1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 tfc->ret = -EAGAIN; 70 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 71 return; 72 } 73 74 tfc->ret = tfc->func(tfc->info); 75 } 76 77 /** 78 * task_function_call - call a function on the cpu on which a task runs 79 * @p: the task to evaluate 80 * @func: the function to be called 81 * @info: the function call argument 82 * 83 * Calls the function @func when the task is currently running. This might 84 * be on the current CPU, which just calls the function directly 85 * 86 * returns: @func return value, or 87 * -ESRCH - when the process isn't running 88 * -EAGAIN - when the process moved away 89 */ 90 static int 91 task_function_call(struct task_struct *p, remote_function_f func, void *info) 92 { 93 struct remote_function_call data = { 94 .p = p, 95 .func = func, 96 .info = info, 97 .ret = -ESRCH, /* No such (running) process */ 98 }; 99 100 if (task_curr(p)) 101 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 102 103 return data.ret; 104 } 105 106 /** 107 * cpu_function_call - call a function on the cpu 108 * @func: the function to be called 109 * @info: the function call argument 110 * 111 * Calls the function @func on the remote cpu. 112 * 113 * returns: @func return value or -ENXIO when the cpu is offline 114 */ 115 static int cpu_function_call(int cpu, remote_function_f func, void *info) 116 { 117 struct remote_function_call data = { 118 .p = NULL, 119 .func = func, 120 .info = info, 121 .ret = -ENXIO, /* No such CPU */ 122 }; 123 124 smp_call_function_single(cpu, remote_function, &data, 1); 125 126 return data.ret; 127 } 128 129 #define EVENT_OWNER_KERNEL ((void *) -1) 130 131 static bool is_kernel_event(struct perf_event *event) 132 { 133 return event->owner == EVENT_OWNER_KERNEL; 134 } 135 136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 137 PERF_FLAG_FD_OUTPUT |\ 138 PERF_FLAG_PID_CGROUP |\ 139 PERF_FLAG_FD_CLOEXEC) 140 141 /* 142 * branch priv levels that need permission checks 143 */ 144 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 145 (PERF_SAMPLE_BRANCH_KERNEL |\ 146 PERF_SAMPLE_BRANCH_HV) 147 148 enum event_type_t { 149 EVENT_FLEXIBLE = 0x1, 150 EVENT_PINNED = 0x2, 151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 152 }; 153 154 /* 155 * perf_sched_events : >0 events exist 156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 157 */ 158 struct static_key_deferred perf_sched_events __read_mostly; 159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 160 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 161 162 static atomic_t nr_mmap_events __read_mostly; 163 static atomic_t nr_comm_events __read_mostly; 164 static atomic_t nr_task_events __read_mostly; 165 static atomic_t nr_freq_events __read_mostly; 166 static atomic_t nr_switch_events __read_mostly; 167 168 static LIST_HEAD(pmus); 169 static DEFINE_MUTEX(pmus_lock); 170 static struct srcu_struct pmus_srcu; 171 172 /* 173 * perf event paranoia level: 174 * -1 - not paranoid at all 175 * 0 - disallow raw tracepoint access for unpriv 176 * 1 - disallow cpu events for unpriv 177 * 2 - disallow kernel profiling for unpriv 178 */ 179 int sysctl_perf_event_paranoid __read_mostly = 1; 180 181 /* Minimum for 512 kiB + 1 user control page */ 182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 183 184 /* 185 * max perf event sample rate 186 */ 187 #define DEFAULT_MAX_SAMPLE_RATE 100000 188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 190 191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 192 193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 195 196 static int perf_sample_allowed_ns __read_mostly = 197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 198 199 void update_perf_cpu_limits(void) 200 { 201 u64 tmp = perf_sample_period_ns; 202 203 tmp *= sysctl_perf_cpu_time_max_percent; 204 do_div(tmp, 100); 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 206 } 207 208 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 209 210 int perf_proc_update_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 221 update_perf_cpu_limits(); 222 223 return 0; 224 } 225 226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 227 228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 229 void __user *buffer, size_t *lenp, 230 loff_t *ppos) 231 { 232 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 233 234 if (ret || !write) 235 return ret; 236 237 update_perf_cpu_limits(); 238 239 return 0; 240 } 241 242 /* 243 * perf samples are done in some very critical code paths (NMIs). 244 * If they take too much CPU time, the system can lock up and not 245 * get any real work done. This will drop the sample rate when 246 * we detect that events are taking too long. 247 */ 248 #define NR_ACCUMULATED_SAMPLES 128 249 static DEFINE_PER_CPU(u64, running_sample_length); 250 251 static void perf_duration_warn(struct irq_work *w) 252 { 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 254 u64 avg_local_sample_len; 255 u64 local_samples_len; 256 257 local_samples_len = __this_cpu_read(running_sample_length); 258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 259 260 printk_ratelimited(KERN_WARNING 261 "perf interrupt took too long (%lld > %lld), lowering " 262 "kernel.perf_event_max_sample_rate to %d\n", 263 avg_local_sample_len, allowed_ns >> 1, 264 sysctl_perf_event_sample_rate); 265 } 266 267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 268 269 void perf_sample_event_took(u64 sample_len_ns) 270 { 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 272 u64 avg_local_sample_len; 273 u64 local_samples_len; 274 275 if (allowed_ns == 0) 276 return; 277 278 /* decay the counter by 1 average sample */ 279 local_samples_len = __this_cpu_read(running_sample_length); 280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 281 local_samples_len += sample_len_ns; 282 __this_cpu_write(running_sample_length, local_samples_len); 283 284 /* 285 * note: this will be biased artifically low until we have 286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 287 * from having to maintain a count. 288 */ 289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 290 291 if (avg_local_sample_len <= allowed_ns) 292 return; 293 294 if (max_samples_per_tick <= 1) 295 return; 296 297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 300 301 update_perf_cpu_limits(); 302 303 if (!irq_work_queue(&perf_duration_work)) { 304 early_printk("perf interrupt took too long (%lld > %lld), lowering " 305 "kernel.perf_event_max_sample_rate to %d\n", 306 avg_local_sample_len, allowed_ns >> 1, 307 sysctl_perf_event_sample_rate); 308 } 309 } 310 311 static atomic64_t perf_event_id; 312 313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type); 315 316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 317 enum event_type_t event_type, 318 struct task_struct *task); 319 320 static void update_context_time(struct perf_event_context *ctx); 321 static u64 perf_event_time(struct perf_event *event); 322 323 void __weak perf_event_print_debug(void) { } 324 325 extern __weak const char *perf_pmu_name(void) 326 { 327 return "pmu"; 328 } 329 330 static inline u64 perf_clock(void) 331 { 332 return local_clock(); 333 } 334 335 static inline u64 perf_event_clock(struct perf_event *event) 336 { 337 return event->clock(); 338 } 339 340 static inline struct perf_cpu_context * 341 __get_cpu_context(struct perf_event_context *ctx) 342 { 343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 344 } 345 346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 347 struct perf_event_context *ctx) 348 { 349 raw_spin_lock(&cpuctx->ctx.lock); 350 if (ctx) 351 raw_spin_lock(&ctx->lock); 352 } 353 354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 355 struct perf_event_context *ctx) 356 { 357 if (ctx) 358 raw_spin_unlock(&ctx->lock); 359 raw_spin_unlock(&cpuctx->ctx.lock); 360 } 361 362 #ifdef CONFIG_CGROUP_PERF 363 364 static inline bool 365 perf_cgroup_match(struct perf_event *event) 366 { 367 struct perf_event_context *ctx = event->ctx; 368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 369 370 /* @event doesn't care about cgroup */ 371 if (!event->cgrp) 372 return true; 373 374 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 375 if (!cpuctx->cgrp) 376 return false; 377 378 /* 379 * Cgroup scoping is recursive. An event enabled for a cgroup is 380 * also enabled for all its descendant cgroups. If @cpuctx's 381 * cgroup is a descendant of @event's (the test covers identity 382 * case), it's a match. 383 */ 384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 385 event->cgrp->css.cgroup); 386 } 387 388 static inline void perf_detach_cgroup(struct perf_event *event) 389 { 390 css_put(&event->cgrp->css); 391 event->cgrp = NULL; 392 } 393 394 static inline int is_cgroup_event(struct perf_event *event) 395 { 396 return event->cgrp != NULL; 397 } 398 399 static inline u64 perf_cgroup_event_time(struct perf_event *event) 400 { 401 struct perf_cgroup_info *t; 402 403 t = per_cpu_ptr(event->cgrp->info, event->cpu); 404 return t->time; 405 } 406 407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 408 { 409 struct perf_cgroup_info *info; 410 u64 now; 411 412 now = perf_clock(); 413 414 info = this_cpu_ptr(cgrp->info); 415 416 info->time += now - info->timestamp; 417 info->timestamp = now; 418 } 419 420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 421 { 422 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 423 if (cgrp_out) 424 __update_cgrp_time(cgrp_out); 425 } 426 427 static inline void update_cgrp_time_from_event(struct perf_event *event) 428 { 429 struct perf_cgroup *cgrp; 430 431 /* 432 * ensure we access cgroup data only when needed and 433 * when we know the cgroup is pinned (css_get) 434 */ 435 if (!is_cgroup_event(event)) 436 return; 437 438 cgrp = perf_cgroup_from_task(current); 439 /* 440 * Do not update time when cgroup is not active 441 */ 442 if (cgrp == event->cgrp) 443 __update_cgrp_time(event->cgrp); 444 } 445 446 static inline void 447 perf_cgroup_set_timestamp(struct task_struct *task, 448 struct perf_event_context *ctx) 449 { 450 struct perf_cgroup *cgrp; 451 struct perf_cgroup_info *info; 452 453 /* 454 * ctx->lock held by caller 455 * ensure we do not access cgroup data 456 * unless we have the cgroup pinned (css_get) 457 */ 458 if (!task || !ctx->nr_cgroups) 459 return; 460 461 cgrp = perf_cgroup_from_task(task); 462 info = this_cpu_ptr(cgrp->info); 463 info->timestamp = ctx->timestamp; 464 } 465 466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 468 469 /* 470 * reschedule events based on the cgroup constraint of task. 471 * 472 * mode SWOUT : schedule out everything 473 * mode SWIN : schedule in based on cgroup for next 474 */ 475 void perf_cgroup_switch(struct task_struct *task, int mode) 476 { 477 struct perf_cpu_context *cpuctx; 478 struct pmu *pmu; 479 unsigned long flags; 480 481 /* 482 * disable interrupts to avoid geting nr_cgroup 483 * changes via __perf_event_disable(). Also 484 * avoids preemption. 485 */ 486 local_irq_save(flags); 487 488 /* 489 * we reschedule only in the presence of cgroup 490 * constrained events. 491 */ 492 rcu_read_lock(); 493 494 list_for_each_entry_rcu(pmu, &pmus, entry) { 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 496 if (cpuctx->unique_pmu != pmu) 497 continue; /* ensure we process each cpuctx once */ 498 499 /* 500 * perf_cgroup_events says at least one 501 * context on this CPU has cgroup events. 502 * 503 * ctx->nr_cgroups reports the number of cgroup 504 * events for a context. 505 */ 506 if (cpuctx->ctx.nr_cgroups > 0) { 507 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 508 perf_pmu_disable(cpuctx->ctx.pmu); 509 510 if (mode & PERF_CGROUP_SWOUT) { 511 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 512 /* 513 * must not be done before ctxswout due 514 * to event_filter_match() in event_sched_out() 515 */ 516 cpuctx->cgrp = NULL; 517 } 518 519 if (mode & PERF_CGROUP_SWIN) { 520 WARN_ON_ONCE(cpuctx->cgrp); 521 /* 522 * set cgrp before ctxsw in to allow 523 * event_filter_match() to not have to pass 524 * task around 525 */ 526 cpuctx->cgrp = perf_cgroup_from_task(task); 527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 528 } 529 perf_pmu_enable(cpuctx->ctx.pmu); 530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 531 } 532 } 533 534 rcu_read_unlock(); 535 536 local_irq_restore(flags); 537 } 538 539 static inline void perf_cgroup_sched_out(struct task_struct *task, 540 struct task_struct *next) 541 { 542 struct perf_cgroup *cgrp1; 543 struct perf_cgroup *cgrp2 = NULL; 544 545 /* 546 * we come here when we know perf_cgroup_events > 0 547 */ 548 cgrp1 = perf_cgroup_from_task(task); 549 550 /* 551 * next is NULL when called from perf_event_enable_on_exec() 552 * that will systematically cause a cgroup_switch() 553 */ 554 if (next) 555 cgrp2 = perf_cgroup_from_task(next); 556 557 /* 558 * only schedule out current cgroup events if we know 559 * that we are switching to a different cgroup. Otherwise, 560 * do no touch the cgroup events. 561 */ 562 if (cgrp1 != cgrp2) 563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 564 } 565 566 static inline void perf_cgroup_sched_in(struct task_struct *prev, 567 struct task_struct *task) 568 { 569 struct perf_cgroup *cgrp1; 570 struct perf_cgroup *cgrp2 = NULL; 571 572 /* 573 * we come here when we know perf_cgroup_events > 0 574 */ 575 cgrp1 = perf_cgroup_from_task(task); 576 577 /* prev can never be NULL */ 578 cgrp2 = perf_cgroup_from_task(prev); 579 580 /* 581 * only need to schedule in cgroup events if we are changing 582 * cgroup during ctxsw. Cgroup events were not scheduled 583 * out of ctxsw out if that was not the case. 584 */ 585 if (cgrp1 != cgrp2) 586 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 587 } 588 589 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 590 struct perf_event_attr *attr, 591 struct perf_event *group_leader) 592 { 593 struct perf_cgroup *cgrp; 594 struct cgroup_subsys_state *css; 595 struct fd f = fdget(fd); 596 int ret = 0; 597 598 if (!f.file) 599 return -EBADF; 600 601 css = css_tryget_online_from_dir(f.file->f_path.dentry, 602 &perf_event_cgrp_subsys); 603 if (IS_ERR(css)) { 604 ret = PTR_ERR(css); 605 goto out; 606 } 607 608 cgrp = container_of(css, struct perf_cgroup, css); 609 event->cgrp = cgrp; 610 611 /* 612 * all events in a group must monitor 613 * the same cgroup because a task belongs 614 * to only one perf cgroup at a time 615 */ 616 if (group_leader && group_leader->cgrp != cgrp) { 617 perf_detach_cgroup(event); 618 ret = -EINVAL; 619 } 620 out: 621 fdput(f); 622 return ret; 623 } 624 625 static inline void 626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 627 { 628 struct perf_cgroup_info *t; 629 t = per_cpu_ptr(event->cgrp->info, event->cpu); 630 event->shadow_ctx_time = now - t->timestamp; 631 } 632 633 static inline void 634 perf_cgroup_defer_enabled(struct perf_event *event) 635 { 636 /* 637 * when the current task's perf cgroup does not match 638 * the event's, we need to remember to call the 639 * perf_mark_enable() function the first time a task with 640 * a matching perf cgroup is scheduled in. 641 */ 642 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 643 event->cgrp_defer_enabled = 1; 644 } 645 646 static inline void 647 perf_cgroup_mark_enabled(struct perf_event *event, 648 struct perf_event_context *ctx) 649 { 650 struct perf_event *sub; 651 u64 tstamp = perf_event_time(event); 652 653 if (!event->cgrp_defer_enabled) 654 return; 655 656 event->cgrp_defer_enabled = 0; 657 658 event->tstamp_enabled = tstamp - event->total_time_enabled; 659 list_for_each_entry(sub, &event->sibling_list, group_entry) { 660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 661 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 662 sub->cgrp_defer_enabled = 0; 663 } 664 } 665 } 666 #else /* !CONFIG_CGROUP_PERF */ 667 668 static inline bool 669 perf_cgroup_match(struct perf_event *event) 670 { 671 return true; 672 } 673 674 static inline void perf_detach_cgroup(struct perf_event *event) 675 {} 676 677 static inline int is_cgroup_event(struct perf_event *event) 678 { 679 return 0; 680 } 681 682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 683 { 684 return 0; 685 } 686 687 static inline void update_cgrp_time_from_event(struct perf_event *event) 688 { 689 } 690 691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 692 { 693 } 694 695 static inline void perf_cgroup_sched_out(struct task_struct *task, 696 struct task_struct *next) 697 { 698 } 699 700 static inline void perf_cgroup_sched_in(struct task_struct *prev, 701 struct task_struct *task) 702 { 703 } 704 705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 706 struct perf_event_attr *attr, 707 struct perf_event *group_leader) 708 { 709 return -EINVAL; 710 } 711 712 static inline void 713 perf_cgroup_set_timestamp(struct task_struct *task, 714 struct perf_event_context *ctx) 715 { 716 } 717 718 void 719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 720 { 721 } 722 723 static inline void 724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 725 { 726 } 727 728 static inline u64 perf_cgroup_event_time(struct perf_event *event) 729 { 730 return 0; 731 } 732 733 static inline void 734 perf_cgroup_defer_enabled(struct perf_event *event) 735 { 736 } 737 738 static inline void 739 perf_cgroup_mark_enabled(struct perf_event *event, 740 struct perf_event_context *ctx) 741 { 742 } 743 #endif 744 745 /* 746 * set default to be dependent on timer tick just 747 * like original code 748 */ 749 #define PERF_CPU_HRTIMER (1000 / HZ) 750 /* 751 * function must be called with interrupts disbled 752 */ 753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 754 { 755 struct perf_cpu_context *cpuctx; 756 int rotations = 0; 757 758 WARN_ON(!irqs_disabled()); 759 760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 761 rotations = perf_rotate_context(cpuctx); 762 763 raw_spin_lock(&cpuctx->hrtimer_lock); 764 if (rotations) 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 766 else 767 cpuctx->hrtimer_active = 0; 768 raw_spin_unlock(&cpuctx->hrtimer_lock); 769 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 771 } 772 773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 774 { 775 struct hrtimer *timer = &cpuctx->hrtimer; 776 struct pmu *pmu = cpuctx->ctx.pmu; 777 u64 interval; 778 779 /* no multiplexing needed for SW PMU */ 780 if (pmu->task_ctx_nr == perf_sw_context) 781 return; 782 783 /* 784 * check default is sane, if not set then force to 785 * default interval (1/tick) 786 */ 787 interval = pmu->hrtimer_interval_ms; 788 if (interval < 1) 789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 790 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 792 793 raw_spin_lock_init(&cpuctx->hrtimer_lock); 794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 795 timer->function = perf_mux_hrtimer_handler; 796 } 797 798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 799 { 800 struct hrtimer *timer = &cpuctx->hrtimer; 801 struct pmu *pmu = cpuctx->ctx.pmu; 802 unsigned long flags; 803 804 /* not for SW PMU */ 805 if (pmu->task_ctx_nr == perf_sw_context) 806 return 0; 807 808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 809 if (!cpuctx->hrtimer_active) { 810 cpuctx->hrtimer_active = 1; 811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 813 } 814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 815 816 return 0; 817 } 818 819 void perf_pmu_disable(struct pmu *pmu) 820 { 821 int *count = this_cpu_ptr(pmu->pmu_disable_count); 822 if (!(*count)++) 823 pmu->pmu_disable(pmu); 824 } 825 826 void perf_pmu_enable(struct pmu *pmu) 827 { 828 int *count = this_cpu_ptr(pmu->pmu_disable_count); 829 if (!--(*count)) 830 pmu->pmu_enable(pmu); 831 } 832 833 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 834 835 /* 836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 837 * perf_event_task_tick() are fully serialized because they're strictly cpu 838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 839 * disabled, while perf_event_task_tick is called from IRQ context. 840 */ 841 static void perf_event_ctx_activate(struct perf_event_context *ctx) 842 { 843 struct list_head *head = this_cpu_ptr(&active_ctx_list); 844 845 WARN_ON(!irqs_disabled()); 846 847 WARN_ON(!list_empty(&ctx->active_ctx_list)); 848 849 list_add(&ctx->active_ctx_list, head); 850 } 851 852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 853 { 854 WARN_ON(!irqs_disabled()); 855 856 WARN_ON(list_empty(&ctx->active_ctx_list)); 857 858 list_del_init(&ctx->active_ctx_list); 859 } 860 861 static void get_ctx(struct perf_event_context *ctx) 862 { 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 864 } 865 866 static void free_ctx(struct rcu_head *head) 867 { 868 struct perf_event_context *ctx; 869 870 ctx = container_of(head, struct perf_event_context, rcu_head); 871 kfree(ctx->task_ctx_data); 872 kfree(ctx); 873 } 874 875 static void put_ctx(struct perf_event_context *ctx) 876 { 877 if (atomic_dec_and_test(&ctx->refcount)) { 878 if (ctx->parent_ctx) 879 put_ctx(ctx->parent_ctx); 880 if (ctx->task) 881 put_task_struct(ctx->task); 882 call_rcu(&ctx->rcu_head, free_ctx); 883 } 884 } 885 886 /* 887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 888 * perf_pmu_migrate_context() we need some magic. 889 * 890 * Those places that change perf_event::ctx will hold both 891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 892 * 893 * Lock ordering is by mutex address. There are two other sites where 894 * perf_event_context::mutex nests and those are: 895 * 896 * - perf_event_exit_task_context() [ child , 0 ] 897 * __perf_event_exit_task() 898 * sync_child_event() 899 * put_event() [ parent, 1 ] 900 * 901 * - perf_event_init_context() [ parent, 0 ] 902 * inherit_task_group() 903 * inherit_group() 904 * inherit_event() 905 * perf_event_alloc() 906 * perf_init_event() 907 * perf_try_init_event() [ child , 1 ] 908 * 909 * While it appears there is an obvious deadlock here -- the parent and child 910 * nesting levels are inverted between the two. This is in fact safe because 911 * life-time rules separate them. That is an exiting task cannot fork, and a 912 * spawning task cannot (yet) exit. 913 * 914 * But remember that that these are parent<->child context relations, and 915 * migration does not affect children, therefore these two orderings should not 916 * interact. 917 * 918 * The change in perf_event::ctx does not affect children (as claimed above) 919 * because the sys_perf_event_open() case will install a new event and break 920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 921 * concerned with cpuctx and that doesn't have children. 922 * 923 * The places that change perf_event::ctx will issue: 924 * 925 * perf_remove_from_context(); 926 * synchronize_rcu(); 927 * perf_install_in_context(); 928 * 929 * to affect the change. The remove_from_context() + synchronize_rcu() should 930 * quiesce the event, after which we can install it in the new location. This 931 * means that only external vectors (perf_fops, prctl) can perturb the event 932 * while in transit. Therefore all such accessors should also acquire 933 * perf_event_context::mutex to serialize against this. 934 * 935 * However; because event->ctx can change while we're waiting to acquire 936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 937 * function. 938 * 939 * Lock order: 940 * task_struct::perf_event_mutex 941 * perf_event_context::mutex 942 * perf_event_context::lock 943 * perf_event::child_mutex; 944 * perf_event::mmap_mutex 945 * mmap_sem 946 */ 947 static struct perf_event_context * 948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 949 { 950 struct perf_event_context *ctx; 951 952 again: 953 rcu_read_lock(); 954 ctx = ACCESS_ONCE(event->ctx); 955 if (!atomic_inc_not_zero(&ctx->refcount)) { 956 rcu_read_unlock(); 957 goto again; 958 } 959 rcu_read_unlock(); 960 961 mutex_lock_nested(&ctx->mutex, nesting); 962 if (event->ctx != ctx) { 963 mutex_unlock(&ctx->mutex); 964 put_ctx(ctx); 965 goto again; 966 } 967 968 return ctx; 969 } 970 971 static inline struct perf_event_context * 972 perf_event_ctx_lock(struct perf_event *event) 973 { 974 return perf_event_ctx_lock_nested(event, 0); 975 } 976 977 static void perf_event_ctx_unlock(struct perf_event *event, 978 struct perf_event_context *ctx) 979 { 980 mutex_unlock(&ctx->mutex); 981 put_ctx(ctx); 982 } 983 984 /* 985 * This must be done under the ctx->lock, such as to serialize against 986 * context_equiv(), therefore we cannot call put_ctx() since that might end up 987 * calling scheduler related locks and ctx->lock nests inside those. 988 */ 989 static __must_check struct perf_event_context * 990 unclone_ctx(struct perf_event_context *ctx) 991 { 992 struct perf_event_context *parent_ctx = ctx->parent_ctx; 993 994 lockdep_assert_held(&ctx->lock); 995 996 if (parent_ctx) 997 ctx->parent_ctx = NULL; 998 ctx->generation++; 999 1000 return parent_ctx; 1001 } 1002 1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1004 { 1005 /* 1006 * only top level events have the pid namespace they were created in 1007 */ 1008 if (event->parent) 1009 event = event->parent; 1010 1011 return task_tgid_nr_ns(p, event->ns); 1012 } 1013 1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1015 { 1016 /* 1017 * only top level events have the pid namespace they were created in 1018 */ 1019 if (event->parent) 1020 event = event->parent; 1021 1022 return task_pid_nr_ns(p, event->ns); 1023 } 1024 1025 /* 1026 * If we inherit events we want to return the parent event id 1027 * to userspace. 1028 */ 1029 static u64 primary_event_id(struct perf_event *event) 1030 { 1031 u64 id = event->id; 1032 1033 if (event->parent) 1034 id = event->parent->id; 1035 1036 return id; 1037 } 1038 1039 /* 1040 * Get the perf_event_context for a task and lock it. 1041 * This has to cope with with the fact that until it is locked, 1042 * the context could get moved to another task. 1043 */ 1044 static struct perf_event_context * 1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1046 { 1047 struct perf_event_context *ctx; 1048 1049 retry: 1050 /* 1051 * One of the few rules of preemptible RCU is that one cannot do 1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1053 * part of the read side critical section was preemptible -- see 1054 * rcu_read_unlock_special(). 1055 * 1056 * Since ctx->lock nests under rq->lock we must ensure the entire read 1057 * side critical section is non-preemptible. 1058 */ 1059 preempt_disable(); 1060 rcu_read_lock(); 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1062 if (ctx) { 1063 /* 1064 * If this context is a clone of another, it might 1065 * get swapped for another underneath us by 1066 * perf_event_task_sched_out, though the 1067 * rcu_read_lock() protects us from any context 1068 * getting freed. Lock the context and check if it 1069 * got swapped before we could get the lock, and retry 1070 * if so. If we locked the right context, then it 1071 * can't get swapped on us any more. 1072 */ 1073 raw_spin_lock_irqsave(&ctx->lock, *flags); 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1076 rcu_read_unlock(); 1077 preempt_enable(); 1078 goto retry; 1079 } 1080 1081 if (!atomic_inc_not_zero(&ctx->refcount)) { 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1083 ctx = NULL; 1084 } 1085 } 1086 rcu_read_unlock(); 1087 preempt_enable(); 1088 return ctx; 1089 } 1090 1091 /* 1092 * Get the context for a task and increment its pin_count so it 1093 * can't get swapped to another task. This also increments its 1094 * reference count so that the context can't get freed. 1095 */ 1096 static struct perf_event_context * 1097 perf_pin_task_context(struct task_struct *task, int ctxn) 1098 { 1099 struct perf_event_context *ctx; 1100 unsigned long flags; 1101 1102 ctx = perf_lock_task_context(task, ctxn, &flags); 1103 if (ctx) { 1104 ++ctx->pin_count; 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1106 } 1107 return ctx; 1108 } 1109 1110 static void perf_unpin_context(struct perf_event_context *ctx) 1111 { 1112 unsigned long flags; 1113 1114 raw_spin_lock_irqsave(&ctx->lock, flags); 1115 --ctx->pin_count; 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1117 } 1118 1119 /* 1120 * Update the record of the current time in a context. 1121 */ 1122 static void update_context_time(struct perf_event_context *ctx) 1123 { 1124 u64 now = perf_clock(); 1125 1126 ctx->time += now - ctx->timestamp; 1127 ctx->timestamp = now; 1128 } 1129 1130 static u64 perf_event_time(struct perf_event *event) 1131 { 1132 struct perf_event_context *ctx = event->ctx; 1133 1134 if (is_cgroup_event(event)) 1135 return perf_cgroup_event_time(event); 1136 1137 return ctx ? ctx->time : 0; 1138 } 1139 1140 /* 1141 * Update the total_time_enabled and total_time_running fields for a event. 1142 * The caller of this function needs to hold the ctx->lock. 1143 */ 1144 static void update_event_times(struct perf_event *event) 1145 { 1146 struct perf_event_context *ctx = event->ctx; 1147 u64 run_end; 1148 1149 if (event->state < PERF_EVENT_STATE_INACTIVE || 1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1151 return; 1152 /* 1153 * in cgroup mode, time_enabled represents 1154 * the time the event was enabled AND active 1155 * tasks were in the monitored cgroup. This is 1156 * independent of the activity of the context as 1157 * there may be a mix of cgroup and non-cgroup events. 1158 * 1159 * That is why we treat cgroup events differently 1160 * here. 1161 */ 1162 if (is_cgroup_event(event)) 1163 run_end = perf_cgroup_event_time(event); 1164 else if (ctx->is_active) 1165 run_end = ctx->time; 1166 else 1167 run_end = event->tstamp_stopped; 1168 1169 event->total_time_enabled = run_end - event->tstamp_enabled; 1170 1171 if (event->state == PERF_EVENT_STATE_INACTIVE) 1172 run_end = event->tstamp_stopped; 1173 else 1174 run_end = perf_event_time(event); 1175 1176 event->total_time_running = run_end - event->tstamp_running; 1177 1178 } 1179 1180 /* 1181 * Update total_time_enabled and total_time_running for all events in a group. 1182 */ 1183 static void update_group_times(struct perf_event *leader) 1184 { 1185 struct perf_event *event; 1186 1187 update_event_times(leader); 1188 list_for_each_entry(event, &leader->sibling_list, group_entry) 1189 update_event_times(event); 1190 } 1191 1192 static struct list_head * 1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1194 { 1195 if (event->attr.pinned) 1196 return &ctx->pinned_groups; 1197 else 1198 return &ctx->flexible_groups; 1199 } 1200 1201 /* 1202 * Add a event from the lists for its context. 1203 * Must be called with ctx->mutex and ctx->lock held. 1204 */ 1205 static void 1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1207 { 1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1209 event->attach_state |= PERF_ATTACH_CONTEXT; 1210 1211 /* 1212 * If we're a stand alone event or group leader, we go to the context 1213 * list, group events are kept attached to the group so that 1214 * perf_group_detach can, at all times, locate all siblings. 1215 */ 1216 if (event->group_leader == event) { 1217 struct list_head *list; 1218 1219 if (is_software_event(event)) 1220 event->group_flags |= PERF_GROUP_SOFTWARE; 1221 1222 list = ctx_group_list(event, ctx); 1223 list_add_tail(&event->group_entry, list); 1224 } 1225 1226 if (is_cgroup_event(event)) 1227 ctx->nr_cgroups++; 1228 1229 list_add_rcu(&event->event_entry, &ctx->event_list); 1230 ctx->nr_events++; 1231 if (event->attr.inherit_stat) 1232 ctx->nr_stat++; 1233 1234 ctx->generation++; 1235 } 1236 1237 /* 1238 * Initialize event state based on the perf_event_attr::disabled. 1239 */ 1240 static inline void perf_event__state_init(struct perf_event *event) 1241 { 1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1243 PERF_EVENT_STATE_INACTIVE; 1244 } 1245 1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1247 { 1248 int entry = sizeof(u64); /* value */ 1249 int size = 0; 1250 int nr = 1; 1251 1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1253 size += sizeof(u64); 1254 1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1256 size += sizeof(u64); 1257 1258 if (event->attr.read_format & PERF_FORMAT_ID) 1259 entry += sizeof(u64); 1260 1261 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1262 nr += nr_siblings; 1263 size += sizeof(u64); 1264 } 1265 1266 size += entry * nr; 1267 event->read_size = size; 1268 } 1269 1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1271 { 1272 struct perf_sample_data *data; 1273 u16 size = 0; 1274 1275 if (sample_type & PERF_SAMPLE_IP) 1276 size += sizeof(data->ip); 1277 1278 if (sample_type & PERF_SAMPLE_ADDR) 1279 size += sizeof(data->addr); 1280 1281 if (sample_type & PERF_SAMPLE_PERIOD) 1282 size += sizeof(data->period); 1283 1284 if (sample_type & PERF_SAMPLE_WEIGHT) 1285 size += sizeof(data->weight); 1286 1287 if (sample_type & PERF_SAMPLE_READ) 1288 size += event->read_size; 1289 1290 if (sample_type & PERF_SAMPLE_DATA_SRC) 1291 size += sizeof(data->data_src.val); 1292 1293 if (sample_type & PERF_SAMPLE_TRANSACTION) 1294 size += sizeof(data->txn); 1295 1296 event->header_size = size; 1297 } 1298 1299 /* 1300 * Called at perf_event creation and when events are attached/detached from a 1301 * group. 1302 */ 1303 static void perf_event__header_size(struct perf_event *event) 1304 { 1305 __perf_event_read_size(event, 1306 event->group_leader->nr_siblings); 1307 __perf_event_header_size(event, event->attr.sample_type); 1308 } 1309 1310 static void perf_event__id_header_size(struct perf_event *event) 1311 { 1312 struct perf_sample_data *data; 1313 u64 sample_type = event->attr.sample_type; 1314 u16 size = 0; 1315 1316 if (sample_type & PERF_SAMPLE_TID) 1317 size += sizeof(data->tid_entry); 1318 1319 if (sample_type & PERF_SAMPLE_TIME) 1320 size += sizeof(data->time); 1321 1322 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1323 size += sizeof(data->id); 1324 1325 if (sample_type & PERF_SAMPLE_ID) 1326 size += sizeof(data->id); 1327 1328 if (sample_type & PERF_SAMPLE_STREAM_ID) 1329 size += sizeof(data->stream_id); 1330 1331 if (sample_type & PERF_SAMPLE_CPU) 1332 size += sizeof(data->cpu_entry); 1333 1334 event->id_header_size = size; 1335 } 1336 1337 static bool perf_event_validate_size(struct perf_event *event) 1338 { 1339 /* 1340 * The values computed here will be over-written when we actually 1341 * attach the event. 1342 */ 1343 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1344 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1345 perf_event__id_header_size(event); 1346 1347 /* 1348 * Sum the lot; should not exceed the 64k limit we have on records. 1349 * Conservative limit to allow for callchains and other variable fields. 1350 */ 1351 if (event->read_size + event->header_size + 1352 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1353 return false; 1354 1355 return true; 1356 } 1357 1358 static void perf_group_attach(struct perf_event *event) 1359 { 1360 struct perf_event *group_leader = event->group_leader, *pos; 1361 1362 /* 1363 * We can have double attach due to group movement in perf_event_open. 1364 */ 1365 if (event->attach_state & PERF_ATTACH_GROUP) 1366 return; 1367 1368 event->attach_state |= PERF_ATTACH_GROUP; 1369 1370 if (group_leader == event) 1371 return; 1372 1373 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1374 1375 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1376 !is_software_event(event)) 1377 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1378 1379 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1380 group_leader->nr_siblings++; 1381 1382 perf_event__header_size(group_leader); 1383 1384 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1385 perf_event__header_size(pos); 1386 } 1387 1388 /* 1389 * Remove a event from the lists for its context. 1390 * Must be called with ctx->mutex and ctx->lock held. 1391 */ 1392 static void 1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1394 { 1395 struct perf_cpu_context *cpuctx; 1396 1397 WARN_ON_ONCE(event->ctx != ctx); 1398 lockdep_assert_held(&ctx->lock); 1399 1400 /* 1401 * We can have double detach due to exit/hot-unplug + close. 1402 */ 1403 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1404 return; 1405 1406 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1407 1408 if (is_cgroup_event(event)) { 1409 ctx->nr_cgroups--; 1410 cpuctx = __get_cpu_context(ctx); 1411 /* 1412 * if there are no more cgroup events 1413 * then cler cgrp to avoid stale pointer 1414 * in update_cgrp_time_from_cpuctx() 1415 */ 1416 if (!ctx->nr_cgroups) 1417 cpuctx->cgrp = NULL; 1418 } 1419 1420 ctx->nr_events--; 1421 if (event->attr.inherit_stat) 1422 ctx->nr_stat--; 1423 1424 list_del_rcu(&event->event_entry); 1425 1426 if (event->group_leader == event) 1427 list_del_init(&event->group_entry); 1428 1429 update_group_times(event); 1430 1431 /* 1432 * If event was in error state, then keep it 1433 * that way, otherwise bogus counts will be 1434 * returned on read(). The only way to get out 1435 * of error state is by explicit re-enabling 1436 * of the event 1437 */ 1438 if (event->state > PERF_EVENT_STATE_OFF) 1439 event->state = PERF_EVENT_STATE_OFF; 1440 1441 ctx->generation++; 1442 } 1443 1444 static void perf_group_detach(struct perf_event *event) 1445 { 1446 struct perf_event *sibling, *tmp; 1447 struct list_head *list = NULL; 1448 1449 /* 1450 * We can have double detach due to exit/hot-unplug + close. 1451 */ 1452 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1453 return; 1454 1455 event->attach_state &= ~PERF_ATTACH_GROUP; 1456 1457 /* 1458 * If this is a sibling, remove it from its group. 1459 */ 1460 if (event->group_leader != event) { 1461 list_del_init(&event->group_entry); 1462 event->group_leader->nr_siblings--; 1463 goto out; 1464 } 1465 1466 if (!list_empty(&event->group_entry)) 1467 list = &event->group_entry; 1468 1469 /* 1470 * If this was a group event with sibling events then 1471 * upgrade the siblings to singleton events by adding them 1472 * to whatever list we are on. 1473 */ 1474 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1475 if (list) 1476 list_move_tail(&sibling->group_entry, list); 1477 sibling->group_leader = sibling; 1478 1479 /* Inherit group flags from the previous leader */ 1480 sibling->group_flags = event->group_flags; 1481 1482 WARN_ON_ONCE(sibling->ctx != event->ctx); 1483 } 1484 1485 out: 1486 perf_event__header_size(event->group_leader); 1487 1488 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1489 perf_event__header_size(tmp); 1490 } 1491 1492 /* 1493 * User event without the task. 1494 */ 1495 static bool is_orphaned_event(struct perf_event *event) 1496 { 1497 return event && !is_kernel_event(event) && !event->owner; 1498 } 1499 1500 /* 1501 * Event has a parent but parent's task finished and it's 1502 * alive only because of children holding refference. 1503 */ 1504 static bool is_orphaned_child(struct perf_event *event) 1505 { 1506 return is_orphaned_event(event->parent); 1507 } 1508 1509 static void orphans_remove_work(struct work_struct *work); 1510 1511 static void schedule_orphans_remove(struct perf_event_context *ctx) 1512 { 1513 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1514 return; 1515 1516 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1517 get_ctx(ctx); 1518 ctx->orphans_remove_sched = true; 1519 } 1520 } 1521 1522 static int __init perf_workqueue_init(void) 1523 { 1524 perf_wq = create_singlethread_workqueue("perf"); 1525 WARN(!perf_wq, "failed to create perf workqueue\n"); 1526 return perf_wq ? 0 : -1; 1527 } 1528 1529 core_initcall(perf_workqueue_init); 1530 1531 static inline int pmu_filter_match(struct perf_event *event) 1532 { 1533 struct pmu *pmu = event->pmu; 1534 return pmu->filter_match ? pmu->filter_match(event) : 1; 1535 } 1536 1537 static inline int 1538 event_filter_match(struct perf_event *event) 1539 { 1540 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1541 && perf_cgroup_match(event) && pmu_filter_match(event); 1542 } 1543 1544 static void 1545 event_sched_out(struct perf_event *event, 1546 struct perf_cpu_context *cpuctx, 1547 struct perf_event_context *ctx) 1548 { 1549 u64 tstamp = perf_event_time(event); 1550 u64 delta; 1551 1552 WARN_ON_ONCE(event->ctx != ctx); 1553 lockdep_assert_held(&ctx->lock); 1554 1555 /* 1556 * An event which could not be activated because of 1557 * filter mismatch still needs to have its timings 1558 * maintained, otherwise bogus information is return 1559 * via read() for time_enabled, time_running: 1560 */ 1561 if (event->state == PERF_EVENT_STATE_INACTIVE 1562 && !event_filter_match(event)) { 1563 delta = tstamp - event->tstamp_stopped; 1564 event->tstamp_running += delta; 1565 event->tstamp_stopped = tstamp; 1566 } 1567 1568 if (event->state != PERF_EVENT_STATE_ACTIVE) 1569 return; 1570 1571 perf_pmu_disable(event->pmu); 1572 1573 event->state = PERF_EVENT_STATE_INACTIVE; 1574 if (event->pending_disable) { 1575 event->pending_disable = 0; 1576 event->state = PERF_EVENT_STATE_OFF; 1577 } 1578 event->tstamp_stopped = tstamp; 1579 event->pmu->del(event, 0); 1580 event->oncpu = -1; 1581 1582 if (!is_software_event(event)) 1583 cpuctx->active_oncpu--; 1584 if (!--ctx->nr_active) 1585 perf_event_ctx_deactivate(ctx); 1586 if (event->attr.freq && event->attr.sample_freq) 1587 ctx->nr_freq--; 1588 if (event->attr.exclusive || !cpuctx->active_oncpu) 1589 cpuctx->exclusive = 0; 1590 1591 if (is_orphaned_child(event)) 1592 schedule_orphans_remove(ctx); 1593 1594 perf_pmu_enable(event->pmu); 1595 } 1596 1597 static void 1598 group_sched_out(struct perf_event *group_event, 1599 struct perf_cpu_context *cpuctx, 1600 struct perf_event_context *ctx) 1601 { 1602 struct perf_event *event; 1603 int state = group_event->state; 1604 1605 event_sched_out(group_event, cpuctx, ctx); 1606 1607 /* 1608 * Schedule out siblings (if any): 1609 */ 1610 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1611 event_sched_out(event, cpuctx, ctx); 1612 1613 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1614 cpuctx->exclusive = 0; 1615 } 1616 1617 struct remove_event { 1618 struct perf_event *event; 1619 bool detach_group; 1620 }; 1621 1622 /* 1623 * Cross CPU call to remove a performance event 1624 * 1625 * We disable the event on the hardware level first. After that we 1626 * remove it from the context list. 1627 */ 1628 static int __perf_remove_from_context(void *info) 1629 { 1630 struct remove_event *re = info; 1631 struct perf_event *event = re->event; 1632 struct perf_event_context *ctx = event->ctx; 1633 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1634 1635 raw_spin_lock(&ctx->lock); 1636 event_sched_out(event, cpuctx, ctx); 1637 if (re->detach_group) 1638 perf_group_detach(event); 1639 list_del_event(event, ctx); 1640 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1641 ctx->is_active = 0; 1642 cpuctx->task_ctx = NULL; 1643 } 1644 raw_spin_unlock(&ctx->lock); 1645 1646 return 0; 1647 } 1648 1649 1650 /* 1651 * Remove the event from a task's (or a CPU's) list of events. 1652 * 1653 * CPU events are removed with a smp call. For task events we only 1654 * call when the task is on a CPU. 1655 * 1656 * If event->ctx is a cloned context, callers must make sure that 1657 * every task struct that event->ctx->task could possibly point to 1658 * remains valid. This is OK when called from perf_release since 1659 * that only calls us on the top-level context, which can't be a clone. 1660 * When called from perf_event_exit_task, it's OK because the 1661 * context has been detached from its task. 1662 */ 1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1664 { 1665 struct perf_event_context *ctx = event->ctx; 1666 struct task_struct *task = ctx->task; 1667 struct remove_event re = { 1668 .event = event, 1669 .detach_group = detach_group, 1670 }; 1671 1672 lockdep_assert_held(&ctx->mutex); 1673 1674 if (!task) { 1675 /* 1676 * Per cpu events are removed via an smp call. The removal can 1677 * fail if the CPU is currently offline, but in that case we 1678 * already called __perf_remove_from_context from 1679 * perf_event_exit_cpu. 1680 */ 1681 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1682 return; 1683 } 1684 1685 retry: 1686 if (!task_function_call(task, __perf_remove_from_context, &re)) 1687 return; 1688 1689 raw_spin_lock_irq(&ctx->lock); 1690 /* 1691 * If we failed to find a running task, but find the context active now 1692 * that we've acquired the ctx->lock, retry. 1693 */ 1694 if (ctx->is_active) { 1695 raw_spin_unlock_irq(&ctx->lock); 1696 /* 1697 * Reload the task pointer, it might have been changed by 1698 * a concurrent perf_event_context_sched_out(). 1699 */ 1700 task = ctx->task; 1701 goto retry; 1702 } 1703 1704 /* 1705 * Since the task isn't running, its safe to remove the event, us 1706 * holding the ctx->lock ensures the task won't get scheduled in. 1707 */ 1708 if (detach_group) 1709 perf_group_detach(event); 1710 list_del_event(event, ctx); 1711 raw_spin_unlock_irq(&ctx->lock); 1712 } 1713 1714 /* 1715 * Cross CPU call to disable a performance event 1716 */ 1717 int __perf_event_disable(void *info) 1718 { 1719 struct perf_event *event = info; 1720 struct perf_event_context *ctx = event->ctx; 1721 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1722 1723 /* 1724 * If this is a per-task event, need to check whether this 1725 * event's task is the current task on this cpu. 1726 * 1727 * Can trigger due to concurrent perf_event_context_sched_out() 1728 * flipping contexts around. 1729 */ 1730 if (ctx->task && cpuctx->task_ctx != ctx) 1731 return -EINVAL; 1732 1733 raw_spin_lock(&ctx->lock); 1734 1735 /* 1736 * If the event is on, turn it off. 1737 * If it is in error state, leave it in error state. 1738 */ 1739 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1740 update_context_time(ctx); 1741 update_cgrp_time_from_event(event); 1742 update_group_times(event); 1743 if (event == event->group_leader) 1744 group_sched_out(event, cpuctx, ctx); 1745 else 1746 event_sched_out(event, cpuctx, ctx); 1747 event->state = PERF_EVENT_STATE_OFF; 1748 } 1749 1750 raw_spin_unlock(&ctx->lock); 1751 1752 return 0; 1753 } 1754 1755 /* 1756 * Disable a event. 1757 * 1758 * If event->ctx is a cloned context, callers must make sure that 1759 * every task struct that event->ctx->task could possibly point to 1760 * remains valid. This condition is satisifed when called through 1761 * perf_event_for_each_child or perf_event_for_each because they 1762 * hold the top-level event's child_mutex, so any descendant that 1763 * goes to exit will block in sync_child_event. 1764 * When called from perf_pending_event it's OK because event->ctx 1765 * is the current context on this CPU and preemption is disabled, 1766 * hence we can't get into perf_event_task_sched_out for this context. 1767 */ 1768 static void _perf_event_disable(struct perf_event *event) 1769 { 1770 struct perf_event_context *ctx = event->ctx; 1771 struct task_struct *task = ctx->task; 1772 1773 if (!task) { 1774 /* 1775 * Disable the event on the cpu that it's on 1776 */ 1777 cpu_function_call(event->cpu, __perf_event_disable, event); 1778 return; 1779 } 1780 1781 retry: 1782 if (!task_function_call(task, __perf_event_disable, event)) 1783 return; 1784 1785 raw_spin_lock_irq(&ctx->lock); 1786 /* 1787 * If the event is still active, we need to retry the cross-call. 1788 */ 1789 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1790 raw_spin_unlock_irq(&ctx->lock); 1791 /* 1792 * Reload the task pointer, it might have been changed by 1793 * a concurrent perf_event_context_sched_out(). 1794 */ 1795 task = ctx->task; 1796 goto retry; 1797 } 1798 1799 /* 1800 * Since we have the lock this context can't be scheduled 1801 * in, so we can change the state safely. 1802 */ 1803 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1804 update_group_times(event); 1805 event->state = PERF_EVENT_STATE_OFF; 1806 } 1807 raw_spin_unlock_irq(&ctx->lock); 1808 } 1809 1810 /* 1811 * Strictly speaking kernel users cannot create groups and therefore this 1812 * interface does not need the perf_event_ctx_lock() magic. 1813 */ 1814 void perf_event_disable(struct perf_event *event) 1815 { 1816 struct perf_event_context *ctx; 1817 1818 ctx = perf_event_ctx_lock(event); 1819 _perf_event_disable(event); 1820 perf_event_ctx_unlock(event, ctx); 1821 } 1822 EXPORT_SYMBOL_GPL(perf_event_disable); 1823 1824 static void perf_set_shadow_time(struct perf_event *event, 1825 struct perf_event_context *ctx, 1826 u64 tstamp) 1827 { 1828 /* 1829 * use the correct time source for the time snapshot 1830 * 1831 * We could get by without this by leveraging the 1832 * fact that to get to this function, the caller 1833 * has most likely already called update_context_time() 1834 * and update_cgrp_time_xx() and thus both timestamp 1835 * are identical (or very close). Given that tstamp is, 1836 * already adjusted for cgroup, we could say that: 1837 * tstamp - ctx->timestamp 1838 * is equivalent to 1839 * tstamp - cgrp->timestamp. 1840 * 1841 * Then, in perf_output_read(), the calculation would 1842 * work with no changes because: 1843 * - event is guaranteed scheduled in 1844 * - no scheduled out in between 1845 * - thus the timestamp would be the same 1846 * 1847 * But this is a bit hairy. 1848 * 1849 * So instead, we have an explicit cgroup call to remain 1850 * within the time time source all along. We believe it 1851 * is cleaner and simpler to understand. 1852 */ 1853 if (is_cgroup_event(event)) 1854 perf_cgroup_set_shadow_time(event, tstamp); 1855 else 1856 event->shadow_ctx_time = tstamp - ctx->timestamp; 1857 } 1858 1859 #define MAX_INTERRUPTS (~0ULL) 1860 1861 static void perf_log_throttle(struct perf_event *event, int enable); 1862 static void perf_log_itrace_start(struct perf_event *event); 1863 1864 static int 1865 event_sched_in(struct perf_event *event, 1866 struct perf_cpu_context *cpuctx, 1867 struct perf_event_context *ctx) 1868 { 1869 u64 tstamp = perf_event_time(event); 1870 int ret = 0; 1871 1872 lockdep_assert_held(&ctx->lock); 1873 1874 if (event->state <= PERF_EVENT_STATE_OFF) 1875 return 0; 1876 1877 event->state = PERF_EVENT_STATE_ACTIVE; 1878 event->oncpu = smp_processor_id(); 1879 1880 /* 1881 * Unthrottle events, since we scheduled we might have missed several 1882 * ticks already, also for a heavily scheduling task there is little 1883 * guarantee it'll get a tick in a timely manner. 1884 */ 1885 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1886 perf_log_throttle(event, 1); 1887 event->hw.interrupts = 0; 1888 } 1889 1890 /* 1891 * The new state must be visible before we turn it on in the hardware: 1892 */ 1893 smp_wmb(); 1894 1895 perf_pmu_disable(event->pmu); 1896 1897 perf_set_shadow_time(event, ctx, tstamp); 1898 1899 perf_log_itrace_start(event); 1900 1901 if (event->pmu->add(event, PERF_EF_START)) { 1902 event->state = PERF_EVENT_STATE_INACTIVE; 1903 event->oncpu = -1; 1904 ret = -EAGAIN; 1905 goto out; 1906 } 1907 1908 event->tstamp_running += tstamp - event->tstamp_stopped; 1909 1910 if (!is_software_event(event)) 1911 cpuctx->active_oncpu++; 1912 if (!ctx->nr_active++) 1913 perf_event_ctx_activate(ctx); 1914 if (event->attr.freq && event->attr.sample_freq) 1915 ctx->nr_freq++; 1916 1917 if (event->attr.exclusive) 1918 cpuctx->exclusive = 1; 1919 1920 if (is_orphaned_child(event)) 1921 schedule_orphans_remove(ctx); 1922 1923 out: 1924 perf_pmu_enable(event->pmu); 1925 1926 return ret; 1927 } 1928 1929 static int 1930 group_sched_in(struct perf_event *group_event, 1931 struct perf_cpu_context *cpuctx, 1932 struct perf_event_context *ctx) 1933 { 1934 struct perf_event *event, *partial_group = NULL; 1935 struct pmu *pmu = ctx->pmu; 1936 u64 now = ctx->time; 1937 bool simulate = false; 1938 1939 if (group_event->state == PERF_EVENT_STATE_OFF) 1940 return 0; 1941 1942 pmu->start_txn(pmu); 1943 1944 if (event_sched_in(group_event, cpuctx, ctx)) { 1945 pmu->cancel_txn(pmu); 1946 perf_mux_hrtimer_restart(cpuctx); 1947 return -EAGAIN; 1948 } 1949 1950 /* 1951 * Schedule in siblings as one group (if any): 1952 */ 1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1954 if (event_sched_in(event, cpuctx, ctx)) { 1955 partial_group = event; 1956 goto group_error; 1957 } 1958 } 1959 1960 if (!pmu->commit_txn(pmu)) 1961 return 0; 1962 1963 group_error: 1964 /* 1965 * Groups can be scheduled in as one unit only, so undo any 1966 * partial group before returning: 1967 * The events up to the failed event are scheduled out normally, 1968 * tstamp_stopped will be updated. 1969 * 1970 * The failed events and the remaining siblings need to have 1971 * their timings updated as if they had gone thru event_sched_in() 1972 * and event_sched_out(). This is required to get consistent timings 1973 * across the group. This also takes care of the case where the group 1974 * could never be scheduled by ensuring tstamp_stopped is set to mark 1975 * the time the event was actually stopped, such that time delta 1976 * calculation in update_event_times() is correct. 1977 */ 1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1979 if (event == partial_group) 1980 simulate = true; 1981 1982 if (simulate) { 1983 event->tstamp_running += now - event->tstamp_stopped; 1984 event->tstamp_stopped = now; 1985 } else { 1986 event_sched_out(event, cpuctx, ctx); 1987 } 1988 } 1989 event_sched_out(group_event, cpuctx, ctx); 1990 1991 pmu->cancel_txn(pmu); 1992 1993 perf_mux_hrtimer_restart(cpuctx); 1994 1995 return -EAGAIN; 1996 } 1997 1998 /* 1999 * Work out whether we can put this event group on the CPU now. 2000 */ 2001 static int group_can_go_on(struct perf_event *event, 2002 struct perf_cpu_context *cpuctx, 2003 int can_add_hw) 2004 { 2005 /* 2006 * Groups consisting entirely of software events can always go on. 2007 */ 2008 if (event->group_flags & PERF_GROUP_SOFTWARE) 2009 return 1; 2010 /* 2011 * If an exclusive group is already on, no other hardware 2012 * events can go on. 2013 */ 2014 if (cpuctx->exclusive) 2015 return 0; 2016 /* 2017 * If this group is exclusive and there are already 2018 * events on the CPU, it can't go on. 2019 */ 2020 if (event->attr.exclusive && cpuctx->active_oncpu) 2021 return 0; 2022 /* 2023 * Otherwise, try to add it if all previous groups were able 2024 * to go on. 2025 */ 2026 return can_add_hw; 2027 } 2028 2029 static void add_event_to_ctx(struct perf_event *event, 2030 struct perf_event_context *ctx) 2031 { 2032 u64 tstamp = perf_event_time(event); 2033 2034 list_add_event(event, ctx); 2035 perf_group_attach(event); 2036 event->tstamp_enabled = tstamp; 2037 event->tstamp_running = tstamp; 2038 event->tstamp_stopped = tstamp; 2039 } 2040 2041 static void task_ctx_sched_out(struct perf_event_context *ctx); 2042 static void 2043 ctx_sched_in(struct perf_event_context *ctx, 2044 struct perf_cpu_context *cpuctx, 2045 enum event_type_t event_type, 2046 struct task_struct *task); 2047 2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2049 struct perf_event_context *ctx, 2050 struct task_struct *task) 2051 { 2052 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2053 if (ctx) 2054 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2055 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2056 if (ctx) 2057 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2058 } 2059 2060 /* 2061 * Cross CPU call to install and enable a performance event 2062 * 2063 * Must be called with ctx->mutex held 2064 */ 2065 static int __perf_install_in_context(void *info) 2066 { 2067 struct perf_event *event = info; 2068 struct perf_event_context *ctx = event->ctx; 2069 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2070 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2071 struct task_struct *task = current; 2072 2073 perf_ctx_lock(cpuctx, task_ctx); 2074 perf_pmu_disable(cpuctx->ctx.pmu); 2075 2076 /* 2077 * If there was an active task_ctx schedule it out. 2078 */ 2079 if (task_ctx) 2080 task_ctx_sched_out(task_ctx); 2081 2082 /* 2083 * If the context we're installing events in is not the 2084 * active task_ctx, flip them. 2085 */ 2086 if (ctx->task && task_ctx != ctx) { 2087 if (task_ctx) 2088 raw_spin_unlock(&task_ctx->lock); 2089 raw_spin_lock(&ctx->lock); 2090 task_ctx = ctx; 2091 } 2092 2093 if (task_ctx) { 2094 cpuctx->task_ctx = task_ctx; 2095 task = task_ctx->task; 2096 } 2097 2098 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2099 2100 update_context_time(ctx); 2101 /* 2102 * update cgrp time only if current cgrp 2103 * matches event->cgrp. Must be done before 2104 * calling add_event_to_ctx() 2105 */ 2106 update_cgrp_time_from_event(event); 2107 2108 add_event_to_ctx(event, ctx); 2109 2110 /* 2111 * Schedule everything back in 2112 */ 2113 perf_event_sched_in(cpuctx, task_ctx, task); 2114 2115 perf_pmu_enable(cpuctx->ctx.pmu); 2116 perf_ctx_unlock(cpuctx, task_ctx); 2117 2118 return 0; 2119 } 2120 2121 /* 2122 * Attach a performance event to a context 2123 * 2124 * First we add the event to the list with the hardware enable bit 2125 * in event->hw_config cleared. 2126 * 2127 * If the event is attached to a task which is on a CPU we use a smp 2128 * call to enable it in the task context. The task might have been 2129 * scheduled away, but we check this in the smp call again. 2130 */ 2131 static void 2132 perf_install_in_context(struct perf_event_context *ctx, 2133 struct perf_event *event, 2134 int cpu) 2135 { 2136 struct task_struct *task = ctx->task; 2137 2138 lockdep_assert_held(&ctx->mutex); 2139 2140 event->ctx = ctx; 2141 if (event->cpu != -1) 2142 event->cpu = cpu; 2143 2144 if (!task) { 2145 /* 2146 * Per cpu events are installed via an smp call and 2147 * the install is always successful. 2148 */ 2149 cpu_function_call(cpu, __perf_install_in_context, event); 2150 return; 2151 } 2152 2153 retry: 2154 if (!task_function_call(task, __perf_install_in_context, event)) 2155 return; 2156 2157 raw_spin_lock_irq(&ctx->lock); 2158 /* 2159 * If we failed to find a running task, but find the context active now 2160 * that we've acquired the ctx->lock, retry. 2161 */ 2162 if (ctx->is_active) { 2163 raw_spin_unlock_irq(&ctx->lock); 2164 /* 2165 * Reload the task pointer, it might have been changed by 2166 * a concurrent perf_event_context_sched_out(). 2167 */ 2168 task = ctx->task; 2169 goto retry; 2170 } 2171 2172 /* 2173 * Since the task isn't running, its safe to add the event, us holding 2174 * the ctx->lock ensures the task won't get scheduled in. 2175 */ 2176 add_event_to_ctx(event, ctx); 2177 raw_spin_unlock_irq(&ctx->lock); 2178 } 2179 2180 /* 2181 * Put a event into inactive state and update time fields. 2182 * Enabling the leader of a group effectively enables all 2183 * the group members that aren't explicitly disabled, so we 2184 * have to update their ->tstamp_enabled also. 2185 * Note: this works for group members as well as group leaders 2186 * since the non-leader members' sibling_lists will be empty. 2187 */ 2188 static void __perf_event_mark_enabled(struct perf_event *event) 2189 { 2190 struct perf_event *sub; 2191 u64 tstamp = perf_event_time(event); 2192 2193 event->state = PERF_EVENT_STATE_INACTIVE; 2194 event->tstamp_enabled = tstamp - event->total_time_enabled; 2195 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2196 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2197 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2198 } 2199 } 2200 2201 /* 2202 * Cross CPU call to enable a performance event 2203 */ 2204 static int __perf_event_enable(void *info) 2205 { 2206 struct perf_event *event = info; 2207 struct perf_event_context *ctx = event->ctx; 2208 struct perf_event *leader = event->group_leader; 2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2210 int err; 2211 2212 /* 2213 * There's a time window between 'ctx->is_active' check 2214 * in perf_event_enable function and this place having: 2215 * - IRQs on 2216 * - ctx->lock unlocked 2217 * 2218 * where the task could be killed and 'ctx' deactivated 2219 * by perf_event_exit_task. 2220 */ 2221 if (!ctx->is_active) 2222 return -EINVAL; 2223 2224 raw_spin_lock(&ctx->lock); 2225 update_context_time(ctx); 2226 2227 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2228 goto unlock; 2229 2230 /* 2231 * set current task's cgroup time reference point 2232 */ 2233 perf_cgroup_set_timestamp(current, ctx); 2234 2235 __perf_event_mark_enabled(event); 2236 2237 if (!event_filter_match(event)) { 2238 if (is_cgroup_event(event)) 2239 perf_cgroup_defer_enabled(event); 2240 goto unlock; 2241 } 2242 2243 /* 2244 * If the event is in a group and isn't the group leader, 2245 * then don't put it on unless the group is on. 2246 */ 2247 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2248 goto unlock; 2249 2250 if (!group_can_go_on(event, cpuctx, 1)) { 2251 err = -EEXIST; 2252 } else { 2253 if (event == leader) 2254 err = group_sched_in(event, cpuctx, ctx); 2255 else 2256 err = event_sched_in(event, cpuctx, ctx); 2257 } 2258 2259 if (err) { 2260 /* 2261 * If this event can't go on and it's part of a 2262 * group, then the whole group has to come off. 2263 */ 2264 if (leader != event) { 2265 group_sched_out(leader, cpuctx, ctx); 2266 perf_mux_hrtimer_restart(cpuctx); 2267 } 2268 if (leader->attr.pinned) { 2269 update_group_times(leader); 2270 leader->state = PERF_EVENT_STATE_ERROR; 2271 } 2272 } 2273 2274 unlock: 2275 raw_spin_unlock(&ctx->lock); 2276 2277 return 0; 2278 } 2279 2280 /* 2281 * Enable a event. 2282 * 2283 * If event->ctx is a cloned context, callers must make sure that 2284 * every task struct that event->ctx->task could possibly point to 2285 * remains valid. This condition is satisfied when called through 2286 * perf_event_for_each_child or perf_event_for_each as described 2287 * for perf_event_disable. 2288 */ 2289 static void _perf_event_enable(struct perf_event *event) 2290 { 2291 struct perf_event_context *ctx = event->ctx; 2292 struct task_struct *task = ctx->task; 2293 2294 if (!task) { 2295 /* 2296 * Enable the event on the cpu that it's on 2297 */ 2298 cpu_function_call(event->cpu, __perf_event_enable, event); 2299 return; 2300 } 2301 2302 raw_spin_lock_irq(&ctx->lock); 2303 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2304 goto out; 2305 2306 /* 2307 * If the event is in error state, clear that first. 2308 * That way, if we see the event in error state below, we 2309 * know that it has gone back into error state, as distinct 2310 * from the task having been scheduled away before the 2311 * cross-call arrived. 2312 */ 2313 if (event->state == PERF_EVENT_STATE_ERROR) 2314 event->state = PERF_EVENT_STATE_OFF; 2315 2316 retry: 2317 if (!ctx->is_active) { 2318 __perf_event_mark_enabled(event); 2319 goto out; 2320 } 2321 2322 raw_spin_unlock_irq(&ctx->lock); 2323 2324 if (!task_function_call(task, __perf_event_enable, event)) 2325 return; 2326 2327 raw_spin_lock_irq(&ctx->lock); 2328 2329 /* 2330 * If the context is active and the event is still off, 2331 * we need to retry the cross-call. 2332 */ 2333 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2334 /* 2335 * task could have been flipped by a concurrent 2336 * perf_event_context_sched_out() 2337 */ 2338 task = ctx->task; 2339 goto retry; 2340 } 2341 2342 out: 2343 raw_spin_unlock_irq(&ctx->lock); 2344 } 2345 2346 /* 2347 * See perf_event_disable(); 2348 */ 2349 void perf_event_enable(struct perf_event *event) 2350 { 2351 struct perf_event_context *ctx; 2352 2353 ctx = perf_event_ctx_lock(event); 2354 _perf_event_enable(event); 2355 perf_event_ctx_unlock(event, ctx); 2356 } 2357 EXPORT_SYMBOL_GPL(perf_event_enable); 2358 2359 static int _perf_event_refresh(struct perf_event *event, int refresh) 2360 { 2361 /* 2362 * not supported on inherited events 2363 */ 2364 if (event->attr.inherit || !is_sampling_event(event)) 2365 return -EINVAL; 2366 2367 atomic_add(refresh, &event->event_limit); 2368 _perf_event_enable(event); 2369 2370 return 0; 2371 } 2372 2373 /* 2374 * See perf_event_disable() 2375 */ 2376 int perf_event_refresh(struct perf_event *event, int refresh) 2377 { 2378 struct perf_event_context *ctx; 2379 int ret; 2380 2381 ctx = perf_event_ctx_lock(event); 2382 ret = _perf_event_refresh(event, refresh); 2383 perf_event_ctx_unlock(event, ctx); 2384 2385 return ret; 2386 } 2387 EXPORT_SYMBOL_GPL(perf_event_refresh); 2388 2389 static void ctx_sched_out(struct perf_event_context *ctx, 2390 struct perf_cpu_context *cpuctx, 2391 enum event_type_t event_type) 2392 { 2393 struct perf_event *event; 2394 int is_active = ctx->is_active; 2395 2396 ctx->is_active &= ~event_type; 2397 if (likely(!ctx->nr_events)) 2398 return; 2399 2400 update_context_time(ctx); 2401 update_cgrp_time_from_cpuctx(cpuctx); 2402 if (!ctx->nr_active) 2403 return; 2404 2405 perf_pmu_disable(ctx->pmu); 2406 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2407 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2408 group_sched_out(event, cpuctx, ctx); 2409 } 2410 2411 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2412 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2413 group_sched_out(event, cpuctx, ctx); 2414 } 2415 perf_pmu_enable(ctx->pmu); 2416 } 2417 2418 /* 2419 * Test whether two contexts are equivalent, i.e. whether they have both been 2420 * cloned from the same version of the same context. 2421 * 2422 * Equivalence is measured using a generation number in the context that is 2423 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2424 * and list_del_event(). 2425 */ 2426 static int context_equiv(struct perf_event_context *ctx1, 2427 struct perf_event_context *ctx2) 2428 { 2429 lockdep_assert_held(&ctx1->lock); 2430 lockdep_assert_held(&ctx2->lock); 2431 2432 /* Pinning disables the swap optimization */ 2433 if (ctx1->pin_count || ctx2->pin_count) 2434 return 0; 2435 2436 /* If ctx1 is the parent of ctx2 */ 2437 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2438 return 1; 2439 2440 /* If ctx2 is the parent of ctx1 */ 2441 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2442 return 1; 2443 2444 /* 2445 * If ctx1 and ctx2 have the same parent; we flatten the parent 2446 * hierarchy, see perf_event_init_context(). 2447 */ 2448 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2449 ctx1->parent_gen == ctx2->parent_gen) 2450 return 1; 2451 2452 /* Unmatched */ 2453 return 0; 2454 } 2455 2456 static void __perf_event_sync_stat(struct perf_event *event, 2457 struct perf_event *next_event) 2458 { 2459 u64 value; 2460 2461 if (!event->attr.inherit_stat) 2462 return; 2463 2464 /* 2465 * Update the event value, we cannot use perf_event_read() 2466 * because we're in the middle of a context switch and have IRQs 2467 * disabled, which upsets smp_call_function_single(), however 2468 * we know the event must be on the current CPU, therefore we 2469 * don't need to use it. 2470 */ 2471 switch (event->state) { 2472 case PERF_EVENT_STATE_ACTIVE: 2473 event->pmu->read(event); 2474 /* fall-through */ 2475 2476 case PERF_EVENT_STATE_INACTIVE: 2477 update_event_times(event); 2478 break; 2479 2480 default: 2481 break; 2482 } 2483 2484 /* 2485 * In order to keep per-task stats reliable we need to flip the event 2486 * values when we flip the contexts. 2487 */ 2488 value = local64_read(&next_event->count); 2489 value = local64_xchg(&event->count, value); 2490 local64_set(&next_event->count, value); 2491 2492 swap(event->total_time_enabled, next_event->total_time_enabled); 2493 swap(event->total_time_running, next_event->total_time_running); 2494 2495 /* 2496 * Since we swizzled the values, update the user visible data too. 2497 */ 2498 perf_event_update_userpage(event); 2499 perf_event_update_userpage(next_event); 2500 } 2501 2502 static void perf_event_sync_stat(struct perf_event_context *ctx, 2503 struct perf_event_context *next_ctx) 2504 { 2505 struct perf_event *event, *next_event; 2506 2507 if (!ctx->nr_stat) 2508 return; 2509 2510 update_context_time(ctx); 2511 2512 event = list_first_entry(&ctx->event_list, 2513 struct perf_event, event_entry); 2514 2515 next_event = list_first_entry(&next_ctx->event_list, 2516 struct perf_event, event_entry); 2517 2518 while (&event->event_entry != &ctx->event_list && 2519 &next_event->event_entry != &next_ctx->event_list) { 2520 2521 __perf_event_sync_stat(event, next_event); 2522 2523 event = list_next_entry(event, event_entry); 2524 next_event = list_next_entry(next_event, event_entry); 2525 } 2526 } 2527 2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2529 struct task_struct *next) 2530 { 2531 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2532 struct perf_event_context *next_ctx; 2533 struct perf_event_context *parent, *next_parent; 2534 struct perf_cpu_context *cpuctx; 2535 int do_switch = 1; 2536 2537 if (likely(!ctx)) 2538 return; 2539 2540 cpuctx = __get_cpu_context(ctx); 2541 if (!cpuctx->task_ctx) 2542 return; 2543 2544 rcu_read_lock(); 2545 next_ctx = next->perf_event_ctxp[ctxn]; 2546 if (!next_ctx) 2547 goto unlock; 2548 2549 parent = rcu_dereference(ctx->parent_ctx); 2550 next_parent = rcu_dereference(next_ctx->parent_ctx); 2551 2552 /* If neither context have a parent context; they cannot be clones. */ 2553 if (!parent && !next_parent) 2554 goto unlock; 2555 2556 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2557 /* 2558 * Looks like the two contexts are clones, so we might be 2559 * able to optimize the context switch. We lock both 2560 * contexts and check that they are clones under the 2561 * lock (including re-checking that neither has been 2562 * uncloned in the meantime). It doesn't matter which 2563 * order we take the locks because no other cpu could 2564 * be trying to lock both of these tasks. 2565 */ 2566 raw_spin_lock(&ctx->lock); 2567 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2568 if (context_equiv(ctx, next_ctx)) { 2569 /* 2570 * XXX do we need a memory barrier of sorts 2571 * wrt to rcu_dereference() of perf_event_ctxp 2572 */ 2573 task->perf_event_ctxp[ctxn] = next_ctx; 2574 next->perf_event_ctxp[ctxn] = ctx; 2575 ctx->task = next; 2576 next_ctx->task = task; 2577 2578 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2579 2580 do_switch = 0; 2581 2582 perf_event_sync_stat(ctx, next_ctx); 2583 } 2584 raw_spin_unlock(&next_ctx->lock); 2585 raw_spin_unlock(&ctx->lock); 2586 } 2587 unlock: 2588 rcu_read_unlock(); 2589 2590 if (do_switch) { 2591 raw_spin_lock(&ctx->lock); 2592 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2593 cpuctx->task_ctx = NULL; 2594 raw_spin_unlock(&ctx->lock); 2595 } 2596 } 2597 2598 void perf_sched_cb_dec(struct pmu *pmu) 2599 { 2600 this_cpu_dec(perf_sched_cb_usages); 2601 } 2602 2603 void perf_sched_cb_inc(struct pmu *pmu) 2604 { 2605 this_cpu_inc(perf_sched_cb_usages); 2606 } 2607 2608 /* 2609 * This function provides the context switch callback to the lower code 2610 * layer. It is invoked ONLY when the context switch callback is enabled. 2611 */ 2612 static void perf_pmu_sched_task(struct task_struct *prev, 2613 struct task_struct *next, 2614 bool sched_in) 2615 { 2616 struct perf_cpu_context *cpuctx; 2617 struct pmu *pmu; 2618 unsigned long flags; 2619 2620 if (prev == next) 2621 return; 2622 2623 local_irq_save(flags); 2624 2625 rcu_read_lock(); 2626 2627 list_for_each_entry_rcu(pmu, &pmus, entry) { 2628 if (pmu->sched_task) { 2629 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2630 2631 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2632 2633 perf_pmu_disable(pmu); 2634 2635 pmu->sched_task(cpuctx->task_ctx, sched_in); 2636 2637 perf_pmu_enable(pmu); 2638 2639 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2640 } 2641 } 2642 2643 rcu_read_unlock(); 2644 2645 local_irq_restore(flags); 2646 } 2647 2648 static void perf_event_switch(struct task_struct *task, 2649 struct task_struct *next_prev, bool sched_in); 2650 2651 #define for_each_task_context_nr(ctxn) \ 2652 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2653 2654 /* 2655 * Called from scheduler to remove the events of the current task, 2656 * with interrupts disabled. 2657 * 2658 * We stop each event and update the event value in event->count. 2659 * 2660 * This does not protect us against NMI, but disable() 2661 * sets the disabled bit in the control field of event _before_ 2662 * accessing the event control register. If a NMI hits, then it will 2663 * not restart the event. 2664 */ 2665 void __perf_event_task_sched_out(struct task_struct *task, 2666 struct task_struct *next) 2667 { 2668 int ctxn; 2669 2670 if (__this_cpu_read(perf_sched_cb_usages)) 2671 perf_pmu_sched_task(task, next, false); 2672 2673 if (atomic_read(&nr_switch_events)) 2674 perf_event_switch(task, next, false); 2675 2676 for_each_task_context_nr(ctxn) 2677 perf_event_context_sched_out(task, ctxn, next); 2678 2679 /* 2680 * if cgroup events exist on this CPU, then we need 2681 * to check if we have to switch out PMU state. 2682 * cgroup event are system-wide mode only 2683 */ 2684 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2685 perf_cgroup_sched_out(task, next); 2686 } 2687 2688 static void task_ctx_sched_out(struct perf_event_context *ctx) 2689 { 2690 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2691 2692 if (!cpuctx->task_ctx) 2693 return; 2694 2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2696 return; 2697 2698 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2699 cpuctx->task_ctx = NULL; 2700 } 2701 2702 /* 2703 * Called with IRQs disabled 2704 */ 2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2706 enum event_type_t event_type) 2707 { 2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2709 } 2710 2711 static void 2712 ctx_pinned_sched_in(struct perf_event_context *ctx, 2713 struct perf_cpu_context *cpuctx) 2714 { 2715 struct perf_event *event; 2716 2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 continue; 2720 if (!event_filter_match(event)) 2721 continue; 2722 2723 /* may need to reset tstamp_enabled */ 2724 if (is_cgroup_event(event)) 2725 perf_cgroup_mark_enabled(event, ctx); 2726 2727 if (group_can_go_on(event, cpuctx, 1)) 2728 group_sched_in(event, cpuctx, ctx); 2729 2730 /* 2731 * If this pinned group hasn't been scheduled, 2732 * put it in error state. 2733 */ 2734 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2735 update_group_times(event); 2736 event->state = PERF_EVENT_STATE_ERROR; 2737 } 2738 } 2739 } 2740 2741 static void 2742 ctx_flexible_sched_in(struct perf_event_context *ctx, 2743 struct perf_cpu_context *cpuctx) 2744 { 2745 struct perf_event *event; 2746 int can_add_hw = 1; 2747 2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2749 /* Ignore events in OFF or ERROR state */ 2750 if (event->state <= PERF_EVENT_STATE_OFF) 2751 continue; 2752 /* 2753 * Listen to the 'cpu' scheduling filter constraint 2754 * of events: 2755 */ 2756 if (!event_filter_match(event)) 2757 continue; 2758 2759 /* may need to reset tstamp_enabled */ 2760 if (is_cgroup_event(event)) 2761 perf_cgroup_mark_enabled(event, ctx); 2762 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2764 if (group_sched_in(event, cpuctx, ctx)) 2765 can_add_hw = 0; 2766 } 2767 } 2768 } 2769 2770 static void 2771 ctx_sched_in(struct perf_event_context *ctx, 2772 struct perf_cpu_context *cpuctx, 2773 enum event_type_t event_type, 2774 struct task_struct *task) 2775 { 2776 u64 now; 2777 int is_active = ctx->is_active; 2778 2779 ctx->is_active |= event_type; 2780 if (likely(!ctx->nr_events)) 2781 return; 2782 2783 now = perf_clock(); 2784 ctx->timestamp = now; 2785 perf_cgroup_set_timestamp(task, ctx); 2786 /* 2787 * First go through the list and put on any pinned groups 2788 * in order to give them the best chance of going on. 2789 */ 2790 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2791 ctx_pinned_sched_in(ctx, cpuctx); 2792 2793 /* Then walk through the lower prio flexible groups */ 2794 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2795 ctx_flexible_sched_in(ctx, cpuctx); 2796 } 2797 2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2799 enum event_type_t event_type, 2800 struct task_struct *task) 2801 { 2802 struct perf_event_context *ctx = &cpuctx->ctx; 2803 2804 ctx_sched_in(ctx, cpuctx, event_type, task); 2805 } 2806 2807 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2808 struct task_struct *task) 2809 { 2810 struct perf_cpu_context *cpuctx; 2811 2812 cpuctx = __get_cpu_context(ctx); 2813 if (cpuctx->task_ctx == ctx) 2814 return; 2815 2816 perf_ctx_lock(cpuctx, ctx); 2817 perf_pmu_disable(ctx->pmu); 2818 /* 2819 * We want to keep the following priority order: 2820 * cpu pinned (that don't need to move), task pinned, 2821 * cpu flexible, task flexible. 2822 */ 2823 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2824 2825 if (ctx->nr_events) 2826 cpuctx->task_ctx = ctx; 2827 2828 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2829 2830 perf_pmu_enable(ctx->pmu); 2831 perf_ctx_unlock(cpuctx, ctx); 2832 } 2833 2834 /* 2835 * Called from scheduler to add the events of the current task 2836 * with interrupts disabled. 2837 * 2838 * We restore the event value and then enable it. 2839 * 2840 * This does not protect us against NMI, but enable() 2841 * sets the enabled bit in the control field of event _before_ 2842 * accessing the event control register. If a NMI hits, then it will 2843 * keep the event running. 2844 */ 2845 void __perf_event_task_sched_in(struct task_struct *prev, 2846 struct task_struct *task) 2847 { 2848 struct perf_event_context *ctx; 2849 int ctxn; 2850 2851 for_each_task_context_nr(ctxn) { 2852 ctx = task->perf_event_ctxp[ctxn]; 2853 if (likely(!ctx)) 2854 continue; 2855 2856 perf_event_context_sched_in(ctx, task); 2857 } 2858 /* 2859 * if cgroup events exist on this CPU, then we need 2860 * to check if we have to switch in PMU state. 2861 * cgroup event are system-wide mode only 2862 */ 2863 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2864 perf_cgroup_sched_in(prev, task); 2865 2866 if (atomic_read(&nr_switch_events)) 2867 perf_event_switch(task, prev, true); 2868 2869 if (__this_cpu_read(perf_sched_cb_usages)) 2870 perf_pmu_sched_task(prev, task, true); 2871 } 2872 2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2874 { 2875 u64 frequency = event->attr.sample_freq; 2876 u64 sec = NSEC_PER_SEC; 2877 u64 divisor, dividend; 2878 2879 int count_fls, nsec_fls, frequency_fls, sec_fls; 2880 2881 count_fls = fls64(count); 2882 nsec_fls = fls64(nsec); 2883 frequency_fls = fls64(frequency); 2884 sec_fls = 30; 2885 2886 /* 2887 * We got @count in @nsec, with a target of sample_freq HZ 2888 * the target period becomes: 2889 * 2890 * @count * 10^9 2891 * period = ------------------- 2892 * @nsec * sample_freq 2893 * 2894 */ 2895 2896 /* 2897 * Reduce accuracy by one bit such that @a and @b converge 2898 * to a similar magnitude. 2899 */ 2900 #define REDUCE_FLS(a, b) \ 2901 do { \ 2902 if (a##_fls > b##_fls) { \ 2903 a >>= 1; \ 2904 a##_fls--; \ 2905 } else { \ 2906 b >>= 1; \ 2907 b##_fls--; \ 2908 } \ 2909 } while (0) 2910 2911 /* 2912 * Reduce accuracy until either term fits in a u64, then proceed with 2913 * the other, so that finally we can do a u64/u64 division. 2914 */ 2915 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2916 REDUCE_FLS(nsec, frequency); 2917 REDUCE_FLS(sec, count); 2918 } 2919 2920 if (count_fls + sec_fls > 64) { 2921 divisor = nsec * frequency; 2922 2923 while (count_fls + sec_fls > 64) { 2924 REDUCE_FLS(count, sec); 2925 divisor >>= 1; 2926 } 2927 2928 dividend = count * sec; 2929 } else { 2930 dividend = count * sec; 2931 2932 while (nsec_fls + frequency_fls > 64) { 2933 REDUCE_FLS(nsec, frequency); 2934 dividend >>= 1; 2935 } 2936 2937 divisor = nsec * frequency; 2938 } 2939 2940 if (!divisor) 2941 return dividend; 2942 2943 return div64_u64(dividend, divisor); 2944 } 2945 2946 static DEFINE_PER_CPU(int, perf_throttled_count); 2947 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2948 2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2950 { 2951 struct hw_perf_event *hwc = &event->hw; 2952 s64 period, sample_period; 2953 s64 delta; 2954 2955 period = perf_calculate_period(event, nsec, count); 2956 2957 delta = (s64)(period - hwc->sample_period); 2958 delta = (delta + 7) / 8; /* low pass filter */ 2959 2960 sample_period = hwc->sample_period + delta; 2961 2962 if (!sample_period) 2963 sample_period = 1; 2964 2965 hwc->sample_period = sample_period; 2966 2967 if (local64_read(&hwc->period_left) > 8*sample_period) { 2968 if (disable) 2969 event->pmu->stop(event, PERF_EF_UPDATE); 2970 2971 local64_set(&hwc->period_left, 0); 2972 2973 if (disable) 2974 event->pmu->start(event, PERF_EF_RELOAD); 2975 } 2976 } 2977 2978 /* 2979 * combine freq adjustment with unthrottling to avoid two passes over the 2980 * events. At the same time, make sure, having freq events does not change 2981 * the rate of unthrottling as that would introduce bias. 2982 */ 2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2984 int needs_unthr) 2985 { 2986 struct perf_event *event; 2987 struct hw_perf_event *hwc; 2988 u64 now, period = TICK_NSEC; 2989 s64 delta; 2990 2991 /* 2992 * only need to iterate over all events iff: 2993 * - context have events in frequency mode (needs freq adjust) 2994 * - there are events to unthrottle on this cpu 2995 */ 2996 if (!(ctx->nr_freq || needs_unthr)) 2997 return; 2998 2999 raw_spin_lock(&ctx->lock); 3000 perf_pmu_disable(ctx->pmu); 3001 3002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3003 if (event->state != PERF_EVENT_STATE_ACTIVE) 3004 continue; 3005 3006 if (!event_filter_match(event)) 3007 continue; 3008 3009 perf_pmu_disable(event->pmu); 3010 3011 hwc = &event->hw; 3012 3013 if (hwc->interrupts == MAX_INTERRUPTS) { 3014 hwc->interrupts = 0; 3015 perf_log_throttle(event, 1); 3016 event->pmu->start(event, 0); 3017 } 3018 3019 if (!event->attr.freq || !event->attr.sample_freq) 3020 goto next; 3021 3022 /* 3023 * stop the event and update event->count 3024 */ 3025 event->pmu->stop(event, PERF_EF_UPDATE); 3026 3027 now = local64_read(&event->count); 3028 delta = now - hwc->freq_count_stamp; 3029 hwc->freq_count_stamp = now; 3030 3031 /* 3032 * restart the event 3033 * reload only if value has changed 3034 * we have stopped the event so tell that 3035 * to perf_adjust_period() to avoid stopping it 3036 * twice. 3037 */ 3038 if (delta > 0) 3039 perf_adjust_period(event, period, delta, false); 3040 3041 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3042 next: 3043 perf_pmu_enable(event->pmu); 3044 } 3045 3046 perf_pmu_enable(ctx->pmu); 3047 raw_spin_unlock(&ctx->lock); 3048 } 3049 3050 /* 3051 * Round-robin a context's events: 3052 */ 3053 static void rotate_ctx(struct perf_event_context *ctx) 3054 { 3055 /* 3056 * Rotate the first entry last of non-pinned groups. Rotation might be 3057 * disabled by the inheritance code. 3058 */ 3059 if (!ctx->rotate_disable) 3060 list_rotate_left(&ctx->flexible_groups); 3061 } 3062 3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3064 { 3065 struct perf_event_context *ctx = NULL; 3066 int rotate = 0; 3067 3068 if (cpuctx->ctx.nr_events) { 3069 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3070 rotate = 1; 3071 } 3072 3073 ctx = cpuctx->task_ctx; 3074 if (ctx && ctx->nr_events) { 3075 if (ctx->nr_events != ctx->nr_active) 3076 rotate = 1; 3077 } 3078 3079 if (!rotate) 3080 goto done; 3081 3082 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3083 perf_pmu_disable(cpuctx->ctx.pmu); 3084 3085 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3086 if (ctx) 3087 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3088 3089 rotate_ctx(&cpuctx->ctx); 3090 if (ctx) 3091 rotate_ctx(ctx); 3092 3093 perf_event_sched_in(cpuctx, ctx, current); 3094 3095 perf_pmu_enable(cpuctx->ctx.pmu); 3096 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3097 done: 3098 3099 return rotate; 3100 } 3101 3102 #ifdef CONFIG_NO_HZ_FULL 3103 bool perf_event_can_stop_tick(void) 3104 { 3105 if (atomic_read(&nr_freq_events) || 3106 __this_cpu_read(perf_throttled_count)) 3107 return false; 3108 else 3109 return true; 3110 } 3111 #endif 3112 3113 void perf_event_task_tick(void) 3114 { 3115 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3116 struct perf_event_context *ctx, *tmp; 3117 int throttled; 3118 3119 WARN_ON(!irqs_disabled()); 3120 3121 __this_cpu_inc(perf_throttled_seq); 3122 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3123 3124 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3125 perf_adjust_freq_unthr_context(ctx, throttled); 3126 } 3127 3128 static int event_enable_on_exec(struct perf_event *event, 3129 struct perf_event_context *ctx) 3130 { 3131 if (!event->attr.enable_on_exec) 3132 return 0; 3133 3134 event->attr.enable_on_exec = 0; 3135 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3136 return 0; 3137 3138 __perf_event_mark_enabled(event); 3139 3140 return 1; 3141 } 3142 3143 /* 3144 * Enable all of a task's events that have been marked enable-on-exec. 3145 * This expects task == current. 3146 */ 3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3148 { 3149 struct perf_event_context *clone_ctx = NULL; 3150 struct perf_event *event; 3151 unsigned long flags; 3152 int enabled = 0; 3153 int ret; 3154 3155 local_irq_save(flags); 3156 if (!ctx || !ctx->nr_events) 3157 goto out; 3158 3159 /* 3160 * We must ctxsw out cgroup events to avoid conflict 3161 * when invoking perf_task_event_sched_in() later on 3162 * in this function. Otherwise we end up trying to 3163 * ctxswin cgroup events which are already scheduled 3164 * in. 3165 */ 3166 perf_cgroup_sched_out(current, NULL); 3167 3168 raw_spin_lock(&ctx->lock); 3169 task_ctx_sched_out(ctx); 3170 3171 list_for_each_entry(event, &ctx->event_list, event_entry) { 3172 ret = event_enable_on_exec(event, ctx); 3173 if (ret) 3174 enabled = 1; 3175 } 3176 3177 /* 3178 * Unclone this context if we enabled any event. 3179 */ 3180 if (enabled) 3181 clone_ctx = unclone_ctx(ctx); 3182 3183 raw_spin_unlock(&ctx->lock); 3184 3185 /* 3186 * Also calls ctxswin for cgroup events, if any: 3187 */ 3188 perf_event_context_sched_in(ctx, ctx->task); 3189 out: 3190 local_irq_restore(flags); 3191 3192 if (clone_ctx) 3193 put_ctx(clone_ctx); 3194 } 3195 3196 void perf_event_exec(void) 3197 { 3198 struct perf_event_context *ctx; 3199 int ctxn; 3200 3201 rcu_read_lock(); 3202 for_each_task_context_nr(ctxn) { 3203 ctx = current->perf_event_ctxp[ctxn]; 3204 if (!ctx) 3205 continue; 3206 3207 perf_event_enable_on_exec(ctx); 3208 } 3209 rcu_read_unlock(); 3210 } 3211 3212 /* 3213 * Cross CPU call to read the hardware event 3214 */ 3215 static void __perf_event_read(void *info) 3216 { 3217 struct perf_event *event = info; 3218 struct perf_event_context *ctx = event->ctx; 3219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3220 3221 /* 3222 * If this is a task context, we need to check whether it is 3223 * the current task context of this cpu. If not it has been 3224 * scheduled out before the smp call arrived. In that case 3225 * event->count would have been updated to a recent sample 3226 * when the event was scheduled out. 3227 */ 3228 if (ctx->task && cpuctx->task_ctx != ctx) 3229 return; 3230 3231 raw_spin_lock(&ctx->lock); 3232 if (ctx->is_active) { 3233 update_context_time(ctx); 3234 update_cgrp_time_from_event(event); 3235 } 3236 update_event_times(event); 3237 if (event->state == PERF_EVENT_STATE_ACTIVE) 3238 event->pmu->read(event); 3239 raw_spin_unlock(&ctx->lock); 3240 } 3241 3242 static inline u64 perf_event_count(struct perf_event *event) 3243 { 3244 if (event->pmu->count) 3245 return event->pmu->count(event); 3246 3247 return __perf_event_count(event); 3248 } 3249 3250 /* 3251 * NMI-safe method to read a local event, that is an event that 3252 * is: 3253 * - either for the current task, or for this CPU 3254 * - does not have inherit set, for inherited task events 3255 * will not be local and we cannot read them atomically 3256 * - must not have a pmu::count method 3257 */ 3258 u64 perf_event_read_local(struct perf_event *event) 3259 { 3260 unsigned long flags; 3261 u64 val; 3262 3263 /* 3264 * Disabling interrupts avoids all counter scheduling (context 3265 * switches, timer based rotation and IPIs). 3266 */ 3267 local_irq_save(flags); 3268 3269 /* If this is a per-task event, it must be for current */ 3270 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3271 event->hw.target != current); 3272 3273 /* If this is a per-CPU event, it must be for this CPU */ 3274 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3275 event->cpu != smp_processor_id()); 3276 3277 /* 3278 * It must not be an event with inherit set, we cannot read 3279 * all child counters from atomic context. 3280 */ 3281 WARN_ON_ONCE(event->attr.inherit); 3282 3283 /* 3284 * It must not have a pmu::count method, those are not 3285 * NMI safe. 3286 */ 3287 WARN_ON_ONCE(event->pmu->count); 3288 3289 /* 3290 * If the event is currently on this CPU, its either a per-task event, 3291 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3292 * oncpu == -1). 3293 */ 3294 if (event->oncpu == smp_processor_id()) 3295 event->pmu->read(event); 3296 3297 val = local64_read(&event->count); 3298 local_irq_restore(flags); 3299 3300 return val; 3301 } 3302 3303 static u64 perf_event_read(struct perf_event *event) 3304 { 3305 /* 3306 * If event is enabled and currently active on a CPU, update the 3307 * value in the event structure: 3308 */ 3309 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3310 smp_call_function_single(event->oncpu, 3311 __perf_event_read, event, 1); 3312 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3313 struct perf_event_context *ctx = event->ctx; 3314 unsigned long flags; 3315 3316 raw_spin_lock_irqsave(&ctx->lock, flags); 3317 /* 3318 * may read while context is not active 3319 * (e.g., thread is blocked), in that case 3320 * we cannot update context time 3321 */ 3322 if (ctx->is_active) { 3323 update_context_time(ctx); 3324 update_cgrp_time_from_event(event); 3325 } 3326 update_event_times(event); 3327 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3328 } 3329 3330 return perf_event_count(event); 3331 } 3332 3333 /* 3334 * Initialize the perf_event context in a task_struct: 3335 */ 3336 static void __perf_event_init_context(struct perf_event_context *ctx) 3337 { 3338 raw_spin_lock_init(&ctx->lock); 3339 mutex_init(&ctx->mutex); 3340 INIT_LIST_HEAD(&ctx->active_ctx_list); 3341 INIT_LIST_HEAD(&ctx->pinned_groups); 3342 INIT_LIST_HEAD(&ctx->flexible_groups); 3343 INIT_LIST_HEAD(&ctx->event_list); 3344 atomic_set(&ctx->refcount, 1); 3345 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3346 } 3347 3348 static struct perf_event_context * 3349 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3350 { 3351 struct perf_event_context *ctx; 3352 3353 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3354 if (!ctx) 3355 return NULL; 3356 3357 __perf_event_init_context(ctx); 3358 if (task) { 3359 ctx->task = task; 3360 get_task_struct(task); 3361 } 3362 ctx->pmu = pmu; 3363 3364 return ctx; 3365 } 3366 3367 static struct task_struct * 3368 find_lively_task_by_vpid(pid_t vpid) 3369 { 3370 struct task_struct *task; 3371 int err; 3372 3373 rcu_read_lock(); 3374 if (!vpid) 3375 task = current; 3376 else 3377 task = find_task_by_vpid(vpid); 3378 if (task) 3379 get_task_struct(task); 3380 rcu_read_unlock(); 3381 3382 if (!task) 3383 return ERR_PTR(-ESRCH); 3384 3385 /* Reuse ptrace permission checks for now. */ 3386 err = -EACCES; 3387 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3388 goto errout; 3389 3390 return task; 3391 errout: 3392 put_task_struct(task); 3393 return ERR_PTR(err); 3394 3395 } 3396 3397 /* 3398 * Returns a matching context with refcount and pincount. 3399 */ 3400 static struct perf_event_context * 3401 find_get_context(struct pmu *pmu, struct task_struct *task, 3402 struct perf_event *event) 3403 { 3404 struct perf_event_context *ctx, *clone_ctx = NULL; 3405 struct perf_cpu_context *cpuctx; 3406 void *task_ctx_data = NULL; 3407 unsigned long flags; 3408 int ctxn, err; 3409 int cpu = event->cpu; 3410 3411 if (!task) { 3412 /* Must be root to operate on a CPU event: */ 3413 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3414 return ERR_PTR(-EACCES); 3415 3416 /* 3417 * We could be clever and allow to attach a event to an 3418 * offline CPU and activate it when the CPU comes up, but 3419 * that's for later. 3420 */ 3421 if (!cpu_online(cpu)) 3422 return ERR_PTR(-ENODEV); 3423 3424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3425 ctx = &cpuctx->ctx; 3426 get_ctx(ctx); 3427 ++ctx->pin_count; 3428 3429 return ctx; 3430 } 3431 3432 err = -EINVAL; 3433 ctxn = pmu->task_ctx_nr; 3434 if (ctxn < 0) 3435 goto errout; 3436 3437 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3438 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3439 if (!task_ctx_data) { 3440 err = -ENOMEM; 3441 goto errout; 3442 } 3443 } 3444 3445 retry: 3446 ctx = perf_lock_task_context(task, ctxn, &flags); 3447 if (ctx) { 3448 clone_ctx = unclone_ctx(ctx); 3449 ++ctx->pin_count; 3450 3451 if (task_ctx_data && !ctx->task_ctx_data) { 3452 ctx->task_ctx_data = task_ctx_data; 3453 task_ctx_data = NULL; 3454 } 3455 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3456 3457 if (clone_ctx) 3458 put_ctx(clone_ctx); 3459 } else { 3460 ctx = alloc_perf_context(pmu, task); 3461 err = -ENOMEM; 3462 if (!ctx) 3463 goto errout; 3464 3465 if (task_ctx_data) { 3466 ctx->task_ctx_data = task_ctx_data; 3467 task_ctx_data = NULL; 3468 } 3469 3470 err = 0; 3471 mutex_lock(&task->perf_event_mutex); 3472 /* 3473 * If it has already passed perf_event_exit_task(). 3474 * we must see PF_EXITING, it takes this mutex too. 3475 */ 3476 if (task->flags & PF_EXITING) 3477 err = -ESRCH; 3478 else if (task->perf_event_ctxp[ctxn]) 3479 err = -EAGAIN; 3480 else { 3481 get_ctx(ctx); 3482 ++ctx->pin_count; 3483 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3484 } 3485 mutex_unlock(&task->perf_event_mutex); 3486 3487 if (unlikely(err)) { 3488 put_ctx(ctx); 3489 3490 if (err == -EAGAIN) 3491 goto retry; 3492 goto errout; 3493 } 3494 } 3495 3496 kfree(task_ctx_data); 3497 return ctx; 3498 3499 errout: 3500 kfree(task_ctx_data); 3501 return ERR_PTR(err); 3502 } 3503 3504 static void perf_event_free_filter(struct perf_event *event); 3505 static void perf_event_free_bpf_prog(struct perf_event *event); 3506 3507 static void free_event_rcu(struct rcu_head *head) 3508 { 3509 struct perf_event *event; 3510 3511 event = container_of(head, struct perf_event, rcu_head); 3512 if (event->ns) 3513 put_pid_ns(event->ns); 3514 perf_event_free_filter(event); 3515 kfree(event); 3516 } 3517 3518 static void ring_buffer_attach(struct perf_event *event, 3519 struct ring_buffer *rb); 3520 3521 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3522 { 3523 if (event->parent) 3524 return; 3525 3526 if (is_cgroup_event(event)) 3527 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3528 } 3529 3530 static void unaccount_event(struct perf_event *event) 3531 { 3532 if (event->parent) 3533 return; 3534 3535 if (event->attach_state & PERF_ATTACH_TASK) 3536 static_key_slow_dec_deferred(&perf_sched_events); 3537 if (event->attr.mmap || event->attr.mmap_data) 3538 atomic_dec(&nr_mmap_events); 3539 if (event->attr.comm) 3540 atomic_dec(&nr_comm_events); 3541 if (event->attr.task) 3542 atomic_dec(&nr_task_events); 3543 if (event->attr.freq) 3544 atomic_dec(&nr_freq_events); 3545 if (event->attr.context_switch) { 3546 static_key_slow_dec_deferred(&perf_sched_events); 3547 atomic_dec(&nr_switch_events); 3548 } 3549 if (is_cgroup_event(event)) 3550 static_key_slow_dec_deferred(&perf_sched_events); 3551 if (has_branch_stack(event)) 3552 static_key_slow_dec_deferred(&perf_sched_events); 3553 3554 unaccount_event_cpu(event, event->cpu); 3555 } 3556 3557 /* 3558 * The following implement mutual exclusion of events on "exclusive" pmus 3559 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3560 * at a time, so we disallow creating events that might conflict, namely: 3561 * 3562 * 1) cpu-wide events in the presence of per-task events, 3563 * 2) per-task events in the presence of cpu-wide events, 3564 * 3) two matching events on the same context. 3565 * 3566 * The former two cases are handled in the allocation path (perf_event_alloc(), 3567 * __free_event()), the latter -- before the first perf_install_in_context(). 3568 */ 3569 static int exclusive_event_init(struct perf_event *event) 3570 { 3571 struct pmu *pmu = event->pmu; 3572 3573 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3574 return 0; 3575 3576 /* 3577 * Prevent co-existence of per-task and cpu-wide events on the 3578 * same exclusive pmu. 3579 * 3580 * Negative pmu::exclusive_cnt means there are cpu-wide 3581 * events on this "exclusive" pmu, positive means there are 3582 * per-task events. 3583 * 3584 * Since this is called in perf_event_alloc() path, event::ctx 3585 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3586 * to mean "per-task event", because unlike other attach states it 3587 * never gets cleared. 3588 */ 3589 if (event->attach_state & PERF_ATTACH_TASK) { 3590 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3591 return -EBUSY; 3592 } else { 3593 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3594 return -EBUSY; 3595 } 3596 3597 return 0; 3598 } 3599 3600 static void exclusive_event_destroy(struct perf_event *event) 3601 { 3602 struct pmu *pmu = event->pmu; 3603 3604 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3605 return; 3606 3607 /* see comment in exclusive_event_init() */ 3608 if (event->attach_state & PERF_ATTACH_TASK) 3609 atomic_dec(&pmu->exclusive_cnt); 3610 else 3611 atomic_inc(&pmu->exclusive_cnt); 3612 } 3613 3614 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3615 { 3616 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3617 (e1->cpu == e2->cpu || 3618 e1->cpu == -1 || 3619 e2->cpu == -1)) 3620 return true; 3621 return false; 3622 } 3623 3624 /* Called under the same ctx::mutex as perf_install_in_context() */ 3625 static bool exclusive_event_installable(struct perf_event *event, 3626 struct perf_event_context *ctx) 3627 { 3628 struct perf_event *iter_event; 3629 struct pmu *pmu = event->pmu; 3630 3631 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3632 return true; 3633 3634 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3635 if (exclusive_event_match(iter_event, event)) 3636 return false; 3637 } 3638 3639 return true; 3640 } 3641 3642 static void __free_event(struct perf_event *event) 3643 { 3644 if (!event->parent) { 3645 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3646 put_callchain_buffers(); 3647 } 3648 3649 perf_event_free_bpf_prog(event); 3650 3651 if (event->destroy) 3652 event->destroy(event); 3653 3654 if (event->ctx) 3655 put_ctx(event->ctx); 3656 3657 if (event->pmu) { 3658 exclusive_event_destroy(event); 3659 module_put(event->pmu->module); 3660 } 3661 3662 call_rcu(&event->rcu_head, free_event_rcu); 3663 } 3664 3665 static void _free_event(struct perf_event *event) 3666 { 3667 irq_work_sync(&event->pending); 3668 3669 unaccount_event(event); 3670 3671 if (event->rb) { 3672 /* 3673 * Can happen when we close an event with re-directed output. 3674 * 3675 * Since we have a 0 refcount, perf_mmap_close() will skip 3676 * over us; possibly making our ring_buffer_put() the last. 3677 */ 3678 mutex_lock(&event->mmap_mutex); 3679 ring_buffer_attach(event, NULL); 3680 mutex_unlock(&event->mmap_mutex); 3681 } 3682 3683 if (is_cgroup_event(event)) 3684 perf_detach_cgroup(event); 3685 3686 __free_event(event); 3687 } 3688 3689 /* 3690 * Used to free events which have a known refcount of 1, such as in error paths 3691 * where the event isn't exposed yet and inherited events. 3692 */ 3693 static void free_event(struct perf_event *event) 3694 { 3695 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3696 "unexpected event refcount: %ld; ptr=%p\n", 3697 atomic_long_read(&event->refcount), event)) { 3698 /* leak to avoid use-after-free */ 3699 return; 3700 } 3701 3702 _free_event(event); 3703 } 3704 3705 /* 3706 * Remove user event from the owner task. 3707 */ 3708 static void perf_remove_from_owner(struct perf_event *event) 3709 { 3710 struct task_struct *owner; 3711 3712 rcu_read_lock(); 3713 owner = ACCESS_ONCE(event->owner); 3714 /* 3715 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3716 * !owner it means the list deletion is complete and we can indeed 3717 * free this event, otherwise we need to serialize on 3718 * owner->perf_event_mutex. 3719 */ 3720 smp_read_barrier_depends(); 3721 if (owner) { 3722 /* 3723 * Since delayed_put_task_struct() also drops the last 3724 * task reference we can safely take a new reference 3725 * while holding the rcu_read_lock(). 3726 */ 3727 get_task_struct(owner); 3728 } 3729 rcu_read_unlock(); 3730 3731 if (owner) { 3732 /* 3733 * If we're here through perf_event_exit_task() we're already 3734 * holding ctx->mutex which would be an inversion wrt. the 3735 * normal lock order. 3736 * 3737 * However we can safely take this lock because its the child 3738 * ctx->mutex. 3739 */ 3740 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3741 3742 /* 3743 * We have to re-check the event->owner field, if it is cleared 3744 * we raced with perf_event_exit_task(), acquiring the mutex 3745 * ensured they're done, and we can proceed with freeing the 3746 * event. 3747 */ 3748 if (event->owner) 3749 list_del_init(&event->owner_entry); 3750 mutex_unlock(&owner->perf_event_mutex); 3751 put_task_struct(owner); 3752 } 3753 } 3754 3755 static void put_event(struct perf_event *event) 3756 { 3757 struct perf_event_context *ctx; 3758 3759 if (!atomic_long_dec_and_test(&event->refcount)) 3760 return; 3761 3762 if (!is_kernel_event(event)) 3763 perf_remove_from_owner(event); 3764 3765 /* 3766 * There are two ways this annotation is useful: 3767 * 3768 * 1) there is a lock recursion from perf_event_exit_task 3769 * see the comment there. 3770 * 3771 * 2) there is a lock-inversion with mmap_sem through 3772 * perf_event_read_group(), which takes faults while 3773 * holding ctx->mutex, however this is called after 3774 * the last filedesc died, so there is no possibility 3775 * to trigger the AB-BA case. 3776 */ 3777 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3778 WARN_ON_ONCE(ctx->parent_ctx); 3779 perf_remove_from_context(event, true); 3780 perf_event_ctx_unlock(event, ctx); 3781 3782 _free_event(event); 3783 } 3784 3785 int perf_event_release_kernel(struct perf_event *event) 3786 { 3787 put_event(event); 3788 return 0; 3789 } 3790 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3791 3792 /* 3793 * Called when the last reference to the file is gone. 3794 */ 3795 static int perf_release(struct inode *inode, struct file *file) 3796 { 3797 put_event(file->private_data); 3798 return 0; 3799 } 3800 3801 /* 3802 * Remove all orphanes events from the context. 3803 */ 3804 static void orphans_remove_work(struct work_struct *work) 3805 { 3806 struct perf_event_context *ctx; 3807 struct perf_event *event, *tmp; 3808 3809 ctx = container_of(work, struct perf_event_context, 3810 orphans_remove.work); 3811 3812 mutex_lock(&ctx->mutex); 3813 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3814 struct perf_event *parent_event = event->parent; 3815 3816 if (!is_orphaned_child(event)) 3817 continue; 3818 3819 perf_remove_from_context(event, true); 3820 3821 mutex_lock(&parent_event->child_mutex); 3822 list_del_init(&event->child_list); 3823 mutex_unlock(&parent_event->child_mutex); 3824 3825 free_event(event); 3826 put_event(parent_event); 3827 } 3828 3829 raw_spin_lock_irq(&ctx->lock); 3830 ctx->orphans_remove_sched = false; 3831 raw_spin_unlock_irq(&ctx->lock); 3832 mutex_unlock(&ctx->mutex); 3833 3834 put_ctx(ctx); 3835 } 3836 3837 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3838 { 3839 struct perf_event *child; 3840 u64 total = 0; 3841 3842 *enabled = 0; 3843 *running = 0; 3844 3845 mutex_lock(&event->child_mutex); 3846 total += perf_event_read(event); 3847 *enabled += event->total_time_enabled + 3848 atomic64_read(&event->child_total_time_enabled); 3849 *running += event->total_time_running + 3850 atomic64_read(&event->child_total_time_running); 3851 3852 list_for_each_entry(child, &event->child_list, child_list) { 3853 total += perf_event_read(child); 3854 *enabled += child->total_time_enabled; 3855 *running += child->total_time_running; 3856 } 3857 mutex_unlock(&event->child_mutex); 3858 3859 return total; 3860 } 3861 EXPORT_SYMBOL_GPL(perf_event_read_value); 3862 3863 static int perf_event_read_group(struct perf_event *event, 3864 u64 read_format, char __user *buf) 3865 { 3866 struct perf_event *leader = event->group_leader, *sub; 3867 struct perf_event_context *ctx = leader->ctx; 3868 int n = 0, size = 0, ret; 3869 u64 count, enabled, running; 3870 u64 values[5]; 3871 3872 lockdep_assert_held(&ctx->mutex); 3873 3874 count = perf_event_read_value(leader, &enabled, &running); 3875 3876 values[n++] = 1 + leader->nr_siblings; 3877 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3878 values[n++] = enabled; 3879 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3880 values[n++] = running; 3881 values[n++] = count; 3882 if (read_format & PERF_FORMAT_ID) 3883 values[n++] = primary_event_id(leader); 3884 3885 size = n * sizeof(u64); 3886 3887 if (copy_to_user(buf, values, size)) 3888 return -EFAULT; 3889 3890 ret = size; 3891 3892 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3893 n = 0; 3894 3895 values[n++] = perf_event_read_value(sub, &enabled, &running); 3896 if (read_format & PERF_FORMAT_ID) 3897 values[n++] = primary_event_id(sub); 3898 3899 size = n * sizeof(u64); 3900 3901 if (copy_to_user(buf + ret, values, size)) { 3902 return -EFAULT; 3903 } 3904 3905 ret += size; 3906 } 3907 3908 return ret; 3909 } 3910 3911 static int perf_event_read_one(struct perf_event *event, 3912 u64 read_format, char __user *buf) 3913 { 3914 u64 enabled, running; 3915 u64 values[4]; 3916 int n = 0; 3917 3918 values[n++] = perf_event_read_value(event, &enabled, &running); 3919 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3920 values[n++] = enabled; 3921 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3922 values[n++] = running; 3923 if (read_format & PERF_FORMAT_ID) 3924 values[n++] = primary_event_id(event); 3925 3926 if (copy_to_user(buf, values, n * sizeof(u64))) 3927 return -EFAULT; 3928 3929 return n * sizeof(u64); 3930 } 3931 3932 static bool is_event_hup(struct perf_event *event) 3933 { 3934 bool no_children; 3935 3936 if (event->state != PERF_EVENT_STATE_EXIT) 3937 return false; 3938 3939 mutex_lock(&event->child_mutex); 3940 no_children = list_empty(&event->child_list); 3941 mutex_unlock(&event->child_mutex); 3942 return no_children; 3943 } 3944 3945 /* 3946 * Read the performance event - simple non blocking version for now 3947 */ 3948 static ssize_t 3949 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3950 { 3951 u64 read_format = event->attr.read_format; 3952 int ret; 3953 3954 /* 3955 * Return end-of-file for a read on a event that is in 3956 * error state (i.e. because it was pinned but it couldn't be 3957 * scheduled on to the CPU at some point). 3958 */ 3959 if (event->state == PERF_EVENT_STATE_ERROR) 3960 return 0; 3961 3962 if (count < event->read_size) 3963 return -ENOSPC; 3964 3965 WARN_ON_ONCE(event->ctx->parent_ctx); 3966 if (read_format & PERF_FORMAT_GROUP) 3967 ret = perf_event_read_group(event, read_format, buf); 3968 else 3969 ret = perf_event_read_one(event, read_format, buf); 3970 3971 return ret; 3972 } 3973 3974 static ssize_t 3975 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3976 { 3977 struct perf_event *event = file->private_data; 3978 struct perf_event_context *ctx; 3979 int ret; 3980 3981 ctx = perf_event_ctx_lock(event); 3982 ret = perf_read_hw(event, buf, count); 3983 perf_event_ctx_unlock(event, ctx); 3984 3985 return ret; 3986 } 3987 3988 static unsigned int perf_poll(struct file *file, poll_table *wait) 3989 { 3990 struct perf_event *event = file->private_data; 3991 struct ring_buffer *rb; 3992 unsigned int events = POLLHUP; 3993 3994 poll_wait(file, &event->waitq, wait); 3995 3996 if (is_event_hup(event)) 3997 return events; 3998 3999 /* 4000 * Pin the event->rb by taking event->mmap_mutex; otherwise 4001 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4002 */ 4003 mutex_lock(&event->mmap_mutex); 4004 rb = event->rb; 4005 if (rb) 4006 events = atomic_xchg(&rb->poll, 0); 4007 mutex_unlock(&event->mmap_mutex); 4008 return events; 4009 } 4010 4011 static void _perf_event_reset(struct perf_event *event) 4012 { 4013 (void)perf_event_read(event); 4014 local64_set(&event->count, 0); 4015 perf_event_update_userpage(event); 4016 } 4017 4018 /* 4019 * Holding the top-level event's child_mutex means that any 4020 * descendant process that has inherited this event will block 4021 * in sync_child_event if it goes to exit, thus satisfying the 4022 * task existence requirements of perf_event_enable/disable. 4023 */ 4024 static void perf_event_for_each_child(struct perf_event *event, 4025 void (*func)(struct perf_event *)) 4026 { 4027 struct perf_event *child; 4028 4029 WARN_ON_ONCE(event->ctx->parent_ctx); 4030 4031 mutex_lock(&event->child_mutex); 4032 func(event); 4033 list_for_each_entry(child, &event->child_list, child_list) 4034 func(child); 4035 mutex_unlock(&event->child_mutex); 4036 } 4037 4038 static void perf_event_for_each(struct perf_event *event, 4039 void (*func)(struct perf_event *)) 4040 { 4041 struct perf_event_context *ctx = event->ctx; 4042 struct perf_event *sibling; 4043 4044 lockdep_assert_held(&ctx->mutex); 4045 4046 event = event->group_leader; 4047 4048 perf_event_for_each_child(event, func); 4049 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4050 perf_event_for_each_child(sibling, func); 4051 } 4052 4053 struct period_event { 4054 struct perf_event *event; 4055 u64 value; 4056 }; 4057 4058 static int __perf_event_period(void *info) 4059 { 4060 struct period_event *pe = info; 4061 struct perf_event *event = pe->event; 4062 struct perf_event_context *ctx = event->ctx; 4063 u64 value = pe->value; 4064 bool active; 4065 4066 raw_spin_lock(&ctx->lock); 4067 if (event->attr.freq) { 4068 event->attr.sample_freq = value; 4069 } else { 4070 event->attr.sample_period = value; 4071 event->hw.sample_period = value; 4072 } 4073 4074 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4075 if (active) { 4076 perf_pmu_disable(ctx->pmu); 4077 event->pmu->stop(event, PERF_EF_UPDATE); 4078 } 4079 4080 local64_set(&event->hw.period_left, 0); 4081 4082 if (active) { 4083 event->pmu->start(event, PERF_EF_RELOAD); 4084 perf_pmu_enable(ctx->pmu); 4085 } 4086 raw_spin_unlock(&ctx->lock); 4087 4088 return 0; 4089 } 4090 4091 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4092 { 4093 struct period_event pe = { .event = event, }; 4094 struct perf_event_context *ctx = event->ctx; 4095 struct task_struct *task; 4096 u64 value; 4097 4098 if (!is_sampling_event(event)) 4099 return -EINVAL; 4100 4101 if (copy_from_user(&value, arg, sizeof(value))) 4102 return -EFAULT; 4103 4104 if (!value) 4105 return -EINVAL; 4106 4107 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4108 return -EINVAL; 4109 4110 task = ctx->task; 4111 pe.value = value; 4112 4113 if (!task) { 4114 cpu_function_call(event->cpu, __perf_event_period, &pe); 4115 return 0; 4116 } 4117 4118 retry: 4119 if (!task_function_call(task, __perf_event_period, &pe)) 4120 return 0; 4121 4122 raw_spin_lock_irq(&ctx->lock); 4123 if (ctx->is_active) { 4124 raw_spin_unlock_irq(&ctx->lock); 4125 task = ctx->task; 4126 goto retry; 4127 } 4128 4129 __perf_event_period(&pe); 4130 raw_spin_unlock_irq(&ctx->lock); 4131 4132 return 0; 4133 } 4134 4135 static const struct file_operations perf_fops; 4136 4137 static inline int perf_fget_light(int fd, struct fd *p) 4138 { 4139 struct fd f = fdget(fd); 4140 if (!f.file) 4141 return -EBADF; 4142 4143 if (f.file->f_op != &perf_fops) { 4144 fdput(f); 4145 return -EBADF; 4146 } 4147 *p = f; 4148 return 0; 4149 } 4150 4151 static int perf_event_set_output(struct perf_event *event, 4152 struct perf_event *output_event); 4153 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4155 4156 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4157 { 4158 void (*func)(struct perf_event *); 4159 u32 flags = arg; 4160 4161 switch (cmd) { 4162 case PERF_EVENT_IOC_ENABLE: 4163 func = _perf_event_enable; 4164 break; 4165 case PERF_EVENT_IOC_DISABLE: 4166 func = _perf_event_disable; 4167 break; 4168 case PERF_EVENT_IOC_RESET: 4169 func = _perf_event_reset; 4170 break; 4171 4172 case PERF_EVENT_IOC_REFRESH: 4173 return _perf_event_refresh(event, arg); 4174 4175 case PERF_EVENT_IOC_PERIOD: 4176 return perf_event_period(event, (u64 __user *)arg); 4177 4178 case PERF_EVENT_IOC_ID: 4179 { 4180 u64 id = primary_event_id(event); 4181 4182 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4183 return -EFAULT; 4184 return 0; 4185 } 4186 4187 case PERF_EVENT_IOC_SET_OUTPUT: 4188 { 4189 int ret; 4190 if (arg != -1) { 4191 struct perf_event *output_event; 4192 struct fd output; 4193 ret = perf_fget_light(arg, &output); 4194 if (ret) 4195 return ret; 4196 output_event = output.file->private_data; 4197 ret = perf_event_set_output(event, output_event); 4198 fdput(output); 4199 } else { 4200 ret = perf_event_set_output(event, NULL); 4201 } 4202 return ret; 4203 } 4204 4205 case PERF_EVENT_IOC_SET_FILTER: 4206 return perf_event_set_filter(event, (void __user *)arg); 4207 4208 case PERF_EVENT_IOC_SET_BPF: 4209 return perf_event_set_bpf_prog(event, arg); 4210 4211 default: 4212 return -ENOTTY; 4213 } 4214 4215 if (flags & PERF_IOC_FLAG_GROUP) 4216 perf_event_for_each(event, func); 4217 else 4218 perf_event_for_each_child(event, func); 4219 4220 return 0; 4221 } 4222 4223 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4224 { 4225 struct perf_event *event = file->private_data; 4226 struct perf_event_context *ctx; 4227 long ret; 4228 4229 ctx = perf_event_ctx_lock(event); 4230 ret = _perf_ioctl(event, cmd, arg); 4231 perf_event_ctx_unlock(event, ctx); 4232 4233 return ret; 4234 } 4235 4236 #ifdef CONFIG_COMPAT 4237 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4238 unsigned long arg) 4239 { 4240 switch (_IOC_NR(cmd)) { 4241 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4242 case _IOC_NR(PERF_EVENT_IOC_ID): 4243 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4244 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4245 cmd &= ~IOCSIZE_MASK; 4246 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4247 } 4248 break; 4249 } 4250 return perf_ioctl(file, cmd, arg); 4251 } 4252 #else 4253 # define perf_compat_ioctl NULL 4254 #endif 4255 4256 int perf_event_task_enable(void) 4257 { 4258 struct perf_event_context *ctx; 4259 struct perf_event *event; 4260 4261 mutex_lock(¤t->perf_event_mutex); 4262 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4263 ctx = perf_event_ctx_lock(event); 4264 perf_event_for_each_child(event, _perf_event_enable); 4265 perf_event_ctx_unlock(event, ctx); 4266 } 4267 mutex_unlock(¤t->perf_event_mutex); 4268 4269 return 0; 4270 } 4271 4272 int perf_event_task_disable(void) 4273 { 4274 struct perf_event_context *ctx; 4275 struct perf_event *event; 4276 4277 mutex_lock(¤t->perf_event_mutex); 4278 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4279 ctx = perf_event_ctx_lock(event); 4280 perf_event_for_each_child(event, _perf_event_disable); 4281 perf_event_ctx_unlock(event, ctx); 4282 } 4283 mutex_unlock(¤t->perf_event_mutex); 4284 4285 return 0; 4286 } 4287 4288 static int perf_event_index(struct perf_event *event) 4289 { 4290 if (event->hw.state & PERF_HES_STOPPED) 4291 return 0; 4292 4293 if (event->state != PERF_EVENT_STATE_ACTIVE) 4294 return 0; 4295 4296 return event->pmu->event_idx(event); 4297 } 4298 4299 static void calc_timer_values(struct perf_event *event, 4300 u64 *now, 4301 u64 *enabled, 4302 u64 *running) 4303 { 4304 u64 ctx_time; 4305 4306 *now = perf_clock(); 4307 ctx_time = event->shadow_ctx_time + *now; 4308 *enabled = ctx_time - event->tstamp_enabled; 4309 *running = ctx_time - event->tstamp_running; 4310 } 4311 4312 static void perf_event_init_userpage(struct perf_event *event) 4313 { 4314 struct perf_event_mmap_page *userpg; 4315 struct ring_buffer *rb; 4316 4317 rcu_read_lock(); 4318 rb = rcu_dereference(event->rb); 4319 if (!rb) 4320 goto unlock; 4321 4322 userpg = rb->user_page; 4323 4324 /* Allow new userspace to detect that bit 0 is deprecated */ 4325 userpg->cap_bit0_is_deprecated = 1; 4326 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4327 userpg->data_offset = PAGE_SIZE; 4328 userpg->data_size = perf_data_size(rb); 4329 4330 unlock: 4331 rcu_read_unlock(); 4332 } 4333 4334 void __weak arch_perf_update_userpage( 4335 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4336 { 4337 } 4338 4339 /* 4340 * Callers need to ensure there can be no nesting of this function, otherwise 4341 * the seqlock logic goes bad. We can not serialize this because the arch 4342 * code calls this from NMI context. 4343 */ 4344 void perf_event_update_userpage(struct perf_event *event) 4345 { 4346 struct perf_event_mmap_page *userpg; 4347 struct ring_buffer *rb; 4348 u64 enabled, running, now; 4349 4350 rcu_read_lock(); 4351 rb = rcu_dereference(event->rb); 4352 if (!rb) 4353 goto unlock; 4354 4355 /* 4356 * compute total_time_enabled, total_time_running 4357 * based on snapshot values taken when the event 4358 * was last scheduled in. 4359 * 4360 * we cannot simply called update_context_time() 4361 * because of locking issue as we can be called in 4362 * NMI context 4363 */ 4364 calc_timer_values(event, &now, &enabled, &running); 4365 4366 userpg = rb->user_page; 4367 /* 4368 * Disable preemption so as to not let the corresponding user-space 4369 * spin too long if we get preempted. 4370 */ 4371 preempt_disable(); 4372 ++userpg->lock; 4373 barrier(); 4374 userpg->index = perf_event_index(event); 4375 userpg->offset = perf_event_count(event); 4376 if (userpg->index) 4377 userpg->offset -= local64_read(&event->hw.prev_count); 4378 4379 userpg->time_enabled = enabled + 4380 atomic64_read(&event->child_total_time_enabled); 4381 4382 userpg->time_running = running + 4383 atomic64_read(&event->child_total_time_running); 4384 4385 arch_perf_update_userpage(event, userpg, now); 4386 4387 barrier(); 4388 ++userpg->lock; 4389 preempt_enable(); 4390 unlock: 4391 rcu_read_unlock(); 4392 } 4393 4394 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4395 { 4396 struct perf_event *event = vma->vm_file->private_data; 4397 struct ring_buffer *rb; 4398 int ret = VM_FAULT_SIGBUS; 4399 4400 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4401 if (vmf->pgoff == 0) 4402 ret = 0; 4403 return ret; 4404 } 4405 4406 rcu_read_lock(); 4407 rb = rcu_dereference(event->rb); 4408 if (!rb) 4409 goto unlock; 4410 4411 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4412 goto unlock; 4413 4414 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4415 if (!vmf->page) 4416 goto unlock; 4417 4418 get_page(vmf->page); 4419 vmf->page->mapping = vma->vm_file->f_mapping; 4420 vmf->page->index = vmf->pgoff; 4421 4422 ret = 0; 4423 unlock: 4424 rcu_read_unlock(); 4425 4426 return ret; 4427 } 4428 4429 static void ring_buffer_attach(struct perf_event *event, 4430 struct ring_buffer *rb) 4431 { 4432 struct ring_buffer *old_rb = NULL; 4433 unsigned long flags; 4434 4435 if (event->rb) { 4436 /* 4437 * Should be impossible, we set this when removing 4438 * event->rb_entry and wait/clear when adding event->rb_entry. 4439 */ 4440 WARN_ON_ONCE(event->rcu_pending); 4441 4442 old_rb = event->rb; 4443 spin_lock_irqsave(&old_rb->event_lock, flags); 4444 list_del_rcu(&event->rb_entry); 4445 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4446 4447 event->rcu_batches = get_state_synchronize_rcu(); 4448 event->rcu_pending = 1; 4449 } 4450 4451 if (rb) { 4452 if (event->rcu_pending) { 4453 cond_synchronize_rcu(event->rcu_batches); 4454 event->rcu_pending = 0; 4455 } 4456 4457 spin_lock_irqsave(&rb->event_lock, flags); 4458 list_add_rcu(&event->rb_entry, &rb->event_list); 4459 spin_unlock_irqrestore(&rb->event_lock, flags); 4460 } 4461 4462 rcu_assign_pointer(event->rb, rb); 4463 4464 if (old_rb) { 4465 ring_buffer_put(old_rb); 4466 /* 4467 * Since we detached before setting the new rb, so that we 4468 * could attach the new rb, we could have missed a wakeup. 4469 * Provide it now. 4470 */ 4471 wake_up_all(&event->waitq); 4472 } 4473 } 4474 4475 static void ring_buffer_wakeup(struct perf_event *event) 4476 { 4477 struct ring_buffer *rb; 4478 4479 rcu_read_lock(); 4480 rb = rcu_dereference(event->rb); 4481 if (rb) { 4482 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4483 wake_up_all(&event->waitq); 4484 } 4485 rcu_read_unlock(); 4486 } 4487 4488 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4489 { 4490 struct ring_buffer *rb; 4491 4492 rcu_read_lock(); 4493 rb = rcu_dereference(event->rb); 4494 if (rb) { 4495 if (!atomic_inc_not_zero(&rb->refcount)) 4496 rb = NULL; 4497 } 4498 rcu_read_unlock(); 4499 4500 return rb; 4501 } 4502 4503 void ring_buffer_put(struct ring_buffer *rb) 4504 { 4505 if (!atomic_dec_and_test(&rb->refcount)) 4506 return; 4507 4508 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4509 4510 call_rcu(&rb->rcu_head, rb_free_rcu); 4511 } 4512 4513 static void perf_mmap_open(struct vm_area_struct *vma) 4514 { 4515 struct perf_event *event = vma->vm_file->private_data; 4516 4517 atomic_inc(&event->mmap_count); 4518 atomic_inc(&event->rb->mmap_count); 4519 4520 if (vma->vm_pgoff) 4521 atomic_inc(&event->rb->aux_mmap_count); 4522 4523 if (event->pmu->event_mapped) 4524 event->pmu->event_mapped(event); 4525 } 4526 4527 /* 4528 * A buffer can be mmap()ed multiple times; either directly through the same 4529 * event, or through other events by use of perf_event_set_output(). 4530 * 4531 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4532 * the buffer here, where we still have a VM context. This means we need 4533 * to detach all events redirecting to us. 4534 */ 4535 static void perf_mmap_close(struct vm_area_struct *vma) 4536 { 4537 struct perf_event *event = vma->vm_file->private_data; 4538 4539 struct ring_buffer *rb = ring_buffer_get(event); 4540 struct user_struct *mmap_user = rb->mmap_user; 4541 int mmap_locked = rb->mmap_locked; 4542 unsigned long size = perf_data_size(rb); 4543 4544 if (event->pmu->event_unmapped) 4545 event->pmu->event_unmapped(event); 4546 4547 /* 4548 * rb->aux_mmap_count will always drop before rb->mmap_count and 4549 * event->mmap_count, so it is ok to use event->mmap_mutex to 4550 * serialize with perf_mmap here. 4551 */ 4552 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4553 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4554 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4555 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4556 4557 rb_free_aux(rb); 4558 mutex_unlock(&event->mmap_mutex); 4559 } 4560 4561 atomic_dec(&rb->mmap_count); 4562 4563 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4564 goto out_put; 4565 4566 ring_buffer_attach(event, NULL); 4567 mutex_unlock(&event->mmap_mutex); 4568 4569 /* If there's still other mmap()s of this buffer, we're done. */ 4570 if (atomic_read(&rb->mmap_count)) 4571 goto out_put; 4572 4573 /* 4574 * No other mmap()s, detach from all other events that might redirect 4575 * into the now unreachable buffer. Somewhat complicated by the 4576 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4577 */ 4578 again: 4579 rcu_read_lock(); 4580 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4581 if (!atomic_long_inc_not_zero(&event->refcount)) { 4582 /* 4583 * This event is en-route to free_event() which will 4584 * detach it and remove it from the list. 4585 */ 4586 continue; 4587 } 4588 rcu_read_unlock(); 4589 4590 mutex_lock(&event->mmap_mutex); 4591 /* 4592 * Check we didn't race with perf_event_set_output() which can 4593 * swizzle the rb from under us while we were waiting to 4594 * acquire mmap_mutex. 4595 * 4596 * If we find a different rb; ignore this event, a next 4597 * iteration will no longer find it on the list. We have to 4598 * still restart the iteration to make sure we're not now 4599 * iterating the wrong list. 4600 */ 4601 if (event->rb == rb) 4602 ring_buffer_attach(event, NULL); 4603 4604 mutex_unlock(&event->mmap_mutex); 4605 put_event(event); 4606 4607 /* 4608 * Restart the iteration; either we're on the wrong list or 4609 * destroyed its integrity by doing a deletion. 4610 */ 4611 goto again; 4612 } 4613 rcu_read_unlock(); 4614 4615 /* 4616 * It could be there's still a few 0-ref events on the list; they'll 4617 * get cleaned up by free_event() -- they'll also still have their 4618 * ref on the rb and will free it whenever they are done with it. 4619 * 4620 * Aside from that, this buffer is 'fully' detached and unmapped, 4621 * undo the VM accounting. 4622 */ 4623 4624 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4625 vma->vm_mm->pinned_vm -= mmap_locked; 4626 free_uid(mmap_user); 4627 4628 out_put: 4629 ring_buffer_put(rb); /* could be last */ 4630 } 4631 4632 static const struct vm_operations_struct perf_mmap_vmops = { 4633 .open = perf_mmap_open, 4634 .close = perf_mmap_close, /* non mergable */ 4635 .fault = perf_mmap_fault, 4636 .page_mkwrite = perf_mmap_fault, 4637 }; 4638 4639 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4640 { 4641 struct perf_event *event = file->private_data; 4642 unsigned long user_locked, user_lock_limit; 4643 struct user_struct *user = current_user(); 4644 unsigned long locked, lock_limit; 4645 struct ring_buffer *rb = NULL; 4646 unsigned long vma_size; 4647 unsigned long nr_pages; 4648 long user_extra = 0, extra = 0; 4649 int ret = 0, flags = 0; 4650 4651 /* 4652 * Don't allow mmap() of inherited per-task counters. This would 4653 * create a performance issue due to all children writing to the 4654 * same rb. 4655 */ 4656 if (event->cpu == -1 && event->attr.inherit) 4657 return -EINVAL; 4658 4659 if (!(vma->vm_flags & VM_SHARED)) 4660 return -EINVAL; 4661 4662 vma_size = vma->vm_end - vma->vm_start; 4663 4664 if (vma->vm_pgoff == 0) { 4665 nr_pages = (vma_size / PAGE_SIZE) - 1; 4666 } else { 4667 /* 4668 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4669 * mapped, all subsequent mappings should have the same size 4670 * and offset. Must be above the normal perf buffer. 4671 */ 4672 u64 aux_offset, aux_size; 4673 4674 if (!event->rb) 4675 return -EINVAL; 4676 4677 nr_pages = vma_size / PAGE_SIZE; 4678 4679 mutex_lock(&event->mmap_mutex); 4680 ret = -EINVAL; 4681 4682 rb = event->rb; 4683 if (!rb) 4684 goto aux_unlock; 4685 4686 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4687 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4688 4689 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4690 goto aux_unlock; 4691 4692 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4693 goto aux_unlock; 4694 4695 /* already mapped with a different offset */ 4696 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4697 goto aux_unlock; 4698 4699 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4700 goto aux_unlock; 4701 4702 /* already mapped with a different size */ 4703 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4704 goto aux_unlock; 4705 4706 if (!is_power_of_2(nr_pages)) 4707 goto aux_unlock; 4708 4709 if (!atomic_inc_not_zero(&rb->mmap_count)) 4710 goto aux_unlock; 4711 4712 if (rb_has_aux(rb)) { 4713 atomic_inc(&rb->aux_mmap_count); 4714 ret = 0; 4715 goto unlock; 4716 } 4717 4718 atomic_set(&rb->aux_mmap_count, 1); 4719 user_extra = nr_pages; 4720 4721 goto accounting; 4722 } 4723 4724 /* 4725 * If we have rb pages ensure they're a power-of-two number, so we 4726 * can do bitmasks instead of modulo. 4727 */ 4728 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4729 return -EINVAL; 4730 4731 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4732 return -EINVAL; 4733 4734 WARN_ON_ONCE(event->ctx->parent_ctx); 4735 again: 4736 mutex_lock(&event->mmap_mutex); 4737 if (event->rb) { 4738 if (event->rb->nr_pages != nr_pages) { 4739 ret = -EINVAL; 4740 goto unlock; 4741 } 4742 4743 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4744 /* 4745 * Raced against perf_mmap_close() through 4746 * perf_event_set_output(). Try again, hope for better 4747 * luck. 4748 */ 4749 mutex_unlock(&event->mmap_mutex); 4750 goto again; 4751 } 4752 4753 goto unlock; 4754 } 4755 4756 user_extra = nr_pages + 1; 4757 4758 accounting: 4759 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4760 4761 /* 4762 * Increase the limit linearly with more CPUs: 4763 */ 4764 user_lock_limit *= num_online_cpus(); 4765 4766 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4767 4768 if (user_locked > user_lock_limit) 4769 extra = user_locked - user_lock_limit; 4770 4771 lock_limit = rlimit(RLIMIT_MEMLOCK); 4772 lock_limit >>= PAGE_SHIFT; 4773 locked = vma->vm_mm->pinned_vm + extra; 4774 4775 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4776 !capable(CAP_IPC_LOCK)) { 4777 ret = -EPERM; 4778 goto unlock; 4779 } 4780 4781 WARN_ON(!rb && event->rb); 4782 4783 if (vma->vm_flags & VM_WRITE) 4784 flags |= RING_BUFFER_WRITABLE; 4785 4786 if (!rb) { 4787 rb = rb_alloc(nr_pages, 4788 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4789 event->cpu, flags); 4790 4791 if (!rb) { 4792 ret = -ENOMEM; 4793 goto unlock; 4794 } 4795 4796 atomic_set(&rb->mmap_count, 1); 4797 rb->mmap_user = get_current_user(); 4798 rb->mmap_locked = extra; 4799 4800 ring_buffer_attach(event, rb); 4801 4802 perf_event_init_userpage(event); 4803 perf_event_update_userpage(event); 4804 } else { 4805 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4806 event->attr.aux_watermark, flags); 4807 if (!ret) 4808 rb->aux_mmap_locked = extra; 4809 } 4810 4811 unlock: 4812 if (!ret) { 4813 atomic_long_add(user_extra, &user->locked_vm); 4814 vma->vm_mm->pinned_vm += extra; 4815 4816 atomic_inc(&event->mmap_count); 4817 } else if (rb) { 4818 atomic_dec(&rb->mmap_count); 4819 } 4820 aux_unlock: 4821 mutex_unlock(&event->mmap_mutex); 4822 4823 /* 4824 * Since pinned accounting is per vm we cannot allow fork() to copy our 4825 * vma. 4826 */ 4827 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4828 vma->vm_ops = &perf_mmap_vmops; 4829 4830 if (event->pmu->event_mapped) 4831 event->pmu->event_mapped(event); 4832 4833 return ret; 4834 } 4835 4836 static int perf_fasync(int fd, struct file *filp, int on) 4837 { 4838 struct inode *inode = file_inode(filp); 4839 struct perf_event *event = filp->private_data; 4840 int retval; 4841 4842 mutex_lock(&inode->i_mutex); 4843 retval = fasync_helper(fd, filp, on, &event->fasync); 4844 mutex_unlock(&inode->i_mutex); 4845 4846 if (retval < 0) 4847 return retval; 4848 4849 return 0; 4850 } 4851 4852 static const struct file_operations perf_fops = { 4853 .llseek = no_llseek, 4854 .release = perf_release, 4855 .read = perf_read, 4856 .poll = perf_poll, 4857 .unlocked_ioctl = perf_ioctl, 4858 .compat_ioctl = perf_compat_ioctl, 4859 .mmap = perf_mmap, 4860 .fasync = perf_fasync, 4861 }; 4862 4863 /* 4864 * Perf event wakeup 4865 * 4866 * If there's data, ensure we set the poll() state and publish everything 4867 * to user-space before waking everybody up. 4868 */ 4869 4870 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4871 { 4872 /* only the parent has fasync state */ 4873 if (event->parent) 4874 event = event->parent; 4875 return &event->fasync; 4876 } 4877 4878 void perf_event_wakeup(struct perf_event *event) 4879 { 4880 ring_buffer_wakeup(event); 4881 4882 if (event->pending_kill) { 4883 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4884 event->pending_kill = 0; 4885 } 4886 } 4887 4888 static void perf_pending_event(struct irq_work *entry) 4889 { 4890 struct perf_event *event = container_of(entry, 4891 struct perf_event, pending); 4892 int rctx; 4893 4894 rctx = perf_swevent_get_recursion_context(); 4895 /* 4896 * If we 'fail' here, that's OK, it means recursion is already disabled 4897 * and we won't recurse 'further'. 4898 */ 4899 4900 if (event->pending_disable) { 4901 event->pending_disable = 0; 4902 __perf_event_disable(event); 4903 } 4904 4905 if (event->pending_wakeup) { 4906 event->pending_wakeup = 0; 4907 perf_event_wakeup(event); 4908 } 4909 4910 if (rctx >= 0) 4911 perf_swevent_put_recursion_context(rctx); 4912 } 4913 4914 /* 4915 * We assume there is only KVM supporting the callbacks. 4916 * Later on, we might change it to a list if there is 4917 * another virtualization implementation supporting the callbacks. 4918 */ 4919 struct perf_guest_info_callbacks *perf_guest_cbs; 4920 4921 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4922 { 4923 perf_guest_cbs = cbs; 4924 return 0; 4925 } 4926 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4927 4928 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4929 { 4930 perf_guest_cbs = NULL; 4931 return 0; 4932 } 4933 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4934 4935 static void 4936 perf_output_sample_regs(struct perf_output_handle *handle, 4937 struct pt_regs *regs, u64 mask) 4938 { 4939 int bit; 4940 4941 for_each_set_bit(bit, (const unsigned long *) &mask, 4942 sizeof(mask) * BITS_PER_BYTE) { 4943 u64 val; 4944 4945 val = perf_reg_value(regs, bit); 4946 perf_output_put(handle, val); 4947 } 4948 } 4949 4950 static void perf_sample_regs_user(struct perf_regs *regs_user, 4951 struct pt_regs *regs, 4952 struct pt_regs *regs_user_copy) 4953 { 4954 if (user_mode(regs)) { 4955 regs_user->abi = perf_reg_abi(current); 4956 regs_user->regs = regs; 4957 } else if (current->mm) { 4958 perf_get_regs_user(regs_user, regs, regs_user_copy); 4959 } else { 4960 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4961 regs_user->regs = NULL; 4962 } 4963 } 4964 4965 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4966 struct pt_regs *regs) 4967 { 4968 regs_intr->regs = regs; 4969 regs_intr->abi = perf_reg_abi(current); 4970 } 4971 4972 4973 /* 4974 * Get remaining task size from user stack pointer. 4975 * 4976 * It'd be better to take stack vma map and limit this more 4977 * precisly, but there's no way to get it safely under interrupt, 4978 * so using TASK_SIZE as limit. 4979 */ 4980 static u64 perf_ustack_task_size(struct pt_regs *regs) 4981 { 4982 unsigned long addr = perf_user_stack_pointer(regs); 4983 4984 if (!addr || addr >= TASK_SIZE) 4985 return 0; 4986 4987 return TASK_SIZE - addr; 4988 } 4989 4990 static u16 4991 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4992 struct pt_regs *regs) 4993 { 4994 u64 task_size; 4995 4996 /* No regs, no stack pointer, no dump. */ 4997 if (!regs) 4998 return 0; 4999 5000 /* 5001 * Check if we fit in with the requested stack size into the: 5002 * - TASK_SIZE 5003 * If we don't, we limit the size to the TASK_SIZE. 5004 * 5005 * - remaining sample size 5006 * If we don't, we customize the stack size to 5007 * fit in to the remaining sample size. 5008 */ 5009 5010 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5011 stack_size = min(stack_size, (u16) task_size); 5012 5013 /* Current header size plus static size and dynamic size. */ 5014 header_size += 2 * sizeof(u64); 5015 5016 /* Do we fit in with the current stack dump size? */ 5017 if ((u16) (header_size + stack_size) < header_size) { 5018 /* 5019 * If we overflow the maximum size for the sample, 5020 * we customize the stack dump size to fit in. 5021 */ 5022 stack_size = USHRT_MAX - header_size - sizeof(u64); 5023 stack_size = round_up(stack_size, sizeof(u64)); 5024 } 5025 5026 return stack_size; 5027 } 5028 5029 static void 5030 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5031 struct pt_regs *regs) 5032 { 5033 /* Case of a kernel thread, nothing to dump */ 5034 if (!regs) { 5035 u64 size = 0; 5036 perf_output_put(handle, size); 5037 } else { 5038 unsigned long sp; 5039 unsigned int rem; 5040 u64 dyn_size; 5041 5042 /* 5043 * We dump: 5044 * static size 5045 * - the size requested by user or the best one we can fit 5046 * in to the sample max size 5047 * data 5048 * - user stack dump data 5049 * dynamic size 5050 * - the actual dumped size 5051 */ 5052 5053 /* Static size. */ 5054 perf_output_put(handle, dump_size); 5055 5056 /* Data. */ 5057 sp = perf_user_stack_pointer(regs); 5058 rem = __output_copy_user(handle, (void *) sp, dump_size); 5059 dyn_size = dump_size - rem; 5060 5061 perf_output_skip(handle, rem); 5062 5063 /* Dynamic size. */ 5064 perf_output_put(handle, dyn_size); 5065 } 5066 } 5067 5068 static void __perf_event_header__init_id(struct perf_event_header *header, 5069 struct perf_sample_data *data, 5070 struct perf_event *event) 5071 { 5072 u64 sample_type = event->attr.sample_type; 5073 5074 data->type = sample_type; 5075 header->size += event->id_header_size; 5076 5077 if (sample_type & PERF_SAMPLE_TID) { 5078 /* namespace issues */ 5079 data->tid_entry.pid = perf_event_pid(event, current); 5080 data->tid_entry.tid = perf_event_tid(event, current); 5081 } 5082 5083 if (sample_type & PERF_SAMPLE_TIME) 5084 data->time = perf_event_clock(event); 5085 5086 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5087 data->id = primary_event_id(event); 5088 5089 if (sample_type & PERF_SAMPLE_STREAM_ID) 5090 data->stream_id = event->id; 5091 5092 if (sample_type & PERF_SAMPLE_CPU) { 5093 data->cpu_entry.cpu = raw_smp_processor_id(); 5094 data->cpu_entry.reserved = 0; 5095 } 5096 } 5097 5098 void perf_event_header__init_id(struct perf_event_header *header, 5099 struct perf_sample_data *data, 5100 struct perf_event *event) 5101 { 5102 if (event->attr.sample_id_all) 5103 __perf_event_header__init_id(header, data, event); 5104 } 5105 5106 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5107 struct perf_sample_data *data) 5108 { 5109 u64 sample_type = data->type; 5110 5111 if (sample_type & PERF_SAMPLE_TID) 5112 perf_output_put(handle, data->tid_entry); 5113 5114 if (sample_type & PERF_SAMPLE_TIME) 5115 perf_output_put(handle, data->time); 5116 5117 if (sample_type & PERF_SAMPLE_ID) 5118 perf_output_put(handle, data->id); 5119 5120 if (sample_type & PERF_SAMPLE_STREAM_ID) 5121 perf_output_put(handle, data->stream_id); 5122 5123 if (sample_type & PERF_SAMPLE_CPU) 5124 perf_output_put(handle, data->cpu_entry); 5125 5126 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5127 perf_output_put(handle, data->id); 5128 } 5129 5130 void perf_event__output_id_sample(struct perf_event *event, 5131 struct perf_output_handle *handle, 5132 struct perf_sample_data *sample) 5133 { 5134 if (event->attr.sample_id_all) 5135 __perf_event__output_id_sample(handle, sample); 5136 } 5137 5138 static void perf_output_read_one(struct perf_output_handle *handle, 5139 struct perf_event *event, 5140 u64 enabled, u64 running) 5141 { 5142 u64 read_format = event->attr.read_format; 5143 u64 values[4]; 5144 int n = 0; 5145 5146 values[n++] = perf_event_count(event); 5147 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5148 values[n++] = enabled + 5149 atomic64_read(&event->child_total_time_enabled); 5150 } 5151 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5152 values[n++] = running + 5153 atomic64_read(&event->child_total_time_running); 5154 } 5155 if (read_format & PERF_FORMAT_ID) 5156 values[n++] = primary_event_id(event); 5157 5158 __output_copy(handle, values, n * sizeof(u64)); 5159 } 5160 5161 /* 5162 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5163 */ 5164 static void perf_output_read_group(struct perf_output_handle *handle, 5165 struct perf_event *event, 5166 u64 enabled, u64 running) 5167 { 5168 struct perf_event *leader = event->group_leader, *sub; 5169 u64 read_format = event->attr.read_format; 5170 u64 values[5]; 5171 int n = 0; 5172 5173 values[n++] = 1 + leader->nr_siblings; 5174 5175 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5176 values[n++] = enabled; 5177 5178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5179 values[n++] = running; 5180 5181 if (leader != event) 5182 leader->pmu->read(leader); 5183 5184 values[n++] = perf_event_count(leader); 5185 if (read_format & PERF_FORMAT_ID) 5186 values[n++] = primary_event_id(leader); 5187 5188 __output_copy(handle, values, n * sizeof(u64)); 5189 5190 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5191 n = 0; 5192 5193 if ((sub != event) && 5194 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5195 sub->pmu->read(sub); 5196 5197 values[n++] = perf_event_count(sub); 5198 if (read_format & PERF_FORMAT_ID) 5199 values[n++] = primary_event_id(sub); 5200 5201 __output_copy(handle, values, n * sizeof(u64)); 5202 } 5203 } 5204 5205 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5206 PERF_FORMAT_TOTAL_TIME_RUNNING) 5207 5208 static void perf_output_read(struct perf_output_handle *handle, 5209 struct perf_event *event) 5210 { 5211 u64 enabled = 0, running = 0, now; 5212 u64 read_format = event->attr.read_format; 5213 5214 /* 5215 * compute total_time_enabled, total_time_running 5216 * based on snapshot values taken when the event 5217 * was last scheduled in. 5218 * 5219 * we cannot simply called update_context_time() 5220 * because of locking issue as we are called in 5221 * NMI context 5222 */ 5223 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5224 calc_timer_values(event, &now, &enabled, &running); 5225 5226 if (event->attr.read_format & PERF_FORMAT_GROUP) 5227 perf_output_read_group(handle, event, enabled, running); 5228 else 5229 perf_output_read_one(handle, event, enabled, running); 5230 } 5231 5232 void perf_output_sample(struct perf_output_handle *handle, 5233 struct perf_event_header *header, 5234 struct perf_sample_data *data, 5235 struct perf_event *event) 5236 { 5237 u64 sample_type = data->type; 5238 5239 perf_output_put(handle, *header); 5240 5241 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5242 perf_output_put(handle, data->id); 5243 5244 if (sample_type & PERF_SAMPLE_IP) 5245 perf_output_put(handle, data->ip); 5246 5247 if (sample_type & PERF_SAMPLE_TID) 5248 perf_output_put(handle, data->tid_entry); 5249 5250 if (sample_type & PERF_SAMPLE_TIME) 5251 perf_output_put(handle, data->time); 5252 5253 if (sample_type & PERF_SAMPLE_ADDR) 5254 perf_output_put(handle, data->addr); 5255 5256 if (sample_type & PERF_SAMPLE_ID) 5257 perf_output_put(handle, data->id); 5258 5259 if (sample_type & PERF_SAMPLE_STREAM_ID) 5260 perf_output_put(handle, data->stream_id); 5261 5262 if (sample_type & PERF_SAMPLE_CPU) 5263 perf_output_put(handle, data->cpu_entry); 5264 5265 if (sample_type & PERF_SAMPLE_PERIOD) 5266 perf_output_put(handle, data->period); 5267 5268 if (sample_type & PERF_SAMPLE_READ) 5269 perf_output_read(handle, event); 5270 5271 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5272 if (data->callchain) { 5273 int size = 1; 5274 5275 if (data->callchain) 5276 size += data->callchain->nr; 5277 5278 size *= sizeof(u64); 5279 5280 __output_copy(handle, data->callchain, size); 5281 } else { 5282 u64 nr = 0; 5283 perf_output_put(handle, nr); 5284 } 5285 } 5286 5287 if (sample_type & PERF_SAMPLE_RAW) { 5288 if (data->raw) { 5289 perf_output_put(handle, data->raw->size); 5290 __output_copy(handle, data->raw->data, 5291 data->raw->size); 5292 } else { 5293 struct { 5294 u32 size; 5295 u32 data; 5296 } raw = { 5297 .size = sizeof(u32), 5298 .data = 0, 5299 }; 5300 perf_output_put(handle, raw); 5301 } 5302 } 5303 5304 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5305 if (data->br_stack) { 5306 size_t size; 5307 5308 size = data->br_stack->nr 5309 * sizeof(struct perf_branch_entry); 5310 5311 perf_output_put(handle, data->br_stack->nr); 5312 perf_output_copy(handle, data->br_stack->entries, size); 5313 } else { 5314 /* 5315 * we always store at least the value of nr 5316 */ 5317 u64 nr = 0; 5318 perf_output_put(handle, nr); 5319 } 5320 } 5321 5322 if (sample_type & PERF_SAMPLE_REGS_USER) { 5323 u64 abi = data->regs_user.abi; 5324 5325 /* 5326 * If there are no regs to dump, notice it through 5327 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5328 */ 5329 perf_output_put(handle, abi); 5330 5331 if (abi) { 5332 u64 mask = event->attr.sample_regs_user; 5333 perf_output_sample_regs(handle, 5334 data->regs_user.regs, 5335 mask); 5336 } 5337 } 5338 5339 if (sample_type & PERF_SAMPLE_STACK_USER) { 5340 perf_output_sample_ustack(handle, 5341 data->stack_user_size, 5342 data->regs_user.regs); 5343 } 5344 5345 if (sample_type & PERF_SAMPLE_WEIGHT) 5346 perf_output_put(handle, data->weight); 5347 5348 if (sample_type & PERF_SAMPLE_DATA_SRC) 5349 perf_output_put(handle, data->data_src.val); 5350 5351 if (sample_type & PERF_SAMPLE_TRANSACTION) 5352 perf_output_put(handle, data->txn); 5353 5354 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5355 u64 abi = data->regs_intr.abi; 5356 /* 5357 * If there are no regs to dump, notice it through 5358 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5359 */ 5360 perf_output_put(handle, abi); 5361 5362 if (abi) { 5363 u64 mask = event->attr.sample_regs_intr; 5364 5365 perf_output_sample_regs(handle, 5366 data->regs_intr.regs, 5367 mask); 5368 } 5369 } 5370 5371 if (!event->attr.watermark) { 5372 int wakeup_events = event->attr.wakeup_events; 5373 5374 if (wakeup_events) { 5375 struct ring_buffer *rb = handle->rb; 5376 int events = local_inc_return(&rb->events); 5377 5378 if (events >= wakeup_events) { 5379 local_sub(wakeup_events, &rb->events); 5380 local_inc(&rb->wakeup); 5381 } 5382 } 5383 } 5384 } 5385 5386 void perf_prepare_sample(struct perf_event_header *header, 5387 struct perf_sample_data *data, 5388 struct perf_event *event, 5389 struct pt_regs *regs) 5390 { 5391 u64 sample_type = event->attr.sample_type; 5392 5393 header->type = PERF_RECORD_SAMPLE; 5394 header->size = sizeof(*header) + event->header_size; 5395 5396 header->misc = 0; 5397 header->misc |= perf_misc_flags(regs); 5398 5399 __perf_event_header__init_id(header, data, event); 5400 5401 if (sample_type & PERF_SAMPLE_IP) 5402 data->ip = perf_instruction_pointer(regs); 5403 5404 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5405 int size = 1; 5406 5407 data->callchain = perf_callchain(event, regs); 5408 5409 if (data->callchain) 5410 size += data->callchain->nr; 5411 5412 header->size += size * sizeof(u64); 5413 } 5414 5415 if (sample_type & PERF_SAMPLE_RAW) { 5416 int size = sizeof(u32); 5417 5418 if (data->raw) 5419 size += data->raw->size; 5420 else 5421 size += sizeof(u32); 5422 5423 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5424 header->size += size; 5425 } 5426 5427 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5428 int size = sizeof(u64); /* nr */ 5429 if (data->br_stack) { 5430 size += data->br_stack->nr 5431 * sizeof(struct perf_branch_entry); 5432 } 5433 header->size += size; 5434 } 5435 5436 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5437 perf_sample_regs_user(&data->regs_user, regs, 5438 &data->regs_user_copy); 5439 5440 if (sample_type & PERF_SAMPLE_REGS_USER) { 5441 /* regs dump ABI info */ 5442 int size = sizeof(u64); 5443 5444 if (data->regs_user.regs) { 5445 u64 mask = event->attr.sample_regs_user; 5446 size += hweight64(mask) * sizeof(u64); 5447 } 5448 5449 header->size += size; 5450 } 5451 5452 if (sample_type & PERF_SAMPLE_STACK_USER) { 5453 /* 5454 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5455 * processed as the last one or have additional check added 5456 * in case new sample type is added, because we could eat 5457 * up the rest of the sample size. 5458 */ 5459 u16 stack_size = event->attr.sample_stack_user; 5460 u16 size = sizeof(u64); 5461 5462 stack_size = perf_sample_ustack_size(stack_size, header->size, 5463 data->regs_user.regs); 5464 5465 /* 5466 * If there is something to dump, add space for the dump 5467 * itself and for the field that tells the dynamic size, 5468 * which is how many have been actually dumped. 5469 */ 5470 if (stack_size) 5471 size += sizeof(u64) + stack_size; 5472 5473 data->stack_user_size = stack_size; 5474 header->size += size; 5475 } 5476 5477 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5478 /* regs dump ABI info */ 5479 int size = sizeof(u64); 5480 5481 perf_sample_regs_intr(&data->regs_intr, regs); 5482 5483 if (data->regs_intr.regs) { 5484 u64 mask = event->attr.sample_regs_intr; 5485 5486 size += hweight64(mask) * sizeof(u64); 5487 } 5488 5489 header->size += size; 5490 } 5491 } 5492 5493 void perf_event_output(struct perf_event *event, 5494 struct perf_sample_data *data, 5495 struct pt_regs *regs) 5496 { 5497 struct perf_output_handle handle; 5498 struct perf_event_header header; 5499 5500 /* protect the callchain buffers */ 5501 rcu_read_lock(); 5502 5503 perf_prepare_sample(&header, data, event, regs); 5504 5505 if (perf_output_begin(&handle, event, header.size)) 5506 goto exit; 5507 5508 perf_output_sample(&handle, &header, data, event); 5509 5510 perf_output_end(&handle); 5511 5512 exit: 5513 rcu_read_unlock(); 5514 } 5515 5516 /* 5517 * read event_id 5518 */ 5519 5520 struct perf_read_event { 5521 struct perf_event_header header; 5522 5523 u32 pid; 5524 u32 tid; 5525 }; 5526 5527 static void 5528 perf_event_read_event(struct perf_event *event, 5529 struct task_struct *task) 5530 { 5531 struct perf_output_handle handle; 5532 struct perf_sample_data sample; 5533 struct perf_read_event read_event = { 5534 .header = { 5535 .type = PERF_RECORD_READ, 5536 .misc = 0, 5537 .size = sizeof(read_event) + event->read_size, 5538 }, 5539 .pid = perf_event_pid(event, task), 5540 .tid = perf_event_tid(event, task), 5541 }; 5542 int ret; 5543 5544 perf_event_header__init_id(&read_event.header, &sample, event); 5545 ret = perf_output_begin(&handle, event, read_event.header.size); 5546 if (ret) 5547 return; 5548 5549 perf_output_put(&handle, read_event); 5550 perf_output_read(&handle, event); 5551 perf_event__output_id_sample(event, &handle, &sample); 5552 5553 perf_output_end(&handle); 5554 } 5555 5556 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5557 5558 static void 5559 perf_event_aux_ctx(struct perf_event_context *ctx, 5560 perf_event_aux_output_cb output, 5561 void *data) 5562 { 5563 struct perf_event *event; 5564 5565 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5566 if (event->state < PERF_EVENT_STATE_INACTIVE) 5567 continue; 5568 if (!event_filter_match(event)) 5569 continue; 5570 output(event, data); 5571 } 5572 } 5573 5574 static void 5575 perf_event_aux(perf_event_aux_output_cb output, void *data, 5576 struct perf_event_context *task_ctx) 5577 { 5578 struct perf_cpu_context *cpuctx; 5579 struct perf_event_context *ctx; 5580 struct pmu *pmu; 5581 int ctxn; 5582 5583 rcu_read_lock(); 5584 list_for_each_entry_rcu(pmu, &pmus, entry) { 5585 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5586 if (cpuctx->unique_pmu != pmu) 5587 goto next; 5588 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5589 if (task_ctx) 5590 goto next; 5591 ctxn = pmu->task_ctx_nr; 5592 if (ctxn < 0) 5593 goto next; 5594 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5595 if (ctx) 5596 perf_event_aux_ctx(ctx, output, data); 5597 next: 5598 put_cpu_ptr(pmu->pmu_cpu_context); 5599 } 5600 5601 if (task_ctx) { 5602 preempt_disable(); 5603 perf_event_aux_ctx(task_ctx, output, data); 5604 preempt_enable(); 5605 } 5606 rcu_read_unlock(); 5607 } 5608 5609 /* 5610 * task tracking -- fork/exit 5611 * 5612 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5613 */ 5614 5615 struct perf_task_event { 5616 struct task_struct *task; 5617 struct perf_event_context *task_ctx; 5618 5619 struct { 5620 struct perf_event_header header; 5621 5622 u32 pid; 5623 u32 ppid; 5624 u32 tid; 5625 u32 ptid; 5626 u64 time; 5627 } event_id; 5628 }; 5629 5630 static int perf_event_task_match(struct perf_event *event) 5631 { 5632 return event->attr.comm || event->attr.mmap || 5633 event->attr.mmap2 || event->attr.mmap_data || 5634 event->attr.task; 5635 } 5636 5637 static void perf_event_task_output(struct perf_event *event, 5638 void *data) 5639 { 5640 struct perf_task_event *task_event = data; 5641 struct perf_output_handle handle; 5642 struct perf_sample_data sample; 5643 struct task_struct *task = task_event->task; 5644 int ret, size = task_event->event_id.header.size; 5645 5646 if (!perf_event_task_match(event)) 5647 return; 5648 5649 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5650 5651 ret = perf_output_begin(&handle, event, 5652 task_event->event_id.header.size); 5653 if (ret) 5654 goto out; 5655 5656 task_event->event_id.pid = perf_event_pid(event, task); 5657 task_event->event_id.ppid = perf_event_pid(event, current); 5658 5659 task_event->event_id.tid = perf_event_tid(event, task); 5660 task_event->event_id.ptid = perf_event_tid(event, current); 5661 5662 task_event->event_id.time = perf_event_clock(event); 5663 5664 perf_output_put(&handle, task_event->event_id); 5665 5666 perf_event__output_id_sample(event, &handle, &sample); 5667 5668 perf_output_end(&handle); 5669 out: 5670 task_event->event_id.header.size = size; 5671 } 5672 5673 static void perf_event_task(struct task_struct *task, 5674 struct perf_event_context *task_ctx, 5675 int new) 5676 { 5677 struct perf_task_event task_event; 5678 5679 if (!atomic_read(&nr_comm_events) && 5680 !atomic_read(&nr_mmap_events) && 5681 !atomic_read(&nr_task_events)) 5682 return; 5683 5684 task_event = (struct perf_task_event){ 5685 .task = task, 5686 .task_ctx = task_ctx, 5687 .event_id = { 5688 .header = { 5689 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5690 .misc = 0, 5691 .size = sizeof(task_event.event_id), 5692 }, 5693 /* .pid */ 5694 /* .ppid */ 5695 /* .tid */ 5696 /* .ptid */ 5697 /* .time */ 5698 }, 5699 }; 5700 5701 perf_event_aux(perf_event_task_output, 5702 &task_event, 5703 task_ctx); 5704 } 5705 5706 void perf_event_fork(struct task_struct *task) 5707 { 5708 perf_event_task(task, NULL, 1); 5709 } 5710 5711 /* 5712 * comm tracking 5713 */ 5714 5715 struct perf_comm_event { 5716 struct task_struct *task; 5717 char *comm; 5718 int comm_size; 5719 5720 struct { 5721 struct perf_event_header header; 5722 5723 u32 pid; 5724 u32 tid; 5725 } event_id; 5726 }; 5727 5728 static int perf_event_comm_match(struct perf_event *event) 5729 { 5730 return event->attr.comm; 5731 } 5732 5733 static void perf_event_comm_output(struct perf_event *event, 5734 void *data) 5735 { 5736 struct perf_comm_event *comm_event = data; 5737 struct perf_output_handle handle; 5738 struct perf_sample_data sample; 5739 int size = comm_event->event_id.header.size; 5740 int ret; 5741 5742 if (!perf_event_comm_match(event)) 5743 return; 5744 5745 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5746 ret = perf_output_begin(&handle, event, 5747 comm_event->event_id.header.size); 5748 5749 if (ret) 5750 goto out; 5751 5752 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5753 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5754 5755 perf_output_put(&handle, comm_event->event_id); 5756 __output_copy(&handle, comm_event->comm, 5757 comm_event->comm_size); 5758 5759 perf_event__output_id_sample(event, &handle, &sample); 5760 5761 perf_output_end(&handle); 5762 out: 5763 comm_event->event_id.header.size = size; 5764 } 5765 5766 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5767 { 5768 char comm[TASK_COMM_LEN]; 5769 unsigned int size; 5770 5771 memset(comm, 0, sizeof(comm)); 5772 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5773 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5774 5775 comm_event->comm = comm; 5776 comm_event->comm_size = size; 5777 5778 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5779 5780 perf_event_aux(perf_event_comm_output, 5781 comm_event, 5782 NULL); 5783 } 5784 5785 void perf_event_comm(struct task_struct *task, bool exec) 5786 { 5787 struct perf_comm_event comm_event; 5788 5789 if (!atomic_read(&nr_comm_events)) 5790 return; 5791 5792 comm_event = (struct perf_comm_event){ 5793 .task = task, 5794 /* .comm */ 5795 /* .comm_size */ 5796 .event_id = { 5797 .header = { 5798 .type = PERF_RECORD_COMM, 5799 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5800 /* .size */ 5801 }, 5802 /* .pid */ 5803 /* .tid */ 5804 }, 5805 }; 5806 5807 perf_event_comm_event(&comm_event); 5808 } 5809 5810 /* 5811 * mmap tracking 5812 */ 5813 5814 struct perf_mmap_event { 5815 struct vm_area_struct *vma; 5816 5817 const char *file_name; 5818 int file_size; 5819 int maj, min; 5820 u64 ino; 5821 u64 ino_generation; 5822 u32 prot, flags; 5823 5824 struct { 5825 struct perf_event_header header; 5826 5827 u32 pid; 5828 u32 tid; 5829 u64 start; 5830 u64 len; 5831 u64 pgoff; 5832 } event_id; 5833 }; 5834 5835 static int perf_event_mmap_match(struct perf_event *event, 5836 void *data) 5837 { 5838 struct perf_mmap_event *mmap_event = data; 5839 struct vm_area_struct *vma = mmap_event->vma; 5840 int executable = vma->vm_flags & VM_EXEC; 5841 5842 return (!executable && event->attr.mmap_data) || 5843 (executable && (event->attr.mmap || event->attr.mmap2)); 5844 } 5845 5846 static void perf_event_mmap_output(struct perf_event *event, 5847 void *data) 5848 { 5849 struct perf_mmap_event *mmap_event = data; 5850 struct perf_output_handle handle; 5851 struct perf_sample_data sample; 5852 int size = mmap_event->event_id.header.size; 5853 int ret; 5854 5855 if (!perf_event_mmap_match(event, data)) 5856 return; 5857 5858 if (event->attr.mmap2) { 5859 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5860 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5861 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5862 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5863 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5864 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5865 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5866 } 5867 5868 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5869 ret = perf_output_begin(&handle, event, 5870 mmap_event->event_id.header.size); 5871 if (ret) 5872 goto out; 5873 5874 mmap_event->event_id.pid = perf_event_pid(event, current); 5875 mmap_event->event_id.tid = perf_event_tid(event, current); 5876 5877 perf_output_put(&handle, mmap_event->event_id); 5878 5879 if (event->attr.mmap2) { 5880 perf_output_put(&handle, mmap_event->maj); 5881 perf_output_put(&handle, mmap_event->min); 5882 perf_output_put(&handle, mmap_event->ino); 5883 perf_output_put(&handle, mmap_event->ino_generation); 5884 perf_output_put(&handle, mmap_event->prot); 5885 perf_output_put(&handle, mmap_event->flags); 5886 } 5887 5888 __output_copy(&handle, mmap_event->file_name, 5889 mmap_event->file_size); 5890 5891 perf_event__output_id_sample(event, &handle, &sample); 5892 5893 perf_output_end(&handle); 5894 out: 5895 mmap_event->event_id.header.size = size; 5896 } 5897 5898 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5899 { 5900 struct vm_area_struct *vma = mmap_event->vma; 5901 struct file *file = vma->vm_file; 5902 int maj = 0, min = 0; 5903 u64 ino = 0, gen = 0; 5904 u32 prot = 0, flags = 0; 5905 unsigned int size; 5906 char tmp[16]; 5907 char *buf = NULL; 5908 char *name; 5909 5910 if (file) { 5911 struct inode *inode; 5912 dev_t dev; 5913 5914 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5915 if (!buf) { 5916 name = "//enomem"; 5917 goto cpy_name; 5918 } 5919 /* 5920 * d_path() works from the end of the rb backwards, so we 5921 * need to add enough zero bytes after the string to handle 5922 * the 64bit alignment we do later. 5923 */ 5924 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 5925 if (IS_ERR(name)) { 5926 name = "//toolong"; 5927 goto cpy_name; 5928 } 5929 inode = file_inode(vma->vm_file); 5930 dev = inode->i_sb->s_dev; 5931 ino = inode->i_ino; 5932 gen = inode->i_generation; 5933 maj = MAJOR(dev); 5934 min = MINOR(dev); 5935 5936 if (vma->vm_flags & VM_READ) 5937 prot |= PROT_READ; 5938 if (vma->vm_flags & VM_WRITE) 5939 prot |= PROT_WRITE; 5940 if (vma->vm_flags & VM_EXEC) 5941 prot |= PROT_EXEC; 5942 5943 if (vma->vm_flags & VM_MAYSHARE) 5944 flags = MAP_SHARED; 5945 else 5946 flags = MAP_PRIVATE; 5947 5948 if (vma->vm_flags & VM_DENYWRITE) 5949 flags |= MAP_DENYWRITE; 5950 if (vma->vm_flags & VM_MAYEXEC) 5951 flags |= MAP_EXECUTABLE; 5952 if (vma->vm_flags & VM_LOCKED) 5953 flags |= MAP_LOCKED; 5954 if (vma->vm_flags & VM_HUGETLB) 5955 flags |= MAP_HUGETLB; 5956 5957 goto got_name; 5958 } else { 5959 if (vma->vm_ops && vma->vm_ops->name) { 5960 name = (char *) vma->vm_ops->name(vma); 5961 if (name) 5962 goto cpy_name; 5963 } 5964 5965 name = (char *)arch_vma_name(vma); 5966 if (name) 5967 goto cpy_name; 5968 5969 if (vma->vm_start <= vma->vm_mm->start_brk && 5970 vma->vm_end >= vma->vm_mm->brk) { 5971 name = "[heap]"; 5972 goto cpy_name; 5973 } 5974 if (vma->vm_start <= vma->vm_mm->start_stack && 5975 vma->vm_end >= vma->vm_mm->start_stack) { 5976 name = "[stack]"; 5977 goto cpy_name; 5978 } 5979 5980 name = "//anon"; 5981 goto cpy_name; 5982 } 5983 5984 cpy_name: 5985 strlcpy(tmp, name, sizeof(tmp)); 5986 name = tmp; 5987 got_name: 5988 /* 5989 * Since our buffer works in 8 byte units we need to align our string 5990 * size to a multiple of 8. However, we must guarantee the tail end is 5991 * zero'd out to avoid leaking random bits to userspace. 5992 */ 5993 size = strlen(name)+1; 5994 while (!IS_ALIGNED(size, sizeof(u64))) 5995 name[size++] = '\0'; 5996 5997 mmap_event->file_name = name; 5998 mmap_event->file_size = size; 5999 mmap_event->maj = maj; 6000 mmap_event->min = min; 6001 mmap_event->ino = ino; 6002 mmap_event->ino_generation = gen; 6003 mmap_event->prot = prot; 6004 mmap_event->flags = flags; 6005 6006 if (!(vma->vm_flags & VM_EXEC)) 6007 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6008 6009 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6010 6011 perf_event_aux(perf_event_mmap_output, 6012 mmap_event, 6013 NULL); 6014 6015 kfree(buf); 6016 } 6017 6018 void perf_event_mmap(struct vm_area_struct *vma) 6019 { 6020 struct perf_mmap_event mmap_event; 6021 6022 if (!atomic_read(&nr_mmap_events)) 6023 return; 6024 6025 mmap_event = (struct perf_mmap_event){ 6026 .vma = vma, 6027 /* .file_name */ 6028 /* .file_size */ 6029 .event_id = { 6030 .header = { 6031 .type = PERF_RECORD_MMAP, 6032 .misc = PERF_RECORD_MISC_USER, 6033 /* .size */ 6034 }, 6035 /* .pid */ 6036 /* .tid */ 6037 .start = vma->vm_start, 6038 .len = vma->vm_end - vma->vm_start, 6039 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6040 }, 6041 /* .maj (attr_mmap2 only) */ 6042 /* .min (attr_mmap2 only) */ 6043 /* .ino (attr_mmap2 only) */ 6044 /* .ino_generation (attr_mmap2 only) */ 6045 /* .prot (attr_mmap2 only) */ 6046 /* .flags (attr_mmap2 only) */ 6047 }; 6048 6049 perf_event_mmap_event(&mmap_event); 6050 } 6051 6052 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6053 unsigned long size, u64 flags) 6054 { 6055 struct perf_output_handle handle; 6056 struct perf_sample_data sample; 6057 struct perf_aux_event { 6058 struct perf_event_header header; 6059 u64 offset; 6060 u64 size; 6061 u64 flags; 6062 } rec = { 6063 .header = { 6064 .type = PERF_RECORD_AUX, 6065 .misc = 0, 6066 .size = sizeof(rec), 6067 }, 6068 .offset = head, 6069 .size = size, 6070 .flags = flags, 6071 }; 6072 int ret; 6073 6074 perf_event_header__init_id(&rec.header, &sample, event); 6075 ret = perf_output_begin(&handle, event, rec.header.size); 6076 6077 if (ret) 6078 return; 6079 6080 perf_output_put(&handle, rec); 6081 perf_event__output_id_sample(event, &handle, &sample); 6082 6083 perf_output_end(&handle); 6084 } 6085 6086 /* 6087 * Lost/dropped samples logging 6088 */ 6089 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6090 { 6091 struct perf_output_handle handle; 6092 struct perf_sample_data sample; 6093 int ret; 6094 6095 struct { 6096 struct perf_event_header header; 6097 u64 lost; 6098 } lost_samples_event = { 6099 .header = { 6100 .type = PERF_RECORD_LOST_SAMPLES, 6101 .misc = 0, 6102 .size = sizeof(lost_samples_event), 6103 }, 6104 .lost = lost, 6105 }; 6106 6107 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6108 6109 ret = perf_output_begin(&handle, event, 6110 lost_samples_event.header.size); 6111 if (ret) 6112 return; 6113 6114 perf_output_put(&handle, lost_samples_event); 6115 perf_event__output_id_sample(event, &handle, &sample); 6116 perf_output_end(&handle); 6117 } 6118 6119 /* 6120 * context_switch tracking 6121 */ 6122 6123 struct perf_switch_event { 6124 struct task_struct *task; 6125 struct task_struct *next_prev; 6126 6127 struct { 6128 struct perf_event_header header; 6129 u32 next_prev_pid; 6130 u32 next_prev_tid; 6131 } event_id; 6132 }; 6133 6134 static int perf_event_switch_match(struct perf_event *event) 6135 { 6136 return event->attr.context_switch; 6137 } 6138 6139 static void perf_event_switch_output(struct perf_event *event, void *data) 6140 { 6141 struct perf_switch_event *se = data; 6142 struct perf_output_handle handle; 6143 struct perf_sample_data sample; 6144 int ret; 6145 6146 if (!perf_event_switch_match(event)) 6147 return; 6148 6149 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6150 if (event->ctx->task) { 6151 se->event_id.header.type = PERF_RECORD_SWITCH; 6152 se->event_id.header.size = sizeof(se->event_id.header); 6153 } else { 6154 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6155 se->event_id.header.size = sizeof(se->event_id); 6156 se->event_id.next_prev_pid = 6157 perf_event_pid(event, se->next_prev); 6158 se->event_id.next_prev_tid = 6159 perf_event_tid(event, se->next_prev); 6160 } 6161 6162 perf_event_header__init_id(&se->event_id.header, &sample, event); 6163 6164 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6165 if (ret) 6166 return; 6167 6168 if (event->ctx->task) 6169 perf_output_put(&handle, se->event_id.header); 6170 else 6171 perf_output_put(&handle, se->event_id); 6172 6173 perf_event__output_id_sample(event, &handle, &sample); 6174 6175 perf_output_end(&handle); 6176 } 6177 6178 static void perf_event_switch(struct task_struct *task, 6179 struct task_struct *next_prev, bool sched_in) 6180 { 6181 struct perf_switch_event switch_event; 6182 6183 /* N.B. caller checks nr_switch_events != 0 */ 6184 6185 switch_event = (struct perf_switch_event){ 6186 .task = task, 6187 .next_prev = next_prev, 6188 .event_id = { 6189 .header = { 6190 /* .type */ 6191 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6192 /* .size */ 6193 }, 6194 /* .next_prev_pid */ 6195 /* .next_prev_tid */ 6196 }, 6197 }; 6198 6199 perf_event_aux(perf_event_switch_output, 6200 &switch_event, 6201 NULL); 6202 } 6203 6204 /* 6205 * IRQ throttle logging 6206 */ 6207 6208 static void perf_log_throttle(struct perf_event *event, int enable) 6209 { 6210 struct perf_output_handle handle; 6211 struct perf_sample_data sample; 6212 int ret; 6213 6214 struct { 6215 struct perf_event_header header; 6216 u64 time; 6217 u64 id; 6218 u64 stream_id; 6219 } throttle_event = { 6220 .header = { 6221 .type = PERF_RECORD_THROTTLE, 6222 .misc = 0, 6223 .size = sizeof(throttle_event), 6224 }, 6225 .time = perf_event_clock(event), 6226 .id = primary_event_id(event), 6227 .stream_id = event->id, 6228 }; 6229 6230 if (enable) 6231 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6232 6233 perf_event_header__init_id(&throttle_event.header, &sample, event); 6234 6235 ret = perf_output_begin(&handle, event, 6236 throttle_event.header.size); 6237 if (ret) 6238 return; 6239 6240 perf_output_put(&handle, throttle_event); 6241 perf_event__output_id_sample(event, &handle, &sample); 6242 perf_output_end(&handle); 6243 } 6244 6245 static void perf_log_itrace_start(struct perf_event *event) 6246 { 6247 struct perf_output_handle handle; 6248 struct perf_sample_data sample; 6249 struct perf_aux_event { 6250 struct perf_event_header header; 6251 u32 pid; 6252 u32 tid; 6253 } rec; 6254 int ret; 6255 6256 if (event->parent) 6257 event = event->parent; 6258 6259 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6260 event->hw.itrace_started) 6261 return; 6262 6263 rec.header.type = PERF_RECORD_ITRACE_START; 6264 rec.header.misc = 0; 6265 rec.header.size = sizeof(rec); 6266 rec.pid = perf_event_pid(event, current); 6267 rec.tid = perf_event_tid(event, current); 6268 6269 perf_event_header__init_id(&rec.header, &sample, event); 6270 ret = perf_output_begin(&handle, event, rec.header.size); 6271 6272 if (ret) 6273 return; 6274 6275 perf_output_put(&handle, rec); 6276 perf_event__output_id_sample(event, &handle, &sample); 6277 6278 perf_output_end(&handle); 6279 } 6280 6281 /* 6282 * Generic event overflow handling, sampling. 6283 */ 6284 6285 static int __perf_event_overflow(struct perf_event *event, 6286 int throttle, struct perf_sample_data *data, 6287 struct pt_regs *regs) 6288 { 6289 int events = atomic_read(&event->event_limit); 6290 struct hw_perf_event *hwc = &event->hw; 6291 u64 seq; 6292 int ret = 0; 6293 6294 /* 6295 * Non-sampling counters might still use the PMI to fold short 6296 * hardware counters, ignore those. 6297 */ 6298 if (unlikely(!is_sampling_event(event))) 6299 return 0; 6300 6301 seq = __this_cpu_read(perf_throttled_seq); 6302 if (seq != hwc->interrupts_seq) { 6303 hwc->interrupts_seq = seq; 6304 hwc->interrupts = 1; 6305 } else { 6306 hwc->interrupts++; 6307 if (unlikely(throttle 6308 && hwc->interrupts >= max_samples_per_tick)) { 6309 __this_cpu_inc(perf_throttled_count); 6310 hwc->interrupts = MAX_INTERRUPTS; 6311 perf_log_throttle(event, 0); 6312 tick_nohz_full_kick(); 6313 ret = 1; 6314 } 6315 } 6316 6317 if (event->attr.freq) { 6318 u64 now = perf_clock(); 6319 s64 delta = now - hwc->freq_time_stamp; 6320 6321 hwc->freq_time_stamp = now; 6322 6323 if (delta > 0 && delta < 2*TICK_NSEC) 6324 perf_adjust_period(event, delta, hwc->last_period, true); 6325 } 6326 6327 /* 6328 * XXX event_limit might not quite work as expected on inherited 6329 * events 6330 */ 6331 6332 event->pending_kill = POLL_IN; 6333 if (events && atomic_dec_and_test(&event->event_limit)) { 6334 ret = 1; 6335 event->pending_kill = POLL_HUP; 6336 event->pending_disable = 1; 6337 irq_work_queue(&event->pending); 6338 } 6339 6340 if (event->overflow_handler) 6341 event->overflow_handler(event, data, regs); 6342 else 6343 perf_event_output(event, data, regs); 6344 6345 if (*perf_event_fasync(event) && event->pending_kill) { 6346 event->pending_wakeup = 1; 6347 irq_work_queue(&event->pending); 6348 } 6349 6350 return ret; 6351 } 6352 6353 int perf_event_overflow(struct perf_event *event, 6354 struct perf_sample_data *data, 6355 struct pt_regs *regs) 6356 { 6357 return __perf_event_overflow(event, 1, data, regs); 6358 } 6359 6360 /* 6361 * Generic software event infrastructure 6362 */ 6363 6364 struct swevent_htable { 6365 struct swevent_hlist *swevent_hlist; 6366 struct mutex hlist_mutex; 6367 int hlist_refcount; 6368 6369 /* Recursion avoidance in each contexts */ 6370 int recursion[PERF_NR_CONTEXTS]; 6371 6372 /* Keeps track of cpu being initialized/exited */ 6373 bool online; 6374 }; 6375 6376 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6377 6378 /* 6379 * We directly increment event->count and keep a second value in 6380 * event->hw.period_left to count intervals. This period event 6381 * is kept in the range [-sample_period, 0] so that we can use the 6382 * sign as trigger. 6383 */ 6384 6385 u64 perf_swevent_set_period(struct perf_event *event) 6386 { 6387 struct hw_perf_event *hwc = &event->hw; 6388 u64 period = hwc->last_period; 6389 u64 nr, offset; 6390 s64 old, val; 6391 6392 hwc->last_period = hwc->sample_period; 6393 6394 again: 6395 old = val = local64_read(&hwc->period_left); 6396 if (val < 0) 6397 return 0; 6398 6399 nr = div64_u64(period + val, period); 6400 offset = nr * period; 6401 val -= offset; 6402 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6403 goto again; 6404 6405 return nr; 6406 } 6407 6408 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6409 struct perf_sample_data *data, 6410 struct pt_regs *regs) 6411 { 6412 struct hw_perf_event *hwc = &event->hw; 6413 int throttle = 0; 6414 6415 if (!overflow) 6416 overflow = perf_swevent_set_period(event); 6417 6418 if (hwc->interrupts == MAX_INTERRUPTS) 6419 return; 6420 6421 for (; overflow; overflow--) { 6422 if (__perf_event_overflow(event, throttle, 6423 data, regs)) { 6424 /* 6425 * We inhibit the overflow from happening when 6426 * hwc->interrupts == MAX_INTERRUPTS. 6427 */ 6428 break; 6429 } 6430 throttle = 1; 6431 } 6432 } 6433 6434 static void perf_swevent_event(struct perf_event *event, u64 nr, 6435 struct perf_sample_data *data, 6436 struct pt_regs *regs) 6437 { 6438 struct hw_perf_event *hwc = &event->hw; 6439 6440 local64_add(nr, &event->count); 6441 6442 if (!regs) 6443 return; 6444 6445 if (!is_sampling_event(event)) 6446 return; 6447 6448 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6449 data->period = nr; 6450 return perf_swevent_overflow(event, 1, data, regs); 6451 } else 6452 data->period = event->hw.last_period; 6453 6454 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6455 return perf_swevent_overflow(event, 1, data, regs); 6456 6457 if (local64_add_negative(nr, &hwc->period_left)) 6458 return; 6459 6460 perf_swevent_overflow(event, 0, data, regs); 6461 } 6462 6463 static int perf_exclude_event(struct perf_event *event, 6464 struct pt_regs *regs) 6465 { 6466 if (event->hw.state & PERF_HES_STOPPED) 6467 return 1; 6468 6469 if (regs) { 6470 if (event->attr.exclude_user && user_mode(regs)) 6471 return 1; 6472 6473 if (event->attr.exclude_kernel && !user_mode(regs)) 6474 return 1; 6475 } 6476 6477 return 0; 6478 } 6479 6480 static int perf_swevent_match(struct perf_event *event, 6481 enum perf_type_id type, 6482 u32 event_id, 6483 struct perf_sample_data *data, 6484 struct pt_regs *regs) 6485 { 6486 if (event->attr.type != type) 6487 return 0; 6488 6489 if (event->attr.config != event_id) 6490 return 0; 6491 6492 if (perf_exclude_event(event, regs)) 6493 return 0; 6494 6495 return 1; 6496 } 6497 6498 static inline u64 swevent_hash(u64 type, u32 event_id) 6499 { 6500 u64 val = event_id | (type << 32); 6501 6502 return hash_64(val, SWEVENT_HLIST_BITS); 6503 } 6504 6505 static inline struct hlist_head * 6506 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6507 { 6508 u64 hash = swevent_hash(type, event_id); 6509 6510 return &hlist->heads[hash]; 6511 } 6512 6513 /* For the read side: events when they trigger */ 6514 static inline struct hlist_head * 6515 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6516 { 6517 struct swevent_hlist *hlist; 6518 6519 hlist = rcu_dereference(swhash->swevent_hlist); 6520 if (!hlist) 6521 return NULL; 6522 6523 return __find_swevent_head(hlist, type, event_id); 6524 } 6525 6526 /* For the event head insertion and removal in the hlist */ 6527 static inline struct hlist_head * 6528 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6529 { 6530 struct swevent_hlist *hlist; 6531 u32 event_id = event->attr.config; 6532 u64 type = event->attr.type; 6533 6534 /* 6535 * Event scheduling is always serialized against hlist allocation 6536 * and release. Which makes the protected version suitable here. 6537 * The context lock guarantees that. 6538 */ 6539 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6540 lockdep_is_held(&event->ctx->lock)); 6541 if (!hlist) 6542 return NULL; 6543 6544 return __find_swevent_head(hlist, type, event_id); 6545 } 6546 6547 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6548 u64 nr, 6549 struct perf_sample_data *data, 6550 struct pt_regs *regs) 6551 { 6552 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6553 struct perf_event *event; 6554 struct hlist_head *head; 6555 6556 rcu_read_lock(); 6557 head = find_swevent_head_rcu(swhash, type, event_id); 6558 if (!head) 6559 goto end; 6560 6561 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6562 if (perf_swevent_match(event, type, event_id, data, regs)) 6563 perf_swevent_event(event, nr, data, regs); 6564 } 6565 end: 6566 rcu_read_unlock(); 6567 } 6568 6569 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6570 6571 int perf_swevent_get_recursion_context(void) 6572 { 6573 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6574 6575 return get_recursion_context(swhash->recursion); 6576 } 6577 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6578 6579 inline void perf_swevent_put_recursion_context(int rctx) 6580 { 6581 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6582 6583 put_recursion_context(swhash->recursion, rctx); 6584 } 6585 6586 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6587 { 6588 struct perf_sample_data data; 6589 6590 if (WARN_ON_ONCE(!regs)) 6591 return; 6592 6593 perf_sample_data_init(&data, addr, 0); 6594 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6595 } 6596 6597 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6598 { 6599 int rctx; 6600 6601 preempt_disable_notrace(); 6602 rctx = perf_swevent_get_recursion_context(); 6603 if (unlikely(rctx < 0)) 6604 goto fail; 6605 6606 ___perf_sw_event(event_id, nr, regs, addr); 6607 6608 perf_swevent_put_recursion_context(rctx); 6609 fail: 6610 preempt_enable_notrace(); 6611 } 6612 6613 static void perf_swevent_read(struct perf_event *event) 6614 { 6615 } 6616 6617 static int perf_swevent_add(struct perf_event *event, int flags) 6618 { 6619 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6620 struct hw_perf_event *hwc = &event->hw; 6621 struct hlist_head *head; 6622 6623 if (is_sampling_event(event)) { 6624 hwc->last_period = hwc->sample_period; 6625 perf_swevent_set_period(event); 6626 } 6627 6628 hwc->state = !(flags & PERF_EF_START); 6629 6630 head = find_swevent_head(swhash, event); 6631 if (!head) { 6632 /* 6633 * We can race with cpu hotplug code. Do not 6634 * WARN if the cpu just got unplugged. 6635 */ 6636 WARN_ON_ONCE(swhash->online); 6637 return -EINVAL; 6638 } 6639 6640 hlist_add_head_rcu(&event->hlist_entry, head); 6641 perf_event_update_userpage(event); 6642 6643 return 0; 6644 } 6645 6646 static void perf_swevent_del(struct perf_event *event, int flags) 6647 { 6648 hlist_del_rcu(&event->hlist_entry); 6649 } 6650 6651 static void perf_swevent_start(struct perf_event *event, int flags) 6652 { 6653 event->hw.state = 0; 6654 } 6655 6656 static void perf_swevent_stop(struct perf_event *event, int flags) 6657 { 6658 event->hw.state = PERF_HES_STOPPED; 6659 } 6660 6661 /* Deref the hlist from the update side */ 6662 static inline struct swevent_hlist * 6663 swevent_hlist_deref(struct swevent_htable *swhash) 6664 { 6665 return rcu_dereference_protected(swhash->swevent_hlist, 6666 lockdep_is_held(&swhash->hlist_mutex)); 6667 } 6668 6669 static void swevent_hlist_release(struct swevent_htable *swhash) 6670 { 6671 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6672 6673 if (!hlist) 6674 return; 6675 6676 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6677 kfree_rcu(hlist, rcu_head); 6678 } 6679 6680 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6681 { 6682 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6683 6684 mutex_lock(&swhash->hlist_mutex); 6685 6686 if (!--swhash->hlist_refcount) 6687 swevent_hlist_release(swhash); 6688 6689 mutex_unlock(&swhash->hlist_mutex); 6690 } 6691 6692 static void swevent_hlist_put(struct perf_event *event) 6693 { 6694 int cpu; 6695 6696 for_each_possible_cpu(cpu) 6697 swevent_hlist_put_cpu(event, cpu); 6698 } 6699 6700 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6701 { 6702 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6703 int err = 0; 6704 6705 mutex_lock(&swhash->hlist_mutex); 6706 6707 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6708 struct swevent_hlist *hlist; 6709 6710 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6711 if (!hlist) { 6712 err = -ENOMEM; 6713 goto exit; 6714 } 6715 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6716 } 6717 swhash->hlist_refcount++; 6718 exit: 6719 mutex_unlock(&swhash->hlist_mutex); 6720 6721 return err; 6722 } 6723 6724 static int swevent_hlist_get(struct perf_event *event) 6725 { 6726 int err; 6727 int cpu, failed_cpu; 6728 6729 get_online_cpus(); 6730 for_each_possible_cpu(cpu) { 6731 err = swevent_hlist_get_cpu(event, cpu); 6732 if (err) { 6733 failed_cpu = cpu; 6734 goto fail; 6735 } 6736 } 6737 put_online_cpus(); 6738 6739 return 0; 6740 fail: 6741 for_each_possible_cpu(cpu) { 6742 if (cpu == failed_cpu) 6743 break; 6744 swevent_hlist_put_cpu(event, cpu); 6745 } 6746 6747 put_online_cpus(); 6748 return err; 6749 } 6750 6751 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6752 6753 static void sw_perf_event_destroy(struct perf_event *event) 6754 { 6755 u64 event_id = event->attr.config; 6756 6757 WARN_ON(event->parent); 6758 6759 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6760 swevent_hlist_put(event); 6761 } 6762 6763 static int perf_swevent_init(struct perf_event *event) 6764 { 6765 u64 event_id = event->attr.config; 6766 6767 if (event->attr.type != PERF_TYPE_SOFTWARE) 6768 return -ENOENT; 6769 6770 /* 6771 * no branch sampling for software events 6772 */ 6773 if (has_branch_stack(event)) 6774 return -EOPNOTSUPP; 6775 6776 switch (event_id) { 6777 case PERF_COUNT_SW_CPU_CLOCK: 6778 case PERF_COUNT_SW_TASK_CLOCK: 6779 return -ENOENT; 6780 6781 default: 6782 break; 6783 } 6784 6785 if (event_id >= PERF_COUNT_SW_MAX) 6786 return -ENOENT; 6787 6788 if (!event->parent) { 6789 int err; 6790 6791 err = swevent_hlist_get(event); 6792 if (err) 6793 return err; 6794 6795 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6796 event->destroy = sw_perf_event_destroy; 6797 } 6798 6799 return 0; 6800 } 6801 6802 static struct pmu perf_swevent = { 6803 .task_ctx_nr = perf_sw_context, 6804 6805 .capabilities = PERF_PMU_CAP_NO_NMI, 6806 6807 .event_init = perf_swevent_init, 6808 .add = perf_swevent_add, 6809 .del = perf_swevent_del, 6810 .start = perf_swevent_start, 6811 .stop = perf_swevent_stop, 6812 .read = perf_swevent_read, 6813 }; 6814 6815 #ifdef CONFIG_EVENT_TRACING 6816 6817 static int perf_tp_filter_match(struct perf_event *event, 6818 struct perf_sample_data *data) 6819 { 6820 void *record = data->raw->data; 6821 6822 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6823 return 1; 6824 return 0; 6825 } 6826 6827 static int perf_tp_event_match(struct perf_event *event, 6828 struct perf_sample_data *data, 6829 struct pt_regs *regs) 6830 { 6831 if (event->hw.state & PERF_HES_STOPPED) 6832 return 0; 6833 /* 6834 * All tracepoints are from kernel-space. 6835 */ 6836 if (event->attr.exclude_kernel) 6837 return 0; 6838 6839 if (!perf_tp_filter_match(event, data)) 6840 return 0; 6841 6842 return 1; 6843 } 6844 6845 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6846 struct pt_regs *regs, struct hlist_head *head, int rctx, 6847 struct task_struct *task) 6848 { 6849 struct perf_sample_data data; 6850 struct perf_event *event; 6851 6852 struct perf_raw_record raw = { 6853 .size = entry_size, 6854 .data = record, 6855 }; 6856 6857 perf_sample_data_init(&data, addr, 0); 6858 data.raw = &raw; 6859 6860 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6861 if (perf_tp_event_match(event, &data, regs)) 6862 perf_swevent_event(event, count, &data, regs); 6863 } 6864 6865 /* 6866 * If we got specified a target task, also iterate its context and 6867 * deliver this event there too. 6868 */ 6869 if (task && task != current) { 6870 struct perf_event_context *ctx; 6871 struct trace_entry *entry = record; 6872 6873 rcu_read_lock(); 6874 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6875 if (!ctx) 6876 goto unlock; 6877 6878 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6879 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6880 continue; 6881 if (event->attr.config != entry->type) 6882 continue; 6883 if (perf_tp_event_match(event, &data, regs)) 6884 perf_swevent_event(event, count, &data, regs); 6885 } 6886 unlock: 6887 rcu_read_unlock(); 6888 } 6889 6890 perf_swevent_put_recursion_context(rctx); 6891 } 6892 EXPORT_SYMBOL_GPL(perf_tp_event); 6893 6894 static void tp_perf_event_destroy(struct perf_event *event) 6895 { 6896 perf_trace_destroy(event); 6897 } 6898 6899 static int perf_tp_event_init(struct perf_event *event) 6900 { 6901 int err; 6902 6903 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6904 return -ENOENT; 6905 6906 /* 6907 * no branch sampling for tracepoint events 6908 */ 6909 if (has_branch_stack(event)) 6910 return -EOPNOTSUPP; 6911 6912 err = perf_trace_init(event); 6913 if (err) 6914 return err; 6915 6916 event->destroy = tp_perf_event_destroy; 6917 6918 return 0; 6919 } 6920 6921 static struct pmu perf_tracepoint = { 6922 .task_ctx_nr = perf_sw_context, 6923 6924 .event_init = perf_tp_event_init, 6925 .add = perf_trace_add, 6926 .del = perf_trace_del, 6927 .start = perf_swevent_start, 6928 .stop = perf_swevent_stop, 6929 .read = perf_swevent_read, 6930 }; 6931 6932 static inline void perf_tp_register(void) 6933 { 6934 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6935 } 6936 6937 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6938 { 6939 char *filter_str; 6940 int ret; 6941 6942 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6943 return -EINVAL; 6944 6945 filter_str = strndup_user(arg, PAGE_SIZE); 6946 if (IS_ERR(filter_str)) 6947 return PTR_ERR(filter_str); 6948 6949 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6950 6951 kfree(filter_str); 6952 return ret; 6953 } 6954 6955 static void perf_event_free_filter(struct perf_event *event) 6956 { 6957 ftrace_profile_free_filter(event); 6958 } 6959 6960 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6961 { 6962 struct bpf_prog *prog; 6963 6964 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6965 return -EINVAL; 6966 6967 if (event->tp_event->prog) 6968 return -EEXIST; 6969 6970 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 6971 /* bpf programs can only be attached to u/kprobes */ 6972 return -EINVAL; 6973 6974 prog = bpf_prog_get(prog_fd); 6975 if (IS_ERR(prog)) 6976 return PTR_ERR(prog); 6977 6978 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6979 /* valid fd, but invalid bpf program type */ 6980 bpf_prog_put(prog); 6981 return -EINVAL; 6982 } 6983 6984 event->tp_event->prog = prog; 6985 6986 return 0; 6987 } 6988 6989 static void perf_event_free_bpf_prog(struct perf_event *event) 6990 { 6991 struct bpf_prog *prog; 6992 6993 if (!event->tp_event) 6994 return; 6995 6996 prog = event->tp_event->prog; 6997 if (prog) { 6998 event->tp_event->prog = NULL; 6999 bpf_prog_put(prog); 7000 } 7001 } 7002 7003 #else 7004 7005 static inline void perf_tp_register(void) 7006 { 7007 } 7008 7009 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7010 { 7011 return -ENOENT; 7012 } 7013 7014 static void perf_event_free_filter(struct perf_event *event) 7015 { 7016 } 7017 7018 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7019 { 7020 return -ENOENT; 7021 } 7022 7023 static void perf_event_free_bpf_prog(struct perf_event *event) 7024 { 7025 } 7026 #endif /* CONFIG_EVENT_TRACING */ 7027 7028 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7029 void perf_bp_event(struct perf_event *bp, void *data) 7030 { 7031 struct perf_sample_data sample; 7032 struct pt_regs *regs = data; 7033 7034 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7035 7036 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7037 perf_swevent_event(bp, 1, &sample, regs); 7038 } 7039 #endif 7040 7041 /* 7042 * hrtimer based swevent callback 7043 */ 7044 7045 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7046 { 7047 enum hrtimer_restart ret = HRTIMER_RESTART; 7048 struct perf_sample_data data; 7049 struct pt_regs *regs; 7050 struct perf_event *event; 7051 u64 period; 7052 7053 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7054 7055 if (event->state != PERF_EVENT_STATE_ACTIVE) 7056 return HRTIMER_NORESTART; 7057 7058 event->pmu->read(event); 7059 7060 perf_sample_data_init(&data, 0, event->hw.last_period); 7061 regs = get_irq_regs(); 7062 7063 if (regs && !perf_exclude_event(event, regs)) { 7064 if (!(event->attr.exclude_idle && is_idle_task(current))) 7065 if (__perf_event_overflow(event, 1, &data, regs)) 7066 ret = HRTIMER_NORESTART; 7067 } 7068 7069 period = max_t(u64, 10000, event->hw.sample_period); 7070 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7071 7072 return ret; 7073 } 7074 7075 static void perf_swevent_start_hrtimer(struct perf_event *event) 7076 { 7077 struct hw_perf_event *hwc = &event->hw; 7078 s64 period; 7079 7080 if (!is_sampling_event(event)) 7081 return; 7082 7083 period = local64_read(&hwc->period_left); 7084 if (period) { 7085 if (period < 0) 7086 period = 10000; 7087 7088 local64_set(&hwc->period_left, 0); 7089 } else { 7090 period = max_t(u64, 10000, hwc->sample_period); 7091 } 7092 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7093 HRTIMER_MODE_REL_PINNED); 7094 } 7095 7096 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7097 { 7098 struct hw_perf_event *hwc = &event->hw; 7099 7100 if (is_sampling_event(event)) { 7101 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7102 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7103 7104 hrtimer_cancel(&hwc->hrtimer); 7105 } 7106 } 7107 7108 static void perf_swevent_init_hrtimer(struct perf_event *event) 7109 { 7110 struct hw_perf_event *hwc = &event->hw; 7111 7112 if (!is_sampling_event(event)) 7113 return; 7114 7115 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7116 hwc->hrtimer.function = perf_swevent_hrtimer; 7117 7118 /* 7119 * Since hrtimers have a fixed rate, we can do a static freq->period 7120 * mapping and avoid the whole period adjust feedback stuff. 7121 */ 7122 if (event->attr.freq) { 7123 long freq = event->attr.sample_freq; 7124 7125 event->attr.sample_period = NSEC_PER_SEC / freq; 7126 hwc->sample_period = event->attr.sample_period; 7127 local64_set(&hwc->period_left, hwc->sample_period); 7128 hwc->last_period = hwc->sample_period; 7129 event->attr.freq = 0; 7130 } 7131 } 7132 7133 /* 7134 * Software event: cpu wall time clock 7135 */ 7136 7137 static void cpu_clock_event_update(struct perf_event *event) 7138 { 7139 s64 prev; 7140 u64 now; 7141 7142 now = local_clock(); 7143 prev = local64_xchg(&event->hw.prev_count, now); 7144 local64_add(now - prev, &event->count); 7145 } 7146 7147 static void cpu_clock_event_start(struct perf_event *event, int flags) 7148 { 7149 local64_set(&event->hw.prev_count, local_clock()); 7150 perf_swevent_start_hrtimer(event); 7151 } 7152 7153 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7154 { 7155 perf_swevent_cancel_hrtimer(event); 7156 cpu_clock_event_update(event); 7157 } 7158 7159 static int cpu_clock_event_add(struct perf_event *event, int flags) 7160 { 7161 if (flags & PERF_EF_START) 7162 cpu_clock_event_start(event, flags); 7163 perf_event_update_userpage(event); 7164 7165 return 0; 7166 } 7167 7168 static void cpu_clock_event_del(struct perf_event *event, int flags) 7169 { 7170 cpu_clock_event_stop(event, flags); 7171 } 7172 7173 static void cpu_clock_event_read(struct perf_event *event) 7174 { 7175 cpu_clock_event_update(event); 7176 } 7177 7178 static int cpu_clock_event_init(struct perf_event *event) 7179 { 7180 if (event->attr.type != PERF_TYPE_SOFTWARE) 7181 return -ENOENT; 7182 7183 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7184 return -ENOENT; 7185 7186 /* 7187 * no branch sampling for software events 7188 */ 7189 if (has_branch_stack(event)) 7190 return -EOPNOTSUPP; 7191 7192 perf_swevent_init_hrtimer(event); 7193 7194 return 0; 7195 } 7196 7197 static struct pmu perf_cpu_clock = { 7198 .task_ctx_nr = perf_sw_context, 7199 7200 .capabilities = PERF_PMU_CAP_NO_NMI, 7201 7202 .event_init = cpu_clock_event_init, 7203 .add = cpu_clock_event_add, 7204 .del = cpu_clock_event_del, 7205 .start = cpu_clock_event_start, 7206 .stop = cpu_clock_event_stop, 7207 .read = cpu_clock_event_read, 7208 }; 7209 7210 /* 7211 * Software event: task time clock 7212 */ 7213 7214 static void task_clock_event_update(struct perf_event *event, u64 now) 7215 { 7216 u64 prev; 7217 s64 delta; 7218 7219 prev = local64_xchg(&event->hw.prev_count, now); 7220 delta = now - prev; 7221 local64_add(delta, &event->count); 7222 } 7223 7224 static void task_clock_event_start(struct perf_event *event, int flags) 7225 { 7226 local64_set(&event->hw.prev_count, event->ctx->time); 7227 perf_swevent_start_hrtimer(event); 7228 } 7229 7230 static void task_clock_event_stop(struct perf_event *event, int flags) 7231 { 7232 perf_swevent_cancel_hrtimer(event); 7233 task_clock_event_update(event, event->ctx->time); 7234 } 7235 7236 static int task_clock_event_add(struct perf_event *event, int flags) 7237 { 7238 if (flags & PERF_EF_START) 7239 task_clock_event_start(event, flags); 7240 perf_event_update_userpage(event); 7241 7242 return 0; 7243 } 7244 7245 static void task_clock_event_del(struct perf_event *event, int flags) 7246 { 7247 task_clock_event_stop(event, PERF_EF_UPDATE); 7248 } 7249 7250 static void task_clock_event_read(struct perf_event *event) 7251 { 7252 u64 now = perf_clock(); 7253 u64 delta = now - event->ctx->timestamp; 7254 u64 time = event->ctx->time + delta; 7255 7256 task_clock_event_update(event, time); 7257 } 7258 7259 static int task_clock_event_init(struct perf_event *event) 7260 { 7261 if (event->attr.type != PERF_TYPE_SOFTWARE) 7262 return -ENOENT; 7263 7264 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7265 return -ENOENT; 7266 7267 /* 7268 * no branch sampling for software events 7269 */ 7270 if (has_branch_stack(event)) 7271 return -EOPNOTSUPP; 7272 7273 perf_swevent_init_hrtimer(event); 7274 7275 return 0; 7276 } 7277 7278 static struct pmu perf_task_clock = { 7279 .task_ctx_nr = perf_sw_context, 7280 7281 .capabilities = PERF_PMU_CAP_NO_NMI, 7282 7283 .event_init = task_clock_event_init, 7284 .add = task_clock_event_add, 7285 .del = task_clock_event_del, 7286 .start = task_clock_event_start, 7287 .stop = task_clock_event_stop, 7288 .read = task_clock_event_read, 7289 }; 7290 7291 static void perf_pmu_nop_void(struct pmu *pmu) 7292 { 7293 } 7294 7295 static int perf_pmu_nop_int(struct pmu *pmu) 7296 { 7297 return 0; 7298 } 7299 7300 static void perf_pmu_start_txn(struct pmu *pmu) 7301 { 7302 perf_pmu_disable(pmu); 7303 } 7304 7305 static int perf_pmu_commit_txn(struct pmu *pmu) 7306 { 7307 perf_pmu_enable(pmu); 7308 return 0; 7309 } 7310 7311 static void perf_pmu_cancel_txn(struct pmu *pmu) 7312 { 7313 perf_pmu_enable(pmu); 7314 } 7315 7316 static int perf_event_idx_default(struct perf_event *event) 7317 { 7318 return 0; 7319 } 7320 7321 /* 7322 * Ensures all contexts with the same task_ctx_nr have the same 7323 * pmu_cpu_context too. 7324 */ 7325 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7326 { 7327 struct pmu *pmu; 7328 7329 if (ctxn < 0) 7330 return NULL; 7331 7332 list_for_each_entry(pmu, &pmus, entry) { 7333 if (pmu->task_ctx_nr == ctxn) 7334 return pmu->pmu_cpu_context; 7335 } 7336 7337 return NULL; 7338 } 7339 7340 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7341 { 7342 int cpu; 7343 7344 for_each_possible_cpu(cpu) { 7345 struct perf_cpu_context *cpuctx; 7346 7347 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7348 7349 if (cpuctx->unique_pmu == old_pmu) 7350 cpuctx->unique_pmu = pmu; 7351 } 7352 } 7353 7354 static void free_pmu_context(struct pmu *pmu) 7355 { 7356 struct pmu *i; 7357 7358 mutex_lock(&pmus_lock); 7359 /* 7360 * Like a real lame refcount. 7361 */ 7362 list_for_each_entry(i, &pmus, entry) { 7363 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7364 update_pmu_context(i, pmu); 7365 goto out; 7366 } 7367 } 7368 7369 free_percpu(pmu->pmu_cpu_context); 7370 out: 7371 mutex_unlock(&pmus_lock); 7372 } 7373 static struct idr pmu_idr; 7374 7375 static ssize_t 7376 type_show(struct device *dev, struct device_attribute *attr, char *page) 7377 { 7378 struct pmu *pmu = dev_get_drvdata(dev); 7379 7380 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7381 } 7382 static DEVICE_ATTR_RO(type); 7383 7384 static ssize_t 7385 perf_event_mux_interval_ms_show(struct device *dev, 7386 struct device_attribute *attr, 7387 char *page) 7388 { 7389 struct pmu *pmu = dev_get_drvdata(dev); 7390 7391 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7392 } 7393 7394 static DEFINE_MUTEX(mux_interval_mutex); 7395 7396 static ssize_t 7397 perf_event_mux_interval_ms_store(struct device *dev, 7398 struct device_attribute *attr, 7399 const char *buf, size_t count) 7400 { 7401 struct pmu *pmu = dev_get_drvdata(dev); 7402 int timer, cpu, ret; 7403 7404 ret = kstrtoint(buf, 0, &timer); 7405 if (ret) 7406 return ret; 7407 7408 if (timer < 1) 7409 return -EINVAL; 7410 7411 /* same value, noting to do */ 7412 if (timer == pmu->hrtimer_interval_ms) 7413 return count; 7414 7415 mutex_lock(&mux_interval_mutex); 7416 pmu->hrtimer_interval_ms = timer; 7417 7418 /* update all cpuctx for this PMU */ 7419 get_online_cpus(); 7420 for_each_online_cpu(cpu) { 7421 struct perf_cpu_context *cpuctx; 7422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7423 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7424 7425 cpu_function_call(cpu, 7426 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7427 } 7428 put_online_cpus(); 7429 mutex_unlock(&mux_interval_mutex); 7430 7431 return count; 7432 } 7433 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7434 7435 static struct attribute *pmu_dev_attrs[] = { 7436 &dev_attr_type.attr, 7437 &dev_attr_perf_event_mux_interval_ms.attr, 7438 NULL, 7439 }; 7440 ATTRIBUTE_GROUPS(pmu_dev); 7441 7442 static int pmu_bus_running; 7443 static struct bus_type pmu_bus = { 7444 .name = "event_source", 7445 .dev_groups = pmu_dev_groups, 7446 }; 7447 7448 static void pmu_dev_release(struct device *dev) 7449 { 7450 kfree(dev); 7451 } 7452 7453 static int pmu_dev_alloc(struct pmu *pmu) 7454 { 7455 int ret = -ENOMEM; 7456 7457 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7458 if (!pmu->dev) 7459 goto out; 7460 7461 pmu->dev->groups = pmu->attr_groups; 7462 device_initialize(pmu->dev); 7463 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7464 if (ret) 7465 goto free_dev; 7466 7467 dev_set_drvdata(pmu->dev, pmu); 7468 pmu->dev->bus = &pmu_bus; 7469 pmu->dev->release = pmu_dev_release; 7470 ret = device_add(pmu->dev); 7471 if (ret) 7472 goto free_dev; 7473 7474 out: 7475 return ret; 7476 7477 free_dev: 7478 put_device(pmu->dev); 7479 goto out; 7480 } 7481 7482 static struct lock_class_key cpuctx_mutex; 7483 static struct lock_class_key cpuctx_lock; 7484 7485 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7486 { 7487 int cpu, ret; 7488 7489 mutex_lock(&pmus_lock); 7490 ret = -ENOMEM; 7491 pmu->pmu_disable_count = alloc_percpu(int); 7492 if (!pmu->pmu_disable_count) 7493 goto unlock; 7494 7495 pmu->type = -1; 7496 if (!name) 7497 goto skip_type; 7498 pmu->name = name; 7499 7500 if (type < 0) { 7501 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7502 if (type < 0) { 7503 ret = type; 7504 goto free_pdc; 7505 } 7506 } 7507 pmu->type = type; 7508 7509 if (pmu_bus_running) { 7510 ret = pmu_dev_alloc(pmu); 7511 if (ret) 7512 goto free_idr; 7513 } 7514 7515 skip_type: 7516 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7517 if (pmu->pmu_cpu_context) 7518 goto got_cpu_context; 7519 7520 ret = -ENOMEM; 7521 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7522 if (!pmu->pmu_cpu_context) 7523 goto free_dev; 7524 7525 for_each_possible_cpu(cpu) { 7526 struct perf_cpu_context *cpuctx; 7527 7528 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7529 __perf_event_init_context(&cpuctx->ctx); 7530 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7531 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7532 cpuctx->ctx.pmu = pmu; 7533 7534 __perf_mux_hrtimer_init(cpuctx, cpu); 7535 7536 cpuctx->unique_pmu = pmu; 7537 } 7538 7539 got_cpu_context: 7540 if (!pmu->start_txn) { 7541 if (pmu->pmu_enable) { 7542 /* 7543 * If we have pmu_enable/pmu_disable calls, install 7544 * transaction stubs that use that to try and batch 7545 * hardware accesses. 7546 */ 7547 pmu->start_txn = perf_pmu_start_txn; 7548 pmu->commit_txn = perf_pmu_commit_txn; 7549 pmu->cancel_txn = perf_pmu_cancel_txn; 7550 } else { 7551 pmu->start_txn = perf_pmu_nop_void; 7552 pmu->commit_txn = perf_pmu_nop_int; 7553 pmu->cancel_txn = perf_pmu_nop_void; 7554 } 7555 } 7556 7557 if (!pmu->pmu_enable) { 7558 pmu->pmu_enable = perf_pmu_nop_void; 7559 pmu->pmu_disable = perf_pmu_nop_void; 7560 } 7561 7562 if (!pmu->event_idx) 7563 pmu->event_idx = perf_event_idx_default; 7564 7565 list_add_rcu(&pmu->entry, &pmus); 7566 atomic_set(&pmu->exclusive_cnt, 0); 7567 ret = 0; 7568 unlock: 7569 mutex_unlock(&pmus_lock); 7570 7571 return ret; 7572 7573 free_dev: 7574 device_del(pmu->dev); 7575 put_device(pmu->dev); 7576 7577 free_idr: 7578 if (pmu->type >= PERF_TYPE_MAX) 7579 idr_remove(&pmu_idr, pmu->type); 7580 7581 free_pdc: 7582 free_percpu(pmu->pmu_disable_count); 7583 goto unlock; 7584 } 7585 EXPORT_SYMBOL_GPL(perf_pmu_register); 7586 7587 void perf_pmu_unregister(struct pmu *pmu) 7588 { 7589 mutex_lock(&pmus_lock); 7590 list_del_rcu(&pmu->entry); 7591 mutex_unlock(&pmus_lock); 7592 7593 /* 7594 * We dereference the pmu list under both SRCU and regular RCU, so 7595 * synchronize against both of those. 7596 */ 7597 synchronize_srcu(&pmus_srcu); 7598 synchronize_rcu(); 7599 7600 free_percpu(pmu->pmu_disable_count); 7601 if (pmu->type >= PERF_TYPE_MAX) 7602 idr_remove(&pmu_idr, pmu->type); 7603 device_del(pmu->dev); 7604 put_device(pmu->dev); 7605 free_pmu_context(pmu); 7606 } 7607 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7608 7609 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7610 { 7611 struct perf_event_context *ctx = NULL; 7612 int ret; 7613 7614 if (!try_module_get(pmu->module)) 7615 return -ENODEV; 7616 7617 if (event->group_leader != event) { 7618 /* 7619 * This ctx->mutex can nest when we're called through 7620 * inheritance. See the perf_event_ctx_lock_nested() comment. 7621 */ 7622 ctx = perf_event_ctx_lock_nested(event->group_leader, 7623 SINGLE_DEPTH_NESTING); 7624 BUG_ON(!ctx); 7625 } 7626 7627 event->pmu = pmu; 7628 ret = pmu->event_init(event); 7629 7630 if (ctx) 7631 perf_event_ctx_unlock(event->group_leader, ctx); 7632 7633 if (ret) 7634 module_put(pmu->module); 7635 7636 return ret; 7637 } 7638 7639 struct pmu *perf_init_event(struct perf_event *event) 7640 { 7641 struct pmu *pmu = NULL; 7642 int idx; 7643 int ret; 7644 7645 idx = srcu_read_lock(&pmus_srcu); 7646 7647 rcu_read_lock(); 7648 pmu = idr_find(&pmu_idr, event->attr.type); 7649 rcu_read_unlock(); 7650 if (pmu) { 7651 ret = perf_try_init_event(pmu, event); 7652 if (ret) 7653 pmu = ERR_PTR(ret); 7654 goto unlock; 7655 } 7656 7657 list_for_each_entry_rcu(pmu, &pmus, entry) { 7658 ret = perf_try_init_event(pmu, event); 7659 if (!ret) 7660 goto unlock; 7661 7662 if (ret != -ENOENT) { 7663 pmu = ERR_PTR(ret); 7664 goto unlock; 7665 } 7666 } 7667 pmu = ERR_PTR(-ENOENT); 7668 unlock: 7669 srcu_read_unlock(&pmus_srcu, idx); 7670 7671 return pmu; 7672 } 7673 7674 static void account_event_cpu(struct perf_event *event, int cpu) 7675 { 7676 if (event->parent) 7677 return; 7678 7679 if (is_cgroup_event(event)) 7680 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7681 } 7682 7683 static void account_event(struct perf_event *event) 7684 { 7685 if (event->parent) 7686 return; 7687 7688 if (event->attach_state & PERF_ATTACH_TASK) 7689 static_key_slow_inc(&perf_sched_events.key); 7690 if (event->attr.mmap || event->attr.mmap_data) 7691 atomic_inc(&nr_mmap_events); 7692 if (event->attr.comm) 7693 atomic_inc(&nr_comm_events); 7694 if (event->attr.task) 7695 atomic_inc(&nr_task_events); 7696 if (event->attr.freq) { 7697 if (atomic_inc_return(&nr_freq_events) == 1) 7698 tick_nohz_full_kick_all(); 7699 } 7700 if (event->attr.context_switch) { 7701 atomic_inc(&nr_switch_events); 7702 static_key_slow_inc(&perf_sched_events.key); 7703 } 7704 if (has_branch_stack(event)) 7705 static_key_slow_inc(&perf_sched_events.key); 7706 if (is_cgroup_event(event)) 7707 static_key_slow_inc(&perf_sched_events.key); 7708 7709 account_event_cpu(event, event->cpu); 7710 } 7711 7712 /* 7713 * Allocate and initialize a event structure 7714 */ 7715 static struct perf_event * 7716 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7717 struct task_struct *task, 7718 struct perf_event *group_leader, 7719 struct perf_event *parent_event, 7720 perf_overflow_handler_t overflow_handler, 7721 void *context, int cgroup_fd) 7722 { 7723 struct pmu *pmu; 7724 struct perf_event *event; 7725 struct hw_perf_event *hwc; 7726 long err = -EINVAL; 7727 7728 if ((unsigned)cpu >= nr_cpu_ids) { 7729 if (!task || cpu != -1) 7730 return ERR_PTR(-EINVAL); 7731 } 7732 7733 event = kzalloc(sizeof(*event), GFP_KERNEL); 7734 if (!event) 7735 return ERR_PTR(-ENOMEM); 7736 7737 /* 7738 * Single events are their own group leaders, with an 7739 * empty sibling list: 7740 */ 7741 if (!group_leader) 7742 group_leader = event; 7743 7744 mutex_init(&event->child_mutex); 7745 INIT_LIST_HEAD(&event->child_list); 7746 7747 INIT_LIST_HEAD(&event->group_entry); 7748 INIT_LIST_HEAD(&event->event_entry); 7749 INIT_LIST_HEAD(&event->sibling_list); 7750 INIT_LIST_HEAD(&event->rb_entry); 7751 INIT_LIST_HEAD(&event->active_entry); 7752 INIT_HLIST_NODE(&event->hlist_entry); 7753 7754 7755 init_waitqueue_head(&event->waitq); 7756 init_irq_work(&event->pending, perf_pending_event); 7757 7758 mutex_init(&event->mmap_mutex); 7759 7760 atomic_long_set(&event->refcount, 1); 7761 event->cpu = cpu; 7762 event->attr = *attr; 7763 event->group_leader = group_leader; 7764 event->pmu = NULL; 7765 event->oncpu = -1; 7766 7767 event->parent = parent_event; 7768 7769 event->ns = get_pid_ns(task_active_pid_ns(current)); 7770 event->id = atomic64_inc_return(&perf_event_id); 7771 7772 event->state = PERF_EVENT_STATE_INACTIVE; 7773 7774 if (task) { 7775 event->attach_state = PERF_ATTACH_TASK; 7776 /* 7777 * XXX pmu::event_init needs to know what task to account to 7778 * and we cannot use the ctx information because we need the 7779 * pmu before we get a ctx. 7780 */ 7781 event->hw.target = task; 7782 } 7783 7784 event->clock = &local_clock; 7785 if (parent_event) 7786 event->clock = parent_event->clock; 7787 7788 if (!overflow_handler && parent_event) { 7789 overflow_handler = parent_event->overflow_handler; 7790 context = parent_event->overflow_handler_context; 7791 } 7792 7793 event->overflow_handler = overflow_handler; 7794 event->overflow_handler_context = context; 7795 7796 perf_event__state_init(event); 7797 7798 pmu = NULL; 7799 7800 hwc = &event->hw; 7801 hwc->sample_period = attr->sample_period; 7802 if (attr->freq && attr->sample_freq) 7803 hwc->sample_period = 1; 7804 hwc->last_period = hwc->sample_period; 7805 7806 local64_set(&hwc->period_left, hwc->sample_period); 7807 7808 /* 7809 * we currently do not support PERF_FORMAT_GROUP on inherited events 7810 */ 7811 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7812 goto err_ns; 7813 7814 if (!has_branch_stack(event)) 7815 event->attr.branch_sample_type = 0; 7816 7817 if (cgroup_fd != -1) { 7818 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7819 if (err) 7820 goto err_ns; 7821 } 7822 7823 pmu = perf_init_event(event); 7824 if (!pmu) 7825 goto err_ns; 7826 else if (IS_ERR(pmu)) { 7827 err = PTR_ERR(pmu); 7828 goto err_ns; 7829 } 7830 7831 err = exclusive_event_init(event); 7832 if (err) 7833 goto err_pmu; 7834 7835 if (!event->parent) { 7836 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7837 err = get_callchain_buffers(); 7838 if (err) 7839 goto err_per_task; 7840 } 7841 } 7842 7843 return event; 7844 7845 err_per_task: 7846 exclusive_event_destroy(event); 7847 7848 err_pmu: 7849 if (event->destroy) 7850 event->destroy(event); 7851 module_put(pmu->module); 7852 err_ns: 7853 if (is_cgroup_event(event)) 7854 perf_detach_cgroup(event); 7855 if (event->ns) 7856 put_pid_ns(event->ns); 7857 kfree(event); 7858 7859 return ERR_PTR(err); 7860 } 7861 7862 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7863 struct perf_event_attr *attr) 7864 { 7865 u32 size; 7866 int ret; 7867 7868 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7869 return -EFAULT; 7870 7871 /* 7872 * zero the full structure, so that a short copy will be nice. 7873 */ 7874 memset(attr, 0, sizeof(*attr)); 7875 7876 ret = get_user(size, &uattr->size); 7877 if (ret) 7878 return ret; 7879 7880 if (size > PAGE_SIZE) /* silly large */ 7881 goto err_size; 7882 7883 if (!size) /* abi compat */ 7884 size = PERF_ATTR_SIZE_VER0; 7885 7886 if (size < PERF_ATTR_SIZE_VER0) 7887 goto err_size; 7888 7889 /* 7890 * If we're handed a bigger struct than we know of, 7891 * ensure all the unknown bits are 0 - i.e. new 7892 * user-space does not rely on any kernel feature 7893 * extensions we dont know about yet. 7894 */ 7895 if (size > sizeof(*attr)) { 7896 unsigned char __user *addr; 7897 unsigned char __user *end; 7898 unsigned char val; 7899 7900 addr = (void __user *)uattr + sizeof(*attr); 7901 end = (void __user *)uattr + size; 7902 7903 for (; addr < end; addr++) { 7904 ret = get_user(val, addr); 7905 if (ret) 7906 return ret; 7907 if (val) 7908 goto err_size; 7909 } 7910 size = sizeof(*attr); 7911 } 7912 7913 ret = copy_from_user(attr, uattr, size); 7914 if (ret) 7915 return -EFAULT; 7916 7917 if (attr->__reserved_1) 7918 return -EINVAL; 7919 7920 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7921 return -EINVAL; 7922 7923 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7924 return -EINVAL; 7925 7926 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7927 u64 mask = attr->branch_sample_type; 7928 7929 /* only using defined bits */ 7930 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7931 return -EINVAL; 7932 7933 /* at least one branch bit must be set */ 7934 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7935 return -EINVAL; 7936 7937 /* propagate priv level, when not set for branch */ 7938 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7939 7940 /* exclude_kernel checked on syscall entry */ 7941 if (!attr->exclude_kernel) 7942 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7943 7944 if (!attr->exclude_user) 7945 mask |= PERF_SAMPLE_BRANCH_USER; 7946 7947 if (!attr->exclude_hv) 7948 mask |= PERF_SAMPLE_BRANCH_HV; 7949 /* 7950 * adjust user setting (for HW filter setup) 7951 */ 7952 attr->branch_sample_type = mask; 7953 } 7954 /* privileged levels capture (kernel, hv): check permissions */ 7955 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7956 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7957 return -EACCES; 7958 } 7959 7960 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7961 ret = perf_reg_validate(attr->sample_regs_user); 7962 if (ret) 7963 return ret; 7964 } 7965 7966 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7967 if (!arch_perf_have_user_stack_dump()) 7968 return -ENOSYS; 7969 7970 /* 7971 * We have __u32 type for the size, but so far 7972 * we can only use __u16 as maximum due to the 7973 * __u16 sample size limit. 7974 */ 7975 if (attr->sample_stack_user >= USHRT_MAX) 7976 ret = -EINVAL; 7977 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7978 ret = -EINVAL; 7979 } 7980 7981 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7982 ret = perf_reg_validate(attr->sample_regs_intr); 7983 out: 7984 return ret; 7985 7986 err_size: 7987 put_user(sizeof(*attr), &uattr->size); 7988 ret = -E2BIG; 7989 goto out; 7990 } 7991 7992 static int 7993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7994 { 7995 struct ring_buffer *rb = NULL; 7996 int ret = -EINVAL; 7997 7998 if (!output_event) 7999 goto set; 8000 8001 /* don't allow circular references */ 8002 if (event == output_event) 8003 goto out; 8004 8005 /* 8006 * Don't allow cross-cpu buffers 8007 */ 8008 if (output_event->cpu != event->cpu) 8009 goto out; 8010 8011 /* 8012 * If its not a per-cpu rb, it must be the same task. 8013 */ 8014 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8015 goto out; 8016 8017 /* 8018 * Mixing clocks in the same buffer is trouble you don't need. 8019 */ 8020 if (output_event->clock != event->clock) 8021 goto out; 8022 8023 /* 8024 * If both events generate aux data, they must be on the same PMU 8025 */ 8026 if (has_aux(event) && has_aux(output_event) && 8027 event->pmu != output_event->pmu) 8028 goto out; 8029 8030 set: 8031 mutex_lock(&event->mmap_mutex); 8032 /* Can't redirect output if we've got an active mmap() */ 8033 if (atomic_read(&event->mmap_count)) 8034 goto unlock; 8035 8036 if (output_event) { 8037 /* get the rb we want to redirect to */ 8038 rb = ring_buffer_get(output_event); 8039 if (!rb) 8040 goto unlock; 8041 } 8042 8043 ring_buffer_attach(event, rb); 8044 8045 ret = 0; 8046 unlock: 8047 mutex_unlock(&event->mmap_mutex); 8048 8049 out: 8050 return ret; 8051 } 8052 8053 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8054 { 8055 if (b < a) 8056 swap(a, b); 8057 8058 mutex_lock(a); 8059 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8060 } 8061 8062 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8063 { 8064 bool nmi_safe = false; 8065 8066 switch (clk_id) { 8067 case CLOCK_MONOTONIC: 8068 event->clock = &ktime_get_mono_fast_ns; 8069 nmi_safe = true; 8070 break; 8071 8072 case CLOCK_MONOTONIC_RAW: 8073 event->clock = &ktime_get_raw_fast_ns; 8074 nmi_safe = true; 8075 break; 8076 8077 case CLOCK_REALTIME: 8078 event->clock = &ktime_get_real_ns; 8079 break; 8080 8081 case CLOCK_BOOTTIME: 8082 event->clock = &ktime_get_boot_ns; 8083 break; 8084 8085 case CLOCK_TAI: 8086 event->clock = &ktime_get_tai_ns; 8087 break; 8088 8089 default: 8090 return -EINVAL; 8091 } 8092 8093 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8094 return -EINVAL; 8095 8096 return 0; 8097 } 8098 8099 /** 8100 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8101 * 8102 * @attr_uptr: event_id type attributes for monitoring/sampling 8103 * @pid: target pid 8104 * @cpu: target cpu 8105 * @group_fd: group leader event fd 8106 */ 8107 SYSCALL_DEFINE5(perf_event_open, 8108 struct perf_event_attr __user *, attr_uptr, 8109 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8110 { 8111 struct perf_event *group_leader = NULL, *output_event = NULL; 8112 struct perf_event *event, *sibling; 8113 struct perf_event_attr attr; 8114 struct perf_event_context *ctx, *uninitialized_var(gctx); 8115 struct file *event_file = NULL; 8116 struct fd group = {NULL, 0}; 8117 struct task_struct *task = NULL; 8118 struct pmu *pmu; 8119 int event_fd; 8120 int move_group = 0; 8121 int err; 8122 int f_flags = O_RDWR; 8123 int cgroup_fd = -1; 8124 8125 /* for future expandability... */ 8126 if (flags & ~PERF_FLAG_ALL) 8127 return -EINVAL; 8128 8129 err = perf_copy_attr(attr_uptr, &attr); 8130 if (err) 8131 return err; 8132 8133 if (!attr.exclude_kernel) { 8134 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8135 return -EACCES; 8136 } 8137 8138 if (attr.freq) { 8139 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8140 return -EINVAL; 8141 } else { 8142 if (attr.sample_period & (1ULL << 63)) 8143 return -EINVAL; 8144 } 8145 8146 /* 8147 * In cgroup mode, the pid argument is used to pass the fd 8148 * opened to the cgroup directory in cgroupfs. The cpu argument 8149 * designates the cpu on which to monitor threads from that 8150 * cgroup. 8151 */ 8152 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8153 return -EINVAL; 8154 8155 if (flags & PERF_FLAG_FD_CLOEXEC) 8156 f_flags |= O_CLOEXEC; 8157 8158 event_fd = get_unused_fd_flags(f_flags); 8159 if (event_fd < 0) 8160 return event_fd; 8161 8162 if (group_fd != -1) { 8163 err = perf_fget_light(group_fd, &group); 8164 if (err) 8165 goto err_fd; 8166 group_leader = group.file->private_data; 8167 if (flags & PERF_FLAG_FD_OUTPUT) 8168 output_event = group_leader; 8169 if (flags & PERF_FLAG_FD_NO_GROUP) 8170 group_leader = NULL; 8171 } 8172 8173 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8174 task = find_lively_task_by_vpid(pid); 8175 if (IS_ERR(task)) { 8176 err = PTR_ERR(task); 8177 goto err_group_fd; 8178 } 8179 } 8180 8181 if (task && group_leader && 8182 group_leader->attr.inherit != attr.inherit) { 8183 err = -EINVAL; 8184 goto err_task; 8185 } 8186 8187 get_online_cpus(); 8188 8189 if (flags & PERF_FLAG_PID_CGROUP) 8190 cgroup_fd = pid; 8191 8192 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8193 NULL, NULL, cgroup_fd); 8194 if (IS_ERR(event)) { 8195 err = PTR_ERR(event); 8196 goto err_cpus; 8197 } 8198 8199 if (is_sampling_event(event)) { 8200 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8201 err = -ENOTSUPP; 8202 goto err_alloc; 8203 } 8204 } 8205 8206 account_event(event); 8207 8208 /* 8209 * Special case software events and allow them to be part of 8210 * any hardware group. 8211 */ 8212 pmu = event->pmu; 8213 8214 if (attr.use_clockid) { 8215 err = perf_event_set_clock(event, attr.clockid); 8216 if (err) 8217 goto err_alloc; 8218 } 8219 8220 if (group_leader && 8221 (is_software_event(event) != is_software_event(group_leader))) { 8222 if (is_software_event(event)) { 8223 /* 8224 * If event and group_leader are not both a software 8225 * event, and event is, then group leader is not. 8226 * 8227 * Allow the addition of software events to !software 8228 * groups, this is safe because software events never 8229 * fail to schedule. 8230 */ 8231 pmu = group_leader->pmu; 8232 } else if (is_software_event(group_leader) && 8233 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8234 /* 8235 * In case the group is a pure software group, and we 8236 * try to add a hardware event, move the whole group to 8237 * the hardware context. 8238 */ 8239 move_group = 1; 8240 } 8241 } 8242 8243 /* 8244 * Get the target context (task or percpu): 8245 */ 8246 ctx = find_get_context(pmu, task, event); 8247 if (IS_ERR(ctx)) { 8248 err = PTR_ERR(ctx); 8249 goto err_alloc; 8250 } 8251 8252 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8253 err = -EBUSY; 8254 goto err_context; 8255 } 8256 8257 if (task) { 8258 put_task_struct(task); 8259 task = NULL; 8260 } 8261 8262 /* 8263 * Look up the group leader (we will attach this event to it): 8264 */ 8265 if (group_leader) { 8266 err = -EINVAL; 8267 8268 /* 8269 * Do not allow a recursive hierarchy (this new sibling 8270 * becoming part of another group-sibling): 8271 */ 8272 if (group_leader->group_leader != group_leader) 8273 goto err_context; 8274 8275 /* All events in a group should have the same clock */ 8276 if (group_leader->clock != event->clock) 8277 goto err_context; 8278 8279 /* 8280 * Do not allow to attach to a group in a different 8281 * task or CPU context: 8282 */ 8283 if (move_group) { 8284 /* 8285 * Make sure we're both on the same task, or both 8286 * per-cpu events. 8287 */ 8288 if (group_leader->ctx->task != ctx->task) 8289 goto err_context; 8290 8291 /* 8292 * Make sure we're both events for the same CPU; 8293 * grouping events for different CPUs is broken; since 8294 * you can never concurrently schedule them anyhow. 8295 */ 8296 if (group_leader->cpu != event->cpu) 8297 goto err_context; 8298 } else { 8299 if (group_leader->ctx != ctx) 8300 goto err_context; 8301 } 8302 8303 /* 8304 * Only a group leader can be exclusive or pinned 8305 */ 8306 if (attr.exclusive || attr.pinned) 8307 goto err_context; 8308 } 8309 8310 if (output_event) { 8311 err = perf_event_set_output(event, output_event); 8312 if (err) 8313 goto err_context; 8314 } 8315 8316 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8317 f_flags); 8318 if (IS_ERR(event_file)) { 8319 err = PTR_ERR(event_file); 8320 goto err_context; 8321 } 8322 8323 if (move_group) { 8324 gctx = group_leader->ctx; 8325 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8326 } else { 8327 mutex_lock(&ctx->mutex); 8328 } 8329 8330 if (!perf_event_validate_size(event)) { 8331 err = -E2BIG; 8332 goto err_locked; 8333 } 8334 8335 /* 8336 * Must be under the same ctx::mutex as perf_install_in_context(), 8337 * because we need to serialize with concurrent event creation. 8338 */ 8339 if (!exclusive_event_installable(event, ctx)) { 8340 /* exclusive and group stuff are assumed mutually exclusive */ 8341 WARN_ON_ONCE(move_group); 8342 8343 err = -EBUSY; 8344 goto err_locked; 8345 } 8346 8347 WARN_ON_ONCE(ctx->parent_ctx); 8348 8349 if (move_group) { 8350 /* 8351 * See perf_event_ctx_lock() for comments on the details 8352 * of swizzling perf_event::ctx. 8353 */ 8354 perf_remove_from_context(group_leader, false); 8355 8356 list_for_each_entry(sibling, &group_leader->sibling_list, 8357 group_entry) { 8358 perf_remove_from_context(sibling, false); 8359 put_ctx(gctx); 8360 } 8361 8362 /* 8363 * Wait for everybody to stop referencing the events through 8364 * the old lists, before installing it on new lists. 8365 */ 8366 synchronize_rcu(); 8367 8368 /* 8369 * Install the group siblings before the group leader. 8370 * 8371 * Because a group leader will try and install the entire group 8372 * (through the sibling list, which is still in-tact), we can 8373 * end up with siblings installed in the wrong context. 8374 * 8375 * By installing siblings first we NO-OP because they're not 8376 * reachable through the group lists. 8377 */ 8378 list_for_each_entry(sibling, &group_leader->sibling_list, 8379 group_entry) { 8380 perf_event__state_init(sibling); 8381 perf_install_in_context(ctx, sibling, sibling->cpu); 8382 get_ctx(ctx); 8383 } 8384 8385 /* 8386 * Removing from the context ends up with disabled 8387 * event. What we want here is event in the initial 8388 * startup state, ready to be add into new context. 8389 */ 8390 perf_event__state_init(group_leader); 8391 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8392 get_ctx(ctx); 8393 8394 /* 8395 * Now that all events are installed in @ctx, nothing 8396 * references @gctx anymore, so drop the last reference we have 8397 * on it. 8398 */ 8399 put_ctx(gctx); 8400 } 8401 8402 /* 8403 * Precalculate sample_data sizes; do while holding ctx::mutex such 8404 * that we're serialized against further additions and before 8405 * perf_install_in_context() which is the point the event is active and 8406 * can use these values. 8407 */ 8408 perf_event__header_size(event); 8409 perf_event__id_header_size(event); 8410 8411 perf_install_in_context(ctx, event, event->cpu); 8412 perf_unpin_context(ctx); 8413 8414 if (move_group) 8415 mutex_unlock(&gctx->mutex); 8416 mutex_unlock(&ctx->mutex); 8417 8418 put_online_cpus(); 8419 8420 event->owner = current; 8421 8422 mutex_lock(¤t->perf_event_mutex); 8423 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8424 mutex_unlock(¤t->perf_event_mutex); 8425 8426 /* 8427 * Drop the reference on the group_event after placing the 8428 * new event on the sibling_list. This ensures destruction 8429 * of the group leader will find the pointer to itself in 8430 * perf_group_detach(). 8431 */ 8432 fdput(group); 8433 fd_install(event_fd, event_file); 8434 return event_fd; 8435 8436 err_locked: 8437 if (move_group) 8438 mutex_unlock(&gctx->mutex); 8439 mutex_unlock(&ctx->mutex); 8440 /* err_file: */ 8441 fput(event_file); 8442 err_context: 8443 perf_unpin_context(ctx); 8444 put_ctx(ctx); 8445 err_alloc: 8446 free_event(event); 8447 err_cpus: 8448 put_online_cpus(); 8449 err_task: 8450 if (task) 8451 put_task_struct(task); 8452 err_group_fd: 8453 fdput(group); 8454 err_fd: 8455 put_unused_fd(event_fd); 8456 return err; 8457 } 8458 8459 /** 8460 * perf_event_create_kernel_counter 8461 * 8462 * @attr: attributes of the counter to create 8463 * @cpu: cpu in which the counter is bound 8464 * @task: task to profile (NULL for percpu) 8465 */ 8466 struct perf_event * 8467 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8468 struct task_struct *task, 8469 perf_overflow_handler_t overflow_handler, 8470 void *context) 8471 { 8472 struct perf_event_context *ctx; 8473 struct perf_event *event; 8474 int err; 8475 8476 /* 8477 * Get the target context (task or percpu): 8478 */ 8479 8480 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8481 overflow_handler, context, -1); 8482 if (IS_ERR(event)) { 8483 err = PTR_ERR(event); 8484 goto err; 8485 } 8486 8487 /* Mark owner so we could distinguish it from user events. */ 8488 event->owner = EVENT_OWNER_KERNEL; 8489 8490 account_event(event); 8491 8492 ctx = find_get_context(event->pmu, task, event); 8493 if (IS_ERR(ctx)) { 8494 err = PTR_ERR(ctx); 8495 goto err_free; 8496 } 8497 8498 WARN_ON_ONCE(ctx->parent_ctx); 8499 mutex_lock(&ctx->mutex); 8500 if (!exclusive_event_installable(event, ctx)) { 8501 mutex_unlock(&ctx->mutex); 8502 perf_unpin_context(ctx); 8503 put_ctx(ctx); 8504 err = -EBUSY; 8505 goto err_free; 8506 } 8507 8508 perf_install_in_context(ctx, event, cpu); 8509 perf_unpin_context(ctx); 8510 mutex_unlock(&ctx->mutex); 8511 8512 return event; 8513 8514 err_free: 8515 free_event(event); 8516 err: 8517 return ERR_PTR(err); 8518 } 8519 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8520 8521 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8522 { 8523 struct perf_event_context *src_ctx; 8524 struct perf_event_context *dst_ctx; 8525 struct perf_event *event, *tmp; 8526 LIST_HEAD(events); 8527 8528 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8529 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8530 8531 /* 8532 * See perf_event_ctx_lock() for comments on the details 8533 * of swizzling perf_event::ctx. 8534 */ 8535 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8536 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8537 event_entry) { 8538 perf_remove_from_context(event, false); 8539 unaccount_event_cpu(event, src_cpu); 8540 put_ctx(src_ctx); 8541 list_add(&event->migrate_entry, &events); 8542 } 8543 8544 /* 8545 * Wait for the events to quiesce before re-instating them. 8546 */ 8547 synchronize_rcu(); 8548 8549 /* 8550 * Re-instate events in 2 passes. 8551 * 8552 * Skip over group leaders and only install siblings on this first 8553 * pass, siblings will not get enabled without a leader, however a 8554 * leader will enable its siblings, even if those are still on the old 8555 * context. 8556 */ 8557 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8558 if (event->group_leader == event) 8559 continue; 8560 8561 list_del(&event->migrate_entry); 8562 if (event->state >= PERF_EVENT_STATE_OFF) 8563 event->state = PERF_EVENT_STATE_INACTIVE; 8564 account_event_cpu(event, dst_cpu); 8565 perf_install_in_context(dst_ctx, event, dst_cpu); 8566 get_ctx(dst_ctx); 8567 } 8568 8569 /* 8570 * Once all the siblings are setup properly, install the group leaders 8571 * to make it go. 8572 */ 8573 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8574 list_del(&event->migrate_entry); 8575 if (event->state >= PERF_EVENT_STATE_OFF) 8576 event->state = PERF_EVENT_STATE_INACTIVE; 8577 account_event_cpu(event, dst_cpu); 8578 perf_install_in_context(dst_ctx, event, dst_cpu); 8579 get_ctx(dst_ctx); 8580 } 8581 mutex_unlock(&dst_ctx->mutex); 8582 mutex_unlock(&src_ctx->mutex); 8583 } 8584 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8585 8586 static void sync_child_event(struct perf_event *child_event, 8587 struct task_struct *child) 8588 { 8589 struct perf_event *parent_event = child_event->parent; 8590 u64 child_val; 8591 8592 if (child_event->attr.inherit_stat) 8593 perf_event_read_event(child_event, child); 8594 8595 child_val = perf_event_count(child_event); 8596 8597 /* 8598 * Add back the child's count to the parent's count: 8599 */ 8600 atomic64_add(child_val, &parent_event->child_count); 8601 atomic64_add(child_event->total_time_enabled, 8602 &parent_event->child_total_time_enabled); 8603 atomic64_add(child_event->total_time_running, 8604 &parent_event->child_total_time_running); 8605 8606 /* 8607 * Remove this event from the parent's list 8608 */ 8609 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8610 mutex_lock(&parent_event->child_mutex); 8611 list_del_init(&child_event->child_list); 8612 mutex_unlock(&parent_event->child_mutex); 8613 8614 /* 8615 * Make sure user/parent get notified, that we just 8616 * lost one event. 8617 */ 8618 perf_event_wakeup(parent_event); 8619 8620 /* 8621 * Release the parent event, if this was the last 8622 * reference to it. 8623 */ 8624 put_event(parent_event); 8625 } 8626 8627 static void 8628 __perf_event_exit_task(struct perf_event *child_event, 8629 struct perf_event_context *child_ctx, 8630 struct task_struct *child) 8631 { 8632 /* 8633 * Do not destroy the 'original' grouping; because of the context 8634 * switch optimization the original events could've ended up in a 8635 * random child task. 8636 * 8637 * If we were to destroy the original group, all group related 8638 * operations would cease to function properly after this random 8639 * child dies. 8640 * 8641 * Do destroy all inherited groups, we don't care about those 8642 * and being thorough is better. 8643 */ 8644 perf_remove_from_context(child_event, !!child_event->parent); 8645 8646 /* 8647 * It can happen that the parent exits first, and has events 8648 * that are still around due to the child reference. These 8649 * events need to be zapped. 8650 */ 8651 if (child_event->parent) { 8652 sync_child_event(child_event, child); 8653 free_event(child_event); 8654 } else { 8655 child_event->state = PERF_EVENT_STATE_EXIT; 8656 perf_event_wakeup(child_event); 8657 } 8658 } 8659 8660 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8661 { 8662 struct perf_event *child_event, *next; 8663 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8664 unsigned long flags; 8665 8666 if (likely(!child->perf_event_ctxp[ctxn])) { 8667 perf_event_task(child, NULL, 0); 8668 return; 8669 } 8670 8671 local_irq_save(flags); 8672 /* 8673 * We can't reschedule here because interrupts are disabled, 8674 * and either child is current or it is a task that can't be 8675 * scheduled, so we are now safe from rescheduling changing 8676 * our context. 8677 */ 8678 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8679 8680 /* 8681 * Take the context lock here so that if find_get_context is 8682 * reading child->perf_event_ctxp, we wait until it has 8683 * incremented the context's refcount before we do put_ctx below. 8684 */ 8685 raw_spin_lock(&child_ctx->lock); 8686 task_ctx_sched_out(child_ctx); 8687 child->perf_event_ctxp[ctxn] = NULL; 8688 8689 /* 8690 * If this context is a clone; unclone it so it can't get 8691 * swapped to another process while we're removing all 8692 * the events from it. 8693 */ 8694 clone_ctx = unclone_ctx(child_ctx); 8695 update_context_time(child_ctx); 8696 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8697 8698 if (clone_ctx) 8699 put_ctx(clone_ctx); 8700 8701 /* 8702 * Report the task dead after unscheduling the events so that we 8703 * won't get any samples after PERF_RECORD_EXIT. We can however still 8704 * get a few PERF_RECORD_READ events. 8705 */ 8706 perf_event_task(child, child_ctx, 0); 8707 8708 /* 8709 * We can recurse on the same lock type through: 8710 * 8711 * __perf_event_exit_task() 8712 * sync_child_event() 8713 * put_event() 8714 * mutex_lock(&ctx->mutex) 8715 * 8716 * But since its the parent context it won't be the same instance. 8717 */ 8718 mutex_lock(&child_ctx->mutex); 8719 8720 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8721 __perf_event_exit_task(child_event, child_ctx, child); 8722 8723 mutex_unlock(&child_ctx->mutex); 8724 8725 put_ctx(child_ctx); 8726 } 8727 8728 /* 8729 * When a child task exits, feed back event values to parent events. 8730 */ 8731 void perf_event_exit_task(struct task_struct *child) 8732 { 8733 struct perf_event *event, *tmp; 8734 int ctxn; 8735 8736 mutex_lock(&child->perf_event_mutex); 8737 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8738 owner_entry) { 8739 list_del_init(&event->owner_entry); 8740 8741 /* 8742 * Ensure the list deletion is visible before we clear 8743 * the owner, closes a race against perf_release() where 8744 * we need to serialize on the owner->perf_event_mutex. 8745 */ 8746 smp_wmb(); 8747 event->owner = NULL; 8748 } 8749 mutex_unlock(&child->perf_event_mutex); 8750 8751 for_each_task_context_nr(ctxn) 8752 perf_event_exit_task_context(child, ctxn); 8753 } 8754 8755 static void perf_free_event(struct perf_event *event, 8756 struct perf_event_context *ctx) 8757 { 8758 struct perf_event *parent = event->parent; 8759 8760 if (WARN_ON_ONCE(!parent)) 8761 return; 8762 8763 mutex_lock(&parent->child_mutex); 8764 list_del_init(&event->child_list); 8765 mutex_unlock(&parent->child_mutex); 8766 8767 put_event(parent); 8768 8769 raw_spin_lock_irq(&ctx->lock); 8770 perf_group_detach(event); 8771 list_del_event(event, ctx); 8772 raw_spin_unlock_irq(&ctx->lock); 8773 free_event(event); 8774 } 8775 8776 /* 8777 * Free an unexposed, unused context as created by inheritance by 8778 * perf_event_init_task below, used by fork() in case of fail. 8779 * 8780 * Not all locks are strictly required, but take them anyway to be nice and 8781 * help out with the lockdep assertions. 8782 */ 8783 void perf_event_free_task(struct task_struct *task) 8784 { 8785 struct perf_event_context *ctx; 8786 struct perf_event *event, *tmp; 8787 int ctxn; 8788 8789 for_each_task_context_nr(ctxn) { 8790 ctx = task->perf_event_ctxp[ctxn]; 8791 if (!ctx) 8792 continue; 8793 8794 mutex_lock(&ctx->mutex); 8795 again: 8796 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8797 group_entry) 8798 perf_free_event(event, ctx); 8799 8800 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8801 group_entry) 8802 perf_free_event(event, ctx); 8803 8804 if (!list_empty(&ctx->pinned_groups) || 8805 !list_empty(&ctx->flexible_groups)) 8806 goto again; 8807 8808 mutex_unlock(&ctx->mutex); 8809 8810 put_ctx(ctx); 8811 } 8812 } 8813 8814 void perf_event_delayed_put(struct task_struct *task) 8815 { 8816 int ctxn; 8817 8818 for_each_task_context_nr(ctxn) 8819 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8820 } 8821 8822 struct perf_event *perf_event_get(unsigned int fd) 8823 { 8824 int err; 8825 struct fd f; 8826 struct perf_event *event; 8827 8828 err = perf_fget_light(fd, &f); 8829 if (err) 8830 return ERR_PTR(err); 8831 8832 event = f.file->private_data; 8833 atomic_long_inc(&event->refcount); 8834 fdput(f); 8835 8836 return event; 8837 } 8838 8839 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 8840 { 8841 if (!event) 8842 return ERR_PTR(-EINVAL); 8843 8844 return &event->attr; 8845 } 8846 8847 /* 8848 * inherit a event from parent task to child task: 8849 */ 8850 static struct perf_event * 8851 inherit_event(struct perf_event *parent_event, 8852 struct task_struct *parent, 8853 struct perf_event_context *parent_ctx, 8854 struct task_struct *child, 8855 struct perf_event *group_leader, 8856 struct perf_event_context *child_ctx) 8857 { 8858 enum perf_event_active_state parent_state = parent_event->state; 8859 struct perf_event *child_event; 8860 unsigned long flags; 8861 8862 /* 8863 * Instead of creating recursive hierarchies of events, 8864 * we link inherited events back to the original parent, 8865 * which has a filp for sure, which we use as the reference 8866 * count: 8867 */ 8868 if (parent_event->parent) 8869 parent_event = parent_event->parent; 8870 8871 child_event = perf_event_alloc(&parent_event->attr, 8872 parent_event->cpu, 8873 child, 8874 group_leader, parent_event, 8875 NULL, NULL, -1); 8876 if (IS_ERR(child_event)) 8877 return child_event; 8878 8879 if (is_orphaned_event(parent_event) || 8880 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8881 free_event(child_event); 8882 return NULL; 8883 } 8884 8885 get_ctx(child_ctx); 8886 8887 /* 8888 * Make the child state follow the state of the parent event, 8889 * not its attr.disabled bit. We hold the parent's mutex, 8890 * so we won't race with perf_event_{en, dis}able_family. 8891 */ 8892 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8893 child_event->state = PERF_EVENT_STATE_INACTIVE; 8894 else 8895 child_event->state = PERF_EVENT_STATE_OFF; 8896 8897 if (parent_event->attr.freq) { 8898 u64 sample_period = parent_event->hw.sample_period; 8899 struct hw_perf_event *hwc = &child_event->hw; 8900 8901 hwc->sample_period = sample_period; 8902 hwc->last_period = sample_period; 8903 8904 local64_set(&hwc->period_left, sample_period); 8905 } 8906 8907 child_event->ctx = child_ctx; 8908 child_event->overflow_handler = parent_event->overflow_handler; 8909 child_event->overflow_handler_context 8910 = parent_event->overflow_handler_context; 8911 8912 /* 8913 * Precalculate sample_data sizes 8914 */ 8915 perf_event__header_size(child_event); 8916 perf_event__id_header_size(child_event); 8917 8918 /* 8919 * Link it up in the child's context: 8920 */ 8921 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8922 add_event_to_ctx(child_event, child_ctx); 8923 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8924 8925 /* 8926 * Link this into the parent event's child list 8927 */ 8928 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8929 mutex_lock(&parent_event->child_mutex); 8930 list_add_tail(&child_event->child_list, &parent_event->child_list); 8931 mutex_unlock(&parent_event->child_mutex); 8932 8933 return child_event; 8934 } 8935 8936 static int inherit_group(struct perf_event *parent_event, 8937 struct task_struct *parent, 8938 struct perf_event_context *parent_ctx, 8939 struct task_struct *child, 8940 struct perf_event_context *child_ctx) 8941 { 8942 struct perf_event *leader; 8943 struct perf_event *sub; 8944 struct perf_event *child_ctr; 8945 8946 leader = inherit_event(parent_event, parent, parent_ctx, 8947 child, NULL, child_ctx); 8948 if (IS_ERR(leader)) 8949 return PTR_ERR(leader); 8950 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8951 child_ctr = inherit_event(sub, parent, parent_ctx, 8952 child, leader, child_ctx); 8953 if (IS_ERR(child_ctr)) 8954 return PTR_ERR(child_ctr); 8955 } 8956 return 0; 8957 } 8958 8959 static int 8960 inherit_task_group(struct perf_event *event, struct task_struct *parent, 8961 struct perf_event_context *parent_ctx, 8962 struct task_struct *child, int ctxn, 8963 int *inherited_all) 8964 { 8965 int ret; 8966 struct perf_event_context *child_ctx; 8967 8968 if (!event->attr.inherit) { 8969 *inherited_all = 0; 8970 return 0; 8971 } 8972 8973 child_ctx = child->perf_event_ctxp[ctxn]; 8974 if (!child_ctx) { 8975 /* 8976 * This is executed from the parent task context, so 8977 * inherit events that have been marked for cloning. 8978 * First allocate and initialize a context for the 8979 * child. 8980 */ 8981 8982 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8983 if (!child_ctx) 8984 return -ENOMEM; 8985 8986 child->perf_event_ctxp[ctxn] = child_ctx; 8987 } 8988 8989 ret = inherit_group(event, parent, parent_ctx, 8990 child, child_ctx); 8991 8992 if (ret) 8993 *inherited_all = 0; 8994 8995 return ret; 8996 } 8997 8998 /* 8999 * Initialize the perf_event context in task_struct 9000 */ 9001 static int perf_event_init_context(struct task_struct *child, int ctxn) 9002 { 9003 struct perf_event_context *child_ctx, *parent_ctx; 9004 struct perf_event_context *cloned_ctx; 9005 struct perf_event *event; 9006 struct task_struct *parent = current; 9007 int inherited_all = 1; 9008 unsigned long flags; 9009 int ret = 0; 9010 9011 if (likely(!parent->perf_event_ctxp[ctxn])) 9012 return 0; 9013 9014 /* 9015 * If the parent's context is a clone, pin it so it won't get 9016 * swapped under us. 9017 */ 9018 parent_ctx = perf_pin_task_context(parent, ctxn); 9019 if (!parent_ctx) 9020 return 0; 9021 9022 /* 9023 * No need to check if parent_ctx != NULL here; since we saw 9024 * it non-NULL earlier, the only reason for it to become NULL 9025 * is if we exit, and since we're currently in the middle of 9026 * a fork we can't be exiting at the same time. 9027 */ 9028 9029 /* 9030 * Lock the parent list. No need to lock the child - not PID 9031 * hashed yet and not running, so nobody can access it. 9032 */ 9033 mutex_lock(&parent_ctx->mutex); 9034 9035 /* 9036 * We dont have to disable NMIs - we are only looking at 9037 * the list, not manipulating it: 9038 */ 9039 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9040 ret = inherit_task_group(event, parent, parent_ctx, 9041 child, ctxn, &inherited_all); 9042 if (ret) 9043 break; 9044 } 9045 9046 /* 9047 * We can't hold ctx->lock when iterating the ->flexible_group list due 9048 * to allocations, but we need to prevent rotation because 9049 * rotate_ctx() will change the list from interrupt context. 9050 */ 9051 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9052 parent_ctx->rotate_disable = 1; 9053 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9054 9055 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9056 ret = inherit_task_group(event, parent, parent_ctx, 9057 child, ctxn, &inherited_all); 9058 if (ret) 9059 break; 9060 } 9061 9062 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9063 parent_ctx->rotate_disable = 0; 9064 9065 child_ctx = child->perf_event_ctxp[ctxn]; 9066 9067 if (child_ctx && inherited_all) { 9068 /* 9069 * Mark the child context as a clone of the parent 9070 * context, or of whatever the parent is a clone of. 9071 * 9072 * Note that if the parent is a clone, the holding of 9073 * parent_ctx->lock avoids it from being uncloned. 9074 */ 9075 cloned_ctx = parent_ctx->parent_ctx; 9076 if (cloned_ctx) { 9077 child_ctx->parent_ctx = cloned_ctx; 9078 child_ctx->parent_gen = parent_ctx->parent_gen; 9079 } else { 9080 child_ctx->parent_ctx = parent_ctx; 9081 child_ctx->parent_gen = parent_ctx->generation; 9082 } 9083 get_ctx(child_ctx->parent_ctx); 9084 } 9085 9086 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9087 mutex_unlock(&parent_ctx->mutex); 9088 9089 perf_unpin_context(parent_ctx); 9090 put_ctx(parent_ctx); 9091 9092 return ret; 9093 } 9094 9095 /* 9096 * Initialize the perf_event context in task_struct 9097 */ 9098 int perf_event_init_task(struct task_struct *child) 9099 { 9100 int ctxn, ret; 9101 9102 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9103 mutex_init(&child->perf_event_mutex); 9104 INIT_LIST_HEAD(&child->perf_event_list); 9105 9106 for_each_task_context_nr(ctxn) { 9107 ret = perf_event_init_context(child, ctxn); 9108 if (ret) { 9109 perf_event_free_task(child); 9110 return ret; 9111 } 9112 } 9113 9114 return 0; 9115 } 9116 9117 static void __init perf_event_init_all_cpus(void) 9118 { 9119 struct swevent_htable *swhash; 9120 int cpu; 9121 9122 for_each_possible_cpu(cpu) { 9123 swhash = &per_cpu(swevent_htable, cpu); 9124 mutex_init(&swhash->hlist_mutex); 9125 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9126 } 9127 } 9128 9129 static void perf_event_init_cpu(int cpu) 9130 { 9131 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9132 9133 mutex_lock(&swhash->hlist_mutex); 9134 swhash->online = true; 9135 if (swhash->hlist_refcount > 0) { 9136 struct swevent_hlist *hlist; 9137 9138 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9139 WARN_ON(!hlist); 9140 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9141 } 9142 mutex_unlock(&swhash->hlist_mutex); 9143 } 9144 9145 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9146 static void __perf_event_exit_context(void *__info) 9147 { 9148 struct remove_event re = { .detach_group = true }; 9149 struct perf_event_context *ctx = __info; 9150 9151 rcu_read_lock(); 9152 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 9153 __perf_remove_from_context(&re); 9154 rcu_read_unlock(); 9155 } 9156 9157 static void perf_event_exit_cpu_context(int cpu) 9158 { 9159 struct perf_event_context *ctx; 9160 struct pmu *pmu; 9161 int idx; 9162 9163 idx = srcu_read_lock(&pmus_srcu); 9164 list_for_each_entry_rcu(pmu, &pmus, entry) { 9165 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9166 9167 mutex_lock(&ctx->mutex); 9168 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9169 mutex_unlock(&ctx->mutex); 9170 } 9171 srcu_read_unlock(&pmus_srcu, idx); 9172 } 9173 9174 static void perf_event_exit_cpu(int cpu) 9175 { 9176 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9177 9178 perf_event_exit_cpu_context(cpu); 9179 9180 mutex_lock(&swhash->hlist_mutex); 9181 swhash->online = false; 9182 swevent_hlist_release(swhash); 9183 mutex_unlock(&swhash->hlist_mutex); 9184 } 9185 #else 9186 static inline void perf_event_exit_cpu(int cpu) { } 9187 #endif 9188 9189 static int 9190 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9191 { 9192 int cpu; 9193 9194 for_each_online_cpu(cpu) 9195 perf_event_exit_cpu(cpu); 9196 9197 return NOTIFY_OK; 9198 } 9199 9200 /* 9201 * Run the perf reboot notifier at the very last possible moment so that 9202 * the generic watchdog code runs as long as possible. 9203 */ 9204 static struct notifier_block perf_reboot_notifier = { 9205 .notifier_call = perf_reboot, 9206 .priority = INT_MIN, 9207 }; 9208 9209 static int 9210 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9211 { 9212 unsigned int cpu = (long)hcpu; 9213 9214 switch (action & ~CPU_TASKS_FROZEN) { 9215 9216 case CPU_UP_PREPARE: 9217 case CPU_DOWN_FAILED: 9218 perf_event_init_cpu(cpu); 9219 break; 9220 9221 case CPU_UP_CANCELED: 9222 case CPU_DOWN_PREPARE: 9223 perf_event_exit_cpu(cpu); 9224 break; 9225 default: 9226 break; 9227 } 9228 9229 return NOTIFY_OK; 9230 } 9231 9232 void __init perf_event_init(void) 9233 { 9234 int ret; 9235 9236 idr_init(&pmu_idr); 9237 9238 perf_event_init_all_cpus(); 9239 init_srcu_struct(&pmus_srcu); 9240 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9241 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9242 perf_pmu_register(&perf_task_clock, NULL, -1); 9243 perf_tp_register(); 9244 perf_cpu_notifier(perf_cpu_notify); 9245 register_reboot_notifier(&perf_reboot_notifier); 9246 9247 ret = init_hw_breakpoint(); 9248 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9249 9250 /* do not patch jump label more than once per second */ 9251 jump_label_rate_limit(&perf_sched_events, HZ); 9252 9253 /* 9254 * Build time assertion that we keep the data_head at the intended 9255 * location. IOW, validation we got the __reserved[] size right. 9256 */ 9257 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9258 != 1024); 9259 } 9260 9261 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9262 char *page) 9263 { 9264 struct perf_pmu_events_attr *pmu_attr = 9265 container_of(attr, struct perf_pmu_events_attr, attr); 9266 9267 if (pmu_attr->event_str) 9268 return sprintf(page, "%s\n", pmu_attr->event_str); 9269 9270 return 0; 9271 } 9272 9273 static int __init perf_event_sysfs_init(void) 9274 { 9275 struct pmu *pmu; 9276 int ret; 9277 9278 mutex_lock(&pmus_lock); 9279 9280 ret = bus_register(&pmu_bus); 9281 if (ret) 9282 goto unlock; 9283 9284 list_for_each_entry(pmu, &pmus, entry) { 9285 if (!pmu->name || pmu->type < 0) 9286 continue; 9287 9288 ret = pmu_dev_alloc(pmu); 9289 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9290 } 9291 pmu_bus_running = 1; 9292 ret = 0; 9293 9294 unlock: 9295 mutex_unlock(&pmus_lock); 9296 9297 return ret; 9298 } 9299 device_initcall(perf_event_sysfs_init); 9300 9301 #ifdef CONFIG_CGROUP_PERF 9302 static struct cgroup_subsys_state * 9303 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9304 { 9305 struct perf_cgroup *jc; 9306 9307 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9308 if (!jc) 9309 return ERR_PTR(-ENOMEM); 9310 9311 jc->info = alloc_percpu(struct perf_cgroup_info); 9312 if (!jc->info) { 9313 kfree(jc); 9314 return ERR_PTR(-ENOMEM); 9315 } 9316 9317 return &jc->css; 9318 } 9319 9320 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9321 { 9322 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9323 9324 free_percpu(jc->info); 9325 kfree(jc); 9326 } 9327 9328 static int __perf_cgroup_move(void *info) 9329 { 9330 struct task_struct *task = info; 9331 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9332 return 0; 9333 } 9334 9335 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9336 struct cgroup_taskset *tset) 9337 { 9338 struct task_struct *task; 9339 9340 cgroup_taskset_for_each(task, tset) 9341 task_function_call(task, __perf_cgroup_move, task); 9342 } 9343 9344 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9345 struct cgroup_subsys_state *old_css, 9346 struct task_struct *task) 9347 { 9348 /* 9349 * cgroup_exit() is called in the copy_process() failure path. 9350 * Ignore this case since the task hasn't ran yet, this avoids 9351 * trying to poke a half freed task state from generic code. 9352 */ 9353 if (!(task->flags & PF_EXITING)) 9354 return; 9355 9356 task_function_call(task, __perf_cgroup_move, task); 9357 } 9358 9359 struct cgroup_subsys perf_event_cgrp_subsys = { 9360 .css_alloc = perf_cgroup_css_alloc, 9361 .css_free = perf_cgroup_css_free, 9362 .exit = perf_cgroup_exit, 9363 .attach = perf_cgroup_attach, 9364 }; 9365 #endif /* CONFIG_CGROUP_PERF */ 9366