xref: /linux/kernel/events/core.c (revision bbcd53c960713507ae764bf81970651b5577b95a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:	the function to be called
136  * @info:	the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144 	struct remote_function_call data = {
145 		.p	= NULL,
146 		.func	= func,
147 		.info	= info,
148 		.ret	= -ENXIO, /* No such CPU */
149 	};
150 
151 	smp_call_function_single(cpu, remote_function, &data, 1);
152 
153 	return data.ret;
154 }
155 
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161 
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 			  struct perf_event_context *ctx)
164 {
165 	raw_spin_lock(&cpuctx->ctx.lock);
166 	if (ctx)
167 		raw_spin_lock(&ctx->lock);
168 }
169 
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 			    struct perf_event_context *ctx)
172 {
173 	if (ctx)
174 		raw_spin_unlock(&ctx->lock);
175 	raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177 
178 #define TASK_TOMBSTONE ((void *)-1L)
179 
180 static bool is_kernel_event(struct perf_event *event)
181 {
182 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184 
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203 
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 			struct perf_event_context *, void *);
206 
207 struct event_function_struct {
208 	struct perf_event *event;
209 	event_f func;
210 	void *data;
211 };
212 
213 static int event_function(void *info)
214 {
215 	struct event_function_struct *efs = info;
216 	struct perf_event *event = efs->event;
217 	struct perf_event_context *ctx = event->ctx;
218 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
220 	int ret = 0;
221 
222 	lockdep_assert_irqs_disabled();
223 
224 	perf_ctx_lock(cpuctx, task_ctx);
225 	/*
226 	 * Since we do the IPI call without holding ctx->lock things can have
227 	 * changed, double check we hit the task we set out to hit.
228 	 */
229 	if (ctx->task) {
230 		if (ctx->task != current) {
231 			ret = -ESRCH;
232 			goto unlock;
233 		}
234 
235 		/*
236 		 * We only use event_function_call() on established contexts,
237 		 * and event_function() is only ever called when active (or
238 		 * rather, we'll have bailed in task_function_call() or the
239 		 * above ctx->task != current test), therefore we must have
240 		 * ctx->is_active here.
241 		 */
242 		WARN_ON_ONCE(!ctx->is_active);
243 		/*
244 		 * And since we have ctx->is_active, cpuctx->task_ctx must
245 		 * match.
246 		 */
247 		WARN_ON_ONCE(task_ctx != ctx);
248 	} else {
249 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
250 	}
251 
252 	efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254 	perf_ctx_unlock(cpuctx, task_ctx);
255 
256 	return ret;
257 }
258 
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261 	struct perf_event_context *ctx = event->ctx;
262 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263 	struct event_function_struct efs = {
264 		.event = event,
265 		.func = func,
266 		.data = data,
267 	};
268 
269 	if (!event->parent) {
270 		/*
271 		 * If this is a !child event, we must hold ctx::mutex to
272 		 * stabilize the event->ctx relation. See
273 		 * perf_event_ctx_lock().
274 		 */
275 		lockdep_assert_held(&ctx->mutex);
276 	}
277 
278 	if (!task) {
279 		cpu_function_call(event->cpu, event_function, &efs);
280 		return;
281 	}
282 
283 	if (task == TASK_TOMBSTONE)
284 		return;
285 
286 again:
287 	if (!task_function_call(task, event_function, &efs))
288 		return;
289 
290 	raw_spin_lock_irq(&ctx->lock);
291 	/*
292 	 * Reload the task pointer, it might have been changed by
293 	 * a concurrent perf_event_context_sched_out().
294 	 */
295 	task = ctx->task;
296 	if (task == TASK_TOMBSTONE) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		return;
299 	}
300 	if (ctx->is_active) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		goto again;
303 	}
304 	func(event, NULL, ctx, data);
305 	raw_spin_unlock_irq(&ctx->lock);
306 }
307 
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 	struct task_struct *task = READ_ONCE(ctx->task);
317 	struct perf_event_context *task_ctx = NULL;
318 
319 	lockdep_assert_irqs_disabled();
320 
321 	if (task) {
322 		if (task == TASK_TOMBSTONE)
323 			return;
324 
325 		task_ctx = ctx;
326 	}
327 
328 	perf_ctx_lock(cpuctx, task_ctx);
329 
330 	task = ctx->task;
331 	if (task == TASK_TOMBSTONE)
332 		goto unlock;
333 
334 	if (task) {
335 		/*
336 		 * We must be either inactive or active and the right task,
337 		 * otherwise we're screwed, since we cannot IPI to somewhere
338 		 * else.
339 		 */
340 		if (ctx->is_active) {
341 			if (WARN_ON_ONCE(task != current))
342 				goto unlock;
343 
344 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345 				goto unlock;
346 		}
347 	} else {
348 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
349 	}
350 
351 	func(event, cpuctx, ctx, data);
352 unlock:
353 	perf_ctx_unlock(cpuctx, task_ctx);
354 }
355 
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 		       PERF_FLAG_FD_OUTPUT  |\
358 		       PERF_FLAG_PID_CGROUP |\
359 		       PERF_FLAG_FD_CLOEXEC)
360 
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365 	(PERF_SAMPLE_BRANCH_KERNEL |\
366 	 PERF_SAMPLE_BRANCH_HV)
367 
368 enum event_type_t {
369 	EVENT_FLEXIBLE = 0x1,
370 	EVENT_PINNED = 0x2,
371 	EVENT_TIME = 0x4,
372 	/* see ctx_resched() for details */
373 	EVENT_CPU = 0x8,
374 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376 
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381 
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387 
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391 
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403 
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409 
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418 
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421 
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE		100000
426 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
428 
429 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
430 
431 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
433 
434 static int perf_sample_allowed_ns __read_mostly =
435 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436 
437 static void update_perf_cpu_limits(void)
438 {
439 	u64 tmp = perf_sample_period_ns;
440 
441 	tmp *= sysctl_perf_cpu_time_max_percent;
442 	tmp = div_u64(tmp, 100);
443 	if (!tmp)
444 		tmp = 1;
445 
446 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448 
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450 
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452 		void *buffer, size_t *lenp, loff_t *ppos)
453 {
454 	int ret;
455 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
456 	/*
457 	 * If throttling is disabled don't allow the write:
458 	 */
459 	if (write && (perf_cpu == 100 || perf_cpu == 0))
460 		return -EINVAL;
461 
462 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463 	if (ret || !write)
464 		return ret;
465 
466 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468 	update_perf_cpu_limits();
469 
470 	return 0;
471 }
472 
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474 
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476 		void *buffer, size_t *lenp, loff_t *ppos)
477 {
478 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479 
480 	if (ret || !write)
481 		return ret;
482 
483 	if (sysctl_perf_cpu_time_max_percent == 100 ||
484 	    sysctl_perf_cpu_time_max_percent == 0) {
485 		printk(KERN_WARNING
486 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487 		WRITE_ONCE(perf_sample_allowed_ns, 0);
488 	} else {
489 		update_perf_cpu_limits();
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503 
504 static u64 __report_avg;
505 static u64 __report_allowed;
506 
507 static void perf_duration_warn(struct irq_work *w)
508 {
509 	printk_ratelimited(KERN_INFO
510 		"perf: interrupt took too long (%lld > %lld), lowering "
511 		"kernel.perf_event_max_sample_rate to %d\n",
512 		__report_avg, __report_allowed,
513 		sysctl_perf_event_sample_rate);
514 }
515 
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517 
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521 	u64 running_len;
522 	u64 avg_len;
523 	u32 max;
524 
525 	if (max_len == 0)
526 		return;
527 
528 	/* Decay the counter by 1 average sample. */
529 	running_len = __this_cpu_read(running_sample_length);
530 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531 	running_len += sample_len_ns;
532 	__this_cpu_write(running_sample_length, running_len);
533 
534 	/*
535 	 * Note: this will be biased artifically low until we have
536 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537 	 * from having to maintain a count.
538 	 */
539 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540 	if (avg_len <= max_len)
541 		return;
542 
543 	__report_avg = avg_len;
544 	__report_allowed = max_len;
545 
546 	/*
547 	 * Compute a throttle threshold 25% below the current duration.
548 	 */
549 	avg_len += avg_len / 4;
550 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551 	if (avg_len < max)
552 		max /= (u32)avg_len;
553 	else
554 		max = 1;
555 
556 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557 	WRITE_ONCE(max_samples_per_tick, max);
558 
559 	sysctl_perf_event_sample_rate = max * HZ;
560 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561 
562 	if (!irq_work_queue(&perf_duration_work)) {
563 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564 			     "kernel.perf_event_max_sample_rate to %d\n",
565 			     __report_avg, __report_allowed,
566 			     sysctl_perf_event_sample_rate);
567 	}
568 }
569 
570 static atomic64_t perf_event_id;
571 
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573 			      enum event_type_t event_type);
574 
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576 			     enum event_type_t event_type,
577 			     struct task_struct *task);
578 
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581 
582 void __weak perf_event_print_debug(void)	{ }
583 
584 extern __weak const char *perf_pmu_name(void)
585 {
586 	return "pmu";
587 }
588 
589 static inline u64 perf_clock(void)
590 {
591 	return local_clock();
592 }
593 
594 static inline u64 perf_event_clock(struct perf_event *event)
595 {
596 	return event->clock();
597 }
598 
599 /*
600  * State based event timekeeping...
601  *
602  * The basic idea is to use event->state to determine which (if any) time
603  * fields to increment with the current delta. This means we only need to
604  * update timestamps when we change state or when they are explicitly requested
605  * (read).
606  *
607  * Event groups make things a little more complicated, but not terribly so. The
608  * rules for a group are that if the group leader is OFF the entire group is
609  * OFF, irrespecive of what the group member states are. This results in
610  * __perf_effective_state().
611  *
612  * A futher ramification is that when a group leader flips between OFF and
613  * !OFF, we need to update all group member times.
614  *
615  *
616  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
617  * need to make sure the relevant context time is updated before we try and
618  * update our timestamps.
619  */
620 
621 static __always_inline enum perf_event_state
622 __perf_effective_state(struct perf_event *event)
623 {
624 	struct perf_event *leader = event->group_leader;
625 
626 	if (leader->state <= PERF_EVENT_STATE_OFF)
627 		return leader->state;
628 
629 	return event->state;
630 }
631 
632 static __always_inline void
633 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
634 {
635 	enum perf_event_state state = __perf_effective_state(event);
636 	u64 delta = now - event->tstamp;
637 
638 	*enabled = event->total_time_enabled;
639 	if (state >= PERF_EVENT_STATE_INACTIVE)
640 		*enabled += delta;
641 
642 	*running = event->total_time_running;
643 	if (state >= PERF_EVENT_STATE_ACTIVE)
644 		*running += delta;
645 }
646 
647 static void perf_event_update_time(struct perf_event *event)
648 {
649 	u64 now = perf_event_time(event);
650 
651 	__perf_update_times(event, now, &event->total_time_enabled,
652 					&event->total_time_running);
653 	event->tstamp = now;
654 }
655 
656 static void perf_event_update_sibling_time(struct perf_event *leader)
657 {
658 	struct perf_event *sibling;
659 
660 	for_each_sibling_event(sibling, leader)
661 		perf_event_update_time(sibling);
662 }
663 
664 static void
665 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
666 {
667 	if (event->state == state)
668 		return;
669 
670 	perf_event_update_time(event);
671 	/*
672 	 * If a group leader gets enabled/disabled all its siblings
673 	 * are affected too.
674 	 */
675 	if ((event->state < 0) ^ (state < 0))
676 		perf_event_update_sibling_time(event);
677 
678 	WRITE_ONCE(event->state, state);
679 }
680 
681 #ifdef CONFIG_CGROUP_PERF
682 
683 static inline bool
684 perf_cgroup_match(struct perf_event *event)
685 {
686 	struct perf_event_context *ctx = event->ctx;
687 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
688 
689 	/* @event doesn't care about cgroup */
690 	if (!event->cgrp)
691 		return true;
692 
693 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
694 	if (!cpuctx->cgrp)
695 		return false;
696 
697 	/*
698 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
699 	 * also enabled for all its descendant cgroups.  If @cpuctx's
700 	 * cgroup is a descendant of @event's (the test covers identity
701 	 * case), it's a match.
702 	 */
703 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
704 				    event->cgrp->css.cgroup);
705 }
706 
707 static inline void perf_detach_cgroup(struct perf_event *event)
708 {
709 	css_put(&event->cgrp->css);
710 	event->cgrp = NULL;
711 }
712 
713 static inline int is_cgroup_event(struct perf_event *event)
714 {
715 	return event->cgrp != NULL;
716 }
717 
718 static inline u64 perf_cgroup_event_time(struct perf_event *event)
719 {
720 	struct perf_cgroup_info *t;
721 
722 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
723 	return t->time;
724 }
725 
726 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
727 {
728 	struct perf_cgroup_info *info;
729 	u64 now;
730 
731 	now = perf_clock();
732 
733 	info = this_cpu_ptr(cgrp->info);
734 
735 	info->time += now - info->timestamp;
736 	info->timestamp = now;
737 }
738 
739 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
740 {
741 	struct perf_cgroup *cgrp = cpuctx->cgrp;
742 	struct cgroup_subsys_state *css;
743 
744 	if (cgrp) {
745 		for (css = &cgrp->css; css; css = css->parent) {
746 			cgrp = container_of(css, struct perf_cgroup, css);
747 			__update_cgrp_time(cgrp);
748 		}
749 	}
750 }
751 
752 static inline void update_cgrp_time_from_event(struct perf_event *event)
753 {
754 	struct perf_cgroup *cgrp;
755 
756 	/*
757 	 * ensure we access cgroup data only when needed and
758 	 * when we know the cgroup is pinned (css_get)
759 	 */
760 	if (!is_cgroup_event(event))
761 		return;
762 
763 	cgrp = perf_cgroup_from_task(current, event->ctx);
764 	/*
765 	 * Do not update time when cgroup is not active
766 	 */
767 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
768 		__update_cgrp_time(event->cgrp);
769 }
770 
771 static inline void
772 perf_cgroup_set_timestamp(struct task_struct *task,
773 			  struct perf_event_context *ctx)
774 {
775 	struct perf_cgroup *cgrp;
776 	struct perf_cgroup_info *info;
777 	struct cgroup_subsys_state *css;
778 
779 	/*
780 	 * ctx->lock held by caller
781 	 * ensure we do not access cgroup data
782 	 * unless we have the cgroup pinned (css_get)
783 	 */
784 	if (!task || !ctx->nr_cgroups)
785 		return;
786 
787 	cgrp = perf_cgroup_from_task(task, ctx);
788 
789 	for (css = &cgrp->css; css; css = css->parent) {
790 		cgrp = container_of(css, struct perf_cgroup, css);
791 		info = this_cpu_ptr(cgrp->info);
792 		info->timestamp = ctx->timestamp;
793 	}
794 }
795 
796 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
797 
798 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
799 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
800 
801 /*
802  * reschedule events based on the cgroup constraint of task.
803  *
804  * mode SWOUT : schedule out everything
805  * mode SWIN : schedule in based on cgroup for next
806  */
807 static void perf_cgroup_switch(struct task_struct *task, int mode)
808 {
809 	struct perf_cpu_context *cpuctx;
810 	struct list_head *list;
811 	unsigned long flags;
812 
813 	/*
814 	 * Disable interrupts and preemption to avoid this CPU's
815 	 * cgrp_cpuctx_entry to change under us.
816 	 */
817 	local_irq_save(flags);
818 
819 	list = this_cpu_ptr(&cgrp_cpuctx_list);
820 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
821 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
822 
823 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
824 		perf_pmu_disable(cpuctx->ctx.pmu);
825 
826 		if (mode & PERF_CGROUP_SWOUT) {
827 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
828 			/*
829 			 * must not be done before ctxswout due
830 			 * to event_filter_match() in event_sched_out()
831 			 */
832 			cpuctx->cgrp = NULL;
833 		}
834 
835 		if (mode & PERF_CGROUP_SWIN) {
836 			WARN_ON_ONCE(cpuctx->cgrp);
837 			/*
838 			 * set cgrp before ctxsw in to allow
839 			 * event_filter_match() to not have to pass
840 			 * task around
841 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
842 			 * because cgorup events are only per-cpu
843 			 */
844 			cpuctx->cgrp = perf_cgroup_from_task(task,
845 							     &cpuctx->ctx);
846 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
847 		}
848 		perf_pmu_enable(cpuctx->ctx.pmu);
849 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
850 	}
851 
852 	local_irq_restore(flags);
853 }
854 
855 static inline void perf_cgroup_sched_out(struct task_struct *task,
856 					 struct task_struct *next)
857 {
858 	struct perf_cgroup *cgrp1;
859 	struct perf_cgroup *cgrp2 = NULL;
860 
861 	rcu_read_lock();
862 	/*
863 	 * we come here when we know perf_cgroup_events > 0
864 	 * we do not need to pass the ctx here because we know
865 	 * we are holding the rcu lock
866 	 */
867 	cgrp1 = perf_cgroup_from_task(task, NULL);
868 	cgrp2 = perf_cgroup_from_task(next, NULL);
869 
870 	/*
871 	 * only schedule out current cgroup events if we know
872 	 * that we are switching to a different cgroup. Otherwise,
873 	 * do no touch the cgroup events.
874 	 */
875 	if (cgrp1 != cgrp2)
876 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
877 
878 	rcu_read_unlock();
879 }
880 
881 static inline void perf_cgroup_sched_in(struct task_struct *prev,
882 					struct task_struct *task)
883 {
884 	struct perf_cgroup *cgrp1;
885 	struct perf_cgroup *cgrp2 = NULL;
886 
887 	rcu_read_lock();
888 	/*
889 	 * we come here when we know perf_cgroup_events > 0
890 	 * we do not need to pass the ctx here because we know
891 	 * we are holding the rcu lock
892 	 */
893 	cgrp1 = perf_cgroup_from_task(task, NULL);
894 	cgrp2 = perf_cgroup_from_task(prev, NULL);
895 
896 	/*
897 	 * only need to schedule in cgroup events if we are changing
898 	 * cgroup during ctxsw. Cgroup events were not scheduled
899 	 * out of ctxsw out if that was not the case.
900 	 */
901 	if (cgrp1 != cgrp2)
902 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
903 
904 	rcu_read_unlock();
905 }
906 
907 static int perf_cgroup_ensure_storage(struct perf_event *event,
908 				struct cgroup_subsys_state *css)
909 {
910 	struct perf_cpu_context *cpuctx;
911 	struct perf_event **storage;
912 	int cpu, heap_size, ret = 0;
913 
914 	/*
915 	 * Allow storage to have sufficent space for an iterator for each
916 	 * possibly nested cgroup plus an iterator for events with no cgroup.
917 	 */
918 	for (heap_size = 1; css; css = css->parent)
919 		heap_size++;
920 
921 	for_each_possible_cpu(cpu) {
922 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
923 		if (heap_size <= cpuctx->heap_size)
924 			continue;
925 
926 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
927 				       GFP_KERNEL, cpu_to_node(cpu));
928 		if (!storage) {
929 			ret = -ENOMEM;
930 			break;
931 		}
932 
933 		raw_spin_lock_irq(&cpuctx->ctx.lock);
934 		if (cpuctx->heap_size < heap_size) {
935 			swap(cpuctx->heap, storage);
936 			if (storage == cpuctx->heap_default)
937 				storage = NULL;
938 			cpuctx->heap_size = heap_size;
939 		}
940 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
941 
942 		kfree(storage);
943 	}
944 
945 	return ret;
946 }
947 
948 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
949 				      struct perf_event_attr *attr,
950 				      struct perf_event *group_leader)
951 {
952 	struct perf_cgroup *cgrp;
953 	struct cgroup_subsys_state *css;
954 	struct fd f = fdget(fd);
955 	int ret = 0;
956 
957 	if (!f.file)
958 		return -EBADF;
959 
960 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
961 					 &perf_event_cgrp_subsys);
962 	if (IS_ERR(css)) {
963 		ret = PTR_ERR(css);
964 		goto out;
965 	}
966 
967 	ret = perf_cgroup_ensure_storage(event, css);
968 	if (ret)
969 		goto out;
970 
971 	cgrp = container_of(css, struct perf_cgroup, css);
972 	event->cgrp = cgrp;
973 
974 	/*
975 	 * all events in a group must monitor
976 	 * the same cgroup because a task belongs
977 	 * to only one perf cgroup at a time
978 	 */
979 	if (group_leader && group_leader->cgrp != cgrp) {
980 		perf_detach_cgroup(event);
981 		ret = -EINVAL;
982 	}
983 out:
984 	fdput(f);
985 	return ret;
986 }
987 
988 static inline void
989 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
990 {
991 	struct perf_cgroup_info *t;
992 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
993 	event->shadow_ctx_time = now - t->timestamp;
994 }
995 
996 static inline void
997 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
998 {
999 	struct perf_cpu_context *cpuctx;
1000 
1001 	if (!is_cgroup_event(event))
1002 		return;
1003 
1004 	/*
1005 	 * Because cgroup events are always per-cpu events,
1006 	 * @ctx == &cpuctx->ctx.
1007 	 */
1008 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1009 
1010 	/*
1011 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1012 	 * matching the event's cgroup, we must do this for every new event,
1013 	 * because if the first would mismatch, the second would not try again
1014 	 * and we would leave cpuctx->cgrp unset.
1015 	 */
1016 	if (ctx->is_active && !cpuctx->cgrp) {
1017 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1018 
1019 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1020 			cpuctx->cgrp = cgrp;
1021 	}
1022 
1023 	if (ctx->nr_cgroups++)
1024 		return;
1025 
1026 	list_add(&cpuctx->cgrp_cpuctx_entry,
1027 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1028 }
1029 
1030 static inline void
1031 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1032 {
1033 	struct perf_cpu_context *cpuctx;
1034 
1035 	if (!is_cgroup_event(event))
1036 		return;
1037 
1038 	/*
1039 	 * Because cgroup events are always per-cpu events,
1040 	 * @ctx == &cpuctx->ctx.
1041 	 */
1042 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1043 
1044 	if (--ctx->nr_cgroups)
1045 		return;
1046 
1047 	if (ctx->is_active && cpuctx->cgrp)
1048 		cpuctx->cgrp = NULL;
1049 
1050 	list_del(&cpuctx->cgrp_cpuctx_entry);
1051 }
1052 
1053 #else /* !CONFIG_CGROUP_PERF */
1054 
1055 static inline bool
1056 perf_cgroup_match(struct perf_event *event)
1057 {
1058 	return true;
1059 }
1060 
1061 static inline void perf_detach_cgroup(struct perf_event *event)
1062 {}
1063 
1064 static inline int is_cgroup_event(struct perf_event *event)
1065 {
1066 	return 0;
1067 }
1068 
1069 static inline void update_cgrp_time_from_event(struct perf_event *event)
1070 {
1071 }
1072 
1073 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1074 {
1075 }
1076 
1077 static inline void perf_cgroup_sched_out(struct task_struct *task,
1078 					 struct task_struct *next)
1079 {
1080 }
1081 
1082 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1083 					struct task_struct *task)
1084 {
1085 }
1086 
1087 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1088 				      struct perf_event_attr *attr,
1089 				      struct perf_event *group_leader)
1090 {
1091 	return -EINVAL;
1092 }
1093 
1094 static inline void
1095 perf_cgroup_set_timestamp(struct task_struct *task,
1096 			  struct perf_event_context *ctx)
1097 {
1098 }
1099 
1100 static inline void
1101 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1102 {
1103 }
1104 
1105 static inline void
1106 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1107 {
1108 }
1109 
1110 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1111 {
1112 	return 0;
1113 }
1114 
1115 static inline void
1116 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 
1120 static inline void
1121 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1122 {
1123 }
1124 #endif
1125 
1126 /*
1127  * set default to be dependent on timer tick just
1128  * like original code
1129  */
1130 #define PERF_CPU_HRTIMER (1000 / HZ)
1131 /*
1132  * function must be called with interrupts disabled
1133  */
1134 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1135 {
1136 	struct perf_cpu_context *cpuctx;
1137 	bool rotations;
1138 
1139 	lockdep_assert_irqs_disabled();
1140 
1141 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1142 	rotations = perf_rotate_context(cpuctx);
1143 
1144 	raw_spin_lock(&cpuctx->hrtimer_lock);
1145 	if (rotations)
1146 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1147 	else
1148 		cpuctx->hrtimer_active = 0;
1149 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1150 
1151 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1152 }
1153 
1154 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1155 {
1156 	struct hrtimer *timer = &cpuctx->hrtimer;
1157 	struct pmu *pmu = cpuctx->ctx.pmu;
1158 	u64 interval;
1159 
1160 	/* no multiplexing needed for SW PMU */
1161 	if (pmu->task_ctx_nr == perf_sw_context)
1162 		return;
1163 
1164 	/*
1165 	 * check default is sane, if not set then force to
1166 	 * default interval (1/tick)
1167 	 */
1168 	interval = pmu->hrtimer_interval_ms;
1169 	if (interval < 1)
1170 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1171 
1172 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1173 
1174 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1175 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1176 	timer->function = perf_mux_hrtimer_handler;
1177 }
1178 
1179 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1180 {
1181 	struct hrtimer *timer = &cpuctx->hrtimer;
1182 	struct pmu *pmu = cpuctx->ctx.pmu;
1183 	unsigned long flags;
1184 
1185 	/* not for SW PMU */
1186 	if (pmu->task_ctx_nr == perf_sw_context)
1187 		return 0;
1188 
1189 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1190 	if (!cpuctx->hrtimer_active) {
1191 		cpuctx->hrtimer_active = 1;
1192 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1193 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1194 	}
1195 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1196 
1197 	return 0;
1198 }
1199 
1200 void perf_pmu_disable(struct pmu *pmu)
1201 {
1202 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1203 	if (!(*count)++)
1204 		pmu->pmu_disable(pmu);
1205 }
1206 
1207 void perf_pmu_enable(struct pmu *pmu)
1208 {
1209 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1210 	if (!--(*count))
1211 		pmu->pmu_enable(pmu);
1212 }
1213 
1214 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1215 
1216 /*
1217  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1218  * perf_event_task_tick() are fully serialized because they're strictly cpu
1219  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1220  * disabled, while perf_event_task_tick is called from IRQ context.
1221  */
1222 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1223 {
1224 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1225 
1226 	lockdep_assert_irqs_disabled();
1227 
1228 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1229 
1230 	list_add(&ctx->active_ctx_list, head);
1231 }
1232 
1233 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1234 {
1235 	lockdep_assert_irqs_disabled();
1236 
1237 	WARN_ON(list_empty(&ctx->active_ctx_list));
1238 
1239 	list_del_init(&ctx->active_ctx_list);
1240 }
1241 
1242 static void get_ctx(struct perf_event_context *ctx)
1243 {
1244 	refcount_inc(&ctx->refcount);
1245 }
1246 
1247 static void *alloc_task_ctx_data(struct pmu *pmu)
1248 {
1249 	if (pmu->task_ctx_cache)
1250 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1251 
1252 	return NULL;
1253 }
1254 
1255 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1256 {
1257 	if (pmu->task_ctx_cache && task_ctx_data)
1258 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1259 }
1260 
1261 static void free_ctx(struct rcu_head *head)
1262 {
1263 	struct perf_event_context *ctx;
1264 
1265 	ctx = container_of(head, struct perf_event_context, rcu_head);
1266 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1267 	kfree(ctx);
1268 }
1269 
1270 static void put_ctx(struct perf_event_context *ctx)
1271 {
1272 	if (refcount_dec_and_test(&ctx->refcount)) {
1273 		if (ctx->parent_ctx)
1274 			put_ctx(ctx->parent_ctx);
1275 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1276 			put_task_struct(ctx->task);
1277 		call_rcu(&ctx->rcu_head, free_ctx);
1278 	}
1279 }
1280 
1281 /*
1282  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1283  * perf_pmu_migrate_context() we need some magic.
1284  *
1285  * Those places that change perf_event::ctx will hold both
1286  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1287  *
1288  * Lock ordering is by mutex address. There are two other sites where
1289  * perf_event_context::mutex nests and those are:
1290  *
1291  *  - perf_event_exit_task_context()	[ child , 0 ]
1292  *      perf_event_exit_event()
1293  *        put_event()			[ parent, 1 ]
1294  *
1295  *  - perf_event_init_context()		[ parent, 0 ]
1296  *      inherit_task_group()
1297  *        inherit_group()
1298  *          inherit_event()
1299  *            perf_event_alloc()
1300  *              perf_init_event()
1301  *                perf_try_init_event()	[ child , 1 ]
1302  *
1303  * While it appears there is an obvious deadlock here -- the parent and child
1304  * nesting levels are inverted between the two. This is in fact safe because
1305  * life-time rules separate them. That is an exiting task cannot fork, and a
1306  * spawning task cannot (yet) exit.
1307  *
1308  * But remember that these are parent<->child context relations, and
1309  * migration does not affect children, therefore these two orderings should not
1310  * interact.
1311  *
1312  * The change in perf_event::ctx does not affect children (as claimed above)
1313  * because the sys_perf_event_open() case will install a new event and break
1314  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1315  * concerned with cpuctx and that doesn't have children.
1316  *
1317  * The places that change perf_event::ctx will issue:
1318  *
1319  *   perf_remove_from_context();
1320  *   synchronize_rcu();
1321  *   perf_install_in_context();
1322  *
1323  * to affect the change. The remove_from_context() + synchronize_rcu() should
1324  * quiesce the event, after which we can install it in the new location. This
1325  * means that only external vectors (perf_fops, prctl) can perturb the event
1326  * while in transit. Therefore all such accessors should also acquire
1327  * perf_event_context::mutex to serialize against this.
1328  *
1329  * However; because event->ctx can change while we're waiting to acquire
1330  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1331  * function.
1332  *
1333  * Lock order:
1334  *    exec_update_lock
1335  *	task_struct::perf_event_mutex
1336  *	  perf_event_context::mutex
1337  *	    perf_event::child_mutex;
1338  *	      perf_event_context::lock
1339  *	    perf_event::mmap_mutex
1340  *	    mmap_lock
1341  *	      perf_addr_filters_head::lock
1342  *
1343  *    cpu_hotplug_lock
1344  *      pmus_lock
1345  *	  cpuctx->mutex / perf_event_context::mutex
1346  */
1347 static struct perf_event_context *
1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1349 {
1350 	struct perf_event_context *ctx;
1351 
1352 again:
1353 	rcu_read_lock();
1354 	ctx = READ_ONCE(event->ctx);
1355 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1356 		rcu_read_unlock();
1357 		goto again;
1358 	}
1359 	rcu_read_unlock();
1360 
1361 	mutex_lock_nested(&ctx->mutex, nesting);
1362 	if (event->ctx != ctx) {
1363 		mutex_unlock(&ctx->mutex);
1364 		put_ctx(ctx);
1365 		goto again;
1366 	}
1367 
1368 	return ctx;
1369 }
1370 
1371 static inline struct perf_event_context *
1372 perf_event_ctx_lock(struct perf_event *event)
1373 {
1374 	return perf_event_ctx_lock_nested(event, 0);
1375 }
1376 
1377 static void perf_event_ctx_unlock(struct perf_event *event,
1378 				  struct perf_event_context *ctx)
1379 {
1380 	mutex_unlock(&ctx->mutex);
1381 	put_ctx(ctx);
1382 }
1383 
1384 /*
1385  * This must be done under the ctx->lock, such as to serialize against
1386  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387  * calling scheduler related locks and ctx->lock nests inside those.
1388  */
1389 static __must_check struct perf_event_context *
1390 unclone_ctx(struct perf_event_context *ctx)
1391 {
1392 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1393 
1394 	lockdep_assert_held(&ctx->lock);
1395 
1396 	if (parent_ctx)
1397 		ctx->parent_ctx = NULL;
1398 	ctx->generation++;
1399 
1400 	return parent_ctx;
1401 }
1402 
1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1404 				enum pid_type type)
1405 {
1406 	u32 nr;
1407 	/*
1408 	 * only top level events have the pid namespace they were created in
1409 	 */
1410 	if (event->parent)
1411 		event = event->parent;
1412 
1413 	nr = __task_pid_nr_ns(p, type, event->ns);
1414 	/* avoid -1 if it is idle thread or runs in another ns */
1415 	if (!nr && !pid_alive(p))
1416 		nr = -1;
1417 	return nr;
1418 }
1419 
1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1421 {
1422 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1423 }
1424 
1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1426 {
1427 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1428 }
1429 
1430 /*
1431  * If we inherit events we want to return the parent event id
1432  * to userspace.
1433  */
1434 static u64 primary_event_id(struct perf_event *event)
1435 {
1436 	u64 id = event->id;
1437 
1438 	if (event->parent)
1439 		id = event->parent->id;
1440 
1441 	return id;
1442 }
1443 
1444 /*
1445  * Get the perf_event_context for a task and lock it.
1446  *
1447  * This has to cope with the fact that until it is locked,
1448  * the context could get moved to another task.
1449  */
1450 static struct perf_event_context *
1451 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1452 {
1453 	struct perf_event_context *ctx;
1454 
1455 retry:
1456 	/*
1457 	 * One of the few rules of preemptible RCU is that one cannot do
1458 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1459 	 * part of the read side critical section was irqs-enabled -- see
1460 	 * rcu_read_unlock_special().
1461 	 *
1462 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1463 	 * side critical section has interrupts disabled.
1464 	 */
1465 	local_irq_save(*flags);
1466 	rcu_read_lock();
1467 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1468 	if (ctx) {
1469 		/*
1470 		 * If this context is a clone of another, it might
1471 		 * get swapped for another underneath us by
1472 		 * perf_event_task_sched_out, though the
1473 		 * rcu_read_lock() protects us from any context
1474 		 * getting freed.  Lock the context and check if it
1475 		 * got swapped before we could get the lock, and retry
1476 		 * if so.  If we locked the right context, then it
1477 		 * can't get swapped on us any more.
1478 		 */
1479 		raw_spin_lock(&ctx->lock);
1480 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1481 			raw_spin_unlock(&ctx->lock);
1482 			rcu_read_unlock();
1483 			local_irq_restore(*flags);
1484 			goto retry;
1485 		}
1486 
1487 		if (ctx->task == TASK_TOMBSTONE ||
1488 		    !refcount_inc_not_zero(&ctx->refcount)) {
1489 			raw_spin_unlock(&ctx->lock);
1490 			ctx = NULL;
1491 		} else {
1492 			WARN_ON_ONCE(ctx->task != task);
1493 		}
1494 	}
1495 	rcu_read_unlock();
1496 	if (!ctx)
1497 		local_irq_restore(*flags);
1498 	return ctx;
1499 }
1500 
1501 /*
1502  * Get the context for a task and increment its pin_count so it
1503  * can't get swapped to another task.  This also increments its
1504  * reference count so that the context can't get freed.
1505  */
1506 static struct perf_event_context *
1507 perf_pin_task_context(struct task_struct *task, int ctxn)
1508 {
1509 	struct perf_event_context *ctx;
1510 	unsigned long flags;
1511 
1512 	ctx = perf_lock_task_context(task, ctxn, &flags);
1513 	if (ctx) {
1514 		++ctx->pin_count;
1515 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1516 	}
1517 	return ctx;
1518 }
1519 
1520 static void perf_unpin_context(struct perf_event_context *ctx)
1521 {
1522 	unsigned long flags;
1523 
1524 	raw_spin_lock_irqsave(&ctx->lock, flags);
1525 	--ctx->pin_count;
1526 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1527 }
1528 
1529 /*
1530  * Update the record of the current time in a context.
1531  */
1532 static void update_context_time(struct perf_event_context *ctx)
1533 {
1534 	u64 now = perf_clock();
1535 
1536 	ctx->time += now - ctx->timestamp;
1537 	ctx->timestamp = now;
1538 }
1539 
1540 static u64 perf_event_time(struct perf_event *event)
1541 {
1542 	struct perf_event_context *ctx = event->ctx;
1543 
1544 	if (is_cgroup_event(event))
1545 		return perf_cgroup_event_time(event);
1546 
1547 	return ctx ? ctx->time : 0;
1548 }
1549 
1550 static enum event_type_t get_event_type(struct perf_event *event)
1551 {
1552 	struct perf_event_context *ctx = event->ctx;
1553 	enum event_type_t event_type;
1554 
1555 	lockdep_assert_held(&ctx->lock);
1556 
1557 	/*
1558 	 * It's 'group type', really, because if our group leader is
1559 	 * pinned, so are we.
1560 	 */
1561 	if (event->group_leader != event)
1562 		event = event->group_leader;
1563 
1564 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1565 	if (!ctx->task)
1566 		event_type |= EVENT_CPU;
1567 
1568 	return event_type;
1569 }
1570 
1571 /*
1572  * Helper function to initialize event group nodes.
1573  */
1574 static void init_event_group(struct perf_event *event)
1575 {
1576 	RB_CLEAR_NODE(&event->group_node);
1577 	event->group_index = 0;
1578 }
1579 
1580 /*
1581  * Extract pinned or flexible groups from the context
1582  * based on event attrs bits.
1583  */
1584 static struct perf_event_groups *
1585 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1586 {
1587 	if (event->attr.pinned)
1588 		return &ctx->pinned_groups;
1589 	else
1590 		return &ctx->flexible_groups;
1591 }
1592 
1593 /*
1594  * Helper function to initializes perf_event_group trees.
1595  */
1596 static void perf_event_groups_init(struct perf_event_groups *groups)
1597 {
1598 	groups->tree = RB_ROOT;
1599 	groups->index = 0;
1600 }
1601 
1602 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1603 {
1604 	struct cgroup *cgroup = NULL;
1605 
1606 #ifdef CONFIG_CGROUP_PERF
1607 	if (event->cgrp)
1608 		cgroup = event->cgrp->css.cgroup;
1609 #endif
1610 
1611 	return cgroup;
1612 }
1613 
1614 /*
1615  * Compare function for event groups;
1616  *
1617  * Implements complex key that first sorts by CPU and then by virtual index
1618  * which provides ordering when rotating groups for the same CPU.
1619  */
1620 static __always_inline int
1621 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1622 		      const u64 left_group_index, const struct perf_event *right)
1623 {
1624 	if (left_cpu < right->cpu)
1625 		return -1;
1626 	if (left_cpu > right->cpu)
1627 		return 1;
1628 
1629 #ifdef CONFIG_CGROUP_PERF
1630 	{
1631 		const struct cgroup *right_cgroup = event_cgroup(right);
1632 
1633 		if (left_cgroup != right_cgroup) {
1634 			if (!left_cgroup) {
1635 				/*
1636 				 * Left has no cgroup but right does, no
1637 				 * cgroups come first.
1638 				 */
1639 				return -1;
1640 			}
1641 			if (!right_cgroup) {
1642 				/*
1643 				 * Right has no cgroup but left does, no
1644 				 * cgroups come first.
1645 				 */
1646 				return 1;
1647 			}
1648 			/* Two dissimilar cgroups, order by id. */
1649 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1650 				return -1;
1651 
1652 			return 1;
1653 		}
1654 	}
1655 #endif
1656 
1657 	if (left_group_index < right->group_index)
1658 		return -1;
1659 	if (left_group_index > right->group_index)
1660 		return 1;
1661 
1662 	return 0;
1663 }
1664 
1665 #define __node_2_pe(node) \
1666 	rb_entry((node), struct perf_event, group_node)
1667 
1668 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1669 {
1670 	struct perf_event *e = __node_2_pe(a);
1671 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1672 				     __node_2_pe(b)) < 0;
1673 }
1674 
1675 struct __group_key {
1676 	int cpu;
1677 	struct cgroup *cgroup;
1678 };
1679 
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 	const struct __group_key *a = key;
1683 	const struct perf_event *b = __node_2_pe(node);
1684 
1685 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1686 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1687 }
1688 
1689 /*
1690  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1691  * key (see perf_event_groups_less). This places it last inside the CPU
1692  * subtree.
1693  */
1694 static void
1695 perf_event_groups_insert(struct perf_event_groups *groups,
1696 			 struct perf_event *event)
1697 {
1698 	event->group_index = ++groups->index;
1699 
1700 	rb_add(&event->group_node, &groups->tree, __group_less);
1701 }
1702 
1703 /*
1704  * Helper function to insert event into the pinned or flexible groups.
1705  */
1706 static void
1707 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1708 {
1709 	struct perf_event_groups *groups;
1710 
1711 	groups = get_event_groups(event, ctx);
1712 	perf_event_groups_insert(groups, event);
1713 }
1714 
1715 /*
1716  * Delete a group from a tree.
1717  */
1718 static void
1719 perf_event_groups_delete(struct perf_event_groups *groups,
1720 			 struct perf_event *event)
1721 {
1722 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1723 		     RB_EMPTY_ROOT(&groups->tree));
1724 
1725 	rb_erase(&event->group_node, &groups->tree);
1726 	init_event_group(event);
1727 }
1728 
1729 /*
1730  * Helper function to delete event from its groups.
1731  */
1732 static void
1733 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1734 {
1735 	struct perf_event_groups *groups;
1736 
1737 	groups = get_event_groups(event, ctx);
1738 	perf_event_groups_delete(groups, event);
1739 }
1740 
1741 /*
1742  * Get the leftmost event in the cpu/cgroup subtree.
1743  */
1744 static struct perf_event *
1745 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1746 			struct cgroup *cgrp)
1747 {
1748 	struct __group_key key = {
1749 		.cpu = cpu,
1750 		.cgroup = cgrp,
1751 	};
1752 	struct rb_node *node;
1753 
1754 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1755 	if (node)
1756 		return __node_2_pe(node);
1757 
1758 	return NULL;
1759 }
1760 
1761 /*
1762  * Like rb_entry_next_safe() for the @cpu subtree.
1763  */
1764 static struct perf_event *
1765 perf_event_groups_next(struct perf_event *event)
1766 {
1767 	struct __group_key key = {
1768 		.cpu = event->cpu,
1769 		.cgroup = event_cgroup(event),
1770 	};
1771 	struct rb_node *next;
1772 
1773 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1774 	if (next)
1775 		return __node_2_pe(next);
1776 
1777 	return NULL;
1778 }
1779 
1780 /*
1781  * Iterate through the whole groups tree.
1782  */
1783 #define perf_event_groups_for_each(event, groups)			\
1784 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1785 				typeof(*event), group_node); event;	\
1786 		event = rb_entry_safe(rb_next(&event->group_node),	\
1787 				typeof(*event), group_node))
1788 
1789 /*
1790  * Add an event from the lists for its context.
1791  * Must be called with ctx->mutex and ctx->lock held.
1792  */
1793 static void
1794 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1795 {
1796 	lockdep_assert_held(&ctx->lock);
1797 
1798 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1799 	event->attach_state |= PERF_ATTACH_CONTEXT;
1800 
1801 	event->tstamp = perf_event_time(event);
1802 
1803 	/*
1804 	 * If we're a stand alone event or group leader, we go to the context
1805 	 * list, group events are kept attached to the group so that
1806 	 * perf_group_detach can, at all times, locate all siblings.
1807 	 */
1808 	if (event->group_leader == event) {
1809 		event->group_caps = event->event_caps;
1810 		add_event_to_groups(event, ctx);
1811 	}
1812 
1813 	list_add_rcu(&event->event_entry, &ctx->event_list);
1814 	ctx->nr_events++;
1815 	if (event->attr.inherit_stat)
1816 		ctx->nr_stat++;
1817 
1818 	if (event->state > PERF_EVENT_STATE_OFF)
1819 		perf_cgroup_event_enable(event, ctx);
1820 
1821 	ctx->generation++;
1822 }
1823 
1824 /*
1825  * Initialize event state based on the perf_event_attr::disabled.
1826  */
1827 static inline void perf_event__state_init(struct perf_event *event)
1828 {
1829 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1830 					      PERF_EVENT_STATE_INACTIVE;
1831 }
1832 
1833 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1834 {
1835 	int entry = sizeof(u64); /* value */
1836 	int size = 0;
1837 	int nr = 1;
1838 
1839 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1840 		size += sizeof(u64);
1841 
1842 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1843 		size += sizeof(u64);
1844 
1845 	if (event->attr.read_format & PERF_FORMAT_ID)
1846 		entry += sizeof(u64);
1847 
1848 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1849 		nr += nr_siblings;
1850 		size += sizeof(u64);
1851 	}
1852 
1853 	size += entry * nr;
1854 	event->read_size = size;
1855 }
1856 
1857 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1858 {
1859 	struct perf_sample_data *data;
1860 	u16 size = 0;
1861 
1862 	if (sample_type & PERF_SAMPLE_IP)
1863 		size += sizeof(data->ip);
1864 
1865 	if (sample_type & PERF_SAMPLE_ADDR)
1866 		size += sizeof(data->addr);
1867 
1868 	if (sample_type & PERF_SAMPLE_PERIOD)
1869 		size += sizeof(data->period);
1870 
1871 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1872 		size += sizeof(data->weight.full);
1873 
1874 	if (sample_type & PERF_SAMPLE_READ)
1875 		size += event->read_size;
1876 
1877 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1878 		size += sizeof(data->data_src.val);
1879 
1880 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1881 		size += sizeof(data->txn);
1882 
1883 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1884 		size += sizeof(data->phys_addr);
1885 
1886 	if (sample_type & PERF_SAMPLE_CGROUP)
1887 		size += sizeof(data->cgroup);
1888 
1889 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1890 		size += sizeof(data->data_page_size);
1891 
1892 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1893 		size += sizeof(data->code_page_size);
1894 
1895 	event->header_size = size;
1896 }
1897 
1898 /*
1899  * Called at perf_event creation and when events are attached/detached from a
1900  * group.
1901  */
1902 static void perf_event__header_size(struct perf_event *event)
1903 {
1904 	__perf_event_read_size(event,
1905 			       event->group_leader->nr_siblings);
1906 	__perf_event_header_size(event, event->attr.sample_type);
1907 }
1908 
1909 static void perf_event__id_header_size(struct perf_event *event)
1910 {
1911 	struct perf_sample_data *data;
1912 	u64 sample_type = event->attr.sample_type;
1913 	u16 size = 0;
1914 
1915 	if (sample_type & PERF_SAMPLE_TID)
1916 		size += sizeof(data->tid_entry);
1917 
1918 	if (sample_type & PERF_SAMPLE_TIME)
1919 		size += sizeof(data->time);
1920 
1921 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1922 		size += sizeof(data->id);
1923 
1924 	if (sample_type & PERF_SAMPLE_ID)
1925 		size += sizeof(data->id);
1926 
1927 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1928 		size += sizeof(data->stream_id);
1929 
1930 	if (sample_type & PERF_SAMPLE_CPU)
1931 		size += sizeof(data->cpu_entry);
1932 
1933 	event->id_header_size = size;
1934 }
1935 
1936 static bool perf_event_validate_size(struct perf_event *event)
1937 {
1938 	/*
1939 	 * The values computed here will be over-written when we actually
1940 	 * attach the event.
1941 	 */
1942 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1943 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1944 	perf_event__id_header_size(event);
1945 
1946 	/*
1947 	 * Sum the lot; should not exceed the 64k limit we have on records.
1948 	 * Conservative limit to allow for callchains and other variable fields.
1949 	 */
1950 	if (event->read_size + event->header_size +
1951 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1952 		return false;
1953 
1954 	return true;
1955 }
1956 
1957 static void perf_group_attach(struct perf_event *event)
1958 {
1959 	struct perf_event *group_leader = event->group_leader, *pos;
1960 
1961 	lockdep_assert_held(&event->ctx->lock);
1962 
1963 	/*
1964 	 * We can have double attach due to group movement in perf_event_open.
1965 	 */
1966 	if (event->attach_state & PERF_ATTACH_GROUP)
1967 		return;
1968 
1969 	event->attach_state |= PERF_ATTACH_GROUP;
1970 
1971 	if (group_leader == event)
1972 		return;
1973 
1974 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1975 
1976 	group_leader->group_caps &= event->event_caps;
1977 
1978 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1979 	group_leader->nr_siblings++;
1980 
1981 	perf_event__header_size(group_leader);
1982 
1983 	for_each_sibling_event(pos, group_leader)
1984 		perf_event__header_size(pos);
1985 }
1986 
1987 /*
1988  * Remove an event from the lists for its context.
1989  * Must be called with ctx->mutex and ctx->lock held.
1990  */
1991 static void
1992 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1993 {
1994 	WARN_ON_ONCE(event->ctx != ctx);
1995 	lockdep_assert_held(&ctx->lock);
1996 
1997 	/*
1998 	 * We can have double detach due to exit/hot-unplug + close.
1999 	 */
2000 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2001 		return;
2002 
2003 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2004 
2005 	ctx->nr_events--;
2006 	if (event->attr.inherit_stat)
2007 		ctx->nr_stat--;
2008 
2009 	list_del_rcu(&event->event_entry);
2010 
2011 	if (event->group_leader == event)
2012 		del_event_from_groups(event, ctx);
2013 
2014 	/*
2015 	 * If event was in error state, then keep it
2016 	 * that way, otherwise bogus counts will be
2017 	 * returned on read(). The only way to get out
2018 	 * of error state is by explicit re-enabling
2019 	 * of the event
2020 	 */
2021 	if (event->state > PERF_EVENT_STATE_OFF) {
2022 		perf_cgroup_event_disable(event, ctx);
2023 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2024 	}
2025 
2026 	ctx->generation++;
2027 }
2028 
2029 static int
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031 {
2032 	if (!has_aux(aux_event))
2033 		return 0;
2034 
2035 	if (!event->pmu->aux_output_match)
2036 		return 0;
2037 
2038 	return event->pmu->aux_output_match(aux_event);
2039 }
2040 
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043 			    struct perf_cpu_context *cpuctx,
2044 			    struct perf_event_context *ctx);
2045 
2046 static void perf_put_aux_event(struct perf_event *event)
2047 {
2048 	struct perf_event_context *ctx = event->ctx;
2049 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050 	struct perf_event *iter;
2051 
2052 	/*
2053 	 * If event uses aux_event tear down the link
2054 	 */
2055 	if (event->aux_event) {
2056 		iter = event->aux_event;
2057 		event->aux_event = NULL;
2058 		put_event(iter);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * If the event is an aux_event, tear down all links to
2064 	 * it from other events.
2065 	 */
2066 	for_each_sibling_event(iter, event->group_leader) {
2067 		if (iter->aux_event != event)
2068 			continue;
2069 
2070 		iter->aux_event = NULL;
2071 		put_event(event);
2072 
2073 		/*
2074 		 * If it's ACTIVE, schedule it out and put it into ERROR
2075 		 * state so that we don't try to schedule it again. Note
2076 		 * that perf_event_enable() will clear the ERROR status.
2077 		 */
2078 		event_sched_out(iter, cpuctx, ctx);
2079 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080 	}
2081 }
2082 
2083 static bool perf_need_aux_event(struct perf_event *event)
2084 {
2085 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086 }
2087 
2088 static int perf_get_aux_event(struct perf_event *event,
2089 			      struct perf_event *group_leader)
2090 {
2091 	/*
2092 	 * Our group leader must be an aux event if we want to be
2093 	 * an aux_output. This way, the aux event will precede its
2094 	 * aux_output events in the group, and therefore will always
2095 	 * schedule first.
2096 	 */
2097 	if (!group_leader)
2098 		return 0;
2099 
2100 	/*
2101 	 * aux_output and aux_sample_size are mutually exclusive.
2102 	 */
2103 	if (event->attr.aux_output && event->attr.aux_sample_size)
2104 		return 0;
2105 
2106 	if (event->attr.aux_output &&
2107 	    !perf_aux_output_match(event, group_leader))
2108 		return 0;
2109 
2110 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2111 		return 0;
2112 
2113 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114 		return 0;
2115 
2116 	/*
2117 	 * Link aux_outputs to their aux event; this is undone in
2118 	 * perf_group_detach() by perf_put_aux_event(). When the
2119 	 * group in torn down, the aux_output events loose their
2120 	 * link to the aux_event and can't schedule any more.
2121 	 */
2122 	event->aux_event = group_leader;
2123 
2124 	return 1;
2125 }
2126 
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2128 {
2129 	struct perf_event_context *ctx = event->ctx;
2130 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131 }
2132 
2133 /*
2134  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135  * cannot exist on their own, schedule them out and move them into the ERROR
2136  * state. Also see _perf_event_enable(), it will not be able to recover
2137  * this ERROR state.
2138  */
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2140 {
2141 	struct perf_event_context *ctx = event->ctx;
2142 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143 
2144 	event_sched_out(event, cpuctx, ctx);
2145 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146 }
2147 
2148 static void perf_group_detach(struct perf_event *event)
2149 {
2150 	struct perf_event *leader = event->group_leader;
2151 	struct perf_event *sibling, *tmp;
2152 	struct perf_event_context *ctx = event->ctx;
2153 
2154 	lockdep_assert_held(&ctx->lock);
2155 
2156 	/*
2157 	 * We can have double detach due to exit/hot-unplug + close.
2158 	 */
2159 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2160 		return;
2161 
2162 	event->attach_state &= ~PERF_ATTACH_GROUP;
2163 
2164 	perf_put_aux_event(event);
2165 
2166 	/*
2167 	 * If this is a sibling, remove it from its group.
2168 	 */
2169 	if (leader != event) {
2170 		list_del_init(&event->sibling_list);
2171 		event->group_leader->nr_siblings--;
2172 		goto out;
2173 	}
2174 
2175 	/*
2176 	 * If this was a group event with sibling events then
2177 	 * upgrade the siblings to singleton events by adding them
2178 	 * to whatever list we are on.
2179 	 */
2180 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2181 
2182 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183 			perf_remove_sibling_event(sibling);
2184 
2185 		sibling->group_leader = sibling;
2186 		list_del_init(&sibling->sibling_list);
2187 
2188 		/* Inherit group flags from the previous leader */
2189 		sibling->group_caps = event->group_caps;
2190 
2191 		if (!RB_EMPTY_NODE(&event->group_node)) {
2192 			add_event_to_groups(sibling, event->ctx);
2193 
2194 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2196 		}
2197 
2198 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2199 	}
2200 
2201 out:
2202 	for_each_sibling_event(tmp, leader)
2203 		perf_event__header_size(tmp);
2204 
2205 	perf_event__header_size(leader);
2206 }
2207 
2208 static void sync_child_event(struct perf_event *child_event);
2209 
2210 static void perf_child_detach(struct perf_event *event)
2211 {
2212 	struct perf_event *parent_event = event->parent;
2213 
2214 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2215 		return;
2216 
2217 	event->attach_state &= ~PERF_ATTACH_CHILD;
2218 
2219 	if (WARN_ON_ONCE(!parent_event))
2220 		return;
2221 
2222 	lockdep_assert_held(&parent_event->child_mutex);
2223 
2224 	sync_child_event(event);
2225 	list_del_init(&event->child_list);
2226 }
2227 
2228 static bool is_orphaned_event(struct perf_event *event)
2229 {
2230 	return event->state == PERF_EVENT_STATE_DEAD;
2231 }
2232 
2233 static inline int __pmu_filter_match(struct perf_event *event)
2234 {
2235 	struct pmu *pmu = event->pmu;
2236 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2237 }
2238 
2239 /*
2240  * Check whether we should attempt to schedule an event group based on
2241  * PMU-specific filtering. An event group can consist of HW and SW events,
2242  * potentially with a SW leader, so we must check all the filters, to
2243  * determine whether a group is schedulable:
2244  */
2245 static inline int pmu_filter_match(struct perf_event *event)
2246 {
2247 	struct perf_event *sibling;
2248 
2249 	if (!__pmu_filter_match(event))
2250 		return 0;
2251 
2252 	for_each_sibling_event(sibling, event) {
2253 		if (!__pmu_filter_match(sibling))
2254 			return 0;
2255 	}
2256 
2257 	return 1;
2258 }
2259 
2260 static inline int
2261 event_filter_match(struct perf_event *event)
2262 {
2263 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264 	       perf_cgroup_match(event) && pmu_filter_match(event);
2265 }
2266 
2267 static void
2268 event_sched_out(struct perf_event *event,
2269 		  struct perf_cpu_context *cpuctx,
2270 		  struct perf_event_context *ctx)
2271 {
2272 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2273 
2274 	WARN_ON_ONCE(event->ctx != ctx);
2275 	lockdep_assert_held(&ctx->lock);
2276 
2277 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2278 		return;
2279 
2280 	/*
2281 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282 	 * we can schedule events _OUT_ individually through things like
2283 	 * __perf_remove_from_context().
2284 	 */
2285 	list_del_init(&event->active_list);
2286 
2287 	perf_pmu_disable(event->pmu);
2288 
2289 	event->pmu->del(event, 0);
2290 	event->oncpu = -1;
2291 
2292 	if (READ_ONCE(event->pending_disable) >= 0) {
2293 		WRITE_ONCE(event->pending_disable, -1);
2294 		perf_cgroup_event_disable(event, ctx);
2295 		state = PERF_EVENT_STATE_OFF;
2296 	}
2297 	perf_event_set_state(event, state);
2298 
2299 	if (!is_software_event(event))
2300 		cpuctx->active_oncpu--;
2301 	if (!--ctx->nr_active)
2302 		perf_event_ctx_deactivate(ctx);
2303 	if (event->attr.freq && event->attr.sample_freq)
2304 		ctx->nr_freq--;
2305 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2306 		cpuctx->exclusive = 0;
2307 
2308 	perf_pmu_enable(event->pmu);
2309 }
2310 
2311 static void
2312 group_sched_out(struct perf_event *group_event,
2313 		struct perf_cpu_context *cpuctx,
2314 		struct perf_event_context *ctx)
2315 {
2316 	struct perf_event *event;
2317 
2318 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 		return;
2320 
2321 	perf_pmu_disable(ctx->pmu);
2322 
2323 	event_sched_out(group_event, cpuctx, ctx);
2324 
2325 	/*
2326 	 * Schedule out siblings (if any):
2327 	 */
2328 	for_each_sibling_event(event, group_event)
2329 		event_sched_out(event, cpuctx, ctx);
2330 
2331 	perf_pmu_enable(ctx->pmu);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345 			   struct perf_cpu_context *cpuctx,
2346 			   struct perf_event_context *ctx,
2347 			   void *info)
2348 {
2349 	unsigned long flags = (unsigned long)info;
2350 
2351 	if (ctx->is_active & EVENT_TIME) {
2352 		update_context_time(ctx);
2353 		update_cgrp_time_from_cpuctx(cpuctx);
2354 	}
2355 
2356 	event_sched_out(event, cpuctx, ctx);
2357 	if (flags & DETACH_GROUP)
2358 		perf_group_detach(event);
2359 	if (flags & DETACH_CHILD)
2360 		perf_child_detach(event);
2361 	list_del_event(event, ctx);
2362 
2363 	if (!ctx->nr_events && ctx->is_active) {
2364 		ctx->is_active = 0;
2365 		ctx->rotate_necessary = 0;
2366 		if (ctx->task) {
2367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368 			cpuctx->task_ctx = NULL;
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Remove the event from a task's (or a CPU's) list of events.
2375  *
2376  * If event->ctx is a cloned context, callers must make sure that
2377  * every task struct that event->ctx->task could possibly point to
2378  * remains valid.  This is OK when called from perf_release since
2379  * that only calls us on the top-level context, which can't be a clone.
2380  * When called from perf_event_exit_task, it's OK because the
2381  * context has been detached from its task.
2382  */
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2384 {
2385 	struct perf_event_context *ctx = event->ctx;
2386 
2387 	lockdep_assert_held(&ctx->mutex);
2388 
2389 	/*
2390 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2392 	 * event_function_call() user.
2393 	 */
2394 	raw_spin_lock_irq(&ctx->lock);
2395 	if (!ctx->is_active) {
2396 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2397 					   ctx, (void *)flags);
2398 		raw_spin_unlock_irq(&ctx->lock);
2399 		return;
2400 	}
2401 	raw_spin_unlock_irq(&ctx->lock);
2402 
2403 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2404 }
2405 
2406 /*
2407  * Cross CPU call to disable a performance event
2408  */
2409 static void __perf_event_disable(struct perf_event *event,
2410 				 struct perf_cpu_context *cpuctx,
2411 				 struct perf_event_context *ctx,
2412 				 void *info)
2413 {
2414 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2415 		return;
2416 
2417 	if (ctx->is_active & EVENT_TIME) {
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_event(event);
2420 	}
2421 
2422 	if (event == event->group_leader)
2423 		group_sched_out(event, cpuctx, ctx);
2424 	else
2425 		event_sched_out(event, cpuctx, ctx);
2426 
2427 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428 	perf_cgroup_event_disable(event, ctx);
2429 }
2430 
2431 /*
2432  * Disable an event.
2433  *
2434  * If event->ctx is a cloned context, callers must make sure that
2435  * every task struct that event->ctx->task could possibly point to
2436  * remains valid.  This condition is satisfied when called through
2437  * perf_event_for_each_child or perf_event_for_each because they
2438  * hold the top-level event's child_mutex, so any descendant that
2439  * goes to exit will block in perf_event_exit_event().
2440  *
2441  * When called from perf_pending_event it's OK because event->ctx
2442  * is the current context on this CPU and preemption is disabled,
2443  * hence we can't get into perf_event_task_sched_out for this context.
2444  */
2445 static void _perf_event_disable(struct perf_event *event)
2446 {
2447 	struct perf_event_context *ctx = event->ctx;
2448 
2449 	raw_spin_lock_irq(&ctx->lock);
2450 	if (event->state <= PERF_EVENT_STATE_OFF) {
2451 		raw_spin_unlock_irq(&ctx->lock);
2452 		return;
2453 	}
2454 	raw_spin_unlock_irq(&ctx->lock);
2455 
2456 	event_function_call(event, __perf_event_disable, NULL);
2457 }
2458 
2459 void perf_event_disable_local(struct perf_event *event)
2460 {
2461 	event_function_local(event, __perf_event_disable, NULL);
2462 }
2463 
2464 /*
2465  * Strictly speaking kernel users cannot create groups and therefore this
2466  * interface does not need the perf_event_ctx_lock() magic.
2467  */
2468 void perf_event_disable(struct perf_event *event)
2469 {
2470 	struct perf_event_context *ctx;
2471 
2472 	ctx = perf_event_ctx_lock(event);
2473 	_perf_event_disable(event);
2474 	perf_event_ctx_unlock(event, ctx);
2475 }
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2477 
2478 void perf_event_disable_inatomic(struct perf_event *event)
2479 {
2480 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2481 	/* can fail, see perf_pending_event_disable() */
2482 	irq_work_queue(&event->pending);
2483 }
2484 
2485 static void perf_set_shadow_time(struct perf_event *event,
2486 				 struct perf_event_context *ctx)
2487 {
2488 	/*
2489 	 * use the correct time source for the time snapshot
2490 	 *
2491 	 * We could get by without this by leveraging the
2492 	 * fact that to get to this function, the caller
2493 	 * has most likely already called update_context_time()
2494 	 * and update_cgrp_time_xx() and thus both timestamp
2495 	 * are identical (or very close). Given that tstamp is,
2496 	 * already adjusted for cgroup, we could say that:
2497 	 *    tstamp - ctx->timestamp
2498 	 * is equivalent to
2499 	 *    tstamp - cgrp->timestamp.
2500 	 *
2501 	 * Then, in perf_output_read(), the calculation would
2502 	 * work with no changes because:
2503 	 * - event is guaranteed scheduled in
2504 	 * - no scheduled out in between
2505 	 * - thus the timestamp would be the same
2506 	 *
2507 	 * But this is a bit hairy.
2508 	 *
2509 	 * So instead, we have an explicit cgroup call to remain
2510 	 * within the time source all along. We believe it
2511 	 * is cleaner and simpler to understand.
2512 	 */
2513 	if (is_cgroup_event(event))
2514 		perf_cgroup_set_shadow_time(event, event->tstamp);
2515 	else
2516 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2517 }
2518 
2519 #define MAX_INTERRUPTS (~0ULL)
2520 
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2523 
2524 static int
2525 event_sched_in(struct perf_event *event,
2526 		 struct perf_cpu_context *cpuctx,
2527 		 struct perf_event_context *ctx)
2528 {
2529 	int ret = 0;
2530 
2531 	WARN_ON_ONCE(event->ctx != ctx);
2532 
2533 	lockdep_assert_held(&ctx->lock);
2534 
2535 	if (event->state <= PERF_EVENT_STATE_OFF)
2536 		return 0;
2537 
2538 	WRITE_ONCE(event->oncpu, smp_processor_id());
2539 	/*
2540 	 * Order event::oncpu write to happen before the ACTIVE state is
2541 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2542 	 * ->oncpu if it sees ACTIVE.
2543 	 */
2544 	smp_wmb();
2545 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2546 
2547 	/*
2548 	 * Unthrottle events, since we scheduled we might have missed several
2549 	 * ticks already, also for a heavily scheduling task there is little
2550 	 * guarantee it'll get a tick in a timely manner.
2551 	 */
2552 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553 		perf_log_throttle(event, 1);
2554 		event->hw.interrupts = 0;
2555 	}
2556 
2557 	perf_pmu_disable(event->pmu);
2558 
2559 	perf_set_shadow_time(event, ctx);
2560 
2561 	perf_log_itrace_start(event);
2562 
2563 	if (event->pmu->add(event, PERF_EF_START)) {
2564 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2565 		event->oncpu = -1;
2566 		ret = -EAGAIN;
2567 		goto out;
2568 	}
2569 
2570 	if (!is_software_event(event))
2571 		cpuctx->active_oncpu++;
2572 	if (!ctx->nr_active++)
2573 		perf_event_ctx_activate(ctx);
2574 	if (event->attr.freq && event->attr.sample_freq)
2575 		ctx->nr_freq++;
2576 
2577 	if (event->attr.exclusive)
2578 		cpuctx->exclusive = 1;
2579 
2580 out:
2581 	perf_pmu_enable(event->pmu);
2582 
2583 	return ret;
2584 }
2585 
2586 static int
2587 group_sched_in(struct perf_event *group_event,
2588 	       struct perf_cpu_context *cpuctx,
2589 	       struct perf_event_context *ctx)
2590 {
2591 	struct perf_event *event, *partial_group = NULL;
2592 	struct pmu *pmu = ctx->pmu;
2593 
2594 	if (group_event->state == PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2598 
2599 	if (event_sched_in(group_event, cpuctx, ctx))
2600 		goto error;
2601 
2602 	/*
2603 	 * Schedule in siblings as one group (if any):
2604 	 */
2605 	for_each_sibling_event(event, group_event) {
2606 		if (event_sched_in(event, cpuctx, ctx)) {
2607 			partial_group = event;
2608 			goto group_error;
2609 		}
2610 	}
2611 
2612 	if (!pmu->commit_txn(pmu))
2613 		return 0;
2614 
2615 group_error:
2616 	/*
2617 	 * Groups can be scheduled in as one unit only, so undo any
2618 	 * partial group before returning:
2619 	 * The events up to the failed event are scheduled out normally.
2620 	 */
2621 	for_each_sibling_event(event, group_event) {
2622 		if (event == partial_group)
2623 			break;
2624 
2625 		event_sched_out(event, cpuctx, ctx);
2626 	}
2627 	event_sched_out(group_event, cpuctx, ctx);
2628 
2629 error:
2630 	pmu->cancel_txn(pmu);
2631 	return -EAGAIN;
2632 }
2633 
2634 /*
2635  * Work out whether we can put this event group on the CPU now.
2636  */
2637 static int group_can_go_on(struct perf_event *event,
2638 			   struct perf_cpu_context *cpuctx,
2639 			   int can_add_hw)
2640 {
2641 	/*
2642 	 * Groups consisting entirely of software events can always go on.
2643 	 */
2644 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2645 		return 1;
2646 	/*
2647 	 * If an exclusive group is already on, no other hardware
2648 	 * events can go on.
2649 	 */
2650 	if (cpuctx->exclusive)
2651 		return 0;
2652 	/*
2653 	 * If this group is exclusive and there are already
2654 	 * events on the CPU, it can't go on.
2655 	 */
2656 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2657 		return 0;
2658 	/*
2659 	 * Otherwise, try to add it if all previous groups were able
2660 	 * to go on.
2661 	 */
2662 	return can_add_hw;
2663 }
2664 
2665 static void add_event_to_ctx(struct perf_event *event,
2666 			       struct perf_event_context *ctx)
2667 {
2668 	list_add_event(event, ctx);
2669 	perf_group_attach(event);
2670 }
2671 
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673 			  struct perf_cpu_context *cpuctx,
2674 			  enum event_type_t event_type);
2675 static void
2676 ctx_sched_in(struct perf_event_context *ctx,
2677 	     struct perf_cpu_context *cpuctx,
2678 	     enum event_type_t event_type,
2679 	     struct task_struct *task);
2680 
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682 			       struct perf_event_context *ctx,
2683 			       enum event_type_t event_type)
2684 {
2685 	if (!cpuctx->task_ctx)
2686 		return;
2687 
2688 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 		return;
2690 
2691 	ctx_sched_out(ctx, cpuctx, event_type);
2692 }
2693 
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695 				struct perf_event_context *ctx,
2696 				struct task_struct *task)
2697 {
2698 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699 	if (ctx)
2700 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702 	if (ctx)
2703 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704 }
2705 
2706 /*
2707  * We want to maintain the following priority of scheduling:
2708  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709  *  - task pinned (EVENT_PINNED)
2710  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711  *  - task flexible (EVENT_FLEXIBLE).
2712  *
2713  * In order to avoid unscheduling and scheduling back in everything every
2714  * time an event is added, only do it for the groups of equal priority and
2715  * below.
2716  *
2717  * This can be called after a batch operation on task events, in which case
2718  * event_type is a bit mask of the types of events involved. For CPU events,
2719  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720  */
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722 			struct perf_event_context *task_ctx,
2723 			enum event_type_t event_type)
2724 {
2725 	enum event_type_t ctx_event_type;
2726 	bool cpu_event = !!(event_type & EVENT_CPU);
2727 
2728 	/*
2729 	 * If pinned groups are involved, flexible groups also need to be
2730 	 * scheduled out.
2731 	 */
2732 	if (event_type & EVENT_PINNED)
2733 		event_type |= EVENT_FLEXIBLE;
2734 
2735 	ctx_event_type = event_type & EVENT_ALL;
2736 
2737 	perf_pmu_disable(cpuctx->ctx.pmu);
2738 	if (task_ctx)
2739 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740 
2741 	/*
2742 	 * Decide which cpu ctx groups to schedule out based on the types
2743 	 * of events that caused rescheduling:
2744 	 *  - EVENT_CPU: schedule out corresponding groups;
2745 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746 	 *  - otherwise, do nothing more.
2747 	 */
2748 	if (cpu_event)
2749 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750 	else if (ctx_event_type & EVENT_PINNED)
2751 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752 
2753 	perf_event_sched_in(cpuctx, task_ctx, current);
2754 	perf_pmu_enable(cpuctx->ctx.pmu);
2755 }
2756 
2757 void perf_pmu_resched(struct pmu *pmu)
2758 {
2759 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761 
2762 	perf_ctx_lock(cpuctx, task_ctx);
2763 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764 	perf_ctx_unlock(cpuctx, task_ctx);
2765 }
2766 
2767 /*
2768  * Cross CPU call to install and enable a performance event
2769  *
2770  * Very similar to remote_function() + event_function() but cannot assume that
2771  * things like ctx->is_active and cpuctx->task_ctx are set.
2772  */
2773 static int  __perf_install_in_context(void *info)
2774 {
2775 	struct perf_event *event = info;
2776 	struct perf_event_context *ctx = event->ctx;
2777 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779 	bool reprogram = true;
2780 	int ret = 0;
2781 
2782 	raw_spin_lock(&cpuctx->ctx.lock);
2783 	if (ctx->task) {
2784 		raw_spin_lock(&ctx->lock);
2785 		task_ctx = ctx;
2786 
2787 		reprogram = (ctx->task == current);
2788 
2789 		/*
2790 		 * If the task is running, it must be running on this CPU,
2791 		 * otherwise we cannot reprogram things.
2792 		 *
2793 		 * If its not running, we don't care, ctx->lock will
2794 		 * serialize against it becoming runnable.
2795 		 */
2796 		if (task_curr(ctx->task) && !reprogram) {
2797 			ret = -ESRCH;
2798 			goto unlock;
2799 		}
2800 
2801 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802 	} else if (task_ctx) {
2803 		raw_spin_lock(&task_ctx->lock);
2804 	}
2805 
2806 #ifdef CONFIG_CGROUP_PERF
2807 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2808 		/*
2809 		 * If the current cgroup doesn't match the event's
2810 		 * cgroup, we should not try to schedule it.
2811 		 */
2812 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814 					event->cgrp->css.cgroup);
2815 	}
2816 #endif
2817 
2818 	if (reprogram) {
2819 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820 		add_event_to_ctx(event, ctx);
2821 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2822 	} else {
2823 		add_event_to_ctx(event, ctx);
2824 	}
2825 
2826 unlock:
2827 	perf_ctx_unlock(cpuctx, task_ctx);
2828 
2829 	return ret;
2830 }
2831 
2832 static bool exclusive_event_installable(struct perf_event *event,
2833 					struct perf_event_context *ctx);
2834 
2835 /*
2836  * Attach a performance event to a context.
2837  *
2838  * Very similar to event_function_call, see comment there.
2839  */
2840 static void
2841 perf_install_in_context(struct perf_event_context *ctx,
2842 			struct perf_event *event,
2843 			int cpu)
2844 {
2845 	struct task_struct *task = READ_ONCE(ctx->task);
2846 
2847 	lockdep_assert_held(&ctx->mutex);
2848 
2849 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850 
2851 	if (event->cpu != -1)
2852 		event->cpu = cpu;
2853 
2854 	/*
2855 	 * Ensures that if we can observe event->ctx, both the event and ctx
2856 	 * will be 'complete'. See perf_iterate_sb_cpu().
2857 	 */
2858 	smp_store_release(&event->ctx, ctx);
2859 
2860 	/*
2861 	 * perf_event_attr::disabled events will not run and can be initialized
2862 	 * without IPI. Except when this is the first event for the context, in
2863 	 * that case we need the magic of the IPI to set ctx->is_active.
2864 	 *
2865 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2866 	 * event will issue the IPI and reprogram the hardware.
2867 	 */
2868 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869 		raw_spin_lock_irq(&ctx->lock);
2870 		if (ctx->task == TASK_TOMBSTONE) {
2871 			raw_spin_unlock_irq(&ctx->lock);
2872 			return;
2873 		}
2874 		add_event_to_ctx(event, ctx);
2875 		raw_spin_unlock_irq(&ctx->lock);
2876 		return;
2877 	}
2878 
2879 	if (!task) {
2880 		cpu_function_call(cpu, __perf_install_in_context, event);
2881 		return;
2882 	}
2883 
2884 	/*
2885 	 * Should not happen, we validate the ctx is still alive before calling.
2886 	 */
2887 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888 		return;
2889 
2890 	/*
2891 	 * Installing events is tricky because we cannot rely on ctx->is_active
2892 	 * to be set in case this is the nr_events 0 -> 1 transition.
2893 	 *
2894 	 * Instead we use task_curr(), which tells us if the task is running.
2895 	 * However, since we use task_curr() outside of rq::lock, we can race
2896 	 * against the actual state. This means the result can be wrong.
2897 	 *
2898 	 * If we get a false positive, we retry, this is harmless.
2899 	 *
2900 	 * If we get a false negative, things are complicated. If we are after
2901 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902 	 * value must be correct. If we're before, it doesn't matter since
2903 	 * perf_event_context_sched_in() will program the counter.
2904 	 *
2905 	 * However, this hinges on the remote context switch having observed
2906 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2907 	 * ctx::lock in perf_event_context_sched_in().
2908 	 *
2909 	 * We do this by task_function_call(), if the IPI fails to hit the task
2910 	 * we know any future context switch of task must see the
2911 	 * perf_event_ctpx[] store.
2912 	 */
2913 
2914 	/*
2915 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916 	 * task_cpu() load, such that if the IPI then does not find the task
2917 	 * running, a future context switch of that task must observe the
2918 	 * store.
2919 	 */
2920 	smp_mb();
2921 again:
2922 	if (!task_function_call(task, __perf_install_in_context, event))
2923 		return;
2924 
2925 	raw_spin_lock_irq(&ctx->lock);
2926 	task = ctx->task;
2927 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2928 		/*
2929 		 * Cannot happen because we already checked above (which also
2930 		 * cannot happen), and we hold ctx->mutex, which serializes us
2931 		 * against perf_event_exit_task_context().
2932 		 */
2933 		raw_spin_unlock_irq(&ctx->lock);
2934 		return;
2935 	}
2936 	/*
2937 	 * If the task is not running, ctx->lock will avoid it becoming so,
2938 	 * thus we can safely install the event.
2939 	 */
2940 	if (task_curr(task)) {
2941 		raw_spin_unlock_irq(&ctx->lock);
2942 		goto again;
2943 	}
2944 	add_event_to_ctx(event, ctx);
2945 	raw_spin_unlock_irq(&ctx->lock);
2946 }
2947 
2948 /*
2949  * Cross CPU call to enable a performance event
2950  */
2951 static void __perf_event_enable(struct perf_event *event,
2952 				struct perf_cpu_context *cpuctx,
2953 				struct perf_event_context *ctx,
2954 				void *info)
2955 {
2956 	struct perf_event *leader = event->group_leader;
2957 	struct perf_event_context *task_ctx;
2958 
2959 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960 	    event->state <= PERF_EVENT_STATE_ERROR)
2961 		return;
2962 
2963 	if (ctx->is_active)
2964 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965 
2966 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967 	perf_cgroup_event_enable(event, ctx);
2968 
2969 	if (!ctx->is_active)
2970 		return;
2971 
2972 	if (!event_filter_match(event)) {
2973 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2974 		return;
2975 	}
2976 
2977 	/*
2978 	 * If the event is in a group and isn't the group leader,
2979 	 * then don't put it on unless the group is on.
2980 	 */
2981 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2983 		return;
2984 	}
2985 
2986 	task_ctx = cpuctx->task_ctx;
2987 	if (ctx->task)
2988 		WARN_ON_ONCE(task_ctx != ctx);
2989 
2990 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2991 }
2992 
2993 /*
2994  * Enable an event.
2995  *
2996  * If event->ctx is a cloned context, callers must make sure that
2997  * every task struct that event->ctx->task could possibly point to
2998  * remains valid.  This condition is satisfied when called through
2999  * perf_event_for_each_child or perf_event_for_each as described
3000  * for perf_event_disable.
3001  */
3002 static void _perf_event_enable(struct perf_event *event)
3003 {
3004 	struct perf_event_context *ctx = event->ctx;
3005 
3006 	raw_spin_lock_irq(&ctx->lock);
3007 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008 	    event->state <  PERF_EVENT_STATE_ERROR) {
3009 out:
3010 		raw_spin_unlock_irq(&ctx->lock);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * If the event is in error state, clear that first.
3016 	 *
3017 	 * That way, if we see the event in error state below, we know that it
3018 	 * has gone back into error state, as distinct from the task having
3019 	 * been scheduled away before the cross-call arrived.
3020 	 */
3021 	if (event->state == PERF_EVENT_STATE_ERROR) {
3022 		/*
3023 		 * Detached SIBLING events cannot leave ERROR state.
3024 		 */
3025 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026 		    event->group_leader == event)
3027 			goto out;
3028 
3029 		event->state = PERF_EVENT_STATE_OFF;
3030 	}
3031 	raw_spin_unlock_irq(&ctx->lock);
3032 
3033 	event_function_call(event, __perf_event_enable, NULL);
3034 }
3035 
3036 /*
3037  * See perf_event_disable();
3038  */
3039 void perf_event_enable(struct perf_event *event)
3040 {
3041 	struct perf_event_context *ctx;
3042 
3043 	ctx = perf_event_ctx_lock(event);
3044 	_perf_event_enable(event);
3045 	perf_event_ctx_unlock(event, ctx);
3046 }
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3048 
3049 struct stop_event_data {
3050 	struct perf_event	*event;
3051 	unsigned int		restart;
3052 };
3053 
3054 static int __perf_event_stop(void *info)
3055 {
3056 	struct stop_event_data *sd = info;
3057 	struct perf_event *event = sd->event;
3058 
3059 	/* if it's already INACTIVE, do nothing */
3060 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061 		return 0;
3062 
3063 	/* matches smp_wmb() in event_sched_in() */
3064 	smp_rmb();
3065 
3066 	/*
3067 	 * There is a window with interrupts enabled before we get here,
3068 	 * so we need to check again lest we try to stop another CPU's event.
3069 	 */
3070 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3071 		return -EAGAIN;
3072 
3073 	event->pmu->stop(event, PERF_EF_UPDATE);
3074 
3075 	/*
3076 	 * May race with the actual stop (through perf_pmu_output_stop()),
3077 	 * but it is only used for events with AUX ring buffer, and such
3078 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3079 	 * see comments in perf_aux_output_begin().
3080 	 *
3081 	 * Since this is happening on an event-local CPU, no trace is lost
3082 	 * while restarting.
3083 	 */
3084 	if (sd->restart)
3085 		event->pmu->start(event, 0);
3086 
3087 	return 0;
3088 }
3089 
3090 static int perf_event_stop(struct perf_event *event, int restart)
3091 {
3092 	struct stop_event_data sd = {
3093 		.event		= event,
3094 		.restart	= restart,
3095 	};
3096 	int ret = 0;
3097 
3098 	do {
3099 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100 			return 0;
3101 
3102 		/* matches smp_wmb() in event_sched_in() */
3103 		smp_rmb();
3104 
3105 		/*
3106 		 * We only want to restart ACTIVE events, so if the event goes
3107 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3108 		 * fall through with ret==-ENXIO.
3109 		 */
3110 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3111 					__perf_event_stop, &sd);
3112 	} while (ret == -EAGAIN);
3113 
3114 	return ret;
3115 }
3116 
3117 /*
3118  * In order to contain the amount of racy and tricky in the address filter
3119  * configuration management, it is a two part process:
3120  *
3121  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122  *      we update the addresses of corresponding vmas in
3123  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124  * (p2) when an event is scheduled in (pmu::add), it calls
3125  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126  *      if the generation has changed since the previous call.
3127  *
3128  * If (p1) happens while the event is active, we restart it to force (p2).
3129  *
3130  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3132  *     ioctl;
3133  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3135  *     for reading;
3136  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137  *     of exec.
3138  */
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3140 {
3141 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142 
3143 	if (!has_addr_filter(event))
3144 		return;
3145 
3146 	raw_spin_lock(&ifh->lock);
3147 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148 		event->pmu->addr_filters_sync(event);
3149 		event->hw.addr_filters_gen = event->addr_filters_gen;
3150 	}
3151 	raw_spin_unlock(&ifh->lock);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154 
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157 	/*
3158 	 * not supported on inherited events
3159 	 */
3160 	if (event->attr.inherit || !is_sampling_event(event))
3161 		return -EINVAL;
3162 
3163 	atomic_add(refresh, &event->event_limit);
3164 	_perf_event_enable(event);
3165 
3166 	return 0;
3167 }
3168 
3169 /*
3170  * See perf_event_disable()
3171  */
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3173 {
3174 	struct perf_event_context *ctx;
3175 	int ret;
3176 
3177 	ctx = perf_event_ctx_lock(event);
3178 	ret = _perf_event_refresh(event, refresh);
3179 	perf_event_ctx_unlock(event, ctx);
3180 
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3184 
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186 					 struct perf_event_attr *attr)
3187 {
3188 	int err;
3189 
3190 	_perf_event_disable(bp);
3191 
3192 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3193 
3194 	if (!bp->attr.disabled)
3195 		_perf_event_enable(bp);
3196 
3197 	return err;
3198 }
3199 
3200 static int perf_event_modify_attr(struct perf_event *event,
3201 				  struct perf_event_attr *attr)
3202 {
3203 	int (*func)(struct perf_event *, struct perf_event_attr *);
3204 	struct perf_event *child;
3205 	int err;
3206 
3207 	if (event->attr.type != attr->type)
3208 		return -EINVAL;
3209 
3210 	switch (event->attr.type) {
3211 	case PERF_TYPE_BREAKPOINT:
3212 		func = perf_event_modify_breakpoint;
3213 		break;
3214 	default:
3215 		/* Place holder for future additions. */
3216 		return -EOPNOTSUPP;
3217 	}
3218 
3219 	WARN_ON_ONCE(event->ctx->parent_ctx);
3220 
3221 	mutex_lock(&event->child_mutex);
3222 	err = func(event, attr);
3223 	if (err)
3224 		goto out;
3225 	list_for_each_entry(child, &event->child_list, child_list) {
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236 			  struct perf_cpu_context *cpuctx,
3237 			  enum event_type_t event_type)
3238 {
3239 	struct perf_event *event, *tmp;
3240 	int is_active = ctx->is_active;
3241 
3242 	lockdep_assert_held(&ctx->lock);
3243 
3244 	if (likely(!ctx->nr_events)) {
3245 		/*
3246 		 * See __perf_remove_from_context().
3247 		 */
3248 		WARN_ON_ONCE(ctx->is_active);
3249 		if (ctx->task)
3250 			WARN_ON_ONCE(cpuctx->task_ctx);
3251 		return;
3252 	}
3253 
3254 	ctx->is_active &= ~event_type;
3255 	if (!(ctx->is_active & EVENT_ALL))
3256 		ctx->is_active = 0;
3257 
3258 	if (ctx->task) {
3259 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260 		if (!ctx->is_active)
3261 			cpuctx->task_ctx = NULL;
3262 	}
3263 
3264 	/*
3265 	 * Always update time if it was set; not only when it changes.
3266 	 * Otherwise we can 'forget' to update time for any but the last
3267 	 * context we sched out. For example:
3268 	 *
3269 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3271 	 *
3272 	 * would only update time for the pinned events.
3273 	 */
3274 	if (is_active & EVENT_TIME) {
3275 		/* update (and stop) ctx time */
3276 		update_context_time(ctx);
3277 		update_cgrp_time_from_cpuctx(cpuctx);
3278 	}
3279 
3280 	is_active ^= ctx->is_active; /* changed bits */
3281 
3282 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3283 		return;
3284 
3285 	perf_pmu_disable(ctx->pmu);
3286 	if (is_active & EVENT_PINNED) {
3287 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288 			group_sched_out(event, cpuctx, ctx);
3289 	}
3290 
3291 	if (is_active & EVENT_FLEXIBLE) {
3292 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293 			group_sched_out(event, cpuctx, ctx);
3294 
3295 		/*
3296 		 * Since we cleared EVENT_FLEXIBLE, also clear
3297 		 * rotate_necessary, is will be reset by
3298 		 * ctx_flexible_sched_in() when needed.
3299 		 */
3300 		ctx->rotate_necessary = 0;
3301 	}
3302 	perf_pmu_enable(ctx->pmu);
3303 }
3304 
3305 /*
3306  * Test whether two contexts are equivalent, i.e. whether they have both been
3307  * cloned from the same version of the same context.
3308  *
3309  * Equivalence is measured using a generation number in the context that is
3310  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311  * and list_del_event().
3312  */
3313 static int context_equiv(struct perf_event_context *ctx1,
3314 			 struct perf_event_context *ctx2)
3315 {
3316 	lockdep_assert_held(&ctx1->lock);
3317 	lockdep_assert_held(&ctx2->lock);
3318 
3319 	/* Pinning disables the swap optimization */
3320 	if (ctx1->pin_count || ctx2->pin_count)
3321 		return 0;
3322 
3323 	/* If ctx1 is the parent of ctx2 */
3324 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325 		return 1;
3326 
3327 	/* If ctx2 is the parent of ctx1 */
3328 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329 		return 1;
3330 
3331 	/*
3332 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3333 	 * hierarchy, see perf_event_init_context().
3334 	 */
3335 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336 			ctx1->parent_gen == ctx2->parent_gen)
3337 		return 1;
3338 
3339 	/* Unmatched */
3340 	return 0;
3341 }
3342 
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344 				     struct perf_event *next_event)
3345 {
3346 	u64 value;
3347 
3348 	if (!event->attr.inherit_stat)
3349 		return;
3350 
3351 	/*
3352 	 * Update the event value, we cannot use perf_event_read()
3353 	 * because we're in the middle of a context switch and have IRQs
3354 	 * disabled, which upsets smp_call_function_single(), however
3355 	 * we know the event must be on the current CPU, therefore we
3356 	 * don't need to use it.
3357 	 */
3358 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3359 		event->pmu->read(event);
3360 
3361 	perf_event_update_time(event);
3362 
3363 	/*
3364 	 * In order to keep per-task stats reliable we need to flip the event
3365 	 * values when we flip the contexts.
3366 	 */
3367 	value = local64_read(&next_event->count);
3368 	value = local64_xchg(&event->count, value);
3369 	local64_set(&next_event->count, value);
3370 
3371 	swap(event->total_time_enabled, next_event->total_time_enabled);
3372 	swap(event->total_time_running, next_event->total_time_running);
3373 
3374 	/*
3375 	 * Since we swizzled the values, update the user visible data too.
3376 	 */
3377 	perf_event_update_userpage(event);
3378 	perf_event_update_userpage(next_event);
3379 }
3380 
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382 				   struct perf_event_context *next_ctx)
3383 {
3384 	struct perf_event *event, *next_event;
3385 
3386 	if (!ctx->nr_stat)
3387 		return;
3388 
3389 	update_context_time(ctx);
3390 
3391 	event = list_first_entry(&ctx->event_list,
3392 				   struct perf_event, event_entry);
3393 
3394 	next_event = list_first_entry(&next_ctx->event_list,
3395 					struct perf_event, event_entry);
3396 
3397 	while (&event->event_entry != &ctx->event_list &&
3398 	       &next_event->event_entry != &next_ctx->event_list) {
3399 
3400 		__perf_event_sync_stat(event, next_event);
3401 
3402 		event = list_next_entry(event, event_entry);
3403 		next_event = list_next_entry(next_event, event_entry);
3404 	}
3405 }
3406 
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408 					 struct task_struct *next)
3409 {
3410 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411 	struct perf_event_context *next_ctx;
3412 	struct perf_event_context *parent, *next_parent;
3413 	struct perf_cpu_context *cpuctx;
3414 	int do_switch = 1;
3415 	struct pmu *pmu;
3416 
3417 	if (likely(!ctx))
3418 		return;
3419 
3420 	pmu = ctx->pmu;
3421 	cpuctx = __get_cpu_context(ctx);
3422 	if (!cpuctx->task_ctx)
3423 		return;
3424 
3425 	rcu_read_lock();
3426 	next_ctx = next->perf_event_ctxp[ctxn];
3427 	if (!next_ctx)
3428 		goto unlock;
3429 
3430 	parent = rcu_dereference(ctx->parent_ctx);
3431 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3432 
3433 	/* If neither context have a parent context; they cannot be clones. */
3434 	if (!parent && !next_parent)
3435 		goto unlock;
3436 
3437 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3438 		/*
3439 		 * Looks like the two contexts are clones, so we might be
3440 		 * able to optimize the context switch.  We lock both
3441 		 * contexts and check that they are clones under the
3442 		 * lock (including re-checking that neither has been
3443 		 * uncloned in the meantime).  It doesn't matter which
3444 		 * order we take the locks because no other cpu could
3445 		 * be trying to lock both of these tasks.
3446 		 */
3447 		raw_spin_lock(&ctx->lock);
3448 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449 		if (context_equiv(ctx, next_ctx)) {
3450 
3451 			WRITE_ONCE(ctx->task, next);
3452 			WRITE_ONCE(next_ctx->task, task);
3453 
3454 			perf_pmu_disable(pmu);
3455 
3456 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3457 				pmu->sched_task(ctx, false);
3458 
3459 			/*
3460 			 * PMU specific parts of task perf context can require
3461 			 * additional synchronization. As an example of such
3462 			 * synchronization see implementation details of Intel
3463 			 * LBR call stack data profiling;
3464 			 */
3465 			if (pmu->swap_task_ctx)
3466 				pmu->swap_task_ctx(ctx, next_ctx);
3467 			else
3468 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3469 
3470 			perf_pmu_enable(pmu);
3471 
3472 			/*
3473 			 * RCU_INIT_POINTER here is safe because we've not
3474 			 * modified the ctx and the above modification of
3475 			 * ctx->task and ctx->task_ctx_data are immaterial
3476 			 * since those values are always verified under
3477 			 * ctx->lock which we're now holding.
3478 			 */
3479 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481 
3482 			do_switch = 0;
3483 
3484 			perf_event_sync_stat(ctx, next_ctx);
3485 		}
3486 		raw_spin_unlock(&next_ctx->lock);
3487 		raw_spin_unlock(&ctx->lock);
3488 	}
3489 unlock:
3490 	rcu_read_unlock();
3491 
3492 	if (do_switch) {
3493 		raw_spin_lock(&ctx->lock);
3494 		perf_pmu_disable(pmu);
3495 
3496 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3497 			pmu->sched_task(ctx, false);
3498 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3499 
3500 		perf_pmu_enable(pmu);
3501 		raw_spin_unlock(&ctx->lock);
3502 	}
3503 }
3504 
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506 
3507 void perf_sched_cb_dec(struct pmu *pmu)
3508 {
3509 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510 
3511 	this_cpu_dec(perf_sched_cb_usages);
3512 
3513 	if (!--cpuctx->sched_cb_usage)
3514 		list_del(&cpuctx->sched_cb_entry);
3515 }
3516 
3517 
3518 void perf_sched_cb_inc(struct pmu *pmu)
3519 {
3520 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521 
3522 	if (!cpuctx->sched_cb_usage++)
3523 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524 
3525 	this_cpu_inc(perf_sched_cb_usages);
3526 }
3527 
3528 /*
3529  * This function provides the context switch callback to the lower code
3530  * layer. It is invoked ONLY when the context switch callback is enabled.
3531  *
3532  * This callback is relevant even to per-cpu events; for example multi event
3533  * PEBS requires this to provide PID/TID information. This requires we flush
3534  * all queued PEBS records before we context switch to a new task.
3535  */
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537 {
3538 	struct pmu *pmu;
3539 
3540 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541 
3542 	if (WARN_ON_ONCE(!pmu->sched_task))
3543 		return;
3544 
3545 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546 	perf_pmu_disable(pmu);
3547 
3548 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3549 
3550 	perf_pmu_enable(pmu);
3551 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552 }
3553 
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555 				struct task_struct *next,
3556 				bool sched_in)
3557 {
3558 	struct perf_cpu_context *cpuctx;
3559 
3560 	if (prev == next)
3561 		return;
3562 
3563 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564 		/* will be handled in perf_event_context_sched_in/out */
3565 		if (cpuctx->task_ctx)
3566 			continue;
3567 
3568 		__perf_pmu_sched_task(cpuctx, sched_in);
3569 	}
3570 }
3571 
3572 static void perf_event_switch(struct task_struct *task,
3573 			      struct task_struct *next_prev, bool sched_in);
3574 
3575 #define for_each_task_context_nr(ctxn)					\
3576 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577 
3578 /*
3579  * Called from scheduler to remove the events of the current task,
3580  * with interrupts disabled.
3581  *
3582  * We stop each event and update the event value in event->count.
3583  *
3584  * This does not protect us against NMI, but disable()
3585  * sets the disabled bit in the control field of event _before_
3586  * accessing the event control register. If a NMI hits, then it will
3587  * not restart the event.
3588  */
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590 				 struct task_struct *next)
3591 {
3592 	int ctxn;
3593 
3594 	if (__this_cpu_read(perf_sched_cb_usages))
3595 		perf_pmu_sched_task(task, next, false);
3596 
3597 	if (atomic_read(&nr_switch_events))
3598 		perf_event_switch(task, next, false);
3599 
3600 	for_each_task_context_nr(ctxn)
3601 		perf_event_context_sched_out(task, ctxn, next);
3602 
3603 	/*
3604 	 * if cgroup events exist on this CPU, then we need
3605 	 * to check if we have to switch out PMU state.
3606 	 * cgroup event are system-wide mode only
3607 	 */
3608 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609 		perf_cgroup_sched_out(task, next);
3610 }
3611 
3612 /*
3613  * Called with IRQs disabled
3614  */
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616 			      enum event_type_t event_type)
3617 {
3618 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3619 }
3620 
3621 static bool perf_less_group_idx(const void *l, const void *r)
3622 {
3623 	const struct perf_event *le = *(const struct perf_event **)l;
3624 	const struct perf_event *re = *(const struct perf_event **)r;
3625 
3626 	return le->group_index < re->group_index;
3627 }
3628 
3629 static void swap_ptr(void *l, void *r)
3630 {
3631 	void **lp = l, **rp = r;
3632 
3633 	swap(*lp, *rp);
3634 }
3635 
3636 static const struct min_heap_callbacks perf_min_heap = {
3637 	.elem_size = sizeof(struct perf_event *),
3638 	.less = perf_less_group_idx,
3639 	.swp = swap_ptr,
3640 };
3641 
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643 {
3644 	struct perf_event **itrs = heap->data;
3645 
3646 	if (event) {
3647 		itrs[heap->nr] = event;
3648 		heap->nr++;
3649 	}
3650 }
3651 
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653 				struct perf_event_groups *groups, int cpu,
3654 				int (*func)(struct perf_event *, void *),
3655 				void *data)
3656 {
3657 #ifdef CONFIG_CGROUP_PERF
3658 	struct cgroup_subsys_state *css = NULL;
3659 #endif
3660 	/* Space for per CPU and/or any CPU event iterators. */
3661 	struct perf_event *itrs[2];
3662 	struct min_heap event_heap;
3663 	struct perf_event **evt;
3664 	int ret;
3665 
3666 	if (cpuctx) {
3667 		event_heap = (struct min_heap){
3668 			.data = cpuctx->heap,
3669 			.nr = 0,
3670 			.size = cpuctx->heap_size,
3671 		};
3672 
3673 		lockdep_assert_held(&cpuctx->ctx.lock);
3674 
3675 #ifdef CONFIG_CGROUP_PERF
3676 		if (cpuctx->cgrp)
3677 			css = &cpuctx->cgrp->css;
3678 #endif
3679 	} else {
3680 		event_heap = (struct min_heap){
3681 			.data = itrs,
3682 			.nr = 0,
3683 			.size = ARRAY_SIZE(itrs),
3684 		};
3685 		/* Events not within a CPU context may be on any CPU. */
3686 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3687 	}
3688 	evt = event_heap.data;
3689 
3690 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691 
3692 #ifdef CONFIG_CGROUP_PERF
3693 	for (; css; css = css->parent)
3694 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695 #endif
3696 
3697 	min_heapify_all(&event_heap, &perf_min_heap);
3698 
3699 	while (event_heap.nr) {
3700 		ret = func(*evt, data);
3701 		if (ret)
3702 			return ret;
3703 
3704 		*evt = perf_event_groups_next(*evt);
3705 		if (*evt)
3706 			min_heapify(&event_heap, 0, &perf_min_heap);
3707 		else
3708 			min_heap_pop(&event_heap, &perf_min_heap);
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static int merge_sched_in(struct perf_event *event, void *data)
3715 {
3716 	struct perf_event_context *ctx = event->ctx;
3717 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3718 	int *can_add_hw = data;
3719 
3720 	if (event->state <= PERF_EVENT_STATE_OFF)
3721 		return 0;
3722 
3723 	if (!event_filter_match(event))
3724 		return 0;
3725 
3726 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3727 		if (!group_sched_in(event, cpuctx, ctx))
3728 			list_add_tail(&event->active_list, get_event_list(event));
3729 	}
3730 
3731 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3732 		if (event->attr.pinned) {
3733 			perf_cgroup_event_disable(event, ctx);
3734 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3735 		}
3736 
3737 		*can_add_hw = 0;
3738 		ctx->rotate_necessary = 1;
3739 		perf_mux_hrtimer_restart(cpuctx);
3740 	}
3741 
3742 	return 0;
3743 }
3744 
3745 static void
3746 ctx_pinned_sched_in(struct perf_event_context *ctx,
3747 		    struct perf_cpu_context *cpuctx)
3748 {
3749 	int can_add_hw = 1;
3750 
3751 	if (ctx != &cpuctx->ctx)
3752 		cpuctx = NULL;
3753 
3754 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3755 			   smp_processor_id(),
3756 			   merge_sched_in, &can_add_hw);
3757 }
3758 
3759 static void
3760 ctx_flexible_sched_in(struct perf_event_context *ctx,
3761 		      struct perf_cpu_context *cpuctx)
3762 {
3763 	int can_add_hw = 1;
3764 
3765 	if (ctx != &cpuctx->ctx)
3766 		cpuctx = NULL;
3767 
3768 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3769 			   smp_processor_id(),
3770 			   merge_sched_in, &can_add_hw);
3771 }
3772 
3773 static void
3774 ctx_sched_in(struct perf_event_context *ctx,
3775 	     struct perf_cpu_context *cpuctx,
3776 	     enum event_type_t event_type,
3777 	     struct task_struct *task)
3778 {
3779 	int is_active = ctx->is_active;
3780 	u64 now;
3781 
3782 	lockdep_assert_held(&ctx->lock);
3783 
3784 	if (likely(!ctx->nr_events))
3785 		return;
3786 
3787 	ctx->is_active |= (event_type | EVENT_TIME);
3788 	if (ctx->task) {
3789 		if (!is_active)
3790 			cpuctx->task_ctx = ctx;
3791 		else
3792 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3793 	}
3794 
3795 	is_active ^= ctx->is_active; /* changed bits */
3796 
3797 	if (is_active & EVENT_TIME) {
3798 		/* start ctx time */
3799 		now = perf_clock();
3800 		ctx->timestamp = now;
3801 		perf_cgroup_set_timestamp(task, ctx);
3802 	}
3803 
3804 	/*
3805 	 * First go through the list and put on any pinned groups
3806 	 * in order to give them the best chance of going on.
3807 	 */
3808 	if (is_active & EVENT_PINNED)
3809 		ctx_pinned_sched_in(ctx, cpuctx);
3810 
3811 	/* Then walk through the lower prio flexible groups */
3812 	if (is_active & EVENT_FLEXIBLE)
3813 		ctx_flexible_sched_in(ctx, cpuctx);
3814 }
3815 
3816 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3817 			     enum event_type_t event_type,
3818 			     struct task_struct *task)
3819 {
3820 	struct perf_event_context *ctx = &cpuctx->ctx;
3821 
3822 	ctx_sched_in(ctx, cpuctx, event_type, task);
3823 }
3824 
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826 					struct task_struct *task)
3827 {
3828 	struct perf_cpu_context *cpuctx;
3829 	struct pmu *pmu = ctx->pmu;
3830 
3831 	cpuctx = __get_cpu_context(ctx);
3832 	if (cpuctx->task_ctx == ctx) {
3833 		if (cpuctx->sched_cb_usage)
3834 			__perf_pmu_sched_task(cpuctx, true);
3835 		return;
3836 	}
3837 
3838 	perf_ctx_lock(cpuctx, ctx);
3839 	/*
3840 	 * We must check ctx->nr_events while holding ctx->lock, such
3841 	 * that we serialize against perf_install_in_context().
3842 	 */
3843 	if (!ctx->nr_events)
3844 		goto unlock;
3845 
3846 	perf_pmu_disable(pmu);
3847 	/*
3848 	 * We want to keep the following priority order:
3849 	 * cpu pinned (that don't need to move), task pinned,
3850 	 * cpu flexible, task flexible.
3851 	 *
3852 	 * However, if task's ctx is not carrying any pinned
3853 	 * events, no need to flip the cpuctx's events around.
3854 	 */
3855 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3856 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3857 	perf_event_sched_in(cpuctx, ctx, task);
3858 
3859 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3860 		pmu->sched_task(cpuctx->task_ctx, true);
3861 
3862 	perf_pmu_enable(pmu);
3863 
3864 unlock:
3865 	perf_ctx_unlock(cpuctx, ctx);
3866 }
3867 
3868 /*
3869  * Called from scheduler to add the events of the current task
3870  * with interrupts disabled.
3871  *
3872  * We restore the event value and then enable it.
3873  *
3874  * This does not protect us against NMI, but enable()
3875  * sets the enabled bit in the control field of event _before_
3876  * accessing the event control register. If a NMI hits, then it will
3877  * keep the event running.
3878  */
3879 void __perf_event_task_sched_in(struct task_struct *prev,
3880 				struct task_struct *task)
3881 {
3882 	struct perf_event_context *ctx;
3883 	int ctxn;
3884 
3885 	/*
3886 	 * If cgroup events exist on this CPU, then we need to check if we have
3887 	 * to switch in PMU state; cgroup event are system-wide mode only.
3888 	 *
3889 	 * Since cgroup events are CPU events, we must schedule these in before
3890 	 * we schedule in the task events.
3891 	 */
3892 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3893 		perf_cgroup_sched_in(prev, task);
3894 
3895 	for_each_task_context_nr(ctxn) {
3896 		ctx = task->perf_event_ctxp[ctxn];
3897 		if (likely(!ctx))
3898 			continue;
3899 
3900 		perf_event_context_sched_in(ctx, task);
3901 	}
3902 
3903 	if (atomic_read(&nr_switch_events))
3904 		perf_event_switch(task, prev, true);
3905 
3906 	if (__this_cpu_read(perf_sched_cb_usages))
3907 		perf_pmu_sched_task(prev, task, true);
3908 }
3909 
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911 {
3912 	u64 frequency = event->attr.sample_freq;
3913 	u64 sec = NSEC_PER_SEC;
3914 	u64 divisor, dividend;
3915 
3916 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3917 
3918 	count_fls = fls64(count);
3919 	nsec_fls = fls64(nsec);
3920 	frequency_fls = fls64(frequency);
3921 	sec_fls = 30;
3922 
3923 	/*
3924 	 * We got @count in @nsec, with a target of sample_freq HZ
3925 	 * the target period becomes:
3926 	 *
3927 	 *             @count * 10^9
3928 	 * period = -------------------
3929 	 *          @nsec * sample_freq
3930 	 *
3931 	 */
3932 
3933 	/*
3934 	 * Reduce accuracy by one bit such that @a and @b converge
3935 	 * to a similar magnitude.
3936 	 */
3937 #define REDUCE_FLS(a, b)		\
3938 do {					\
3939 	if (a##_fls > b##_fls) {	\
3940 		a >>= 1;		\
3941 		a##_fls--;		\
3942 	} else {			\
3943 		b >>= 1;		\
3944 		b##_fls--;		\
3945 	}				\
3946 } while (0)
3947 
3948 	/*
3949 	 * Reduce accuracy until either term fits in a u64, then proceed with
3950 	 * the other, so that finally we can do a u64/u64 division.
3951 	 */
3952 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953 		REDUCE_FLS(nsec, frequency);
3954 		REDUCE_FLS(sec, count);
3955 	}
3956 
3957 	if (count_fls + sec_fls > 64) {
3958 		divisor = nsec * frequency;
3959 
3960 		while (count_fls + sec_fls > 64) {
3961 			REDUCE_FLS(count, sec);
3962 			divisor >>= 1;
3963 		}
3964 
3965 		dividend = count * sec;
3966 	} else {
3967 		dividend = count * sec;
3968 
3969 		while (nsec_fls + frequency_fls > 64) {
3970 			REDUCE_FLS(nsec, frequency);
3971 			dividend >>= 1;
3972 		}
3973 
3974 		divisor = nsec * frequency;
3975 	}
3976 
3977 	if (!divisor)
3978 		return dividend;
3979 
3980 	return div64_u64(dividend, divisor);
3981 }
3982 
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985 
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3987 {
3988 	struct hw_perf_event *hwc = &event->hw;
3989 	s64 period, sample_period;
3990 	s64 delta;
3991 
3992 	period = perf_calculate_period(event, nsec, count);
3993 
3994 	delta = (s64)(period - hwc->sample_period);
3995 	delta = (delta + 7) / 8; /* low pass filter */
3996 
3997 	sample_period = hwc->sample_period + delta;
3998 
3999 	if (!sample_period)
4000 		sample_period = 1;
4001 
4002 	hwc->sample_period = sample_period;
4003 
4004 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4005 		if (disable)
4006 			event->pmu->stop(event, PERF_EF_UPDATE);
4007 
4008 		local64_set(&hwc->period_left, 0);
4009 
4010 		if (disable)
4011 			event->pmu->start(event, PERF_EF_RELOAD);
4012 	}
4013 }
4014 
4015 /*
4016  * combine freq adjustment with unthrottling to avoid two passes over the
4017  * events. At the same time, make sure, having freq events does not change
4018  * the rate of unthrottling as that would introduce bias.
4019  */
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021 					   int needs_unthr)
4022 {
4023 	struct perf_event *event;
4024 	struct hw_perf_event *hwc;
4025 	u64 now, period = TICK_NSEC;
4026 	s64 delta;
4027 
4028 	/*
4029 	 * only need to iterate over all events iff:
4030 	 * - context have events in frequency mode (needs freq adjust)
4031 	 * - there are events to unthrottle on this cpu
4032 	 */
4033 	if (!(ctx->nr_freq || needs_unthr))
4034 		return;
4035 
4036 	raw_spin_lock(&ctx->lock);
4037 	perf_pmu_disable(ctx->pmu);
4038 
4039 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4041 			continue;
4042 
4043 		if (!event_filter_match(event))
4044 			continue;
4045 
4046 		perf_pmu_disable(event->pmu);
4047 
4048 		hwc = &event->hw;
4049 
4050 		if (hwc->interrupts == MAX_INTERRUPTS) {
4051 			hwc->interrupts = 0;
4052 			perf_log_throttle(event, 1);
4053 			event->pmu->start(event, 0);
4054 		}
4055 
4056 		if (!event->attr.freq || !event->attr.sample_freq)
4057 			goto next;
4058 
4059 		/*
4060 		 * stop the event and update event->count
4061 		 */
4062 		event->pmu->stop(event, PERF_EF_UPDATE);
4063 
4064 		now = local64_read(&event->count);
4065 		delta = now - hwc->freq_count_stamp;
4066 		hwc->freq_count_stamp = now;
4067 
4068 		/*
4069 		 * restart the event
4070 		 * reload only if value has changed
4071 		 * we have stopped the event so tell that
4072 		 * to perf_adjust_period() to avoid stopping it
4073 		 * twice.
4074 		 */
4075 		if (delta > 0)
4076 			perf_adjust_period(event, period, delta, false);
4077 
4078 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4079 	next:
4080 		perf_pmu_enable(event->pmu);
4081 	}
4082 
4083 	perf_pmu_enable(ctx->pmu);
4084 	raw_spin_unlock(&ctx->lock);
4085 }
4086 
4087 /*
4088  * Move @event to the tail of the @ctx's elegible events.
4089  */
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4091 {
4092 	/*
4093 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4094 	 * disabled by the inheritance code.
4095 	 */
4096 	if (ctx->rotate_disable)
4097 		return;
4098 
4099 	perf_event_groups_delete(&ctx->flexible_groups, event);
4100 	perf_event_groups_insert(&ctx->flexible_groups, event);
4101 }
4102 
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4106 {
4107 	struct perf_event *event;
4108 
4109 	/* pick the first active flexible event */
4110 	event = list_first_entry_or_null(&ctx->flexible_active,
4111 					 struct perf_event, active_list);
4112 
4113 	/* if no active flexible event, pick the first event */
4114 	if (!event) {
4115 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116 				      typeof(*event), group_node);
4117 	}
4118 
4119 	/*
4120 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121 	 * finds there are unschedulable events, it will set it again.
4122 	 */
4123 	ctx->rotate_necessary = 0;
4124 
4125 	return event;
4126 }
4127 
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129 {
4130 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4131 	struct perf_event_context *task_ctx = NULL;
4132 	int cpu_rotate, task_rotate;
4133 
4134 	/*
4135 	 * Since we run this from IRQ context, nobody can install new
4136 	 * events, thus the event count values are stable.
4137 	 */
4138 
4139 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4140 	task_ctx = cpuctx->task_ctx;
4141 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4142 
4143 	if (!(cpu_rotate || task_rotate))
4144 		return false;
4145 
4146 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147 	perf_pmu_disable(cpuctx->ctx.pmu);
4148 
4149 	if (task_rotate)
4150 		task_event = ctx_event_to_rotate(task_ctx);
4151 	if (cpu_rotate)
4152 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4153 
4154 	/*
4155 	 * As per the order given at ctx_resched() first 'pop' task flexible
4156 	 * and then, if needed CPU flexible.
4157 	 */
4158 	if (task_event || (task_ctx && cpu_event))
4159 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4160 	if (cpu_event)
4161 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4162 
4163 	if (task_event)
4164 		rotate_ctx(task_ctx, task_event);
4165 	if (cpu_event)
4166 		rotate_ctx(&cpuctx->ctx, cpu_event);
4167 
4168 	perf_event_sched_in(cpuctx, task_ctx, current);
4169 
4170 	perf_pmu_enable(cpuctx->ctx.pmu);
4171 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4172 
4173 	return true;
4174 }
4175 
4176 void perf_event_task_tick(void)
4177 {
4178 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179 	struct perf_event_context *ctx, *tmp;
4180 	int throttled;
4181 
4182 	lockdep_assert_irqs_disabled();
4183 
4184 	__this_cpu_inc(perf_throttled_seq);
4185 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4187 
4188 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189 		perf_adjust_freq_unthr_context(ctx, throttled);
4190 }
4191 
4192 static int event_enable_on_exec(struct perf_event *event,
4193 				struct perf_event_context *ctx)
4194 {
4195 	if (!event->attr.enable_on_exec)
4196 		return 0;
4197 
4198 	event->attr.enable_on_exec = 0;
4199 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200 		return 0;
4201 
4202 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4203 
4204 	return 1;
4205 }
4206 
4207 /*
4208  * Enable all of a task's events that have been marked enable-on-exec.
4209  * This expects task == current.
4210  */
4211 static void perf_event_enable_on_exec(int ctxn)
4212 {
4213 	struct perf_event_context *ctx, *clone_ctx = NULL;
4214 	enum event_type_t event_type = 0;
4215 	struct perf_cpu_context *cpuctx;
4216 	struct perf_event *event;
4217 	unsigned long flags;
4218 	int enabled = 0;
4219 
4220 	local_irq_save(flags);
4221 	ctx = current->perf_event_ctxp[ctxn];
4222 	if (!ctx || !ctx->nr_events)
4223 		goto out;
4224 
4225 	cpuctx = __get_cpu_context(ctx);
4226 	perf_ctx_lock(cpuctx, ctx);
4227 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4229 		enabled |= event_enable_on_exec(event, ctx);
4230 		event_type |= get_event_type(event);
4231 	}
4232 
4233 	/*
4234 	 * Unclone and reschedule this context if we enabled any event.
4235 	 */
4236 	if (enabled) {
4237 		clone_ctx = unclone_ctx(ctx);
4238 		ctx_resched(cpuctx, ctx, event_type);
4239 	} else {
4240 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4241 	}
4242 	perf_ctx_unlock(cpuctx, ctx);
4243 
4244 out:
4245 	local_irq_restore(flags);
4246 
4247 	if (clone_ctx)
4248 		put_ctx(clone_ctx);
4249 }
4250 
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253 				  struct perf_event_context *ctx);
4254 
4255 /*
4256  * Removes all events from the current task that have been marked
4257  * remove-on-exec, and feeds their values back to parent events.
4258  */
4259 static void perf_event_remove_on_exec(int ctxn)
4260 {
4261 	struct perf_event_context *ctx, *clone_ctx = NULL;
4262 	struct perf_event *event, *next;
4263 	LIST_HEAD(free_list);
4264 	unsigned long flags;
4265 	bool modified = false;
4266 
4267 	ctx = perf_pin_task_context(current, ctxn);
4268 	if (!ctx)
4269 		return;
4270 
4271 	mutex_lock(&ctx->mutex);
4272 
4273 	if (WARN_ON_ONCE(ctx->task != current))
4274 		goto unlock;
4275 
4276 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4277 		if (!event->attr.remove_on_exec)
4278 			continue;
4279 
4280 		if (!is_kernel_event(event))
4281 			perf_remove_from_owner(event);
4282 
4283 		modified = true;
4284 
4285 		perf_event_exit_event(event, ctx);
4286 	}
4287 
4288 	raw_spin_lock_irqsave(&ctx->lock, flags);
4289 	if (modified)
4290 		clone_ctx = unclone_ctx(ctx);
4291 	--ctx->pin_count;
4292 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4293 
4294 unlock:
4295 	mutex_unlock(&ctx->mutex);
4296 
4297 	put_ctx(ctx);
4298 	if (clone_ctx)
4299 		put_ctx(clone_ctx);
4300 }
4301 
4302 struct perf_read_data {
4303 	struct perf_event *event;
4304 	bool group;
4305 	int ret;
4306 };
4307 
4308 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4309 {
4310 	u16 local_pkg, event_pkg;
4311 
4312 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4313 		int local_cpu = smp_processor_id();
4314 
4315 		event_pkg = topology_physical_package_id(event_cpu);
4316 		local_pkg = topology_physical_package_id(local_cpu);
4317 
4318 		if (event_pkg == local_pkg)
4319 			return local_cpu;
4320 	}
4321 
4322 	return event_cpu;
4323 }
4324 
4325 /*
4326  * Cross CPU call to read the hardware event
4327  */
4328 static void __perf_event_read(void *info)
4329 {
4330 	struct perf_read_data *data = info;
4331 	struct perf_event *sub, *event = data->event;
4332 	struct perf_event_context *ctx = event->ctx;
4333 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4334 	struct pmu *pmu = event->pmu;
4335 
4336 	/*
4337 	 * If this is a task context, we need to check whether it is
4338 	 * the current task context of this cpu.  If not it has been
4339 	 * scheduled out before the smp call arrived.  In that case
4340 	 * event->count would have been updated to a recent sample
4341 	 * when the event was scheduled out.
4342 	 */
4343 	if (ctx->task && cpuctx->task_ctx != ctx)
4344 		return;
4345 
4346 	raw_spin_lock(&ctx->lock);
4347 	if (ctx->is_active & EVENT_TIME) {
4348 		update_context_time(ctx);
4349 		update_cgrp_time_from_event(event);
4350 	}
4351 
4352 	perf_event_update_time(event);
4353 	if (data->group)
4354 		perf_event_update_sibling_time(event);
4355 
4356 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4357 		goto unlock;
4358 
4359 	if (!data->group) {
4360 		pmu->read(event);
4361 		data->ret = 0;
4362 		goto unlock;
4363 	}
4364 
4365 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4366 
4367 	pmu->read(event);
4368 
4369 	for_each_sibling_event(sub, event) {
4370 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4371 			/*
4372 			 * Use sibling's PMU rather than @event's since
4373 			 * sibling could be on different (eg: software) PMU.
4374 			 */
4375 			sub->pmu->read(sub);
4376 		}
4377 	}
4378 
4379 	data->ret = pmu->commit_txn(pmu);
4380 
4381 unlock:
4382 	raw_spin_unlock(&ctx->lock);
4383 }
4384 
4385 static inline u64 perf_event_count(struct perf_event *event)
4386 {
4387 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4388 }
4389 
4390 /*
4391  * NMI-safe method to read a local event, that is an event that
4392  * is:
4393  *   - either for the current task, or for this CPU
4394  *   - does not have inherit set, for inherited task events
4395  *     will not be local and we cannot read them atomically
4396  *   - must not have a pmu::count method
4397  */
4398 int perf_event_read_local(struct perf_event *event, u64 *value,
4399 			  u64 *enabled, u64 *running)
4400 {
4401 	unsigned long flags;
4402 	int ret = 0;
4403 
4404 	/*
4405 	 * Disabling interrupts avoids all counter scheduling (context
4406 	 * switches, timer based rotation and IPIs).
4407 	 */
4408 	local_irq_save(flags);
4409 
4410 	/*
4411 	 * It must not be an event with inherit set, we cannot read
4412 	 * all child counters from atomic context.
4413 	 */
4414 	if (event->attr.inherit) {
4415 		ret = -EOPNOTSUPP;
4416 		goto out;
4417 	}
4418 
4419 	/* If this is a per-task event, it must be for current */
4420 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4421 	    event->hw.target != current) {
4422 		ret = -EINVAL;
4423 		goto out;
4424 	}
4425 
4426 	/* If this is a per-CPU event, it must be for this CPU */
4427 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4428 	    event->cpu != smp_processor_id()) {
4429 		ret = -EINVAL;
4430 		goto out;
4431 	}
4432 
4433 	/* If this is a pinned event it must be running on this CPU */
4434 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4435 		ret = -EBUSY;
4436 		goto out;
4437 	}
4438 
4439 	/*
4440 	 * If the event is currently on this CPU, its either a per-task event,
4441 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4442 	 * oncpu == -1).
4443 	 */
4444 	if (event->oncpu == smp_processor_id())
4445 		event->pmu->read(event);
4446 
4447 	*value = local64_read(&event->count);
4448 	if (enabled || running) {
4449 		u64 now = event->shadow_ctx_time + perf_clock();
4450 		u64 __enabled, __running;
4451 
4452 		__perf_update_times(event, now, &__enabled, &__running);
4453 		if (enabled)
4454 			*enabled = __enabled;
4455 		if (running)
4456 			*running = __running;
4457 	}
4458 out:
4459 	local_irq_restore(flags);
4460 
4461 	return ret;
4462 }
4463 
4464 static int perf_event_read(struct perf_event *event, bool group)
4465 {
4466 	enum perf_event_state state = READ_ONCE(event->state);
4467 	int event_cpu, ret = 0;
4468 
4469 	/*
4470 	 * If event is enabled and currently active on a CPU, update the
4471 	 * value in the event structure:
4472 	 */
4473 again:
4474 	if (state == PERF_EVENT_STATE_ACTIVE) {
4475 		struct perf_read_data data;
4476 
4477 		/*
4478 		 * Orders the ->state and ->oncpu loads such that if we see
4479 		 * ACTIVE we must also see the right ->oncpu.
4480 		 *
4481 		 * Matches the smp_wmb() from event_sched_in().
4482 		 */
4483 		smp_rmb();
4484 
4485 		event_cpu = READ_ONCE(event->oncpu);
4486 		if ((unsigned)event_cpu >= nr_cpu_ids)
4487 			return 0;
4488 
4489 		data = (struct perf_read_data){
4490 			.event = event,
4491 			.group = group,
4492 			.ret = 0,
4493 		};
4494 
4495 		preempt_disable();
4496 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4497 
4498 		/*
4499 		 * Purposely ignore the smp_call_function_single() return
4500 		 * value.
4501 		 *
4502 		 * If event_cpu isn't a valid CPU it means the event got
4503 		 * scheduled out and that will have updated the event count.
4504 		 *
4505 		 * Therefore, either way, we'll have an up-to-date event count
4506 		 * after this.
4507 		 */
4508 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4509 		preempt_enable();
4510 		ret = data.ret;
4511 
4512 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4513 		struct perf_event_context *ctx = event->ctx;
4514 		unsigned long flags;
4515 
4516 		raw_spin_lock_irqsave(&ctx->lock, flags);
4517 		state = event->state;
4518 		if (state != PERF_EVENT_STATE_INACTIVE) {
4519 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4520 			goto again;
4521 		}
4522 
4523 		/*
4524 		 * May read while context is not active (e.g., thread is
4525 		 * blocked), in that case we cannot update context time
4526 		 */
4527 		if (ctx->is_active & EVENT_TIME) {
4528 			update_context_time(ctx);
4529 			update_cgrp_time_from_event(event);
4530 		}
4531 
4532 		perf_event_update_time(event);
4533 		if (group)
4534 			perf_event_update_sibling_time(event);
4535 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4536 	}
4537 
4538 	return ret;
4539 }
4540 
4541 /*
4542  * Initialize the perf_event context in a task_struct:
4543  */
4544 static void __perf_event_init_context(struct perf_event_context *ctx)
4545 {
4546 	raw_spin_lock_init(&ctx->lock);
4547 	mutex_init(&ctx->mutex);
4548 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4549 	perf_event_groups_init(&ctx->pinned_groups);
4550 	perf_event_groups_init(&ctx->flexible_groups);
4551 	INIT_LIST_HEAD(&ctx->event_list);
4552 	INIT_LIST_HEAD(&ctx->pinned_active);
4553 	INIT_LIST_HEAD(&ctx->flexible_active);
4554 	refcount_set(&ctx->refcount, 1);
4555 }
4556 
4557 static struct perf_event_context *
4558 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4559 {
4560 	struct perf_event_context *ctx;
4561 
4562 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4563 	if (!ctx)
4564 		return NULL;
4565 
4566 	__perf_event_init_context(ctx);
4567 	if (task)
4568 		ctx->task = get_task_struct(task);
4569 	ctx->pmu = pmu;
4570 
4571 	return ctx;
4572 }
4573 
4574 static struct task_struct *
4575 find_lively_task_by_vpid(pid_t vpid)
4576 {
4577 	struct task_struct *task;
4578 
4579 	rcu_read_lock();
4580 	if (!vpid)
4581 		task = current;
4582 	else
4583 		task = find_task_by_vpid(vpid);
4584 	if (task)
4585 		get_task_struct(task);
4586 	rcu_read_unlock();
4587 
4588 	if (!task)
4589 		return ERR_PTR(-ESRCH);
4590 
4591 	return task;
4592 }
4593 
4594 /*
4595  * Returns a matching context with refcount and pincount.
4596  */
4597 static struct perf_event_context *
4598 find_get_context(struct pmu *pmu, struct task_struct *task,
4599 		struct perf_event *event)
4600 {
4601 	struct perf_event_context *ctx, *clone_ctx = NULL;
4602 	struct perf_cpu_context *cpuctx;
4603 	void *task_ctx_data = NULL;
4604 	unsigned long flags;
4605 	int ctxn, err;
4606 	int cpu = event->cpu;
4607 
4608 	if (!task) {
4609 		/* Must be root to operate on a CPU event: */
4610 		err = perf_allow_cpu(&event->attr);
4611 		if (err)
4612 			return ERR_PTR(err);
4613 
4614 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4615 		ctx = &cpuctx->ctx;
4616 		get_ctx(ctx);
4617 		++ctx->pin_count;
4618 
4619 		return ctx;
4620 	}
4621 
4622 	err = -EINVAL;
4623 	ctxn = pmu->task_ctx_nr;
4624 	if (ctxn < 0)
4625 		goto errout;
4626 
4627 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4628 		task_ctx_data = alloc_task_ctx_data(pmu);
4629 		if (!task_ctx_data) {
4630 			err = -ENOMEM;
4631 			goto errout;
4632 		}
4633 	}
4634 
4635 retry:
4636 	ctx = perf_lock_task_context(task, ctxn, &flags);
4637 	if (ctx) {
4638 		clone_ctx = unclone_ctx(ctx);
4639 		++ctx->pin_count;
4640 
4641 		if (task_ctx_data && !ctx->task_ctx_data) {
4642 			ctx->task_ctx_data = task_ctx_data;
4643 			task_ctx_data = NULL;
4644 		}
4645 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4646 
4647 		if (clone_ctx)
4648 			put_ctx(clone_ctx);
4649 	} else {
4650 		ctx = alloc_perf_context(pmu, task);
4651 		err = -ENOMEM;
4652 		if (!ctx)
4653 			goto errout;
4654 
4655 		if (task_ctx_data) {
4656 			ctx->task_ctx_data = task_ctx_data;
4657 			task_ctx_data = NULL;
4658 		}
4659 
4660 		err = 0;
4661 		mutex_lock(&task->perf_event_mutex);
4662 		/*
4663 		 * If it has already passed perf_event_exit_task().
4664 		 * we must see PF_EXITING, it takes this mutex too.
4665 		 */
4666 		if (task->flags & PF_EXITING)
4667 			err = -ESRCH;
4668 		else if (task->perf_event_ctxp[ctxn])
4669 			err = -EAGAIN;
4670 		else {
4671 			get_ctx(ctx);
4672 			++ctx->pin_count;
4673 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4674 		}
4675 		mutex_unlock(&task->perf_event_mutex);
4676 
4677 		if (unlikely(err)) {
4678 			put_ctx(ctx);
4679 
4680 			if (err == -EAGAIN)
4681 				goto retry;
4682 			goto errout;
4683 		}
4684 	}
4685 
4686 	free_task_ctx_data(pmu, task_ctx_data);
4687 	return ctx;
4688 
4689 errout:
4690 	free_task_ctx_data(pmu, task_ctx_data);
4691 	return ERR_PTR(err);
4692 }
4693 
4694 static void perf_event_free_filter(struct perf_event *event);
4695 static void perf_event_free_bpf_prog(struct perf_event *event);
4696 
4697 static void free_event_rcu(struct rcu_head *head)
4698 {
4699 	struct perf_event *event;
4700 
4701 	event = container_of(head, struct perf_event, rcu_head);
4702 	if (event->ns)
4703 		put_pid_ns(event->ns);
4704 	perf_event_free_filter(event);
4705 	kmem_cache_free(perf_event_cache, event);
4706 }
4707 
4708 static void ring_buffer_attach(struct perf_event *event,
4709 			       struct perf_buffer *rb);
4710 
4711 static void detach_sb_event(struct perf_event *event)
4712 {
4713 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4714 
4715 	raw_spin_lock(&pel->lock);
4716 	list_del_rcu(&event->sb_list);
4717 	raw_spin_unlock(&pel->lock);
4718 }
4719 
4720 static bool is_sb_event(struct perf_event *event)
4721 {
4722 	struct perf_event_attr *attr = &event->attr;
4723 
4724 	if (event->parent)
4725 		return false;
4726 
4727 	if (event->attach_state & PERF_ATTACH_TASK)
4728 		return false;
4729 
4730 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4731 	    attr->comm || attr->comm_exec ||
4732 	    attr->task || attr->ksymbol ||
4733 	    attr->context_switch || attr->text_poke ||
4734 	    attr->bpf_event)
4735 		return true;
4736 	return false;
4737 }
4738 
4739 static void unaccount_pmu_sb_event(struct perf_event *event)
4740 {
4741 	if (is_sb_event(event))
4742 		detach_sb_event(event);
4743 }
4744 
4745 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4746 {
4747 	if (event->parent)
4748 		return;
4749 
4750 	if (is_cgroup_event(event))
4751 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4752 }
4753 
4754 #ifdef CONFIG_NO_HZ_FULL
4755 static DEFINE_SPINLOCK(nr_freq_lock);
4756 #endif
4757 
4758 static void unaccount_freq_event_nohz(void)
4759 {
4760 #ifdef CONFIG_NO_HZ_FULL
4761 	spin_lock(&nr_freq_lock);
4762 	if (atomic_dec_and_test(&nr_freq_events))
4763 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4764 	spin_unlock(&nr_freq_lock);
4765 #endif
4766 }
4767 
4768 static void unaccount_freq_event(void)
4769 {
4770 	if (tick_nohz_full_enabled())
4771 		unaccount_freq_event_nohz();
4772 	else
4773 		atomic_dec(&nr_freq_events);
4774 }
4775 
4776 static void unaccount_event(struct perf_event *event)
4777 {
4778 	bool dec = false;
4779 
4780 	if (event->parent)
4781 		return;
4782 
4783 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4784 		dec = true;
4785 	if (event->attr.mmap || event->attr.mmap_data)
4786 		atomic_dec(&nr_mmap_events);
4787 	if (event->attr.build_id)
4788 		atomic_dec(&nr_build_id_events);
4789 	if (event->attr.comm)
4790 		atomic_dec(&nr_comm_events);
4791 	if (event->attr.namespaces)
4792 		atomic_dec(&nr_namespaces_events);
4793 	if (event->attr.cgroup)
4794 		atomic_dec(&nr_cgroup_events);
4795 	if (event->attr.task)
4796 		atomic_dec(&nr_task_events);
4797 	if (event->attr.freq)
4798 		unaccount_freq_event();
4799 	if (event->attr.context_switch) {
4800 		dec = true;
4801 		atomic_dec(&nr_switch_events);
4802 	}
4803 	if (is_cgroup_event(event))
4804 		dec = true;
4805 	if (has_branch_stack(event))
4806 		dec = true;
4807 	if (event->attr.ksymbol)
4808 		atomic_dec(&nr_ksymbol_events);
4809 	if (event->attr.bpf_event)
4810 		atomic_dec(&nr_bpf_events);
4811 	if (event->attr.text_poke)
4812 		atomic_dec(&nr_text_poke_events);
4813 
4814 	if (dec) {
4815 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4816 			schedule_delayed_work(&perf_sched_work, HZ);
4817 	}
4818 
4819 	unaccount_event_cpu(event, event->cpu);
4820 
4821 	unaccount_pmu_sb_event(event);
4822 }
4823 
4824 static void perf_sched_delayed(struct work_struct *work)
4825 {
4826 	mutex_lock(&perf_sched_mutex);
4827 	if (atomic_dec_and_test(&perf_sched_count))
4828 		static_branch_disable(&perf_sched_events);
4829 	mutex_unlock(&perf_sched_mutex);
4830 }
4831 
4832 /*
4833  * The following implement mutual exclusion of events on "exclusive" pmus
4834  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4835  * at a time, so we disallow creating events that might conflict, namely:
4836  *
4837  *  1) cpu-wide events in the presence of per-task events,
4838  *  2) per-task events in the presence of cpu-wide events,
4839  *  3) two matching events on the same context.
4840  *
4841  * The former two cases are handled in the allocation path (perf_event_alloc(),
4842  * _free_event()), the latter -- before the first perf_install_in_context().
4843  */
4844 static int exclusive_event_init(struct perf_event *event)
4845 {
4846 	struct pmu *pmu = event->pmu;
4847 
4848 	if (!is_exclusive_pmu(pmu))
4849 		return 0;
4850 
4851 	/*
4852 	 * Prevent co-existence of per-task and cpu-wide events on the
4853 	 * same exclusive pmu.
4854 	 *
4855 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4856 	 * events on this "exclusive" pmu, positive means there are
4857 	 * per-task events.
4858 	 *
4859 	 * Since this is called in perf_event_alloc() path, event::ctx
4860 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4861 	 * to mean "per-task event", because unlike other attach states it
4862 	 * never gets cleared.
4863 	 */
4864 	if (event->attach_state & PERF_ATTACH_TASK) {
4865 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4866 			return -EBUSY;
4867 	} else {
4868 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4869 			return -EBUSY;
4870 	}
4871 
4872 	return 0;
4873 }
4874 
4875 static void exclusive_event_destroy(struct perf_event *event)
4876 {
4877 	struct pmu *pmu = event->pmu;
4878 
4879 	if (!is_exclusive_pmu(pmu))
4880 		return;
4881 
4882 	/* see comment in exclusive_event_init() */
4883 	if (event->attach_state & PERF_ATTACH_TASK)
4884 		atomic_dec(&pmu->exclusive_cnt);
4885 	else
4886 		atomic_inc(&pmu->exclusive_cnt);
4887 }
4888 
4889 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4890 {
4891 	if ((e1->pmu == e2->pmu) &&
4892 	    (e1->cpu == e2->cpu ||
4893 	     e1->cpu == -1 ||
4894 	     e2->cpu == -1))
4895 		return true;
4896 	return false;
4897 }
4898 
4899 static bool exclusive_event_installable(struct perf_event *event,
4900 					struct perf_event_context *ctx)
4901 {
4902 	struct perf_event *iter_event;
4903 	struct pmu *pmu = event->pmu;
4904 
4905 	lockdep_assert_held(&ctx->mutex);
4906 
4907 	if (!is_exclusive_pmu(pmu))
4908 		return true;
4909 
4910 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4911 		if (exclusive_event_match(iter_event, event))
4912 			return false;
4913 	}
4914 
4915 	return true;
4916 }
4917 
4918 static void perf_addr_filters_splice(struct perf_event *event,
4919 				       struct list_head *head);
4920 
4921 static void _free_event(struct perf_event *event)
4922 {
4923 	irq_work_sync(&event->pending);
4924 
4925 	unaccount_event(event);
4926 
4927 	security_perf_event_free(event);
4928 
4929 	if (event->rb) {
4930 		/*
4931 		 * Can happen when we close an event with re-directed output.
4932 		 *
4933 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4934 		 * over us; possibly making our ring_buffer_put() the last.
4935 		 */
4936 		mutex_lock(&event->mmap_mutex);
4937 		ring_buffer_attach(event, NULL);
4938 		mutex_unlock(&event->mmap_mutex);
4939 	}
4940 
4941 	if (is_cgroup_event(event))
4942 		perf_detach_cgroup(event);
4943 
4944 	if (!event->parent) {
4945 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4946 			put_callchain_buffers();
4947 	}
4948 
4949 	perf_event_free_bpf_prog(event);
4950 	perf_addr_filters_splice(event, NULL);
4951 	kfree(event->addr_filter_ranges);
4952 
4953 	if (event->destroy)
4954 		event->destroy(event);
4955 
4956 	/*
4957 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4958 	 * hw.target.
4959 	 */
4960 	if (event->hw.target)
4961 		put_task_struct(event->hw.target);
4962 
4963 	/*
4964 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4965 	 * all task references must be cleaned up.
4966 	 */
4967 	if (event->ctx)
4968 		put_ctx(event->ctx);
4969 
4970 	exclusive_event_destroy(event);
4971 	module_put(event->pmu->module);
4972 
4973 	call_rcu(&event->rcu_head, free_event_rcu);
4974 }
4975 
4976 /*
4977  * Used to free events which have a known refcount of 1, such as in error paths
4978  * where the event isn't exposed yet and inherited events.
4979  */
4980 static void free_event(struct perf_event *event)
4981 {
4982 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4983 				"unexpected event refcount: %ld; ptr=%p\n",
4984 				atomic_long_read(&event->refcount), event)) {
4985 		/* leak to avoid use-after-free */
4986 		return;
4987 	}
4988 
4989 	_free_event(event);
4990 }
4991 
4992 /*
4993  * Remove user event from the owner task.
4994  */
4995 static void perf_remove_from_owner(struct perf_event *event)
4996 {
4997 	struct task_struct *owner;
4998 
4999 	rcu_read_lock();
5000 	/*
5001 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5002 	 * observe !owner it means the list deletion is complete and we can
5003 	 * indeed free this event, otherwise we need to serialize on
5004 	 * owner->perf_event_mutex.
5005 	 */
5006 	owner = READ_ONCE(event->owner);
5007 	if (owner) {
5008 		/*
5009 		 * Since delayed_put_task_struct() also drops the last
5010 		 * task reference we can safely take a new reference
5011 		 * while holding the rcu_read_lock().
5012 		 */
5013 		get_task_struct(owner);
5014 	}
5015 	rcu_read_unlock();
5016 
5017 	if (owner) {
5018 		/*
5019 		 * If we're here through perf_event_exit_task() we're already
5020 		 * holding ctx->mutex which would be an inversion wrt. the
5021 		 * normal lock order.
5022 		 *
5023 		 * However we can safely take this lock because its the child
5024 		 * ctx->mutex.
5025 		 */
5026 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5027 
5028 		/*
5029 		 * We have to re-check the event->owner field, if it is cleared
5030 		 * we raced with perf_event_exit_task(), acquiring the mutex
5031 		 * ensured they're done, and we can proceed with freeing the
5032 		 * event.
5033 		 */
5034 		if (event->owner) {
5035 			list_del_init(&event->owner_entry);
5036 			smp_store_release(&event->owner, NULL);
5037 		}
5038 		mutex_unlock(&owner->perf_event_mutex);
5039 		put_task_struct(owner);
5040 	}
5041 }
5042 
5043 static void put_event(struct perf_event *event)
5044 {
5045 	if (!atomic_long_dec_and_test(&event->refcount))
5046 		return;
5047 
5048 	_free_event(event);
5049 }
5050 
5051 /*
5052  * Kill an event dead; while event:refcount will preserve the event
5053  * object, it will not preserve its functionality. Once the last 'user'
5054  * gives up the object, we'll destroy the thing.
5055  */
5056 int perf_event_release_kernel(struct perf_event *event)
5057 {
5058 	struct perf_event_context *ctx = event->ctx;
5059 	struct perf_event *child, *tmp;
5060 	LIST_HEAD(free_list);
5061 
5062 	/*
5063 	 * If we got here through err_file: fput(event_file); we will not have
5064 	 * attached to a context yet.
5065 	 */
5066 	if (!ctx) {
5067 		WARN_ON_ONCE(event->attach_state &
5068 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5069 		goto no_ctx;
5070 	}
5071 
5072 	if (!is_kernel_event(event))
5073 		perf_remove_from_owner(event);
5074 
5075 	ctx = perf_event_ctx_lock(event);
5076 	WARN_ON_ONCE(ctx->parent_ctx);
5077 	perf_remove_from_context(event, DETACH_GROUP);
5078 
5079 	raw_spin_lock_irq(&ctx->lock);
5080 	/*
5081 	 * Mark this event as STATE_DEAD, there is no external reference to it
5082 	 * anymore.
5083 	 *
5084 	 * Anybody acquiring event->child_mutex after the below loop _must_
5085 	 * also see this, most importantly inherit_event() which will avoid
5086 	 * placing more children on the list.
5087 	 *
5088 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5089 	 * child events.
5090 	 */
5091 	event->state = PERF_EVENT_STATE_DEAD;
5092 	raw_spin_unlock_irq(&ctx->lock);
5093 
5094 	perf_event_ctx_unlock(event, ctx);
5095 
5096 again:
5097 	mutex_lock(&event->child_mutex);
5098 	list_for_each_entry(child, &event->child_list, child_list) {
5099 
5100 		/*
5101 		 * Cannot change, child events are not migrated, see the
5102 		 * comment with perf_event_ctx_lock_nested().
5103 		 */
5104 		ctx = READ_ONCE(child->ctx);
5105 		/*
5106 		 * Since child_mutex nests inside ctx::mutex, we must jump
5107 		 * through hoops. We start by grabbing a reference on the ctx.
5108 		 *
5109 		 * Since the event cannot get freed while we hold the
5110 		 * child_mutex, the context must also exist and have a !0
5111 		 * reference count.
5112 		 */
5113 		get_ctx(ctx);
5114 
5115 		/*
5116 		 * Now that we have a ctx ref, we can drop child_mutex, and
5117 		 * acquire ctx::mutex without fear of it going away. Then we
5118 		 * can re-acquire child_mutex.
5119 		 */
5120 		mutex_unlock(&event->child_mutex);
5121 		mutex_lock(&ctx->mutex);
5122 		mutex_lock(&event->child_mutex);
5123 
5124 		/*
5125 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5126 		 * state, if child is still the first entry, it didn't get freed
5127 		 * and we can continue doing so.
5128 		 */
5129 		tmp = list_first_entry_or_null(&event->child_list,
5130 					       struct perf_event, child_list);
5131 		if (tmp == child) {
5132 			perf_remove_from_context(child, DETACH_GROUP);
5133 			list_move(&child->child_list, &free_list);
5134 			/*
5135 			 * This matches the refcount bump in inherit_event();
5136 			 * this can't be the last reference.
5137 			 */
5138 			put_event(event);
5139 		}
5140 
5141 		mutex_unlock(&event->child_mutex);
5142 		mutex_unlock(&ctx->mutex);
5143 		put_ctx(ctx);
5144 		goto again;
5145 	}
5146 	mutex_unlock(&event->child_mutex);
5147 
5148 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5149 		void *var = &child->ctx->refcount;
5150 
5151 		list_del(&child->child_list);
5152 		free_event(child);
5153 
5154 		/*
5155 		 * Wake any perf_event_free_task() waiting for this event to be
5156 		 * freed.
5157 		 */
5158 		smp_mb(); /* pairs with wait_var_event() */
5159 		wake_up_var(var);
5160 	}
5161 
5162 no_ctx:
5163 	put_event(event); /* Must be the 'last' reference */
5164 	return 0;
5165 }
5166 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5167 
5168 /*
5169  * Called when the last reference to the file is gone.
5170  */
5171 static int perf_release(struct inode *inode, struct file *file)
5172 {
5173 	perf_event_release_kernel(file->private_data);
5174 	return 0;
5175 }
5176 
5177 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5178 {
5179 	struct perf_event *child;
5180 	u64 total = 0;
5181 
5182 	*enabled = 0;
5183 	*running = 0;
5184 
5185 	mutex_lock(&event->child_mutex);
5186 
5187 	(void)perf_event_read(event, false);
5188 	total += perf_event_count(event);
5189 
5190 	*enabled += event->total_time_enabled +
5191 			atomic64_read(&event->child_total_time_enabled);
5192 	*running += event->total_time_running +
5193 			atomic64_read(&event->child_total_time_running);
5194 
5195 	list_for_each_entry(child, &event->child_list, child_list) {
5196 		(void)perf_event_read(child, false);
5197 		total += perf_event_count(child);
5198 		*enabled += child->total_time_enabled;
5199 		*running += child->total_time_running;
5200 	}
5201 	mutex_unlock(&event->child_mutex);
5202 
5203 	return total;
5204 }
5205 
5206 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5207 {
5208 	struct perf_event_context *ctx;
5209 	u64 count;
5210 
5211 	ctx = perf_event_ctx_lock(event);
5212 	count = __perf_event_read_value(event, enabled, running);
5213 	perf_event_ctx_unlock(event, ctx);
5214 
5215 	return count;
5216 }
5217 EXPORT_SYMBOL_GPL(perf_event_read_value);
5218 
5219 static int __perf_read_group_add(struct perf_event *leader,
5220 					u64 read_format, u64 *values)
5221 {
5222 	struct perf_event_context *ctx = leader->ctx;
5223 	struct perf_event *sub;
5224 	unsigned long flags;
5225 	int n = 1; /* skip @nr */
5226 	int ret;
5227 
5228 	ret = perf_event_read(leader, true);
5229 	if (ret)
5230 		return ret;
5231 
5232 	raw_spin_lock_irqsave(&ctx->lock, flags);
5233 
5234 	/*
5235 	 * Since we co-schedule groups, {enabled,running} times of siblings
5236 	 * will be identical to those of the leader, so we only publish one
5237 	 * set.
5238 	 */
5239 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5240 		values[n++] += leader->total_time_enabled +
5241 			atomic64_read(&leader->child_total_time_enabled);
5242 	}
5243 
5244 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5245 		values[n++] += leader->total_time_running +
5246 			atomic64_read(&leader->child_total_time_running);
5247 	}
5248 
5249 	/*
5250 	 * Write {count,id} tuples for every sibling.
5251 	 */
5252 	values[n++] += perf_event_count(leader);
5253 	if (read_format & PERF_FORMAT_ID)
5254 		values[n++] = primary_event_id(leader);
5255 
5256 	for_each_sibling_event(sub, leader) {
5257 		values[n++] += perf_event_count(sub);
5258 		if (read_format & PERF_FORMAT_ID)
5259 			values[n++] = primary_event_id(sub);
5260 	}
5261 
5262 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5263 	return 0;
5264 }
5265 
5266 static int perf_read_group(struct perf_event *event,
5267 				   u64 read_format, char __user *buf)
5268 {
5269 	struct perf_event *leader = event->group_leader, *child;
5270 	struct perf_event_context *ctx = leader->ctx;
5271 	int ret;
5272 	u64 *values;
5273 
5274 	lockdep_assert_held(&ctx->mutex);
5275 
5276 	values = kzalloc(event->read_size, GFP_KERNEL);
5277 	if (!values)
5278 		return -ENOMEM;
5279 
5280 	values[0] = 1 + leader->nr_siblings;
5281 
5282 	/*
5283 	 * By locking the child_mutex of the leader we effectively
5284 	 * lock the child list of all siblings.. XXX explain how.
5285 	 */
5286 	mutex_lock(&leader->child_mutex);
5287 
5288 	ret = __perf_read_group_add(leader, read_format, values);
5289 	if (ret)
5290 		goto unlock;
5291 
5292 	list_for_each_entry(child, &leader->child_list, child_list) {
5293 		ret = __perf_read_group_add(child, read_format, values);
5294 		if (ret)
5295 			goto unlock;
5296 	}
5297 
5298 	mutex_unlock(&leader->child_mutex);
5299 
5300 	ret = event->read_size;
5301 	if (copy_to_user(buf, values, event->read_size))
5302 		ret = -EFAULT;
5303 	goto out;
5304 
5305 unlock:
5306 	mutex_unlock(&leader->child_mutex);
5307 out:
5308 	kfree(values);
5309 	return ret;
5310 }
5311 
5312 static int perf_read_one(struct perf_event *event,
5313 				 u64 read_format, char __user *buf)
5314 {
5315 	u64 enabled, running;
5316 	u64 values[4];
5317 	int n = 0;
5318 
5319 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5320 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5321 		values[n++] = enabled;
5322 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5323 		values[n++] = running;
5324 	if (read_format & PERF_FORMAT_ID)
5325 		values[n++] = primary_event_id(event);
5326 
5327 	if (copy_to_user(buf, values, n * sizeof(u64)))
5328 		return -EFAULT;
5329 
5330 	return n * sizeof(u64);
5331 }
5332 
5333 static bool is_event_hup(struct perf_event *event)
5334 {
5335 	bool no_children;
5336 
5337 	if (event->state > PERF_EVENT_STATE_EXIT)
5338 		return false;
5339 
5340 	mutex_lock(&event->child_mutex);
5341 	no_children = list_empty(&event->child_list);
5342 	mutex_unlock(&event->child_mutex);
5343 	return no_children;
5344 }
5345 
5346 /*
5347  * Read the performance event - simple non blocking version for now
5348  */
5349 static ssize_t
5350 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5351 {
5352 	u64 read_format = event->attr.read_format;
5353 	int ret;
5354 
5355 	/*
5356 	 * Return end-of-file for a read on an event that is in
5357 	 * error state (i.e. because it was pinned but it couldn't be
5358 	 * scheduled on to the CPU at some point).
5359 	 */
5360 	if (event->state == PERF_EVENT_STATE_ERROR)
5361 		return 0;
5362 
5363 	if (count < event->read_size)
5364 		return -ENOSPC;
5365 
5366 	WARN_ON_ONCE(event->ctx->parent_ctx);
5367 	if (read_format & PERF_FORMAT_GROUP)
5368 		ret = perf_read_group(event, read_format, buf);
5369 	else
5370 		ret = perf_read_one(event, read_format, buf);
5371 
5372 	return ret;
5373 }
5374 
5375 static ssize_t
5376 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5377 {
5378 	struct perf_event *event = file->private_data;
5379 	struct perf_event_context *ctx;
5380 	int ret;
5381 
5382 	ret = security_perf_event_read(event);
5383 	if (ret)
5384 		return ret;
5385 
5386 	ctx = perf_event_ctx_lock(event);
5387 	ret = __perf_read(event, buf, count);
5388 	perf_event_ctx_unlock(event, ctx);
5389 
5390 	return ret;
5391 }
5392 
5393 static __poll_t perf_poll(struct file *file, poll_table *wait)
5394 {
5395 	struct perf_event *event = file->private_data;
5396 	struct perf_buffer *rb;
5397 	__poll_t events = EPOLLHUP;
5398 
5399 	poll_wait(file, &event->waitq, wait);
5400 
5401 	if (is_event_hup(event))
5402 		return events;
5403 
5404 	/*
5405 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5406 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5407 	 */
5408 	mutex_lock(&event->mmap_mutex);
5409 	rb = event->rb;
5410 	if (rb)
5411 		events = atomic_xchg(&rb->poll, 0);
5412 	mutex_unlock(&event->mmap_mutex);
5413 	return events;
5414 }
5415 
5416 static void _perf_event_reset(struct perf_event *event)
5417 {
5418 	(void)perf_event_read(event, false);
5419 	local64_set(&event->count, 0);
5420 	perf_event_update_userpage(event);
5421 }
5422 
5423 /* Assume it's not an event with inherit set. */
5424 u64 perf_event_pause(struct perf_event *event, bool reset)
5425 {
5426 	struct perf_event_context *ctx;
5427 	u64 count;
5428 
5429 	ctx = perf_event_ctx_lock(event);
5430 	WARN_ON_ONCE(event->attr.inherit);
5431 	_perf_event_disable(event);
5432 	count = local64_read(&event->count);
5433 	if (reset)
5434 		local64_set(&event->count, 0);
5435 	perf_event_ctx_unlock(event, ctx);
5436 
5437 	return count;
5438 }
5439 EXPORT_SYMBOL_GPL(perf_event_pause);
5440 
5441 /*
5442  * Holding the top-level event's child_mutex means that any
5443  * descendant process that has inherited this event will block
5444  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5445  * task existence requirements of perf_event_enable/disable.
5446  */
5447 static void perf_event_for_each_child(struct perf_event *event,
5448 					void (*func)(struct perf_event *))
5449 {
5450 	struct perf_event *child;
5451 
5452 	WARN_ON_ONCE(event->ctx->parent_ctx);
5453 
5454 	mutex_lock(&event->child_mutex);
5455 	func(event);
5456 	list_for_each_entry(child, &event->child_list, child_list)
5457 		func(child);
5458 	mutex_unlock(&event->child_mutex);
5459 }
5460 
5461 static void perf_event_for_each(struct perf_event *event,
5462 				  void (*func)(struct perf_event *))
5463 {
5464 	struct perf_event_context *ctx = event->ctx;
5465 	struct perf_event *sibling;
5466 
5467 	lockdep_assert_held(&ctx->mutex);
5468 
5469 	event = event->group_leader;
5470 
5471 	perf_event_for_each_child(event, func);
5472 	for_each_sibling_event(sibling, event)
5473 		perf_event_for_each_child(sibling, func);
5474 }
5475 
5476 static void __perf_event_period(struct perf_event *event,
5477 				struct perf_cpu_context *cpuctx,
5478 				struct perf_event_context *ctx,
5479 				void *info)
5480 {
5481 	u64 value = *((u64 *)info);
5482 	bool active;
5483 
5484 	if (event->attr.freq) {
5485 		event->attr.sample_freq = value;
5486 	} else {
5487 		event->attr.sample_period = value;
5488 		event->hw.sample_period = value;
5489 	}
5490 
5491 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5492 	if (active) {
5493 		perf_pmu_disable(ctx->pmu);
5494 		/*
5495 		 * We could be throttled; unthrottle now to avoid the tick
5496 		 * trying to unthrottle while we already re-started the event.
5497 		 */
5498 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5499 			event->hw.interrupts = 0;
5500 			perf_log_throttle(event, 1);
5501 		}
5502 		event->pmu->stop(event, PERF_EF_UPDATE);
5503 	}
5504 
5505 	local64_set(&event->hw.period_left, 0);
5506 
5507 	if (active) {
5508 		event->pmu->start(event, PERF_EF_RELOAD);
5509 		perf_pmu_enable(ctx->pmu);
5510 	}
5511 }
5512 
5513 static int perf_event_check_period(struct perf_event *event, u64 value)
5514 {
5515 	return event->pmu->check_period(event, value);
5516 }
5517 
5518 static int _perf_event_period(struct perf_event *event, u64 value)
5519 {
5520 	if (!is_sampling_event(event))
5521 		return -EINVAL;
5522 
5523 	if (!value)
5524 		return -EINVAL;
5525 
5526 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5527 		return -EINVAL;
5528 
5529 	if (perf_event_check_period(event, value))
5530 		return -EINVAL;
5531 
5532 	if (!event->attr.freq && (value & (1ULL << 63)))
5533 		return -EINVAL;
5534 
5535 	event_function_call(event, __perf_event_period, &value);
5536 
5537 	return 0;
5538 }
5539 
5540 int perf_event_period(struct perf_event *event, u64 value)
5541 {
5542 	struct perf_event_context *ctx;
5543 	int ret;
5544 
5545 	ctx = perf_event_ctx_lock(event);
5546 	ret = _perf_event_period(event, value);
5547 	perf_event_ctx_unlock(event, ctx);
5548 
5549 	return ret;
5550 }
5551 EXPORT_SYMBOL_GPL(perf_event_period);
5552 
5553 static const struct file_operations perf_fops;
5554 
5555 static inline int perf_fget_light(int fd, struct fd *p)
5556 {
5557 	struct fd f = fdget(fd);
5558 	if (!f.file)
5559 		return -EBADF;
5560 
5561 	if (f.file->f_op != &perf_fops) {
5562 		fdput(f);
5563 		return -EBADF;
5564 	}
5565 	*p = f;
5566 	return 0;
5567 }
5568 
5569 static int perf_event_set_output(struct perf_event *event,
5570 				 struct perf_event *output_event);
5571 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5572 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5573 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5574 			  struct perf_event_attr *attr);
5575 
5576 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5577 {
5578 	void (*func)(struct perf_event *);
5579 	u32 flags = arg;
5580 
5581 	switch (cmd) {
5582 	case PERF_EVENT_IOC_ENABLE:
5583 		func = _perf_event_enable;
5584 		break;
5585 	case PERF_EVENT_IOC_DISABLE:
5586 		func = _perf_event_disable;
5587 		break;
5588 	case PERF_EVENT_IOC_RESET:
5589 		func = _perf_event_reset;
5590 		break;
5591 
5592 	case PERF_EVENT_IOC_REFRESH:
5593 		return _perf_event_refresh(event, arg);
5594 
5595 	case PERF_EVENT_IOC_PERIOD:
5596 	{
5597 		u64 value;
5598 
5599 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5600 			return -EFAULT;
5601 
5602 		return _perf_event_period(event, value);
5603 	}
5604 	case PERF_EVENT_IOC_ID:
5605 	{
5606 		u64 id = primary_event_id(event);
5607 
5608 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5609 			return -EFAULT;
5610 		return 0;
5611 	}
5612 
5613 	case PERF_EVENT_IOC_SET_OUTPUT:
5614 	{
5615 		int ret;
5616 		if (arg != -1) {
5617 			struct perf_event *output_event;
5618 			struct fd output;
5619 			ret = perf_fget_light(arg, &output);
5620 			if (ret)
5621 				return ret;
5622 			output_event = output.file->private_data;
5623 			ret = perf_event_set_output(event, output_event);
5624 			fdput(output);
5625 		} else {
5626 			ret = perf_event_set_output(event, NULL);
5627 		}
5628 		return ret;
5629 	}
5630 
5631 	case PERF_EVENT_IOC_SET_FILTER:
5632 		return perf_event_set_filter(event, (void __user *)arg);
5633 
5634 	case PERF_EVENT_IOC_SET_BPF:
5635 		return perf_event_set_bpf_prog(event, arg);
5636 
5637 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5638 		struct perf_buffer *rb;
5639 
5640 		rcu_read_lock();
5641 		rb = rcu_dereference(event->rb);
5642 		if (!rb || !rb->nr_pages) {
5643 			rcu_read_unlock();
5644 			return -EINVAL;
5645 		}
5646 		rb_toggle_paused(rb, !!arg);
5647 		rcu_read_unlock();
5648 		return 0;
5649 	}
5650 
5651 	case PERF_EVENT_IOC_QUERY_BPF:
5652 		return perf_event_query_prog_array(event, (void __user *)arg);
5653 
5654 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5655 		struct perf_event_attr new_attr;
5656 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5657 					 &new_attr);
5658 
5659 		if (err)
5660 			return err;
5661 
5662 		return perf_event_modify_attr(event,  &new_attr);
5663 	}
5664 	default:
5665 		return -ENOTTY;
5666 	}
5667 
5668 	if (flags & PERF_IOC_FLAG_GROUP)
5669 		perf_event_for_each(event, func);
5670 	else
5671 		perf_event_for_each_child(event, func);
5672 
5673 	return 0;
5674 }
5675 
5676 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5677 {
5678 	struct perf_event *event = file->private_data;
5679 	struct perf_event_context *ctx;
5680 	long ret;
5681 
5682 	/* Treat ioctl like writes as it is likely a mutating operation. */
5683 	ret = security_perf_event_write(event);
5684 	if (ret)
5685 		return ret;
5686 
5687 	ctx = perf_event_ctx_lock(event);
5688 	ret = _perf_ioctl(event, cmd, arg);
5689 	perf_event_ctx_unlock(event, ctx);
5690 
5691 	return ret;
5692 }
5693 
5694 #ifdef CONFIG_COMPAT
5695 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5696 				unsigned long arg)
5697 {
5698 	switch (_IOC_NR(cmd)) {
5699 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5700 	case _IOC_NR(PERF_EVENT_IOC_ID):
5701 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5702 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5703 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5704 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5705 			cmd &= ~IOCSIZE_MASK;
5706 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5707 		}
5708 		break;
5709 	}
5710 	return perf_ioctl(file, cmd, arg);
5711 }
5712 #else
5713 # define perf_compat_ioctl NULL
5714 #endif
5715 
5716 int perf_event_task_enable(void)
5717 {
5718 	struct perf_event_context *ctx;
5719 	struct perf_event *event;
5720 
5721 	mutex_lock(&current->perf_event_mutex);
5722 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5723 		ctx = perf_event_ctx_lock(event);
5724 		perf_event_for_each_child(event, _perf_event_enable);
5725 		perf_event_ctx_unlock(event, ctx);
5726 	}
5727 	mutex_unlock(&current->perf_event_mutex);
5728 
5729 	return 0;
5730 }
5731 
5732 int perf_event_task_disable(void)
5733 {
5734 	struct perf_event_context *ctx;
5735 	struct perf_event *event;
5736 
5737 	mutex_lock(&current->perf_event_mutex);
5738 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5739 		ctx = perf_event_ctx_lock(event);
5740 		perf_event_for_each_child(event, _perf_event_disable);
5741 		perf_event_ctx_unlock(event, ctx);
5742 	}
5743 	mutex_unlock(&current->perf_event_mutex);
5744 
5745 	return 0;
5746 }
5747 
5748 static int perf_event_index(struct perf_event *event)
5749 {
5750 	if (event->hw.state & PERF_HES_STOPPED)
5751 		return 0;
5752 
5753 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5754 		return 0;
5755 
5756 	return event->pmu->event_idx(event);
5757 }
5758 
5759 static void calc_timer_values(struct perf_event *event,
5760 				u64 *now,
5761 				u64 *enabled,
5762 				u64 *running)
5763 {
5764 	u64 ctx_time;
5765 
5766 	*now = perf_clock();
5767 	ctx_time = event->shadow_ctx_time + *now;
5768 	__perf_update_times(event, ctx_time, enabled, running);
5769 }
5770 
5771 static void perf_event_init_userpage(struct perf_event *event)
5772 {
5773 	struct perf_event_mmap_page *userpg;
5774 	struct perf_buffer *rb;
5775 
5776 	rcu_read_lock();
5777 	rb = rcu_dereference(event->rb);
5778 	if (!rb)
5779 		goto unlock;
5780 
5781 	userpg = rb->user_page;
5782 
5783 	/* Allow new userspace to detect that bit 0 is deprecated */
5784 	userpg->cap_bit0_is_deprecated = 1;
5785 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5786 	userpg->data_offset = PAGE_SIZE;
5787 	userpg->data_size = perf_data_size(rb);
5788 
5789 unlock:
5790 	rcu_read_unlock();
5791 }
5792 
5793 void __weak arch_perf_update_userpage(
5794 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5795 {
5796 }
5797 
5798 /*
5799  * Callers need to ensure there can be no nesting of this function, otherwise
5800  * the seqlock logic goes bad. We can not serialize this because the arch
5801  * code calls this from NMI context.
5802  */
5803 void perf_event_update_userpage(struct perf_event *event)
5804 {
5805 	struct perf_event_mmap_page *userpg;
5806 	struct perf_buffer *rb;
5807 	u64 enabled, running, now;
5808 
5809 	rcu_read_lock();
5810 	rb = rcu_dereference(event->rb);
5811 	if (!rb)
5812 		goto unlock;
5813 
5814 	/*
5815 	 * compute total_time_enabled, total_time_running
5816 	 * based on snapshot values taken when the event
5817 	 * was last scheduled in.
5818 	 *
5819 	 * we cannot simply called update_context_time()
5820 	 * because of locking issue as we can be called in
5821 	 * NMI context
5822 	 */
5823 	calc_timer_values(event, &now, &enabled, &running);
5824 
5825 	userpg = rb->user_page;
5826 	/*
5827 	 * Disable preemption to guarantee consistent time stamps are stored to
5828 	 * the user page.
5829 	 */
5830 	preempt_disable();
5831 	++userpg->lock;
5832 	barrier();
5833 	userpg->index = perf_event_index(event);
5834 	userpg->offset = perf_event_count(event);
5835 	if (userpg->index)
5836 		userpg->offset -= local64_read(&event->hw.prev_count);
5837 
5838 	userpg->time_enabled = enabled +
5839 			atomic64_read(&event->child_total_time_enabled);
5840 
5841 	userpg->time_running = running +
5842 			atomic64_read(&event->child_total_time_running);
5843 
5844 	arch_perf_update_userpage(event, userpg, now);
5845 
5846 	barrier();
5847 	++userpg->lock;
5848 	preempt_enable();
5849 unlock:
5850 	rcu_read_unlock();
5851 }
5852 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5853 
5854 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5855 {
5856 	struct perf_event *event = vmf->vma->vm_file->private_data;
5857 	struct perf_buffer *rb;
5858 	vm_fault_t ret = VM_FAULT_SIGBUS;
5859 
5860 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5861 		if (vmf->pgoff == 0)
5862 			ret = 0;
5863 		return ret;
5864 	}
5865 
5866 	rcu_read_lock();
5867 	rb = rcu_dereference(event->rb);
5868 	if (!rb)
5869 		goto unlock;
5870 
5871 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5872 		goto unlock;
5873 
5874 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5875 	if (!vmf->page)
5876 		goto unlock;
5877 
5878 	get_page(vmf->page);
5879 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5880 	vmf->page->index   = vmf->pgoff;
5881 
5882 	ret = 0;
5883 unlock:
5884 	rcu_read_unlock();
5885 
5886 	return ret;
5887 }
5888 
5889 static void ring_buffer_attach(struct perf_event *event,
5890 			       struct perf_buffer *rb)
5891 {
5892 	struct perf_buffer *old_rb = NULL;
5893 	unsigned long flags;
5894 
5895 	if (event->rb) {
5896 		/*
5897 		 * Should be impossible, we set this when removing
5898 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5899 		 */
5900 		WARN_ON_ONCE(event->rcu_pending);
5901 
5902 		old_rb = event->rb;
5903 		spin_lock_irqsave(&old_rb->event_lock, flags);
5904 		list_del_rcu(&event->rb_entry);
5905 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5906 
5907 		event->rcu_batches = get_state_synchronize_rcu();
5908 		event->rcu_pending = 1;
5909 	}
5910 
5911 	if (rb) {
5912 		if (event->rcu_pending) {
5913 			cond_synchronize_rcu(event->rcu_batches);
5914 			event->rcu_pending = 0;
5915 		}
5916 
5917 		spin_lock_irqsave(&rb->event_lock, flags);
5918 		list_add_rcu(&event->rb_entry, &rb->event_list);
5919 		spin_unlock_irqrestore(&rb->event_lock, flags);
5920 	}
5921 
5922 	/*
5923 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5924 	 * before swizzling the event::rb pointer; if it's getting
5925 	 * unmapped, its aux_mmap_count will be 0 and it won't
5926 	 * restart. See the comment in __perf_pmu_output_stop().
5927 	 *
5928 	 * Data will inevitably be lost when set_output is done in
5929 	 * mid-air, but then again, whoever does it like this is
5930 	 * not in for the data anyway.
5931 	 */
5932 	if (has_aux(event))
5933 		perf_event_stop(event, 0);
5934 
5935 	rcu_assign_pointer(event->rb, rb);
5936 
5937 	if (old_rb) {
5938 		ring_buffer_put(old_rb);
5939 		/*
5940 		 * Since we detached before setting the new rb, so that we
5941 		 * could attach the new rb, we could have missed a wakeup.
5942 		 * Provide it now.
5943 		 */
5944 		wake_up_all(&event->waitq);
5945 	}
5946 }
5947 
5948 static void ring_buffer_wakeup(struct perf_event *event)
5949 {
5950 	struct perf_buffer *rb;
5951 
5952 	rcu_read_lock();
5953 	rb = rcu_dereference(event->rb);
5954 	if (rb) {
5955 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5956 			wake_up_all(&event->waitq);
5957 	}
5958 	rcu_read_unlock();
5959 }
5960 
5961 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5962 {
5963 	struct perf_buffer *rb;
5964 
5965 	rcu_read_lock();
5966 	rb = rcu_dereference(event->rb);
5967 	if (rb) {
5968 		if (!refcount_inc_not_zero(&rb->refcount))
5969 			rb = NULL;
5970 	}
5971 	rcu_read_unlock();
5972 
5973 	return rb;
5974 }
5975 
5976 void ring_buffer_put(struct perf_buffer *rb)
5977 {
5978 	if (!refcount_dec_and_test(&rb->refcount))
5979 		return;
5980 
5981 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5982 
5983 	call_rcu(&rb->rcu_head, rb_free_rcu);
5984 }
5985 
5986 static void perf_mmap_open(struct vm_area_struct *vma)
5987 {
5988 	struct perf_event *event = vma->vm_file->private_data;
5989 
5990 	atomic_inc(&event->mmap_count);
5991 	atomic_inc(&event->rb->mmap_count);
5992 
5993 	if (vma->vm_pgoff)
5994 		atomic_inc(&event->rb->aux_mmap_count);
5995 
5996 	if (event->pmu->event_mapped)
5997 		event->pmu->event_mapped(event, vma->vm_mm);
5998 }
5999 
6000 static void perf_pmu_output_stop(struct perf_event *event);
6001 
6002 /*
6003  * A buffer can be mmap()ed multiple times; either directly through the same
6004  * event, or through other events by use of perf_event_set_output().
6005  *
6006  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6007  * the buffer here, where we still have a VM context. This means we need
6008  * to detach all events redirecting to us.
6009  */
6010 static void perf_mmap_close(struct vm_area_struct *vma)
6011 {
6012 	struct perf_event *event = vma->vm_file->private_data;
6013 	struct perf_buffer *rb = ring_buffer_get(event);
6014 	struct user_struct *mmap_user = rb->mmap_user;
6015 	int mmap_locked = rb->mmap_locked;
6016 	unsigned long size = perf_data_size(rb);
6017 	bool detach_rest = false;
6018 
6019 	if (event->pmu->event_unmapped)
6020 		event->pmu->event_unmapped(event, vma->vm_mm);
6021 
6022 	/*
6023 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6024 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6025 	 * serialize with perf_mmap here.
6026 	 */
6027 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6028 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6029 		/*
6030 		 * Stop all AUX events that are writing to this buffer,
6031 		 * so that we can free its AUX pages and corresponding PMU
6032 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6033 		 * they won't start any more (see perf_aux_output_begin()).
6034 		 */
6035 		perf_pmu_output_stop(event);
6036 
6037 		/* now it's safe to free the pages */
6038 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6039 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6040 
6041 		/* this has to be the last one */
6042 		rb_free_aux(rb);
6043 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6044 
6045 		mutex_unlock(&event->mmap_mutex);
6046 	}
6047 
6048 	if (atomic_dec_and_test(&rb->mmap_count))
6049 		detach_rest = true;
6050 
6051 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6052 		goto out_put;
6053 
6054 	ring_buffer_attach(event, NULL);
6055 	mutex_unlock(&event->mmap_mutex);
6056 
6057 	/* If there's still other mmap()s of this buffer, we're done. */
6058 	if (!detach_rest)
6059 		goto out_put;
6060 
6061 	/*
6062 	 * No other mmap()s, detach from all other events that might redirect
6063 	 * into the now unreachable buffer. Somewhat complicated by the
6064 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6065 	 */
6066 again:
6067 	rcu_read_lock();
6068 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6069 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6070 			/*
6071 			 * This event is en-route to free_event() which will
6072 			 * detach it and remove it from the list.
6073 			 */
6074 			continue;
6075 		}
6076 		rcu_read_unlock();
6077 
6078 		mutex_lock(&event->mmap_mutex);
6079 		/*
6080 		 * Check we didn't race with perf_event_set_output() which can
6081 		 * swizzle the rb from under us while we were waiting to
6082 		 * acquire mmap_mutex.
6083 		 *
6084 		 * If we find a different rb; ignore this event, a next
6085 		 * iteration will no longer find it on the list. We have to
6086 		 * still restart the iteration to make sure we're not now
6087 		 * iterating the wrong list.
6088 		 */
6089 		if (event->rb == rb)
6090 			ring_buffer_attach(event, NULL);
6091 
6092 		mutex_unlock(&event->mmap_mutex);
6093 		put_event(event);
6094 
6095 		/*
6096 		 * Restart the iteration; either we're on the wrong list or
6097 		 * destroyed its integrity by doing a deletion.
6098 		 */
6099 		goto again;
6100 	}
6101 	rcu_read_unlock();
6102 
6103 	/*
6104 	 * It could be there's still a few 0-ref events on the list; they'll
6105 	 * get cleaned up by free_event() -- they'll also still have their
6106 	 * ref on the rb and will free it whenever they are done with it.
6107 	 *
6108 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6109 	 * undo the VM accounting.
6110 	 */
6111 
6112 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6113 			&mmap_user->locked_vm);
6114 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6115 	free_uid(mmap_user);
6116 
6117 out_put:
6118 	ring_buffer_put(rb); /* could be last */
6119 }
6120 
6121 static const struct vm_operations_struct perf_mmap_vmops = {
6122 	.open		= perf_mmap_open,
6123 	.close		= perf_mmap_close, /* non mergeable */
6124 	.fault		= perf_mmap_fault,
6125 	.page_mkwrite	= perf_mmap_fault,
6126 };
6127 
6128 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6129 {
6130 	struct perf_event *event = file->private_data;
6131 	unsigned long user_locked, user_lock_limit;
6132 	struct user_struct *user = current_user();
6133 	struct perf_buffer *rb = NULL;
6134 	unsigned long locked, lock_limit;
6135 	unsigned long vma_size;
6136 	unsigned long nr_pages;
6137 	long user_extra = 0, extra = 0;
6138 	int ret = 0, flags = 0;
6139 
6140 	/*
6141 	 * Don't allow mmap() of inherited per-task counters. This would
6142 	 * create a performance issue due to all children writing to the
6143 	 * same rb.
6144 	 */
6145 	if (event->cpu == -1 && event->attr.inherit)
6146 		return -EINVAL;
6147 
6148 	if (!(vma->vm_flags & VM_SHARED))
6149 		return -EINVAL;
6150 
6151 	ret = security_perf_event_read(event);
6152 	if (ret)
6153 		return ret;
6154 
6155 	vma_size = vma->vm_end - vma->vm_start;
6156 
6157 	if (vma->vm_pgoff == 0) {
6158 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6159 	} else {
6160 		/*
6161 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6162 		 * mapped, all subsequent mappings should have the same size
6163 		 * and offset. Must be above the normal perf buffer.
6164 		 */
6165 		u64 aux_offset, aux_size;
6166 
6167 		if (!event->rb)
6168 			return -EINVAL;
6169 
6170 		nr_pages = vma_size / PAGE_SIZE;
6171 
6172 		mutex_lock(&event->mmap_mutex);
6173 		ret = -EINVAL;
6174 
6175 		rb = event->rb;
6176 		if (!rb)
6177 			goto aux_unlock;
6178 
6179 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6180 		aux_size = READ_ONCE(rb->user_page->aux_size);
6181 
6182 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6183 			goto aux_unlock;
6184 
6185 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6186 			goto aux_unlock;
6187 
6188 		/* already mapped with a different offset */
6189 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6190 			goto aux_unlock;
6191 
6192 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6193 			goto aux_unlock;
6194 
6195 		/* already mapped with a different size */
6196 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6197 			goto aux_unlock;
6198 
6199 		if (!is_power_of_2(nr_pages))
6200 			goto aux_unlock;
6201 
6202 		if (!atomic_inc_not_zero(&rb->mmap_count))
6203 			goto aux_unlock;
6204 
6205 		if (rb_has_aux(rb)) {
6206 			atomic_inc(&rb->aux_mmap_count);
6207 			ret = 0;
6208 			goto unlock;
6209 		}
6210 
6211 		atomic_set(&rb->aux_mmap_count, 1);
6212 		user_extra = nr_pages;
6213 
6214 		goto accounting;
6215 	}
6216 
6217 	/*
6218 	 * If we have rb pages ensure they're a power-of-two number, so we
6219 	 * can do bitmasks instead of modulo.
6220 	 */
6221 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6222 		return -EINVAL;
6223 
6224 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6225 		return -EINVAL;
6226 
6227 	WARN_ON_ONCE(event->ctx->parent_ctx);
6228 again:
6229 	mutex_lock(&event->mmap_mutex);
6230 	if (event->rb) {
6231 		if (event->rb->nr_pages != nr_pages) {
6232 			ret = -EINVAL;
6233 			goto unlock;
6234 		}
6235 
6236 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6237 			/*
6238 			 * Raced against perf_mmap_close() through
6239 			 * perf_event_set_output(). Try again, hope for better
6240 			 * luck.
6241 			 */
6242 			mutex_unlock(&event->mmap_mutex);
6243 			goto again;
6244 		}
6245 
6246 		goto unlock;
6247 	}
6248 
6249 	user_extra = nr_pages + 1;
6250 
6251 accounting:
6252 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6253 
6254 	/*
6255 	 * Increase the limit linearly with more CPUs:
6256 	 */
6257 	user_lock_limit *= num_online_cpus();
6258 
6259 	user_locked = atomic_long_read(&user->locked_vm);
6260 
6261 	/*
6262 	 * sysctl_perf_event_mlock may have changed, so that
6263 	 *     user->locked_vm > user_lock_limit
6264 	 */
6265 	if (user_locked > user_lock_limit)
6266 		user_locked = user_lock_limit;
6267 	user_locked += user_extra;
6268 
6269 	if (user_locked > user_lock_limit) {
6270 		/*
6271 		 * charge locked_vm until it hits user_lock_limit;
6272 		 * charge the rest from pinned_vm
6273 		 */
6274 		extra = user_locked - user_lock_limit;
6275 		user_extra -= extra;
6276 	}
6277 
6278 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6279 	lock_limit >>= PAGE_SHIFT;
6280 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6281 
6282 	if ((locked > lock_limit) && perf_is_paranoid() &&
6283 		!capable(CAP_IPC_LOCK)) {
6284 		ret = -EPERM;
6285 		goto unlock;
6286 	}
6287 
6288 	WARN_ON(!rb && event->rb);
6289 
6290 	if (vma->vm_flags & VM_WRITE)
6291 		flags |= RING_BUFFER_WRITABLE;
6292 
6293 	if (!rb) {
6294 		rb = rb_alloc(nr_pages,
6295 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6296 			      event->cpu, flags);
6297 
6298 		if (!rb) {
6299 			ret = -ENOMEM;
6300 			goto unlock;
6301 		}
6302 
6303 		atomic_set(&rb->mmap_count, 1);
6304 		rb->mmap_user = get_current_user();
6305 		rb->mmap_locked = extra;
6306 
6307 		ring_buffer_attach(event, rb);
6308 
6309 		perf_event_init_userpage(event);
6310 		perf_event_update_userpage(event);
6311 	} else {
6312 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6313 				   event->attr.aux_watermark, flags);
6314 		if (!ret)
6315 			rb->aux_mmap_locked = extra;
6316 	}
6317 
6318 unlock:
6319 	if (!ret) {
6320 		atomic_long_add(user_extra, &user->locked_vm);
6321 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6322 
6323 		atomic_inc(&event->mmap_count);
6324 	} else if (rb) {
6325 		atomic_dec(&rb->mmap_count);
6326 	}
6327 aux_unlock:
6328 	mutex_unlock(&event->mmap_mutex);
6329 
6330 	/*
6331 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6332 	 * vma.
6333 	 */
6334 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6335 	vma->vm_ops = &perf_mmap_vmops;
6336 
6337 	if (event->pmu->event_mapped)
6338 		event->pmu->event_mapped(event, vma->vm_mm);
6339 
6340 	return ret;
6341 }
6342 
6343 static int perf_fasync(int fd, struct file *filp, int on)
6344 {
6345 	struct inode *inode = file_inode(filp);
6346 	struct perf_event *event = filp->private_data;
6347 	int retval;
6348 
6349 	inode_lock(inode);
6350 	retval = fasync_helper(fd, filp, on, &event->fasync);
6351 	inode_unlock(inode);
6352 
6353 	if (retval < 0)
6354 		return retval;
6355 
6356 	return 0;
6357 }
6358 
6359 static const struct file_operations perf_fops = {
6360 	.llseek			= no_llseek,
6361 	.release		= perf_release,
6362 	.read			= perf_read,
6363 	.poll			= perf_poll,
6364 	.unlocked_ioctl		= perf_ioctl,
6365 	.compat_ioctl		= perf_compat_ioctl,
6366 	.mmap			= perf_mmap,
6367 	.fasync			= perf_fasync,
6368 };
6369 
6370 /*
6371  * Perf event wakeup
6372  *
6373  * If there's data, ensure we set the poll() state and publish everything
6374  * to user-space before waking everybody up.
6375  */
6376 
6377 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6378 {
6379 	/* only the parent has fasync state */
6380 	if (event->parent)
6381 		event = event->parent;
6382 	return &event->fasync;
6383 }
6384 
6385 void perf_event_wakeup(struct perf_event *event)
6386 {
6387 	ring_buffer_wakeup(event);
6388 
6389 	if (event->pending_kill) {
6390 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6391 		event->pending_kill = 0;
6392 	}
6393 }
6394 
6395 static void perf_sigtrap(struct perf_event *event)
6396 {
6397 	struct kernel_siginfo info;
6398 
6399 	/*
6400 	 * We'd expect this to only occur if the irq_work is delayed and either
6401 	 * ctx->task or current has changed in the meantime. This can be the
6402 	 * case on architectures that do not implement arch_irq_work_raise().
6403 	 */
6404 	if (WARN_ON_ONCE(event->ctx->task != current))
6405 		return;
6406 
6407 	/*
6408 	 * perf_pending_event() can race with the task exiting.
6409 	 */
6410 	if (current->flags & PF_EXITING)
6411 		return;
6412 
6413 	clear_siginfo(&info);
6414 	info.si_signo = SIGTRAP;
6415 	info.si_code = TRAP_PERF;
6416 	info.si_errno = event->attr.type;
6417 	info.si_perf = event->attr.sig_data;
6418 	info.si_addr = (void __user *)event->pending_addr;
6419 	force_sig_info(&info);
6420 }
6421 
6422 static void perf_pending_event_disable(struct perf_event *event)
6423 {
6424 	int cpu = READ_ONCE(event->pending_disable);
6425 
6426 	if (cpu < 0)
6427 		return;
6428 
6429 	if (cpu == smp_processor_id()) {
6430 		WRITE_ONCE(event->pending_disable, -1);
6431 
6432 		if (event->attr.sigtrap) {
6433 			perf_sigtrap(event);
6434 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6435 			return;
6436 		}
6437 
6438 		perf_event_disable_local(event);
6439 		return;
6440 	}
6441 
6442 	/*
6443 	 *  CPU-A			CPU-B
6444 	 *
6445 	 *  perf_event_disable_inatomic()
6446 	 *    @pending_disable = CPU-A;
6447 	 *    irq_work_queue();
6448 	 *
6449 	 *  sched-out
6450 	 *    @pending_disable = -1;
6451 	 *
6452 	 *				sched-in
6453 	 *				perf_event_disable_inatomic()
6454 	 *				  @pending_disable = CPU-B;
6455 	 *				  irq_work_queue(); // FAILS
6456 	 *
6457 	 *  irq_work_run()
6458 	 *    perf_pending_event()
6459 	 *
6460 	 * But the event runs on CPU-B and wants disabling there.
6461 	 */
6462 	irq_work_queue_on(&event->pending, cpu);
6463 }
6464 
6465 static void perf_pending_event(struct irq_work *entry)
6466 {
6467 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6468 	int rctx;
6469 
6470 	rctx = perf_swevent_get_recursion_context();
6471 	/*
6472 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6473 	 * and we won't recurse 'further'.
6474 	 */
6475 
6476 	perf_pending_event_disable(event);
6477 
6478 	if (event->pending_wakeup) {
6479 		event->pending_wakeup = 0;
6480 		perf_event_wakeup(event);
6481 	}
6482 
6483 	if (rctx >= 0)
6484 		perf_swevent_put_recursion_context(rctx);
6485 }
6486 
6487 /*
6488  * We assume there is only KVM supporting the callbacks.
6489  * Later on, we might change it to a list if there is
6490  * another virtualization implementation supporting the callbacks.
6491  */
6492 struct perf_guest_info_callbacks *perf_guest_cbs;
6493 
6494 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6495 {
6496 	perf_guest_cbs = cbs;
6497 	return 0;
6498 }
6499 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6500 
6501 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6502 {
6503 	perf_guest_cbs = NULL;
6504 	return 0;
6505 }
6506 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6507 
6508 static void
6509 perf_output_sample_regs(struct perf_output_handle *handle,
6510 			struct pt_regs *regs, u64 mask)
6511 {
6512 	int bit;
6513 	DECLARE_BITMAP(_mask, 64);
6514 
6515 	bitmap_from_u64(_mask, mask);
6516 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6517 		u64 val;
6518 
6519 		val = perf_reg_value(regs, bit);
6520 		perf_output_put(handle, val);
6521 	}
6522 }
6523 
6524 static void perf_sample_regs_user(struct perf_regs *regs_user,
6525 				  struct pt_regs *regs)
6526 {
6527 	if (user_mode(regs)) {
6528 		regs_user->abi = perf_reg_abi(current);
6529 		regs_user->regs = regs;
6530 	} else if (!(current->flags & PF_KTHREAD)) {
6531 		perf_get_regs_user(regs_user, regs);
6532 	} else {
6533 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6534 		regs_user->regs = NULL;
6535 	}
6536 }
6537 
6538 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6539 				  struct pt_regs *regs)
6540 {
6541 	regs_intr->regs = regs;
6542 	regs_intr->abi  = perf_reg_abi(current);
6543 }
6544 
6545 
6546 /*
6547  * Get remaining task size from user stack pointer.
6548  *
6549  * It'd be better to take stack vma map and limit this more
6550  * precisely, but there's no way to get it safely under interrupt,
6551  * so using TASK_SIZE as limit.
6552  */
6553 static u64 perf_ustack_task_size(struct pt_regs *regs)
6554 {
6555 	unsigned long addr = perf_user_stack_pointer(regs);
6556 
6557 	if (!addr || addr >= TASK_SIZE)
6558 		return 0;
6559 
6560 	return TASK_SIZE - addr;
6561 }
6562 
6563 static u16
6564 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6565 			struct pt_regs *regs)
6566 {
6567 	u64 task_size;
6568 
6569 	/* No regs, no stack pointer, no dump. */
6570 	if (!regs)
6571 		return 0;
6572 
6573 	/*
6574 	 * Check if we fit in with the requested stack size into the:
6575 	 * - TASK_SIZE
6576 	 *   If we don't, we limit the size to the TASK_SIZE.
6577 	 *
6578 	 * - remaining sample size
6579 	 *   If we don't, we customize the stack size to
6580 	 *   fit in to the remaining sample size.
6581 	 */
6582 
6583 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6584 	stack_size = min(stack_size, (u16) task_size);
6585 
6586 	/* Current header size plus static size and dynamic size. */
6587 	header_size += 2 * sizeof(u64);
6588 
6589 	/* Do we fit in with the current stack dump size? */
6590 	if ((u16) (header_size + stack_size) < header_size) {
6591 		/*
6592 		 * If we overflow the maximum size for the sample,
6593 		 * we customize the stack dump size to fit in.
6594 		 */
6595 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6596 		stack_size = round_up(stack_size, sizeof(u64));
6597 	}
6598 
6599 	return stack_size;
6600 }
6601 
6602 static void
6603 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6604 			  struct pt_regs *regs)
6605 {
6606 	/* Case of a kernel thread, nothing to dump */
6607 	if (!regs) {
6608 		u64 size = 0;
6609 		perf_output_put(handle, size);
6610 	} else {
6611 		unsigned long sp;
6612 		unsigned int rem;
6613 		u64 dyn_size;
6614 		mm_segment_t fs;
6615 
6616 		/*
6617 		 * We dump:
6618 		 * static size
6619 		 *   - the size requested by user or the best one we can fit
6620 		 *     in to the sample max size
6621 		 * data
6622 		 *   - user stack dump data
6623 		 * dynamic size
6624 		 *   - the actual dumped size
6625 		 */
6626 
6627 		/* Static size. */
6628 		perf_output_put(handle, dump_size);
6629 
6630 		/* Data. */
6631 		sp = perf_user_stack_pointer(regs);
6632 		fs = force_uaccess_begin();
6633 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6634 		force_uaccess_end(fs);
6635 		dyn_size = dump_size - rem;
6636 
6637 		perf_output_skip(handle, rem);
6638 
6639 		/* Dynamic size. */
6640 		perf_output_put(handle, dyn_size);
6641 	}
6642 }
6643 
6644 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6645 					  struct perf_sample_data *data,
6646 					  size_t size)
6647 {
6648 	struct perf_event *sampler = event->aux_event;
6649 	struct perf_buffer *rb;
6650 
6651 	data->aux_size = 0;
6652 
6653 	if (!sampler)
6654 		goto out;
6655 
6656 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6657 		goto out;
6658 
6659 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6660 		goto out;
6661 
6662 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6663 	if (!rb)
6664 		goto out;
6665 
6666 	/*
6667 	 * If this is an NMI hit inside sampling code, don't take
6668 	 * the sample. See also perf_aux_sample_output().
6669 	 */
6670 	if (READ_ONCE(rb->aux_in_sampling)) {
6671 		data->aux_size = 0;
6672 	} else {
6673 		size = min_t(size_t, size, perf_aux_size(rb));
6674 		data->aux_size = ALIGN(size, sizeof(u64));
6675 	}
6676 	ring_buffer_put(rb);
6677 
6678 out:
6679 	return data->aux_size;
6680 }
6681 
6682 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6683 			   struct perf_event *event,
6684 			   struct perf_output_handle *handle,
6685 			   unsigned long size)
6686 {
6687 	unsigned long flags;
6688 	long ret;
6689 
6690 	/*
6691 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6692 	 * paths. If we start calling them in NMI context, they may race with
6693 	 * the IRQ ones, that is, for example, re-starting an event that's just
6694 	 * been stopped, which is why we're using a separate callback that
6695 	 * doesn't change the event state.
6696 	 *
6697 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6698 	 */
6699 	local_irq_save(flags);
6700 	/*
6701 	 * Guard against NMI hits inside the critical section;
6702 	 * see also perf_prepare_sample_aux().
6703 	 */
6704 	WRITE_ONCE(rb->aux_in_sampling, 1);
6705 	barrier();
6706 
6707 	ret = event->pmu->snapshot_aux(event, handle, size);
6708 
6709 	barrier();
6710 	WRITE_ONCE(rb->aux_in_sampling, 0);
6711 	local_irq_restore(flags);
6712 
6713 	return ret;
6714 }
6715 
6716 static void perf_aux_sample_output(struct perf_event *event,
6717 				   struct perf_output_handle *handle,
6718 				   struct perf_sample_data *data)
6719 {
6720 	struct perf_event *sampler = event->aux_event;
6721 	struct perf_buffer *rb;
6722 	unsigned long pad;
6723 	long size;
6724 
6725 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6726 		return;
6727 
6728 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6729 	if (!rb)
6730 		return;
6731 
6732 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6733 
6734 	/*
6735 	 * An error here means that perf_output_copy() failed (returned a
6736 	 * non-zero surplus that it didn't copy), which in its current
6737 	 * enlightened implementation is not possible. If that changes, we'd
6738 	 * like to know.
6739 	 */
6740 	if (WARN_ON_ONCE(size < 0))
6741 		goto out_put;
6742 
6743 	/*
6744 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6745 	 * perf_prepare_sample_aux(), so should not be more than that.
6746 	 */
6747 	pad = data->aux_size - size;
6748 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6749 		pad = 8;
6750 
6751 	if (pad) {
6752 		u64 zero = 0;
6753 		perf_output_copy(handle, &zero, pad);
6754 	}
6755 
6756 out_put:
6757 	ring_buffer_put(rb);
6758 }
6759 
6760 static void __perf_event_header__init_id(struct perf_event_header *header,
6761 					 struct perf_sample_data *data,
6762 					 struct perf_event *event)
6763 {
6764 	u64 sample_type = event->attr.sample_type;
6765 
6766 	data->type = sample_type;
6767 	header->size += event->id_header_size;
6768 
6769 	if (sample_type & PERF_SAMPLE_TID) {
6770 		/* namespace issues */
6771 		data->tid_entry.pid = perf_event_pid(event, current);
6772 		data->tid_entry.tid = perf_event_tid(event, current);
6773 	}
6774 
6775 	if (sample_type & PERF_SAMPLE_TIME)
6776 		data->time = perf_event_clock(event);
6777 
6778 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6779 		data->id = primary_event_id(event);
6780 
6781 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6782 		data->stream_id = event->id;
6783 
6784 	if (sample_type & PERF_SAMPLE_CPU) {
6785 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6786 		data->cpu_entry.reserved = 0;
6787 	}
6788 }
6789 
6790 void perf_event_header__init_id(struct perf_event_header *header,
6791 				struct perf_sample_data *data,
6792 				struct perf_event *event)
6793 {
6794 	if (event->attr.sample_id_all)
6795 		__perf_event_header__init_id(header, data, event);
6796 }
6797 
6798 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6799 					   struct perf_sample_data *data)
6800 {
6801 	u64 sample_type = data->type;
6802 
6803 	if (sample_type & PERF_SAMPLE_TID)
6804 		perf_output_put(handle, data->tid_entry);
6805 
6806 	if (sample_type & PERF_SAMPLE_TIME)
6807 		perf_output_put(handle, data->time);
6808 
6809 	if (sample_type & PERF_SAMPLE_ID)
6810 		perf_output_put(handle, data->id);
6811 
6812 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6813 		perf_output_put(handle, data->stream_id);
6814 
6815 	if (sample_type & PERF_SAMPLE_CPU)
6816 		perf_output_put(handle, data->cpu_entry);
6817 
6818 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6819 		perf_output_put(handle, data->id);
6820 }
6821 
6822 void perf_event__output_id_sample(struct perf_event *event,
6823 				  struct perf_output_handle *handle,
6824 				  struct perf_sample_data *sample)
6825 {
6826 	if (event->attr.sample_id_all)
6827 		__perf_event__output_id_sample(handle, sample);
6828 }
6829 
6830 static void perf_output_read_one(struct perf_output_handle *handle,
6831 				 struct perf_event *event,
6832 				 u64 enabled, u64 running)
6833 {
6834 	u64 read_format = event->attr.read_format;
6835 	u64 values[4];
6836 	int n = 0;
6837 
6838 	values[n++] = perf_event_count(event);
6839 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6840 		values[n++] = enabled +
6841 			atomic64_read(&event->child_total_time_enabled);
6842 	}
6843 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6844 		values[n++] = running +
6845 			atomic64_read(&event->child_total_time_running);
6846 	}
6847 	if (read_format & PERF_FORMAT_ID)
6848 		values[n++] = primary_event_id(event);
6849 
6850 	__output_copy(handle, values, n * sizeof(u64));
6851 }
6852 
6853 static void perf_output_read_group(struct perf_output_handle *handle,
6854 			    struct perf_event *event,
6855 			    u64 enabled, u64 running)
6856 {
6857 	struct perf_event *leader = event->group_leader, *sub;
6858 	u64 read_format = event->attr.read_format;
6859 	u64 values[5];
6860 	int n = 0;
6861 
6862 	values[n++] = 1 + leader->nr_siblings;
6863 
6864 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6865 		values[n++] = enabled;
6866 
6867 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6868 		values[n++] = running;
6869 
6870 	if ((leader != event) &&
6871 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6872 		leader->pmu->read(leader);
6873 
6874 	values[n++] = perf_event_count(leader);
6875 	if (read_format & PERF_FORMAT_ID)
6876 		values[n++] = primary_event_id(leader);
6877 
6878 	__output_copy(handle, values, n * sizeof(u64));
6879 
6880 	for_each_sibling_event(sub, leader) {
6881 		n = 0;
6882 
6883 		if ((sub != event) &&
6884 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6885 			sub->pmu->read(sub);
6886 
6887 		values[n++] = perf_event_count(sub);
6888 		if (read_format & PERF_FORMAT_ID)
6889 			values[n++] = primary_event_id(sub);
6890 
6891 		__output_copy(handle, values, n * sizeof(u64));
6892 	}
6893 }
6894 
6895 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6896 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6897 
6898 /*
6899  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6900  *
6901  * The problem is that its both hard and excessively expensive to iterate the
6902  * child list, not to mention that its impossible to IPI the children running
6903  * on another CPU, from interrupt/NMI context.
6904  */
6905 static void perf_output_read(struct perf_output_handle *handle,
6906 			     struct perf_event *event)
6907 {
6908 	u64 enabled = 0, running = 0, now;
6909 	u64 read_format = event->attr.read_format;
6910 
6911 	/*
6912 	 * compute total_time_enabled, total_time_running
6913 	 * based on snapshot values taken when the event
6914 	 * was last scheduled in.
6915 	 *
6916 	 * we cannot simply called update_context_time()
6917 	 * because of locking issue as we are called in
6918 	 * NMI context
6919 	 */
6920 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6921 		calc_timer_values(event, &now, &enabled, &running);
6922 
6923 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6924 		perf_output_read_group(handle, event, enabled, running);
6925 	else
6926 		perf_output_read_one(handle, event, enabled, running);
6927 }
6928 
6929 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6930 {
6931 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6932 }
6933 
6934 void perf_output_sample(struct perf_output_handle *handle,
6935 			struct perf_event_header *header,
6936 			struct perf_sample_data *data,
6937 			struct perf_event *event)
6938 {
6939 	u64 sample_type = data->type;
6940 
6941 	perf_output_put(handle, *header);
6942 
6943 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6944 		perf_output_put(handle, data->id);
6945 
6946 	if (sample_type & PERF_SAMPLE_IP)
6947 		perf_output_put(handle, data->ip);
6948 
6949 	if (sample_type & PERF_SAMPLE_TID)
6950 		perf_output_put(handle, data->tid_entry);
6951 
6952 	if (sample_type & PERF_SAMPLE_TIME)
6953 		perf_output_put(handle, data->time);
6954 
6955 	if (sample_type & PERF_SAMPLE_ADDR)
6956 		perf_output_put(handle, data->addr);
6957 
6958 	if (sample_type & PERF_SAMPLE_ID)
6959 		perf_output_put(handle, data->id);
6960 
6961 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6962 		perf_output_put(handle, data->stream_id);
6963 
6964 	if (sample_type & PERF_SAMPLE_CPU)
6965 		perf_output_put(handle, data->cpu_entry);
6966 
6967 	if (sample_type & PERF_SAMPLE_PERIOD)
6968 		perf_output_put(handle, data->period);
6969 
6970 	if (sample_type & PERF_SAMPLE_READ)
6971 		perf_output_read(handle, event);
6972 
6973 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6974 		int size = 1;
6975 
6976 		size += data->callchain->nr;
6977 		size *= sizeof(u64);
6978 		__output_copy(handle, data->callchain, size);
6979 	}
6980 
6981 	if (sample_type & PERF_SAMPLE_RAW) {
6982 		struct perf_raw_record *raw = data->raw;
6983 
6984 		if (raw) {
6985 			struct perf_raw_frag *frag = &raw->frag;
6986 
6987 			perf_output_put(handle, raw->size);
6988 			do {
6989 				if (frag->copy) {
6990 					__output_custom(handle, frag->copy,
6991 							frag->data, frag->size);
6992 				} else {
6993 					__output_copy(handle, frag->data,
6994 						      frag->size);
6995 				}
6996 				if (perf_raw_frag_last(frag))
6997 					break;
6998 				frag = frag->next;
6999 			} while (1);
7000 			if (frag->pad)
7001 				__output_skip(handle, NULL, frag->pad);
7002 		} else {
7003 			struct {
7004 				u32	size;
7005 				u32	data;
7006 			} raw = {
7007 				.size = sizeof(u32),
7008 				.data = 0,
7009 			};
7010 			perf_output_put(handle, raw);
7011 		}
7012 	}
7013 
7014 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7015 		if (data->br_stack) {
7016 			size_t size;
7017 
7018 			size = data->br_stack->nr
7019 			     * sizeof(struct perf_branch_entry);
7020 
7021 			perf_output_put(handle, data->br_stack->nr);
7022 			if (perf_sample_save_hw_index(event))
7023 				perf_output_put(handle, data->br_stack->hw_idx);
7024 			perf_output_copy(handle, data->br_stack->entries, size);
7025 		} else {
7026 			/*
7027 			 * we always store at least the value of nr
7028 			 */
7029 			u64 nr = 0;
7030 			perf_output_put(handle, nr);
7031 		}
7032 	}
7033 
7034 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7035 		u64 abi = data->regs_user.abi;
7036 
7037 		/*
7038 		 * If there are no regs to dump, notice it through
7039 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7040 		 */
7041 		perf_output_put(handle, abi);
7042 
7043 		if (abi) {
7044 			u64 mask = event->attr.sample_regs_user;
7045 			perf_output_sample_regs(handle,
7046 						data->regs_user.regs,
7047 						mask);
7048 		}
7049 	}
7050 
7051 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7052 		perf_output_sample_ustack(handle,
7053 					  data->stack_user_size,
7054 					  data->regs_user.regs);
7055 	}
7056 
7057 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7058 		perf_output_put(handle, data->weight.full);
7059 
7060 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7061 		perf_output_put(handle, data->data_src.val);
7062 
7063 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7064 		perf_output_put(handle, data->txn);
7065 
7066 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7067 		u64 abi = data->regs_intr.abi;
7068 		/*
7069 		 * If there are no regs to dump, notice it through
7070 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7071 		 */
7072 		perf_output_put(handle, abi);
7073 
7074 		if (abi) {
7075 			u64 mask = event->attr.sample_regs_intr;
7076 
7077 			perf_output_sample_regs(handle,
7078 						data->regs_intr.regs,
7079 						mask);
7080 		}
7081 	}
7082 
7083 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7084 		perf_output_put(handle, data->phys_addr);
7085 
7086 	if (sample_type & PERF_SAMPLE_CGROUP)
7087 		perf_output_put(handle, data->cgroup);
7088 
7089 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7090 		perf_output_put(handle, data->data_page_size);
7091 
7092 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7093 		perf_output_put(handle, data->code_page_size);
7094 
7095 	if (sample_type & PERF_SAMPLE_AUX) {
7096 		perf_output_put(handle, data->aux_size);
7097 
7098 		if (data->aux_size)
7099 			perf_aux_sample_output(event, handle, data);
7100 	}
7101 
7102 	if (!event->attr.watermark) {
7103 		int wakeup_events = event->attr.wakeup_events;
7104 
7105 		if (wakeup_events) {
7106 			struct perf_buffer *rb = handle->rb;
7107 			int events = local_inc_return(&rb->events);
7108 
7109 			if (events >= wakeup_events) {
7110 				local_sub(wakeup_events, &rb->events);
7111 				local_inc(&rb->wakeup);
7112 			}
7113 		}
7114 	}
7115 }
7116 
7117 static u64 perf_virt_to_phys(u64 virt)
7118 {
7119 	u64 phys_addr = 0;
7120 	struct page *p = NULL;
7121 
7122 	if (!virt)
7123 		return 0;
7124 
7125 	if (virt >= TASK_SIZE) {
7126 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7127 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7128 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7129 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7130 	} else {
7131 		/*
7132 		 * Walking the pages tables for user address.
7133 		 * Interrupts are disabled, so it prevents any tear down
7134 		 * of the page tables.
7135 		 * Try IRQ-safe get_user_page_fast_only first.
7136 		 * If failed, leave phys_addr as 0.
7137 		 */
7138 		if (current->mm != NULL) {
7139 			pagefault_disable();
7140 			if (get_user_page_fast_only(virt, 0, &p))
7141 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7142 			pagefault_enable();
7143 		}
7144 
7145 		if (p)
7146 			put_page(p);
7147 	}
7148 
7149 	return phys_addr;
7150 }
7151 
7152 /*
7153  * Return the pagetable size of a given virtual address.
7154  */
7155 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7156 {
7157 	u64 size = 0;
7158 
7159 #ifdef CONFIG_HAVE_FAST_GUP
7160 	pgd_t *pgdp, pgd;
7161 	p4d_t *p4dp, p4d;
7162 	pud_t *pudp, pud;
7163 	pmd_t *pmdp, pmd;
7164 	pte_t *ptep, pte;
7165 
7166 	pgdp = pgd_offset(mm, addr);
7167 	pgd = READ_ONCE(*pgdp);
7168 	if (pgd_none(pgd))
7169 		return 0;
7170 
7171 	if (pgd_leaf(pgd))
7172 		return pgd_leaf_size(pgd);
7173 
7174 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7175 	p4d = READ_ONCE(*p4dp);
7176 	if (!p4d_present(p4d))
7177 		return 0;
7178 
7179 	if (p4d_leaf(p4d))
7180 		return p4d_leaf_size(p4d);
7181 
7182 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7183 	pud = READ_ONCE(*pudp);
7184 	if (!pud_present(pud))
7185 		return 0;
7186 
7187 	if (pud_leaf(pud))
7188 		return pud_leaf_size(pud);
7189 
7190 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7191 	pmd = READ_ONCE(*pmdp);
7192 	if (!pmd_present(pmd))
7193 		return 0;
7194 
7195 	if (pmd_leaf(pmd))
7196 		return pmd_leaf_size(pmd);
7197 
7198 	ptep = pte_offset_map(&pmd, addr);
7199 	pte = ptep_get_lockless(ptep);
7200 	if (pte_present(pte))
7201 		size = pte_leaf_size(pte);
7202 	pte_unmap(ptep);
7203 #endif /* CONFIG_HAVE_FAST_GUP */
7204 
7205 	return size;
7206 }
7207 
7208 static u64 perf_get_page_size(unsigned long addr)
7209 {
7210 	struct mm_struct *mm;
7211 	unsigned long flags;
7212 	u64 size;
7213 
7214 	if (!addr)
7215 		return 0;
7216 
7217 	/*
7218 	 * Software page-table walkers must disable IRQs,
7219 	 * which prevents any tear down of the page tables.
7220 	 */
7221 	local_irq_save(flags);
7222 
7223 	mm = current->mm;
7224 	if (!mm) {
7225 		/*
7226 		 * For kernel threads and the like, use init_mm so that
7227 		 * we can find kernel memory.
7228 		 */
7229 		mm = &init_mm;
7230 	}
7231 
7232 	size = perf_get_pgtable_size(mm, addr);
7233 
7234 	local_irq_restore(flags);
7235 
7236 	return size;
7237 }
7238 
7239 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7240 
7241 struct perf_callchain_entry *
7242 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7243 {
7244 	bool kernel = !event->attr.exclude_callchain_kernel;
7245 	bool user   = !event->attr.exclude_callchain_user;
7246 	/* Disallow cross-task user callchains. */
7247 	bool crosstask = event->ctx->task && event->ctx->task != current;
7248 	const u32 max_stack = event->attr.sample_max_stack;
7249 	struct perf_callchain_entry *callchain;
7250 
7251 	if (!kernel && !user)
7252 		return &__empty_callchain;
7253 
7254 	callchain = get_perf_callchain(regs, 0, kernel, user,
7255 				       max_stack, crosstask, true);
7256 	return callchain ?: &__empty_callchain;
7257 }
7258 
7259 void perf_prepare_sample(struct perf_event_header *header,
7260 			 struct perf_sample_data *data,
7261 			 struct perf_event *event,
7262 			 struct pt_regs *regs)
7263 {
7264 	u64 sample_type = event->attr.sample_type;
7265 
7266 	header->type = PERF_RECORD_SAMPLE;
7267 	header->size = sizeof(*header) + event->header_size;
7268 
7269 	header->misc = 0;
7270 	header->misc |= perf_misc_flags(regs);
7271 
7272 	__perf_event_header__init_id(header, data, event);
7273 
7274 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7275 		data->ip = perf_instruction_pointer(regs);
7276 
7277 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7278 		int size = 1;
7279 
7280 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7281 			data->callchain = perf_callchain(event, regs);
7282 
7283 		size += data->callchain->nr;
7284 
7285 		header->size += size * sizeof(u64);
7286 	}
7287 
7288 	if (sample_type & PERF_SAMPLE_RAW) {
7289 		struct perf_raw_record *raw = data->raw;
7290 		int size;
7291 
7292 		if (raw) {
7293 			struct perf_raw_frag *frag = &raw->frag;
7294 			u32 sum = 0;
7295 
7296 			do {
7297 				sum += frag->size;
7298 				if (perf_raw_frag_last(frag))
7299 					break;
7300 				frag = frag->next;
7301 			} while (1);
7302 
7303 			size = round_up(sum + sizeof(u32), sizeof(u64));
7304 			raw->size = size - sizeof(u32);
7305 			frag->pad = raw->size - sum;
7306 		} else {
7307 			size = sizeof(u64);
7308 		}
7309 
7310 		header->size += size;
7311 	}
7312 
7313 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7314 		int size = sizeof(u64); /* nr */
7315 		if (data->br_stack) {
7316 			if (perf_sample_save_hw_index(event))
7317 				size += sizeof(u64);
7318 
7319 			size += data->br_stack->nr
7320 			      * sizeof(struct perf_branch_entry);
7321 		}
7322 		header->size += size;
7323 	}
7324 
7325 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7326 		perf_sample_regs_user(&data->regs_user, regs);
7327 
7328 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7329 		/* regs dump ABI info */
7330 		int size = sizeof(u64);
7331 
7332 		if (data->regs_user.regs) {
7333 			u64 mask = event->attr.sample_regs_user;
7334 			size += hweight64(mask) * sizeof(u64);
7335 		}
7336 
7337 		header->size += size;
7338 	}
7339 
7340 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7341 		/*
7342 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7343 		 * processed as the last one or have additional check added
7344 		 * in case new sample type is added, because we could eat
7345 		 * up the rest of the sample size.
7346 		 */
7347 		u16 stack_size = event->attr.sample_stack_user;
7348 		u16 size = sizeof(u64);
7349 
7350 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7351 						     data->regs_user.regs);
7352 
7353 		/*
7354 		 * If there is something to dump, add space for the dump
7355 		 * itself and for the field that tells the dynamic size,
7356 		 * which is how many have been actually dumped.
7357 		 */
7358 		if (stack_size)
7359 			size += sizeof(u64) + stack_size;
7360 
7361 		data->stack_user_size = stack_size;
7362 		header->size += size;
7363 	}
7364 
7365 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7366 		/* regs dump ABI info */
7367 		int size = sizeof(u64);
7368 
7369 		perf_sample_regs_intr(&data->regs_intr, regs);
7370 
7371 		if (data->regs_intr.regs) {
7372 			u64 mask = event->attr.sample_regs_intr;
7373 
7374 			size += hweight64(mask) * sizeof(u64);
7375 		}
7376 
7377 		header->size += size;
7378 	}
7379 
7380 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7381 		data->phys_addr = perf_virt_to_phys(data->addr);
7382 
7383 #ifdef CONFIG_CGROUP_PERF
7384 	if (sample_type & PERF_SAMPLE_CGROUP) {
7385 		struct cgroup *cgrp;
7386 
7387 		/* protected by RCU */
7388 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7389 		data->cgroup = cgroup_id(cgrp);
7390 	}
7391 #endif
7392 
7393 	/*
7394 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7395 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7396 	 * but the value will not dump to the userspace.
7397 	 */
7398 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7399 		data->data_page_size = perf_get_page_size(data->addr);
7400 
7401 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7402 		data->code_page_size = perf_get_page_size(data->ip);
7403 
7404 	if (sample_type & PERF_SAMPLE_AUX) {
7405 		u64 size;
7406 
7407 		header->size += sizeof(u64); /* size */
7408 
7409 		/*
7410 		 * Given the 16bit nature of header::size, an AUX sample can
7411 		 * easily overflow it, what with all the preceding sample bits.
7412 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7413 		 * per sample in total (rounded down to 8 byte boundary).
7414 		 */
7415 		size = min_t(size_t, U16_MAX - header->size,
7416 			     event->attr.aux_sample_size);
7417 		size = rounddown(size, 8);
7418 		size = perf_prepare_sample_aux(event, data, size);
7419 
7420 		WARN_ON_ONCE(size + header->size > U16_MAX);
7421 		header->size += size;
7422 	}
7423 	/*
7424 	 * If you're adding more sample types here, you likely need to do
7425 	 * something about the overflowing header::size, like repurpose the
7426 	 * lowest 3 bits of size, which should be always zero at the moment.
7427 	 * This raises a more important question, do we really need 512k sized
7428 	 * samples and why, so good argumentation is in order for whatever you
7429 	 * do here next.
7430 	 */
7431 	WARN_ON_ONCE(header->size & 7);
7432 }
7433 
7434 static __always_inline int
7435 __perf_event_output(struct perf_event *event,
7436 		    struct perf_sample_data *data,
7437 		    struct pt_regs *regs,
7438 		    int (*output_begin)(struct perf_output_handle *,
7439 					struct perf_sample_data *,
7440 					struct perf_event *,
7441 					unsigned int))
7442 {
7443 	struct perf_output_handle handle;
7444 	struct perf_event_header header;
7445 	int err;
7446 
7447 	/* protect the callchain buffers */
7448 	rcu_read_lock();
7449 
7450 	perf_prepare_sample(&header, data, event, regs);
7451 
7452 	err = output_begin(&handle, data, event, header.size);
7453 	if (err)
7454 		goto exit;
7455 
7456 	perf_output_sample(&handle, &header, data, event);
7457 
7458 	perf_output_end(&handle);
7459 
7460 exit:
7461 	rcu_read_unlock();
7462 	return err;
7463 }
7464 
7465 void
7466 perf_event_output_forward(struct perf_event *event,
7467 			 struct perf_sample_data *data,
7468 			 struct pt_regs *regs)
7469 {
7470 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7471 }
7472 
7473 void
7474 perf_event_output_backward(struct perf_event *event,
7475 			   struct perf_sample_data *data,
7476 			   struct pt_regs *regs)
7477 {
7478 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7479 }
7480 
7481 int
7482 perf_event_output(struct perf_event *event,
7483 		  struct perf_sample_data *data,
7484 		  struct pt_regs *regs)
7485 {
7486 	return __perf_event_output(event, data, regs, perf_output_begin);
7487 }
7488 
7489 /*
7490  * read event_id
7491  */
7492 
7493 struct perf_read_event {
7494 	struct perf_event_header	header;
7495 
7496 	u32				pid;
7497 	u32				tid;
7498 };
7499 
7500 static void
7501 perf_event_read_event(struct perf_event *event,
7502 			struct task_struct *task)
7503 {
7504 	struct perf_output_handle handle;
7505 	struct perf_sample_data sample;
7506 	struct perf_read_event read_event = {
7507 		.header = {
7508 			.type = PERF_RECORD_READ,
7509 			.misc = 0,
7510 			.size = sizeof(read_event) + event->read_size,
7511 		},
7512 		.pid = perf_event_pid(event, task),
7513 		.tid = perf_event_tid(event, task),
7514 	};
7515 	int ret;
7516 
7517 	perf_event_header__init_id(&read_event.header, &sample, event);
7518 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7519 	if (ret)
7520 		return;
7521 
7522 	perf_output_put(&handle, read_event);
7523 	perf_output_read(&handle, event);
7524 	perf_event__output_id_sample(event, &handle, &sample);
7525 
7526 	perf_output_end(&handle);
7527 }
7528 
7529 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7530 
7531 static void
7532 perf_iterate_ctx(struct perf_event_context *ctx,
7533 		   perf_iterate_f output,
7534 		   void *data, bool all)
7535 {
7536 	struct perf_event *event;
7537 
7538 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7539 		if (!all) {
7540 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7541 				continue;
7542 			if (!event_filter_match(event))
7543 				continue;
7544 		}
7545 
7546 		output(event, data);
7547 	}
7548 }
7549 
7550 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7551 {
7552 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7553 	struct perf_event *event;
7554 
7555 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7556 		/*
7557 		 * Skip events that are not fully formed yet; ensure that
7558 		 * if we observe event->ctx, both event and ctx will be
7559 		 * complete enough. See perf_install_in_context().
7560 		 */
7561 		if (!smp_load_acquire(&event->ctx))
7562 			continue;
7563 
7564 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7565 			continue;
7566 		if (!event_filter_match(event))
7567 			continue;
7568 		output(event, data);
7569 	}
7570 }
7571 
7572 /*
7573  * Iterate all events that need to receive side-band events.
7574  *
7575  * For new callers; ensure that account_pmu_sb_event() includes
7576  * your event, otherwise it might not get delivered.
7577  */
7578 static void
7579 perf_iterate_sb(perf_iterate_f output, void *data,
7580 	       struct perf_event_context *task_ctx)
7581 {
7582 	struct perf_event_context *ctx;
7583 	int ctxn;
7584 
7585 	rcu_read_lock();
7586 	preempt_disable();
7587 
7588 	/*
7589 	 * If we have task_ctx != NULL we only notify the task context itself.
7590 	 * The task_ctx is set only for EXIT events before releasing task
7591 	 * context.
7592 	 */
7593 	if (task_ctx) {
7594 		perf_iterate_ctx(task_ctx, output, data, false);
7595 		goto done;
7596 	}
7597 
7598 	perf_iterate_sb_cpu(output, data);
7599 
7600 	for_each_task_context_nr(ctxn) {
7601 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7602 		if (ctx)
7603 			perf_iterate_ctx(ctx, output, data, false);
7604 	}
7605 done:
7606 	preempt_enable();
7607 	rcu_read_unlock();
7608 }
7609 
7610 /*
7611  * Clear all file-based filters at exec, they'll have to be
7612  * re-instated when/if these objects are mmapped again.
7613  */
7614 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7615 {
7616 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7617 	struct perf_addr_filter *filter;
7618 	unsigned int restart = 0, count = 0;
7619 	unsigned long flags;
7620 
7621 	if (!has_addr_filter(event))
7622 		return;
7623 
7624 	raw_spin_lock_irqsave(&ifh->lock, flags);
7625 	list_for_each_entry(filter, &ifh->list, entry) {
7626 		if (filter->path.dentry) {
7627 			event->addr_filter_ranges[count].start = 0;
7628 			event->addr_filter_ranges[count].size = 0;
7629 			restart++;
7630 		}
7631 
7632 		count++;
7633 	}
7634 
7635 	if (restart)
7636 		event->addr_filters_gen++;
7637 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7638 
7639 	if (restart)
7640 		perf_event_stop(event, 1);
7641 }
7642 
7643 void perf_event_exec(void)
7644 {
7645 	struct perf_event_context *ctx;
7646 	int ctxn;
7647 
7648 	for_each_task_context_nr(ctxn) {
7649 		perf_event_enable_on_exec(ctxn);
7650 		perf_event_remove_on_exec(ctxn);
7651 
7652 		rcu_read_lock();
7653 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7654 		if (ctx) {
7655 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7656 					 NULL, true);
7657 		}
7658 		rcu_read_unlock();
7659 	}
7660 }
7661 
7662 struct remote_output {
7663 	struct perf_buffer	*rb;
7664 	int			err;
7665 };
7666 
7667 static void __perf_event_output_stop(struct perf_event *event, void *data)
7668 {
7669 	struct perf_event *parent = event->parent;
7670 	struct remote_output *ro = data;
7671 	struct perf_buffer *rb = ro->rb;
7672 	struct stop_event_data sd = {
7673 		.event	= event,
7674 	};
7675 
7676 	if (!has_aux(event))
7677 		return;
7678 
7679 	if (!parent)
7680 		parent = event;
7681 
7682 	/*
7683 	 * In case of inheritance, it will be the parent that links to the
7684 	 * ring-buffer, but it will be the child that's actually using it.
7685 	 *
7686 	 * We are using event::rb to determine if the event should be stopped,
7687 	 * however this may race with ring_buffer_attach() (through set_output),
7688 	 * which will make us skip the event that actually needs to be stopped.
7689 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7690 	 * its rb pointer.
7691 	 */
7692 	if (rcu_dereference(parent->rb) == rb)
7693 		ro->err = __perf_event_stop(&sd);
7694 }
7695 
7696 static int __perf_pmu_output_stop(void *info)
7697 {
7698 	struct perf_event *event = info;
7699 	struct pmu *pmu = event->ctx->pmu;
7700 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7701 	struct remote_output ro = {
7702 		.rb	= event->rb,
7703 	};
7704 
7705 	rcu_read_lock();
7706 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7707 	if (cpuctx->task_ctx)
7708 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7709 				   &ro, false);
7710 	rcu_read_unlock();
7711 
7712 	return ro.err;
7713 }
7714 
7715 static void perf_pmu_output_stop(struct perf_event *event)
7716 {
7717 	struct perf_event *iter;
7718 	int err, cpu;
7719 
7720 restart:
7721 	rcu_read_lock();
7722 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7723 		/*
7724 		 * For per-CPU events, we need to make sure that neither they
7725 		 * nor their children are running; for cpu==-1 events it's
7726 		 * sufficient to stop the event itself if it's active, since
7727 		 * it can't have children.
7728 		 */
7729 		cpu = iter->cpu;
7730 		if (cpu == -1)
7731 			cpu = READ_ONCE(iter->oncpu);
7732 
7733 		if (cpu == -1)
7734 			continue;
7735 
7736 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7737 		if (err == -EAGAIN) {
7738 			rcu_read_unlock();
7739 			goto restart;
7740 		}
7741 	}
7742 	rcu_read_unlock();
7743 }
7744 
7745 /*
7746  * task tracking -- fork/exit
7747  *
7748  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7749  */
7750 
7751 struct perf_task_event {
7752 	struct task_struct		*task;
7753 	struct perf_event_context	*task_ctx;
7754 
7755 	struct {
7756 		struct perf_event_header	header;
7757 
7758 		u32				pid;
7759 		u32				ppid;
7760 		u32				tid;
7761 		u32				ptid;
7762 		u64				time;
7763 	} event_id;
7764 };
7765 
7766 static int perf_event_task_match(struct perf_event *event)
7767 {
7768 	return event->attr.comm  || event->attr.mmap ||
7769 	       event->attr.mmap2 || event->attr.mmap_data ||
7770 	       event->attr.task;
7771 }
7772 
7773 static void perf_event_task_output(struct perf_event *event,
7774 				   void *data)
7775 {
7776 	struct perf_task_event *task_event = data;
7777 	struct perf_output_handle handle;
7778 	struct perf_sample_data	sample;
7779 	struct task_struct *task = task_event->task;
7780 	int ret, size = task_event->event_id.header.size;
7781 
7782 	if (!perf_event_task_match(event))
7783 		return;
7784 
7785 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7786 
7787 	ret = perf_output_begin(&handle, &sample, event,
7788 				task_event->event_id.header.size);
7789 	if (ret)
7790 		goto out;
7791 
7792 	task_event->event_id.pid = perf_event_pid(event, task);
7793 	task_event->event_id.tid = perf_event_tid(event, task);
7794 
7795 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7796 		task_event->event_id.ppid = perf_event_pid(event,
7797 							task->real_parent);
7798 		task_event->event_id.ptid = perf_event_pid(event,
7799 							task->real_parent);
7800 	} else {  /* PERF_RECORD_FORK */
7801 		task_event->event_id.ppid = perf_event_pid(event, current);
7802 		task_event->event_id.ptid = perf_event_tid(event, current);
7803 	}
7804 
7805 	task_event->event_id.time = perf_event_clock(event);
7806 
7807 	perf_output_put(&handle, task_event->event_id);
7808 
7809 	perf_event__output_id_sample(event, &handle, &sample);
7810 
7811 	perf_output_end(&handle);
7812 out:
7813 	task_event->event_id.header.size = size;
7814 }
7815 
7816 static void perf_event_task(struct task_struct *task,
7817 			      struct perf_event_context *task_ctx,
7818 			      int new)
7819 {
7820 	struct perf_task_event task_event;
7821 
7822 	if (!atomic_read(&nr_comm_events) &&
7823 	    !atomic_read(&nr_mmap_events) &&
7824 	    !atomic_read(&nr_task_events))
7825 		return;
7826 
7827 	task_event = (struct perf_task_event){
7828 		.task	  = task,
7829 		.task_ctx = task_ctx,
7830 		.event_id    = {
7831 			.header = {
7832 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7833 				.misc = 0,
7834 				.size = sizeof(task_event.event_id),
7835 			},
7836 			/* .pid  */
7837 			/* .ppid */
7838 			/* .tid  */
7839 			/* .ptid */
7840 			/* .time */
7841 		},
7842 	};
7843 
7844 	perf_iterate_sb(perf_event_task_output,
7845 		       &task_event,
7846 		       task_ctx);
7847 }
7848 
7849 void perf_event_fork(struct task_struct *task)
7850 {
7851 	perf_event_task(task, NULL, 1);
7852 	perf_event_namespaces(task);
7853 }
7854 
7855 /*
7856  * comm tracking
7857  */
7858 
7859 struct perf_comm_event {
7860 	struct task_struct	*task;
7861 	char			*comm;
7862 	int			comm_size;
7863 
7864 	struct {
7865 		struct perf_event_header	header;
7866 
7867 		u32				pid;
7868 		u32				tid;
7869 	} event_id;
7870 };
7871 
7872 static int perf_event_comm_match(struct perf_event *event)
7873 {
7874 	return event->attr.comm;
7875 }
7876 
7877 static void perf_event_comm_output(struct perf_event *event,
7878 				   void *data)
7879 {
7880 	struct perf_comm_event *comm_event = data;
7881 	struct perf_output_handle handle;
7882 	struct perf_sample_data sample;
7883 	int size = comm_event->event_id.header.size;
7884 	int ret;
7885 
7886 	if (!perf_event_comm_match(event))
7887 		return;
7888 
7889 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7890 	ret = perf_output_begin(&handle, &sample, event,
7891 				comm_event->event_id.header.size);
7892 
7893 	if (ret)
7894 		goto out;
7895 
7896 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7897 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7898 
7899 	perf_output_put(&handle, comm_event->event_id);
7900 	__output_copy(&handle, comm_event->comm,
7901 				   comm_event->comm_size);
7902 
7903 	perf_event__output_id_sample(event, &handle, &sample);
7904 
7905 	perf_output_end(&handle);
7906 out:
7907 	comm_event->event_id.header.size = size;
7908 }
7909 
7910 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7911 {
7912 	char comm[TASK_COMM_LEN];
7913 	unsigned int size;
7914 
7915 	memset(comm, 0, sizeof(comm));
7916 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7917 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7918 
7919 	comm_event->comm = comm;
7920 	comm_event->comm_size = size;
7921 
7922 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7923 
7924 	perf_iterate_sb(perf_event_comm_output,
7925 		       comm_event,
7926 		       NULL);
7927 }
7928 
7929 void perf_event_comm(struct task_struct *task, bool exec)
7930 {
7931 	struct perf_comm_event comm_event;
7932 
7933 	if (!atomic_read(&nr_comm_events))
7934 		return;
7935 
7936 	comm_event = (struct perf_comm_event){
7937 		.task	= task,
7938 		/* .comm      */
7939 		/* .comm_size */
7940 		.event_id  = {
7941 			.header = {
7942 				.type = PERF_RECORD_COMM,
7943 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7944 				/* .size */
7945 			},
7946 			/* .pid */
7947 			/* .tid */
7948 		},
7949 	};
7950 
7951 	perf_event_comm_event(&comm_event);
7952 }
7953 
7954 /*
7955  * namespaces tracking
7956  */
7957 
7958 struct perf_namespaces_event {
7959 	struct task_struct		*task;
7960 
7961 	struct {
7962 		struct perf_event_header	header;
7963 
7964 		u32				pid;
7965 		u32				tid;
7966 		u64				nr_namespaces;
7967 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7968 	} event_id;
7969 };
7970 
7971 static int perf_event_namespaces_match(struct perf_event *event)
7972 {
7973 	return event->attr.namespaces;
7974 }
7975 
7976 static void perf_event_namespaces_output(struct perf_event *event,
7977 					 void *data)
7978 {
7979 	struct perf_namespaces_event *namespaces_event = data;
7980 	struct perf_output_handle handle;
7981 	struct perf_sample_data sample;
7982 	u16 header_size = namespaces_event->event_id.header.size;
7983 	int ret;
7984 
7985 	if (!perf_event_namespaces_match(event))
7986 		return;
7987 
7988 	perf_event_header__init_id(&namespaces_event->event_id.header,
7989 				   &sample, event);
7990 	ret = perf_output_begin(&handle, &sample, event,
7991 				namespaces_event->event_id.header.size);
7992 	if (ret)
7993 		goto out;
7994 
7995 	namespaces_event->event_id.pid = perf_event_pid(event,
7996 							namespaces_event->task);
7997 	namespaces_event->event_id.tid = perf_event_tid(event,
7998 							namespaces_event->task);
7999 
8000 	perf_output_put(&handle, namespaces_event->event_id);
8001 
8002 	perf_event__output_id_sample(event, &handle, &sample);
8003 
8004 	perf_output_end(&handle);
8005 out:
8006 	namespaces_event->event_id.header.size = header_size;
8007 }
8008 
8009 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8010 				   struct task_struct *task,
8011 				   const struct proc_ns_operations *ns_ops)
8012 {
8013 	struct path ns_path;
8014 	struct inode *ns_inode;
8015 	int error;
8016 
8017 	error = ns_get_path(&ns_path, task, ns_ops);
8018 	if (!error) {
8019 		ns_inode = ns_path.dentry->d_inode;
8020 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8021 		ns_link_info->ino = ns_inode->i_ino;
8022 		path_put(&ns_path);
8023 	}
8024 }
8025 
8026 void perf_event_namespaces(struct task_struct *task)
8027 {
8028 	struct perf_namespaces_event namespaces_event;
8029 	struct perf_ns_link_info *ns_link_info;
8030 
8031 	if (!atomic_read(&nr_namespaces_events))
8032 		return;
8033 
8034 	namespaces_event = (struct perf_namespaces_event){
8035 		.task	= task,
8036 		.event_id  = {
8037 			.header = {
8038 				.type = PERF_RECORD_NAMESPACES,
8039 				.misc = 0,
8040 				.size = sizeof(namespaces_event.event_id),
8041 			},
8042 			/* .pid */
8043 			/* .tid */
8044 			.nr_namespaces = NR_NAMESPACES,
8045 			/* .link_info[NR_NAMESPACES] */
8046 		},
8047 	};
8048 
8049 	ns_link_info = namespaces_event.event_id.link_info;
8050 
8051 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8052 			       task, &mntns_operations);
8053 
8054 #ifdef CONFIG_USER_NS
8055 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8056 			       task, &userns_operations);
8057 #endif
8058 #ifdef CONFIG_NET_NS
8059 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8060 			       task, &netns_operations);
8061 #endif
8062 #ifdef CONFIG_UTS_NS
8063 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8064 			       task, &utsns_operations);
8065 #endif
8066 #ifdef CONFIG_IPC_NS
8067 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8068 			       task, &ipcns_operations);
8069 #endif
8070 #ifdef CONFIG_PID_NS
8071 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8072 			       task, &pidns_operations);
8073 #endif
8074 #ifdef CONFIG_CGROUPS
8075 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8076 			       task, &cgroupns_operations);
8077 #endif
8078 
8079 	perf_iterate_sb(perf_event_namespaces_output,
8080 			&namespaces_event,
8081 			NULL);
8082 }
8083 
8084 /*
8085  * cgroup tracking
8086  */
8087 #ifdef CONFIG_CGROUP_PERF
8088 
8089 struct perf_cgroup_event {
8090 	char				*path;
8091 	int				path_size;
8092 	struct {
8093 		struct perf_event_header	header;
8094 		u64				id;
8095 		char				path[];
8096 	} event_id;
8097 };
8098 
8099 static int perf_event_cgroup_match(struct perf_event *event)
8100 {
8101 	return event->attr.cgroup;
8102 }
8103 
8104 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8105 {
8106 	struct perf_cgroup_event *cgroup_event = data;
8107 	struct perf_output_handle handle;
8108 	struct perf_sample_data sample;
8109 	u16 header_size = cgroup_event->event_id.header.size;
8110 	int ret;
8111 
8112 	if (!perf_event_cgroup_match(event))
8113 		return;
8114 
8115 	perf_event_header__init_id(&cgroup_event->event_id.header,
8116 				   &sample, event);
8117 	ret = perf_output_begin(&handle, &sample, event,
8118 				cgroup_event->event_id.header.size);
8119 	if (ret)
8120 		goto out;
8121 
8122 	perf_output_put(&handle, cgroup_event->event_id);
8123 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8124 
8125 	perf_event__output_id_sample(event, &handle, &sample);
8126 
8127 	perf_output_end(&handle);
8128 out:
8129 	cgroup_event->event_id.header.size = header_size;
8130 }
8131 
8132 static void perf_event_cgroup(struct cgroup *cgrp)
8133 {
8134 	struct perf_cgroup_event cgroup_event;
8135 	char path_enomem[16] = "//enomem";
8136 	char *pathname;
8137 	size_t size;
8138 
8139 	if (!atomic_read(&nr_cgroup_events))
8140 		return;
8141 
8142 	cgroup_event = (struct perf_cgroup_event){
8143 		.event_id  = {
8144 			.header = {
8145 				.type = PERF_RECORD_CGROUP,
8146 				.misc = 0,
8147 				.size = sizeof(cgroup_event.event_id),
8148 			},
8149 			.id = cgroup_id(cgrp),
8150 		},
8151 	};
8152 
8153 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8154 	if (pathname == NULL) {
8155 		cgroup_event.path = path_enomem;
8156 	} else {
8157 		/* just to be sure to have enough space for alignment */
8158 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8159 		cgroup_event.path = pathname;
8160 	}
8161 
8162 	/*
8163 	 * Since our buffer works in 8 byte units we need to align our string
8164 	 * size to a multiple of 8. However, we must guarantee the tail end is
8165 	 * zero'd out to avoid leaking random bits to userspace.
8166 	 */
8167 	size = strlen(cgroup_event.path) + 1;
8168 	while (!IS_ALIGNED(size, sizeof(u64)))
8169 		cgroup_event.path[size++] = '\0';
8170 
8171 	cgroup_event.event_id.header.size += size;
8172 	cgroup_event.path_size = size;
8173 
8174 	perf_iterate_sb(perf_event_cgroup_output,
8175 			&cgroup_event,
8176 			NULL);
8177 
8178 	kfree(pathname);
8179 }
8180 
8181 #endif
8182 
8183 /*
8184  * mmap tracking
8185  */
8186 
8187 struct perf_mmap_event {
8188 	struct vm_area_struct	*vma;
8189 
8190 	const char		*file_name;
8191 	int			file_size;
8192 	int			maj, min;
8193 	u64			ino;
8194 	u64			ino_generation;
8195 	u32			prot, flags;
8196 	u8			build_id[BUILD_ID_SIZE_MAX];
8197 	u32			build_id_size;
8198 
8199 	struct {
8200 		struct perf_event_header	header;
8201 
8202 		u32				pid;
8203 		u32				tid;
8204 		u64				start;
8205 		u64				len;
8206 		u64				pgoff;
8207 	} event_id;
8208 };
8209 
8210 static int perf_event_mmap_match(struct perf_event *event,
8211 				 void *data)
8212 {
8213 	struct perf_mmap_event *mmap_event = data;
8214 	struct vm_area_struct *vma = mmap_event->vma;
8215 	int executable = vma->vm_flags & VM_EXEC;
8216 
8217 	return (!executable && event->attr.mmap_data) ||
8218 	       (executable && (event->attr.mmap || event->attr.mmap2));
8219 }
8220 
8221 static void perf_event_mmap_output(struct perf_event *event,
8222 				   void *data)
8223 {
8224 	struct perf_mmap_event *mmap_event = data;
8225 	struct perf_output_handle handle;
8226 	struct perf_sample_data sample;
8227 	int size = mmap_event->event_id.header.size;
8228 	u32 type = mmap_event->event_id.header.type;
8229 	bool use_build_id;
8230 	int ret;
8231 
8232 	if (!perf_event_mmap_match(event, data))
8233 		return;
8234 
8235 	if (event->attr.mmap2) {
8236 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8237 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8238 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8239 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8240 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8241 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8242 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8243 	}
8244 
8245 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8246 	ret = perf_output_begin(&handle, &sample, event,
8247 				mmap_event->event_id.header.size);
8248 	if (ret)
8249 		goto out;
8250 
8251 	mmap_event->event_id.pid = perf_event_pid(event, current);
8252 	mmap_event->event_id.tid = perf_event_tid(event, current);
8253 
8254 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8255 
8256 	if (event->attr.mmap2 && use_build_id)
8257 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8258 
8259 	perf_output_put(&handle, mmap_event->event_id);
8260 
8261 	if (event->attr.mmap2) {
8262 		if (use_build_id) {
8263 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8264 
8265 			__output_copy(&handle, size, 4);
8266 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8267 		} else {
8268 			perf_output_put(&handle, mmap_event->maj);
8269 			perf_output_put(&handle, mmap_event->min);
8270 			perf_output_put(&handle, mmap_event->ino);
8271 			perf_output_put(&handle, mmap_event->ino_generation);
8272 		}
8273 		perf_output_put(&handle, mmap_event->prot);
8274 		perf_output_put(&handle, mmap_event->flags);
8275 	}
8276 
8277 	__output_copy(&handle, mmap_event->file_name,
8278 				   mmap_event->file_size);
8279 
8280 	perf_event__output_id_sample(event, &handle, &sample);
8281 
8282 	perf_output_end(&handle);
8283 out:
8284 	mmap_event->event_id.header.size = size;
8285 	mmap_event->event_id.header.type = type;
8286 }
8287 
8288 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8289 {
8290 	struct vm_area_struct *vma = mmap_event->vma;
8291 	struct file *file = vma->vm_file;
8292 	int maj = 0, min = 0;
8293 	u64 ino = 0, gen = 0;
8294 	u32 prot = 0, flags = 0;
8295 	unsigned int size;
8296 	char tmp[16];
8297 	char *buf = NULL;
8298 	char *name;
8299 
8300 	if (vma->vm_flags & VM_READ)
8301 		prot |= PROT_READ;
8302 	if (vma->vm_flags & VM_WRITE)
8303 		prot |= PROT_WRITE;
8304 	if (vma->vm_flags & VM_EXEC)
8305 		prot |= PROT_EXEC;
8306 
8307 	if (vma->vm_flags & VM_MAYSHARE)
8308 		flags = MAP_SHARED;
8309 	else
8310 		flags = MAP_PRIVATE;
8311 
8312 	if (vma->vm_flags & VM_DENYWRITE)
8313 		flags |= MAP_DENYWRITE;
8314 	if (vma->vm_flags & VM_MAYEXEC)
8315 		flags |= MAP_EXECUTABLE;
8316 	if (vma->vm_flags & VM_LOCKED)
8317 		flags |= MAP_LOCKED;
8318 	if (is_vm_hugetlb_page(vma))
8319 		flags |= MAP_HUGETLB;
8320 
8321 	if (file) {
8322 		struct inode *inode;
8323 		dev_t dev;
8324 
8325 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8326 		if (!buf) {
8327 			name = "//enomem";
8328 			goto cpy_name;
8329 		}
8330 		/*
8331 		 * d_path() works from the end of the rb backwards, so we
8332 		 * need to add enough zero bytes after the string to handle
8333 		 * the 64bit alignment we do later.
8334 		 */
8335 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8336 		if (IS_ERR(name)) {
8337 			name = "//toolong";
8338 			goto cpy_name;
8339 		}
8340 		inode = file_inode(vma->vm_file);
8341 		dev = inode->i_sb->s_dev;
8342 		ino = inode->i_ino;
8343 		gen = inode->i_generation;
8344 		maj = MAJOR(dev);
8345 		min = MINOR(dev);
8346 
8347 		goto got_name;
8348 	} else {
8349 		if (vma->vm_ops && vma->vm_ops->name) {
8350 			name = (char *) vma->vm_ops->name(vma);
8351 			if (name)
8352 				goto cpy_name;
8353 		}
8354 
8355 		name = (char *)arch_vma_name(vma);
8356 		if (name)
8357 			goto cpy_name;
8358 
8359 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8360 				vma->vm_end >= vma->vm_mm->brk) {
8361 			name = "[heap]";
8362 			goto cpy_name;
8363 		}
8364 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8365 				vma->vm_end >= vma->vm_mm->start_stack) {
8366 			name = "[stack]";
8367 			goto cpy_name;
8368 		}
8369 
8370 		name = "//anon";
8371 		goto cpy_name;
8372 	}
8373 
8374 cpy_name:
8375 	strlcpy(tmp, name, sizeof(tmp));
8376 	name = tmp;
8377 got_name:
8378 	/*
8379 	 * Since our buffer works in 8 byte units we need to align our string
8380 	 * size to a multiple of 8. However, we must guarantee the tail end is
8381 	 * zero'd out to avoid leaking random bits to userspace.
8382 	 */
8383 	size = strlen(name)+1;
8384 	while (!IS_ALIGNED(size, sizeof(u64)))
8385 		name[size++] = '\0';
8386 
8387 	mmap_event->file_name = name;
8388 	mmap_event->file_size = size;
8389 	mmap_event->maj = maj;
8390 	mmap_event->min = min;
8391 	mmap_event->ino = ino;
8392 	mmap_event->ino_generation = gen;
8393 	mmap_event->prot = prot;
8394 	mmap_event->flags = flags;
8395 
8396 	if (!(vma->vm_flags & VM_EXEC))
8397 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8398 
8399 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8400 
8401 	if (atomic_read(&nr_build_id_events))
8402 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8403 
8404 	perf_iterate_sb(perf_event_mmap_output,
8405 		       mmap_event,
8406 		       NULL);
8407 
8408 	kfree(buf);
8409 }
8410 
8411 /*
8412  * Check whether inode and address range match filter criteria.
8413  */
8414 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8415 				     struct file *file, unsigned long offset,
8416 				     unsigned long size)
8417 {
8418 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8419 	if (!filter->path.dentry)
8420 		return false;
8421 
8422 	if (d_inode(filter->path.dentry) != file_inode(file))
8423 		return false;
8424 
8425 	if (filter->offset > offset + size)
8426 		return false;
8427 
8428 	if (filter->offset + filter->size < offset)
8429 		return false;
8430 
8431 	return true;
8432 }
8433 
8434 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8435 					struct vm_area_struct *vma,
8436 					struct perf_addr_filter_range *fr)
8437 {
8438 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8439 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8440 	struct file *file = vma->vm_file;
8441 
8442 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8443 		return false;
8444 
8445 	if (filter->offset < off) {
8446 		fr->start = vma->vm_start;
8447 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8448 	} else {
8449 		fr->start = vma->vm_start + filter->offset - off;
8450 		fr->size = min(vma->vm_end - fr->start, filter->size);
8451 	}
8452 
8453 	return true;
8454 }
8455 
8456 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8457 {
8458 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8459 	struct vm_area_struct *vma = data;
8460 	struct perf_addr_filter *filter;
8461 	unsigned int restart = 0, count = 0;
8462 	unsigned long flags;
8463 
8464 	if (!has_addr_filter(event))
8465 		return;
8466 
8467 	if (!vma->vm_file)
8468 		return;
8469 
8470 	raw_spin_lock_irqsave(&ifh->lock, flags);
8471 	list_for_each_entry(filter, &ifh->list, entry) {
8472 		if (perf_addr_filter_vma_adjust(filter, vma,
8473 						&event->addr_filter_ranges[count]))
8474 			restart++;
8475 
8476 		count++;
8477 	}
8478 
8479 	if (restart)
8480 		event->addr_filters_gen++;
8481 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8482 
8483 	if (restart)
8484 		perf_event_stop(event, 1);
8485 }
8486 
8487 /*
8488  * Adjust all task's events' filters to the new vma
8489  */
8490 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8491 {
8492 	struct perf_event_context *ctx;
8493 	int ctxn;
8494 
8495 	/*
8496 	 * Data tracing isn't supported yet and as such there is no need
8497 	 * to keep track of anything that isn't related to executable code:
8498 	 */
8499 	if (!(vma->vm_flags & VM_EXEC))
8500 		return;
8501 
8502 	rcu_read_lock();
8503 	for_each_task_context_nr(ctxn) {
8504 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8505 		if (!ctx)
8506 			continue;
8507 
8508 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8509 	}
8510 	rcu_read_unlock();
8511 }
8512 
8513 void perf_event_mmap(struct vm_area_struct *vma)
8514 {
8515 	struct perf_mmap_event mmap_event;
8516 
8517 	if (!atomic_read(&nr_mmap_events))
8518 		return;
8519 
8520 	mmap_event = (struct perf_mmap_event){
8521 		.vma	= vma,
8522 		/* .file_name */
8523 		/* .file_size */
8524 		.event_id  = {
8525 			.header = {
8526 				.type = PERF_RECORD_MMAP,
8527 				.misc = PERF_RECORD_MISC_USER,
8528 				/* .size */
8529 			},
8530 			/* .pid */
8531 			/* .tid */
8532 			.start  = vma->vm_start,
8533 			.len    = vma->vm_end - vma->vm_start,
8534 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8535 		},
8536 		/* .maj (attr_mmap2 only) */
8537 		/* .min (attr_mmap2 only) */
8538 		/* .ino (attr_mmap2 only) */
8539 		/* .ino_generation (attr_mmap2 only) */
8540 		/* .prot (attr_mmap2 only) */
8541 		/* .flags (attr_mmap2 only) */
8542 	};
8543 
8544 	perf_addr_filters_adjust(vma);
8545 	perf_event_mmap_event(&mmap_event);
8546 }
8547 
8548 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8549 			  unsigned long size, u64 flags)
8550 {
8551 	struct perf_output_handle handle;
8552 	struct perf_sample_data sample;
8553 	struct perf_aux_event {
8554 		struct perf_event_header	header;
8555 		u64				offset;
8556 		u64				size;
8557 		u64				flags;
8558 	} rec = {
8559 		.header = {
8560 			.type = PERF_RECORD_AUX,
8561 			.misc = 0,
8562 			.size = sizeof(rec),
8563 		},
8564 		.offset		= head,
8565 		.size		= size,
8566 		.flags		= flags,
8567 	};
8568 	int ret;
8569 
8570 	perf_event_header__init_id(&rec.header, &sample, event);
8571 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8572 
8573 	if (ret)
8574 		return;
8575 
8576 	perf_output_put(&handle, rec);
8577 	perf_event__output_id_sample(event, &handle, &sample);
8578 
8579 	perf_output_end(&handle);
8580 }
8581 
8582 /*
8583  * Lost/dropped samples logging
8584  */
8585 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8586 {
8587 	struct perf_output_handle handle;
8588 	struct perf_sample_data sample;
8589 	int ret;
8590 
8591 	struct {
8592 		struct perf_event_header	header;
8593 		u64				lost;
8594 	} lost_samples_event = {
8595 		.header = {
8596 			.type = PERF_RECORD_LOST_SAMPLES,
8597 			.misc = 0,
8598 			.size = sizeof(lost_samples_event),
8599 		},
8600 		.lost		= lost,
8601 	};
8602 
8603 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8604 
8605 	ret = perf_output_begin(&handle, &sample, event,
8606 				lost_samples_event.header.size);
8607 	if (ret)
8608 		return;
8609 
8610 	perf_output_put(&handle, lost_samples_event);
8611 	perf_event__output_id_sample(event, &handle, &sample);
8612 	perf_output_end(&handle);
8613 }
8614 
8615 /*
8616  * context_switch tracking
8617  */
8618 
8619 struct perf_switch_event {
8620 	struct task_struct	*task;
8621 	struct task_struct	*next_prev;
8622 
8623 	struct {
8624 		struct perf_event_header	header;
8625 		u32				next_prev_pid;
8626 		u32				next_prev_tid;
8627 	} event_id;
8628 };
8629 
8630 static int perf_event_switch_match(struct perf_event *event)
8631 {
8632 	return event->attr.context_switch;
8633 }
8634 
8635 static void perf_event_switch_output(struct perf_event *event, void *data)
8636 {
8637 	struct perf_switch_event *se = data;
8638 	struct perf_output_handle handle;
8639 	struct perf_sample_data sample;
8640 	int ret;
8641 
8642 	if (!perf_event_switch_match(event))
8643 		return;
8644 
8645 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8646 	if (event->ctx->task) {
8647 		se->event_id.header.type = PERF_RECORD_SWITCH;
8648 		se->event_id.header.size = sizeof(se->event_id.header);
8649 	} else {
8650 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8651 		se->event_id.header.size = sizeof(se->event_id);
8652 		se->event_id.next_prev_pid =
8653 					perf_event_pid(event, se->next_prev);
8654 		se->event_id.next_prev_tid =
8655 					perf_event_tid(event, se->next_prev);
8656 	}
8657 
8658 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8659 
8660 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8661 	if (ret)
8662 		return;
8663 
8664 	if (event->ctx->task)
8665 		perf_output_put(&handle, se->event_id.header);
8666 	else
8667 		perf_output_put(&handle, se->event_id);
8668 
8669 	perf_event__output_id_sample(event, &handle, &sample);
8670 
8671 	perf_output_end(&handle);
8672 }
8673 
8674 static void perf_event_switch(struct task_struct *task,
8675 			      struct task_struct *next_prev, bool sched_in)
8676 {
8677 	struct perf_switch_event switch_event;
8678 
8679 	/* N.B. caller checks nr_switch_events != 0 */
8680 
8681 	switch_event = (struct perf_switch_event){
8682 		.task		= task,
8683 		.next_prev	= next_prev,
8684 		.event_id	= {
8685 			.header = {
8686 				/* .type */
8687 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8688 				/* .size */
8689 			},
8690 			/* .next_prev_pid */
8691 			/* .next_prev_tid */
8692 		},
8693 	};
8694 
8695 	if (!sched_in && task->state == TASK_RUNNING)
8696 		switch_event.event_id.header.misc |=
8697 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8698 
8699 	perf_iterate_sb(perf_event_switch_output,
8700 		       &switch_event,
8701 		       NULL);
8702 }
8703 
8704 /*
8705  * IRQ throttle logging
8706  */
8707 
8708 static void perf_log_throttle(struct perf_event *event, int enable)
8709 {
8710 	struct perf_output_handle handle;
8711 	struct perf_sample_data sample;
8712 	int ret;
8713 
8714 	struct {
8715 		struct perf_event_header	header;
8716 		u64				time;
8717 		u64				id;
8718 		u64				stream_id;
8719 	} throttle_event = {
8720 		.header = {
8721 			.type = PERF_RECORD_THROTTLE,
8722 			.misc = 0,
8723 			.size = sizeof(throttle_event),
8724 		},
8725 		.time		= perf_event_clock(event),
8726 		.id		= primary_event_id(event),
8727 		.stream_id	= event->id,
8728 	};
8729 
8730 	if (enable)
8731 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8732 
8733 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8734 
8735 	ret = perf_output_begin(&handle, &sample, event,
8736 				throttle_event.header.size);
8737 	if (ret)
8738 		return;
8739 
8740 	perf_output_put(&handle, throttle_event);
8741 	perf_event__output_id_sample(event, &handle, &sample);
8742 	perf_output_end(&handle);
8743 }
8744 
8745 /*
8746  * ksymbol register/unregister tracking
8747  */
8748 
8749 struct perf_ksymbol_event {
8750 	const char	*name;
8751 	int		name_len;
8752 	struct {
8753 		struct perf_event_header        header;
8754 		u64				addr;
8755 		u32				len;
8756 		u16				ksym_type;
8757 		u16				flags;
8758 	} event_id;
8759 };
8760 
8761 static int perf_event_ksymbol_match(struct perf_event *event)
8762 {
8763 	return event->attr.ksymbol;
8764 }
8765 
8766 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8767 {
8768 	struct perf_ksymbol_event *ksymbol_event = data;
8769 	struct perf_output_handle handle;
8770 	struct perf_sample_data sample;
8771 	int ret;
8772 
8773 	if (!perf_event_ksymbol_match(event))
8774 		return;
8775 
8776 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8777 				   &sample, event);
8778 	ret = perf_output_begin(&handle, &sample, event,
8779 				ksymbol_event->event_id.header.size);
8780 	if (ret)
8781 		return;
8782 
8783 	perf_output_put(&handle, ksymbol_event->event_id);
8784 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8785 	perf_event__output_id_sample(event, &handle, &sample);
8786 
8787 	perf_output_end(&handle);
8788 }
8789 
8790 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8791 			const char *sym)
8792 {
8793 	struct perf_ksymbol_event ksymbol_event;
8794 	char name[KSYM_NAME_LEN];
8795 	u16 flags = 0;
8796 	int name_len;
8797 
8798 	if (!atomic_read(&nr_ksymbol_events))
8799 		return;
8800 
8801 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8802 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8803 		goto err;
8804 
8805 	strlcpy(name, sym, KSYM_NAME_LEN);
8806 	name_len = strlen(name) + 1;
8807 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8808 		name[name_len++] = '\0';
8809 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8810 
8811 	if (unregister)
8812 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8813 
8814 	ksymbol_event = (struct perf_ksymbol_event){
8815 		.name = name,
8816 		.name_len = name_len,
8817 		.event_id = {
8818 			.header = {
8819 				.type = PERF_RECORD_KSYMBOL,
8820 				.size = sizeof(ksymbol_event.event_id) +
8821 					name_len,
8822 			},
8823 			.addr = addr,
8824 			.len = len,
8825 			.ksym_type = ksym_type,
8826 			.flags = flags,
8827 		},
8828 	};
8829 
8830 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8831 	return;
8832 err:
8833 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8834 }
8835 
8836 /*
8837  * bpf program load/unload tracking
8838  */
8839 
8840 struct perf_bpf_event {
8841 	struct bpf_prog	*prog;
8842 	struct {
8843 		struct perf_event_header        header;
8844 		u16				type;
8845 		u16				flags;
8846 		u32				id;
8847 		u8				tag[BPF_TAG_SIZE];
8848 	} event_id;
8849 };
8850 
8851 static int perf_event_bpf_match(struct perf_event *event)
8852 {
8853 	return event->attr.bpf_event;
8854 }
8855 
8856 static void perf_event_bpf_output(struct perf_event *event, void *data)
8857 {
8858 	struct perf_bpf_event *bpf_event = data;
8859 	struct perf_output_handle handle;
8860 	struct perf_sample_data sample;
8861 	int ret;
8862 
8863 	if (!perf_event_bpf_match(event))
8864 		return;
8865 
8866 	perf_event_header__init_id(&bpf_event->event_id.header,
8867 				   &sample, event);
8868 	ret = perf_output_begin(&handle, data, event,
8869 				bpf_event->event_id.header.size);
8870 	if (ret)
8871 		return;
8872 
8873 	perf_output_put(&handle, bpf_event->event_id);
8874 	perf_event__output_id_sample(event, &handle, &sample);
8875 
8876 	perf_output_end(&handle);
8877 }
8878 
8879 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8880 					 enum perf_bpf_event_type type)
8881 {
8882 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8883 	int i;
8884 
8885 	if (prog->aux->func_cnt == 0) {
8886 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8887 				   (u64)(unsigned long)prog->bpf_func,
8888 				   prog->jited_len, unregister,
8889 				   prog->aux->ksym.name);
8890 	} else {
8891 		for (i = 0; i < prog->aux->func_cnt; i++) {
8892 			struct bpf_prog *subprog = prog->aux->func[i];
8893 
8894 			perf_event_ksymbol(
8895 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8896 				(u64)(unsigned long)subprog->bpf_func,
8897 				subprog->jited_len, unregister,
8898 				prog->aux->ksym.name);
8899 		}
8900 	}
8901 }
8902 
8903 void perf_event_bpf_event(struct bpf_prog *prog,
8904 			  enum perf_bpf_event_type type,
8905 			  u16 flags)
8906 {
8907 	struct perf_bpf_event bpf_event;
8908 
8909 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8910 	    type >= PERF_BPF_EVENT_MAX)
8911 		return;
8912 
8913 	switch (type) {
8914 	case PERF_BPF_EVENT_PROG_LOAD:
8915 	case PERF_BPF_EVENT_PROG_UNLOAD:
8916 		if (atomic_read(&nr_ksymbol_events))
8917 			perf_event_bpf_emit_ksymbols(prog, type);
8918 		break;
8919 	default:
8920 		break;
8921 	}
8922 
8923 	if (!atomic_read(&nr_bpf_events))
8924 		return;
8925 
8926 	bpf_event = (struct perf_bpf_event){
8927 		.prog = prog,
8928 		.event_id = {
8929 			.header = {
8930 				.type = PERF_RECORD_BPF_EVENT,
8931 				.size = sizeof(bpf_event.event_id),
8932 			},
8933 			.type = type,
8934 			.flags = flags,
8935 			.id = prog->aux->id,
8936 		},
8937 	};
8938 
8939 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8940 
8941 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8942 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8943 }
8944 
8945 struct perf_text_poke_event {
8946 	const void		*old_bytes;
8947 	const void		*new_bytes;
8948 	size_t			pad;
8949 	u16			old_len;
8950 	u16			new_len;
8951 
8952 	struct {
8953 		struct perf_event_header	header;
8954 
8955 		u64				addr;
8956 	} event_id;
8957 };
8958 
8959 static int perf_event_text_poke_match(struct perf_event *event)
8960 {
8961 	return event->attr.text_poke;
8962 }
8963 
8964 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8965 {
8966 	struct perf_text_poke_event *text_poke_event = data;
8967 	struct perf_output_handle handle;
8968 	struct perf_sample_data sample;
8969 	u64 padding = 0;
8970 	int ret;
8971 
8972 	if (!perf_event_text_poke_match(event))
8973 		return;
8974 
8975 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8976 
8977 	ret = perf_output_begin(&handle, &sample, event,
8978 				text_poke_event->event_id.header.size);
8979 	if (ret)
8980 		return;
8981 
8982 	perf_output_put(&handle, text_poke_event->event_id);
8983 	perf_output_put(&handle, text_poke_event->old_len);
8984 	perf_output_put(&handle, text_poke_event->new_len);
8985 
8986 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8987 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8988 
8989 	if (text_poke_event->pad)
8990 		__output_copy(&handle, &padding, text_poke_event->pad);
8991 
8992 	perf_event__output_id_sample(event, &handle, &sample);
8993 
8994 	perf_output_end(&handle);
8995 }
8996 
8997 void perf_event_text_poke(const void *addr, const void *old_bytes,
8998 			  size_t old_len, const void *new_bytes, size_t new_len)
8999 {
9000 	struct perf_text_poke_event text_poke_event;
9001 	size_t tot, pad;
9002 
9003 	if (!atomic_read(&nr_text_poke_events))
9004 		return;
9005 
9006 	tot  = sizeof(text_poke_event.old_len) + old_len;
9007 	tot += sizeof(text_poke_event.new_len) + new_len;
9008 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9009 
9010 	text_poke_event = (struct perf_text_poke_event){
9011 		.old_bytes    = old_bytes,
9012 		.new_bytes    = new_bytes,
9013 		.pad          = pad,
9014 		.old_len      = old_len,
9015 		.new_len      = new_len,
9016 		.event_id  = {
9017 			.header = {
9018 				.type = PERF_RECORD_TEXT_POKE,
9019 				.misc = PERF_RECORD_MISC_KERNEL,
9020 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9021 			},
9022 			.addr = (unsigned long)addr,
9023 		},
9024 	};
9025 
9026 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9027 }
9028 
9029 void perf_event_itrace_started(struct perf_event *event)
9030 {
9031 	event->attach_state |= PERF_ATTACH_ITRACE;
9032 }
9033 
9034 static void perf_log_itrace_start(struct perf_event *event)
9035 {
9036 	struct perf_output_handle handle;
9037 	struct perf_sample_data sample;
9038 	struct perf_aux_event {
9039 		struct perf_event_header        header;
9040 		u32				pid;
9041 		u32				tid;
9042 	} rec;
9043 	int ret;
9044 
9045 	if (event->parent)
9046 		event = event->parent;
9047 
9048 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9049 	    event->attach_state & PERF_ATTACH_ITRACE)
9050 		return;
9051 
9052 	rec.header.type	= PERF_RECORD_ITRACE_START;
9053 	rec.header.misc	= 0;
9054 	rec.header.size	= sizeof(rec);
9055 	rec.pid	= perf_event_pid(event, current);
9056 	rec.tid	= perf_event_tid(event, current);
9057 
9058 	perf_event_header__init_id(&rec.header, &sample, event);
9059 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9060 
9061 	if (ret)
9062 		return;
9063 
9064 	perf_output_put(&handle, rec);
9065 	perf_event__output_id_sample(event, &handle, &sample);
9066 
9067 	perf_output_end(&handle);
9068 }
9069 
9070 static int
9071 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9072 {
9073 	struct hw_perf_event *hwc = &event->hw;
9074 	int ret = 0;
9075 	u64 seq;
9076 
9077 	seq = __this_cpu_read(perf_throttled_seq);
9078 	if (seq != hwc->interrupts_seq) {
9079 		hwc->interrupts_seq = seq;
9080 		hwc->interrupts = 1;
9081 	} else {
9082 		hwc->interrupts++;
9083 		if (unlikely(throttle
9084 			     && hwc->interrupts >= max_samples_per_tick)) {
9085 			__this_cpu_inc(perf_throttled_count);
9086 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9087 			hwc->interrupts = MAX_INTERRUPTS;
9088 			perf_log_throttle(event, 0);
9089 			ret = 1;
9090 		}
9091 	}
9092 
9093 	if (event->attr.freq) {
9094 		u64 now = perf_clock();
9095 		s64 delta = now - hwc->freq_time_stamp;
9096 
9097 		hwc->freq_time_stamp = now;
9098 
9099 		if (delta > 0 && delta < 2*TICK_NSEC)
9100 			perf_adjust_period(event, delta, hwc->last_period, true);
9101 	}
9102 
9103 	return ret;
9104 }
9105 
9106 int perf_event_account_interrupt(struct perf_event *event)
9107 {
9108 	return __perf_event_account_interrupt(event, 1);
9109 }
9110 
9111 /*
9112  * Generic event overflow handling, sampling.
9113  */
9114 
9115 static int __perf_event_overflow(struct perf_event *event,
9116 				   int throttle, struct perf_sample_data *data,
9117 				   struct pt_regs *regs)
9118 {
9119 	int events = atomic_read(&event->event_limit);
9120 	int ret = 0;
9121 
9122 	/*
9123 	 * Non-sampling counters might still use the PMI to fold short
9124 	 * hardware counters, ignore those.
9125 	 */
9126 	if (unlikely(!is_sampling_event(event)))
9127 		return 0;
9128 
9129 	ret = __perf_event_account_interrupt(event, throttle);
9130 
9131 	/*
9132 	 * XXX event_limit might not quite work as expected on inherited
9133 	 * events
9134 	 */
9135 
9136 	event->pending_kill = POLL_IN;
9137 	if (events && atomic_dec_and_test(&event->event_limit)) {
9138 		ret = 1;
9139 		event->pending_kill = POLL_HUP;
9140 		event->pending_addr = data->addr;
9141 
9142 		perf_event_disable_inatomic(event);
9143 	}
9144 
9145 	READ_ONCE(event->overflow_handler)(event, data, regs);
9146 
9147 	if (*perf_event_fasync(event) && event->pending_kill) {
9148 		event->pending_wakeup = 1;
9149 		irq_work_queue(&event->pending);
9150 	}
9151 
9152 	return ret;
9153 }
9154 
9155 int perf_event_overflow(struct perf_event *event,
9156 			  struct perf_sample_data *data,
9157 			  struct pt_regs *regs)
9158 {
9159 	return __perf_event_overflow(event, 1, data, regs);
9160 }
9161 
9162 /*
9163  * Generic software event infrastructure
9164  */
9165 
9166 struct swevent_htable {
9167 	struct swevent_hlist		*swevent_hlist;
9168 	struct mutex			hlist_mutex;
9169 	int				hlist_refcount;
9170 
9171 	/* Recursion avoidance in each contexts */
9172 	int				recursion[PERF_NR_CONTEXTS];
9173 };
9174 
9175 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9176 
9177 /*
9178  * We directly increment event->count and keep a second value in
9179  * event->hw.period_left to count intervals. This period event
9180  * is kept in the range [-sample_period, 0] so that we can use the
9181  * sign as trigger.
9182  */
9183 
9184 u64 perf_swevent_set_period(struct perf_event *event)
9185 {
9186 	struct hw_perf_event *hwc = &event->hw;
9187 	u64 period = hwc->last_period;
9188 	u64 nr, offset;
9189 	s64 old, val;
9190 
9191 	hwc->last_period = hwc->sample_period;
9192 
9193 again:
9194 	old = val = local64_read(&hwc->period_left);
9195 	if (val < 0)
9196 		return 0;
9197 
9198 	nr = div64_u64(period + val, period);
9199 	offset = nr * period;
9200 	val -= offset;
9201 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9202 		goto again;
9203 
9204 	return nr;
9205 }
9206 
9207 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9208 				    struct perf_sample_data *data,
9209 				    struct pt_regs *regs)
9210 {
9211 	struct hw_perf_event *hwc = &event->hw;
9212 	int throttle = 0;
9213 
9214 	if (!overflow)
9215 		overflow = perf_swevent_set_period(event);
9216 
9217 	if (hwc->interrupts == MAX_INTERRUPTS)
9218 		return;
9219 
9220 	for (; overflow; overflow--) {
9221 		if (__perf_event_overflow(event, throttle,
9222 					    data, regs)) {
9223 			/*
9224 			 * We inhibit the overflow from happening when
9225 			 * hwc->interrupts == MAX_INTERRUPTS.
9226 			 */
9227 			break;
9228 		}
9229 		throttle = 1;
9230 	}
9231 }
9232 
9233 static void perf_swevent_event(struct perf_event *event, u64 nr,
9234 			       struct perf_sample_data *data,
9235 			       struct pt_regs *regs)
9236 {
9237 	struct hw_perf_event *hwc = &event->hw;
9238 
9239 	local64_add(nr, &event->count);
9240 
9241 	if (!regs)
9242 		return;
9243 
9244 	if (!is_sampling_event(event))
9245 		return;
9246 
9247 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9248 		data->period = nr;
9249 		return perf_swevent_overflow(event, 1, data, regs);
9250 	} else
9251 		data->period = event->hw.last_period;
9252 
9253 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9254 		return perf_swevent_overflow(event, 1, data, regs);
9255 
9256 	if (local64_add_negative(nr, &hwc->period_left))
9257 		return;
9258 
9259 	perf_swevent_overflow(event, 0, data, regs);
9260 }
9261 
9262 static int perf_exclude_event(struct perf_event *event,
9263 			      struct pt_regs *regs)
9264 {
9265 	if (event->hw.state & PERF_HES_STOPPED)
9266 		return 1;
9267 
9268 	if (regs) {
9269 		if (event->attr.exclude_user && user_mode(regs))
9270 			return 1;
9271 
9272 		if (event->attr.exclude_kernel && !user_mode(regs))
9273 			return 1;
9274 	}
9275 
9276 	return 0;
9277 }
9278 
9279 static int perf_swevent_match(struct perf_event *event,
9280 				enum perf_type_id type,
9281 				u32 event_id,
9282 				struct perf_sample_data *data,
9283 				struct pt_regs *regs)
9284 {
9285 	if (event->attr.type != type)
9286 		return 0;
9287 
9288 	if (event->attr.config != event_id)
9289 		return 0;
9290 
9291 	if (perf_exclude_event(event, regs))
9292 		return 0;
9293 
9294 	return 1;
9295 }
9296 
9297 static inline u64 swevent_hash(u64 type, u32 event_id)
9298 {
9299 	u64 val = event_id | (type << 32);
9300 
9301 	return hash_64(val, SWEVENT_HLIST_BITS);
9302 }
9303 
9304 static inline struct hlist_head *
9305 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9306 {
9307 	u64 hash = swevent_hash(type, event_id);
9308 
9309 	return &hlist->heads[hash];
9310 }
9311 
9312 /* For the read side: events when they trigger */
9313 static inline struct hlist_head *
9314 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9315 {
9316 	struct swevent_hlist *hlist;
9317 
9318 	hlist = rcu_dereference(swhash->swevent_hlist);
9319 	if (!hlist)
9320 		return NULL;
9321 
9322 	return __find_swevent_head(hlist, type, event_id);
9323 }
9324 
9325 /* For the event head insertion and removal in the hlist */
9326 static inline struct hlist_head *
9327 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9328 {
9329 	struct swevent_hlist *hlist;
9330 	u32 event_id = event->attr.config;
9331 	u64 type = event->attr.type;
9332 
9333 	/*
9334 	 * Event scheduling is always serialized against hlist allocation
9335 	 * and release. Which makes the protected version suitable here.
9336 	 * The context lock guarantees that.
9337 	 */
9338 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9339 					  lockdep_is_held(&event->ctx->lock));
9340 	if (!hlist)
9341 		return NULL;
9342 
9343 	return __find_swevent_head(hlist, type, event_id);
9344 }
9345 
9346 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9347 				    u64 nr,
9348 				    struct perf_sample_data *data,
9349 				    struct pt_regs *regs)
9350 {
9351 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9352 	struct perf_event *event;
9353 	struct hlist_head *head;
9354 
9355 	rcu_read_lock();
9356 	head = find_swevent_head_rcu(swhash, type, event_id);
9357 	if (!head)
9358 		goto end;
9359 
9360 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9361 		if (perf_swevent_match(event, type, event_id, data, regs))
9362 			perf_swevent_event(event, nr, data, regs);
9363 	}
9364 end:
9365 	rcu_read_unlock();
9366 }
9367 
9368 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9369 
9370 int perf_swevent_get_recursion_context(void)
9371 {
9372 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9373 
9374 	return get_recursion_context(swhash->recursion);
9375 }
9376 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9377 
9378 void perf_swevent_put_recursion_context(int rctx)
9379 {
9380 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9381 
9382 	put_recursion_context(swhash->recursion, rctx);
9383 }
9384 
9385 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9386 {
9387 	struct perf_sample_data data;
9388 
9389 	if (WARN_ON_ONCE(!regs))
9390 		return;
9391 
9392 	perf_sample_data_init(&data, addr, 0);
9393 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9394 }
9395 
9396 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9397 {
9398 	int rctx;
9399 
9400 	preempt_disable_notrace();
9401 	rctx = perf_swevent_get_recursion_context();
9402 	if (unlikely(rctx < 0))
9403 		goto fail;
9404 
9405 	___perf_sw_event(event_id, nr, regs, addr);
9406 
9407 	perf_swevent_put_recursion_context(rctx);
9408 fail:
9409 	preempt_enable_notrace();
9410 }
9411 
9412 static void perf_swevent_read(struct perf_event *event)
9413 {
9414 }
9415 
9416 static int perf_swevent_add(struct perf_event *event, int flags)
9417 {
9418 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9419 	struct hw_perf_event *hwc = &event->hw;
9420 	struct hlist_head *head;
9421 
9422 	if (is_sampling_event(event)) {
9423 		hwc->last_period = hwc->sample_period;
9424 		perf_swevent_set_period(event);
9425 	}
9426 
9427 	hwc->state = !(flags & PERF_EF_START);
9428 
9429 	head = find_swevent_head(swhash, event);
9430 	if (WARN_ON_ONCE(!head))
9431 		return -EINVAL;
9432 
9433 	hlist_add_head_rcu(&event->hlist_entry, head);
9434 	perf_event_update_userpage(event);
9435 
9436 	return 0;
9437 }
9438 
9439 static void perf_swevent_del(struct perf_event *event, int flags)
9440 {
9441 	hlist_del_rcu(&event->hlist_entry);
9442 }
9443 
9444 static void perf_swevent_start(struct perf_event *event, int flags)
9445 {
9446 	event->hw.state = 0;
9447 }
9448 
9449 static void perf_swevent_stop(struct perf_event *event, int flags)
9450 {
9451 	event->hw.state = PERF_HES_STOPPED;
9452 }
9453 
9454 /* Deref the hlist from the update side */
9455 static inline struct swevent_hlist *
9456 swevent_hlist_deref(struct swevent_htable *swhash)
9457 {
9458 	return rcu_dereference_protected(swhash->swevent_hlist,
9459 					 lockdep_is_held(&swhash->hlist_mutex));
9460 }
9461 
9462 static void swevent_hlist_release(struct swevent_htable *swhash)
9463 {
9464 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9465 
9466 	if (!hlist)
9467 		return;
9468 
9469 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9470 	kfree_rcu(hlist, rcu_head);
9471 }
9472 
9473 static void swevent_hlist_put_cpu(int cpu)
9474 {
9475 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9476 
9477 	mutex_lock(&swhash->hlist_mutex);
9478 
9479 	if (!--swhash->hlist_refcount)
9480 		swevent_hlist_release(swhash);
9481 
9482 	mutex_unlock(&swhash->hlist_mutex);
9483 }
9484 
9485 static void swevent_hlist_put(void)
9486 {
9487 	int cpu;
9488 
9489 	for_each_possible_cpu(cpu)
9490 		swevent_hlist_put_cpu(cpu);
9491 }
9492 
9493 static int swevent_hlist_get_cpu(int cpu)
9494 {
9495 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9496 	int err = 0;
9497 
9498 	mutex_lock(&swhash->hlist_mutex);
9499 	if (!swevent_hlist_deref(swhash) &&
9500 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9501 		struct swevent_hlist *hlist;
9502 
9503 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9504 		if (!hlist) {
9505 			err = -ENOMEM;
9506 			goto exit;
9507 		}
9508 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9509 	}
9510 	swhash->hlist_refcount++;
9511 exit:
9512 	mutex_unlock(&swhash->hlist_mutex);
9513 
9514 	return err;
9515 }
9516 
9517 static int swevent_hlist_get(void)
9518 {
9519 	int err, cpu, failed_cpu;
9520 
9521 	mutex_lock(&pmus_lock);
9522 	for_each_possible_cpu(cpu) {
9523 		err = swevent_hlist_get_cpu(cpu);
9524 		if (err) {
9525 			failed_cpu = cpu;
9526 			goto fail;
9527 		}
9528 	}
9529 	mutex_unlock(&pmus_lock);
9530 	return 0;
9531 fail:
9532 	for_each_possible_cpu(cpu) {
9533 		if (cpu == failed_cpu)
9534 			break;
9535 		swevent_hlist_put_cpu(cpu);
9536 	}
9537 	mutex_unlock(&pmus_lock);
9538 	return err;
9539 }
9540 
9541 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9542 
9543 static void sw_perf_event_destroy(struct perf_event *event)
9544 {
9545 	u64 event_id = event->attr.config;
9546 
9547 	WARN_ON(event->parent);
9548 
9549 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9550 	swevent_hlist_put();
9551 }
9552 
9553 static int perf_swevent_init(struct perf_event *event)
9554 {
9555 	u64 event_id = event->attr.config;
9556 
9557 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9558 		return -ENOENT;
9559 
9560 	/*
9561 	 * no branch sampling for software events
9562 	 */
9563 	if (has_branch_stack(event))
9564 		return -EOPNOTSUPP;
9565 
9566 	switch (event_id) {
9567 	case PERF_COUNT_SW_CPU_CLOCK:
9568 	case PERF_COUNT_SW_TASK_CLOCK:
9569 		return -ENOENT;
9570 
9571 	default:
9572 		break;
9573 	}
9574 
9575 	if (event_id >= PERF_COUNT_SW_MAX)
9576 		return -ENOENT;
9577 
9578 	if (!event->parent) {
9579 		int err;
9580 
9581 		err = swevent_hlist_get();
9582 		if (err)
9583 			return err;
9584 
9585 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9586 		event->destroy = sw_perf_event_destroy;
9587 	}
9588 
9589 	return 0;
9590 }
9591 
9592 static struct pmu perf_swevent = {
9593 	.task_ctx_nr	= perf_sw_context,
9594 
9595 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9596 
9597 	.event_init	= perf_swevent_init,
9598 	.add		= perf_swevent_add,
9599 	.del		= perf_swevent_del,
9600 	.start		= perf_swevent_start,
9601 	.stop		= perf_swevent_stop,
9602 	.read		= perf_swevent_read,
9603 };
9604 
9605 #ifdef CONFIG_EVENT_TRACING
9606 
9607 static int perf_tp_filter_match(struct perf_event *event,
9608 				struct perf_sample_data *data)
9609 {
9610 	void *record = data->raw->frag.data;
9611 
9612 	/* only top level events have filters set */
9613 	if (event->parent)
9614 		event = event->parent;
9615 
9616 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9617 		return 1;
9618 	return 0;
9619 }
9620 
9621 static int perf_tp_event_match(struct perf_event *event,
9622 				struct perf_sample_data *data,
9623 				struct pt_regs *regs)
9624 {
9625 	if (event->hw.state & PERF_HES_STOPPED)
9626 		return 0;
9627 	/*
9628 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9629 	 */
9630 	if (event->attr.exclude_kernel && !user_mode(regs))
9631 		return 0;
9632 
9633 	if (!perf_tp_filter_match(event, data))
9634 		return 0;
9635 
9636 	return 1;
9637 }
9638 
9639 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9640 			       struct trace_event_call *call, u64 count,
9641 			       struct pt_regs *regs, struct hlist_head *head,
9642 			       struct task_struct *task)
9643 {
9644 	if (bpf_prog_array_valid(call)) {
9645 		*(struct pt_regs **)raw_data = regs;
9646 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9647 			perf_swevent_put_recursion_context(rctx);
9648 			return;
9649 		}
9650 	}
9651 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9652 		      rctx, task);
9653 }
9654 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9655 
9656 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9657 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9658 		   struct task_struct *task)
9659 {
9660 	struct perf_sample_data data;
9661 	struct perf_event *event;
9662 
9663 	struct perf_raw_record raw = {
9664 		.frag = {
9665 			.size = entry_size,
9666 			.data = record,
9667 		},
9668 	};
9669 
9670 	perf_sample_data_init(&data, 0, 0);
9671 	data.raw = &raw;
9672 
9673 	perf_trace_buf_update(record, event_type);
9674 
9675 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9676 		if (perf_tp_event_match(event, &data, regs))
9677 			perf_swevent_event(event, count, &data, regs);
9678 	}
9679 
9680 	/*
9681 	 * If we got specified a target task, also iterate its context and
9682 	 * deliver this event there too.
9683 	 */
9684 	if (task && task != current) {
9685 		struct perf_event_context *ctx;
9686 		struct trace_entry *entry = record;
9687 
9688 		rcu_read_lock();
9689 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9690 		if (!ctx)
9691 			goto unlock;
9692 
9693 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9694 			if (event->cpu != smp_processor_id())
9695 				continue;
9696 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9697 				continue;
9698 			if (event->attr.config != entry->type)
9699 				continue;
9700 			if (perf_tp_event_match(event, &data, regs))
9701 				perf_swevent_event(event, count, &data, regs);
9702 		}
9703 unlock:
9704 		rcu_read_unlock();
9705 	}
9706 
9707 	perf_swevent_put_recursion_context(rctx);
9708 }
9709 EXPORT_SYMBOL_GPL(perf_tp_event);
9710 
9711 static void tp_perf_event_destroy(struct perf_event *event)
9712 {
9713 	perf_trace_destroy(event);
9714 }
9715 
9716 static int perf_tp_event_init(struct perf_event *event)
9717 {
9718 	int err;
9719 
9720 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9721 		return -ENOENT;
9722 
9723 	/*
9724 	 * no branch sampling for tracepoint events
9725 	 */
9726 	if (has_branch_stack(event))
9727 		return -EOPNOTSUPP;
9728 
9729 	err = perf_trace_init(event);
9730 	if (err)
9731 		return err;
9732 
9733 	event->destroy = tp_perf_event_destroy;
9734 
9735 	return 0;
9736 }
9737 
9738 static struct pmu perf_tracepoint = {
9739 	.task_ctx_nr	= perf_sw_context,
9740 
9741 	.event_init	= perf_tp_event_init,
9742 	.add		= perf_trace_add,
9743 	.del		= perf_trace_del,
9744 	.start		= perf_swevent_start,
9745 	.stop		= perf_swevent_stop,
9746 	.read		= perf_swevent_read,
9747 };
9748 
9749 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9750 /*
9751  * Flags in config, used by dynamic PMU kprobe and uprobe
9752  * The flags should match following PMU_FORMAT_ATTR().
9753  *
9754  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9755  *                               if not set, create kprobe/uprobe
9756  *
9757  * The following values specify a reference counter (or semaphore in the
9758  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9759  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9760  *
9761  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9762  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9763  */
9764 enum perf_probe_config {
9765 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9766 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9767 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9768 };
9769 
9770 PMU_FORMAT_ATTR(retprobe, "config:0");
9771 #endif
9772 
9773 #ifdef CONFIG_KPROBE_EVENTS
9774 static struct attribute *kprobe_attrs[] = {
9775 	&format_attr_retprobe.attr,
9776 	NULL,
9777 };
9778 
9779 static struct attribute_group kprobe_format_group = {
9780 	.name = "format",
9781 	.attrs = kprobe_attrs,
9782 };
9783 
9784 static const struct attribute_group *kprobe_attr_groups[] = {
9785 	&kprobe_format_group,
9786 	NULL,
9787 };
9788 
9789 static int perf_kprobe_event_init(struct perf_event *event);
9790 static struct pmu perf_kprobe = {
9791 	.task_ctx_nr	= perf_sw_context,
9792 	.event_init	= perf_kprobe_event_init,
9793 	.add		= perf_trace_add,
9794 	.del		= perf_trace_del,
9795 	.start		= perf_swevent_start,
9796 	.stop		= perf_swevent_stop,
9797 	.read		= perf_swevent_read,
9798 	.attr_groups	= kprobe_attr_groups,
9799 };
9800 
9801 static int perf_kprobe_event_init(struct perf_event *event)
9802 {
9803 	int err;
9804 	bool is_retprobe;
9805 
9806 	if (event->attr.type != perf_kprobe.type)
9807 		return -ENOENT;
9808 
9809 	if (!perfmon_capable())
9810 		return -EACCES;
9811 
9812 	/*
9813 	 * no branch sampling for probe events
9814 	 */
9815 	if (has_branch_stack(event))
9816 		return -EOPNOTSUPP;
9817 
9818 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9819 	err = perf_kprobe_init(event, is_retprobe);
9820 	if (err)
9821 		return err;
9822 
9823 	event->destroy = perf_kprobe_destroy;
9824 
9825 	return 0;
9826 }
9827 #endif /* CONFIG_KPROBE_EVENTS */
9828 
9829 #ifdef CONFIG_UPROBE_EVENTS
9830 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9831 
9832 static struct attribute *uprobe_attrs[] = {
9833 	&format_attr_retprobe.attr,
9834 	&format_attr_ref_ctr_offset.attr,
9835 	NULL,
9836 };
9837 
9838 static struct attribute_group uprobe_format_group = {
9839 	.name = "format",
9840 	.attrs = uprobe_attrs,
9841 };
9842 
9843 static const struct attribute_group *uprobe_attr_groups[] = {
9844 	&uprobe_format_group,
9845 	NULL,
9846 };
9847 
9848 static int perf_uprobe_event_init(struct perf_event *event);
9849 static struct pmu perf_uprobe = {
9850 	.task_ctx_nr	= perf_sw_context,
9851 	.event_init	= perf_uprobe_event_init,
9852 	.add		= perf_trace_add,
9853 	.del		= perf_trace_del,
9854 	.start		= perf_swevent_start,
9855 	.stop		= perf_swevent_stop,
9856 	.read		= perf_swevent_read,
9857 	.attr_groups	= uprobe_attr_groups,
9858 };
9859 
9860 static int perf_uprobe_event_init(struct perf_event *event)
9861 {
9862 	int err;
9863 	unsigned long ref_ctr_offset;
9864 	bool is_retprobe;
9865 
9866 	if (event->attr.type != perf_uprobe.type)
9867 		return -ENOENT;
9868 
9869 	if (!perfmon_capable())
9870 		return -EACCES;
9871 
9872 	/*
9873 	 * no branch sampling for probe events
9874 	 */
9875 	if (has_branch_stack(event))
9876 		return -EOPNOTSUPP;
9877 
9878 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9879 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9880 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9881 	if (err)
9882 		return err;
9883 
9884 	event->destroy = perf_uprobe_destroy;
9885 
9886 	return 0;
9887 }
9888 #endif /* CONFIG_UPROBE_EVENTS */
9889 
9890 static inline void perf_tp_register(void)
9891 {
9892 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9893 #ifdef CONFIG_KPROBE_EVENTS
9894 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9895 #endif
9896 #ifdef CONFIG_UPROBE_EVENTS
9897 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9898 #endif
9899 }
9900 
9901 static void perf_event_free_filter(struct perf_event *event)
9902 {
9903 	ftrace_profile_free_filter(event);
9904 }
9905 
9906 #ifdef CONFIG_BPF_SYSCALL
9907 static void bpf_overflow_handler(struct perf_event *event,
9908 				 struct perf_sample_data *data,
9909 				 struct pt_regs *regs)
9910 {
9911 	struct bpf_perf_event_data_kern ctx = {
9912 		.data = data,
9913 		.event = event,
9914 	};
9915 	int ret = 0;
9916 
9917 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9918 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9919 		goto out;
9920 	rcu_read_lock();
9921 	ret = BPF_PROG_RUN(event->prog, &ctx);
9922 	rcu_read_unlock();
9923 out:
9924 	__this_cpu_dec(bpf_prog_active);
9925 	if (!ret)
9926 		return;
9927 
9928 	event->orig_overflow_handler(event, data, regs);
9929 }
9930 
9931 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9932 {
9933 	struct bpf_prog *prog;
9934 
9935 	if (event->overflow_handler_context)
9936 		/* hw breakpoint or kernel counter */
9937 		return -EINVAL;
9938 
9939 	if (event->prog)
9940 		return -EEXIST;
9941 
9942 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9943 	if (IS_ERR(prog))
9944 		return PTR_ERR(prog);
9945 
9946 	if (event->attr.precise_ip &&
9947 	    prog->call_get_stack &&
9948 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9949 	     event->attr.exclude_callchain_kernel ||
9950 	     event->attr.exclude_callchain_user)) {
9951 		/*
9952 		 * On perf_event with precise_ip, calling bpf_get_stack()
9953 		 * may trigger unwinder warnings and occasional crashes.
9954 		 * bpf_get_[stack|stackid] works around this issue by using
9955 		 * callchain attached to perf_sample_data. If the
9956 		 * perf_event does not full (kernel and user) callchain
9957 		 * attached to perf_sample_data, do not allow attaching BPF
9958 		 * program that calls bpf_get_[stack|stackid].
9959 		 */
9960 		bpf_prog_put(prog);
9961 		return -EPROTO;
9962 	}
9963 
9964 	event->prog = prog;
9965 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9966 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9967 	return 0;
9968 }
9969 
9970 static void perf_event_free_bpf_handler(struct perf_event *event)
9971 {
9972 	struct bpf_prog *prog = event->prog;
9973 
9974 	if (!prog)
9975 		return;
9976 
9977 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9978 	event->prog = NULL;
9979 	bpf_prog_put(prog);
9980 }
9981 #else
9982 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9983 {
9984 	return -EOPNOTSUPP;
9985 }
9986 static void perf_event_free_bpf_handler(struct perf_event *event)
9987 {
9988 }
9989 #endif
9990 
9991 /*
9992  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9993  * with perf_event_open()
9994  */
9995 static inline bool perf_event_is_tracing(struct perf_event *event)
9996 {
9997 	if (event->pmu == &perf_tracepoint)
9998 		return true;
9999 #ifdef CONFIG_KPROBE_EVENTS
10000 	if (event->pmu == &perf_kprobe)
10001 		return true;
10002 #endif
10003 #ifdef CONFIG_UPROBE_EVENTS
10004 	if (event->pmu == &perf_uprobe)
10005 		return true;
10006 #endif
10007 	return false;
10008 }
10009 
10010 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10011 {
10012 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10013 	struct bpf_prog *prog;
10014 	int ret;
10015 
10016 	if (!perf_event_is_tracing(event))
10017 		return perf_event_set_bpf_handler(event, prog_fd);
10018 
10019 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10020 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10021 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10022 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10023 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10024 		return -EINVAL;
10025 
10026 	prog = bpf_prog_get(prog_fd);
10027 	if (IS_ERR(prog))
10028 		return PTR_ERR(prog);
10029 
10030 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10031 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10032 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10033 		/* valid fd, but invalid bpf program type */
10034 		bpf_prog_put(prog);
10035 		return -EINVAL;
10036 	}
10037 
10038 	/* Kprobe override only works for kprobes, not uprobes. */
10039 	if (prog->kprobe_override &&
10040 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10041 		bpf_prog_put(prog);
10042 		return -EINVAL;
10043 	}
10044 
10045 	if (is_tracepoint || is_syscall_tp) {
10046 		int off = trace_event_get_offsets(event->tp_event);
10047 
10048 		if (prog->aux->max_ctx_offset > off) {
10049 			bpf_prog_put(prog);
10050 			return -EACCES;
10051 		}
10052 	}
10053 
10054 	ret = perf_event_attach_bpf_prog(event, prog);
10055 	if (ret)
10056 		bpf_prog_put(prog);
10057 	return ret;
10058 }
10059 
10060 static void perf_event_free_bpf_prog(struct perf_event *event)
10061 {
10062 	if (!perf_event_is_tracing(event)) {
10063 		perf_event_free_bpf_handler(event);
10064 		return;
10065 	}
10066 	perf_event_detach_bpf_prog(event);
10067 }
10068 
10069 #else
10070 
10071 static inline void perf_tp_register(void)
10072 {
10073 }
10074 
10075 static void perf_event_free_filter(struct perf_event *event)
10076 {
10077 }
10078 
10079 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10080 {
10081 	return -ENOENT;
10082 }
10083 
10084 static void perf_event_free_bpf_prog(struct perf_event *event)
10085 {
10086 }
10087 #endif /* CONFIG_EVENT_TRACING */
10088 
10089 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10090 void perf_bp_event(struct perf_event *bp, void *data)
10091 {
10092 	struct perf_sample_data sample;
10093 	struct pt_regs *regs = data;
10094 
10095 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10096 
10097 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10098 		perf_swevent_event(bp, 1, &sample, regs);
10099 }
10100 #endif
10101 
10102 /*
10103  * Allocate a new address filter
10104  */
10105 static struct perf_addr_filter *
10106 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10107 {
10108 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10109 	struct perf_addr_filter *filter;
10110 
10111 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10112 	if (!filter)
10113 		return NULL;
10114 
10115 	INIT_LIST_HEAD(&filter->entry);
10116 	list_add_tail(&filter->entry, filters);
10117 
10118 	return filter;
10119 }
10120 
10121 static void free_filters_list(struct list_head *filters)
10122 {
10123 	struct perf_addr_filter *filter, *iter;
10124 
10125 	list_for_each_entry_safe(filter, iter, filters, entry) {
10126 		path_put(&filter->path);
10127 		list_del(&filter->entry);
10128 		kfree(filter);
10129 	}
10130 }
10131 
10132 /*
10133  * Free existing address filters and optionally install new ones
10134  */
10135 static void perf_addr_filters_splice(struct perf_event *event,
10136 				     struct list_head *head)
10137 {
10138 	unsigned long flags;
10139 	LIST_HEAD(list);
10140 
10141 	if (!has_addr_filter(event))
10142 		return;
10143 
10144 	/* don't bother with children, they don't have their own filters */
10145 	if (event->parent)
10146 		return;
10147 
10148 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10149 
10150 	list_splice_init(&event->addr_filters.list, &list);
10151 	if (head)
10152 		list_splice(head, &event->addr_filters.list);
10153 
10154 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10155 
10156 	free_filters_list(&list);
10157 }
10158 
10159 /*
10160  * Scan through mm's vmas and see if one of them matches the
10161  * @filter; if so, adjust filter's address range.
10162  * Called with mm::mmap_lock down for reading.
10163  */
10164 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10165 				   struct mm_struct *mm,
10166 				   struct perf_addr_filter_range *fr)
10167 {
10168 	struct vm_area_struct *vma;
10169 
10170 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10171 		if (!vma->vm_file)
10172 			continue;
10173 
10174 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10175 			return;
10176 	}
10177 }
10178 
10179 /*
10180  * Update event's address range filters based on the
10181  * task's existing mappings, if any.
10182  */
10183 static void perf_event_addr_filters_apply(struct perf_event *event)
10184 {
10185 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10186 	struct task_struct *task = READ_ONCE(event->ctx->task);
10187 	struct perf_addr_filter *filter;
10188 	struct mm_struct *mm = NULL;
10189 	unsigned int count = 0;
10190 	unsigned long flags;
10191 
10192 	/*
10193 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10194 	 * will stop on the parent's child_mutex that our caller is also holding
10195 	 */
10196 	if (task == TASK_TOMBSTONE)
10197 		return;
10198 
10199 	if (ifh->nr_file_filters) {
10200 		mm = get_task_mm(event->ctx->task);
10201 		if (!mm)
10202 			goto restart;
10203 
10204 		mmap_read_lock(mm);
10205 	}
10206 
10207 	raw_spin_lock_irqsave(&ifh->lock, flags);
10208 	list_for_each_entry(filter, &ifh->list, entry) {
10209 		if (filter->path.dentry) {
10210 			/*
10211 			 * Adjust base offset if the filter is associated to a
10212 			 * binary that needs to be mapped:
10213 			 */
10214 			event->addr_filter_ranges[count].start = 0;
10215 			event->addr_filter_ranges[count].size = 0;
10216 
10217 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10218 		} else {
10219 			event->addr_filter_ranges[count].start = filter->offset;
10220 			event->addr_filter_ranges[count].size  = filter->size;
10221 		}
10222 
10223 		count++;
10224 	}
10225 
10226 	event->addr_filters_gen++;
10227 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10228 
10229 	if (ifh->nr_file_filters) {
10230 		mmap_read_unlock(mm);
10231 
10232 		mmput(mm);
10233 	}
10234 
10235 restart:
10236 	perf_event_stop(event, 1);
10237 }
10238 
10239 /*
10240  * Address range filtering: limiting the data to certain
10241  * instruction address ranges. Filters are ioctl()ed to us from
10242  * userspace as ascii strings.
10243  *
10244  * Filter string format:
10245  *
10246  * ACTION RANGE_SPEC
10247  * where ACTION is one of the
10248  *  * "filter": limit the trace to this region
10249  *  * "start": start tracing from this address
10250  *  * "stop": stop tracing at this address/region;
10251  * RANGE_SPEC is
10252  *  * for kernel addresses: <start address>[/<size>]
10253  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10254  *
10255  * if <size> is not specified or is zero, the range is treated as a single
10256  * address; not valid for ACTION=="filter".
10257  */
10258 enum {
10259 	IF_ACT_NONE = -1,
10260 	IF_ACT_FILTER,
10261 	IF_ACT_START,
10262 	IF_ACT_STOP,
10263 	IF_SRC_FILE,
10264 	IF_SRC_KERNEL,
10265 	IF_SRC_FILEADDR,
10266 	IF_SRC_KERNELADDR,
10267 };
10268 
10269 enum {
10270 	IF_STATE_ACTION = 0,
10271 	IF_STATE_SOURCE,
10272 	IF_STATE_END,
10273 };
10274 
10275 static const match_table_t if_tokens = {
10276 	{ IF_ACT_FILTER,	"filter" },
10277 	{ IF_ACT_START,		"start" },
10278 	{ IF_ACT_STOP,		"stop" },
10279 	{ IF_SRC_FILE,		"%u/%u@%s" },
10280 	{ IF_SRC_KERNEL,	"%u/%u" },
10281 	{ IF_SRC_FILEADDR,	"%u@%s" },
10282 	{ IF_SRC_KERNELADDR,	"%u" },
10283 	{ IF_ACT_NONE,		NULL },
10284 };
10285 
10286 /*
10287  * Address filter string parser
10288  */
10289 static int
10290 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10291 			     struct list_head *filters)
10292 {
10293 	struct perf_addr_filter *filter = NULL;
10294 	char *start, *orig, *filename = NULL;
10295 	substring_t args[MAX_OPT_ARGS];
10296 	int state = IF_STATE_ACTION, token;
10297 	unsigned int kernel = 0;
10298 	int ret = -EINVAL;
10299 
10300 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10301 	if (!fstr)
10302 		return -ENOMEM;
10303 
10304 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10305 		static const enum perf_addr_filter_action_t actions[] = {
10306 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10307 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10308 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10309 		};
10310 		ret = -EINVAL;
10311 
10312 		if (!*start)
10313 			continue;
10314 
10315 		/* filter definition begins */
10316 		if (state == IF_STATE_ACTION) {
10317 			filter = perf_addr_filter_new(event, filters);
10318 			if (!filter)
10319 				goto fail;
10320 		}
10321 
10322 		token = match_token(start, if_tokens, args);
10323 		switch (token) {
10324 		case IF_ACT_FILTER:
10325 		case IF_ACT_START:
10326 		case IF_ACT_STOP:
10327 			if (state != IF_STATE_ACTION)
10328 				goto fail;
10329 
10330 			filter->action = actions[token];
10331 			state = IF_STATE_SOURCE;
10332 			break;
10333 
10334 		case IF_SRC_KERNELADDR:
10335 		case IF_SRC_KERNEL:
10336 			kernel = 1;
10337 			fallthrough;
10338 
10339 		case IF_SRC_FILEADDR:
10340 		case IF_SRC_FILE:
10341 			if (state != IF_STATE_SOURCE)
10342 				goto fail;
10343 
10344 			*args[0].to = 0;
10345 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10346 			if (ret)
10347 				goto fail;
10348 
10349 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10350 				*args[1].to = 0;
10351 				ret = kstrtoul(args[1].from, 0, &filter->size);
10352 				if (ret)
10353 					goto fail;
10354 			}
10355 
10356 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10357 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10358 
10359 				kfree(filename);
10360 				filename = match_strdup(&args[fpos]);
10361 				if (!filename) {
10362 					ret = -ENOMEM;
10363 					goto fail;
10364 				}
10365 			}
10366 
10367 			state = IF_STATE_END;
10368 			break;
10369 
10370 		default:
10371 			goto fail;
10372 		}
10373 
10374 		/*
10375 		 * Filter definition is fully parsed, validate and install it.
10376 		 * Make sure that it doesn't contradict itself or the event's
10377 		 * attribute.
10378 		 */
10379 		if (state == IF_STATE_END) {
10380 			ret = -EINVAL;
10381 			if (kernel && event->attr.exclude_kernel)
10382 				goto fail;
10383 
10384 			/*
10385 			 * ACTION "filter" must have a non-zero length region
10386 			 * specified.
10387 			 */
10388 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10389 			    !filter->size)
10390 				goto fail;
10391 
10392 			if (!kernel) {
10393 				if (!filename)
10394 					goto fail;
10395 
10396 				/*
10397 				 * For now, we only support file-based filters
10398 				 * in per-task events; doing so for CPU-wide
10399 				 * events requires additional context switching
10400 				 * trickery, since same object code will be
10401 				 * mapped at different virtual addresses in
10402 				 * different processes.
10403 				 */
10404 				ret = -EOPNOTSUPP;
10405 				if (!event->ctx->task)
10406 					goto fail;
10407 
10408 				/* look up the path and grab its inode */
10409 				ret = kern_path(filename, LOOKUP_FOLLOW,
10410 						&filter->path);
10411 				if (ret)
10412 					goto fail;
10413 
10414 				ret = -EINVAL;
10415 				if (!filter->path.dentry ||
10416 				    !S_ISREG(d_inode(filter->path.dentry)
10417 					     ->i_mode))
10418 					goto fail;
10419 
10420 				event->addr_filters.nr_file_filters++;
10421 			}
10422 
10423 			/* ready to consume more filters */
10424 			state = IF_STATE_ACTION;
10425 			filter = NULL;
10426 		}
10427 	}
10428 
10429 	if (state != IF_STATE_ACTION)
10430 		goto fail;
10431 
10432 	kfree(filename);
10433 	kfree(orig);
10434 
10435 	return 0;
10436 
10437 fail:
10438 	kfree(filename);
10439 	free_filters_list(filters);
10440 	kfree(orig);
10441 
10442 	return ret;
10443 }
10444 
10445 static int
10446 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10447 {
10448 	LIST_HEAD(filters);
10449 	int ret;
10450 
10451 	/*
10452 	 * Since this is called in perf_ioctl() path, we're already holding
10453 	 * ctx::mutex.
10454 	 */
10455 	lockdep_assert_held(&event->ctx->mutex);
10456 
10457 	if (WARN_ON_ONCE(event->parent))
10458 		return -EINVAL;
10459 
10460 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10461 	if (ret)
10462 		goto fail_clear_files;
10463 
10464 	ret = event->pmu->addr_filters_validate(&filters);
10465 	if (ret)
10466 		goto fail_free_filters;
10467 
10468 	/* remove existing filters, if any */
10469 	perf_addr_filters_splice(event, &filters);
10470 
10471 	/* install new filters */
10472 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10473 
10474 	return ret;
10475 
10476 fail_free_filters:
10477 	free_filters_list(&filters);
10478 
10479 fail_clear_files:
10480 	event->addr_filters.nr_file_filters = 0;
10481 
10482 	return ret;
10483 }
10484 
10485 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10486 {
10487 	int ret = -EINVAL;
10488 	char *filter_str;
10489 
10490 	filter_str = strndup_user(arg, PAGE_SIZE);
10491 	if (IS_ERR(filter_str))
10492 		return PTR_ERR(filter_str);
10493 
10494 #ifdef CONFIG_EVENT_TRACING
10495 	if (perf_event_is_tracing(event)) {
10496 		struct perf_event_context *ctx = event->ctx;
10497 
10498 		/*
10499 		 * Beware, here be dragons!!
10500 		 *
10501 		 * the tracepoint muck will deadlock against ctx->mutex, but
10502 		 * the tracepoint stuff does not actually need it. So
10503 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10504 		 * already have a reference on ctx.
10505 		 *
10506 		 * This can result in event getting moved to a different ctx,
10507 		 * but that does not affect the tracepoint state.
10508 		 */
10509 		mutex_unlock(&ctx->mutex);
10510 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10511 		mutex_lock(&ctx->mutex);
10512 	} else
10513 #endif
10514 	if (has_addr_filter(event))
10515 		ret = perf_event_set_addr_filter(event, filter_str);
10516 
10517 	kfree(filter_str);
10518 	return ret;
10519 }
10520 
10521 /*
10522  * hrtimer based swevent callback
10523  */
10524 
10525 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10526 {
10527 	enum hrtimer_restart ret = HRTIMER_RESTART;
10528 	struct perf_sample_data data;
10529 	struct pt_regs *regs;
10530 	struct perf_event *event;
10531 	u64 period;
10532 
10533 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10534 
10535 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10536 		return HRTIMER_NORESTART;
10537 
10538 	event->pmu->read(event);
10539 
10540 	perf_sample_data_init(&data, 0, event->hw.last_period);
10541 	regs = get_irq_regs();
10542 
10543 	if (regs && !perf_exclude_event(event, regs)) {
10544 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10545 			if (__perf_event_overflow(event, 1, &data, regs))
10546 				ret = HRTIMER_NORESTART;
10547 	}
10548 
10549 	period = max_t(u64, 10000, event->hw.sample_period);
10550 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10551 
10552 	return ret;
10553 }
10554 
10555 static void perf_swevent_start_hrtimer(struct perf_event *event)
10556 {
10557 	struct hw_perf_event *hwc = &event->hw;
10558 	s64 period;
10559 
10560 	if (!is_sampling_event(event))
10561 		return;
10562 
10563 	period = local64_read(&hwc->period_left);
10564 	if (period) {
10565 		if (period < 0)
10566 			period = 10000;
10567 
10568 		local64_set(&hwc->period_left, 0);
10569 	} else {
10570 		period = max_t(u64, 10000, hwc->sample_period);
10571 	}
10572 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10573 		      HRTIMER_MODE_REL_PINNED_HARD);
10574 }
10575 
10576 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10577 {
10578 	struct hw_perf_event *hwc = &event->hw;
10579 
10580 	if (is_sampling_event(event)) {
10581 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10582 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10583 
10584 		hrtimer_cancel(&hwc->hrtimer);
10585 	}
10586 }
10587 
10588 static void perf_swevent_init_hrtimer(struct perf_event *event)
10589 {
10590 	struct hw_perf_event *hwc = &event->hw;
10591 
10592 	if (!is_sampling_event(event))
10593 		return;
10594 
10595 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10596 	hwc->hrtimer.function = perf_swevent_hrtimer;
10597 
10598 	/*
10599 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10600 	 * mapping and avoid the whole period adjust feedback stuff.
10601 	 */
10602 	if (event->attr.freq) {
10603 		long freq = event->attr.sample_freq;
10604 
10605 		event->attr.sample_period = NSEC_PER_SEC / freq;
10606 		hwc->sample_period = event->attr.sample_period;
10607 		local64_set(&hwc->period_left, hwc->sample_period);
10608 		hwc->last_period = hwc->sample_period;
10609 		event->attr.freq = 0;
10610 	}
10611 }
10612 
10613 /*
10614  * Software event: cpu wall time clock
10615  */
10616 
10617 static void cpu_clock_event_update(struct perf_event *event)
10618 {
10619 	s64 prev;
10620 	u64 now;
10621 
10622 	now = local_clock();
10623 	prev = local64_xchg(&event->hw.prev_count, now);
10624 	local64_add(now - prev, &event->count);
10625 }
10626 
10627 static void cpu_clock_event_start(struct perf_event *event, int flags)
10628 {
10629 	local64_set(&event->hw.prev_count, local_clock());
10630 	perf_swevent_start_hrtimer(event);
10631 }
10632 
10633 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10634 {
10635 	perf_swevent_cancel_hrtimer(event);
10636 	cpu_clock_event_update(event);
10637 }
10638 
10639 static int cpu_clock_event_add(struct perf_event *event, int flags)
10640 {
10641 	if (flags & PERF_EF_START)
10642 		cpu_clock_event_start(event, flags);
10643 	perf_event_update_userpage(event);
10644 
10645 	return 0;
10646 }
10647 
10648 static void cpu_clock_event_del(struct perf_event *event, int flags)
10649 {
10650 	cpu_clock_event_stop(event, flags);
10651 }
10652 
10653 static void cpu_clock_event_read(struct perf_event *event)
10654 {
10655 	cpu_clock_event_update(event);
10656 }
10657 
10658 static int cpu_clock_event_init(struct perf_event *event)
10659 {
10660 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10661 		return -ENOENT;
10662 
10663 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10664 		return -ENOENT;
10665 
10666 	/*
10667 	 * no branch sampling for software events
10668 	 */
10669 	if (has_branch_stack(event))
10670 		return -EOPNOTSUPP;
10671 
10672 	perf_swevent_init_hrtimer(event);
10673 
10674 	return 0;
10675 }
10676 
10677 static struct pmu perf_cpu_clock = {
10678 	.task_ctx_nr	= perf_sw_context,
10679 
10680 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10681 
10682 	.event_init	= cpu_clock_event_init,
10683 	.add		= cpu_clock_event_add,
10684 	.del		= cpu_clock_event_del,
10685 	.start		= cpu_clock_event_start,
10686 	.stop		= cpu_clock_event_stop,
10687 	.read		= cpu_clock_event_read,
10688 };
10689 
10690 /*
10691  * Software event: task time clock
10692  */
10693 
10694 static void task_clock_event_update(struct perf_event *event, u64 now)
10695 {
10696 	u64 prev;
10697 	s64 delta;
10698 
10699 	prev = local64_xchg(&event->hw.prev_count, now);
10700 	delta = now - prev;
10701 	local64_add(delta, &event->count);
10702 }
10703 
10704 static void task_clock_event_start(struct perf_event *event, int flags)
10705 {
10706 	local64_set(&event->hw.prev_count, event->ctx->time);
10707 	perf_swevent_start_hrtimer(event);
10708 }
10709 
10710 static void task_clock_event_stop(struct perf_event *event, int flags)
10711 {
10712 	perf_swevent_cancel_hrtimer(event);
10713 	task_clock_event_update(event, event->ctx->time);
10714 }
10715 
10716 static int task_clock_event_add(struct perf_event *event, int flags)
10717 {
10718 	if (flags & PERF_EF_START)
10719 		task_clock_event_start(event, flags);
10720 	perf_event_update_userpage(event);
10721 
10722 	return 0;
10723 }
10724 
10725 static void task_clock_event_del(struct perf_event *event, int flags)
10726 {
10727 	task_clock_event_stop(event, PERF_EF_UPDATE);
10728 }
10729 
10730 static void task_clock_event_read(struct perf_event *event)
10731 {
10732 	u64 now = perf_clock();
10733 	u64 delta = now - event->ctx->timestamp;
10734 	u64 time = event->ctx->time + delta;
10735 
10736 	task_clock_event_update(event, time);
10737 }
10738 
10739 static int task_clock_event_init(struct perf_event *event)
10740 {
10741 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10742 		return -ENOENT;
10743 
10744 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10745 		return -ENOENT;
10746 
10747 	/*
10748 	 * no branch sampling for software events
10749 	 */
10750 	if (has_branch_stack(event))
10751 		return -EOPNOTSUPP;
10752 
10753 	perf_swevent_init_hrtimer(event);
10754 
10755 	return 0;
10756 }
10757 
10758 static struct pmu perf_task_clock = {
10759 	.task_ctx_nr	= perf_sw_context,
10760 
10761 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10762 
10763 	.event_init	= task_clock_event_init,
10764 	.add		= task_clock_event_add,
10765 	.del		= task_clock_event_del,
10766 	.start		= task_clock_event_start,
10767 	.stop		= task_clock_event_stop,
10768 	.read		= task_clock_event_read,
10769 };
10770 
10771 static void perf_pmu_nop_void(struct pmu *pmu)
10772 {
10773 }
10774 
10775 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10776 {
10777 }
10778 
10779 static int perf_pmu_nop_int(struct pmu *pmu)
10780 {
10781 	return 0;
10782 }
10783 
10784 static int perf_event_nop_int(struct perf_event *event, u64 value)
10785 {
10786 	return 0;
10787 }
10788 
10789 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10790 
10791 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10792 {
10793 	__this_cpu_write(nop_txn_flags, flags);
10794 
10795 	if (flags & ~PERF_PMU_TXN_ADD)
10796 		return;
10797 
10798 	perf_pmu_disable(pmu);
10799 }
10800 
10801 static int perf_pmu_commit_txn(struct pmu *pmu)
10802 {
10803 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10804 
10805 	__this_cpu_write(nop_txn_flags, 0);
10806 
10807 	if (flags & ~PERF_PMU_TXN_ADD)
10808 		return 0;
10809 
10810 	perf_pmu_enable(pmu);
10811 	return 0;
10812 }
10813 
10814 static void perf_pmu_cancel_txn(struct pmu *pmu)
10815 {
10816 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10817 
10818 	__this_cpu_write(nop_txn_flags, 0);
10819 
10820 	if (flags & ~PERF_PMU_TXN_ADD)
10821 		return;
10822 
10823 	perf_pmu_enable(pmu);
10824 }
10825 
10826 static int perf_event_idx_default(struct perf_event *event)
10827 {
10828 	return 0;
10829 }
10830 
10831 /*
10832  * Ensures all contexts with the same task_ctx_nr have the same
10833  * pmu_cpu_context too.
10834  */
10835 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10836 {
10837 	struct pmu *pmu;
10838 
10839 	if (ctxn < 0)
10840 		return NULL;
10841 
10842 	list_for_each_entry(pmu, &pmus, entry) {
10843 		if (pmu->task_ctx_nr == ctxn)
10844 			return pmu->pmu_cpu_context;
10845 	}
10846 
10847 	return NULL;
10848 }
10849 
10850 static void free_pmu_context(struct pmu *pmu)
10851 {
10852 	/*
10853 	 * Static contexts such as perf_sw_context have a global lifetime
10854 	 * and may be shared between different PMUs. Avoid freeing them
10855 	 * when a single PMU is going away.
10856 	 */
10857 	if (pmu->task_ctx_nr > perf_invalid_context)
10858 		return;
10859 
10860 	free_percpu(pmu->pmu_cpu_context);
10861 }
10862 
10863 /*
10864  * Let userspace know that this PMU supports address range filtering:
10865  */
10866 static ssize_t nr_addr_filters_show(struct device *dev,
10867 				    struct device_attribute *attr,
10868 				    char *page)
10869 {
10870 	struct pmu *pmu = dev_get_drvdata(dev);
10871 
10872 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10873 }
10874 DEVICE_ATTR_RO(nr_addr_filters);
10875 
10876 static struct idr pmu_idr;
10877 
10878 static ssize_t
10879 type_show(struct device *dev, struct device_attribute *attr, char *page)
10880 {
10881 	struct pmu *pmu = dev_get_drvdata(dev);
10882 
10883 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10884 }
10885 static DEVICE_ATTR_RO(type);
10886 
10887 static ssize_t
10888 perf_event_mux_interval_ms_show(struct device *dev,
10889 				struct device_attribute *attr,
10890 				char *page)
10891 {
10892 	struct pmu *pmu = dev_get_drvdata(dev);
10893 
10894 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10895 }
10896 
10897 static DEFINE_MUTEX(mux_interval_mutex);
10898 
10899 static ssize_t
10900 perf_event_mux_interval_ms_store(struct device *dev,
10901 				 struct device_attribute *attr,
10902 				 const char *buf, size_t count)
10903 {
10904 	struct pmu *pmu = dev_get_drvdata(dev);
10905 	int timer, cpu, ret;
10906 
10907 	ret = kstrtoint(buf, 0, &timer);
10908 	if (ret)
10909 		return ret;
10910 
10911 	if (timer < 1)
10912 		return -EINVAL;
10913 
10914 	/* same value, noting to do */
10915 	if (timer == pmu->hrtimer_interval_ms)
10916 		return count;
10917 
10918 	mutex_lock(&mux_interval_mutex);
10919 	pmu->hrtimer_interval_ms = timer;
10920 
10921 	/* update all cpuctx for this PMU */
10922 	cpus_read_lock();
10923 	for_each_online_cpu(cpu) {
10924 		struct perf_cpu_context *cpuctx;
10925 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10926 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10927 
10928 		cpu_function_call(cpu,
10929 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10930 	}
10931 	cpus_read_unlock();
10932 	mutex_unlock(&mux_interval_mutex);
10933 
10934 	return count;
10935 }
10936 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10937 
10938 static struct attribute *pmu_dev_attrs[] = {
10939 	&dev_attr_type.attr,
10940 	&dev_attr_perf_event_mux_interval_ms.attr,
10941 	NULL,
10942 };
10943 ATTRIBUTE_GROUPS(pmu_dev);
10944 
10945 static int pmu_bus_running;
10946 static struct bus_type pmu_bus = {
10947 	.name		= "event_source",
10948 	.dev_groups	= pmu_dev_groups,
10949 };
10950 
10951 static void pmu_dev_release(struct device *dev)
10952 {
10953 	kfree(dev);
10954 }
10955 
10956 static int pmu_dev_alloc(struct pmu *pmu)
10957 {
10958 	int ret = -ENOMEM;
10959 
10960 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10961 	if (!pmu->dev)
10962 		goto out;
10963 
10964 	pmu->dev->groups = pmu->attr_groups;
10965 	device_initialize(pmu->dev);
10966 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10967 	if (ret)
10968 		goto free_dev;
10969 
10970 	dev_set_drvdata(pmu->dev, pmu);
10971 	pmu->dev->bus = &pmu_bus;
10972 	pmu->dev->release = pmu_dev_release;
10973 	ret = device_add(pmu->dev);
10974 	if (ret)
10975 		goto free_dev;
10976 
10977 	/* For PMUs with address filters, throw in an extra attribute: */
10978 	if (pmu->nr_addr_filters)
10979 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10980 
10981 	if (ret)
10982 		goto del_dev;
10983 
10984 	if (pmu->attr_update)
10985 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10986 
10987 	if (ret)
10988 		goto del_dev;
10989 
10990 out:
10991 	return ret;
10992 
10993 del_dev:
10994 	device_del(pmu->dev);
10995 
10996 free_dev:
10997 	put_device(pmu->dev);
10998 	goto out;
10999 }
11000 
11001 static struct lock_class_key cpuctx_mutex;
11002 static struct lock_class_key cpuctx_lock;
11003 
11004 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11005 {
11006 	int cpu, ret, max = PERF_TYPE_MAX;
11007 
11008 	mutex_lock(&pmus_lock);
11009 	ret = -ENOMEM;
11010 	pmu->pmu_disable_count = alloc_percpu(int);
11011 	if (!pmu->pmu_disable_count)
11012 		goto unlock;
11013 
11014 	pmu->type = -1;
11015 	if (!name)
11016 		goto skip_type;
11017 	pmu->name = name;
11018 
11019 	if (type != PERF_TYPE_SOFTWARE) {
11020 		if (type >= 0)
11021 			max = type;
11022 
11023 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11024 		if (ret < 0)
11025 			goto free_pdc;
11026 
11027 		WARN_ON(type >= 0 && ret != type);
11028 
11029 		type = ret;
11030 	}
11031 	pmu->type = type;
11032 
11033 	if (pmu_bus_running) {
11034 		ret = pmu_dev_alloc(pmu);
11035 		if (ret)
11036 			goto free_idr;
11037 	}
11038 
11039 skip_type:
11040 	if (pmu->task_ctx_nr == perf_hw_context) {
11041 		static int hw_context_taken = 0;
11042 
11043 		/*
11044 		 * Other than systems with heterogeneous CPUs, it never makes
11045 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11046 		 * uncore must use perf_invalid_context.
11047 		 */
11048 		if (WARN_ON_ONCE(hw_context_taken &&
11049 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11050 			pmu->task_ctx_nr = perf_invalid_context;
11051 
11052 		hw_context_taken = 1;
11053 	}
11054 
11055 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11056 	if (pmu->pmu_cpu_context)
11057 		goto got_cpu_context;
11058 
11059 	ret = -ENOMEM;
11060 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11061 	if (!pmu->pmu_cpu_context)
11062 		goto free_dev;
11063 
11064 	for_each_possible_cpu(cpu) {
11065 		struct perf_cpu_context *cpuctx;
11066 
11067 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11068 		__perf_event_init_context(&cpuctx->ctx);
11069 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11070 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11071 		cpuctx->ctx.pmu = pmu;
11072 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11073 
11074 		__perf_mux_hrtimer_init(cpuctx, cpu);
11075 
11076 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11077 		cpuctx->heap = cpuctx->heap_default;
11078 	}
11079 
11080 got_cpu_context:
11081 	if (!pmu->start_txn) {
11082 		if (pmu->pmu_enable) {
11083 			/*
11084 			 * If we have pmu_enable/pmu_disable calls, install
11085 			 * transaction stubs that use that to try and batch
11086 			 * hardware accesses.
11087 			 */
11088 			pmu->start_txn  = perf_pmu_start_txn;
11089 			pmu->commit_txn = perf_pmu_commit_txn;
11090 			pmu->cancel_txn = perf_pmu_cancel_txn;
11091 		} else {
11092 			pmu->start_txn  = perf_pmu_nop_txn;
11093 			pmu->commit_txn = perf_pmu_nop_int;
11094 			pmu->cancel_txn = perf_pmu_nop_void;
11095 		}
11096 	}
11097 
11098 	if (!pmu->pmu_enable) {
11099 		pmu->pmu_enable  = perf_pmu_nop_void;
11100 		pmu->pmu_disable = perf_pmu_nop_void;
11101 	}
11102 
11103 	if (!pmu->check_period)
11104 		pmu->check_period = perf_event_nop_int;
11105 
11106 	if (!pmu->event_idx)
11107 		pmu->event_idx = perf_event_idx_default;
11108 
11109 	/*
11110 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11111 	 * since these cannot be in the IDR. This way the linear search
11112 	 * is fast, provided a valid software event is provided.
11113 	 */
11114 	if (type == PERF_TYPE_SOFTWARE || !name)
11115 		list_add_rcu(&pmu->entry, &pmus);
11116 	else
11117 		list_add_tail_rcu(&pmu->entry, &pmus);
11118 
11119 	atomic_set(&pmu->exclusive_cnt, 0);
11120 	ret = 0;
11121 unlock:
11122 	mutex_unlock(&pmus_lock);
11123 
11124 	return ret;
11125 
11126 free_dev:
11127 	device_del(pmu->dev);
11128 	put_device(pmu->dev);
11129 
11130 free_idr:
11131 	if (pmu->type != PERF_TYPE_SOFTWARE)
11132 		idr_remove(&pmu_idr, pmu->type);
11133 
11134 free_pdc:
11135 	free_percpu(pmu->pmu_disable_count);
11136 	goto unlock;
11137 }
11138 EXPORT_SYMBOL_GPL(perf_pmu_register);
11139 
11140 void perf_pmu_unregister(struct pmu *pmu)
11141 {
11142 	mutex_lock(&pmus_lock);
11143 	list_del_rcu(&pmu->entry);
11144 
11145 	/*
11146 	 * We dereference the pmu list under both SRCU and regular RCU, so
11147 	 * synchronize against both of those.
11148 	 */
11149 	synchronize_srcu(&pmus_srcu);
11150 	synchronize_rcu();
11151 
11152 	free_percpu(pmu->pmu_disable_count);
11153 	if (pmu->type != PERF_TYPE_SOFTWARE)
11154 		idr_remove(&pmu_idr, pmu->type);
11155 	if (pmu_bus_running) {
11156 		if (pmu->nr_addr_filters)
11157 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11158 		device_del(pmu->dev);
11159 		put_device(pmu->dev);
11160 	}
11161 	free_pmu_context(pmu);
11162 	mutex_unlock(&pmus_lock);
11163 }
11164 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11165 
11166 static inline bool has_extended_regs(struct perf_event *event)
11167 {
11168 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11169 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11170 }
11171 
11172 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11173 {
11174 	struct perf_event_context *ctx = NULL;
11175 	int ret;
11176 
11177 	if (!try_module_get(pmu->module))
11178 		return -ENODEV;
11179 
11180 	/*
11181 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11182 	 * for example, validate if the group fits on the PMU. Therefore,
11183 	 * if this is a sibling event, acquire the ctx->mutex to protect
11184 	 * the sibling_list.
11185 	 */
11186 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11187 		/*
11188 		 * This ctx->mutex can nest when we're called through
11189 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11190 		 */
11191 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11192 						 SINGLE_DEPTH_NESTING);
11193 		BUG_ON(!ctx);
11194 	}
11195 
11196 	event->pmu = pmu;
11197 	ret = pmu->event_init(event);
11198 
11199 	if (ctx)
11200 		perf_event_ctx_unlock(event->group_leader, ctx);
11201 
11202 	if (!ret) {
11203 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11204 		    has_extended_regs(event))
11205 			ret = -EOPNOTSUPP;
11206 
11207 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11208 		    event_has_any_exclude_flag(event))
11209 			ret = -EINVAL;
11210 
11211 		if (ret && event->destroy)
11212 			event->destroy(event);
11213 	}
11214 
11215 	if (ret)
11216 		module_put(pmu->module);
11217 
11218 	return ret;
11219 }
11220 
11221 static struct pmu *perf_init_event(struct perf_event *event)
11222 {
11223 	bool extended_type = false;
11224 	int idx, type, ret;
11225 	struct pmu *pmu;
11226 
11227 	idx = srcu_read_lock(&pmus_srcu);
11228 
11229 	/* Try parent's PMU first: */
11230 	if (event->parent && event->parent->pmu) {
11231 		pmu = event->parent->pmu;
11232 		ret = perf_try_init_event(pmu, event);
11233 		if (!ret)
11234 			goto unlock;
11235 	}
11236 
11237 	/*
11238 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11239 	 * are often aliases for PERF_TYPE_RAW.
11240 	 */
11241 	type = event->attr.type;
11242 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11243 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11244 		if (!type) {
11245 			type = PERF_TYPE_RAW;
11246 		} else {
11247 			extended_type = true;
11248 			event->attr.config &= PERF_HW_EVENT_MASK;
11249 		}
11250 	}
11251 
11252 again:
11253 	rcu_read_lock();
11254 	pmu = idr_find(&pmu_idr, type);
11255 	rcu_read_unlock();
11256 	if (pmu) {
11257 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11258 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11259 			goto fail;
11260 
11261 		ret = perf_try_init_event(pmu, event);
11262 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11263 			type = event->attr.type;
11264 			goto again;
11265 		}
11266 
11267 		if (ret)
11268 			pmu = ERR_PTR(ret);
11269 
11270 		goto unlock;
11271 	}
11272 
11273 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11274 		ret = perf_try_init_event(pmu, event);
11275 		if (!ret)
11276 			goto unlock;
11277 
11278 		if (ret != -ENOENT) {
11279 			pmu = ERR_PTR(ret);
11280 			goto unlock;
11281 		}
11282 	}
11283 fail:
11284 	pmu = ERR_PTR(-ENOENT);
11285 unlock:
11286 	srcu_read_unlock(&pmus_srcu, idx);
11287 
11288 	return pmu;
11289 }
11290 
11291 static void attach_sb_event(struct perf_event *event)
11292 {
11293 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11294 
11295 	raw_spin_lock(&pel->lock);
11296 	list_add_rcu(&event->sb_list, &pel->list);
11297 	raw_spin_unlock(&pel->lock);
11298 }
11299 
11300 /*
11301  * We keep a list of all !task (and therefore per-cpu) events
11302  * that need to receive side-band records.
11303  *
11304  * This avoids having to scan all the various PMU per-cpu contexts
11305  * looking for them.
11306  */
11307 static void account_pmu_sb_event(struct perf_event *event)
11308 {
11309 	if (is_sb_event(event))
11310 		attach_sb_event(event);
11311 }
11312 
11313 static void account_event_cpu(struct perf_event *event, int cpu)
11314 {
11315 	if (event->parent)
11316 		return;
11317 
11318 	if (is_cgroup_event(event))
11319 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11320 }
11321 
11322 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11323 static void account_freq_event_nohz(void)
11324 {
11325 #ifdef CONFIG_NO_HZ_FULL
11326 	/* Lock so we don't race with concurrent unaccount */
11327 	spin_lock(&nr_freq_lock);
11328 	if (atomic_inc_return(&nr_freq_events) == 1)
11329 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11330 	spin_unlock(&nr_freq_lock);
11331 #endif
11332 }
11333 
11334 static void account_freq_event(void)
11335 {
11336 	if (tick_nohz_full_enabled())
11337 		account_freq_event_nohz();
11338 	else
11339 		atomic_inc(&nr_freq_events);
11340 }
11341 
11342 
11343 static void account_event(struct perf_event *event)
11344 {
11345 	bool inc = false;
11346 
11347 	if (event->parent)
11348 		return;
11349 
11350 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11351 		inc = true;
11352 	if (event->attr.mmap || event->attr.mmap_data)
11353 		atomic_inc(&nr_mmap_events);
11354 	if (event->attr.build_id)
11355 		atomic_inc(&nr_build_id_events);
11356 	if (event->attr.comm)
11357 		atomic_inc(&nr_comm_events);
11358 	if (event->attr.namespaces)
11359 		atomic_inc(&nr_namespaces_events);
11360 	if (event->attr.cgroup)
11361 		atomic_inc(&nr_cgroup_events);
11362 	if (event->attr.task)
11363 		atomic_inc(&nr_task_events);
11364 	if (event->attr.freq)
11365 		account_freq_event();
11366 	if (event->attr.context_switch) {
11367 		atomic_inc(&nr_switch_events);
11368 		inc = true;
11369 	}
11370 	if (has_branch_stack(event))
11371 		inc = true;
11372 	if (is_cgroup_event(event))
11373 		inc = true;
11374 	if (event->attr.ksymbol)
11375 		atomic_inc(&nr_ksymbol_events);
11376 	if (event->attr.bpf_event)
11377 		atomic_inc(&nr_bpf_events);
11378 	if (event->attr.text_poke)
11379 		atomic_inc(&nr_text_poke_events);
11380 
11381 	if (inc) {
11382 		/*
11383 		 * We need the mutex here because static_branch_enable()
11384 		 * must complete *before* the perf_sched_count increment
11385 		 * becomes visible.
11386 		 */
11387 		if (atomic_inc_not_zero(&perf_sched_count))
11388 			goto enabled;
11389 
11390 		mutex_lock(&perf_sched_mutex);
11391 		if (!atomic_read(&perf_sched_count)) {
11392 			static_branch_enable(&perf_sched_events);
11393 			/*
11394 			 * Guarantee that all CPUs observe they key change and
11395 			 * call the perf scheduling hooks before proceeding to
11396 			 * install events that need them.
11397 			 */
11398 			synchronize_rcu();
11399 		}
11400 		/*
11401 		 * Now that we have waited for the sync_sched(), allow further
11402 		 * increments to by-pass the mutex.
11403 		 */
11404 		atomic_inc(&perf_sched_count);
11405 		mutex_unlock(&perf_sched_mutex);
11406 	}
11407 enabled:
11408 
11409 	account_event_cpu(event, event->cpu);
11410 
11411 	account_pmu_sb_event(event);
11412 }
11413 
11414 /*
11415  * Allocate and initialize an event structure
11416  */
11417 static struct perf_event *
11418 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11419 		 struct task_struct *task,
11420 		 struct perf_event *group_leader,
11421 		 struct perf_event *parent_event,
11422 		 perf_overflow_handler_t overflow_handler,
11423 		 void *context, int cgroup_fd)
11424 {
11425 	struct pmu *pmu;
11426 	struct perf_event *event;
11427 	struct hw_perf_event *hwc;
11428 	long err = -EINVAL;
11429 	int node;
11430 
11431 	if ((unsigned)cpu >= nr_cpu_ids) {
11432 		if (!task || cpu != -1)
11433 			return ERR_PTR(-EINVAL);
11434 	}
11435 	if (attr->sigtrap && !task) {
11436 		/* Requires a task: avoid signalling random tasks. */
11437 		return ERR_PTR(-EINVAL);
11438 	}
11439 
11440 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11441 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11442 				      node);
11443 	if (!event)
11444 		return ERR_PTR(-ENOMEM);
11445 
11446 	/*
11447 	 * Single events are their own group leaders, with an
11448 	 * empty sibling list:
11449 	 */
11450 	if (!group_leader)
11451 		group_leader = event;
11452 
11453 	mutex_init(&event->child_mutex);
11454 	INIT_LIST_HEAD(&event->child_list);
11455 
11456 	INIT_LIST_HEAD(&event->event_entry);
11457 	INIT_LIST_HEAD(&event->sibling_list);
11458 	INIT_LIST_HEAD(&event->active_list);
11459 	init_event_group(event);
11460 	INIT_LIST_HEAD(&event->rb_entry);
11461 	INIT_LIST_HEAD(&event->active_entry);
11462 	INIT_LIST_HEAD(&event->addr_filters.list);
11463 	INIT_HLIST_NODE(&event->hlist_entry);
11464 
11465 
11466 	init_waitqueue_head(&event->waitq);
11467 	event->pending_disable = -1;
11468 	init_irq_work(&event->pending, perf_pending_event);
11469 
11470 	mutex_init(&event->mmap_mutex);
11471 	raw_spin_lock_init(&event->addr_filters.lock);
11472 
11473 	atomic_long_set(&event->refcount, 1);
11474 	event->cpu		= cpu;
11475 	event->attr		= *attr;
11476 	event->group_leader	= group_leader;
11477 	event->pmu		= NULL;
11478 	event->oncpu		= -1;
11479 
11480 	event->parent		= parent_event;
11481 
11482 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11483 	event->id		= atomic64_inc_return(&perf_event_id);
11484 
11485 	event->state		= PERF_EVENT_STATE_INACTIVE;
11486 
11487 	if (event->attr.sigtrap)
11488 		atomic_set(&event->event_limit, 1);
11489 
11490 	if (task) {
11491 		event->attach_state = PERF_ATTACH_TASK;
11492 		/*
11493 		 * XXX pmu::event_init needs to know what task to account to
11494 		 * and we cannot use the ctx information because we need the
11495 		 * pmu before we get a ctx.
11496 		 */
11497 		event->hw.target = get_task_struct(task);
11498 	}
11499 
11500 	event->clock = &local_clock;
11501 	if (parent_event)
11502 		event->clock = parent_event->clock;
11503 
11504 	if (!overflow_handler && parent_event) {
11505 		overflow_handler = parent_event->overflow_handler;
11506 		context = parent_event->overflow_handler_context;
11507 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11508 		if (overflow_handler == bpf_overflow_handler) {
11509 			struct bpf_prog *prog = parent_event->prog;
11510 
11511 			bpf_prog_inc(prog);
11512 			event->prog = prog;
11513 			event->orig_overflow_handler =
11514 				parent_event->orig_overflow_handler;
11515 		}
11516 #endif
11517 	}
11518 
11519 	if (overflow_handler) {
11520 		event->overflow_handler	= overflow_handler;
11521 		event->overflow_handler_context = context;
11522 	} else if (is_write_backward(event)){
11523 		event->overflow_handler = perf_event_output_backward;
11524 		event->overflow_handler_context = NULL;
11525 	} else {
11526 		event->overflow_handler = perf_event_output_forward;
11527 		event->overflow_handler_context = NULL;
11528 	}
11529 
11530 	perf_event__state_init(event);
11531 
11532 	pmu = NULL;
11533 
11534 	hwc = &event->hw;
11535 	hwc->sample_period = attr->sample_period;
11536 	if (attr->freq && attr->sample_freq)
11537 		hwc->sample_period = 1;
11538 	hwc->last_period = hwc->sample_period;
11539 
11540 	local64_set(&hwc->period_left, hwc->sample_period);
11541 
11542 	/*
11543 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11544 	 * See perf_output_read().
11545 	 */
11546 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11547 		goto err_ns;
11548 
11549 	if (!has_branch_stack(event))
11550 		event->attr.branch_sample_type = 0;
11551 
11552 	pmu = perf_init_event(event);
11553 	if (IS_ERR(pmu)) {
11554 		err = PTR_ERR(pmu);
11555 		goto err_ns;
11556 	}
11557 
11558 	/*
11559 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11560 	 * be different on other CPUs in the uncore mask.
11561 	 */
11562 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11563 		err = -EINVAL;
11564 		goto err_pmu;
11565 	}
11566 
11567 	if (event->attr.aux_output &&
11568 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11569 		err = -EOPNOTSUPP;
11570 		goto err_pmu;
11571 	}
11572 
11573 	if (cgroup_fd != -1) {
11574 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11575 		if (err)
11576 			goto err_pmu;
11577 	}
11578 
11579 	err = exclusive_event_init(event);
11580 	if (err)
11581 		goto err_pmu;
11582 
11583 	if (has_addr_filter(event)) {
11584 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11585 						    sizeof(struct perf_addr_filter_range),
11586 						    GFP_KERNEL);
11587 		if (!event->addr_filter_ranges) {
11588 			err = -ENOMEM;
11589 			goto err_per_task;
11590 		}
11591 
11592 		/*
11593 		 * Clone the parent's vma offsets: they are valid until exec()
11594 		 * even if the mm is not shared with the parent.
11595 		 */
11596 		if (event->parent) {
11597 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11598 
11599 			raw_spin_lock_irq(&ifh->lock);
11600 			memcpy(event->addr_filter_ranges,
11601 			       event->parent->addr_filter_ranges,
11602 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11603 			raw_spin_unlock_irq(&ifh->lock);
11604 		}
11605 
11606 		/* force hw sync on the address filters */
11607 		event->addr_filters_gen = 1;
11608 	}
11609 
11610 	if (!event->parent) {
11611 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11612 			err = get_callchain_buffers(attr->sample_max_stack);
11613 			if (err)
11614 				goto err_addr_filters;
11615 		}
11616 	}
11617 
11618 	err = security_perf_event_alloc(event);
11619 	if (err)
11620 		goto err_callchain_buffer;
11621 
11622 	/* symmetric to unaccount_event() in _free_event() */
11623 	account_event(event);
11624 
11625 	return event;
11626 
11627 err_callchain_buffer:
11628 	if (!event->parent) {
11629 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11630 			put_callchain_buffers();
11631 	}
11632 err_addr_filters:
11633 	kfree(event->addr_filter_ranges);
11634 
11635 err_per_task:
11636 	exclusive_event_destroy(event);
11637 
11638 err_pmu:
11639 	if (is_cgroup_event(event))
11640 		perf_detach_cgroup(event);
11641 	if (event->destroy)
11642 		event->destroy(event);
11643 	module_put(pmu->module);
11644 err_ns:
11645 	if (event->ns)
11646 		put_pid_ns(event->ns);
11647 	if (event->hw.target)
11648 		put_task_struct(event->hw.target);
11649 	kmem_cache_free(perf_event_cache, event);
11650 
11651 	return ERR_PTR(err);
11652 }
11653 
11654 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11655 			  struct perf_event_attr *attr)
11656 {
11657 	u32 size;
11658 	int ret;
11659 
11660 	/* Zero the full structure, so that a short copy will be nice. */
11661 	memset(attr, 0, sizeof(*attr));
11662 
11663 	ret = get_user(size, &uattr->size);
11664 	if (ret)
11665 		return ret;
11666 
11667 	/* ABI compatibility quirk: */
11668 	if (!size)
11669 		size = PERF_ATTR_SIZE_VER0;
11670 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11671 		goto err_size;
11672 
11673 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11674 	if (ret) {
11675 		if (ret == -E2BIG)
11676 			goto err_size;
11677 		return ret;
11678 	}
11679 
11680 	attr->size = size;
11681 
11682 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11683 		return -EINVAL;
11684 
11685 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11686 		return -EINVAL;
11687 
11688 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11689 		return -EINVAL;
11690 
11691 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11692 		u64 mask = attr->branch_sample_type;
11693 
11694 		/* only using defined bits */
11695 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11696 			return -EINVAL;
11697 
11698 		/* at least one branch bit must be set */
11699 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11700 			return -EINVAL;
11701 
11702 		/* propagate priv level, when not set for branch */
11703 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11704 
11705 			/* exclude_kernel checked on syscall entry */
11706 			if (!attr->exclude_kernel)
11707 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11708 
11709 			if (!attr->exclude_user)
11710 				mask |= PERF_SAMPLE_BRANCH_USER;
11711 
11712 			if (!attr->exclude_hv)
11713 				mask |= PERF_SAMPLE_BRANCH_HV;
11714 			/*
11715 			 * adjust user setting (for HW filter setup)
11716 			 */
11717 			attr->branch_sample_type = mask;
11718 		}
11719 		/* privileged levels capture (kernel, hv): check permissions */
11720 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11721 			ret = perf_allow_kernel(attr);
11722 			if (ret)
11723 				return ret;
11724 		}
11725 	}
11726 
11727 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11728 		ret = perf_reg_validate(attr->sample_regs_user);
11729 		if (ret)
11730 			return ret;
11731 	}
11732 
11733 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11734 		if (!arch_perf_have_user_stack_dump())
11735 			return -ENOSYS;
11736 
11737 		/*
11738 		 * We have __u32 type for the size, but so far
11739 		 * we can only use __u16 as maximum due to the
11740 		 * __u16 sample size limit.
11741 		 */
11742 		if (attr->sample_stack_user >= USHRT_MAX)
11743 			return -EINVAL;
11744 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11745 			return -EINVAL;
11746 	}
11747 
11748 	if (!attr->sample_max_stack)
11749 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11750 
11751 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11752 		ret = perf_reg_validate(attr->sample_regs_intr);
11753 
11754 #ifndef CONFIG_CGROUP_PERF
11755 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11756 		return -EINVAL;
11757 #endif
11758 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11759 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11760 		return -EINVAL;
11761 
11762 	if (!attr->inherit && attr->inherit_thread)
11763 		return -EINVAL;
11764 
11765 	if (attr->remove_on_exec && attr->enable_on_exec)
11766 		return -EINVAL;
11767 
11768 	if (attr->sigtrap && !attr->remove_on_exec)
11769 		return -EINVAL;
11770 
11771 out:
11772 	return ret;
11773 
11774 err_size:
11775 	put_user(sizeof(*attr), &uattr->size);
11776 	ret = -E2BIG;
11777 	goto out;
11778 }
11779 
11780 static int
11781 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11782 {
11783 	struct perf_buffer *rb = NULL;
11784 	int ret = -EINVAL;
11785 
11786 	if (!output_event)
11787 		goto set;
11788 
11789 	/* don't allow circular references */
11790 	if (event == output_event)
11791 		goto out;
11792 
11793 	/*
11794 	 * Don't allow cross-cpu buffers
11795 	 */
11796 	if (output_event->cpu != event->cpu)
11797 		goto out;
11798 
11799 	/*
11800 	 * If its not a per-cpu rb, it must be the same task.
11801 	 */
11802 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11803 		goto out;
11804 
11805 	/*
11806 	 * Mixing clocks in the same buffer is trouble you don't need.
11807 	 */
11808 	if (output_event->clock != event->clock)
11809 		goto out;
11810 
11811 	/*
11812 	 * Either writing ring buffer from beginning or from end.
11813 	 * Mixing is not allowed.
11814 	 */
11815 	if (is_write_backward(output_event) != is_write_backward(event))
11816 		goto out;
11817 
11818 	/*
11819 	 * If both events generate aux data, they must be on the same PMU
11820 	 */
11821 	if (has_aux(event) && has_aux(output_event) &&
11822 	    event->pmu != output_event->pmu)
11823 		goto out;
11824 
11825 set:
11826 	mutex_lock(&event->mmap_mutex);
11827 	/* Can't redirect output if we've got an active mmap() */
11828 	if (atomic_read(&event->mmap_count))
11829 		goto unlock;
11830 
11831 	if (output_event) {
11832 		/* get the rb we want to redirect to */
11833 		rb = ring_buffer_get(output_event);
11834 		if (!rb)
11835 			goto unlock;
11836 	}
11837 
11838 	ring_buffer_attach(event, rb);
11839 
11840 	ret = 0;
11841 unlock:
11842 	mutex_unlock(&event->mmap_mutex);
11843 
11844 out:
11845 	return ret;
11846 }
11847 
11848 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11849 {
11850 	if (b < a)
11851 		swap(a, b);
11852 
11853 	mutex_lock(a);
11854 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11855 }
11856 
11857 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11858 {
11859 	bool nmi_safe = false;
11860 
11861 	switch (clk_id) {
11862 	case CLOCK_MONOTONIC:
11863 		event->clock = &ktime_get_mono_fast_ns;
11864 		nmi_safe = true;
11865 		break;
11866 
11867 	case CLOCK_MONOTONIC_RAW:
11868 		event->clock = &ktime_get_raw_fast_ns;
11869 		nmi_safe = true;
11870 		break;
11871 
11872 	case CLOCK_REALTIME:
11873 		event->clock = &ktime_get_real_ns;
11874 		break;
11875 
11876 	case CLOCK_BOOTTIME:
11877 		event->clock = &ktime_get_boottime_ns;
11878 		break;
11879 
11880 	case CLOCK_TAI:
11881 		event->clock = &ktime_get_clocktai_ns;
11882 		break;
11883 
11884 	default:
11885 		return -EINVAL;
11886 	}
11887 
11888 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11889 		return -EINVAL;
11890 
11891 	return 0;
11892 }
11893 
11894 /*
11895  * Variation on perf_event_ctx_lock_nested(), except we take two context
11896  * mutexes.
11897  */
11898 static struct perf_event_context *
11899 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11900 			     struct perf_event_context *ctx)
11901 {
11902 	struct perf_event_context *gctx;
11903 
11904 again:
11905 	rcu_read_lock();
11906 	gctx = READ_ONCE(group_leader->ctx);
11907 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11908 		rcu_read_unlock();
11909 		goto again;
11910 	}
11911 	rcu_read_unlock();
11912 
11913 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11914 
11915 	if (group_leader->ctx != gctx) {
11916 		mutex_unlock(&ctx->mutex);
11917 		mutex_unlock(&gctx->mutex);
11918 		put_ctx(gctx);
11919 		goto again;
11920 	}
11921 
11922 	return gctx;
11923 }
11924 
11925 /**
11926  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11927  *
11928  * @attr_uptr:	event_id type attributes for monitoring/sampling
11929  * @pid:		target pid
11930  * @cpu:		target cpu
11931  * @group_fd:		group leader event fd
11932  */
11933 SYSCALL_DEFINE5(perf_event_open,
11934 		struct perf_event_attr __user *, attr_uptr,
11935 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11936 {
11937 	struct perf_event *group_leader = NULL, *output_event = NULL;
11938 	struct perf_event *event, *sibling;
11939 	struct perf_event_attr attr;
11940 	struct perf_event_context *ctx, *gctx;
11941 	struct file *event_file = NULL;
11942 	struct fd group = {NULL, 0};
11943 	struct task_struct *task = NULL;
11944 	struct pmu *pmu;
11945 	int event_fd;
11946 	int move_group = 0;
11947 	int err;
11948 	int f_flags = O_RDWR;
11949 	int cgroup_fd = -1;
11950 
11951 	/* for future expandability... */
11952 	if (flags & ~PERF_FLAG_ALL)
11953 		return -EINVAL;
11954 
11955 	/* Do we allow access to perf_event_open(2) ? */
11956 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11957 	if (err)
11958 		return err;
11959 
11960 	err = perf_copy_attr(attr_uptr, &attr);
11961 	if (err)
11962 		return err;
11963 
11964 	if (!attr.exclude_kernel) {
11965 		err = perf_allow_kernel(&attr);
11966 		if (err)
11967 			return err;
11968 	}
11969 
11970 	if (attr.namespaces) {
11971 		if (!perfmon_capable())
11972 			return -EACCES;
11973 	}
11974 
11975 	if (attr.freq) {
11976 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11977 			return -EINVAL;
11978 	} else {
11979 		if (attr.sample_period & (1ULL << 63))
11980 			return -EINVAL;
11981 	}
11982 
11983 	/* Only privileged users can get physical addresses */
11984 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11985 		err = perf_allow_kernel(&attr);
11986 		if (err)
11987 			return err;
11988 	}
11989 
11990 	/* REGS_INTR can leak data, lockdown must prevent this */
11991 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11992 		err = security_locked_down(LOCKDOWN_PERF);
11993 		if (err)
11994 			return err;
11995 	}
11996 
11997 	/*
11998 	 * In cgroup mode, the pid argument is used to pass the fd
11999 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12000 	 * designates the cpu on which to monitor threads from that
12001 	 * cgroup.
12002 	 */
12003 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12004 		return -EINVAL;
12005 
12006 	if (flags & PERF_FLAG_FD_CLOEXEC)
12007 		f_flags |= O_CLOEXEC;
12008 
12009 	event_fd = get_unused_fd_flags(f_flags);
12010 	if (event_fd < 0)
12011 		return event_fd;
12012 
12013 	if (group_fd != -1) {
12014 		err = perf_fget_light(group_fd, &group);
12015 		if (err)
12016 			goto err_fd;
12017 		group_leader = group.file->private_data;
12018 		if (flags & PERF_FLAG_FD_OUTPUT)
12019 			output_event = group_leader;
12020 		if (flags & PERF_FLAG_FD_NO_GROUP)
12021 			group_leader = NULL;
12022 	}
12023 
12024 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12025 		task = find_lively_task_by_vpid(pid);
12026 		if (IS_ERR(task)) {
12027 			err = PTR_ERR(task);
12028 			goto err_group_fd;
12029 		}
12030 	}
12031 
12032 	if (task && group_leader &&
12033 	    group_leader->attr.inherit != attr.inherit) {
12034 		err = -EINVAL;
12035 		goto err_task;
12036 	}
12037 
12038 	if (flags & PERF_FLAG_PID_CGROUP)
12039 		cgroup_fd = pid;
12040 
12041 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12042 				 NULL, NULL, cgroup_fd);
12043 	if (IS_ERR(event)) {
12044 		err = PTR_ERR(event);
12045 		goto err_task;
12046 	}
12047 
12048 	if (is_sampling_event(event)) {
12049 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12050 			err = -EOPNOTSUPP;
12051 			goto err_alloc;
12052 		}
12053 	}
12054 
12055 	/*
12056 	 * Special case software events and allow them to be part of
12057 	 * any hardware group.
12058 	 */
12059 	pmu = event->pmu;
12060 
12061 	if (attr.use_clockid) {
12062 		err = perf_event_set_clock(event, attr.clockid);
12063 		if (err)
12064 			goto err_alloc;
12065 	}
12066 
12067 	if (pmu->task_ctx_nr == perf_sw_context)
12068 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12069 
12070 	if (group_leader) {
12071 		if (is_software_event(event) &&
12072 		    !in_software_context(group_leader)) {
12073 			/*
12074 			 * If the event is a sw event, but the group_leader
12075 			 * is on hw context.
12076 			 *
12077 			 * Allow the addition of software events to hw
12078 			 * groups, this is safe because software events
12079 			 * never fail to schedule.
12080 			 */
12081 			pmu = group_leader->ctx->pmu;
12082 		} else if (!is_software_event(event) &&
12083 			   is_software_event(group_leader) &&
12084 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12085 			/*
12086 			 * In case the group is a pure software group, and we
12087 			 * try to add a hardware event, move the whole group to
12088 			 * the hardware context.
12089 			 */
12090 			move_group = 1;
12091 		}
12092 	}
12093 
12094 	/*
12095 	 * Get the target context (task or percpu):
12096 	 */
12097 	ctx = find_get_context(pmu, task, event);
12098 	if (IS_ERR(ctx)) {
12099 		err = PTR_ERR(ctx);
12100 		goto err_alloc;
12101 	}
12102 
12103 	/*
12104 	 * Look up the group leader (we will attach this event to it):
12105 	 */
12106 	if (group_leader) {
12107 		err = -EINVAL;
12108 
12109 		/*
12110 		 * Do not allow a recursive hierarchy (this new sibling
12111 		 * becoming part of another group-sibling):
12112 		 */
12113 		if (group_leader->group_leader != group_leader)
12114 			goto err_context;
12115 
12116 		/* All events in a group should have the same clock */
12117 		if (group_leader->clock != event->clock)
12118 			goto err_context;
12119 
12120 		/*
12121 		 * Make sure we're both events for the same CPU;
12122 		 * grouping events for different CPUs is broken; since
12123 		 * you can never concurrently schedule them anyhow.
12124 		 */
12125 		if (group_leader->cpu != event->cpu)
12126 			goto err_context;
12127 
12128 		/*
12129 		 * Make sure we're both on the same task, or both
12130 		 * per-CPU events.
12131 		 */
12132 		if (group_leader->ctx->task != ctx->task)
12133 			goto err_context;
12134 
12135 		/*
12136 		 * Do not allow to attach to a group in a different task
12137 		 * or CPU context. If we're moving SW events, we'll fix
12138 		 * this up later, so allow that.
12139 		 */
12140 		if (!move_group && group_leader->ctx != ctx)
12141 			goto err_context;
12142 
12143 		/*
12144 		 * Only a group leader can be exclusive or pinned
12145 		 */
12146 		if (attr.exclusive || attr.pinned)
12147 			goto err_context;
12148 	}
12149 
12150 	if (output_event) {
12151 		err = perf_event_set_output(event, output_event);
12152 		if (err)
12153 			goto err_context;
12154 	}
12155 
12156 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12157 					f_flags);
12158 	if (IS_ERR(event_file)) {
12159 		err = PTR_ERR(event_file);
12160 		event_file = NULL;
12161 		goto err_context;
12162 	}
12163 
12164 	if (task) {
12165 		err = down_read_interruptible(&task->signal->exec_update_lock);
12166 		if (err)
12167 			goto err_file;
12168 
12169 		/*
12170 		 * Preserve ptrace permission check for backwards compatibility.
12171 		 *
12172 		 * We must hold exec_update_lock across this and any potential
12173 		 * perf_install_in_context() call for this new event to
12174 		 * serialize against exec() altering our credentials (and the
12175 		 * perf_event_exit_task() that could imply).
12176 		 */
12177 		err = -EACCES;
12178 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12179 			goto err_cred;
12180 	}
12181 
12182 	if (move_group) {
12183 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12184 
12185 		if (gctx->task == TASK_TOMBSTONE) {
12186 			err = -ESRCH;
12187 			goto err_locked;
12188 		}
12189 
12190 		/*
12191 		 * Check if we raced against another sys_perf_event_open() call
12192 		 * moving the software group underneath us.
12193 		 */
12194 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12195 			/*
12196 			 * If someone moved the group out from under us, check
12197 			 * if this new event wound up on the same ctx, if so
12198 			 * its the regular !move_group case, otherwise fail.
12199 			 */
12200 			if (gctx != ctx) {
12201 				err = -EINVAL;
12202 				goto err_locked;
12203 			} else {
12204 				perf_event_ctx_unlock(group_leader, gctx);
12205 				move_group = 0;
12206 			}
12207 		}
12208 
12209 		/*
12210 		 * Failure to create exclusive events returns -EBUSY.
12211 		 */
12212 		err = -EBUSY;
12213 		if (!exclusive_event_installable(group_leader, ctx))
12214 			goto err_locked;
12215 
12216 		for_each_sibling_event(sibling, group_leader) {
12217 			if (!exclusive_event_installable(sibling, ctx))
12218 				goto err_locked;
12219 		}
12220 	} else {
12221 		mutex_lock(&ctx->mutex);
12222 	}
12223 
12224 	if (ctx->task == TASK_TOMBSTONE) {
12225 		err = -ESRCH;
12226 		goto err_locked;
12227 	}
12228 
12229 	if (!perf_event_validate_size(event)) {
12230 		err = -E2BIG;
12231 		goto err_locked;
12232 	}
12233 
12234 	if (!task) {
12235 		/*
12236 		 * Check if the @cpu we're creating an event for is online.
12237 		 *
12238 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12239 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12240 		 */
12241 		struct perf_cpu_context *cpuctx =
12242 			container_of(ctx, struct perf_cpu_context, ctx);
12243 
12244 		if (!cpuctx->online) {
12245 			err = -ENODEV;
12246 			goto err_locked;
12247 		}
12248 	}
12249 
12250 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12251 		err = -EINVAL;
12252 		goto err_locked;
12253 	}
12254 
12255 	/*
12256 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12257 	 * because we need to serialize with concurrent event creation.
12258 	 */
12259 	if (!exclusive_event_installable(event, ctx)) {
12260 		err = -EBUSY;
12261 		goto err_locked;
12262 	}
12263 
12264 	WARN_ON_ONCE(ctx->parent_ctx);
12265 
12266 	/*
12267 	 * This is the point on no return; we cannot fail hereafter. This is
12268 	 * where we start modifying current state.
12269 	 */
12270 
12271 	if (move_group) {
12272 		/*
12273 		 * See perf_event_ctx_lock() for comments on the details
12274 		 * of swizzling perf_event::ctx.
12275 		 */
12276 		perf_remove_from_context(group_leader, 0);
12277 		put_ctx(gctx);
12278 
12279 		for_each_sibling_event(sibling, group_leader) {
12280 			perf_remove_from_context(sibling, 0);
12281 			put_ctx(gctx);
12282 		}
12283 
12284 		/*
12285 		 * Wait for everybody to stop referencing the events through
12286 		 * the old lists, before installing it on new lists.
12287 		 */
12288 		synchronize_rcu();
12289 
12290 		/*
12291 		 * Install the group siblings before the group leader.
12292 		 *
12293 		 * Because a group leader will try and install the entire group
12294 		 * (through the sibling list, which is still in-tact), we can
12295 		 * end up with siblings installed in the wrong context.
12296 		 *
12297 		 * By installing siblings first we NO-OP because they're not
12298 		 * reachable through the group lists.
12299 		 */
12300 		for_each_sibling_event(sibling, group_leader) {
12301 			perf_event__state_init(sibling);
12302 			perf_install_in_context(ctx, sibling, sibling->cpu);
12303 			get_ctx(ctx);
12304 		}
12305 
12306 		/*
12307 		 * Removing from the context ends up with disabled
12308 		 * event. What we want here is event in the initial
12309 		 * startup state, ready to be add into new context.
12310 		 */
12311 		perf_event__state_init(group_leader);
12312 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12313 		get_ctx(ctx);
12314 	}
12315 
12316 	/*
12317 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12318 	 * that we're serialized against further additions and before
12319 	 * perf_install_in_context() which is the point the event is active and
12320 	 * can use these values.
12321 	 */
12322 	perf_event__header_size(event);
12323 	perf_event__id_header_size(event);
12324 
12325 	event->owner = current;
12326 
12327 	perf_install_in_context(ctx, event, event->cpu);
12328 	perf_unpin_context(ctx);
12329 
12330 	if (move_group)
12331 		perf_event_ctx_unlock(group_leader, gctx);
12332 	mutex_unlock(&ctx->mutex);
12333 
12334 	if (task) {
12335 		up_read(&task->signal->exec_update_lock);
12336 		put_task_struct(task);
12337 	}
12338 
12339 	mutex_lock(&current->perf_event_mutex);
12340 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12341 	mutex_unlock(&current->perf_event_mutex);
12342 
12343 	/*
12344 	 * Drop the reference on the group_event after placing the
12345 	 * new event on the sibling_list. This ensures destruction
12346 	 * of the group leader will find the pointer to itself in
12347 	 * perf_group_detach().
12348 	 */
12349 	fdput(group);
12350 	fd_install(event_fd, event_file);
12351 	return event_fd;
12352 
12353 err_locked:
12354 	if (move_group)
12355 		perf_event_ctx_unlock(group_leader, gctx);
12356 	mutex_unlock(&ctx->mutex);
12357 err_cred:
12358 	if (task)
12359 		up_read(&task->signal->exec_update_lock);
12360 err_file:
12361 	fput(event_file);
12362 err_context:
12363 	perf_unpin_context(ctx);
12364 	put_ctx(ctx);
12365 err_alloc:
12366 	/*
12367 	 * If event_file is set, the fput() above will have called ->release()
12368 	 * and that will take care of freeing the event.
12369 	 */
12370 	if (!event_file)
12371 		free_event(event);
12372 err_task:
12373 	if (task)
12374 		put_task_struct(task);
12375 err_group_fd:
12376 	fdput(group);
12377 err_fd:
12378 	put_unused_fd(event_fd);
12379 	return err;
12380 }
12381 
12382 /**
12383  * perf_event_create_kernel_counter
12384  *
12385  * @attr: attributes of the counter to create
12386  * @cpu: cpu in which the counter is bound
12387  * @task: task to profile (NULL for percpu)
12388  */
12389 struct perf_event *
12390 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12391 				 struct task_struct *task,
12392 				 perf_overflow_handler_t overflow_handler,
12393 				 void *context)
12394 {
12395 	struct perf_event_context *ctx;
12396 	struct perf_event *event;
12397 	int err;
12398 
12399 	/*
12400 	 * Grouping is not supported for kernel events, neither is 'AUX',
12401 	 * make sure the caller's intentions are adjusted.
12402 	 */
12403 	if (attr->aux_output)
12404 		return ERR_PTR(-EINVAL);
12405 
12406 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12407 				 overflow_handler, context, -1);
12408 	if (IS_ERR(event)) {
12409 		err = PTR_ERR(event);
12410 		goto err;
12411 	}
12412 
12413 	/* Mark owner so we could distinguish it from user events. */
12414 	event->owner = TASK_TOMBSTONE;
12415 
12416 	/*
12417 	 * Get the target context (task or percpu):
12418 	 */
12419 	ctx = find_get_context(event->pmu, task, event);
12420 	if (IS_ERR(ctx)) {
12421 		err = PTR_ERR(ctx);
12422 		goto err_free;
12423 	}
12424 
12425 	WARN_ON_ONCE(ctx->parent_ctx);
12426 	mutex_lock(&ctx->mutex);
12427 	if (ctx->task == TASK_TOMBSTONE) {
12428 		err = -ESRCH;
12429 		goto err_unlock;
12430 	}
12431 
12432 	if (!task) {
12433 		/*
12434 		 * Check if the @cpu we're creating an event for is online.
12435 		 *
12436 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12437 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12438 		 */
12439 		struct perf_cpu_context *cpuctx =
12440 			container_of(ctx, struct perf_cpu_context, ctx);
12441 		if (!cpuctx->online) {
12442 			err = -ENODEV;
12443 			goto err_unlock;
12444 		}
12445 	}
12446 
12447 	if (!exclusive_event_installable(event, ctx)) {
12448 		err = -EBUSY;
12449 		goto err_unlock;
12450 	}
12451 
12452 	perf_install_in_context(ctx, event, event->cpu);
12453 	perf_unpin_context(ctx);
12454 	mutex_unlock(&ctx->mutex);
12455 
12456 	return event;
12457 
12458 err_unlock:
12459 	mutex_unlock(&ctx->mutex);
12460 	perf_unpin_context(ctx);
12461 	put_ctx(ctx);
12462 err_free:
12463 	free_event(event);
12464 err:
12465 	return ERR_PTR(err);
12466 }
12467 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12468 
12469 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12470 {
12471 	struct perf_event_context *src_ctx;
12472 	struct perf_event_context *dst_ctx;
12473 	struct perf_event *event, *tmp;
12474 	LIST_HEAD(events);
12475 
12476 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12477 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12478 
12479 	/*
12480 	 * See perf_event_ctx_lock() for comments on the details
12481 	 * of swizzling perf_event::ctx.
12482 	 */
12483 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12484 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12485 				 event_entry) {
12486 		perf_remove_from_context(event, 0);
12487 		unaccount_event_cpu(event, src_cpu);
12488 		put_ctx(src_ctx);
12489 		list_add(&event->migrate_entry, &events);
12490 	}
12491 
12492 	/*
12493 	 * Wait for the events to quiesce before re-instating them.
12494 	 */
12495 	synchronize_rcu();
12496 
12497 	/*
12498 	 * Re-instate events in 2 passes.
12499 	 *
12500 	 * Skip over group leaders and only install siblings on this first
12501 	 * pass, siblings will not get enabled without a leader, however a
12502 	 * leader will enable its siblings, even if those are still on the old
12503 	 * context.
12504 	 */
12505 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12506 		if (event->group_leader == event)
12507 			continue;
12508 
12509 		list_del(&event->migrate_entry);
12510 		if (event->state >= PERF_EVENT_STATE_OFF)
12511 			event->state = PERF_EVENT_STATE_INACTIVE;
12512 		account_event_cpu(event, dst_cpu);
12513 		perf_install_in_context(dst_ctx, event, dst_cpu);
12514 		get_ctx(dst_ctx);
12515 	}
12516 
12517 	/*
12518 	 * Once all the siblings are setup properly, install the group leaders
12519 	 * to make it go.
12520 	 */
12521 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12522 		list_del(&event->migrate_entry);
12523 		if (event->state >= PERF_EVENT_STATE_OFF)
12524 			event->state = PERF_EVENT_STATE_INACTIVE;
12525 		account_event_cpu(event, dst_cpu);
12526 		perf_install_in_context(dst_ctx, event, dst_cpu);
12527 		get_ctx(dst_ctx);
12528 	}
12529 	mutex_unlock(&dst_ctx->mutex);
12530 	mutex_unlock(&src_ctx->mutex);
12531 }
12532 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12533 
12534 static void sync_child_event(struct perf_event *child_event)
12535 {
12536 	struct perf_event *parent_event = child_event->parent;
12537 	u64 child_val;
12538 
12539 	if (child_event->attr.inherit_stat) {
12540 		struct task_struct *task = child_event->ctx->task;
12541 
12542 		if (task && task != TASK_TOMBSTONE)
12543 			perf_event_read_event(child_event, task);
12544 	}
12545 
12546 	child_val = perf_event_count(child_event);
12547 
12548 	/*
12549 	 * Add back the child's count to the parent's count:
12550 	 */
12551 	atomic64_add(child_val, &parent_event->child_count);
12552 	atomic64_add(child_event->total_time_enabled,
12553 		     &parent_event->child_total_time_enabled);
12554 	atomic64_add(child_event->total_time_running,
12555 		     &parent_event->child_total_time_running);
12556 }
12557 
12558 static void
12559 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12560 {
12561 	struct perf_event *parent_event = event->parent;
12562 	unsigned long detach_flags = 0;
12563 
12564 	if (parent_event) {
12565 		/*
12566 		 * Do not destroy the 'original' grouping; because of the
12567 		 * context switch optimization the original events could've
12568 		 * ended up in a random child task.
12569 		 *
12570 		 * If we were to destroy the original group, all group related
12571 		 * operations would cease to function properly after this
12572 		 * random child dies.
12573 		 *
12574 		 * Do destroy all inherited groups, we don't care about those
12575 		 * and being thorough is better.
12576 		 */
12577 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12578 		mutex_lock(&parent_event->child_mutex);
12579 	}
12580 
12581 	perf_remove_from_context(event, detach_flags);
12582 
12583 	raw_spin_lock_irq(&ctx->lock);
12584 	if (event->state > PERF_EVENT_STATE_EXIT)
12585 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12586 	raw_spin_unlock_irq(&ctx->lock);
12587 
12588 	/*
12589 	 * Child events can be freed.
12590 	 */
12591 	if (parent_event) {
12592 		mutex_unlock(&parent_event->child_mutex);
12593 		/*
12594 		 * Kick perf_poll() for is_event_hup();
12595 		 */
12596 		perf_event_wakeup(parent_event);
12597 		free_event(event);
12598 		put_event(parent_event);
12599 		return;
12600 	}
12601 
12602 	/*
12603 	 * Parent events are governed by their filedesc, retain them.
12604 	 */
12605 	perf_event_wakeup(event);
12606 }
12607 
12608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12609 {
12610 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12611 	struct perf_event *child_event, *next;
12612 
12613 	WARN_ON_ONCE(child != current);
12614 
12615 	child_ctx = perf_pin_task_context(child, ctxn);
12616 	if (!child_ctx)
12617 		return;
12618 
12619 	/*
12620 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12621 	 * ctx::mutex over the entire thing. This serializes against almost
12622 	 * everything that wants to access the ctx.
12623 	 *
12624 	 * The exception is sys_perf_event_open() /
12625 	 * perf_event_create_kernel_count() which does find_get_context()
12626 	 * without ctx::mutex (it cannot because of the move_group double mutex
12627 	 * lock thing). See the comments in perf_install_in_context().
12628 	 */
12629 	mutex_lock(&child_ctx->mutex);
12630 
12631 	/*
12632 	 * In a single ctx::lock section, de-schedule the events and detach the
12633 	 * context from the task such that we cannot ever get it scheduled back
12634 	 * in.
12635 	 */
12636 	raw_spin_lock_irq(&child_ctx->lock);
12637 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12638 
12639 	/*
12640 	 * Now that the context is inactive, destroy the task <-> ctx relation
12641 	 * and mark the context dead.
12642 	 */
12643 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12644 	put_ctx(child_ctx); /* cannot be last */
12645 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12646 	put_task_struct(current); /* cannot be last */
12647 
12648 	clone_ctx = unclone_ctx(child_ctx);
12649 	raw_spin_unlock_irq(&child_ctx->lock);
12650 
12651 	if (clone_ctx)
12652 		put_ctx(clone_ctx);
12653 
12654 	/*
12655 	 * Report the task dead after unscheduling the events so that we
12656 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12657 	 * get a few PERF_RECORD_READ events.
12658 	 */
12659 	perf_event_task(child, child_ctx, 0);
12660 
12661 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12662 		perf_event_exit_event(child_event, child_ctx);
12663 
12664 	mutex_unlock(&child_ctx->mutex);
12665 
12666 	put_ctx(child_ctx);
12667 }
12668 
12669 /*
12670  * When a child task exits, feed back event values to parent events.
12671  *
12672  * Can be called with exec_update_lock held when called from
12673  * setup_new_exec().
12674  */
12675 void perf_event_exit_task(struct task_struct *child)
12676 {
12677 	struct perf_event *event, *tmp;
12678 	int ctxn;
12679 
12680 	mutex_lock(&child->perf_event_mutex);
12681 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12682 				 owner_entry) {
12683 		list_del_init(&event->owner_entry);
12684 
12685 		/*
12686 		 * Ensure the list deletion is visible before we clear
12687 		 * the owner, closes a race against perf_release() where
12688 		 * we need to serialize on the owner->perf_event_mutex.
12689 		 */
12690 		smp_store_release(&event->owner, NULL);
12691 	}
12692 	mutex_unlock(&child->perf_event_mutex);
12693 
12694 	for_each_task_context_nr(ctxn)
12695 		perf_event_exit_task_context(child, ctxn);
12696 
12697 	/*
12698 	 * The perf_event_exit_task_context calls perf_event_task
12699 	 * with child's task_ctx, which generates EXIT events for
12700 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12701 	 * At this point we need to send EXIT events to cpu contexts.
12702 	 */
12703 	perf_event_task(child, NULL, 0);
12704 }
12705 
12706 static void perf_free_event(struct perf_event *event,
12707 			    struct perf_event_context *ctx)
12708 {
12709 	struct perf_event *parent = event->parent;
12710 
12711 	if (WARN_ON_ONCE(!parent))
12712 		return;
12713 
12714 	mutex_lock(&parent->child_mutex);
12715 	list_del_init(&event->child_list);
12716 	mutex_unlock(&parent->child_mutex);
12717 
12718 	put_event(parent);
12719 
12720 	raw_spin_lock_irq(&ctx->lock);
12721 	perf_group_detach(event);
12722 	list_del_event(event, ctx);
12723 	raw_spin_unlock_irq(&ctx->lock);
12724 	free_event(event);
12725 }
12726 
12727 /*
12728  * Free a context as created by inheritance by perf_event_init_task() below,
12729  * used by fork() in case of fail.
12730  *
12731  * Even though the task has never lived, the context and events have been
12732  * exposed through the child_list, so we must take care tearing it all down.
12733  */
12734 void perf_event_free_task(struct task_struct *task)
12735 {
12736 	struct perf_event_context *ctx;
12737 	struct perf_event *event, *tmp;
12738 	int ctxn;
12739 
12740 	for_each_task_context_nr(ctxn) {
12741 		ctx = task->perf_event_ctxp[ctxn];
12742 		if (!ctx)
12743 			continue;
12744 
12745 		mutex_lock(&ctx->mutex);
12746 		raw_spin_lock_irq(&ctx->lock);
12747 		/*
12748 		 * Destroy the task <-> ctx relation and mark the context dead.
12749 		 *
12750 		 * This is important because even though the task hasn't been
12751 		 * exposed yet the context has been (through child_list).
12752 		 */
12753 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12754 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12755 		put_task_struct(task); /* cannot be last */
12756 		raw_spin_unlock_irq(&ctx->lock);
12757 
12758 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12759 			perf_free_event(event, ctx);
12760 
12761 		mutex_unlock(&ctx->mutex);
12762 
12763 		/*
12764 		 * perf_event_release_kernel() could've stolen some of our
12765 		 * child events and still have them on its free_list. In that
12766 		 * case we must wait for these events to have been freed (in
12767 		 * particular all their references to this task must've been
12768 		 * dropped).
12769 		 *
12770 		 * Without this copy_process() will unconditionally free this
12771 		 * task (irrespective of its reference count) and
12772 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12773 		 * use-after-free.
12774 		 *
12775 		 * Wait for all events to drop their context reference.
12776 		 */
12777 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12778 		put_ctx(ctx); /* must be last */
12779 	}
12780 }
12781 
12782 void perf_event_delayed_put(struct task_struct *task)
12783 {
12784 	int ctxn;
12785 
12786 	for_each_task_context_nr(ctxn)
12787 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12788 }
12789 
12790 struct file *perf_event_get(unsigned int fd)
12791 {
12792 	struct file *file = fget(fd);
12793 	if (!file)
12794 		return ERR_PTR(-EBADF);
12795 
12796 	if (file->f_op != &perf_fops) {
12797 		fput(file);
12798 		return ERR_PTR(-EBADF);
12799 	}
12800 
12801 	return file;
12802 }
12803 
12804 const struct perf_event *perf_get_event(struct file *file)
12805 {
12806 	if (file->f_op != &perf_fops)
12807 		return ERR_PTR(-EINVAL);
12808 
12809 	return file->private_data;
12810 }
12811 
12812 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12813 {
12814 	if (!event)
12815 		return ERR_PTR(-EINVAL);
12816 
12817 	return &event->attr;
12818 }
12819 
12820 /*
12821  * Inherit an event from parent task to child task.
12822  *
12823  * Returns:
12824  *  - valid pointer on success
12825  *  - NULL for orphaned events
12826  *  - IS_ERR() on error
12827  */
12828 static struct perf_event *
12829 inherit_event(struct perf_event *parent_event,
12830 	      struct task_struct *parent,
12831 	      struct perf_event_context *parent_ctx,
12832 	      struct task_struct *child,
12833 	      struct perf_event *group_leader,
12834 	      struct perf_event_context *child_ctx)
12835 {
12836 	enum perf_event_state parent_state = parent_event->state;
12837 	struct perf_event *child_event;
12838 	unsigned long flags;
12839 
12840 	/*
12841 	 * Instead of creating recursive hierarchies of events,
12842 	 * we link inherited events back to the original parent,
12843 	 * which has a filp for sure, which we use as the reference
12844 	 * count:
12845 	 */
12846 	if (parent_event->parent)
12847 		parent_event = parent_event->parent;
12848 
12849 	child_event = perf_event_alloc(&parent_event->attr,
12850 					   parent_event->cpu,
12851 					   child,
12852 					   group_leader, parent_event,
12853 					   NULL, NULL, -1);
12854 	if (IS_ERR(child_event))
12855 		return child_event;
12856 
12857 
12858 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12859 	    !child_ctx->task_ctx_data) {
12860 		struct pmu *pmu = child_event->pmu;
12861 
12862 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12863 		if (!child_ctx->task_ctx_data) {
12864 			free_event(child_event);
12865 			return ERR_PTR(-ENOMEM);
12866 		}
12867 	}
12868 
12869 	/*
12870 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12871 	 * must be under the same lock in order to serialize against
12872 	 * perf_event_release_kernel(), such that either we must observe
12873 	 * is_orphaned_event() or they will observe us on the child_list.
12874 	 */
12875 	mutex_lock(&parent_event->child_mutex);
12876 	if (is_orphaned_event(parent_event) ||
12877 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12878 		mutex_unlock(&parent_event->child_mutex);
12879 		/* task_ctx_data is freed with child_ctx */
12880 		free_event(child_event);
12881 		return NULL;
12882 	}
12883 
12884 	get_ctx(child_ctx);
12885 
12886 	/*
12887 	 * Make the child state follow the state of the parent event,
12888 	 * not its attr.disabled bit.  We hold the parent's mutex,
12889 	 * so we won't race with perf_event_{en, dis}able_family.
12890 	 */
12891 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12892 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12893 	else
12894 		child_event->state = PERF_EVENT_STATE_OFF;
12895 
12896 	if (parent_event->attr.freq) {
12897 		u64 sample_period = parent_event->hw.sample_period;
12898 		struct hw_perf_event *hwc = &child_event->hw;
12899 
12900 		hwc->sample_period = sample_period;
12901 		hwc->last_period   = sample_period;
12902 
12903 		local64_set(&hwc->period_left, sample_period);
12904 	}
12905 
12906 	child_event->ctx = child_ctx;
12907 	child_event->overflow_handler = parent_event->overflow_handler;
12908 	child_event->overflow_handler_context
12909 		= parent_event->overflow_handler_context;
12910 
12911 	/*
12912 	 * Precalculate sample_data sizes
12913 	 */
12914 	perf_event__header_size(child_event);
12915 	perf_event__id_header_size(child_event);
12916 
12917 	/*
12918 	 * Link it up in the child's context:
12919 	 */
12920 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12921 	add_event_to_ctx(child_event, child_ctx);
12922 	child_event->attach_state |= PERF_ATTACH_CHILD;
12923 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12924 
12925 	/*
12926 	 * Link this into the parent event's child list
12927 	 */
12928 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12929 	mutex_unlock(&parent_event->child_mutex);
12930 
12931 	return child_event;
12932 }
12933 
12934 /*
12935  * Inherits an event group.
12936  *
12937  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12938  * This matches with perf_event_release_kernel() removing all child events.
12939  *
12940  * Returns:
12941  *  - 0 on success
12942  *  - <0 on error
12943  */
12944 static int inherit_group(struct perf_event *parent_event,
12945 	      struct task_struct *parent,
12946 	      struct perf_event_context *parent_ctx,
12947 	      struct task_struct *child,
12948 	      struct perf_event_context *child_ctx)
12949 {
12950 	struct perf_event *leader;
12951 	struct perf_event *sub;
12952 	struct perf_event *child_ctr;
12953 
12954 	leader = inherit_event(parent_event, parent, parent_ctx,
12955 				 child, NULL, child_ctx);
12956 	if (IS_ERR(leader))
12957 		return PTR_ERR(leader);
12958 	/*
12959 	 * @leader can be NULL here because of is_orphaned_event(). In this
12960 	 * case inherit_event() will create individual events, similar to what
12961 	 * perf_group_detach() would do anyway.
12962 	 */
12963 	for_each_sibling_event(sub, parent_event) {
12964 		child_ctr = inherit_event(sub, parent, parent_ctx,
12965 					    child, leader, child_ctx);
12966 		if (IS_ERR(child_ctr))
12967 			return PTR_ERR(child_ctr);
12968 
12969 		if (sub->aux_event == parent_event && child_ctr &&
12970 		    !perf_get_aux_event(child_ctr, leader))
12971 			return -EINVAL;
12972 	}
12973 	return 0;
12974 }
12975 
12976 /*
12977  * Creates the child task context and tries to inherit the event-group.
12978  *
12979  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12980  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12981  * consistent with perf_event_release_kernel() removing all child events.
12982  *
12983  * Returns:
12984  *  - 0 on success
12985  *  - <0 on error
12986  */
12987 static int
12988 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12989 		   struct perf_event_context *parent_ctx,
12990 		   struct task_struct *child, int ctxn,
12991 		   u64 clone_flags, int *inherited_all)
12992 {
12993 	int ret;
12994 	struct perf_event_context *child_ctx;
12995 
12996 	if (!event->attr.inherit ||
12997 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12998 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
12999 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13000 		*inherited_all = 0;
13001 		return 0;
13002 	}
13003 
13004 	child_ctx = child->perf_event_ctxp[ctxn];
13005 	if (!child_ctx) {
13006 		/*
13007 		 * This is executed from the parent task context, so
13008 		 * inherit events that have been marked for cloning.
13009 		 * First allocate and initialize a context for the
13010 		 * child.
13011 		 */
13012 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13013 		if (!child_ctx)
13014 			return -ENOMEM;
13015 
13016 		child->perf_event_ctxp[ctxn] = child_ctx;
13017 	}
13018 
13019 	ret = inherit_group(event, parent, parent_ctx,
13020 			    child, child_ctx);
13021 
13022 	if (ret)
13023 		*inherited_all = 0;
13024 
13025 	return ret;
13026 }
13027 
13028 /*
13029  * Initialize the perf_event context in task_struct
13030  */
13031 static int perf_event_init_context(struct task_struct *child, int ctxn,
13032 				   u64 clone_flags)
13033 {
13034 	struct perf_event_context *child_ctx, *parent_ctx;
13035 	struct perf_event_context *cloned_ctx;
13036 	struct perf_event *event;
13037 	struct task_struct *parent = current;
13038 	int inherited_all = 1;
13039 	unsigned long flags;
13040 	int ret = 0;
13041 
13042 	if (likely(!parent->perf_event_ctxp[ctxn]))
13043 		return 0;
13044 
13045 	/*
13046 	 * If the parent's context is a clone, pin it so it won't get
13047 	 * swapped under us.
13048 	 */
13049 	parent_ctx = perf_pin_task_context(parent, ctxn);
13050 	if (!parent_ctx)
13051 		return 0;
13052 
13053 	/*
13054 	 * No need to check if parent_ctx != NULL here; since we saw
13055 	 * it non-NULL earlier, the only reason for it to become NULL
13056 	 * is if we exit, and since we're currently in the middle of
13057 	 * a fork we can't be exiting at the same time.
13058 	 */
13059 
13060 	/*
13061 	 * Lock the parent list. No need to lock the child - not PID
13062 	 * hashed yet and not running, so nobody can access it.
13063 	 */
13064 	mutex_lock(&parent_ctx->mutex);
13065 
13066 	/*
13067 	 * We dont have to disable NMIs - we are only looking at
13068 	 * the list, not manipulating it:
13069 	 */
13070 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13071 		ret = inherit_task_group(event, parent, parent_ctx,
13072 					 child, ctxn, clone_flags,
13073 					 &inherited_all);
13074 		if (ret)
13075 			goto out_unlock;
13076 	}
13077 
13078 	/*
13079 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13080 	 * to allocations, but we need to prevent rotation because
13081 	 * rotate_ctx() will change the list from interrupt context.
13082 	 */
13083 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13084 	parent_ctx->rotate_disable = 1;
13085 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13086 
13087 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13088 		ret = inherit_task_group(event, parent, parent_ctx,
13089 					 child, ctxn, clone_flags,
13090 					 &inherited_all);
13091 		if (ret)
13092 			goto out_unlock;
13093 	}
13094 
13095 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13096 	parent_ctx->rotate_disable = 0;
13097 
13098 	child_ctx = child->perf_event_ctxp[ctxn];
13099 
13100 	if (child_ctx && inherited_all) {
13101 		/*
13102 		 * Mark the child context as a clone of the parent
13103 		 * context, or of whatever the parent is a clone of.
13104 		 *
13105 		 * Note that if the parent is a clone, the holding of
13106 		 * parent_ctx->lock avoids it from being uncloned.
13107 		 */
13108 		cloned_ctx = parent_ctx->parent_ctx;
13109 		if (cloned_ctx) {
13110 			child_ctx->parent_ctx = cloned_ctx;
13111 			child_ctx->parent_gen = parent_ctx->parent_gen;
13112 		} else {
13113 			child_ctx->parent_ctx = parent_ctx;
13114 			child_ctx->parent_gen = parent_ctx->generation;
13115 		}
13116 		get_ctx(child_ctx->parent_ctx);
13117 	}
13118 
13119 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13120 out_unlock:
13121 	mutex_unlock(&parent_ctx->mutex);
13122 
13123 	perf_unpin_context(parent_ctx);
13124 	put_ctx(parent_ctx);
13125 
13126 	return ret;
13127 }
13128 
13129 /*
13130  * Initialize the perf_event context in task_struct
13131  */
13132 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13133 {
13134 	int ctxn, ret;
13135 
13136 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13137 	mutex_init(&child->perf_event_mutex);
13138 	INIT_LIST_HEAD(&child->perf_event_list);
13139 
13140 	for_each_task_context_nr(ctxn) {
13141 		ret = perf_event_init_context(child, ctxn, clone_flags);
13142 		if (ret) {
13143 			perf_event_free_task(child);
13144 			return ret;
13145 		}
13146 	}
13147 
13148 	return 0;
13149 }
13150 
13151 static void __init perf_event_init_all_cpus(void)
13152 {
13153 	struct swevent_htable *swhash;
13154 	int cpu;
13155 
13156 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13157 
13158 	for_each_possible_cpu(cpu) {
13159 		swhash = &per_cpu(swevent_htable, cpu);
13160 		mutex_init(&swhash->hlist_mutex);
13161 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13162 
13163 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13164 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13165 
13166 #ifdef CONFIG_CGROUP_PERF
13167 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13168 #endif
13169 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13170 	}
13171 }
13172 
13173 static void perf_swevent_init_cpu(unsigned int cpu)
13174 {
13175 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13176 
13177 	mutex_lock(&swhash->hlist_mutex);
13178 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13179 		struct swevent_hlist *hlist;
13180 
13181 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13182 		WARN_ON(!hlist);
13183 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13184 	}
13185 	mutex_unlock(&swhash->hlist_mutex);
13186 }
13187 
13188 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13189 static void __perf_event_exit_context(void *__info)
13190 {
13191 	struct perf_event_context *ctx = __info;
13192 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13193 	struct perf_event *event;
13194 
13195 	raw_spin_lock(&ctx->lock);
13196 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13197 	list_for_each_entry(event, &ctx->event_list, event_entry)
13198 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13199 	raw_spin_unlock(&ctx->lock);
13200 }
13201 
13202 static void perf_event_exit_cpu_context(int cpu)
13203 {
13204 	struct perf_cpu_context *cpuctx;
13205 	struct perf_event_context *ctx;
13206 	struct pmu *pmu;
13207 
13208 	mutex_lock(&pmus_lock);
13209 	list_for_each_entry(pmu, &pmus, entry) {
13210 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13211 		ctx = &cpuctx->ctx;
13212 
13213 		mutex_lock(&ctx->mutex);
13214 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13215 		cpuctx->online = 0;
13216 		mutex_unlock(&ctx->mutex);
13217 	}
13218 	cpumask_clear_cpu(cpu, perf_online_mask);
13219 	mutex_unlock(&pmus_lock);
13220 }
13221 #else
13222 
13223 static void perf_event_exit_cpu_context(int cpu) { }
13224 
13225 #endif
13226 
13227 int perf_event_init_cpu(unsigned int cpu)
13228 {
13229 	struct perf_cpu_context *cpuctx;
13230 	struct perf_event_context *ctx;
13231 	struct pmu *pmu;
13232 
13233 	perf_swevent_init_cpu(cpu);
13234 
13235 	mutex_lock(&pmus_lock);
13236 	cpumask_set_cpu(cpu, perf_online_mask);
13237 	list_for_each_entry(pmu, &pmus, entry) {
13238 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13239 		ctx = &cpuctx->ctx;
13240 
13241 		mutex_lock(&ctx->mutex);
13242 		cpuctx->online = 1;
13243 		mutex_unlock(&ctx->mutex);
13244 	}
13245 	mutex_unlock(&pmus_lock);
13246 
13247 	return 0;
13248 }
13249 
13250 int perf_event_exit_cpu(unsigned int cpu)
13251 {
13252 	perf_event_exit_cpu_context(cpu);
13253 	return 0;
13254 }
13255 
13256 static int
13257 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13258 {
13259 	int cpu;
13260 
13261 	for_each_online_cpu(cpu)
13262 		perf_event_exit_cpu(cpu);
13263 
13264 	return NOTIFY_OK;
13265 }
13266 
13267 /*
13268  * Run the perf reboot notifier at the very last possible moment so that
13269  * the generic watchdog code runs as long as possible.
13270  */
13271 static struct notifier_block perf_reboot_notifier = {
13272 	.notifier_call = perf_reboot,
13273 	.priority = INT_MIN,
13274 };
13275 
13276 void __init perf_event_init(void)
13277 {
13278 	int ret;
13279 
13280 	idr_init(&pmu_idr);
13281 
13282 	perf_event_init_all_cpus();
13283 	init_srcu_struct(&pmus_srcu);
13284 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13285 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13286 	perf_pmu_register(&perf_task_clock, NULL, -1);
13287 	perf_tp_register();
13288 	perf_event_init_cpu(smp_processor_id());
13289 	register_reboot_notifier(&perf_reboot_notifier);
13290 
13291 	ret = init_hw_breakpoint();
13292 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13293 
13294 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13295 
13296 	/*
13297 	 * Build time assertion that we keep the data_head at the intended
13298 	 * location.  IOW, validation we got the __reserved[] size right.
13299 	 */
13300 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13301 		     != 1024);
13302 }
13303 
13304 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13305 			      char *page)
13306 {
13307 	struct perf_pmu_events_attr *pmu_attr =
13308 		container_of(attr, struct perf_pmu_events_attr, attr);
13309 
13310 	if (pmu_attr->event_str)
13311 		return sprintf(page, "%s\n", pmu_attr->event_str);
13312 
13313 	return 0;
13314 }
13315 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13316 
13317 static int __init perf_event_sysfs_init(void)
13318 {
13319 	struct pmu *pmu;
13320 	int ret;
13321 
13322 	mutex_lock(&pmus_lock);
13323 
13324 	ret = bus_register(&pmu_bus);
13325 	if (ret)
13326 		goto unlock;
13327 
13328 	list_for_each_entry(pmu, &pmus, entry) {
13329 		if (!pmu->name || pmu->type < 0)
13330 			continue;
13331 
13332 		ret = pmu_dev_alloc(pmu);
13333 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13334 	}
13335 	pmu_bus_running = 1;
13336 	ret = 0;
13337 
13338 unlock:
13339 	mutex_unlock(&pmus_lock);
13340 
13341 	return ret;
13342 }
13343 device_initcall(perf_event_sysfs_init);
13344 
13345 #ifdef CONFIG_CGROUP_PERF
13346 static struct cgroup_subsys_state *
13347 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13348 {
13349 	struct perf_cgroup *jc;
13350 
13351 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13352 	if (!jc)
13353 		return ERR_PTR(-ENOMEM);
13354 
13355 	jc->info = alloc_percpu(struct perf_cgroup_info);
13356 	if (!jc->info) {
13357 		kfree(jc);
13358 		return ERR_PTR(-ENOMEM);
13359 	}
13360 
13361 	return &jc->css;
13362 }
13363 
13364 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13365 {
13366 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13367 
13368 	free_percpu(jc->info);
13369 	kfree(jc);
13370 }
13371 
13372 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13373 {
13374 	perf_event_cgroup(css->cgroup);
13375 	return 0;
13376 }
13377 
13378 static int __perf_cgroup_move(void *info)
13379 {
13380 	struct task_struct *task = info;
13381 	rcu_read_lock();
13382 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13383 	rcu_read_unlock();
13384 	return 0;
13385 }
13386 
13387 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13388 {
13389 	struct task_struct *task;
13390 	struct cgroup_subsys_state *css;
13391 
13392 	cgroup_taskset_for_each(task, css, tset)
13393 		task_function_call(task, __perf_cgroup_move, task);
13394 }
13395 
13396 struct cgroup_subsys perf_event_cgrp_subsys = {
13397 	.css_alloc	= perf_cgroup_css_alloc,
13398 	.css_free	= perf_cgroup_css_free,
13399 	.css_online	= perf_cgroup_css_online,
13400 	.attach		= perf_cgroup_attach,
13401 	/*
13402 	 * Implicitly enable on dfl hierarchy so that perf events can
13403 	 * always be filtered by cgroup2 path as long as perf_event
13404 	 * controller is not mounted on a legacy hierarchy.
13405 	 */
13406 	.implicit_on_dfl = true,
13407 	.threaded	= true,
13408 };
13409 #endif /* CONFIG_CGROUP_PERF */
13410