xref: /linux/kernel/events/core.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was preemptible -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section is non-preemptible.
1058 	 */
1059 	preempt_disable();
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 			rcu_read_unlock();
1077 			preempt_enable();
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	preempt_enable();
1088 	return ctx;
1089 }
1090 
1091 /*
1092  * Get the context for a task and increment its pin_count so it
1093  * can't get swapped to another task.  This also increments its
1094  * reference count so that the context can't get freed.
1095  */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 	struct perf_event_context *ctx;
1100 	unsigned long flags;
1101 
1102 	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 	if (ctx) {
1104 		++ctx->pin_count;
1105 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 	}
1107 	return ctx;
1108 }
1109 
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&ctx->lock, flags);
1115 	--ctx->pin_count;
1116 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118 
1119 /*
1120  * Update the record of the current time in a context.
1121  */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 	u64 now = perf_clock();
1125 
1126 	ctx->time += now - ctx->timestamp;
1127 	ctx->timestamp = now;
1128 }
1129 
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 	struct perf_event_context *ctx = event->ctx;
1133 
1134 	if (is_cgroup_event(event))
1135 		return perf_cgroup_event_time(event);
1136 
1137 	return ctx ? ctx->time : 0;
1138 }
1139 
1140 /*
1141  * Update the total_time_enabled and total_time_running fields for a event.
1142  * The caller of this function needs to hold the ctx->lock.
1143  */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 	struct perf_event_context *ctx = event->ctx;
1147 	u64 run_end;
1148 
1149 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 		return;
1152 	/*
1153 	 * in cgroup mode, time_enabled represents
1154 	 * the time the event was enabled AND active
1155 	 * tasks were in the monitored cgroup. This is
1156 	 * independent of the activity of the context as
1157 	 * there may be a mix of cgroup and non-cgroup events.
1158 	 *
1159 	 * That is why we treat cgroup events differently
1160 	 * here.
1161 	 */
1162 	if (is_cgroup_event(event))
1163 		run_end = perf_cgroup_event_time(event);
1164 	else if (ctx->is_active)
1165 		run_end = ctx->time;
1166 	else
1167 		run_end = event->tstamp_stopped;
1168 
1169 	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 
1171 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 		run_end = event->tstamp_stopped;
1173 	else
1174 		run_end = perf_event_time(event);
1175 
1176 	event->total_time_running = run_end - event->tstamp_running;
1177 
1178 }
1179 
1180 /*
1181  * Update total_time_enabled and total_time_running for all events in a group.
1182  */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 	struct perf_event *event;
1186 
1187 	update_event_times(leader);
1188 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 		update_event_times(event);
1190 }
1191 
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 	if (event->attr.pinned)
1196 		return &ctx->pinned_groups;
1197 	else
1198 		return &ctx->flexible_groups;
1199 }
1200 
1201 /*
1202  * Add a event from the lists for its context.
1203  * Must be called with ctx->mutex and ctx->lock held.
1204  */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 
1211 	/*
1212 	 * If we're a stand alone event or group leader, we go to the context
1213 	 * list, group events are kept attached to the group so that
1214 	 * perf_group_detach can, at all times, locate all siblings.
1215 	 */
1216 	if (event->group_leader == event) {
1217 		struct list_head *list;
1218 
1219 		if (is_software_event(event))
1220 			event->group_flags |= PERF_GROUP_SOFTWARE;
1221 
1222 		list = ctx_group_list(event, ctx);
1223 		list_add_tail(&event->group_entry, list);
1224 	}
1225 
1226 	if (is_cgroup_event(event))
1227 		ctx->nr_cgroups++;
1228 
1229 	list_add_rcu(&event->event_entry, &ctx->event_list);
1230 	ctx->nr_events++;
1231 	if (event->attr.inherit_stat)
1232 		ctx->nr_stat++;
1233 
1234 	ctx->generation++;
1235 }
1236 
1237 /*
1238  * Initialize event state based on the perf_event_attr::disabled.
1239  */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 					      PERF_EVENT_STATE_INACTIVE;
1244 }
1245 
1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 {
1248 	int entry = sizeof(u64); /* value */
1249 	int size = 0;
1250 	int nr = 1;
1251 
1252 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 		size += sizeof(u64);
1254 
1255 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 		size += sizeof(u64);
1257 
1258 	if (event->attr.read_format & PERF_FORMAT_ID)
1259 		entry += sizeof(u64);
1260 
1261 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 		nr += nr_siblings;
1263 		size += sizeof(u64);
1264 	}
1265 
1266 	size += entry * nr;
1267 	event->read_size = size;
1268 }
1269 
1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 {
1272 	struct perf_sample_data *data;
1273 	u16 size = 0;
1274 
1275 	if (sample_type & PERF_SAMPLE_IP)
1276 		size += sizeof(data->ip);
1277 
1278 	if (sample_type & PERF_SAMPLE_ADDR)
1279 		size += sizeof(data->addr);
1280 
1281 	if (sample_type & PERF_SAMPLE_PERIOD)
1282 		size += sizeof(data->period);
1283 
1284 	if (sample_type & PERF_SAMPLE_WEIGHT)
1285 		size += sizeof(data->weight);
1286 
1287 	if (sample_type & PERF_SAMPLE_READ)
1288 		size += event->read_size;
1289 
1290 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 		size += sizeof(data->data_src.val);
1292 
1293 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 		size += sizeof(data->txn);
1295 
1296 	event->header_size = size;
1297 }
1298 
1299 /*
1300  * Called at perf_event creation and when events are attached/detached from a
1301  * group.
1302  */
1303 static void perf_event__header_size(struct perf_event *event)
1304 {
1305 	__perf_event_read_size(event,
1306 			       event->group_leader->nr_siblings);
1307 	__perf_event_header_size(event, event->attr.sample_type);
1308 }
1309 
1310 static void perf_event__id_header_size(struct perf_event *event)
1311 {
1312 	struct perf_sample_data *data;
1313 	u64 sample_type = event->attr.sample_type;
1314 	u16 size = 0;
1315 
1316 	if (sample_type & PERF_SAMPLE_TID)
1317 		size += sizeof(data->tid_entry);
1318 
1319 	if (sample_type & PERF_SAMPLE_TIME)
1320 		size += sizeof(data->time);
1321 
1322 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 		size += sizeof(data->id);
1324 
1325 	if (sample_type & PERF_SAMPLE_ID)
1326 		size += sizeof(data->id);
1327 
1328 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 		size += sizeof(data->stream_id);
1330 
1331 	if (sample_type & PERF_SAMPLE_CPU)
1332 		size += sizeof(data->cpu_entry);
1333 
1334 	event->id_header_size = size;
1335 }
1336 
1337 static bool perf_event_validate_size(struct perf_event *event)
1338 {
1339 	/*
1340 	 * The values computed here will be over-written when we actually
1341 	 * attach the event.
1342 	 */
1343 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 	perf_event__id_header_size(event);
1346 
1347 	/*
1348 	 * Sum the lot; should not exceed the 64k limit we have on records.
1349 	 * Conservative limit to allow for callchains and other variable fields.
1350 	 */
1351 	if (event->read_size + event->header_size +
1352 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 		return false;
1354 
1355 	return true;
1356 }
1357 
1358 static void perf_group_attach(struct perf_event *event)
1359 {
1360 	struct perf_event *group_leader = event->group_leader, *pos;
1361 
1362 	/*
1363 	 * We can have double attach due to group movement in perf_event_open.
1364 	 */
1365 	if (event->attach_state & PERF_ATTACH_GROUP)
1366 		return;
1367 
1368 	event->attach_state |= PERF_ATTACH_GROUP;
1369 
1370 	if (group_leader == event)
1371 		return;
1372 
1373 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374 
1375 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 			!is_software_event(event))
1377 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378 
1379 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 	group_leader->nr_siblings++;
1381 
1382 	perf_event__header_size(group_leader);
1383 
1384 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 		perf_event__header_size(pos);
1386 }
1387 
1388 /*
1389  * Remove a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 	struct perf_cpu_context *cpuctx;
1396 
1397 	WARN_ON_ONCE(event->ctx != ctx);
1398 	lockdep_assert_held(&ctx->lock);
1399 
1400 	/*
1401 	 * We can have double detach due to exit/hot-unplug + close.
1402 	 */
1403 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404 		return;
1405 
1406 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407 
1408 	if (is_cgroup_event(event)) {
1409 		ctx->nr_cgroups--;
1410 		cpuctx = __get_cpu_context(ctx);
1411 		/*
1412 		 * if there are no more cgroup events
1413 		 * then cler cgrp to avoid stale pointer
1414 		 * in update_cgrp_time_from_cpuctx()
1415 		 */
1416 		if (!ctx->nr_cgroups)
1417 			cpuctx->cgrp = NULL;
1418 	}
1419 
1420 	ctx->nr_events--;
1421 	if (event->attr.inherit_stat)
1422 		ctx->nr_stat--;
1423 
1424 	list_del_rcu(&event->event_entry);
1425 
1426 	if (event->group_leader == event)
1427 		list_del_init(&event->group_entry);
1428 
1429 	update_group_times(event);
1430 
1431 	/*
1432 	 * If event was in error state, then keep it
1433 	 * that way, otherwise bogus counts will be
1434 	 * returned on read(). The only way to get out
1435 	 * of error state is by explicit re-enabling
1436 	 * of the event
1437 	 */
1438 	if (event->state > PERF_EVENT_STATE_OFF)
1439 		event->state = PERF_EVENT_STATE_OFF;
1440 
1441 	ctx->generation++;
1442 }
1443 
1444 static void perf_group_detach(struct perf_event *event)
1445 {
1446 	struct perf_event *sibling, *tmp;
1447 	struct list_head *list = NULL;
1448 
1449 	/*
1450 	 * We can have double detach due to exit/hot-unplug + close.
1451 	 */
1452 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 		return;
1454 
1455 	event->attach_state &= ~PERF_ATTACH_GROUP;
1456 
1457 	/*
1458 	 * If this is a sibling, remove it from its group.
1459 	 */
1460 	if (event->group_leader != event) {
1461 		list_del_init(&event->group_entry);
1462 		event->group_leader->nr_siblings--;
1463 		goto out;
1464 	}
1465 
1466 	if (!list_empty(&event->group_entry))
1467 		list = &event->group_entry;
1468 
1469 	/*
1470 	 * If this was a group event with sibling events then
1471 	 * upgrade the siblings to singleton events by adding them
1472 	 * to whatever list we are on.
1473 	 */
1474 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 		if (list)
1476 			list_move_tail(&sibling->group_entry, list);
1477 		sibling->group_leader = sibling;
1478 
1479 		/* Inherit group flags from the previous leader */
1480 		sibling->group_flags = event->group_flags;
1481 
1482 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 	}
1484 
1485 out:
1486 	perf_event__header_size(event->group_leader);
1487 
1488 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 		perf_event__header_size(tmp);
1490 }
1491 
1492 /*
1493  * User event without the task.
1494  */
1495 static bool is_orphaned_event(struct perf_event *event)
1496 {
1497 	return event && !is_kernel_event(event) && !event->owner;
1498 }
1499 
1500 /*
1501  * Event has a parent but parent's task finished and it's
1502  * alive only because of children holding refference.
1503  */
1504 static bool is_orphaned_child(struct perf_event *event)
1505 {
1506 	return is_orphaned_event(event->parent);
1507 }
1508 
1509 static void orphans_remove_work(struct work_struct *work);
1510 
1511 static void schedule_orphans_remove(struct perf_event_context *ctx)
1512 {
1513 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 		return;
1515 
1516 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 		get_ctx(ctx);
1518 		ctx->orphans_remove_sched = true;
1519 	}
1520 }
1521 
1522 static int __init perf_workqueue_init(void)
1523 {
1524 	perf_wq = create_singlethread_workqueue("perf");
1525 	WARN(!perf_wq, "failed to create perf workqueue\n");
1526 	return perf_wq ? 0 : -1;
1527 }
1528 
1529 core_initcall(perf_workqueue_init);
1530 
1531 static inline int pmu_filter_match(struct perf_event *event)
1532 {
1533 	struct pmu *pmu = event->pmu;
1534 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1535 }
1536 
1537 static inline int
1538 event_filter_match(struct perf_event *event)
1539 {
1540 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1541 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1542 }
1543 
1544 static void
1545 event_sched_out(struct perf_event *event,
1546 		  struct perf_cpu_context *cpuctx,
1547 		  struct perf_event_context *ctx)
1548 {
1549 	u64 tstamp = perf_event_time(event);
1550 	u64 delta;
1551 
1552 	WARN_ON_ONCE(event->ctx != ctx);
1553 	lockdep_assert_held(&ctx->lock);
1554 
1555 	/*
1556 	 * An event which could not be activated because of
1557 	 * filter mismatch still needs to have its timings
1558 	 * maintained, otherwise bogus information is return
1559 	 * via read() for time_enabled, time_running:
1560 	 */
1561 	if (event->state == PERF_EVENT_STATE_INACTIVE
1562 	    && !event_filter_match(event)) {
1563 		delta = tstamp - event->tstamp_stopped;
1564 		event->tstamp_running += delta;
1565 		event->tstamp_stopped = tstamp;
1566 	}
1567 
1568 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1569 		return;
1570 
1571 	perf_pmu_disable(event->pmu);
1572 
1573 	event->state = PERF_EVENT_STATE_INACTIVE;
1574 	if (event->pending_disable) {
1575 		event->pending_disable = 0;
1576 		event->state = PERF_EVENT_STATE_OFF;
1577 	}
1578 	event->tstamp_stopped = tstamp;
1579 	event->pmu->del(event, 0);
1580 	event->oncpu = -1;
1581 
1582 	if (!is_software_event(event))
1583 		cpuctx->active_oncpu--;
1584 	if (!--ctx->nr_active)
1585 		perf_event_ctx_deactivate(ctx);
1586 	if (event->attr.freq && event->attr.sample_freq)
1587 		ctx->nr_freq--;
1588 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1589 		cpuctx->exclusive = 0;
1590 
1591 	if (is_orphaned_child(event))
1592 		schedule_orphans_remove(ctx);
1593 
1594 	perf_pmu_enable(event->pmu);
1595 }
1596 
1597 static void
1598 group_sched_out(struct perf_event *group_event,
1599 		struct perf_cpu_context *cpuctx,
1600 		struct perf_event_context *ctx)
1601 {
1602 	struct perf_event *event;
1603 	int state = group_event->state;
1604 
1605 	event_sched_out(group_event, cpuctx, ctx);
1606 
1607 	/*
1608 	 * Schedule out siblings (if any):
1609 	 */
1610 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 		event_sched_out(event, cpuctx, ctx);
1612 
1613 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 		cpuctx->exclusive = 0;
1615 }
1616 
1617 struct remove_event {
1618 	struct perf_event *event;
1619 	bool detach_group;
1620 };
1621 
1622 /*
1623  * Cross CPU call to remove a performance event
1624  *
1625  * We disable the event on the hardware level first. After that we
1626  * remove it from the context list.
1627  */
1628 static int __perf_remove_from_context(void *info)
1629 {
1630 	struct remove_event *re = info;
1631 	struct perf_event *event = re->event;
1632 	struct perf_event_context *ctx = event->ctx;
1633 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1634 
1635 	raw_spin_lock(&ctx->lock);
1636 	event_sched_out(event, cpuctx, ctx);
1637 	if (re->detach_group)
1638 		perf_group_detach(event);
1639 	list_del_event(event, ctx);
1640 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 		ctx->is_active = 0;
1642 		cpuctx->task_ctx = NULL;
1643 	}
1644 	raw_spin_unlock(&ctx->lock);
1645 
1646 	return 0;
1647 }
1648 
1649 
1650 /*
1651  * Remove the event from a task's (or a CPU's) list of events.
1652  *
1653  * CPU events are removed with a smp call. For task events we only
1654  * call when the task is on a CPU.
1655  *
1656  * If event->ctx is a cloned context, callers must make sure that
1657  * every task struct that event->ctx->task could possibly point to
1658  * remains valid.  This is OK when called from perf_release since
1659  * that only calls us on the top-level context, which can't be a clone.
1660  * When called from perf_event_exit_task, it's OK because the
1661  * context has been detached from its task.
1662  */
1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1664 {
1665 	struct perf_event_context *ctx = event->ctx;
1666 	struct task_struct *task = ctx->task;
1667 	struct remove_event re = {
1668 		.event = event,
1669 		.detach_group = detach_group,
1670 	};
1671 
1672 	lockdep_assert_held(&ctx->mutex);
1673 
1674 	if (!task) {
1675 		/*
1676 		 * Per cpu events are removed via an smp call. The removal can
1677 		 * fail if the CPU is currently offline, but in that case we
1678 		 * already called __perf_remove_from_context from
1679 		 * perf_event_exit_cpu.
1680 		 */
1681 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1682 		return;
1683 	}
1684 
1685 retry:
1686 	if (!task_function_call(task, __perf_remove_from_context, &re))
1687 		return;
1688 
1689 	raw_spin_lock_irq(&ctx->lock);
1690 	/*
1691 	 * If we failed to find a running task, but find the context active now
1692 	 * that we've acquired the ctx->lock, retry.
1693 	 */
1694 	if (ctx->is_active) {
1695 		raw_spin_unlock_irq(&ctx->lock);
1696 		/*
1697 		 * Reload the task pointer, it might have been changed by
1698 		 * a concurrent perf_event_context_sched_out().
1699 		 */
1700 		task = ctx->task;
1701 		goto retry;
1702 	}
1703 
1704 	/*
1705 	 * Since the task isn't running, its safe to remove the event, us
1706 	 * holding the ctx->lock ensures the task won't get scheduled in.
1707 	 */
1708 	if (detach_group)
1709 		perf_group_detach(event);
1710 	list_del_event(event, ctx);
1711 	raw_spin_unlock_irq(&ctx->lock);
1712 }
1713 
1714 /*
1715  * Cross CPU call to disable a performance event
1716  */
1717 int __perf_event_disable(void *info)
1718 {
1719 	struct perf_event *event = info;
1720 	struct perf_event_context *ctx = event->ctx;
1721 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722 
1723 	/*
1724 	 * If this is a per-task event, need to check whether this
1725 	 * event's task is the current task on this cpu.
1726 	 *
1727 	 * Can trigger due to concurrent perf_event_context_sched_out()
1728 	 * flipping contexts around.
1729 	 */
1730 	if (ctx->task && cpuctx->task_ctx != ctx)
1731 		return -EINVAL;
1732 
1733 	raw_spin_lock(&ctx->lock);
1734 
1735 	/*
1736 	 * If the event is on, turn it off.
1737 	 * If it is in error state, leave it in error state.
1738 	 */
1739 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740 		update_context_time(ctx);
1741 		update_cgrp_time_from_event(event);
1742 		update_group_times(event);
1743 		if (event == event->group_leader)
1744 			group_sched_out(event, cpuctx, ctx);
1745 		else
1746 			event_sched_out(event, cpuctx, ctx);
1747 		event->state = PERF_EVENT_STATE_OFF;
1748 	}
1749 
1750 	raw_spin_unlock(&ctx->lock);
1751 
1752 	return 0;
1753 }
1754 
1755 /*
1756  * Disable a event.
1757  *
1758  * If event->ctx is a cloned context, callers must make sure that
1759  * every task struct that event->ctx->task could possibly point to
1760  * remains valid.  This condition is satisifed when called through
1761  * perf_event_for_each_child or perf_event_for_each because they
1762  * hold the top-level event's child_mutex, so any descendant that
1763  * goes to exit will block in sync_child_event.
1764  * When called from perf_pending_event it's OK because event->ctx
1765  * is the current context on this CPU and preemption is disabled,
1766  * hence we can't get into perf_event_task_sched_out for this context.
1767  */
1768 static void _perf_event_disable(struct perf_event *event)
1769 {
1770 	struct perf_event_context *ctx = event->ctx;
1771 	struct task_struct *task = ctx->task;
1772 
1773 	if (!task) {
1774 		/*
1775 		 * Disable the event on the cpu that it's on
1776 		 */
1777 		cpu_function_call(event->cpu, __perf_event_disable, event);
1778 		return;
1779 	}
1780 
1781 retry:
1782 	if (!task_function_call(task, __perf_event_disable, event))
1783 		return;
1784 
1785 	raw_spin_lock_irq(&ctx->lock);
1786 	/*
1787 	 * If the event is still active, we need to retry the cross-call.
1788 	 */
1789 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790 		raw_spin_unlock_irq(&ctx->lock);
1791 		/*
1792 		 * Reload the task pointer, it might have been changed by
1793 		 * a concurrent perf_event_context_sched_out().
1794 		 */
1795 		task = ctx->task;
1796 		goto retry;
1797 	}
1798 
1799 	/*
1800 	 * Since we have the lock this context can't be scheduled
1801 	 * in, so we can change the state safely.
1802 	 */
1803 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 		update_group_times(event);
1805 		event->state = PERF_EVENT_STATE_OFF;
1806 	}
1807 	raw_spin_unlock_irq(&ctx->lock);
1808 }
1809 
1810 /*
1811  * Strictly speaking kernel users cannot create groups and therefore this
1812  * interface does not need the perf_event_ctx_lock() magic.
1813  */
1814 void perf_event_disable(struct perf_event *event)
1815 {
1816 	struct perf_event_context *ctx;
1817 
1818 	ctx = perf_event_ctx_lock(event);
1819 	_perf_event_disable(event);
1820 	perf_event_ctx_unlock(event, ctx);
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_disable);
1823 
1824 static void perf_set_shadow_time(struct perf_event *event,
1825 				 struct perf_event_context *ctx,
1826 				 u64 tstamp)
1827 {
1828 	/*
1829 	 * use the correct time source for the time snapshot
1830 	 *
1831 	 * We could get by without this by leveraging the
1832 	 * fact that to get to this function, the caller
1833 	 * has most likely already called update_context_time()
1834 	 * and update_cgrp_time_xx() and thus both timestamp
1835 	 * are identical (or very close). Given that tstamp is,
1836 	 * already adjusted for cgroup, we could say that:
1837 	 *    tstamp - ctx->timestamp
1838 	 * is equivalent to
1839 	 *    tstamp - cgrp->timestamp.
1840 	 *
1841 	 * Then, in perf_output_read(), the calculation would
1842 	 * work with no changes because:
1843 	 * - event is guaranteed scheduled in
1844 	 * - no scheduled out in between
1845 	 * - thus the timestamp would be the same
1846 	 *
1847 	 * But this is a bit hairy.
1848 	 *
1849 	 * So instead, we have an explicit cgroup call to remain
1850 	 * within the time time source all along. We believe it
1851 	 * is cleaner and simpler to understand.
1852 	 */
1853 	if (is_cgroup_event(event))
1854 		perf_cgroup_set_shadow_time(event, tstamp);
1855 	else
1856 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1857 }
1858 
1859 #define MAX_INTERRUPTS (~0ULL)
1860 
1861 static void perf_log_throttle(struct perf_event *event, int enable);
1862 static void perf_log_itrace_start(struct perf_event *event);
1863 
1864 static int
1865 event_sched_in(struct perf_event *event,
1866 		 struct perf_cpu_context *cpuctx,
1867 		 struct perf_event_context *ctx)
1868 {
1869 	u64 tstamp = perf_event_time(event);
1870 	int ret = 0;
1871 
1872 	lockdep_assert_held(&ctx->lock);
1873 
1874 	if (event->state <= PERF_EVENT_STATE_OFF)
1875 		return 0;
1876 
1877 	event->state = PERF_EVENT_STATE_ACTIVE;
1878 	event->oncpu = smp_processor_id();
1879 
1880 	/*
1881 	 * Unthrottle events, since we scheduled we might have missed several
1882 	 * ticks already, also for a heavily scheduling task there is little
1883 	 * guarantee it'll get a tick in a timely manner.
1884 	 */
1885 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 		perf_log_throttle(event, 1);
1887 		event->hw.interrupts = 0;
1888 	}
1889 
1890 	/*
1891 	 * The new state must be visible before we turn it on in the hardware:
1892 	 */
1893 	smp_wmb();
1894 
1895 	perf_pmu_disable(event->pmu);
1896 
1897 	perf_set_shadow_time(event, ctx, tstamp);
1898 
1899 	perf_log_itrace_start(event);
1900 
1901 	if (event->pmu->add(event, PERF_EF_START)) {
1902 		event->state = PERF_EVENT_STATE_INACTIVE;
1903 		event->oncpu = -1;
1904 		ret = -EAGAIN;
1905 		goto out;
1906 	}
1907 
1908 	event->tstamp_running += tstamp - event->tstamp_stopped;
1909 
1910 	if (!is_software_event(event))
1911 		cpuctx->active_oncpu++;
1912 	if (!ctx->nr_active++)
1913 		perf_event_ctx_activate(ctx);
1914 	if (event->attr.freq && event->attr.sample_freq)
1915 		ctx->nr_freq++;
1916 
1917 	if (event->attr.exclusive)
1918 		cpuctx->exclusive = 1;
1919 
1920 	if (is_orphaned_child(event))
1921 		schedule_orphans_remove(ctx);
1922 
1923 out:
1924 	perf_pmu_enable(event->pmu);
1925 
1926 	return ret;
1927 }
1928 
1929 static int
1930 group_sched_in(struct perf_event *group_event,
1931 	       struct perf_cpu_context *cpuctx,
1932 	       struct perf_event_context *ctx)
1933 {
1934 	struct perf_event *event, *partial_group = NULL;
1935 	struct pmu *pmu = ctx->pmu;
1936 	u64 now = ctx->time;
1937 	bool simulate = false;
1938 
1939 	if (group_event->state == PERF_EVENT_STATE_OFF)
1940 		return 0;
1941 
1942 	pmu->start_txn(pmu);
1943 
1944 	if (event_sched_in(group_event, cpuctx, ctx)) {
1945 		pmu->cancel_txn(pmu);
1946 		perf_mux_hrtimer_restart(cpuctx);
1947 		return -EAGAIN;
1948 	}
1949 
1950 	/*
1951 	 * Schedule in siblings as one group (if any):
1952 	 */
1953 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 		if (event_sched_in(event, cpuctx, ctx)) {
1955 			partial_group = event;
1956 			goto group_error;
1957 		}
1958 	}
1959 
1960 	if (!pmu->commit_txn(pmu))
1961 		return 0;
1962 
1963 group_error:
1964 	/*
1965 	 * Groups can be scheduled in as one unit only, so undo any
1966 	 * partial group before returning:
1967 	 * The events up to the failed event are scheduled out normally,
1968 	 * tstamp_stopped will be updated.
1969 	 *
1970 	 * The failed events and the remaining siblings need to have
1971 	 * their timings updated as if they had gone thru event_sched_in()
1972 	 * and event_sched_out(). This is required to get consistent timings
1973 	 * across the group. This also takes care of the case where the group
1974 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 	 * the time the event was actually stopped, such that time delta
1976 	 * calculation in update_event_times() is correct.
1977 	 */
1978 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 		if (event == partial_group)
1980 			simulate = true;
1981 
1982 		if (simulate) {
1983 			event->tstamp_running += now - event->tstamp_stopped;
1984 			event->tstamp_stopped = now;
1985 		} else {
1986 			event_sched_out(event, cpuctx, ctx);
1987 		}
1988 	}
1989 	event_sched_out(group_event, cpuctx, ctx);
1990 
1991 	pmu->cancel_txn(pmu);
1992 
1993 	perf_mux_hrtimer_restart(cpuctx);
1994 
1995 	return -EAGAIN;
1996 }
1997 
1998 /*
1999  * Work out whether we can put this event group on the CPU now.
2000  */
2001 static int group_can_go_on(struct perf_event *event,
2002 			   struct perf_cpu_context *cpuctx,
2003 			   int can_add_hw)
2004 {
2005 	/*
2006 	 * Groups consisting entirely of software events can always go on.
2007 	 */
2008 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 		return 1;
2010 	/*
2011 	 * If an exclusive group is already on, no other hardware
2012 	 * events can go on.
2013 	 */
2014 	if (cpuctx->exclusive)
2015 		return 0;
2016 	/*
2017 	 * If this group is exclusive and there are already
2018 	 * events on the CPU, it can't go on.
2019 	 */
2020 	if (event->attr.exclusive && cpuctx->active_oncpu)
2021 		return 0;
2022 	/*
2023 	 * Otherwise, try to add it if all previous groups were able
2024 	 * to go on.
2025 	 */
2026 	return can_add_hw;
2027 }
2028 
2029 static void add_event_to_ctx(struct perf_event *event,
2030 			       struct perf_event_context *ctx)
2031 {
2032 	u64 tstamp = perf_event_time(event);
2033 
2034 	list_add_event(event, ctx);
2035 	perf_group_attach(event);
2036 	event->tstamp_enabled = tstamp;
2037 	event->tstamp_running = tstamp;
2038 	event->tstamp_stopped = tstamp;
2039 }
2040 
2041 static void task_ctx_sched_out(struct perf_event_context *ctx);
2042 static void
2043 ctx_sched_in(struct perf_event_context *ctx,
2044 	     struct perf_cpu_context *cpuctx,
2045 	     enum event_type_t event_type,
2046 	     struct task_struct *task);
2047 
2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 				struct perf_event_context *ctx,
2050 				struct task_struct *task)
2051 {
2052 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 	if (ctx)
2054 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 	if (ctx)
2057 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058 }
2059 
2060 /*
2061  * Cross CPU call to install and enable a performance event
2062  *
2063  * Must be called with ctx->mutex held
2064  */
2065 static int  __perf_install_in_context(void *info)
2066 {
2067 	struct perf_event *event = info;
2068 	struct perf_event_context *ctx = event->ctx;
2069 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 	struct task_struct *task = current;
2072 
2073 	perf_ctx_lock(cpuctx, task_ctx);
2074 	perf_pmu_disable(cpuctx->ctx.pmu);
2075 
2076 	/*
2077 	 * If there was an active task_ctx schedule it out.
2078 	 */
2079 	if (task_ctx)
2080 		task_ctx_sched_out(task_ctx);
2081 
2082 	/*
2083 	 * If the context we're installing events in is not the
2084 	 * active task_ctx, flip them.
2085 	 */
2086 	if (ctx->task && task_ctx != ctx) {
2087 		if (task_ctx)
2088 			raw_spin_unlock(&task_ctx->lock);
2089 		raw_spin_lock(&ctx->lock);
2090 		task_ctx = ctx;
2091 	}
2092 
2093 	if (task_ctx) {
2094 		cpuctx->task_ctx = task_ctx;
2095 		task = task_ctx->task;
2096 	}
2097 
2098 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2099 
2100 	update_context_time(ctx);
2101 	/*
2102 	 * update cgrp time only if current cgrp
2103 	 * matches event->cgrp. Must be done before
2104 	 * calling add_event_to_ctx()
2105 	 */
2106 	update_cgrp_time_from_event(event);
2107 
2108 	add_event_to_ctx(event, ctx);
2109 
2110 	/*
2111 	 * Schedule everything back in
2112 	 */
2113 	perf_event_sched_in(cpuctx, task_ctx, task);
2114 
2115 	perf_pmu_enable(cpuctx->ctx.pmu);
2116 	perf_ctx_unlock(cpuctx, task_ctx);
2117 
2118 	return 0;
2119 }
2120 
2121 /*
2122  * Attach a performance event to a context
2123  *
2124  * First we add the event to the list with the hardware enable bit
2125  * in event->hw_config cleared.
2126  *
2127  * If the event is attached to a task which is on a CPU we use a smp
2128  * call to enable it in the task context. The task might have been
2129  * scheduled away, but we check this in the smp call again.
2130  */
2131 static void
2132 perf_install_in_context(struct perf_event_context *ctx,
2133 			struct perf_event *event,
2134 			int cpu)
2135 {
2136 	struct task_struct *task = ctx->task;
2137 
2138 	lockdep_assert_held(&ctx->mutex);
2139 
2140 	event->ctx = ctx;
2141 	if (event->cpu != -1)
2142 		event->cpu = cpu;
2143 
2144 	if (!task) {
2145 		/*
2146 		 * Per cpu events are installed via an smp call and
2147 		 * the install is always successful.
2148 		 */
2149 		cpu_function_call(cpu, __perf_install_in_context, event);
2150 		return;
2151 	}
2152 
2153 retry:
2154 	if (!task_function_call(task, __perf_install_in_context, event))
2155 		return;
2156 
2157 	raw_spin_lock_irq(&ctx->lock);
2158 	/*
2159 	 * If we failed to find a running task, but find the context active now
2160 	 * that we've acquired the ctx->lock, retry.
2161 	 */
2162 	if (ctx->is_active) {
2163 		raw_spin_unlock_irq(&ctx->lock);
2164 		/*
2165 		 * Reload the task pointer, it might have been changed by
2166 		 * a concurrent perf_event_context_sched_out().
2167 		 */
2168 		task = ctx->task;
2169 		goto retry;
2170 	}
2171 
2172 	/*
2173 	 * Since the task isn't running, its safe to add the event, us holding
2174 	 * the ctx->lock ensures the task won't get scheduled in.
2175 	 */
2176 	add_event_to_ctx(event, ctx);
2177 	raw_spin_unlock_irq(&ctx->lock);
2178 }
2179 
2180 /*
2181  * Put a event into inactive state and update time fields.
2182  * Enabling the leader of a group effectively enables all
2183  * the group members that aren't explicitly disabled, so we
2184  * have to update their ->tstamp_enabled also.
2185  * Note: this works for group members as well as group leaders
2186  * since the non-leader members' sibling_lists will be empty.
2187  */
2188 static void __perf_event_mark_enabled(struct perf_event *event)
2189 {
2190 	struct perf_event *sub;
2191 	u64 tstamp = perf_event_time(event);
2192 
2193 	event->state = PERF_EVENT_STATE_INACTIVE;
2194 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2195 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2198 	}
2199 }
2200 
2201 /*
2202  * Cross CPU call to enable a performance event
2203  */
2204 static int __perf_event_enable(void *info)
2205 {
2206 	struct perf_event *event = info;
2207 	struct perf_event_context *ctx = event->ctx;
2208 	struct perf_event *leader = event->group_leader;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 	int err;
2211 
2212 	/*
2213 	 * There's a time window between 'ctx->is_active' check
2214 	 * in perf_event_enable function and this place having:
2215 	 *   - IRQs on
2216 	 *   - ctx->lock unlocked
2217 	 *
2218 	 * where the task could be killed and 'ctx' deactivated
2219 	 * by perf_event_exit_task.
2220 	 */
2221 	if (!ctx->is_active)
2222 		return -EINVAL;
2223 
2224 	raw_spin_lock(&ctx->lock);
2225 	update_context_time(ctx);
2226 
2227 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228 		goto unlock;
2229 
2230 	/*
2231 	 * set current task's cgroup time reference point
2232 	 */
2233 	perf_cgroup_set_timestamp(current, ctx);
2234 
2235 	__perf_event_mark_enabled(event);
2236 
2237 	if (!event_filter_match(event)) {
2238 		if (is_cgroup_event(event))
2239 			perf_cgroup_defer_enabled(event);
2240 		goto unlock;
2241 	}
2242 
2243 	/*
2244 	 * If the event is in a group and isn't the group leader,
2245 	 * then don't put it on unless the group is on.
2246 	 */
2247 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248 		goto unlock;
2249 
2250 	if (!group_can_go_on(event, cpuctx, 1)) {
2251 		err = -EEXIST;
2252 	} else {
2253 		if (event == leader)
2254 			err = group_sched_in(event, cpuctx, ctx);
2255 		else
2256 			err = event_sched_in(event, cpuctx, ctx);
2257 	}
2258 
2259 	if (err) {
2260 		/*
2261 		 * If this event can't go on and it's part of a
2262 		 * group, then the whole group has to come off.
2263 		 */
2264 		if (leader != event) {
2265 			group_sched_out(leader, cpuctx, ctx);
2266 			perf_mux_hrtimer_restart(cpuctx);
2267 		}
2268 		if (leader->attr.pinned) {
2269 			update_group_times(leader);
2270 			leader->state = PERF_EVENT_STATE_ERROR;
2271 		}
2272 	}
2273 
2274 unlock:
2275 	raw_spin_unlock(&ctx->lock);
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * Enable a event.
2282  *
2283  * If event->ctx is a cloned context, callers must make sure that
2284  * every task struct that event->ctx->task could possibly point to
2285  * remains valid.  This condition is satisfied when called through
2286  * perf_event_for_each_child or perf_event_for_each as described
2287  * for perf_event_disable.
2288  */
2289 static void _perf_event_enable(struct perf_event *event)
2290 {
2291 	struct perf_event_context *ctx = event->ctx;
2292 	struct task_struct *task = ctx->task;
2293 
2294 	if (!task) {
2295 		/*
2296 		 * Enable the event on the cpu that it's on
2297 		 */
2298 		cpu_function_call(event->cpu, __perf_event_enable, event);
2299 		return;
2300 	}
2301 
2302 	raw_spin_lock_irq(&ctx->lock);
2303 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 		goto out;
2305 
2306 	/*
2307 	 * If the event is in error state, clear that first.
2308 	 * That way, if we see the event in error state below, we
2309 	 * know that it has gone back into error state, as distinct
2310 	 * from the task having been scheduled away before the
2311 	 * cross-call arrived.
2312 	 */
2313 	if (event->state == PERF_EVENT_STATE_ERROR)
2314 		event->state = PERF_EVENT_STATE_OFF;
2315 
2316 retry:
2317 	if (!ctx->is_active) {
2318 		__perf_event_mark_enabled(event);
2319 		goto out;
2320 	}
2321 
2322 	raw_spin_unlock_irq(&ctx->lock);
2323 
2324 	if (!task_function_call(task, __perf_event_enable, event))
2325 		return;
2326 
2327 	raw_spin_lock_irq(&ctx->lock);
2328 
2329 	/*
2330 	 * If the context is active and the event is still off,
2331 	 * we need to retry the cross-call.
2332 	 */
2333 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 		/*
2335 		 * task could have been flipped by a concurrent
2336 		 * perf_event_context_sched_out()
2337 		 */
2338 		task = ctx->task;
2339 		goto retry;
2340 	}
2341 
2342 out:
2343 	raw_spin_unlock_irq(&ctx->lock);
2344 }
2345 
2346 /*
2347  * See perf_event_disable();
2348  */
2349 void perf_event_enable(struct perf_event *event)
2350 {
2351 	struct perf_event_context *ctx;
2352 
2353 	ctx = perf_event_ctx_lock(event);
2354 	_perf_event_enable(event);
2355 	perf_event_ctx_unlock(event, ctx);
2356 }
2357 EXPORT_SYMBOL_GPL(perf_event_enable);
2358 
2359 static int _perf_event_refresh(struct perf_event *event, int refresh)
2360 {
2361 	/*
2362 	 * not supported on inherited events
2363 	 */
2364 	if (event->attr.inherit || !is_sampling_event(event))
2365 		return -EINVAL;
2366 
2367 	atomic_add(refresh, &event->event_limit);
2368 	_perf_event_enable(event);
2369 
2370 	return 0;
2371 }
2372 
2373 /*
2374  * See perf_event_disable()
2375  */
2376 int perf_event_refresh(struct perf_event *event, int refresh)
2377 {
2378 	struct perf_event_context *ctx;
2379 	int ret;
2380 
2381 	ctx = perf_event_ctx_lock(event);
2382 	ret = _perf_event_refresh(event, refresh);
2383 	perf_event_ctx_unlock(event, ctx);
2384 
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(perf_event_refresh);
2388 
2389 static void ctx_sched_out(struct perf_event_context *ctx,
2390 			  struct perf_cpu_context *cpuctx,
2391 			  enum event_type_t event_type)
2392 {
2393 	struct perf_event *event;
2394 	int is_active = ctx->is_active;
2395 
2396 	ctx->is_active &= ~event_type;
2397 	if (likely(!ctx->nr_events))
2398 		return;
2399 
2400 	update_context_time(ctx);
2401 	update_cgrp_time_from_cpuctx(cpuctx);
2402 	if (!ctx->nr_active)
2403 		return;
2404 
2405 	perf_pmu_disable(ctx->pmu);
2406 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 			group_sched_out(event, cpuctx, ctx);
2409 	}
2410 
2411 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413 			group_sched_out(event, cpuctx, ctx);
2414 	}
2415 	perf_pmu_enable(ctx->pmu);
2416 }
2417 
2418 /*
2419  * Test whether two contexts are equivalent, i.e. whether they have both been
2420  * cloned from the same version of the same context.
2421  *
2422  * Equivalence is measured using a generation number in the context that is
2423  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424  * and list_del_event().
2425  */
2426 static int context_equiv(struct perf_event_context *ctx1,
2427 			 struct perf_event_context *ctx2)
2428 {
2429 	lockdep_assert_held(&ctx1->lock);
2430 	lockdep_assert_held(&ctx2->lock);
2431 
2432 	/* Pinning disables the swap optimization */
2433 	if (ctx1->pin_count || ctx2->pin_count)
2434 		return 0;
2435 
2436 	/* If ctx1 is the parent of ctx2 */
2437 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 		return 1;
2439 
2440 	/* If ctx2 is the parent of ctx1 */
2441 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 		return 1;
2443 
2444 	/*
2445 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 	 * hierarchy, see perf_event_init_context().
2447 	 */
2448 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 			ctx1->parent_gen == ctx2->parent_gen)
2450 		return 1;
2451 
2452 	/* Unmatched */
2453 	return 0;
2454 }
2455 
2456 static void __perf_event_sync_stat(struct perf_event *event,
2457 				     struct perf_event *next_event)
2458 {
2459 	u64 value;
2460 
2461 	if (!event->attr.inherit_stat)
2462 		return;
2463 
2464 	/*
2465 	 * Update the event value, we cannot use perf_event_read()
2466 	 * because we're in the middle of a context switch and have IRQs
2467 	 * disabled, which upsets smp_call_function_single(), however
2468 	 * we know the event must be on the current CPU, therefore we
2469 	 * don't need to use it.
2470 	 */
2471 	switch (event->state) {
2472 	case PERF_EVENT_STATE_ACTIVE:
2473 		event->pmu->read(event);
2474 		/* fall-through */
2475 
2476 	case PERF_EVENT_STATE_INACTIVE:
2477 		update_event_times(event);
2478 		break;
2479 
2480 	default:
2481 		break;
2482 	}
2483 
2484 	/*
2485 	 * In order to keep per-task stats reliable we need to flip the event
2486 	 * values when we flip the contexts.
2487 	 */
2488 	value = local64_read(&next_event->count);
2489 	value = local64_xchg(&event->count, value);
2490 	local64_set(&next_event->count, value);
2491 
2492 	swap(event->total_time_enabled, next_event->total_time_enabled);
2493 	swap(event->total_time_running, next_event->total_time_running);
2494 
2495 	/*
2496 	 * Since we swizzled the values, update the user visible data too.
2497 	 */
2498 	perf_event_update_userpage(event);
2499 	perf_event_update_userpage(next_event);
2500 }
2501 
2502 static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 				   struct perf_event_context *next_ctx)
2504 {
2505 	struct perf_event *event, *next_event;
2506 
2507 	if (!ctx->nr_stat)
2508 		return;
2509 
2510 	update_context_time(ctx);
2511 
2512 	event = list_first_entry(&ctx->event_list,
2513 				   struct perf_event, event_entry);
2514 
2515 	next_event = list_first_entry(&next_ctx->event_list,
2516 					struct perf_event, event_entry);
2517 
2518 	while (&event->event_entry != &ctx->event_list &&
2519 	       &next_event->event_entry != &next_ctx->event_list) {
2520 
2521 		__perf_event_sync_stat(event, next_event);
2522 
2523 		event = list_next_entry(event, event_entry);
2524 		next_event = list_next_entry(next_event, event_entry);
2525 	}
2526 }
2527 
2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 					 struct task_struct *next)
2530 {
2531 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532 	struct perf_event_context *next_ctx;
2533 	struct perf_event_context *parent, *next_parent;
2534 	struct perf_cpu_context *cpuctx;
2535 	int do_switch = 1;
2536 
2537 	if (likely(!ctx))
2538 		return;
2539 
2540 	cpuctx = __get_cpu_context(ctx);
2541 	if (!cpuctx->task_ctx)
2542 		return;
2543 
2544 	rcu_read_lock();
2545 	next_ctx = next->perf_event_ctxp[ctxn];
2546 	if (!next_ctx)
2547 		goto unlock;
2548 
2549 	parent = rcu_dereference(ctx->parent_ctx);
2550 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2551 
2552 	/* If neither context have a parent context; they cannot be clones. */
2553 	if (!parent && !next_parent)
2554 		goto unlock;
2555 
2556 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 		/*
2558 		 * Looks like the two contexts are clones, so we might be
2559 		 * able to optimize the context switch.  We lock both
2560 		 * contexts and check that they are clones under the
2561 		 * lock (including re-checking that neither has been
2562 		 * uncloned in the meantime).  It doesn't matter which
2563 		 * order we take the locks because no other cpu could
2564 		 * be trying to lock both of these tasks.
2565 		 */
2566 		raw_spin_lock(&ctx->lock);
2567 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568 		if (context_equiv(ctx, next_ctx)) {
2569 			/*
2570 			 * XXX do we need a memory barrier of sorts
2571 			 * wrt to rcu_dereference() of perf_event_ctxp
2572 			 */
2573 			task->perf_event_ctxp[ctxn] = next_ctx;
2574 			next->perf_event_ctxp[ctxn] = ctx;
2575 			ctx->task = next;
2576 			next_ctx->task = task;
2577 
2578 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579 
2580 			do_switch = 0;
2581 
2582 			perf_event_sync_stat(ctx, next_ctx);
2583 		}
2584 		raw_spin_unlock(&next_ctx->lock);
2585 		raw_spin_unlock(&ctx->lock);
2586 	}
2587 unlock:
2588 	rcu_read_unlock();
2589 
2590 	if (do_switch) {
2591 		raw_spin_lock(&ctx->lock);
2592 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593 		cpuctx->task_ctx = NULL;
2594 		raw_spin_unlock(&ctx->lock);
2595 	}
2596 }
2597 
2598 void perf_sched_cb_dec(struct pmu *pmu)
2599 {
2600 	this_cpu_dec(perf_sched_cb_usages);
2601 }
2602 
2603 void perf_sched_cb_inc(struct pmu *pmu)
2604 {
2605 	this_cpu_inc(perf_sched_cb_usages);
2606 }
2607 
2608 /*
2609  * This function provides the context switch callback to the lower code
2610  * layer. It is invoked ONLY when the context switch callback is enabled.
2611  */
2612 static void perf_pmu_sched_task(struct task_struct *prev,
2613 				struct task_struct *next,
2614 				bool sched_in)
2615 {
2616 	struct perf_cpu_context *cpuctx;
2617 	struct pmu *pmu;
2618 	unsigned long flags;
2619 
2620 	if (prev == next)
2621 		return;
2622 
2623 	local_irq_save(flags);
2624 
2625 	rcu_read_lock();
2626 
2627 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 		if (pmu->sched_task) {
2629 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630 
2631 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632 
2633 			perf_pmu_disable(pmu);
2634 
2635 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2636 
2637 			perf_pmu_enable(pmu);
2638 
2639 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 		}
2641 	}
2642 
2643 	rcu_read_unlock();
2644 
2645 	local_irq_restore(flags);
2646 }
2647 
2648 static void perf_event_switch(struct task_struct *task,
2649 			      struct task_struct *next_prev, bool sched_in);
2650 
2651 #define for_each_task_context_nr(ctxn)					\
2652 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653 
2654 /*
2655  * Called from scheduler to remove the events of the current task,
2656  * with interrupts disabled.
2657  *
2658  * We stop each event and update the event value in event->count.
2659  *
2660  * This does not protect us against NMI, but disable()
2661  * sets the disabled bit in the control field of event _before_
2662  * accessing the event control register. If a NMI hits, then it will
2663  * not restart the event.
2664  */
2665 void __perf_event_task_sched_out(struct task_struct *task,
2666 				 struct task_struct *next)
2667 {
2668 	int ctxn;
2669 
2670 	if (__this_cpu_read(perf_sched_cb_usages))
2671 		perf_pmu_sched_task(task, next, false);
2672 
2673 	if (atomic_read(&nr_switch_events))
2674 		perf_event_switch(task, next, false);
2675 
2676 	for_each_task_context_nr(ctxn)
2677 		perf_event_context_sched_out(task, ctxn, next);
2678 
2679 	/*
2680 	 * if cgroup events exist on this CPU, then we need
2681 	 * to check if we have to switch out PMU state.
2682 	 * cgroup event are system-wide mode only
2683 	 */
2684 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685 		perf_cgroup_sched_out(task, next);
2686 }
2687 
2688 static void task_ctx_sched_out(struct perf_event_context *ctx)
2689 {
2690 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691 
2692 	if (!cpuctx->task_ctx)
2693 		return;
2694 
2695 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 		return;
2697 
2698 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 	cpuctx->task_ctx = NULL;
2700 }
2701 
2702 /*
2703  * Called with IRQs disabled
2704  */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 			      enum event_type_t event_type)
2707 {
2708 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710 
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 		    struct perf_cpu_context *cpuctx)
2714 {
2715 	struct perf_event *event;
2716 
2717 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		if (!event_filter_match(event))
2721 			continue;
2722 
2723 		/* may need to reset tstamp_enabled */
2724 		if (is_cgroup_event(event))
2725 			perf_cgroup_mark_enabled(event, ctx);
2726 
2727 		if (group_can_go_on(event, cpuctx, 1))
2728 			group_sched_in(event, cpuctx, ctx);
2729 
2730 		/*
2731 		 * If this pinned group hasn't been scheduled,
2732 		 * put it in error state.
2733 		 */
2734 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 			update_group_times(event);
2736 			event->state = PERF_EVENT_STATE_ERROR;
2737 		}
2738 	}
2739 }
2740 
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 		      struct perf_cpu_context *cpuctx)
2744 {
2745 	struct perf_event *event;
2746 	int can_add_hw = 1;
2747 
2748 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 		/* Ignore events in OFF or ERROR state */
2750 		if (event->state <= PERF_EVENT_STATE_OFF)
2751 			continue;
2752 		/*
2753 		 * Listen to the 'cpu' scheduling filter constraint
2754 		 * of events:
2755 		 */
2756 		if (!event_filter_match(event))
2757 			continue;
2758 
2759 		/* may need to reset tstamp_enabled */
2760 		if (is_cgroup_event(event))
2761 			perf_cgroup_mark_enabled(event, ctx);
2762 
2763 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 			if (group_sched_in(event, cpuctx, ctx))
2765 				can_add_hw = 0;
2766 		}
2767 	}
2768 }
2769 
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 	     struct perf_cpu_context *cpuctx,
2773 	     enum event_type_t event_type,
2774 	     struct task_struct *task)
2775 {
2776 	u64 now;
2777 	int is_active = ctx->is_active;
2778 
2779 	ctx->is_active |= event_type;
2780 	if (likely(!ctx->nr_events))
2781 		return;
2782 
2783 	now = perf_clock();
2784 	ctx->timestamp = now;
2785 	perf_cgroup_set_timestamp(task, ctx);
2786 	/*
2787 	 * First go through the list and put on any pinned groups
2788 	 * in order to give them the best chance of going on.
2789 	 */
2790 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791 		ctx_pinned_sched_in(ctx, cpuctx);
2792 
2793 	/* Then walk through the lower prio flexible groups */
2794 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795 		ctx_flexible_sched_in(ctx, cpuctx);
2796 }
2797 
2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2799 			     enum event_type_t event_type,
2800 			     struct task_struct *task)
2801 {
2802 	struct perf_event_context *ctx = &cpuctx->ctx;
2803 
2804 	ctx_sched_in(ctx, cpuctx, event_type, task);
2805 }
2806 
2807 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 					struct task_struct *task)
2809 {
2810 	struct perf_cpu_context *cpuctx;
2811 
2812 	cpuctx = __get_cpu_context(ctx);
2813 	if (cpuctx->task_ctx == ctx)
2814 		return;
2815 
2816 	perf_ctx_lock(cpuctx, ctx);
2817 	perf_pmu_disable(ctx->pmu);
2818 	/*
2819 	 * We want to keep the following priority order:
2820 	 * cpu pinned (that don't need to move), task pinned,
2821 	 * cpu flexible, task flexible.
2822 	 */
2823 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824 
2825 	if (ctx->nr_events)
2826 		cpuctx->task_ctx = ctx;
2827 
2828 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829 
2830 	perf_pmu_enable(ctx->pmu);
2831 	perf_ctx_unlock(cpuctx, ctx);
2832 }
2833 
2834 /*
2835  * Called from scheduler to add the events of the current task
2836  * with interrupts disabled.
2837  *
2838  * We restore the event value and then enable it.
2839  *
2840  * This does not protect us against NMI, but enable()
2841  * sets the enabled bit in the control field of event _before_
2842  * accessing the event control register. If a NMI hits, then it will
2843  * keep the event running.
2844  */
2845 void __perf_event_task_sched_in(struct task_struct *prev,
2846 				struct task_struct *task)
2847 {
2848 	struct perf_event_context *ctx;
2849 	int ctxn;
2850 
2851 	for_each_task_context_nr(ctxn) {
2852 		ctx = task->perf_event_ctxp[ctxn];
2853 		if (likely(!ctx))
2854 			continue;
2855 
2856 		perf_event_context_sched_in(ctx, task);
2857 	}
2858 	/*
2859 	 * if cgroup events exist on this CPU, then we need
2860 	 * to check if we have to switch in PMU state.
2861 	 * cgroup event are system-wide mode only
2862 	 */
2863 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864 		perf_cgroup_sched_in(prev, task);
2865 
2866 	if (atomic_read(&nr_switch_events))
2867 		perf_event_switch(task, prev, true);
2868 
2869 	if (__this_cpu_read(perf_sched_cb_usages))
2870 		perf_pmu_sched_task(prev, task, true);
2871 }
2872 
2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874 {
2875 	u64 frequency = event->attr.sample_freq;
2876 	u64 sec = NSEC_PER_SEC;
2877 	u64 divisor, dividend;
2878 
2879 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2880 
2881 	count_fls = fls64(count);
2882 	nsec_fls = fls64(nsec);
2883 	frequency_fls = fls64(frequency);
2884 	sec_fls = 30;
2885 
2886 	/*
2887 	 * We got @count in @nsec, with a target of sample_freq HZ
2888 	 * the target period becomes:
2889 	 *
2890 	 *             @count * 10^9
2891 	 * period = -------------------
2892 	 *          @nsec * sample_freq
2893 	 *
2894 	 */
2895 
2896 	/*
2897 	 * Reduce accuracy by one bit such that @a and @b converge
2898 	 * to a similar magnitude.
2899 	 */
2900 #define REDUCE_FLS(a, b)		\
2901 do {					\
2902 	if (a##_fls > b##_fls) {	\
2903 		a >>= 1;		\
2904 		a##_fls--;		\
2905 	} else {			\
2906 		b >>= 1;		\
2907 		b##_fls--;		\
2908 	}				\
2909 } while (0)
2910 
2911 	/*
2912 	 * Reduce accuracy until either term fits in a u64, then proceed with
2913 	 * the other, so that finally we can do a u64/u64 division.
2914 	 */
2915 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 		REDUCE_FLS(nsec, frequency);
2917 		REDUCE_FLS(sec, count);
2918 	}
2919 
2920 	if (count_fls + sec_fls > 64) {
2921 		divisor = nsec * frequency;
2922 
2923 		while (count_fls + sec_fls > 64) {
2924 			REDUCE_FLS(count, sec);
2925 			divisor >>= 1;
2926 		}
2927 
2928 		dividend = count * sec;
2929 	} else {
2930 		dividend = count * sec;
2931 
2932 		while (nsec_fls + frequency_fls > 64) {
2933 			REDUCE_FLS(nsec, frequency);
2934 			dividend >>= 1;
2935 		}
2936 
2937 		divisor = nsec * frequency;
2938 	}
2939 
2940 	if (!divisor)
2941 		return dividend;
2942 
2943 	return div64_u64(dividend, divisor);
2944 }
2945 
2946 static DEFINE_PER_CPU(int, perf_throttled_count);
2947 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948 
2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950 {
2951 	struct hw_perf_event *hwc = &event->hw;
2952 	s64 period, sample_period;
2953 	s64 delta;
2954 
2955 	period = perf_calculate_period(event, nsec, count);
2956 
2957 	delta = (s64)(period - hwc->sample_period);
2958 	delta = (delta + 7) / 8; /* low pass filter */
2959 
2960 	sample_period = hwc->sample_period + delta;
2961 
2962 	if (!sample_period)
2963 		sample_period = 1;
2964 
2965 	hwc->sample_period = sample_period;
2966 
2967 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 		if (disable)
2969 			event->pmu->stop(event, PERF_EF_UPDATE);
2970 
2971 		local64_set(&hwc->period_left, 0);
2972 
2973 		if (disable)
2974 			event->pmu->start(event, PERF_EF_RELOAD);
2975 	}
2976 }
2977 
2978 /*
2979  * combine freq adjustment with unthrottling to avoid two passes over the
2980  * events. At the same time, make sure, having freq events does not change
2981  * the rate of unthrottling as that would introduce bias.
2982  */
2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 					   int needs_unthr)
2985 {
2986 	struct perf_event *event;
2987 	struct hw_perf_event *hwc;
2988 	u64 now, period = TICK_NSEC;
2989 	s64 delta;
2990 
2991 	/*
2992 	 * only need to iterate over all events iff:
2993 	 * - context have events in frequency mode (needs freq adjust)
2994 	 * - there are events to unthrottle on this cpu
2995 	 */
2996 	if (!(ctx->nr_freq || needs_unthr))
2997 		return;
2998 
2999 	raw_spin_lock(&ctx->lock);
3000 	perf_pmu_disable(ctx->pmu);
3001 
3002 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 			continue;
3005 
3006 		if (!event_filter_match(event))
3007 			continue;
3008 
3009 		perf_pmu_disable(event->pmu);
3010 
3011 		hwc = &event->hw;
3012 
3013 		if (hwc->interrupts == MAX_INTERRUPTS) {
3014 			hwc->interrupts = 0;
3015 			perf_log_throttle(event, 1);
3016 			event->pmu->start(event, 0);
3017 		}
3018 
3019 		if (!event->attr.freq || !event->attr.sample_freq)
3020 			goto next;
3021 
3022 		/*
3023 		 * stop the event and update event->count
3024 		 */
3025 		event->pmu->stop(event, PERF_EF_UPDATE);
3026 
3027 		now = local64_read(&event->count);
3028 		delta = now - hwc->freq_count_stamp;
3029 		hwc->freq_count_stamp = now;
3030 
3031 		/*
3032 		 * restart the event
3033 		 * reload only if value has changed
3034 		 * we have stopped the event so tell that
3035 		 * to perf_adjust_period() to avoid stopping it
3036 		 * twice.
3037 		 */
3038 		if (delta > 0)
3039 			perf_adjust_period(event, period, delta, false);
3040 
3041 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 	next:
3043 		perf_pmu_enable(event->pmu);
3044 	}
3045 
3046 	perf_pmu_enable(ctx->pmu);
3047 	raw_spin_unlock(&ctx->lock);
3048 }
3049 
3050 /*
3051  * Round-robin a context's events:
3052  */
3053 static void rotate_ctx(struct perf_event_context *ctx)
3054 {
3055 	/*
3056 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 	 * disabled by the inheritance code.
3058 	 */
3059 	if (!ctx->rotate_disable)
3060 		list_rotate_left(&ctx->flexible_groups);
3061 }
3062 
3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064 {
3065 	struct perf_event_context *ctx = NULL;
3066 	int rotate = 0;
3067 
3068 	if (cpuctx->ctx.nr_events) {
3069 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 			rotate = 1;
3071 	}
3072 
3073 	ctx = cpuctx->task_ctx;
3074 	if (ctx && ctx->nr_events) {
3075 		if (ctx->nr_events != ctx->nr_active)
3076 			rotate = 1;
3077 	}
3078 
3079 	if (!rotate)
3080 		goto done;
3081 
3082 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3083 	perf_pmu_disable(cpuctx->ctx.pmu);
3084 
3085 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 	if (ctx)
3087 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3088 
3089 	rotate_ctx(&cpuctx->ctx);
3090 	if (ctx)
3091 		rotate_ctx(ctx);
3092 
3093 	perf_event_sched_in(cpuctx, ctx, current);
3094 
3095 	perf_pmu_enable(cpuctx->ctx.pmu);
3096 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097 done:
3098 
3099 	return rotate;
3100 }
3101 
3102 #ifdef CONFIG_NO_HZ_FULL
3103 bool perf_event_can_stop_tick(void)
3104 {
3105 	if (atomic_read(&nr_freq_events) ||
3106 	    __this_cpu_read(perf_throttled_count))
3107 		return false;
3108 	else
3109 		return true;
3110 }
3111 #endif
3112 
3113 void perf_event_task_tick(void)
3114 {
3115 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 	struct perf_event_context *ctx, *tmp;
3117 	int throttled;
3118 
3119 	WARN_ON(!irqs_disabled());
3120 
3121 	__this_cpu_inc(perf_throttled_seq);
3122 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123 
3124 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125 		perf_adjust_freq_unthr_context(ctx, throttled);
3126 }
3127 
3128 static int event_enable_on_exec(struct perf_event *event,
3129 				struct perf_event_context *ctx)
3130 {
3131 	if (!event->attr.enable_on_exec)
3132 		return 0;
3133 
3134 	event->attr.enable_on_exec = 0;
3135 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 		return 0;
3137 
3138 	__perf_event_mark_enabled(event);
3139 
3140 	return 1;
3141 }
3142 
3143 /*
3144  * Enable all of a task's events that have been marked enable-on-exec.
3145  * This expects task == current.
3146  */
3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148 {
3149 	struct perf_event_context *clone_ctx = NULL;
3150 	struct perf_event *event;
3151 	unsigned long flags;
3152 	int enabled = 0;
3153 	int ret;
3154 
3155 	local_irq_save(flags);
3156 	if (!ctx || !ctx->nr_events)
3157 		goto out;
3158 
3159 	/*
3160 	 * We must ctxsw out cgroup events to avoid conflict
3161 	 * when invoking perf_task_event_sched_in() later on
3162 	 * in this function. Otherwise we end up trying to
3163 	 * ctxswin cgroup events which are already scheduled
3164 	 * in.
3165 	 */
3166 	perf_cgroup_sched_out(current, NULL);
3167 
3168 	raw_spin_lock(&ctx->lock);
3169 	task_ctx_sched_out(ctx);
3170 
3171 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 		ret = event_enable_on_exec(event, ctx);
3173 		if (ret)
3174 			enabled = 1;
3175 	}
3176 
3177 	/*
3178 	 * Unclone this context if we enabled any event.
3179 	 */
3180 	if (enabled)
3181 		clone_ctx = unclone_ctx(ctx);
3182 
3183 	raw_spin_unlock(&ctx->lock);
3184 
3185 	/*
3186 	 * Also calls ctxswin for cgroup events, if any:
3187 	 */
3188 	perf_event_context_sched_in(ctx, ctx->task);
3189 out:
3190 	local_irq_restore(flags);
3191 
3192 	if (clone_ctx)
3193 		put_ctx(clone_ctx);
3194 }
3195 
3196 void perf_event_exec(void)
3197 {
3198 	struct perf_event_context *ctx;
3199 	int ctxn;
3200 
3201 	rcu_read_lock();
3202 	for_each_task_context_nr(ctxn) {
3203 		ctx = current->perf_event_ctxp[ctxn];
3204 		if (!ctx)
3205 			continue;
3206 
3207 		perf_event_enable_on_exec(ctx);
3208 	}
3209 	rcu_read_unlock();
3210 }
3211 
3212 /*
3213  * Cross CPU call to read the hardware event
3214  */
3215 static void __perf_event_read(void *info)
3216 {
3217 	struct perf_event *event = info;
3218 	struct perf_event_context *ctx = event->ctx;
3219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3220 
3221 	/*
3222 	 * If this is a task context, we need to check whether it is
3223 	 * the current task context of this cpu.  If not it has been
3224 	 * scheduled out before the smp call arrived.  In that case
3225 	 * event->count would have been updated to a recent sample
3226 	 * when the event was scheduled out.
3227 	 */
3228 	if (ctx->task && cpuctx->task_ctx != ctx)
3229 		return;
3230 
3231 	raw_spin_lock(&ctx->lock);
3232 	if (ctx->is_active) {
3233 		update_context_time(ctx);
3234 		update_cgrp_time_from_event(event);
3235 	}
3236 	update_event_times(event);
3237 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3238 		event->pmu->read(event);
3239 	raw_spin_unlock(&ctx->lock);
3240 }
3241 
3242 static inline u64 perf_event_count(struct perf_event *event)
3243 {
3244 	if (event->pmu->count)
3245 		return event->pmu->count(event);
3246 
3247 	return __perf_event_count(event);
3248 }
3249 
3250 /*
3251  * NMI-safe method to read a local event, that is an event that
3252  * is:
3253  *   - either for the current task, or for this CPU
3254  *   - does not have inherit set, for inherited task events
3255  *     will not be local and we cannot read them atomically
3256  *   - must not have a pmu::count method
3257  */
3258 u64 perf_event_read_local(struct perf_event *event)
3259 {
3260 	unsigned long flags;
3261 	u64 val;
3262 
3263 	/*
3264 	 * Disabling interrupts avoids all counter scheduling (context
3265 	 * switches, timer based rotation and IPIs).
3266 	 */
3267 	local_irq_save(flags);
3268 
3269 	/* If this is a per-task event, it must be for current */
3270 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3271 		     event->hw.target != current);
3272 
3273 	/* If this is a per-CPU event, it must be for this CPU */
3274 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3275 		     event->cpu != smp_processor_id());
3276 
3277 	/*
3278 	 * It must not be an event with inherit set, we cannot read
3279 	 * all child counters from atomic context.
3280 	 */
3281 	WARN_ON_ONCE(event->attr.inherit);
3282 
3283 	/*
3284 	 * It must not have a pmu::count method, those are not
3285 	 * NMI safe.
3286 	 */
3287 	WARN_ON_ONCE(event->pmu->count);
3288 
3289 	/*
3290 	 * If the event is currently on this CPU, its either a per-task event,
3291 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3292 	 * oncpu == -1).
3293 	 */
3294 	if (event->oncpu == smp_processor_id())
3295 		event->pmu->read(event);
3296 
3297 	val = local64_read(&event->count);
3298 	local_irq_restore(flags);
3299 
3300 	return val;
3301 }
3302 
3303 static u64 perf_event_read(struct perf_event *event)
3304 {
3305 	/*
3306 	 * If event is enabled and currently active on a CPU, update the
3307 	 * value in the event structure:
3308 	 */
3309 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3310 		smp_call_function_single(event->oncpu,
3311 					 __perf_event_read, event, 1);
3312 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3313 		struct perf_event_context *ctx = event->ctx;
3314 		unsigned long flags;
3315 
3316 		raw_spin_lock_irqsave(&ctx->lock, flags);
3317 		/*
3318 		 * may read while context is not active
3319 		 * (e.g., thread is blocked), in that case
3320 		 * we cannot update context time
3321 		 */
3322 		if (ctx->is_active) {
3323 			update_context_time(ctx);
3324 			update_cgrp_time_from_event(event);
3325 		}
3326 		update_event_times(event);
3327 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3328 	}
3329 
3330 	return perf_event_count(event);
3331 }
3332 
3333 /*
3334  * Initialize the perf_event context in a task_struct:
3335  */
3336 static void __perf_event_init_context(struct perf_event_context *ctx)
3337 {
3338 	raw_spin_lock_init(&ctx->lock);
3339 	mutex_init(&ctx->mutex);
3340 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3341 	INIT_LIST_HEAD(&ctx->pinned_groups);
3342 	INIT_LIST_HEAD(&ctx->flexible_groups);
3343 	INIT_LIST_HEAD(&ctx->event_list);
3344 	atomic_set(&ctx->refcount, 1);
3345 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3346 }
3347 
3348 static struct perf_event_context *
3349 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3350 {
3351 	struct perf_event_context *ctx;
3352 
3353 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3354 	if (!ctx)
3355 		return NULL;
3356 
3357 	__perf_event_init_context(ctx);
3358 	if (task) {
3359 		ctx->task = task;
3360 		get_task_struct(task);
3361 	}
3362 	ctx->pmu = pmu;
3363 
3364 	return ctx;
3365 }
3366 
3367 static struct task_struct *
3368 find_lively_task_by_vpid(pid_t vpid)
3369 {
3370 	struct task_struct *task;
3371 	int err;
3372 
3373 	rcu_read_lock();
3374 	if (!vpid)
3375 		task = current;
3376 	else
3377 		task = find_task_by_vpid(vpid);
3378 	if (task)
3379 		get_task_struct(task);
3380 	rcu_read_unlock();
3381 
3382 	if (!task)
3383 		return ERR_PTR(-ESRCH);
3384 
3385 	/* Reuse ptrace permission checks for now. */
3386 	err = -EACCES;
3387 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3388 		goto errout;
3389 
3390 	return task;
3391 errout:
3392 	put_task_struct(task);
3393 	return ERR_PTR(err);
3394 
3395 }
3396 
3397 /*
3398  * Returns a matching context with refcount and pincount.
3399  */
3400 static struct perf_event_context *
3401 find_get_context(struct pmu *pmu, struct task_struct *task,
3402 		struct perf_event *event)
3403 {
3404 	struct perf_event_context *ctx, *clone_ctx = NULL;
3405 	struct perf_cpu_context *cpuctx;
3406 	void *task_ctx_data = NULL;
3407 	unsigned long flags;
3408 	int ctxn, err;
3409 	int cpu = event->cpu;
3410 
3411 	if (!task) {
3412 		/* Must be root to operate on a CPU event: */
3413 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3414 			return ERR_PTR(-EACCES);
3415 
3416 		/*
3417 		 * We could be clever and allow to attach a event to an
3418 		 * offline CPU and activate it when the CPU comes up, but
3419 		 * that's for later.
3420 		 */
3421 		if (!cpu_online(cpu))
3422 			return ERR_PTR(-ENODEV);
3423 
3424 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3425 		ctx = &cpuctx->ctx;
3426 		get_ctx(ctx);
3427 		++ctx->pin_count;
3428 
3429 		return ctx;
3430 	}
3431 
3432 	err = -EINVAL;
3433 	ctxn = pmu->task_ctx_nr;
3434 	if (ctxn < 0)
3435 		goto errout;
3436 
3437 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3438 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3439 		if (!task_ctx_data) {
3440 			err = -ENOMEM;
3441 			goto errout;
3442 		}
3443 	}
3444 
3445 retry:
3446 	ctx = perf_lock_task_context(task, ctxn, &flags);
3447 	if (ctx) {
3448 		clone_ctx = unclone_ctx(ctx);
3449 		++ctx->pin_count;
3450 
3451 		if (task_ctx_data && !ctx->task_ctx_data) {
3452 			ctx->task_ctx_data = task_ctx_data;
3453 			task_ctx_data = NULL;
3454 		}
3455 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3456 
3457 		if (clone_ctx)
3458 			put_ctx(clone_ctx);
3459 	} else {
3460 		ctx = alloc_perf_context(pmu, task);
3461 		err = -ENOMEM;
3462 		if (!ctx)
3463 			goto errout;
3464 
3465 		if (task_ctx_data) {
3466 			ctx->task_ctx_data = task_ctx_data;
3467 			task_ctx_data = NULL;
3468 		}
3469 
3470 		err = 0;
3471 		mutex_lock(&task->perf_event_mutex);
3472 		/*
3473 		 * If it has already passed perf_event_exit_task().
3474 		 * we must see PF_EXITING, it takes this mutex too.
3475 		 */
3476 		if (task->flags & PF_EXITING)
3477 			err = -ESRCH;
3478 		else if (task->perf_event_ctxp[ctxn])
3479 			err = -EAGAIN;
3480 		else {
3481 			get_ctx(ctx);
3482 			++ctx->pin_count;
3483 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3484 		}
3485 		mutex_unlock(&task->perf_event_mutex);
3486 
3487 		if (unlikely(err)) {
3488 			put_ctx(ctx);
3489 
3490 			if (err == -EAGAIN)
3491 				goto retry;
3492 			goto errout;
3493 		}
3494 	}
3495 
3496 	kfree(task_ctx_data);
3497 	return ctx;
3498 
3499 errout:
3500 	kfree(task_ctx_data);
3501 	return ERR_PTR(err);
3502 }
3503 
3504 static void perf_event_free_filter(struct perf_event *event);
3505 static void perf_event_free_bpf_prog(struct perf_event *event);
3506 
3507 static void free_event_rcu(struct rcu_head *head)
3508 {
3509 	struct perf_event *event;
3510 
3511 	event = container_of(head, struct perf_event, rcu_head);
3512 	if (event->ns)
3513 		put_pid_ns(event->ns);
3514 	perf_event_free_filter(event);
3515 	kfree(event);
3516 }
3517 
3518 static void ring_buffer_attach(struct perf_event *event,
3519 			       struct ring_buffer *rb);
3520 
3521 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3522 {
3523 	if (event->parent)
3524 		return;
3525 
3526 	if (is_cgroup_event(event))
3527 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3528 }
3529 
3530 static void unaccount_event(struct perf_event *event)
3531 {
3532 	if (event->parent)
3533 		return;
3534 
3535 	if (event->attach_state & PERF_ATTACH_TASK)
3536 		static_key_slow_dec_deferred(&perf_sched_events);
3537 	if (event->attr.mmap || event->attr.mmap_data)
3538 		atomic_dec(&nr_mmap_events);
3539 	if (event->attr.comm)
3540 		atomic_dec(&nr_comm_events);
3541 	if (event->attr.task)
3542 		atomic_dec(&nr_task_events);
3543 	if (event->attr.freq)
3544 		atomic_dec(&nr_freq_events);
3545 	if (event->attr.context_switch) {
3546 		static_key_slow_dec_deferred(&perf_sched_events);
3547 		atomic_dec(&nr_switch_events);
3548 	}
3549 	if (is_cgroup_event(event))
3550 		static_key_slow_dec_deferred(&perf_sched_events);
3551 	if (has_branch_stack(event))
3552 		static_key_slow_dec_deferred(&perf_sched_events);
3553 
3554 	unaccount_event_cpu(event, event->cpu);
3555 }
3556 
3557 /*
3558  * The following implement mutual exclusion of events on "exclusive" pmus
3559  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3560  * at a time, so we disallow creating events that might conflict, namely:
3561  *
3562  *  1) cpu-wide events in the presence of per-task events,
3563  *  2) per-task events in the presence of cpu-wide events,
3564  *  3) two matching events on the same context.
3565  *
3566  * The former two cases are handled in the allocation path (perf_event_alloc(),
3567  * __free_event()), the latter -- before the first perf_install_in_context().
3568  */
3569 static int exclusive_event_init(struct perf_event *event)
3570 {
3571 	struct pmu *pmu = event->pmu;
3572 
3573 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3574 		return 0;
3575 
3576 	/*
3577 	 * Prevent co-existence of per-task and cpu-wide events on the
3578 	 * same exclusive pmu.
3579 	 *
3580 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3581 	 * events on this "exclusive" pmu, positive means there are
3582 	 * per-task events.
3583 	 *
3584 	 * Since this is called in perf_event_alloc() path, event::ctx
3585 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3586 	 * to mean "per-task event", because unlike other attach states it
3587 	 * never gets cleared.
3588 	 */
3589 	if (event->attach_state & PERF_ATTACH_TASK) {
3590 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3591 			return -EBUSY;
3592 	} else {
3593 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3594 			return -EBUSY;
3595 	}
3596 
3597 	return 0;
3598 }
3599 
3600 static void exclusive_event_destroy(struct perf_event *event)
3601 {
3602 	struct pmu *pmu = event->pmu;
3603 
3604 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3605 		return;
3606 
3607 	/* see comment in exclusive_event_init() */
3608 	if (event->attach_state & PERF_ATTACH_TASK)
3609 		atomic_dec(&pmu->exclusive_cnt);
3610 	else
3611 		atomic_inc(&pmu->exclusive_cnt);
3612 }
3613 
3614 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3615 {
3616 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3617 	    (e1->cpu == e2->cpu ||
3618 	     e1->cpu == -1 ||
3619 	     e2->cpu == -1))
3620 		return true;
3621 	return false;
3622 }
3623 
3624 /* Called under the same ctx::mutex as perf_install_in_context() */
3625 static bool exclusive_event_installable(struct perf_event *event,
3626 					struct perf_event_context *ctx)
3627 {
3628 	struct perf_event *iter_event;
3629 	struct pmu *pmu = event->pmu;
3630 
3631 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3632 		return true;
3633 
3634 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3635 		if (exclusive_event_match(iter_event, event))
3636 			return false;
3637 	}
3638 
3639 	return true;
3640 }
3641 
3642 static void __free_event(struct perf_event *event)
3643 {
3644 	if (!event->parent) {
3645 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3646 			put_callchain_buffers();
3647 	}
3648 
3649 	perf_event_free_bpf_prog(event);
3650 
3651 	if (event->destroy)
3652 		event->destroy(event);
3653 
3654 	if (event->ctx)
3655 		put_ctx(event->ctx);
3656 
3657 	if (event->pmu) {
3658 		exclusive_event_destroy(event);
3659 		module_put(event->pmu->module);
3660 	}
3661 
3662 	call_rcu(&event->rcu_head, free_event_rcu);
3663 }
3664 
3665 static void _free_event(struct perf_event *event)
3666 {
3667 	irq_work_sync(&event->pending);
3668 
3669 	unaccount_event(event);
3670 
3671 	if (event->rb) {
3672 		/*
3673 		 * Can happen when we close an event with re-directed output.
3674 		 *
3675 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3676 		 * over us; possibly making our ring_buffer_put() the last.
3677 		 */
3678 		mutex_lock(&event->mmap_mutex);
3679 		ring_buffer_attach(event, NULL);
3680 		mutex_unlock(&event->mmap_mutex);
3681 	}
3682 
3683 	if (is_cgroup_event(event))
3684 		perf_detach_cgroup(event);
3685 
3686 	__free_event(event);
3687 }
3688 
3689 /*
3690  * Used to free events which have a known refcount of 1, such as in error paths
3691  * where the event isn't exposed yet and inherited events.
3692  */
3693 static void free_event(struct perf_event *event)
3694 {
3695 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3696 				"unexpected event refcount: %ld; ptr=%p\n",
3697 				atomic_long_read(&event->refcount), event)) {
3698 		/* leak to avoid use-after-free */
3699 		return;
3700 	}
3701 
3702 	_free_event(event);
3703 }
3704 
3705 /*
3706  * Remove user event from the owner task.
3707  */
3708 static void perf_remove_from_owner(struct perf_event *event)
3709 {
3710 	struct task_struct *owner;
3711 
3712 	rcu_read_lock();
3713 	owner = ACCESS_ONCE(event->owner);
3714 	/*
3715 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3716 	 * !owner it means the list deletion is complete and we can indeed
3717 	 * free this event, otherwise we need to serialize on
3718 	 * owner->perf_event_mutex.
3719 	 */
3720 	smp_read_barrier_depends();
3721 	if (owner) {
3722 		/*
3723 		 * Since delayed_put_task_struct() also drops the last
3724 		 * task reference we can safely take a new reference
3725 		 * while holding the rcu_read_lock().
3726 		 */
3727 		get_task_struct(owner);
3728 	}
3729 	rcu_read_unlock();
3730 
3731 	if (owner) {
3732 		/*
3733 		 * If we're here through perf_event_exit_task() we're already
3734 		 * holding ctx->mutex which would be an inversion wrt. the
3735 		 * normal lock order.
3736 		 *
3737 		 * However we can safely take this lock because its the child
3738 		 * ctx->mutex.
3739 		 */
3740 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3741 
3742 		/*
3743 		 * We have to re-check the event->owner field, if it is cleared
3744 		 * we raced with perf_event_exit_task(), acquiring the mutex
3745 		 * ensured they're done, and we can proceed with freeing the
3746 		 * event.
3747 		 */
3748 		if (event->owner)
3749 			list_del_init(&event->owner_entry);
3750 		mutex_unlock(&owner->perf_event_mutex);
3751 		put_task_struct(owner);
3752 	}
3753 }
3754 
3755 static void put_event(struct perf_event *event)
3756 {
3757 	struct perf_event_context *ctx;
3758 
3759 	if (!atomic_long_dec_and_test(&event->refcount))
3760 		return;
3761 
3762 	if (!is_kernel_event(event))
3763 		perf_remove_from_owner(event);
3764 
3765 	/*
3766 	 * There are two ways this annotation is useful:
3767 	 *
3768 	 *  1) there is a lock recursion from perf_event_exit_task
3769 	 *     see the comment there.
3770 	 *
3771 	 *  2) there is a lock-inversion with mmap_sem through
3772 	 *     perf_event_read_group(), which takes faults while
3773 	 *     holding ctx->mutex, however this is called after
3774 	 *     the last filedesc died, so there is no possibility
3775 	 *     to trigger the AB-BA case.
3776 	 */
3777 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3778 	WARN_ON_ONCE(ctx->parent_ctx);
3779 	perf_remove_from_context(event, true);
3780 	perf_event_ctx_unlock(event, ctx);
3781 
3782 	_free_event(event);
3783 }
3784 
3785 int perf_event_release_kernel(struct perf_event *event)
3786 {
3787 	put_event(event);
3788 	return 0;
3789 }
3790 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3791 
3792 /*
3793  * Called when the last reference to the file is gone.
3794  */
3795 static int perf_release(struct inode *inode, struct file *file)
3796 {
3797 	put_event(file->private_data);
3798 	return 0;
3799 }
3800 
3801 /*
3802  * Remove all orphanes events from the context.
3803  */
3804 static void orphans_remove_work(struct work_struct *work)
3805 {
3806 	struct perf_event_context *ctx;
3807 	struct perf_event *event, *tmp;
3808 
3809 	ctx = container_of(work, struct perf_event_context,
3810 			   orphans_remove.work);
3811 
3812 	mutex_lock(&ctx->mutex);
3813 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3814 		struct perf_event *parent_event = event->parent;
3815 
3816 		if (!is_orphaned_child(event))
3817 			continue;
3818 
3819 		perf_remove_from_context(event, true);
3820 
3821 		mutex_lock(&parent_event->child_mutex);
3822 		list_del_init(&event->child_list);
3823 		mutex_unlock(&parent_event->child_mutex);
3824 
3825 		free_event(event);
3826 		put_event(parent_event);
3827 	}
3828 
3829 	raw_spin_lock_irq(&ctx->lock);
3830 	ctx->orphans_remove_sched = false;
3831 	raw_spin_unlock_irq(&ctx->lock);
3832 	mutex_unlock(&ctx->mutex);
3833 
3834 	put_ctx(ctx);
3835 }
3836 
3837 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3838 {
3839 	struct perf_event *child;
3840 	u64 total = 0;
3841 
3842 	*enabled = 0;
3843 	*running = 0;
3844 
3845 	mutex_lock(&event->child_mutex);
3846 	total += perf_event_read(event);
3847 	*enabled += event->total_time_enabled +
3848 			atomic64_read(&event->child_total_time_enabled);
3849 	*running += event->total_time_running +
3850 			atomic64_read(&event->child_total_time_running);
3851 
3852 	list_for_each_entry(child, &event->child_list, child_list) {
3853 		total += perf_event_read(child);
3854 		*enabled += child->total_time_enabled;
3855 		*running += child->total_time_running;
3856 	}
3857 	mutex_unlock(&event->child_mutex);
3858 
3859 	return total;
3860 }
3861 EXPORT_SYMBOL_GPL(perf_event_read_value);
3862 
3863 static int perf_event_read_group(struct perf_event *event,
3864 				   u64 read_format, char __user *buf)
3865 {
3866 	struct perf_event *leader = event->group_leader, *sub;
3867 	struct perf_event_context *ctx = leader->ctx;
3868 	int n = 0, size = 0, ret;
3869 	u64 count, enabled, running;
3870 	u64 values[5];
3871 
3872 	lockdep_assert_held(&ctx->mutex);
3873 
3874 	count = perf_event_read_value(leader, &enabled, &running);
3875 
3876 	values[n++] = 1 + leader->nr_siblings;
3877 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3878 		values[n++] = enabled;
3879 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3880 		values[n++] = running;
3881 	values[n++] = count;
3882 	if (read_format & PERF_FORMAT_ID)
3883 		values[n++] = primary_event_id(leader);
3884 
3885 	size = n * sizeof(u64);
3886 
3887 	if (copy_to_user(buf, values, size))
3888 		return -EFAULT;
3889 
3890 	ret = size;
3891 
3892 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893 		n = 0;
3894 
3895 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3896 		if (read_format & PERF_FORMAT_ID)
3897 			values[n++] = primary_event_id(sub);
3898 
3899 		size = n * sizeof(u64);
3900 
3901 		if (copy_to_user(buf + ret, values, size)) {
3902 			return -EFAULT;
3903 		}
3904 
3905 		ret += size;
3906 	}
3907 
3908 	return ret;
3909 }
3910 
3911 static int perf_event_read_one(struct perf_event *event,
3912 				 u64 read_format, char __user *buf)
3913 {
3914 	u64 enabled, running;
3915 	u64 values[4];
3916 	int n = 0;
3917 
3918 	values[n++] = perf_event_read_value(event, &enabled, &running);
3919 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3920 		values[n++] = enabled;
3921 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3922 		values[n++] = running;
3923 	if (read_format & PERF_FORMAT_ID)
3924 		values[n++] = primary_event_id(event);
3925 
3926 	if (copy_to_user(buf, values, n * sizeof(u64)))
3927 		return -EFAULT;
3928 
3929 	return n * sizeof(u64);
3930 }
3931 
3932 static bool is_event_hup(struct perf_event *event)
3933 {
3934 	bool no_children;
3935 
3936 	if (event->state != PERF_EVENT_STATE_EXIT)
3937 		return false;
3938 
3939 	mutex_lock(&event->child_mutex);
3940 	no_children = list_empty(&event->child_list);
3941 	mutex_unlock(&event->child_mutex);
3942 	return no_children;
3943 }
3944 
3945 /*
3946  * Read the performance event - simple non blocking version for now
3947  */
3948 static ssize_t
3949 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3950 {
3951 	u64 read_format = event->attr.read_format;
3952 	int ret;
3953 
3954 	/*
3955 	 * Return end-of-file for a read on a event that is in
3956 	 * error state (i.e. because it was pinned but it couldn't be
3957 	 * scheduled on to the CPU at some point).
3958 	 */
3959 	if (event->state == PERF_EVENT_STATE_ERROR)
3960 		return 0;
3961 
3962 	if (count < event->read_size)
3963 		return -ENOSPC;
3964 
3965 	WARN_ON_ONCE(event->ctx->parent_ctx);
3966 	if (read_format & PERF_FORMAT_GROUP)
3967 		ret = perf_event_read_group(event, read_format, buf);
3968 	else
3969 		ret = perf_event_read_one(event, read_format, buf);
3970 
3971 	return ret;
3972 }
3973 
3974 static ssize_t
3975 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3976 {
3977 	struct perf_event *event = file->private_data;
3978 	struct perf_event_context *ctx;
3979 	int ret;
3980 
3981 	ctx = perf_event_ctx_lock(event);
3982 	ret = perf_read_hw(event, buf, count);
3983 	perf_event_ctx_unlock(event, ctx);
3984 
3985 	return ret;
3986 }
3987 
3988 static unsigned int perf_poll(struct file *file, poll_table *wait)
3989 {
3990 	struct perf_event *event = file->private_data;
3991 	struct ring_buffer *rb;
3992 	unsigned int events = POLLHUP;
3993 
3994 	poll_wait(file, &event->waitq, wait);
3995 
3996 	if (is_event_hup(event))
3997 		return events;
3998 
3999 	/*
4000 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4001 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4002 	 */
4003 	mutex_lock(&event->mmap_mutex);
4004 	rb = event->rb;
4005 	if (rb)
4006 		events = atomic_xchg(&rb->poll, 0);
4007 	mutex_unlock(&event->mmap_mutex);
4008 	return events;
4009 }
4010 
4011 static void _perf_event_reset(struct perf_event *event)
4012 {
4013 	(void)perf_event_read(event);
4014 	local64_set(&event->count, 0);
4015 	perf_event_update_userpage(event);
4016 }
4017 
4018 /*
4019  * Holding the top-level event's child_mutex means that any
4020  * descendant process that has inherited this event will block
4021  * in sync_child_event if it goes to exit, thus satisfying the
4022  * task existence requirements of perf_event_enable/disable.
4023  */
4024 static void perf_event_for_each_child(struct perf_event *event,
4025 					void (*func)(struct perf_event *))
4026 {
4027 	struct perf_event *child;
4028 
4029 	WARN_ON_ONCE(event->ctx->parent_ctx);
4030 
4031 	mutex_lock(&event->child_mutex);
4032 	func(event);
4033 	list_for_each_entry(child, &event->child_list, child_list)
4034 		func(child);
4035 	mutex_unlock(&event->child_mutex);
4036 }
4037 
4038 static void perf_event_for_each(struct perf_event *event,
4039 				  void (*func)(struct perf_event *))
4040 {
4041 	struct perf_event_context *ctx = event->ctx;
4042 	struct perf_event *sibling;
4043 
4044 	lockdep_assert_held(&ctx->mutex);
4045 
4046 	event = event->group_leader;
4047 
4048 	perf_event_for_each_child(event, func);
4049 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4050 		perf_event_for_each_child(sibling, func);
4051 }
4052 
4053 struct period_event {
4054 	struct perf_event *event;
4055 	u64 value;
4056 };
4057 
4058 static int __perf_event_period(void *info)
4059 {
4060 	struct period_event *pe = info;
4061 	struct perf_event *event = pe->event;
4062 	struct perf_event_context *ctx = event->ctx;
4063 	u64 value = pe->value;
4064 	bool active;
4065 
4066 	raw_spin_lock(&ctx->lock);
4067 	if (event->attr.freq) {
4068 		event->attr.sample_freq = value;
4069 	} else {
4070 		event->attr.sample_period = value;
4071 		event->hw.sample_period = value;
4072 	}
4073 
4074 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4075 	if (active) {
4076 		perf_pmu_disable(ctx->pmu);
4077 		event->pmu->stop(event, PERF_EF_UPDATE);
4078 	}
4079 
4080 	local64_set(&event->hw.period_left, 0);
4081 
4082 	if (active) {
4083 		event->pmu->start(event, PERF_EF_RELOAD);
4084 		perf_pmu_enable(ctx->pmu);
4085 	}
4086 	raw_spin_unlock(&ctx->lock);
4087 
4088 	return 0;
4089 }
4090 
4091 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4092 {
4093 	struct period_event pe = { .event = event, };
4094 	struct perf_event_context *ctx = event->ctx;
4095 	struct task_struct *task;
4096 	u64 value;
4097 
4098 	if (!is_sampling_event(event))
4099 		return -EINVAL;
4100 
4101 	if (copy_from_user(&value, arg, sizeof(value)))
4102 		return -EFAULT;
4103 
4104 	if (!value)
4105 		return -EINVAL;
4106 
4107 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4108 		return -EINVAL;
4109 
4110 	task = ctx->task;
4111 	pe.value = value;
4112 
4113 	if (!task) {
4114 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4115 		return 0;
4116 	}
4117 
4118 retry:
4119 	if (!task_function_call(task, __perf_event_period, &pe))
4120 		return 0;
4121 
4122 	raw_spin_lock_irq(&ctx->lock);
4123 	if (ctx->is_active) {
4124 		raw_spin_unlock_irq(&ctx->lock);
4125 		task = ctx->task;
4126 		goto retry;
4127 	}
4128 
4129 	__perf_event_period(&pe);
4130 	raw_spin_unlock_irq(&ctx->lock);
4131 
4132 	return 0;
4133 }
4134 
4135 static const struct file_operations perf_fops;
4136 
4137 static inline int perf_fget_light(int fd, struct fd *p)
4138 {
4139 	struct fd f = fdget(fd);
4140 	if (!f.file)
4141 		return -EBADF;
4142 
4143 	if (f.file->f_op != &perf_fops) {
4144 		fdput(f);
4145 		return -EBADF;
4146 	}
4147 	*p = f;
4148 	return 0;
4149 }
4150 
4151 static int perf_event_set_output(struct perf_event *event,
4152 				 struct perf_event *output_event);
4153 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4155 
4156 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4157 {
4158 	void (*func)(struct perf_event *);
4159 	u32 flags = arg;
4160 
4161 	switch (cmd) {
4162 	case PERF_EVENT_IOC_ENABLE:
4163 		func = _perf_event_enable;
4164 		break;
4165 	case PERF_EVENT_IOC_DISABLE:
4166 		func = _perf_event_disable;
4167 		break;
4168 	case PERF_EVENT_IOC_RESET:
4169 		func = _perf_event_reset;
4170 		break;
4171 
4172 	case PERF_EVENT_IOC_REFRESH:
4173 		return _perf_event_refresh(event, arg);
4174 
4175 	case PERF_EVENT_IOC_PERIOD:
4176 		return perf_event_period(event, (u64 __user *)arg);
4177 
4178 	case PERF_EVENT_IOC_ID:
4179 	{
4180 		u64 id = primary_event_id(event);
4181 
4182 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4183 			return -EFAULT;
4184 		return 0;
4185 	}
4186 
4187 	case PERF_EVENT_IOC_SET_OUTPUT:
4188 	{
4189 		int ret;
4190 		if (arg != -1) {
4191 			struct perf_event *output_event;
4192 			struct fd output;
4193 			ret = perf_fget_light(arg, &output);
4194 			if (ret)
4195 				return ret;
4196 			output_event = output.file->private_data;
4197 			ret = perf_event_set_output(event, output_event);
4198 			fdput(output);
4199 		} else {
4200 			ret = perf_event_set_output(event, NULL);
4201 		}
4202 		return ret;
4203 	}
4204 
4205 	case PERF_EVENT_IOC_SET_FILTER:
4206 		return perf_event_set_filter(event, (void __user *)arg);
4207 
4208 	case PERF_EVENT_IOC_SET_BPF:
4209 		return perf_event_set_bpf_prog(event, arg);
4210 
4211 	default:
4212 		return -ENOTTY;
4213 	}
4214 
4215 	if (flags & PERF_IOC_FLAG_GROUP)
4216 		perf_event_for_each(event, func);
4217 	else
4218 		perf_event_for_each_child(event, func);
4219 
4220 	return 0;
4221 }
4222 
4223 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4224 {
4225 	struct perf_event *event = file->private_data;
4226 	struct perf_event_context *ctx;
4227 	long ret;
4228 
4229 	ctx = perf_event_ctx_lock(event);
4230 	ret = _perf_ioctl(event, cmd, arg);
4231 	perf_event_ctx_unlock(event, ctx);
4232 
4233 	return ret;
4234 }
4235 
4236 #ifdef CONFIG_COMPAT
4237 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4238 				unsigned long arg)
4239 {
4240 	switch (_IOC_NR(cmd)) {
4241 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4242 	case _IOC_NR(PERF_EVENT_IOC_ID):
4243 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4244 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4245 			cmd &= ~IOCSIZE_MASK;
4246 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4247 		}
4248 		break;
4249 	}
4250 	return perf_ioctl(file, cmd, arg);
4251 }
4252 #else
4253 # define perf_compat_ioctl NULL
4254 #endif
4255 
4256 int perf_event_task_enable(void)
4257 {
4258 	struct perf_event_context *ctx;
4259 	struct perf_event *event;
4260 
4261 	mutex_lock(&current->perf_event_mutex);
4262 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4263 		ctx = perf_event_ctx_lock(event);
4264 		perf_event_for_each_child(event, _perf_event_enable);
4265 		perf_event_ctx_unlock(event, ctx);
4266 	}
4267 	mutex_unlock(&current->perf_event_mutex);
4268 
4269 	return 0;
4270 }
4271 
4272 int perf_event_task_disable(void)
4273 {
4274 	struct perf_event_context *ctx;
4275 	struct perf_event *event;
4276 
4277 	mutex_lock(&current->perf_event_mutex);
4278 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4279 		ctx = perf_event_ctx_lock(event);
4280 		perf_event_for_each_child(event, _perf_event_disable);
4281 		perf_event_ctx_unlock(event, ctx);
4282 	}
4283 	mutex_unlock(&current->perf_event_mutex);
4284 
4285 	return 0;
4286 }
4287 
4288 static int perf_event_index(struct perf_event *event)
4289 {
4290 	if (event->hw.state & PERF_HES_STOPPED)
4291 		return 0;
4292 
4293 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4294 		return 0;
4295 
4296 	return event->pmu->event_idx(event);
4297 }
4298 
4299 static void calc_timer_values(struct perf_event *event,
4300 				u64 *now,
4301 				u64 *enabled,
4302 				u64 *running)
4303 {
4304 	u64 ctx_time;
4305 
4306 	*now = perf_clock();
4307 	ctx_time = event->shadow_ctx_time + *now;
4308 	*enabled = ctx_time - event->tstamp_enabled;
4309 	*running = ctx_time - event->tstamp_running;
4310 }
4311 
4312 static void perf_event_init_userpage(struct perf_event *event)
4313 {
4314 	struct perf_event_mmap_page *userpg;
4315 	struct ring_buffer *rb;
4316 
4317 	rcu_read_lock();
4318 	rb = rcu_dereference(event->rb);
4319 	if (!rb)
4320 		goto unlock;
4321 
4322 	userpg = rb->user_page;
4323 
4324 	/* Allow new userspace to detect that bit 0 is deprecated */
4325 	userpg->cap_bit0_is_deprecated = 1;
4326 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4327 	userpg->data_offset = PAGE_SIZE;
4328 	userpg->data_size = perf_data_size(rb);
4329 
4330 unlock:
4331 	rcu_read_unlock();
4332 }
4333 
4334 void __weak arch_perf_update_userpage(
4335 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4336 {
4337 }
4338 
4339 /*
4340  * Callers need to ensure there can be no nesting of this function, otherwise
4341  * the seqlock logic goes bad. We can not serialize this because the arch
4342  * code calls this from NMI context.
4343  */
4344 void perf_event_update_userpage(struct perf_event *event)
4345 {
4346 	struct perf_event_mmap_page *userpg;
4347 	struct ring_buffer *rb;
4348 	u64 enabled, running, now;
4349 
4350 	rcu_read_lock();
4351 	rb = rcu_dereference(event->rb);
4352 	if (!rb)
4353 		goto unlock;
4354 
4355 	/*
4356 	 * compute total_time_enabled, total_time_running
4357 	 * based on snapshot values taken when the event
4358 	 * was last scheduled in.
4359 	 *
4360 	 * we cannot simply called update_context_time()
4361 	 * because of locking issue as we can be called in
4362 	 * NMI context
4363 	 */
4364 	calc_timer_values(event, &now, &enabled, &running);
4365 
4366 	userpg = rb->user_page;
4367 	/*
4368 	 * Disable preemption so as to not let the corresponding user-space
4369 	 * spin too long if we get preempted.
4370 	 */
4371 	preempt_disable();
4372 	++userpg->lock;
4373 	barrier();
4374 	userpg->index = perf_event_index(event);
4375 	userpg->offset = perf_event_count(event);
4376 	if (userpg->index)
4377 		userpg->offset -= local64_read(&event->hw.prev_count);
4378 
4379 	userpg->time_enabled = enabled +
4380 			atomic64_read(&event->child_total_time_enabled);
4381 
4382 	userpg->time_running = running +
4383 			atomic64_read(&event->child_total_time_running);
4384 
4385 	arch_perf_update_userpage(event, userpg, now);
4386 
4387 	barrier();
4388 	++userpg->lock;
4389 	preempt_enable();
4390 unlock:
4391 	rcu_read_unlock();
4392 }
4393 
4394 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4395 {
4396 	struct perf_event *event = vma->vm_file->private_data;
4397 	struct ring_buffer *rb;
4398 	int ret = VM_FAULT_SIGBUS;
4399 
4400 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4401 		if (vmf->pgoff == 0)
4402 			ret = 0;
4403 		return ret;
4404 	}
4405 
4406 	rcu_read_lock();
4407 	rb = rcu_dereference(event->rb);
4408 	if (!rb)
4409 		goto unlock;
4410 
4411 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4412 		goto unlock;
4413 
4414 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4415 	if (!vmf->page)
4416 		goto unlock;
4417 
4418 	get_page(vmf->page);
4419 	vmf->page->mapping = vma->vm_file->f_mapping;
4420 	vmf->page->index   = vmf->pgoff;
4421 
4422 	ret = 0;
4423 unlock:
4424 	rcu_read_unlock();
4425 
4426 	return ret;
4427 }
4428 
4429 static void ring_buffer_attach(struct perf_event *event,
4430 			       struct ring_buffer *rb)
4431 {
4432 	struct ring_buffer *old_rb = NULL;
4433 	unsigned long flags;
4434 
4435 	if (event->rb) {
4436 		/*
4437 		 * Should be impossible, we set this when removing
4438 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4439 		 */
4440 		WARN_ON_ONCE(event->rcu_pending);
4441 
4442 		old_rb = event->rb;
4443 		spin_lock_irqsave(&old_rb->event_lock, flags);
4444 		list_del_rcu(&event->rb_entry);
4445 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4446 
4447 		event->rcu_batches = get_state_synchronize_rcu();
4448 		event->rcu_pending = 1;
4449 	}
4450 
4451 	if (rb) {
4452 		if (event->rcu_pending) {
4453 			cond_synchronize_rcu(event->rcu_batches);
4454 			event->rcu_pending = 0;
4455 		}
4456 
4457 		spin_lock_irqsave(&rb->event_lock, flags);
4458 		list_add_rcu(&event->rb_entry, &rb->event_list);
4459 		spin_unlock_irqrestore(&rb->event_lock, flags);
4460 	}
4461 
4462 	rcu_assign_pointer(event->rb, rb);
4463 
4464 	if (old_rb) {
4465 		ring_buffer_put(old_rb);
4466 		/*
4467 		 * Since we detached before setting the new rb, so that we
4468 		 * could attach the new rb, we could have missed a wakeup.
4469 		 * Provide it now.
4470 		 */
4471 		wake_up_all(&event->waitq);
4472 	}
4473 }
4474 
4475 static void ring_buffer_wakeup(struct perf_event *event)
4476 {
4477 	struct ring_buffer *rb;
4478 
4479 	rcu_read_lock();
4480 	rb = rcu_dereference(event->rb);
4481 	if (rb) {
4482 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4483 			wake_up_all(&event->waitq);
4484 	}
4485 	rcu_read_unlock();
4486 }
4487 
4488 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4489 {
4490 	struct ring_buffer *rb;
4491 
4492 	rcu_read_lock();
4493 	rb = rcu_dereference(event->rb);
4494 	if (rb) {
4495 		if (!atomic_inc_not_zero(&rb->refcount))
4496 			rb = NULL;
4497 	}
4498 	rcu_read_unlock();
4499 
4500 	return rb;
4501 }
4502 
4503 void ring_buffer_put(struct ring_buffer *rb)
4504 {
4505 	if (!atomic_dec_and_test(&rb->refcount))
4506 		return;
4507 
4508 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4509 
4510 	call_rcu(&rb->rcu_head, rb_free_rcu);
4511 }
4512 
4513 static void perf_mmap_open(struct vm_area_struct *vma)
4514 {
4515 	struct perf_event *event = vma->vm_file->private_data;
4516 
4517 	atomic_inc(&event->mmap_count);
4518 	atomic_inc(&event->rb->mmap_count);
4519 
4520 	if (vma->vm_pgoff)
4521 		atomic_inc(&event->rb->aux_mmap_count);
4522 
4523 	if (event->pmu->event_mapped)
4524 		event->pmu->event_mapped(event);
4525 }
4526 
4527 /*
4528  * A buffer can be mmap()ed multiple times; either directly through the same
4529  * event, or through other events by use of perf_event_set_output().
4530  *
4531  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4532  * the buffer here, where we still have a VM context. This means we need
4533  * to detach all events redirecting to us.
4534  */
4535 static void perf_mmap_close(struct vm_area_struct *vma)
4536 {
4537 	struct perf_event *event = vma->vm_file->private_data;
4538 
4539 	struct ring_buffer *rb = ring_buffer_get(event);
4540 	struct user_struct *mmap_user = rb->mmap_user;
4541 	int mmap_locked = rb->mmap_locked;
4542 	unsigned long size = perf_data_size(rb);
4543 
4544 	if (event->pmu->event_unmapped)
4545 		event->pmu->event_unmapped(event);
4546 
4547 	/*
4548 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4549 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4550 	 * serialize with perf_mmap here.
4551 	 */
4552 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4553 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4554 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4555 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4556 
4557 		rb_free_aux(rb);
4558 		mutex_unlock(&event->mmap_mutex);
4559 	}
4560 
4561 	atomic_dec(&rb->mmap_count);
4562 
4563 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4564 		goto out_put;
4565 
4566 	ring_buffer_attach(event, NULL);
4567 	mutex_unlock(&event->mmap_mutex);
4568 
4569 	/* If there's still other mmap()s of this buffer, we're done. */
4570 	if (atomic_read(&rb->mmap_count))
4571 		goto out_put;
4572 
4573 	/*
4574 	 * No other mmap()s, detach from all other events that might redirect
4575 	 * into the now unreachable buffer. Somewhat complicated by the
4576 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4577 	 */
4578 again:
4579 	rcu_read_lock();
4580 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4581 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4582 			/*
4583 			 * This event is en-route to free_event() which will
4584 			 * detach it and remove it from the list.
4585 			 */
4586 			continue;
4587 		}
4588 		rcu_read_unlock();
4589 
4590 		mutex_lock(&event->mmap_mutex);
4591 		/*
4592 		 * Check we didn't race with perf_event_set_output() which can
4593 		 * swizzle the rb from under us while we were waiting to
4594 		 * acquire mmap_mutex.
4595 		 *
4596 		 * If we find a different rb; ignore this event, a next
4597 		 * iteration will no longer find it on the list. We have to
4598 		 * still restart the iteration to make sure we're not now
4599 		 * iterating the wrong list.
4600 		 */
4601 		if (event->rb == rb)
4602 			ring_buffer_attach(event, NULL);
4603 
4604 		mutex_unlock(&event->mmap_mutex);
4605 		put_event(event);
4606 
4607 		/*
4608 		 * Restart the iteration; either we're on the wrong list or
4609 		 * destroyed its integrity by doing a deletion.
4610 		 */
4611 		goto again;
4612 	}
4613 	rcu_read_unlock();
4614 
4615 	/*
4616 	 * It could be there's still a few 0-ref events on the list; they'll
4617 	 * get cleaned up by free_event() -- they'll also still have their
4618 	 * ref on the rb and will free it whenever they are done with it.
4619 	 *
4620 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4621 	 * undo the VM accounting.
4622 	 */
4623 
4624 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4625 	vma->vm_mm->pinned_vm -= mmap_locked;
4626 	free_uid(mmap_user);
4627 
4628 out_put:
4629 	ring_buffer_put(rb); /* could be last */
4630 }
4631 
4632 static const struct vm_operations_struct perf_mmap_vmops = {
4633 	.open		= perf_mmap_open,
4634 	.close		= perf_mmap_close, /* non mergable */
4635 	.fault		= perf_mmap_fault,
4636 	.page_mkwrite	= perf_mmap_fault,
4637 };
4638 
4639 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4640 {
4641 	struct perf_event *event = file->private_data;
4642 	unsigned long user_locked, user_lock_limit;
4643 	struct user_struct *user = current_user();
4644 	unsigned long locked, lock_limit;
4645 	struct ring_buffer *rb = NULL;
4646 	unsigned long vma_size;
4647 	unsigned long nr_pages;
4648 	long user_extra = 0, extra = 0;
4649 	int ret = 0, flags = 0;
4650 
4651 	/*
4652 	 * Don't allow mmap() of inherited per-task counters. This would
4653 	 * create a performance issue due to all children writing to the
4654 	 * same rb.
4655 	 */
4656 	if (event->cpu == -1 && event->attr.inherit)
4657 		return -EINVAL;
4658 
4659 	if (!(vma->vm_flags & VM_SHARED))
4660 		return -EINVAL;
4661 
4662 	vma_size = vma->vm_end - vma->vm_start;
4663 
4664 	if (vma->vm_pgoff == 0) {
4665 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4666 	} else {
4667 		/*
4668 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4669 		 * mapped, all subsequent mappings should have the same size
4670 		 * and offset. Must be above the normal perf buffer.
4671 		 */
4672 		u64 aux_offset, aux_size;
4673 
4674 		if (!event->rb)
4675 			return -EINVAL;
4676 
4677 		nr_pages = vma_size / PAGE_SIZE;
4678 
4679 		mutex_lock(&event->mmap_mutex);
4680 		ret = -EINVAL;
4681 
4682 		rb = event->rb;
4683 		if (!rb)
4684 			goto aux_unlock;
4685 
4686 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4687 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4688 
4689 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4690 			goto aux_unlock;
4691 
4692 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4693 			goto aux_unlock;
4694 
4695 		/* already mapped with a different offset */
4696 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4697 			goto aux_unlock;
4698 
4699 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4700 			goto aux_unlock;
4701 
4702 		/* already mapped with a different size */
4703 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4704 			goto aux_unlock;
4705 
4706 		if (!is_power_of_2(nr_pages))
4707 			goto aux_unlock;
4708 
4709 		if (!atomic_inc_not_zero(&rb->mmap_count))
4710 			goto aux_unlock;
4711 
4712 		if (rb_has_aux(rb)) {
4713 			atomic_inc(&rb->aux_mmap_count);
4714 			ret = 0;
4715 			goto unlock;
4716 		}
4717 
4718 		atomic_set(&rb->aux_mmap_count, 1);
4719 		user_extra = nr_pages;
4720 
4721 		goto accounting;
4722 	}
4723 
4724 	/*
4725 	 * If we have rb pages ensure they're a power-of-two number, so we
4726 	 * can do bitmasks instead of modulo.
4727 	 */
4728 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4729 		return -EINVAL;
4730 
4731 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4732 		return -EINVAL;
4733 
4734 	WARN_ON_ONCE(event->ctx->parent_ctx);
4735 again:
4736 	mutex_lock(&event->mmap_mutex);
4737 	if (event->rb) {
4738 		if (event->rb->nr_pages != nr_pages) {
4739 			ret = -EINVAL;
4740 			goto unlock;
4741 		}
4742 
4743 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4744 			/*
4745 			 * Raced against perf_mmap_close() through
4746 			 * perf_event_set_output(). Try again, hope for better
4747 			 * luck.
4748 			 */
4749 			mutex_unlock(&event->mmap_mutex);
4750 			goto again;
4751 		}
4752 
4753 		goto unlock;
4754 	}
4755 
4756 	user_extra = nr_pages + 1;
4757 
4758 accounting:
4759 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4760 
4761 	/*
4762 	 * Increase the limit linearly with more CPUs:
4763 	 */
4764 	user_lock_limit *= num_online_cpus();
4765 
4766 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4767 
4768 	if (user_locked > user_lock_limit)
4769 		extra = user_locked - user_lock_limit;
4770 
4771 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4772 	lock_limit >>= PAGE_SHIFT;
4773 	locked = vma->vm_mm->pinned_vm + extra;
4774 
4775 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4776 		!capable(CAP_IPC_LOCK)) {
4777 		ret = -EPERM;
4778 		goto unlock;
4779 	}
4780 
4781 	WARN_ON(!rb && event->rb);
4782 
4783 	if (vma->vm_flags & VM_WRITE)
4784 		flags |= RING_BUFFER_WRITABLE;
4785 
4786 	if (!rb) {
4787 		rb = rb_alloc(nr_pages,
4788 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4789 			      event->cpu, flags);
4790 
4791 		if (!rb) {
4792 			ret = -ENOMEM;
4793 			goto unlock;
4794 		}
4795 
4796 		atomic_set(&rb->mmap_count, 1);
4797 		rb->mmap_user = get_current_user();
4798 		rb->mmap_locked = extra;
4799 
4800 		ring_buffer_attach(event, rb);
4801 
4802 		perf_event_init_userpage(event);
4803 		perf_event_update_userpage(event);
4804 	} else {
4805 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4806 				   event->attr.aux_watermark, flags);
4807 		if (!ret)
4808 			rb->aux_mmap_locked = extra;
4809 	}
4810 
4811 unlock:
4812 	if (!ret) {
4813 		atomic_long_add(user_extra, &user->locked_vm);
4814 		vma->vm_mm->pinned_vm += extra;
4815 
4816 		atomic_inc(&event->mmap_count);
4817 	} else if (rb) {
4818 		atomic_dec(&rb->mmap_count);
4819 	}
4820 aux_unlock:
4821 	mutex_unlock(&event->mmap_mutex);
4822 
4823 	/*
4824 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4825 	 * vma.
4826 	 */
4827 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4828 	vma->vm_ops = &perf_mmap_vmops;
4829 
4830 	if (event->pmu->event_mapped)
4831 		event->pmu->event_mapped(event);
4832 
4833 	return ret;
4834 }
4835 
4836 static int perf_fasync(int fd, struct file *filp, int on)
4837 {
4838 	struct inode *inode = file_inode(filp);
4839 	struct perf_event *event = filp->private_data;
4840 	int retval;
4841 
4842 	mutex_lock(&inode->i_mutex);
4843 	retval = fasync_helper(fd, filp, on, &event->fasync);
4844 	mutex_unlock(&inode->i_mutex);
4845 
4846 	if (retval < 0)
4847 		return retval;
4848 
4849 	return 0;
4850 }
4851 
4852 static const struct file_operations perf_fops = {
4853 	.llseek			= no_llseek,
4854 	.release		= perf_release,
4855 	.read			= perf_read,
4856 	.poll			= perf_poll,
4857 	.unlocked_ioctl		= perf_ioctl,
4858 	.compat_ioctl		= perf_compat_ioctl,
4859 	.mmap			= perf_mmap,
4860 	.fasync			= perf_fasync,
4861 };
4862 
4863 /*
4864  * Perf event wakeup
4865  *
4866  * If there's data, ensure we set the poll() state and publish everything
4867  * to user-space before waking everybody up.
4868  */
4869 
4870 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4871 {
4872 	/* only the parent has fasync state */
4873 	if (event->parent)
4874 		event = event->parent;
4875 	return &event->fasync;
4876 }
4877 
4878 void perf_event_wakeup(struct perf_event *event)
4879 {
4880 	ring_buffer_wakeup(event);
4881 
4882 	if (event->pending_kill) {
4883 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4884 		event->pending_kill = 0;
4885 	}
4886 }
4887 
4888 static void perf_pending_event(struct irq_work *entry)
4889 {
4890 	struct perf_event *event = container_of(entry,
4891 			struct perf_event, pending);
4892 	int rctx;
4893 
4894 	rctx = perf_swevent_get_recursion_context();
4895 	/*
4896 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4897 	 * and we won't recurse 'further'.
4898 	 */
4899 
4900 	if (event->pending_disable) {
4901 		event->pending_disable = 0;
4902 		__perf_event_disable(event);
4903 	}
4904 
4905 	if (event->pending_wakeup) {
4906 		event->pending_wakeup = 0;
4907 		perf_event_wakeup(event);
4908 	}
4909 
4910 	if (rctx >= 0)
4911 		perf_swevent_put_recursion_context(rctx);
4912 }
4913 
4914 /*
4915  * We assume there is only KVM supporting the callbacks.
4916  * Later on, we might change it to a list if there is
4917  * another virtualization implementation supporting the callbacks.
4918  */
4919 struct perf_guest_info_callbacks *perf_guest_cbs;
4920 
4921 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4922 {
4923 	perf_guest_cbs = cbs;
4924 	return 0;
4925 }
4926 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4927 
4928 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4929 {
4930 	perf_guest_cbs = NULL;
4931 	return 0;
4932 }
4933 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4934 
4935 static void
4936 perf_output_sample_regs(struct perf_output_handle *handle,
4937 			struct pt_regs *regs, u64 mask)
4938 {
4939 	int bit;
4940 
4941 	for_each_set_bit(bit, (const unsigned long *) &mask,
4942 			 sizeof(mask) * BITS_PER_BYTE) {
4943 		u64 val;
4944 
4945 		val = perf_reg_value(regs, bit);
4946 		perf_output_put(handle, val);
4947 	}
4948 }
4949 
4950 static void perf_sample_regs_user(struct perf_regs *regs_user,
4951 				  struct pt_regs *regs,
4952 				  struct pt_regs *regs_user_copy)
4953 {
4954 	if (user_mode(regs)) {
4955 		regs_user->abi = perf_reg_abi(current);
4956 		regs_user->regs = regs;
4957 	} else if (current->mm) {
4958 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4959 	} else {
4960 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4961 		regs_user->regs = NULL;
4962 	}
4963 }
4964 
4965 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4966 				  struct pt_regs *regs)
4967 {
4968 	regs_intr->regs = regs;
4969 	regs_intr->abi  = perf_reg_abi(current);
4970 }
4971 
4972 
4973 /*
4974  * Get remaining task size from user stack pointer.
4975  *
4976  * It'd be better to take stack vma map and limit this more
4977  * precisly, but there's no way to get it safely under interrupt,
4978  * so using TASK_SIZE as limit.
4979  */
4980 static u64 perf_ustack_task_size(struct pt_regs *regs)
4981 {
4982 	unsigned long addr = perf_user_stack_pointer(regs);
4983 
4984 	if (!addr || addr >= TASK_SIZE)
4985 		return 0;
4986 
4987 	return TASK_SIZE - addr;
4988 }
4989 
4990 static u16
4991 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4992 			struct pt_regs *regs)
4993 {
4994 	u64 task_size;
4995 
4996 	/* No regs, no stack pointer, no dump. */
4997 	if (!regs)
4998 		return 0;
4999 
5000 	/*
5001 	 * Check if we fit in with the requested stack size into the:
5002 	 * - TASK_SIZE
5003 	 *   If we don't, we limit the size to the TASK_SIZE.
5004 	 *
5005 	 * - remaining sample size
5006 	 *   If we don't, we customize the stack size to
5007 	 *   fit in to the remaining sample size.
5008 	 */
5009 
5010 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5011 	stack_size = min(stack_size, (u16) task_size);
5012 
5013 	/* Current header size plus static size and dynamic size. */
5014 	header_size += 2 * sizeof(u64);
5015 
5016 	/* Do we fit in with the current stack dump size? */
5017 	if ((u16) (header_size + stack_size) < header_size) {
5018 		/*
5019 		 * If we overflow the maximum size for the sample,
5020 		 * we customize the stack dump size to fit in.
5021 		 */
5022 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5023 		stack_size = round_up(stack_size, sizeof(u64));
5024 	}
5025 
5026 	return stack_size;
5027 }
5028 
5029 static void
5030 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5031 			  struct pt_regs *regs)
5032 {
5033 	/* Case of a kernel thread, nothing to dump */
5034 	if (!regs) {
5035 		u64 size = 0;
5036 		perf_output_put(handle, size);
5037 	} else {
5038 		unsigned long sp;
5039 		unsigned int rem;
5040 		u64 dyn_size;
5041 
5042 		/*
5043 		 * We dump:
5044 		 * static size
5045 		 *   - the size requested by user or the best one we can fit
5046 		 *     in to the sample max size
5047 		 * data
5048 		 *   - user stack dump data
5049 		 * dynamic size
5050 		 *   - the actual dumped size
5051 		 */
5052 
5053 		/* Static size. */
5054 		perf_output_put(handle, dump_size);
5055 
5056 		/* Data. */
5057 		sp = perf_user_stack_pointer(regs);
5058 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5059 		dyn_size = dump_size - rem;
5060 
5061 		perf_output_skip(handle, rem);
5062 
5063 		/* Dynamic size. */
5064 		perf_output_put(handle, dyn_size);
5065 	}
5066 }
5067 
5068 static void __perf_event_header__init_id(struct perf_event_header *header,
5069 					 struct perf_sample_data *data,
5070 					 struct perf_event *event)
5071 {
5072 	u64 sample_type = event->attr.sample_type;
5073 
5074 	data->type = sample_type;
5075 	header->size += event->id_header_size;
5076 
5077 	if (sample_type & PERF_SAMPLE_TID) {
5078 		/* namespace issues */
5079 		data->tid_entry.pid = perf_event_pid(event, current);
5080 		data->tid_entry.tid = perf_event_tid(event, current);
5081 	}
5082 
5083 	if (sample_type & PERF_SAMPLE_TIME)
5084 		data->time = perf_event_clock(event);
5085 
5086 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5087 		data->id = primary_event_id(event);
5088 
5089 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5090 		data->stream_id = event->id;
5091 
5092 	if (sample_type & PERF_SAMPLE_CPU) {
5093 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5094 		data->cpu_entry.reserved = 0;
5095 	}
5096 }
5097 
5098 void perf_event_header__init_id(struct perf_event_header *header,
5099 				struct perf_sample_data *data,
5100 				struct perf_event *event)
5101 {
5102 	if (event->attr.sample_id_all)
5103 		__perf_event_header__init_id(header, data, event);
5104 }
5105 
5106 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5107 					   struct perf_sample_data *data)
5108 {
5109 	u64 sample_type = data->type;
5110 
5111 	if (sample_type & PERF_SAMPLE_TID)
5112 		perf_output_put(handle, data->tid_entry);
5113 
5114 	if (sample_type & PERF_SAMPLE_TIME)
5115 		perf_output_put(handle, data->time);
5116 
5117 	if (sample_type & PERF_SAMPLE_ID)
5118 		perf_output_put(handle, data->id);
5119 
5120 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5121 		perf_output_put(handle, data->stream_id);
5122 
5123 	if (sample_type & PERF_SAMPLE_CPU)
5124 		perf_output_put(handle, data->cpu_entry);
5125 
5126 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5127 		perf_output_put(handle, data->id);
5128 }
5129 
5130 void perf_event__output_id_sample(struct perf_event *event,
5131 				  struct perf_output_handle *handle,
5132 				  struct perf_sample_data *sample)
5133 {
5134 	if (event->attr.sample_id_all)
5135 		__perf_event__output_id_sample(handle, sample);
5136 }
5137 
5138 static void perf_output_read_one(struct perf_output_handle *handle,
5139 				 struct perf_event *event,
5140 				 u64 enabled, u64 running)
5141 {
5142 	u64 read_format = event->attr.read_format;
5143 	u64 values[4];
5144 	int n = 0;
5145 
5146 	values[n++] = perf_event_count(event);
5147 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5148 		values[n++] = enabled +
5149 			atomic64_read(&event->child_total_time_enabled);
5150 	}
5151 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5152 		values[n++] = running +
5153 			atomic64_read(&event->child_total_time_running);
5154 	}
5155 	if (read_format & PERF_FORMAT_ID)
5156 		values[n++] = primary_event_id(event);
5157 
5158 	__output_copy(handle, values, n * sizeof(u64));
5159 }
5160 
5161 /*
5162  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5163  */
5164 static void perf_output_read_group(struct perf_output_handle *handle,
5165 			    struct perf_event *event,
5166 			    u64 enabled, u64 running)
5167 {
5168 	struct perf_event *leader = event->group_leader, *sub;
5169 	u64 read_format = event->attr.read_format;
5170 	u64 values[5];
5171 	int n = 0;
5172 
5173 	values[n++] = 1 + leader->nr_siblings;
5174 
5175 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5176 		values[n++] = enabled;
5177 
5178 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5179 		values[n++] = running;
5180 
5181 	if (leader != event)
5182 		leader->pmu->read(leader);
5183 
5184 	values[n++] = perf_event_count(leader);
5185 	if (read_format & PERF_FORMAT_ID)
5186 		values[n++] = primary_event_id(leader);
5187 
5188 	__output_copy(handle, values, n * sizeof(u64));
5189 
5190 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5191 		n = 0;
5192 
5193 		if ((sub != event) &&
5194 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5195 			sub->pmu->read(sub);
5196 
5197 		values[n++] = perf_event_count(sub);
5198 		if (read_format & PERF_FORMAT_ID)
5199 			values[n++] = primary_event_id(sub);
5200 
5201 		__output_copy(handle, values, n * sizeof(u64));
5202 	}
5203 }
5204 
5205 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5206 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5207 
5208 static void perf_output_read(struct perf_output_handle *handle,
5209 			     struct perf_event *event)
5210 {
5211 	u64 enabled = 0, running = 0, now;
5212 	u64 read_format = event->attr.read_format;
5213 
5214 	/*
5215 	 * compute total_time_enabled, total_time_running
5216 	 * based on snapshot values taken when the event
5217 	 * was last scheduled in.
5218 	 *
5219 	 * we cannot simply called update_context_time()
5220 	 * because of locking issue as we are called in
5221 	 * NMI context
5222 	 */
5223 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5224 		calc_timer_values(event, &now, &enabled, &running);
5225 
5226 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5227 		perf_output_read_group(handle, event, enabled, running);
5228 	else
5229 		perf_output_read_one(handle, event, enabled, running);
5230 }
5231 
5232 void perf_output_sample(struct perf_output_handle *handle,
5233 			struct perf_event_header *header,
5234 			struct perf_sample_data *data,
5235 			struct perf_event *event)
5236 {
5237 	u64 sample_type = data->type;
5238 
5239 	perf_output_put(handle, *header);
5240 
5241 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5242 		perf_output_put(handle, data->id);
5243 
5244 	if (sample_type & PERF_SAMPLE_IP)
5245 		perf_output_put(handle, data->ip);
5246 
5247 	if (sample_type & PERF_SAMPLE_TID)
5248 		perf_output_put(handle, data->tid_entry);
5249 
5250 	if (sample_type & PERF_SAMPLE_TIME)
5251 		perf_output_put(handle, data->time);
5252 
5253 	if (sample_type & PERF_SAMPLE_ADDR)
5254 		perf_output_put(handle, data->addr);
5255 
5256 	if (sample_type & PERF_SAMPLE_ID)
5257 		perf_output_put(handle, data->id);
5258 
5259 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5260 		perf_output_put(handle, data->stream_id);
5261 
5262 	if (sample_type & PERF_SAMPLE_CPU)
5263 		perf_output_put(handle, data->cpu_entry);
5264 
5265 	if (sample_type & PERF_SAMPLE_PERIOD)
5266 		perf_output_put(handle, data->period);
5267 
5268 	if (sample_type & PERF_SAMPLE_READ)
5269 		perf_output_read(handle, event);
5270 
5271 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5272 		if (data->callchain) {
5273 			int size = 1;
5274 
5275 			if (data->callchain)
5276 				size += data->callchain->nr;
5277 
5278 			size *= sizeof(u64);
5279 
5280 			__output_copy(handle, data->callchain, size);
5281 		} else {
5282 			u64 nr = 0;
5283 			perf_output_put(handle, nr);
5284 		}
5285 	}
5286 
5287 	if (sample_type & PERF_SAMPLE_RAW) {
5288 		if (data->raw) {
5289 			perf_output_put(handle, data->raw->size);
5290 			__output_copy(handle, data->raw->data,
5291 					   data->raw->size);
5292 		} else {
5293 			struct {
5294 				u32	size;
5295 				u32	data;
5296 			} raw = {
5297 				.size = sizeof(u32),
5298 				.data = 0,
5299 			};
5300 			perf_output_put(handle, raw);
5301 		}
5302 	}
5303 
5304 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5305 		if (data->br_stack) {
5306 			size_t size;
5307 
5308 			size = data->br_stack->nr
5309 			     * sizeof(struct perf_branch_entry);
5310 
5311 			perf_output_put(handle, data->br_stack->nr);
5312 			perf_output_copy(handle, data->br_stack->entries, size);
5313 		} else {
5314 			/*
5315 			 * we always store at least the value of nr
5316 			 */
5317 			u64 nr = 0;
5318 			perf_output_put(handle, nr);
5319 		}
5320 	}
5321 
5322 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5323 		u64 abi = data->regs_user.abi;
5324 
5325 		/*
5326 		 * If there are no regs to dump, notice it through
5327 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5328 		 */
5329 		perf_output_put(handle, abi);
5330 
5331 		if (abi) {
5332 			u64 mask = event->attr.sample_regs_user;
5333 			perf_output_sample_regs(handle,
5334 						data->regs_user.regs,
5335 						mask);
5336 		}
5337 	}
5338 
5339 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5340 		perf_output_sample_ustack(handle,
5341 					  data->stack_user_size,
5342 					  data->regs_user.regs);
5343 	}
5344 
5345 	if (sample_type & PERF_SAMPLE_WEIGHT)
5346 		perf_output_put(handle, data->weight);
5347 
5348 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5349 		perf_output_put(handle, data->data_src.val);
5350 
5351 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5352 		perf_output_put(handle, data->txn);
5353 
5354 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5355 		u64 abi = data->regs_intr.abi;
5356 		/*
5357 		 * If there are no regs to dump, notice it through
5358 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5359 		 */
5360 		perf_output_put(handle, abi);
5361 
5362 		if (abi) {
5363 			u64 mask = event->attr.sample_regs_intr;
5364 
5365 			perf_output_sample_regs(handle,
5366 						data->regs_intr.regs,
5367 						mask);
5368 		}
5369 	}
5370 
5371 	if (!event->attr.watermark) {
5372 		int wakeup_events = event->attr.wakeup_events;
5373 
5374 		if (wakeup_events) {
5375 			struct ring_buffer *rb = handle->rb;
5376 			int events = local_inc_return(&rb->events);
5377 
5378 			if (events >= wakeup_events) {
5379 				local_sub(wakeup_events, &rb->events);
5380 				local_inc(&rb->wakeup);
5381 			}
5382 		}
5383 	}
5384 }
5385 
5386 void perf_prepare_sample(struct perf_event_header *header,
5387 			 struct perf_sample_data *data,
5388 			 struct perf_event *event,
5389 			 struct pt_regs *regs)
5390 {
5391 	u64 sample_type = event->attr.sample_type;
5392 
5393 	header->type = PERF_RECORD_SAMPLE;
5394 	header->size = sizeof(*header) + event->header_size;
5395 
5396 	header->misc = 0;
5397 	header->misc |= perf_misc_flags(regs);
5398 
5399 	__perf_event_header__init_id(header, data, event);
5400 
5401 	if (sample_type & PERF_SAMPLE_IP)
5402 		data->ip = perf_instruction_pointer(regs);
5403 
5404 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405 		int size = 1;
5406 
5407 		data->callchain = perf_callchain(event, regs);
5408 
5409 		if (data->callchain)
5410 			size += data->callchain->nr;
5411 
5412 		header->size += size * sizeof(u64);
5413 	}
5414 
5415 	if (sample_type & PERF_SAMPLE_RAW) {
5416 		int size = sizeof(u32);
5417 
5418 		if (data->raw)
5419 			size += data->raw->size;
5420 		else
5421 			size += sizeof(u32);
5422 
5423 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5424 		header->size += size;
5425 	}
5426 
5427 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5428 		int size = sizeof(u64); /* nr */
5429 		if (data->br_stack) {
5430 			size += data->br_stack->nr
5431 			      * sizeof(struct perf_branch_entry);
5432 		}
5433 		header->size += size;
5434 	}
5435 
5436 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5437 		perf_sample_regs_user(&data->regs_user, regs,
5438 				      &data->regs_user_copy);
5439 
5440 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5441 		/* regs dump ABI info */
5442 		int size = sizeof(u64);
5443 
5444 		if (data->regs_user.regs) {
5445 			u64 mask = event->attr.sample_regs_user;
5446 			size += hweight64(mask) * sizeof(u64);
5447 		}
5448 
5449 		header->size += size;
5450 	}
5451 
5452 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5453 		/*
5454 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5455 		 * processed as the last one or have additional check added
5456 		 * in case new sample type is added, because we could eat
5457 		 * up the rest of the sample size.
5458 		 */
5459 		u16 stack_size = event->attr.sample_stack_user;
5460 		u16 size = sizeof(u64);
5461 
5462 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5463 						     data->regs_user.regs);
5464 
5465 		/*
5466 		 * If there is something to dump, add space for the dump
5467 		 * itself and for the field that tells the dynamic size,
5468 		 * which is how many have been actually dumped.
5469 		 */
5470 		if (stack_size)
5471 			size += sizeof(u64) + stack_size;
5472 
5473 		data->stack_user_size = stack_size;
5474 		header->size += size;
5475 	}
5476 
5477 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5478 		/* regs dump ABI info */
5479 		int size = sizeof(u64);
5480 
5481 		perf_sample_regs_intr(&data->regs_intr, regs);
5482 
5483 		if (data->regs_intr.regs) {
5484 			u64 mask = event->attr.sample_regs_intr;
5485 
5486 			size += hweight64(mask) * sizeof(u64);
5487 		}
5488 
5489 		header->size += size;
5490 	}
5491 }
5492 
5493 void perf_event_output(struct perf_event *event,
5494 			struct perf_sample_data *data,
5495 			struct pt_regs *regs)
5496 {
5497 	struct perf_output_handle handle;
5498 	struct perf_event_header header;
5499 
5500 	/* protect the callchain buffers */
5501 	rcu_read_lock();
5502 
5503 	perf_prepare_sample(&header, data, event, regs);
5504 
5505 	if (perf_output_begin(&handle, event, header.size))
5506 		goto exit;
5507 
5508 	perf_output_sample(&handle, &header, data, event);
5509 
5510 	perf_output_end(&handle);
5511 
5512 exit:
5513 	rcu_read_unlock();
5514 }
5515 
5516 /*
5517  * read event_id
5518  */
5519 
5520 struct perf_read_event {
5521 	struct perf_event_header	header;
5522 
5523 	u32				pid;
5524 	u32				tid;
5525 };
5526 
5527 static void
5528 perf_event_read_event(struct perf_event *event,
5529 			struct task_struct *task)
5530 {
5531 	struct perf_output_handle handle;
5532 	struct perf_sample_data sample;
5533 	struct perf_read_event read_event = {
5534 		.header = {
5535 			.type = PERF_RECORD_READ,
5536 			.misc = 0,
5537 			.size = sizeof(read_event) + event->read_size,
5538 		},
5539 		.pid = perf_event_pid(event, task),
5540 		.tid = perf_event_tid(event, task),
5541 	};
5542 	int ret;
5543 
5544 	perf_event_header__init_id(&read_event.header, &sample, event);
5545 	ret = perf_output_begin(&handle, event, read_event.header.size);
5546 	if (ret)
5547 		return;
5548 
5549 	perf_output_put(&handle, read_event);
5550 	perf_output_read(&handle, event);
5551 	perf_event__output_id_sample(event, &handle, &sample);
5552 
5553 	perf_output_end(&handle);
5554 }
5555 
5556 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5557 
5558 static void
5559 perf_event_aux_ctx(struct perf_event_context *ctx,
5560 		   perf_event_aux_output_cb output,
5561 		   void *data)
5562 {
5563 	struct perf_event *event;
5564 
5565 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5566 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5567 			continue;
5568 		if (!event_filter_match(event))
5569 			continue;
5570 		output(event, data);
5571 	}
5572 }
5573 
5574 static void
5575 perf_event_aux(perf_event_aux_output_cb output, void *data,
5576 	       struct perf_event_context *task_ctx)
5577 {
5578 	struct perf_cpu_context *cpuctx;
5579 	struct perf_event_context *ctx;
5580 	struct pmu *pmu;
5581 	int ctxn;
5582 
5583 	rcu_read_lock();
5584 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5585 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5586 		if (cpuctx->unique_pmu != pmu)
5587 			goto next;
5588 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5589 		if (task_ctx)
5590 			goto next;
5591 		ctxn = pmu->task_ctx_nr;
5592 		if (ctxn < 0)
5593 			goto next;
5594 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5595 		if (ctx)
5596 			perf_event_aux_ctx(ctx, output, data);
5597 next:
5598 		put_cpu_ptr(pmu->pmu_cpu_context);
5599 	}
5600 
5601 	if (task_ctx) {
5602 		preempt_disable();
5603 		perf_event_aux_ctx(task_ctx, output, data);
5604 		preempt_enable();
5605 	}
5606 	rcu_read_unlock();
5607 }
5608 
5609 /*
5610  * task tracking -- fork/exit
5611  *
5612  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5613  */
5614 
5615 struct perf_task_event {
5616 	struct task_struct		*task;
5617 	struct perf_event_context	*task_ctx;
5618 
5619 	struct {
5620 		struct perf_event_header	header;
5621 
5622 		u32				pid;
5623 		u32				ppid;
5624 		u32				tid;
5625 		u32				ptid;
5626 		u64				time;
5627 	} event_id;
5628 };
5629 
5630 static int perf_event_task_match(struct perf_event *event)
5631 {
5632 	return event->attr.comm  || event->attr.mmap ||
5633 	       event->attr.mmap2 || event->attr.mmap_data ||
5634 	       event->attr.task;
5635 }
5636 
5637 static void perf_event_task_output(struct perf_event *event,
5638 				   void *data)
5639 {
5640 	struct perf_task_event *task_event = data;
5641 	struct perf_output_handle handle;
5642 	struct perf_sample_data	sample;
5643 	struct task_struct *task = task_event->task;
5644 	int ret, size = task_event->event_id.header.size;
5645 
5646 	if (!perf_event_task_match(event))
5647 		return;
5648 
5649 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5650 
5651 	ret = perf_output_begin(&handle, event,
5652 				task_event->event_id.header.size);
5653 	if (ret)
5654 		goto out;
5655 
5656 	task_event->event_id.pid = perf_event_pid(event, task);
5657 	task_event->event_id.ppid = perf_event_pid(event, current);
5658 
5659 	task_event->event_id.tid = perf_event_tid(event, task);
5660 	task_event->event_id.ptid = perf_event_tid(event, current);
5661 
5662 	task_event->event_id.time = perf_event_clock(event);
5663 
5664 	perf_output_put(&handle, task_event->event_id);
5665 
5666 	perf_event__output_id_sample(event, &handle, &sample);
5667 
5668 	perf_output_end(&handle);
5669 out:
5670 	task_event->event_id.header.size = size;
5671 }
5672 
5673 static void perf_event_task(struct task_struct *task,
5674 			      struct perf_event_context *task_ctx,
5675 			      int new)
5676 {
5677 	struct perf_task_event task_event;
5678 
5679 	if (!atomic_read(&nr_comm_events) &&
5680 	    !atomic_read(&nr_mmap_events) &&
5681 	    !atomic_read(&nr_task_events))
5682 		return;
5683 
5684 	task_event = (struct perf_task_event){
5685 		.task	  = task,
5686 		.task_ctx = task_ctx,
5687 		.event_id    = {
5688 			.header = {
5689 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5690 				.misc = 0,
5691 				.size = sizeof(task_event.event_id),
5692 			},
5693 			/* .pid  */
5694 			/* .ppid */
5695 			/* .tid  */
5696 			/* .ptid */
5697 			/* .time */
5698 		},
5699 	};
5700 
5701 	perf_event_aux(perf_event_task_output,
5702 		       &task_event,
5703 		       task_ctx);
5704 }
5705 
5706 void perf_event_fork(struct task_struct *task)
5707 {
5708 	perf_event_task(task, NULL, 1);
5709 }
5710 
5711 /*
5712  * comm tracking
5713  */
5714 
5715 struct perf_comm_event {
5716 	struct task_struct	*task;
5717 	char			*comm;
5718 	int			comm_size;
5719 
5720 	struct {
5721 		struct perf_event_header	header;
5722 
5723 		u32				pid;
5724 		u32				tid;
5725 	} event_id;
5726 };
5727 
5728 static int perf_event_comm_match(struct perf_event *event)
5729 {
5730 	return event->attr.comm;
5731 }
5732 
5733 static void perf_event_comm_output(struct perf_event *event,
5734 				   void *data)
5735 {
5736 	struct perf_comm_event *comm_event = data;
5737 	struct perf_output_handle handle;
5738 	struct perf_sample_data sample;
5739 	int size = comm_event->event_id.header.size;
5740 	int ret;
5741 
5742 	if (!perf_event_comm_match(event))
5743 		return;
5744 
5745 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5746 	ret = perf_output_begin(&handle, event,
5747 				comm_event->event_id.header.size);
5748 
5749 	if (ret)
5750 		goto out;
5751 
5752 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5753 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5754 
5755 	perf_output_put(&handle, comm_event->event_id);
5756 	__output_copy(&handle, comm_event->comm,
5757 				   comm_event->comm_size);
5758 
5759 	perf_event__output_id_sample(event, &handle, &sample);
5760 
5761 	perf_output_end(&handle);
5762 out:
5763 	comm_event->event_id.header.size = size;
5764 }
5765 
5766 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5767 {
5768 	char comm[TASK_COMM_LEN];
5769 	unsigned int size;
5770 
5771 	memset(comm, 0, sizeof(comm));
5772 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5773 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5774 
5775 	comm_event->comm = comm;
5776 	comm_event->comm_size = size;
5777 
5778 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5779 
5780 	perf_event_aux(perf_event_comm_output,
5781 		       comm_event,
5782 		       NULL);
5783 }
5784 
5785 void perf_event_comm(struct task_struct *task, bool exec)
5786 {
5787 	struct perf_comm_event comm_event;
5788 
5789 	if (!atomic_read(&nr_comm_events))
5790 		return;
5791 
5792 	comm_event = (struct perf_comm_event){
5793 		.task	= task,
5794 		/* .comm      */
5795 		/* .comm_size */
5796 		.event_id  = {
5797 			.header = {
5798 				.type = PERF_RECORD_COMM,
5799 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5800 				/* .size */
5801 			},
5802 			/* .pid */
5803 			/* .tid */
5804 		},
5805 	};
5806 
5807 	perf_event_comm_event(&comm_event);
5808 }
5809 
5810 /*
5811  * mmap tracking
5812  */
5813 
5814 struct perf_mmap_event {
5815 	struct vm_area_struct	*vma;
5816 
5817 	const char		*file_name;
5818 	int			file_size;
5819 	int			maj, min;
5820 	u64			ino;
5821 	u64			ino_generation;
5822 	u32			prot, flags;
5823 
5824 	struct {
5825 		struct perf_event_header	header;
5826 
5827 		u32				pid;
5828 		u32				tid;
5829 		u64				start;
5830 		u64				len;
5831 		u64				pgoff;
5832 	} event_id;
5833 };
5834 
5835 static int perf_event_mmap_match(struct perf_event *event,
5836 				 void *data)
5837 {
5838 	struct perf_mmap_event *mmap_event = data;
5839 	struct vm_area_struct *vma = mmap_event->vma;
5840 	int executable = vma->vm_flags & VM_EXEC;
5841 
5842 	return (!executable && event->attr.mmap_data) ||
5843 	       (executable && (event->attr.mmap || event->attr.mmap2));
5844 }
5845 
5846 static void perf_event_mmap_output(struct perf_event *event,
5847 				   void *data)
5848 {
5849 	struct perf_mmap_event *mmap_event = data;
5850 	struct perf_output_handle handle;
5851 	struct perf_sample_data sample;
5852 	int size = mmap_event->event_id.header.size;
5853 	int ret;
5854 
5855 	if (!perf_event_mmap_match(event, data))
5856 		return;
5857 
5858 	if (event->attr.mmap2) {
5859 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5860 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5861 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5862 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5863 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5864 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5865 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5866 	}
5867 
5868 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5869 	ret = perf_output_begin(&handle, event,
5870 				mmap_event->event_id.header.size);
5871 	if (ret)
5872 		goto out;
5873 
5874 	mmap_event->event_id.pid = perf_event_pid(event, current);
5875 	mmap_event->event_id.tid = perf_event_tid(event, current);
5876 
5877 	perf_output_put(&handle, mmap_event->event_id);
5878 
5879 	if (event->attr.mmap2) {
5880 		perf_output_put(&handle, mmap_event->maj);
5881 		perf_output_put(&handle, mmap_event->min);
5882 		perf_output_put(&handle, mmap_event->ino);
5883 		perf_output_put(&handle, mmap_event->ino_generation);
5884 		perf_output_put(&handle, mmap_event->prot);
5885 		perf_output_put(&handle, mmap_event->flags);
5886 	}
5887 
5888 	__output_copy(&handle, mmap_event->file_name,
5889 				   mmap_event->file_size);
5890 
5891 	perf_event__output_id_sample(event, &handle, &sample);
5892 
5893 	perf_output_end(&handle);
5894 out:
5895 	mmap_event->event_id.header.size = size;
5896 }
5897 
5898 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5899 {
5900 	struct vm_area_struct *vma = mmap_event->vma;
5901 	struct file *file = vma->vm_file;
5902 	int maj = 0, min = 0;
5903 	u64 ino = 0, gen = 0;
5904 	u32 prot = 0, flags = 0;
5905 	unsigned int size;
5906 	char tmp[16];
5907 	char *buf = NULL;
5908 	char *name;
5909 
5910 	if (file) {
5911 		struct inode *inode;
5912 		dev_t dev;
5913 
5914 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5915 		if (!buf) {
5916 			name = "//enomem";
5917 			goto cpy_name;
5918 		}
5919 		/*
5920 		 * d_path() works from the end of the rb backwards, so we
5921 		 * need to add enough zero bytes after the string to handle
5922 		 * the 64bit alignment we do later.
5923 		 */
5924 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5925 		if (IS_ERR(name)) {
5926 			name = "//toolong";
5927 			goto cpy_name;
5928 		}
5929 		inode = file_inode(vma->vm_file);
5930 		dev = inode->i_sb->s_dev;
5931 		ino = inode->i_ino;
5932 		gen = inode->i_generation;
5933 		maj = MAJOR(dev);
5934 		min = MINOR(dev);
5935 
5936 		if (vma->vm_flags & VM_READ)
5937 			prot |= PROT_READ;
5938 		if (vma->vm_flags & VM_WRITE)
5939 			prot |= PROT_WRITE;
5940 		if (vma->vm_flags & VM_EXEC)
5941 			prot |= PROT_EXEC;
5942 
5943 		if (vma->vm_flags & VM_MAYSHARE)
5944 			flags = MAP_SHARED;
5945 		else
5946 			flags = MAP_PRIVATE;
5947 
5948 		if (vma->vm_flags & VM_DENYWRITE)
5949 			flags |= MAP_DENYWRITE;
5950 		if (vma->vm_flags & VM_MAYEXEC)
5951 			flags |= MAP_EXECUTABLE;
5952 		if (vma->vm_flags & VM_LOCKED)
5953 			flags |= MAP_LOCKED;
5954 		if (vma->vm_flags & VM_HUGETLB)
5955 			flags |= MAP_HUGETLB;
5956 
5957 		goto got_name;
5958 	} else {
5959 		if (vma->vm_ops && vma->vm_ops->name) {
5960 			name = (char *) vma->vm_ops->name(vma);
5961 			if (name)
5962 				goto cpy_name;
5963 		}
5964 
5965 		name = (char *)arch_vma_name(vma);
5966 		if (name)
5967 			goto cpy_name;
5968 
5969 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5970 				vma->vm_end >= vma->vm_mm->brk) {
5971 			name = "[heap]";
5972 			goto cpy_name;
5973 		}
5974 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5975 				vma->vm_end >= vma->vm_mm->start_stack) {
5976 			name = "[stack]";
5977 			goto cpy_name;
5978 		}
5979 
5980 		name = "//anon";
5981 		goto cpy_name;
5982 	}
5983 
5984 cpy_name:
5985 	strlcpy(tmp, name, sizeof(tmp));
5986 	name = tmp;
5987 got_name:
5988 	/*
5989 	 * Since our buffer works in 8 byte units we need to align our string
5990 	 * size to a multiple of 8. However, we must guarantee the tail end is
5991 	 * zero'd out to avoid leaking random bits to userspace.
5992 	 */
5993 	size = strlen(name)+1;
5994 	while (!IS_ALIGNED(size, sizeof(u64)))
5995 		name[size++] = '\0';
5996 
5997 	mmap_event->file_name = name;
5998 	mmap_event->file_size = size;
5999 	mmap_event->maj = maj;
6000 	mmap_event->min = min;
6001 	mmap_event->ino = ino;
6002 	mmap_event->ino_generation = gen;
6003 	mmap_event->prot = prot;
6004 	mmap_event->flags = flags;
6005 
6006 	if (!(vma->vm_flags & VM_EXEC))
6007 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6008 
6009 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6010 
6011 	perf_event_aux(perf_event_mmap_output,
6012 		       mmap_event,
6013 		       NULL);
6014 
6015 	kfree(buf);
6016 }
6017 
6018 void perf_event_mmap(struct vm_area_struct *vma)
6019 {
6020 	struct perf_mmap_event mmap_event;
6021 
6022 	if (!atomic_read(&nr_mmap_events))
6023 		return;
6024 
6025 	mmap_event = (struct perf_mmap_event){
6026 		.vma	= vma,
6027 		/* .file_name */
6028 		/* .file_size */
6029 		.event_id  = {
6030 			.header = {
6031 				.type = PERF_RECORD_MMAP,
6032 				.misc = PERF_RECORD_MISC_USER,
6033 				/* .size */
6034 			},
6035 			/* .pid */
6036 			/* .tid */
6037 			.start  = vma->vm_start,
6038 			.len    = vma->vm_end - vma->vm_start,
6039 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6040 		},
6041 		/* .maj (attr_mmap2 only) */
6042 		/* .min (attr_mmap2 only) */
6043 		/* .ino (attr_mmap2 only) */
6044 		/* .ino_generation (attr_mmap2 only) */
6045 		/* .prot (attr_mmap2 only) */
6046 		/* .flags (attr_mmap2 only) */
6047 	};
6048 
6049 	perf_event_mmap_event(&mmap_event);
6050 }
6051 
6052 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6053 			  unsigned long size, u64 flags)
6054 {
6055 	struct perf_output_handle handle;
6056 	struct perf_sample_data sample;
6057 	struct perf_aux_event {
6058 		struct perf_event_header	header;
6059 		u64				offset;
6060 		u64				size;
6061 		u64				flags;
6062 	} rec = {
6063 		.header = {
6064 			.type = PERF_RECORD_AUX,
6065 			.misc = 0,
6066 			.size = sizeof(rec),
6067 		},
6068 		.offset		= head,
6069 		.size		= size,
6070 		.flags		= flags,
6071 	};
6072 	int ret;
6073 
6074 	perf_event_header__init_id(&rec.header, &sample, event);
6075 	ret = perf_output_begin(&handle, event, rec.header.size);
6076 
6077 	if (ret)
6078 		return;
6079 
6080 	perf_output_put(&handle, rec);
6081 	perf_event__output_id_sample(event, &handle, &sample);
6082 
6083 	perf_output_end(&handle);
6084 }
6085 
6086 /*
6087  * Lost/dropped samples logging
6088  */
6089 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6090 {
6091 	struct perf_output_handle handle;
6092 	struct perf_sample_data sample;
6093 	int ret;
6094 
6095 	struct {
6096 		struct perf_event_header	header;
6097 		u64				lost;
6098 	} lost_samples_event = {
6099 		.header = {
6100 			.type = PERF_RECORD_LOST_SAMPLES,
6101 			.misc = 0,
6102 			.size = sizeof(lost_samples_event),
6103 		},
6104 		.lost		= lost,
6105 	};
6106 
6107 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6108 
6109 	ret = perf_output_begin(&handle, event,
6110 				lost_samples_event.header.size);
6111 	if (ret)
6112 		return;
6113 
6114 	perf_output_put(&handle, lost_samples_event);
6115 	perf_event__output_id_sample(event, &handle, &sample);
6116 	perf_output_end(&handle);
6117 }
6118 
6119 /*
6120  * context_switch tracking
6121  */
6122 
6123 struct perf_switch_event {
6124 	struct task_struct	*task;
6125 	struct task_struct	*next_prev;
6126 
6127 	struct {
6128 		struct perf_event_header	header;
6129 		u32				next_prev_pid;
6130 		u32				next_prev_tid;
6131 	} event_id;
6132 };
6133 
6134 static int perf_event_switch_match(struct perf_event *event)
6135 {
6136 	return event->attr.context_switch;
6137 }
6138 
6139 static void perf_event_switch_output(struct perf_event *event, void *data)
6140 {
6141 	struct perf_switch_event *se = data;
6142 	struct perf_output_handle handle;
6143 	struct perf_sample_data sample;
6144 	int ret;
6145 
6146 	if (!perf_event_switch_match(event))
6147 		return;
6148 
6149 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6150 	if (event->ctx->task) {
6151 		se->event_id.header.type = PERF_RECORD_SWITCH;
6152 		se->event_id.header.size = sizeof(se->event_id.header);
6153 	} else {
6154 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6155 		se->event_id.header.size = sizeof(se->event_id);
6156 		se->event_id.next_prev_pid =
6157 					perf_event_pid(event, se->next_prev);
6158 		se->event_id.next_prev_tid =
6159 					perf_event_tid(event, se->next_prev);
6160 	}
6161 
6162 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6163 
6164 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6165 	if (ret)
6166 		return;
6167 
6168 	if (event->ctx->task)
6169 		perf_output_put(&handle, se->event_id.header);
6170 	else
6171 		perf_output_put(&handle, se->event_id);
6172 
6173 	perf_event__output_id_sample(event, &handle, &sample);
6174 
6175 	perf_output_end(&handle);
6176 }
6177 
6178 static void perf_event_switch(struct task_struct *task,
6179 			      struct task_struct *next_prev, bool sched_in)
6180 {
6181 	struct perf_switch_event switch_event;
6182 
6183 	/* N.B. caller checks nr_switch_events != 0 */
6184 
6185 	switch_event = (struct perf_switch_event){
6186 		.task		= task,
6187 		.next_prev	= next_prev,
6188 		.event_id	= {
6189 			.header = {
6190 				/* .type */
6191 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6192 				/* .size */
6193 			},
6194 			/* .next_prev_pid */
6195 			/* .next_prev_tid */
6196 		},
6197 	};
6198 
6199 	perf_event_aux(perf_event_switch_output,
6200 		       &switch_event,
6201 		       NULL);
6202 }
6203 
6204 /*
6205  * IRQ throttle logging
6206  */
6207 
6208 static void perf_log_throttle(struct perf_event *event, int enable)
6209 {
6210 	struct perf_output_handle handle;
6211 	struct perf_sample_data sample;
6212 	int ret;
6213 
6214 	struct {
6215 		struct perf_event_header	header;
6216 		u64				time;
6217 		u64				id;
6218 		u64				stream_id;
6219 	} throttle_event = {
6220 		.header = {
6221 			.type = PERF_RECORD_THROTTLE,
6222 			.misc = 0,
6223 			.size = sizeof(throttle_event),
6224 		},
6225 		.time		= perf_event_clock(event),
6226 		.id		= primary_event_id(event),
6227 		.stream_id	= event->id,
6228 	};
6229 
6230 	if (enable)
6231 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6232 
6233 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6234 
6235 	ret = perf_output_begin(&handle, event,
6236 				throttle_event.header.size);
6237 	if (ret)
6238 		return;
6239 
6240 	perf_output_put(&handle, throttle_event);
6241 	perf_event__output_id_sample(event, &handle, &sample);
6242 	perf_output_end(&handle);
6243 }
6244 
6245 static void perf_log_itrace_start(struct perf_event *event)
6246 {
6247 	struct perf_output_handle handle;
6248 	struct perf_sample_data sample;
6249 	struct perf_aux_event {
6250 		struct perf_event_header        header;
6251 		u32				pid;
6252 		u32				tid;
6253 	} rec;
6254 	int ret;
6255 
6256 	if (event->parent)
6257 		event = event->parent;
6258 
6259 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6260 	    event->hw.itrace_started)
6261 		return;
6262 
6263 	rec.header.type	= PERF_RECORD_ITRACE_START;
6264 	rec.header.misc	= 0;
6265 	rec.header.size	= sizeof(rec);
6266 	rec.pid	= perf_event_pid(event, current);
6267 	rec.tid	= perf_event_tid(event, current);
6268 
6269 	perf_event_header__init_id(&rec.header, &sample, event);
6270 	ret = perf_output_begin(&handle, event, rec.header.size);
6271 
6272 	if (ret)
6273 		return;
6274 
6275 	perf_output_put(&handle, rec);
6276 	perf_event__output_id_sample(event, &handle, &sample);
6277 
6278 	perf_output_end(&handle);
6279 }
6280 
6281 /*
6282  * Generic event overflow handling, sampling.
6283  */
6284 
6285 static int __perf_event_overflow(struct perf_event *event,
6286 				   int throttle, struct perf_sample_data *data,
6287 				   struct pt_regs *regs)
6288 {
6289 	int events = atomic_read(&event->event_limit);
6290 	struct hw_perf_event *hwc = &event->hw;
6291 	u64 seq;
6292 	int ret = 0;
6293 
6294 	/*
6295 	 * Non-sampling counters might still use the PMI to fold short
6296 	 * hardware counters, ignore those.
6297 	 */
6298 	if (unlikely(!is_sampling_event(event)))
6299 		return 0;
6300 
6301 	seq = __this_cpu_read(perf_throttled_seq);
6302 	if (seq != hwc->interrupts_seq) {
6303 		hwc->interrupts_seq = seq;
6304 		hwc->interrupts = 1;
6305 	} else {
6306 		hwc->interrupts++;
6307 		if (unlikely(throttle
6308 			     && hwc->interrupts >= max_samples_per_tick)) {
6309 			__this_cpu_inc(perf_throttled_count);
6310 			hwc->interrupts = MAX_INTERRUPTS;
6311 			perf_log_throttle(event, 0);
6312 			tick_nohz_full_kick();
6313 			ret = 1;
6314 		}
6315 	}
6316 
6317 	if (event->attr.freq) {
6318 		u64 now = perf_clock();
6319 		s64 delta = now - hwc->freq_time_stamp;
6320 
6321 		hwc->freq_time_stamp = now;
6322 
6323 		if (delta > 0 && delta < 2*TICK_NSEC)
6324 			perf_adjust_period(event, delta, hwc->last_period, true);
6325 	}
6326 
6327 	/*
6328 	 * XXX event_limit might not quite work as expected on inherited
6329 	 * events
6330 	 */
6331 
6332 	event->pending_kill = POLL_IN;
6333 	if (events && atomic_dec_and_test(&event->event_limit)) {
6334 		ret = 1;
6335 		event->pending_kill = POLL_HUP;
6336 		event->pending_disable = 1;
6337 		irq_work_queue(&event->pending);
6338 	}
6339 
6340 	if (event->overflow_handler)
6341 		event->overflow_handler(event, data, regs);
6342 	else
6343 		perf_event_output(event, data, regs);
6344 
6345 	if (*perf_event_fasync(event) && event->pending_kill) {
6346 		event->pending_wakeup = 1;
6347 		irq_work_queue(&event->pending);
6348 	}
6349 
6350 	return ret;
6351 }
6352 
6353 int perf_event_overflow(struct perf_event *event,
6354 			  struct perf_sample_data *data,
6355 			  struct pt_regs *regs)
6356 {
6357 	return __perf_event_overflow(event, 1, data, regs);
6358 }
6359 
6360 /*
6361  * Generic software event infrastructure
6362  */
6363 
6364 struct swevent_htable {
6365 	struct swevent_hlist		*swevent_hlist;
6366 	struct mutex			hlist_mutex;
6367 	int				hlist_refcount;
6368 
6369 	/* Recursion avoidance in each contexts */
6370 	int				recursion[PERF_NR_CONTEXTS];
6371 
6372 	/* Keeps track of cpu being initialized/exited */
6373 	bool				online;
6374 };
6375 
6376 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6377 
6378 /*
6379  * We directly increment event->count and keep a second value in
6380  * event->hw.period_left to count intervals. This period event
6381  * is kept in the range [-sample_period, 0] so that we can use the
6382  * sign as trigger.
6383  */
6384 
6385 u64 perf_swevent_set_period(struct perf_event *event)
6386 {
6387 	struct hw_perf_event *hwc = &event->hw;
6388 	u64 period = hwc->last_period;
6389 	u64 nr, offset;
6390 	s64 old, val;
6391 
6392 	hwc->last_period = hwc->sample_period;
6393 
6394 again:
6395 	old = val = local64_read(&hwc->period_left);
6396 	if (val < 0)
6397 		return 0;
6398 
6399 	nr = div64_u64(period + val, period);
6400 	offset = nr * period;
6401 	val -= offset;
6402 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6403 		goto again;
6404 
6405 	return nr;
6406 }
6407 
6408 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6409 				    struct perf_sample_data *data,
6410 				    struct pt_regs *regs)
6411 {
6412 	struct hw_perf_event *hwc = &event->hw;
6413 	int throttle = 0;
6414 
6415 	if (!overflow)
6416 		overflow = perf_swevent_set_period(event);
6417 
6418 	if (hwc->interrupts == MAX_INTERRUPTS)
6419 		return;
6420 
6421 	for (; overflow; overflow--) {
6422 		if (__perf_event_overflow(event, throttle,
6423 					    data, regs)) {
6424 			/*
6425 			 * We inhibit the overflow from happening when
6426 			 * hwc->interrupts == MAX_INTERRUPTS.
6427 			 */
6428 			break;
6429 		}
6430 		throttle = 1;
6431 	}
6432 }
6433 
6434 static void perf_swevent_event(struct perf_event *event, u64 nr,
6435 			       struct perf_sample_data *data,
6436 			       struct pt_regs *regs)
6437 {
6438 	struct hw_perf_event *hwc = &event->hw;
6439 
6440 	local64_add(nr, &event->count);
6441 
6442 	if (!regs)
6443 		return;
6444 
6445 	if (!is_sampling_event(event))
6446 		return;
6447 
6448 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6449 		data->period = nr;
6450 		return perf_swevent_overflow(event, 1, data, regs);
6451 	} else
6452 		data->period = event->hw.last_period;
6453 
6454 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6455 		return perf_swevent_overflow(event, 1, data, regs);
6456 
6457 	if (local64_add_negative(nr, &hwc->period_left))
6458 		return;
6459 
6460 	perf_swevent_overflow(event, 0, data, regs);
6461 }
6462 
6463 static int perf_exclude_event(struct perf_event *event,
6464 			      struct pt_regs *regs)
6465 {
6466 	if (event->hw.state & PERF_HES_STOPPED)
6467 		return 1;
6468 
6469 	if (regs) {
6470 		if (event->attr.exclude_user && user_mode(regs))
6471 			return 1;
6472 
6473 		if (event->attr.exclude_kernel && !user_mode(regs))
6474 			return 1;
6475 	}
6476 
6477 	return 0;
6478 }
6479 
6480 static int perf_swevent_match(struct perf_event *event,
6481 				enum perf_type_id type,
6482 				u32 event_id,
6483 				struct perf_sample_data *data,
6484 				struct pt_regs *regs)
6485 {
6486 	if (event->attr.type != type)
6487 		return 0;
6488 
6489 	if (event->attr.config != event_id)
6490 		return 0;
6491 
6492 	if (perf_exclude_event(event, regs))
6493 		return 0;
6494 
6495 	return 1;
6496 }
6497 
6498 static inline u64 swevent_hash(u64 type, u32 event_id)
6499 {
6500 	u64 val = event_id | (type << 32);
6501 
6502 	return hash_64(val, SWEVENT_HLIST_BITS);
6503 }
6504 
6505 static inline struct hlist_head *
6506 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6507 {
6508 	u64 hash = swevent_hash(type, event_id);
6509 
6510 	return &hlist->heads[hash];
6511 }
6512 
6513 /* For the read side: events when they trigger */
6514 static inline struct hlist_head *
6515 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6516 {
6517 	struct swevent_hlist *hlist;
6518 
6519 	hlist = rcu_dereference(swhash->swevent_hlist);
6520 	if (!hlist)
6521 		return NULL;
6522 
6523 	return __find_swevent_head(hlist, type, event_id);
6524 }
6525 
6526 /* For the event head insertion and removal in the hlist */
6527 static inline struct hlist_head *
6528 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6529 {
6530 	struct swevent_hlist *hlist;
6531 	u32 event_id = event->attr.config;
6532 	u64 type = event->attr.type;
6533 
6534 	/*
6535 	 * Event scheduling is always serialized against hlist allocation
6536 	 * and release. Which makes the protected version suitable here.
6537 	 * The context lock guarantees that.
6538 	 */
6539 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6540 					  lockdep_is_held(&event->ctx->lock));
6541 	if (!hlist)
6542 		return NULL;
6543 
6544 	return __find_swevent_head(hlist, type, event_id);
6545 }
6546 
6547 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6548 				    u64 nr,
6549 				    struct perf_sample_data *data,
6550 				    struct pt_regs *regs)
6551 {
6552 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6553 	struct perf_event *event;
6554 	struct hlist_head *head;
6555 
6556 	rcu_read_lock();
6557 	head = find_swevent_head_rcu(swhash, type, event_id);
6558 	if (!head)
6559 		goto end;
6560 
6561 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6562 		if (perf_swevent_match(event, type, event_id, data, regs))
6563 			perf_swevent_event(event, nr, data, regs);
6564 	}
6565 end:
6566 	rcu_read_unlock();
6567 }
6568 
6569 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6570 
6571 int perf_swevent_get_recursion_context(void)
6572 {
6573 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6574 
6575 	return get_recursion_context(swhash->recursion);
6576 }
6577 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6578 
6579 inline void perf_swevent_put_recursion_context(int rctx)
6580 {
6581 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6582 
6583 	put_recursion_context(swhash->recursion, rctx);
6584 }
6585 
6586 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6587 {
6588 	struct perf_sample_data data;
6589 
6590 	if (WARN_ON_ONCE(!regs))
6591 		return;
6592 
6593 	perf_sample_data_init(&data, addr, 0);
6594 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6595 }
6596 
6597 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6598 {
6599 	int rctx;
6600 
6601 	preempt_disable_notrace();
6602 	rctx = perf_swevent_get_recursion_context();
6603 	if (unlikely(rctx < 0))
6604 		goto fail;
6605 
6606 	___perf_sw_event(event_id, nr, regs, addr);
6607 
6608 	perf_swevent_put_recursion_context(rctx);
6609 fail:
6610 	preempt_enable_notrace();
6611 }
6612 
6613 static void perf_swevent_read(struct perf_event *event)
6614 {
6615 }
6616 
6617 static int perf_swevent_add(struct perf_event *event, int flags)
6618 {
6619 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6620 	struct hw_perf_event *hwc = &event->hw;
6621 	struct hlist_head *head;
6622 
6623 	if (is_sampling_event(event)) {
6624 		hwc->last_period = hwc->sample_period;
6625 		perf_swevent_set_period(event);
6626 	}
6627 
6628 	hwc->state = !(flags & PERF_EF_START);
6629 
6630 	head = find_swevent_head(swhash, event);
6631 	if (!head) {
6632 		/*
6633 		 * We can race with cpu hotplug code. Do not
6634 		 * WARN if the cpu just got unplugged.
6635 		 */
6636 		WARN_ON_ONCE(swhash->online);
6637 		return -EINVAL;
6638 	}
6639 
6640 	hlist_add_head_rcu(&event->hlist_entry, head);
6641 	perf_event_update_userpage(event);
6642 
6643 	return 0;
6644 }
6645 
6646 static void perf_swevent_del(struct perf_event *event, int flags)
6647 {
6648 	hlist_del_rcu(&event->hlist_entry);
6649 }
6650 
6651 static void perf_swevent_start(struct perf_event *event, int flags)
6652 {
6653 	event->hw.state = 0;
6654 }
6655 
6656 static void perf_swevent_stop(struct perf_event *event, int flags)
6657 {
6658 	event->hw.state = PERF_HES_STOPPED;
6659 }
6660 
6661 /* Deref the hlist from the update side */
6662 static inline struct swevent_hlist *
6663 swevent_hlist_deref(struct swevent_htable *swhash)
6664 {
6665 	return rcu_dereference_protected(swhash->swevent_hlist,
6666 					 lockdep_is_held(&swhash->hlist_mutex));
6667 }
6668 
6669 static void swevent_hlist_release(struct swevent_htable *swhash)
6670 {
6671 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6672 
6673 	if (!hlist)
6674 		return;
6675 
6676 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6677 	kfree_rcu(hlist, rcu_head);
6678 }
6679 
6680 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6681 {
6682 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6683 
6684 	mutex_lock(&swhash->hlist_mutex);
6685 
6686 	if (!--swhash->hlist_refcount)
6687 		swevent_hlist_release(swhash);
6688 
6689 	mutex_unlock(&swhash->hlist_mutex);
6690 }
6691 
6692 static void swevent_hlist_put(struct perf_event *event)
6693 {
6694 	int cpu;
6695 
6696 	for_each_possible_cpu(cpu)
6697 		swevent_hlist_put_cpu(event, cpu);
6698 }
6699 
6700 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6701 {
6702 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6703 	int err = 0;
6704 
6705 	mutex_lock(&swhash->hlist_mutex);
6706 
6707 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6708 		struct swevent_hlist *hlist;
6709 
6710 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6711 		if (!hlist) {
6712 			err = -ENOMEM;
6713 			goto exit;
6714 		}
6715 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6716 	}
6717 	swhash->hlist_refcount++;
6718 exit:
6719 	mutex_unlock(&swhash->hlist_mutex);
6720 
6721 	return err;
6722 }
6723 
6724 static int swevent_hlist_get(struct perf_event *event)
6725 {
6726 	int err;
6727 	int cpu, failed_cpu;
6728 
6729 	get_online_cpus();
6730 	for_each_possible_cpu(cpu) {
6731 		err = swevent_hlist_get_cpu(event, cpu);
6732 		if (err) {
6733 			failed_cpu = cpu;
6734 			goto fail;
6735 		}
6736 	}
6737 	put_online_cpus();
6738 
6739 	return 0;
6740 fail:
6741 	for_each_possible_cpu(cpu) {
6742 		if (cpu == failed_cpu)
6743 			break;
6744 		swevent_hlist_put_cpu(event, cpu);
6745 	}
6746 
6747 	put_online_cpus();
6748 	return err;
6749 }
6750 
6751 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6752 
6753 static void sw_perf_event_destroy(struct perf_event *event)
6754 {
6755 	u64 event_id = event->attr.config;
6756 
6757 	WARN_ON(event->parent);
6758 
6759 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6760 	swevent_hlist_put(event);
6761 }
6762 
6763 static int perf_swevent_init(struct perf_event *event)
6764 {
6765 	u64 event_id = event->attr.config;
6766 
6767 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6768 		return -ENOENT;
6769 
6770 	/*
6771 	 * no branch sampling for software events
6772 	 */
6773 	if (has_branch_stack(event))
6774 		return -EOPNOTSUPP;
6775 
6776 	switch (event_id) {
6777 	case PERF_COUNT_SW_CPU_CLOCK:
6778 	case PERF_COUNT_SW_TASK_CLOCK:
6779 		return -ENOENT;
6780 
6781 	default:
6782 		break;
6783 	}
6784 
6785 	if (event_id >= PERF_COUNT_SW_MAX)
6786 		return -ENOENT;
6787 
6788 	if (!event->parent) {
6789 		int err;
6790 
6791 		err = swevent_hlist_get(event);
6792 		if (err)
6793 			return err;
6794 
6795 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6796 		event->destroy = sw_perf_event_destroy;
6797 	}
6798 
6799 	return 0;
6800 }
6801 
6802 static struct pmu perf_swevent = {
6803 	.task_ctx_nr	= perf_sw_context,
6804 
6805 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6806 
6807 	.event_init	= perf_swevent_init,
6808 	.add		= perf_swevent_add,
6809 	.del		= perf_swevent_del,
6810 	.start		= perf_swevent_start,
6811 	.stop		= perf_swevent_stop,
6812 	.read		= perf_swevent_read,
6813 };
6814 
6815 #ifdef CONFIG_EVENT_TRACING
6816 
6817 static int perf_tp_filter_match(struct perf_event *event,
6818 				struct perf_sample_data *data)
6819 {
6820 	void *record = data->raw->data;
6821 
6822 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6823 		return 1;
6824 	return 0;
6825 }
6826 
6827 static int perf_tp_event_match(struct perf_event *event,
6828 				struct perf_sample_data *data,
6829 				struct pt_regs *regs)
6830 {
6831 	if (event->hw.state & PERF_HES_STOPPED)
6832 		return 0;
6833 	/*
6834 	 * All tracepoints are from kernel-space.
6835 	 */
6836 	if (event->attr.exclude_kernel)
6837 		return 0;
6838 
6839 	if (!perf_tp_filter_match(event, data))
6840 		return 0;
6841 
6842 	return 1;
6843 }
6844 
6845 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6846 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6847 		   struct task_struct *task)
6848 {
6849 	struct perf_sample_data data;
6850 	struct perf_event *event;
6851 
6852 	struct perf_raw_record raw = {
6853 		.size = entry_size,
6854 		.data = record,
6855 	};
6856 
6857 	perf_sample_data_init(&data, addr, 0);
6858 	data.raw = &raw;
6859 
6860 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6861 		if (perf_tp_event_match(event, &data, regs))
6862 			perf_swevent_event(event, count, &data, regs);
6863 	}
6864 
6865 	/*
6866 	 * If we got specified a target task, also iterate its context and
6867 	 * deliver this event there too.
6868 	 */
6869 	if (task && task != current) {
6870 		struct perf_event_context *ctx;
6871 		struct trace_entry *entry = record;
6872 
6873 		rcu_read_lock();
6874 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6875 		if (!ctx)
6876 			goto unlock;
6877 
6878 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6879 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6880 				continue;
6881 			if (event->attr.config != entry->type)
6882 				continue;
6883 			if (perf_tp_event_match(event, &data, regs))
6884 				perf_swevent_event(event, count, &data, regs);
6885 		}
6886 unlock:
6887 		rcu_read_unlock();
6888 	}
6889 
6890 	perf_swevent_put_recursion_context(rctx);
6891 }
6892 EXPORT_SYMBOL_GPL(perf_tp_event);
6893 
6894 static void tp_perf_event_destroy(struct perf_event *event)
6895 {
6896 	perf_trace_destroy(event);
6897 }
6898 
6899 static int perf_tp_event_init(struct perf_event *event)
6900 {
6901 	int err;
6902 
6903 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6904 		return -ENOENT;
6905 
6906 	/*
6907 	 * no branch sampling for tracepoint events
6908 	 */
6909 	if (has_branch_stack(event))
6910 		return -EOPNOTSUPP;
6911 
6912 	err = perf_trace_init(event);
6913 	if (err)
6914 		return err;
6915 
6916 	event->destroy = tp_perf_event_destroy;
6917 
6918 	return 0;
6919 }
6920 
6921 static struct pmu perf_tracepoint = {
6922 	.task_ctx_nr	= perf_sw_context,
6923 
6924 	.event_init	= perf_tp_event_init,
6925 	.add		= perf_trace_add,
6926 	.del		= perf_trace_del,
6927 	.start		= perf_swevent_start,
6928 	.stop		= perf_swevent_stop,
6929 	.read		= perf_swevent_read,
6930 };
6931 
6932 static inline void perf_tp_register(void)
6933 {
6934 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6935 }
6936 
6937 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6938 {
6939 	char *filter_str;
6940 	int ret;
6941 
6942 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6943 		return -EINVAL;
6944 
6945 	filter_str = strndup_user(arg, PAGE_SIZE);
6946 	if (IS_ERR(filter_str))
6947 		return PTR_ERR(filter_str);
6948 
6949 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6950 
6951 	kfree(filter_str);
6952 	return ret;
6953 }
6954 
6955 static void perf_event_free_filter(struct perf_event *event)
6956 {
6957 	ftrace_profile_free_filter(event);
6958 }
6959 
6960 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6961 {
6962 	struct bpf_prog *prog;
6963 
6964 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6965 		return -EINVAL;
6966 
6967 	if (event->tp_event->prog)
6968 		return -EEXIST;
6969 
6970 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6971 		/* bpf programs can only be attached to u/kprobes */
6972 		return -EINVAL;
6973 
6974 	prog = bpf_prog_get(prog_fd);
6975 	if (IS_ERR(prog))
6976 		return PTR_ERR(prog);
6977 
6978 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6979 		/* valid fd, but invalid bpf program type */
6980 		bpf_prog_put(prog);
6981 		return -EINVAL;
6982 	}
6983 
6984 	event->tp_event->prog = prog;
6985 
6986 	return 0;
6987 }
6988 
6989 static void perf_event_free_bpf_prog(struct perf_event *event)
6990 {
6991 	struct bpf_prog *prog;
6992 
6993 	if (!event->tp_event)
6994 		return;
6995 
6996 	prog = event->tp_event->prog;
6997 	if (prog) {
6998 		event->tp_event->prog = NULL;
6999 		bpf_prog_put(prog);
7000 	}
7001 }
7002 
7003 #else
7004 
7005 static inline void perf_tp_register(void)
7006 {
7007 }
7008 
7009 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7010 {
7011 	return -ENOENT;
7012 }
7013 
7014 static void perf_event_free_filter(struct perf_event *event)
7015 {
7016 }
7017 
7018 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7019 {
7020 	return -ENOENT;
7021 }
7022 
7023 static void perf_event_free_bpf_prog(struct perf_event *event)
7024 {
7025 }
7026 #endif /* CONFIG_EVENT_TRACING */
7027 
7028 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7029 void perf_bp_event(struct perf_event *bp, void *data)
7030 {
7031 	struct perf_sample_data sample;
7032 	struct pt_regs *regs = data;
7033 
7034 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7035 
7036 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7037 		perf_swevent_event(bp, 1, &sample, regs);
7038 }
7039 #endif
7040 
7041 /*
7042  * hrtimer based swevent callback
7043  */
7044 
7045 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7046 {
7047 	enum hrtimer_restart ret = HRTIMER_RESTART;
7048 	struct perf_sample_data data;
7049 	struct pt_regs *regs;
7050 	struct perf_event *event;
7051 	u64 period;
7052 
7053 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7054 
7055 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7056 		return HRTIMER_NORESTART;
7057 
7058 	event->pmu->read(event);
7059 
7060 	perf_sample_data_init(&data, 0, event->hw.last_period);
7061 	regs = get_irq_regs();
7062 
7063 	if (regs && !perf_exclude_event(event, regs)) {
7064 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7065 			if (__perf_event_overflow(event, 1, &data, regs))
7066 				ret = HRTIMER_NORESTART;
7067 	}
7068 
7069 	period = max_t(u64, 10000, event->hw.sample_period);
7070 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7071 
7072 	return ret;
7073 }
7074 
7075 static void perf_swevent_start_hrtimer(struct perf_event *event)
7076 {
7077 	struct hw_perf_event *hwc = &event->hw;
7078 	s64 period;
7079 
7080 	if (!is_sampling_event(event))
7081 		return;
7082 
7083 	period = local64_read(&hwc->period_left);
7084 	if (period) {
7085 		if (period < 0)
7086 			period = 10000;
7087 
7088 		local64_set(&hwc->period_left, 0);
7089 	} else {
7090 		period = max_t(u64, 10000, hwc->sample_period);
7091 	}
7092 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7093 		      HRTIMER_MODE_REL_PINNED);
7094 }
7095 
7096 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7097 {
7098 	struct hw_perf_event *hwc = &event->hw;
7099 
7100 	if (is_sampling_event(event)) {
7101 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7102 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7103 
7104 		hrtimer_cancel(&hwc->hrtimer);
7105 	}
7106 }
7107 
7108 static void perf_swevent_init_hrtimer(struct perf_event *event)
7109 {
7110 	struct hw_perf_event *hwc = &event->hw;
7111 
7112 	if (!is_sampling_event(event))
7113 		return;
7114 
7115 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7116 	hwc->hrtimer.function = perf_swevent_hrtimer;
7117 
7118 	/*
7119 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7120 	 * mapping and avoid the whole period adjust feedback stuff.
7121 	 */
7122 	if (event->attr.freq) {
7123 		long freq = event->attr.sample_freq;
7124 
7125 		event->attr.sample_period = NSEC_PER_SEC / freq;
7126 		hwc->sample_period = event->attr.sample_period;
7127 		local64_set(&hwc->period_left, hwc->sample_period);
7128 		hwc->last_period = hwc->sample_period;
7129 		event->attr.freq = 0;
7130 	}
7131 }
7132 
7133 /*
7134  * Software event: cpu wall time clock
7135  */
7136 
7137 static void cpu_clock_event_update(struct perf_event *event)
7138 {
7139 	s64 prev;
7140 	u64 now;
7141 
7142 	now = local_clock();
7143 	prev = local64_xchg(&event->hw.prev_count, now);
7144 	local64_add(now - prev, &event->count);
7145 }
7146 
7147 static void cpu_clock_event_start(struct perf_event *event, int flags)
7148 {
7149 	local64_set(&event->hw.prev_count, local_clock());
7150 	perf_swevent_start_hrtimer(event);
7151 }
7152 
7153 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7154 {
7155 	perf_swevent_cancel_hrtimer(event);
7156 	cpu_clock_event_update(event);
7157 }
7158 
7159 static int cpu_clock_event_add(struct perf_event *event, int flags)
7160 {
7161 	if (flags & PERF_EF_START)
7162 		cpu_clock_event_start(event, flags);
7163 	perf_event_update_userpage(event);
7164 
7165 	return 0;
7166 }
7167 
7168 static void cpu_clock_event_del(struct perf_event *event, int flags)
7169 {
7170 	cpu_clock_event_stop(event, flags);
7171 }
7172 
7173 static void cpu_clock_event_read(struct perf_event *event)
7174 {
7175 	cpu_clock_event_update(event);
7176 }
7177 
7178 static int cpu_clock_event_init(struct perf_event *event)
7179 {
7180 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7181 		return -ENOENT;
7182 
7183 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7184 		return -ENOENT;
7185 
7186 	/*
7187 	 * no branch sampling for software events
7188 	 */
7189 	if (has_branch_stack(event))
7190 		return -EOPNOTSUPP;
7191 
7192 	perf_swevent_init_hrtimer(event);
7193 
7194 	return 0;
7195 }
7196 
7197 static struct pmu perf_cpu_clock = {
7198 	.task_ctx_nr	= perf_sw_context,
7199 
7200 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7201 
7202 	.event_init	= cpu_clock_event_init,
7203 	.add		= cpu_clock_event_add,
7204 	.del		= cpu_clock_event_del,
7205 	.start		= cpu_clock_event_start,
7206 	.stop		= cpu_clock_event_stop,
7207 	.read		= cpu_clock_event_read,
7208 };
7209 
7210 /*
7211  * Software event: task time clock
7212  */
7213 
7214 static void task_clock_event_update(struct perf_event *event, u64 now)
7215 {
7216 	u64 prev;
7217 	s64 delta;
7218 
7219 	prev = local64_xchg(&event->hw.prev_count, now);
7220 	delta = now - prev;
7221 	local64_add(delta, &event->count);
7222 }
7223 
7224 static void task_clock_event_start(struct perf_event *event, int flags)
7225 {
7226 	local64_set(&event->hw.prev_count, event->ctx->time);
7227 	perf_swevent_start_hrtimer(event);
7228 }
7229 
7230 static void task_clock_event_stop(struct perf_event *event, int flags)
7231 {
7232 	perf_swevent_cancel_hrtimer(event);
7233 	task_clock_event_update(event, event->ctx->time);
7234 }
7235 
7236 static int task_clock_event_add(struct perf_event *event, int flags)
7237 {
7238 	if (flags & PERF_EF_START)
7239 		task_clock_event_start(event, flags);
7240 	perf_event_update_userpage(event);
7241 
7242 	return 0;
7243 }
7244 
7245 static void task_clock_event_del(struct perf_event *event, int flags)
7246 {
7247 	task_clock_event_stop(event, PERF_EF_UPDATE);
7248 }
7249 
7250 static void task_clock_event_read(struct perf_event *event)
7251 {
7252 	u64 now = perf_clock();
7253 	u64 delta = now - event->ctx->timestamp;
7254 	u64 time = event->ctx->time + delta;
7255 
7256 	task_clock_event_update(event, time);
7257 }
7258 
7259 static int task_clock_event_init(struct perf_event *event)
7260 {
7261 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7262 		return -ENOENT;
7263 
7264 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7265 		return -ENOENT;
7266 
7267 	/*
7268 	 * no branch sampling for software events
7269 	 */
7270 	if (has_branch_stack(event))
7271 		return -EOPNOTSUPP;
7272 
7273 	perf_swevent_init_hrtimer(event);
7274 
7275 	return 0;
7276 }
7277 
7278 static struct pmu perf_task_clock = {
7279 	.task_ctx_nr	= perf_sw_context,
7280 
7281 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7282 
7283 	.event_init	= task_clock_event_init,
7284 	.add		= task_clock_event_add,
7285 	.del		= task_clock_event_del,
7286 	.start		= task_clock_event_start,
7287 	.stop		= task_clock_event_stop,
7288 	.read		= task_clock_event_read,
7289 };
7290 
7291 static void perf_pmu_nop_void(struct pmu *pmu)
7292 {
7293 }
7294 
7295 static int perf_pmu_nop_int(struct pmu *pmu)
7296 {
7297 	return 0;
7298 }
7299 
7300 static void perf_pmu_start_txn(struct pmu *pmu)
7301 {
7302 	perf_pmu_disable(pmu);
7303 }
7304 
7305 static int perf_pmu_commit_txn(struct pmu *pmu)
7306 {
7307 	perf_pmu_enable(pmu);
7308 	return 0;
7309 }
7310 
7311 static void perf_pmu_cancel_txn(struct pmu *pmu)
7312 {
7313 	perf_pmu_enable(pmu);
7314 }
7315 
7316 static int perf_event_idx_default(struct perf_event *event)
7317 {
7318 	return 0;
7319 }
7320 
7321 /*
7322  * Ensures all contexts with the same task_ctx_nr have the same
7323  * pmu_cpu_context too.
7324  */
7325 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7326 {
7327 	struct pmu *pmu;
7328 
7329 	if (ctxn < 0)
7330 		return NULL;
7331 
7332 	list_for_each_entry(pmu, &pmus, entry) {
7333 		if (pmu->task_ctx_nr == ctxn)
7334 			return pmu->pmu_cpu_context;
7335 	}
7336 
7337 	return NULL;
7338 }
7339 
7340 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7341 {
7342 	int cpu;
7343 
7344 	for_each_possible_cpu(cpu) {
7345 		struct perf_cpu_context *cpuctx;
7346 
7347 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7348 
7349 		if (cpuctx->unique_pmu == old_pmu)
7350 			cpuctx->unique_pmu = pmu;
7351 	}
7352 }
7353 
7354 static void free_pmu_context(struct pmu *pmu)
7355 {
7356 	struct pmu *i;
7357 
7358 	mutex_lock(&pmus_lock);
7359 	/*
7360 	 * Like a real lame refcount.
7361 	 */
7362 	list_for_each_entry(i, &pmus, entry) {
7363 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7364 			update_pmu_context(i, pmu);
7365 			goto out;
7366 		}
7367 	}
7368 
7369 	free_percpu(pmu->pmu_cpu_context);
7370 out:
7371 	mutex_unlock(&pmus_lock);
7372 }
7373 static struct idr pmu_idr;
7374 
7375 static ssize_t
7376 type_show(struct device *dev, struct device_attribute *attr, char *page)
7377 {
7378 	struct pmu *pmu = dev_get_drvdata(dev);
7379 
7380 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7381 }
7382 static DEVICE_ATTR_RO(type);
7383 
7384 static ssize_t
7385 perf_event_mux_interval_ms_show(struct device *dev,
7386 				struct device_attribute *attr,
7387 				char *page)
7388 {
7389 	struct pmu *pmu = dev_get_drvdata(dev);
7390 
7391 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7392 }
7393 
7394 static DEFINE_MUTEX(mux_interval_mutex);
7395 
7396 static ssize_t
7397 perf_event_mux_interval_ms_store(struct device *dev,
7398 				 struct device_attribute *attr,
7399 				 const char *buf, size_t count)
7400 {
7401 	struct pmu *pmu = dev_get_drvdata(dev);
7402 	int timer, cpu, ret;
7403 
7404 	ret = kstrtoint(buf, 0, &timer);
7405 	if (ret)
7406 		return ret;
7407 
7408 	if (timer < 1)
7409 		return -EINVAL;
7410 
7411 	/* same value, noting to do */
7412 	if (timer == pmu->hrtimer_interval_ms)
7413 		return count;
7414 
7415 	mutex_lock(&mux_interval_mutex);
7416 	pmu->hrtimer_interval_ms = timer;
7417 
7418 	/* update all cpuctx for this PMU */
7419 	get_online_cpus();
7420 	for_each_online_cpu(cpu) {
7421 		struct perf_cpu_context *cpuctx;
7422 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7423 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7424 
7425 		cpu_function_call(cpu,
7426 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7427 	}
7428 	put_online_cpus();
7429 	mutex_unlock(&mux_interval_mutex);
7430 
7431 	return count;
7432 }
7433 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7434 
7435 static struct attribute *pmu_dev_attrs[] = {
7436 	&dev_attr_type.attr,
7437 	&dev_attr_perf_event_mux_interval_ms.attr,
7438 	NULL,
7439 };
7440 ATTRIBUTE_GROUPS(pmu_dev);
7441 
7442 static int pmu_bus_running;
7443 static struct bus_type pmu_bus = {
7444 	.name		= "event_source",
7445 	.dev_groups	= pmu_dev_groups,
7446 };
7447 
7448 static void pmu_dev_release(struct device *dev)
7449 {
7450 	kfree(dev);
7451 }
7452 
7453 static int pmu_dev_alloc(struct pmu *pmu)
7454 {
7455 	int ret = -ENOMEM;
7456 
7457 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7458 	if (!pmu->dev)
7459 		goto out;
7460 
7461 	pmu->dev->groups = pmu->attr_groups;
7462 	device_initialize(pmu->dev);
7463 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7464 	if (ret)
7465 		goto free_dev;
7466 
7467 	dev_set_drvdata(pmu->dev, pmu);
7468 	pmu->dev->bus = &pmu_bus;
7469 	pmu->dev->release = pmu_dev_release;
7470 	ret = device_add(pmu->dev);
7471 	if (ret)
7472 		goto free_dev;
7473 
7474 out:
7475 	return ret;
7476 
7477 free_dev:
7478 	put_device(pmu->dev);
7479 	goto out;
7480 }
7481 
7482 static struct lock_class_key cpuctx_mutex;
7483 static struct lock_class_key cpuctx_lock;
7484 
7485 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7486 {
7487 	int cpu, ret;
7488 
7489 	mutex_lock(&pmus_lock);
7490 	ret = -ENOMEM;
7491 	pmu->pmu_disable_count = alloc_percpu(int);
7492 	if (!pmu->pmu_disable_count)
7493 		goto unlock;
7494 
7495 	pmu->type = -1;
7496 	if (!name)
7497 		goto skip_type;
7498 	pmu->name = name;
7499 
7500 	if (type < 0) {
7501 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7502 		if (type < 0) {
7503 			ret = type;
7504 			goto free_pdc;
7505 		}
7506 	}
7507 	pmu->type = type;
7508 
7509 	if (pmu_bus_running) {
7510 		ret = pmu_dev_alloc(pmu);
7511 		if (ret)
7512 			goto free_idr;
7513 	}
7514 
7515 skip_type:
7516 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7517 	if (pmu->pmu_cpu_context)
7518 		goto got_cpu_context;
7519 
7520 	ret = -ENOMEM;
7521 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7522 	if (!pmu->pmu_cpu_context)
7523 		goto free_dev;
7524 
7525 	for_each_possible_cpu(cpu) {
7526 		struct perf_cpu_context *cpuctx;
7527 
7528 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7529 		__perf_event_init_context(&cpuctx->ctx);
7530 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7531 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7532 		cpuctx->ctx.pmu = pmu;
7533 
7534 		__perf_mux_hrtimer_init(cpuctx, cpu);
7535 
7536 		cpuctx->unique_pmu = pmu;
7537 	}
7538 
7539 got_cpu_context:
7540 	if (!pmu->start_txn) {
7541 		if (pmu->pmu_enable) {
7542 			/*
7543 			 * If we have pmu_enable/pmu_disable calls, install
7544 			 * transaction stubs that use that to try and batch
7545 			 * hardware accesses.
7546 			 */
7547 			pmu->start_txn  = perf_pmu_start_txn;
7548 			pmu->commit_txn = perf_pmu_commit_txn;
7549 			pmu->cancel_txn = perf_pmu_cancel_txn;
7550 		} else {
7551 			pmu->start_txn  = perf_pmu_nop_void;
7552 			pmu->commit_txn = perf_pmu_nop_int;
7553 			pmu->cancel_txn = perf_pmu_nop_void;
7554 		}
7555 	}
7556 
7557 	if (!pmu->pmu_enable) {
7558 		pmu->pmu_enable  = perf_pmu_nop_void;
7559 		pmu->pmu_disable = perf_pmu_nop_void;
7560 	}
7561 
7562 	if (!pmu->event_idx)
7563 		pmu->event_idx = perf_event_idx_default;
7564 
7565 	list_add_rcu(&pmu->entry, &pmus);
7566 	atomic_set(&pmu->exclusive_cnt, 0);
7567 	ret = 0;
7568 unlock:
7569 	mutex_unlock(&pmus_lock);
7570 
7571 	return ret;
7572 
7573 free_dev:
7574 	device_del(pmu->dev);
7575 	put_device(pmu->dev);
7576 
7577 free_idr:
7578 	if (pmu->type >= PERF_TYPE_MAX)
7579 		idr_remove(&pmu_idr, pmu->type);
7580 
7581 free_pdc:
7582 	free_percpu(pmu->pmu_disable_count);
7583 	goto unlock;
7584 }
7585 EXPORT_SYMBOL_GPL(perf_pmu_register);
7586 
7587 void perf_pmu_unregister(struct pmu *pmu)
7588 {
7589 	mutex_lock(&pmus_lock);
7590 	list_del_rcu(&pmu->entry);
7591 	mutex_unlock(&pmus_lock);
7592 
7593 	/*
7594 	 * We dereference the pmu list under both SRCU and regular RCU, so
7595 	 * synchronize against both of those.
7596 	 */
7597 	synchronize_srcu(&pmus_srcu);
7598 	synchronize_rcu();
7599 
7600 	free_percpu(pmu->pmu_disable_count);
7601 	if (pmu->type >= PERF_TYPE_MAX)
7602 		idr_remove(&pmu_idr, pmu->type);
7603 	device_del(pmu->dev);
7604 	put_device(pmu->dev);
7605 	free_pmu_context(pmu);
7606 }
7607 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7608 
7609 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7610 {
7611 	struct perf_event_context *ctx = NULL;
7612 	int ret;
7613 
7614 	if (!try_module_get(pmu->module))
7615 		return -ENODEV;
7616 
7617 	if (event->group_leader != event) {
7618 		/*
7619 		 * This ctx->mutex can nest when we're called through
7620 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7621 		 */
7622 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7623 						 SINGLE_DEPTH_NESTING);
7624 		BUG_ON(!ctx);
7625 	}
7626 
7627 	event->pmu = pmu;
7628 	ret = pmu->event_init(event);
7629 
7630 	if (ctx)
7631 		perf_event_ctx_unlock(event->group_leader, ctx);
7632 
7633 	if (ret)
7634 		module_put(pmu->module);
7635 
7636 	return ret;
7637 }
7638 
7639 struct pmu *perf_init_event(struct perf_event *event)
7640 {
7641 	struct pmu *pmu = NULL;
7642 	int idx;
7643 	int ret;
7644 
7645 	idx = srcu_read_lock(&pmus_srcu);
7646 
7647 	rcu_read_lock();
7648 	pmu = idr_find(&pmu_idr, event->attr.type);
7649 	rcu_read_unlock();
7650 	if (pmu) {
7651 		ret = perf_try_init_event(pmu, event);
7652 		if (ret)
7653 			pmu = ERR_PTR(ret);
7654 		goto unlock;
7655 	}
7656 
7657 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7658 		ret = perf_try_init_event(pmu, event);
7659 		if (!ret)
7660 			goto unlock;
7661 
7662 		if (ret != -ENOENT) {
7663 			pmu = ERR_PTR(ret);
7664 			goto unlock;
7665 		}
7666 	}
7667 	pmu = ERR_PTR(-ENOENT);
7668 unlock:
7669 	srcu_read_unlock(&pmus_srcu, idx);
7670 
7671 	return pmu;
7672 }
7673 
7674 static void account_event_cpu(struct perf_event *event, int cpu)
7675 {
7676 	if (event->parent)
7677 		return;
7678 
7679 	if (is_cgroup_event(event))
7680 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7681 }
7682 
7683 static void account_event(struct perf_event *event)
7684 {
7685 	if (event->parent)
7686 		return;
7687 
7688 	if (event->attach_state & PERF_ATTACH_TASK)
7689 		static_key_slow_inc(&perf_sched_events.key);
7690 	if (event->attr.mmap || event->attr.mmap_data)
7691 		atomic_inc(&nr_mmap_events);
7692 	if (event->attr.comm)
7693 		atomic_inc(&nr_comm_events);
7694 	if (event->attr.task)
7695 		atomic_inc(&nr_task_events);
7696 	if (event->attr.freq) {
7697 		if (atomic_inc_return(&nr_freq_events) == 1)
7698 			tick_nohz_full_kick_all();
7699 	}
7700 	if (event->attr.context_switch) {
7701 		atomic_inc(&nr_switch_events);
7702 		static_key_slow_inc(&perf_sched_events.key);
7703 	}
7704 	if (has_branch_stack(event))
7705 		static_key_slow_inc(&perf_sched_events.key);
7706 	if (is_cgroup_event(event))
7707 		static_key_slow_inc(&perf_sched_events.key);
7708 
7709 	account_event_cpu(event, event->cpu);
7710 }
7711 
7712 /*
7713  * Allocate and initialize a event structure
7714  */
7715 static struct perf_event *
7716 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7717 		 struct task_struct *task,
7718 		 struct perf_event *group_leader,
7719 		 struct perf_event *parent_event,
7720 		 perf_overflow_handler_t overflow_handler,
7721 		 void *context, int cgroup_fd)
7722 {
7723 	struct pmu *pmu;
7724 	struct perf_event *event;
7725 	struct hw_perf_event *hwc;
7726 	long err = -EINVAL;
7727 
7728 	if ((unsigned)cpu >= nr_cpu_ids) {
7729 		if (!task || cpu != -1)
7730 			return ERR_PTR(-EINVAL);
7731 	}
7732 
7733 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7734 	if (!event)
7735 		return ERR_PTR(-ENOMEM);
7736 
7737 	/*
7738 	 * Single events are their own group leaders, with an
7739 	 * empty sibling list:
7740 	 */
7741 	if (!group_leader)
7742 		group_leader = event;
7743 
7744 	mutex_init(&event->child_mutex);
7745 	INIT_LIST_HEAD(&event->child_list);
7746 
7747 	INIT_LIST_HEAD(&event->group_entry);
7748 	INIT_LIST_HEAD(&event->event_entry);
7749 	INIT_LIST_HEAD(&event->sibling_list);
7750 	INIT_LIST_HEAD(&event->rb_entry);
7751 	INIT_LIST_HEAD(&event->active_entry);
7752 	INIT_HLIST_NODE(&event->hlist_entry);
7753 
7754 
7755 	init_waitqueue_head(&event->waitq);
7756 	init_irq_work(&event->pending, perf_pending_event);
7757 
7758 	mutex_init(&event->mmap_mutex);
7759 
7760 	atomic_long_set(&event->refcount, 1);
7761 	event->cpu		= cpu;
7762 	event->attr		= *attr;
7763 	event->group_leader	= group_leader;
7764 	event->pmu		= NULL;
7765 	event->oncpu		= -1;
7766 
7767 	event->parent		= parent_event;
7768 
7769 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7770 	event->id		= atomic64_inc_return(&perf_event_id);
7771 
7772 	event->state		= PERF_EVENT_STATE_INACTIVE;
7773 
7774 	if (task) {
7775 		event->attach_state = PERF_ATTACH_TASK;
7776 		/*
7777 		 * XXX pmu::event_init needs to know what task to account to
7778 		 * and we cannot use the ctx information because we need the
7779 		 * pmu before we get a ctx.
7780 		 */
7781 		event->hw.target = task;
7782 	}
7783 
7784 	event->clock = &local_clock;
7785 	if (parent_event)
7786 		event->clock = parent_event->clock;
7787 
7788 	if (!overflow_handler && parent_event) {
7789 		overflow_handler = parent_event->overflow_handler;
7790 		context = parent_event->overflow_handler_context;
7791 	}
7792 
7793 	event->overflow_handler	= overflow_handler;
7794 	event->overflow_handler_context = context;
7795 
7796 	perf_event__state_init(event);
7797 
7798 	pmu = NULL;
7799 
7800 	hwc = &event->hw;
7801 	hwc->sample_period = attr->sample_period;
7802 	if (attr->freq && attr->sample_freq)
7803 		hwc->sample_period = 1;
7804 	hwc->last_period = hwc->sample_period;
7805 
7806 	local64_set(&hwc->period_left, hwc->sample_period);
7807 
7808 	/*
7809 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7810 	 */
7811 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7812 		goto err_ns;
7813 
7814 	if (!has_branch_stack(event))
7815 		event->attr.branch_sample_type = 0;
7816 
7817 	if (cgroup_fd != -1) {
7818 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7819 		if (err)
7820 			goto err_ns;
7821 	}
7822 
7823 	pmu = perf_init_event(event);
7824 	if (!pmu)
7825 		goto err_ns;
7826 	else if (IS_ERR(pmu)) {
7827 		err = PTR_ERR(pmu);
7828 		goto err_ns;
7829 	}
7830 
7831 	err = exclusive_event_init(event);
7832 	if (err)
7833 		goto err_pmu;
7834 
7835 	if (!event->parent) {
7836 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7837 			err = get_callchain_buffers();
7838 			if (err)
7839 				goto err_per_task;
7840 		}
7841 	}
7842 
7843 	return event;
7844 
7845 err_per_task:
7846 	exclusive_event_destroy(event);
7847 
7848 err_pmu:
7849 	if (event->destroy)
7850 		event->destroy(event);
7851 	module_put(pmu->module);
7852 err_ns:
7853 	if (is_cgroup_event(event))
7854 		perf_detach_cgroup(event);
7855 	if (event->ns)
7856 		put_pid_ns(event->ns);
7857 	kfree(event);
7858 
7859 	return ERR_PTR(err);
7860 }
7861 
7862 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7863 			  struct perf_event_attr *attr)
7864 {
7865 	u32 size;
7866 	int ret;
7867 
7868 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7869 		return -EFAULT;
7870 
7871 	/*
7872 	 * zero the full structure, so that a short copy will be nice.
7873 	 */
7874 	memset(attr, 0, sizeof(*attr));
7875 
7876 	ret = get_user(size, &uattr->size);
7877 	if (ret)
7878 		return ret;
7879 
7880 	if (size > PAGE_SIZE)	/* silly large */
7881 		goto err_size;
7882 
7883 	if (!size)		/* abi compat */
7884 		size = PERF_ATTR_SIZE_VER0;
7885 
7886 	if (size < PERF_ATTR_SIZE_VER0)
7887 		goto err_size;
7888 
7889 	/*
7890 	 * If we're handed a bigger struct than we know of,
7891 	 * ensure all the unknown bits are 0 - i.e. new
7892 	 * user-space does not rely on any kernel feature
7893 	 * extensions we dont know about yet.
7894 	 */
7895 	if (size > sizeof(*attr)) {
7896 		unsigned char __user *addr;
7897 		unsigned char __user *end;
7898 		unsigned char val;
7899 
7900 		addr = (void __user *)uattr + sizeof(*attr);
7901 		end  = (void __user *)uattr + size;
7902 
7903 		for (; addr < end; addr++) {
7904 			ret = get_user(val, addr);
7905 			if (ret)
7906 				return ret;
7907 			if (val)
7908 				goto err_size;
7909 		}
7910 		size = sizeof(*attr);
7911 	}
7912 
7913 	ret = copy_from_user(attr, uattr, size);
7914 	if (ret)
7915 		return -EFAULT;
7916 
7917 	if (attr->__reserved_1)
7918 		return -EINVAL;
7919 
7920 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7921 		return -EINVAL;
7922 
7923 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7924 		return -EINVAL;
7925 
7926 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7927 		u64 mask = attr->branch_sample_type;
7928 
7929 		/* only using defined bits */
7930 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7931 			return -EINVAL;
7932 
7933 		/* at least one branch bit must be set */
7934 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7935 			return -EINVAL;
7936 
7937 		/* propagate priv level, when not set for branch */
7938 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7939 
7940 			/* exclude_kernel checked on syscall entry */
7941 			if (!attr->exclude_kernel)
7942 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7943 
7944 			if (!attr->exclude_user)
7945 				mask |= PERF_SAMPLE_BRANCH_USER;
7946 
7947 			if (!attr->exclude_hv)
7948 				mask |= PERF_SAMPLE_BRANCH_HV;
7949 			/*
7950 			 * adjust user setting (for HW filter setup)
7951 			 */
7952 			attr->branch_sample_type = mask;
7953 		}
7954 		/* privileged levels capture (kernel, hv): check permissions */
7955 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7956 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7957 			return -EACCES;
7958 	}
7959 
7960 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7961 		ret = perf_reg_validate(attr->sample_regs_user);
7962 		if (ret)
7963 			return ret;
7964 	}
7965 
7966 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7967 		if (!arch_perf_have_user_stack_dump())
7968 			return -ENOSYS;
7969 
7970 		/*
7971 		 * We have __u32 type for the size, but so far
7972 		 * we can only use __u16 as maximum due to the
7973 		 * __u16 sample size limit.
7974 		 */
7975 		if (attr->sample_stack_user >= USHRT_MAX)
7976 			ret = -EINVAL;
7977 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7978 			ret = -EINVAL;
7979 	}
7980 
7981 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7982 		ret = perf_reg_validate(attr->sample_regs_intr);
7983 out:
7984 	return ret;
7985 
7986 err_size:
7987 	put_user(sizeof(*attr), &uattr->size);
7988 	ret = -E2BIG;
7989 	goto out;
7990 }
7991 
7992 static int
7993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7994 {
7995 	struct ring_buffer *rb = NULL;
7996 	int ret = -EINVAL;
7997 
7998 	if (!output_event)
7999 		goto set;
8000 
8001 	/* don't allow circular references */
8002 	if (event == output_event)
8003 		goto out;
8004 
8005 	/*
8006 	 * Don't allow cross-cpu buffers
8007 	 */
8008 	if (output_event->cpu != event->cpu)
8009 		goto out;
8010 
8011 	/*
8012 	 * If its not a per-cpu rb, it must be the same task.
8013 	 */
8014 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8015 		goto out;
8016 
8017 	/*
8018 	 * Mixing clocks in the same buffer is trouble you don't need.
8019 	 */
8020 	if (output_event->clock != event->clock)
8021 		goto out;
8022 
8023 	/*
8024 	 * If both events generate aux data, they must be on the same PMU
8025 	 */
8026 	if (has_aux(event) && has_aux(output_event) &&
8027 	    event->pmu != output_event->pmu)
8028 		goto out;
8029 
8030 set:
8031 	mutex_lock(&event->mmap_mutex);
8032 	/* Can't redirect output if we've got an active mmap() */
8033 	if (atomic_read(&event->mmap_count))
8034 		goto unlock;
8035 
8036 	if (output_event) {
8037 		/* get the rb we want to redirect to */
8038 		rb = ring_buffer_get(output_event);
8039 		if (!rb)
8040 			goto unlock;
8041 	}
8042 
8043 	ring_buffer_attach(event, rb);
8044 
8045 	ret = 0;
8046 unlock:
8047 	mutex_unlock(&event->mmap_mutex);
8048 
8049 out:
8050 	return ret;
8051 }
8052 
8053 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8054 {
8055 	if (b < a)
8056 		swap(a, b);
8057 
8058 	mutex_lock(a);
8059 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8060 }
8061 
8062 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8063 {
8064 	bool nmi_safe = false;
8065 
8066 	switch (clk_id) {
8067 	case CLOCK_MONOTONIC:
8068 		event->clock = &ktime_get_mono_fast_ns;
8069 		nmi_safe = true;
8070 		break;
8071 
8072 	case CLOCK_MONOTONIC_RAW:
8073 		event->clock = &ktime_get_raw_fast_ns;
8074 		nmi_safe = true;
8075 		break;
8076 
8077 	case CLOCK_REALTIME:
8078 		event->clock = &ktime_get_real_ns;
8079 		break;
8080 
8081 	case CLOCK_BOOTTIME:
8082 		event->clock = &ktime_get_boot_ns;
8083 		break;
8084 
8085 	case CLOCK_TAI:
8086 		event->clock = &ktime_get_tai_ns;
8087 		break;
8088 
8089 	default:
8090 		return -EINVAL;
8091 	}
8092 
8093 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8094 		return -EINVAL;
8095 
8096 	return 0;
8097 }
8098 
8099 /**
8100  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8101  *
8102  * @attr_uptr:	event_id type attributes for monitoring/sampling
8103  * @pid:		target pid
8104  * @cpu:		target cpu
8105  * @group_fd:		group leader event fd
8106  */
8107 SYSCALL_DEFINE5(perf_event_open,
8108 		struct perf_event_attr __user *, attr_uptr,
8109 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8110 {
8111 	struct perf_event *group_leader = NULL, *output_event = NULL;
8112 	struct perf_event *event, *sibling;
8113 	struct perf_event_attr attr;
8114 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8115 	struct file *event_file = NULL;
8116 	struct fd group = {NULL, 0};
8117 	struct task_struct *task = NULL;
8118 	struct pmu *pmu;
8119 	int event_fd;
8120 	int move_group = 0;
8121 	int err;
8122 	int f_flags = O_RDWR;
8123 	int cgroup_fd = -1;
8124 
8125 	/* for future expandability... */
8126 	if (flags & ~PERF_FLAG_ALL)
8127 		return -EINVAL;
8128 
8129 	err = perf_copy_attr(attr_uptr, &attr);
8130 	if (err)
8131 		return err;
8132 
8133 	if (!attr.exclude_kernel) {
8134 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8135 			return -EACCES;
8136 	}
8137 
8138 	if (attr.freq) {
8139 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8140 			return -EINVAL;
8141 	} else {
8142 		if (attr.sample_period & (1ULL << 63))
8143 			return -EINVAL;
8144 	}
8145 
8146 	/*
8147 	 * In cgroup mode, the pid argument is used to pass the fd
8148 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8149 	 * designates the cpu on which to monitor threads from that
8150 	 * cgroup.
8151 	 */
8152 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8153 		return -EINVAL;
8154 
8155 	if (flags & PERF_FLAG_FD_CLOEXEC)
8156 		f_flags |= O_CLOEXEC;
8157 
8158 	event_fd = get_unused_fd_flags(f_flags);
8159 	if (event_fd < 0)
8160 		return event_fd;
8161 
8162 	if (group_fd != -1) {
8163 		err = perf_fget_light(group_fd, &group);
8164 		if (err)
8165 			goto err_fd;
8166 		group_leader = group.file->private_data;
8167 		if (flags & PERF_FLAG_FD_OUTPUT)
8168 			output_event = group_leader;
8169 		if (flags & PERF_FLAG_FD_NO_GROUP)
8170 			group_leader = NULL;
8171 	}
8172 
8173 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8174 		task = find_lively_task_by_vpid(pid);
8175 		if (IS_ERR(task)) {
8176 			err = PTR_ERR(task);
8177 			goto err_group_fd;
8178 		}
8179 	}
8180 
8181 	if (task && group_leader &&
8182 	    group_leader->attr.inherit != attr.inherit) {
8183 		err = -EINVAL;
8184 		goto err_task;
8185 	}
8186 
8187 	get_online_cpus();
8188 
8189 	if (flags & PERF_FLAG_PID_CGROUP)
8190 		cgroup_fd = pid;
8191 
8192 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8193 				 NULL, NULL, cgroup_fd);
8194 	if (IS_ERR(event)) {
8195 		err = PTR_ERR(event);
8196 		goto err_cpus;
8197 	}
8198 
8199 	if (is_sampling_event(event)) {
8200 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8201 			err = -ENOTSUPP;
8202 			goto err_alloc;
8203 		}
8204 	}
8205 
8206 	account_event(event);
8207 
8208 	/*
8209 	 * Special case software events and allow them to be part of
8210 	 * any hardware group.
8211 	 */
8212 	pmu = event->pmu;
8213 
8214 	if (attr.use_clockid) {
8215 		err = perf_event_set_clock(event, attr.clockid);
8216 		if (err)
8217 			goto err_alloc;
8218 	}
8219 
8220 	if (group_leader &&
8221 	    (is_software_event(event) != is_software_event(group_leader))) {
8222 		if (is_software_event(event)) {
8223 			/*
8224 			 * If event and group_leader are not both a software
8225 			 * event, and event is, then group leader is not.
8226 			 *
8227 			 * Allow the addition of software events to !software
8228 			 * groups, this is safe because software events never
8229 			 * fail to schedule.
8230 			 */
8231 			pmu = group_leader->pmu;
8232 		} else if (is_software_event(group_leader) &&
8233 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8234 			/*
8235 			 * In case the group is a pure software group, and we
8236 			 * try to add a hardware event, move the whole group to
8237 			 * the hardware context.
8238 			 */
8239 			move_group = 1;
8240 		}
8241 	}
8242 
8243 	/*
8244 	 * Get the target context (task or percpu):
8245 	 */
8246 	ctx = find_get_context(pmu, task, event);
8247 	if (IS_ERR(ctx)) {
8248 		err = PTR_ERR(ctx);
8249 		goto err_alloc;
8250 	}
8251 
8252 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8253 		err = -EBUSY;
8254 		goto err_context;
8255 	}
8256 
8257 	if (task) {
8258 		put_task_struct(task);
8259 		task = NULL;
8260 	}
8261 
8262 	/*
8263 	 * Look up the group leader (we will attach this event to it):
8264 	 */
8265 	if (group_leader) {
8266 		err = -EINVAL;
8267 
8268 		/*
8269 		 * Do not allow a recursive hierarchy (this new sibling
8270 		 * becoming part of another group-sibling):
8271 		 */
8272 		if (group_leader->group_leader != group_leader)
8273 			goto err_context;
8274 
8275 		/* All events in a group should have the same clock */
8276 		if (group_leader->clock != event->clock)
8277 			goto err_context;
8278 
8279 		/*
8280 		 * Do not allow to attach to a group in a different
8281 		 * task or CPU context:
8282 		 */
8283 		if (move_group) {
8284 			/*
8285 			 * Make sure we're both on the same task, or both
8286 			 * per-cpu events.
8287 			 */
8288 			if (group_leader->ctx->task != ctx->task)
8289 				goto err_context;
8290 
8291 			/*
8292 			 * Make sure we're both events for the same CPU;
8293 			 * grouping events for different CPUs is broken; since
8294 			 * you can never concurrently schedule them anyhow.
8295 			 */
8296 			if (group_leader->cpu != event->cpu)
8297 				goto err_context;
8298 		} else {
8299 			if (group_leader->ctx != ctx)
8300 				goto err_context;
8301 		}
8302 
8303 		/*
8304 		 * Only a group leader can be exclusive or pinned
8305 		 */
8306 		if (attr.exclusive || attr.pinned)
8307 			goto err_context;
8308 	}
8309 
8310 	if (output_event) {
8311 		err = perf_event_set_output(event, output_event);
8312 		if (err)
8313 			goto err_context;
8314 	}
8315 
8316 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8317 					f_flags);
8318 	if (IS_ERR(event_file)) {
8319 		err = PTR_ERR(event_file);
8320 		goto err_context;
8321 	}
8322 
8323 	if (move_group) {
8324 		gctx = group_leader->ctx;
8325 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8326 	} else {
8327 		mutex_lock(&ctx->mutex);
8328 	}
8329 
8330 	if (!perf_event_validate_size(event)) {
8331 		err = -E2BIG;
8332 		goto err_locked;
8333 	}
8334 
8335 	/*
8336 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8337 	 * because we need to serialize with concurrent event creation.
8338 	 */
8339 	if (!exclusive_event_installable(event, ctx)) {
8340 		/* exclusive and group stuff are assumed mutually exclusive */
8341 		WARN_ON_ONCE(move_group);
8342 
8343 		err = -EBUSY;
8344 		goto err_locked;
8345 	}
8346 
8347 	WARN_ON_ONCE(ctx->parent_ctx);
8348 
8349 	if (move_group) {
8350 		/*
8351 		 * See perf_event_ctx_lock() for comments on the details
8352 		 * of swizzling perf_event::ctx.
8353 		 */
8354 		perf_remove_from_context(group_leader, false);
8355 
8356 		list_for_each_entry(sibling, &group_leader->sibling_list,
8357 				    group_entry) {
8358 			perf_remove_from_context(sibling, false);
8359 			put_ctx(gctx);
8360 		}
8361 
8362 		/*
8363 		 * Wait for everybody to stop referencing the events through
8364 		 * the old lists, before installing it on new lists.
8365 		 */
8366 		synchronize_rcu();
8367 
8368 		/*
8369 		 * Install the group siblings before the group leader.
8370 		 *
8371 		 * Because a group leader will try and install the entire group
8372 		 * (through the sibling list, which is still in-tact), we can
8373 		 * end up with siblings installed in the wrong context.
8374 		 *
8375 		 * By installing siblings first we NO-OP because they're not
8376 		 * reachable through the group lists.
8377 		 */
8378 		list_for_each_entry(sibling, &group_leader->sibling_list,
8379 				    group_entry) {
8380 			perf_event__state_init(sibling);
8381 			perf_install_in_context(ctx, sibling, sibling->cpu);
8382 			get_ctx(ctx);
8383 		}
8384 
8385 		/*
8386 		 * Removing from the context ends up with disabled
8387 		 * event. What we want here is event in the initial
8388 		 * startup state, ready to be add into new context.
8389 		 */
8390 		perf_event__state_init(group_leader);
8391 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8392 		get_ctx(ctx);
8393 
8394 		/*
8395 		 * Now that all events are installed in @ctx, nothing
8396 		 * references @gctx anymore, so drop the last reference we have
8397 		 * on it.
8398 		 */
8399 		put_ctx(gctx);
8400 	}
8401 
8402 	/*
8403 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8404 	 * that we're serialized against further additions and before
8405 	 * perf_install_in_context() which is the point the event is active and
8406 	 * can use these values.
8407 	 */
8408 	perf_event__header_size(event);
8409 	perf_event__id_header_size(event);
8410 
8411 	perf_install_in_context(ctx, event, event->cpu);
8412 	perf_unpin_context(ctx);
8413 
8414 	if (move_group)
8415 		mutex_unlock(&gctx->mutex);
8416 	mutex_unlock(&ctx->mutex);
8417 
8418 	put_online_cpus();
8419 
8420 	event->owner = current;
8421 
8422 	mutex_lock(&current->perf_event_mutex);
8423 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8424 	mutex_unlock(&current->perf_event_mutex);
8425 
8426 	/*
8427 	 * Drop the reference on the group_event after placing the
8428 	 * new event on the sibling_list. This ensures destruction
8429 	 * of the group leader will find the pointer to itself in
8430 	 * perf_group_detach().
8431 	 */
8432 	fdput(group);
8433 	fd_install(event_fd, event_file);
8434 	return event_fd;
8435 
8436 err_locked:
8437 	if (move_group)
8438 		mutex_unlock(&gctx->mutex);
8439 	mutex_unlock(&ctx->mutex);
8440 /* err_file: */
8441 	fput(event_file);
8442 err_context:
8443 	perf_unpin_context(ctx);
8444 	put_ctx(ctx);
8445 err_alloc:
8446 	free_event(event);
8447 err_cpus:
8448 	put_online_cpus();
8449 err_task:
8450 	if (task)
8451 		put_task_struct(task);
8452 err_group_fd:
8453 	fdput(group);
8454 err_fd:
8455 	put_unused_fd(event_fd);
8456 	return err;
8457 }
8458 
8459 /**
8460  * perf_event_create_kernel_counter
8461  *
8462  * @attr: attributes of the counter to create
8463  * @cpu: cpu in which the counter is bound
8464  * @task: task to profile (NULL for percpu)
8465  */
8466 struct perf_event *
8467 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8468 				 struct task_struct *task,
8469 				 perf_overflow_handler_t overflow_handler,
8470 				 void *context)
8471 {
8472 	struct perf_event_context *ctx;
8473 	struct perf_event *event;
8474 	int err;
8475 
8476 	/*
8477 	 * Get the target context (task or percpu):
8478 	 */
8479 
8480 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8481 				 overflow_handler, context, -1);
8482 	if (IS_ERR(event)) {
8483 		err = PTR_ERR(event);
8484 		goto err;
8485 	}
8486 
8487 	/* Mark owner so we could distinguish it from user events. */
8488 	event->owner = EVENT_OWNER_KERNEL;
8489 
8490 	account_event(event);
8491 
8492 	ctx = find_get_context(event->pmu, task, event);
8493 	if (IS_ERR(ctx)) {
8494 		err = PTR_ERR(ctx);
8495 		goto err_free;
8496 	}
8497 
8498 	WARN_ON_ONCE(ctx->parent_ctx);
8499 	mutex_lock(&ctx->mutex);
8500 	if (!exclusive_event_installable(event, ctx)) {
8501 		mutex_unlock(&ctx->mutex);
8502 		perf_unpin_context(ctx);
8503 		put_ctx(ctx);
8504 		err = -EBUSY;
8505 		goto err_free;
8506 	}
8507 
8508 	perf_install_in_context(ctx, event, cpu);
8509 	perf_unpin_context(ctx);
8510 	mutex_unlock(&ctx->mutex);
8511 
8512 	return event;
8513 
8514 err_free:
8515 	free_event(event);
8516 err:
8517 	return ERR_PTR(err);
8518 }
8519 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8520 
8521 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8522 {
8523 	struct perf_event_context *src_ctx;
8524 	struct perf_event_context *dst_ctx;
8525 	struct perf_event *event, *tmp;
8526 	LIST_HEAD(events);
8527 
8528 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8529 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8530 
8531 	/*
8532 	 * See perf_event_ctx_lock() for comments on the details
8533 	 * of swizzling perf_event::ctx.
8534 	 */
8535 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8536 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8537 				 event_entry) {
8538 		perf_remove_from_context(event, false);
8539 		unaccount_event_cpu(event, src_cpu);
8540 		put_ctx(src_ctx);
8541 		list_add(&event->migrate_entry, &events);
8542 	}
8543 
8544 	/*
8545 	 * Wait for the events to quiesce before re-instating them.
8546 	 */
8547 	synchronize_rcu();
8548 
8549 	/*
8550 	 * Re-instate events in 2 passes.
8551 	 *
8552 	 * Skip over group leaders and only install siblings on this first
8553 	 * pass, siblings will not get enabled without a leader, however a
8554 	 * leader will enable its siblings, even if those are still on the old
8555 	 * context.
8556 	 */
8557 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8558 		if (event->group_leader == event)
8559 			continue;
8560 
8561 		list_del(&event->migrate_entry);
8562 		if (event->state >= PERF_EVENT_STATE_OFF)
8563 			event->state = PERF_EVENT_STATE_INACTIVE;
8564 		account_event_cpu(event, dst_cpu);
8565 		perf_install_in_context(dst_ctx, event, dst_cpu);
8566 		get_ctx(dst_ctx);
8567 	}
8568 
8569 	/*
8570 	 * Once all the siblings are setup properly, install the group leaders
8571 	 * to make it go.
8572 	 */
8573 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8574 		list_del(&event->migrate_entry);
8575 		if (event->state >= PERF_EVENT_STATE_OFF)
8576 			event->state = PERF_EVENT_STATE_INACTIVE;
8577 		account_event_cpu(event, dst_cpu);
8578 		perf_install_in_context(dst_ctx, event, dst_cpu);
8579 		get_ctx(dst_ctx);
8580 	}
8581 	mutex_unlock(&dst_ctx->mutex);
8582 	mutex_unlock(&src_ctx->mutex);
8583 }
8584 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8585 
8586 static void sync_child_event(struct perf_event *child_event,
8587 			       struct task_struct *child)
8588 {
8589 	struct perf_event *parent_event = child_event->parent;
8590 	u64 child_val;
8591 
8592 	if (child_event->attr.inherit_stat)
8593 		perf_event_read_event(child_event, child);
8594 
8595 	child_val = perf_event_count(child_event);
8596 
8597 	/*
8598 	 * Add back the child's count to the parent's count:
8599 	 */
8600 	atomic64_add(child_val, &parent_event->child_count);
8601 	atomic64_add(child_event->total_time_enabled,
8602 		     &parent_event->child_total_time_enabled);
8603 	atomic64_add(child_event->total_time_running,
8604 		     &parent_event->child_total_time_running);
8605 
8606 	/*
8607 	 * Remove this event from the parent's list
8608 	 */
8609 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8610 	mutex_lock(&parent_event->child_mutex);
8611 	list_del_init(&child_event->child_list);
8612 	mutex_unlock(&parent_event->child_mutex);
8613 
8614 	/*
8615 	 * Make sure user/parent get notified, that we just
8616 	 * lost one event.
8617 	 */
8618 	perf_event_wakeup(parent_event);
8619 
8620 	/*
8621 	 * Release the parent event, if this was the last
8622 	 * reference to it.
8623 	 */
8624 	put_event(parent_event);
8625 }
8626 
8627 static void
8628 __perf_event_exit_task(struct perf_event *child_event,
8629 			 struct perf_event_context *child_ctx,
8630 			 struct task_struct *child)
8631 {
8632 	/*
8633 	 * Do not destroy the 'original' grouping; because of the context
8634 	 * switch optimization the original events could've ended up in a
8635 	 * random child task.
8636 	 *
8637 	 * If we were to destroy the original group, all group related
8638 	 * operations would cease to function properly after this random
8639 	 * child dies.
8640 	 *
8641 	 * Do destroy all inherited groups, we don't care about those
8642 	 * and being thorough is better.
8643 	 */
8644 	perf_remove_from_context(child_event, !!child_event->parent);
8645 
8646 	/*
8647 	 * It can happen that the parent exits first, and has events
8648 	 * that are still around due to the child reference. These
8649 	 * events need to be zapped.
8650 	 */
8651 	if (child_event->parent) {
8652 		sync_child_event(child_event, child);
8653 		free_event(child_event);
8654 	} else {
8655 		child_event->state = PERF_EVENT_STATE_EXIT;
8656 		perf_event_wakeup(child_event);
8657 	}
8658 }
8659 
8660 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8661 {
8662 	struct perf_event *child_event, *next;
8663 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8664 	unsigned long flags;
8665 
8666 	if (likely(!child->perf_event_ctxp[ctxn])) {
8667 		perf_event_task(child, NULL, 0);
8668 		return;
8669 	}
8670 
8671 	local_irq_save(flags);
8672 	/*
8673 	 * We can't reschedule here because interrupts are disabled,
8674 	 * and either child is current or it is a task that can't be
8675 	 * scheduled, so we are now safe from rescheduling changing
8676 	 * our context.
8677 	 */
8678 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8679 
8680 	/*
8681 	 * Take the context lock here so that if find_get_context is
8682 	 * reading child->perf_event_ctxp, we wait until it has
8683 	 * incremented the context's refcount before we do put_ctx below.
8684 	 */
8685 	raw_spin_lock(&child_ctx->lock);
8686 	task_ctx_sched_out(child_ctx);
8687 	child->perf_event_ctxp[ctxn] = NULL;
8688 
8689 	/*
8690 	 * If this context is a clone; unclone it so it can't get
8691 	 * swapped to another process while we're removing all
8692 	 * the events from it.
8693 	 */
8694 	clone_ctx = unclone_ctx(child_ctx);
8695 	update_context_time(child_ctx);
8696 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8697 
8698 	if (clone_ctx)
8699 		put_ctx(clone_ctx);
8700 
8701 	/*
8702 	 * Report the task dead after unscheduling the events so that we
8703 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8704 	 * get a few PERF_RECORD_READ events.
8705 	 */
8706 	perf_event_task(child, child_ctx, 0);
8707 
8708 	/*
8709 	 * We can recurse on the same lock type through:
8710 	 *
8711 	 *   __perf_event_exit_task()
8712 	 *     sync_child_event()
8713 	 *       put_event()
8714 	 *         mutex_lock(&ctx->mutex)
8715 	 *
8716 	 * But since its the parent context it won't be the same instance.
8717 	 */
8718 	mutex_lock(&child_ctx->mutex);
8719 
8720 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8721 		__perf_event_exit_task(child_event, child_ctx, child);
8722 
8723 	mutex_unlock(&child_ctx->mutex);
8724 
8725 	put_ctx(child_ctx);
8726 }
8727 
8728 /*
8729  * When a child task exits, feed back event values to parent events.
8730  */
8731 void perf_event_exit_task(struct task_struct *child)
8732 {
8733 	struct perf_event *event, *tmp;
8734 	int ctxn;
8735 
8736 	mutex_lock(&child->perf_event_mutex);
8737 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8738 				 owner_entry) {
8739 		list_del_init(&event->owner_entry);
8740 
8741 		/*
8742 		 * Ensure the list deletion is visible before we clear
8743 		 * the owner, closes a race against perf_release() where
8744 		 * we need to serialize on the owner->perf_event_mutex.
8745 		 */
8746 		smp_wmb();
8747 		event->owner = NULL;
8748 	}
8749 	mutex_unlock(&child->perf_event_mutex);
8750 
8751 	for_each_task_context_nr(ctxn)
8752 		perf_event_exit_task_context(child, ctxn);
8753 }
8754 
8755 static void perf_free_event(struct perf_event *event,
8756 			    struct perf_event_context *ctx)
8757 {
8758 	struct perf_event *parent = event->parent;
8759 
8760 	if (WARN_ON_ONCE(!parent))
8761 		return;
8762 
8763 	mutex_lock(&parent->child_mutex);
8764 	list_del_init(&event->child_list);
8765 	mutex_unlock(&parent->child_mutex);
8766 
8767 	put_event(parent);
8768 
8769 	raw_spin_lock_irq(&ctx->lock);
8770 	perf_group_detach(event);
8771 	list_del_event(event, ctx);
8772 	raw_spin_unlock_irq(&ctx->lock);
8773 	free_event(event);
8774 }
8775 
8776 /*
8777  * Free an unexposed, unused context as created by inheritance by
8778  * perf_event_init_task below, used by fork() in case of fail.
8779  *
8780  * Not all locks are strictly required, but take them anyway to be nice and
8781  * help out with the lockdep assertions.
8782  */
8783 void perf_event_free_task(struct task_struct *task)
8784 {
8785 	struct perf_event_context *ctx;
8786 	struct perf_event *event, *tmp;
8787 	int ctxn;
8788 
8789 	for_each_task_context_nr(ctxn) {
8790 		ctx = task->perf_event_ctxp[ctxn];
8791 		if (!ctx)
8792 			continue;
8793 
8794 		mutex_lock(&ctx->mutex);
8795 again:
8796 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8797 				group_entry)
8798 			perf_free_event(event, ctx);
8799 
8800 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8801 				group_entry)
8802 			perf_free_event(event, ctx);
8803 
8804 		if (!list_empty(&ctx->pinned_groups) ||
8805 				!list_empty(&ctx->flexible_groups))
8806 			goto again;
8807 
8808 		mutex_unlock(&ctx->mutex);
8809 
8810 		put_ctx(ctx);
8811 	}
8812 }
8813 
8814 void perf_event_delayed_put(struct task_struct *task)
8815 {
8816 	int ctxn;
8817 
8818 	for_each_task_context_nr(ctxn)
8819 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8820 }
8821 
8822 struct perf_event *perf_event_get(unsigned int fd)
8823 {
8824 	int err;
8825 	struct fd f;
8826 	struct perf_event *event;
8827 
8828 	err = perf_fget_light(fd, &f);
8829 	if (err)
8830 		return ERR_PTR(err);
8831 
8832 	event = f.file->private_data;
8833 	atomic_long_inc(&event->refcount);
8834 	fdput(f);
8835 
8836 	return event;
8837 }
8838 
8839 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8840 {
8841 	if (!event)
8842 		return ERR_PTR(-EINVAL);
8843 
8844 	return &event->attr;
8845 }
8846 
8847 /*
8848  * inherit a event from parent task to child task:
8849  */
8850 static struct perf_event *
8851 inherit_event(struct perf_event *parent_event,
8852 	      struct task_struct *parent,
8853 	      struct perf_event_context *parent_ctx,
8854 	      struct task_struct *child,
8855 	      struct perf_event *group_leader,
8856 	      struct perf_event_context *child_ctx)
8857 {
8858 	enum perf_event_active_state parent_state = parent_event->state;
8859 	struct perf_event *child_event;
8860 	unsigned long flags;
8861 
8862 	/*
8863 	 * Instead of creating recursive hierarchies of events,
8864 	 * we link inherited events back to the original parent,
8865 	 * which has a filp for sure, which we use as the reference
8866 	 * count:
8867 	 */
8868 	if (parent_event->parent)
8869 		parent_event = parent_event->parent;
8870 
8871 	child_event = perf_event_alloc(&parent_event->attr,
8872 					   parent_event->cpu,
8873 					   child,
8874 					   group_leader, parent_event,
8875 					   NULL, NULL, -1);
8876 	if (IS_ERR(child_event))
8877 		return child_event;
8878 
8879 	if (is_orphaned_event(parent_event) ||
8880 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8881 		free_event(child_event);
8882 		return NULL;
8883 	}
8884 
8885 	get_ctx(child_ctx);
8886 
8887 	/*
8888 	 * Make the child state follow the state of the parent event,
8889 	 * not its attr.disabled bit.  We hold the parent's mutex,
8890 	 * so we won't race with perf_event_{en, dis}able_family.
8891 	 */
8892 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8893 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8894 	else
8895 		child_event->state = PERF_EVENT_STATE_OFF;
8896 
8897 	if (parent_event->attr.freq) {
8898 		u64 sample_period = parent_event->hw.sample_period;
8899 		struct hw_perf_event *hwc = &child_event->hw;
8900 
8901 		hwc->sample_period = sample_period;
8902 		hwc->last_period   = sample_period;
8903 
8904 		local64_set(&hwc->period_left, sample_period);
8905 	}
8906 
8907 	child_event->ctx = child_ctx;
8908 	child_event->overflow_handler = parent_event->overflow_handler;
8909 	child_event->overflow_handler_context
8910 		= parent_event->overflow_handler_context;
8911 
8912 	/*
8913 	 * Precalculate sample_data sizes
8914 	 */
8915 	perf_event__header_size(child_event);
8916 	perf_event__id_header_size(child_event);
8917 
8918 	/*
8919 	 * Link it up in the child's context:
8920 	 */
8921 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8922 	add_event_to_ctx(child_event, child_ctx);
8923 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8924 
8925 	/*
8926 	 * Link this into the parent event's child list
8927 	 */
8928 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8929 	mutex_lock(&parent_event->child_mutex);
8930 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8931 	mutex_unlock(&parent_event->child_mutex);
8932 
8933 	return child_event;
8934 }
8935 
8936 static int inherit_group(struct perf_event *parent_event,
8937 	      struct task_struct *parent,
8938 	      struct perf_event_context *parent_ctx,
8939 	      struct task_struct *child,
8940 	      struct perf_event_context *child_ctx)
8941 {
8942 	struct perf_event *leader;
8943 	struct perf_event *sub;
8944 	struct perf_event *child_ctr;
8945 
8946 	leader = inherit_event(parent_event, parent, parent_ctx,
8947 				 child, NULL, child_ctx);
8948 	if (IS_ERR(leader))
8949 		return PTR_ERR(leader);
8950 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8951 		child_ctr = inherit_event(sub, parent, parent_ctx,
8952 					    child, leader, child_ctx);
8953 		if (IS_ERR(child_ctr))
8954 			return PTR_ERR(child_ctr);
8955 	}
8956 	return 0;
8957 }
8958 
8959 static int
8960 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8961 		   struct perf_event_context *parent_ctx,
8962 		   struct task_struct *child, int ctxn,
8963 		   int *inherited_all)
8964 {
8965 	int ret;
8966 	struct perf_event_context *child_ctx;
8967 
8968 	if (!event->attr.inherit) {
8969 		*inherited_all = 0;
8970 		return 0;
8971 	}
8972 
8973 	child_ctx = child->perf_event_ctxp[ctxn];
8974 	if (!child_ctx) {
8975 		/*
8976 		 * This is executed from the parent task context, so
8977 		 * inherit events that have been marked for cloning.
8978 		 * First allocate and initialize a context for the
8979 		 * child.
8980 		 */
8981 
8982 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8983 		if (!child_ctx)
8984 			return -ENOMEM;
8985 
8986 		child->perf_event_ctxp[ctxn] = child_ctx;
8987 	}
8988 
8989 	ret = inherit_group(event, parent, parent_ctx,
8990 			    child, child_ctx);
8991 
8992 	if (ret)
8993 		*inherited_all = 0;
8994 
8995 	return ret;
8996 }
8997 
8998 /*
8999  * Initialize the perf_event context in task_struct
9000  */
9001 static int perf_event_init_context(struct task_struct *child, int ctxn)
9002 {
9003 	struct perf_event_context *child_ctx, *parent_ctx;
9004 	struct perf_event_context *cloned_ctx;
9005 	struct perf_event *event;
9006 	struct task_struct *parent = current;
9007 	int inherited_all = 1;
9008 	unsigned long flags;
9009 	int ret = 0;
9010 
9011 	if (likely(!parent->perf_event_ctxp[ctxn]))
9012 		return 0;
9013 
9014 	/*
9015 	 * If the parent's context is a clone, pin it so it won't get
9016 	 * swapped under us.
9017 	 */
9018 	parent_ctx = perf_pin_task_context(parent, ctxn);
9019 	if (!parent_ctx)
9020 		return 0;
9021 
9022 	/*
9023 	 * No need to check if parent_ctx != NULL here; since we saw
9024 	 * it non-NULL earlier, the only reason for it to become NULL
9025 	 * is if we exit, and since we're currently in the middle of
9026 	 * a fork we can't be exiting at the same time.
9027 	 */
9028 
9029 	/*
9030 	 * Lock the parent list. No need to lock the child - not PID
9031 	 * hashed yet and not running, so nobody can access it.
9032 	 */
9033 	mutex_lock(&parent_ctx->mutex);
9034 
9035 	/*
9036 	 * We dont have to disable NMIs - we are only looking at
9037 	 * the list, not manipulating it:
9038 	 */
9039 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9040 		ret = inherit_task_group(event, parent, parent_ctx,
9041 					 child, ctxn, &inherited_all);
9042 		if (ret)
9043 			break;
9044 	}
9045 
9046 	/*
9047 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9048 	 * to allocations, but we need to prevent rotation because
9049 	 * rotate_ctx() will change the list from interrupt context.
9050 	 */
9051 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9052 	parent_ctx->rotate_disable = 1;
9053 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9054 
9055 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9056 		ret = inherit_task_group(event, parent, parent_ctx,
9057 					 child, ctxn, &inherited_all);
9058 		if (ret)
9059 			break;
9060 	}
9061 
9062 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9063 	parent_ctx->rotate_disable = 0;
9064 
9065 	child_ctx = child->perf_event_ctxp[ctxn];
9066 
9067 	if (child_ctx && inherited_all) {
9068 		/*
9069 		 * Mark the child context as a clone of the parent
9070 		 * context, or of whatever the parent is a clone of.
9071 		 *
9072 		 * Note that if the parent is a clone, the holding of
9073 		 * parent_ctx->lock avoids it from being uncloned.
9074 		 */
9075 		cloned_ctx = parent_ctx->parent_ctx;
9076 		if (cloned_ctx) {
9077 			child_ctx->parent_ctx = cloned_ctx;
9078 			child_ctx->parent_gen = parent_ctx->parent_gen;
9079 		} else {
9080 			child_ctx->parent_ctx = parent_ctx;
9081 			child_ctx->parent_gen = parent_ctx->generation;
9082 		}
9083 		get_ctx(child_ctx->parent_ctx);
9084 	}
9085 
9086 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9087 	mutex_unlock(&parent_ctx->mutex);
9088 
9089 	perf_unpin_context(parent_ctx);
9090 	put_ctx(parent_ctx);
9091 
9092 	return ret;
9093 }
9094 
9095 /*
9096  * Initialize the perf_event context in task_struct
9097  */
9098 int perf_event_init_task(struct task_struct *child)
9099 {
9100 	int ctxn, ret;
9101 
9102 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9103 	mutex_init(&child->perf_event_mutex);
9104 	INIT_LIST_HEAD(&child->perf_event_list);
9105 
9106 	for_each_task_context_nr(ctxn) {
9107 		ret = perf_event_init_context(child, ctxn);
9108 		if (ret) {
9109 			perf_event_free_task(child);
9110 			return ret;
9111 		}
9112 	}
9113 
9114 	return 0;
9115 }
9116 
9117 static void __init perf_event_init_all_cpus(void)
9118 {
9119 	struct swevent_htable *swhash;
9120 	int cpu;
9121 
9122 	for_each_possible_cpu(cpu) {
9123 		swhash = &per_cpu(swevent_htable, cpu);
9124 		mutex_init(&swhash->hlist_mutex);
9125 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9126 	}
9127 }
9128 
9129 static void perf_event_init_cpu(int cpu)
9130 {
9131 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9132 
9133 	mutex_lock(&swhash->hlist_mutex);
9134 	swhash->online = true;
9135 	if (swhash->hlist_refcount > 0) {
9136 		struct swevent_hlist *hlist;
9137 
9138 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9139 		WARN_ON(!hlist);
9140 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9141 	}
9142 	mutex_unlock(&swhash->hlist_mutex);
9143 }
9144 
9145 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9146 static void __perf_event_exit_context(void *__info)
9147 {
9148 	struct remove_event re = { .detach_group = true };
9149 	struct perf_event_context *ctx = __info;
9150 
9151 	rcu_read_lock();
9152 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9153 		__perf_remove_from_context(&re);
9154 	rcu_read_unlock();
9155 }
9156 
9157 static void perf_event_exit_cpu_context(int cpu)
9158 {
9159 	struct perf_event_context *ctx;
9160 	struct pmu *pmu;
9161 	int idx;
9162 
9163 	idx = srcu_read_lock(&pmus_srcu);
9164 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9165 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9166 
9167 		mutex_lock(&ctx->mutex);
9168 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9169 		mutex_unlock(&ctx->mutex);
9170 	}
9171 	srcu_read_unlock(&pmus_srcu, idx);
9172 }
9173 
9174 static void perf_event_exit_cpu(int cpu)
9175 {
9176 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9177 
9178 	perf_event_exit_cpu_context(cpu);
9179 
9180 	mutex_lock(&swhash->hlist_mutex);
9181 	swhash->online = false;
9182 	swevent_hlist_release(swhash);
9183 	mutex_unlock(&swhash->hlist_mutex);
9184 }
9185 #else
9186 static inline void perf_event_exit_cpu(int cpu) { }
9187 #endif
9188 
9189 static int
9190 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9191 {
9192 	int cpu;
9193 
9194 	for_each_online_cpu(cpu)
9195 		perf_event_exit_cpu(cpu);
9196 
9197 	return NOTIFY_OK;
9198 }
9199 
9200 /*
9201  * Run the perf reboot notifier at the very last possible moment so that
9202  * the generic watchdog code runs as long as possible.
9203  */
9204 static struct notifier_block perf_reboot_notifier = {
9205 	.notifier_call = perf_reboot,
9206 	.priority = INT_MIN,
9207 };
9208 
9209 static int
9210 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9211 {
9212 	unsigned int cpu = (long)hcpu;
9213 
9214 	switch (action & ~CPU_TASKS_FROZEN) {
9215 
9216 	case CPU_UP_PREPARE:
9217 	case CPU_DOWN_FAILED:
9218 		perf_event_init_cpu(cpu);
9219 		break;
9220 
9221 	case CPU_UP_CANCELED:
9222 	case CPU_DOWN_PREPARE:
9223 		perf_event_exit_cpu(cpu);
9224 		break;
9225 	default:
9226 		break;
9227 	}
9228 
9229 	return NOTIFY_OK;
9230 }
9231 
9232 void __init perf_event_init(void)
9233 {
9234 	int ret;
9235 
9236 	idr_init(&pmu_idr);
9237 
9238 	perf_event_init_all_cpus();
9239 	init_srcu_struct(&pmus_srcu);
9240 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9241 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9242 	perf_pmu_register(&perf_task_clock, NULL, -1);
9243 	perf_tp_register();
9244 	perf_cpu_notifier(perf_cpu_notify);
9245 	register_reboot_notifier(&perf_reboot_notifier);
9246 
9247 	ret = init_hw_breakpoint();
9248 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9249 
9250 	/* do not patch jump label more than once per second */
9251 	jump_label_rate_limit(&perf_sched_events, HZ);
9252 
9253 	/*
9254 	 * Build time assertion that we keep the data_head at the intended
9255 	 * location.  IOW, validation we got the __reserved[] size right.
9256 	 */
9257 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9258 		     != 1024);
9259 }
9260 
9261 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9262 			      char *page)
9263 {
9264 	struct perf_pmu_events_attr *pmu_attr =
9265 		container_of(attr, struct perf_pmu_events_attr, attr);
9266 
9267 	if (pmu_attr->event_str)
9268 		return sprintf(page, "%s\n", pmu_attr->event_str);
9269 
9270 	return 0;
9271 }
9272 
9273 static int __init perf_event_sysfs_init(void)
9274 {
9275 	struct pmu *pmu;
9276 	int ret;
9277 
9278 	mutex_lock(&pmus_lock);
9279 
9280 	ret = bus_register(&pmu_bus);
9281 	if (ret)
9282 		goto unlock;
9283 
9284 	list_for_each_entry(pmu, &pmus, entry) {
9285 		if (!pmu->name || pmu->type < 0)
9286 			continue;
9287 
9288 		ret = pmu_dev_alloc(pmu);
9289 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9290 	}
9291 	pmu_bus_running = 1;
9292 	ret = 0;
9293 
9294 unlock:
9295 	mutex_unlock(&pmus_lock);
9296 
9297 	return ret;
9298 }
9299 device_initcall(perf_event_sysfs_init);
9300 
9301 #ifdef CONFIG_CGROUP_PERF
9302 static struct cgroup_subsys_state *
9303 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9304 {
9305 	struct perf_cgroup *jc;
9306 
9307 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9308 	if (!jc)
9309 		return ERR_PTR(-ENOMEM);
9310 
9311 	jc->info = alloc_percpu(struct perf_cgroup_info);
9312 	if (!jc->info) {
9313 		kfree(jc);
9314 		return ERR_PTR(-ENOMEM);
9315 	}
9316 
9317 	return &jc->css;
9318 }
9319 
9320 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9321 {
9322 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9323 
9324 	free_percpu(jc->info);
9325 	kfree(jc);
9326 }
9327 
9328 static int __perf_cgroup_move(void *info)
9329 {
9330 	struct task_struct *task = info;
9331 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9332 	return 0;
9333 }
9334 
9335 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9336 			       struct cgroup_taskset *tset)
9337 {
9338 	struct task_struct *task;
9339 
9340 	cgroup_taskset_for_each(task, tset)
9341 		task_function_call(task, __perf_cgroup_move, task);
9342 }
9343 
9344 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9345 			     struct cgroup_subsys_state *old_css,
9346 			     struct task_struct *task)
9347 {
9348 	/*
9349 	 * cgroup_exit() is called in the copy_process() failure path.
9350 	 * Ignore this case since the task hasn't ran yet, this avoids
9351 	 * trying to poke a half freed task state from generic code.
9352 	 */
9353 	if (!(task->flags & PF_EXITING))
9354 		return;
9355 
9356 	task_function_call(task, __perf_cgroup_move, task);
9357 }
9358 
9359 struct cgroup_subsys perf_event_cgrp_subsys = {
9360 	.css_alloc	= perf_cgroup_css_alloc,
9361 	.css_free	= perf_cgroup_css_free,
9362 	.exit		= perf_cgroup_exit,
9363 	.attach		= perf_cgroup_attach,
9364 };
9365 #endif /* CONFIG_CGROUP_PERF */
9366