668 		fdput(f);
4669 		return -EBADF;
4670 	}
4671 	*p = f;
4672 	return 0;
4673 }
4674 
4675 static int perf_event_set_output(struct perf_event *event,
4676 				 struct perf_event *output_event);
4677 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4678 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4679 
4680 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4681 {
4682 	void (*func)(struct perf_event *);
4683 	u32 flags = arg;
4684 
4685 	switch (cmd) {
4686 	case PERF_EVENT_IOC_ENABLE:
4687 		func = _perf_event_enable;
4688 		break;
4689 	case PERF_EVENT_IOC_DISABLE:
4690 		func = _perf_event_disable;
4691 		break;
4692 	case PERF_EVENT_IOC_RESET:
4693 		func = _perf_event_reset;
4694 		break;
4695 
4696 	case PERF_EVENT_IOC_REFRESH:
4697 		return _perf_event_refresh(event, arg);
4698 
4699 	case PERF_EVENT_IOC_PERIOD:
4700 		return perf_event_period(event, (u64 __user *)arg);
4701 
4702 	case PERF_EVENT_IOC_ID:
4703 	{
4704 		u64 id = primary_event_id(event);
4705 
4706 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4707 			return -EFAULT;
4708 		return 0;
4709 	}
4710 
4711 	case PERF_EVENT_IOC_SET_OUTPUT:
4712 	{
4713 		int ret;
4714 		if (arg != -1) {
4715 			struct perf_event *output_event;
4716 			struct fd output;
4717 			ret = perf_fget_light(arg, &output);
4718 			if (ret)
4719 				return ret;
4720 			output_event = output.file->private_data;
4721 			ret = perf_event_set_output(event, output_event);
4722 			fdput(output);
4723 		} else {
4724 			ret = perf_event_set_output(event, NULL);
4725 		}
4726 		return ret;
4727 	}
4728 
4729 	case PERF_EVENT_IOC_SET_FILTER:
4730 		return perf_event_set_filter(event, (void __user *)arg);
4731 
4732 	case PERF_EVENT_IOC_SET_BPF:
4733 		return perf_event_set_bpf_prog(event, arg);
4734 
4735 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4736 		struct ring_buffer *rb;
4737 
4738 		rcu_read_lock();
4739 		rb = rcu_dereference(event->rb);
4740 		if (!rb || !rb->nr_pages) {
4741 			rcu_read_unlock();
4742 			return -EINVAL;
4743 		}
4744 		rb_toggle_paused(rb, !!arg);
4745 		rcu_read_unlock();
4746 		return 0;
4747 	}
4748 
4749 	case PERF_EVENT_IOC_QUERY_BPF:
4750 		return perf_event_query_prog_array(event, (void __user *)arg);
4751 	default:
4752 		return -ENOTTY;
4753 	}
4754 
4755 	if (flags & PERF_IOC_FLAG_GROUP)
4756 		perf_event_for_each(event, func);
4757 	else
4758 		perf_event_for_each_child(event, func);
4759 
4760 	return 0;
4761 }
4762 
4763 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4764 {
4765 	struct perf_event *event = file->private_data;
4766 	struct perf_event_context *ctx;
4767 	long ret;
4768 
4769 	ctx = perf_event_ctx_lock(event);
4770 	ret = _perf_ioctl(event, cmd, arg);
4771 	perf_event_ctx_unlock(event, ctx);
4772 
4773 	return ret;
4774 }
4775 
4776 #ifdef CONFIG_COMPAT
4777 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4778 				unsigned long arg)
4779 {
4780 	switch (_IOC_NR(cmd)) {
4781 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4782 	case _IOC_NR(PERF_EVENT_IOC_ID):
4783 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4784 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4785 			cmd &= ~IOCSIZE_MASK;
4786 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4787 		}
4788 		break;
4789 	}
4790 	return perf_ioctl(file, cmd, arg);
4791 }
4792 #else
4793 # define perf_compat_ioctl NULL
4794 #endif
4795 
4796 int perf_event_task_enable(void)
4797 {
4798 	struct perf_event_context *ctx;
4799 	struct perf_event *event;
4800 
4801 	mutex_lock(&current->perf_event_mutex);
4802 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803 		ctx = perf_event_ctx_lock(event);
4804 		perf_event_for_each_child(event, _perf_event_enable);
4805 		perf_event_ctx_unlock(event, ctx);
4806 	}
4807 	mutex_unlock(&current->perf_event_mutex);
4808 
4809 	return 0;
4810 }
4811 
4812 int perf_event_task_disable(void)
4813 {
4814 	struct perf_event_context *ctx;
4815 	struct perf_event *event;
4816 
4817 	mutex_lock(&current->perf_event_mutex);
4818 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4819 		ctx = perf_event_ctx_lock(event);
4820 		perf_event_for_each_child(event, _perf_event_disable);
4821 		perf_event_ctx_unlock(event, ctx);
4822 	}
4823 	mutex_unlock(&current->perf_event_mutex);
4824 
4825 	return 0;
4826 }
4827 
4828 static int perf_event_index(struct perf_event *event)
4829 {
4830 	if (event->hw.state & PERF_HES_STOPPED)
4831 		return 0;
4832 
4833 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4834 		return 0;
4835 
4836 	return event->pmu->event_idx(event);
4837 }
4838 
4839 static void calc_timer_values(struct perf_event *event,
4840 				u64 *now,
4841 				u64 *enabled,
4842 				u64 *running)
4843 {
4844 	u64 ctx_time;
4845 
4846 	*now = perf_clock();
4847 	ctx_time = event->shadow_ctx_time + *now;
4848 	__perf_update_times(event, ctx_time, enabled, running);
4849 }
4850 
4851 static void perf_event_init_userpage(struct perf_event *event)
4852 {
4853 	struct perf_event_mmap_page *userpg;
4854 	struct ring_buffer *rb;
4855 
4856 	rcu_read_lock();
4857 	rb = rcu_dereference(event->rb);
4858 	if (!rb)
4859 		goto unlock;
4860 
4861 	userpg = rb->user_page;
4862 
4863 	/* Allow new userspace to detect that bit 0 is deprecated */
4864 	userpg->cap_bit0_is_deprecated = 1;
4865 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4866 	userpg->data_offset = PAGE_SIZE;
4867 	userpg->data_size = perf_data_size(rb);
4868 
4869 unlock:
4870 	rcu_read_unlock();
4871 }
4872 
4873 void __weak arch_perf_update_userpage(
4874 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4875 {
4876 }
4877 
4878 /*
4879  * Callers need to ensure there can be no nesting of this function, otherwise
4880  * the seqlock logic goes bad. We can not serialize this because the arch
4881  * code calls this from NMI context.
4882  */
4883 void perf_event_update_userpage(struct perf_event *event)
4884 {
4885 	struct perf_event_mmap_page *userpg;
4886 	struct ring_buffer *rb;
4887 	u64 enabled, running, now;
4888 
4889 	rcu_read_lock();
4890 	rb = rcu_dereference(event->rb);
4891 	if (!rb)
4892 		goto unlock;
4893 
4894 	/*
4895 	 * compute total_time_enabled, total_time_running
4896 	 * based on snapshot values taken when the event
4897 	 * was last scheduled in.
4898 	 *
4899 	 * we cannot simply called update_context_time()
4900 	 * because of locking issue as we can be called in
4901 	 * NMI context
4902 	 */
4903 	calc_timer_values(event, &now, &enabled, &running);
4904 
4905 	userpg = rb->user_page;
4906 	/*
4907 	 * Disable preemption so as to not let the corresponding user-space
4908 	 * spin too long if we get preempted.
4909 	 */
4910 	preempt_disable();
4911 	++userpg->lock;
4912 	barrier();
4913 	userpg->index = perf_event_index(event);
4914 	userpg->offset = perf_event_count(event);
4915 	if (userpg->index)
4916 		userpg->offset -= local64_read(&event->hw.prev_count);
4917 
4918 	userpg->time_enabled = enabled +
4919 			atomic64_read(&event->child_total_time_enabled);
4920 
4921 	userpg->time_running = running +
4922 			atomic64_read(&event->child_total_time_running);
4923 
4924 	arch_perf_update_userpage(event, userpg, now);
4925 
4926 	barrier();
4927 	++userpg->lock;
4928 	preempt_enable();
4929 unlock:
4930 	rcu_read_unlock();
4931 }
4932 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4933 
4934 static int perf_mmap_fault(struct vm_fault *vmf)
4935 {
4936 	struct perf_event *event = vmf->vma->vm_file->private_data;
4937 	struct ring_buffer *rb;
4938 	int ret = VM_FAULT_SIGBUS;
4939 
4940 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4941 		if (vmf->pgoff == 0)
4942 			ret = 0;
4943 		return ret;
4944 	}
4945 
4946 	rcu_read_lock();
4947 	rb = rcu_dereference(event->rb);
4948 	if (!rb)
4949 		goto unlock;
4950 
4951 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4952 		goto unlock;
4953 
4954 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4955 	if (!vmf->page)
4956 		goto unlock;
4957 
4958 	get_page(vmf->page);
4959 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4960 	vmf->page->index   = vmf->pgoff;
4961 
4962 	ret = 0;
4963 unlock:
4964 	rcu_read_unlock();
4965 
4966 	return ret;
4967 }
4968 
4969 static void ring_buffer_attach(struct perf_event *event,
4970 			       struct ring_buffer *rb)
4971 {
4972 	struct ring_buffer *old_rb = NULL;
4973 	unsigned long flags;
4974 
4975 	if (event->rb) {
4976 		/*
4977 		 * Should be impossible, we set this when removing
4978 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4979 		 */
4980 		WARN_ON_ONCE(event->rcu_pending);
4981 
4982 		old_rb = event->rb;
4983 		spin_lock_irqsave(&old_rb->event_lock, flags);
4984 		list_del_rcu(&event->rb_entry);
4985 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4986 
4987 		event->rcu_batches = get_state_synchronize_rcu();
4988 		event->rcu_pending = 1;
4989 	}
4990 
4991 	if (rb) {
4992 		if (event->rcu_pending) {
4993 			cond_synchronize_rcu(event->rcu_batches);
4994 			event->rcu_pending = 0;
4995 		}
4996 
4997 		spin_lock_irqsave(&rb->event_lock, flags);
4998 		list_add_rcu(&event->rb_entry, &rb->event_list);
4999 		spin_unlock_irqrestore(&rb->event_lock, flags);
5000 	}
5001 
5002 	/*
5003 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5004 	 * before swizzling the event::rb pointer; if it's getting
5005 	 * unmapped, its aux_mmap_count will be 0 and it won't
5006 	 * restart. See the comment in __perf_pmu_output_stop().
5007 	 *
5008 	 * Data will inevitably be lost when set_output is done in
5009 	 * mid-air, but then again, whoever does it like this is
5010 	 * not in for the data anyway.
5011 	 */
5012 	if (has_aux(event))
5013 		perf_event_stop(event, 0);
5014 
5015 	rcu_assign_pointer(event->rb, rb);
5016 
5017 	if (old_rb) {
5018 		ring_buffer_put(old_rb);
5019 		/*
5020 		 * Since we detached before setting the new rb, so that we
5021 		 * could attach the new rb, we could have missed a wakeup.
5022 		 * Provide it now.
5023 		 */
5024 		wake_up_all(&event->waitq);
5025 	}
5026 }
5027 
5028 static void ring_buffer_wakeup(struct perf_event *event)
5029 {
5030 	struct ring_buffer *rb;
5031 
5032 	rcu_read_lock();
5033 	rb = rcu_dereference(event->rb);
5034 	if (rb) {
5035 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5036 			wake_up_all(&event->waitq);
5037 	}
5038 	rcu_read_unlock();
5039 }
5040 
5041 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5042 {
5043 	struct ring_buffer *rb;
5044 
5045 	rcu_read_lock();
5046 	rb = rcu_dereference(event->rb);
5047 	if (rb) {
5048 		if (!atomic_inc_not_zero(&rb->refcount))
5049 			rb = NULL;
5050 	}
5051 	rcu_read_unlock();
5052 
5053 	return rb;
5054 }
5055 
5056 void ring_buffer_put(struct ring_buffer *rb)
5057 {
5058 	if (!atomic_dec_and_test(&rb->refcount))
5059 		return;
5060 
5061 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5062 
5063 	call_rcu(&rb->rcu_head, rb_free_rcu);
5064 }
5065 
5066 static void perf_mmap_open(struct vm_area_struct *vma)
5067 {
5068 	struct perf_event *event = vma->vm_file->private_data;
5069 
5070 	atomic_inc(&event->mmap_count);
5071 	atomic_inc(&event->rb->mmap_count);
5072 
5073 	if (vma->vm_pgoff)
5074 		atomic_inc(&event->rb->aux_mmap_count);
5075 
5076 	if (event->pmu->event_mapped)
5077 		event->pmu->event_mapped(event, vma->vm_mm);
5078 }
5079 
5080 static void perf_pmu_output_stop(struct perf_event *event);
5081 
5082 /*
5083  * A buffer can be mmap()ed multiple times; either directly through the same
5084  * event, or through other events by use of perf_event_set_output().
5085  *
5086  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5087  * the buffer here, where we still have a VM context. This means we need
5088  * to detach all events redirecting to us.
5089  */
5090 static void perf_mmap_close(struct vm_area_struct *vma)
5091 {
5092 	struct perf_event *event = vma->vm_file->private_data;
5093 
5094 	struct ring_buffer *rb = ring_buffer_get(event);
5095 	struct user_struct *mmap_user = rb->mmap_user;
5096 	int mmap_locked = rb->mmap_locked;
5097 	unsigned long size = perf_data_size(rb);
5098 
5099 	if (event->pmu->event_unmapped)
5100 		event->pmu->event_unmapped(event, vma->vm_mm);
5101 
5102 	/*
5103 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5104 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5105 	 * serialize with perf_mmap here.
5106 	 */
5107 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5108 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5109 		/*
5110 		 * Stop all AUX events that are writing to this buffer,
5111 		 * so that we can free its AUX pages and corresponding PMU
5112 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5113 		 * they won't start any more (see perf_aux_output_begin()).
5114 		 */
5115 		perf_pmu_output_stop(event);
5116 
5117 		/* now it's safe to free the pages */
5118 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5119 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5120 
5121 		/* this has to be the last one */
5122 		rb_free_aux(rb);
5123 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5124 
5125 		mutex_unlock(&event->mmap_mutex);
5126 	}
5127 
5128 	atomic_dec(&rb->mmap_count);
5129 
5130 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5131 		goto out_put;
5132 
5133 	ring_buffer_attach(event, NULL);
5134 	mutex_unlock(&event->mmap_mutex);
5135 
5136 	/* If there's still other mmap()s of this buffer, we're done. */
5137 	if (atomic_read(&rb->mmap_count))
5138 		goto out_put;
5139 
5140 	/*
5141 	 * No other mmap()s, detach from all other events that might redirect
5142 	 * into the now unreachable buffer. Somewhat complicated by the
5143 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5144 	 */
5145 again:
5146 	rcu_read_lock();
5147 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5148 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5149 			/*
5150 			 * This event is en-route to free_event() which will
5151 			 * detach it and remove it from the list.
5152 			 */
5153 			continue;
5154 		}
5155 		rcu_read_unlock();
5156 
5157 		mutex_lock(&event->mmap_mutex);
5158 		/*
5159 		 * Check we didn't race with perf_event_set_output() which can
5160 		 * swizzle the rb from under us while we were waiting to
5161 		 * acquire mmap_mutex.
5162 		 *
5163 		 * If we find a different rb; ignore this event, a next
5164 		 * iteration will no longer find it on the list. We have to
5165 		 * still restart the iteration to make sure we're not now
5166 		 * iterating the wrong list.
5167 		 */
5168 		if (event->rb == rb)
5169 			ring_buffer_attach(event, NULL);
5170 
5171 		mutex_unlock(&event->mmap_mutex);
5172 		put_event(event);
5173 
5174 		/*
5175 		 * Restart the iteration; either we're on the wrong list or
5176 		 * destroyed its integrity by doing a deletion.
5177 		 */
5178 		goto again;
5179 	}
5180 	rcu_read_unlock();
5181 
5182 	/*
5183 	 * It could be there's still a few 0-ref events on the list; they'll
5184 	 * get cleaned up by free_event() -- they'll also still have their
5185 	 * ref on the rb and will free it whenever they are done with it.
5186 	 *
5187 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5188 	 * undo the VM accounting.
5189 	 */
5190 
5191 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5192 	vma->vm_mm->pinned_vm -= mmap_locked;
5193 	free_uid(mmap_user);
5194 
5195 out_put:
5196 	ring_buffer_put(rb); /* could be last */
5197 }
5198 
5199 static const struct vm_operations_struct perf_mmap_vmops = {
5200 	.open		= perf_mmap_open,
5201 	.close		= perf_mmap_close, /* non mergable */
5202 	.fault		= perf_mmap_fault,
5203 	.page_mkwrite	= perf_mmap_fault,
5204 };
5205 
5206 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5207 {
5208 	struct perf_event *event = file->private_data;
5209 	unsigned long user_locked, user_lock_limit;
5210 	struct user_struct *user = current_user();
5211 	unsigned long locked, lock_limit;
5212 	struct ring_buffer *rb = NULL;
5213 	unsigned long vma_size;
5214 	unsigned long nr_pages;
5215 	long user_extra = 0, extra = 0;
5216 	int ret = 0, flags = 0;
5217 
5218 	/*
5219 	 * Don't allow mmap() of inherited per-task counters. This would
5220 	 * create a performance issue due to all children writing to the
5221 	 * same rb.
5222 	 */
5223 	if (event->cpu == -1 && event->attr.inherit)
5224 		return -EINVAL;
5225 
5226 	if (!(vma->vm_flags & VM_SHARED))
5227 		return -EINVAL;
5228 
5229 	vma_size = vma->vm_end - vma->vm_start;
5230 
5231 	if (vma->vm_pgoff == 0) {
5232 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5233 	} else {
5234 		/*
5235 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5236 		 * mapped, all subsequent mappings should have the same size
5237 		 * and offset. Must be above the normal perf buffer.
5238 		 */
5239 		u64 aux_offset, aux_size;
5240 
5241 		if (!event->rb)
5242 			return -EINVAL;
5243 
5244 		nr_pages = vma_size / PAGE_SIZE;
5245 
5246 		mutex_lock(&event->mmap_mutex);
5247 		ret = -EINVAL;
5248 
5249 		rb = event->rb;
5250 		if (!rb)
5251 			goto aux_unlock;
5252 
5253 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5254 		aux_size = READ_ONCE(rb->user_page->aux_size);
5255 
5256 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5257 			goto aux_unlock;
5258 
5259 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5260 			goto aux_unlock;
5261 
5262 		/* already mapped with a different offset */
5263 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5264 			goto aux_unlock;
5265 
5266 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5267 			goto aux_unlock;
5268 
5269 		/* already mapped with a different size */
5270 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5271 			goto aux_unlock;
5272 
5273 		if (!is_power_of_2(nr_pages))
5274 			goto aux_unlock;
5275 
5276 		if (!atomic_inc_not_zero(&rb->mmap_count))
5277 			goto aux_unlock;
5278 
5279 		if (rb_has_aux(rb)) {
5280 			atomic_inc(&rb->aux_mmap_count);
5281 			ret = 0;
5282 			goto unlock;
5283 		}
5284 
5285 		atomic_set(&rb->aux_mmap_count, 1);
5286 		user_extra = nr_pages;
5287 
5288 		goto accounting;
5289 	}
5290 
5291 	/*
5292 	 * If we have rb pages ensure they're a power-of-two number, so we
5293 	 * can do bitmasks instead of modulo.
5294 	 */
5295 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5296 		return -EINVAL;
5297 
5298 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5299 		return -EINVAL;
5300 
5301 	WARN_ON_ONCE(event->ctx->parent_ctx);
5302 again:
5303 	mutex_lock(&event->mmap_mutex);
5304 	if (event->rb) {
5305 		if (event->rb->nr_pages != nr_pages) {
5306 			ret = -EINVAL;
5307 			goto unlock;
5308 		}
5309 
5310 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5311 			/*
5312 			 * Raced against perf_mmap_close() through
5313 			 * perf_event_set_output(). Try again, hope for better
5314 			 * luck.
5315 			 */
5316 			mutex_unlock(&event->mmap_mutex);
5317 			goto again;
5318 		}
5319 
5320 		goto unlock;
5321 	}
5322 
5323 	user_extra = nr_pages + 1;
5324 
5325 accounting:
5326 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5327 
5328 	/*
5329 	 * Increase the limit linearly with more CPUs:
5330 	 */
5331 	user_lock_limit *= num_online_cpus();
5332 
5333 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5334 
5335 	if (user_locked > user_lock_limit)
5336 		extra = user_locked - user_lock_limit;
5337 
5338 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5339 	lock_limit >>= PAGE_SHIFT;
5340 	locked = vma->vm_mm->pinned_vm + extra;
5341 
5342 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5343 		!capable(CAP_IPC_LOCK)) {
5344 		ret = -EPERM;
5345 		goto unlock;
5346 	}
5347 
5348 	WARN_ON(!rb && event->rb);
5349 
5350 	if (vma->vm_flags & VM_WRITE)
5351 		flags |= RING_BUFFER_WRITABLE;
5352 
5353 	if (!rb) {
5354 		rb = rb_alloc(nr_pages,
5355 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5356 			      event->cpu, flags);
5357 
5358 		if (!rb) {
5359 			ret = -ENOMEM;
5360 			goto unlock;
5361 		}
5362 
5363 		atomic_set(&rb->mmap_count, 1);
5364 		rb->mmap_user = get_current_user();
5365 		rb->mmap_locked = extra;
5366 
5367 		ring_buffer_attach(event, rb);
5368 
5369 		perf_event_init_userpage(event);
5370 		perf_event_update_userpage(event);
5371 	} else {
5372 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5373 				   event->attr.aux_watermark, flags);
5374 		if (!ret)
5375 			rb->aux_mmap_locked = extra;
5376 	}
5377 
5378 unlock:
5379 	if (!ret) {
5380 		atomic_long_add(user_extra, &user->locked_vm);
5381 		vma->vm_mm->pinned_vm += extra;
5382 
5383 		atomic_inc(&event->mmap_count);
5384 	} else if (rb) {
5385 		atomic_dec(&rb->mmap_count);
5386 	}
5387 aux_unlock:
5388 	mutex_unlock(&event->mmap_mutex);
5389 
5390 	/*
5391 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5392 	 * vma.
5393 	 */
5394 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5395 	vma->vm_ops = &perf_mmap_vmops;
5396 
5397 	if (event->pmu->event_mapped)
5398 		event->pmu->event_mapped(event, vma->vm_mm);
5399 
5400 	return ret;
5401 }
5402 
5403 static int perf_fasync(int fd, struct file *filp, int on)
5404 {
5405 	struct inode *inode = file_inode(filp);
5406 	struct perf_event *event = filp->private_data;
5407 	int retval;
5408 
5409 	inode_lock(inode);
5410 	retval = fasync_helper(fd, filp, on, &event->fasync);
5411 	inode_unlock(inode);
5412 
5413 	if (retval < 0)
5414 		return retval;
5415 
5416 	return 0;
5417 }
5418 
5419 static const struct file_operations perf_fops = {
5420 	.llseek			= no_llseek,
5421 	.release		= perf_release,
5422 	.read			= perf_read,
5423 	.poll			= perf_poll,
5424 	.unlocked_ioctl		= perf_ioctl,
5425 	.compat_ioctl		= perf_compat_ioctl,
5426 	.mmap			= perf_mmap,
5427 	.fasync			= perf_fasync,
5428 };
5429 
5430 /*
5431  * Perf event wakeup
5432  *
5433  * If there's data, ensure we set the poll() state and publish everything
5434  * to user-space before waking everybody up.
5435  */
5436 
5437 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5438 {
5439 	/* only the parent has fasync state */
5440 	if (event->parent)
5441 		event = event->parent;
5442 	return &event->fasync;
5443 }
5444 
5445 void perf_event_wakeup(struct perf_event *event)
5446 {
5447 	ring_buffer_wakeup(event);
5448 
5449 	if (event->pending_kill) {
5450 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5451 		event->pending_kill = 0;
5452 	}
5453 }
5454 
5455 static void perf_pending_event(struct irq_work *entry)
5456 {
5457 	struct perf_event *event = container_of(entry,
5458 			struct perf_event, pending);
5459 	int rctx;
5460 
5461 	rctx = perf_swevent_get_recursion_context();
5462 	/*
5463 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5464 	 * and we won't recurse 'further'.
5465 	 */
5466 
5467 	if (event->pending_disable) {
5468 		event->pending_disable = 0;
5469 		perf_event_disable_local(event);
5470 	}
5471 
5472 	if (event->pending_wakeup) {
5473 		event->pending_wakeup = 0;
5474 		perf_event_wakeup(event);
5475 	}
5476 
5477 	if (rctx >= 0)
5478 		perf_swevent_put_recursion_context(rctx);
5479 }
5480 
5481 /*
5482  * We assume there is only KVM supporting the callbacks.
5483  * Later on, we might change it to a list if there is
5484  * another virtualization implementation supporting the callbacks.
5485  */
5486 struct perf_guest_info_callbacks *perf_guest_cbs;
5487 
5488 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5489 {
5490 	perf_guest_cbs = cbs;
5491 	return 0;
5492 }
5493 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5494 
5495 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5496 {
5497 	perf_guest_cbs = NULL;
5498 	return 0;
5499 }
5500 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5501 
5502 static void
5503 perf_output_sample_regs(struct perf_output_handle *handle,
5504 			struct pt_regs *regs, u64 mask)
5505 {
5506 	int bit;
5507 	DECLARE_BITMAP(_mask, 64);
5508 
5509 	bitmap_from_u64(_mask, mask);
5510 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5511 		u64 val;
5512 
5513 		val = perf_reg_value(regs, bit);
5514 		perf_output_put(handle, val);
5515 	}
5516 }
5517 
5518 static void perf_sample_regs_user(struct perf_regs *regs_user,
5519 				  struct pt_regs *regs,
5520 				  struct pt_regs *regs_user_copy)
5521 {
5522 	if (user_mode(regs)) {
5523 		regs_user->abi = perf_reg_abi(current);
5524 		regs_user->regs = regs;
5525 	} else if (current->mm) {
5526 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5527 	} else {
5528 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5529 		regs_user->regs = NULL;
5530 	}
5531 }
5532 
5533 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5534 				  struct pt_regs *regs)
5535 {
5536 	regs_intr->regs = regs;
5537 	regs_intr->abi  = perf_reg_abi(current);
5538 }
5539 
5540 
5541 /*
5542  * Get remaining task size from user stack pointer.
5543  *
5544  * It'd be better to take stack vma map and limit this more
5545  * precisly, but there's no way to get it safely under interrupt,
5546  * so using TASK_SIZE as limit.
5547  */
5548 static u64 perf_ustack_task_size(struct pt_regs *regs)
5549 {
5550 	unsigned long addr = perf_user_stack_pointer(regs);
5551 
5552 	if (!addr || addr >= TASK_SIZE)
5553 		return 0;
5554 
5555 	return TASK_SIZE - addr;
5556 }
5557 
5558 static u16
5559 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5560 			struct pt_regs *regs)
5561 {
5562 	u64 task_size;
5563 
5564 	/* No regs, no stack pointer, no dump. */
5565 	if (!regs)
5566 		return 0;
5567 
5568 	/*
5569 	 * Check if we fit in with the requested stack size into the:
5570 	 * - TASK_SIZE
5571 	 *   If we don't, we limit the size to the TASK_SIZE.
5572 	 *
5573 	 * - remaining sample size
5574 	 *   If we don't, we customize the stack size to
5575 	 *   fit in to the remaining sample size.
5576 	 */
5577 
5578 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5579 	stack_size = min(stack_size, (u16) task_size);
5580 
5581 	/* Current header size plus static size and dynamic size. */
5582 	header_size += 2 * sizeof(u64);
5583 
5584 	/* Do we fit in with the current stack dump size? */
5585 	if ((u16) (header_size + stack_size) < header_size) {
5586 		/*
5587 		 * If we overflow the maximum size for the sample,
5588 		 * we customize the stack dump size to fit in.
5589 		 */
5590 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5591 		stack_size = round_up(stack_size, sizeof(u64));
5592 	}
5593 
5594 	return stack_size;
5595 }
5596 
5597 static void
5598 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5599 			  struct pt_regs *regs)
5600 {
5601 	/* Case of a kernel thread, nothing to dump */
5602 	if (!regs) {
5603 		u64 size = 0;
5604 		perf_output_put(handle, size);
5605 	} else {
5606 		unsigned long sp;
5607 		unsigned int rem;
5608 		u64 dyn_size;
5609 
5610 		/*
5611 		 * We dump:
5612 		 * static size
5613 		 *   - the size requested by user or the best one we can fit
5614 		 *     in to the sample max size
5615 		 * data
5616 		 *   - user stack dump data
5617 		 * dynamic size
5618 		 *   - the actual dumped size
5619 		 */
5620 
5621 		/* Static size. */
5622 		perf_output_put(handle, dump_size);
5623 
5624 		/* Data. */
5625 		sp = perf_user_stack_pointer(regs);
5626 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5627 		dyn_size = dump_size - rem;
5628 
5629 		perf_output_skip(handle, rem);
5630 
5631 		/* Dynamic size. */
5632 		perf_output_put(handle, dyn_size);
5633 	}
5634 }
5635 
5636 static void __perf_event_header__init_id(struct perf_event_header *header,
5637 					 struct perf_sample_data *data,
5638 					 struct perf_event *event)
5639 {
5640 	u64 sample_type = event->attr.sample_type;
5641 
5642 	data->type = sample_type;
5643 	header->size += event->id_header_size;
5644 
5645 	if (sample_type & PERF_SAMPLE_TID) {
5646 		/* namespace issues */
5647 		data->tid_entry.pid = perf_event_pid(event, current);
5648 		data->tid_entry.tid = perf_event_tid(event, current);
5649 	}
5650 
5651 	if (sample_type & PERF_SAMPLE_TIME)
5652 		data->time = perf_event_clock(event);
5653 
5654 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5655 		data->id = primary_event_id(event);
5656 
5657 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5658 		data->stream_id = event->id;
5659 
5660 	if (sample_type & PERF_SAMPLE_CPU) {
5661 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5662 		data->cpu_entry.reserved = 0;
5663 	}
5664 }
5665 
5666 void perf_event_header__init_id(struct perf_event_header *header,
5667 				struct perf_sample_data *data,
5668 				struct perf_event *event)
5669 {
5670 	if (event->attr.sample_id_all)
5671 		__perf_event_header__init_id(header, data, event);
5672 }
5673 
5674 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5675 					   struct perf_sample_data *data)
5676 {
5677 	u64 sample_type = data->type;
5678 
5679 	if (sample_type & PERF_SAMPLE_TID)
5680 		perf_output_put(handle, data->tid_entry);
5681 
5682 	if (sample_type & PERF_SAMPLE_TIME)
5683 		perf_output_put(handle, data->time);
5684 
5685 	if (sample_type & PERF_SAMPLE_ID)
5686 		perf_output_put(handle, data->id);
5687 
5688 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5689 		perf_output_put(handle, data->stream_id);
5690 
5691 	if (sample_type & PERF_SAMPLE_CPU)
5692 		perf_output_put(handle, data->cpu_entry);
5693 
5694 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5695 		perf_output_put(handle, data->id);
5696 }
5697 
5698 void perf_event__output_id_sample(struct perf_event *event,
5699 				  struct perf_output_handle *handle,
5700 				  struct perf_sample_data *sample)
5701 {
5702 	if (event->attr.sample_id_all)
5703 		__perf_event__output_id_sample(handle, sample);
5704 }
5705 
5706 static void perf_output_read_one(struct perf_output_handle *handle,
5707 				 struct perf_event *event,
5708 				 u64 enabled, u64 running)
5709 {
5710 	u64 read_format = event->attr.read_format;
5711 	u64 values[4];
5712 	int n = 0;
5713 
5714 	values[n++] = perf_event_count(event);
5715 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5716 		values[n++] = enabled +
5717 			atomic64_read(&event->child_total_time_enabled);
5718 	}
5719 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5720 		values[n++] = running +
5721 			atomic64_read(&event->child_total_time_running);
5722 	}
5723 	if (read_format & PERF_FORMAT_ID)
5724 		values[n++] = primary_event_id(event);
5725 
5726 	__output_copy(handle, values, n * sizeof(u64));
5727 }
5728 
5729 static void perf_output_read_group(struct perf_output_handle *handle,
5730 			    struct perf_event *event,
5731 			    u64 enabled, u64 running)
5732 {
5733 	struct perf_event *leader = event->group_leader, *sub;
5734 	u64 read_format = event->attr.read_format;
5735 	u64 values[5];
5736 	int n = 0;
5737 
5738 	values[n++] = 1 + leader->nr_siblings;
5739 
5740 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5741 		values[n++] = enabled;
5742 
5743 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5744 		values[n++] = running;
5745 
5746 	if (leader != event)
5747 		leader->pmu->read(leader);
5748 
5749 	values[n++] = perf_event_count(leader);
5750 	if (read_format & PERF_FORMAT_ID)
5751 		values[n++] = primary_event_id(leader);
5752 
5753 	__output_copy(handle, values, n * sizeof(u64));
5754 
5755 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5756 		n = 0;
5757 
5758 		if ((sub != event) &&
5759 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5760 			sub->pmu->read(sub);
5761 
5762 		values[n++] = perf_event_count(sub);
5763 		if (read_format & PERF_FORMAT_ID)
5764 			values[n++] = primary_event_id(sub);
5765 
5766 		__output_copy(handle, values, n * sizeof(u64));
5767 	}
5768 }
5769 
5770 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5771 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5772 
5773 /*
5774  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5775  *
5776  * The problem is that its both hard and excessively expensive to iterate the
5777  * child list, not to mention that its impossible to IPI the children running
5778  * on another CPU, from interrupt/NMI context.
5779  */
5780 static void perf_output_read(struct perf_output_handle *handle,
5781 			     struct perf_event *event)
5782 {
5783 	u64 enabled = 0, running = 0, now;
5784 	u64 read_format = event->attr.read_format;
5785 
5786 	/*
5787 	 * compute total_time_enabled, total_time_running
5788 	 * based on snapshot values taken when the event
5789 	 * was last scheduled in.
5790 	 *
5791 	 * we cannot simply called update_context_time()
5792 	 * because of locking issue as we are called in
5793 	 * NMI context
5794 	 */
5795 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5796 		calc_timer_values(event, &now, &enabled, &running);
5797 
5798 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5799 		perf_output_read_group(handle, event, enabled, running);
5800 	else
5801 		perf_output_read_one(handle, event, enabled, running);
5802 }
5803 
5804 void perf_output_sample(struct perf_output_handle *handle,
5805 			struct perf_event_header *header,
5806 			struct perf_sample_data *data,
5807 			struct perf_event *event)
5808 {
5809 	u64 sample_type = data->type;
5810 
5811 	perf_output_put(handle, *header);
5812 
5813 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5814 		perf_output_put(handle, data->id);
5815 
5816 	if (sample_type & PERF_SAMPLE_IP)
5817 		perf_output_put(handle, data->ip);
5818 
5819 	if (sample_type & PERF_SAMPLE_TID)
5820 		perf_output_put(handle, data->tid_entry);
5821 
5822 	if (sample_type & PERF_SAMPLE_TIME)
5823 		perf_output_put(handle, data->time);
5824 
5825 	if (sample_type & PERF_SAMPLE_ADDR)
5826 		perf_output_put(handle, data->addr);
5827 
5828 	if (sample_type & PERF_SAMPLE_ID)
5829 		perf_output_put(handle, data->id);
5830 
5831 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5832 		perf_output_put(handle, data->stream_id);
5833 
5834 	if (sample_type & PERF_SAMPLE_CPU)
5835 		perf_output_put(handle, data->cpu_entry);
5836 
5837 	if (sample_type & PERF_SAMPLE_PERIOD)
5838 		perf_output_put(handle, data->period);
5839 
5840 	if (sample_type & PERF_SAMPLE_READ)
5841 		perf_output_read(handle, event);
5842 
5843 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5844 		int size = 1;
5845 
5846 		size += data->callchain->nr;
5847 		size *= sizeof(u64);
5848 		__output_copy(handle, data->callchain, size);
5849 	}
5850 
5851 	if (sample_type & PERF_SAMPLE_RAW) {
5852 		struct perf_raw_record *raw = data->raw;
5853 
5854 		if (raw) {
5855 			struct perf_raw_frag *frag = &raw->frag;
5856 
5857 			perf_output_put(handle, raw->size);
5858 			do {
5859 				if (frag->copy) {
5860 					__output_custom(handle, frag->copy,
5861 							frag->data, frag->size);
5862 				} else {
5863 					__output_copy(handle, frag->data,
5864 						      frag->size);
5865 				}
5866 				if (perf_raw_frag_last(frag))
5867 					break;
5868 				frag = frag->next;
5869 			} while (1);
5870 			if (frag->pad)
5871 				__output_skip(handle, NULL, frag->pad);
5872 		} else {
5873 			struct {
5874 				u32	size;
5875 				u32	data;
5876 			} raw = {
5877 				.size = sizeof(u32),
5878 				.data = 0,
5879 			};
5880 			perf_output_put(handle, raw);
5881 		}
5882 	}
5883 
5884 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5885 		if (data->br_stack) {
5886 			size_t size;
5887 
5888 			size = data->br_stack->nr
5889 			     * sizeof(struct perf_branch_entry);
5890 
5891 			perf_output_put(handle, data->br_stack->nr);
5892 			perf_output_copy(handle, data->br_stack->entries, size);
5893 		} else {
5894 			/*
5895 			 * we always store at least the value of nr
5896 			 */
5897 			u64 nr = 0;
5898 			perf_output_put(handle, nr);
5899 		}
5900 	}
5901 
5902 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5903 		u64 abi = data->regs_user.abi;
5904 
5905 		/*
5906 		 * If there are no regs to dump, notice it through
5907 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5908 		 */
5909 		perf_output_put(handle, abi);
5910 
5911 		if (abi) {
5912 			u64 mask = event->attr.sample_regs_user;
5913 			perf_output_sample_regs(handle,
5914 						data->regs_user.regs,
5915 						mask);
5916 		}
5917 	}
5918 
5919 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5920 		perf_output_sample_ustack(handle,
5921 					  data->stack_user_size,
5922 					  data->regs_user.regs);
5923 	}
5924 
5925 	if (sample_type & PERF_SAMPLE_WEIGHT)
5926 		perf_output_put(handle, data->weight);
5927 
5928 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5929 		perf_output_put(handle, data->data_src.val);
5930 
5931 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5932 		perf_output_put(handle, data->txn);
5933 
5934 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5935 		u64 abi = data->regs_intr.abi;
5936 		/*
5937 		 * If there are no regs to dump, notice it through
5938 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5939 		 */
5940 		perf_output_put(handle, abi);
5941 
5942 		if (abi) {
5943 			u64 mask = event->attr.sample_regs_intr;
5944 
5945 			perf_output_sample_regs(handle,
5946 						data->regs_intr.regs,
5947 						mask);
5948 		}
5949 	}
5950 
5951 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5952 		perf_output_put(handle, data->phys_addr);
5953 
5954 	if (!event->attr.watermark) {
5955 		int wakeup_events = event->attr.wakeup_events;
5956 
5957 		if (wakeup_events) {
5958 			struct ring_buffer *rb = handle->rb;
5959 			int events = local_inc_return(&rb->events);
5960 
5961 			if (events >= wakeup_events) {
5962 				local_sub(wakeup_events, &rb->events);
5963 				local_inc(&rb->wakeup);
5964 			}
5965 		}
5966 	}
5967 }
5968 
5969 static u64 perf_virt_to_phys(u64 virt)
5970 {
5971 	u64 phys_addr = 0;
5972 	struct page *p = NULL;
5973 
5974 	if (!virt)
5975 		return 0;
5976 
5977 	if (virt >= TASK_SIZE) {
5978 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5979 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5980 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5981 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5982 	} else {
5983 		/*
5984 		 * Walking the pages tables for user address.
5985 		 * Interrupts are disabled, so it prevents any tear down
5986 		 * of the page tables.
5987 		 * Try IRQ-safe __get_user_pages_fast first.
5988 		 * If failed, leave phys_addr as 0.
5989 		 */
5990 		if ((current->mm != NULL) &&
5991 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5992 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5993 
5994 		if (p)
5995 			put_page(p);
5996 	}
5997 
5998 	return phys_addr;
5999 }
6000 
6001 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6002 
6003 static struct perf_callchain_entry *
6004 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6005 {
6006 	bool kernel = !event->attr.exclude_callchain_kernel;
6007 	bool user   = !event->attr.exclude_callchain_user;
6008 	/* Disallow cross-task user callchains. */
6009 	bool crosstask = event->ctx->task && event->ctx->task != current;
6010 	const u32 max_stack = event->attr.sample_max_stack;
6011 	struct perf_callchain_entry *callchain;
6012 
6013 	if (!kernel && !user)
6014 		return &__empty_callchain;
6015 
6016 	callchain = get_perf_callchain(regs, 0, kernel, user,
6017 				       max_stack, crosstask, true);
6018 	return callchain ?: &__empty_callchain;
6019 }
6020 
6021 void perf_prepare_sample(struct perf_event_header *header,
6022 			 struct perf_sample_data *data,
6023 			 struct perf_event *event,
6024 			 struct pt_regs *regs)
6025 {
6026 	u64 sample_type = event->attr.sample_type;
6027 
6028 	header->type = PERF_RECORD_SAMPLE;
6029 	header->size = sizeof(*header) + event->header_size;
6030 
6031 	header->misc = 0;
6032 	header->misc |= perf_misc_flags(regs);
6033 
6034 	__perf_event_header__init_id(header, data, event);
6035 
6036 	if (sample_type & PERF_SAMPLE_IP)
6037 		data->ip = perf_instruction_pointer(regs);
6038 
6039 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6040 		int size = 1;
6041 
6042 		data->callchain = perf_callchain(event, regs);
6043 		size += data->callchain->nr;
6044 
6045 		header->size += size * sizeof(u64);
6046 	}
6047 
6048 	if (sample_type & PERF_SAMPLE_RAW) {
6049 		struct perf_raw_record *raw = data->raw;
6050 		int size;
6051 
6052 		if (raw) {
6053 			struct perf_raw_frag *frag = &raw->frag;
6054 			u32 sum = 0;
6055 
6056 			do {
6057 				sum += frag->size;
6058 				if (perf_raw_frag_last(frag))
6059 					break;
6060 				frag = frag->next;
6061 			} while (1);
6062 
6063 			size = round_up(sum + sizeof(u32), sizeof(u64));
6064 			raw->size = size - sizeof(u32);
6065 			frag->pad = raw->size - sum;
6066 		} else {
6067 			size = sizeof(u64);
6068 		}
6069 
6070 		header->size += size;
6071 	}
6072 
6073 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6074 		int size = sizeof(u64); /* nr */
6075 		if (data->br_stack) {
6076 			size += data->br_stack->nr
6077 			      * sizeof(struct perf_branch_entry);
6078 		}
6079 		header->size += size;
6080 	}
6081 
6082 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6083 		perf_sample_regs_user(&data->regs_user, regs,
6084 				      &data->regs_user_copy);
6085 
6086 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6087 		/* regs dump ABI info */
6088 		int size = sizeof(u64);
6089 
6090 		if (data->regs_user.regs) {
6091 			u64 mask = event->attr.sample_regs_user;
6092 			size += hweight64(mask) * sizeof(u64);
6093 		}
6094 
6095 		header->size += size;
6096 	}
6097 
6098 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6099 		/*
6100 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6101 		 * processed as the last one or have additional check added
6102 		 * in case new sample type is added, because we could eat
6103 		 * up the rest of the sample size.
6104 		 */
6105 		u16 stack_size = event->attr.sample_stack_user;
6106 		u16 size = sizeof(u64);
6107 
6108 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6109 						     data->regs_user.regs);
6110 
6111 		/*
6112 		 * If there is something to dump, add space for the dump
6113 		 * itself and for the field that tells the dynamic size,
6114 		 * which is how many have been actually dumped.
6115 		 */
6116 		if (stack_size)
6117 			size += sizeof(u64) + stack_size;
6118 
6119 		data->stack_user_size = stack_size;
6120 		header->size += size;
6121 	}
6122 
6123 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6124 		/* regs dump ABI info */
6125 		int size = sizeof(u64);
6126 
6127 		perf_sample_regs_intr(&data->regs_intr, regs);
6128 
6129 		if (data->regs_intr.regs) {
6130 			u64 mask = event->attr.sample_regs_intr;
6131 
6132 			size += hweight64(mask) * sizeof(u64);
6133 		}
6134 
6135 		header->size += size;
6136 	}
6137 
6138 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6139 		data->phys_addr = perf_virt_to_phys(data->addr);
6140 }
6141 
6142 static void __always_inline
6143 __perf_event_output(struct perf_event *event,
6144 		    struct perf_sample_data *data,
6145 		    struct pt_regs *regs,
6146 		    int (*output_begin)(struct perf_output_handle *,
6147 					struct perf_event *,
6148 					unsigned int))
6149 {
6150 	struct perf_output_handle handle;
6151 	struct perf_event_header header;
6152 
6153 	/* protect the callchain buffers */
6154 	rcu_read_lock();
6155 
6156 	perf_prepare_sample(&header, data, event, regs);
6157 
6158 	if (output_begin(&handle, event, header.size))
6159 		goto exit;
6160 
6161 	perf_output_sample(&handle, &header, data, event);
6162 
6163 	perf_output_end(&handle);
6164 
6165 exit:
6166 	rcu_read_unlock();
6167 }
6168 
6169 void
6170 perf_event_output_forward(struct perf_event *event,
6171 			 struct perf_sample_data *data,
6172 			 struct pt_regs *regs)
6173 {
6174 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6175 }
6176 
6177 void
6178 perf_event_output_backward(struct perf_event *event,
6179 			   struct perf_sample_data *data,
6180 			   struct pt_regs *regs)
6181 {
6182 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6183 }
6184 
6185 void
6186 perf_event_output(struct perf_event *event,
6187 		  struct perf_sample_data *data,
6188 		  struct pt_regs *regs)
6189 {
6190 	__perf_event_output(event, data, regs, perf_output_begin);
6191 }
6192 
6193 /*
6194  * read event_id
6195  */
6196 
6197 struct perf_read_event {
6198 	struct perf_event_header	header;
6199 
6200 	u32				pid;
6201 	u32				tid;
6202 };
6203 
6204 static void
6205 perf_event_read_event(struct perf_event *event,
6206 			struct task_struct *task)
6207 {
6208 	struct perf_output_handle handle;
6209 	struct perf_sample_data sample;
6210 	struct perf_read_event read_event = {
6211 		.header = {
6212 			.type = PERF_RECORD_READ,
6213 			.misc = 0,
6214 			.size = sizeof(read_event) + event->read_size,
6215 		},
6216 		.pid = perf_event_pid(event, task),
6217 		.tid = perf_event_tid(event, task),
6218 	};
6219 	int ret;
6220 
6221 	perf_event_header__init_id(&read_event.header, &sample, event);
6222 	ret = perf_output_begin(&handle, event, read_event.header.size);
6223 	if (ret)
6224 		return;
6225 
6226 	perf_output_put(&handle, read_event);
6227 	perf_output_read(&handle, event);
6228 	perf_event__output_id_sample(event, &handle, &sample);
6229 
6230 	perf_output_end(&handle);
6231 }
6232 
6233 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6234 
6235 static void
6236 perf_iterate_ctx(struct perf_event_context *ctx,
6237 		   perf_iterate_f output,
6238 		   void *data, bool all)
6239 {
6240 	struct perf_event *event;
6241 
6242 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6243 		if (!all) {
6244 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6245 				continue;
6246 			if (!event_filter_match(event))
6247 				continue;
6248 		}
6249 
6250 		output(event, data);
6251 	}
6252 }
6253 
6254 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6255 {
6256 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6257 	struct perf_event *event;
6258 
6259 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6260 		/*
6261 		 * Skip events that are not fully formed yet; ensure that
6262 		 * if we observe event->ctx, both event and ctx will be
6263 		 * complete enough. See perf_install_in_context().
6264 		 */
6265 		if (!smp_load_acquire(&event->ctx))
6266 			continue;
6267 
6268 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6269 			continue;
6270 		if (!event_filter_match(event))
6271 			continue;
6272 		output(event, data);
6273 	}
6274 }
6275 
6276 /*
6277  * Iterate all events that need to receive side-band events.
6278  *
6279  * For new callers; ensure that account_pmu_sb_event() includes
6280  * your event, otherwise it might not get delivered.
6281  */
6282 static void
6283 perf_iterate_sb(perf_iterate_f output, void *data,
6284 	       struct perf_event_context *task_ctx)
6285 {
6286 	struct perf_event_context *ctx;
6287 	int ctxn;
6288 
6289 	rcu_read_lock();
6290 	preempt_disable();
6291 
6292 	/*
6293 	 * If we have task_ctx != NULL we only notify the task context itself.
6294 	 * The task_ctx is set only for EXIT events before releasing task
6295 	 * context.
6296 	 */
6297 	if (task_ctx) {
6298 		perf_iterate_ctx(task_ctx, output, data, false);
6299 		goto done;
6300 	}
6301 
6302 	perf_iterate_sb_cpu(output, data);
6303 
6304 	for_each_task_context_nr(ctxn) {
6305 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6306 		if (ctx)
6307 			perf_iterate_ctx(ctx, output, data, false);
6308 	}
6309 done:
6310 	preempt_enable();
6311 	rcu_read_unlock();
6312 }
6313 
6314 /*
6315  * Clear all file-based filters at exec, they'll have to be
6316  * re-instated when/if these objects are mmapped again.
6317  */
6318 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6319 {
6320 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6321 	struct perf_addr_filter *filter;
6322 	unsigned int restart = 0, count = 0;
6323 	unsigned long flags;
6324 
6325 	if (!has_addr_filter(event))
6326 		return;
6327 
6328 	raw_spin_lock_irqsave(&ifh->lock, flags);
6329 	list_for_each_entry(filter, &ifh->list, entry) {
6330 		if (filter->inode) {
6331 			event->addr_filters_offs[count] = 0;
6332 			restart++;
6333 		}
6334 
6335 		count++;
6336 	}
6337 
6338 	if (restart)
6339 		event->addr_filters_gen++;
6340 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6341 
6342 	if (restart)
6343 		perf_event_stop(event, 1);
6344 }
6345 
6346 void perf_event_exec(void)
6347 {
6348 	struct perf_event_context *ctx;
6349 	int ctxn;
6350 
6351 	rcu_read_lock();
6352 	for_each_task_context_nr(ctxn) {
6353 		ctx = current->perf_event_ctxp[ctxn];
6354 		if (!ctx)
6355 			continue;
6356 
6357 		perf_event_enable_on_exec(ctxn);
6358 
6359 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6360 				   true);
6361 	}
6362 	rcu_read_unlock();
6363 }
6364 
6365 struct remote_output {
6366 	struct ring_buffer	*rb;
6367 	int			err;
6368 };
6369 
6370 static void __perf_event_output_stop(struct perf_event *event, void *data)
6371 {
6372 	struct perf_event *parent = event->parent;
6373 	struct remote_output *ro = data;
6374 	struct ring_buffer *rb = ro->rb;
6375 	struct stop_event_data sd = {
6376 		.event	= event,
6377 	};
6378 
6379 	if (!has_aux(event))
6380 		return;
6381 
6382 	if (!parent)
6383 		parent = event;
6384 
6385 	/*
6386 	 * In case of inheritance, it will be the parent that links to the
6387 	 * ring-buffer, but it will be the child that's actually using it.
6388 	 *
6389 	 * We are using event::rb to determine if the event should be stopped,
6390 	 * however this may race with ring_buffer_attach() (through set_output),
6391 	 * which will make us skip the event that actually needs to be stopped.
6392 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6393 	 * its rb pointer.
6394 	 */
6395 	if (rcu_dereference(parent->rb) == rb)
6396 		ro->err = __perf_event_stop(&sd);
6397 }
6398 
6399 static int __perf_pmu_output_stop(void *info)
6400 {
6401 	struct perf_event *event = info;
6402 	struct pmu *pmu = event->pmu;
6403 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6404 	struct remote_output ro = {
6405 		.rb	= event->rb,
6406 	};
6407 
6408 	rcu_read_lock();
6409 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6410 	if (cpuctx->task_ctx)
6411 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6412 				   &ro, false);
6413 	rcu_read_unlock();
6414 
6415 	return ro.err;
6416 }
6417 
6418 static void perf_pmu_output_stop(struct perf_event *event)
6419 {
6420 	struct perf_event *iter;
6421 	int err, cpu;
6422 
6423 restart:
6424 	rcu_read_lock();
6425 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6426 		/*
6427 		 * For per-CPU events, we need to make sure that neither they
6428 		 * nor their children are running; for cpu==-1 events it's
6429 		 * sufficient to stop the event itself if it's active, since
6430 		 * it can't have children.
6431 		 */
6432 		cpu = iter->cpu;
6433 		if (cpu == -1)
6434 			cpu = READ_ONCE(iter->oncpu);
6435 
6436 		if (cpu == -1)
6437 			continue;
6438 
6439 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6440 		if (err == -EAGAIN) {
6441 			rcu_read_unlock();
6442 			goto restart;
6443 		}
6444 	}
6445 	rcu_read_unlock();
6446 }
6447 
6448 /*
6449  * task tracking -- fork/exit
6450  *
6451  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6452  */
6453 
6454 struct perf_task_event {
6455 	struct task_struct		*task;
6456 	struct perf_event_context	*task_ctx;
6457 
6458 	struct {
6459 		struct perf_event_header	header;
6460 
6461 		u32				pid;
6462 		u32				ppid;
6463 		u32				tid;
6464 		u32				ptid;
6465 		u64				time;
6466 	} event_id;
6467 };
6468 
6469 static int perf_event_task_match(struct perf_event *event)
6470 {
6471 	return event->attr.comm  || event->attr.mmap ||
6472 	       event->attr.mmap2 || event->attr.mmap_data ||
6473 	       event->attr.task;
6474 }
6475 
6476 static void perf_event_task_output(struct perf_event *event,
6477 				   void *data)
6478 {
6479 	struct perf_task_event *task_event = data;
6480 	struct perf_output_handle handle;
6481 	struct perf_sample_data	sample;
6482 	struct task_struct *task = task_event->task;
6483 	int ret, size = task_event->event_id.header.size;
6484 
6485 	if (!perf_event_task_match(event))
6486 		return;
6487 
6488 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6489 
6490 	ret = perf_output_begin(&handle, event,
6491 				task_event->event_id.header.size);
6492 	if (ret)
6493 		goto out;
6494 
6495 	task_event->event_id.pid = perf_event_pid(event, task);
6496 	task_event->event_id.ppid = perf_event_pid(event, current);
6497 
6498 	task_event->event_id.tid = perf_event_tid(event, task);
6499 	task_event->event_id.ptid = perf_event_tid(event, current);
6500 
6501 	task_event->event_id.time = perf_event_clock(event);
6502 
6503 	perf_output_put(&handle, task_event->event_id);
6504 
6505 	perf_event__output_id_sample(event, &handle, &sample);
6506 
6507 	perf_output_end(&handle);
6508 out:
6509 	task_event->event_id.header.size = size;
6510 }
6511 
6512 static void perf_event_task(struct task_struct *task,
6513 			      struct perf_event_context *task_ctx,
6514 			      int new)
6515 {
6516 	struct perf_task_event task_event;
6517 
6518 	if (!atomic_read(&nr_comm_events) &&
6519 	    !atomic_read(&nr_mmap_events) &&
6520 	    !atomic_read(&nr_task_events))
6521 		return;
6522 
6523 	task_event = (struct perf_task_event){
6524 		.task	  = task,
6525 		.task_ctx = task_ctx,
6526 		.event_id    = {
6527 			.header = {
6528 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6529 				.misc = 0,
6530 				.size = sizeof(task_event.event_id),
6531 			},
6532 			/* .pid  */
6533 			/* .ppid */
6534 			/* .tid  */
6535 			/* .ptid */
6536 			/* .time */
6537 		},
6538 	};
6539 
6540 	perf_iterate_sb(perf_event_task_output,
6541 		       &task_event,
6542 		       task_ctx);
6543 }
6544 
6545 void perf_event_fork(struct task_struct *task)
6546 {
6547 	perf_event_task(task, NULL, 1);
6548 	perf_event_namespaces(task);
6549 }
6550 
6551 /*
6552  * comm tracking
6553  */
6554 
6555 struct perf_comm_event {
6556 	struct task_struct	*task;
6557 	char			*comm;
6558 	int			comm_size;
6559 
6560 	struct {
6561 		struct perf_event_header	header;
6562 
6563 		u32				pid;
6564 		u32				tid;
6565 	} event_id;
6566 };
6567 
6568 static int perf_event_comm_match(struct perf_event *event)
6569 {
6570 	return event->attr.comm;
6571 }
6572 
6573 static void perf_event_comm_output(struct perf_event *event,
6574 				   void *data)
6575 {
6576 	struct perf_comm_event *comm_event = data;
6577 	struct perf_output_handle handle;
6578 	struct perf_sample_data sample;
6579 	int size = comm_event->event_id.header.size;
6580 	int ret;
6581 
6582 	if (!perf_event_comm_match(event))
6583 		return;
6584 
6585 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6586 	ret = perf_output_begin(&handle, event,
6587 				comm_event->event_id.header.size);
6588 
6589 	if (ret)
6590 		goto out;
6591 
6592 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6593 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6594 
6595 	perf_output_put(&handle, comm_event->event_id);
6596 	__output_copy(&handle, comm_event->comm,
6597 				   comm_event->comm_size);
6598 
6599 	perf_event__output_id_sample(event, &handle, &sample);
6600 
6601 	perf_output_end(&handle);
6602 out:
6603 	comm_event->event_id.header.size = size;
6604 }
6605 
6606 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6607 {
6608 	char comm[TASK_COMM_LEN];
6609 	unsigned int size;
6610 
6611 	memset(comm, 0, sizeof(comm));
6612 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6613 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6614 
6615 	comm_event->comm = comm;
6616 	comm_event->comm_size = size;
6617 
6618 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6619 
6620 	perf_iterate_sb(perf_event_comm_output,
6621 		       comm_event,
6622 		       NULL);
6623 }
6624 
6625 void perf_event_comm(struct task_struct *task, bool exec)
6626 {
6627 	struct perf_comm_event comm_event;
6628 
6629 	if (!atomic_read(&nr_comm_events))
6630 		return;
6631 
6632 	comm_event = (struct perf_comm_event){
6633 		.task	= task,
6634 		/* .comm      */
6635 		/* .comm_size */
6636 		.event_id  = {
6637 			.header = {
6638 				.type = PERF_RECORD_COMM,
6639 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6640 				/* .size */
6641 			},
6642 			/* .pid */
6643 			/* .tid */
6644 		},
6645 	};
6646 
6647 	perf_event_comm_event(&comm_event);
6648 }
6649 
6650 /*
6651  * namespaces tracking
6652  */
6653 
6654 struct perf_namespaces_event {
6655 	struct task_struct		*task;
6656 
6657 	struct {
6658 		struct perf_event_header	header;
6659 
6660 		u32				pid;
6661 		u32				tid;
6662 		u64				nr_namespaces;
6663 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6664 	} event_id;
6665 };
6666 
6667 static int perf_event_namespaces_match(struct perf_event *event)
6668 {
6669 	return event->attr.namespaces;
6670 }
6671 
6672 static void perf_event_namespaces_output(struct perf_event *event,
6673 					 void *data)
6674 {
6675 	struct perf_namespaces_event *namespaces_event = data;
6676 	struct perf_output_handle handle;
6677 	struct perf_sample_data sample;
6678 	u16 header_size = namespaces_event->event_id.header.size;
6679 	int ret;
6680 
6681 	if (!perf_event_namespaces_match(event))
6682 		return;
6683 
6684 	perf_event_header__init_id(&namespaces_event->event_id.header,
6685 				   &sample, event);
6686 	ret = perf_output_begin(&handle, event,
6687 				namespaces_event->event_id.header.size);
6688 	if (ret)
6689 		goto out;
6690 
6691 	namespaces_event->event_id.pid = perf_event_pid(event,
6692 							namespaces_event->task);
6693 	namespaces_event->event_id.tid = perf_event_tid(event,
6694 							namespaces_event->task);
6695 
6696 	perf_output_put(&handle, namespaces_event->event_id);
6697 
6698 	perf_event__output_id_sample(event, &handle, &sample);
6699 
6700 	perf_output_end(&handle);
6701 out:
6702 	namespaces_event->event_id.header.size = header_size;
6703 }
6704 
6705 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6706 				   struct task_struct *task,
6707 				   const struct proc_ns_operations *ns_ops)
6708 {
6709 	struct path ns_path;
6710 	struct inode *ns_inode;
6711 	void *error;
6712 
6713 	error = ns_get_path(&ns_path, task, ns_ops);
6714 	if (!error) {
6715 		ns_inode = ns_path.dentry->d_inode;
6716 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6717 		ns_link_info->ino = ns_inode->i_ino;
6718 		path_put(&ns_path);
6719 	}
6720 }
6721 
6722 void perf_event_namespaces(struct task_struct *task)
6723 {
6724 	struct perf_namespaces_event namespaces_event;
6725 	struct perf_ns_link_info *ns_link_info;
6726 
6727 	if (!atomic_read(&nr_namespaces_events))
6728 		return;
6729 
6730 	namespaces_event = (struct perf_namespaces_event){
6731 		.task	= task,
6732 		.event_id  = {
6733 			.header = {
6734 				.type = PERF_RECORD_NAMESPACES,
6735 				.misc = 0,
6736 				.size = sizeof(namespaces_event.event_id),
6737 			},
6738 			/* .pid */
6739 			/* .tid */
6740 			.nr_namespaces = NR_NAMESPACES,
6741 			/* .link_info[NR_NAMESPACES] */
6742 		},
6743 	};
6744 
6745 	ns_link_info = namespaces_event.event_id.link_info;
6746 
6747 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6748 			       task, &mntns_operations);
6749 
6750 #ifdef CONFIG_USER_NS
6751 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6752 			       task, &userns_operations);
6753 #endif
6754 #ifdef CONFIG_NET_NS
6755 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6756 			       task, &netns_operations);
6757 #endif
6758 #ifdef CONFIG_UTS_NS
6759 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6760 			       task, &utsns_operations);
6761 #endif
6762 #ifdef CONFIG_IPC_NS
6763 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6764 			       task, &ipcns_operations);
6765 #endif
6766 #ifdef CONFIG_PID_NS
6767 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6768 			       task, &pidns_operations);
6769 #endif
6770 #ifdef CONFIG_CGROUPS
6771 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6772 			       task, &cgroupns_operations);
6773 #endif
6774 
6775 	perf_iterate_sb(perf_event_namespaces_output,
6776 			&namespaces_event,
6777 			NULL);
6778 }
6779 
6780 /*
6781  * mmap tracking
6782  */
6783 
6784 struct perf_mmap_event {
6785 	struct vm_area_struct	*vma;
6786 
6787 	const char		*file_name;
6788 	int			file_size;
6789 	int			maj, min;
6790 	u64			ino;
6791 	u64			ino_generation;
6792 	u32			prot, flags;
6793 
6794 	struct {
6795 		struct perf_event_header	header;
6796 
6797 		u32				pid;
6798 		u32				tid;
6799 		u64				start;
6800 		u64				len;
6801 		u64				pgoff;
6802 	} event_id;
6803 };
6804 
6805 static int perf_event_mmap_match(struct perf_event *event,
6806 				 void *data)
6807 {
6808 	struct perf_mmap_event *mmap_event = data;
6809 	struct vm_area_struct *vma = mmap_event->vma;
6810 	int executable = vma->vm_flags & VM_EXEC;
6811 
6812 	return (!executable && event->attr.mmap_data) ||
6813 	       (executable && (event->attr.mmap || event->attr.mmap2));
6814 }
6815 
6816 static void perf_event_mmap_output(struct perf_event *event,
6817 				   void *data)
6818 {
6819 	struct perf_mmap_event *mmap_event = data;
6820 	struct perf_output_handle handle;
6821 	struct perf_sample_data sample;
6822 	int size = mmap_event->event_id.header.size;
6823 	int ret;
6824 
6825 	if (!perf_event_mmap_match(event, data))
6826 		return;
6827 
6828 	if (event->attr.mmap2) {
6829 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6830 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6831 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6832 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6833 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6834 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6835 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6836 	}
6837 
6838 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6839 	ret = perf_output_begin(&handle, event,
6840 				mmap_event->event_id.header.size);
6841 	if (ret)
6842 		goto out;
6843 
6844 	mmap_event->event_id.pid = perf_event_pid(event, current);
6845 	mmap_event->event_id.tid = perf_event_tid(event, current);
6846 
6847 	perf_output_put(&handle, mmap_event->event_id);
6848 
6849 	if (event->attr.mmap2) {
6850 		perf_output_put(&handle, mmap_event->maj);
6851 		perf_output_put(&handle, mmap_event->min);
6852 		perf_output_put(&handle, mmap_event->ino);
6853 		perf_output_put(&handle, mmap_event->ino_generation);
6854 		perf_output_put(&handle, mmap_event->prot);
6855 		perf_output_put(&handle, mmap_event->flags);
6856 	}
6857 
6858 	__output_copy(&handle, mmap_event->file_name,
6859 				   mmap_event->file_size);
6860 
6861 	perf_event__output_id_sample(event, &handle, &sample);
6862 
6863 	perf_output_end(&handle);
6864 out:
6865 	mmap_event->event_id.header.size = size;
6866 }
6867 
6868 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6869 {
6870 	struct vm_area_struct *vma = mmap_event->vma;
6871 	struct file *file = vma->vm_file;
6872 	int maj = 0, min = 0;
6873 	u64 ino = 0, gen = 0;
6874 	u32 prot = 0, flags = 0;
6875 	unsigned int size;
6876 	char tmp[16];
6877 	char *buf = NULL;
6878 	char *name;
6879 
6880 	if (vma->vm_flags & VM_READ)
6881 		prot |= PROT_READ;
6882 	if (vma->vm_flags & VM_WRITE)
6883 		prot |= PROT_WRITE;
6884 	if (vma->vm_flags & VM_EXEC)
6885 		prot |= PROT_EXEC;
6886 
6887 	if (vma->vm_flags & VM_MAYSHARE)
6888 		flags = MAP_SHARED;
6889 	else
6890 		flags = MAP_PRIVATE;
6891 
6892 	if (vma->vm_flags & VM_DENYWRITE)
6893 		flags |= MAP_DENYWRITE;
6894 	if (vma->vm_flags & VM_MAYEXEC)
6895 		flags |= MAP_EXECUTABLE;
6896 	if (vma->vm_flags & VM_LOCKED)
6897 		flags |= MAP_LOCKED;
6898 	if (vma->vm_flags & VM_HUGETLB)
6899 		flags |= MAP_HUGETLB;
6900 
6901 	if (file) {
6902 		struct inode *inode;
6903 		dev_t dev;
6904 
6905 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6906 		if (!buf) {
6907 			name = "//enomem";
6908 			goto cpy_name;
6909 		}
6910 		/*
6911 		 * d_path() works from the end of the rb backwards, so we
6912 		 * need to add enough zero bytes after the string to handle
6913 		 * the 64bit alignment we do later.
6914 		 */
6915 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6916 		if (IS_ERR(name)) {
6917 			name = "//toolong";
6918 			goto cpy_name;
6919 		}
6920 		inode = file_inode(vma->vm_file);
6921 		dev = inode->i_sb->s_dev;
6922 		ino = inode->i_ino;
6923 		gen = inode->i_generation;
6924 		maj = MAJOR(dev);
6925 		min = MINOR(dev);
6926 
6927 		goto got_name;
6928 	} else {
6929 		if (vma->vm_ops && vma->vm_ops->name) {
6930 			name = (char *) vma->vm_ops->name(vma);
6931 			if (name)
6932 				goto cpy_name;
6933 		}
6934 
6935 		name = (char *)arch_vma_name(vma);
6936 		if (name)
6937 			goto cpy_name;
6938 
6939 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6940 				vma->vm_end >= vma->vm_mm->brk) {
6941 			name = "[heap]";
6942 			goto cpy_name;
6943 		}
6944 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6945 				vma->vm_end >= vma->vm_mm->start_stack) {
6946 			name = "[stack]";
6947 			goto cpy_name;
6948 		}
6949 
6950 		name = "//anon";
6951 		goto cpy_name;
6952 	}
6953 
6954 cpy_name:
6955 	strlcpy(tmp, name, sizeof(tmp));
6956 	name = tmp;
6957 got_name:
6958 	/*
6959 	 * Since our buffer works in 8 byte units we need to align our string
6960 	 * size to a multiple of 8. However, we must guarantee the tail end is
6961 	 * zero'd out to avoid leaking random bits to userspace.
6962 	 */
6963 	size = strlen(name)+1;
6964 	while (!IS_ALIGNED(size, sizeof(u64)))
6965 		name[size++] = '\0';
6966 
6967 	mmap_event->file_name = name;
6968 	mmap_event->file_size = size;
6969 	mmap_event->maj = maj;
6970 	mmap_event->min = min;
6971 	mmap_event->ino = ino;
6972 	mmap_event->ino_generation = gen;
6973 	mmap_event->prot = prot;
6974 	mmap_event->flags = flags;
6975 
6976 	if (!(vma->vm_flags & VM_EXEC))
6977 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6978 
6979 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6980 
6981 	perf_iterate_sb(perf_event_mmap_output,
6982 		       mmap_event,
6983 		       NULL);
6984 
6985 	kfree(buf);
6986 }
6987 
6988 /*
6989  * Check whether inode and address range match filter criteria.
6990  */
6991 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6992 				     struct file *file, unsigned long offset,
6993 				     unsigned long size)
6994 {
6995 	if (filter->inode != file_inode(file))
6996 		return false;
6997 
6998 	if (filter->offset > offset + size)
6999 		return false;
7000 
7001 	if (filter->offset + filter->size < offset)
7002 		return false;
7003 
7004 	return true;
7005 }
7006 
7007 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7008 {
7009 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7010 	struct vm_area_struct *vma = data;
7011 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7012 	struct file *file = vma->vm_file;
7013 	struct perf_addr_filter *filter;
7014 	unsigned int restart = 0, count = 0;
7015 
7016 	if (!has_addr_filter(event))
7017 		return;
7018 
7019 	if (!file)
7020 		return;
7021 
7022 	raw_spin_lock_irqsave(&ifh->lock, flags);
7023 	list_for_each_entry(filter, &ifh->list, entry) {
7024 		if (perf_addr_filter_match(filter, file, off,
7025 					     vma->vm_end - vma->vm_start)) {
7026 			event->addr_filters_offs[count] = vma->vm_start;
7027 			restart++;
7028 		}
7029 
7030 		count++;
7031 	}
7032 
7033 	if (restart)
7034 		event->addr_filters_gen++;
7035 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7036 
7037 	if (restart)
7038 		perf_event_stop(event, 1);
7039 }
7040 
7041 /*
7042  * Adjust all task's events' filters to the new vma
7043  */
7044 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7045 {
7046 	struct perf_event_context *ctx;
7047 	int ctxn;
7048 
7049 	/*
7050 	 * Data tracing isn't supported yet and as such there is no need
7051 	 * to keep track of anything that isn't related to executable code:
7052 	 */
7053 	if (!(vma->vm_flags & VM_EXEC))
7054 		return;
7055 
7056 	rcu_read_lock();
7057 	for_each_task_context_nr(ctxn) {
7058 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7059 		if (!ctx)
7060 			continue;
7061 
7062 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7063 	}
7064 	rcu_read_unlock();
7065 }
7066 
7067 void perf_event_mmap(struct vm_area_struct *vma)
7068 {
7069 	struct perf_mmap_event mmap_event;
7070 
7071 	if (!atomic_read(&nr_mmap_events))
7072 		return;
7073 
7074 	mmap_event = (struct perf_mmap_event){
7075 		.vma	= vma,
7076 		/* .file_name */
7077 		/* .file_size */
7078 		.event_id  = {
7079 			.header = {
7080 				.type = PERF_RECORD_MMAP,
7081 				.misc = PERF_RECORD_MISC_USER,
7082 				/* .size */
7083 			},
7084 			/* .pid */
7085 			/* .tid */
7086 			.start  = vma->vm_start,
7087 			.len    = vma->vm_end - vma->vm_start,
7088 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7089 		},
7090 		/* .maj (attr_mmap2 only) */
7091 		/* .min (attr_mmap2 only) */
7092 		/* .ino (attr_mmap2 only) */
7093 		/* .ino_generation (attr_mmap2 only) */
7094 		/* .prot (attr_mmap2 only) */
7095 		/* .flags (attr_mmap2 only) */
7096 	};
7097 
7098 	perf_addr_filters_adjust(vma);
7099 	perf_event_mmap_event(&mmap_event);
7100 }
7101 
7102 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7103 			  unsigned long size, u64 flags)
7104 {
7105 	struct perf_output_handle handle;
7106 	struct perf_sample_data sample;
7107 	struct perf_aux_event {
7108 		struct perf_event_header	header;
7109 		u64				offset;
7110 		u64				size;
7111 		u64				flags;
7112 	} rec = {
7113 		.header = {
7114 			.type = PERF_RECORD_AUX,
7115 			.misc = 0,
7116 			.size = sizeof(rec),
7117 		},
7118 		.offset		= head,
7119 		.size		= size,
7120 		.flags		= flags,
7121 	};
7122 	int ret;
7123 
7124 	perf_event_header__init_id(&rec.header, &sample, event);
7125 	ret = perf_output_begin(&handle, event, rec.header.size);
7126 
7127 	if (ret)
7128 		return;
7129 
7130 	perf_output_put(&handle, rec);
7131 	perf_event__output_id_sample(event, &handle, &sample);
7132 
7133 	perf_output_end(&handle);
7134 }
7135 
7136 /*
7137  * Lost/dropped samples logging
7138  */
7139 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7140 {
7141 	struct perf_output_handle handle;
7142 	struct perf_sample_data sample;
7143 	int ret;
7144 
7145 	struct {
7146 		struct perf_event_header	header;
7147 		u64				lost;
7148 	} lost_samples_event = {
7149 		.header = {
7150 			.type = PERF_RECORD_LOST_SAMPLES,
7151 			.misc = 0,
7152 			.size = sizeof(lost_samples_event),
7153 		},
7154 		.lost		= lost,
7155 	};
7156 
7157 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7158 
7159 	ret = perf_output_begin(&handle, event,
7160 				lost_samples_event.header.size);
7161 	if (ret)
7162 		return;
7163 
7164 	perf_output_put(&handle, lost_samples_event);
7165 	perf_event__output_id_sample(event, &handle, &sample);
7166 	perf_output_end(&handle);
7167 }
7168 
7169 /*
7170  * context_switch tracking
7171  */
7172 
7173 struct perf_switch_event {
7174 	struct task_struct	*task;
7175 	struct task_struct	*next_prev;
7176 
7177 	struct {
7178 		struct perf_event_header	header;
7179 		u32				next_prev_pid;
7180 		u32				next_prev_tid;
7181 	} event_id;
7182 };
7183 
7184 static int perf_event_switch_match(struct perf_event *event)
7185 {
7186 	return event->attr.context_switch;
7187 }
7188 
7189 static void perf_event_switch_output(struct perf_event *event, void *data)
7190 {
7191 	struct perf_switch_event *se = data;
7192 	struct perf_output_handle handle;
7193 	struct perf_sample_data sample;
7194 	int ret;
7195 
7196 	if (!perf_event_switch_match(event))
7197 		return;
7198 
7199 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7200 	if (event->ctx->task) {
7201 		se->event_id.header.type = PERF_RECORD_SWITCH;
7202 		se->event_id.header.size = sizeof(se->event_id.header);
7203 	} else {
7204 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7205 		se->event_id.header.size = sizeof(se->event_id);
7206 		se->event_id.next_prev_pid =
7207 					perf_event_pid(event, se->next_prev);
7208 		se->event_id.next_prev_tid =
7209 					perf_event_tid(event, se->next_prev);
7210 	}
7211 
7212 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7213 
7214 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7215 	if (ret)
7216 		return;
7217 
7218 	if (event->ctx->task)
7219 		perf_output_put(&handle, se->event_id.header);
7220 	else
7221 		perf_output_put(&handle, se->event_id);
7222 
7223 	perf_event__output_id_sample(event, &handle, &sample);
7224 
7225 	perf_output_end(&handle);
7226 }
7227 
7228 static void perf_event_switch(struct task_struct *task,
7229 			      struct task_struct *next_prev, bool sched_in)
7230 {
7231 	struct perf_switch_event switch_event;
7232 
7233 	/* N.B. caller checks nr_switch_events != 0 */
7234 
7235 	switch_event = (struct perf_switch_event){
7236 		.task		= task,
7237 		.next_prev	= next_prev,
7238 		.event_id	= {
7239 			.header = {
7240 				/* .type */
7241 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7242 				/* .size */
7243 			},
7244 			/* .next_prev_pid */
7245 			/* .next_prev_tid */
7246 		},
7247 	};
7248 
7249 	perf_iterate_sb(perf_event_switch_output,
7250 		       &switch_event,
7251 		       NULL);
7252 }
7253 
7254 /*
7255  * IRQ throttle logging
7256  */
7257 
7258 static void perf_log_throttle(struct perf_event *event, int enable)
7259 {
7260 	struct perf_output_handle handle;
7261 	struct perf_sample_data sample;
7262 	int ret;
7263 
7264 	struct {
7265 		struct perf_event_header	header;
7266 		u64				time;
7267 		u64				id;
7268 		u64				stream_id;
7269 	} throttle_event = {
7270 		.header = {
7271 			.type = PERF_RECORD_THROTTLE,
7272 			.misc = 0,
7273 			.size = sizeof(throttle_event),
7274 		},
7275 		.time		= perf_event_clock(event),
7276 		.id		= primary_event_id(event),
7277 		.stream_id	= event->id,
7278 	};
7279 
7280 	if (enable)
7281 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7282 
7283 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7284 
7285 	ret = perf_output_begin(&handle, event,
7286 				throttle_event.header.size);
7287 	if (ret)
7288 		return;
7289 
7290 	perf_output_put(&handle, throttle_event);
7291 	perf_event__output_id_sample(event, &handle, &sample);
7292 	perf_output_end(&handle);
7293 }
7294 
7295 void perf_event_itrace_started(struct perf_event *event)
7296 {
7297 	event->attach_state |= PERF_ATTACH_ITRACE;
7298 }
7299 
7300 static void perf_log_itrace_start(struct perf_event *event)
7301 {
7302 	struct perf_output_handle handle;
7303 	struct perf_sample_data sample;
7304 	struct perf_aux_event {
7305 		struct perf_event_header        header;
7306 		u32				pid;
7307 		u32				tid;
7308 	} rec;
7309 	int ret;
7310 
7311 	if (event->parent)
7312 		event = event->parent;
7313 
7314 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7315 	    event->attach_state & PERF_ATTACH_ITRACE)
7316 		return;
7317 
7318 	rec.header.type	= PERF_RECORD_ITRACE_START;
7319 	rec.header.misc	= 0;
7320 	rec.header.size	= sizeof(rec);
7321 	rec.pid	= perf_event_pid(event, current);
7322 	rec.tid	= perf_event_tid(event, current);
7323 
7324 	perf_event_header__init_id(&rec.header, &sample, event);
7325 	ret = perf_output_begin(&handle, event, rec.header.size);
7326 
7327 	if (ret)
7328 		return;
7329 
7330 	perf_output_put(&handle, rec);
7331 	perf_event__output_id_sample(event, &handle, &sample);
7332 
7333 	perf_output_end(&handle);
7334 }
7335 
7336 static int
7337 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7338 {
7339 	struct hw_perf_event *hwc = &event->hw;
7340 	int ret = 0;
7341 	u64 seq;
7342 
7343 	seq = __this_cpu_read(perf_throttled_seq);
7344 	if (seq != hwc->interrupts_seq) {
7345 		hwc->interrupts_seq = seq;
7346 		hwc->interrupts = 1;
7347 	} else {
7348 		hwc->interrupts++;
7349 		if (unlikely(throttle
7350 			     && hwc->interrupts >= max_samples_per_tick)) {
7351 			__this_cpu_inc(perf_throttled_count);
7352 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7353 			hwc->interrupts = MAX_INTERRUPTS;
7354 			perf_log_throttle(event, 0);
7355 			ret = 1;
7356 		}
7357 	}
7358 
7359 	if (event->attr.freq) {
7360 		u64 now = perf_clock();
7361 		s64 delta = now - hwc->freq_time_stamp;
7362 
7363 		hwc->freq_time_stamp = now;
7364 
7365 		if (delta > 0 && delta < 2*TICK_NSEC)
7366 			perf_adjust_period(event, delta, hwc->last_period, true);
7367 	}
7368 
7369 	return ret;
7370 }
7371 
7372 int perf_event_account_interrupt(struct perf_event *event)
7373 {
7374 	return __perf_event_account_interrupt(event, 1);
7375 }
7376 
7377 /*
7378  * Generic event overflow handling, sampling.
7379  */
7380 
7381 static int __perf_event_overflow(struct perf_event *event,
7382 				   int throttle, struct perf_sample_data *data,
7383 				   struct pt_regs *regs)
7384 {
7385 	int events = atomic_read(&event->event_limit);
7386 	int ret = 0;
7387 
7388 	/*
7389 	 * Non-sampling counters might still use the PMI to fold short
7390 	 * hardware counters, ignore those.
7391 	 */
7392 	if (unlikely(!is_sampling_event(event)))
7393 		return 0;
7394 
7395 	ret = __perf_event_account_interrupt(event, throttle);
7396 
7397 	/*
7398 	 * XXX event_limit might not quite work as expected on inherited
7399 	 * events
7400 	 */
7401 
7402 	event->pending_kill = POLL_IN;
7403 	if (events && atomic_dec_and_test(&event->event_limit)) {
7404 		ret = 1;
7405 		event->pending_kill = POLL_HUP;
7406 
7407 		perf_event_disable_inatomic(event);
7408 	}
7409 
7410 	READ_ONCE(event->overflow_handler)(event, data, regs);
7411 
7412 	if (*perf_event_fasync(event) && event->pending_kill) {
7413 		event->pending_wakeup = 1;
7414 		irq_work_queue(&event->pending);
7415 	}
7416 
7417 	return ret;
7418 }
7419 
7420 int perf_event_overflow(struct perf_event *event,
7421 			  struct perf_sample_data *data,
7422 			  struct pt_regs *regs)
7423 {
7424 	return __perf_event_overflow(event, 1, data, regs);
7425 }
7426 
7427 /*
7428  * Generic software event infrastructure
7429  */
7430 
7431 struct swevent_htable {
7432 	struct swevent_hlist		*swevent_hlist;
7433 	struct mutex			hlist_mutex;
7434 	int				hlist_refcount;
7435 
7436 	/* Recursion avoidance in each contexts */
7437 	int				recursion[PERF_NR_CONTEXTS];
7438 };
7439 
7440 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7441 
7442 /*
7443  * We directly increment event->count and keep a second value in
7444  * event->hw.period_left to count intervals. This period event
7445  * is kept in the range [-sample_period, 0] so that we can use the
7446  * sign as trigger.
7447  */
7448 
7449 u64 perf_swevent_set_period(struct perf_event *event)
7450 {
7451 	struct hw_perf_event *hwc = &event->hw;
7452 	u64 period = hwc->last_period;
7453 	u64 nr, offset;
7454 	s64 old, val;
7455 
7456 	hwc->last_period = hwc->sample_period;
7457 
7458 again:
7459 	old = val = local64_read(&hwc->period_left);
7460 	if (val < 0)
7461 		return 0;
7462 
7463 	nr = div64_u64(period + val, period);
7464 	offset = nr * period;
7465 	val -= offset;
7466 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7467 		goto again;
7468 
7469 	return nr;
7470 }
7471 
7472 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7473 				    struct perf_sample_data *data,
7474 				    struct pt_regs *regs)
7475 {
7476 	struct hw_perf_event *hwc = &event->hw;
7477 	int throttle = 0;
7478 
7479 	if (!overflow)
7480 		overflow = perf_swevent_set_period(event);
7481 
7482 	if (hwc->interrupts == MAX_INTERRUPTS)
7483 		return;
7484 
7485 	for (; overflow; overflow--) {
7486 		if (__perf_event_overflow(event, throttle,
7487 					    data, regs)) {
7488 			/*
7489 			 * We inhibit the overflow from happening when
7490 			 * hwc->interrupts == MAX_INTERRUPTS.
7491 			 */
7492 			break;
7493 		}
7494 		throttle = 1;
7495 	}
7496 }
7497 
7498 static void perf_swevent_event(struct perf_event *event, u64 nr,
7499 			       struct perf_sample_data *data,
7500 			       struct pt_regs *regs)
7501 {
7502 	struct hw_perf_event *hwc = &event->hw;
7503 
7504 	local64_add(nr, &event->count);
7505 
7506 	if (!regs)
7507 		return;
7508 
7509 	if (!is_sampling_event(event))
7510 		return;
7511 
7512 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7513 		data->period = nr;
7514 		return perf_swevent_overflow(event, 1, data, regs);
7515 	} else
7516 		data->period = event->hw.last_period;
7517 
7518 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7519 		return perf_swevent_overflow(event, 1, data, regs);
7520 
7521 	if (local64_add_negative(nr, &hwc->period_left))
7522 		return;
7523 
7524 	perf_swevent_overflow(event, 0, data, regs);
7525 }
7526 
7527 static int perf_exclude_event(struct perf_event *event,
7528 			      struct pt_regs *regs)
7529 {
7530 	if (event->hw.state & PERF_HES_STOPPED)
7531 		return 1;
7532 
7533 	if (regs) {
7534 		if (event->attr.exclude_user && user_mode(regs))
7535 			return 1;
7536 
7537 		if (event->attr.exclude_kernel && !user_mode(regs))
7538 			return 1;
7539 	}
7540 
7541 	return 0;
7542 }
7543 
7544 static int perf_swevent_match(struct perf_event *event,
7545 				enum perf_type_id type,
7546 				u32 event_id,
7547 				struct perf_sample_data *data,
7548 				struct pt_regs *regs)
7549 {
7550 	if (event->attr.type != type)
7551 		return 0;
7552 
7553 	if (event->attr.config != event_id)
7554 		return 0;
7555 
7556 	if (perf_exclude_event(event, regs))
7557 		return 0;
7558 
7559 	return 1;
7560 }
7561 
7562 static inline u64 swevent_hash(u64 type, u32 event_id)
7563 {
7564 	u64 val = event_id | (type << 32);
7565 
7566 	return hash_64(val, SWEVENT_HLIST_BITS);
7567 }
7568 
7569 static inline struct hlist_head *
7570 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7571 {
7572 	u64 hash = swevent_hash(type, event_id);
7573 
7574 	return &hlist->heads[hash];
7575 }
7576 
7577 /* For the read side: events when they trigger */
7578 static inline struct hlist_head *
7579 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7580 {
7581 	struct swevent_hlist *hlist;
7582 
7583 	hlist = rcu_dereference(swhash->swevent_hlist);
7584 	if (!hlist)
7585 		return NULL;
7586 
7587 	return __find_swevent_head(hlist, type, event_id);
7588 }
7589 
7590 /* For the event head insertion and removal in the hlist */
7591 static inline struct hlist_head *
7592 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7593 {
7594 	struct swevent_hlist *hlist;
7595 	u32 event_id = event->attr.config;
7596 	u64 type = event->attr.type;
7597 
7598 	/*
7599 	 * Event scheduling is always serialized against hlist allocation
7600 	 * and release. Which makes the protected version suitable here.
7601 	 * The context lock guarantees that.
7602 	 */
7603 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7604 					  lockdep_is_held(&event->ctx->lock));
7605 	if (!hlist)
7606 		return NULL;
7607 
7608 	return __find_swevent_head(hlist, type, event_id);
7609 }
7610 
7611 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7612 				    u64 nr,
7613 				    struct perf_sample_data *data,
7614 				    struct pt_regs *regs)
7615 {
7616 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7617 	struct perf_event *event;
7618 	struct hlist_head *head;
7619 
7620 	rcu_read_lock();
7621 	head = find_swevent_head_rcu(swhash, type, event_id);
7622 	if (!head)
7623 		goto end;
7624 
7625 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7626 		if (perf_swevent_match(event, type, event_id, data, regs))
7627 			perf_swevent_event(event, nr, data, regs);
7628 	}
7629 end:
7630 	rcu_read_unlock();
7631 }
7632 
7633 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7634 
7635 int perf_swevent_get_recursion_context(void)
7636 {
7637 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7638 
7639 	return get_recursion_context(swhash->recursion);
7640 }
7641 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7642 
7643 void perf_swevent_put_recursion_context(int rctx)
7644 {
7645 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7646 
7647 	put_recursion_context(swhash->recursion, rctx);
7648 }
7649 
7650 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7651 {
7652 	struct perf_sample_data data;
7653 
7654 	if (WARN_ON_ONCE(!regs))
7655 		return;
7656 
7657 	perf_sample_data_init(&data, addr, 0);
7658 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7659 }
7660 
7661 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7662 {
7663 	int rctx;
7664 
7665 	preempt_disable_notrace();
7666 	rctx = perf_swevent_get_recursion_context();
7667 	if (unlikely(rctx < 0))
7668 		goto fail;
7669 
7670 	___perf_sw_event(event_id, nr, regs, addr);
7671 
7672 	perf_swevent_put_recursion_context(rctx);
7673 fail:
7674 	preempt_enable_notrace();
7675 }
7676 
7677 static void perf_swevent_read(struct perf_event *event)
7678 {
7679 }
7680 
7681 static int perf_swevent_add(struct perf_event *event, int flags)
7682 {
7683 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7684 	struct hw_perf_event *hwc = &event->hw;
7685 	struct hlist_head *head;
7686 
7687 	if (is_sampling_event(event)) {
7688 		hwc->last_period = hwc->sample_period;
7689 		perf_swevent_set_period(event);
7690 	}
7691 
7692 	hwc->state = !(flags & PERF_EF_START);
7693 
7694 	head = find_swevent_head(swhash, event);
7695 	if (WARN_ON_ONCE(!head))
7696 		return -EINVAL;
7697 
7698 	hlist_add_head_rcu(&event->hlist_entry, head);
7699 	perf_event_update_userpage(event);
7700 
7701 	return 0;
7702 }
7703 
7704 static void perf_swevent_del(struct perf_event *event, int flags)
7705 {
7706 	hlist_del_rcu(&event->hlist_entry);
7707 }
7708 
7709 static void perf_swevent_start(struct perf_event *event, int flags)
7710 {
7711 	event->hw.state = 0;
7712 }
7713 
7714 static void perf_swevent_stop(struct perf_event *event, int flags)
7715 {
7716 	event->hw.state = PERF_HES_STOPPED;
7717 }
7718 
7719 /* Deref the hlist from the update side */
7720 static inline struct swevent_hlist *
7721 swevent_hlist_deref(struct swevent_htable *swhash)
7722 {
7723 	return rcu_dereference_protected(swhash->swevent_hlist,
7724 					 lockdep_is_held(&swhash->hlist_mutex));
7725 }
7726 
7727 static void swevent_hlist_release(struct swevent_htable *swhash)
7728 {
7729 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7730 
7731 	if (!hlist)
7732 		return;
7733 
7734 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7735 	kfree_rcu(hlist, rcu_head);
7736 }
7737 
7738 static void swevent_hlist_put_cpu(int cpu)
7739 {
7740 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7741 
7742 	mutex_lock(&swhash->hlist_mutex);
7743 
7744 	if (!--swhash->hlist_refcount)
7745 		swevent_hlist_release(swhash);
7746 
7747 	mutex_unlock(&swhash->hlist_mutex);
7748 }
7749 
7750 static void swevent_hlist_put(void)
7751 {
7752 	int cpu;
7753 
7754 	for_each_possible_cpu(cpu)
7755 		swevent_hlist_put_cpu(cpu);
7756 }
7757 
7758 static int swevent_hlist_get_cpu(int cpu)
7759 {
7760 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7761 	int err = 0;
7762 
7763 	mutex_lock(&swhash->hlist_mutex);
7764 	if (!swevent_hlist_deref(swhash) &&
7765 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7766 		struct swevent_hlist *hlist;
7767 
7768 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7769 		if (!hlist) {
7770 			err = -ENOMEM;
7771 			goto exit;
7772 		}
7773 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7774 	}
7775 	swhash->hlist_refcount++;
7776 exit:
7777 	mutex_unlock(&swhash->hlist_mutex);
7778 
7779 	return err;
7780 }
7781 
7782 static int swevent_hlist_get(void)
7783 {
7784 	int err, cpu, failed_cpu;
7785 
7786 	mutex_lock(&pmus_lock);
7787 	for_each_possible_cpu(cpu) {
7788 		err = swevent_hlist_get_cpu(cpu);
7789 		if (err) {
7790 			failed_cpu = cpu;
7791 			goto fail;
7792 		}
7793 	}
7794 	mutex_unlock(&pmus_lock);
7795 	return 0;
7796 fail:
7797 	for_each_possible_cpu(cpu) {
7798 		if (cpu == failed_cpu)
7799 			break;
7800 		swevent_hlist_put_cpu(cpu);
7801 	}
7802 	mutex_unlock(&pmus_lock);
7803 	return err;
7804 }
7805 
7806 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7807 
7808 static void sw_perf_event_destroy(struct perf_event *event)
7809 {
7810 	u64 event_id = event->attr.config;
7811 
7812 	WARN_ON(event->parent);
7813 
7814 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7815 	swevent_hlist_put();
7816 }
7817 
7818 static int perf_swevent_init(struct perf_event *event)
7819 {
7820 	u64 event_id = event->attr.config;
7821 
7822 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7823 		return -ENOENT;
7824 
7825 	/*
7826 	 * no branch sampling for software events
7827 	 */
7828 	if (has_branch_stack(event))
7829 		return -EOPNOTSUPP;
7830 
7831 	switch (event_id) {
7832 	case PERF_COUNT_SW_CPU_CLOCK:
7833 	case PERF_COUNT_SW_TASK_CLOCK:
7834 		return -ENOENT;
7835 
7836 	default:
7837 		break;
7838 	}
7839 
7840 	if (event_id >= PERF_COUNT_SW_MAX)
7841 		return -ENOENT;
7842 
7843 	if (!event->parent) {
7844 		int err;
7845 
7846 		err = swevent_hlist_get();
7847 		if (err)
7848 			return err;
7849 
7850 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7851 		event->destroy = sw_perf_event_destroy;
7852 	}
7853 
7854 	return 0;
7855 }
7856 
7857 static struct pmu perf_swevent = {
7858 	.task_ctx_nr	= perf_sw_context,
7859 
7860 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7861 
7862 	.event_init	= perf_swevent_init,
7863 	.add		= perf_swevent_add,
7864 	.del		= perf_swevent_del,
7865 	.start		= perf_swevent_start,
7866 	.stop		= perf_swevent_stop,
7867 	.read		= perf_swevent_read,
7868 };
7869 
7870 #ifdef CONFIG_EVENT_TRACING
7871 
7872 static int perf_tp_filter_match(struct perf_event *event,
7873 				struct perf_sample_data *data)
7874 {
7875 	void *record = data->raw->frag.data;
7876 
7877 	/* only top level events have filters set */
7878 	if (event->parent)
7879 		event = event->parent;
7880 
7881 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7882 		return 1;
7883 	return 0;
7884 }
7885 
7886 static int perf_tp_event_match(struct perf_event *event,
7887 				struct perf_sample_data *data,
7888 				struct pt_regs *regs)
7889 {
7890 	if (event->hw.state & PERF_HES_STOPPED)
7891 		return 0;
7892 	/*
7893 	 * All tracepoints are from kernel-space.
7894 	 */
7895 	if (event->attr.exclude_kernel)
7896 		return 0;
7897 
7898 	if (!perf_tp_filter_match(event, data))
7899 		return 0;
7900 
7901 	return 1;
7902 }
7903 
7904 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7905 			       struct trace_event_call *call, u64 count,
7906 			       struct pt_regs *regs, struct hlist_head *head,
7907 			       struct task_struct *task)
7908 {
7909 	if (bpf_prog_array_valid(call)) {
7910 		*(struct pt_regs **)raw_data = regs;
7911 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7912 			perf_swevent_put_recursion_context(rctx);
7913 			return;
7914 		}
7915 	}
7916 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7917 		      rctx, task);
7918 }
7919 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7920 
7921 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7922 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7923 		   struct task_struct *task)
7924 {
7925 	struct perf_sample_data data;
7926 	struct perf_event *event;
7927 
7928 	struct perf_raw_record raw = {
7929 		.frag = {
7930 			.size = entry_size,
7931 			.data = record,
7932 		},
7933 	};
7934 
7935 	perf_sample_data_init(&data, 0, 0);
7936 	data.raw = &raw;
7937 
7938 	perf_trace_buf_update(record, event_type);
7939 
7940 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7941 		if (perf_tp_event_match(event, &data, regs))
7942 			perf_swevent_event(event, count, &data, regs);
7943 	}
7944 
7945 	/*
7946 	 * If we got specified a target task, also iterate its context and
7947 	 * deliver this event there too.
7948 	 */
7949 	if (task && task != current) {
7950 		struct perf_event_context *ctx;
7951 		struct trace_entry *entry = record;
7952 
7953 		rcu_read_lock();
7954 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7955 		if (!ctx)
7956 			goto unlock;
7957 
7958 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7959 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7960 				continue;
7961 			if (event->attr.config != entry->type)
7962 				continue;
7963 			if (perf_tp_event_match(event, &data, regs))
7964 				perf_swevent_event(event, count, &data, regs);
7965 		}
7966 unlock:
7967 		rcu_read_unlock();
7968 	}
7969 
7970 	perf_swevent_put_recursion_context(rctx);
7971 }
7972 EXPORT_SYMBOL_GPL(perf_tp_event);
7973 
7974 static void tp_perf_event_destroy(struct perf_event *event)
7975 {
7976 	perf_trace_destroy(event);
7977 }
7978 
7979 static int perf_tp_event_init(struct perf_event *event)
7980 {
7981 	int err;
7982 
7983 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7984 		return -ENOENT;
7985 
7986 	/*
7987 	 * no branch sampling for tracepoint events
7988 	 */
7989 	if (has_branch_stack(event))
7990 		return -EOPNOTSUPP;
7991 
7992 	err = perf_trace_init(event);
7993 	if (err)
7994 		return err;
7995 
7996 	event->destroy = tp_perf_event_destroy;
7997 
7998 	return 0;
7999 }
8000 
8001 static struct pmu perf_tracepoint = {
8002 	.task_ctx_nr	= perf_sw_context,
8003 
8004 	.event_init	= perf_tp_event_init,
8005 	.add		= perf_trace_add,
8006 	.del		= perf_trace_del,
8007 	.start		= perf_swevent_start,
8008 	.stop		= perf_swevent_stop,
8009 	.read		= perf_swevent_read,
8010 };
8011 
8012 static inline void perf_tp_register(void)
8013 {
8014 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8015 }
8016 
8017 static void perf_event_free_filter(struct perf_event *event)
8018 {
8019 	ftrace_profile_free_filter(event);
8020 }
8021 
8022 #ifdef CONFIG_BPF_SYSCALL
8023 static void bpf_overflow_handler(struct perf_event *event,
8024 				 struct perf_sample_data *data,
8025 				 struct pt_regs *regs)
8026 {
8027 	struct bpf_perf_event_data_kern ctx = {
8028 		.data = data,
8029 		.event = event,
8030 	};
8031 	int ret = 0;
8032 
8033 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8034 	preempt_disable();
8035 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8036 		goto out;
8037 	rcu_read_lock();
8038 	ret = BPF_PROG_RUN(event->prog, &ctx);
8039 	rcu_read_unlock();
8040 out:
8041 	__this_cpu_dec(bpf_prog_active);
8042 	preempt_enable();
8043 	if (!ret)
8044 		return;
8045 
8046 	event->orig_overflow_handler(event, data, regs);
8047 }
8048 
8049 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8050 {
8051 	struct bpf_prog *prog;
8052 
8053 	if (event->overflow_handler_context)
8054 		/* hw breakpoint or kernel counter */
8055 		return -EINVAL;
8056 
8057 	if (event->prog)
8058 		return -EEXIST;
8059 
8060 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8061 	if (IS_ERR(prog))
8062 		return PTR_ERR(prog);
8063 
8064 	event->prog = prog;
8065 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8066 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8067 	return 0;
8068 }
8069 
8070 static void perf_event_free_bpf_handler(struct perf_event *event)
8071 {
8072 	struct bpf_prog *prog = event->prog;
8073 
8074 	if (!prog)
8075 		return;
8076 
8077 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8078 	event->prog = NULL;
8079 	bpf_prog_put(prog);
8080 }
8081 #else
8082 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8083 {
8084 	return -EOPNOTSUPP;
8085 }
8086 static void perf_event_free_bpf_handler(struct perf_event *event)
8087 {
8088 }
8089 #endif
8090 
8091 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8092 {
8093 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8094 	struct bpf_prog *prog;
8095 	int ret;
8096 
8097 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8098 		return perf_event_set_bpf_handler(event, prog_fd);
8099 
8100 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8101 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8102 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8103 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8104 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8105 		return -EINVAL;
8106 
8107 	prog = bpf_prog_get(prog_fd);
8108 	if (IS_ERR(prog))
8109 		return PTR_ERR(prog);
8110 
8111 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8112 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8113 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8114 		/* valid fd, but invalid bpf program type */
8115 		bpf_prog_put(prog);
8116 		return -EINVAL;
8117 	}
8118 
8119 	/* Kprobe override only works for kprobes, not uprobes. */
8120 	if (prog->kprobe_override &&
8121 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8122 		bpf_prog_put(prog);
8123 		return -EINVAL;
8124 	}
8125 
8126 	if (is_tracepoint || is_syscall_tp) {
8127 		int off = trace_event_get_offsets(event->tp_event);
8128 
8129 		if (prog->aux->max_ctx_offset > off) {
8130 			bpf_prog_put(prog);
8131 			return -EACCES;
8132 		}
8133 	}
8134 
8135 	ret = perf_event_attach_bpf_prog(event, prog);
8136 	if (ret)
8137 		bpf_prog_put(prog);
8138 	return ret;
8139 }
8140 
8141 static void perf_event_free_bpf_prog(struct perf_event *event)
8142 {
8143 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8144 		perf_event_free_bpf_handler(event);
8145 		return;
8146 	}
8147 	perf_event_detach_bpf_prog(event);
8148 }
8149 
8150 #else
8151 
8152 static inline void perf_tp_register(void)
8153 {
8154 }
8155 
8156 static void perf_event_free_filter(struct perf_event *event)
8157 {
8158 }
8159 
8160 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8161 {
8162 	return -ENOENT;
8163 }
8164 
8165 static void perf_event_free_bpf_prog(struct perf_event *event)
8166 {
8167 }
8168 #endif /* CONFIG_EVENT_TRACING */
8169 
8170 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8171 void perf_bp_event(struct perf_event *bp, void *data)
8172 {
8173 	struct perf_sample_data sample;
8174 	struct pt_regs *regs = data;
8175 
8176 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8177 
8178 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8179 		perf_swevent_event(bp, 1, &sample, regs);
8180 }
8181 #endif
8182 
8183 /*
8184  * Allocate a new address filter
8185  */
8186 static struct perf_addr_filter *
8187 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8188 {
8189 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8190 	struct perf_addr_filter *filter;
8191 
8192 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8193 	if (!filter)
8194 		return NULL;
8195 
8196 	INIT_LIST_HEAD(&filter->entry);
8197 	list_add_tail(&filter->entry, filters);
8198 
8199 	return filter;
8200 }
8201 
8202 static void free_filters_list(struct list_head *filters)
8203 {
8204 	struct perf_addr_filter *filter, *iter;
8205 
8206 	list_for_each_entry_safe(filter, iter, filters, entry) {
8207 		if (filter->inode)
8208 			iput(filter->inode);
8209 		list_del(&filter->entry);
8210 		kfree(filter);
8211 	}
8212 }
8213 
8214 /*
8215  * Free existing address filters and optionally install new ones
8216  */
8217 static void perf_addr_filters_splice(struct perf_event *event,
8218 				     struct list_head *head)
8219 {
8220 	unsigned long flags;
8221 	LIST_HEAD(list);
8222 
8223 	if (!has_addr_filter(event))
8224 		return;
8225 
8226 	/* don't bother with children, they don't have their own filters */
8227 	if (event->parent)
8228 		return;
8229 
8230 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8231 
8232 	list_splice_init(&event->addr_filters.list, &list);
8233 	if (head)
8234 		list_splice(head, &event->addr_filters.list);
8235 
8236 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8237 
8238 	free_filters_list(&list);
8239 }
8240 
8241 /*
8242  * Scan through mm's vmas and see if one of them matches the
8243  * @filter; if so, adjust filter's address range.
8244  * Called with mm::mmap_sem down for reading.
8245  */
8246 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8247 					    struct mm_struct *mm)
8248 {
8249 	struct vm_area_struct *vma;
8250 
8251 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8252 		struct file *file = vma->vm_file;
8253 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8254 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8255 
8256 		if (!file)
8257 			continue;
8258 
8259 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8260 			continue;
8261 
8262 		return vma->vm_start;
8263 	}
8264 
8265 	return 0;
8266 }
8267 
8268 /*
8269  * Update event's address range filters based on the
8270  * task's existing mappings, if any.
8271  */
8272 static void perf_event_addr_filters_apply(struct perf_event *event)
8273 {
8274 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8275 	struct task_struct *task = READ_ONCE(event->ctx->task);
8276 	struct perf_addr_filter *filter;
8277 	struct mm_struct *mm = NULL;
8278 	unsigned int count = 0;
8279 	unsigned long flags;
8280 
8281 	/*
8282 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8283 	 * will stop on the parent's child_mutex that our caller is also holding
8284 	 */
8285 	if (task == TASK_TOMBSTONE)
8286 		return;
8287 
8288 	if (!ifh->nr_file_filters)
8289 		return;
8290 
8291 	mm = get_task_mm(event->ctx->task);
8292 	if (!mm)
8293 		goto restart;
8294 
8295 	down_read(&mm->mmap_sem);
8296 
8297 	raw_spin_lock_irqsave(&ifh->lock, flags);
8298 	list_for_each_entry(filter, &ifh->list, entry) {
8299 		event->addr_filters_offs[count] = 0;
8300 
8301 		/*
8302 		 * Adjust base offset if the filter is associated to a binary
8303 		 * that needs to be mapped:
8304 		 */
8305 		if (filter->inode)
8306 			event->addr_filters_offs[count] =
8307 				perf_addr_filter_apply(filter, mm);
8308 
8309 		count++;
8310 	}
8311 
8312 	event->addr_filters_gen++;
8313 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8314 
8315 	up_read(&mm->mmap_sem);
8316 
8317 	mmput(mm);
8318 
8319 restart:
8320 	perf_event_stop(event, 1);
8321 }
8322 
8323 /*
8324  * Address range filtering: limiting the data to certain
8325  * instruction address ranges. Filters are ioctl()ed to us from
8326  * userspace as ascii strings.
8327  *
8328  * Filter string format:
8329  *
8330  * ACTION RANGE_SPEC
8331  * where ACTION is one of the
8332  *  * "filter": limit the trace to this region
8333  *  * "start": start tracing from this address
8334  *  * "stop": stop tracing at this address/region;
8335  * RANGE_SPEC is
8336  *  * for kernel addresses: <start address>[/<size>]
8337  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8338  *
8339  * if <size> is not specified, the range is treated as a single address.
8340  */
8341 enum {
8342 	IF_ACT_NONE = -1,
8343 	IF_ACT_FILTER,
8344 	IF_ACT_START,
8345 	IF_ACT_STOP,
8346 	IF_SRC_FILE,
8347 	IF_SRC_KERNEL,
8348 	IF_SRC_FILEADDR,
8349 	IF_SRC_KERNELADDR,
8350 };
8351 
8352 enum {
8353 	IF_STATE_ACTION = 0,
8354 	IF_STATE_SOURCE,
8355 	IF_STATE_END,
8356 };
8357 
8358 static const match_table_t if_tokens = {
8359 	{ IF_ACT_FILTER,	"filter" },
8360 	{ IF_ACT_START,		"start" },
8361 	{ IF_ACT_STOP,		"stop" },
8362 	{ IF_SRC_FILE,		"%u/%u@%s" },
8363 	{ IF_SRC_KERNEL,	"%u/%u" },
8364 	{ IF_SRC_FILEADDR,	"%u@%s" },
8365 	{ IF_SRC_KERNELADDR,	"%u" },
8366 	{ IF_ACT_NONE,		NULL },
8367 };
8368 
8369 /*
8370  * Address filter string parser
8371  */
8372 static int
8373 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8374 			     struct list_head *filters)
8375 {
8376 	struct perf_addr_filter *filter = NULL;
8377 	char *start, *orig, *filename = NULL;
8378 	struct path path;
8379 	substring_t args[MAX_OPT_ARGS];
8380 	int state = IF_STATE_ACTION, token;
8381 	unsigned int kernel = 0;
8382 	int ret = -EINVAL;
8383 
8384 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8385 	if (!fstr)
8386 		return -ENOMEM;
8387 
8388 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8389 		ret = -EINVAL;
8390 
8391 		if (!*start)
8392 			continue;
8393 
8394 		/* filter definition begins */
8395 		if (state == IF_STATE_ACTION) {
8396 			filter = perf_addr_filter_new(event, filters);
8397 			if (!filter)
8398 				goto fail;
8399 		}
8400 
8401 		token = match_token(start, if_tokens, args);
8402 		switch (token) {
8403 		case IF_ACT_FILTER:
8404 		case IF_ACT_START:
8405 			filter->filter = 1;
8406 
8407 		case IF_ACT_STOP:
8408 			if (state != IF_STATE_ACTION)
8409 				goto fail;
8410 
8411 			state = IF_STATE_SOURCE;
8412 			break;
8413 
8414 		case IF_SRC_KERNELADDR:
8415 		case IF_SRC_KERNEL:
8416 			kernel = 1;
8417 
8418 		case IF_SRC_FILEADDR:
8419 		case IF_SRC_FILE:
8420 			if (state != IF_STATE_SOURCE)
8421 				goto fail;
8422 
8423 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8424 				filter->range = 1;
8425 
8426 			*args[0].to = 0;
8427 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8428 			if (ret)
8429 				goto fail;
8430 
8431 			if (filter->range) {
8432 				*args[1].to = 0;
8433 				ret = kstrtoul(args[1].from, 0, &filter->size);
8434 				if (ret)
8435 					goto fail;
8436 			}
8437 
8438 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8439 				int fpos = filter->range ? 2 : 1;
8440 
8441 				filename = match_strdup(&args[fpos]);
8442 				if (!filename) {
8443 					ret = -ENOMEM;
8444 					goto fail;
8445 				}
8446 			}
8447 
8448 			state = IF_STATE_END;
8449 			break;
8450 
8451 		default:
8452 			goto fail;
8453 		}
8454 
8455 		/*
8456 		 * Filter definition is fully parsed, validate and install it.
8457 		 * Make sure that it doesn't contradict itself or the event's
8458 		 * attribute.
8459 		 */
8460 		if (state == IF_STATE_END) {
8461 			ret = -EINVAL;
8462 			if (kernel && event->attr.exclude_kernel)
8463 				goto fail;
8464 
8465 			if (!kernel) {
8466 				if (!filename)
8467 					goto fail;
8468 
8469 				/*
8470 				 * For now, we only support file-based filters
8471 				 * in per-task events; doing so for CPU-wide
8472 				 * events requires additional context switching
8473 				 * trickery, since same object code will be
8474 				 * mapped at different virtual addresses in
8475 				 * different processes.
8476 				 */
8477 				ret = -EOPNOTSUPP;
8478 				if (!event->ctx->task)
8479 					goto fail_free_name;
8480 
8481 				/* look up the path and grab its inode */
8482 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8483 				if (ret)
8484 					goto fail_free_name;
8485 
8486 				filter->inode = igrab(d_inode(path.dentry));
8487 				path_put(&path);
8488 				kfree(filename);
8489 				filename = NULL;
8490 
8491 				ret = -EINVAL;
8492 				if (!filter->inode ||
8493 				    !S_ISREG(filter->inode->i_mode))
8494 					/* free_filters_list() will iput() */
8495 					goto fail;
8496 
8497 				event->addr_filters.nr_file_filters++;
8498 			}
8499 
8500 			/* ready to consume more filters */
8501 			state = IF_STATE_ACTION;
8502 			filter = NULL;
8503 		}
8504 	}
8505 
8506 	if (state != IF_STATE_ACTION)
8507 		goto fail;
8508 
8509 	kfree(orig);
8510 
8511 	return 0;
8512 
8513 fail_free_name:
8514 	kfree(filename);
8515 fail:
8516 	free_filters_list(filters);
8517 	kfree(orig);
8518 
8519 	return ret;
8520 }
8521 
8522 static int
8523 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8524 {
8525 	LIST_HEAD(filters);
8526 	int ret;
8527 
8528 	/*
8529 	 * Since this is called in perf_ioctl() path, we're already holding
8530 	 * ctx::mutex.
8531 	 */
8532 	lockdep_assert_held(&event->ctx->mutex);
8533 
8534 	if (WARN_ON_ONCE(event->parent))
8535 		return -EINVAL;
8536 
8537 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8538 	if (ret)
8539 		goto fail_clear_files;
8540 
8541 	ret = event->pmu->addr_filters_validate(&filters);
8542 	if (ret)
8543 		goto fail_free_filters;
8544 
8545 	/* remove existing filters, if any */
8546 	perf_addr_filters_splice(event, &filters);
8547 
8548 	/* install new filters */
8549 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8550 
8551 	return ret;
8552 
8553 fail_free_filters:
8554 	free_filters_list(&filters);
8555 
8556 fail_clear_files:
8557 	event->addr_filters.nr_file_filters = 0;
8558 
8559 	return ret;
8560 }
8561 
8562 static int
8563 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8564 {
8565 	struct perf_event_context *ctx = event->ctx;
8566 	int ret;
8567 
8568 	/*
8569 	 * Beware, here be dragons!!
8570 	 *
8571 	 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8572 	 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8573 	 * perf_event_ctx_lock() we already have a reference on ctx.
8574 	 *
8575 	 * This can result in event getting moved to a different ctx, but that
8576 	 * does not affect the tracepoint state.
8577 	 */
8578 	mutex_unlock(&ctx->mutex);
8579 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8580 	mutex_lock(&ctx->mutex);
8581 
8582 	return ret;
8583 }
8584 
8585 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8586 {
8587 	char *filter_str;
8588 	int ret = -EINVAL;
8589 
8590 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8591 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8592 	    !has_addr_filter(event))
8593 		return -EINVAL;
8594 
8595 	filter_str = strndup_user(arg, PAGE_SIZE);
8596 	if (IS_ERR(filter_str))
8597 		return PTR_ERR(filter_str);
8598 
8599 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8600 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8601 		ret = perf_tracepoint_set_filter(event, filter_str);
8602 	else if (has_addr_filter(event))
8603 		ret = perf_event_set_addr_filter(event, filter_str);
8604 
8605 	kfree(filter_str);
8606 	return ret;
8607 }
8608 
8609 /*
8610  * hrtimer based swevent callback
8611  */
8612 
8613 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8614 {
8615 	enum hrtimer_restart ret = HRTIMER_RESTART;
8616 	struct perf_sample_data data;
8617 	struct pt_regs *regs;
8618 	struct perf_event *event;
8619 	u64 period;
8620 
8621 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8622 
8623 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8624 		return HRTIMER_NORESTART;
8625 
8626 	event->pmu->read(event);
8627 
8628 	perf_sample_data_init(&data, 0, event->hw.last_period);
8629 	regs = get_irq_regs();
8630 
8631 	if (regs && !perf_exclude_event(event, regs)) {
8632 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8633 			if (__perf_event_overflow(event, 1, &data, regs))
8634 				ret = HRTIMER_NORESTART;
8635 	}
8636 
8637 	period = max_t(u64, 10000, event->hw.sample_period);
8638 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8639 
8640 	return ret;
8641 }
8642 
8643 static void perf_swevent_start_hrtimer(struct perf_event *event)
8644 {
8645 	struct hw_perf_event *hwc = &event->hw;
8646 	s64 period;
8647 
8648 	if (!is_sampling_event(event))
8649 		return;
8650 
8651 	period = local64_read(&hwc->period_left);
8652 	if (period) {
8653 		if (period < 0)
8654 			period = 10000;
8655 
8656 		local64_set(&hwc->period_left, 0);
8657 	} else {
8658 		period = max_t(u64, 10000, hwc->sample_period);
8659 	}
8660 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8661 		      HRTIMER_MODE_REL_PINNED);
8662 }
8663 
8664 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8665 {
8666 	struct hw_perf_event *hwc = &event->hw;
8667 
8668 	if (is_sampling_event(event)) {
8669 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8670 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8671 
8672 		hrtimer_cancel(&hwc->hrtimer);
8673 	}
8674 }
8675 
8676 static void perf_swevent_init_hrtimer(struct perf_event *event)
8677 {
8678 	struct hw_perf_event *hwc = &event->hw;
8679 
8680 	if (!is_sampling_event(event))
8681 		return;
8682 
8683 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8684 	hwc->hrtimer.function = perf_swevent_hrtimer;
8685 
8686 	/*
8687 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8688 	 * mapping and avoid the whole period adjust feedback stuff.
8689 	 */
8690 	if (event->attr.freq) {
8691 		long freq = event->attr.sample_freq;
8692 
8693 		event->attr.sample_period = NSEC_PER_SEC / freq;
8694 		hwc->sample_period = event->attr.sample_period;
8695 		local64_set(&hwc->period_left, hwc->sample_period);
8696 		hwc->last_period = hwc->sample_period;
8697 		event->attr.freq = 0;
8698 	}
8699 }
8700 
8701 /*
8702  * Software event: cpu wall time clock
8703  */
8704 
8705 static void cpu_clock_event_update(struct perf_event *event)
8706 {
8707 	s64 prev;
8708 	u64 now;
8709 
8710 	now = local_clock();
8711 	prev = local64_xchg(&event->hw.prev_count, now);
8712 	local64_add(now - prev, &event->count);
8713 }
8714 
8715 static void cpu_clock_event_start(struct perf_event *event, int flags)
8716 {
8717 	local64_set(&event->hw.prev_count, local_clock());
8718 	perf_swevent_start_hrtimer(event);
8719 }
8720 
8721 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8722 {
8723 	perf_swevent_cancel_hrtimer(event);
8724 	cpu_clock_event_update(event);
8725 }
8726 
8727 static int cpu_clock_event_add(struct perf_event *event, int flags)
8728 {
8729 	if (flags & PERF_EF_START)
8730 		cpu_clock_event_start(event, flags);
8731 	perf_event_update_userpage(event);
8732 
8733 	return 0;
8734 }
8735 
8736 static void cpu_clock_event_del(struct perf_event *event, int flags)
8737 {
8738 	cpu_clock_event_stop(event, flags);
8739 }
8740 
8741 static void cpu_clock_event_read(struct perf_event *event)
8742 {
8743 	cpu_clock_event_update(event);
8744 }
8745 
8746 static int cpu_clock_event_init(struct perf_event *event)
8747 {
8748 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8749 		return -ENOENT;
8750 
8751 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8752 		return -ENOENT;
8753 
8754 	/*
8755 	 * no branch sampling for software events
8756 	 */
8757 	if (has_branch_stack(event))
8758 		return -EOPNOTSUPP;
8759 
8760 	perf_swevent_init_hrtimer(event);
8761 
8762 	return 0;
8763 }
8764 
8765 static struct pmu perf_cpu_clock = {
8766 	.task_ctx_nr	= perf_sw_context,
8767 
8768 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8769 
8770 	.event_init	= cpu_clock_event_init,
8771 	.add		= cpu_clock_event_add,
8772 	.del		= cpu_clock_event_del,
8773 	.start		= cpu_clock_event_start,
8774 	.stop		= cpu_clock_event_stop,
8775 	.read		= cpu_clock_event_read,
8776 };
8777 
8778 /*
8779  * Software event: task time clock
8780  */
8781 
8782 static void task_clock_event_update(struct perf_event *event, u64 now)
8783 {
8784 	u64 prev;
8785 	s64 delta;
8786 
8787 	prev = local64_xchg(&event->hw.prev_count, now);
8788 	delta = now - prev;
8789 	local64_add(delta, &event->count);
8790 }
8791 
8792 static void task_clock_event_start(struct perf_event *event, int flags)
8793 {
8794 	local64_set(&event->hw.prev_count, event->ctx->time);
8795 	perf_swevent_start_hrtimer(event);
8796 }
8797 
8798 static void task_clock_event_stop(struct perf_event *event, int flags)
8799 {
8800 	perf_swevent_cancel_hrtimer(event);
8801 	task_clock_event_update(event, event->ctx->time);
8802 }
8803 
8804 static int task_clock_event_add(struct perf_event *event, int flags)
8805 {
8806 	if (flags & PERF_EF_START)
8807 		task_clock_event_start(event, flags);
8808 	perf_event_update_userpage(event);
8809 
8810 	return 0;
8811 }
8812 
8813 static void task_clock_event_del(struct perf_event *event, int flags)
8814 {
8815 	task_clock_event_stop(event, PERF_EF_UPDATE);
8816 }
8817 
8818 static void task_clock_event_read(struct perf_event *event)
8819 {
8820 	u64 now = perf_clock();
8821 	u64 delta = now - event->ctx->timestamp;
8822 	u64 time = event->ctx->time + delta;
8823 
8824 	task_clock_event_update(event, time);
8825 }
8826 
8827 static int task_clock_event_init(struct perf_event *event)
8828 {
8829 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8830 		return -ENOENT;
8831 
8832 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8833 		return -ENOENT;
8834 
8835 	/*
8836 	 * no branch sampling for software events
8837 	 */
8838 	if (has_branch_stack(event))
8839 		return -EOPNOTSUPP;
8840 
8841 	perf_swevent_init_hrtimer(event);
8842 
8843 	return 0;
8844 }
8845 
8846 static struct pmu perf_task_clock = {
8847 	.task_ctx_nr	= perf_sw_context,
8848 
8849 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8850 
8851 	.event_init	= task_clock_event_init,
8852 	.add		= task_clock_event_add,
8853 	.del		= task_clock_event_del,
8854 	.start		= task_clock_event_start,
8855 	.stop		= task_clock_event_stop,
8856 	.read		= task_clock_event_read,
8857 };
8858 
8859 static void perf_pmu_nop_void(struct pmu *pmu)
8860 {
8861 }
8862 
8863 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8864 {
8865 }
8866 
8867 static int perf_pmu_nop_int(struct pmu *pmu)
8868 {
8869 	return 0;
8870 }
8871 
8872 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8873 
8874 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8875 {
8876 	__this_cpu_write(nop_txn_flags, flags);
8877 
8878 	if (flags & ~PERF_PMU_TXN_ADD)
8879 		return;
8880 
8881 	perf_pmu_disable(pmu);
8882 }
8883 
8884 static int perf_pmu_commit_txn(struct pmu *pmu)
8885 {
8886 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8887 
8888 	__this_cpu_write(nop_txn_flags, 0);
8889 
8890 	if (flags & ~PERF_PMU_TXN_ADD)
8891 		return 0;
8892 
8893 	perf_pmu_enable(pmu);
8894 	return 0;
8895 }
8896 
8897 static void perf_pmu_cancel_txn(struct pmu *pmu)
8898 {
8899 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8900 
8901 	__this_cpu_write(nop_txn_flags, 0);
8902 
8903 	if (flags & ~PERF_PMU_TXN_ADD)
8904 		return;
8905 
8906 	perf_pmu_enable(pmu);
8907 }
8908 
8909 static int perf_event_idx_default(struct perf_event *event)
8910 {
8911 	return 0;
8912 }
8913 
8914 /*
8915  * Ensures all contexts with the same task_ctx_nr have the same
8916  * pmu_cpu_context too.
8917  */
8918 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8919 {
8920 	struct pmu *pmu;
8921 
8922 	if (ctxn < 0)
8923 		return NULL;
8924 
8925 	list_for_each_entry(pmu, &pmus, entry) {
8926 		if (pmu->task_ctx_nr == ctxn)
8927 			return pmu->pmu_cpu_context;
8928 	}
8929 
8930 	return NULL;
8931 }
8932 
8933 static void free_pmu_context(struct pmu *pmu)
8934 {
8935 	/*
8936 	 * Static contexts such as perf_sw_context have a global lifetime
8937 	 * and may be shared between different PMUs. Avoid freeing them
8938 	 * when a single PMU is going away.
8939 	 */
8940 	if (pmu->task_ctx_nr > perf_invalid_context)
8941 		return;
8942 
8943 	mutex_lock(&pmus_lock);
8944 	free_percpu(pmu->pmu_cpu_context);
8945 	mutex_unlock(&pmus_lock);
8946 }
8947 
8948 /*
8949  * Let userspace know that this PMU supports address range filtering:
8950  */
8951 static ssize_t nr_addr_filters_show(struct device *dev,
8952 				    struct device_attribute *attr,
8953 				    char *page)
8954 {
8955 	struct pmu *pmu = dev_get_drvdata(dev);
8956 
8957 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8958 }
8959 DEVICE_ATTR_RO(nr_addr_filters);
8960 
8961 static struct idr pmu_idr;
8962 
8963 static ssize_t
8964 type_show(struct device *dev, struct device_attribute *attr, char *page)
8965 {
8966 	struct pmu *pmu = dev_get_drvdata(dev);
8967 
8968 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8969 }
8970 static DEVICE_ATTR_RO(type);
8971 
8972 static ssize_t
8973 perf_event_mux_interval_ms_show(struct device *dev,
8974 				struct device_attribute *attr,
8975 				char *page)
8976 {
8977 	struct pmu *pmu = dev_get_drvdata(dev);
8978 
8979 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8980 }
8981 
8982 static DEFINE_MUTEX(mux_interval_mutex);
8983 
8984 static ssize_t
8985 perf_event_mux_interval_ms_store(struct device *dev,
8986 				 struct device_attribute *attr,
8987 				 const char *buf, size_t count)
8988 {
8989 	struct pmu *pmu = dev_get_drvdata(dev);
8990 	int timer, cpu, ret;
8991 
8992 	ret = kstrtoint(buf, 0, &timer);
8993 	if (ret)
8994 		return ret;
8995 
8996 	if (timer < 1)
8997 		return -EINVAL;
8998 
8999 	/* same value, noting to do */
9000 	if (timer == pmu->hrtimer_interval_ms)
9001 		return count;
9002 
9003 	mutex_lock(&mux_interval_mutex);
9004 	pmu->hrtimer_interval_ms = timer;
9005 
9006 	/* update all cpuctx for this PMU */
9007 	cpus_read_lock();
9008 	for_each_online_cpu(cpu) {
9009 		struct perf_cpu_context *cpuctx;
9010 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9011 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9012 
9013 		cpu_function_call(cpu,
9014 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9015 	}
9016 	cpus_read_unlock();
9017 	mutex_unlock(&mux_interval_mutex);
9018 
9019 	return count;
9020 }
9021 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9022 
9023 static struct attribute *pmu_dev_attrs[] = {
9024 	&dev_attr_type.attr,
9025 	&dev_attr_perf_event_mux_interval_ms.attr,
9026 	NULL,
9027 };
9028 ATTRIBUTE_GROUPS(pmu_dev);
9029 
9030 static int pmu_bus_running;
9031 static struct bus_type pmu_bus = {
9032 	.name		= "event_source",
9033 	.dev_groups	= pmu_dev_groups,
9034 };
9035 
9036 static void pmu_dev_release(struct device *dev)
9037 {
9038 	kfree(dev);
9039 }
9040 
9041 static int pmu_dev_alloc(struct pmu *pmu)
9042 {
9043 	int ret = -ENOMEM;
9044 
9045 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9046 	if (!pmu->dev)
9047 		goto out;
9048 
9049 	pmu->dev->groups = pmu->attr_groups;
9050 	device_initialize(pmu->dev);
9051 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9052 	if (ret)
9053 		goto free_dev;
9054 
9055 	dev_set_drvdata(pmu->dev, pmu);
9056 	pmu->dev->bus = &pmu_bus;
9057 	pmu->dev->release = pmu_dev_release;
9058 	ret = device_add(pmu->dev);
9059 	if (ret)
9060 		goto free_dev;
9061 
9062 	/* For PMUs with address filters, throw in an extra attribute: */
9063 	if (pmu->nr_addr_filters)
9064 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9065 
9066 	if (ret)
9067 		goto del_dev;
9068 
9069 out:
9070 	return ret;
9071 
9072 del_dev:
9073 	device_del(pmu->dev);
9074 
9075 free_dev:
9076 	put_device(pmu->dev);
9077 	goto out;
9078 }
9079 
9080 static struct lock_class_key cpuctx_mutex;
9081 static struct lock_class_key cpuctx_lock;
9082 
9083 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9084 {
9085 	int cpu, ret;
9086 
9087 	mutex_lock(&pmus_lock);
9088 	ret = -ENOMEM;
9089 	pmu->pmu_disable_count = alloc_percpu(int);
9090 	if (!pmu->pmu_disable_count)
9091 		goto unlock;
9092 
9093 	pmu->type = -1;
9094 	if (!name)
9095 		goto skip_type;
9096 	pmu->name = name;
9097 
9098 	if (type < 0) {
9099 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9100 		if (type < 0) {
9101 			ret = type;
9102 			goto free_pdc;
9103 		}
9104 	}
9105 	pmu->type = type;
9106 
9107 	if (pmu_bus_running) {
9108 		ret = pmu_dev_alloc(pmu);
9109 		if (ret)
9110 			goto free_idr;
9111 	}
9112 
9113 skip_type:
9114 	if (pmu->task_ctx_nr == perf_hw_context) {
9115 		static int hw_context_taken = 0;
9116 
9117 		/*
9118 		 * Other than systems with heterogeneous CPUs, it never makes
9119 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9120 		 * uncore must use perf_invalid_context.
9121 		 */
9122 		if (WARN_ON_ONCE(hw_context_taken &&
9123 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9124 			pmu->task_ctx_nr = perf_invalid_context;
9125 
9126 		hw_context_taken = 1;
9127 	}
9128 
9129 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9130 	if (pmu->pmu_cpu_context)
9131 		goto got_cpu_context;
9132 
9133 	ret = -ENOMEM;
9134 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9135 	if (!pmu->pmu_cpu_context)
9136 		goto free_dev;
9137 
9138 	for_each_possible_cpu(cpu) {
9139 		struct perf_cpu_context *cpuctx;
9140 
9141 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9142 		__perf_event_init_context(&cpuctx->ctx);
9143 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9144 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9145 		cpuctx->ctx.pmu = pmu;
9146 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9147 
9148 		__perf_mux_hrtimer_init(cpuctx, cpu);
9149 	}
9150 
9151 got_cpu_context:
9152 	if (!pmu->start_txn) {
9153 		if (pmu->pmu_enable) {
9154 			/*
9155 			 * If we have pmu_enable/pmu_disable calls, install
9156 			 * transaction stubs that use that to try and batch
9157 			 * hardware accesses.
9158 			 */
9159 			pmu->start_txn  = perf_pmu_start_txn;
9160 			pmu->commit_txn = perf_pmu_commit_txn;
9161 			pmu->cancel_txn = perf_pmu_cancel_txn;
9162 		} else {
9163 			pmu->start_txn  = perf_pmu_nop_txn;
9164 			pmu->commit_txn = perf_pmu_nop_int;
9165 			pmu->cancel_txn = perf_pmu_nop_void;
9166 		}
9167 	}
9168 
9169 	if (!pmu->pmu_enable) {
9170 		pmu->pmu_enable  = perf_pmu_nop_void;
9171 		pmu->pmu_disable = perf_pmu_nop_void;
9172 	}
9173 
9174 	if (!pmu->event_idx)
9175 		pmu->event_idx = perf_event_idx_default;
9176 
9177 	list_add_rcu(&pmu->entry, &pmus);
9178 	atomic_set(&pmu->exclusive_cnt, 0);
9179 	ret = 0;
9180 unlock:
9181 	mutex_unlock(&pmus_lock);
9182 
9183 	return ret;
9184 
9185 free_dev:
9186 	device_del(pmu->dev);
9187 	put_device(pmu->dev);
9188 
9189 free_idr:
9190 	if (pmu->type >= PERF_TYPE_MAX)
9191 		idr_remove(&pmu_idr, pmu->type);
9192 
9193 free_pdc:
9194 	free_percpu(pmu->pmu_disable_count);
9195 	goto unlock;
9196 }
9197 EXPORT_SYMBOL_GPL(perf_pmu_register);
9198 
9199 void perf_pmu_unregister(struct pmu *pmu)
9200 {
9201 	int remove_device;
9202 
9203 	mutex_lock(&pmus_lock);
9204 	remove_device = pmu_bus_running;
9205 	list_del_rcu(&pmu->entry);
9206 	mutex_unlock(&pmus_lock);
9207 
9208 	/*
9209 	 * We dereference the pmu list under both SRCU and regular RCU, so
9210 	 * synchronize against both of those.
9211 	 */
9212 	synchronize_srcu(&pmus_srcu);
9213 	synchronize_rcu();
9214 
9215 	free_percpu(pmu->pmu_disable_count);
9216 	if (pmu->type >= PERF_TYPE_MAX)
9217 		idr_remove(&pmu_idr, pmu->type);
9218 	if (remove_device) {
9219 		if (pmu->nr_addr_filters)
9220 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9221 		device_del(pmu->dev);
9222 		put_device(pmu->dev);
9223 	}
9224 	free_pmu_context(pmu);
9225 }
9226 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9227 
9228 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9229 {
9230 	struct perf_event_context *ctx = NULL;
9231 	int ret;
9232 
9233 	if (!try_module_get(pmu->module))
9234 		return -ENODEV;
9235 
9236 	/*
9237 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9238 	 * for example, validate if the group fits on the PMU. Therefore,
9239 	 * if this is a sibling event, acquire the ctx->mutex to protect
9240 	 * the sibling_list.
9241 	 */
9242 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9243 		/*
9244 		 * This ctx->mutex can nest when we're called through
9245 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9246 		 */
9247 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9248 						 SINGLE_DEPTH_NESTING);
9249 		BUG_ON(!ctx);
9250 	}
9251 
9252 	event->pmu = pmu;
9253 	ret = pmu->event_init(event);
9254 
9255 	if (ctx)
9256 		perf_event_ctx_unlock(event->group_leader, ctx);
9257 
9258 	if (ret)
9259 		module_put(pmu->module);
9260 
9261 	return ret;
9262 }
9263 
9264 static struct pmu *perf_init_event(struct perf_event *event)
9265 {
9266 	struct pmu *pmu;
9267 	int idx;
9268 	int ret;
9269 
9270 	idx = srcu_read_lock(&pmus_srcu);
9271 
9272 	/* Try parent's PMU first: */
9273 	if (event->parent && event->parent->pmu) {
9274 		pmu = event->parent->pmu;
9275 		ret = perf_try_init_event(pmu, event);
9276 		if (!ret)
9277 			goto unlock;
9278 	}
9279 
9280 	rcu_read_lock();
9281 	pmu = idr_find(&pmu_idr, event->attr.type);
9282 	rcu_read_unlock();
9283 	if (pmu) {
9284 		ret = perf_try_init_event(pmu, event);
9285 		if (ret)
9286 			pmu = ERR_PTR(ret);
9287 		goto unlock;
9288 	}
9289 
9290 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9291 		ret = perf_try_init_event(pmu, event);
9292 		if (!ret)
9293 			goto unlock;
9294 
9295 		if (ret != -ENOENT) {
9296 			pmu = ERR_PTR(ret);
9297 			goto unlock;
9298 		}
9299 	}
9300 	pmu = ERR_PTR(-ENOENT);
9301 unlock:
9302 	srcu_read_unlock(&pmus_srcu, idx);
9303 
9304 	return pmu;
9305 }
9306 
9307 static void attach_sb_event(struct perf_event *event)
9308 {
9309 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9310 
9311 	raw_spin_lock(&pel->lock);
9312 	list_add_rcu(&event->sb_list, &pel->list);
9313 	raw_spin_unlock(&pel->lock);
9314 }
9315 
9316 /*
9317  * We keep a list of all !task (and therefore per-cpu) events
9318  * that need to receive side-band records.
9319  *
9320  * This avoids having to scan all the various PMU per-cpu contexts
9321  * looking for them.
9322  */
9323 static void account_pmu_sb_event(struct perf_event *event)
9324 {
9325 	if (is_sb_event(event))
9326 		attach_sb_event(event);
9327 }
9328 
9329 static void account_event_cpu(struct perf_event *event, int cpu)
9330 {
9331 	if (event->parent)
9332 		return;
9333 
9334 	if (is_cgroup_event(event))
9335 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9336 }
9337 
9338 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9339 static void account_freq_event_nohz(void)
9340 {
9341 #ifdef CONFIG_NO_HZ_FULL
9342 	/* Lock so we don't race with concurrent unaccount */
9343 	spin_lock(&nr_freq_lock);
9344 	if (atomic_inc_return(&nr_freq_events) == 1)
9345 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9346 	spin_unlock(&nr_freq_lock);
9347 #endif
9348 }
9349 
9350 static void account_freq_event(void)
9351 {
9352 	if (tick_nohz_full_enabled())
9353 		account_freq_event_nohz();
9354 	else
9355 		atomic_inc(&nr_freq_events);
9356 }
9357 
9358 
9359 static void account_event(struct perf_event *event)
9360 {
9361 	bool inc = false;
9362 
9363 	if (event->parent)
9364 		return;
9365 
9366 	if (event->attach_state & PERF_ATTACH_TASK)
9367 		inc = true;
9368 	if (event->attr.mmap || event->attr.mmap_data)
9369 		atomic_inc(&nr_mmap_events);
9370 	if (event->attr.comm)
9371 		atomic_inc(&nr_comm_events);
9372 	if (event->attr.namespaces)
9373 		atomic_inc(&nr_namespaces_events);
9374 	if (event->attr.task)
9375 		atomic_inc(&nr_task_events);
9376 	if (event->attr.freq)
9377 		account_freq_event();
9378 	if (event->attr.context_switch) {
9379 		atomic_inc(&nr_switch_events);
9380 		inc = true;
9381 	}
9382 	if (has_branch_stack(event))
9383 		inc = true;
9384 	if (is_cgroup_event(event))
9385 		inc = true;
9386 
9387 	if (inc) {
9388 		/*
9389 		 * We need the mutex here because static_branch_enable()
9390 		 * must complete *before* the perf_sched_count increment
9391 		 * becomes visible.
9392 		 */
9393 		if (atomic_inc_not_zero(&perf_sched_count))
9394 			goto enabled;
9395 
9396 		mutex_lock(&perf_sched_mutex);
9397 		if (!atomic_read(&perf_sched_count)) {
9398 			static_branch_enable(&perf_sched_events);
9399 			/*
9400 			 * Guarantee that all CPUs observe they key change and
9401 			 * call the perf scheduling hooks before proceeding to
9402 			 * install events that need them.
9403 			 */
9404 			synchronize_sched();
9405 		}
9406 		/*
9407 		 * Now that we have waited for the sync_sched(), allow further
9408 		 * increments to by-pass the mutex.
9409 		 */
9410 		atomic_inc(&perf_sched_count);
9411 		mutex_unlock(&perf_sched_mutex);
9412 	}
9413 enabled:
9414 
9415 	account_event_cpu(event, event->cpu);
9416 
9417 	account_pmu_sb_event(event);
9418 }
9419 
9420 /*
9421  * Allocate and initialize a event structure
9422  */
9423 static struct perf_event *
9424 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9425 		 struct task_struct *task,
9426 		 struct perf_event *group_leader,
9427 		 struct perf_event *parent_event,
9428 		 perf_overflow_handler_t overflow_handler,
9429 		 void *context, int cgroup_fd)
9430 {
9431 	struct pmu *pmu;
9432 	struct perf_event *event;
9433 	struct hw_perf_event *hwc;
9434 	long err = -EINVAL;
9435 
9436 	if ((unsigned)cpu >= nr_cpu_ids) {
9437 		if (!task || cpu != -1)
9438 			return ERR_PTR(-EINVAL);
9439 	}
9440 
9441 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9442 	if (!event)
9443 		return ERR_PTR(-ENOMEM);
9444 
9445 	/*
9446 	 * Single events are their own group leaders, with an
9447 	 * empty sibling list:
9448 	 */
9449 	if (!group_leader)
9450 		group_leader = event;
9451 
9452 	mutex_init(&event->child_mutex);
9453 	INIT_LIST_HEAD(&event->child_list);
9454 
9455 	INIT_LIST_HEAD(&event->group_entry);
9456 	INIT_LIST_HEAD(&event->event_entry);
9457 	INIT_LIST_HEAD(&event->sibling_list);
9458 	INIT_LIST_HEAD(&event->rb_entry);
9459 	INIT_LIST_HEAD(&event->active_entry);
9460 	INIT_LIST_HEAD(&event->addr_filters.list);
9461 	INIT_HLIST_NODE(&event->hlist_entry);
9462 
9463 
9464 	init_waitqueue_head(&event->waitq);
9465 	init_irq_work(&event->pending, perf_pending_event);
9466 
9467 	mutex_init(&event->mmap_mutex);
9468 	raw_spin_lock_init(&event->addr_filters.lock);
9469 
9470 	atomic_long_set(&event->refcount, 1);
9471 	event->cpu		= cpu;
9472 	event->attr		= *attr;
9473 	event->group_leader	= group_leader;
9474 	event->pmu		= NULL;
9475 	event->oncpu		= -1;
9476 
9477 	event->parent		= parent_event;
9478 
9479 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9480 	event->id		= atomic64_inc_return(&perf_event_id);
9481 
9482 	event->state		= PERF_EVENT_STATE_INACTIVE;
9483 
9484 	if (task) {
9485 		event->attach_state = PERF_ATTACH_TASK;
9486 		/*
9487 		 * XXX pmu::event_init needs to know what task to account to
9488 		 * and we cannot use the ctx information because we need the
9489 		 * pmu before we get a ctx.
9490 		 */
9491 		event->hw.target = task;
9492 	}
9493 
9494 	event->clock = &local_clock;
9495 	if (parent_event)
9496 		event->clock = parent_event->clock;
9497 
9498 	if (!overflow_handler && parent_event) {
9499 		overflow_handler = parent_event->overflow_handler;
9500 		context = parent_event->overflow_handler_context;
9501 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9502 		if (overflow_handler == bpf_overflow_handler) {
9503 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9504 
9505 			if (IS_ERR(prog)) {
9506 				err = PTR_ERR(prog);
9507 				goto err_ns;
9508 			}
9509 			event->prog = prog;
9510 			event->orig_overflow_handler =
9511 				parent_event->orig_overflow_handler;
9512 		}
9513 #endif
9514 	}
9515 
9516 	if (overflow_handler) {
9517 		event->overflow_handler	= overflow_handler;
9518 		event->overflow_handler_context = context;
9519 	} else if (is_write_backward(event)){
9520 		event->overflow_handler = perf_event_output_backward;
9521 		event->overflow_handler_context = NULL;
9522 	} else {
9523 		event->overflow_handler = perf_event_output_forward;
9524 		event->overflow_handler_context = NULL;
9525 	}
9526 
9527 	perf_event__state_init(event);
9528 
9529 	pmu = NULL;
9530 
9531 	hwc = &event->hw;
9532 	hwc->sample_period = attr->sample_period;
9533 	if (attr->freq && attr->sample_freq)
9534 		hwc->sample_period = 1;
9535 	hwc->last_period = hwc->sample_period;
9536 
9537 	local64_set(&hwc->period_left, hwc->sample_period);
9538 
9539 	/*
9540 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9541 	 * See perf_output_read().
9542 	 */
9543 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9544 		goto err_ns;
9545 
9546 	if (!has_branch_stack(event))
9547 		event->attr.branch_sample_type = 0;
9548 
9549 	if (cgroup_fd != -1) {
9550 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9551 		if (err)
9552 			goto err_ns;
9553 	}
9554 
9555 	pmu = perf_init_event(event);
9556 	if (IS_ERR(pmu)) {
9557 		err = PTR_ERR(pmu);
9558 		goto err_ns;
9559 	}
9560 
9561 	err = exclusive_event_init(event);
9562 	if (err)
9563 		goto err_pmu;
9564 
9565 	if (has_addr_filter(event)) {
9566 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9567 						   sizeof(unsigned long),
9568 						   GFP_KERNEL);
9569 		if (!event->addr_filters_offs) {
9570 			err = -ENOMEM;
9571 			goto err_per_task;
9572 		}
9573 
9574 		/* force hw sync on the address filters */
9575 		event->addr_filters_gen = 1;
9576 	}
9577 
9578 	if (!event->parent) {
9579 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9580 			err = get_callchain_buffers(attr->sample_max_stack);
9581 			if (err)
9582 				goto err_addr_filters;
9583 		}
9584 	}
9585 
9586 	/* symmetric to unaccount_event() in _free_event() */
9587 	account_event(event);
9588 
9589 	return event;
9590 
9591 err_addr_filters:
9592 	kfree(event->addr_filters_offs);
9593 
9594 err_per_task:
9595 	exclusive_event_destroy(event);
9596 
9597 err_pmu:
9598 	if (event->destroy)
9599 		event->destroy(event);
9600 	module_put(pmu->module);
9601 err_ns:
9602 	if (is_cgroup_event(event))
9603 		perf_detach_cgroup(event);
9604 	if (event->ns)
9605 		put_pid_ns(event->ns);
9606 	kfree(event);
9607 
9608 	return ERR_PTR(err);
9609 }
9610 
9611 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9612 			  struct perf_event_attr *attr)
9613 {
9614 	u32 size;
9615 	int ret;
9616 
9617 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9618 		return -EFAULT;
9619 
9620 	/*
9621 	 * zero the full structure, so that a short copy will be nice.
9622 	 */
9623 	memset(attr, 0, sizeof(*attr));
9624 
9625 	ret = get_user(size, &uattr->size);
9626 	if (ret)
9627 		return ret;
9628 
9629 	if (size > PAGE_SIZE)	/* silly large */
9630 		goto err_size;
9631 
9632 	if (!size)		/* abi compat */
9633 		size = PERF_ATTR_SIZE_VER0;
9634 
9635 	if (size < PERF_ATTR_SIZE_VER0)
9636 		goto err_size;
9637 
9638 	/*
9639 	 * If we're handed a bigger struct than we know of,
9640 	 * ensure all the unknown bits are 0 - i.e. new
9641 	 * user-space does not rely on any kernel feature
9642 	 * extensions we dont know about yet.
9643 	 */
9644 	if (size > sizeof(*attr)) {
9645 		unsigned char __user *addr;
9646 		unsigned char __user *end;
9647 		unsigned char val;
9648 
9649 		addr = (void __user *)uattr + sizeof(*attr);
9650 		end  = (void __user *)uattr + size;
9651 
9652 		for (; addr < end; addr++) {
9653 			ret = get_user(val, addr);
9654 			if (ret)
9655 				return ret;
9656 			if (val)
9657 				goto err_size;
9658 		}
9659 		size = sizeof(*attr);
9660 	}
9661 
9662 	ret = copy_from_user(attr, uattr, size);
9663 	if (ret)
9664 		return -EFAULT;
9665 
9666 	attr->size = size;
9667 
9668 	if (attr->__reserved_1)
9669 		return -EINVAL;
9670 
9671 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9672 		return -EINVAL;
9673 
9674 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9675 		return -EINVAL;
9676 
9677 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9678 		u64 mask = attr->branch_sample_type;
9679 
9680 		/* only using defined bits */
9681 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9682 			return -EINVAL;
9683 
9684 		/* at least one branch bit must be set */
9685 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9686 			return -EINVAL;
9687 
9688 		/* propagate priv level, when not set for branch */
9689 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9690 
9691 			/* exclude_kernel checked on syscall entry */
9692 			if (!attr->exclude_kernel)
9693 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9694 
9695 			if (!attr->exclude_user)
9696 				mask |= PERF_SAMPLE_BRANCH_USER;
9697 
9698 			if (!attr->exclude_hv)
9699 				mask |= PERF_SAMPLE_BRANCH_HV;
9700 			/*
9701 			 * adjust user setting (for HW filter setup)
9702 			 */
9703 			attr->branch_sample_type = mask;
9704 		}
9705 		/* privileged levels capture (kernel, hv): check permissions */
9706 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9707 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9708 			return -EACCES;
9709 	}
9710 
9711 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9712 		ret = perf_reg_validate(attr->sample_regs_user);
9713 		if (ret)
9714 			return ret;
9715 	}
9716 
9717 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9718 		if (!arch_perf_have_user_stack_dump())
9719 			return -ENOSYS;
9720 
9721 		/*
9722 		 * We have __u32 type for the size, but so far
9723 		 * we can only use __u16 as maximum due to the
9724 		 * __u16 sample size limit.
9725 		 */
9726 		if (attr->sample_stack_user >= USHRT_MAX)
9727 			ret = -EINVAL;
9728 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9729 			ret = -EINVAL;
9730 	}
9731 
9732 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9733 		ret = perf_reg_validate(attr->sample_regs_intr);
9734 out:
9735 	return ret;
9736 
9737 err_size:
9738 	put_user(sizeof(*attr), &uattr->size);
9739 	ret = -E2BIG;
9740 	goto out;
9741 }
9742 
9743 static int
9744 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9745 {
9746 	struct ring_buffer *rb = NULL;
9747 	int ret = -EINVAL;
9748 
9749 	if (!output_event)
9750 		goto set;
9751 
9752 	/* don't allow circular references */
9753 	if (event == output_event)
9754 		goto out;
9755 
9756 	/*
9757 	 * Don't allow cross-cpu buffers
9758 	 */
9759 	if (output_event->cpu != event->cpu)
9760 		goto out;
9761 
9762 	/*
9763 	 * If its not a per-cpu rb, it must be the same task.
9764 	 */
9765 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9766 		goto out;
9767 
9768 	/*
9769 	 * Mixing clocks in the same buffer is trouble you don't need.
9770 	 */
9771 	if (output_event->clock != event->clock)
9772 		goto out;
9773 
9774 	/*
9775 	 * Either writing ring buffer from beginning or from end.
9776 	 * Mixing is not allowed.
9777 	 */
9778 	if (is_write_backward(output_event) != is_write_backward(event))
9779 		goto out;
9780 
9781 	/*
9782 	 * If both events generate aux data, they must be on the same PMU
9783 	 */
9784 	if (has_aux(event) && has_aux(output_event) &&
9785 	    event->pmu != output_event->pmu)
9786 		goto out;
9787 
9788 set:
9789 	mutex_lock(&event->mmap_mutex);
9790 	/* Can't redirect output if we've got an active mmap() */
9791 	if (atomic_read(&event->mmap_count))
9792 		goto unlock;
9793 
9794 	if (output_event) {
9795 		/* get the rb we want to redirect to */
9796 		rb = ring_buffer_get(output_event);
9797 		if (!rb)
9798 			goto unlock;
9799 	}
9800 
9801 	ring_buffer_attach(event, rb);
9802 
9803 	ret = 0;
9804 unlock:
9805 	mutex_unlock(&event->mmap_mutex);
9806 
9807 out:
9808 	return ret;
9809 }
9810 
9811 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9812 {
9813 	if (b < a)
9814 		swap(a, b);
9815 
9816 	mutex_lock(a);
9817 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9818 }
9819 
9820 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9821 {
9822 	bool nmi_safe = false;
9823 
9824 	switch (clk_id) {
9825 	case CLOCK_MONOTONIC:
9826 		event->clock = &ktime_get_mono_fast_ns;
9827 		nmi_safe = true;
9828 		break;
9829 
9830 	case CLOCK_MONOTONIC_RAW:
9831 		event->clock = &ktime_get_raw_fast_ns;
9832 		nmi_safe = true;
9833 		break;
9834 
9835 	case CLOCK_REALTIME:
9836 		event->clock = &ktime_get_real_ns;
9837 		break;
9838 
9839 	case CLOCK_BOOTTIME:
9840 		event->clock = &ktime_get_boot_ns;
9841 		break;
9842 
9843 	case CLOCK_TAI:
9844 		event->clock = &ktime_get_tai_ns;
9845 		break;
9846 
9847 	default:
9848 		return -EINVAL;
9849 	}
9850 
9851 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9852 		return -EINVAL;
9853 
9854 	return 0;
9855 }
9856 
9857 /*
9858  * Variation on perf_event_ctx_lock_nested(), except we take two context
9859  * mutexes.
9860  */
9861 static struct perf_event_context *
9862 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9863 			     struct perf_event_context *ctx)
9864 {
9865 	struct perf_event_context *gctx;
9866 
9867 again:
9868 	rcu_read_lock();
9869 	gctx = READ_ONCE(group_leader->ctx);
9870 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9871 		rcu_read_unlock();
9872 		goto again;
9873 	}
9874 	rcu_read_unlock();
9875 
9876 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9877 
9878 	if (group_leader->ctx != gctx) {
9879 		mutex_unlock(&ctx->mutex);
9880 		mutex_unlock(&gctx->mutex);
9881 		put_ctx(gctx);
9882 		goto again;
9883 	}
9884 
9885 	return gctx;
9886 }
9887 
9888 /**
9889  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9890  *
9891  * @attr_uptr:	event_id type attributes for monitoring/sampling
9892  * @pid:		target pid
9893  * @cpu:		target cpu
9894  * @group_fd:		group leader event fd
9895  */
9896 SYSCALL_DEFINE5(perf_event_open,
9897 		struct perf_event_attr __user *, attr_uptr,
9898 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9899 {
9900 	struct perf_event *group_leader = NULL, *output_event = NULL;
9901 	struct perf_event *event, *sibling;
9902 	struct perf_event_attr attr;
9903 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9904 	struct file *event_file = NULL;
9905 	struct fd group = {NULL, 0};
9906 	struct task_struct *task = NULL;
9907 	struct pmu *pmu;
9908 	int event_fd;
9909 	int move_group = 0;
9910 	int err;
9911 	int f_flags = O_RDWR;
9912 	int cgroup_fd = -1;
9913 
9914 	/* for future expandability... */
9915 	if (flags & ~PERF_FLAG_ALL)
9916 		return -EINVAL;
9917 
9918 	err = perf_copy_attr(attr_uptr, &attr);
9919 	if (err)
9920 		return err;
9921 
9922 	if (!attr.exclude_kernel) {
9923 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9924 			return -EACCES;
9925 	}
9926 
9927 	if (attr.namespaces) {
9928 		if (!capable(CAP_SYS_ADMIN))
9929 			return -EACCES;
9930 	}
9931 
9932 	if (attr.freq) {
9933 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9934 			return -EINVAL;
9935 	} else {
9936 		if (attr.sample_period & (1ULL << 63))
9937 			return -EINVAL;
9938 	}
9939 
9940 	/* Only privileged users can get physical addresses */
9941 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9942 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9943 		return -EACCES;
9944 
9945 	if (!attr.sample_max_stack)
9946 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9947 
9948 	/*
9949 	 * In cgroup mode, the pid argument is used to pass the fd
9950 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9951 	 * designates the cpu on which to monitor threads from that
9952 	 * cgroup.
9953 	 */
9954 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9955 		return -EINVAL;
9956 
9957 	if (flags & PERF_FLAG_FD_CLOEXEC)
9958 		f_flags |= O_CLOEXEC;
9959 
9960 	event_fd = get_unused_fd_flags(f_flags);
9961 	if (event_fd < 0)
9962 		return event_fd;
9963 
9964 	if (group_fd != -1) {
9965 		err = perf_fget_light(group_fd, &group);
9966 		if (err)
9967 			goto err_fd;
9968 		group_leader = group.file->private_data;
9969 		if (flags & PERF_FLAG_FD_OUTPUT)
9970 			output_event = group_leader;
9971 		if (flags & PERF_FLAG_FD_NO_GROUP)
9972 			group_leader = NULL;
9973 	}
9974 
9975 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9976 		task = find_lively_task_by_vpid(pid);
9977 		if (IS_ERR(task)) {
9978 			err = PTR_ERR(task);
9979 			goto err_group_fd;
9980 		}
9981 	}
9982 
9983 	if (task && group_leader &&
9984 	    group_leader->attr.inherit != attr.inherit) {
9985 		err = -EINVAL;
9986 		goto err_task;
9987 	}
9988 
9989 	if (task) {
9990 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9991 		if (err)
9992 			goto err_task;
9993 
9994 		/*
9995 		 * Reuse ptrace permission checks for now.
9996 		 *
9997 		 * We must hold cred_guard_mutex across this and any potential
9998 		 * perf_install_in_context() call for this new event to
9999 		 * serialize against exec() altering our credentials (and the
10000 		 * perf_event_exit_task() that could imply).
10001 		 */
10002 		err = -EACCES;
10003 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10004 			goto err_cred;
10005 	}
10006 
10007 	if (flags & PERF_FLAG_PID_CGROUP)
10008 		cgroup_fd = pid;
10009 
10010 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10011 				 NULL, NULL, cgroup_fd);
10012 	if (IS_ERR(event)) {
10013 		err = PTR_ERR(event);
10014 		goto err_cred;
10015 	}
10016 
10017 	if (is_sampling_event(event)) {
10018 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10019 			err = -EOPNOTSUPP;
10020 			goto err_alloc;
10021 		}
10022 	}
10023 
10024 	/*
10025 	 * Special case software events and allow them to be part of
10026 	 * any hardware group.
10027 	 */
10028 	pmu = event->pmu;
10029 
10030 	if (attr.use_clockid) {
10031 		err = perf_event_set_clock(event, attr.clockid);
10032 		if (err)
10033 			goto err_alloc;
10034 	}
10035 
10036 	if (pmu->task_ctx_nr == perf_sw_context)
10037 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10038 
10039 	if (group_leader &&
10040 	    (is_software_event(event) != is_software_event(group_leader))) {
10041 		if (is_software_event(event)) {
10042 			/*
10043 			 * If event and group_leader are not both a software
10044 			 * event, and event is, then group leader is not.
10045 			 *
10046 			 * Allow the addition of software events to !software
10047 			 * groups, this is safe because software events never
10048 			 * fail to schedule.
10049 			 */
10050 			pmu = group_leader->pmu;
10051 		} else if (is_software_event(group_leader) &&
10052 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10053 			/*
10054 			 * In case the group is a pure software group, and we
10055 			 * try to add a hardware event, move the whole group to
10056 			 * the hardware context.
10057 			 */
10058 			move_group = 1;
10059 		}
10060 	}
10061 
10062 	/*
10063 	 * Get the target context (task or percpu):
10064 	 */
10065 	ctx = find_get_context(pmu, task, event);
10066 	if (IS_ERR(ctx)) {
10067 		err = PTR_ERR(ctx);
10068 		goto err_alloc;
10069 	}
10070 
10071 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10072 		err = -EBUSY;
10073 		goto err_context;
10074 	}
10075 
10076 	/*
10077 	 * Look up the group leader (we will attach this event to it):
10078 	 */
10079 	if (group_leader) {
10080 		err = -EINVAL;
10081 
10082 		/*
10083 		 * Do not allow a recursive hierarchy (this new sibling
10084 		 * becoming part of another group-sibling):
10085 		 */
10086 		if (group_leader->group_leader != group_leader)
10087 			goto err_context;
10088 
10089 		/* All events in a group should have the same clock */
10090 		if (group_leader->clock != event->clock)
10091 			goto err_context;
10092 
10093 		/*
10094 		 * Make sure we're both events for the same CPU;
10095 		 * grouping events for different CPUs is broken; since
10096 		 * you can never concurrently schedule them anyhow.
10097 		 */
10098 		if (group_leader->cpu != event->cpu)
10099 			goto err_context;
10100 
10101 		/*
10102 		 * Make sure we're both on the same task, or both
10103 		 * per-CPU events.
10104 		 */
10105 		if (group_leader->ctx->task != ctx->task)
10106 			goto err_context;
10107 
10108 		/*
10109 		 * Do not allow to attach to a group in a different task
10110 		 * or CPU context. If we're moving SW events, we'll fix
10111 		 * this up later, so allow that.
10112 		 */
10113 		if (!move_group && group_leader->ctx != ctx)
10114 			goto err_context;
10115 
10116 		/*
10117 		 * Only a group leader can be exclusive or pinned
10118 		 */
10119 		if (attr.exclusive || attr.pinned)
10120 			goto err_context;
10121 	}
10122 
10123 	if (output_event) {
10124 		err = perf_event_set_output(event, output_event);
10125 		if (err)
10126 			goto err_context;
10127 	}
10128 
10129 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10130 					f_flags);
10131 	if (IS_ERR(event_file)) {
10132 		err = PTR_ERR(event_file);
10133 		event_file = NULL;
10134 		goto err_context;
10135 	}
10136 
10137 	if (move_group) {
10138 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10139 
10140 		if (gctx->task == TASK_TOMBSTONE) {
10141 			err = -ESRCH;
10142 			goto err_locked;
10143 		}
10144 
10145 		/*
10146 		 * Check if we raced against another sys_perf_event_open() call
10147 		 * moving the software group underneath us.
10148 		 */
10149 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10150 			/*
10151 			 * If someone moved the group out from under us, check
10152 			 * if this new event wound up on the same ctx, if so
10153 			 * its the regular !move_group case, otherwise fail.
10154 			 */
10155 			if (gctx != ctx) {
10156 				err = -EINVAL;
10157 				goto err_locked;
10158 			} else {
10159 				perf_event_ctx_unlock(group_leader, gctx);
10160 				move_group = 0;
10161 			}
10162 		}
10163 	} else {
10164 		mutex_lock(&ctx->mutex);
10165 	}
10166 
10167 	if (ctx->task == TASK_TOMBSTONE) {
10168 		err = -ESRCH;
10169 		goto err_locked;
10170 	}
10171 
10172 	if (!perf_event_validate_size(event)) {
10173 		err = -E2BIG;
10174 		goto err_locked;
10175 	}
10176 
10177 	if (!task) {
10178 		/*
10179 		 * Check if the @cpu we're creating an event for is online.
10180 		 *
10181 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10182 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10183 		 */
10184 		struct perf_cpu_context *cpuctx =
10185 			container_of(ctx, struct perf_cpu_context, ctx);
10186 
10187 		if (!cpuctx->online) {
10188 			err = -ENODEV;
10189 			goto err_locked;
10190 		}
10191 	}
10192 
10193 
10194 	/*
10195 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10196 	 * because we need to serialize with concurrent event creation.
10197 	 */
10198 	if (!exclusive_event_installable(event, ctx)) {
10199 		/* exclusive and group stuff are assumed mutually exclusive */
10200 		WARN_ON_ONCE(move_group);
10201 
10202 		err = -EBUSY;
10203 		goto err_locked;
10204 	}
10205 
10206 	WARN_ON_ONCE(ctx->parent_ctx);
10207 
10208 	/*
10209 	 * This is the point on no return; we cannot fail hereafter. This is
10210 	 * where we start modifying current state.
10211 	 */
10212 
10213 	if (move_group) {
10214 		/*
10215 		 * See perf_event_ctx_lock() for comments on the details
10216 		 * of swizzling perf_event::ctx.
10217 		 */
10218 		perf_remove_from_context(group_leader, 0);
10219 		put_ctx(gctx);
10220 
10221 		list_for_each_entry(sibling, &group_leader->sibling_list,
10222 				    group_entry) {
10223 			perf_remove_from_context(sibling, 0);
10224 			put_ctx(gctx);
10225 		}
10226 
10227 		/*
10228 		 * Wait for everybody to stop referencing the events through
10229 		 * the old lists, before installing it on new lists.
10230 		 */
10231 		synchronize_rcu();
10232 
10233 		/*
10234 		 * Install the group siblings before the group leader.
10235 		 *
10236 		 * Because a group leader will try and install the entire group
10237 		 * (through the sibling list, which is still in-tact), we can
10238 		 * end up with siblings installed in the wrong context.
10239 		 *
10240 		 * By installing siblings first we NO-OP because they're not
10241 		 * reachable through the group lists.
10242 		 */
10243 		list_for_each_entry(sibling, &group_leader->sibling_list,
10244 				    group_entry) {
10245 			perf_event__state_init(sibling);
10246 			perf_install_in_context(ctx, sibling, sibling->cpu);
10247 			get_ctx(ctx);
10248 		}
10249 
10250 		/*
10251 		 * Removing from the context ends up with disabled
10252 		 * event. What we want here is event in the initial
10253 		 * startup state, ready to be add into new context.
10254 		 */
10255 		perf_event__state_init(group_leader);
10256 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10257 		get_ctx(ctx);
10258 	}
10259 
10260 	/*
10261 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10262 	 * that we're serialized against further additions and before
10263 	 * perf_install_in_context() which is the point the event is active and
10264 	 * can use these values.
10265 	 */
10266 	perf_event__header_size(event);
10267 	perf_event__id_header_size(event);
10268 
10269 	event->owner = current;
10270 
10271 	perf_install_in_context(ctx, event, event->cpu);
10272 	perf_unpin_context(ctx);
10273 
10274 	if (move_group)
10275 		perf_event_ctx_unlock(group_leader, gctx);
10276 	mutex_unlock(&ctx->mutex);
10277 
10278 	if (task) {
10279 		mutex_unlock(&task->signal->cred_guard_mutex);
10280 		put_task_struct(task);
10281 	}
10282 
10283 	mutex_lock(&current->perf_event_mutex);
10284 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10285 	mutex_unlock(&current->perf_event_mutex);
10286 
10287 	/*
10288 	 * Drop the reference on the group_event after placing the
10289 	 * new event on the sibling_list. This ensures destruction
10290 	 * of the group leader will find the pointer to itself in
10291 	 * perf_group_detach().
10292 	 */
10293 	fdput(group);
10294 	fd_install(event_fd, event_file);
10295 	return event_fd;
10296 
10297 err_locked:
10298 	if (move_group)
10299 		perf_event_ctx_unlock(group_leader, gctx);
10300 	mutex_unlock(&ctx->mutex);
10301 /* err_file: */
10302 	fput(event_file);
10303 err_context:
10304 	perf_unpin_context(ctx);
10305 	put_ctx(ctx);
10306 err_alloc:
10307 	/*
10308 	 * If event_file is set, the fput() above will have called ->release()
10309 	 * and that will take care of freeing the event.
10310 	 */
10311 	if (!event_file)
10312 		free_event(event);
10313 err_cred:
10314 	if (task)
10315 		mutex_unlock(&task->signal->cred_guard_mutex);
10316 err_task:
10317 	if (task)
10318 		put_task_struct(task);
10319 err_group_fd:
10320 	fdput(group);
10321 err_fd:
10322 	put_unused_fd(event_fd);
10323 	return err;
10324 }
10325 
10326 /**
10327  * perf_event_create_kernel_counter
10328  *
10329  * @attr: attributes of the counter to create
10330  * @cpu: cpu in which the counter is bound
10331  * @task: task to profile (NULL for percpu)
10332  */
10333 struct perf_event *
10334 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10335 				 struct task_struct *task,
10336 				 perf_overflow_handler_t overflow_handler,
10337 				 void *context)
10338 {
10339 	struct perf_event_context *ctx;
10340 	struct perf_event *event;
10341 	int err;
10342 
10343 	/*
10344 	 * Get the target context (task or percpu):
10345 	 */
10346 
10347 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10348 				 overflow_handler, context, -1);
10349 	if (IS_ERR(event)) {
10350 		err = PTR_ERR(event);
10351 		goto err;
10352 	}
10353 
10354 	/* Mark owner so we could distinguish it from user events. */
10355 	event->owner = TASK_TOMBSTONE;
10356 
10357 	ctx = find_get_context(event->pmu, task, event);
10358 	if (IS_ERR(ctx)) {
10359 		err = PTR_ERR(ctx);
10360 		goto err_free;
10361 	}
10362 
10363 	WARN_ON_ONCE(ctx->parent_ctx);
10364 	mutex_lock(&ctx->mutex);
10365 	if (ctx->task == TASK_TOMBSTONE) {
10366 		err = -ESRCH;
10367 		goto err_unlock;
10368 	}
10369 
10370 	if (!task) {
10371 		/*
10372 		 * Check if the @cpu we're creating an event for is online.
10373 		 *
10374 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10375 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10376 		 */
10377 		struct perf_cpu_context *cpuctx =
10378 			container_of(ctx, struct perf_cpu_context, ctx);
10379 		if (!cpuctx->online) {
10380 			err = -ENODEV;
10381 			goto err_unlock;
10382 		}
10383 	}
10384 
10385 	if (!exclusive_event_installable(event, ctx)) {
10386 		err = -EBUSY;
10387 		goto err_unlock;
10388 	}
10389 
10390 	perf_install_in_context(ctx, event, cpu);
10391 	perf_unpin_context(ctx);
10392 	mutex_unlock(&ctx->mutex);
10393 
10394 	return event;
10395 
10396 err_unlock:
10397 	mutex_unlock(&ctx->mutex);
10398 	perf_unpin_context(ctx);
10399 	put_ctx(ctx);
10400 err_free:
10401 	free_event(event);
10402 err:
10403 	return ERR_PTR(err);
10404 }
10405 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10406 
10407 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10408 {
10409 	struct perf_event_context *src_ctx;
10410 	struct perf_event_context *dst_ctx;
10411 	struct perf_event *event, *tmp;
10412 	LIST_HEAD(events);
10413 
10414 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10415 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10416 
10417 	/*
10418 	 * See perf_event_ctx_lock() for comments on the details
10419 	 * of swizzling perf_event::ctx.
10420 	 */
10421 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10422 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10423 				 event_entry) {
10424 		perf_remove_from_context(event, 0);
10425 		unaccount_event_cpu(event, src_cpu);
10426 		put_ctx(src_ctx);
10427 		list_add(&event->migrate_entry, &events);
10428 	}
10429 
10430 	/*
10431 	 * Wait for the events to quiesce before re-instating them.
10432 	 */
10433 	synchronize_rcu();
10434 
10435 	/*
10436 	 * Re-instate events in 2 passes.
10437 	 *
10438 	 * Skip over group leaders and only install siblings on this first
10439 	 * pass, siblings will not get enabled without a leader, however a
10440 	 * leader will enable its siblings, even if those are still on the old
10441 	 * context.
10442 	 */
10443 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10444 		if (event->group_leader == event)
10445 			continue;
10446 
10447 		list_del(&event->migrate_entry);
10448 		if (event->state >= PERF_EVENT_STATE_OFF)
10449 			event->state = PERF_EVENT_STATE_INACTIVE;
10450 		account_event_cpu(event, dst_cpu);
10451 		perf_install_in_context(dst_ctx, event, dst_cpu);
10452 		get_ctx(dst_ctx);
10453 	}
10454 
10455 	/*
10456 	 * Once all the siblings are setup properly, install the group leaders
10457 	 * to make it go.
10458 	 */
10459 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10460 		list_del(&event->migrate_entry);
10461 		if (event->state >= PERF_EVENT_STATE_OFF)
10462 			event->state = PERF_EVENT_STATE_INACTIVE;
10463 		account_event_cpu(event, dst_cpu);
10464 		perf_install_in_context(dst_ctx, event, dst_cpu);
10465 		get_ctx(dst_ctx);
10466 	}
10467 	mutex_unlock(&dst_ctx->mutex);
10468 	mutex_unlock(&src_ctx->mutex);
10469 }
10470 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10471 
10472 static void sync_child_event(struct perf_event *child_event,
10473 			       struct task_struct *child)
10474 {
10475 	struct perf_event *parent_event = child_event->parent;
10476 	u64 child_val;
10477 
10478 	if (child_event->attr.inherit_stat)
10479 		perf_event_read_event(child_event, child);
10480 
10481 	child_val = perf_event_count(child_event);
10482 
10483 	/*
10484 	 * Add back the child's count to the parent's count:
10485 	 */
10486 	atomic64_add(child_val, &parent_event->child_count);
10487 	atomic64_add(child_event->total_time_enabled,
10488 		     &parent_event->child_total_time_enabled);
10489 	atomic64_add(child_event->total_time_running,
10490 		     &parent_event->child_total_time_running);
10491 }
10492 
10493 static void
10494 perf_event_exit_event(struct perf_event *child_event,
10495 		      struct perf_event_context *child_ctx,
10496 		      struct task_struct *child)
10497 {
10498 	struct perf_event *parent_event = child_event->parent;
10499 
10500 	/*
10501 	 * Do not destroy the 'original' grouping; because of the context
10502 	 * switch optimization the original events could've ended up in a
10503 	 * random child task.
10504 	 *
10505 	 * If we were to destroy the original group, all group related
10506 	 * operations would cease to function properly after this random
10507 	 * child dies.
10508 	 *
10509 	 * Do destroy all inherited groups, we don't care about those
10510 	 * and being thorough is better.
10511 	 */
10512 	raw_spin_lock_irq(&child_ctx->lock);
10513 	WARN_ON_ONCE(child_ctx->is_active);
10514 
10515 	if (parent_event)
10516 		perf_group_detach(child_event);
10517 	list_del_event(child_event, child_ctx);
10518 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10519 	raw_spin_unlock_irq(&child_ctx->lock);
10520 
10521 	/*
10522 	 * Parent events are governed by their filedesc, retain them.
10523 	 */
10524 	if (!parent_event) {
10525 		perf_event_wakeup(child_event);
10526 		return;
10527 	}
10528 	/*
10529 	 * Child events can be cleaned up.
10530 	 */
10531 
10532 	sync_child_event(child_event, child);
10533 
10534 	/*
10535 	 * Remove this event from the parent's list
10536 	 */
10537 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10538 	mutex_lock(&parent_event->child_mutex);
10539 	list_del_init(&child_event->child_list);
10540 	mutex_unlock(&parent_event->child_mutex);
10541 
10542 	/*
10543 	 * Kick perf_poll() for is_event_hup().
10544 	 */
10545 	perf_event_wakeup(parent_event);
10546 	free_event(child_event);
10547 	put_event(parent_event);
10548 }
10549 
10550 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10551 {
10552 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10553 	struct perf_event *child_event, *next;
10554 
10555 	WARN_ON_ONCE(child != current);
10556 
10557 	child_ctx = perf_pin_task_context(child, ctxn);
10558 	if (!child_ctx)
10559 		return;
10560 
10561 	/*
10562 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10563 	 * ctx::mutex over the entire thing. This serializes against almost
10564 	 * everything that wants to access the ctx.
10565 	 *
10566 	 * The exception is sys_perf_event_open() /
10567 	 * perf_event_create_kernel_count() which does find_get_context()
10568 	 * without ctx::mutex (it cannot because of the move_group double mutex
10569 	 * lock thing). See the comments in perf_install_in_context().
10570 	 */
10571 	mutex_lock(&child_ctx->mutex);
10572 
10573 	/*
10574 	 * In a single ctx::lock section, de-schedule the events and detach the
10575 	 * context from the task such that we cannot ever get it scheduled back
10576 	 * in.
10577 	 */
10578 	raw_spin_lock_irq(&child_ctx->lock);
10579 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10580 
10581 	/*
10582 	 * Now that the context is inactive, destroy the task <-> ctx relation
10583 	 * and mark the context dead.
10584 	 */
10585 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10586 	put_ctx(child_ctx); /* cannot be last */
10587 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10588 	put_task_struct(current); /* cannot be last */
10589 
10590 	clone_ctx = unclone_ctx(child_ctx);
10591 	raw_spin_unlock_irq(&child_ctx->lock);
10592 
10593 	if (clone_ctx)
10594 		put_ctx(clone_ctx);
10595 
10596 	/*
10597 	 * Report the task dead after unscheduling the events so that we
10598 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10599 	 * get a few PERF_RECORD_READ events.
10600 	 */
10601 	perf_event_task(child, child_ctx, 0);
10602 
10603 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10604 		perf_event_exit_event(child_event, child_ctx, child);
10605 
10606 	mutex_unlock(&child_ctx->mutex);
10607 
10608 	put_ctx(child_ctx);
10609 }
10610 
10611 /*
10612  * When a child task exits, feed back event values to parent events.
10613  *
10614  * Can be called with cred_guard_mutex held when called from
10615  * install_exec_creds().
10616  */
10617 void perf_event_exit_task(struct task_struct *child)
10618 {
10619 	struct perf_event *event, *tmp;
10620 	int ctxn;
10621 
10622 	mutex_lock(&child->perf_event_mutex);
10623 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10624 				 owner_entry) {
10625 		list_del_init(&event->owner_entry);
10626 
10627 		/*
10628 		 * Ensure the list deletion is visible before we clear
10629 		 * the owner, closes a race against perf_release() where
10630 		 * we need to serialize on the owner->perf_event_mutex.
10631 		 */
10632 		smp_store_release(&event->owner, NULL);
10633 	}
10634 	mutex_unlock(&child->perf_event_mutex);
10635 
10636 	for_each_task_context_nr(ctxn)
10637 		perf_event_exit_task_context(child, ctxn);
10638 
10639 	/*
10640 	 * The perf_event_exit_task_context calls perf_event_task
10641 	 * with child's task_ctx, which generates EXIT events for
10642 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10643 	 * At this point we need to send EXIT events to cpu contexts.
10644 	 */
10645 	perf_event_task(child, NULL, 0);
10646 }
10647 
10648 static void perf_free_event(struct perf_event *event,
10649 			    struct perf_event_context *ctx)
10650 {
10651 	struct perf_event *parent = event->parent;
10652 
10653 	if (WARN_ON_ONCE(!parent))
10654 		return;
10655 
10656 	mutex_lock(&parent->child_mutex);
10657 	list_del_init(&event->child_list);
10658 	mutex_unlock(&parent->child_mutex);
10659 
10660 	put_event(parent);
10661 
10662 	raw_spin_lock_irq(&ctx->lock);
10663 	perf_group_detach(event);
10664 	list_del_event(event, ctx);
10665 	raw_spin_unlock_irq(&ctx->lock);
10666 	free_event(event);
10667 }
10668 
10669 /*
10670  * Free an unexposed, unused context as created by inheritance by
10671  * perf_event_init_task below, used by fork() in case of fail.
10672  *
10673  * Not all locks are strictly required, but take them anyway to be nice and
10674  * help out with the lockdep assertions.
10675  */
10676 void perf_event_free_task(struct task_struct *task)
10677 {
10678 	struct perf_event_context *ctx;
10679 	struct perf_event *event, *tmp;
10680 	int ctxn;
10681 
10682 	for_each_task_context_nr(ctxn) {
10683 		ctx = task->perf_event_ctxp[ctxn];
10684 		if (!ctx)
10685 			continue;
10686 
10687 		mutex_lock(&ctx->mutex);
10688 		raw_spin_lock_irq(&ctx->lock);
10689 		/*
10690 		 * Destroy the task <-> ctx relation and mark the context dead.
10691 		 *
10692 		 * This is important because even though the task hasn't been
10693 		 * exposed yet the context has been (through child_list).
10694 		 */
10695 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10696 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10697 		put_task_struct(task); /* cannot be last */
10698 		raw_spin_unlock_irq(&ctx->lock);
10699 
10700 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10701 			perf_free_event(event, ctx);
10702 
10703 		mutex_unlock(&ctx->mutex);
10704 		put_ctx(ctx);
10705 	}
10706 }
10707 
10708 void perf_event_delayed_put(struct task_struct *task)
10709 {
10710 	int ctxn;
10711 
10712 	for_each_task_context_nr(ctxn)
10713 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10714 }
10715 
10716 struct file *perf_event_get(unsigned int fd)
10717 {
10718 	struct file *file;
10719 
10720 	file = fget_raw(fd);
10721 	if (!file)
10722 		return ERR_PTR(-EBADF);
10723 
10724 	if (file->f_op != &perf_fops) {
10725 		fput(file);
10726 		return ERR_PTR(-EBADF);
10727 	}
10728 
10729 	return file;
10730 }
10731 
10732 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10733 {
10734 	if (!event)
10735 		return ERR_PTR(-EINVAL);
10736 
10737 	return &event->attr;
10738 }
10739 
10740 /*
10741  * Inherit a event from parent task to child task.
10742  *
10743  * Returns:
10744  *  - valid pointer on success
10745  *  - NULL for orphaned events
10746  *  - IS_ERR() on error
10747  */
10748 static struct perf_event *
10749 inherit_event(struct perf_event *parent_event,
10750 	      struct task_struct *parent,
10751 	      struct perf_event_context *parent_ctx,
10752 	      struct task_struct *child,
10753 	      struct perf_event *group_leader,
10754 	      struct perf_event_context *child_ctx)
10755 {
10756 	enum perf_event_state parent_state = parent_event->state;
10757 	struct perf_event *child_event;
10758 	unsigned long flags;
10759 
10760 	/*
10761 	 * Instead of creating recursive hierarchies of events,
10762 	 * we link inherited events back to the original parent,
10763 	 * which has a filp for sure, which we use as the reference
10764 	 * count:
10765 	 */
10766 	if (parent_event->parent)
10767 		parent_event = parent_event->parent;
10768 
10769 	child_event = perf_event_alloc(&parent_event->attr,
10770 					   parent_event->cpu,
10771 					   child,
10772 					   group_leader, parent_event,
10773 					   NULL, NULL, -1);
10774 	if (IS_ERR(child_event))
10775 		return child_event;
10776 
10777 
10778 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10779 	    !child_ctx->task_ctx_data) {
10780 		struct pmu *pmu = child_event->pmu;
10781 
10782 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10783 						   GFP_KERNEL);
10784 		if (!child_ctx->task_ctx_data) {
10785 			free_event(child_event);
10786 			return NULL;
10787 		}
10788 	}
10789 
10790 	/*
10791 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10792 	 * must be under the same lock in order to serialize against
10793 	 * perf_event_release_kernel(), such that either we must observe
10794 	 * is_orphaned_event() or they will observe us on the child_list.
10795 	 */
10796 	mutex_lock(&parent_event->child_mutex);
10797 	if (is_orphaned_event(parent_event) ||
10798 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10799 		mutex_unlock(&parent_event->child_mutex);
10800 		/* task_ctx_data is freed with child_ctx */
10801 		free_event(child_event);
10802 		return NULL;
10803 	}
10804 
10805 	get_ctx(child_ctx);
10806 
10807 	/*
10808 	 * Make the child state follow the state of the parent event,
10809 	 * not its attr.disabled bit.  We hold the parent's mutex,
10810 	 * so we won't race with perf_event_{en, dis}able_family.
10811 	 */
10812 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10813 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10814 	else
10815 		child_event->state = PERF_EVENT_STATE_OFF;
10816 
10817 	if (parent_event->attr.freq) {
10818 		u64 sample_period = parent_event->hw.sample_period;
10819 		struct hw_perf_event *hwc = &child_event->hw;
10820 
10821 		hwc->sample_period = sample_period;
10822 		hwc->last_period   = sample_period;
10823 
10824 		local64_set(&hwc->period_left, sample_period);
10825 	}
10826 
10827 	child_event->ctx = child_ctx;
10828 	child_event->overflow_handler = parent_event->overflow_handler;
10829 	child_event->overflow_handler_context
10830 		= parent_event->overflow_handler_context;
10831 
10832 	/*
10833 	 * Precalculate sample_data sizes
10834 	 */
10835 	perf_event__header_size(child_event);
10836 	perf_event__id_header_size(child_event);
10837 
10838 	/*
10839 	 * Link it up in the child's context:
10840 	 */
10841 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10842 	add_event_to_ctx(child_event, child_ctx);
10843 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10844 
10845 	/*
10846 	 * Link this into the parent event's child list
10847 	 */
10848 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10849 	mutex_unlock(&parent_event->child_mutex);
10850 
10851 	return child_event;
10852 }
10853 
10854 /*
10855  * Inherits an event group.
10856  *
10857  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10858  * This matches with perf_event_release_kernel() removing all child events.
10859  *
10860  * Returns:
10861  *  - 0 on success
10862  *  - <0 on error
10863  */
10864 static int inherit_group(struct perf_event *parent_event,
10865 	      struct task_struct *parent,
10866 	      struct perf_event_context *parent_ctx,
10867 	      struct task_struct *child,
10868 	      struct perf_event_context *child_ctx)
10869 {
10870 	struct perf_event *leader;
10871 	struct perf_event *sub;
10872 	struct perf_event *child_ctr;
10873 
10874 	leader = inherit_event(parent_event, parent, parent_ctx,
10875 				 child, NULL, child_ctx);
10876 	if (IS_ERR(leader))
10877 		return PTR_ERR(leader);
10878 	/*
10879 	 * @leader can be NULL here because of is_orphaned_event(). In this
10880 	 * case inherit_event() will create individual events, similar to what
10881 	 * perf_group_detach() would do anyway.
10882 	 */
10883 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10884 		child_ctr = inherit_event(sub, parent, parent_ctx,
10885 					    child, leader, child_ctx);
10886 		if (IS_ERR(child_ctr))
10887 			return PTR_ERR(child_ctr);
10888 	}
10889 	return 0;
10890 }
10891 
10892 /*
10893  * Creates the child task context and tries to inherit the event-group.
10894  *
10895  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10896  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10897  * consistent with perf_event_release_kernel() removing all child events.
10898  *
10899  * Returns:
10900  *  - 0 on success
10901  *  - <0 on error
10902  */
10903 static int
10904 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10905 		   struct perf_event_context *parent_ctx,
10906 		   struct task_struct *child, int ctxn,
10907 		   int *inherited_all)
10908 {
10909 	int ret;
10910 	struct perf_event_context *child_ctx;
10911 
10912 	if (!event->attr.inherit) {
10913 		*inherited_all = 0;
10914 		return 0;
10915 	}
10916 
10917 	child_ctx = child->perf_event_ctxp[ctxn];
10918 	if (!child_ctx) {
10919 		/*
10920 		 * This is executed from the parent task context, so
10921 		 * inherit events that have been marked for cloning.
10922 		 * First allocate and initialize a context for the
10923 		 * child.
10924 		 */
10925 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10926 		if (!child_ctx)
10927 			return -ENOMEM;
10928 
10929 		child->perf_event_ctxp[ctxn] = child_ctx;
10930 	}
10931 
10932 	ret = inherit_group(event, parent, parent_ctx,
10933 			    child, child_ctx);
10934 
10935 	if (ret)
10936 		*inherited_all = 0;
10937 
10938 	return ret;
10939 }
10940 
10941 /*
10942  * Initialize the perf_event context in task_struct
10943  */
10944 static int perf_event_init_context(struct task_struct *child, int ctxn)
10945 {
10946 	struct perf_event_context *child_ctx, *parent_ctx;
10947 	struct perf_event_context *cloned_ctx;
10948 	struct perf_event *event;
10949 	struct task_struct *parent = current;
10950 	int inherited_all = 1;
10951 	unsigned long flags;
10952 	int ret = 0;
10953 
10954 	if (likely(!parent->perf_event_ctxp[ctxn]))
10955 		return 0;
10956 
10957 	/*
10958 	 * If the parent's context is a clone, pin it so it won't get
10959 	 * swapped under us.
10960 	 */
10961 	parent_ctx = perf_pin_task_context(parent, ctxn);
10962 	if (!parent_ctx)
10963 		return 0;
10964 
10965 	/*
10966 	 * No need to check if parent_ctx != NULL here; since we saw
10967 	 * it non-NULL earlier, the only reason for it to become NULL
10968 	 * is if we exit, and since we're currently in the middle of
10969 	 * a fork we can't be exiting at the same time.
10970 	 */
10971 
10972 	/*
10973 	 * Lock the parent list. No need to lock the child - not PID
10974 	 * hashed yet and not running, so nobody can access it.
10975 	 */
10976 	mutex_lock(&parent_ctx->mutex);
10977 
10978 	/*
10979 	 * We dont have to disable NMIs - we are only looking at
10980 	 * the list, not manipulating it:
10981 	 */
10982 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10983 		ret = inherit_task_group(event, parent, parent_ctx,
10984 					 child, ctxn, &inherited_all);
10985 		if (ret)
10986 			goto out_unlock;
10987 	}
10988 
10989 	/*
10990 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10991 	 * to allocations, but we need to prevent rotation because
10992 	 * rotate_ctx() will change the list from interrupt context.
10993 	 */
10994 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 	parent_ctx->rotate_disable = 1;
10996 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997 
10998 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10999 		ret = inherit_task_group(event, parent, parent_ctx,
11000 					 child, ctxn, &inherited_all);
11001 		if (ret)
11002 			goto out_unlock;
11003 	}
11004 
11005 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11006 	parent_ctx->rotate_disable = 0;
11007 
11008 	child_ctx = child->perf_event_ctxp[ctxn];
11009 
11010 	if (child_ctx && inherited_all) {
11011 		/*
11012 		 * Mark the child context as a clone of the parent
11013 		 * context, or of whatever the parent is a clone of.
11014 		 *
11015 		 * Note that if the parent is a clone, the holding of
11016 		 * parent_ctx->lock avoids it from being uncloned.
11017 		 */
11018 		cloned_ctx = parent_ctx->parent_ctx;
11019 		if (cloned_ctx) {
11020 			child_ctx->parent_ctx = cloned_ctx;
11021 			child_ctx->parent_gen = parent_ctx->parent_gen;
11022 		} else {
11023 			child_ctx->parent_ctx = parent_ctx;
11024 			child_ctx->parent_gen = parent_ctx->generation;
11025 		}
11026 		get_ctx(child_ctx->parent_ctx);
11027 	}
11028 
11029 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11030 out_unlock:
11031 	mutex_unlock(&parent_ctx->mutex);
11032 
11033 	perf_unpin_context(parent_ctx);
11034 	put_ctx(parent_ctx);
11035 
11036 	return ret;
11037 }
11038 
11039 /*
11040  * Initialize the perf_event context in task_struct
11041  */
11042 int perf_event_init_task(struct task_struct *child)
11043 {
11044 	int ctxn, ret;
11045 
11046 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11047 	mutex_init(&child->perf_event_mutex);
11048 	INIT_LIST_HEAD(&child->perf_event_list);
11049 
11050 	for_each_task_context_nr(ctxn) {
11051 		ret = perf_event_init_context(child, ctxn);
11052 		if (ret) {
11053 			perf_event_free_task(child);
11054 			return ret;
11055 		}
11056 	}
11057 
11058 	return 0;
11059 }
11060 
11061 static void __init perf_event_init_all_cpus(void)
11062 {
11063 	struct swevent_htable *swhash;
11064 	int cpu;
11065 
11066 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067 
11068 	for_each_possible_cpu(cpu) {
11069 		swhash = &per_cpu(swevent_htable, cpu);
11070 		mutex_init(&swhash->hlist_mutex);
11071 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072 
11073 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11074 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075 
11076 #ifdef CONFIG_CGROUP_PERF
11077 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11078 #endif
11079 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11080 	}
11081 }
11082 
11083 void perf_swevent_init_cpu(unsigned int cpu)
11084 {
11085 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11086 
11087 	mutex_lock(&swhash->hlist_mutex);
11088 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11089 		struct swevent_hlist *hlist;
11090 
11091 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11092 		WARN_ON(!hlist);
11093 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094 	}
11095 	mutex_unlock(&swhash->hlist_mutex);
11096 }
11097 
11098 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11099 static void __perf_event_exit_context(void *__info)
11100 {
11101 	struct perf_event_context *ctx = __info;
11102 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11103 	struct perf_event *event;
11104 
11105 	raw_spin_lock(&ctx->lock);
11106 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11107 	list_for_each_entry(event, &ctx->event_list, event_entry)
11108 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11109 	raw_spin_unlock(&ctx->lock);
11110 }
11111 
11112 static void perf_event_exit_cpu_context(int cpu)
11113 {
11114 	struct perf_cpu_context *cpuctx;
11115 	struct perf_event_context *ctx;
11116 	struct pmu *pmu;
11117 
11118 	mutex_lock(&pmus_lock);
11119 	list_for_each_entry(pmu, &pmus, entry) {
11120 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11121 		ctx = &cpuctx->ctx;
11122 
11123 		mutex_lock(&ctx->mutex);
11124 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11125 		cpuctx->online = 0;
11126 		mutex_unlock(&ctx->mutex);
11127 	}
11128 	cpumask_clear_cpu(cpu, perf_online_mask);
11129 	mutex_unlock(&pmus_lock);
11130 }
11131 #else
11132 
11133 static void perf_event_exit_cpu_context(int cpu) { }
11134 
11135 #endif
11136 
11137 int perf_event_init_cpu(unsigned int cpu)
11138 {
11139 	struct perf_cpu_context *cpuctx;
11140 	struct perf_event_context *ctx;
11141 	struct pmu *pmu;
11142 
11143 	perf_swevent_init_cpu(cpu);
11144 
11145 	mutex_lock(&pmus_lock);
11146 	cpumask_set_cpu(cpu, perf_online_mask);
11147 	list_for_each_entry(pmu, &pmus, entry) {
11148 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11149 		ctx = &cpuctx->ctx;
11150 
11151 		mutex_lock(&ctx->mutex);
11152 		cpuctx->online = 1;
11153 		mutex_unlock(&ctx->mutex);
11154 	}
11155 	mutex_unlock(&pmus_lock);
11156 
11157 	return 0;
11158 }
11159 
11160 int perf_event_exit_cpu(unsigned int cpu)
11161 {
11162 	perf_event_exit_cpu_context(cpu);
11163 	return 0;
11164 }
11165 
11166 static int
11167 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11168 {
11169 	int cpu;
11170 
11171 	for_each_online_cpu(cpu)
11172 		perf_event_exit_cpu(cpu);
11173 
11174 	return NOTIFY_OK;
11175 }
11176 
11177 /*
11178  * Run the perf reboot notifier at the very last possible moment so that
11179  * the generic watchdog code runs as long as possible.
11180  */
11181 static struct notifier_block perf_reboot_notifier = {
11182 	.notifier_call = perf_reboot,
11183 	.priority = INT_MIN,
11184 };
11185 
11186 void __init perf_event_init(void)
11187 {
11188 	int ret;
11189 
11190 	idr_init(&pmu_idr);
11191 
11192 	perf_event_init_all_cpus();
11193 	init_srcu_struct(&pmus_srcu);
11194 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11195 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11196 	perf_pmu_register(&perf_task_clock, NULL, -1);
11197 	perf_tp_register();
11198 	perf_event_init_cpu(smp_processor_id());
11199 	register_reboot_notifier(&perf_reboot_notifier);
11200 
11201 	ret = init_hw_breakpoint();
11202 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11203 
11204 	/*
11205 	 * Build time assertion that we keep the data_head at the intended
11206 	 * location.  IOW, validation we got the __reserved[] size right.
11207 	 */
11208 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11209 		     != 1024);
11210 }
11211 
11212 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11213 			      char *page)
11214 {
11215 	struct perf_pmu_events_attr *pmu_attr =
11216 		container_of(attr, struct perf_pmu_events_attr, attr);
11217 
11218 	if (pmu_attr->event_str)
11219 		return sprintf(page, "%s\n", pmu_attr->event_str);
11220 
11221 	return 0;
11222 }
11223 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11224 
11225 static int __init perf_event_sysfs_init(void)
11226 {
11227 	struct pmu *pmu;
11228 	int ret;
11229 
11230 	mutex_lock(&pmus_lock);
11231 
11232 	ret = bus_register(&pmu_bus);
11233 	if (ret)
11234 		goto unlock;
11235 
11236 	list_for_each_entry(pmu, &pmus, entry) {
11237 		if (!pmu->name || pmu->type < 0)
11238 			continue;
11239 
11240 		ret = pmu_dev_alloc(pmu);
11241 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11242 	}
11243 	pmu_bus_running = 1;
11244 	ret = 0;
11245 
11246 unlock:
11247 	mutex_unlock(&pmus_lock);
11248 
11249 	return ret;
11250 }
11251 device_initcall(perf_event_sysfs_init);
11252 
11253 #ifdef CONFIG_CGROUP_PERF
11254 static struct cgroup_subsys_state *
11255 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11256 {
11257 	struct perf_cgroup *jc;
11258 
11259 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11260 	if (!jc)
11261 		return ERR_PTR(-ENOMEM);
11262 
11263 	jc->info = alloc_percpu(struct perf_cgroup_info);
11264 	if (!jc->info) {
11265 		kfree(jc);
11266 		return ERR_PTR(-ENOMEM);
11267 	}
11268 
11269 	return &jc->css;
11270 }
11271 
11272 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11273 {
11274 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11275 
11276 	free_percpu(jc->info);
11277 	kfree(jc);
11278 }
11279 
11280 static int __perf_cgroup_move(void *info)
11281 {
11282 	struct task_struct *task = info;
11283 	rcu_read_lock();
11284 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11285 	rcu_read_unlock();
11286 	return 0;
11287 }
11288 
11289 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11290 {
11291 	struct task_struct *task;
11292 	struct cgroup_subsys_state *css;
11293 
11294 	cgroup_taskset_for_each(task, css, tset)
11295 		task_function_call(task, __perf_cgroup_move, task);
11296 }
11297 
11298 struct cgroup_subsys perf_event_cgrp_subsys = {
11299 	.css_alloc	= perf_cgroup_css_alloc,
11300 	.css_free	= perf_cgroup_css_free,
11301 	.attach		= perf_cgroup_attach,
11302 	/*
11303 	 * Implicitly enable on dfl hierarchy so that perf events can
11304 	 * always be filtered by cgroup2 path as long as perf_event
11305 	 * controller is not mounted on a legacy hierarchy.
11306 	 */
11307 	.implicit_on_dfl = true,
11308 	.threaded	= true,
11309 };
11310 #endif /* CONFIG_CGROUP_PERF */
11311