1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @func: the function to be called 136 * @info: the function call argument 137 * 138 * Calls the function @func on the remote cpu. 139 * 140 * returns: @func return value or -ENXIO when the cpu is offline 141 */ 142 static int cpu_function_call(int cpu, remote_function_f func, void *info) 143 { 144 struct remote_function_call data = { 145 .p = NULL, 146 .func = func, 147 .info = info, 148 .ret = -ENXIO, /* No such CPU */ 149 }; 150 151 smp_call_function_single(cpu, remote_function, &data, 1); 152 153 return data.ret; 154 } 155 156 static inline struct perf_cpu_context * 157 __get_cpu_context(struct perf_event_context *ctx) 158 { 159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 160 } 161 162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 163 struct perf_event_context *ctx) 164 { 165 raw_spin_lock(&cpuctx->ctx.lock); 166 if (ctx) 167 raw_spin_lock(&ctx->lock); 168 } 169 170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 171 struct perf_event_context *ctx) 172 { 173 if (ctx) 174 raw_spin_unlock(&ctx->lock); 175 raw_spin_unlock(&cpuctx->ctx.lock); 176 } 177 178 #define TASK_TOMBSTONE ((void *)-1L) 179 180 static bool is_kernel_event(struct perf_event *event) 181 { 182 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 183 } 184 185 /* 186 * On task ctx scheduling... 187 * 188 * When !ctx->nr_events a task context will not be scheduled. This means 189 * we can disable the scheduler hooks (for performance) without leaving 190 * pending task ctx state. 191 * 192 * This however results in two special cases: 193 * 194 * - removing the last event from a task ctx; this is relatively straight 195 * forward and is done in __perf_remove_from_context. 196 * 197 * - adding the first event to a task ctx; this is tricky because we cannot 198 * rely on ctx->is_active and therefore cannot use event_function_call(). 199 * See perf_install_in_context(). 200 * 201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 202 */ 203 204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 205 struct perf_event_context *, void *); 206 207 struct event_function_struct { 208 struct perf_event *event; 209 event_f func; 210 void *data; 211 }; 212 213 static int event_function(void *info) 214 { 215 struct event_function_struct *efs = info; 216 struct perf_event *event = efs->event; 217 struct perf_event_context *ctx = event->ctx; 218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 219 struct perf_event_context *task_ctx = cpuctx->task_ctx; 220 int ret = 0; 221 222 lockdep_assert_irqs_disabled(); 223 224 perf_ctx_lock(cpuctx, task_ctx); 225 /* 226 * Since we do the IPI call without holding ctx->lock things can have 227 * changed, double check we hit the task we set out to hit. 228 */ 229 if (ctx->task) { 230 if (ctx->task != current) { 231 ret = -ESRCH; 232 goto unlock; 233 } 234 235 /* 236 * We only use event_function_call() on established contexts, 237 * and event_function() is only ever called when active (or 238 * rather, we'll have bailed in task_function_call() or the 239 * above ctx->task != current test), therefore we must have 240 * ctx->is_active here. 241 */ 242 WARN_ON_ONCE(!ctx->is_active); 243 /* 244 * And since we have ctx->is_active, cpuctx->task_ctx must 245 * match. 246 */ 247 WARN_ON_ONCE(task_ctx != ctx); 248 } else { 249 WARN_ON_ONCE(&cpuctx->ctx != ctx); 250 } 251 252 efs->func(event, cpuctx, ctx, efs->data); 253 unlock: 254 perf_ctx_unlock(cpuctx, task_ctx); 255 256 return ret; 257 } 258 259 static void event_function_call(struct perf_event *event, event_f func, void *data) 260 { 261 struct perf_event_context *ctx = event->ctx; 262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 263 struct event_function_struct efs = { 264 .event = event, 265 .func = func, 266 .data = data, 267 }; 268 269 if (!event->parent) { 270 /* 271 * If this is a !child event, we must hold ctx::mutex to 272 * stabilize the event->ctx relation. See 273 * perf_event_ctx_lock(). 274 */ 275 lockdep_assert_held(&ctx->mutex); 276 } 277 278 if (!task) { 279 cpu_function_call(event->cpu, event_function, &efs); 280 return; 281 } 282 283 if (task == TASK_TOMBSTONE) 284 return; 285 286 again: 287 if (!task_function_call(task, event_function, &efs)) 288 return; 289 290 raw_spin_lock_irq(&ctx->lock); 291 /* 292 * Reload the task pointer, it might have been changed by 293 * a concurrent perf_event_context_sched_out(). 294 */ 295 task = ctx->task; 296 if (task == TASK_TOMBSTONE) { 297 raw_spin_unlock_irq(&ctx->lock); 298 return; 299 } 300 if (ctx->is_active) { 301 raw_spin_unlock_irq(&ctx->lock); 302 goto again; 303 } 304 func(event, NULL, ctx, data); 305 raw_spin_unlock_irq(&ctx->lock); 306 } 307 308 /* 309 * Similar to event_function_call() + event_function(), but hard assumes IRQs 310 * are already disabled and we're on the right CPU. 311 */ 312 static void event_function_local(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 316 struct task_struct *task = READ_ONCE(ctx->task); 317 struct perf_event_context *task_ctx = NULL; 318 319 lockdep_assert_irqs_disabled(); 320 321 if (task) { 322 if (task == TASK_TOMBSTONE) 323 return; 324 325 task_ctx = ctx; 326 } 327 328 perf_ctx_lock(cpuctx, task_ctx); 329 330 task = ctx->task; 331 if (task == TASK_TOMBSTONE) 332 goto unlock; 333 334 if (task) { 335 /* 336 * We must be either inactive or active and the right task, 337 * otherwise we're screwed, since we cannot IPI to somewhere 338 * else. 339 */ 340 if (ctx->is_active) { 341 if (WARN_ON_ONCE(task != current)) 342 goto unlock; 343 344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 345 goto unlock; 346 } 347 } else { 348 WARN_ON_ONCE(&cpuctx->ctx != ctx); 349 } 350 351 func(event, cpuctx, ctx, data); 352 unlock: 353 perf_ctx_unlock(cpuctx, task_ctx); 354 } 355 356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 357 PERF_FLAG_FD_OUTPUT |\ 358 PERF_FLAG_PID_CGROUP |\ 359 PERF_FLAG_FD_CLOEXEC) 360 361 /* 362 * branch priv levels that need permission checks 363 */ 364 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 365 (PERF_SAMPLE_BRANCH_KERNEL |\ 366 PERF_SAMPLE_BRANCH_HV) 367 368 enum event_type_t { 369 EVENT_FLEXIBLE = 0x1, 370 EVENT_PINNED = 0x2, 371 EVENT_TIME = 0x4, 372 /* see ctx_resched() for details */ 373 EVENT_CPU = 0x8, 374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 375 }; 376 377 /* 378 * perf_sched_events : >0 events exist 379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 380 */ 381 382 static void perf_sched_delayed(struct work_struct *work); 383 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 385 static DEFINE_MUTEX(perf_sched_mutex); 386 static atomic_t perf_sched_count; 387 388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 389 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 391 392 static atomic_t nr_mmap_events __read_mostly; 393 static atomic_t nr_comm_events __read_mostly; 394 static atomic_t nr_namespaces_events __read_mostly; 395 static atomic_t nr_task_events __read_mostly; 396 static atomic_t nr_freq_events __read_mostly; 397 static atomic_t nr_switch_events __read_mostly; 398 static atomic_t nr_ksymbol_events __read_mostly; 399 static atomic_t nr_bpf_events __read_mostly; 400 static atomic_t nr_cgroup_events __read_mostly; 401 static atomic_t nr_text_poke_events __read_mostly; 402 static atomic_t nr_build_id_events __read_mostly; 403 404 static LIST_HEAD(pmus); 405 static DEFINE_MUTEX(pmus_lock); 406 static struct srcu_struct pmus_srcu; 407 static cpumask_var_t perf_online_mask; 408 static struct kmem_cache *perf_event_cache; 409 410 /* 411 * perf event paranoia level: 412 * -1 - not paranoid at all 413 * 0 - disallow raw tracepoint access for unpriv 414 * 1 - disallow cpu events for unpriv 415 * 2 - disallow kernel profiling for unpriv 416 */ 417 int sysctl_perf_event_paranoid __read_mostly = 2; 418 419 /* Minimum for 512 kiB + 1 user control page */ 420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 421 422 /* 423 * max perf event sample rate 424 */ 425 #define DEFAULT_MAX_SAMPLE_RATE 100000 426 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 427 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 428 429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 430 431 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 432 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 433 434 static int perf_sample_allowed_ns __read_mostly = 435 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 436 437 static void update_perf_cpu_limits(void) 438 { 439 u64 tmp = perf_sample_period_ns; 440 441 tmp *= sysctl_perf_cpu_time_max_percent; 442 tmp = div_u64(tmp, 100); 443 if (!tmp) 444 tmp = 1; 445 446 WRITE_ONCE(perf_sample_allowed_ns, tmp); 447 } 448 449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 450 451 int perf_proc_update_handler(struct ctl_table *table, int write, 452 void *buffer, size_t *lenp, loff_t *ppos) 453 { 454 int ret; 455 int perf_cpu = sysctl_perf_cpu_time_max_percent; 456 /* 457 * If throttling is disabled don't allow the write: 458 */ 459 if (write && (perf_cpu == 100 || perf_cpu == 0)) 460 return -EINVAL; 461 462 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 463 if (ret || !write) 464 return ret; 465 466 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 468 update_perf_cpu_limits(); 469 470 return 0; 471 } 472 473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 474 475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 476 void *buffer, size_t *lenp, loff_t *ppos) 477 { 478 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 479 480 if (ret || !write) 481 return ret; 482 483 if (sysctl_perf_cpu_time_max_percent == 100 || 484 sysctl_perf_cpu_time_max_percent == 0) { 485 printk(KERN_WARNING 486 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 487 WRITE_ONCE(perf_sample_allowed_ns, 0); 488 } else { 489 update_perf_cpu_limits(); 490 } 491 492 return 0; 493 } 494 495 /* 496 * perf samples are done in some very critical code paths (NMIs). 497 * If they take too much CPU time, the system can lock up and not 498 * get any real work done. This will drop the sample rate when 499 * we detect that events are taking too long. 500 */ 501 #define NR_ACCUMULATED_SAMPLES 128 502 static DEFINE_PER_CPU(u64, running_sample_length); 503 504 static u64 __report_avg; 505 static u64 __report_allowed; 506 507 static void perf_duration_warn(struct irq_work *w) 508 { 509 printk_ratelimited(KERN_INFO 510 "perf: interrupt took too long (%lld > %lld), lowering " 511 "kernel.perf_event_max_sample_rate to %d\n", 512 __report_avg, __report_allowed, 513 sysctl_perf_event_sample_rate); 514 } 515 516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 517 518 void perf_sample_event_took(u64 sample_len_ns) 519 { 520 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 521 u64 running_len; 522 u64 avg_len; 523 u32 max; 524 525 if (max_len == 0) 526 return; 527 528 /* Decay the counter by 1 average sample. */ 529 running_len = __this_cpu_read(running_sample_length); 530 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 531 running_len += sample_len_ns; 532 __this_cpu_write(running_sample_length, running_len); 533 534 /* 535 * Note: this will be biased artifically low until we have 536 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 537 * from having to maintain a count. 538 */ 539 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 540 if (avg_len <= max_len) 541 return; 542 543 __report_avg = avg_len; 544 __report_allowed = max_len; 545 546 /* 547 * Compute a throttle threshold 25% below the current duration. 548 */ 549 avg_len += avg_len / 4; 550 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 551 if (avg_len < max) 552 max /= (u32)avg_len; 553 else 554 max = 1; 555 556 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 557 WRITE_ONCE(max_samples_per_tick, max); 558 559 sysctl_perf_event_sample_rate = max * HZ; 560 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 561 562 if (!irq_work_queue(&perf_duration_work)) { 563 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 564 "kernel.perf_event_max_sample_rate to %d\n", 565 __report_avg, __report_allowed, 566 sysctl_perf_event_sample_rate); 567 } 568 } 569 570 static atomic64_t perf_event_id; 571 572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 573 enum event_type_t event_type); 574 575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 576 enum event_type_t event_type, 577 struct task_struct *task); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 extern __weak const char *perf_pmu_name(void) 585 { 586 return "pmu"; 587 } 588 589 static inline u64 perf_clock(void) 590 { 591 return local_clock(); 592 } 593 594 static inline u64 perf_event_clock(struct perf_event *event) 595 { 596 return event->clock(); 597 } 598 599 /* 600 * State based event timekeeping... 601 * 602 * The basic idea is to use event->state to determine which (if any) time 603 * fields to increment with the current delta. This means we only need to 604 * update timestamps when we change state or when they are explicitly requested 605 * (read). 606 * 607 * Event groups make things a little more complicated, but not terribly so. The 608 * rules for a group are that if the group leader is OFF the entire group is 609 * OFF, irrespecive of what the group member states are. This results in 610 * __perf_effective_state(). 611 * 612 * A futher ramification is that when a group leader flips between OFF and 613 * !OFF, we need to update all group member times. 614 * 615 * 616 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 617 * need to make sure the relevant context time is updated before we try and 618 * update our timestamps. 619 */ 620 621 static __always_inline enum perf_event_state 622 __perf_effective_state(struct perf_event *event) 623 { 624 struct perf_event *leader = event->group_leader; 625 626 if (leader->state <= PERF_EVENT_STATE_OFF) 627 return leader->state; 628 629 return event->state; 630 } 631 632 static __always_inline void 633 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 634 { 635 enum perf_event_state state = __perf_effective_state(event); 636 u64 delta = now - event->tstamp; 637 638 *enabled = event->total_time_enabled; 639 if (state >= PERF_EVENT_STATE_INACTIVE) 640 *enabled += delta; 641 642 *running = event->total_time_running; 643 if (state >= PERF_EVENT_STATE_ACTIVE) 644 *running += delta; 645 } 646 647 static void perf_event_update_time(struct perf_event *event) 648 { 649 u64 now = perf_event_time(event); 650 651 __perf_update_times(event, now, &event->total_time_enabled, 652 &event->total_time_running); 653 event->tstamp = now; 654 } 655 656 static void perf_event_update_sibling_time(struct perf_event *leader) 657 { 658 struct perf_event *sibling; 659 660 for_each_sibling_event(sibling, leader) 661 perf_event_update_time(sibling); 662 } 663 664 static void 665 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 666 { 667 if (event->state == state) 668 return; 669 670 perf_event_update_time(event); 671 /* 672 * If a group leader gets enabled/disabled all its siblings 673 * are affected too. 674 */ 675 if ((event->state < 0) ^ (state < 0)) 676 perf_event_update_sibling_time(event); 677 678 WRITE_ONCE(event->state, state); 679 } 680 681 #ifdef CONFIG_CGROUP_PERF 682 683 static inline bool 684 perf_cgroup_match(struct perf_event *event) 685 { 686 struct perf_event_context *ctx = event->ctx; 687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 688 689 /* @event doesn't care about cgroup */ 690 if (!event->cgrp) 691 return true; 692 693 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 694 if (!cpuctx->cgrp) 695 return false; 696 697 /* 698 * Cgroup scoping is recursive. An event enabled for a cgroup is 699 * also enabled for all its descendant cgroups. If @cpuctx's 700 * cgroup is a descendant of @event's (the test covers identity 701 * case), it's a match. 702 */ 703 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 704 event->cgrp->css.cgroup); 705 } 706 707 static inline void perf_detach_cgroup(struct perf_event *event) 708 { 709 css_put(&event->cgrp->css); 710 event->cgrp = NULL; 711 } 712 713 static inline int is_cgroup_event(struct perf_event *event) 714 { 715 return event->cgrp != NULL; 716 } 717 718 static inline u64 perf_cgroup_event_time(struct perf_event *event) 719 { 720 struct perf_cgroup_info *t; 721 722 t = per_cpu_ptr(event->cgrp->info, event->cpu); 723 return t->time; 724 } 725 726 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 727 { 728 struct perf_cgroup_info *info; 729 u64 now; 730 731 now = perf_clock(); 732 733 info = this_cpu_ptr(cgrp->info); 734 735 info->time += now - info->timestamp; 736 info->timestamp = now; 737 } 738 739 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 740 { 741 struct perf_cgroup *cgrp = cpuctx->cgrp; 742 struct cgroup_subsys_state *css; 743 744 if (cgrp) { 745 for (css = &cgrp->css; css; css = css->parent) { 746 cgrp = container_of(css, struct perf_cgroup, css); 747 __update_cgrp_time(cgrp); 748 } 749 } 750 } 751 752 static inline void update_cgrp_time_from_event(struct perf_event *event) 753 { 754 struct perf_cgroup *cgrp; 755 756 /* 757 * ensure we access cgroup data only when needed and 758 * when we know the cgroup is pinned (css_get) 759 */ 760 if (!is_cgroup_event(event)) 761 return; 762 763 cgrp = perf_cgroup_from_task(current, event->ctx); 764 /* 765 * Do not update time when cgroup is not active 766 */ 767 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 768 __update_cgrp_time(event->cgrp); 769 } 770 771 static inline void 772 perf_cgroup_set_timestamp(struct task_struct *task, 773 struct perf_event_context *ctx) 774 { 775 struct perf_cgroup *cgrp; 776 struct perf_cgroup_info *info; 777 struct cgroup_subsys_state *css; 778 779 /* 780 * ctx->lock held by caller 781 * ensure we do not access cgroup data 782 * unless we have the cgroup pinned (css_get) 783 */ 784 if (!task || !ctx->nr_cgroups) 785 return; 786 787 cgrp = perf_cgroup_from_task(task, ctx); 788 789 for (css = &cgrp->css; css; css = css->parent) { 790 cgrp = container_of(css, struct perf_cgroup, css); 791 info = this_cpu_ptr(cgrp->info); 792 info->timestamp = ctx->timestamp; 793 } 794 } 795 796 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 797 798 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 799 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 800 801 /* 802 * reschedule events based on the cgroup constraint of task. 803 * 804 * mode SWOUT : schedule out everything 805 * mode SWIN : schedule in based on cgroup for next 806 */ 807 static void perf_cgroup_switch(struct task_struct *task, int mode) 808 { 809 struct perf_cpu_context *cpuctx; 810 struct list_head *list; 811 unsigned long flags; 812 813 /* 814 * Disable interrupts and preemption to avoid this CPU's 815 * cgrp_cpuctx_entry to change under us. 816 */ 817 local_irq_save(flags); 818 819 list = this_cpu_ptr(&cgrp_cpuctx_list); 820 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 821 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 822 823 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 824 perf_pmu_disable(cpuctx->ctx.pmu); 825 826 if (mode & PERF_CGROUP_SWOUT) { 827 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 828 /* 829 * must not be done before ctxswout due 830 * to event_filter_match() in event_sched_out() 831 */ 832 cpuctx->cgrp = NULL; 833 } 834 835 if (mode & PERF_CGROUP_SWIN) { 836 WARN_ON_ONCE(cpuctx->cgrp); 837 /* 838 * set cgrp before ctxsw in to allow 839 * event_filter_match() to not have to pass 840 * task around 841 * we pass the cpuctx->ctx to perf_cgroup_from_task() 842 * because cgorup events are only per-cpu 843 */ 844 cpuctx->cgrp = perf_cgroup_from_task(task, 845 &cpuctx->ctx); 846 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 847 } 848 perf_pmu_enable(cpuctx->ctx.pmu); 849 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 850 } 851 852 local_irq_restore(flags); 853 } 854 855 static inline void perf_cgroup_sched_out(struct task_struct *task, 856 struct task_struct *next) 857 { 858 struct perf_cgroup *cgrp1; 859 struct perf_cgroup *cgrp2 = NULL; 860 861 rcu_read_lock(); 862 /* 863 * we come here when we know perf_cgroup_events > 0 864 * we do not need to pass the ctx here because we know 865 * we are holding the rcu lock 866 */ 867 cgrp1 = perf_cgroup_from_task(task, NULL); 868 cgrp2 = perf_cgroup_from_task(next, NULL); 869 870 /* 871 * only schedule out current cgroup events if we know 872 * that we are switching to a different cgroup. Otherwise, 873 * do no touch the cgroup events. 874 */ 875 if (cgrp1 != cgrp2) 876 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 877 878 rcu_read_unlock(); 879 } 880 881 static inline void perf_cgroup_sched_in(struct task_struct *prev, 882 struct task_struct *task) 883 { 884 struct perf_cgroup *cgrp1; 885 struct perf_cgroup *cgrp2 = NULL; 886 887 rcu_read_lock(); 888 /* 889 * we come here when we know perf_cgroup_events > 0 890 * we do not need to pass the ctx here because we know 891 * we are holding the rcu lock 892 */ 893 cgrp1 = perf_cgroup_from_task(task, NULL); 894 cgrp2 = perf_cgroup_from_task(prev, NULL); 895 896 /* 897 * only need to schedule in cgroup events if we are changing 898 * cgroup during ctxsw. Cgroup events were not scheduled 899 * out of ctxsw out if that was not the case. 900 */ 901 if (cgrp1 != cgrp2) 902 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 903 904 rcu_read_unlock(); 905 } 906 907 static int perf_cgroup_ensure_storage(struct perf_event *event, 908 struct cgroup_subsys_state *css) 909 { 910 struct perf_cpu_context *cpuctx; 911 struct perf_event **storage; 912 int cpu, heap_size, ret = 0; 913 914 /* 915 * Allow storage to have sufficent space for an iterator for each 916 * possibly nested cgroup plus an iterator for events with no cgroup. 917 */ 918 for (heap_size = 1; css; css = css->parent) 919 heap_size++; 920 921 for_each_possible_cpu(cpu) { 922 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 923 if (heap_size <= cpuctx->heap_size) 924 continue; 925 926 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 927 GFP_KERNEL, cpu_to_node(cpu)); 928 if (!storage) { 929 ret = -ENOMEM; 930 break; 931 } 932 933 raw_spin_lock_irq(&cpuctx->ctx.lock); 934 if (cpuctx->heap_size < heap_size) { 935 swap(cpuctx->heap, storage); 936 if (storage == cpuctx->heap_default) 937 storage = NULL; 938 cpuctx->heap_size = heap_size; 939 } 940 raw_spin_unlock_irq(&cpuctx->ctx.lock); 941 942 kfree(storage); 943 } 944 945 return ret; 946 } 947 948 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 949 struct perf_event_attr *attr, 950 struct perf_event *group_leader) 951 { 952 struct perf_cgroup *cgrp; 953 struct cgroup_subsys_state *css; 954 struct fd f = fdget(fd); 955 int ret = 0; 956 957 if (!f.file) 958 return -EBADF; 959 960 css = css_tryget_online_from_dir(f.file->f_path.dentry, 961 &perf_event_cgrp_subsys); 962 if (IS_ERR(css)) { 963 ret = PTR_ERR(css); 964 goto out; 965 } 966 967 ret = perf_cgroup_ensure_storage(event, css); 968 if (ret) 969 goto out; 970 971 cgrp = container_of(css, struct perf_cgroup, css); 972 event->cgrp = cgrp; 973 974 /* 975 * all events in a group must monitor 976 * the same cgroup because a task belongs 977 * to only one perf cgroup at a time 978 */ 979 if (group_leader && group_leader->cgrp != cgrp) { 980 perf_detach_cgroup(event); 981 ret = -EINVAL; 982 } 983 out: 984 fdput(f); 985 return ret; 986 } 987 988 static inline void 989 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 990 { 991 struct perf_cgroup_info *t; 992 t = per_cpu_ptr(event->cgrp->info, event->cpu); 993 event->shadow_ctx_time = now - t->timestamp; 994 } 995 996 static inline void 997 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 998 { 999 struct perf_cpu_context *cpuctx; 1000 1001 if (!is_cgroup_event(event)) 1002 return; 1003 1004 /* 1005 * Because cgroup events are always per-cpu events, 1006 * @ctx == &cpuctx->ctx. 1007 */ 1008 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1009 1010 /* 1011 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1012 * matching the event's cgroup, we must do this for every new event, 1013 * because if the first would mismatch, the second would not try again 1014 * and we would leave cpuctx->cgrp unset. 1015 */ 1016 if (ctx->is_active && !cpuctx->cgrp) { 1017 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1018 1019 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1020 cpuctx->cgrp = cgrp; 1021 } 1022 1023 if (ctx->nr_cgroups++) 1024 return; 1025 1026 list_add(&cpuctx->cgrp_cpuctx_entry, 1027 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1028 } 1029 1030 static inline void 1031 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1032 { 1033 struct perf_cpu_context *cpuctx; 1034 1035 if (!is_cgroup_event(event)) 1036 return; 1037 1038 /* 1039 * Because cgroup events are always per-cpu events, 1040 * @ctx == &cpuctx->ctx. 1041 */ 1042 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1043 1044 if (--ctx->nr_cgroups) 1045 return; 1046 1047 if (ctx->is_active && cpuctx->cgrp) 1048 cpuctx->cgrp = NULL; 1049 1050 list_del(&cpuctx->cgrp_cpuctx_entry); 1051 } 1052 1053 #else /* !CONFIG_CGROUP_PERF */ 1054 1055 static inline bool 1056 perf_cgroup_match(struct perf_event *event) 1057 { 1058 return true; 1059 } 1060 1061 static inline void perf_detach_cgroup(struct perf_event *event) 1062 {} 1063 1064 static inline int is_cgroup_event(struct perf_event *event) 1065 { 1066 return 0; 1067 } 1068 1069 static inline void update_cgrp_time_from_event(struct perf_event *event) 1070 { 1071 } 1072 1073 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1074 { 1075 } 1076 1077 static inline void perf_cgroup_sched_out(struct task_struct *task, 1078 struct task_struct *next) 1079 { 1080 } 1081 1082 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1083 struct task_struct *task) 1084 { 1085 } 1086 1087 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1088 struct perf_event_attr *attr, 1089 struct perf_event *group_leader) 1090 { 1091 return -EINVAL; 1092 } 1093 1094 static inline void 1095 perf_cgroup_set_timestamp(struct task_struct *task, 1096 struct perf_event_context *ctx) 1097 { 1098 } 1099 1100 static inline void 1101 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1102 { 1103 } 1104 1105 static inline void 1106 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1107 { 1108 } 1109 1110 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1111 { 1112 return 0; 1113 } 1114 1115 static inline void 1116 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1117 { 1118 } 1119 1120 static inline void 1121 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1122 { 1123 } 1124 #endif 1125 1126 /* 1127 * set default to be dependent on timer tick just 1128 * like original code 1129 */ 1130 #define PERF_CPU_HRTIMER (1000 / HZ) 1131 /* 1132 * function must be called with interrupts disabled 1133 */ 1134 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1135 { 1136 struct perf_cpu_context *cpuctx; 1137 bool rotations; 1138 1139 lockdep_assert_irqs_disabled(); 1140 1141 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1142 rotations = perf_rotate_context(cpuctx); 1143 1144 raw_spin_lock(&cpuctx->hrtimer_lock); 1145 if (rotations) 1146 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1147 else 1148 cpuctx->hrtimer_active = 0; 1149 raw_spin_unlock(&cpuctx->hrtimer_lock); 1150 1151 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1152 } 1153 1154 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1155 { 1156 struct hrtimer *timer = &cpuctx->hrtimer; 1157 struct pmu *pmu = cpuctx->ctx.pmu; 1158 u64 interval; 1159 1160 /* no multiplexing needed for SW PMU */ 1161 if (pmu->task_ctx_nr == perf_sw_context) 1162 return; 1163 1164 /* 1165 * check default is sane, if not set then force to 1166 * default interval (1/tick) 1167 */ 1168 interval = pmu->hrtimer_interval_ms; 1169 if (interval < 1) 1170 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1171 1172 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1173 1174 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1175 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1176 timer->function = perf_mux_hrtimer_handler; 1177 } 1178 1179 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1180 { 1181 struct hrtimer *timer = &cpuctx->hrtimer; 1182 struct pmu *pmu = cpuctx->ctx.pmu; 1183 unsigned long flags; 1184 1185 /* not for SW PMU */ 1186 if (pmu->task_ctx_nr == perf_sw_context) 1187 return 0; 1188 1189 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1190 if (!cpuctx->hrtimer_active) { 1191 cpuctx->hrtimer_active = 1; 1192 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1193 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1194 } 1195 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1196 1197 return 0; 1198 } 1199 1200 void perf_pmu_disable(struct pmu *pmu) 1201 { 1202 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1203 if (!(*count)++) 1204 pmu->pmu_disable(pmu); 1205 } 1206 1207 void perf_pmu_enable(struct pmu *pmu) 1208 { 1209 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1210 if (!--(*count)) 1211 pmu->pmu_enable(pmu); 1212 } 1213 1214 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1215 1216 /* 1217 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1218 * perf_event_task_tick() are fully serialized because they're strictly cpu 1219 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1220 * disabled, while perf_event_task_tick is called from IRQ context. 1221 */ 1222 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1223 { 1224 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1225 1226 lockdep_assert_irqs_disabled(); 1227 1228 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1229 1230 list_add(&ctx->active_ctx_list, head); 1231 } 1232 1233 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1234 { 1235 lockdep_assert_irqs_disabled(); 1236 1237 WARN_ON(list_empty(&ctx->active_ctx_list)); 1238 1239 list_del_init(&ctx->active_ctx_list); 1240 } 1241 1242 static void get_ctx(struct perf_event_context *ctx) 1243 { 1244 refcount_inc(&ctx->refcount); 1245 } 1246 1247 static void *alloc_task_ctx_data(struct pmu *pmu) 1248 { 1249 if (pmu->task_ctx_cache) 1250 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1251 1252 return NULL; 1253 } 1254 1255 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1256 { 1257 if (pmu->task_ctx_cache && task_ctx_data) 1258 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1259 } 1260 1261 static void free_ctx(struct rcu_head *head) 1262 { 1263 struct perf_event_context *ctx; 1264 1265 ctx = container_of(head, struct perf_event_context, rcu_head); 1266 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1267 kfree(ctx); 1268 } 1269 1270 static void put_ctx(struct perf_event_context *ctx) 1271 { 1272 if (refcount_dec_and_test(&ctx->refcount)) { 1273 if (ctx->parent_ctx) 1274 put_ctx(ctx->parent_ctx); 1275 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1276 put_task_struct(ctx->task); 1277 call_rcu(&ctx->rcu_head, free_ctx); 1278 } 1279 } 1280 1281 /* 1282 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1283 * perf_pmu_migrate_context() we need some magic. 1284 * 1285 * Those places that change perf_event::ctx will hold both 1286 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1287 * 1288 * Lock ordering is by mutex address. There are two other sites where 1289 * perf_event_context::mutex nests and those are: 1290 * 1291 * - perf_event_exit_task_context() [ child , 0 ] 1292 * perf_event_exit_event() 1293 * put_event() [ parent, 1 ] 1294 * 1295 * - perf_event_init_context() [ parent, 0 ] 1296 * inherit_task_group() 1297 * inherit_group() 1298 * inherit_event() 1299 * perf_event_alloc() 1300 * perf_init_event() 1301 * perf_try_init_event() [ child , 1 ] 1302 * 1303 * While it appears there is an obvious deadlock here -- the parent and child 1304 * nesting levels are inverted between the two. This is in fact safe because 1305 * life-time rules separate them. That is an exiting task cannot fork, and a 1306 * spawning task cannot (yet) exit. 1307 * 1308 * But remember that these are parent<->child context relations, and 1309 * migration does not affect children, therefore these two orderings should not 1310 * interact. 1311 * 1312 * The change in perf_event::ctx does not affect children (as claimed above) 1313 * because the sys_perf_event_open() case will install a new event and break 1314 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1315 * concerned with cpuctx and that doesn't have children. 1316 * 1317 * The places that change perf_event::ctx will issue: 1318 * 1319 * perf_remove_from_context(); 1320 * synchronize_rcu(); 1321 * perf_install_in_context(); 1322 * 1323 * to affect the change. The remove_from_context() + synchronize_rcu() should 1324 * quiesce the event, after which we can install it in the new location. This 1325 * means that only external vectors (perf_fops, prctl) can perturb the event 1326 * while in transit. Therefore all such accessors should also acquire 1327 * perf_event_context::mutex to serialize against this. 1328 * 1329 * However; because event->ctx can change while we're waiting to acquire 1330 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1331 * function. 1332 * 1333 * Lock order: 1334 * exec_update_lock 1335 * task_struct::perf_event_mutex 1336 * perf_event_context::mutex 1337 * perf_event::child_mutex; 1338 * perf_event_context::lock 1339 * perf_event::mmap_mutex 1340 * mmap_lock 1341 * perf_addr_filters_head::lock 1342 * 1343 * cpu_hotplug_lock 1344 * pmus_lock 1345 * cpuctx->mutex / perf_event_context::mutex 1346 */ 1347 static struct perf_event_context * 1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1349 { 1350 struct perf_event_context *ctx; 1351 1352 again: 1353 rcu_read_lock(); 1354 ctx = READ_ONCE(event->ctx); 1355 if (!refcount_inc_not_zero(&ctx->refcount)) { 1356 rcu_read_unlock(); 1357 goto again; 1358 } 1359 rcu_read_unlock(); 1360 1361 mutex_lock_nested(&ctx->mutex, nesting); 1362 if (event->ctx != ctx) { 1363 mutex_unlock(&ctx->mutex); 1364 put_ctx(ctx); 1365 goto again; 1366 } 1367 1368 return ctx; 1369 } 1370 1371 static inline struct perf_event_context * 1372 perf_event_ctx_lock(struct perf_event *event) 1373 { 1374 return perf_event_ctx_lock_nested(event, 0); 1375 } 1376 1377 static void perf_event_ctx_unlock(struct perf_event *event, 1378 struct perf_event_context *ctx) 1379 { 1380 mutex_unlock(&ctx->mutex); 1381 put_ctx(ctx); 1382 } 1383 1384 /* 1385 * This must be done under the ctx->lock, such as to serialize against 1386 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1387 * calling scheduler related locks and ctx->lock nests inside those. 1388 */ 1389 static __must_check struct perf_event_context * 1390 unclone_ctx(struct perf_event_context *ctx) 1391 { 1392 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1393 1394 lockdep_assert_held(&ctx->lock); 1395 1396 if (parent_ctx) 1397 ctx->parent_ctx = NULL; 1398 ctx->generation++; 1399 1400 return parent_ctx; 1401 } 1402 1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1404 enum pid_type type) 1405 { 1406 u32 nr; 1407 /* 1408 * only top level events have the pid namespace they were created in 1409 */ 1410 if (event->parent) 1411 event = event->parent; 1412 1413 nr = __task_pid_nr_ns(p, type, event->ns); 1414 /* avoid -1 if it is idle thread or runs in another ns */ 1415 if (!nr && !pid_alive(p)) 1416 nr = -1; 1417 return nr; 1418 } 1419 1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1421 { 1422 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1423 } 1424 1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1426 { 1427 return perf_event_pid_type(event, p, PIDTYPE_PID); 1428 } 1429 1430 /* 1431 * If we inherit events we want to return the parent event id 1432 * to userspace. 1433 */ 1434 static u64 primary_event_id(struct perf_event *event) 1435 { 1436 u64 id = event->id; 1437 1438 if (event->parent) 1439 id = event->parent->id; 1440 1441 return id; 1442 } 1443 1444 /* 1445 * Get the perf_event_context for a task and lock it. 1446 * 1447 * This has to cope with the fact that until it is locked, 1448 * the context could get moved to another task. 1449 */ 1450 static struct perf_event_context * 1451 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1452 { 1453 struct perf_event_context *ctx; 1454 1455 retry: 1456 /* 1457 * One of the few rules of preemptible RCU is that one cannot do 1458 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1459 * part of the read side critical section was irqs-enabled -- see 1460 * rcu_read_unlock_special(). 1461 * 1462 * Since ctx->lock nests under rq->lock we must ensure the entire read 1463 * side critical section has interrupts disabled. 1464 */ 1465 local_irq_save(*flags); 1466 rcu_read_lock(); 1467 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1468 if (ctx) { 1469 /* 1470 * If this context is a clone of another, it might 1471 * get swapped for another underneath us by 1472 * perf_event_task_sched_out, though the 1473 * rcu_read_lock() protects us from any context 1474 * getting freed. Lock the context and check if it 1475 * got swapped before we could get the lock, and retry 1476 * if so. If we locked the right context, then it 1477 * can't get swapped on us any more. 1478 */ 1479 raw_spin_lock(&ctx->lock); 1480 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1481 raw_spin_unlock(&ctx->lock); 1482 rcu_read_unlock(); 1483 local_irq_restore(*flags); 1484 goto retry; 1485 } 1486 1487 if (ctx->task == TASK_TOMBSTONE || 1488 !refcount_inc_not_zero(&ctx->refcount)) { 1489 raw_spin_unlock(&ctx->lock); 1490 ctx = NULL; 1491 } else { 1492 WARN_ON_ONCE(ctx->task != task); 1493 } 1494 } 1495 rcu_read_unlock(); 1496 if (!ctx) 1497 local_irq_restore(*flags); 1498 return ctx; 1499 } 1500 1501 /* 1502 * Get the context for a task and increment its pin_count so it 1503 * can't get swapped to another task. This also increments its 1504 * reference count so that the context can't get freed. 1505 */ 1506 static struct perf_event_context * 1507 perf_pin_task_context(struct task_struct *task, int ctxn) 1508 { 1509 struct perf_event_context *ctx; 1510 unsigned long flags; 1511 1512 ctx = perf_lock_task_context(task, ctxn, &flags); 1513 if (ctx) { 1514 ++ctx->pin_count; 1515 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1516 } 1517 return ctx; 1518 } 1519 1520 static void perf_unpin_context(struct perf_event_context *ctx) 1521 { 1522 unsigned long flags; 1523 1524 raw_spin_lock_irqsave(&ctx->lock, flags); 1525 --ctx->pin_count; 1526 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1527 } 1528 1529 /* 1530 * Update the record of the current time in a context. 1531 */ 1532 static void update_context_time(struct perf_event_context *ctx) 1533 { 1534 u64 now = perf_clock(); 1535 1536 ctx->time += now - ctx->timestamp; 1537 ctx->timestamp = now; 1538 } 1539 1540 static u64 perf_event_time(struct perf_event *event) 1541 { 1542 struct perf_event_context *ctx = event->ctx; 1543 1544 if (is_cgroup_event(event)) 1545 return perf_cgroup_event_time(event); 1546 1547 return ctx ? ctx->time : 0; 1548 } 1549 1550 static enum event_type_t get_event_type(struct perf_event *event) 1551 { 1552 struct perf_event_context *ctx = event->ctx; 1553 enum event_type_t event_type; 1554 1555 lockdep_assert_held(&ctx->lock); 1556 1557 /* 1558 * It's 'group type', really, because if our group leader is 1559 * pinned, so are we. 1560 */ 1561 if (event->group_leader != event) 1562 event = event->group_leader; 1563 1564 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1565 if (!ctx->task) 1566 event_type |= EVENT_CPU; 1567 1568 return event_type; 1569 } 1570 1571 /* 1572 * Helper function to initialize event group nodes. 1573 */ 1574 static void init_event_group(struct perf_event *event) 1575 { 1576 RB_CLEAR_NODE(&event->group_node); 1577 event->group_index = 0; 1578 } 1579 1580 /* 1581 * Extract pinned or flexible groups from the context 1582 * based on event attrs bits. 1583 */ 1584 static struct perf_event_groups * 1585 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1586 { 1587 if (event->attr.pinned) 1588 return &ctx->pinned_groups; 1589 else 1590 return &ctx->flexible_groups; 1591 } 1592 1593 /* 1594 * Helper function to initializes perf_event_group trees. 1595 */ 1596 static void perf_event_groups_init(struct perf_event_groups *groups) 1597 { 1598 groups->tree = RB_ROOT; 1599 groups->index = 0; 1600 } 1601 1602 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1603 { 1604 struct cgroup *cgroup = NULL; 1605 1606 #ifdef CONFIG_CGROUP_PERF 1607 if (event->cgrp) 1608 cgroup = event->cgrp->css.cgroup; 1609 #endif 1610 1611 return cgroup; 1612 } 1613 1614 /* 1615 * Compare function for event groups; 1616 * 1617 * Implements complex key that first sorts by CPU and then by virtual index 1618 * which provides ordering when rotating groups for the same CPU. 1619 */ 1620 static __always_inline int 1621 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1622 const u64 left_group_index, const struct perf_event *right) 1623 { 1624 if (left_cpu < right->cpu) 1625 return -1; 1626 if (left_cpu > right->cpu) 1627 return 1; 1628 1629 #ifdef CONFIG_CGROUP_PERF 1630 { 1631 const struct cgroup *right_cgroup = event_cgroup(right); 1632 1633 if (left_cgroup != right_cgroup) { 1634 if (!left_cgroup) { 1635 /* 1636 * Left has no cgroup but right does, no 1637 * cgroups come first. 1638 */ 1639 return -1; 1640 } 1641 if (!right_cgroup) { 1642 /* 1643 * Right has no cgroup but left does, no 1644 * cgroups come first. 1645 */ 1646 return 1; 1647 } 1648 /* Two dissimilar cgroups, order by id. */ 1649 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1650 return -1; 1651 1652 return 1; 1653 } 1654 } 1655 #endif 1656 1657 if (left_group_index < right->group_index) 1658 return -1; 1659 if (left_group_index > right->group_index) 1660 return 1; 1661 1662 return 0; 1663 } 1664 1665 #define __node_2_pe(node) \ 1666 rb_entry((node), struct perf_event, group_node) 1667 1668 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1669 { 1670 struct perf_event *e = __node_2_pe(a); 1671 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1672 __node_2_pe(b)) < 0; 1673 } 1674 1675 struct __group_key { 1676 int cpu; 1677 struct cgroup *cgroup; 1678 }; 1679 1680 static inline int __group_cmp(const void *key, const struct rb_node *node) 1681 { 1682 const struct __group_key *a = key; 1683 const struct perf_event *b = __node_2_pe(node); 1684 1685 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1686 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1687 } 1688 1689 /* 1690 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1691 * key (see perf_event_groups_less). This places it last inside the CPU 1692 * subtree. 1693 */ 1694 static void 1695 perf_event_groups_insert(struct perf_event_groups *groups, 1696 struct perf_event *event) 1697 { 1698 event->group_index = ++groups->index; 1699 1700 rb_add(&event->group_node, &groups->tree, __group_less); 1701 } 1702 1703 /* 1704 * Helper function to insert event into the pinned or flexible groups. 1705 */ 1706 static void 1707 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1708 { 1709 struct perf_event_groups *groups; 1710 1711 groups = get_event_groups(event, ctx); 1712 perf_event_groups_insert(groups, event); 1713 } 1714 1715 /* 1716 * Delete a group from a tree. 1717 */ 1718 static void 1719 perf_event_groups_delete(struct perf_event_groups *groups, 1720 struct perf_event *event) 1721 { 1722 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1723 RB_EMPTY_ROOT(&groups->tree)); 1724 1725 rb_erase(&event->group_node, &groups->tree); 1726 init_event_group(event); 1727 } 1728 1729 /* 1730 * Helper function to delete event from its groups. 1731 */ 1732 static void 1733 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1734 { 1735 struct perf_event_groups *groups; 1736 1737 groups = get_event_groups(event, ctx); 1738 perf_event_groups_delete(groups, event); 1739 } 1740 1741 /* 1742 * Get the leftmost event in the cpu/cgroup subtree. 1743 */ 1744 static struct perf_event * 1745 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1746 struct cgroup *cgrp) 1747 { 1748 struct __group_key key = { 1749 .cpu = cpu, 1750 .cgroup = cgrp, 1751 }; 1752 struct rb_node *node; 1753 1754 node = rb_find_first(&key, &groups->tree, __group_cmp); 1755 if (node) 1756 return __node_2_pe(node); 1757 1758 return NULL; 1759 } 1760 1761 /* 1762 * Like rb_entry_next_safe() for the @cpu subtree. 1763 */ 1764 static struct perf_event * 1765 perf_event_groups_next(struct perf_event *event) 1766 { 1767 struct __group_key key = { 1768 .cpu = event->cpu, 1769 .cgroup = event_cgroup(event), 1770 }; 1771 struct rb_node *next; 1772 1773 next = rb_next_match(&key, &event->group_node, __group_cmp); 1774 if (next) 1775 return __node_2_pe(next); 1776 1777 return NULL; 1778 } 1779 1780 /* 1781 * Iterate through the whole groups tree. 1782 */ 1783 #define perf_event_groups_for_each(event, groups) \ 1784 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1785 typeof(*event), group_node); event; \ 1786 event = rb_entry_safe(rb_next(&event->group_node), \ 1787 typeof(*event), group_node)) 1788 1789 /* 1790 * Add an event from the lists for its context. 1791 * Must be called with ctx->mutex and ctx->lock held. 1792 */ 1793 static void 1794 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1795 { 1796 lockdep_assert_held(&ctx->lock); 1797 1798 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1799 event->attach_state |= PERF_ATTACH_CONTEXT; 1800 1801 event->tstamp = perf_event_time(event); 1802 1803 /* 1804 * If we're a stand alone event or group leader, we go to the context 1805 * list, group events are kept attached to the group so that 1806 * perf_group_detach can, at all times, locate all siblings. 1807 */ 1808 if (event->group_leader == event) { 1809 event->group_caps = event->event_caps; 1810 add_event_to_groups(event, ctx); 1811 } 1812 1813 list_add_rcu(&event->event_entry, &ctx->event_list); 1814 ctx->nr_events++; 1815 if (event->attr.inherit_stat) 1816 ctx->nr_stat++; 1817 1818 if (event->state > PERF_EVENT_STATE_OFF) 1819 perf_cgroup_event_enable(event, ctx); 1820 1821 ctx->generation++; 1822 } 1823 1824 /* 1825 * Initialize event state based on the perf_event_attr::disabled. 1826 */ 1827 static inline void perf_event__state_init(struct perf_event *event) 1828 { 1829 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1830 PERF_EVENT_STATE_INACTIVE; 1831 } 1832 1833 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1834 { 1835 int entry = sizeof(u64); /* value */ 1836 int size = 0; 1837 int nr = 1; 1838 1839 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1840 size += sizeof(u64); 1841 1842 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1843 size += sizeof(u64); 1844 1845 if (event->attr.read_format & PERF_FORMAT_ID) 1846 entry += sizeof(u64); 1847 1848 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1849 nr += nr_siblings; 1850 size += sizeof(u64); 1851 } 1852 1853 size += entry * nr; 1854 event->read_size = size; 1855 } 1856 1857 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1858 { 1859 struct perf_sample_data *data; 1860 u16 size = 0; 1861 1862 if (sample_type & PERF_SAMPLE_IP) 1863 size += sizeof(data->ip); 1864 1865 if (sample_type & PERF_SAMPLE_ADDR) 1866 size += sizeof(data->addr); 1867 1868 if (sample_type & PERF_SAMPLE_PERIOD) 1869 size += sizeof(data->period); 1870 1871 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1872 size += sizeof(data->weight.full); 1873 1874 if (sample_type & PERF_SAMPLE_READ) 1875 size += event->read_size; 1876 1877 if (sample_type & PERF_SAMPLE_DATA_SRC) 1878 size += sizeof(data->data_src.val); 1879 1880 if (sample_type & PERF_SAMPLE_TRANSACTION) 1881 size += sizeof(data->txn); 1882 1883 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1884 size += sizeof(data->phys_addr); 1885 1886 if (sample_type & PERF_SAMPLE_CGROUP) 1887 size += sizeof(data->cgroup); 1888 1889 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1890 size += sizeof(data->data_page_size); 1891 1892 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1893 size += sizeof(data->code_page_size); 1894 1895 event->header_size = size; 1896 } 1897 1898 /* 1899 * Called at perf_event creation and when events are attached/detached from a 1900 * group. 1901 */ 1902 static void perf_event__header_size(struct perf_event *event) 1903 { 1904 __perf_event_read_size(event, 1905 event->group_leader->nr_siblings); 1906 __perf_event_header_size(event, event->attr.sample_type); 1907 } 1908 1909 static void perf_event__id_header_size(struct perf_event *event) 1910 { 1911 struct perf_sample_data *data; 1912 u64 sample_type = event->attr.sample_type; 1913 u16 size = 0; 1914 1915 if (sample_type & PERF_SAMPLE_TID) 1916 size += sizeof(data->tid_entry); 1917 1918 if (sample_type & PERF_SAMPLE_TIME) 1919 size += sizeof(data->time); 1920 1921 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1922 size += sizeof(data->id); 1923 1924 if (sample_type & PERF_SAMPLE_ID) 1925 size += sizeof(data->id); 1926 1927 if (sample_type & PERF_SAMPLE_STREAM_ID) 1928 size += sizeof(data->stream_id); 1929 1930 if (sample_type & PERF_SAMPLE_CPU) 1931 size += sizeof(data->cpu_entry); 1932 1933 event->id_header_size = size; 1934 } 1935 1936 static bool perf_event_validate_size(struct perf_event *event) 1937 { 1938 /* 1939 * The values computed here will be over-written when we actually 1940 * attach the event. 1941 */ 1942 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1943 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1944 perf_event__id_header_size(event); 1945 1946 /* 1947 * Sum the lot; should not exceed the 64k limit we have on records. 1948 * Conservative limit to allow for callchains and other variable fields. 1949 */ 1950 if (event->read_size + event->header_size + 1951 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1952 return false; 1953 1954 return true; 1955 } 1956 1957 static void perf_group_attach(struct perf_event *event) 1958 { 1959 struct perf_event *group_leader = event->group_leader, *pos; 1960 1961 lockdep_assert_held(&event->ctx->lock); 1962 1963 /* 1964 * We can have double attach due to group movement in perf_event_open. 1965 */ 1966 if (event->attach_state & PERF_ATTACH_GROUP) 1967 return; 1968 1969 event->attach_state |= PERF_ATTACH_GROUP; 1970 1971 if (group_leader == event) 1972 return; 1973 1974 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1975 1976 group_leader->group_caps &= event->event_caps; 1977 1978 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1979 group_leader->nr_siblings++; 1980 1981 perf_event__header_size(group_leader); 1982 1983 for_each_sibling_event(pos, group_leader) 1984 perf_event__header_size(pos); 1985 } 1986 1987 /* 1988 * Remove an event from the lists for its context. 1989 * Must be called with ctx->mutex and ctx->lock held. 1990 */ 1991 static void 1992 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1993 { 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 /* 1998 * We can have double detach due to exit/hot-unplug + close. 1999 */ 2000 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2001 return; 2002 2003 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2004 2005 ctx->nr_events--; 2006 if (event->attr.inherit_stat) 2007 ctx->nr_stat--; 2008 2009 list_del_rcu(&event->event_entry); 2010 2011 if (event->group_leader == event) 2012 del_event_from_groups(event, ctx); 2013 2014 /* 2015 * If event was in error state, then keep it 2016 * that way, otherwise bogus counts will be 2017 * returned on read(). The only way to get out 2018 * of error state is by explicit re-enabling 2019 * of the event 2020 */ 2021 if (event->state > PERF_EVENT_STATE_OFF) { 2022 perf_cgroup_event_disable(event, ctx); 2023 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2024 } 2025 2026 ctx->generation++; 2027 } 2028 2029 static int 2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2031 { 2032 if (!has_aux(aux_event)) 2033 return 0; 2034 2035 if (!event->pmu->aux_output_match) 2036 return 0; 2037 2038 return event->pmu->aux_output_match(aux_event); 2039 } 2040 2041 static void put_event(struct perf_event *event); 2042 static void event_sched_out(struct perf_event *event, 2043 struct perf_cpu_context *cpuctx, 2044 struct perf_event_context *ctx); 2045 2046 static void perf_put_aux_event(struct perf_event *event) 2047 { 2048 struct perf_event_context *ctx = event->ctx; 2049 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2050 struct perf_event *iter; 2051 2052 /* 2053 * If event uses aux_event tear down the link 2054 */ 2055 if (event->aux_event) { 2056 iter = event->aux_event; 2057 event->aux_event = NULL; 2058 put_event(iter); 2059 return; 2060 } 2061 2062 /* 2063 * If the event is an aux_event, tear down all links to 2064 * it from other events. 2065 */ 2066 for_each_sibling_event(iter, event->group_leader) { 2067 if (iter->aux_event != event) 2068 continue; 2069 2070 iter->aux_event = NULL; 2071 put_event(event); 2072 2073 /* 2074 * If it's ACTIVE, schedule it out and put it into ERROR 2075 * state so that we don't try to schedule it again. Note 2076 * that perf_event_enable() will clear the ERROR status. 2077 */ 2078 event_sched_out(iter, cpuctx, ctx); 2079 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2080 } 2081 } 2082 2083 static bool perf_need_aux_event(struct perf_event *event) 2084 { 2085 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2086 } 2087 2088 static int perf_get_aux_event(struct perf_event *event, 2089 struct perf_event *group_leader) 2090 { 2091 /* 2092 * Our group leader must be an aux event if we want to be 2093 * an aux_output. This way, the aux event will precede its 2094 * aux_output events in the group, and therefore will always 2095 * schedule first. 2096 */ 2097 if (!group_leader) 2098 return 0; 2099 2100 /* 2101 * aux_output and aux_sample_size are mutually exclusive. 2102 */ 2103 if (event->attr.aux_output && event->attr.aux_sample_size) 2104 return 0; 2105 2106 if (event->attr.aux_output && 2107 !perf_aux_output_match(event, group_leader)) 2108 return 0; 2109 2110 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2111 return 0; 2112 2113 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2114 return 0; 2115 2116 /* 2117 * Link aux_outputs to their aux event; this is undone in 2118 * perf_group_detach() by perf_put_aux_event(). When the 2119 * group in torn down, the aux_output events loose their 2120 * link to the aux_event and can't schedule any more. 2121 */ 2122 event->aux_event = group_leader; 2123 2124 return 1; 2125 } 2126 2127 static inline struct list_head *get_event_list(struct perf_event *event) 2128 { 2129 struct perf_event_context *ctx = event->ctx; 2130 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2131 } 2132 2133 /* 2134 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2135 * cannot exist on their own, schedule them out and move them into the ERROR 2136 * state. Also see _perf_event_enable(), it will not be able to recover 2137 * this ERROR state. 2138 */ 2139 static inline void perf_remove_sibling_event(struct perf_event *event) 2140 { 2141 struct perf_event_context *ctx = event->ctx; 2142 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2143 2144 event_sched_out(event, cpuctx, ctx); 2145 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2146 } 2147 2148 static void perf_group_detach(struct perf_event *event) 2149 { 2150 struct perf_event *leader = event->group_leader; 2151 struct perf_event *sibling, *tmp; 2152 struct perf_event_context *ctx = event->ctx; 2153 2154 lockdep_assert_held(&ctx->lock); 2155 2156 /* 2157 * We can have double detach due to exit/hot-unplug + close. 2158 */ 2159 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2160 return; 2161 2162 event->attach_state &= ~PERF_ATTACH_GROUP; 2163 2164 perf_put_aux_event(event); 2165 2166 /* 2167 * If this is a sibling, remove it from its group. 2168 */ 2169 if (leader != event) { 2170 list_del_init(&event->sibling_list); 2171 event->group_leader->nr_siblings--; 2172 goto out; 2173 } 2174 2175 /* 2176 * If this was a group event with sibling events then 2177 * upgrade the siblings to singleton events by adding them 2178 * to whatever list we are on. 2179 */ 2180 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2181 2182 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2183 perf_remove_sibling_event(sibling); 2184 2185 sibling->group_leader = sibling; 2186 list_del_init(&sibling->sibling_list); 2187 2188 /* Inherit group flags from the previous leader */ 2189 sibling->group_caps = event->group_caps; 2190 2191 if (!RB_EMPTY_NODE(&event->group_node)) { 2192 add_event_to_groups(sibling, event->ctx); 2193 2194 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2195 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2196 } 2197 2198 WARN_ON_ONCE(sibling->ctx != event->ctx); 2199 } 2200 2201 out: 2202 for_each_sibling_event(tmp, leader) 2203 perf_event__header_size(tmp); 2204 2205 perf_event__header_size(leader); 2206 } 2207 2208 static void sync_child_event(struct perf_event *child_event); 2209 2210 static void perf_child_detach(struct perf_event *event) 2211 { 2212 struct perf_event *parent_event = event->parent; 2213 2214 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2215 return; 2216 2217 event->attach_state &= ~PERF_ATTACH_CHILD; 2218 2219 if (WARN_ON_ONCE(!parent_event)) 2220 return; 2221 2222 lockdep_assert_held(&parent_event->child_mutex); 2223 2224 sync_child_event(event); 2225 list_del_init(&event->child_list); 2226 } 2227 2228 static bool is_orphaned_event(struct perf_event *event) 2229 { 2230 return event->state == PERF_EVENT_STATE_DEAD; 2231 } 2232 2233 static inline int __pmu_filter_match(struct perf_event *event) 2234 { 2235 struct pmu *pmu = event->pmu; 2236 return pmu->filter_match ? pmu->filter_match(event) : 1; 2237 } 2238 2239 /* 2240 * Check whether we should attempt to schedule an event group based on 2241 * PMU-specific filtering. An event group can consist of HW and SW events, 2242 * potentially with a SW leader, so we must check all the filters, to 2243 * determine whether a group is schedulable: 2244 */ 2245 static inline int pmu_filter_match(struct perf_event *event) 2246 { 2247 struct perf_event *sibling; 2248 2249 if (!__pmu_filter_match(event)) 2250 return 0; 2251 2252 for_each_sibling_event(sibling, event) { 2253 if (!__pmu_filter_match(sibling)) 2254 return 0; 2255 } 2256 2257 return 1; 2258 } 2259 2260 static inline int 2261 event_filter_match(struct perf_event *event) 2262 { 2263 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2264 perf_cgroup_match(event) && pmu_filter_match(event); 2265 } 2266 2267 static void 2268 event_sched_out(struct perf_event *event, 2269 struct perf_cpu_context *cpuctx, 2270 struct perf_event_context *ctx) 2271 { 2272 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2273 2274 WARN_ON_ONCE(event->ctx != ctx); 2275 lockdep_assert_held(&ctx->lock); 2276 2277 if (event->state != PERF_EVENT_STATE_ACTIVE) 2278 return; 2279 2280 /* 2281 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2282 * we can schedule events _OUT_ individually through things like 2283 * __perf_remove_from_context(). 2284 */ 2285 list_del_init(&event->active_list); 2286 2287 perf_pmu_disable(event->pmu); 2288 2289 event->pmu->del(event, 0); 2290 event->oncpu = -1; 2291 2292 if (READ_ONCE(event->pending_disable) >= 0) { 2293 WRITE_ONCE(event->pending_disable, -1); 2294 perf_cgroup_event_disable(event, ctx); 2295 state = PERF_EVENT_STATE_OFF; 2296 } 2297 perf_event_set_state(event, state); 2298 2299 if (!is_software_event(event)) 2300 cpuctx->active_oncpu--; 2301 if (!--ctx->nr_active) 2302 perf_event_ctx_deactivate(ctx); 2303 if (event->attr.freq && event->attr.sample_freq) 2304 ctx->nr_freq--; 2305 if (event->attr.exclusive || !cpuctx->active_oncpu) 2306 cpuctx->exclusive = 0; 2307 2308 perf_pmu_enable(event->pmu); 2309 } 2310 2311 static void 2312 group_sched_out(struct perf_event *group_event, 2313 struct perf_cpu_context *cpuctx, 2314 struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_pmu_disable(ctx->pmu); 2322 2323 event_sched_out(group_event, cpuctx, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, cpuctx, ctx); 2330 2331 perf_pmu_enable(ctx->pmu); 2332 } 2333 2334 #define DETACH_GROUP 0x01UL 2335 #define DETACH_CHILD 0x02UL 2336 2337 /* 2338 * Cross CPU call to remove a performance event 2339 * 2340 * We disable the event on the hardware level first. After that we 2341 * remove it from the context list. 2342 */ 2343 static void 2344 __perf_remove_from_context(struct perf_event *event, 2345 struct perf_cpu_context *cpuctx, 2346 struct perf_event_context *ctx, 2347 void *info) 2348 { 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx); 2354 } 2355 2356 event_sched_out(event, cpuctx, ctx); 2357 if (flags & DETACH_GROUP) 2358 perf_group_detach(event); 2359 if (flags & DETACH_CHILD) 2360 perf_child_detach(event); 2361 list_del_event(event, ctx); 2362 2363 if (!ctx->nr_events && ctx->is_active) { 2364 ctx->is_active = 0; 2365 ctx->rotate_necessary = 0; 2366 if (ctx->task) { 2367 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2368 cpuctx->task_ctx = NULL; 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Remove the event from a task's (or a CPU's) list of events. 2375 * 2376 * If event->ctx is a cloned context, callers must make sure that 2377 * every task struct that event->ctx->task could possibly point to 2378 * remains valid. This is OK when called from perf_release since 2379 * that only calls us on the top-level context, which can't be a clone. 2380 * When called from perf_event_exit_task, it's OK because the 2381 * context has been detached from its task. 2382 */ 2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2384 { 2385 struct perf_event_context *ctx = event->ctx; 2386 2387 lockdep_assert_held(&ctx->mutex); 2388 2389 /* 2390 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2391 * to work in the face of TASK_TOMBSTONE, unlike every other 2392 * event_function_call() user. 2393 */ 2394 raw_spin_lock_irq(&ctx->lock); 2395 if (!ctx->is_active) { 2396 __perf_remove_from_context(event, __get_cpu_context(ctx), 2397 ctx, (void *)flags); 2398 raw_spin_unlock_irq(&ctx->lock); 2399 return; 2400 } 2401 raw_spin_unlock_irq(&ctx->lock); 2402 2403 event_function_call(event, __perf_remove_from_context, (void *)flags); 2404 } 2405 2406 /* 2407 * Cross CPU call to disable a performance event 2408 */ 2409 static void __perf_event_disable(struct perf_event *event, 2410 struct perf_cpu_context *cpuctx, 2411 struct perf_event_context *ctx, 2412 void *info) 2413 { 2414 if (event->state < PERF_EVENT_STATE_INACTIVE) 2415 return; 2416 2417 if (ctx->is_active & EVENT_TIME) { 2418 update_context_time(ctx); 2419 update_cgrp_time_from_event(event); 2420 } 2421 2422 if (event == event->group_leader) 2423 group_sched_out(event, cpuctx, ctx); 2424 else 2425 event_sched_out(event, cpuctx, ctx); 2426 2427 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2428 perf_cgroup_event_disable(event, ctx); 2429 } 2430 2431 /* 2432 * Disable an event. 2433 * 2434 * If event->ctx is a cloned context, callers must make sure that 2435 * every task struct that event->ctx->task could possibly point to 2436 * remains valid. This condition is satisfied when called through 2437 * perf_event_for_each_child or perf_event_for_each because they 2438 * hold the top-level event's child_mutex, so any descendant that 2439 * goes to exit will block in perf_event_exit_event(). 2440 * 2441 * When called from perf_pending_event it's OK because event->ctx 2442 * is the current context on this CPU and preemption is disabled, 2443 * hence we can't get into perf_event_task_sched_out for this context. 2444 */ 2445 static void _perf_event_disable(struct perf_event *event) 2446 { 2447 struct perf_event_context *ctx = event->ctx; 2448 2449 raw_spin_lock_irq(&ctx->lock); 2450 if (event->state <= PERF_EVENT_STATE_OFF) { 2451 raw_spin_unlock_irq(&ctx->lock); 2452 return; 2453 } 2454 raw_spin_unlock_irq(&ctx->lock); 2455 2456 event_function_call(event, __perf_event_disable, NULL); 2457 } 2458 2459 void perf_event_disable_local(struct perf_event *event) 2460 { 2461 event_function_local(event, __perf_event_disable, NULL); 2462 } 2463 2464 /* 2465 * Strictly speaking kernel users cannot create groups and therefore this 2466 * interface does not need the perf_event_ctx_lock() magic. 2467 */ 2468 void perf_event_disable(struct perf_event *event) 2469 { 2470 struct perf_event_context *ctx; 2471 2472 ctx = perf_event_ctx_lock(event); 2473 _perf_event_disable(event); 2474 perf_event_ctx_unlock(event, ctx); 2475 } 2476 EXPORT_SYMBOL_GPL(perf_event_disable); 2477 2478 void perf_event_disable_inatomic(struct perf_event *event) 2479 { 2480 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2481 /* can fail, see perf_pending_event_disable() */ 2482 irq_work_queue(&event->pending); 2483 } 2484 2485 static void perf_set_shadow_time(struct perf_event *event, 2486 struct perf_event_context *ctx) 2487 { 2488 /* 2489 * use the correct time source for the time snapshot 2490 * 2491 * We could get by without this by leveraging the 2492 * fact that to get to this function, the caller 2493 * has most likely already called update_context_time() 2494 * and update_cgrp_time_xx() and thus both timestamp 2495 * are identical (or very close). Given that tstamp is, 2496 * already adjusted for cgroup, we could say that: 2497 * tstamp - ctx->timestamp 2498 * is equivalent to 2499 * tstamp - cgrp->timestamp. 2500 * 2501 * Then, in perf_output_read(), the calculation would 2502 * work with no changes because: 2503 * - event is guaranteed scheduled in 2504 * - no scheduled out in between 2505 * - thus the timestamp would be the same 2506 * 2507 * But this is a bit hairy. 2508 * 2509 * So instead, we have an explicit cgroup call to remain 2510 * within the time source all along. We believe it 2511 * is cleaner and simpler to understand. 2512 */ 2513 if (is_cgroup_event(event)) 2514 perf_cgroup_set_shadow_time(event, event->tstamp); 2515 else 2516 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2517 } 2518 2519 #define MAX_INTERRUPTS (~0ULL) 2520 2521 static void perf_log_throttle(struct perf_event *event, int enable); 2522 static void perf_log_itrace_start(struct perf_event *event); 2523 2524 static int 2525 event_sched_in(struct perf_event *event, 2526 struct perf_cpu_context *cpuctx, 2527 struct perf_event_context *ctx) 2528 { 2529 int ret = 0; 2530 2531 WARN_ON_ONCE(event->ctx != ctx); 2532 2533 lockdep_assert_held(&ctx->lock); 2534 2535 if (event->state <= PERF_EVENT_STATE_OFF) 2536 return 0; 2537 2538 WRITE_ONCE(event->oncpu, smp_processor_id()); 2539 /* 2540 * Order event::oncpu write to happen before the ACTIVE state is 2541 * visible. This allows perf_event_{stop,read}() to observe the correct 2542 * ->oncpu if it sees ACTIVE. 2543 */ 2544 smp_wmb(); 2545 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2546 2547 /* 2548 * Unthrottle events, since we scheduled we might have missed several 2549 * ticks already, also for a heavily scheduling task there is little 2550 * guarantee it'll get a tick in a timely manner. 2551 */ 2552 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2553 perf_log_throttle(event, 1); 2554 event->hw.interrupts = 0; 2555 } 2556 2557 perf_pmu_disable(event->pmu); 2558 2559 perf_set_shadow_time(event, ctx); 2560 2561 perf_log_itrace_start(event); 2562 2563 if (event->pmu->add(event, PERF_EF_START)) { 2564 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2565 event->oncpu = -1; 2566 ret = -EAGAIN; 2567 goto out; 2568 } 2569 2570 if (!is_software_event(event)) 2571 cpuctx->active_oncpu++; 2572 if (!ctx->nr_active++) 2573 perf_event_ctx_activate(ctx); 2574 if (event->attr.freq && event->attr.sample_freq) 2575 ctx->nr_freq++; 2576 2577 if (event->attr.exclusive) 2578 cpuctx->exclusive = 1; 2579 2580 out: 2581 perf_pmu_enable(event->pmu); 2582 2583 return ret; 2584 } 2585 2586 static int 2587 group_sched_in(struct perf_event *group_event, 2588 struct perf_cpu_context *cpuctx, 2589 struct perf_event_context *ctx) 2590 { 2591 struct perf_event *event, *partial_group = NULL; 2592 struct pmu *pmu = ctx->pmu; 2593 2594 if (group_event->state == PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2598 2599 if (event_sched_in(group_event, cpuctx, ctx)) 2600 goto error; 2601 2602 /* 2603 * Schedule in siblings as one group (if any): 2604 */ 2605 for_each_sibling_event(event, group_event) { 2606 if (event_sched_in(event, cpuctx, ctx)) { 2607 partial_group = event; 2608 goto group_error; 2609 } 2610 } 2611 2612 if (!pmu->commit_txn(pmu)) 2613 return 0; 2614 2615 group_error: 2616 /* 2617 * Groups can be scheduled in as one unit only, so undo any 2618 * partial group before returning: 2619 * The events up to the failed event are scheduled out normally. 2620 */ 2621 for_each_sibling_event(event, group_event) { 2622 if (event == partial_group) 2623 break; 2624 2625 event_sched_out(event, cpuctx, ctx); 2626 } 2627 event_sched_out(group_event, cpuctx, ctx); 2628 2629 error: 2630 pmu->cancel_txn(pmu); 2631 return -EAGAIN; 2632 } 2633 2634 /* 2635 * Work out whether we can put this event group on the CPU now. 2636 */ 2637 static int group_can_go_on(struct perf_event *event, 2638 struct perf_cpu_context *cpuctx, 2639 int can_add_hw) 2640 { 2641 /* 2642 * Groups consisting entirely of software events can always go on. 2643 */ 2644 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2645 return 1; 2646 /* 2647 * If an exclusive group is already on, no other hardware 2648 * events can go on. 2649 */ 2650 if (cpuctx->exclusive) 2651 return 0; 2652 /* 2653 * If this group is exclusive and there are already 2654 * events on the CPU, it can't go on. 2655 */ 2656 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2657 return 0; 2658 /* 2659 * Otherwise, try to add it if all previous groups were able 2660 * to go on. 2661 */ 2662 return can_add_hw; 2663 } 2664 2665 static void add_event_to_ctx(struct perf_event *event, 2666 struct perf_event_context *ctx) 2667 { 2668 list_add_event(event, ctx); 2669 perf_group_attach(event); 2670 } 2671 2672 static void ctx_sched_out(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type); 2675 static void 2676 ctx_sched_in(struct perf_event_context *ctx, 2677 struct perf_cpu_context *cpuctx, 2678 enum event_type_t event_type, 2679 struct task_struct *task); 2680 2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2682 struct perf_event_context *ctx, 2683 enum event_type_t event_type) 2684 { 2685 if (!cpuctx->task_ctx) 2686 return; 2687 2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2689 return; 2690 2691 ctx_sched_out(ctx, cpuctx, event_type); 2692 } 2693 2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2695 struct perf_event_context *ctx, 2696 struct task_struct *task) 2697 { 2698 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2699 if (ctx) 2700 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2701 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2702 if (ctx) 2703 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2704 } 2705 2706 /* 2707 * We want to maintain the following priority of scheduling: 2708 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2709 * - task pinned (EVENT_PINNED) 2710 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2711 * - task flexible (EVENT_FLEXIBLE). 2712 * 2713 * In order to avoid unscheduling and scheduling back in everything every 2714 * time an event is added, only do it for the groups of equal priority and 2715 * below. 2716 * 2717 * This can be called after a batch operation on task events, in which case 2718 * event_type is a bit mask of the types of events involved. For CPU events, 2719 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2720 */ 2721 static void ctx_resched(struct perf_cpu_context *cpuctx, 2722 struct perf_event_context *task_ctx, 2723 enum event_type_t event_type) 2724 { 2725 enum event_type_t ctx_event_type; 2726 bool cpu_event = !!(event_type & EVENT_CPU); 2727 2728 /* 2729 * If pinned groups are involved, flexible groups also need to be 2730 * scheduled out. 2731 */ 2732 if (event_type & EVENT_PINNED) 2733 event_type |= EVENT_FLEXIBLE; 2734 2735 ctx_event_type = event_type & EVENT_ALL; 2736 2737 perf_pmu_disable(cpuctx->ctx.pmu); 2738 if (task_ctx) 2739 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2740 2741 /* 2742 * Decide which cpu ctx groups to schedule out based on the types 2743 * of events that caused rescheduling: 2744 * - EVENT_CPU: schedule out corresponding groups; 2745 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2746 * - otherwise, do nothing more. 2747 */ 2748 if (cpu_event) 2749 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2750 else if (ctx_event_type & EVENT_PINNED) 2751 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2752 2753 perf_event_sched_in(cpuctx, task_ctx, current); 2754 perf_pmu_enable(cpuctx->ctx.pmu); 2755 } 2756 2757 void perf_pmu_resched(struct pmu *pmu) 2758 { 2759 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2760 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2761 2762 perf_ctx_lock(cpuctx, task_ctx); 2763 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2764 perf_ctx_unlock(cpuctx, task_ctx); 2765 } 2766 2767 /* 2768 * Cross CPU call to install and enable a performance event 2769 * 2770 * Very similar to remote_function() + event_function() but cannot assume that 2771 * things like ctx->is_active and cpuctx->task_ctx are set. 2772 */ 2773 static int __perf_install_in_context(void *info) 2774 { 2775 struct perf_event *event = info; 2776 struct perf_event_context *ctx = event->ctx; 2777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2778 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2779 bool reprogram = true; 2780 int ret = 0; 2781 2782 raw_spin_lock(&cpuctx->ctx.lock); 2783 if (ctx->task) { 2784 raw_spin_lock(&ctx->lock); 2785 task_ctx = ctx; 2786 2787 reprogram = (ctx->task == current); 2788 2789 /* 2790 * If the task is running, it must be running on this CPU, 2791 * otherwise we cannot reprogram things. 2792 * 2793 * If its not running, we don't care, ctx->lock will 2794 * serialize against it becoming runnable. 2795 */ 2796 if (task_curr(ctx->task) && !reprogram) { 2797 ret = -ESRCH; 2798 goto unlock; 2799 } 2800 2801 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2802 } else if (task_ctx) { 2803 raw_spin_lock(&task_ctx->lock); 2804 } 2805 2806 #ifdef CONFIG_CGROUP_PERF 2807 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2808 /* 2809 * If the current cgroup doesn't match the event's 2810 * cgroup, we should not try to schedule it. 2811 */ 2812 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2813 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2814 event->cgrp->css.cgroup); 2815 } 2816 #endif 2817 2818 if (reprogram) { 2819 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2820 add_event_to_ctx(event, ctx); 2821 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2822 } else { 2823 add_event_to_ctx(event, ctx); 2824 } 2825 2826 unlock: 2827 perf_ctx_unlock(cpuctx, task_ctx); 2828 2829 return ret; 2830 } 2831 2832 static bool exclusive_event_installable(struct perf_event *event, 2833 struct perf_event_context *ctx); 2834 2835 /* 2836 * Attach a performance event to a context. 2837 * 2838 * Very similar to event_function_call, see comment there. 2839 */ 2840 static void 2841 perf_install_in_context(struct perf_event_context *ctx, 2842 struct perf_event *event, 2843 int cpu) 2844 { 2845 struct task_struct *task = READ_ONCE(ctx->task); 2846 2847 lockdep_assert_held(&ctx->mutex); 2848 2849 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2850 2851 if (event->cpu != -1) 2852 event->cpu = cpu; 2853 2854 /* 2855 * Ensures that if we can observe event->ctx, both the event and ctx 2856 * will be 'complete'. See perf_iterate_sb_cpu(). 2857 */ 2858 smp_store_release(&event->ctx, ctx); 2859 2860 /* 2861 * perf_event_attr::disabled events will not run and can be initialized 2862 * without IPI. Except when this is the first event for the context, in 2863 * that case we need the magic of the IPI to set ctx->is_active. 2864 * 2865 * The IOC_ENABLE that is sure to follow the creation of a disabled 2866 * event will issue the IPI and reprogram the hardware. 2867 */ 2868 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2869 raw_spin_lock_irq(&ctx->lock); 2870 if (ctx->task == TASK_TOMBSTONE) { 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 add_event_to_ctx(event, ctx); 2875 raw_spin_unlock_irq(&ctx->lock); 2876 return; 2877 } 2878 2879 if (!task) { 2880 cpu_function_call(cpu, __perf_install_in_context, event); 2881 return; 2882 } 2883 2884 /* 2885 * Should not happen, we validate the ctx is still alive before calling. 2886 */ 2887 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2888 return; 2889 2890 /* 2891 * Installing events is tricky because we cannot rely on ctx->is_active 2892 * to be set in case this is the nr_events 0 -> 1 transition. 2893 * 2894 * Instead we use task_curr(), which tells us if the task is running. 2895 * However, since we use task_curr() outside of rq::lock, we can race 2896 * against the actual state. This means the result can be wrong. 2897 * 2898 * If we get a false positive, we retry, this is harmless. 2899 * 2900 * If we get a false negative, things are complicated. If we are after 2901 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2902 * value must be correct. If we're before, it doesn't matter since 2903 * perf_event_context_sched_in() will program the counter. 2904 * 2905 * However, this hinges on the remote context switch having observed 2906 * our task->perf_event_ctxp[] store, such that it will in fact take 2907 * ctx::lock in perf_event_context_sched_in(). 2908 * 2909 * We do this by task_function_call(), if the IPI fails to hit the task 2910 * we know any future context switch of task must see the 2911 * perf_event_ctpx[] store. 2912 */ 2913 2914 /* 2915 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2916 * task_cpu() load, such that if the IPI then does not find the task 2917 * running, a future context switch of that task must observe the 2918 * store. 2919 */ 2920 smp_mb(); 2921 again: 2922 if (!task_function_call(task, __perf_install_in_context, event)) 2923 return; 2924 2925 raw_spin_lock_irq(&ctx->lock); 2926 task = ctx->task; 2927 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2928 /* 2929 * Cannot happen because we already checked above (which also 2930 * cannot happen), and we hold ctx->mutex, which serializes us 2931 * against perf_event_exit_task_context(). 2932 */ 2933 raw_spin_unlock_irq(&ctx->lock); 2934 return; 2935 } 2936 /* 2937 * If the task is not running, ctx->lock will avoid it becoming so, 2938 * thus we can safely install the event. 2939 */ 2940 if (task_curr(task)) { 2941 raw_spin_unlock_irq(&ctx->lock); 2942 goto again; 2943 } 2944 add_event_to_ctx(event, ctx); 2945 raw_spin_unlock_irq(&ctx->lock); 2946 } 2947 2948 /* 2949 * Cross CPU call to enable a performance event 2950 */ 2951 static void __perf_event_enable(struct perf_event *event, 2952 struct perf_cpu_context *cpuctx, 2953 struct perf_event_context *ctx, 2954 void *info) 2955 { 2956 struct perf_event *leader = event->group_leader; 2957 struct perf_event_context *task_ctx; 2958 2959 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2960 event->state <= PERF_EVENT_STATE_ERROR) 2961 return; 2962 2963 if (ctx->is_active) 2964 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2965 2966 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2967 perf_cgroup_event_enable(event, ctx); 2968 2969 if (!ctx->is_active) 2970 return; 2971 2972 if (!event_filter_match(event)) { 2973 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2974 return; 2975 } 2976 2977 /* 2978 * If the event is in a group and isn't the group leader, 2979 * then don't put it on unless the group is on. 2980 */ 2981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2982 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2983 return; 2984 } 2985 2986 task_ctx = cpuctx->task_ctx; 2987 if (ctx->task) 2988 WARN_ON_ONCE(task_ctx != ctx); 2989 2990 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2991 } 2992 2993 /* 2994 * Enable an event. 2995 * 2996 * If event->ctx is a cloned context, callers must make sure that 2997 * every task struct that event->ctx->task could possibly point to 2998 * remains valid. This condition is satisfied when called through 2999 * perf_event_for_each_child or perf_event_for_each as described 3000 * for perf_event_disable. 3001 */ 3002 static void _perf_event_enable(struct perf_event *event) 3003 { 3004 struct perf_event_context *ctx = event->ctx; 3005 3006 raw_spin_lock_irq(&ctx->lock); 3007 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3008 event->state < PERF_EVENT_STATE_ERROR) { 3009 out: 3010 raw_spin_unlock_irq(&ctx->lock); 3011 return; 3012 } 3013 3014 /* 3015 * If the event is in error state, clear that first. 3016 * 3017 * That way, if we see the event in error state below, we know that it 3018 * has gone back into error state, as distinct from the task having 3019 * been scheduled away before the cross-call arrived. 3020 */ 3021 if (event->state == PERF_EVENT_STATE_ERROR) { 3022 /* 3023 * Detached SIBLING events cannot leave ERROR state. 3024 */ 3025 if (event->event_caps & PERF_EV_CAP_SIBLING && 3026 event->group_leader == event) 3027 goto out; 3028 3029 event->state = PERF_EVENT_STATE_OFF; 3030 } 3031 raw_spin_unlock_irq(&ctx->lock); 3032 3033 event_function_call(event, __perf_event_enable, NULL); 3034 } 3035 3036 /* 3037 * See perf_event_disable(); 3038 */ 3039 void perf_event_enable(struct perf_event *event) 3040 { 3041 struct perf_event_context *ctx; 3042 3043 ctx = perf_event_ctx_lock(event); 3044 _perf_event_enable(event); 3045 perf_event_ctx_unlock(event, ctx); 3046 } 3047 EXPORT_SYMBOL_GPL(perf_event_enable); 3048 3049 struct stop_event_data { 3050 struct perf_event *event; 3051 unsigned int restart; 3052 }; 3053 3054 static int __perf_event_stop(void *info) 3055 { 3056 struct stop_event_data *sd = info; 3057 struct perf_event *event = sd->event; 3058 3059 /* if it's already INACTIVE, do nothing */ 3060 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3061 return 0; 3062 3063 /* matches smp_wmb() in event_sched_in() */ 3064 smp_rmb(); 3065 3066 /* 3067 * There is a window with interrupts enabled before we get here, 3068 * so we need to check again lest we try to stop another CPU's event. 3069 */ 3070 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3071 return -EAGAIN; 3072 3073 event->pmu->stop(event, PERF_EF_UPDATE); 3074 3075 /* 3076 * May race with the actual stop (through perf_pmu_output_stop()), 3077 * but it is only used for events with AUX ring buffer, and such 3078 * events will refuse to restart because of rb::aux_mmap_count==0, 3079 * see comments in perf_aux_output_begin(). 3080 * 3081 * Since this is happening on an event-local CPU, no trace is lost 3082 * while restarting. 3083 */ 3084 if (sd->restart) 3085 event->pmu->start(event, 0); 3086 3087 return 0; 3088 } 3089 3090 static int perf_event_stop(struct perf_event *event, int restart) 3091 { 3092 struct stop_event_data sd = { 3093 .event = event, 3094 .restart = restart, 3095 }; 3096 int ret = 0; 3097 3098 do { 3099 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3100 return 0; 3101 3102 /* matches smp_wmb() in event_sched_in() */ 3103 smp_rmb(); 3104 3105 /* 3106 * We only want to restart ACTIVE events, so if the event goes 3107 * inactive here (event->oncpu==-1), there's nothing more to do; 3108 * fall through with ret==-ENXIO. 3109 */ 3110 ret = cpu_function_call(READ_ONCE(event->oncpu), 3111 __perf_event_stop, &sd); 3112 } while (ret == -EAGAIN); 3113 3114 return ret; 3115 } 3116 3117 /* 3118 * In order to contain the amount of racy and tricky in the address filter 3119 * configuration management, it is a two part process: 3120 * 3121 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3122 * we update the addresses of corresponding vmas in 3123 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3124 * (p2) when an event is scheduled in (pmu::add), it calls 3125 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3126 * if the generation has changed since the previous call. 3127 * 3128 * If (p1) happens while the event is active, we restart it to force (p2). 3129 * 3130 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3131 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3132 * ioctl; 3133 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3134 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3135 * for reading; 3136 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3137 * of exec. 3138 */ 3139 void perf_event_addr_filters_sync(struct perf_event *event) 3140 { 3141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3142 3143 if (!has_addr_filter(event)) 3144 return; 3145 3146 raw_spin_lock(&ifh->lock); 3147 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3148 event->pmu->addr_filters_sync(event); 3149 event->hw.addr_filters_gen = event->addr_filters_gen; 3150 } 3151 raw_spin_unlock(&ifh->lock); 3152 } 3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3154 3155 static int _perf_event_refresh(struct perf_event *event, int refresh) 3156 { 3157 /* 3158 * not supported on inherited events 3159 */ 3160 if (event->attr.inherit || !is_sampling_event(event)) 3161 return -EINVAL; 3162 3163 atomic_add(refresh, &event->event_limit); 3164 _perf_event_enable(event); 3165 3166 return 0; 3167 } 3168 3169 /* 3170 * See perf_event_disable() 3171 */ 3172 int perf_event_refresh(struct perf_event *event, int refresh) 3173 { 3174 struct perf_event_context *ctx; 3175 int ret; 3176 3177 ctx = perf_event_ctx_lock(event); 3178 ret = _perf_event_refresh(event, refresh); 3179 perf_event_ctx_unlock(event, ctx); 3180 3181 return ret; 3182 } 3183 EXPORT_SYMBOL_GPL(perf_event_refresh); 3184 3185 static int perf_event_modify_breakpoint(struct perf_event *bp, 3186 struct perf_event_attr *attr) 3187 { 3188 int err; 3189 3190 _perf_event_disable(bp); 3191 3192 err = modify_user_hw_breakpoint_check(bp, attr, true); 3193 3194 if (!bp->attr.disabled) 3195 _perf_event_enable(bp); 3196 3197 return err; 3198 } 3199 3200 static int perf_event_modify_attr(struct perf_event *event, 3201 struct perf_event_attr *attr) 3202 { 3203 int (*func)(struct perf_event *, struct perf_event_attr *); 3204 struct perf_event *child; 3205 int err; 3206 3207 if (event->attr.type != attr->type) 3208 return -EINVAL; 3209 3210 switch (event->attr.type) { 3211 case PERF_TYPE_BREAKPOINT: 3212 func = perf_event_modify_breakpoint; 3213 break; 3214 default: 3215 /* Place holder for future additions. */ 3216 return -EOPNOTSUPP; 3217 } 3218 3219 WARN_ON_ONCE(event->ctx->parent_ctx); 3220 3221 mutex_lock(&event->child_mutex); 3222 err = func(event, attr); 3223 if (err) 3224 goto out; 3225 list_for_each_entry(child, &event->child_list, child_list) { 3226 err = func(child, attr); 3227 if (err) 3228 goto out; 3229 } 3230 out: 3231 mutex_unlock(&event->child_mutex); 3232 return err; 3233 } 3234 3235 static void ctx_sched_out(struct perf_event_context *ctx, 3236 struct perf_cpu_context *cpuctx, 3237 enum event_type_t event_type) 3238 { 3239 struct perf_event *event, *tmp; 3240 int is_active = ctx->is_active; 3241 3242 lockdep_assert_held(&ctx->lock); 3243 3244 if (likely(!ctx->nr_events)) { 3245 /* 3246 * See __perf_remove_from_context(). 3247 */ 3248 WARN_ON_ONCE(ctx->is_active); 3249 if (ctx->task) 3250 WARN_ON_ONCE(cpuctx->task_ctx); 3251 return; 3252 } 3253 3254 ctx->is_active &= ~event_type; 3255 if (!(ctx->is_active & EVENT_ALL)) 3256 ctx->is_active = 0; 3257 3258 if (ctx->task) { 3259 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3260 if (!ctx->is_active) 3261 cpuctx->task_ctx = NULL; 3262 } 3263 3264 /* 3265 * Always update time if it was set; not only when it changes. 3266 * Otherwise we can 'forget' to update time for any but the last 3267 * context we sched out. For example: 3268 * 3269 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3270 * ctx_sched_out(.event_type = EVENT_PINNED) 3271 * 3272 * would only update time for the pinned events. 3273 */ 3274 if (is_active & EVENT_TIME) { 3275 /* update (and stop) ctx time */ 3276 update_context_time(ctx); 3277 update_cgrp_time_from_cpuctx(cpuctx); 3278 } 3279 3280 is_active ^= ctx->is_active; /* changed bits */ 3281 3282 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3283 return; 3284 3285 perf_pmu_disable(ctx->pmu); 3286 if (is_active & EVENT_PINNED) { 3287 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3288 group_sched_out(event, cpuctx, ctx); 3289 } 3290 3291 if (is_active & EVENT_FLEXIBLE) { 3292 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3293 group_sched_out(event, cpuctx, ctx); 3294 3295 /* 3296 * Since we cleared EVENT_FLEXIBLE, also clear 3297 * rotate_necessary, is will be reset by 3298 * ctx_flexible_sched_in() when needed. 3299 */ 3300 ctx->rotate_necessary = 0; 3301 } 3302 perf_pmu_enable(ctx->pmu); 3303 } 3304 3305 /* 3306 * Test whether two contexts are equivalent, i.e. whether they have both been 3307 * cloned from the same version of the same context. 3308 * 3309 * Equivalence is measured using a generation number in the context that is 3310 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3311 * and list_del_event(). 3312 */ 3313 static int context_equiv(struct perf_event_context *ctx1, 3314 struct perf_event_context *ctx2) 3315 { 3316 lockdep_assert_held(&ctx1->lock); 3317 lockdep_assert_held(&ctx2->lock); 3318 3319 /* Pinning disables the swap optimization */ 3320 if (ctx1->pin_count || ctx2->pin_count) 3321 return 0; 3322 3323 /* If ctx1 is the parent of ctx2 */ 3324 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3325 return 1; 3326 3327 /* If ctx2 is the parent of ctx1 */ 3328 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3329 return 1; 3330 3331 /* 3332 * If ctx1 and ctx2 have the same parent; we flatten the parent 3333 * hierarchy, see perf_event_init_context(). 3334 */ 3335 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3336 ctx1->parent_gen == ctx2->parent_gen) 3337 return 1; 3338 3339 /* Unmatched */ 3340 return 0; 3341 } 3342 3343 static void __perf_event_sync_stat(struct perf_event *event, 3344 struct perf_event *next_event) 3345 { 3346 u64 value; 3347 3348 if (!event->attr.inherit_stat) 3349 return; 3350 3351 /* 3352 * Update the event value, we cannot use perf_event_read() 3353 * because we're in the middle of a context switch and have IRQs 3354 * disabled, which upsets smp_call_function_single(), however 3355 * we know the event must be on the current CPU, therefore we 3356 * don't need to use it. 3357 */ 3358 if (event->state == PERF_EVENT_STATE_ACTIVE) 3359 event->pmu->read(event); 3360 3361 perf_event_update_time(event); 3362 3363 /* 3364 * In order to keep per-task stats reliable we need to flip the event 3365 * values when we flip the contexts. 3366 */ 3367 value = local64_read(&next_event->count); 3368 value = local64_xchg(&event->count, value); 3369 local64_set(&next_event->count, value); 3370 3371 swap(event->total_time_enabled, next_event->total_time_enabled); 3372 swap(event->total_time_running, next_event->total_time_running); 3373 3374 /* 3375 * Since we swizzled the values, update the user visible data too. 3376 */ 3377 perf_event_update_userpage(event); 3378 perf_event_update_userpage(next_event); 3379 } 3380 3381 static void perf_event_sync_stat(struct perf_event_context *ctx, 3382 struct perf_event_context *next_ctx) 3383 { 3384 struct perf_event *event, *next_event; 3385 3386 if (!ctx->nr_stat) 3387 return; 3388 3389 update_context_time(ctx); 3390 3391 event = list_first_entry(&ctx->event_list, 3392 struct perf_event, event_entry); 3393 3394 next_event = list_first_entry(&next_ctx->event_list, 3395 struct perf_event, event_entry); 3396 3397 while (&event->event_entry != &ctx->event_list && 3398 &next_event->event_entry != &next_ctx->event_list) { 3399 3400 __perf_event_sync_stat(event, next_event); 3401 3402 event = list_next_entry(event, event_entry); 3403 next_event = list_next_entry(next_event, event_entry); 3404 } 3405 } 3406 3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3408 struct task_struct *next) 3409 { 3410 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3411 struct perf_event_context *next_ctx; 3412 struct perf_event_context *parent, *next_parent; 3413 struct perf_cpu_context *cpuctx; 3414 int do_switch = 1; 3415 struct pmu *pmu; 3416 3417 if (likely(!ctx)) 3418 return; 3419 3420 pmu = ctx->pmu; 3421 cpuctx = __get_cpu_context(ctx); 3422 if (!cpuctx->task_ctx) 3423 return; 3424 3425 rcu_read_lock(); 3426 next_ctx = next->perf_event_ctxp[ctxn]; 3427 if (!next_ctx) 3428 goto unlock; 3429 3430 parent = rcu_dereference(ctx->parent_ctx); 3431 next_parent = rcu_dereference(next_ctx->parent_ctx); 3432 3433 /* If neither context have a parent context; they cannot be clones. */ 3434 if (!parent && !next_parent) 3435 goto unlock; 3436 3437 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3438 /* 3439 * Looks like the two contexts are clones, so we might be 3440 * able to optimize the context switch. We lock both 3441 * contexts and check that they are clones under the 3442 * lock (including re-checking that neither has been 3443 * uncloned in the meantime). It doesn't matter which 3444 * order we take the locks because no other cpu could 3445 * be trying to lock both of these tasks. 3446 */ 3447 raw_spin_lock(&ctx->lock); 3448 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3449 if (context_equiv(ctx, next_ctx)) { 3450 3451 WRITE_ONCE(ctx->task, next); 3452 WRITE_ONCE(next_ctx->task, task); 3453 3454 perf_pmu_disable(pmu); 3455 3456 if (cpuctx->sched_cb_usage && pmu->sched_task) 3457 pmu->sched_task(ctx, false); 3458 3459 /* 3460 * PMU specific parts of task perf context can require 3461 * additional synchronization. As an example of such 3462 * synchronization see implementation details of Intel 3463 * LBR call stack data profiling; 3464 */ 3465 if (pmu->swap_task_ctx) 3466 pmu->swap_task_ctx(ctx, next_ctx); 3467 else 3468 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3469 3470 perf_pmu_enable(pmu); 3471 3472 /* 3473 * RCU_INIT_POINTER here is safe because we've not 3474 * modified the ctx and the above modification of 3475 * ctx->task and ctx->task_ctx_data are immaterial 3476 * since those values are always verified under 3477 * ctx->lock which we're now holding. 3478 */ 3479 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3480 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3481 3482 do_switch = 0; 3483 3484 perf_event_sync_stat(ctx, next_ctx); 3485 } 3486 raw_spin_unlock(&next_ctx->lock); 3487 raw_spin_unlock(&ctx->lock); 3488 } 3489 unlock: 3490 rcu_read_unlock(); 3491 3492 if (do_switch) { 3493 raw_spin_lock(&ctx->lock); 3494 perf_pmu_disable(pmu); 3495 3496 if (cpuctx->sched_cb_usage && pmu->sched_task) 3497 pmu->sched_task(ctx, false); 3498 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3499 3500 perf_pmu_enable(pmu); 3501 raw_spin_unlock(&ctx->lock); 3502 } 3503 } 3504 3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3506 3507 void perf_sched_cb_dec(struct pmu *pmu) 3508 { 3509 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3510 3511 this_cpu_dec(perf_sched_cb_usages); 3512 3513 if (!--cpuctx->sched_cb_usage) 3514 list_del(&cpuctx->sched_cb_entry); 3515 } 3516 3517 3518 void perf_sched_cb_inc(struct pmu *pmu) 3519 { 3520 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3521 3522 if (!cpuctx->sched_cb_usage++) 3523 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3524 3525 this_cpu_inc(perf_sched_cb_usages); 3526 } 3527 3528 /* 3529 * This function provides the context switch callback to the lower code 3530 * layer. It is invoked ONLY when the context switch callback is enabled. 3531 * 3532 * This callback is relevant even to per-cpu events; for example multi event 3533 * PEBS requires this to provide PID/TID information. This requires we flush 3534 * all queued PEBS records before we context switch to a new task. 3535 */ 3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3537 { 3538 struct pmu *pmu; 3539 3540 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3541 3542 if (WARN_ON_ONCE(!pmu->sched_task)) 3543 return; 3544 3545 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3546 perf_pmu_disable(pmu); 3547 3548 pmu->sched_task(cpuctx->task_ctx, sched_in); 3549 3550 perf_pmu_enable(pmu); 3551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3552 } 3553 3554 static void perf_pmu_sched_task(struct task_struct *prev, 3555 struct task_struct *next, 3556 bool sched_in) 3557 { 3558 struct perf_cpu_context *cpuctx; 3559 3560 if (prev == next) 3561 return; 3562 3563 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3564 /* will be handled in perf_event_context_sched_in/out */ 3565 if (cpuctx->task_ctx) 3566 continue; 3567 3568 __perf_pmu_sched_task(cpuctx, sched_in); 3569 } 3570 } 3571 3572 static void perf_event_switch(struct task_struct *task, 3573 struct task_struct *next_prev, bool sched_in); 3574 3575 #define for_each_task_context_nr(ctxn) \ 3576 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3577 3578 /* 3579 * Called from scheduler to remove the events of the current task, 3580 * with interrupts disabled. 3581 * 3582 * We stop each event and update the event value in event->count. 3583 * 3584 * This does not protect us against NMI, but disable() 3585 * sets the disabled bit in the control field of event _before_ 3586 * accessing the event control register. If a NMI hits, then it will 3587 * not restart the event. 3588 */ 3589 void __perf_event_task_sched_out(struct task_struct *task, 3590 struct task_struct *next) 3591 { 3592 int ctxn; 3593 3594 if (__this_cpu_read(perf_sched_cb_usages)) 3595 perf_pmu_sched_task(task, next, false); 3596 3597 if (atomic_read(&nr_switch_events)) 3598 perf_event_switch(task, next, false); 3599 3600 for_each_task_context_nr(ctxn) 3601 perf_event_context_sched_out(task, ctxn, next); 3602 3603 /* 3604 * if cgroup events exist on this CPU, then we need 3605 * to check if we have to switch out PMU state. 3606 * cgroup event are system-wide mode only 3607 */ 3608 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3609 perf_cgroup_sched_out(task, next); 3610 } 3611 3612 /* 3613 * Called with IRQs disabled 3614 */ 3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3616 enum event_type_t event_type) 3617 { 3618 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3619 } 3620 3621 static bool perf_less_group_idx(const void *l, const void *r) 3622 { 3623 const struct perf_event *le = *(const struct perf_event **)l; 3624 const struct perf_event *re = *(const struct perf_event **)r; 3625 3626 return le->group_index < re->group_index; 3627 } 3628 3629 static void swap_ptr(void *l, void *r) 3630 { 3631 void **lp = l, **rp = r; 3632 3633 swap(*lp, *rp); 3634 } 3635 3636 static const struct min_heap_callbacks perf_min_heap = { 3637 .elem_size = sizeof(struct perf_event *), 3638 .less = perf_less_group_idx, 3639 .swp = swap_ptr, 3640 }; 3641 3642 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3643 { 3644 struct perf_event **itrs = heap->data; 3645 3646 if (event) { 3647 itrs[heap->nr] = event; 3648 heap->nr++; 3649 } 3650 } 3651 3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3653 struct perf_event_groups *groups, int cpu, 3654 int (*func)(struct perf_event *, void *), 3655 void *data) 3656 { 3657 #ifdef CONFIG_CGROUP_PERF 3658 struct cgroup_subsys_state *css = NULL; 3659 #endif 3660 /* Space for per CPU and/or any CPU event iterators. */ 3661 struct perf_event *itrs[2]; 3662 struct min_heap event_heap; 3663 struct perf_event **evt; 3664 int ret; 3665 3666 if (cpuctx) { 3667 event_heap = (struct min_heap){ 3668 .data = cpuctx->heap, 3669 .nr = 0, 3670 .size = cpuctx->heap_size, 3671 }; 3672 3673 lockdep_assert_held(&cpuctx->ctx.lock); 3674 3675 #ifdef CONFIG_CGROUP_PERF 3676 if (cpuctx->cgrp) 3677 css = &cpuctx->cgrp->css; 3678 #endif 3679 } else { 3680 event_heap = (struct min_heap){ 3681 .data = itrs, 3682 .nr = 0, 3683 .size = ARRAY_SIZE(itrs), 3684 }; 3685 /* Events not within a CPU context may be on any CPU. */ 3686 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3687 } 3688 evt = event_heap.data; 3689 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3691 3692 #ifdef CONFIG_CGROUP_PERF 3693 for (; css; css = css->parent) 3694 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3695 #endif 3696 3697 min_heapify_all(&event_heap, &perf_min_heap); 3698 3699 while (event_heap.nr) { 3700 ret = func(*evt, data); 3701 if (ret) 3702 return ret; 3703 3704 *evt = perf_event_groups_next(*evt); 3705 if (*evt) 3706 min_heapify(&event_heap, 0, &perf_min_heap); 3707 else 3708 min_heap_pop(&event_heap, &perf_min_heap); 3709 } 3710 3711 return 0; 3712 } 3713 3714 static int merge_sched_in(struct perf_event *event, void *data) 3715 { 3716 struct perf_event_context *ctx = event->ctx; 3717 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3718 int *can_add_hw = data; 3719 3720 if (event->state <= PERF_EVENT_STATE_OFF) 3721 return 0; 3722 3723 if (!event_filter_match(event)) 3724 return 0; 3725 3726 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3727 if (!group_sched_in(event, cpuctx, ctx)) 3728 list_add_tail(&event->active_list, get_event_list(event)); 3729 } 3730 3731 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3732 if (event->attr.pinned) { 3733 perf_cgroup_event_disable(event, ctx); 3734 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3735 } 3736 3737 *can_add_hw = 0; 3738 ctx->rotate_necessary = 1; 3739 perf_mux_hrtimer_restart(cpuctx); 3740 } 3741 3742 return 0; 3743 } 3744 3745 static void 3746 ctx_pinned_sched_in(struct perf_event_context *ctx, 3747 struct perf_cpu_context *cpuctx) 3748 { 3749 int can_add_hw = 1; 3750 3751 if (ctx != &cpuctx->ctx) 3752 cpuctx = NULL; 3753 3754 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3755 smp_processor_id(), 3756 merge_sched_in, &can_add_hw); 3757 } 3758 3759 static void 3760 ctx_flexible_sched_in(struct perf_event_context *ctx, 3761 struct perf_cpu_context *cpuctx) 3762 { 3763 int can_add_hw = 1; 3764 3765 if (ctx != &cpuctx->ctx) 3766 cpuctx = NULL; 3767 3768 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3769 smp_processor_id(), 3770 merge_sched_in, &can_add_hw); 3771 } 3772 3773 static void 3774 ctx_sched_in(struct perf_event_context *ctx, 3775 struct perf_cpu_context *cpuctx, 3776 enum event_type_t event_type, 3777 struct task_struct *task) 3778 { 3779 int is_active = ctx->is_active; 3780 u64 now; 3781 3782 lockdep_assert_held(&ctx->lock); 3783 3784 if (likely(!ctx->nr_events)) 3785 return; 3786 3787 ctx->is_active |= (event_type | EVENT_TIME); 3788 if (ctx->task) { 3789 if (!is_active) 3790 cpuctx->task_ctx = ctx; 3791 else 3792 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3793 } 3794 3795 is_active ^= ctx->is_active; /* changed bits */ 3796 3797 if (is_active & EVENT_TIME) { 3798 /* start ctx time */ 3799 now = perf_clock(); 3800 ctx->timestamp = now; 3801 perf_cgroup_set_timestamp(task, ctx); 3802 } 3803 3804 /* 3805 * First go through the list and put on any pinned groups 3806 * in order to give them the best chance of going on. 3807 */ 3808 if (is_active & EVENT_PINNED) 3809 ctx_pinned_sched_in(ctx, cpuctx); 3810 3811 /* Then walk through the lower prio flexible groups */ 3812 if (is_active & EVENT_FLEXIBLE) 3813 ctx_flexible_sched_in(ctx, cpuctx); 3814 } 3815 3816 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3817 enum event_type_t event_type, 3818 struct task_struct *task) 3819 { 3820 struct perf_event_context *ctx = &cpuctx->ctx; 3821 3822 ctx_sched_in(ctx, cpuctx, event_type, task); 3823 } 3824 3825 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3826 struct task_struct *task) 3827 { 3828 struct perf_cpu_context *cpuctx; 3829 struct pmu *pmu = ctx->pmu; 3830 3831 cpuctx = __get_cpu_context(ctx); 3832 if (cpuctx->task_ctx == ctx) { 3833 if (cpuctx->sched_cb_usage) 3834 __perf_pmu_sched_task(cpuctx, true); 3835 return; 3836 } 3837 3838 perf_ctx_lock(cpuctx, ctx); 3839 /* 3840 * We must check ctx->nr_events while holding ctx->lock, such 3841 * that we serialize against perf_install_in_context(). 3842 */ 3843 if (!ctx->nr_events) 3844 goto unlock; 3845 3846 perf_pmu_disable(pmu); 3847 /* 3848 * We want to keep the following priority order: 3849 * cpu pinned (that don't need to move), task pinned, 3850 * cpu flexible, task flexible. 3851 * 3852 * However, if task's ctx is not carrying any pinned 3853 * events, no need to flip the cpuctx's events around. 3854 */ 3855 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3856 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3857 perf_event_sched_in(cpuctx, ctx, task); 3858 3859 if (cpuctx->sched_cb_usage && pmu->sched_task) 3860 pmu->sched_task(cpuctx->task_ctx, true); 3861 3862 perf_pmu_enable(pmu); 3863 3864 unlock: 3865 perf_ctx_unlock(cpuctx, ctx); 3866 } 3867 3868 /* 3869 * Called from scheduler to add the events of the current task 3870 * with interrupts disabled. 3871 * 3872 * We restore the event value and then enable it. 3873 * 3874 * This does not protect us against NMI, but enable() 3875 * sets the enabled bit in the control field of event _before_ 3876 * accessing the event control register. If a NMI hits, then it will 3877 * keep the event running. 3878 */ 3879 void __perf_event_task_sched_in(struct task_struct *prev, 3880 struct task_struct *task) 3881 { 3882 struct perf_event_context *ctx; 3883 int ctxn; 3884 3885 /* 3886 * If cgroup events exist on this CPU, then we need to check if we have 3887 * to switch in PMU state; cgroup event are system-wide mode only. 3888 * 3889 * Since cgroup events are CPU events, we must schedule these in before 3890 * we schedule in the task events. 3891 */ 3892 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3893 perf_cgroup_sched_in(prev, task); 3894 3895 for_each_task_context_nr(ctxn) { 3896 ctx = task->perf_event_ctxp[ctxn]; 3897 if (likely(!ctx)) 3898 continue; 3899 3900 perf_event_context_sched_in(ctx, task); 3901 } 3902 3903 if (atomic_read(&nr_switch_events)) 3904 perf_event_switch(task, prev, true); 3905 3906 if (__this_cpu_read(perf_sched_cb_usages)) 3907 perf_pmu_sched_task(prev, task, true); 3908 } 3909 3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3911 { 3912 u64 frequency = event->attr.sample_freq; 3913 u64 sec = NSEC_PER_SEC; 3914 u64 divisor, dividend; 3915 3916 int count_fls, nsec_fls, frequency_fls, sec_fls; 3917 3918 count_fls = fls64(count); 3919 nsec_fls = fls64(nsec); 3920 frequency_fls = fls64(frequency); 3921 sec_fls = 30; 3922 3923 /* 3924 * We got @count in @nsec, with a target of sample_freq HZ 3925 * the target period becomes: 3926 * 3927 * @count * 10^9 3928 * period = ------------------- 3929 * @nsec * sample_freq 3930 * 3931 */ 3932 3933 /* 3934 * Reduce accuracy by one bit such that @a and @b converge 3935 * to a similar magnitude. 3936 */ 3937 #define REDUCE_FLS(a, b) \ 3938 do { \ 3939 if (a##_fls > b##_fls) { \ 3940 a >>= 1; \ 3941 a##_fls--; \ 3942 } else { \ 3943 b >>= 1; \ 3944 b##_fls--; \ 3945 } \ 3946 } while (0) 3947 3948 /* 3949 * Reduce accuracy until either term fits in a u64, then proceed with 3950 * the other, so that finally we can do a u64/u64 division. 3951 */ 3952 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3953 REDUCE_FLS(nsec, frequency); 3954 REDUCE_FLS(sec, count); 3955 } 3956 3957 if (count_fls + sec_fls > 64) { 3958 divisor = nsec * frequency; 3959 3960 while (count_fls + sec_fls > 64) { 3961 REDUCE_FLS(count, sec); 3962 divisor >>= 1; 3963 } 3964 3965 dividend = count * sec; 3966 } else { 3967 dividend = count * sec; 3968 3969 while (nsec_fls + frequency_fls > 64) { 3970 REDUCE_FLS(nsec, frequency); 3971 dividend >>= 1; 3972 } 3973 3974 divisor = nsec * frequency; 3975 } 3976 3977 if (!divisor) 3978 return dividend; 3979 3980 return div64_u64(dividend, divisor); 3981 } 3982 3983 static DEFINE_PER_CPU(int, perf_throttled_count); 3984 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3985 3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3987 { 3988 struct hw_perf_event *hwc = &event->hw; 3989 s64 period, sample_period; 3990 s64 delta; 3991 3992 period = perf_calculate_period(event, nsec, count); 3993 3994 delta = (s64)(period - hwc->sample_period); 3995 delta = (delta + 7) / 8; /* low pass filter */ 3996 3997 sample_period = hwc->sample_period + delta; 3998 3999 if (!sample_period) 4000 sample_period = 1; 4001 4002 hwc->sample_period = sample_period; 4003 4004 if (local64_read(&hwc->period_left) > 8*sample_period) { 4005 if (disable) 4006 event->pmu->stop(event, PERF_EF_UPDATE); 4007 4008 local64_set(&hwc->period_left, 0); 4009 4010 if (disable) 4011 event->pmu->start(event, PERF_EF_RELOAD); 4012 } 4013 } 4014 4015 /* 4016 * combine freq adjustment with unthrottling to avoid two passes over the 4017 * events. At the same time, make sure, having freq events does not change 4018 * the rate of unthrottling as that would introduce bias. 4019 */ 4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4021 int needs_unthr) 4022 { 4023 struct perf_event *event; 4024 struct hw_perf_event *hwc; 4025 u64 now, period = TICK_NSEC; 4026 s64 delta; 4027 4028 /* 4029 * only need to iterate over all events iff: 4030 * - context have events in frequency mode (needs freq adjust) 4031 * - there are events to unthrottle on this cpu 4032 */ 4033 if (!(ctx->nr_freq || needs_unthr)) 4034 return; 4035 4036 raw_spin_lock(&ctx->lock); 4037 perf_pmu_disable(ctx->pmu); 4038 4039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4040 if (event->state != PERF_EVENT_STATE_ACTIVE) 4041 continue; 4042 4043 if (!event_filter_match(event)) 4044 continue; 4045 4046 perf_pmu_disable(event->pmu); 4047 4048 hwc = &event->hw; 4049 4050 if (hwc->interrupts == MAX_INTERRUPTS) { 4051 hwc->interrupts = 0; 4052 perf_log_throttle(event, 1); 4053 event->pmu->start(event, 0); 4054 } 4055 4056 if (!event->attr.freq || !event->attr.sample_freq) 4057 goto next; 4058 4059 /* 4060 * stop the event and update event->count 4061 */ 4062 event->pmu->stop(event, PERF_EF_UPDATE); 4063 4064 now = local64_read(&event->count); 4065 delta = now - hwc->freq_count_stamp; 4066 hwc->freq_count_stamp = now; 4067 4068 /* 4069 * restart the event 4070 * reload only if value has changed 4071 * we have stopped the event so tell that 4072 * to perf_adjust_period() to avoid stopping it 4073 * twice. 4074 */ 4075 if (delta > 0) 4076 perf_adjust_period(event, period, delta, false); 4077 4078 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4079 next: 4080 perf_pmu_enable(event->pmu); 4081 } 4082 4083 perf_pmu_enable(ctx->pmu); 4084 raw_spin_unlock(&ctx->lock); 4085 } 4086 4087 /* 4088 * Move @event to the tail of the @ctx's elegible events. 4089 */ 4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4091 { 4092 /* 4093 * Rotate the first entry last of non-pinned groups. Rotation might be 4094 * disabled by the inheritance code. 4095 */ 4096 if (ctx->rotate_disable) 4097 return; 4098 4099 perf_event_groups_delete(&ctx->flexible_groups, event); 4100 perf_event_groups_insert(&ctx->flexible_groups, event); 4101 } 4102 4103 /* pick an event from the flexible_groups to rotate */ 4104 static inline struct perf_event * 4105 ctx_event_to_rotate(struct perf_event_context *ctx) 4106 { 4107 struct perf_event *event; 4108 4109 /* pick the first active flexible event */ 4110 event = list_first_entry_or_null(&ctx->flexible_active, 4111 struct perf_event, active_list); 4112 4113 /* if no active flexible event, pick the first event */ 4114 if (!event) { 4115 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4116 typeof(*event), group_node); 4117 } 4118 4119 /* 4120 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4121 * finds there are unschedulable events, it will set it again. 4122 */ 4123 ctx->rotate_necessary = 0; 4124 4125 return event; 4126 } 4127 4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4129 { 4130 struct perf_event *cpu_event = NULL, *task_event = NULL; 4131 struct perf_event_context *task_ctx = NULL; 4132 int cpu_rotate, task_rotate; 4133 4134 /* 4135 * Since we run this from IRQ context, nobody can install new 4136 * events, thus the event count values are stable. 4137 */ 4138 4139 cpu_rotate = cpuctx->ctx.rotate_necessary; 4140 task_ctx = cpuctx->task_ctx; 4141 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4142 4143 if (!(cpu_rotate || task_rotate)) 4144 return false; 4145 4146 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4147 perf_pmu_disable(cpuctx->ctx.pmu); 4148 4149 if (task_rotate) 4150 task_event = ctx_event_to_rotate(task_ctx); 4151 if (cpu_rotate) 4152 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4153 4154 /* 4155 * As per the order given at ctx_resched() first 'pop' task flexible 4156 * and then, if needed CPU flexible. 4157 */ 4158 if (task_event || (task_ctx && cpu_event)) 4159 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4160 if (cpu_event) 4161 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4162 4163 if (task_event) 4164 rotate_ctx(task_ctx, task_event); 4165 if (cpu_event) 4166 rotate_ctx(&cpuctx->ctx, cpu_event); 4167 4168 perf_event_sched_in(cpuctx, task_ctx, current); 4169 4170 perf_pmu_enable(cpuctx->ctx.pmu); 4171 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4172 4173 return true; 4174 } 4175 4176 void perf_event_task_tick(void) 4177 { 4178 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4179 struct perf_event_context *ctx, *tmp; 4180 int throttled; 4181 4182 lockdep_assert_irqs_disabled(); 4183 4184 __this_cpu_inc(perf_throttled_seq); 4185 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4186 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4187 4188 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4189 perf_adjust_freq_unthr_context(ctx, throttled); 4190 } 4191 4192 static int event_enable_on_exec(struct perf_event *event, 4193 struct perf_event_context *ctx) 4194 { 4195 if (!event->attr.enable_on_exec) 4196 return 0; 4197 4198 event->attr.enable_on_exec = 0; 4199 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4200 return 0; 4201 4202 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4203 4204 return 1; 4205 } 4206 4207 /* 4208 * Enable all of a task's events that have been marked enable-on-exec. 4209 * This expects task == current. 4210 */ 4211 static void perf_event_enable_on_exec(int ctxn) 4212 { 4213 struct perf_event_context *ctx, *clone_ctx = NULL; 4214 enum event_type_t event_type = 0; 4215 struct perf_cpu_context *cpuctx; 4216 struct perf_event *event; 4217 unsigned long flags; 4218 int enabled = 0; 4219 4220 local_irq_save(flags); 4221 ctx = current->perf_event_ctxp[ctxn]; 4222 if (!ctx || !ctx->nr_events) 4223 goto out; 4224 4225 cpuctx = __get_cpu_context(ctx); 4226 perf_ctx_lock(cpuctx, ctx); 4227 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4228 list_for_each_entry(event, &ctx->event_list, event_entry) { 4229 enabled |= event_enable_on_exec(event, ctx); 4230 event_type |= get_event_type(event); 4231 } 4232 4233 /* 4234 * Unclone and reschedule this context if we enabled any event. 4235 */ 4236 if (enabled) { 4237 clone_ctx = unclone_ctx(ctx); 4238 ctx_resched(cpuctx, ctx, event_type); 4239 } else { 4240 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4241 } 4242 perf_ctx_unlock(cpuctx, ctx); 4243 4244 out: 4245 local_irq_restore(flags); 4246 4247 if (clone_ctx) 4248 put_ctx(clone_ctx); 4249 } 4250 4251 static void perf_remove_from_owner(struct perf_event *event); 4252 static void perf_event_exit_event(struct perf_event *event, 4253 struct perf_event_context *ctx); 4254 4255 /* 4256 * Removes all events from the current task that have been marked 4257 * remove-on-exec, and feeds their values back to parent events. 4258 */ 4259 static void perf_event_remove_on_exec(int ctxn) 4260 { 4261 struct perf_event_context *ctx, *clone_ctx = NULL; 4262 struct perf_event *event, *next; 4263 LIST_HEAD(free_list); 4264 unsigned long flags; 4265 bool modified = false; 4266 4267 ctx = perf_pin_task_context(current, ctxn); 4268 if (!ctx) 4269 return; 4270 4271 mutex_lock(&ctx->mutex); 4272 4273 if (WARN_ON_ONCE(ctx->task != current)) 4274 goto unlock; 4275 4276 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4277 if (!event->attr.remove_on_exec) 4278 continue; 4279 4280 if (!is_kernel_event(event)) 4281 perf_remove_from_owner(event); 4282 4283 modified = true; 4284 4285 perf_event_exit_event(event, ctx); 4286 } 4287 4288 raw_spin_lock_irqsave(&ctx->lock, flags); 4289 if (modified) 4290 clone_ctx = unclone_ctx(ctx); 4291 --ctx->pin_count; 4292 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4293 4294 unlock: 4295 mutex_unlock(&ctx->mutex); 4296 4297 put_ctx(ctx); 4298 if (clone_ctx) 4299 put_ctx(clone_ctx); 4300 } 4301 4302 struct perf_read_data { 4303 struct perf_event *event; 4304 bool group; 4305 int ret; 4306 }; 4307 4308 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4309 { 4310 u16 local_pkg, event_pkg; 4311 4312 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4313 int local_cpu = smp_processor_id(); 4314 4315 event_pkg = topology_physical_package_id(event_cpu); 4316 local_pkg = topology_physical_package_id(local_cpu); 4317 4318 if (event_pkg == local_pkg) 4319 return local_cpu; 4320 } 4321 4322 return event_cpu; 4323 } 4324 4325 /* 4326 * Cross CPU call to read the hardware event 4327 */ 4328 static void __perf_event_read(void *info) 4329 { 4330 struct perf_read_data *data = info; 4331 struct perf_event *sub, *event = data->event; 4332 struct perf_event_context *ctx = event->ctx; 4333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4334 struct pmu *pmu = event->pmu; 4335 4336 /* 4337 * If this is a task context, we need to check whether it is 4338 * the current task context of this cpu. If not it has been 4339 * scheduled out before the smp call arrived. In that case 4340 * event->count would have been updated to a recent sample 4341 * when the event was scheduled out. 4342 */ 4343 if (ctx->task && cpuctx->task_ctx != ctx) 4344 return; 4345 4346 raw_spin_lock(&ctx->lock); 4347 if (ctx->is_active & EVENT_TIME) { 4348 update_context_time(ctx); 4349 update_cgrp_time_from_event(event); 4350 } 4351 4352 perf_event_update_time(event); 4353 if (data->group) 4354 perf_event_update_sibling_time(event); 4355 4356 if (event->state != PERF_EVENT_STATE_ACTIVE) 4357 goto unlock; 4358 4359 if (!data->group) { 4360 pmu->read(event); 4361 data->ret = 0; 4362 goto unlock; 4363 } 4364 4365 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4366 4367 pmu->read(event); 4368 4369 for_each_sibling_event(sub, event) { 4370 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4371 /* 4372 * Use sibling's PMU rather than @event's since 4373 * sibling could be on different (eg: software) PMU. 4374 */ 4375 sub->pmu->read(sub); 4376 } 4377 } 4378 4379 data->ret = pmu->commit_txn(pmu); 4380 4381 unlock: 4382 raw_spin_unlock(&ctx->lock); 4383 } 4384 4385 static inline u64 perf_event_count(struct perf_event *event) 4386 { 4387 return local64_read(&event->count) + atomic64_read(&event->child_count); 4388 } 4389 4390 /* 4391 * NMI-safe method to read a local event, that is an event that 4392 * is: 4393 * - either for the current task, or for this CPU 4394 * - does not have inherit set, for inherited task events 4395 * will not be local and we cannot read them atomically 4396 * - must not have a pmu::count method 4397 */ 4398 int perf_event_read_local(struct perf_event *event, u64 *value, 4399 u64 *enabled, u64 *running) 4400 { 4401 unsigned long flags; 4402 int ret = 0; 4403 4404 /* 4405 * Disabling interrupts avoids all counter scheduling (context 4406 * switches, timer based rotation and IPIs). 4407 */ 4408 local_irq_save(flags); 4409 4410 /* 4411 * It must not be an event with inherit set, we cannot read 4412 * all child counters from atomic context. 4413 */ 4414 if (event->attr.inherit) { 4415 ret = -EOPNOTSUPP; 4416 goto out; 4417 } 4418 4419 /* If this is a per-task event, it must be for current */ 4420 if ((event->attach_state & PERF_ATTACH_TASK) && 4421 event->hw.target != current) { 4422 ret = -EINVAL; 4423 goto out; 4424 } 4425 4426 /* If this is a per-CPU event, it must be for this CPU */ 4427 if (!(event->attach_state & PERF_ATTACH_TASK) && 4428 event->cpu != smp_processor_id()) { 4429 ret = -EINVAL; 4430 goto out; 4431 } 4432 4433 /* If this is a pinned event it must be running on this CPU */ 4434 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4435 ret = -EBUSY; 4436 goto out; 4437 } 4438 4439 /* 4440 * If the event is currently on this CPU, its either a per-task event, 4441 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4442 * oncpu == -1). 4443 */ 4444 if (event->oncpu == smp_processor_id()) 4445 event->pmu->read(event); 4446 4447 *value = local64_read(&event->count); 4448 if (enabled || running) { 4449 u64 now = event->shadow_ctx_time + perf_clock(); 4450 u64 __enabled, __running; 4451 4452 __perf_update_times(event, now, &__enabled, &__running); 4453 if (enabled) 4454 *enabled = __enabled; 4455 if (running) 4456 *running = __running; 4457 } 4458 out: 4459 local_irq_restore(flags); 4460 4461 return ret; 4462 } 4463 4464 static int perf_event_read(struct perf_event *event, bool group) 4465 { 4466 enum perf_event_state state = READ_ONCE(event->state); 4467 int event_cpu, ret = 0; 4468 4469 /* 4470 * If event is enabled and currently active on a CPU, update the 4471 * value in the event structure: 4472 */ 4473 again: 4474 if (state == PERF_EVENT_STATE_ACTIVE) { 4475 struct perf_read_data data; 4476 4477 /* 4478 * Orders the ->state and ->oncpu loads such that if we see 4479 * ACTIVE we must also see the right ->oncpu. 4480 * 4481 * Matches the smp_wmb() from event_sched_in(). 4482 */ 4483 smp_rmb(); 4484 4485 event_cpu = READ_ONCE(event->oncpu); 4486 if ((unsigned)event_cpu >= nr_cpu_ids) 4487 return 0; 4488 4489 data = (struct perf_read_data){ 4490 .event = event, 4491 .group = group, 4492 .ret = 0, 4493 }; 4494 4495 preempt_disable(); 4496 event_cpu = __perf_event_read_cpu(event, event_cpu); 4497 4498 /* 4499 * Purposely ignore the smp_call_function_single() return 4500 * value. 4501 * 4502 * If event_cpu isn't a valid CPU it means the event got 4503 * scheduled out and that will have updated the event count. 4504 * 4505 * Therefore, either way, we'll have an up-to-date event count 4506 * after this. 4507 */ 4508 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4509 preempt_enable(); 4510 ret = data.ret; 4511 4512 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4513 struct perf_event_context *ctx = event->ctx; 4514 unsigned long flags; 4515 4516 raw_spin_lock_irqsave(&ctx->lock, flags); 4517 state = event->state; 4518 if (state != PERF_EVENT_STATE_INACTIVE) { 4519 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4520 goto again; 4521 } 4522 4523 /* 4524 * May read while context is not active (e.g., thread is 4525 * blocked), in that case we cannot update context time 4526 */ 4527 if (ctx->is_active & EVENT_TIME) { 4528 update_context_time(ctx); 4529 update_cgrp_time_from_event(event); 4530 } 4531 4532 perf_event_update_time(event); 4533 if (group) 4534 perf_event_update_sibling_time(event); 4535 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4536 } 4537 4538 return ret; 4539 } 4540 4541 /* 4542 * Initialize the perf_event context in a task_struct: 4543 */ 4544 static void __perf_event_init_context(struct perf_event_context *ctx) 4545 { 4546 raw_spin_lock_init(&ctx->lock); 4547 mutex_init(&ctx->mutex); 4548 INIT_LIST_HEAD(&ctx->active_ctx_list); 4549 perf_event_groups_init(&ctx->pinned_groups); 4550 perf_event_groups_init(&ctx->flexible_groups); 4551 INIT_LIST_HEAD(&ctx->event_list); 4552 INIT_LIST_HEAD(&ctx->pinned_active); 4553 INIT_LIST_HEAD(&ctx->flexible_active); 4554 refcount_set(&ctx->refcount, 1); 4555 } 4556 4557 static struct perf_event_context * 4558 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4559 { 4560 struct perf_event_context *ctx; 4561 4562 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4563 if (!ctx) 4564 return NULL; 4565 4566 __perf_event_init_context(ctx); 4567 if (task) 4568 ctx->task = get_task_struct(task); 4569 ctx->pmu = pmu; 4570 4571 return ctx; 4572 } 4573 4574 static struct task_struct * 4575 find_lively_task_by_vpid(pid_t vpid) 4576 { 4577 struct task_struct *task; 4578 4579 rcu_read_lock(); 4580 if (!vpid) 4581 task = current; 4582 else 4583 task = find_task_by_vpid(vpid); 4584 if (task) 4585 get_task_struct(task); 4586 rcu_read_unlock(); 4587 4588 if (!task) 4589 return ERR_PTR(-ESRCH); 4590 4591 return task; 4592 } 4593 4594 /* 4595 * Returns a matching context with refcount and pincount. 4596 */ 4597 static struct perf_event_context * 4598 find_get_context(struct pmu *pmu, struct task_struct *task, 4599 struct perf_event *event) 4600 { 4601 struct perf_event_context *ctx, *clone_ctx = NULL; 4602 struct perf_cpu_context *cpuctx; 4603 void *task_ctx_data = NULL; 4604 unsigned long flags; 4605 int ctxn, err; 4606 int cpu = event->cpu; 4607 4608 if (!task) { 4609 /* Must be root to operate on a CPU event: */ 4610 err = perf_allow_cpu(&event->attr); 4611 if (err) 4612 return ERR_PTR(err); 4613 4614 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4615 ctx = &cpuctx->ctx; 4616 get_ctx(ctx); 4617 ++ctx->pin_count; 4618 4619 return ctx; 4620 } 4621 4622 err = -EINVAL; 4623 ctxn = pmu->task_ctx_nr; 4624 if (ctxn < 0) 4625 goto errout; 4626 4627 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4628 task_ctx_data = alloc_task_ctx_data(pmu); 4629 if (!task_ctx_data) { 4630 err = -ENOMEM; 4631 goto errout; 4632 } 4633 } 4634 4635 retry: 4636 ctx = perf_lock_task_context(task, ctxn, &flags); 4637 if (ctx) { 4638 clone_ctx = unclone_ctx(ctx); 4639 ++ctx->pin_count; 4640 4641 if (task_ctx_data && !ctx->task_ctx_data) { 4642 ctx->task_ctx_data = task_ctx_data; 4643 task_ctx_data = NULL; 4644 } 4645 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4646 4647 if (clone_ctx) 4648 put_ctx(clone_ctx); 4649 } else { 4650 ctx = alloc_perf_context(pmu, task); 4651 err = -ENOMEM; 4652 if (!ctx) 4653 goto errout; 4654 4655 if (task_ctx_data) { 4656 ctx->task_ctx_data = task_ctx_data; 4657 task_ctx_data = NULL; 4658 } 4659 4660 err = 0; 4661 mutex_lock(&task->perf_event_mutex); 4662 /* 4663 * If it has already passed perf_event_exit_task(). 4664 * we must see PF_EXITING, it takes this mutex too. 4665 */ 4666 if (task->flags & PF_EXITING) 4667 err = -ESRCH; 4668 else if (task->perf_event_ctxp[ctxn]) 4669 err = -EAGAIN; 4670 else { 4671 get_ctx(ctx); 4672 ++ctx->pin_count; 4673 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4674 } 4675 mutex_unlock(&task->perf_event_mutex); 4676 4677 if (unlikely(err)) { 4678 put_ctx(ctx); 4679 4680 if (err == -EAGAIN) 4681 goto retry; 4682 goto errout; 4683 } 4684 } 4685 4686 free_task_ctx_data(pmu, task_ctx_data); 4687 return ctx; 4688 4689 errout: 4690 free_task_ctx_data(pmu, task_ctx_data); 4691 return ERR_PTR(err); 4692 } 4693 4694 static void perf_event_free_filter(struct perf_event *event); 4695 static void perf_event_free_bpf_prog(struct perf_event *event); 4696 4697 static void free_event_rcu(struct rcu_head *head) 4698 { 4699 struct perf_event *event; 4700 4701 event = container_of(head, struct perf_event, rcu_head); 4702 if (event->ns) 4703 put_pid_ns(event->ns); 4704 perf_event_free_filter(event); 4705 kmem_cache_free(perf_event_cache, event); 4706 } 4707 4708 static void ring_buffer_attach(struct perf_event *event, 4709 struct perf_buffer *rb); 4710 4711 static void detach_sb_event(struct perf_event *event) 4712 { 4713 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4714 4715 raw_spin_lock(&pel->lock); 4716 list_del_rcu(&event->sb_list); 4717 raw_spin_unlock(&pel->lock); 4718 } 4719 4720 static bool is_sb_event(struct perf_event *event) 4721 { 4722 struct perf_event_attr *attr = &event->attr; 4723 4724 if (event->parent) 4725 return false; 4726 4727 if (event->attach_state & PERF_ATTACH_TASK) 4728 return false; 4729 4730 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4731 attr->comm || attr->comm_exec || 4732 attr->task || attr->ksymbol || 4733 attr->context_switch || attr->text_poke || 4734 attr->bpf_event) 4735 return true; 4736 return false; 4737 } 4738 4739 static void unaccount_pmu_sb_event(struct perf_event *event) 4740 { 4741 if (is_sb_event(event)) 4742 detach_sb_event(event); 4743 } 4744 4745 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4746 { 4747 if (event->parent) 4748 return; 4749 4750 if (is_cgroup_event(event)) 4751 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4752 } 4753 4754 #ifdef CONFIG_NO_HZ_FULL 4755 static DEFINE_SPINLOCK(nr_freq_lock); 4756 #endif 4757 4758 static void unaccount_freq_event_nohz(void) 4759 { 4760 #ifdef CONFIG_NO_HZ_FULL 4761 spin_lock(&nr_freq_lock); 4762 if (atomic_dec_and_test(&nr_freq_events)) 4763 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4764 spin_unlock(&nr_freq_lock); 4765 #endif 4766 } 4767 4768 static void unaccount_freq_event(void) 4769 { 4770 if (tick_nohz_full_enabled()) 4771 unaccount_freq_event_nohz(); 4772 else 4773 atomic_dec(&nr_freq_events); 4774 } 4775 4776 static void unaccount_event(struct perf_event *event) 4777 { 4778 bool dec = false; 4779 4780 if (event->parent) 4781 return; 4782 4783 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4784 dec = true; 4785 if (event->attr.mmap || event->attr.mmap_data) 4786 atomic_dec(&nr_mmap_events); 4787 if (event->attr.build_id) 4788 atomic_dec(&nr_build_id_events); 4789 if (event->attr.comm) 4790 atomic_dec(&nr_comm_events); 4791 if (event->attr.namespaces) 4792 atomic_dec(&nr_namespaces_events); 4793 if (event->attr.cgroup) 4794 atomic_dec(&nr_cgroup_events); 4795 if (event->attr.task) 4796 atomic_dec(&nr_task_events); 4797 if (event->attr.freq) 4798 unaccount_freq_event(); 4799 if (event->attr.context_switch) { 4800 dec = true; 4801 atomic_dec(&nr_switch_events); 4802 } 4803 if (is_cgroup_event(event)) 4804 dec = true; 4805 if (has_branch_stack(event)) 4806 dec = true; 4807 if (event->attr.ksymbol) 4808 atomic_dec(&nr_ksymbol_events); 4809 if (event->attr.bpf_event) 4810 atomic_dec(&nr_bpf_events); 4811 if (event->attr.text_poke) 4812 atomic_dec(&nr_text_poke_events); 4813 4814 if (dec) { 4815 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4816 schedule_delayed_work(&perf_sched_work, HZ); 4817 } 4818 4819 unaccount_event_cpu(event, event->cpu); 4820 4821 unaccount_pmu_sb_event(event); 4822 } 4823 4824 static void perf_sched_delayed(struct work_struct *work) 4825 { 4826 mutex_lock(&perf_sched_mutex); 4827 if (atomic_dec_and_test(&perf_sched_count)) 4828 static_branch_disable(&perf_sched_events); 4829 mutex_unlock(&perf_sched_mutex); 4830 } 4831 4832 /* 4833 * The following implement mutual exclusion of events on "exclusive" pmus 4834 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4835 * at a time, so we disallow creating events that might conflict, namely: 4836 * 4837 * 1) cpu-wide events in the presence of per-task events, 4838 * 2) per-task events in the presence of cpu-wide events, 4839 * 3) two matching events on the same context. 4840 * 4841 * The former two cases are handled in the allocation path (perf_event_alloc(), 4842 * _free_event()), the latter -- before the first perf_install_in_context(). 4843 */ 4844 static int exclusive_event_init(struct perf_event *event) 4845 { 4846 struct pmu *pmu = event->pmu; 4847 4848 if (!is_exclusive_pmu(pmu)) 4849 return 0; 4850 4851 /* 4852 * Prevent co-existence of per-task and cpu-wide events on the 4853 * same exclusive pmu. 4854 * 4855 * Negative pmu::exclusive_cnt means there are cpu-wide 4856 * events on this "exclusive" pmu, positive means there are 4857 * per-task events. 4858 * 4859 * Since this is called in perf_event_alloc() path, event::ctx 4860 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4861 * to mean "per-task event", because unlike other attach states it 4862 * never gets cleared. 4863 */ 4864 if (event->attach_state & PERF_ATTACH_TASK) { 4865 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4866 return -EBUSY; 4867 } else { 4868 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4869 return -EBUSY; 4870 } 4871 4872 return 0; 4873 } 4874 4875 static void exclusive_event_destroy(struct perf_event *event) 4876 { 4877 struct pmu *pmu = event->pmu; 4878 4879 if (!is_exclusive_pmu(pmu)) 4880 return; 4881 4882 /* see comment in exclusive_event_init() */ 4883 if (event->attach_state & PERF_ATTACH_TASK) 4884 atomic_dec(&pmu->exclusive_cnt); 4885 else 4886 atomic_inc(&pmu->exclusive_cnt); 4887 } 4888 4889 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4890 { 4891 if ((e1->pmu == e2->pmu) && 4892 (e1->cpu == e2->cpu || 4893 e1->cpu == -1 || 4894 e2->cpu == -1)) 4895 return true; 4896 return false; 4897 } 4898 4899 static bool exclusive_event_installable(struct perf_event *event, 4900 struct perf_event_context *ctx) 4901 { 4902 struct perf_event *iter_event; 4903 struct pmu *pmu = event->pmu; 4904 4905 lockdep_assert_held(&ctx->mutex); 4906 4907 if (!is_exclusive_pmu(pmu)) 4908 return true; 4909 4910 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4911 if (exclusive_event_match(iter_event, event)) 4912 return false; 4913 } 4914 4915 return true; 4916 } 4917 4918 static void perf_addr_filters_splice(struct perf_event *event, 4919 struct list_head *head); 4920 4921 static void _free_event(struct perf_event *event) 4922 { 4923 irq_work_sync(&event->pending); 4924 4925 unaccount_event(event); 4926 4927 security_perf_event_free(event); 4928 4929 if (event->rb) { 4930 /* 4931 * Can happen when we close an event with re-directed output. 4932 * 4933 * Since we have a 0 refcount, perf_mmap_close() will skip 4934 * over us; possibly making our ring_buffer_put() the last. 4935 */ 4936 mutex_lock(&event->mmap_mutex); 4937 ring_buffer_attach(event, NULL); 4938 mutex_unlock(&event->mmap_mutex); 4939 } 4940 4941 if (is_cgroup_event(event)) 4942 perf_detach_cgroup(event); 4943 4944 if (!event->parent) { 4945 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4946 put_callchain_buffers(); 4947 } 4948 4949 perf_event_free_bpf_prog(event); 4950 perf_addr_filters_splice(event, NULL); 4951 kfree(event->addr_filter_ranges); 4952 4953 if (event->destroy) 4954 event->destroy(event); 4955 4956 /* 4957 * Must be after ->destroy(), due to uprobe_perf_close() using 4958 * hw.target. 4959 */ 4960 if (event->hw.target) 4961 put_task_struct(event->hw.target); 4962 4963 /* 4964 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4965 * all task references must be cleaned up. 4966 */ 4967 if (event->ctx) 4968 put_ctx(event->ctx); 4969 4970 exclusive_event_destroy(event); 4971 module_put(event->pmu->module); 4972 4973 call_rcu(&event->rcu_head, free_event_rcu); 4974 } 4975 4976 /* 4977 * Used to free events which have a known refcount of 1, such as in error paths 4978 * where the event isn't exposed yet and inherited events. 4979 */ 4980 static void free_event(struct perf_event *event) 4981 { 4982 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4983 "unexpected event refcount: %ld; ptr=%p\n", 4984 atomic_long_read(&event->refcount), event)) { 4985 /* leak to avoid use-after-free */ 4986 return; 4987 } 4988 4989 _free_event(event); 4990 } 4991 4992 /* 4993 * Remove user event from the owner task. 4994 */ 4995 static void perf_remove_from_owner(struct perf_event *event) 4996 { 4997 struct task_struct *owner; 4998 4999 rcu_read_lock(); 5000 /* 5001 * Matches the smp_store_release() in perf_event_exit_task(). If we 5002 * observe !owner it means the list deletion is complete and we can 5003 * indeed free this event, otherwise we need to serialize on 5004 * owner->perf_event_mutex. 5005 */ 5006 owner = READ_ONCE(event->owner); 5007 if (owner) { 5008 /* 5009 * Since delayed_put_task_struct() also drops the last 5010 * task reference we can safely take a new reference 5011 * while holding the rcu_read_lock(). 5012 */ 5013 get_task_struct(owner); 5014 } 5015 rcu_read_unlock(); 5016 5017 if (owner) { 5018 /* 5019 * If we're here through perf_event_exit_task() we're already 5020 * holding ctx->mutex which would be an inversion wrt. the 5021 * normal lock order. 5022 * 5023 * However we can safely take this lock because its the child 5024 * ctx->mutex. 5025 */ 5026 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5027 5028 /* 5029 * We have to re-check the event->owner field, if it is cleared 5030 * we raced with perf_event_exit_task(), acquiring the mutex 5031 * ensured they're done, and we can proceed with freeing the 5032 * event. 5033 */ 5034 if (event->owner) { 5035 list_del_init(&event->owner_entry); 5036 smp_store_release(&event->owner, NULL); 5037 } 5038 mutex_unlock(&owner->perf_event_mutex); 5039 put_task_struct(owner); 5040 } 5041 } 5042 5043 static void put_event(struct perf_event *event) 5044 { 5045 if (!atomic_long_dec_and_test(&event->refcount)) 5046 return; 5047 5048 _free_event(event); 5049 } 5050 5051 /* 5052 * Kill an event dead; while event:refcount will preserve the event 5053 * object, it will not preserve its functionality. Once the last 'user' 5054 * gives up the object, we'll destroy the thing. 5055 */ 5056 int perf_event_release_kernel(struct perf_event *event) 5057 { 5058 struct perf_event_context *ctx = event->ctx; 5059 struct perf_event *child, *tmp; 5060 LIST_HEAD(free_list); 5061 5062 /* 5063 * If we got here through err_file: fput(event_file); we will not have 5064 * attached to a context yet. 5065 */ 5066 if (!ctx) { 5067 WARN_ON_ONCE(event->attach_state & 5068 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5069 goto no_ctx; 5070 } 5071 5072 if (!is_kernel_event(event)) 5073 perf_remove_from_owner(event); 5074 5075 ctx = perf_event_ctx_lock(event); 5076 WARN_ON_ONCE(ctx->parent_ctx); 5077 perf_remove_from_context(event, DETACH_GROUP); 5078 5079 raw_spin_lock_irq(&ctx->lock); 5080 /* 5081 * Mark this event as STATE_DEAD, there is no external reference to it 5082 * anymore. 5083 * 5084 * Anybody acquiring event->child_mutex after the below loop _must_ 5085 * also see this, most importantly inherit_event() which will avoid 5086 * placing more children on the list. 5087 * 5088 * Thus this guarantees that we will in fact observe and kill _ALL_ 5089 * child events. 5090 */ 5091 event->state = PERF_EVENT_STATE_DEAD; 5092 raw_spin_unlock_irq(&ctx->lock); 5093 5094 perf_event_ctx_unlock(event, ctx); 5095 5096 again: 5097 mutex_lock(&event->child_mutex); 5098 list_for_each_entry(child, &event->child_list, child_list) { 5099 5100 /* 5101 * Cannot change, child events are not migrated, see the 5102 * comment with perf_event_ctx_lock_nested(). 5103 */ 5104 ctx = READ_ONCE(child->ctx); 5105 /* 5106 * Since child_mutex nests inside ctx::mutex, we must jump 5107 * through hoops. We start by grabbing a reference on the ctx. 5108 * 5109 * Since the event cannot get freed while we hold the 5110 * child_mutex, the context must also exist and have a !0 5111 * reference count. 5112 */ 5113 get_ctx(ctx); 5114 5115 /* 5116 * Now that we have a ctx ref, we can drop child_mutex, and 5117 * acquire ctx::mutex without fear of it going away. Then we 5118 * can re-acquire child_mutex. 5119 */ 5120 mutex_unlock(&event->child_mutex); 5121 mutex_lock(&ctx->mutex); 5122 mutex_lock(&event->child_mutex); 5123 5124 /* 5125 * Now that we hold ctx::mutex and child_mutex, revalidate our 5126 * state, if child is still the first entry, it didn't get freed 5127 * and we can continue doing so. 5128 */ 5129 tmp = list_first_entry_or_null(&event->child_list, 5130 struct perf_event, child_list); 5131 if (tmp == child) { 5132 perf_remove_from_context(child, DETACH_GROUP); 5133 list_move(&child->child_list, &free_list); 5134 /* 5135 * This matches the refcount bump in inherit_event(); 5136 * this can't be the last reference. 5137 */ 5138 put_event(event); 5139 } 5140 5141 mutex_unlock(&event->child_mutex); 5142 mutex_unlock(&ctx->mutex); 5143 put_ctx(ctx); 5144 goto again; 5145 } 5146 mutex_unlock(&event->child_mutex); 5147 5148 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5149 void *var = &child->ctx->refcount; 5150 5151 list_del(&child->child_list); 5152 free_event(child); 5153 5154 /* 5155 * Wake any perf_event_free_task() waiting for this event to be 5156 * freed. 5157 */ 5158 smp_mb(); /* pairs with wait_var_event() */ 5159 wake_up_var(var); 5160 } 5161 5162 no_ctx: 5163 put_event(event); /* Must be the 'last' reference */ 5164 return 0; 5165 } 5166 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5167 5168 /* 5169 * Called when the last reference to the file is gone. 5170 */ 5171 static int perf_release(struct inode *inode, struct file *file) 5172 { 5173 perf_event_release_kernel(file->private_data); 5174 return 0; 5175 } 5176 5177 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5178 { 5179 struct perf_event *child; 5180 u64 total = 0; 5181 5182 *enabled = 0; 5183 *running = 0; 5184 5185 mutex_lock(&event->child_mutex); 5186 5187 (void)perf_event_read(event, false); 5188 total += perf_event_count(event); 5189 5190 *enabled += event->total_time_enabled + 5191 atomic64_read(&event->child_total_time_enabled); 5192 *running += event->total_time_running + 5193 atomic64_read(&event->child_total_time_running); 5194 5195 list_for_each_entry(child, &event->child_list, child_list) { 5196 (void)perf_event_read(child, false); 5197 total += perf_event_count(child); 5198 *enabled += child->total_time_enabled; 5199 *running += child->total_time_running; 5200 } 5201 mutex_unlock(&event->child_mutex); 5202 5203 return total; 5204 } 5205 5206 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5207 { 5208 struct perf_event_context *ctx; 5209 u64 count; 5210 5211 ctx = perf_event_ctx_lock(event); 5212 count = __perf_event_read_value(event, enabled, running); 5213 perf_event_ctx_unlock(event, ctx); 5214 5215 return count; 5216 } 5217 EXPORT_SYMBOL_GPL(perf_event_read_value); 5218 5219 static int __perf_read_group_add(struct perf_event *leader, 5220 u64 read_format, u64 *values) 5221 { 5222 struct perf_event_context *ctx = leader->ctx; 5223 struct perf_event *sub; 5224 unsigned long flags; 5225 int n = 1; /* skip @nr */ 5226 int ret; 5227 5228 ret = perf_event_read(leader, true); 5229 if (ret) 5230 return ret; 5231 5232 raw_spin_lock_irqsave(&ctx->lock, flags); 5233 5234 /* 5235 * Since we co-schedule groups, {enabled,running} times of siblings 5236 * will be identical to those of the leader, so we only publish one 5237 * set. 5238 */ 5239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5240 values[n++] += leader->total_time_enabled + 5241 atomic64_read(&leader->child_total_time_enabled); 5242 } 5243 5244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5245 values[n++] += leader->total_time_running + 5246 atomic64_read(&leader->child_total_time_running); 5247 } 5248 5249 /* 5250 * Write {count,id} tuples for every sibling. 5251 */ 5252 values[n++] += perf_event_count(leader); 5253 if (read_format & PERF_FORMAT_ID) 5254 values[n++] = primary_event_id(leader); 5255 5256 for_each_sibling_event(sub, leader) { 5257 values[n++] += perf_event_count(sub); 5258 if (read_format & PERF_FORMAT_ID) 5259 values[n++] = primary_event_id(sub); 5260 } 5261 5262 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5263 return 0; 5264 } 5265 5266 static int perf_read_group(struct perf_event *event, 5267 u64 read_format, char __user *buf) 5268 { 5269 struct perf_event *leader = event->group_leader, *child; 5270 struct perf_event_context *ctx = leader->ctx; 5271 int ret; 5272 u64 *values; 5273 5274 lockdep_assert_held(&ctx->mutex); 5275 5276 values = kzalloc(event->read_size, GFP_KERNEL); 5277 if (!values) 5278 return -ENOMEM; 5279 5280 values[0] = 1 + leader->nr_siblings; 5281 5282 /* 5283 * By locking the child_mutex of the leader we effectively 5284 * lock the child list of all siblings.. XXX explain how. 5285 */ 5286 mutex_lock(&leader->child_mutex); 5287 5288 ret = __perf_read_group_add(leader, read_format, values); 5289 if (ret) 5290 goto unlock; 5291 5292 list_for_each_entry(child, &leader->child_list, child_list) { 5293 ret = __perf_read_group_add(child, read_format, values); 5294 if (ret) 5295 goto unlock; 5296 } 5297 5298 mutex_unlock(&leader->child_mutex); 5299 5300 ret = event->read_size; 5301 if (copy_to_user(buf, values, event->read_size)) 5302 ret = -EFAULT; 5303 goto out; 5304 5305 unlock: 5306 mutex_unlock(&leader->child_mutex); 5307 out: 5308 kfree(values); 5309 return ret; 5310 } 5311 5312 static int perf_read_one(struct perf_event *event, 5313 u64 read_format, char __user *buf) 5314 { 5315 u64 enabled, running; 5316 u64 values[4]; 5317 int n = 0; 5318 5319 values[n++] = __perf_event_read_value(event, &enabled, &running); 5320 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5321 values[n++] = enabled; 5322 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5323 values[n++] = running; 5324 if (read_format & PERF_FORMAT_ID) 5325 values[n++] = primary_event_id(event); 5326 5327 if (copy_to_user(buf, values, n * sizeof(u64))) 5328 return -EFAULT; 5329 5330 return n * sizeof(u64); 5331 } 5332 5333 static bool is_event_hup(struct perf_event *event) 5334 { 5335 bool no_children; 5336 5337 if (event->state > PERF_EVENT_STATE_EXIT) 5338 return false; 5339 5340 mutex_lock(&event->child_mutex); 5341 no_children = list_empty(&event->child_list); 5342 mutex_unlock(&event->child_mutex); 5343 return no_children; 5344 } 5345 5346 /* 5347 * Read the performance event - simple non blocking version for now 5348 */ 5349 static ssize_t 5350 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5351 { 5352 u64 read_format = event->attr.read_format; 5353 int ret; 5354 5355 /* 5356 * Return end-of-file for a read on an event that is in 5357 * error state (i.e. because it was pinned but it couldn't be 5358 * scheduled on to the CPU at some point). 5359 */ 5360 if (event->state == PERF_EVENT_STATE_ERROR) 5361 return 0; 5362 5363 if (count < event->read_size) 5364 return -ENOSPC; 5365 5366 WARN_ON_ONCE(event->ctx->parent_ctx); 5367 if (read_format & PERF_FORMAT_GROUP) 5368 ret = perf_read_group(event, read_format, buf); 5369 else 5370 ret = perf_read_one(event, read_format, buf); 5371 5372 return ret; 5373 } 5374 5375 static ssize_t 5376 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5377 { 5378 struct perf_event *event = file->private_data; 5379 struct perf_event_context *ctx; 5380 int ret; 5381 5382 ret = security_perf_event_read(event); 5383 if (ret) 5384 return ret; 5385 5386 ctx = perf_event_ctx_lock(event); 5387 ret = __perf_read(event, buf, count); 5388 perf_event_ctx_unlock(event, ctx); 5389 5390 return ret; 5391 } 5392 5393 static __poll_t perf_poll(struct file *file, poll_table *wait) 5394 { 5395 struct perf_event *event = file->private_data; 5396 struct perf_buffer *rb; 5397 __poll_t events = EPOLLHUP; 5398 5399 poll_wait(file, &event->waitq, wait); 5400 5401 if (is_event_hup(event)) 5402 return events; 5403 5404 /* 5405 * Pin the event->rb by taking event->mmap_mutex; otherwise 5406 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5407 */ 5408 mutex_lock(&event->mmap_mutex); 5409 rb = event->rb; 5410 if (rb) 5411 events = atomic_xchg(&rb->poll, 0); 5412 mutex_unlock(&event->mmap_mutex); 5413 return events; 5414 } 5415 5416 static void _perf_event_reset(struct perf_event *event) 5417 { 5418 (void)perf_event_read(event, false); 5419 local64_set(&event->count, 0); 5420 perf_event_update_userpage(event); 5421 } 5422 5423 /* Assume it's not an event with inherit set. */ 5424 u64 perf_event_pause(struct perf_event *event, bool reset) 5425 { 5426 struct perf_event_context *ctx; 5427 u64 count; 5428 5429 ctx = perf_event_ctx_lock(event); 5430 WARN_ON_ONCE(event->attr.inherit); 5431 _perf_event_disable(event); 5432 count = local64_read(&event->count); 5433 if (reset) 5434 local64_set(&event->count, 0); 5435 perf_event_ctx_unlock(event, ctx); 5436 5437 return count; 5438 } 5439 EXPORT_SYMBOL_GPL(perf_event_pause); 5440 5441 /* 5442 * Holding the top-level event's child_mutex means that any 5443 * descendant process that has inherited this event will block 5444 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5445 * task existence requirements of perf_event_enable/disable. 5446 */ 5447 static void perf_event_for_each_child(struct perf_event *event, 5448 void (*func)(struct perf_event *)) 5449 { 5450 struct perf_event *child; 5451 5452 WARN_ON_ONCE(event->ctx->parent_ctx); 5453 5454 mutex_lock(&event->child_mutex); 5455 func(event); 5456 list_for_each_entry(child, &event->child_list, child_list) 5457 func(child); 5458 mutex_unlock(&event->child_mutex); 5459 } 5460 5461 static void perf_event_for_each(struct perf_event *event, 5462 void (*func)(struct perf_event *)) 5463 { 5464 struct perf_event_context *ctx = event->ctx; 5465 struct perf_event *sibling; 5466 5467 lockdep_assert_held(&ctx->mutex); 5468 5469 event = event->group_leader; 5470 5471 perf_event_for_each_child(event, func); 5472 for_each_sibling_event(sibling, event) 5473 perf_event_for_each_child(sibling, func); 5474 } 5475 5476 static void __perf_event_period(struct perf_event *event, 5477 struct perf_cpu_context *cpuctx, 5478 struct perf_event_context *ctx, 5479 void *info) 5480 { 5481 u64 value = *((u64 *)info); 5482 bool active; 5483 5484 if (event->attr.freq) { 5485 event->attr.sample_freq = value; 5486 } else { 5487 event->attr.sample_period = value; 5488 event->hw.sample_period = value; 5489 } 5490 5491 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5492 if (active) { 5493 perf_pmu_disable(ctx->pmu); 5494 /* 5495 * We could be throttled; unthrottle now to avoid the tick 5496 * trying to unthrottle while we already re-started the event. 5497 */ 5498 if (event->hw.interrupts == MAX_INTERRUPTS) { 5499 event->hw.interrupts = 0; 5500 perf_log_throttle(event, 1); 5501 } 5502 event->pmu->stop(event, PERF_EF_UPDATE); 5503 } 5504 5505 local64_set(&event->hw.period_left, 0); 5506 5507 if (active) { 5508 event->pmu->start(event, PERF_EF_RELOAD); 5509 perf_pmu_enable(ctx->pmu); 5510 } 5511 } 5512 5513 static int perf_event_check_period(struct perf_event *event, u64 value) 5514 { 5515 return event->pmu->check_period(event, value); 5516 } 5517 5518 static int _perf_event_period(struct perf_event *event, u64 value) 5519 { 5520 if (!is_sampling_event(event)) 5521 return -EINVAL; 5522 5523 if (!value) 5524 return -EINVAL; 5525 5526 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5527 return -EINVAL; 5528 5529 if (perf_event_check_period(event, value)) 5530 return -EINVAL; 5531 5532 if (!event->attr.freq && (value & (1ULL << 63))) 5533 return -EINVAL; 5534 5535 event_function_call(event, __perf_event_period, &value); 5536 5537 return 0; 5538 } 5539 5540 int perf_event_period(struct perf_event *event, u64 value) 5541 { 5542 struct perf_event_context *ctx; 5543 int ret; 5544 5545 ctx = perf_event_ctx_lock(event); 5546 ret = _perf_event_period(event, value); 5547 perf_event_ctx_unlock(event, ctx); 5548 5549 return ret; 5550 } 5551 EXPORT_SYMBOL_GPL(perf_event_period); 5552 5553 static const struct file_operations perf_fops; 5554 5555 static inline int perf_fget_light(int fd, struct fd *p) 5556 { 5557 struct fd f = fdget(fd); 5558 if (!f.file) 5559 return -EBADF; 5560 5561 if (f.file->f_op != &perf_fops) { 5562 fdput(f); 5563 return -EBADF; 5564 } 5565 *p = f; 5566 return 0; 5567 } 5568 5569 static int perf_event_set_output(struct perf_event *event, 5570 struct perf_event *output_event); 5571 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5572 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5573 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5574 struct perf_event_attr *attr); 5575 5576 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5577 { 5578 void (*func)(struct perf_event *); 5579 u32 flags = arg; 5580 5581 switch (cmd) { 5582 case PERF_EVENT_IOC_ENABLE: 5583 func = _perf_event_enable; 5584 break; 5585 case PERF_EVENT_IOC_DISABLE: 5586 func = _perf_event_disable; 5587 break; 5588 case PERF_EVENT_IOC_RESET: 5589 func = _perf_event_reset; 5590 break; 5591 5592 case PERF_EVENT_IOC_REFRESH: 5593 return _perf_event_refresh(event, arg); 5594 5595 case PERF_EVENT_IOC_PERIOD: 5596 { 5597 u64 value; 5598 5599 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5600 return -EFAULT; 5601 5602 return _perf_event_period(event, value); 5603 } 5604 case PERF_EVENT_IOC_ID: 5605 { 5606 u64 id = primary_event_id(event); 5607 5608 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5609 return -EFAULT; 5610 return 0; 5611 } 5612 5613 case PERF_EVENT_IOC_SET_OUTPUT: 5614 { 5615 int ret; 5616 if (arg != -1) { 5617 struct perf_event *output_event; 5618 struct fd output; 5619 ret = perf_fget_light(arg, &output); 5620 if (ret) 5621 return ret; 5622 output_event = output.file->private_data; 5623 ret = perf_event_set_output(event, output_event); 5624 fdput(output); 5625 } else { 5626 ret = perf_event_set_output(event, NULL); 5627 } 5628 return ret; 5629 } 5630 5631 case PERF_EVENT_IOC_SET_FILTER: 5632 return perf_event_set_filter(event, (void __user *)arg); 5633 5634 case PERF_EVENT_IOC_SET_BPF: 5635 return perf_event_set_bpf_prog(event, arg); 5636 5637 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5638 struct perf_buffer *rb; 5639 5640 rcu_read_lock(); 5641 rb = rcu_dereference(event->rb); 5642 if (!rb || !rb->nr_pages) { 5643 rcu_read_unlock(); 5644 return -EINVAL; 5645 } 5646 rb_toggle_paused(rb, !!arg); 5647 rcu_read_unlock(); 5648 return 0; 5649 } 5650 5651 case PERF_EVENT_IOC_QUERY_BPF: 5652 return perf_event_query_prog_array(event, (void __user *)arg); 5653 5654 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5655 struct perf_event_attr new_attr; 5656 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5657 &new_attr); 5658 5659 if (err) 5660 return err; 5661 5662 return perf_event_modify_attr(event, &new_attr); 5663 } 5664 default: 5665 return -ENOTTY; 5666 } 5667 5668 if (flags & PERF_IOC_FLAG_GROUP) 5669 perf_event_for_each(event, func); 5670 else 5671 perf_event_for_each_child(event, func); 5672 5673 return 0; 5674 } 5675 5676 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5677 { 5678 struct perf_event *event = file->private_data; 5679 struct perf_event_context *ctx; 5680 long ret; 5681 5682 /* Treat ioctl like writes as it is likely a mutating operation. */ 5683 ret = security_perf_event_write(event); 5684 if (ret) 5685 return ret; 5686 5687 ctx = perf_event_ctx_lock(event); 5688 ret = _perf_ioctl(event, cmd, arg); 5689 perf_event_ctx_unlock(event, ctx); 5690 5691 return ret; 5692 } 5693 5694 #ifdef CONFIG_COMPAT 5695 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5696 unsigned long arg) 5697 { 5698 switch (_IOC_NR(cmd)) { 5699 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5700 case _IOC_NR(PERF_EVENT_IOC_ID): 5701 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5702 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5703 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5704 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5705 cmd &= ~IOCSIZE_MASK; 5706 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5707 } 5708 break; 5709 } 5710 return perf_ioctl(file, cmd, arg); 5711 } 5712 #else 5713 # define perf_compat_ioctl NULL 5714 #endif 5715 5716 int perf_event_task_enable(void) 5717 { 5718 struct perf_event_context *ctx; 5719 struct perf_event *event; 5720 5721 mutex_lock(¤t->perf_event_mutex); 5722 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5723 ctx = perf_event_ctx_lock(event); 5724 perf_event_for_each_child(event, _perf_event_enable); 5725 perf_event_ctx_unlock(event, ctx); 5726 } 5727 mutex_unlock(¤t->perf_event_mutex); 5728 5729 return 0; 5730 } 5731 5732 int perf_event_task_disable(void) 5733 { 5734 struct perf_event_context *ctx; 5735 struct perf_event *event; 5736 5737 mutex_lock(¤t->perf_event_mutex); 5738 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5739 ctx = perf_event_ctx_lock(event); 5740 perf_event_for_each_child(event, _perf_event_disable); 5741 perf_event_ctx_unlock(event, ctx); 5742 } 5743 mutex_unlock(¤t->perf_event_mutex); 5744 5745 return 0; 5746 } 5747 5748 static int perf_event_index(struct perf_event *event) 5749 { 5750 if (event->hw.state & PERF_HES_STOPPED) 5751 return 0; 5752 5753 if (event->state != PERF_EVENT_STATE_ACTIVE) 5754 return 0; 5755 5756 return event->pmu->event_idx(event); 5757 } 5758 5759 static void calc_timer_values(struct perf_event *event, 5760 u64 *now, 5761 u64 *enabled, 5762 u64 *running) 5763 { 5764 u64 ctx_time; 5765 5766 *now = perf_clock(); 5767 ctx_time = event->shadow_ctx_time + *now; 5768 __perf_update_times(event, ctx_time, enabled, running); 5769 } 5770 5771 static void perf_event_init_userpage(struct perf_event *event) 5772 { 5773 struct perf_event_mmap_page *userpg; 5774 struct perf_buffer *rb; 5775 5776 rcu_read_lock(); 5777 rb = rcu_dereference(event->rb); 5778 if (!rb) 5779 goto unlock; 5780 5781 userpg = rb->user_page; 5782 5783 /* Allow new userspace to detect that bit 0 is deprecated */ 5784 userpg->cap_bit0_is_deprecated = 1; 5785 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5786 userpg->data_offset = PAGE_SIZE; 5787 userpg->data_size = perf_data_size(rb); 5788 5789 unlock: 5790 rcu_read_unlock(); 5791 } 5792 5793 void __weak arch_perf_update_userpage( 5794 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5795 { 5796 } 5797 5798 /* 5799 * Callers need to ensure there can be no nesting of this function, otherwise 5800 * the seqlock logic goes bad. We can not serialize this because the arch 5801 * code calls this from NMI context. 5802 */ 5803 void perf_event_update_userpage(struct perf_event *event) 5804 { 5805 struct perf_event_mmap_page *userpg; 5806 struct perf_buffer *rb; 5807 u64 enabled, running, now; 5808 5809 rcu_read_lock(); 5810 rb = rcu_dereference(event->rb); 5811 if (!rb) 5812 goto unlock; 5813 5814 /* 5815 * compute total_time_enabled, total_time_running 5816 * based on snapshot values taken when the event 5817 * was last scheduled in. 5818 * 5819 * we cannot simply called update_context_time() 5820 * because of locking issue as we can be called in 5821 * NMI context 5822 */ 5823 calc_timer_values(event, &now, &enabled, &running); 5824 5825 userpg = rb->user_page; 5826 /* 5827 * Disable preemption to guarantee consistent time stamps are stored to 5828 * the user page. 5829 */ 5830 preempt_disable(); 5831 ++userpg->lock; 5832 barrier(); 5833 userpg->index = perf_event_index(event); 5834 userpg->offset = perf_event_count(event); 5835 if (userpg->index) 5836 userpg->offset -= local64_read(&event->hw.prev_count); 5837 5838 userpg->time_enabled = enabled + 5839 atomic64_read(&event->child_total_time_enabled); 5840 5841 userpg->time_running = running + 5842 atomic64_read(&event->child_total_time_running); 5843 5844 arch_perf_update_userpage(event, userpg, now); 5845 5846 barrier(); 5847 ++userpg->lock; 5848 preempt_enable(); 5849 unlock: 5850 rcu_read_unlock(); 5851 } 5852 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5853 5854 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5855 { 5856 struct perf_event *event = vmf->vma->vm_file->private_data; 5857 struct perf_buffer *rb; 5858 vm_fault_t ret = VM_FAULT_SIGBUS; 5859 5860 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5861 if (vmf->pgoff == 0) 5862 ret = 0; 5863 return ret; 5864 } 5865 5866 rcu_read_lock(); 5867 rb = rcu_dereference(event->rb); 5868 if (!rb) 5869 goto unlock; 5870 5871 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5872 goto unlock; 5873 5874 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5875 if (!vmf->page) 5876 goto unlock; 5877 5878 get_page(vmf->page); 5879 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5880 vmf->page->index = vmf->pgoff; 5881 5882 ret = 0; 5883 unlock: 5884 rcu_read_unlock(); 5885 5886 return ret; 5887 } 5888 5889 static void ring_buffer_attach(struct perf_event *event, 5890 struct perf_buffer *rb) 5891 { 5892 struct perf_buffer *old_rb = NULL; 5893 unsigned long flags; 5894 5895 if (event->rb) { 5896 /* 5897 * Should be impossible, we set this when removing 5898 * event->rb_entry and wait/clear when adding event->rb_entry. 5899 */ 5900 WARN_ON_ONCE(event->rcu_pending); 5901 5902 old_rb = event->rb; 5903 spin_lock_irqsave(&old_rb->event_lock, flags); 5904 list_del_rcu(&event->rb_entry); 5905 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5906 5907 event->rcu_batches = get_state_synchronize_rcu(); 5908 event->rcu_pending = 1; 5909 } 5910 5911 if (rb) { 5912 if (event->rcu_pending) { 5913 cond_synchronize_rcu(event->rcu_batches); 5914 event->rcu_pending = 0; 5915 } 5916 5917 spin_lock_irqsave(&rb->event_lock, flags); 5918 list_add_rcu(&event->rb_entry, &rb->event_list); 5919 spin_unlock_irqrestore(&rb->event_lock, flags); 5920 } 5921 5922 /* 5923 * Avoid racing with perf_mmap_close(AUX): stop the event 5924 * before swizzling the event::rb pointer; if it's getting 5925 * unmapped, its aux_mmap_count will be 0 and it won't 5926 * restart. See the comment in __perf_pmu_output_stop(). 5927 * 5928 * Data will inevitably be lost when set_output is done in 5929 * mid-air, but then again, whoever does it like this is 5930 * not in for the data anyway. 5931 */ 5932 if (has_aux(event)) 5933 perf_event_stop(event, 0); 5934 5935 rcu_assign_pointer(event->rb, rb); 5936 5937 if (old_rb) { 5938 ring_buffer_put(old_rb); 5939 /* 5940 * Since we detached before setting the new rb, so that we 5941 * could attach the new rb, we could have missed a wakeup. 5942 * Provide it now. 5943 */ 5944 wake_up_all(&event->waitq); 5945 } 5946 } 5947 5948 static void ring_buffer_wakeup(struct perf_event *event) 5949 { 5950 struct perf_buffer *rb; 5951 5952 rcu_read_lock(); 5953 rb = rcu_dereference(event->rb); 5954 if (rb) { 5955 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5956 wake_up_all(&event->waitq); 5957 } 5958 rcu_read_unlock(); 5959 } 5960 5961 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5962 { 5963 struct perf_buffer *rb; 5964 5965 rcu_read_lock(); 5966 rb = rcu_dereference(event->rb); 5967 if (rb) { 5968 if (!refcount_inc_not_zero(&rb->refcount)) 5969 rb = NULL; 5970 } 5971 rcu_read_unlock(); 5972 5973 return rb; 5974 } 5975 5976 void ring_buffer_put(struct perf_buffer *rb) 5977 { 5978 if (!refcount_dec_and_test(&rb->refcount)) 5979 return; 5980 5981 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5982 5983 call_rcu(&rb->rcu_head, rb_free_rcu); 5984 } 5985 5986 static void perf_mmap_open(struct vm_area_struct *vma) 5987 { 5988 struct perf_event *event = vma->vm_file->private_data; 5989 5990 atomic_inc(&event->mmap_count); 5991 atomic_inc(&event->rb->mmap_count); 5992 5993 if (vma->vm_pgoff) 5994 atomic_inc(&event->rb->aux_mmap_count); 5995 5996 if (event->pmu->event_mapped) 5997 event->pmu->event_mapped(event, vma->vm_mm); 5998 } 5999 6000 static void perf_pmu_output_stop(struct perf_event *event); 6001 6002 /* 6003 * A buffer can be mmap()ed multiple times; either directly through the same 6004 * event, or through other events by use of perf_event_set_output(). 6005 * 6006 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6007 * the buffer here, where we still have a VM context. This means we need 6008 * to detach all events redirecting to us. 6009 */ 6010 static void perf_mmap_close(struct vm_area_struct *vma) 6011 { 6012 struct perf_event *event = vma->vm_file->private_data; 6013 struct perf_buffer *rb = ring_buffer_get(event); 6014 struct user_struct *mmap_user = rb->mmap_user; 6015 int mmap_locked = rb->mmap_locked; 6016 unsigned long size = perf_data_size(rb); 6017 bool detach_rest = false; 6018 6019 if (event->pmu->event_unmapped) 6020 event->pmu->event_unmapped(event, vma->vm_mm); 6021 6022 /* 6023 * rb->aux_mmap_count will always drop before rb->mmap_count and 6024 * event->mmap_count, so it is ok to use event->mmap_mutex to 6025 * serialize with perf_mmap here. 6026 */ 6027 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6028 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6029 /* 6030 * Stop all AUX events that are writing to this buffer, 6031 * so that we can free its AUX pages and corresponding PMU 6032 * data. Note that after rb::aux_mmap_count dropped to zero, 6033 * they won't start any more (see perf_aux_output_begin()). 6034 */ 6035 perf_pmu_output_stop(event); 6036 6037 /* now it's safe to free the pages */ 6038 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6039 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6040 6041 /* this has to be the last one */ 6042 rb_free_aux(rb); 6043 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6044 6045 mutex_unlock(&event->mmap_mutex); 6046 } 6047 6048 if (atomic_dec_and_test(&rb->mmap_count)) 6049 detach_rest = true; 6050 6051 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6052 goto out_put; 6053 6054 ring_buffer_attach(event, NULL); 6055 mutex_unlock(&event->mmap_mutex); 6056 6057 /* If there's still other mmap()s of this buffer, we're done. */ 6058 if (!detach_rest) 6059 goto out_put; 6060 6061 /* 6062 * No other mmap()s, detach from all other events that might redirect 6063 * into the now unreachable buffer. Somewhat complicated by the 6064 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6065 */ 6066 again: 6067 rcu_read_lock(); 6068 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6069 if (!atomic_long_inc_not_zero(&event->refcount)) { 6070 /* 6071 * This event is en-route to free_event() which will 6072 * detach it and remove it from the list. 6073 */ 6074 continue; 6075 } 6076 rcu_read_unlock(); 6077 6078 mutex_lock(&event->mmap_mutex); 6079 /* 6080 * Check we didn't race with perf_event_set_output() which can 6081 * swizzle the rb from under us while we were waiting to 6082 * acquire mmap_mutex. 6083 * 6084 * If we find a different rb; ignore this event, a next 6085 * iteration will no longer find it on the list. We have to 6086 * still restart the iteration to make sure we're not now 6087 * iterating the wrong list. 6088 */ 6089 if (event->rb == rb) 6090 ring_buffer_attach(event, NULL); 6091 6092 mutex_unlock(&event->mmap_mutex); 6093 put_event(event); 6094 6095 /* 6096 * Restart the iteration; either we're on the wrong list or 6097 * destroyed its integrity by doing a deletion. 6098 */ 6099 goto again; 6100 } 6101 rcu_read_unlock(); 6102 6103 /* 6104 * It could be there's still a few 0-ref events on the list; they'll 6105 * get cleaned up by free_event() -- they'll also still have their 6106 * ref on the rb and will free it whenever they are done with it. 6107 * 6108 * Aside from that, this buffer is 'fully' detached and unmapped, 6109 * undo the VM accounting. 6110 */ 6111 6112 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6113 &mmap_user->locked_vm); 6114 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6115 free_uid(mmap_user); 6116 6117 out_put: 6118 ring_buffer_put(rb); /* could be last */ 6119 } 6120 6121 static const struct vm_operations_struct perf_mmap_vmops = { 6122 .open = perf_mmap_open, 6123 .close = perf_mmap_close, /* non mergeable */ 6124 .fault = perf_mmap_fault, 6125 .page_mkwrite = perf_mmap_fault, 6126 }; 6127 6128 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6129 { 6130 struct perf_event *event = file->private_data; 6131 unsigned long user_locked, user_lock_limit; 6132 struct user_struct *user = current_user(); 6133 struct perf_buffer *rb = NULL; 6134 unsigned long locked, lock_limit; 6135 unsigned long vma_size; 6136 unsigned long nr_pages; 6137 long user_extra = 0, extra = 0; 6138 int ret = 0, flags = 0; 6139 6140 /* 6141 * Don't allow mmap() of inherited per-task counters. This would 6142 * create a performance issue due to all children writing to the 6143 * same rb. 6144 */ 6145 if (event->cpu == -1 && event->attr.inherit) 6146 return -EINVAL; 6147 6148 if (!(vma->vm_flags & VM_SHARED)) 6149 return -EINVAL; 6150 6151 ret = security_perf_event_read(event); 6152 if (ret) 6153 return ret; 6154 6155 vma_size = vma->vm_end - vma->vm_start; 6156 6157 if (vma->vm_pgoff == 0) { 6158 nr_pages = (vma_size / PAGE_SIZE) - 1; 6159 } else { 6160 /* 6161 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6162 * mapped, all subsequent mappings should have the same size 6163 * and offset. Must be above the normal perf buffer. 6164 */ 6165 u64 aux_offset, aux_size; 6166 6167 if (!event->rb) 6168 return -EINVAL; 6169 6170 nr_pages = vma_size / PAGE_SIZE; 6171 6172 mutex_lock(&event->mmap_mutex); 6173 ret = -EINVAL; 6174 6175 rb = event->rb; 6176 if (!rb) 6177 goto aux_unlock; 6178 6179 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6180 aux_size = READ_ONCE(rb->user_page->aux_size); 6181 6182 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6183 goto aux_unlock; 6184 6185 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6186 goto aux_unlock; 6187 6188 /* already mapped with a different offset */ 6189 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6190 goto aux_unlock; 6191 6192 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6193 goto aux_unlock; 6194 6195 /* already mapped with a different size */ 6196 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6197 goto aux_unlock; 6198 6199 if (!is_power_of_2(nr_pages)) 6200 goto aux_unlock; 6201 6202 if (!atomic_inc_not_zero(&rb->mmap_count)) 6203 goto aux_unlock; 6204 6205 if (rb_has_aux(rb)) { 6206 atomic_inc(&rb->aux_mmap_count); 6207 ret = 0; 6208 goto unlock; 6209 } 6210 6211 atomic_set(&rb->aux_mmap_count, 1); 6212 user_extra = nr_pages; 6213 6214 goto accounting; 6215 } 6216 6217 /* 6218 * If we have rb pages ensure they're a power-of-two number, so we 6219 * can do bitmasks instead of modulo. 6220 */ 6221 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6222 return -EINVAL; 6223 6224 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6225 return -EINVAL; 6226 6227 WARN_ON_ONCE(event->ctx->parent_ctx); 6228 again: 6229 mutex_lock(&event->mmap_mutex); 6230 if (event->rb) { 6231 if (event->rb->nr_pages != nr_pages) { 6232 ret = -EINVAL; 6233 goto unlock; 6234 } 6235 6236 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6237 /* 6238 * Raced against perf_mmap_close() through 6239 * perf_event_set_output(). Try again, hope for better 6240 * luck. 6241 */ 6242 mutex_unlock(&event->mmap_mutex); 6243 goto again; 6244 } 6245 6246 goto unlock; 6247 } 6248 6249 user_extra = nr_pages + 1; 6250 6251 accounting: 6252 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6253 6254 /* 6255 * Increase the limit linearly with more CPUs: 6256 */ 6257 user_lock_limit *= num_online_cpus(); 6258 6259 user_locked = atomic_long_read(&user->locked_vm); 6260 6261 /* 6262 * sysctl_perf_event_mlock may have changed, so that 6263 * user->locked_vm > user_lock_limit 6264 */ 6265 if (user_locked > user_lock_limit) 6266 user_locked = user_lock_limit; 6267 user_locked += user_extra; 6268 6269 if (user_locked > user_lock_limit) { 6270 /* 6271 * charge locked_vm until it hits user_lock_limit; 6272 * charge the rest from pinned_vm 6273 */ 6274 extra = user_locked - user_lock_limit; 6275 user_extra -= extra; 6276 } 6277 6278 lock_limit = rlimit(RLIMIT_MEMLOCK); 6279 lock_limit >>= PAGE_SHIFT; 6280 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6281 6282 if ((locked > lock_limit) && perf_is_paranoid() && 6283 !capable(CAP_IPC_LOCK)) { 6284 ret = -EPERM; 6285 goto unlock; 6286 } 6287 6288 WARN_ON(!rb && event->rb); 6289 6290 if (vma->vm_flags & VM_WRITE) 6291 flags |= RING_BUFFER_WRITABLE; 6292 6293 if (!rb) { 6294 rb = rb_alloc(nr_pages, 6295 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6296 event->cpu, flags); 6297 6298 if (!rb) { 6299 ret = -ENOMEM; 6300 goto unlock; 6301 } 6302 6303 atomic_set(&rb->mmap_count, 1); 6304 rb->mmap_user = get_current_user(); 6305 rb->mmap_locked = extra; 6306 6307 ring_buffer_attach(event, rb); 6308 6309 perf_event_init_userpage(event); 6310 perf_event_update_userpage(event); 6311 } else { 6312 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6313 event->attr.aux_watermark, flags); 6314 if (!ret) 6315 rb->aux_mmap_locked = extra; 6316 } 6317 6318 unlock: 6319 if (!ret) { 6320 atomic_long_add(user_extra, &user->locked_vm); 6321 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6322 6323 atomic_inc(&event->mmap_count); 6324 } else if (rb) { 6325 atomic_dec(&rb->mmap_count); 6326 } 6327 aux_unlock: 6328 mutex_unlock(&event->mmap_mutex); 6329 6330 /* 6331 * Since pinned accounting is per vm we cannot allow fork() to copy our 6332 * vma. 6333 */ 6334 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6335 vma->vm_ops = &perf_mmap_vmops; 6336 6337 if (event->pmu->event_mapped) 6338 event->pmu->event_mapped(event, vma->vm_mm); 6339 6340 return ret; 6341 } 6342 6343 static int perf_fasync(int fd, struct file *filp, int on) 6344 { 6345 struct inode *inode = file_inode(filp); 6346 struct perf_event *event = filp->private_data; 6347 int retval; 6348 6349 inode_lock(inode); 6350 retval = fasync_helper(fd, filp, on, &event->fasync); 6351 inode_unlock(inode); 6352 6353 if (retval < 0) 6354 return retval; 6355 6356 return 0; 6357 } 6358 6359 static const struct file_operations perf_fops = { 6360 .llseek = no_llseek, 6361 .release = perf_release, 6362 .read = perf_read, 6363 .poll = perf_poll, 6364 .unlocked_ioctl = perf_ioctl, 6365 .compat_ioctl = perf_compat_ioctl, 6366 .mmap = perf_mmap, 6367 .fasync = perf_fasync, 6368 }; 6369 6370 /* 6371 * Perf event wakeup 6372 * 6373 * If there's data, ensure we set the poll() state and publish everything 6374 * to user-space before waking everybody up. 6375 */ 6376 6377 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6378 { 6379 /* only the parent has fasync state */ 6380 if (event->parent) 6381 event = event->parent; 6382 return &event->fasync; 6383 } 6384 6385 void perf_event_wakeup(struct perf_event *event) 6386 { 6387 ring_buffer_wakeup(event); 6388 6389 if (event->pending_kill) { 6390 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6391 event->pending_kill = 0; 6392 } 6393 } 6394 6395 static void perf_sigtrap(struct perf_event *event) 6396 { 6397 struct kernel_siginfo info; 6398 6399 /* 6400 * We'd expect this to only occur if the irq_work is delayed and either 6401 * ctx->task or current has changed in the meantime. This can be the 6402 * case on architectures that do not implement arch_irq_work_raise(). 6403 */ 6404 if (WARN_ON_ONCE(event->ctx->task != current)) 6405 return; 6406 6407 /* 6408 * perf_pending_event() can race with the task exiting. 6409 */ 6410 if (current->flags & PF_EXITING) 6411 return; 6412 6413 clear_siginfo(&info); 6414 info.si_signo = SIGTRAP; 6415 info.si_code = TRAP_PERF; 6416 info.si_errno = event->attr.type; 6417 info.si_perf = event->attr.sig_data; 6418 info.si_addr = (void __user *)event->pending_addr; 6419 force_sig_info(&info); 6420 } 6421 6422 static void perf_pending_event_disable(struct perf_event *event) 6423 { 6424 int cpu = READ_ONCE(event->pending_disable); 6425 6426 if (cpu < 0) 6427 return; 6428 6429 if (cpu == smp_processor_id()) { 6430 WRITE_ONCE(event->pending_disable, -1); 6431 6432 if (event->attr.sigtrap) { 6433 perf_sigtrap(event); 6434 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6435 return; 6436 } 6437 6438 perf_event_disable_local(event); 6439 return; 6440 } 6441 6442 /* 6443 * CPU-A CPU-B 6444 * 6445 * perf_event_disable_inatomic() 6446 * @pending_disable = CPU-A; 6447 * irq_work_queue(); 6448 * 6449 * sched-out 6450 * @pending_disable = -1; 6451 * 6452 * sched-in 6453 * perf_event_disable_inatomic() 6454 * @pending_disable = CPU-B; 6455 * irq_work_queue(); // FAILS 6456 * 6457 * irq_work_run() 6458 * perf_pending_event() 6459 * 6460 * But the event runs on CPU-B and wants disabling there. 6461 */ 6462 irq_work_queue_on(&event->pending, cpu); 6463 } 6464 6465 static void perf_pending_event(struct irq_work *entry) 6466 { 6467 struct perf_event *event = container_of(entry, struct perf_event, pending); 6468 int rctx; 6469 6470 rctx = perf_swevent_get_recursion_context(); 6471 /* 6472 * If we 'fail' here, that's OK, it means recursion is already disabled 6473 * and we won't recurse 'further'. 6474 */ 6475 6476 perf_pending_event_disable(event); 6477 6478 if (event->pending_wakeup) { 6479 event->pending_wakeup = 0; 6480 perf_event_wakeup(event); 6481 } 6482 6483 if (rctx >= 0) 6484 perf_swevent_put_recursion_context(rctx); 6485 } 6486 6487 /* 6488 * We assume there is only KVM supporting the callbacks. 6489 * Later on, we might change it to a list if there is 6490 * another virtualization implementation supporting the callbacks. 6491 */ 6492 struct perf_guest_info_callbacks *perf_guest_cbs; 6493 6494 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6495 { 6496 perf_guest_cbs = cbs; 6497 return 0; 6498 } 6499 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6500 6501 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6502 { 6503 perf_guest_cbs = NULL; 6504 return 0; 6505 } 6506 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6507 6508 static void 6509 perf_output_sample_regs(struct perf_output_handle *handle, 6510 struct pt_regs *regs, u64 mask) 6511 { 6512 int bit; 6513 DECLARE_BITMAP(_mask, 64); 6514 6515 bitmap_from_u64(_mask, mask); 6516 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6517 u64 val; 6518 6519 val = perf_reg_value(regs, bit); 6520 perf_output_put(handle, val); 6521 } 6522 } 6523 6524 static void perf_sample_regs_user(struct perf_regs *regs_user, 6525 struct pt_regs *regs) 6526 { 6527 if (user_mode(regs)) { 6528 regs_user->abi = perf_reg_abi(current); 6529 regs_user->regs = regs; 6530 } else if (!(current->flags & PF_KTHREAD)) { 6531 perf_get_regs_user(regs_user, regs); 6532 } else { 6533 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6534 regs_user->regs = NULL; 6535 } 6536 } 6537 6538 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6539 struct pt_regs *regs) 6540 { 6541 regs_intr->regs = regs; 6542 regs_intr->abi = perf_reg_abi(current); 6543 } 6544 6545 6546 /* 6547 * Get remaining task size from user stack pointer. 6548 * 6549 * It'd be better to take stack vma map and limit this more 6550 * precisely, but there's no way to get it safely under interrupt, 6551 * so using TASK_SIZE as limit. 6552 */ 6553 static u64 perf_ustack_task_size(struct pt_regs *regs) 6554 { 6555 unsigned long addr = perf_user_stack_pointer(regs); 6556 6557 if (!addr || addr >= TASK_SIZE) 6558 return 0; 6559 6560 return TASK_SIZE - addr; 6561 } 6562 6563 static u16 6564 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6565 struct pt_regs *regs) 6566 { 6567 u64 task_size; 6568 6569 /* No regs, no stack pointer, no dump. */ 6570 if (!regs) 6571 return 0; 6572 6573 /* 6574 * Check if we fit in with the requested stack size into the: 6575 * - TASK_SIZE 6576 * If we don't, we limit the size to the TASK_SIZE. 6577 * 6578 * - remaining sample size 6579 * If we don't, we customize the stack size to 6580 * fit in to the remaining sample size. 6581 */ 6582 6583 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6584 stack_size = min(stack_size, (u16) task_size); 6585 6586 /* Current header size plus static size and dynamic size. */ 6587 header_size += 2 * sizeof(u64); 6588 6589 /* Do we fit in with the current stack dump size? */ 6590 if ((u16) (header_size + stack_size) < header_size) { 6591 /* 6592 * If we overflow the maximum size for the sample, 6593 * we customize the stack dump size to fit in. 6594 */ 6595 stack_size = USHRT_MAX - header_size - sizeof(u64); 6596 stack_size = round_up(stack_size, sizeof(u64)); 6597 } 6598 6599 return stack_size; 6600 } 6601 6602 static void 6603 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6604 struct pt_regs *regs) 6605 { 6606 /* Case of a kernel thread, nothing to dump */ 6607 if (!regs) { 6608 u64 size = 0; 6609 perf_output_put(handle, size); 6610 } else { 6611 unsigned long sp; 6612 unsigned int rem; 6613 u64 dyn_size; 6614 mm_segment_t fs; 6615 6616 /* 6617 * We dump: 6618 * static size 6619 * - the size requested by user or the best one we can fit 6620 * in to the sample max size 6621 * data 6622 * - user stack dump data 6623 * dynamic size 6624 * - the actual dumped size 6625 */ 6626 6627 /* Static size. */ 6628 perf_output_put(handle, dump_size); 6629 6630 /* Data. */ 6631 sp = perf_user_stack_pointer(regs); 6632 fs = force_uaccess_begin(); 6633 rem = __output_copy_user(handle, (void *) sp, dump_size); 6634 force_uaccess_end(fs); 6635 dyn_size = dump_size - rem; 6636 6637 perf_output_skip(handle, rem); 6638 6639 /* Dynamic size. */ 6640 perf_output_put(handle, dyn_size); 6641 } 6642 } 6643 6644 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6645 struct perf_sample_data *data, 6646 size_t size) 6647 { 6648 struct perf_event *sampler = event->aux_event; 6649 struct perf_buffer *rb; 6650 6651 data->aux_size = 0; 6652 6653 if (!sampler) 6654 goto out; 6655 6656 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6657 goto out; 6658 6659 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6660 goto out; 6661 6662 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6663 if (!rb) 6664 goto out; 6665 6666 /* 6667 * If this is an NMI hit inside sampling code, don't take 6668 * the sample. See also perf_aux_sample_output(). 6669 */ 6670 if (READ_ONCE(rb->aux_in_sampling)) { 6671 data->aux_size = 0; 6672 } else { 6673 size = min_t(size_t, size, perf_aux_size(rb)); 6674 data->aux_size = ALIGN(size, sizeof(u64)); 6675 } 6676 ring_buffer_put(rb); 6677 6678 out: 6679 return data->aux_size; 6680 } 6681 6682 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6683 struct perf_event *event, 6684 struct perf_output_handle *handle, 6685 unsigned long size) 6686 { 6687 unsigned long flags; 6688 long ret; 6689 6690 /* 6691 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6692 * paths. If we start calling them in NMI context, they may race with 6693 * the IRQ ones, that is, for example, re-starting an event that's just 6694 * been stopped, which is why we're using a separate callback that 6695 * doesn't change the event state. 6696 * 6697 * IRQs need to be disabled to prevent IPIs from racing with us. 6698 */ 6699 local_irq_save(flags); 6700 /* 6701 * Guard against NMI hits inside the critical section; 6702 * see also perf_prepare_sample_aux(). 6703 */ 6704 WRITE_ONCE(rb->aux_in_sampling, 1); 6705 barrier(); 6706 6707 ret = event->pmu->snapshot_aux(event, handle, size); 6708 6709 barrier(); 6710 WRITE_ONCE(rb->aux_in_sampling, 0); 6711 local_irq_restore(flags); 6712 6713 return ret; 6714 } 6715 6716 static void perf_aux_sample_output(struct perf_event *event, 6717 struct perf_output_handle *handle, 6718 struct perf_sample_data *data) 6719 { 6720 struct perf_event *sampler = event->aux_event; 6721 struct perf_buffer *rb; 6722 unsigned long pad; 6723 long size; 6724 6725 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6726 return; 6727 6728 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6729 if (!rb) 6730 return; 6731 6732 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6733 6734 /* 6735 * An error here means that perf_output_copy() failed (returned a 6736 * non-zero surplus that it didn't copy), which in its current 6737 * enlightened implementation is not possible. If that changes, we'd 6738 * like to know. 6739 */ 6740 if (WARN_ON_ONCE(size < 0)) 6741 goto out_put; 6742 6743 /* 6744 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6745 * perf_prepare_sample_aux(), so should not be more than that. 6746 */ 6747 pad = data->aux_size - size; 6748 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6749 pad = 8; 6750 6751 if (pad) { 6752 u64 zero = 0; 6753 perf_output_copy(handle, &zero, pad); 6754 } 6755 6756 out_put: 6757 ring_buffer_put(rb); 6758 } 6759 6760 static void __perf_event_header__init_id(struct perf_event_header *header, 6761 struct perf_sample_data *data, 6762 struct perf_event *event) 6763 { 6764 u64 sample_type = event->attr.sample_type; 6765 6766 data->type = sample_type; 6767 header->size += event->id_header_size; 6768 6769 if (sample_type & PERF_SAMPLE_TID) { 6770 /* namespace issues */ 6771 data->tid_entry.pid = perf_event_pid(event, current); 6772 data->tid_entry.tid = perf_event_tid(event, current); 6773 } 6774 6775 if (sample_type & PERF_SAMPLE_TIME) 6776 data->time = perf_event_clock(event); 6777 6778 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6779 data->id = primary_event_id(event); 6780 6781 if (sample_type & PERF_SAMPLE_STREAM_ID) 6782 data->stream_id = event->id; 6783 6784 if (sample_type & PERF_SAMPLE_CPU) { 6785 data->cpu_entry.cpu = raw_smp_processor_id(); 6786 data->cpu_entry.reserved = 0; 6787 } 6788 } 6789 6790 void perf_event_header__init_id(struct perf_event_header *header, 6791 struct perf_sample_data *data, 6792 struct perf_event *event) 6793 { 6794 if (event->attr.sample_id_all) 6795 __perf_event_header__init_id(header, data, event); 6796 } 6797 6798 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6799 struct perf_sample_data *data) 6800 { 6801 u64 sample_type = data->type; 6802 6803 if (sample_type & PERF_SAMPLE_TID) 6804 perf_output_put(handle, data->tid_entry); 6805 6806 if (sample_type & PERF_SAMPLE_TIME) 6807 perf_output_put(handle, data->time); 6808 6809 if (sample_type & PERF_SAMPLE_ID) 6810 perf_output_put(handle, data->id); 6811 6812 if (sample_type & PERF_SAMPLE_STREAM_ID) 6813 perf_output_put(handle, data->stream_id); 6814 6815 if (sample_type & PERF_SAMPLE_CPU) 6816 perf_output_put(handle, data->cpu_entry); 6817 6818 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6819 perf_output_put(handle, data->id); 6820 } 6821 6822 void perf_event__output_id_sample(struct perf_event *event, 6823 struct perf_output_handle *handle, 6824 struct perf_sample_data *sample) 6825 { 6826 if (event->attr.sample_id_all) 6827 __perf_event__output_id_sample(handle, sample); 6828 } 6829 6830 static void perf_output_read_one(struct perf_output_handle *handle, 6831 struct perf_event *event, 6832 u64 enabled, u64 running) 6833 { 6834 u64 read_format = event->attr.read_format; 6835 u64 values[4]; 6836 int n = 0; 6837 6838 values[n++] = perf_event_count(event); 6839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6840 values[n++] = enabled + 6841 atomic64_read(&event->child_total_time_enabled); 6842 } 6843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6844 values[n++] = running + 6845 atomic64_read(&event->child_total_time_running); 6846 } 6847 if (read_format & PERF_FORMAT_ID) 6848 values[n++] = primary_event_id(event); 6849 6850 __output_copy(handle, values, n * sizeof(u64)); 6851 } 6852 6853 static void perf_output_read_group(struct perf_output_handle *handle, 6854 struct perf_event *event, 6855 u64 enabled, u64 running) 6856 { 6857 struct perf_event *leader = event->group_leader, *sub; 6858 u64 read_format = event->attr.read_format; 6859 u64 values[5]; 6860 int n = 0; 6861 6862 values[n++] = 1 + leader->nr_siblings; 6863 6864 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6865 values[n++] = enabled; 6866 6867 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6868 values[n++] = running; 6869 6870 if ((leader != event) && 6871 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6872 leader->pmu->read(leader); 6873 6874 values[n++] = perf_event_count(leader); 6875 if (read_format & PERF_FORMAT_ID) 6876 values[n++] = primary_event_id(leader); 6877 6878 __output_copy(handle, values, n * sizeof(u64)); 6879 6880 for_each_sibling_event(sub, leader) { 6881 n = 0; 6882 6883 if ((sub != event) && 6884 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6885 sub->pmu->read(sub); 6886 6887 values[n++] = perf_event_count(sub); 6888 if (read_format & PERF_FORMAT_ID) 6889 values[n++] = primary_event_id(sub); 6890 6891 __output_copy(handle, values, n * sizeof(u64)); 6892 } 6893 } 6894 6895 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6896 PERF_FORMAT_TOTAL_TIME_RUNNING) 6897 6898 /* 6899 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6900 * 6901 * The problem is that its both hard and excessively expensive to iterate the 6902 * child list, not to mention that its impossible to IPI the children running 6903 * on another CPU, from interrupt/NMI context. 6904 */ 6905 static void perf_output_read(struct perf_output_handle *handle, 6906 struct perf_event *event) 6907 { 6908 u64 enabled = 0, running = 0, now; 6909 u64 read_format = event->attr.read_format; 6910 6911 /* 6912 * compute total_time_enabled, total_time_running 6913 * based on snapshot values taken when the event 6914 * was last scheduled in. 6915 * 6916 * we cannot simply called update_context_time() 6917 * because of locking issue as we are called in 6918 * NMI context 6919 */ 6920 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6921 calc_timer_values(event, &now, &enabled, &running); 6922 6923 if (event->attr.read_format & PERF_FORMAT_GROUP) 6924 perf_output_read_group(handle, event, enabled, running); 6925 else 6926 perf_output_read_one(handle, event, enabled, running); 6927 } 6928 6929 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6930 { 6931 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6932 } 6933 6934 void perf_output_sample(struct perf_output_handle *handle, 6935 struct perf_event_header *header, 6936 struct perf_sample_data *data, 6937 struct perf_event *event) 6938 { 6939 u64 sample_type = data->type; 6940 6941 perf_output_put(handle, *header); 6942 6943 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6944 perf_output_put(handle, data->id); 6945 6946 if (sample_type & PERF_SAMPLE_IP) 6947 perf_output_put(handle, data->ip); 6948 6949 if (sample_type & PERF_SAMPLE_TID) 6950 perf_output_put(handle, data->tid_entry); 6951 6952 if (sample_type & PERF_SAMPLE_TIME) 6953 perf_output_put(handle, data->time); 6954 6955 if (sample_type & PERF_SAMPLE_ADDR) 6956 perf_output_put(handle, data->addr); 6957 6958 if (sample_type & PERF_SAMPLE_ID) 6959 perf_output_put(handle, data->id); 6960 6961 if (sample_type & PERF_SAMPLE_STREAM_ID) 6962 perf_output_put(handle, data->stream_id); 6963 6964 if (sample_type & PERF_SAMPLE_CPU) 6965 perf_output_put(handle, data->cpu_entry); 6966 6967 if (sample_type & PERF_SAMPLE_PERIOD) 6968 perf_output_put(handle, data->period); 6969 6970 if (sample_type & PERF_SAMPLE_READ) 6971 perf_output_read(handle, event); 6972 6973 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6974 int size = 1; 6975 6976 size += data->callchain->nr; 6977 size *= sizeof(u64); 6978 __output_copy(handle, data->callchain, size); 6979 } 6980 6981 if (sample_type & PERF_SAMPLE_RAW) { 6982 struct perf_raw_record *raw = data->raw; 6983 6984 if (raw) { 6985 struct perf_raw_frag *frag = &raw->frag; 6986 6987 perf_output_put(handle, raw->size); 6988 do { 6989 if (frag->copy) { 6990 __output_custom(handle, frag->copy, 6991 frag->data, frag->size); 6992 } else { 6993 __output_copy(handle, frag->data, 6994 frag->size); 6995 } 6996 if (perf_raw_frag_last(frag)) 6997 break; 6998 frag = frag->next; 6999 } while (1); 7000 if (frag->pad) 7001 __output_skip(handle, NULL, frag->pad); 7002 } else { 7003 struct { 7004 u32 size; 7005 u32 data; 7006 } raw = { 7007 .size = sizeof(u32), 7008 .data = 0, 7009 }; 7010 perf_output_put(handle, raw); 7011 } 7012 } 7013 7014 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7015 if (data->br_stack) { 7016 size_t size; 7017 7018 size = data->br_stack->nr 7019 * sizeof(struct perf_branch_entry); 7020 7021 perf_output_put(handle, data->br_stack->nr); 7022 if (perf_sample_save_hw_index(event)) 7023 perf_output_put(handle, data->br_stack->hw_idx); 7024 perf_output_copy(handle, data->br_stack->entries, size); 7025 } else { 7026 /* 7027 * we always store at least the value of nr 7028 */ 7029 u64 nr = 0; 7030 perf_output_put(handle, nr); 7031 } 7032 } 7033 7034 if (sample_type & PERF_SAMPLE_REGS_USER) { 7035 u64 abi = data->regs_user.abi; 7036 7037 /* 7038 * If there are no regs to dump, notice it through 7039 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7040 */ 7041 perf_output_put(handle, abi); 7042 7043 if (abi) { 7044 u64 mask = event->attr.sample_regs_user; 7045 perf_output_sample_regs(handle, 7046 data->regs_user.regs, 7047 mask); 7048 } 7049 } 7050 7051 if (sample_type & PERF_SAMPLE_STACK_USER) { 7052 perf_output_sample_ustack(handle, 7053 data->stack_user_size, 7054 data->regs_user.regs); 7055 } 7056 7057 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7058 perf_output_put(handle, data->weight.full); 7059 7060 if (sample_type & PERF_SAMPLE_DATA_SRC) 7061 perf_output_put(handle, data->data_src.val); 7062 7063 if (sample_type & PERF_SAMPLE_TRANSACTION) 7064 perf_output_put(handle, data->txn); 7065 7066 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7067 u64 abi = data->regs_intr.abi; 7068 /* 7069 * If there are no regs to dump, notice it through 7070 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7071 */ 7072 perf_output_put(handle, abi); 7073 7074 if (abi) { 7075 u64 mask = event->attr.sample_regs_intr; 7076 7077 perf_output_sample_regs(handle, 7078 data->regs_intr.regs, 7079 mask); 7080 } 7081 } 7082 7083 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7084 perf_output_put(handle, data->phys_addr); 7085 7086 if (sample_type & PERF_SAMPLE_CGROUP) 7087 perf_output_put(handle, data->cgroup); 7088 7089 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7090 perf_output_put(handle, data->data_page_size); 7091 7092 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7093 perf_output_put(handle, data->code_page_size); 7094 7095 if (sample_type & PERF_SAMPLE_AUX) { 7096 perf_output_put(handle, data->aux_size); 7097 7098 if (data->aux_size) 7099 perf_aux_sample_output(event, handle, data); 7100 } 7101 7102 if (!event->attr.watermark) { 7103 int wakeup_events = event->attr.wakeup_events; 7104 7105 if (wakeup_events) { 7106 struct perf_buffer *rb = handle->rb; 7107 int events = local_inc_return(&rb->events); 7108 7109 if (events >= wakeup_events) { 7110 local_sub(wakeup_events, &rb->events); 7111 local_inc(&rb->wakeup); 7112 } 7113 } 7114 } 7115 } 7116 7117 static u64 perf_virt_to_phys(u64 virt) 7118 { 7119 u64 phys_addr = 0; 7120 struct page *p = NULL; 7121 7122 if (!virt) 7123 return 0; 7124 7125 if (virt >= TASK_SIZE) { 7126 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7127 if (virt_addr_valid((void *)(uintptr_t)virt) && 7128 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7129 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7130 } else { 7131 /* 7132 * Walking the pages tables for user address. 7133 * Interrupts are disabled, so it prevents any tear down 7134 * of the page tables. 7135 * Try IRQ-safe get_user_page_fast_only first. 7136 * If failed, leave phys_addr as 0. 7137 */ 7138 if (current->mm != NULL) { 7139 pagefault_disable(); 7140 if (get_user_page_fast_only(virt, 0, &p)) 7141 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7142 pagefault_enable(); 7143 } 7144 7145 if (p) 7146 put_page(p); 7147 } 7148 7149 return phys_addr; 7150 } 7151 7152 /* 7153 * Return the pagetable size of a given virtual address. 7154 */ 7155 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7156 { 7157 u64 size = 0; 7158 7159 #ifdef CONFIG_HAVE_FAST_GUP 7160 pgd_t *pgdp, pgd; 7161 p4d_t *p4dp, p4d; 7162 pud_t *pudp, pud; 7163 pmd_t *pmdp, pmd; 7164 pte_t *ptep, pte; 7165 7166 pgdp = pgd_offset(mm, addr); 7167 pgd = READ_ONCE(*pgdp); 7168 if (pgd_none(pgd)) 7169 return 0; 7170 7171 if (pgd_leaf(pgd)) 7172 return pgd_leaf_size(pgd); 7173 7174 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7175 p4d = READ_ONCE(*p4dp); 7176 if (!p4d_present(p4d)) 7177 return 0; 7178 7179 if (p4d_leaf(p4d)) 7180 return p4d_leaf_size(p4d); 7181 7182 pudp = pud_offset_lockless(p4dp, p4d, addr); 7183 pud = READ_ONCE(*pudp); 7184 if (!pud_present(pud)) 7185 return 0; 7186 7187 if (pud_leaf(pud)) 7188 return pud_leaf_size(pud); 7189 7190 pmdp = pmd_offset_lockless(pudp, pud, addr); 7191 pmd = READ_ONCE(*pmdp); 7192 if (!pmd_present(pmd)) 7193 return 0; 7194 7195 if (pmd_leaf(pmd)) 7196 return pmd_leaf_size(pmd); 7197 7198 ptep = pte_offset_map(&pmd, addr); 7199 pte = ptep_get_lockless(ptep); 7200 if (pte_present(pte)) 7201 size = pte_leaf_size(pte); 7202 pte_unmap(ptep); 7203 #endif /* CONFIG_HAVE_FAST_GUP */ 7204 7205 return size; 7206 } 7207 7208 static u64 perf_get_page_size(unsigned long addr) 7209 { 7210 struct mm_struct *mm; 7211 unsigned long flags; 7212 u64 size; 7213 7214 if (!addr) 7215 return 0; 7216 7217 /* 7218 * Software page-table walkers must disable IRQs, 7219 * which prevents any tear down of the page tables. 7220 */ 7221 local_irq_save(flags); 7222 7223 mm = current->mm; 7224 if (!mm) { 7225 /* 7226 * For kernel threads and the like, use init_mm so that 7227 * we can find kernel memory. 7228 */ 7229 mm = &init_mm; 7230 } 7231 7232 size = perf_get_pgtable_size(mm, addr); 7233 7234 local_irq_restore(flags); 7235 7236 return size; 7237 } 7238 7239 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7240 7241 struct perf_callchain_entry * 7242 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7243 { 7244 bool kernel = !event->attr.exclude_callchain_kernel; 7245 bool user = !event->attr.exclude_callchain_user; 7246 /* Disallow cross-task user callchains. */ 7247 bool crosstask = event->ctx->task && event->ctx->task != current; 7248 const u32 max_stack = event->attr.sample_max_stack; 7249 struct perf_callchain_entry *callchain; 7250 7251 if (!kernel && !user) 7252 return &__empty_callchain; 7253 7254 callchain = get_perf_callchain(regs, 0, kernel, user, 7255 max_stack, crosstask, true); 7256 return callchain ?: &__empty_callchain; 7257 } 7258 7259 void perf_prepare_sample(struct perf_event_header *header, 7260 struct perf_sample_data *data, 7261 struct perf_event *event, 7262 struct pt_regs *regs) 7263 { 7264 u64 sample_type = event->attr.sample_type; 7265 7266 header->type = PERF_RECORD_SAMPLE; 7267 header->size = sizeof(*header) + event->header_size; 7268 7269 header->misc = 0; 7270 header->misc |= perf_misc_flags(regs); 7271 7272 __perf_event_header__init_id(header, data, event); 7273 7274 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7275 data->ip = perf_instruction_pointer(regs); 7276 7277 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7278 int size = 1; 7279 7280 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7281 data->callchain = perf_callchain(event, regs); 7282 7283 size += data->callchain->nr; 7284 7285 header->size += size * sizeof(u64); 7286 } 7287 7288 if (sample_type & PERF_SAMPLE_RAW) { 7289 struct perf_raw_record *raw = data->raw; 7290 int size; 7291 7292 if (raw) { 7293 struct perf_raw_frag *frag = &raw->frag; 7294 u32 sum = 0; 7295 7296 do { 7297 sum += frag->size; 7298 if (perf_raw_frag_last(frag)) 7299 break; 7300 frag = frag->next; 7301 } while (1); 7302 7303 size = round_up(sum + sizeof(u32), sizeof(u64)); 7304 raw->size = size - sizeof(u32); 7305 frag->pad = raw->size - sum; 7306 } else { 7307 size = sizeof(u64); 7308 } 7309 7310 header->size += size; 7311 } 7312 7313 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7314 int size = sizeof(u64); /* nr */ 7315 if (data->br_stack) { 7316 if (perf_sample_save_hw_index(event)) 7317 size += sizeof(u64); 7318 7319 size += data->br_stack->nr 7320 * sizeof(struct perf_branch_entry); 7321 } 7322 header->size += size; 7323 } 7324 7325 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7326 perf_sample_regs_user(&data->regs_user, regs); 7327 7328 if (sample_type & PERF_SAMPLE_REGS_USER) { 7329 /* regs dump ABI info */ 7330 int size = sizeof(u64); 7331 7332 if (data->regs_user.regs) { 7333 u64 mask = event->attr.sample_regs_user; 7334 size += hweight64(mask) * sizeof(u64); 7335 } 7336 7337 header->size += size; 7338 } 7339 7340 if (sample_type & PERF_SAMPLE_STACK_USER) { 7341 /* 7342 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7343 * processed as the last one or have additional check added 7344 * in case new sample type is added, because we could eat 7345 * up the rest of the sample size. 7346 */ 7347 u16 stack_size = event->attr.sample_stack_user; 7348 u16 size = sizeof(u64); 7349 7350 stack_size = perf_sample_ustack_size(stack_size, header->size, 7351 data->regs_user.regs); 7352 7353 /* 7354 * If there is something to dump, add space for the dump 7355 * itself and for the field that tells the dynamic size, 7356 * which is how many have been actually dumped. 7357 */ 7358 if (stack_size) 7359 size += sizeof(u64) + stack_size; 7360 7361 data->stack_user_size = stack_size; 7362 header->size += size; 7363 } 7364 7365 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7366 /* regs dump ABI info */ 7367 int size = sizeof(u64); 7368 7369 perf_sample_regs_intr(&data->regs_intr, regs); 7370 7371 if (data->regs_intr.regs) { 7372 u64 mask = event->attr.sample_regs_intr; 7373 7374 size += hweight64(mask) * sizeof(u64); 7375 } 7376 7377 header->size += size; 7378 } 7379 7380 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7381 data->phys_addr = perf_virt_to_phys(data->addr); 7382 7383 #ifdef CONFIG_CGROUP_PERF 7384 if (sample_type & PERF_SAMPLE_CGROUP) { 7385 struct cgroup *cgrp; 7386 7387 /* protected by RCU */ 7388 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7389 data->cgroup = cgroup_id(cgrp); 7390 } 7391 #endif 7392 7393 /* 7394 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7395 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7396 * but the value will not dump to the userspace. 7397 */ 7398 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7399 data->data_page_size = perf_get_page_size(data->addr); 7400 7401 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7402 data->code_page_size = perf_get_page_size(data->ip); 7403 7404 if (sample_type & PERF_SAMPLE_AUX) { 7405 u64 size; 7406 7407 header->size += sizeof(u64); /* size */ 7408 7409 /* 7410 * Given the 16bit nature of header::size, an AUX sample can 7411 * easily overflow it, what with all the preceding sample bits. 7412 * Make sure this doesn't happen by using up to U16_MAX bytes 7413 * per sample in total (rounded down to 8 byte boundary). 7414 */ 7415 size = min_t(size_t, U16_MAX - header->size, 7416 event->attr.aux_sample_size); 7417 size = rounddown(size, 8); 7418 size = perf_prepare_sample_aux(event, data, size); 7419 7420 WARN_ON_ONCE(size + header->size > U16_MAX); 7421 header->size += size; 7422 } 7423 /* 7424 * If you're adding more sample types here, you likely need to do 7425 * something about the overflowing header::size, like repurpose the 7426 * lowest 3 bits of size, which should be always zero at the moment. 7427 * This raises a more important question, do we really need 512k sized 7428 * samples and why, so good argumentation is in order for whatever you 7429 * do here next. 7430 */ 7431 WARN_ON_ONCE(header->size & 7); 7432 } 7433 7434 static __always_inline int 7435 __perf_event_output(struct perf_event *event, 7436 struct perf_sample_data *data, 7437 struct pt_regs *regs, 7438 int (*output_begin)(struct perf_output_handle *, 7439 struct perf_sample_data *, 7440 struct perf_event *, 7441 unsigned int)) 7442 { 7443 struct perf_output_handle handle; 7444 struct perf_event_header header; 7445 int err; 7446 7447 /* protect the callchain buffers */ 7448 rcu_read_lock(); 7449 7450 perf_prepare_sample(&header, data, event, regs); 7451 7452 err = output_begin(&handle, data, event, header.size); 7453 if (err) 7454 goto exit; 7455 7456 perf_output_sample(&handle, &header, data, event); 7457 7458 perf_output_end(&handle); 7459 7460 exit: 7461 rcu_read_unlock(); 7462 return err; 7463 } 7464 7465 void 7466 perf_event_output_forward(struct perf_event *event, 7467 struct perf_sample_data *data, 7468 struct pt_regs *regs) 7469 { 7470 __perf_event_output(event, data, regs, perf_output_begin_forward); 7471 } 7472 7473 void 7474 perf_event_output_backward(struct perf_event *event, 7475 struct perf_sample_data *data, 7476 struct pt_regs *regs) 7477 { 7478 __perf_event_output(event, data, regs, perf_output_begin_backward); 7479 } 7480 7481 int 7482 perf_event_output(struct perf_event *event, 7483 struct perf_sample_data *data, 7484 struct pt_regs *regs) 7485 { 7486 return __perf_event_output(event, data, regs, perf_output_begin); 7487 } 7488 7489 /* 7490 * read event_id 7491 */ 7492 7493 struct perf_read_event { 7494 struct perf_event_header header; 7495 7496 u32 pid; 7497 u32 tid; 7498 }; 7499 7500 static void 7501 perf_event_read_event(struct perf_event *event, 7502 struct task_struct *task) 7503 { 7504 struct perf_output_handle handle; 7505 struct perf_sample_data sample; 7506 struct perf_read_event read_event = { 7507 .header = { 7508 .type = PERF_RECORD_READ, 7509 .misc = 0, 7510 .size = sizeof(read_event) + event->read_size, 7511 }, 7512 .pid = perf_event_pid(event, task), 7513 .tid = perf_event_tid(event, task), 7514 }; 7515 int ret; 7516 7517 perf_event_header__init_id(&read_event.header, &sample, event); 7518 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7519 if (ret) 7520 return; 7521 7522 perf_output_put(&handle, read_event); 7523 perf_output_read(&handle, event); 7524 perf_event__output_id_sample(event, &handle, &sample); 7525 7526 perf_output_end(&handle); 7527 } 7528 7529 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7530 7531 static void 7532 perf_iterate_ctx(struct perf_event_context *ctx, 7533 perf_iterate_f output, 7534 void *data, bool all) 7535 { 7536 struct perf_event *event; 7537 7538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7539 if (!all) { 7540 if (event->state < PERF_EVENT_STATE_INACTIVE) 7541 continue; 7542 if (!event_filter_match(event)) 7543 continue; 7544 } 7545 7546 output(event, data); 7547 } 7548 } 7549 7550 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7551 { 7552 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7553 struct perf_event *event; 7554 7555 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7556 /* 7557 * Skip events that are not fully formed yet; ensure that 7558 * if we observe event->ctx, both event and ctx will be 7559 * complete enough. See perf_install_in_context(). 7560 */ 7561 if (!smp_load_acquire(&event->ctx)) 7562 continue; 7563 7564 if (event->state < PERF_EVENT_STATE_INACTIVE) 7565 continue; 7566 if (!event_filter_match(event)) 7567 continue; 7568 output(event, data); 7569 } 7570 } 7571 7572 /* 7573 * Iterate all events that need to receive side-band events. 7574 * 7575 * For new callers; ensure that account_pmu_sb_event() includes 7576 * your event, otherwise it might not get delivered. 7577 */ 7578 static void 7579 perf_iterate_sb(perf_iterate_f output, void *data, 7580 struct perf_event_context *task_ctx) 7581 { 7582 struct perf_event_context *ctx; 7583 int ctxn; 7584 7585 rcu_read_lock(); 7586 preempt_disable(); 7587 7588 /* 7589 * If we have task_ctx != NULL we only notify the task context itself. 7590 * The task_ctx is set only for EXIT events before releasing task 7591 * context. 7592 */ 7593 if (task_ctx) { 7594 perf_iterate_ctx(task_ctx, output, data, false); 7595 goto done; 7596 } 7597 7598 perf_iterate_sb_cpu(output, data); 7599 7600 for_each_task_context_nr(ctxn) { 7601 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7602 if (ctx) 7603 perf_iterate_ctx(ctx, output, data, false); 7604 } 7605 done: 7606 preempt_enable(); 7607 rcu_read_unlock(); 7608 } 7609 7610 /* 7611 * Clear all file-based filters at exec, they'll have to be 7612 * re-instated when/if these objects are mmapped again. 7613 */ 7614 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7615 { 7616 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7617 struct perf_addr_filter *filter; 7618 unsigned int restart = 0, count = 0; 7619 unsigned long flags; 7620 7621 if (!has_addr_filter(event)) 7622 return; 7623 7624 raw_spin_lock_irqsave(&ifh->lock, flags); 7625 list_for_each_entry(filter, &ifh->list, entry) { 7626 if (filter->path.dentry) { 7627 event->addr_filter_ranges[count].start = 0; 7628 event->addr_filter_ranges[count].size = 0; 7629 restart++; 7630 } 7631 7632 count++; 7633 } 7634 7635 if (restart) 7636 event->addr_filters_gen++; 7637 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7638 7639 if (restart) 7640 perf_event_stop(event, 1); 7641 } 7642 7643 void perf_event_exec(void) 7644 { 7645 struct perf_event_context *ctx; 7646 int ctxn; 7647 7648 for_each_task_context_nr(ctxn) { 7649 perf_event_enable_on_exec(ctxn); 7650 perf_event_remove_on_exec(ctxn); 7651 7652 rcu_read_lock(); 7653 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7654 if (ctx) { 7655 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7656 NULL, true); 7657 } 7658 rcu_read_unlock(); 7659 } 7660 } 7661 7662 struct remote_output { 7663 struct perf_buffer *rb; 7664 int err; 7665 }; 7666 7667 static void __perf_event_output_stop(struct perf_event *event, void *data) 7668 { 7669 struct perf_event *parent = event->parent; 7670 struct remote_output *ro = data; 7671 struct perf_buffer *rb = ro->rb; 7672 struct stop_event_data sd = { 7673 .event = event, 7674 }; 7675 7676 if (!has_aux(event)) 7677 return; 7678 7679 if (!parent) 7680 parent = event; 7681 7682 /* 7683 * In case of inheritance, it will be the parent that links to the 7684 * ring-buffer, but it will be the child that's actually using it. 7685 * 7686 * We are using event::rb to determine if the event should be stopped, 7687 * however this may race with ring_buffer_attach() (through set_output), 7688 * which will make us skip the event that actually needs to be stopped. 7689 * So ring_buffer_attach() has to stop an aux event before re-assigning 7690 * its rb pointer. 7691 */ 7692 if (rcu_dereference(parent->rb) == rb) 7693 ro->err = __perf_event_stop(&sd); 7694 } 7695 7696 static int __perf_pmu_output_stop(void *info) 7697 { 7698 struct perf_event *event = info; 7699 struct pmu *pmu = event->ctx->pmu; 7700 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7701 struct remote_output ro = { 7702 .rb = event->rb, 7703 }; 7704 7705 rcu_read_lock(); 7706 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7707 if (cpuctx->task_ctx) 7708 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7709 &ro, false); 7710 rcu_read_unlock(); 7711 7712 return ro.err; 7713 } 7714 7715 static void perf_pmu_output_stop(struct perf_event *event) 7716 { 7717 struct perf_event *iter; 7718 int err, cpu; 7719 7720 restart: 7721 rcu_read_lock(); 7722 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7723 /* 7724 * For per-CPU events, we need to make sure that neither they 7725 * nor their children are running; for cpu==-1 events it's 7726 * sufficient to stop the event itself if it's active, since 7727 * it can't have children. 7728 */ 7729 cpu = iter->cpu; 7730 if (cpu == -1) 7731 cpu = READ_ONCE(iter->oncpu); 7732 7733 if (cpu == -1) 7734 continue; 7735 7736 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7737 if (err == -EAGAIN) { 7738 rcu_read_unlock(); 7739 goto restart; 7740 } 7741 } 7742 rcu_read_unlock(); 7743 } 7744 7745 /* 7746 * task tracking -- fork/exit 7747 * 7748 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7749 */ 7750 7751 struct perf_task_event { 7752 struct task_struct *task; 7753 struct perf_event_context *task_ctx; 7754 7755 struct { 7756 struct perf_event_header header; 7757 7758 u32 pid; 7759 u32 ppid; 7760 u32 tid; 7761 u32 ptid; 7762 u64 time; 7763 } event_id; 7764 }; 7765 7766 static int perf_event_task_match(struct perf_event *event) 7767 { 7768 return event->attr.comm || event->attr.mmap || 7769 event->attr.mmap2 || event->attr.mmap_data || 7770 event->attr.task; 7771 } 7772 7773 static void perf_event_task_output(struct perf_event *event, 7774 void *data) 7775 { 7776 struct perf_task_event *task_event = data; 7777 struct perf_output_handle handle; 7778 struct perf_sample_data sample; 7779 struct task_struct *task = task_event->task; 7780 int ret, size = task_event->event_id.header.size; 7781 7782 if (!perf_event_task_match(event)) 7783 return; 7784 7785 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7786 7787 ret = perf_output_begin(&handle, &sample, event, 7788 task_event->event_id.header.size); 7789 if (ret) 7790 goto out; 7791 7792 task_event->event_id.pid = perf_event_pid(event, task); 7793 task_event->event_id.tid = perf_event_tid(event, task); 7794 7795 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7796 task_event->event_id.ppid = perf_event_pid(event, 7797 task->real_parent); 7798 task_event->event_id.ptid = perf_event_pid(event, 7799 task->real_parent); 7800 } else { /* PERF_RECORD_FORK */ 7801 task_event->event_id.ppid = perf_event_pid(event, current); 7802 task_event->event_id.ptid = perf_event_tid(event, current); 7803 } 7804 7805 task_event->event_id.time = perf_event_clock(event); 7806 7807 perf_output_put(&handle, task_event->event_id); 7808 7809 perf_event__output_id_sample(event, &handle, &sample); 7810 7811 perf_output_end(&handle); 7812 out: 7813 task_event->event_id.header.size = size; 7814 } 7815 7816 static void perf_event_task(struct task_struct *task, 7817 struct perf_event_context *task_ctx, 7818 int new) 7819 { 7820 struct perf_task_event task_event; 7821 7822 if (!atomic_read(&nr_comm_events) && 7823 !atomic_read(&nr_mmap_events) && 7824 !atomic_read(&nr_task_events)) 7825 return; 7826 7827 task_event = (struct perf_task_event){ 7828 .task = task, 7829 .task_ctx = task_ctx, 7830 .event_id = { 7831 .header = { 7832 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7833 .misc = 0, 7834 .size = sizeof(task_event.event_id), 7835 }, 7836 /* .pid */ 7837 /* .ppid */ 7838 /* .tid */ 7839 /* .ptid */ 7840 /* .time */ 7841 }, 7842 }; 7843 7844 perf_iterate_sb(perf_event_task_output, 7845 &task_event, 7846 task_ctx); 7847 } 7848 7849 void perf_event_fork(struct task_struct *task) 7850 { 7851 perf_event_task(task, NULL, 1); 7852 perf_event_namespaces(task); 7853 } 7854 7855 /* 7856 * comm tracking 7857 */ 7858 7859 struct perf_comm_event { 7860 struct task_struct *task; 7861 char *comm; 7862 int comm_size; 7863 7864 struct { 7865 struct perf_event_header header; 7866 7867 u32 pid; 7868 u32 tid; 7869 } event_id; 7870 }; 7871 7872 static int perf_event_comm_match(struct perf_event *event) 7873 { 7874 return event->attr.comm; 7875 } 7876 7877 static void perf_event_comm_output(struct perf_event *event, 7878 void *data) 7879 { 7880 struct perf_comm_event *comm_event = data; 7881 struct perf_output_handle handle; 7882 struct perf_sample_data sample; 7883 int size = comm_event->event_id.header.size; 7884 int ret; 7885 7886 if (!perf_event_comm_match(event)) 7887 return; 7888 7889 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7890 ret = perf_output_begin(&handle, &sample, event, 7891 comm_event->event_id.header.size); 7892 7893 if (ret) 7894 goto out; 7895 7896 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7897 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7898 7899 perf_output_put(&handle, comm_event->event_id); 7900 __output_copy(&handle, comm_event->comm, 7901 comm_event->comm_size); 7902 7903 perf_event__output_id_sample(event, &handle, &sample); 7904 7905 perf_output_end(&handle); 7906 out: 7907 comm_event->event_id.header.size = size; 7908 } 7909 7910 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7911 { 7912 char comm[TASK_COMM_LEN]; 7913 unsigned int size; 7914 7915 memset(comm, 0, sizeof(comm)); 7916 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7917 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7918 7919 comm_event->comm = comm; 7920 comm_event->comm_size = size; 7921 7922 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7923 7924 perf_iterate_sb(perf_event_comm_output, 7925 comm_event, 7926 NULL); 7927 } 7928 7929 void perf_event_comm(struct task_struct *task, bool exec) 7930 { 7931 struct perf_comm_event comm_event; 7932 7933 if (!atomic_read(&nr_comm_events)) 7934 return; 7935 7936 comm_event = (struct perf_comm_event){ 7937 .task = task, 7938 /* .comm */ 7939 /* .comm_size */ 7940 .event_id = { 7941 .header = { 7942 .type = PERF_RECORD_COMM, 7943 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7944 /* .size */ 7945 }, 7946 /* .pid */ 7947 /* .tid */ 7948 }, 7949 }; 7950 7951 perf_event_comm_event(&comm_event); 7952 } 7953 7954 /* 7955 * namespaces tracking 7956 */ 7957 7958 struct perf_namespaces_event { 7959 struct task_struct *task; 7960 7961 struct { 7962 struct perf_event_header header; 7963 7964 u32 pid; 7965 u32 tid; 7966 u64 nr_namespaces; 7967 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7968 } event_id; 7969 }; 7970 7971 static int perf_event_namespaces_match(struct perf_event *event) 7972 { 7973 return event->attr.namespaces; 7974 } 7975 7976 static void perf_event_namespaces_output(struct perf_event *event, 7977 void *data) 7978 { 7979 struct perf_namespaces_event *namespaces_event = data; 7980 struct perf_output_handle handle; 7981 struct perf_sample_data sample; 7982 u16 header_size = namespaces_event->event_id.header.size; 7983 int ret; 7984 7985 if (!perf_event_namespaces_match(event)) 7986 return; 7987 7988 perf_event_header__init_id(&namespaces_event->event_id.header, 7989 &sample, event); 7990 ret = perf_output_begin(&handle, &sample, event, 7991 namespaces_event->event_id.header.size); 7992 if (ret) 7993 goto out; 7994 7995 namespaces_event->event_id.pid = perf_event_pid(event, 7996 namespaces_event->task); 7997 namespaces_event->event_id.tid = perf_event_tid(event, 7998 namespaces_event->task); 7999 8000 perf_output_put(&handle, namespaces_event->event_id); 8001 8002 perf_event__output_id_sample(event, &handle, &sample); 8003 8004 perf_output_end(&handle); 8005 out: 8006 namespaces_event->event_id.header.size = header_size; 8007 } 8008 8009 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8010 struct task_struct *task, 8011 const struct proc_ns_operations *ns_ops) 8012 { 8013 struct path ns_path; 8014 struct inode *ns_inode; 8015 int error; 8016 8017 error = ns_get_path(&ns_path, task, ns_ops); 8018 if (!error) { 8019 ns_inode = ns_path.dentry->d_inode; 8020 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8021 ns_link_info->ino = ns_inode->i_ino; 8022 path_put(&ns_path); 8023 } 8024 } 8025 8026 void perf_event_namespaces(struct task_struct *task) 8027 { 8028 struct perf_namespaces_event namespaces_event; 8029 struct perf_ns_link_info *ns_link_info; 8030 8031 if (!atomic_read(&nr_namespaces_events)) 8032 return; 8033 8034 namespaces_event = (struct perf_namespaces_event){ 8035 .task = task, 8036 .event_id = { 8037 .header = { 8038 .type = PERF_RECORD_NAMESPACES, 8039 .misc = 0, 8040 .size = sizeof(namespaces_event.event_id), 8041 }, 8042 /* .pid */ 8043 /* .tid */ 8044 .nr_namespaces = NR_NAMESPACES, 8045 /* .link_info[NR_NAMESPACES] */ 8046 }, 8047 }; 8048 8049 ns_link_info = namespaces_event.event_id.link_info; 8050 8051 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8052 task, &mntns_operations); 8053 8054 #ifdef CONFIG_USER_NS 8055 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8056 task, &userns_operations); 8057 #endif 8058 #ifdef CONFIG_NET_NS 8059 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8060 task, &netns_operations); 8061 #endif 8062 #ifdef CONFIG_UTS_NS 8063 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8064 task, &utsns_operations); 8065 #endif 8066 #ifdef CONFIG_IPC_NS 8067 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8068 task, &ipcns_operations); 8069 #endif 8070 #ifdef CONFIG_PID_NS 8071 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8072 task, &pidns_operations); 8073 #endif 8074 #ifdef CONFIG_CGROUPS 8075 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8076 task, &cgroupns_operations); 8077 #endif 8078 8079 perf_iterate_sb(perf_event_namespaces_output, 8080 &namespaces_event, 8081 NULL); 8082 } 8083 8084 /* 8085 * cgroup tracking 8086 */ 8087 #ifdef CONFIG_CGROUP_PERF 8088 8089 struct perf_cgroup_event { 8090 char *path; 8091 int path_size; 8092 struct { 8093 struct perf_event_header header; 8094 u64 id; 8095 char path[]; 8096 } event_id; 8097 }; 8098 8099 static int perf_event_cgroup_match(struct perf_event *event) 8100 { 8101 return event->attr.cgroup; 8102 } 8103 8104 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8105 { 8106 struct perf_cgroup_event *cgroup_event = data; 8107 struct perf_output_handle handle; 8108 struct perf_sample_data sample; 8109 u16 header_size = cgroup_event->event_id.header.size; 8110 int ret; 8111 8112 if (!perf_event_cgroup_match(event)) 8113 return; 8114 8115 perf_event_header__init_id(&cgroup_event->event_id.header, 8116 &sample, event); 8117 ret = perf_output_begin(&handle, &sample, event, 8118 cgroup_event->event_id.header.size); 8119 if (ret) 8120 goto out; 8121 8122 perf_output_put(&handle, cgroup_event->event_id); 8123 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8124 8125 perf_event__output_id_sample(event, &handle, &sample); 8126 8127 perf_output_end(&handle); 8128 out: 8129 cgroup_event->event_id.header.size = header_size; 8130 } 8131 8132 static void perf_event_cgroup(struct cgroup *cgrp) 8133 { 8134 struct perf_cgroup_event cgroup_event; 8135 char path_enomem[16] = "//enomem"; 8136 char *pathname; 8137 size_t size; 8138 8139 if (!atomic_read(&nr_cgroup_events)) 8140 return; 8141 8142 cgroup_event = (struct perf_cgroup_event){ 8143 .event_id = { 8144 .header = { 8145 .type = PERF_RECORD_CGROUP, 8146 .misc = 0, 8147 .size = sizeof(cgroup_event.event_id), 8148 }, 8149 .id = cgroup_id(cgrp), 8150 }, 8151 }; 8152 8153 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8154 if (pathname == NULL) { 8155 cgroup_event.path = path_enomem; 8156 } else { 8157 /* just to be sure to have enough space for alignment */ 8158 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8159 cgroup_event.path = pathname; 8160 } 8161 8162 /* 8163 * Since our buffer works in 8 byte units we need to align our string 8164 * size to a multiple of 8. However, we must guarantee the tail end is 8165 * zero'd out to avoid leaking random bits to userspace. 8166 */ 8167 size = strlen(cgroup_event.path) + 1; 8168 while (!IS_ALIGNED(size, sizeof(u64))) 8169 cgroup_event.path[size++] = '\0'; 8170 8171 cgroup_event.event_id.header.size += size; 8172 cgroup_event.path_size = size; 8173 8174 perf_iterate_sb(perf_event_cgroup_output, 8175 &cgroup_event, 8176 NULL); 8177 8178 kfree(pathname); 8179 } 8180 8181 #endif 8182 8183 /* 8184 * mmap tracking 8185 */ 8186 8187 struct perf_mmap_event { 8188 struct vm_area_struct *vma; 8189 8190 const char *file_name; 8191 int file_size; 8192 int maj, min; 8193 u64 ino; 8194 u64 ino_generation; 8195 u32 prot, flags; 8196 u8 build_id[BUILD_ID_SIZE_MAX]; 8197 u32 build_id_size; 8198 8199 struct { 8200 struct perf_event_header header; 8201 8202 u32 pid; 8203 u32 tid; 8204 u64 start; 8205 u64 len; 8206 u64 pgoff; 8207 } event_id; 8208 }; 8209 8210 static int perf_event_mmap_match(struct perf_event *event, 8211 void *data) 8212 { 8213 struct perf_mmap_event *mmap_event = data; 8214 struct vm_area_struct *vma = mmap_event->vma; 8215 int executable = vma->vm_flags & VM_EXEC; 8216 8217 return (!executable && event->attr.mmap_data) || 8218 (executable && (event->attr.mmap || event->attr.mmap2)); 8219 } 8220 8221 static void perf_event_mmap_output(struct perf_event *event, 8222 void *data) 8223 { 8224 struct perf_mmap_event *mmap_event = data; 8225 struct perf_output_handle handle; 8226 struct perf_sample_data sample; 8227 int size = mmap_event->event_id.header.size; 8228 u32 type = mmap_event->event_id.header.type; 8229 bool use_build_id; 8230 int ret; 8231 8232 if (!perf_event_mmap_match(event, data)) 8233 return; 8234 8235 if (event->attr.mmap2) { 8236 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8237 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8238 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8239 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8240 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8241 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8242 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8243 } 8244 8245 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8246 ret = perf_output_begin(&handle, &sample, event, 8247 mmap_event->event_id.header.size); 8248 if (ret) 8249 goto out; 8250 8251 mmap_event->event_id.pid = perf_event_pid(event, current); 8252 mmap_event->event_id.tid = perf_event_tid(event, current); 8253 8254 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8255 8256 if (event->attr.mmap2 && use_build_id) 8257 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8258 8259 perf_output_put(&handle, mmap_event->event_id); 8260 8261 if (event->attr.mmap2) { 8262 if (use_build_id) { 8263 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8264 8265 __output_copy(&handle, size, 4); 8266 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8267 } else { 8268 perf_output_put(&handle, mmap_event->maj); 8269 perf_output_put(&handle, mmap_event->min); 8270 perf_output_put(&handle, mmap_event->ino); 8271 perf_output_put(&handle, mmap_event->ino_generation); 8272 } 8273 perf_output_put(&handle, mmap_event->prot); 8274 perf_output_put(&handle, mmap_event->flags); 8275 } 8276 8277 __output_copy(&handle, mmap_event->file_name, 8278 mmap_event->file_size); 8279 8280 perf_event__output_id_sample(event, &handle, &sample); 8281 8282 perf_output_end(&handle); 8283 out: 8284 mmap_event->event_id.header.size = size; 8285 mmap_event->event_id.header.type = type; 8286 } 8287 8288 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8289 { 8290 struct vm_area_struct *vma = mmap_event->vma; 8291 struct file *file = vma->vm_file; 8292 int maj = 0, min = 0; 8293 u64 ino = 0, gen = 0; 8294 u32 prot = 0, flags = 0; 8295 unsigned int size; 8296 char tmp[16]; 8297 char *buf = NULL; 8298 char *name; 8299 8300 if (vma->vm_flags & VM_READ) 8301 prot |= PROT_READ; 8302 if (vma->vm_flags & VM_WRITE) 8303 prot |= PROT_WRITE; 8304 if (vma->vm_flags & VM_EXEC) 8305 prot |= PROT_EXEC; 8306 8307 if (vma->vm_flags & VM_MAYSHARE) 8308 flags = MAP_SHARED; 8309 else 8310 flags = MAP_PRIVATE; 8311 8312 if (vma->vm_flags & VM_DENYWRITE) 8313 flags |= MAP_DENYWRITE; 8314 if (vma->vm_flags & VM_MAYEXEC) 8315 flags |= MAP_EXECUTABLE; 8316 if (vma->vm_flags & VM_LOCKED) 8317 flags |= MAP_LOCKED; 8318 if (is_vm_hugetlb_page(vma)) 8319 flags |= MAP_HUGETLB; 8320 8321 if (file) { 8322 struct inode *inode; 8323 dev_t dev; 8324 8325 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8326 if (!buf) { 8327 name = "//enomem"; 8328 goto cpy_name; 8329 } 8330 /* 8331 * d_path() works from the end of the rb backwards, so we 8332 * need to add enough zero bytes after the string to handle 8333 * the 64bit alignment we do later. 8334 */ 8335 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8336 if (IS_ERR(name)) { 8337 name = "//toolong"; 8338 goto cpy_name; 8339 } 8340 inode = file_inode(vma->vm_file); 8341 dev = inode->i_sb->s_dev; 8342 ino = inode->i_ino; 8343 gen = inode->i_generation; 8344 maj = MAJOR(dev); 8345 min = MINOR(dev); 8346 8347 goto got_name; 8348 } else { 8349 if (vma->vm_ops && vma->vm_ops->name) { 8350 name = (char *) vma->vm_ops->name(vma); 8351 if (name) 8352 goto cpy_name; 8353 } 8354 8355 name = (char *)arch_vma_name(vma); 8356 if (name) 8357 goto cpy_name; 8358 8359 if (vma->vm_start <= vma->vm_mm->start_brk && 8360 vma->vm_end >= vma->vm_mm->brk) { 8361 name = "[heap]"; 8362 goto cpy_name; 8363 } 8364 if (vma->vm_start <= vma->vm_mm->start_stack && 8365 vma->vm_end >= vma->vm_mm->start_stack) { 8366 name = "[stack]"; 8367 goto cpy_name; 8368 } 8369 8370 name = "//anon"; 8371 goto cpy_name; 8372 } 8373 8374 cpy_name: 8375 strlcpy(tmp, name, sizeof(tmp)); 8376 name = tmp; 8377 got_name: 8378 /* 8379 * Since our buffer works in 8 byte units we need to align our string 8380 * size to a multiple of 8. However, we must guarantee the tail end is 8381 * zero'd out to avoid leaking random bits to userspace. 8382 */ 8383 size = strlen(name)+1; 8384 while (!IS_ALIGNED(size, sizeof(u64))) 8385 name[size++] = '\0'; 8386 8387 mmap_event->file_name = name; 8388 mmap_event->file_size = size; 8389 mmap_event->maj = maj; 8390 mmap_event->min = min; 8391 mmap_event->ino = ino; 8392 mmap_event->ino_generation = gen; 8393 mmap_event->prot = prot; 8394 mmap_event->flags = flags; 8395 8396 if (!(vma->vm_flags & VM_EXEC)) 8397 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8398 8399 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8400 8401 if (atomic_read(&nr_build_id_events)) 8402 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8403 8404 perf_iterate_sb(perf_event_mmap_output, 8405 mmap_event, 8406 NULL); 8407 8408 kfree(buf); 8409 } 8410 8411 /* 8412 * Check whether inode and address range match filter criteria. 8413 */ 8414 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8415 struct file *file, unsigned long offset, 8416 unsigned long size) 8417 { 8418 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8419 if (!filter->path.dentry) 8420 return false; 8421 8422 if (d_inode(filter->path.dentry) != file_inode(file)) 8423 return false; 8424 8425 if (filter->offset > offset + size) 8426 return false; 8427 8428 if (filter->offset + filter->size < offset) 8429 return false; 8430 8431 return true; 8432 } 8433 8434 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8435 struct vm_area_struct *vma, 8436 struct perf_addr_filter_range *fr) 8437 { 8438 unsigned long vma_size = vma->vm_end - vma->vm_start; 8439 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8440 struct file *file = vma->vm_file; 8441 8442 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8443 return false; 8444 8445 if (filter->offset < off) { 8446 fr->start = vma->vm_start; 8447 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8448 } else { 8449 fr->start = vma->vm_start + filter->offset - off; 8450 fr->size = min(vma->vm_end - fr->start, filter->size); 8451 } 8452 8453 return true; 8454 } 8455 8456 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8457 { 8458 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8459 struct vm_area_struct *vma = data; 8460 struct perf_addr_filter *filter; 8461 unsigned int restart = 0, count = 0; 8462 unsigned long flags; 8463 8464 if (!has_addr_filter(event)) 8465 return; 8466 8467 if (!vma->vm_file) 8468 return; 8469 8470 raw_spin_lock_irqsave(&ifh->lock, flags); 8471 list_for_each_entry(filter, &ifh->list, entry) { 8472 if (perf_addr_filter_vma_adjust(filter, vma, 8473 &event->addr_filter_ranges[count])) 8474 restart++; 8475 8476 count++; 8477 } 8478 8479 if (restart) 8480 event->addr_filters_gen++; 8481 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8482 8483 if (restart) 8484 perf_event_stop(event, 1); 8485 } 8486 8487 /* 8488 * Adjust all task's events' filters to the new vma 8489 */ 8490 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8491 { 8492 struct perf_event_context *ctx; 8493 int ctxn; 8494 8495 /* 8496 * Data tracing isn't supported yet and as such there is no need 8497 * to keep track of anything that isn't related to executable code: 8498 */ 8499 if (!(vma->vm_flags & VM_EXEC)) 8500 return; 8501 8502 rcu_read_lock(); 8503 for_each_task_context_nr(ctxn) { 8504 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8505 if (!ctx) 8506 continue; 8507 8508 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8509 } 8510 rcu_read_unlock(); 8511 } 8512 8513 void perf_event_mmap(struct vm_area_struct *vma) 8514 { 8515 struct perf_mmap_event mmap_event; 8516 8517 if (!atomic_read(&nr_mmap_events)) 8518 return; 8519 8520 mmap_event = (struct perf_mmap_event){ 8521 .vma = vma, 8522 /* .file_name */ 8523 /* .file_size */ 8524 .event_id = { 8525 .header = { 8526 .type = PERF_RECORD_MMAP, 8527 .misc = PERF_RECORD_MISC_USER, 8528 /* .size */ 8529 }, 8530 /* .pid */ 8531 /* .tid */ 8532 .start = vma->vm_start, 8533 .len = vma->vm_end - vma->vm_start, 8534 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8535 }, 8536 /* .maj (attr_mmap2 only) */ 8537 /* .min (attr_mmap2 only) */ 8538 /* .ino (attr_mmap2 only) */ 8539 /* .ino_generation (attr_mmap2 only) */ 8540 /* .prot (attr_mmap2 only) */ 8541 /* .flags (attr_mmap2 only) */ 8542 }; 8543 8544 perf_addr_filters_adjust(vma); 8545 perf_event_mmap_event(&mmap_event); 8546 } 8547 8548 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8549 unsigned long size, u64 flags) 8550 { 8551 struct perf_output_handle handle; 8552 struct perf_sample_data sample; 8553 struct perf_aux_event { 8554 struct perf_event_header header; 8555 u64 offset; 8556 u64 size; 8557 u64 flags; 8558 } rec = { 8559 .header = { 8560 .type = PERF_RECORD_AUX, 8561 .misc = 0, 8562 .size = sizeof(rec), 8563 }, 8564 .offset = head, 8565 .size = size, 8566 .flags = flags, 8567 }; 8568 int ret; 8569 8570 perf_event_header__init_id(&rec.header, &sample, event); 8571 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8572 8573 if (ret) 8574 return; 8575 8576 perf_output_put(&handle, rec); 8577 perf_event__output_id_sample(event, &handle, &sample); 8578 8579 perf_output_end(&handle); 8580 } 8581 8582 /* 8583 * Lost/dropped samples logging 8584 */ 8585 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8586 { 8587 struct perf_output_handle handle; 8588 struct perf_sample_data sample; 8589 int ret; 8590 8591 struct { 8592 struct perf_event_header header; 8593 u64 lost; 8594 } lost_samples_event = { 8595 .header = { 8596 .type = PERF_RECORD_LOST_SAMPLES, 8597 .misc = 0, 8598 .size = sizeof(lost_samples_event), 8599 }, 8600 .lost = lost, 8601 }; 8602 8603 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8604 8605 ret = perf_output_begin(&handle, &sample, event, 8606 lost_samples_event.header.size); 8607 if (ret) 8608 return; 8609 8610 perf_output_put(&handle, lost_samples_event); 8611 perf_event__output_id_sample(event, &handle, &sample); 8612 perf_output_end(&handle); 8613 } 8614 8615 /* 8616 * context_switch tracking 8617 */ 8618 8619 struct perf_switch_event { 8620 struct task_struct *task; 8621 struct task_struct *next_prev; 8622 8623 struct { 8624 struct perf_event_header header; 8625 u32 next_prev_pid; 8626 u32 next_prev_tid; 8627 } event_id; 8628 }; 8629 8630 static int perf_event_switch_match(struct perf_event *event) 8631 { 8632 return event->attr.context_switch; 8633 } 8634 8635 static void perf_event_switch_output(struct perf_event *event, void *data) 8636 { 8637 struct perf_switch_event *se = data; 8638 struct perf_output_handle handle; 8639 struct perf_sample_data sample; 8640 int ret; 8641 8642 if (!perf_event_switch_match(event)) 8643 return; 8644 8645 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8646 if (event->ctx->task) { 8647 se->event_id.header.type = PERF_RECORD_SWITCH; 8648 se->event_id.header.size = sizeof(se->event_id.header); 8649 } else { 8650 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8651 se->event_id.header.size = sizeof(se->event_id); 8652 se->event_id.next_prev_pid = 8653 perf_event_pid(event, se->next_prev); 8654 se->event_id.next_prev_tid = 8655 perf_event_tid(event, se->next_prev); 8656 } 8657 8658 perf_event_header__init_id(&se->event_id.header, &sample, event); 8659 8660 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8661 if (ret) 8662 return; 8663 8664 if (event->ctx->task) 8665 perf_output_put(&handle, se->event_id.header); 8666 else 8667 perf_output_put(&handle, se->event_id); 8668 8669 perf_event__output_id_sample(event, &handle, &sample); 8670 8671 perf_output_end(&handle); 8672 } 8673 8674 static void perf_event_switch(struct task_struct *task, 8675 struct task_struct *next_prev, bool sched_in) 8676 { 8677 struct perf_switch_event switch_event; 8678 8679 /* N.B. caller checks nr_switch_events != 0 */ 8680 8681 switch_event = (struct perf_switch_event){ 8682 .task = task, 8683 .next_prev = next_prev, 8684 .event_id = { 8685 .header = { 8686 /* .type */ 8687 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8688 /* .size */ 8689 }, 8690 /* .next_prev_pid */ 8691 /* .next_prev_tid */ 8692 }, 8693 }; 8694 8695 if (!sched_in && task->state == TASK_RUNNING) 8696 switch_event.event_id.header.misc |= 8697 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8698 8699 perf_iterate_sb(perf_event_switch_output, 8700 &switch_event, 8701 NULL); 8702 } 8703 8704 /* 8705 * IRQ throttle logging 8706 */ 8707 8708 static void perf_log_throttle(struct perf_event *event, int enable) 8709 { 8710 struct perf_output_handle handle; 8711 struct perf_sample_data sample; 8712 int ret; 8713 8714 struct { 8715 struct perf_event_header header; 8716 u64 time; 8717 u64 id; 8718 u64 stream_id; 8719 } throttle_event = { 8720 .header = { 8721 .type = PERF_RECORD_THROTTLE, 8722 .misc = 0, 8723 .size = sizeof(throttle_event), 8724 }, 8725 .time = perf_event_clock(event), 8726 .id = primary_event_id(event), 8727 .stream_id = event->id, 8728 }; 8729 8730 if (enable) 8731 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8732 8733 perf_event_header__init_id(&throttle_event.header, &sample, event); 8734 8735 ret = perf_output_begin(&handle, &sample, event, 8736 throttle_event.header.size); 8737 if (ret) 8738 return; 8739 8740 perf_output_put(&handle, throttle_event); 8741 perf_event__output_id_sample(event, &handle, &sample); 8742 perf_output_end(&handle); 8743 } 8744 8745 /* 8746 * ksymbol register/unregister tracking 8747 */ 8748 8749 struct perf_ksymbol_event { 8750 const char *name; 8751 int name_len; 8752 struct { 8753 struct perf_event_header header; 8754 u64 addr; 8755 u32 len; 8756 u16 ksym_type; 8757 u16 flags; 8758 } event_id; 8759 }; 8760 8761 static int perf_event_ksymbol_match(struct perf_event *event) 8762 { 8763 return event->attr.ksymbol; 8764 } 8765 8766 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8767 { 8768 struct perf_ksymbol_event *ksymbol_event = data; 8769 struct perf_output_handle handle; 8770 struct perf_sample_data sample; 8771 int ret; 8772 8773 if (!perf_event_ksymbol_match(event)) 8774 return; 8775 8776 perf_event_header__init_id(&ksymbol_event->event_id.header, 8777 &sample, event); 8778 ret = perf_output_begin(&handle, &sample, event, 8779 ksymbol_event->event_id.header.size); 8780 if (ret) 8781 return; 8782 8783 perf_output_put(&handle, ksymbol_event->event_id); 8784 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8785 perf_event__output_id_sample(event, &handle, &sample); 8786 8787 perf_output_end(&handle); 8788 } 8789 8790 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8791 const char *sym) 8792 { 8793 struct perf_ksymbol_event ksymbol_event; 8794 char name[KSYM_NAME_LEN]; 8795 u16 flags = 0; 8796 int name_len; 8797 8798 if (!atomic_read(&nr_ksymbol_events)) 8799 return; 8800 8801 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8802 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8803 goto err; 8804 8805 strlcpy(name, sym, KSYM_NAME_LEN); 8806 name_len = strlen(name) + 1; 8807 while (!IS_ALIGNED(name_len, sizeof(u64))) 8808 name[name_len++] = '\0'; 8809 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8810 8811 if (unregister) 8812 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8813 8814 ksymbol_event = (struct perf_ksymbol_event){ 8815 .name = name, 8816 .name_len = name_len, 8817 .event_id = { 8818 .header = { 8819 .type = PERF_RECORD_KSYMBOL, 8820 .size = sizeof(ksymbol_event.event_id) + 8821 name_len, 8822 }, 8823 .addr = addr, 8824 .len = len, 8825 .ksym_type = ksym_type, 8826 .flags = flags, 8827 }, 8828 }; 8829 8830 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8831 return; 8832 err: 8833 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8834 } 8835 8836 /* 8837 * bpf program load/unload tracking 8838 */ 8839 8840 struct perf_bpf_event { 8841 struct bpf_prog *prog; 8842 struct { 8843 struct perf_event_header header; 8844 u16 type; 8845 u16 flags; 8846 u32 id; 8847 u8 tag[BPF_TAG_SIZE]; 8848 } event_id; 8849 }; 8850 8851 static int perf_event_bpf_match(struct perf_event *event) 8852 { 8853 return event->attr.bpf_event; 8854 } 8855 8856 static void perf_event_bpf_output(struct perf_event *event, void *data) 8857 { 8858 struct perf_bpf_event *bpf_event = data; 8859 struct perf_output_handle handle; 8860 struct perf_sample_data sample; 8861 int ret; 8862 8863 if (!perf_event_bpf_match(event)) 8864 return; 8865 8866 perf_event_header__init_id(&bpf_event->event_id.header, 8867 &sample, event); 8868 ret = perf_output_begin(&handle, data, event, 8869 bpf_event->event_id.header.size); 8870 if (ret) 8871 return; 8872 8873 perf_output_put(&handle, bpf_event->event_id); 8874 perf_event__output_id_sample(event, &handle, &sample); 8875 8876 perf_output_end(&handle); 8877 } 8878 8879 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8880 enum perf_bpf_event_type type) 8881 { 8882 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8883 int i; 8884 8885 if (prog->aux->func_cnt == 0) { 8886 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8887 (u64)(unsigned long)prog->bpf_func, 8888 prog->jited_len, unregister, 8889 prog->aux->ksym.name); 8890 } else { 8891 for (i = 0; i < prog->aux->func_cnt; i++) { 8892 struct bpf_prog *subprog = prog->aux->func[i]; 8893 8894 perf_event_ksymbol( 8895 PERF_RECORD_KSYMBOL_TYPE_BPF, 8896 (u64)(unsigned long)subprog->bpf_func, 8897 subprog->jited_len, unregister, 8898 prog->aux->ksym.name); 8899 } 8900 } 8901 } 8902 8903 void perf_event_bpf_event(struct bpf_prog *prog, 8904 enum perf_bpf_event_type type, 8905 u16 flags) 8906 { 8907 struct perf_bpf_event bpf_event; 8908 8909 if (type <= PERF_BPF_EVENT_UNKNOWN || 8910 type >= PERF_BPF_EVENT_MAX) 8911 return; 8912 8913 switch (type) { 8914 case PERF_BPF_EVENT_PROG_LOAD: 8915 case PERF_BPF_EVENT_PROG_UNLOAD: 8916 if (atomic_read(&nr_ksymbol_events)) 8917 perf_event_bpf_emit_ksymbols(prog, type); 8918 break; 8919 default: 8920 break; 8921 } 8922 8923 if (!atomic_read(&nr_bpf_events)) 8924 return; 8925 8926 bpf_event = (struct perf_bpf_event){ 8927 .prog = prog, 8928 .event_id = { 8929 .header = { 8930 .type = PERF_RECORD_BPF_EVENT, 8931 .size = sizeof(bpf_event.event_id), 8932 }, 8933 .type = type, 8934 .flags = flags, 8935 .id = prog->aux->id, 8936 }, 8937 }; 8938 8939 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8940 8941 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8942 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8943 } 8944 8945 struct perf_text_poke_event { 8946 const void *old_bytes; 8947 const void *new_bytes; 8948 size_t pad; 8949 u16 old_len; 8950 u16 new_len; 8951 8952 struct { 8953 struct perf_event_header header; 8954 8955 u64 addr; 8956 } event_id; 8957 }; 8958 8959 static int perf_event_text_poke_match(struct perf_event *event) 8960 { 8961 return event->attr.text_poke; 8962 } 8963 8964 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8965 { 8966 struct perf_text_poke_event *text_poke_event = data; 8967 struct perf_output_handle handle; 8968 struct perf_sample_data sample; 8969 u64 padding = 0; 8970 int ret; 8971 8972 if (!perf_event_text_poke_match(event)) 8973 return; 8974 8975 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8976 8977 ret = perf_output_begin(&handle, &sample, event, 8978 text_poke_event->event_id.header.size); 8979 if (ret) 8980 return; 8981 8982 perf_output_put(&handle, text_poke_event->event_id); 8983 perf_output_put(&handle, text_poke_event->old_len); 8984 perf_output_put(&handle, text_poke_event->new_len); 8985 8986 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8987 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8988 8989 if (text_poke_event->pad) 8990 __output_copy(&handle, &padding, text_poke_event->pad); 8991 8992 perf_event__output_id_sample(event, &handle, &sample); 8993 8994 perf_output_end(&handle); 8995 } 8996 8997 void perf_event_text_poke(const void *addr, const void *old_bytes, 8998 size_t old_len, const void *new_bytes, size_t new_len) 8999 { 9000 struct perf_text_poke_event text_poke_event; 9001 size_t tot, pad; 9002 9003 if (!atomic_read(&nr_text_poke_events)) 9004 return; 9005 9006 tot = sizeof(text_poke_event.old_len) + old_len; 9007 tot += sizeof(text_poke_event.new_len) + new_len; 9008 pad = ALIGN(tot, sizeof(u64)) - tot; 9009 9010 text_poke_event = (struct perf_text_poke_event){ 9011 .old_bytes = old_bytes, 9012 .new_bytes = new_bytes, 9013 .pad = pad, 9014 .old_len = old_len, 9015 .new_len = new_len, 9016 .event_id = { 9017 .header = { 9018 .type = PERF_RECORD_TEXT_POKE, 9019 .misc = PERF_RECORD_MISC_KERNEL, 9020 .size = sizeof(text_poke_event.event_id) + tot + pad, 9021 }, 9022 .addr = (unsigned long)addr, 9023 }, 9024 }; 9025 9026 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9027 } 9028 9029 void perf_event_itrace_started(struct perf_event *event) 9030 { 9031 event->attach_state |= PERF_ATTACH_ITRACE; 9032 } 9033 9034 static void perf_log_itrace_start(struct perf_event *event) 9035 { 9036 struct perf_output_handle handle; 9037 struct perf_sample_data sample; 9038 struct perf_aux_event { 9039 struct perf_event_header header; 9040 u32 pid; 9041 u32 tid; 9042 } rec; 9043 int ret; 9044 9045 if (event->parent) 9046 event = event->parent; 9047 9048 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9049 event->attach_state & PERF_ATTACH_ITRACE) 9050 return; 9051 9052 rec.header.type = PERF_RECORD_ITRACE_START; 9053 rec.header.misc = 0; 9054 rec.header.size = sizeof(rec); 9055 rec.pid = perf_event_pid(event, current); 9056 rec.tid = perf_event_tid(event, current); 9057 9058 perf_event_header__init_id(&rec.header, &sample, event); 9059 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9060 9061 if (ret) 9062 return; 9063 9064 perf_output_put(&handle, rec); 9065 perf_event__output_id_sample(event, &handle, &sample); 9066 9067 perf_output_end(&handle); 9068 } 9069 9070 static int 9071 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9072 { 9073 struct hw_perf_event *hwc = &event->hw; 9074 int ret = 0; 9075 u64 seq; 9076 9077 seq = __this_cpu_read(perf_throttled_seq); 9078 if (seq != hwc->interrupts_seq) { 9079 hwc->interrupts_seq = seq; 9080 hwc->interrupts = 1; 9081 } else { 9082 hwc->interrupts++; 9083 if (unlikely(throttle 9084 && hwc->interrupts >= max_samples_per_tick)) { 9085 __this_cpu_inc(perf_throttled_count); 9086 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9087 hwc->interrupts = MAX_INTERRUPTS; 9088 perf_log_throttle(event, 0); 9089 ret = 1; 9090 } 9091 } 9092 9093 if (event->attr.freq) { 9094 u64 now = perf_clock(); 9095 s64 delta = now - hwc->freq_time_stamp; 9096 9097 hwc->freq_time_stamp = now; 9098 9099 if (delta > 0 && delta < 2*TICK_NSEC) 9100 perf_adjust_period(event, delta, hwc->last_period, true); 9101 } 9102 9103 return ret; 9104 } 9105 9106 int perf_event_account_interrupt(struct perf_event *event) 9107 { 9108 return __perf_event_account_interrupt(event, 1); 9109 } 9110 9111 /* 9112 * Generic event overflow handling, sampling. 9113 */ 9114 9115 static int __perf_event_overflow(struct perf_event *event, 9116 int throttle, struct perf_sample_data *data, 9117 struct pt_regs *regs) 9118 { 9119 int events = atomic_read(&event->event_limit); 9120 int ret = 0; 9121 9122 /* 9123 * Non-sampling counters might still use the PMI to fold short 9124 * hardware counters, ignore those. 9125 */ 9126 if (unlikely(!is_sampling_event(event))) 9127 return 0; 9128 9129 ret = __perf_event_account_interrupt(event, throttle); 9130 9131 /* 9132 * XXX event_limit might not quite work as expected on inherited 9133 * events 9134 */ 9135 9136 event->pending_kill = POLL_IN; 9137 if (events && atomic_dec_and_test(&event->event_limit)) { 9138 ret = 1; 9139 event->pending_kill = POLL_HUP; 9140 event->pending_addr = data->addr; 9141 9142 perf_event_disable_inatomic(event); 9143 } 9144 9145 READ_ONCE(event->overflow_handler)(event, data, regs); 9146 9147 if (*perf_event_fasync(event) && event->pending_kill) { 9148 event->pending_wakeup = 1; 9149 irq_work_queue(&event->pending); 9150 } 9151 9152 return ret; 9153 } 9154 9155 int perf_event_overflow(struct perf_event *event, 9156 struct perf_sample_data *data, 9157 struct pt_regs *regs) 9158 { 9159 return __perf_event_overflow(event, 1, data, regs); 9160 } 9161 9162 /* 9163 * Generic software event infrastructure 9164 */ 9165 9166 struct swevent_htable { 9167 struct swevent_hlist *swevent_hlist; 9168 struct mutex hlist_mutex; 9169 int hlist_refcount; 9170 9171 /* Recursion avoidance in each contexts */ 9172 int recursion[PERF_NR_CONTEXTS]; 9173 }; 9174 9175 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9176 9177 /* 9178 * We directly increment event->count and keep a second value in 9179 * event->hw.period_left to count intervals. This period event 9180 * is kept in the range [-sample_period, 0] so that we can use the 9181 * sign as trigger. 9182 */ 9183 9184 u64 perf_swevent_set_period(struct perf_event *event) 9185 { 9186 struct hw_perf_event *hwc = &event->hw; 9187 u64 period = hwc->last_period; 9188 u64 nr, offset; 9189 s64 old, val; 9190 9191 hwc->last_period = hwc->sample_period; 9192 9193 again: 9194 old = val = local64_read(&hwc->period_left); 9195 if (val < 0) 9196 return 0; 9197 9198 nr = div64_u64(period + val, period); 9199 offset = nr * period; 9200 val -= offset; 9201 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9202 goto again; 9203 9204 return nr; 9205 } 9206 9207 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9208 struct perf_sample_data *data, 9209 struct pt_regs *regs) 9210 { 9211 struct hw_perf_event *hwc = &event->hw; 9212 int throttle = 0; 9213 9214 if (!overflow) 9215 overflow = perf_swevent_set_period(event); 9216 9217 if (hwc->interrupts == MAX_INTERRUPTS) 9218 return; 9219 9220 for (; overflow; overflow--) { 9221 if (__perf_event_overflow(event, throttle, 9222 data, regs)) { 9223 /* 9224 * We inhibit the overflow from happening when 9225 * hwc->interrupts == MAX_INTERRUPTS. 9226 */ 9227 break; 9228 } 9229 throttle = 1; 9230 } 9231 } 9232 9233 static void perf_swevent_event(struct perf_event *event, u64 nr, 9234 struct perf_sample_data *data, 9235 struct pt_regs *regs) 9236 { 9237 struct hw_perf_event *hwc = &event->hw; 9238 9239 local64_add(nr, &event->count); 9240 9241 if (!regs) 9242 return; 9243 9244 if (!is_sampling_event(event)) 9245 return; 9246 9247 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9248 data->period = nr; 9249 return perf_swevent_overflow(event, 1, data, regs); 9250 } else 9251 data->period = event->hw.last_period; 9252 9253 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9254 return perf_swevent_overflow(event, 1, data, regs); 9255 9256 if (local64_add_negative(nr, &hwc->period_left)) 9257 return; 9258 9259 perf_swevent_overflow(event, 0, data, regs); 9260 } 9261 9262 static int perf_exclude_event(struct perf_event *event, 9263 struct pt_regs *regs) 9264 { 9265 if (event->hw.state & PERF_HES_STOPPED) 9266 return 1; 9267 9268 if (regs) { 9269 if (event->attr.exclude_user && user_mode(regs)) 9270 return 1; 9271 9272 if (event->attr.exclude_kernel && !user_mode(regs)) 9273 return 1; 9274 } 9275 9276 return 0; 9277 } 9278 9279 static int perf_swevent_match(struct perf_event *event, 9280 enum perf_type_id type, 9281 u32 event_id, 9282 struct perf_sample_data *data, 9283 struct pt_regs *regs) 9284 { 9285 if (event->attr.type != type) 9286 return 0; 9287 9288 if (event->attr.config != event_id) 9289 return 0; 9290 9291 if (perf_exclude_event(event, regs)) 9292 return 0; 9293 9294 return 1; 9295 } 9296 9297 static inline u64 swevent_hash(u64 type, u32 event_id) 9298 { 9299 u64 val = event_id | (type << 32); 9300 9301 return hash_64(val, SWEVENT_HLIST_BITS); 9302 } 9303 9304 static inline struct hlist_head * 9305 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9306 { 9307 u64 hash = swevent_hash(type, event_id); 9308 9309 return &hlist->heads[hash]; 9310 } 9311 9312 /* For the read side: events when they trigger */ 9313 static inline struct hlist_head * 9314 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9315 { 9316 struct swevent_hlist *hlist; 9317 9318 hlist = rcu_dereference(swhash->swevent_hlist); 9319 if (!hlist) 9320 return NULL; 9321 9322 return __find_swevent_head(hlist, type, event_id); 9323 } 9324 9325 /* For the event head insertion and removal in the hlist */ 9326 static inline struct hlist_head * 9327 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9328 { 9329 struct swevent_hlist *hlist; 9330 u32 event_id = event->attr.config; 9331 u64 type = event->attr.type; 9332 9333 /* 9334 * Event scheduling is always serialized against hlist allocation 9335 * and release. Which makes the protected version suitable here. 9336 * The context lock guarantees that. 9337 */ 9338 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9339 lockdep_is_held(&event->ctx->lock)); 9340 if (!hlist) 9341 return NULL; 9342 9343 return __find_swevent_head(hlist, type, event_id); 9344 } 9345 9346 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9347 u64 nr, 9348 struct perf_sample_data *data, 9349 struct pt_regs *regs) 9350 { 9351 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9352 struct perf_event *event; 9353 struct hlist_head *head; 9354 9355 rcu_read_lock(); 9356 head = find_swevent_head_rcu(swhash, type, event_id); 9357 if (!head) 9358 goto end; 9359 9360 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9361 if (perf_swevent_match(event, type, event_id, data, regs)) 9362 perf_swevent_event(event, nr, data, regs); 9363 } 9364 end: 9365 rcu_read_unlock(); 9366 } 9367 9368 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9369 9370 int perf_swevent_get_recursion_context(void) 9371 { 9372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9373 9374 return get_recursion_context(swhash->recursion); 9375 } 9376 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9377 9378 void perf_swevent_put_recursion_context(int rctx) 9379 { 9380 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9381 9382 put_recursion_context(swhash->recursion, rctx); 9383 } 9384 9385 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9386 { 9387 struct perf_sample_data data; 9388 9389 if (WARN_ON_ONCE(!regs)) 9390 return; 9391 9392 perf_sample_data_init(&data, addr, 0); 9393 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9394 } 9395 9396 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9397 { 9398 int rctx; 9399 9400 preempt_disable_notrace(); 9401 rctx = perf_swevent_get_recursion_context(); 9402 if (unlikely(rctx < 0)) 9403 goto fail; 9404 9405 ___perf_sw_event(event_id, nr, regs, addr); 9406 9407 perf_swevent_put_recursion_context(rctx); 9408 fail: 9409 preempt_enable_notrace(); 9410 } 9411 9412 static void perf_swevent_read(struct perf_event *event) 9413 { 9414 } 9415 9416 static int perf_swevent_add(struct perf_event *event, int flags) 9417 { 9418 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9419 struct hw_perf_event *hwc = &event->hw; 9420 struct hlist_head *head; 9421 9422 if (is_sampling_event(event)) { 9423 hwc->last_period = hwc->sample_period; 9424 perf_swevent_set_period(event); 9425 } 9426 9427 hwc->state = !(flags & PERF_EF_START); 9428 9429 head = find_swevent_head(swhash, event); 9430 if (WARN_ON_ONCE(!head)) 9431 return -EINVAL; 9432 9433 hlist_add_head_rcu(&event->hlist_entry, head); 9434 perf_event_update_userpage(event); 9435 9436 return 0; 9437 } 9438 9439 static void perf_swevent_del(struct perf_event *event, int flags) 9440 { 9441 hlist_del_rcu(&event->hlist_entry); 9442 } 9443 9444 static void perf_swevent_start(struct perf_event *event, int flags) 9445 { 9446 event->hw.state = 0; 9447 } 9448 9449 static void perf_swevent_stop(struct perf_event *event, int flags) 9450 { 9451 event->hw.state = PERF_HES_STOPPED; 9452 } 9453 9454 /* Deref the hlist from the update side */ 9455 static inline struct swevent_hlist * 9456 swevent_hlist_deref(struct swevent_htable *swhash) 9457 { 9458 return rcu_dereference_protected(swhash->swevent_hlist, 9459 lockdep_is_held(&swhash->hlist_mutex)); 9460 } 9461 9462 static void swevent_hlist_release(struct swevent_htable *swhash) 9463 { 9464 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9465 9466 if (!hlist) 9467 return; 9468 9469 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9470 kfree_rcu(hlist, rcu_head); 9471 } 9472 9473 static void swevent_hlist_put_cpu(int cpu) 9474 { 9475 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9476 9477 mutex_lock(&swhash->hlist_mutex); 9478 9479 if (!--swhash->hlist_refcount) 9480 swevent_hlist_release(swhash); 9481 9482 mutex_unlock(&swhash->hlist_mutex); 9483 } 9484 9485 static void swevent_hlist_put(void) 9486 { 9487 int cpu; 9488 9489 for_each_possible_cpu(cpu) 9490 swevent_hlist_put_cpu(cpu); 9491 } 9492 9493 static int swevent_hlist_get_cpu(int cpu) 9494 { 9495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9496 int err = 0; 9497 9498 mutex_lock(&swhash->hlist_mutex); 9499 if (!swevent_hlist_deref(swhash) && 9500 cpumask_test_cpu(cpu, perf_online_mask)) { 9501 struct swevent_hlist *hlist; 9502 9503 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9504 if (!hlist) { 9505 err = -ENOMEM; 9506 goto exit; 9507 } 9508 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9509 } 9510 swhash->hlist_refcount++; 9511 exit: 9512 mutex_unlock(&swhash->hlist_mutex); 9513 9514 return err; 9515 } 9516 9517 static int swevent_hlist_get(void) 9518 { 9519 int err, cpu, failed_cpu; 9520 9521 mutex_lock(&pmus_lock); 9522 for_each_possible_cpu(cpu) { 9523 err = swevent_hlist_get_cpu(cpu); 9524 if (err) { 9525 failed_cpu = cpu; 9526 goto fail; 9527 } 9528 } 9529 mutex_unlock(&pmus_lock); 9530 return 0; 9531 fail: 9532 for_each_possible_cpu(cpu) { 9533 if (cpu == failed_cpu) 9534 break; 9535 swevent_hlist_put_cpu(cpu); 9536 } 9537 mutex_unlock(&pmus_lock); 9538 return err; 9539 } 9540 9541 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9542 9543 static void sw_perf_event_destroy(struct perf_event *event) 9544 { 9545 u64 event_id = event->attr.config; 9546 9547 WARN_ON(event->parent); 9548 9549 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9550 swevent_hlist_put(); 9551 } 9552 9553 static int perf_swevent_init(struct perf_event *event) 9554 { 9555 u64 event_id = event->attr.config; 9556 9557 if (event->attr.type != PERF_TYPE_SOFTWARE) 9558 return -ENOENT; 9559 9560 /* 9561 * no branch sampling for software events 9562 */ 9563 if (has_branch_stack(event)) 9564 return -EOPNOTSUPP; 9565 9566 switch (event_id) { 9567 case PERF_COUNT_SW_CPU_CLOCK: 9568 case PERF_COUNT_SW_TASK_CLOCK: 9569 return -ENOENT; 9570 9571 default: 9572 break; 9573 } 9574 9575 if (event_id >= PERF_COUNT_SW_MAX) 9576 return -ENOENT; 9577 9578 if (!event->parent) { 9579 int err; 9580 9581 err = swevent_hlist_get(); 9582 if (err) 9583 return err; 9584 9585 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9586 event->destroy = sw_perf_event_destroy; 9587 } 9588 9589 return 0; 9590 } 9591 9592 static struct pmu perf_swevent = { 9593 .task_ctx_nr = perf_sw_context, 9594 9595 .capabilities = PERF_PMU_CAP_NO_NMI, 9596 9597 .event_init = perf_swevent_init, 9598 .add = perf_swevent_add, 9599 .del = perf_swevent_del, 9600 .start = perf_swevent_start, 9601 .stop = perf_swevent_stop, 9602 .read = perf_swevent_read, 9603 }; 9604 9605 #ifdef CONFIG_EVENT_TRACING 9606 9607 static int perf_tp_filter_match(struct perf_event *event, 9608 struct perf_sample_data *data) 9609 { 9610 void *record = data->raw->frag.data; 9611 9612 /* only top level events have filters set */ 9613 if (event->parent) 9614 event = event->parent; 9615 9616 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9617 return 1; 9618 return 0; 9619 } 9620 9621 static int perf_tp_event_match(struct perf_event *event, 9622 struct perf_sample_data *data, 9623 struct pt_regs *regs) 9624 { 9625 if (event->hw.state & PERF_HES_STOPPED) 9626 return 0; 9627 /* 9628 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9629 */ 9630 if (event->attr.exclude_kernel && !user_mode(regs)) 9631 return 0; 9632 9633 if (!perf_tp_filter_match(event, data)) 9634 return 0; 9635 9636 return 1; 9637 } 9638 9639 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9640 struct trace_event_call *call, u64 count, 9641 struct pt_regs *regs, struct hlist_head *head, 9642 struct task_struct *task) 9643 { 9644 if (bpf_prog_array_valid(call)) { 9645 *(struct pt_regs **)raw_data = regs; 9646 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9647 perf_swevent_put_recursion_context(rctx); 9648 return; 9649 } 9650 } 9651 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9652 rctx, task); 9653 } 9654 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9655 9656 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9657 struct pt_regs *regs, struct hlist_head *head, int rctx, 9658 struct task_struct *task) 9659 { 9660 struct perf_sample_data data; 9661 struct perf_event *event; 9662 9663 struct perf_raw_record raw = { 9664 .frag = { 9665 .size = entry_size, 9666 .data = record, 9667 }, 9668 }; 9669 9670 perf_sample_data_init(&data, 0, 0); 9671 data.raw = &raw; 9672 9673 perf_trace_buf_update(record, event_type); 9674 9675 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9676 if (perf_tp_event_match(event, &data, regs)) 9677 perf_swevent_event(event, count, &data, regs); 9678 } 9679 9680 /* 9681 * If we got specified a target task, also iterate its context and 9682 * deliver this event there too. 9683 */ 9684 if (task && task != current) { 9685 struct perf_event_context *ctx; 9686 struct trace_entry *entry = record; 9687 9688 rcu_read_lock(); 9689 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9690 if (!ctx) 9691 goto unlock; 9692 9693 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9694 if (event->cpu != smp_processor_id()) 9695 continue; 9696 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9697 continue; 9698 if (event->attr.config != entry->type) 9699 continue; 9700 if (perf_tp_event_match(event, &data, regs)) 9701 perf_swevent_event(event, count, &data, regs); 9702 } 9703 unlock: 9704 rcu_read_unlock(); 9705 } 9706 9707 perf_swevent_put_recursion_context(rctx); 9708 } 9709 EXPORT_SYMBOL_GPL(perf_tp_event); 9710 9711 static void tp_perf_event_destroy(struct perf_event *event) 9712 { 9713 perf_trace_destroy(event); 9714 } 9715 9716 static int perf_tp_event_init(struct perf_event *event) 9717 { 9718 int err; 9719 9720 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9721 return -ENOENT; 9722 9723 /* 9724 * no branch sampling for tracepoint events 9725 */ 9726 if (has_branch_stack(event)) 9727 return -EOPNOTSUPP; 9728 9729 err = perf_trace_init(event); 9730 if (err) 9731 return err; 9732 9733 event->destroy = tp_perf_event_destroy; 9734 9735 return 0; 9736 } 9737 9738 static struct pmu perf_tracepoint = { 9739 .task_ctx_nr = perf_sw_context, 9740 9741 .event_init = perf_tp_event_init, 9742 .add = perf_trace_add, 9743 .del = perf_trace_del, 9744 .start = perf_swevent_start, 9745 .stop = perf_swevent_stop, 9746 .read = perf_swevent_read, 9747 }; 9748 9749 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9750 /* 9751 * Flags in config, used by dynamic PMU kprobe and uprobe 9752 * The flags should match following PMU_FORMAT_ATTR(). 9753 * 9754 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9755 * if not set, create kprobe/uprobe 9756 * 9757 * The following values specify a reference counter (or semaphore in the 9758 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9759 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9760 * 9761 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9762 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9763 */ 9764 enum perf_probe_config { 9765 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9766 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9767 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9768 }; 9769 9770 PMU_FORMAT_ATTR(retprobe, "config:0"); 9771 #endif 9772 9773 #ifdef CONFIG_KPROBE_EVENTS 9774 static struct attribute *kprobe_attrs[] = { 9775 &format_attr_retprobe.attr, 9776 NULL, 9777 }; 9778 9779 static struct attribute_group kprobe_format_group = { 9780 .name = "format", 9781 .attrs = kprobe_attrs, 9782 }; 9783 9784 static const struct attribute_group *kprobe_attr_groups[] = { 9785 &kprobe_format_group, 9786 NULL, 9787 }; 9788 9789 static int perf_kprobe_event_init(struct perf_event *event); 9790 static struct pmu perf_kprobe = { 9791 .task_ctx_nr = perf_sw_context, 9792 .event_init = perf_kprobe_event_init, 9793 .add = perf_trace_add, 9794 .del = perf_trace_del, 9795 .start = perf_swevent_start, 9796 .stop = perf_swevent_stop, 9797 .read = perf_swevent_read, 9798 .attr_groups = kprobe_attr_groups, 9799 }; 9800 9801 static int perf_kprobe_event_init(struct perf_event *event) 9802 { 9803 int err; 9804 bool is_retprobe; 9805 9806 if (event->attr.type != perf_kprobe.type) 9807 return -ENOENT; 9808 9809 if (!perfmon_capable()) 9810 return -EACCES; 9811 9812 /* 9813 * no branch sampling for probe events 9814 */ 9815 if (has_branch_stack(event)) 9816 return -EOPNOTSUPP; 9817 9818 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9819 err = perf_kprobe_init(event, is_retprobe); 9820 if (err) 9821 return err; 9822 9823 event->destroy = perf_kprobe_destroy; 9824 9825 return 0; 9826 } 9827 #endif /* CONFIG_KPROBE_EVENTS */ 9828 9829 #ifdef CONFIG_UPROBE_EVENTS 9830 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9831 9832 static struct attribute *uprobe_attrs[] = { 9833 &format_attr_retprobe.attr, 9834 &format_attr_ref_ctr_offset.attr, 9835 NULL, 9836 }; 9837 9838 static struct attribute_group uprobe_format_group = { 9839 .name = "format", 9840 .attrs = uprobe_attrs, 9841 }; 9842 9843 static const struct attribute_group *uprobe_attr_groups[] = { 9844 &uprobe_format_group, 9845 NULL, 9846 }; 9847 9848 static int perf_uprobe_event_init(struct perf_event *event); 9849 static struct pmu perf_uprobe = { 9850 .task_ctx_nr = perf_sw_context, 9851 .event_init = perf_uprobe_event_init, 9852 .add = perf_trace_add, 9853 .del = perf_trace_del, 9854 .start = perf_swevent_start, 9855 .stop = perf_swevent_stop, 9856 .read = perf_swevent_read, 9857 .attr_groups = uprobe_attr_groups, 9858 }; 9859 9860 static int perf_uprobe_event_init(struct perf_event *event) 9861 { 9862 int err; 9863 unsigned long ref_ctr_offset; 9864 bool is_retprobe; 9865 9866 if (event->attr.type != perf_uprobe.type) 9867 return -ENOENT; 9868 9869 if (!perfmon_capable()) 9870 return -EACCES; 9871 9872 /* 9873 * no branch sampling for probe events 9874 */ 9875 if (has_branch_stack(event)) 9876 return -EOPNOTSUPP; 9877 9878 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9879 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9880 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9881 if (err) 9882 return err; 9883 9884 event->destroy = perf_uprobe_destroy; 9885 9886 return 0; 9887 } 9888 #endif /* CONFIG_UPROBE_EVENTS */ 9889 9890 static inline void perf_tp_register(void) 9891 { 9892 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9893 #ifdef CONFIG_KPROBE_EVENTS 9894 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9895 #endif 9896 #ifdef CONFIG_UPROBE_EVENTS 9897 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9898 #endif 9899 } 9900 9901 static void perf_event_free_filter(struct perf_event *event) 9902 { 9903 ftrace_profile_free_filter(event); 9904 } 9905 9906 #ifdef CONFIG_BPF_SYSCALL 9907 static void bpf_overflow_handler(struct perf_event *event, 9908 struct perf_sample_data *data, 9909 struct pt_regs *regs) 9910 { 9911 struct bpf_perf_event_data_kern ctx = { 9912 .data = data, 9913 .event = event, 9914 }; 9915 int ret = 0; 9916 9917 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9918 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9919 goto out; 9920 rcu_read_lock(); 9921 ret = BPF_PROG_RUN(event->prog, &ctx); 9922 rcu_read_unlock(); 9923 out: 9924 __this_cpu_dec(bpf_prog_active); 9925 if (!ret) 9926 return; 9927 9928 event->orig_overflow_handler(event, data, regs); 9929 } 9930 9931 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9932 { 9933 struct bpf_prog *prog; 9934 9935 if (event->overflow_handler_context) 9936 /* hw breakpoint or kernel counter */ 9937 return -EINVAL; 9938 9939 if (event->prog) 9940 return -EEXIST; 9941 9942 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9943 if (IS_ERR(prog)) 9944 return PTR_ERR(prog); 9945 9946 if (event->attr.precise_ip && 9947 prog->call_get_stack && 9948 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9949 event->attr.exclude_callchain_kernel || 9950 event->attr.exclude_callchain_user)) { 9951 /* 9952 * On perf_event with precise_ip, calling bpf_get_stack() 9953 * may trigger unwinder warnings and occasional crashes. 9954 * bpf_get_[stack|stackid] works around this issue by using 9955 * callchain attached to perf_sample_data. If the 9956 * perf_event does not full (kernel and user) callchain 9957 * attached to perf_sample_data, do not allow attaching BPF 9958 * program that calls bpf_get_[stack|stackid]. 9959 */ 9960 bpf_prog_put(prog); 9961 return -EPROTO; 9962 } 9963 9964 event->prog = prog; 9965 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9966 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9967 return 0; 9968 } 9969 9970 static void perf_event_free_bpf_handler(struct perf_event *event) 9971 { 9972 struct bpf_prog *prog = event->prog; 9973 9974 if (!prog) 9975 return; 9976 9977 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9978 event->prog = NULL; 9979 bpf_prog_put(prog); 9980 } 9981 #else 9982 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9983 { 9984 return -EOPNOTSUPP; 9985 } 9986 static void perf_event_free_bpf_handler(struct perf_event *event) 9987 { 9988 } 9989 #endif 9990 9991 /* 9992 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9993 * with perf_event_open() 9994 */ 9995 static inline bool perf_event_is_tracing(struct perf_event *event) 9996 { 9997 if (event->pmu == &perf_tracepoint) 9998 return true; 9999 #ifdef CONFIG_KPROBE_EVENTS 10000 if (event->pmu == &perf_kprobe) 10001 return true; 10002 #endif 10003 #ifdef CONFIG_UPROBE_EVENTS 10004 if (event->pmu == &perf_uprobe) 10005 return true; 10006 #endif 10007 return false; 10008 } 10009 10010 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10011 { 10012 bool is_kprobe, is_tracepoint, is_syscall_tp; 10013 struct bpf_prog *prog; 10014 int ret; 10015 10016 if (!perf_event_is_tracing(event)) 10017 return perf_event_set_bpf_handler(event, prog_fd); 10018 10019 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10020 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10021 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10022 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10023 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10024 return -EINVAL; 10025 10026 prog = bpf_prog_get(prog_fd); 10027 if (IS_ERR(prog)) 10028 return PTR_ERR(prog); 10029 10030 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10031 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10032 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 10033 /* valid fd, but invalid bpf program type */ 10034 bpf_prog_put(prog); 10035 return -EINVAL; 10036 } 10037 10038 /* Kprobe override only works for kprobes, not uprobes. */ 10039 if (prog->kprobe_override && 10040 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 10041 bpf_prog_put(prog); 10042 return -EINVAL; 10043 } 10044 10045 if (is_tracepoint || is_syscall_tp) { 10046 int off = trace_event_get_offsets(event->tp_event); 10047 10048 if (prog->aux->max_ctx_offset > off) { 10049 bpf_prog_put(prog); 10050 return -EACCES; 10051 } 10052 } 10053 10054 ret = perf_event_attach_bpf_prog(event, prog); 10055 if (ret) 10056 bpf_prog_put(prog); 10057 return ret; 10058 } 10059 10060 static void perf_event_free_bpf_prog(struct perf_event *event) 10061 { 10062 if (!perf_event_is_tracing(event)) { 10063 perf_event_free_bpf_handler(event); 10064 return; 10065 } 10066 perf_event_detach_bpf_prog(event); 10067 } 10068 10069 #else 10070 10071 static inline void perf_tp_register(void) 10072 { 10073 } 10074 10075 static void perf_event_free_filter(struct perf_event *event) 10076 { 10077 } 10078 10079 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 10080 { 10081 return -ENOENT; 10082 } 10083 10084 static void perf_event_free_bpf_prog(struct perf_event *event) 10085 { 10086 } 10087 #endif /* CONFIG_EVENT_TRACING */ 10088 10089 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10090 void perf_bp_event(struct perf_event *bp, void *data) 10091 { 10092 struct perf_sample_data sample; 10093 struct pt_regs *regs = data; 10094 10095 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10096 10097 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10098 perf_swevent_event(bp, 1, &sample, regs); 10099 } 10100 #endif 10101 10102 /* 10103 * Allocate a new address filter 10104 */ 10105 static struct perf_addr_filter * 10106 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10107 { 10108 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10109 struct perf_addr_filter *filter; 10110 10111 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10112 if (!filter) 10113 return NULL; 10114 10115 INIT_LIST_HEAD(&filter->entry); 10116 list_add_tail(&filter->entry, filters); 10117 10118 return filter; 10119 } 10120 10121 static void free_filters_list(struct list_head *filters) 10122 { 10123 struct perf_addr_filter *filter, *iter; 10124 10125 list_for_each_entry_safe(filter, iter, filters, entry) { 10126 path_put(&filter->path); 10127 list_del(&filter->entry); 10128 kfree(filter); 10129 } 10130 } 10131 10132 /* 10133 * Free existing address filters and optionally install new ones 10134 */ 10135 static void perf_addr_filters_splice(struct perf_event *event, 10136 struct list_head *head) 10137 { 10138 unsigned long flags; 10139 LIST_HEAD(list); 10140 10141 if (!has_addr_filter(event)) 10142 return; 10143 10144 /* don't bother with children, they don't have their own filters */ 10145 if (event->parent) 10146 return; 10147 10148 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10149 10150 list_splice_init(&event->addr_filters.list, &list); 10151 if (head) 10152 list_splice(head, &event->addr_filters.list); 10153 10154 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10155 10156 free_filters_list(&list); 10157 } 10158 10159 /* 10160 * Scan through mm's vmas and see if one of them matches the 10161 * @filter; if so, adjust filter's address range. 10162 * Called with mm::mmap_lock down for reading. 10163 */ 10164 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10165 struct mm_struct *mm, 10166 struct perf_addr_filter_range *fr) 10167 { 10168 struct vm_area_struct *vma; 10169 10170 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10171 if (!vma->vm_file) 10172 continue; 10173 10174 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10175 return; 10176 } 10177 } 10178 10179 /* 10180 * Update event's address range filters based on the 10181 * task's existing mappings, if any. 10182 */ 10183 static void perf_event_addr_filters_apply(struct perf_event *event) 10184 { 10185 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10186 struct task_struct *task = READ_ONCE(event->ctx->task); 10187 struct perf_addr_filter *filter; 10188 struct mm_struct *mm = NULL; 10189 unsigned int count = 0; 10190 unsigned long flags; 10191 10192 /* 10193 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10194 * will stop on the parent's child_mutex that our caller is also holding 10195 */ 10196 if (task == TASK_TOMBSTONE) 10197 return; 10198 10199 if (ifh->nr_file_filters) { 10200 mm = get_task_mm(event->ctx->task); 10201 if (!mm) 10202 goto restart; 10203 10204 mmap_read_lock(mm); 10205 } 10206 10207 raw_spin_lock_irqsave(&ifh->lock, flags); 10208 list_for_each_entry(filter, &ifh->list, entry) { 10209 if (filter->path.dentry) { 10210 /* 10211 * Adjust base offset if the filter is associated to a 10212 * binary that needs to be mapped: 10213 */ 10214 event->addr_filter_ranges[count].start = 0; 10215 event->addr_filter_ranges[count].size = 0; 10216 10217 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10218 } else { 10219 event->addr_filter_ranges[count].start = filter->offset; 10220 event->addr_filter_ranges[count].size = filter->size; 10221 } 10222 10223 count++; 10224 } 10225 10226 event->addr_filters_gen++; 10227 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10228 10229 if (ifh->nr_file_filters) { 10230 mmap_read_unlock(mm); 10231 10232 mmput(mm); 10233 } 10234 10235 restart: 10236 perf_event_stop(event, 1); 10237 } 10238 10239 /* 10240 * Address range filtering: limiting the data to certain 10241 * instruction address ranges. Filters are ioctl()ed to us from 10242 * userspace as ascii strings. 10243 * 10244 * Filter string format: 10245 * 10246 * ACTION RANGE_SPEC 10247 * where ACTION is one of the 10248 * * "filter": limit the trace to this region 10249 * * "start": start tracing from this address 10250 * * "stop": stop tracing at this address/region; 10251 * RANGE_SPEC is 10252 * * for kernel addresses: <start address>[/<size>] 10253 * * for object files: <start address>[/<size>]@</path/to/object/file> 10254 * 10255 * if <size> is not specified or is zero, the range is treated as a single 10256 * address; not valid for ACTION=="filter". 10257 */ 10258 enum { 10259 IF_ACT_NONE = -1, 10260 IF_ACT_FILTER, 10261 IF_ACT_START, 10262 IF_ACT_STOP, 10263 IF_SRC_FILE, 10264 IF_SRC_KERNEL, 10265 IF_SRC_FILEADDR, 10266 IF_SRC_KERNELADDR, 10267 }; 10268 10269 enum { 10270 IF_STATE_ACTION = 0, 10271 IF_STATE_SOURCE, 10272 IF_STATE_END, 10273 }; 10274 10275 static const match_table_t if_tokens = { 10276 { IF_ACT_FILTER, "filter" }, 10277 { IF_ACT_START, "start" }, 10278 { IF_ACT_STOP, "stop" }, 10279 { IF_SRC_FILE, "%u/%u@%s" }, 10280 { IF_SRC_KERNEL, "%u/%u" }, 10281 { IF_SRC_FILEADDR, "%u@%s" }, 10282 { IF_SRC_KERNELADDR, "%u" }, 10283 { IF_ACT_NONE, NULL }, 10284 }; 10285 10286 /* 10287 * Address filter string parser 10288 */ 10289 static int 10290 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10291 struct list_head *filters) 10292 { 10293 struct perf_addr_filter *filter = NULL; 10294 char *start, *orig, *filename = NULL; 10295 substring_t args[MAX_OPT_ARGS]; 10296 int state = IF_STATE_ACTION, token; 10297 unsigned int kernel = 0; 10298 int ret = -EINVAL; 10299 10300 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10301 if (!fstr) 10302 return -ENOMEM; 10303 10304 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10305 static const enum perf_addr_filter_action_t actions[] = { 10306 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10307 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10308 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10309 }; 10310 ret = -EINVAL; 10311 10312 if (!*start) 10313 continue; 10314 10315 /* filter definition begins */ 10316 if (state == IF_STATE_ACTION) { 10317 filter = perf_addr_filter_new(event, filters); 10318 if (!filter) 10319 goto fail; 10320 } 10321 10322 token = match_token(start, if_tokens, args); 10323 switch (token) { 10324 case IF_ACT_FILTER: 10325 case IF_ACT_START: 10326 case IF_ACT_STOP: 10327 if (state != IF_STATE_ACTION) 10328 goto fail; 10329 10330 filter->action = actions[token]; 10331 state = IF_STATE_SOURCE; 10332 break; 10333 10334 case IF_SRC_KERNELADDR: 10335 case IF_SRC_KERNEL: 10336 kernel = 1; 10337 fallthrough; 10338 10339 case IF_SRC_FILEADDR: 10340 case IF_SRC_FILE: 10341 if (state != IF_STATE_SOURCE) 10342 goto fail; 10343 10344 *args[0].to = 0; 10345 ret = kstrtoul(args[0].from, 0, &filter->offset); 10346 if (ret) 10347 goto fail; 10348 10349 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10350 *args[1].to = 0; 10351 ret = kstrtoul(args[1].from, 0, &filter->size); 10352 if (ret) 10353 goto fail; 10354 } 10355 10356 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10357 int fpos = token == IF_SRC_FILE ? 2 : 1; 10358 10359 kfree(filename); 10360 filename = match_strdup(&args[fpos]); 10361 if (!filename) { 10362 ret = -ENOMEM; 10363 goto fail; 10364 } 10365 } 10366 10367 state = IF_STATE_END; 10368 break; 10369 10370 default: 10371 goto fail; 10372 } 10373 10374 /* 10375 * Filter definition is fully parsed, validate and install it. 10376 * Make sure that it doesn't contradict itself or the event's 10377 * attribute. 10378 */ 10379 if (state == IF_STATE_END) { 10380 ret = -EINVAL; 10381 if (kernel && event->attr.exclude_kernel) 10382 goto fail; 10383 10384 /* 10385 * ACTION "filter" must have a non-zero length region 10386 * specified. 10387 */ 10388 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10389 !filter->size) 10390 goto fail; 10391 10392 if (!kernel) { 10393 if (!filename) 10394 goto fail; 10395 10396 /* 10397 * For now, we only support file-based filters 10398 * in per-task events; doing so for CPU-wide 10399 * events requires additional context switching 10400 * trickery, since same object code will be 10401 * mapped at different virtual addresses in 10402 * different processes. 10403 */ 10404 ret = -EOPNOTSUPP; 10405 if (!event->ctx->task) 10406 goto fail; 10407 10408 /* look up the path and grab its inode */ 10409 ret = kern_path(filename, LOOKUP_FOLLOW, 10410 &filter->path); 10411 if (ret) 10412 goto fail; 10413 10414 ret = -EINVAL; 10415 if (!filter->path.dentry || 10416 !S_ISREG(d_inode(filter->path.dentry) 10417 ->i_mode)) 10418 goto fail; 10419 10420 event->addr_filters.nr_file_filters++; 10421 } 10422 10423 /* ready to consume more filters */ 10424 state = IF_STATE_ACTION; 10425 filter = NULL; 10426 } 10427 } 10428 10429 if (state != IF_STATE_ACTION) 10430 goto fail; 10431 10432 kfree(filename); 10433 kfree(orig); 10434 10435 return 0; 10436 10437 fail: 10438 kfree(filename); 10439 free_filters_list(filters); 10440 kfree(orig); 10441 10442 return ret; 10443 } 10444 10445 static int 10446 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10447 { 10448 LIST_HEAD(filters); 10449 int ret; 10450 10451 /* 10452 * Since this is called in perf_ioctl() path, we're already holding 10453 * ctx::mutex. 10454 */ 10455 lockdep_assert_held(&event->ctx->mutex); 10456 10457 if (WARN_ON_ONCE(event->parent)) 10458 return -EINVAL; 10459 10460 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10461 if (ret) 10462 goto fail_clear_files; 10463 10464 ret = event->pmu->addr_filters_validate(&filters); 10465 if (ret) 10466 goto fail_free_filters; 10467 10468 /* remove existing filters, if any */ 10469 perf_addr_filters_splice(event, &filters); 10470 10471 /* install new filters */ 10472 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10473 10474 return ret; 10475 10476 fail_free_filters: 10477 free_filters_list(&filters); 10478 10479 fail_clear_files: 10480 event->addr_filters.nr_file_filters = 0; 10481 10482 return ret; 10483 } 10484 10485 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10486 { 10487 int ret = -EINVAL; 10488 char *filter_str; 10489 10490 filter_str = strndup_user(arg, PAGE_SIZE); 10491 if (IS_ERR(filter_str)) 10492 return PTR_ERR(filter_str); 10493 10494 #ifdef CONFIG_EVENT_TRACING 10495 if (perf_event_is_tracing(event)) { 10496 struct perf_event_context *ctx = event->ctx; 10497 10498 /* 10499 * Beware, here be dragons!! 10500 * 10501 * the tracepoint muck will deadlock against ctx->mutex, but 10502 * the tracepoint stuff does not actually need it. So 10503 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10504 * already have a reference on ctx. 10505 * 10506 * This can result in event getting moved to a different ctx, 10507 * but that does not affect the tracepoint state. 10508 */ 10509 mutex_unlock(&ctx->mutex); 10510 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10511 mutex_lock(&ctx->mutex); 10512 } else 10513 #endif 10514 if (has_addr_filter(event)) 10515 ret = perf_event_set_addr_filter(event, filter_str); 10516 10517 kfree(filter_str); 10518 return ret; 10519 } 10520 10521 /* 10522 * hrtimer based swevent callback 10523 */ 10524 10525 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10526 { 10527 enum hrtimer_restart ret = HRTIMER_RESTART; 10528 struct perf_sample_data data; 10529 struct pt_regs *regs; 10530 struct perf_event *event; 10531 u64 period; 10532 10533 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10534 10535 if (event->state != PERF_EVENT_STATE_ACTIVE) 10536 return HRTIMER_NORESTART; 10537 10538 event->pmu->read(event); 10539 10540 perf_sample_data_init(&data, 0, event->hw.last_period); 10541 regs = get_irq_regs(); 10542 10543 if (regs && !perf_exclude_event(event, regs)) { 10544 if (!(event->attr.exclude_idle && is_idle_task(current))) 10545 if (__perf_event_overflow(event, 1, &data, regs)) 10546 ret = HRTIMER_NORESTART; 10547 } 10548 10549 period = max_t(u64, 10000, event->hw.sample_period); 10550 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10551 10552 return ret; 10553 } 10554 10555 static void perf_swevent_start_hrtimer(struct perf_event *event) 10556 { 10557 struct hw_perf_event *hwc = &event->hw; 10558 s64 period; 10559 10560 if (!is_sampling_event(event)) 10561 return; 10562 10563 period = local64_read(&hwc->period_left); 10564 if (period) { 10565 if (period < 0) 10566 period = 10000; 10567 10568 local64_set(&hwc->period_left, 0); 10569 } else { 10570 period = max_t(u64, 10000, hwc->sample_period); 10571 } 10572 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10573 HRTIMER_MODE_REL_PINNED_HARD); 10574 } 10575 10576 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10577 { 10578 struct hw_perf_event *hwc = &event->hw; 10579 10580 if (is_sampling_event(event)) { 10581 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10582 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10583 10584 hrtimer_cancel(&hwc->hrtimer); 10585 } 10586 } 10587 10588 static void perf_swevent_init_hrtimer(struct perf_event *event) 10589 { 10590 struct hw_perf_event *hwc = &event->hw; 10591 10592 if (!is_sampling_event(event)) 10593 return; 10594 10595 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10596 hwc->hrtimer.function = perf_swevent_hrtimer; 10597 10598 /* 10599 * Since hrtimers have a fixed rate, we can do a static freq->period 10600 * mapping and avoid the whole period adjust feedback stuff. 10601 */ 10602 if (event->attr.freq) { 10603 long freq = event->attr.sample_freq; 10604 10605 event->attr.sample_period = NSEC_PER_SEC / freq; 10606 hwc->sample_period = event->attr.sample_period; 10607 local64_set(&hwc->period_left, hwc->sample_period); 10608 hwc->last_period = hwc->sample_period; 10609 event->attr.freq = 0; 10610 } 10611 } 10612 10613 /* 10614 * Software event: cpu wall time clock 10615 */ 10616 10617 static void cpu_clock_event_update(struct perf_event *event) 10618 { 10619 s64 prev; 10620 u64 now; 10621 10622 now = local_clock(); 10623 prev = local64_xchg(&event->hw.prev_count, now); 10624 local64_add(now - prev, &event->count); 10625 } 10626 10627 static void cpu_clock_event_start(struct perf_event *event, int flags) 10628 { 10629 local64_set(&event->hw.prev_count, local_clock()); 10630 perf_swevent_start_hrtimer(event); 10631 } 10632 10633 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10634 { 10635 perf_swevent_cancel_hrtimer(event); 10636 cpu_clock_event_update(event); 10637 } 10638 10639 static int cpu_clock_event_add(struct perf_event *event, int flags) 10640 { 10641 if (flags & PERF_EF_START) 10642 cpu_clock_event_start(event, flags); 10643 perf_event_update_userpage(event); 10644 10645 return 0; 10646 } 10647 10648 static void cpu_clock_event_del(struct perf_event *event, int flags) 10649 { 10650 cpu_clock_event_stop(event, flags); 10651 } 10652 10653 static void cpu_clock_event_read(struct perf_event *event) 10654 { 10655 cpu_clock_event_update(event); 10656 } 10657 10658 static int cpu_clock_event_init(struct perf_event *event) 10659 { 10660 if (event->attr.type != PERF_TYPE_SOFTWARE) 10661 return -ENOENT; 10662 10663 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10664 return -ENOENT; 10665 10666 /* 10667 * no branch sampling for software events 10668 */ 10669 if (has_branch_stack(event)) 10670 return -EOPNOTSUPP; 10671 10672 perf_swevent_init_hrtimer(event); 10673 10674 return 0; 10675 } 10676 10677 static struct pmu perf_cpu_clock = { 10678 .task_ctx_nr = perf_sw_context, 10679 10680 .capabilities = PERF_PMU_CAP_NO_NMI, 10681 10682 .event_init = cpu_clock_event_init, 10683 .add = cpu_clock_event_add, 10684 .del = cpu_clock_event_del, 10685 .start = cpu_clock_event_start, 10686 .stop = cpu_clock_event_stop, 10687 .read = cpu_clock_event_read, 10688 }; 10689 10690 /* 10691 * Software event: task time clock 10692 */ 10693 10694 static void task_clock_event_update(struct perf_event *event, u64 now) 10695 { 10696 u64 prev; 10697 s64 delta; 10698 10699 prev = local64_xchg(&event->hw.prev_count, now); 10700 delta = now - prev; 10701 local64_add(delta, &event->count); 10702 } 10703 10704 static void task_clock_event_start(struct perf_event *event, int flags) 10705 { 10706 local64_set(&event->hw.prev_count, event->ctx->time); 10707 perf_swevent_start_hrtimer(event); 10708 } 10709 10710 static void task_clock_event_stop(struct perf_event *event, int flags) 10711 { 10712 perf_swevent_cancel_hrtimer(event); 10713 task_clock_event_update(event, event->ctx->time); 10714 } 10715 10716 static int task_clock_event_add(struct perf_event *event, int flags) 10717 { 10718 if (flags & PERF_EF_START) 10719 task_clock_event_start(event, flags); 10720 perf_event_update_userpage(event); 10721 10722 return 0; 10723 } 10724 10725 static void task_clock_event_del(struct perf_event *event, int flags) 10726 { 10727 task_clock_event_stop(event, PERF_EF_UPDATE); 10728 } 10729 10730 static void task_clock_event_read(struct perf_event *event) 10731 { 10732 u64 now = perf_clock(); 10733 u64 delta = now - event->ctx->timestamp; 10734 u64 time = event->ctx->time + delta; 10735 10736 task_clock_event_update(event, time); 10737 } 10738 10739 static int task_clock_event_init(struct perf_event *event) 10740 { 10741 if (event->attr.type != PERF_TYPE_SOFTWARE) 10742 return -ENOENT; 10743 10744 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10745 return -ENOENT; 10746 10747 /* 10748 * no branch sampling for software events 10749 */ 10750 if (has_branch_stack(event)) 10751 return -EOPNOTSUPP; 10752 10753 perf_swevent_init_hrtimer(event); 10754 10755 return 0; 10756 } 10757 10758 static struct pmu perf_task_clock = { 10759 .task_ctx_nr = perf_sw_context, 10760 10761 .capabilities = PERF_PMU_CAP_NO_NMI, 10762 10763 .event_init = task_clock_event_init, 10764 .add = task_clock_event_add, 10765 .del = task_clock_event_del, 10766 .start = task_clock_event_start, 10767 .stop = task_clock_event_stop, 10768 .read = task_clock_event_read, 10769 }; 10770 10771 static void perf_pmu_nop_void(struct pmu *pmu) 10772 { 10773 } 10774 10775 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10776 { 10777 } 10778 10779 static int perf_pmu_nop_int(struct pmu *pmu) 10780 { 10781 return 0; 10782 } 10783 10784 static int perf_event_nop_int(struct perf_event *event, u64 value) 10785 { 10786 return 0; 10787 } 10788 10789 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10790 10791 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10792 { 10793 __this_cpu_write(nop_txn_flags, flags); 10794 10795 if (flags & ~PERF_PMU_TXN_ADD) 10796 return; 10797 10798 perf_pmu_disable(pmu); 10799 } 10800 10801 static int perf_pmu_commit_txn(struct pmu *pmu) 10802 { 10803 unsigned int flags = __this_cpu_read(nop_txn_flags); 10804 10805 __this_cpu_write(nop_txn_flags, 0); 10806 10807 if (flags & ~PERF_PMU_TXN_ADD) 10808 return 0; 10809 10810 perf_pmu_enable(pmu); 10811 return 0; 10812 } 10813 10814 static void perf_pmu_cancel_txn(struct pmu *pmu) 10815 { 10816 unsigned int flags = __this_cpu_read(nop_txn_flags); 10817 10818 __this_cpu_write(nop_txn_flags, 0); 10819 10820 if (flags & ~PERF_PMU_TXN_ADD) 10821 return; 10822 10823 perf_pmu_enable(pmu); 10824 } 10825 10826 static int perf_event_idx_default(struct perf_event *event) 10827 { 10828 return 0; 10829 } 10830 10831 /* 10832 * Ensures all contexts with the same task_ctx_nr have the same 10833 * pmu_cpu_context too. 10834 */ 10835 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10836 { 10837 struct pmu *pmu; 10838 10839 if (ctxn < 0) 10840 return NULL; 10841 10842 list_for_each_entry(pmu, &pmus, entry) { 10843 if (pmu->task_ctx_nr == ctxn) 10844 return pmu->pmu_cpu_context; 10845 } 10846 10847 return NULL; 10848 } 10849 10850 static void free_pmu_context(struct pmu *pmu) 10851 { 10852 /* 10853 * Static contexts such as perf_sw_context have a global lifetime 10854 * and may be shared between different PMUs. Avoid freeing them 10855 * when a single PMU is going away. 10856 */ 10857 if (pmu->task_ctx_nr > perf_invalid_context) 10858 return; 10859 10860 free_percpu(pmu->pmu_cpu_context); 10861 } 10862 10863 /* 10864 * Let userspace know that this PMU supports address range filtering: 10865 */ 10866 static ssize_t nr_addr_filters_show(struct device *dev, 10867 struct device_attribute *attr, 10868 char *page) 10869 { 10870 struct pmu *pmu = dev_get_drvdata(dev); 10871 10872 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10873 } 10874 DEVICE_ATTR_RO(nr_addr_filters); 10875 10876 static struct idr pmu_idr; 10877 10878 static ssize_t 10879 type_show(struct device *dev, struct device_attribute *attr, char *page) 10880 { 10881 struct pmu *pmu = dev_get_drvdata(dev); 10882 10883 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10884 } 10885 static DEVICE_ATTR_RO(type); 10886 10887 static ssize_t 10888 perf_event_mux_interval_ms_show(struct device *dev, 10889 struct device_attribute *attr, 10890 char *page) 10891 { 10892 struct pmu *pmu = dev_get_drvdata(dev); 10893 10894 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10895 } 10896 10897 static DEFINE_MUTEX(mux_interval_mutex); 10898 10899 static ssize_t 10900 perf_event_mux_interval_ms_store(struct device *dev, 10901 struct device_attribute *attr, 10902 const char *buf, size_t count) 10903 { 10904 struct pmu *pmu = dev_get_drvdata(dev); 10905 int timer, cpu, ret; 10906 10907 ret = kstrtoint(buf, 0, &timer); 10908 if (ret) 10909 return ret; 10910 10911 if (timer < 1) 10912 return -EINVAL; 10913 10914 /* same value, noting to do */ 10915 if (timer == pmu->hrtimer_interval_ms) 10916 return count; 10917 10918 mutex_lock(&mux_interval_mutex); 10919 pmu->hrtimer_interval_ms = timer; 10920 10921 /* update all cpuctx for this PMU */ 10922 cpus_read_lock(); 10923 for_each_online_cpu(cpu) { 10924 struct perf_cpu_context *cpuctx; 10925 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10926 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10927 10928 cpu_function_call(cpu, 10929 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10930 } 10931 cpus_read_unlock(); 10932 mutex_unlock(&mux_interval_mutex); 10933 10934 return count; 10935 } 10936 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10937 10938 static struct attribute *pmu_dev_attrs[] = { 10939 &dev_attr_type.attr, 10940 &dev_attr_perf_event_mux_interval_ms.attr, 10941 NULL, 10942 }; 10943 ATTRIBUTE_GROUPS(pmu_dev); 10944 10945 static int pmu_bus_running; 10946 static struct bus_type pmu_bus = { 10947 .name = "event_source", 10948 .dev_groups = pmu_dev_groups, 10949 }; 10950 10951 static void pmu_dev_release(struct device *dev) 10952 { 10953 kfree(dev); 10954 } 10955 10956 static int pmu_dev_alloc(struct pmu *pmu) 10957 { 10958 int ret = -ENOMEM; 10959 10960 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10961 if (!pmu->dev) 10962 goto out; 10963 10964 pmu->dev->groups = pmu->attr_groups; 10965 device_initialize(pmu->dev); 10966 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10967 if (ret) 10968 goto free_dev; 10969 10970 dev_set_drvdata(pmu->dev, pmu); 10971 pmu->dev->bus = &pmu_bus; 10972 pmu->dev->release = pmu_dev_release; 10973 ret = device_add(pmu->dev); 10974 if (ret) 10975 goto free_dev; 10976 10977 /* For PMUs with address filters, throw in an extra attribute: */ 10978 if (pmu->nr_addr_filters) 10979 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10980 10981 if (ret) 10982 goto del_dev; 10983 10984 if (pmu->attr_update) 10985 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10986 10987 if (ret) 10988 goto del_dev; 10989 10990 out: 10991 return ret; 10992 10993 del_dev: 10994 device_del(pmu->dev); 10995 10996 free_dev: 10997 put_device(pmu->dev); 10998 goto out; 10999 } 11000 11001 static struct lock_class_key cpuctx_mutex; 11002 static struct lock_class_key cpuctx_lock; 11003 11004 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11005 { 11006 int cpu, ret, max = PERF_TYPE_MAX; 11007 11008 mutex_lock(&pmus_lock); 11009 ret = -ENOMEM; 11010 pmu->pmu_disable_count = alloc_percpu(int); 11011 if (!pmu->pmu_disable_count) 11012 goto unlock; 11013 11014 pmu->type = -1; 11015 if (!name) 11016 goto skip_type; 11017 pmu->name = name; 11018 11019 if (type != PERF_TYPE_SOFTWARE) { 11020 if (type >= 0) 11021 max = type; 11022 11023 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11024 if (ret < 0) 11025 goto free_pdc; 11026 11027 WARN_ON(type >= 0 && ret != type); 11028 11029 type = ret; 11030 } 11031 pmu->type = type; 11032 11033 if (pmu_bus_running) { 11034 ret = pmu_dev_alloc(pmu); 11035 if (ret) 11036 goto free_idr; 11037 } 11038 11039 skip_type: 11040 if (pmu->task_ctx_nr == perf_hw_context) { 11041 static int hw_context_taken = 0; 11042 11043 /* 11044 * Other than systems with heterogeneous CPUs, it never makes 11045 * sense for two PMUs to share perf_hw_context. PMUs which are 11046 * uncore must use perf_invalid_context. 11047 */ 11048 if (WARN_ON_ONCE(hw_context_taken && 11049 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11050 pmu->task_ctx_nr = perf_invalid_context; 11051 11052 hw_context_taken = 1; 11053 } 11054 11055 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11056 if (pmu->pmu_cpu_context) 11057 goto got_cpu_context; 11058 11059 ret = -ENOMEM; 11060 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11061 if (!pmu->pmu_cpu_context) 11062 goto free_dev; 11063 11064 for_each_possible_cpu(cpu) { 11065 struct perf_cpu_context *cpuctx; 11066 11067 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11068 __perf_event_init_context(&cpuctx->ctx); 11069 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11070 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11071 cpuctx->ctx.pmu = pmu; 11072 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11073 11074 __perf_mux_hrtimer_init(cpuctx, cpu); 11075 11076 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11077 cpuctx->heap = cpuctx->heap_default; 11078 } 11079 11080 got_cpu_context: 11081 if (!pmu->start_txn) { 11082 if (pmu->pmu_enable) { 11083 /* 11084 * If we have pmu_enable/pmu_disable calls, install 11085 * transaction stubs that use that to try and batch 11086 * hardware accesses. 11087 */ 11088 pmu->start_txn = perf_pmu_start_txn; 11089 pmu->commit_txn = perf_pmu_commit_txn; 11090 pmu->cancel_txn = perf_pmu_cancel_txn; 11091 } else { 11092 pmu->start_txn = perf_pmu_nop_txn; 11093 pmu->commit_txn = perf_pmu_nop_int; 11094 pmu->cancel_txn = perf_pmu_nop_void; 11095 } 11096 } 11097 11098 if (!pmu->pmu_enable) { 11099 pmu->pmu_enable = perf_pmu_nop_void; 11100 pmu->pmu_disable = perf_pmu_nop_void; 11101 } 11102 11103 if (!pmu->check_period) 11104 pmu->check_period = perf_event_nop_int; 11105 11106 if (!pmu->event_idx) 11107 pmu->event_idx = perf_event_idx_default; 11108 11109 /* 11110 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11111 * since these cannot be in the IDR. This way the linear search 11112 * is fast, provided a valid software event is provided. 11113 */ 11114 if (type == PERF_TYPE_SOFTWARE || !name) 11115 list_add_rcu(&pmu->entry, &pmus); 11116 else 11117 list_add_tail_rcu(&pmu->entry, &pmus); 11118 11119 atomic_set(&pmu->exclusive_cnt, 0); 11120 ret = 0; 11121 unlock: 11122 mutex_unlock(&pmus_lock); 11123 11124 return ret; 11125 11126 free_dev: 11127 device_del(pmu->dev); 11128 put_device(pmu->dev); 11129 11130 free_idr: 11131 if (pmu->type != PERF_TYPE_SOFTWARE) 11132 idr_remove(&pmu_idr, pmu->type); 11133 11134 free_pdc: 11135 free_percpu(pmu->pmu_disable_count); 11136 goto unlock; 11137 } 11138 EXPORT_SYMBOL_GPL(perf_pmu_register); 11139 11140 void perf_pmu_unregister(struct pmu *pmu) 11141 { 11142 mutex_lock(&pmus_lock); 11143 list_del_rcu(&pmu->entry); 11144 11145 /* 11146 * We dereference the pmu list under both SRCU and regular RCU, so 11147 * synchronize against both of those. 11148 */ 11149 synchronize_srcu(&pmus_srcu); 11150 synchronize_rcu(); 11151 11152 free_percpu(pmu->pmu_disable_count); 11153 if (pmu->type != PERF_TYPE_SOFTWARE) 11154 idr_remove(&pmu_idr, pmu->type); 11155 if (pmu_bus_running) { 11156 if (pmu->nr_addr_filters) 11157 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11158 device_del(pmu->dev); 11159 put_device(pmu->dev); 11160 } 11161 free_pmu_context(pmu); 11162 mutex_unlock(&pmus_lock); 11163 } 11164 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11165 11166 static inline bool has_extended_regs(struct perf_event *event) 11167 { 11168 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11169 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11170 } 11171 11172 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11173 { 11174 struct perf_event_context *ctx = NULL; 11175 int ret; 11176 11177 if (!try_module_get(pmu->module)) 11178 return -ENODEV; 11179 11180 /* 11181 * A number of pmu->event_init() methods iterate the sibling_list to, 11182 * for example, validate if the group fits on the PMU. Therefore, 11183 * if this is a sibling event, acquire the ctx->mutex to protect 11184 * the sibling_list. 11185 */ 11186 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11187 /* 11188 * This ctx->mutex can nest when we're called through 11189 * inheritance. See the perf_event_ctx_lock_nested() comment. 11190 */ 11191 ctx = perf_event_ctx_lock_nested(event->group_leader, 11192 SINGLE_DEPTH_NESTING); 11193 BUG_ON(!ctx); 11194 } 11195 11196 event->pmu = pmu; 11197 ret = pmu->event_init(event); 11198 11199 if (ctx) 11200 perf_event_ctx_unlock(event->group_leader, ctx); 11201 11202 if (!ret) { 11203 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11204 has_extended_regs(event)) 11205 ret = -EOPNOTSUPP; 11206 11207 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11208 event_has_any_exclude_flag(event)) 11209 ret = -EINVAL; 11210 11211 if (ret && event->destroy) 11212 event->destroy(event); 11213 } 11214 11215 if (ret) 11216 module_put(pmu->module); 11217 11218 return ret; 11219 } 11220 11221 static struct pmu *perf_init_event(struct perf_event *event) 11222 { 11223 bool extended_type = false; 11224 int idx, type, ret; 11225 struct pmu *pmu; 11226 11227 idx = srcu_read_lock(&pmus_srcu); 11228 11229 /* Try parent's PMU first: */ 11230 if (event->parent && event->parent->pmu) { 11231 pmu = event->parent->pmu; 11232 ret = perf_try_init_event(pmu, event); 11233 if (!ret) 11234 goto unlock; 11235 } 11236 11237 /* 11238 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11239 * are often aliases for PERF_TYPE_RAW. 11240 */ 11241 type = event->attr.type; 11242 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11243 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11244 if (!type) { 11245 type = PERF_TYPE_RAW; 11246 } else { 11247 extended_type = true; 11248 event->attr.config &= PERF_HW_EVENT_MASK; 11249 } 11250 } 11251 11252 again: 11253 rcu_read_lock(); 11254 pmu = idr_find(&pmu_idr, type); 11255 rcu_read_unlock(); 11256 if (pmu) { 11257 if (event->attr.type != type && type != PERF_TYPE_RAW && 11258 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11259 goto fail; 11260 11261 ret = perf_try_init_event(pmu, event); 11262 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11263 type = event->attr.type; 11264 goto again; 11265 } 11266 11267 if (ret) 11268 pmu = ERR_PTR(ret); 11269 11270 goto unlock; 11271 } 11272 11273 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11274 ret = perf_try_init_event(pmu, event); 11275 if (!ret) 11276 goto unlock; 11277 11278 if (ret != -ENOENT) { 11279 pmu = ERR_PTR(ret); 11280 goto unlock; 11281 } 11282 } 11283 fail: 11284 pmu = ERR_PTR(-ENOENT); 11285 unlock: 11286 srcu_read_unlock(&pmus_srcu, idx); 11287 11288 return pmu; 11289 } 11290 11291 static void attach_sb_event(struct perf_event *event) 11292 { 11293 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11294 11295 raw_spin_lock(&pel->lock); 11296 list_add_rcu(&event->sb_list, &pel->list); 11297 raw_spin_unlock(&pel->lock); 11298 } 11299 11300 /* 11301 * We keep a list of all !task (and therefore per-cpu) events 11302 * that need to receive side-band records. 11303 * 11304 * This avoids having to scan all the various PMU per-cpu contexts 11305 * looking for them. 11306 */ 11307 static void account_pmu_sb_event(struct perf_event *event) 11308 { 11309 if (is_sb_event(event)) 11310 attach_sb_event(event); 11311 } 11312 11313 static void account_event_cpu(struct perf_event *event, int cpu) 11314 { 11315 if (event->parent) 11316 return; 11317 11318 if (is_cgroup_event(event)) 11319 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11320 } 11321 11322 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11323 static void account_freq_event_nohz(void) 11324 { 11325 #ifdef CONFIG_NO_HZ_FULL 11326 /* Lock so we don't race with concurrent unaccount */ 11327 spin_lock(&nr_freq_lock); 11328 if (atomic_inc_return(&nr_freq_events) == 1) 11329 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11330 spin_unlock(&nr_freq_lock); 11331 #endif 11332 } 11333 11334 static void account_freq_event(void) 11335 { 11336 if (tick_nohz_full_enabled()) 11337 account_freq_event_nohz(); 11338 else 11339 atomic_inc(&nr_freq_events); 11340 } 11341 11342 11343 static void account_event(struct perf_event *event) 11344 { 11345 bool inc = false; 11346 11347 if (event->parent) 11348 return; 11349 11350 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11351 inc = true; 11352 if (event->attr.mmap || event->attr.mmap_data) 11353 atomic_inc(&nr_mmap_events); 11354 if (event->attr.build_id) 11355 atomic_inc(&nr_build_id_events); 11356 if (event->attr.comm) 11357 atomic_inc(&nr_comm_events); 11358 if (event->attr.namespaces) 11359 atomic_inc(&nr_namespaces_events); 11360 if (event->attr.cgroup) 11361 atomic_inc(&nr_cgroup_events); 11362 if (event->attr.task) 11363 atomic_inc(&nr_task_events); 11364 if (event->attr.freq) 11365 account_freq_event(); 11366 if (event->attr.context_switch) { 11367 atomic_inc(&nr_switch_events); 11368 inc = true; 11369 } 11370 if (has_branch_stack(event)) 11371 inc = true; 11372 if (is_cgroup_event(event)) 11373 inc = true; 11374 if (event->attr.ksymbol) 11375 atomic_inc(&nr_ksymbol_events); 11376 if (event->attr.bpf_event) 11377 atomic_inc(&nr_bpf_events); 11378 if (event->attr.text_poke) 11379 atomic_inc(&nr_text_poke_events); 11380 11381 if (inc) { 11382 /* 11383 * We need the mutex here because static_branch_enable() 11384 * must complete *before* the perf_sched_count increment 11385 * becomes visible. 11386 */ 11387 if (atomic_inc_not_zero(&perf_sched_count)) 11388 goto enabled; 11389 11390 mutex_lock(&perf_sched_mutex); 11391 if (!atomic_read(&perf_sched_count)) { 11392 static_branch_enable(&perf_sched_events); 11393 /* 11394 * Guarantee that all CPUs observe they key change and 11395 * call the perf scheduling hooks before proceeding to 11396 * install events that need them. 11397 */ 11398 synchronize_rcu(); 11399 } 11400 /* 11401 * Now that we have waited for the sync_sched(), allow further 11402 * increments to by-pass the mutex. 11403 */ 11404 atomic_inc(&perf_sched_count); 11405 mutex_unlock(&perf_sched_mutex); 11406 } 11407 enabled: 11408 11409 account_event_cpu(event, event->cpu); 11410 11411 account_pmu_sb_event(event); 11412 } 11413 11414 /* 11415 * Allocate and initialize an event structure 11416 */ 11417 static struct perf_event * 11418 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11419 struct task_struct *task, 11420 struct perf_event *group_leader, 11421 struct perf_event *parent_event, 11422 perf_overflow_handler_t overflow_handler, 11423 void *context, int cgroup_fd) 11424 { 11425 struct pmu *pmu; 11426 struct perf_event *event; 11427 struct hw_perf_event *hwc; 11428 long err = -EINVAL; 11429 int node; 11430 11431 if ((unsigned)cpu >= nr_cpu_ids) { 11432 if (!task || cpu != -1) 11433 return ERR_PTR(-EINVAL); 11434 } 11435 if (attr->sigtrap && !task) { 11436 /* Requires a task: avoid signalling random tasks. */ 11437 return ERR_PTR(-EINVAL); 11438 } 11439 11440 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11441 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11442 node); 11443 if (!event) 11444 return ERR_PTR(-ENOMEM); 11445 11446 /* 11447 * Single events are their own group leaders, with an 11448 * empty sibling list: 11449 */ 11450 if (!group_leader) 11451 group_leader = event; 11452 11453 mutex_init(&event->child_mutex); 11454 INIT_LIST_HEAD(&event->child_list); 11455 11456 INIT_LIST_HEAD(&event->event_entry); 11457 INIT_LIST_HEAD(&event->sibling_list); 11458 INIT_LIST_HEAD(&event->active_list); 11459 init_event_group(event); 11460 INIT_LIST_HEAD(&event->rb_entry); 11461 INIT_LIST_HEAD(&event->active_entry); 11462 INIT_LIST_HEAD(&event->addr_filters.list); 11463 INIT_HLIST_NODE(&event->hlist_entry); 11464 11465 11466 init_waitqueue_head(&event->waitq); 11467 event->pending_disable = -1; 11468 init_irq_work(&event->pending, perf_pending_event); 11469 11470 mutex_init(&event->mmap_mutex); 11471 raw_spin_lock_init(&event->addr_filters.lock); 11472 11473 atomic_long_set(&event->refcount, 1); 11474 event->cpu = cpu; 11475 event->attr = *attr; 11476 event->group_leader = group_leader; 11477 event->pmu = NULL; 11478 event->oncpu = -1; 11479 11480 event->parent = parent_event; 11481 11482 event->ns = get_pid_ns(task_active_pid_ns(current)); 11483 event->id = atomic64_inc_return(&perf_event_id); 11484 11485 event->state = PERF_EVENT_STATE_INACTIVE; 11486 11487 if (event->attr.sigtrap) 11488 atomic_set(&event->event_limit, 1); 11489 11490 if (task) { 11491 event->attach_state = PERF_ATTACH_TASK; 11492 /* 11493 * XXX pmu::event_init needs to know what task to account to 11494 * and we cannot use the ctx information because we need the 11495 * pmu before we get a ctx. 11496 */ 11497 event->hw.target = get_task_struct(task); 11498 } 11499 11500 event->clock = &local_clock; 11501 if (parent_event) 11502 event->clock = parent_event->clock; 11503 11504 if (!overflow_handler && parent_event) { 11505 overflow_handler = parent_event->overflow_handler; 11506 context = parent_event->overflow_handler_context; 11507 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11508 if (overflow_handler == bpf_overflow_handler) { 11509 struct bpf_prog *prog = parent_event->prog; 11510 11511 bpf_prog_inc(prog); 11512 event->prog = prog; 11513 event->orig_overflow_handler = 11514 parent_event->orig_overflow_handler; 11515 } 11516 #endif 11517 } 11518 11519 if (overflow_handler) { 11520 event->overflow_handler = overflow_handler; 11521 event->overflow_handler_context = context; 11522 } else if (is_write_backward(event)){ 11523 event->overflow_handler = perf_event_output_backward; 11524 event->overflow_handler_context = NULL; 11525 } else { 11526 event->overflow_handler = perf_event_output_forward; 11527 event->overflow_handler_context = NULL; 11528 } 11529 11530 perf_event__state_init(event); 11531 11532 pmu = NULL; 11533 11534 hwc = &event->hw; 11535 hwc->sample_period = attr->sample_period; 11536 if (attr->freq && attr->sample_freq) 11537 hwc->sample_period = 1; 11538 hwc->last_period = hwc->sample_period; 11539 11540 local64_set(&hwc->period_left, hwc->sample_period); 11541 11542 /* 11543 * We currently do not support PERF_SAMPLE_READ on inherited events. 11544 * See perf_output_read(). 11545 */ 11546 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11547 goto err_ns; 11548 11549 if (!has_branch_stack(event)) 11550 event->attr.branch_sample_type = 0; 11551 11552 pmu = perf_init_event(event); 11553 if (IS_ERR(pmu)) { 11554 err = PTR_ERR(pmu); 11555 goto err_ns; 11556 } 11557 11558 /* 11559 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11560 * be different on other CPUs in the uncore mask. 11561 */ 11562 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11563 err = -EINVAL; 11564 goto err_pmu; 11565 } 11566 11567 if (event->attr.aux_output && 11568 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11569 err = -EOPNOTSUPP; 11570 goto err_pmu; 11571 } 11572 11573 if (cgroup_fd != -1) { 11574 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11575 if (err) 11576 goto err_pmu; 11577 } 11578 11579 err = exclusive_event_init(event); 11580 if (err) 11581 goto err_pmu; 11582 11583 if (has_addr_filter(event)) { 11584 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11585 sizeof(struct perf_addr_filter_range), 11586 GFP_KERNEL); 11587 if (!event->addr_filter_ranges) { 11588 err = -ENOMEM; 11589 goto err_per_task; 11590 } 11591 11592 /* 11593 * Clone the parent's vma offsets: they are valid until exec() 11594 * even if the mm is not shared with the parent. 11595 */ 11596 if (event->parent) { 11597 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11598 11599 raw_spin_lock_irq(&ifh->lock); 11600 memcpy(event->addr_filter_ranges, 11601 event->parent->addr_filter_ranges, 11602 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11603 raw_spin_unlock_irq(&ifh->lock); 11604 } 11605 11606 /* force hw sync on the address filters */ 11607 event->addr_filters_gen = 1; 11608 } 11609 11610 if (!event->parent) { 11611 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11612 err = get_callchain_buffers(attr->sample_max_stack); 11613 if (err) 11614 goto err_addr_filters; 11615 } 11616 } 11617 11618 err = security_perf_event_alloc(event); 11619 if (err) 11620 goto err_callchain_buffer; 11621 11622 /* symmetric to unaccount_event() in _free_event() */ 11623 account_event(event); 11624 11625 return event; 11626 11627 err_callchain_buffer: 11628 if (!event->parent) { 11629 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11630 put_callchain_buffers(); 11631 } 11632 err_addr_filters: 11633 kfree(event->addr_filter_ranges); 11634 11635 err_per_task: 11636 exclusive_event_destroy(event); 11637 11638 err_pmu: 11639 if (is_cgroup_event(event)) 11640 perf_detach_cgroup(event); 11641 if (event->destroy) 11642 event->destroy(event); 11643 module_put(pmu->module); 11644 err_ns: 11645 if (event->ns) 11646 put_pid_ns(event->ns); 11647 if (event->hw.target) 11648 put_task_struct(event->hw.target); 11649 kmem_cache_free(perf_event_cache, event); 11650 11651 return ERR_PTR(err); 11652 } 11653 11654 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11655 struct perf_event_attr *attr) 11656 { 11657 u32 size; 11658 int ret; 11659 11660 /* Zero the full structure, so that a short copy will be nice. */ 11661 memset(attr, 0, sizeof(*attr)); 11662 11663 ret = get_user(size, &uattr->size); 11664 if (ret) 11665 return ret; 11666 11667 /* ABI compatibility quirk: */ 11668 if (!size) 11669 size = PERF_ATTR_SIZE_VER0; 11670 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11671 goto err_size; 11672 11673 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11674 if (ret) { 11675 if (ret == -E2BIG) 11676 goto err_size; 11677 return ret; 11678 } 11679 11680 attr->size = size; 11681 11682 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11683 return -EINVAL; 11684 11685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11686 return -EINVAL; 11687 11688 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11689 return -EINVAL; 11690 11691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11692 u64 mask = attr->branch_sample_type; 11693 11694 /* only using defined bits */ 11695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11696 return -EINVAL; 11697 11698 /* at least one branch bit must be set */ 11699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11700 return -EINVAL; 11701 11702 /* propagate priv level, when not set for branch */ 11703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11704 11705 /* exclude_kernel checked on syscall entry */ 11706 if (!attr->exclude_kernel) 11707 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11708 11709 if (!attr->exclude_user) 11710 mask |= PERF_SAMPLE_BRANCH_USER; 11711 11712 if (!attr->exclude_hv) 11713 mask |= PERF_SAMPLE_BRANCH_HV; 11714 /* 11715 * adjust user setting (for HW filter setup) 11716 */ 11717 attr->branch_sample_type = mask; 11718 } 11719 /* privileged levels capture (kernel, hv): check permissions */ 11720 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11721 ret = perf_allow_kernel(attr); 11722 if (ret) 11723 return ret; 11724 } 11725 } 11726 11727 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11728 ret = perf_reg_validate(attr->sample_regs_user); 11729 if (ret) 11730 return ret; 11731 } 11732 11733 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11734 if (!arch_perf_have_user_stack_dump()) 11735 return -ENOSYS; 11736 11737 /* 11738 * We have __u32 type for the size, but so far 11739 * we can only use __u16 as maximum due to the 11740 * __u16 sample size limit. 11741 */ 11742 if (attr->sample_stack_user >= USHRT_MAX) 11743 return -EINVAL; 11744 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11745 return -EINVAL; 11746 } 11747 11748 if (!attr->sample_max_stack) 11749 attr->sample_max_stack = sysctl_perf_event_max_stack; 11750 11751 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11752 ret = perf_reg_validate(attr->sample_regs_intr); 11753 11754 #ifndef CONFIG_CGROUP_PERF 11755 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11756 return -EINVAL; 11757 #endif 11758 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11759 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11760 return -EINVAL; 11761 11762 if (!attr->inherit && attr->inherit_thread) 11763 return -EINVAL; 11764 11765 if (attr->remove_on_exec && attr->enable_on_exec) 11766 return -EINVAL; 11767 11768 if (attr->sigtrap && !attr->remove_on_exec) 11769 return -EINVAL; 11770 11771 out: 11772 return ret; 11773 11774 err_size: 11775 put_user(sizeof(*attr), &uattr->size); 11776 ret = -E2BIG; 11777 goto out; 11778 } 11779 11780 static int 11781 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11782 { 11783 struct perf_buffer *rb = NULL; 11784 int ret = -EINVAL; 11785 11786 if (!output_event) 11787 goto set; 11788 11789 /* don't allow circular references */ 11790 if (event == output_event) 11791 goto out; 11792 11793 /* 11794 * Don't allow cross-cpu buffers 11795 */ 11796 if (output_event->cpu != event->cpu) 11797 goto out; 11798 11799 /* 11800 * If its not a per-cpu rb, it must be the same task. 11801 */ 11802 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11803 goto out; 11804 11805 /* 11806 * Mixing clocks in the same buffer is trouble you don't need. 11807 */ 11808 if (output_event->clock != event->clock) 11809 goto out; 11810 11811 /* 11812 * Either writing ring buffer from beginning or from end. 11813 * Mixing is not allowed. 11814 */ 11815 if (is_write_backward(output_event) != is_write_backward(event)) 11816 goto out; 11817 11818 /* 11819 * If both events generate aux data, they must be on the same PMU 11820 */ 11821 if (has_aux(event) && has_aux(output_event) && 11822 event->pmu != output_event->pmu) 11823 goto out; 11824 11825 set: 11826 mutex_lock(&event->mmap_mutex); 11827 /* Can't redirect output if we've got an active mmap() */ 11828 if (atomic_read(&event->mmap_count)) 11829 goto unlock; 11830 11831 if (output_event) { 11832 /* get the rb we want to redirect to */ 11833 rb = ring_buffer_get(output_event); 11834 if (!rb) 11835 goto unlock; 11836 } 11837 11838 ring_buffer_attach(event, rb); 11839 11840 ret = 0; 11841 unlock: 11842 mutex_unlock(&event->mmap_mutex); 11843 11844 out: 11845 return ret; 11846 } 11847 11848 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11849 { 11850 if (b < a) 11851 swap(a, b); 11852 11853 mutex_lock(a); 11854 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11855 } 11856 11857 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11858 { 11859 bool nmi_safe = false; 11860 11861 switch (clk_id) { 11862 case CLOCK_MONOTONIC: 11863 event->clock = &ktime_get_mono_fast_ns; 11864 nmi_safe = true; 11865 break; 11866 11867 case CLOCK_MONOTONIC_RAW: 11868 event->clock = &ktime_get_raw_fast_ns; 11869 nmi_safe = true; 11870 break; 11871 11872 case CLOCK_REALTIME: 11873 event->clock = &ktime_get_real_ns; 11874 break; 11875 11876 case CLOCK_BOOTTIME: 11877 event->clock = &ktime_get_boottime_ns; 11878 break; 11879 11880 case CLOCK_TAI: 11881 event->clock = &ktime_get_clocktai_ns; 11882 break; 11883 11884 default: 11885 return -EINVAL; 11886 } 11887 11888 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11889 return -EINVAL; 11890 11891 return 0; 11892 } 11893 11894 /* 11895 * Variation on perf_event_ctx_lock_nested(), except we take two context 11896 * mutexes. 11897 */ 11898 static struct perf_event_context * 11899 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11900 struct perf_event_context *ctx) 11901 { 11902 struct perf_event_context *gctx; 11903 11904 again: 11905 rcu_read_lock(); 11906 gctx = READ_ONCE(group_leader->ctx); 11907 if (!refcount_inc_not_zero(&gctx->refcount)) { 11908 rcu_read_unlock(); 11909 goto again; 11910 } 11911 rcu_read_unlock(); 11912 11913 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11914 11915 if (group_leader->ctx != gctx) { 11916 mutex_unlock(&ctx->mutex); 11917 mutex_unlock(&gctx->mutex); 11918 put_ctx(gctx); 11919 goto again; 11920 } 11921 11922 return gctx; 11923 } 11924 11925 /** 11926 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11927 * 11928 * @attr_uptr: event_id type attributes for monitoring/sampling 11929 * @pid: target pid 11930 * @cpu: target cpu 11931 * @group_fd: group leader event fd 11932 */ 11933 SYSCALL_DEFINE5(perf_event_open, 11934 struct perf_event_attr __user *, attr_uptr, 11935 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11936 { 11937 struct perf_event *group_leader = NULL, *output_event = NULL; 11938 struct perf_event *event, *sibling; 11939 struct perf_event_attr attr; 11940 struct perf_event_context *ctx, *gctx; 11941 struct file *event_file = NULL; 11942 struct fd group = {NULL, 0}; 11943 struct task_struct *task = NULL; 11944 struct pmu *pmu; 11945 int event_fd; 11946 int move_group = 0; 11947 int err; 11948 int f_flags = O_RDWR; 11949 int cgroup_fd = -1; 11950 11951 /* for future expandability... */ 11952 if (flags & ~PERF_FLAG_ALL) 11953 return -EINVAL; 11954 11955 /* Do we allow access to perf_event_open(2) ? */ 11956 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11957 if (err) 11958 return err; 11959 11960 err = perf_copy_attr(attr_uptr, &attr); 11961 if (err) 11962 return err; 11963 11964 if (!attr.exclude_kernel) { 11965 err = perf_allow_kernel(&attr); 11966 if (err) 11967 return err; 11968 } 11969 11970 if (attr.namespaces) { 11971 if (!perfmon_capable()) 11972 return -EACCES; 11973 } 11974 11975 if (attr.freq) { 11976 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11977 return -EINVAL; 11978 } else { 11979 if (attr.sample_period & (1ULL << 63)) 11980 return -EINVAL; 11981 } 11982 11983 /* Only privileged users can get physical addresses */ 11984 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11985 err = perf_allow_kernel(&attr); 11986 if (err) 11987 return err; 11988 } 11989 11990 /* REGS_INTR can leak data, lockdown must prevent this */ 11991 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 11992 err = security_locked_down(LOCKDOWN_PERF); 11993 if (err) 11994 return err; 11995 } 11996 11997 /* 11998 * In cgroup mode, the pid argument is used to pass the fd 11999 * opened to the cgroup directory in cgroupfs. The cpu argument 12000 * designates the cpu on which to monitor threads from that 12001 * cgroup. 12002 */ 12003 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12004 return -EINVAL; 12005 12006 if (flags & PERF_FLAG_FD_CLOEXEC) 12007 f_flags |= O_CLOEXEC; 12008 12009 event_fd = get_unused_fd_flags(f_flags); 12010 if (event_fd < 0) 12011 return event_fd; 12012 12013 if (group_fd != -1) { 12014 err = perf_fget_light(group_fd, &group); 12015 if (err) 12016 goto err_fd; 12017 group_leader = group.file->private_data; 12018 if (flags & PERF_FLAG_FD_OUTPUT) 12019 output_event = group_leader; 12020 if (flags & PERF_FLAG_FD_NO_GROUP) 12021 group_leader = NULL; 12022 } 12023 12024 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12025 task = find_lively_task_by_vpid(pid); 12026 if (IS_ERR(task)) { 12027 err = PTR_ERR(task); 12028 goto err_group_fd; 12029 } 12030 } 12031 12032 if (task && group_leader && 12033 group_leader->attr.inherit != attr.inherit) { 12034 err = -EINVAL; 12035 goto err_task; 12036 } 12037 12038 if (flags & PERF_FLAG_PID_CGROUP) 12039 cgroup_fd = pid; 12040 12041 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12042 NULL, NULL, cgroup_fd); 12043 if (IS_ERR(event)) { 12044 err = PTR_ERR(event); 12045 goto err_task; 12046 } 12047 12048 if (is_sampling_event(event)) { 12049 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12050 err = -EOPNOTSUPP; 12051 goto err_alloc; 12052 } 12053 } 12054 12055 /* 12056 * Special case software events and allow them to be part of 12057 * any hardware group. 12058 */ 12059 pmu = event->pmu; 12060 12061 if (attr.use_clockid) { 12062 err = perf_event_set_clock(event, attr.clockid); 12063 if (err) 12064 goto err_alloc; 12065 } 12066 12067 if (pmu->task_ctx_nr == perf_sw_context) 12068 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12069 12070 if (group_leader) { 12071 if (is_software_event(event) && 12072 !in_software_context(group_leader)) { 12073 /* 12074 * If the event is a sw event, but the group_leader 12075 * is on hw context. 12076 * 12077 * Allow the addition of software events to hw 12078 * groups, this is safe because software events 12079 * never fail to schedule. 12080 */ 12081 pmu = group_leader->ctx->pmu; 12082 } else if (!is_software_event(event) && 12083 is_software_event(group_leader) && 12084 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12085 /* 12086 * In case the group is a pure software group, and we 12087 * try to add a hardware event, move the whole group to 12088 * the hardware context. 12089 */ 12090 move_group = 1; 12091 } 12092 } 12093 12094 /* 12095 * Get the target context (task or percpu): 12096 */ 12097 ctx = find_get_context(pmu, task, event); 12098 if (IS_ERR(ctx)) { 12099 err = PTR_ERR(ctx); 12100 goto err_alloc; 12101 } 12102 12103 /* 12104 * Look up the group leader (we will attach this event to it): 12105 */ 12106 if (group_leader) { 12107 err = -EINVAL; 12108 12109 /* 12110 * Do not allow a recursive hierarchy (this new sibling 12111 * becoming part of another group-sibling): 12112 */ 12113 if (group_leader->group_leader != group_leader) 12114 goto err_context; 12115 12116 /* All events in a group should have the same clock */ 12117 if (group_leader->clock != event->clock) 12118 goto err_context; 12119 12120 /* 12121 * Make sure we're both events for the same CPU; 12122 * grouping events for different CPUs is broken; since 12123 * you can never concurrently schedule them anyhow. 12124 */ 12125 if (group_leader->cpu != event->cpu) 12126 goto err_context; 12127 12128 /* 12129 * Make sure we're both on the same task, or both 12130 * per-CPU events. 12131 */ 12132 if (group_leader->ctx->task != ctx->task) 12133 goto err_context; 12134 12135 /* 12136 * Do not allow to attach to a group in a different task 12137 * or CPU context. If we're moving SW events, we'll fix 12138 * this up later, so allow that. 12139 */ 12140 if (!move_group && group_leader->ctx != ctx) 12141 goto err_context; 12142 12143 /* 12144 * Only a group leader can be exclusive or pinned 12145 */ 12146 if (attr.exclusive || attr.pinned) 12147 goto err_context; 12148 } 12149 12150 if (output_event) { 12151 err = perf_event_set_output(event, output_event); 12152 if (err) 12153 goto err_context; 12154 } 12155 12156 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12157 f_flags); 12158 if (IS_ERR(event_file)) { 12159 err = PTR_ERR(event_file); 12160 event_file = NULL; 12161 goto err_context; 12162 } 12163 12164 if (task) { 12165 err = down_read_interruptible(&task->signal->exec_update_lock); 12166 if (err) 12167 goto err_file; 12168 12169 /* 12170 * Preserve ptrace permission check for backwards compatibility. 12171 * 12172 * We must hold exec_update_lock across this and any potential 12173 * perf_install_in_context() call for this new event to 12174 * serialize against exec() altering our credentials (and the 12175 * perf_event_exit_task() that could imply). 12176 */ 12177 err = -EACCES; 12178 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 12179 goto err_cred; 12180 } 12181 12182 if (move_group) { 12183 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12184 12185 if (gctx->task == TASK_TOMBSTONE) { 12186 err = -ESRCH; 12187 goto err_locked; 12188 } 12189 12190 /* 12191 * Check if we raced against another sys_perf_event_open() call 12192 * moving the software group underneath us. 12193 */ 12194 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12195 /* 12196 * If someone moved the group out from under us, check 12197 * if this new event wound up on the same ctx, if so 12198 * its the regular !move_group case, otherwise fail. 12199 */ 12200 if (gctx != ctx) { 12201 err = -EINVAL; 12202 goto err_locked; 12203 } else { 12204 perf_event_ctx_unlock(group_leader, gctx); 12205 move_group = 0; 12206 } 12207 } 12208 12209 /* 12210 * Failure to create exclusive events returns -EBUSY. 12211 */ 12212 err = -EBUSY; 12213 if (!exclusive_event_installable(group_leader, ctx)) 12214 goto err_locked; 12215 12216 for_each_sibling_event(sibling, group_leader) { 12217 if (!exclusive_event_installable(sibling, ctx)) 12218 goto err_locked; 12219 } 12220 } else { 12221 mutex_lock(&ctx->mutex); 12222 } 12223 12224 if (ctx->task == TASK_TOMBSTONE) { 12225 err = -ESRCH; 12226 goto err_locked; 12227 } 12228 12229 if (!perf_event_validate_size(event)) { 12230 err = -E2BIG; 12231 goto err_locked; 12232 } 12233 12234 if (!task) { 12235 /* 12236 * Check if the @cpu we're creating an event for is online. 12237 * 12238 * We use the perf_cpu_context::ctx::mutex to serialize against 12239 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12240 */ 12241 struct perf_cpu_context *cpuctx = 12242 container_of(ctx, struct perf_cpu_context, ctx); 12243 12244 if (!cpuctx->online) { 12245 err = -ENODEV; 12246 goto err_locked; 12247 } 12248 } 12249 12250 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12251 err = -EINVAL; 12252 goto err_locked; 12253 } 12254 12255 /* 12256 * Must be under the same ctx::mutex as perf_install_in_context(), 12257 * because we need to serialize with concurrent event creation. 12258 */ 12259 if (!exclusive_event_installable(event, ctx)) { 12260 err = -EBUSY; 12261 goto err_locked; 12262 } 12263 12264 WARN_ON_ONCE(ctx->parent_ctx); 12265 12266 /* 12267 * This is the point on no return; we cannot fail hereafter. This is 12268 * where we start modifying current state. 12269 */ 12270 12271 if (move_group) { 12272 /* 12273 * See perf_event_ctx_lock() for comments on the details 12274 * of swizzling perf_event::ctx. 12275 */ 12276 perf_remove_from_context(group_leader, 0); 12277 put_ctx(gctx); 12278 12279 for_each_sibling_event(sibling, group_leader) { 12280 perf_remove_from_context(sibling, 0); 12281 put_ctx(gctx); 12282 } 12283 12284 /* 12285 * Wait for everybody to stop referencing the events through 12286 * the old lists, before installing it on new lists. 12287 */ 12288 synchronize_rcu(); 12289 12290 /* 12291 * Install the group siblings before the group leader. 12292 * 12293 * Because a group leader will try and install the entire group 12294 * (through the sibling list, which is still in-tact), we can 12295 * end up with siblings installed in the wrong context. 12296 * 12297 * By installing siblings first we NO-OP because they're not 12298 * reachable through the group lists. 12299 */ 12300 for_each_sibling_event(sibling, group_leader) { 12301 perf_event__state_init(sibling); 12302 perf_install_in_context(ctx, sibling, sibling->cpu); 12303 get_ctx(ctx); 12304 } 12305 12306 /* 12307 * Removing from the context ends up with disabled 12308 * event. What we want here is event in the initial 12309 * startup state, ready to be add into new context. 12310 */ 12311 perf_event__state_init(group_leader); 12312 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12313 get_ctx(ctx); 12314 } 12315 12316 /* 12317 * Precalculate sample_data sizes; do while holding ctx::mutex such 12318 * that we're serialized against further additions and before 12319 * perf_install_in_context() which is the point the event is active and 12320 * can use these values. 12321 */ 12322 perf_event__header_size(event); 12323 perf_event__id_header_size(event); 12324 12325 event->owner = current; 12326 12327 perf_install_in_context(ctx, event, event->cpu); 12328 perf_unpin_context(ctx); 12329 12330 if (move_group) 12331 perf_event_ctx_unlock(group_leader, gctx); 12332 mutex_unlock(&ctx->mutex); 12333 12334 if (task) { 12335 up_read(&task->signal->exec_update_lock); 12336 put_task_struct(task); 12337 } 12338 12339 mutex_lock(¤t->perf_event_mutex); 12340 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12341 mutex_unlock(¤t->perf_event_mutex); 12342 12343 /* 12344 * Drop the reference on the group_event after placing the 12345 * new event on the sibling_list. This ensures destruction 12346 * of the group leader will find the pointer to itself in 12347 * perf_group_detach(). 12348 */ 12349 fdput(group); 12350 fd_install(event_fd, event_file); 12351 return event_fd; 12352 12353 err_locked: 12354 if (move_group) 12355 perf_event_ctx_unlock(group_leader, gctx); 12356 mutex_unlock(&ctx->mutex); 12357 err_cred: 12358 if (task) 12359 up_read(&task->signal->exec_update_lock); 12360 err_file: 12361 fput(event_file); 12362 err_context: 12363 perf_unpin_context(ctx); 12364 put_ctx(ctx); 12365 err_alloc: 12366 /* 12367 * If event_file is set, the fput() above will have called ->release() 12368 * and that will take care of freeing the event. 12369 */ 12370 if (!event_file) 12371 free_event(event); 12372 err_task: 12373 if (task) 12374 put_task_struct(task); 12375 err_group_fd: 12376 fdput(group); 12377 err_fd: 12378 put_unused_fd(event_fd); 12379 return err; 12380 } 12381 12382 /** 12383 * perf_event_create_kernel_counter 12384 * 12385 * @attr: attributes of the counter to create 12386 * @cpu: cpu in which the counter is bound 12387 * @task: task to profile (NULL for percpu) 12388 */ 12389 struct perf_event * 12390 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12391 struct task_struct *task, 12392 perf_overflow_handler_t overflow_handler, 12393 void *context) 12394 { 12395 struct perf_event_context *ctx; 12396 struct perf_event *event; 12397 int err; 12398 12399 /* 12400 * Grouping is not supported for kernel events, neither is 'AUX', 12401 * make sure the caller's intentions are adjusted. 12402 */ 12403 if (attr->aux_output) 12404 return ERR_PTR(-EINVAL); 12405 12406 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12407 overflow_handler, context, -1); 12408 if (IS_ERR(event)) { 12409 err = PTR_ERR(event); 12410 goto err; 12411 } 12412 12413 /* Mark owner so we could distinguish it from user events. */ 12414 event->owner = TASK_TOMBSTONE; 12415 12416 /* 12417 * Get the target context (task or percpu): 12418 */ 12419 ctx = find_get_context(event->pmu, task, event); 12420 if (IS_ERR(ctx)) { 12421 err = PTR_ERR(ctx); 12422 goto err_free; 12423 } 12424 12425 WARN_ON_ONCE(ctx->parent_ctx); 12426 mutex_lock(&ctx->mutex); 12427 if (ctx->task == TASK_TOMBSTONE) { 12428 err = -ESRCH; 12429 goto err_unlock; 12430 } 12431 12432 if (!task) { 12433 /* 12434 * Check if the @cpu we're creating an event for is online. 12435 * 12436 * We use the perf_cpu_context::ctx::mutex to serialize against 12437 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12438 */ 12439 struct perf_cpu_context *cpuctx = 12440 container_of(ctx, struct perf_cpu_context, ctx); 12441 if (!cpuctx->online) { 12442 err = -ENODEV; 12443 goto err_unlock; 12444 } 12445 } 12446 12447 if (!exclusive_event_installable(event, ctx)) { 12448 err = -EBUSY; 12449 goto err_unlock; 12450 } 12451 12452 perf_install_in_context(ctx, event, event->cpu); 12453 perf_unpin_context(ctx); 12454 mutex_unlock(&ctx->mutex); 12455 12456 return event; 12457 12458 err_unlock: 12459 mutex_unlock(&ctx->mutex); 12460 perf_unpin_context(ctx); 12461 put_ctx(ctx); 12462 err_free: 12463 free_event(event); 12464 err: 12465 return ERR_PTR(err); 12466 } 12467 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12468 12469 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12470 { 12471 struct perf_event_context *src_ctx; 12472 struct perf_event_context *dst_ctx; 12473 struct perf_event *event, *tmp; 12474 LIST_HEAD(events); 12475 12476 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12477 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12478 12479 /* 12480 * See perf_event_ctx_lock() for comments on the details 12481 * of swizzling perf_event::ctx. 12482 */ 12483 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12484 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12485 event_entry) { 12486 perf_remove_from_context(event, 0); 12487 unaccount_event_cpu(event, src_cpu); 12488 put_ctx(src_ctx); 12489 list_add(&event->migrate_entry, &events); 12490 } 12491 12492 /* 12493 * Wait for the events to quiesce before re-instating them. 12494 */ 12495 synchronize_rcu(); 12496 12497 /* 12498 * Re-instate events in 2 passes. 12499 * 12500 * Skip over group leaders and only install siblings on this first 12501 * pass, siblings will not get enabled without a leader, however a 12502 * leader will enable its siblings, even if those are still on the old 12503 * context. 12504 */ 12505 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12506 if (event->group_leader == event) 12507 continue; 12508 12509 list_del(&event->migrate_entry); 12510 if (event->state >= PERF_EVENT_STATE_OFF) 12511 event->state = PERF_EVENT_STATE_INACTIVE; 12512 account_event_cpu(event, dst_cpu); 12513 perf_install_in_context(dst_ctx, event, dst_cpu); 12514 get_ctx(dst_ctx); 12515 } 12516 12517 /* 12518 * Once all the siblings are setup properly, install the group leaders 12519 * to make it go. 12520 */ 12521 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12522 list_del(&event->migrate_entry); 12523 if (event->state >= PERF_EVENT_STATE_OFF) 12524 event->state = PERF_EVENT_STATE_INACTIVE; 12525 account_event_cpu(event, dst_cpu); 12526 perf_install_in_context(dst_ctx, event, dst_cpu); 12527 get_ctx(dst_ctx); 12528 } 12529 mutex_unlock(&dst_ctx->mutex); 12530 mutex_unlock(&src_ctx->mutex); 12531 } 12532 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12533 12534 static void sync_child_event(struct perf_event *child_event) 12535 { 12536 struct perf_event *parent_event = child_event->parent; 12537 u64 child_val; 12538 12539 if (child_event->attr.inherit_stat) { 12540 struct task_struct *task = child_event->ctx->task; 12541 12542 if (task && task != TASK_TOMBSTONE) 12543 perf_event_read_event(child_event, task); 12544 } 12545 12546 child_val = perf_event_count(child_event); 12547 12548 /* 12549 * Add back the child's count to the parent's count: 12550 */ 12551 atomic64_add(child_val, &parent_event->child_count); 12552 atomic64_add(child_event->total_time_enabled, 12553 &parent_event->child_total_time_enabled); 12554 atomic64_add(child_event->total_time_running, 12555 &parent_event->child_total_time_running); 12556 } 12557 12558 static void 12559 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12560 { 12561 struct perf_event *parent_event = event->parent; 12562 unsigned long detach_flags = 0; 12563 12564 if (parent_event) { 12565 /* 12566 * Do not destroy the 'original' grouping; because of the 12567 * context switch optimization the original events could've 12568 * ended up in a random child task. 12569 * 12570 * If we were to destroy the original group, all group related 12571 * operations would cease to function properly after this 12572 * random child dies. 12573 * 12574 * Do destroy all inherited groups, we don't care about those 12575 * and being thorough is better. 12576 */ 12577 detach_flags = DETACH_GROUP | DETACH_CHILD; 12578 mutex_lock(&parent_event->child_mutex); 12579 } 12580 12581 perf_remove_from_context(event, detach_flags); 12582 12583 raw_spin_lock_irq(&ctx->lock); 12584 if (event->state > PERF_EVENT_STATE_EXIT) 12585 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12586 raw_spin_unlock_irq(&ctx->lock); 12587 12588 /* 12589 * Child events can be freed. 12590 */ 12591 if (parent_event) { 12592 mutex_unlock(&parent_event->child_mutex); 12593 /* 12594 * Kick perf_poll() for is_event_hup(); 12595 */ 12596 perf_event_wakeup(parent_event); 12597 free_event(event); 12598 put_event(parent_event); 12599 return; 12600 } 12601 12602 /* 12603 * Parent events are governed by their filedesc, retain them. 12604 */ 12605 perf_event_wakeup(event); 12606 } 12607 12608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12609 { 12610 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12611 struct perf_event *child_event, *next; 12612 12613 WARN_ON_ONCE(child != current); 12614 12615 child_ctx = perf_pin_task_context(child, ctxn); 12616 if (!child_ctx) 12617 return; 12618 12619 /* 12620 * In order to reduce the amount of tricky in ctx tear-down, we hold 12621 * ctx::mutex over the entire thing. This serializes against almost 12622 * everything that wants to access the ctx. 12623 * 12624 * The exception is sys_perf_event_open() / 12625 * perf_event_create_kernel_count() which does find_get_context() 12626 * without ctx::mutex (it cannot because of the move_group double mutex 12627 * lock thing). See the comments in perf_install_in_context(). 12628 */ 12629 mutex_lock(&child_ctx->mutex); 12630 12631 /* 12632 * In a single ctx::lock section, de-schedule the events and detach the 12633 * context from the task such that we cannot ever get it scheduled back 12634 * in. 12635 */ 12636 raw_spin_lock_irq(&child_ctx->lock); 12637 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12638 12639 /* 12640 * Now that the context is inactive, destroy the task <-> ctx relation 12641 * and mark the context dead. 12642 */ 12643 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12644 put_ctx(child_ctx); /* cannot be last */ 12645 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12646 put_task_struct(current); /* cannot be last */ 12647 12648 clone_ctx = unclone_ctx(child_ctx); 12649 raw_spin_unlock_irq(&child_ctx->lock); 12650 12651 if (clone_ctx) 12652 put_ctx(clone_ctx); 12653 12654 /* 12655 * Report the task dead after unscheduling the events so that we 12656 * won't get any samples after PERF_RECORD_EXIT. We can however still 12657 * get a few PERF_RECORD_READ events. 12658 */ 12659 perf_event_task(child, child_ctx, 0); 12660 12661 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12662 perf_event_exit_event(child_event, child_ctx); 12663 12664 mutex_unlock(&child_ctx->mutex); 12665 12666 put_ctx(child_ctx); 12667 } 12668 12669 /* 12670 * When a child task exits, feed back event values to parent events. 12671 * 12672 * Can be called with exec_update_lock held when called from 12673 * setup_new_exec(). 12674 */ 12675 void perf_event_exit_task(struct task_struct *child) 12676 { 12677 struct perf_event *event, *tmp; 12678 int ctxn; 12679 12680 mutex_lock(&child->perf_event_mutex); 12681 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12682 owner_entry) { 12683 list_del_init(&event->owner_entry); 12684 12685 /* 12686 * Ensure the list deletion is visible before we clear 12687 * the owner, closes a race against perf_release() where 12688 * we need to serialize on the owner->perf_event_mutex. 12689 */ 12690 smp_store_release(&event->owner, NULL); 12691 } 12692 mutex_unlock(&child->perf_event_mutex); 12693 12694 for_each_task_context_nr(ctxn) 12695 perf_event_exit_task_context(child, ctxn); 12696 12697 /* 12698 * The perf_event_exit_task_context calls perf_event_task 12699 * with child's task_ctx, which generates EXIT events for 12700 * child contexts and sets child->perf_event_ctxp[] to NULL. 12701 * At this point we need to send EXIT events to cpu contexts. 12702 */ 12703 perf_event_task(child, NULL, 0); 12704 } 12705 12706 static void perf_free_event(struct perf_event *event, 12707 struct perf_event_context *ctx) 12708 { 12709 struct perf_event *parent = event->parent; 12710 12711 if (WARN_ON_ONCE(!parent)) 12712 return; 12713 12714 mutex_lock(&parent->child_mutex); 12715 list_del_init(&event->child_list); 12716 mutex_unlock(&parent->child_mutex); 12717 12718 put_event(parent); 12719 12720 raw_spin_lock_irq(&ctx->lock); 12721 perf_group_detach(event); 12722 list_del_event(event, ctx); 12723 raw_spin_unlock_irq(&ctx->lock); 12724 free_event(event); 12725 } 12726 12727 /* 12728 * Free a context as created by inheritance by perf_event_init_task() below, 12729 * used by fork() in case of fail. 12730 * 12731 * Even though the task has never lived, the context and events have been 12732 * exposed through the child_list, so we must take care tearing it all down. 12733 */ 12734 void perf_event_free_task(struct task_struct *task) 12735 { 12736 struct perf_event_context *ctx; 12737 struct perf_event *event, *tmp; 12738 int ctxn; 12739 12740 for_each_task_context_nr(ctxn) { 12741 ctx = task->perf_event_ctxp[ctxn]; 12742 if (!ctx) 12743 continue; 12744 12745 mutex_lock(&ctx->mutex); 12746 raw_spin_lock_irq(&ctx->lock); 12747 /* 12748 * Destroy the task <-> ctx relation and mark the context dead. 12749 * 12750 * This is important because even though the task hasn't been 12751 * exposed yet the context has been (through child_list). 12752 */ 12753 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12754 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12755 put_task_struct(task); /* cannot be last */ 12756 raw_spin_unlock_irq(&ctx->lock); 12757 12758 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12759 perf_free_event(event, ctx); 12760 12761 mutex_unlock(&ctx->mutex); 12762 12763 /* 12764 * perf_event_release_kernel() could've stolen some of our 12765 * child events and still have them on its free_list. In that 12766 * case we must wait for these events to have been freed (in 12767 * particular all their references to this task must've been 12768 * dropped). 12769 * 12770 * Without this copy_process() will unconditionally free this 12771 * task (irrespective of its reference count) and 12772 * _free_event()'s put_task_struct(event->hw.target) will be a 12773 * use-after-free. 12774 * 12775 * Wait for all events to drop their context reference. 12776 */ 12777 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12778 put_ctx(ctx); /* must be last */ 12779 } 12780 } 12781 12782 void perf_event_delayed_put(struct task_struct *task) 12783 { 12784 int ctxn; 12785 12786 for_each_task_context_nr(ctxn) 12787 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12788 } 12789 12790 struct file *perf_event_get(unsigned int fd) 12791 { 12792 struct file *file = fget(fd); 12793 if (!file) 12794 return ERR_PTR(-EBADF); 12795 12796 if (file->f_op != &perf_fops) { 12797 fput(file); 12798 return ERR_PTR(-EBADF); 12799 } 12800 12801 return file; 12802 } 12803 12804 const struct perf_event *perf_get_event(struct file *file) 12805 { 12806 if (file->f_op != &perf_fops) 12807 return ERR_PTR(-EINVAL); 12808 12809 return file->private_data; 12810 } 12811 12812 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12813 { 12814 if (!event) 12815 return ERR_PTR(-EINVAL); 12816 12817 return &event->attr; 12818 } 12819 12820 /* 12821 * Inherit an event from parent task to child task. 12822 * 12823 * Returns: 12824 * - valid pointer on success 12825 * - NULL for orphaned events 12826 * - IS_ERR() on error 12827 */ 12828 static struct perf_event * 12829 inherit_event(struct perf_event *parent_event, 12830 struct task_struct *parent, 12831 struct perf_event_context *parent_ctx, 12832 struct task_struct *child, 12833 struct perf_event *group_leader, 12834 struct perf_event_context *child_ctx) 12835 { 12836 enum perf_event_state parent_state = parent_event->state; 12837 struct perf_event *child_event; 12838 unsigned long flags; 12839 12840 /* 12841 * Instead of creating recursive hierarchies of events, 12842 * we link inherited events back to the original parent, 12843 * which has a filp for sure, which we use as the reference 12844 * count: 12845 */ 12846 if (parent_event->parent) 12847 parent_event = parent_event->parent; 12848 12849 child_event = perf_event_alloc(&parent_event->attr, 12850 parent_event->cpu, 12851 child, 12852 group_leader, parent_event, 12853 NULL, NULL, -1); 12854 if (IS_ERR(child_event)) 12855 return child_event; 12856 12857 12858 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12859 !child_ctx->task_ctx_data) { 12860 struct pmu *pmu = child_event->pmu; 12861 12862 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12863 if (!child_ctx->task_ctx_data) { 12864 free_event(child_event); 12865 return ERR_PTR(-ENOMEM); 12866 } 12867 } 12868 12869 /* 12870 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12871 * must be under the same lock in order to serialize against 12872 * perf_event_release_kernel(), such that either we must observe 12873 * is_orphaned_event() or they will observe us on the child_list. 12874 */ 12875 mutex_lock(&parent_event->child_mutex); 12876 if (is_orphaned_event(parent_event) || 12877 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12878 mutex_unlock(&parent_event->child_mutex); 12879 /* task_ctx_data is freed with child_ctx */ 12880 free_event(child_event); 12881 return NULL; 12882 } 12883 12884 get_ctx(child_ctx); 12885 12886 /* 12887 * Make the child state follow the state of the parent event, 12888 * not its attr.disabled bit. We hold the parent's mutex, 12889 * so we won't race with perf_event_{en, dis}able_family. 12890 */ 12891 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12892 child_event->state = PERF_EVENT_STATE_INACTIVE; 12893 else 12894 child_event->state = PERF_EVENT_STATE_OFF; 12895 12896 if (parent_event->attr.freq) { 12897 u64 sample_period = parent_event->hw.sample_period; 12898 struct hw_perf_event *hwc = &child_event->hw; 12899 12900 hwc->sample_period = sample_period; 12901 hwc->last_period = sample_period; 12902 12903 local64_set(&hwc->period_left, sample_period); 12904 } 12905 12906 child_event->ctx = child_ctx; 12907 child_event->overflow_handler = parent_event->overflow_handler; 12908 child_event->overflow_handler_context 12909 = parent_event->overflow_handler_context; 12910 12911 /* 12912 * Precalculate sample_data sizes 12913 */ 12914 perf_event__header_size(child_event); 12915 perf_event__id_header_size(child_event); 12916 12917 /* 12918 * Link it up in the child's context: 12919 */ 12920 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12921 add_event_to_ctx(child_event, child_ctx); 12922 child_event->attach_state |= PERF_ATTACH_CHILD; 12923 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12924 12925 /* 12926 * Link this into the parent event's child list 12927 */ 12928 list_add_tail(&child_event->child_list, &parent_event->child_list); 12929 mutex_unlock(&parent_event->child_mutex); 12930 12931 return child_event; 12932 } 12933 12934 /* 12935 * Inherits an event group. 12936 * 12937 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12938 * This matches with perf_event_release_kernel() removing all child events. 12939 * 12940 * Returns: 12941 * - 0 on success 12942 * - <0 on error 12943 */ 12944 static int inherit_group(struct perf_event *parent_event, 12945 struct task_struct *parent, 12946 struct perf_event_context *parent_ctx, 12947 struct task_struct *child, 12948 struct perf_event_context *child_ctx) 12949 { 12950 struct perf_event *leader; 12951 struct perf_event *sub; 12952 struct perf_event *child_ctr; 12953 12954 leader = inherit_event(parent_event, parent, parent_ctx, 12955 child, NULL, child_ctx); 12956 if (IS_ERR(leader)) 12957 return PTR_ERR(leader); 12958 /* 12959 * @leader can be NULL here because of is_orphaned_event(). In this 12960 * case inherit_event() will create individual events, similar to what 12961 * perf_group_detach() would do anyway. 12962 */ 12963 for_each_sibling_event(sub, parent_event) { 12964 child_ctr = inherit_event(sub, parent, parent_ctx, 12965 child, leader, child_ctx); 12966 if (IS_ERR(child_ctr)) 12967 return PTR_ERR(child_ctr); 12968 12969 if (sub->aux_event == parent_event && child_ctr && 12970 !perf_get_aux_event(child_ctr, leader)) 12971 return -EINVAL; 12972 } 12973 return 0; 12974 } 12975 12976 /* 12977 * Creates the child task context and tries to inherit the event-group. 12978 * 12979 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12980 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12981 * consistent with perf_event_release_kernel() removing all child events. 12982 * 12983 * Returns: 12984 * - 0 on success 12985 * - <0 on error 12986 */ 12987 static int 12988 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12989 struct perf_event_context *parent_ctx, 12990 struct task_struct *child, int ctxn, 12991 u64 clone_flags, int *inherited_all) 12992 { 12993 int ret; 12994 struct perf_event_context *child_ctx; 12995 12996 if (!event->attr.inherit || 12997 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 12998 /* Do not inherit if sigtrap and signal handlers were cleared. */ 12999 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13000 *inherited_all = 0; 13001 return 0; 13002 } 13003 13004 child_ctx = child->perf_event_ctxp[ctxn]; 13005 if (!child_ctx) { 13006 /* 13007 * This is executed from the parent task context, so 13008 * inherit events that have been marked for cloning. 13009 * First allocate and initialize a context for the 13010 * child. 13011 */ 13012 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13013 if (!child_ctx) 13014 return -ENOMEM; 13015 13016 child->perf_event_ctxp[ctxn] = child_ctx; 13017 } 13018 13019 ret = inherit_group(event, parent, parent_ctx, 13020 child, child_ctx); 13021 13022 if (ret) 13023 *inherited_all = 0; 13024 13025 return ret; 13026 } 13027 13028 /* 13029 * Initialize the perf_event context in task_struct 13030 */ 13031 static int perf_event_init_context(struct task_struct *child, int ctxn, 13032 u64 clone_flags) 13033 { 13034 struct perf_event_context *child_ctx, *parent_ctx; 13035 struct perf_event_context *cloned_ctx; 13036 struct perf_event *event; 13037 struct task_struct *parent = current; 13038 int inherited_all = 1; 13039 unsigned long flags; 13040 int ret = 0; 13041 13042 if (likely(!parent->perf_event_ctxp[ctxn])) 13043 return 0; 13044 13045 /* 13046 * If the parent's context is a clone, pin it so it won't get 13047 * swapped under us. 13048 */ 13049 parent_ctx = perf_pin_task_context(parent, ctxn); 13050 if (!parent_ctx) 13051 return 0; 13052 13053 /* 13054 * No need to check if parent_ctx != NULL here; since we saw 13055 * it non-NULL earlier, the only reason for it to become NULL 13056 * is if we exit, and since we're currently in the middle of 13057 * a fork we can't be exiting at the same time. 13058 */ 13059 13060 /* 13061 * Lock the parent list. No need to lock the child - not PID 13062 * hashed yet and not running, so nobody can access it. 13063 */ 13064 mutex_lock(&parent_ctx->mutex); 13065 13066 /* 13067 * We dont have to disable NMIs - we are only looking at 13068 * the list, not manipulating it: 13069 */ 13070 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13071 ret = inherit_task_group(event, parent, parent_ctx, 13072 child, ctxn, clone_flags, 13073 &inherited_all); 13074 if (ret) 13075 goto out_unlock; 13076 } 13077 13078 /* 13079 * We can't hold ctx->lock when iterating the ->flexible_group list due 13080 * to allocations, but we need to prevent rotation because 13081 * rotate_ctx() will change the list from interrupt context. 13082 */ 13083 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13084 parent_ctx->rotate_disable = 1; 13085 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13086 13087 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13088 ret = inherit_task_group(event, parent, parent_ctx, 13089 child, ctxn, clone_flags, 13090 &inherited_all); 13091 if (ret) 13092 goto out_unlock; 13093 } 13094 13095 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13096 parent_ctx->rotate_disable = 0; 13097 13098 child_ctx = child->perf_event_ctxp[ctxn]; 13099 13100 if (child_ctx && inherited_all) { 13101 /* 13102 * Mark the child context as a clone of the parent 13103 * context, or of whatever the parent is a clone of. 13104 * 13105 * Note that if the parent is a clone, the holding of 13106 * parent_ctx->lock avoids it from being uncloned. 13107 */ 13108 cloned_ctx = parent_ctx->parent_ctx; 13109 if (cloned_ctx) { 13110 child_ctx->parent_ctx = cloned_ctx; 13111 child_ctx->parent_gen = parent_ctx->parent_gen; 13112 } else { 13113 child_ctx->parent_ctx = parent_ctx; 13114 child_ctx->parent_gen = parent_ctx->generation; 13115 } 13116 get_ctx(child_ctx->parent_ctx); 13117 } 13118 13119 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13120 out_unlock: 13121 mutex_unlock(&parent_ctx->mutex); 13122 13123 perf_unpin_context(parent_ctx); 13124 put_ctx(parent_ctx); 13125 13126 return ret; 13127 } 13128 13129 /* 13130 * Initialize the perf_event context in task_struct 13131 */ 13132 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13133 { 13134 int ctxn, ret; 13135 13136 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13137 mutex_init(&child->perf_event_mutex); 13138 INIT_LIST_HEAD(&child->perf_event_list); 13139 13140 for_each_task_context_nr(ctxn) { 13141 ret = perf_event_init_context(child, ctxn, clone_flags); 13142 if (ret) { 13143 perf_event_free_task(child); 13144 return ret; 13145 } 13146 } 13147 13148 return 0; 13149 } 13150 13151 static void __init perf_event_init_all_cpus(void) 13152 { 13153 struct swevent_htable *swhash; 13154 int cpu; 13155 13156 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13157 13158 for_each_possible_cpu(cpu) { 13159 swhash = &per_cpu(swevent_htable, cpu); 13160 mutex_init(&swhash->hlist_mutex); 13161 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13162 13163 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13164 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13165 13166 #ifdef CONFIG_CGROUP_PERF 13167 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13168 #endif 13169 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13170 } 13171 } 13172 13173 static void perf_swevent_init_cpu(unsigned int cpu) 13174 { 13175 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13176 13177 mutex_lock(&swhash->hlist_mutex); 13178 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13179 struct swevent_hlist *hlist; 13180 13181 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13182 WARN_ON(!hlist); 13183 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13184 } 13185 mutex_unlock(&swhash->hlist_mutex); 13186 } 13187 13188 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13189 static void __perf_event_exit_context(void *__info) 13190 { 13191 struct perf_event_context *ctx = __info; 13192 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13193 struct perf_event *event; 13194 13195 raw_spin_lock(&ctx->lock); 13196 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13197 list_for_each_entry(event, &ctx->event_list, event_entry) 13198 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13199 raw_spin_unlock(&ctx->lock); 13200 } 13201 13202 static void perf_event_exit_cpu_context(int cpu) 13203 { 13204 struct perf_cpu_context *cpuctx; 13205 struct perf_event_context *ctx; 13206 struct pmu *pmu; 13207 13208 mutex_lock(&pmus_lock); 13209 list_for_each_entry(pmu, &pmus, entry) { 13210 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13211 ctx = &cpuctx->ctx; 13212 13213 mutex_lock(&ctx->mutex); 13214 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13215 cpuctx->online = 0; 13216 mutex_unlock(&ctx->mutex); 13217 } 13218 cpumask_clear_cpu(cpu, perf_online_mask); 13219 mutex_unlock(&pmus_lock); 13220 } 13221 #else 13222 13223 static void perf_event_exit_cpu_context(int cpu) { } 13224 13225 #endif 13226 13227 int perf_event_init_cpu(unsigned int cpu) 13228 { 13229 struct perf_cpu_context *cpuctx; 13230 struct perf_event_context *ctx; 13231 struct pmu *pmu; 13232 13233 perf_swevent_init_cpu(cpu); 13234 13235 mutex_lock(&pmus_lock); 13236 cpumask_set_cpu(cpu, perf_online_mask); 13237 list_for_each_entry(pmu, &pmus, entry) { 13238 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13239 ctx = &cpuctx->ctx; 13240 13241 mutex_lock(&ctx->mutex); 13242 cpuctx->online = 1; 13243 mutex_unlock(&ctx->mutex); 13244 } 13245 mutex_unlock(&pmus_lock); 13246 13247 return 0; 13248 } 13249 13250 int perf_event_exit_cpu(unsigned int cpu) 13251 { 13252 perf_event_exit_cpu_context(cpu); 13253 return 0; 13254 } 13255 13256 static int 13257 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13258 { 13259 int cpu; 13260 13261 for_each_online_cpu(cpu) 13262 perf_event_exit_cpu(cpu); 13263 13264 return NOTIFY_OK; 13265 } 13266 13267 /* 13268 * Run the perf reboot notifier at the very last possible moment so that 13269 * the generic watchdog code runs as long as possible. 13270 */ 13271 static struct notifier_block perf_reboot_notifier = { 13272 .notifier_call = perf_reboot, 13273 .priority = INT_MIN, 13274 }; 13275 13276 void __init perf_event_init(void) 13277 { 13278 int ret; 13279 13280 idr_init(&pmu_idr); 13281 13282 perf_event_init_all_cpus(); 13283 init_srcu_struct(&pmus_srcu); 13284 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13285 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13286 perf_pmu_register(&perf_task_clock, NULL, -1); 13287 perf_tp_register(); 13288 perf_event_init_cpu(smp_processor_id()); 13289 register_reboot_notifier(&perf_reboot_notifier); 13290 13291 ret = init_hw_breakpoint(); 13292 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13293 13294 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13295 13296 /* 13297 * Build time assertion that we keep the data_head at the intended 13298 * location. IOW, validation we got the __reserved[] size right. 13299 */ 13300 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13301 != 1024); 13302 } 13303 13304 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13305 char *page) 13306 { 13307 struct perf_pmu_events_attr *pmu_attr = 13308 container_of(attr, struct perf_pmu_events_attr, attr); 13309 13310 if (pmu_attr->event_str) 13311 return sprintf(page, "%s\n", pmu_attr->event_str); 13312 13313 return 0; 13314 } 13315 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13316 13317 static int __init perf_event_sysfs_init(void) 13318 { 13319 struct pmu *pmu; 13320 int ret; 13321 13322 mutex_lock(&pmus_lock); 13323 13324 ret = bus_register(&pmu_bus); 13325 if (ret) 13326 goto unlock; 13327 13328 list_for_each_entry(pmu, &pmus, entry) { 13329 if (!pmu->name || pmu->type < 0) 13330 continue; 13331 13332 ret = pmu_dev_alloc(pmu); 13333 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13334 } 13335 pmu_bus_running = 1; 13336 ret = 0; 13337 13338 unlock: 13339 mutex_unlock(&pmus_lock); 13340 13341 return ret; 13342 } 13343 device_initcall(perf_event_sysfs_init); 13344 13345 #ifdef CONFIG_CGROUP_PERF 13346 static struct cgroup_subsys_state * 13347 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13348 { 13349 struct perf_cgroup *jc; 13350 13351 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13352 if (!jc) 13353 return ERR_PTR(-ENOMEM); 13354 13355 jc->info = alloc_percpu(struct perf_cgroup_info); 13356 if (!jc->info) { 13357 kfree(jc); 13358 return ERR_PTR(-ENOMEM); 13359 } 13360 13361 return &jc->css; 13362 } 13363 13364 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13365 { 13366 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13367 13368 free_percpu(jc->info); 13369 kfree(jc); 13370 } 13371 13372 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13373 { 13374 perf_event_cgroup(css->cgroup); 13375 return 0; 13376 } 13377 13378 static int __perf_cgroup_move(void *info) 13379 { 13380 struct task_struct *task = info; 13381 rcu_read_lock(); 13382 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13383 rcu_read_unlock(); 13384 return 0; 13385 } 13386 13387 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13388 { 13389 struct task_struct *task; 13390 struct cgroup_subsys_state *css; 13391 13392 cgroup_taskset_for_each(task, css, tset) 13393 task_function_call(task, __perf_cgroup_move, task); 13394 } 13395 13396 struct cgroup_subsys perf_event_cgrp_subsys = { 13397 .css_alloc = perf_cgroup_css_alloc, 13398 .css_free = perf_cgroup_css_free, 13399 .css_online = perf_cgroup_css_online, 13400 .attach = perf_cgroup_attach, 13401 /* 13402 * Implicitly enable on dfl hierarchy so that perf events can 13403 * always be filtered by cgroup2 path as long as perf_event 13404 * controller is not mounted on a legacy hierarchy. 13405 */ 13406 .implicit_on_dfl = true, 13407 .threaded = true, 13408 }; 13409 #endif /* CONFIG_CGROUP_PERF */ 13410