1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 void perf_pmu_resched(struct pmu *pmu) 2482 { 2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2484 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2485 2486 perf_ctx_lock(cpuctx, task_ctx); 2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2488 perf_ctx_unlock(cpuctx, task_ctx); 2489 } 2490 2491 /* 2492 * Cross CPU call to install and enable a performance event 2493 * 2494 * Very similar to remote_function() + event_function() but cannot assume that 2495 * things like ctx->is_active and cpuctx->task_ctx are set. 2496 */ 2497 static int __perf_install_in_context(void *info) 2498 { 2499 struct perf_event *event = info; 2500 struct perf_event_context *ctx = event->ctx; 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2503 bool reprogram = true; 2504 int ret = 0; 2505 2506 raw_spin_lock(&cpuctx->ctx.lock); 2507 if (ctx->task) { 2508 raw_spin_lock(&ctx->lock); 2509 task_ctx = ctx; 2510 2511 reprogram = (ctx->task == current); 2512 2513 /* 2514 * If the task is running, it must be running on this CPU, 2515 * otherwise we cannot reprogram things. 2516 * 2517 * If its not running, we don't care, ctx->lock will 2518 * serialize against it becoming runnable. 2519 */ 2520 if (task_curr(ctx->task) && !reprogram) { 2521 ret = -ESRCH; 2522 goto unlock; 2523 } 2524 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2526 } else if (task_ctx) { 2527 raw_spin_lock(&task_ctx->lock); 2528 } 2529 2530 #ifdef CONFIG_CGROUP_PERF 2531 if (is_cgroup_event(event)) { 2532 /* 2533 * If the current cgroup doesn't match the event's 2534 * cgroup, we should not try to schedule it. 2535 */ 2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2538 event->cgrp->css.cgroup); 2539 } 2540 #endif 2541 2542 if (reprogram) { 2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2544 add_event_to_ctx(event, ctx); 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2546 } else { 2547 add_event_to_ctx(event, ctx); 2548 } 2549 2550 unlock: 2551 perf_ctx_unlock(cpuctx, task_ctx); 2552 2553 return ret; 2554 } 2555 2556 /* 2557 * Attach a performance event to a context. 2558 * 2559 * Very similar to event_function_call, see comment there. 2560 */ 2561 static void 2562 perf_install_in_context(struct perf_event_context *ctx, 2563 struct perf_event *event, 2564 int cpu) 2565 { 2566 struct task_struct *task = READ_ONCE(ctx->task); 2567 2568 lockdep_assert_held(&ctx->mutex); 2569 2570 if (event->cpu != -1) 2571 event->cpu = cpu; 2572 2573 /* 2574 * Ensures that if we can observe event->ctx, both the event and ctx 2575 * will be 'complete'. See perf_iterate_sb_cpu(). 2576 */ 2577 smp_store_release(&event->ctx, ctx); 2578 2579 if (!task) { 2580 cpu_function_call(cpu, __perf_install_in_context, event); 2581 return; 2582 } 2583 2584 /* 2585 * Should not happen, we validate the ctx is still alive before calling. 2586 */ 2587 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2588 return; 2589 2590 /* 2591 * Installing events is tricky because we cannot rely on ctx->is_active 2592 * to be set in case this is the nr_events 0 -> 1 transition. 2593 * 2594 * Instead we use task_curr(), which tells us if the task is running. 2595 * However, since we use task_curr() outside of rq::lock, we can race 2596 * against the actual state. This means the result can be wrong. 2597 * 2598 * If we get a false positive, we retry, this is harmless. 2599 * 2600 * If we get a false negative, things are complicated. If we are after 2601 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2602 * value must be correct. If we're before, it doesn't matter since 2603 * perf_event_context_sched_in() will program the counter. 2604 * 2605 * However, this hinges on the remote context switch having observed 2606 * our task->perf_event_ctxp[] store, such that it will in fact take 2607 * ctx::lock in perf_event_context_sched_in(). 2608 * 2609 * We do this by task_function_call(), if the IPI fails to hit the task 2610 * we know any future context switch of task must see the 2611 * perf_event_ctpx[] store. 2612 */ 2613 2614 /* 2615 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2616 * task_cpu() load, such that if the IPI then does not find the task 2617 * running, a future context switch of that task must observe the 2618 * store. 2619 */ 2620 smp_mb(); 2621 again: 2622 if (!task_function_call(task, __perf_install_in_context, event)) 2623 return; 2624 2625 raw_spin_lock_irq(&ctx->lock); 2626 task = ctx->task; 2627 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2628 /* 2629 * Cannot happen because we already checked above (which also 2630 * cannot happen), and we hold ctx->mutex, which serializes us 2631 * against perf_event_exit_task_context(). 2632 */ 2633 raw_spin_unlock_irq(&ctx->lock); 2634 return; 2635 } 2636 /* 2637 * If the task is not running, ctx->lock will avoid it becoming so, 2638 * thus we can safely install the event. 2639 */ 2640 if (task_curr(task)) { 2641 raw_spin_unlock_irq(&ctx->lock); 2642 goto again; 2643 } 2644 add_event_to_ctx(event, ctx); 2645 raw_spin_unlock_irq(&ctx->lock); 2646 } 2647 2648 /* 2649 * Cross CPU call to enable a performance event 2650 */ 2651 static void __perf_event_enable(struct perf_event *event, 2652 struct perf_cpu_context *cpuctx, 2653 struct perf_event_context *ctx, 2654 void *info) 2655 { 2656 struct perf_event *leader = event->group_leader; 2657 struct perf_event_context *task_ctx; 2658 2659 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2660 event->state <= PERF_EVENT_STATE_ERROR) 2661 return; 2662 2663 if (ctx->is_active) 2664 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2665 2666 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2667 2668 if (!ctx->is_active) 2669 return; 2670 2671 if (!event_filter_match(event)) { 2672 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2673 return; 2674 } 2675 2676 /* 2677 * If the event is in a group and isn't the group leader, 2678 * then don't put it on unless the group is on. 2679 */ 2680 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2681 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2682 return; 2683 } 2684 2685 task_ctx = cpuctx->task_ctx; 2686 if (ctx->task) 2687 WARN_ON_ONCE(task_ctx != ctx); 2688 2689 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2690 } 2691 2692 /* 2693 * Enable an event. 2694 * 2695 * If event->ctx is a cloned context, callers must make sure that 2696 * every task struct that event->ctx->task could possibly point to 2697 * remains valid. This condition is satisfied when called through 2698 * perf_event_for_each_child or perf_event_for_each as described 2699 * for perf_event_disable. 2700 */ 2701 static void _perf_event_enable(struct perf_event *event) 2702 { 2703 struct perf_event_context *ctx = event->ctx; 2704 2705 raw_spin_lock_irq(&ctx->lock); 2706 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2707 event->state < PERF_EVENT_STATE_ERROR) { 2708 raw_spin_unlock_irq(&ctx->lock); 2709 return; 2710 } 2711 2712 /* 2713 * If the event is in error state, clear that first. 2714 * 2715 * That way, if we see the event in error state below, we know that it 2716 * has gone back into error state, as distinct from the task having 2717 * been scheduled away before the cross-call arrived. 2718 */ 2719 if (event->state == PERF_EVENT_STATE_ERROR) 2720 event->state = PERF_EVENT_STATE_OFF; 2721 raw_spin_unlock_irq(&ctx->lock); 2722 2723 event_function_call(event, __perf_event_enable, NULL); 2724 } 2725 2726 /* 2727 * See perf_event_disable(); 2728 */ 2729 void perf_event_enable(struct perf_event *event) 2730 { 2731 struct perf_event_context *ctx; 2732 2733 ctx = perf_event_ctx_lock(event); 2734 _perf_event_enable(event); 2735 perf_event_ctx_unlock(event, ctx); 2736 } 2737 EXPORT_SYMBOL_GPL(perf_event_enable); 2738 2739 struct stop_event_data { 2740 struct perf_event *event; 2741 unsigned int restart; 2742 }; 2743 2744 static int __perf_event_stop(void *info) 2745 { 2746 struct stop_event_data *sd = info; 2747 struct perf_event *event = sd->event; 2748 2749 /* if it's already INACTIVE, do nothing */ 2750 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2751 return 0; 2752 2753 /* matches smp_wmb() in event_sched_in() */ 2754 smp_rmb(); 2755 2756 /* 2757 * There is a window with interrupts enabled before we get here, 2758 * so we need to check again lest we try to stop another CPU's event. 2759 */ 2760 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2761 return -EAGAIN; 2762 2763 event->pmu->stop(event, PERF_EF_UPDATE); 2764 2765 /* 2766 * May race with the actual stop (through perf_pmu_output_stop()), 2767 * but it is only used for events with AUX ring buffer, and such 2768 * events will refuse to restart because of rb::aux_mmap_count==0, 2769 * see comments in perf_aux_output_begin(). 2770 * 2771 * Since this is happening on an event-local CPU, no trace is lost 2772 * while restarting. 2773 */ 2774 if (sd->restart) 2775 event->pmu->start(event, 0); 2776 2777 return 0; 2778 } 2779 2780 static int perf_event_stop(struct perf_event *event, int restart) 2781 { 2782 struct stop_event_data sd = { 2783 .event = event, 2784 .restart = restart, 2785 }; 2786 int ret = 0; 2787 2788 do { 2789 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2790 return 0; 2791 2792 /* matches smp_wmb() in event_sched_in() */ 2793 smp_rmb(); 2794 2795 /* 2796 * We only want to restart ACTIVE events, so if the event goes 2797 * inactive here (event->oncpu==-1), there's nothing more to do; 2798 * fall through with ret==-ENXIO. 2799 */ 2800 ret = cpu_function_call(READ_ONCE(event->oncpu), 2801 __perf_event_stop, &sd); 2802 } while (ret == -EAGAIN); 2803 2804 return ret; 2805 } 2806 2807 /* 2808 * In order to contain the amount of racy and tricky in the address filter 2809 * configuration management, it is a two part process: 2810 * 2811 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2812 * we update the addresses of corresponding vmas in 2813 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2814 * (p2) when an event is scheduled in (pmu::add), it calls 2815 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2816 * if the generation has changed since the previous call. 2817 * 2818 * If (p1) happens while the event is active, we restart it to force (p2). 2819 * 2820 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2821 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2822 * ioctl; 2823 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2824 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2825 * for reading; 2826 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2827 * of exec. 2828 */ 2829 void perf_event_addr_filters_sync(struct perf_event *event) 2830 { 2831 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2832 2833 if (!has_addr_filter(event)) 2834 return; 2835 2836 raw_spin_lock(&ifh->lock); 2837 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2838 event->pmu->addr_filters_sync(event); 2839 event->hw.addr_filters_gen = event->addr_filters_gen; 2840 } 2841 raw_spin_unlock(&ifh->lock); 2842 } 2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2844 2845 static int _perf_event_refresh(struct perf_event *event, int refresh) 2846 { 2847 /* 2848 * not supported on inherited events 2849 */ 2850 if (event->attr.inherit || !is_sampling_event(event)) 2851 return -EINVAL; 2852 2853 atomic_add(refresh, &event->event_limit); 2854 _perf_event_enable(event); 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * See perf_event_disable() 2861 */ 2862 int perf_event_refresh(struct perf_event *event, int refresh) 2863 { 2864 struct perf_event_context *ctx; 2865 int ret; 2866 2867 ctx = perf_event_ctx_lock(event); 2868 ret = _perf_event_refresh(event, refresh); 2869 perf_event_ctx_unlock(event, ctx); 2870 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(perf_event_refresh); 2874 2875 static int perf_event_modify_breakpoint(struct perf_event *bp, 2876 struct perf_event_attr *attr) 2877 { 2878 int err; 2879 2880 _perf_event_disable(bp); 2881 2882 err = modify_user_hw_breakpoint_check(bp, attr, true); 2883 2884 if (!bp->attr.disabled) 2885 _perf_event_enable(bp); 2886 2887 return err; 2888 } 2889 2890 static int perf_event_modify_attr(struct perf_event *event, 2891 struct perf_event_attr *attr) 2892 { 2893 if (event->attr.type != attr->type) 2894 return -EINVAL; 2895 2896 switch (event->attr.type) { 2897 case PERF_TYPE_BREAKPOINT: 2898 return perf_event_modify_breakpoint(event, attr); 2899 default: 2900 /* Place holder for future additions. */ 2901 return -EOPNOTSUPP; 2902 } 2903 } 2904 2905 static void ctx_sched_out(struct perf_event_context *ctx, 2906 struct perf_cpu_context *cpuctx, 2907 enum event_type_t event_type) 2908 { 2909 struct perf_event *event, *tmp; 2910 int is_active = ctx->is_active; 2911 2912 lockdep_assert_held(&ctx->lock); 2913 2914 if (likely(!ctx->nr_events)) { 2915 /* 2916 * See __perf_remove_from_context(). 2917 */ 2918 WARN_ON_ONCE(ctx->is_active); 2919 if (ctx->task) 2920 WARN_ON_ONCE(cpuctx->task_ctx); 2921 return; 2922 } 2923 2924 ctx->is_active &= ~event_type; 2925 if (!(ctx->is_active & EVENT_ALL)) 2926 ctx->is_active = 0; 2927 2928 if (ctx->task) { 2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2930 if (!ctx->is_active) 2931 cpuctx->task_ctx = NULL; 2932 } 2933 2934 /* 2935 * Always update time if it was set; not only when it changes. 2936 * Otherwise we can 'forget' to update time for any but the last 2937 * context we sched out. For example: 2938 * 2939 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2940 * ctx_sched_out(.event_type = EVENT_PINNED) 2941 * 2942 * would only update time for the pinned events. 2943 */ 2944 if (is_active & EVENT_TIME) { 2945 /* update (and stop) ctx time */ 2946 update_context_time(ctx); 2947 update_cgrp_time_from_cpuctx(cpuctx); 2948 } 2949 2950 is_active ^= ctx->is_active; /* changed bits */ 2951 2952 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2953 return; 2954 2955 perf_pmu_disable(ctx->pmu); 2956 if (is_active & EVENT_PINNED) { 2957 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2958 group_sched_out(event, cpuctx, ctx); 2959 } 2960 2961 if (is_active & EVENT_FLEXIBLE) { 2962 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2963 group_sched_out(event, cpuctx, ctx); 2964 } 2965 perf_pmu_enable(ctx->pmu); 2966 } 2967 2968 /* 2969 * Test whether two contexts are equivalent, i.e. whether they have both been 2970 * cloned from the same version of the same context. 2971 * 2972 * Equivalence is measured using a generation number in the context that is 2973 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2974 * and list_del_event(). 2975 */ 2976 static int context_equiv(struct perf_event_context *ctx1, 2977 struct perf_event_context *ctx2) 2978 { 2979 lockdep_assert_held(&ctx1->lock); 2980 lockdep_assert_held(&ctx2->lock); 2981 2982 /* Pinning disables the swap optimization */ 2983 if (ctx1->pin_count || ctx2->pin_count) 2984 return 0; 2985 2986 /* If ctx1 is the parent of ctx2 */ 2987 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2988 return 1; 2989 2990 /* If ctx2 is the parent of ctx1 */ 2991 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2992 return 1; 2993 2994 /* 2995 * If ctx1 and ctx2 have the same parent; we flatten the parent 2996 * hierarchy, see perf_event_init_context(). 2997 */ 2998 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2999 ctx1->parent_gen == ctx2->parent_gen) 3000 return 1; 3001 3002 /* Unmatched */ 3003 return 0; 3004 } 3005 3006 static void __perf_event_sync_stat(struct perf_event *event, 3007 struct perf_event *next_event) 3008 { 3009 u64 value; 3010 3011 if (!event->attr.inherit_stat) 3012 return; 3013 3014 /* 3015 * Update the event value, we cannot use perf_event_read() 3016 * because we're in the middle of a context switch and have IRQs 3017 * disabled, which upsets smp_call_function_single(), however 3018 * we know the event must be on the current CPU, therefore we 3019 * don't need to use it. 3020 */ 3021 if (event->state == PERF_EVENT_STATE_ACTIVE) 3022 event->pmu->read(event); 3023 3024 perf_event_update_time(event); 3025 3026 /* 3027 * In order to keep per-task stats reliable we need to flip the event 3028 * values when we flip the contexts. 3029 */ 3030 value = local64_read(&next_event->count); 3031 value = local64_xchg(&event->count, value); 3032 local64_set(&next_event->count, value); 3033 3034 swap(event->total_time_enabled, next_event->total_time_enabled); 3035 swap(event->total_time_running, next_event->total_time_running); 3036 3037 /* 3038 * Since we swizzled the values, update the user visible data too. 3039 */ 3040 perf_event_update_userpage(event); 3041 perf_event_update_userpage(next_event); 3042 } 3043 3044 static void perf_event_sync_stat(struct perf_event_context *ctx, 3045 struct perf_event_context *next_ctx) 3046 { 3047 struct perf_event *event, *next_event; 3048 3049 if (!ctx->nr_stat) 3050 return; 3051 3052 update_context_time(ctx); 3053 3054 event = list_first_entry(&ctx->event_list, 3055 struct perf_event, event_entry); 3056 3057 next_event = list_first_entry(&next_ctx->event_list, 3058 struct perf_event, event_entry); 3059 3060 while (&event->event_entry != &ctx->event_list && 3061 &next_event->event_entry != &next_ctx->event_list) { 3062 3063 __perf_event_sync_stat(event, next_event); 3064 3065 event = list_next_entry(event, event_entry); 3066 next_event = list_next_entry(next_event, event_entry); 3067 } 3068 } 3069 3070 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3071 struct task_struct *next) 3072 { 3073 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3074 struct perf_event_context *next_ctx; 3075 struct perf_event_context *parent, *next_parent; 3076 struct perf_cpu_context *cpuctx; 3077 int do_switch = 1; 3078 3079 if (likely(!ctx)) 3080 return; 3081 3082 cpuctx = __get_cpu_context(ctx); 3083 if (!cpuctx->task_ctx) 3084 return; 3085 3086 rcu_read_lock(); 3087 next_ctx = next->perf_event_ctxp[ctxn]; 3088 if (!next_ctx) 3089 goto unlock; 3090 3091 parent = rcu_dereference(ctx->parent_ctx); 3092 next_parent = rcu_dereference(next_ctx->parent_ctx); 3093 3094 /* If neither context have a parent context; they cannot be clones. */ 3095 if (!parent && !next_parent) 3096 goto unlock; 3097 3098 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3099 /* 3100 * Looks like the two contexts are clones, so we might be 3101 * able to optimize the context switch. We lock both 3102 * contexts and check that they are clones under the 3103 * lock (including re-checking that neither has been 3104 * uncloned in the meantime). It doesn't matter which 3105 * order we take the locks because no other cpu could 3106 * be trying to lock both of these tasks. 3107 */ 3108 raw_spin_lock(&ctx->lock); 3109 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3110 if (context_equiv(ctx, next_ctx)) { 3111 WRITE_ONCE(ctx->task, next); 3112 WRITE_ONCE(next_ctx->task, task); 3113 3114 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3115 3116 /* 3117 * RCU_INIT_POINTER here is safe because we've not 3118 * modified the ctx and the above modification of 3119 * ctx->task and ctx->task_ctx_data are immaterial 3120 * since those values are always verified under 3121 * ctx->lock which we're now holding. 3122 */ 3123 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3124 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3125 3126 do_switch = 0; 3127 3128 perf_event_sync_stat(ctx, next_ctx); 3129 } 3130 raw_spin_unlock(&next_ctx->lock); 3131 raw_spin_unlock(&ctx->lock); 3132 } 3133 unlock: 3134 rcu_read_unlock(); 3135 3136 if (do_switch) { 3137 raw_spin_lock(&ctx->lock); 3138 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3139 raw_spin_unlock(&ctx->lock); 3140 } 3141 } 3142 3143 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3144 3145 void perf_sched_cb_dec(struct pmu *pmu) 3146 { 3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3148 3149 this_cpu_dec(perf_sched_cb_usages); 3150 3151 if (!--cpuctx->sched_cb_usage) 3152 list_del(&cpuctx->sched_cb_entry); 3153 } 3154 3155 3156 void perf_sched_cb_inc(struct pmu *pmu) 3157 { 3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3159 3160 if (!cpuctx->sched_cb_usage++) 3161 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3162 3163 this_cpu_inc(perf_sched_cb_usages); 3164 } 3165 3166 /* 3167 * This function provides the context switch callback to the lower code 3168 * layer. It is invoked ONLY when the context switch callback is enabled. 3169 * 3170 * This callback is relevant even to per-cpu events; for example multi event 3171 * PEBS requires this to provide PID/TID information. This requires we flush 3172 * all queued PEBS records before we context switch to a new task. 3173 */ 3174 static void perf_pmu_sched_task(struct task_struct *prev, 3175 struct task_struct *next, 3176 bool sched_in) 3177 { 3178 struct perf_cpu_context *cpuctx; 3179 struct pmu *pmu; 3180 3181 if (prev == next) 3182 return; 3183 3184 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3185 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3186 3187 if (WARN_ON_ONCE(!pmu->sched_task)) 3188 continue; 3189 3190 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3191 perf_pmu_disable(pmu); 3192 3193 pmu->sched_task(cpuctx->task_ctx, sched_in); 3194 3195 perf_pmu_enable(pmu); 3196 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3197 } 3198 } 3199 3200 static void perf_event_switch(struct task_struct *task, 3201 struct task_struct *next_prev, bool sched_in); 3202 3203 #define for_each_task_context_nr(ctxn) \ 3204 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3205 3206 /* 3207 * Called from scheduler to remove the events of the current task, 3208 * with interrupts disabled. 3209 * 3210 * We stop each event and update the event value in event->count. 3211 * 3212 * This does not protect us against NMI, but disable() 3213 * sets the disabled bit in the control field of event _before_ 3214 * accessing the event control register. If a NMI hits, then it will 3215 * not restart the event. 3216 */ 3217 void __perf_event_task_sched_out(struct task_struct *task, 3218 struct task_struct *next) 3219 { 3220 int ctxn; 3221 3222 if (__this_cpu_read(perf_sched_cb_usages)) 3223 perf_pmu_sched_task(task, next, false); 3224 3225 if (atomic_read(&nr_switch_events)) 3226 perf_event_switch(task, next, false); 3227 3228 for_each_task_context_nr(ctxn) 3229 perf_event_context_sched_out(task, ctxn, next); 3230 3231 /* 3232 * if cgroup events exist on this CPU, then we need 3233 * to check if we have to switch out PMU state. 3234 * cgroup event are system-wide mode only 3235 */ 3236 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3237 perf_cgroup_sched_out(task, next); 3238 } 3239 3240 /* 3241 * Called with IRQs disabled 3242 */ 3243 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3244 enum event_type_t event_type) 3245 { 3246 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3247 } 3248 3249 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3250 int (*func)(struct perf_event *, void *), void *data) 3251 { 3252 struct perf_event **evt, *evt1, *evt2; 3253 int ret; 3254 3255 evt1 = perf_event_groups_first(groups, -1); 3256 evt2 = perf_event_groups_first(groups, cpu); 3257 3258 while (evt1 || evt2) { 3259 if (evt1 && evt2) { 3260 if (evt1->group_index < evt2->group_index) 3261 evt = &evt1; 3262 else 3263 evt = &evt2; 3264 } else if (evt1) { 3265 evt = &evt1; 3266 } else { 3267 evt = &evt2; 3268 } 3269 3270 ret = func(*evt, data); 3271 if (ret) 3272 return ret; 3273 3274 *evt = perf_event_groups_next(*evt); 3275 } 3276 3277 return 0; 3278 } 3279 3280 struct sched_in_data { 3281 struct perf_event_context *ctx; 3282 struct perf_cpu_context *cpuctx; 3283 int can_add_hw; 3284 }; 3285 3286 static int pinned_sched_in(struct perf_event *event, void *data) 3287 { 3288 struct sched_in_data *sid = data; 3289 3290 if (event->state <= PERF_EVENT_STATE_OFF) 3291 return 0; 3292 3293 if (!event_filter_match(event)) 3294 return 0; 3295 3296 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3297 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3298 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3299 } 3300 3301 /* 3302 * If this pinned group hasn't been scheduled, 3303 * put it in error state. 3304 */ 3305 if (event->state == PERF_EVENT_STATE_INACTIVE) 3306 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3307 3308 return 0; 3309 } 3310 3311 static int flexible_sched_in(struct perf_event *event, void *data) 3312 { 3313 struct sched_in_data *sid = data; 3314 3315 if (event->state <= PERF_EVENT_STATE_OFF) 3316 return 0; 3317 3318 if (!event_filter_match(event)) 3319 return 0; 3320 3321 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3322 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3323 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3324 else 3325 sid->can_add_hw = 0; 3326 } 3327 3328 return 0; 3329 } 3330 3331 static void 3332 ctx_pinned_sched_in(struct perf_event_context *ctx, 3333 struct perf_cpu_context *cpuctx) 3334 { 3335 struct sched_in_data sid = { 3336 .ctx = ctx, 3337 .cpuctx = cpuctx, 3338 .can_add_hw = 1, 3339 }; 3340 3341 visit_groups_merge(&ctx->pinned_groups, 3342 smp_processor_id(), 3343 pinned_sched_in, &sid); 3344 } 3345 3346 static void 3347 ctx_flexible_sched_in(struct perf_event_context *ctx, 3348 struct perf_cpu_context *cpuctx) 3349 { 3350 struct sched_in_data sid = { 3351 .ctx = ctx, 3352 .cpuctx = cpuctx, 3353 .can_add_hw = 1, 3354 }; 3355 3356 visit_groups_merge(&ctx->flexible_groups, 3357 smp_processor_id(), 3358 flexible_sched_in, &sid); 3359 } 3360 3361 static void 3362 ctx_sched_in(struct perf_event_context *ctx, 3363 struct perf_cpu_context *cpuctx, 3364 enum event_type_t event_type, 3365 struct task_struct *task) 3366 { 3367 int is_active = ctx->is_active; 3368 u64 now; 3369 3370 lockdep_assert_held(&ctx->lock); 3371 3372 if (likely(!ctx->nr_events)) 3373 return; 3374 3375 ctx->is_active |= (event_type | EVENT_TIME); 3376 if (ctx->task) { 3377 if (!is_active) 3378 cpuctx->task_ctx = ctx; 3379 else 3380 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3381 } 3382 3383 is_active ^= ctx->is_active; /* changed bits */ 3384 3385 if (is_active & EVENT_TIME) { 3386 /* start ctx time */ 3387 now = perf_clock(); 3388 ctx->timestamp = now; 3389 perf_cgroup_set_timestamp(task, ctx); 3390 } 3391 3392 /* 3393 * First go through the list and put on any pinned groups 3394 * in order to give them the best chance of going on. 3395 */ 3396 if (is_active & EVENT_PINNED) 3397 ctx_pinned_sched_in(ctx, cpuctx); 3398 3399 /* Then walk through the lower prio flexible groups */ 3400 if (is_active & EVENT_FLEXIBLE) 3401 ctx_flexible_sched_in(ctx, cpuctx); 3402 } 3403 3404 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3405 enum event_type_t event_type, 3406 struct task_struct *task) 3407 { 3408 struct perf_event_context *ctx = &cpuctx->ctx; 3409 3410 ctx_sched_in(ctx, cpuctx, event_type, task); 3411 } 3412 3413 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3414 struct task_struct *task) 3415 { 3416 struct perf_cpu_context *cpuctx; 3417 3418 cpuctx = __get_cpu_context(ctx); 3419 if (cpuctx->task_ctx == ctx) 3420 return; 3421 3422 perf_ctx_lock(cpuctx, ctx); 3423 /* 3424 * We must check ctx->nr_events while holding ctx->lock, such 3425 * that we serialize against perf_install_in_context(). 3426 */ 3427 if (!ctx->nr_events) 3428 goto unlock; 3429 3430 perf_pmu_disable(ctx->pmu); 3431 /* 3432 * We want to keep the following priority order: 3433 * cpu pinned (that don't need to move), task pinned, 3434 * cpu flexible, task flexible. 3435 * 3436 * However, if task's ctx is not carrying any pinned 3437 * events, no need to flip the cpuctx's events around. 3438 */ 3439 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3440 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3441 perf_event_sched_in(cpuctx, ctx, task); 3442 perf_pmu_enable(ctx->pmu); 3443 3444 unlock: 3445 perf_ctx_unlock(cpuctx, ctx); 3446 } 3447 3448 /* 3449 * Called from scheduler to add the events of the current task 3450 * with interrupts disabled. 3451 * 3452 * We restore the event value and then enable it. 3453 * 3454 * This does not protect us against NMI, but enable() 3455 * sets the enabled bit in the control field of event _before_ 3456 * accessing the event control register. If a NMI hits, then it will 3457 * keep the event running. 3458 */ 3459 void __perf_event_task_sched_in(struct task_struct *prev, 3460 struct task_struct *task) 3461 { 3462 struct perf_event_context *ctx; 3463 int ctxn; 3464 3465 /* 3466 * If cgroup events exist on this CPU, then we need to check if we have 3467 * to switch in PMU state; cgroup event are system-wide mode only. 3468 * 3469 * Since cgroup events are CPU events, we must schedule these in before 3470 * we schedule in the task events. 3471 */ 3472 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3473 perf_cgroup_sched_in(prev, task); 3474 3475 for_each_task_context_nr(ctxn) { 3476 ctx = task->perf_event_ctxp[ctxn]; 3477 if (likely(!ctx)) 3478 continue; 3479 3480 perf_event_context_sched_in(ctx, task); 3481 } 3482 3483 if (atomic_read(&nr_switch_events)) 3484 perf_event_switch(task, prev, true); 3485 3486 if (__this_cpu_read(perf_sched_cb_usages)) 3487 perf_pmu_sched_task(prev, task, true); 3488 } 3489 3490 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3491 { 3492 u64 frequency = event->attr.sample_freq; 3493 u64 sec = NSEC_PER_SEC; 3494 u64 divisor, dividend; 3495 3496 int count_fls, nsec_fls, frequency_fls, sec_fls; 3497 3498 count_fls = fls64(count); 3499 nsec_fls = fls64(nsec); 3500 frequency_fls = fls64(frequency); 3501 sec_fls = 30; 3502 3503 /* 3504 * We got @count in @nsec, with a target of sample_freq HZ 3505 * the target period becomes: 3506 * 3507 * @count * 10^9 3508 * period = ------------------- 3509 * @nsec * sample_freq 3510 * 3511 */ 3512 3513 /* 3514 * Reduce accuracy by one bit such that @a and @b converge 3515 * to a similar magnitude. 3516 */ 3517 #define REDUCE_FLS(a, b) \ 3518 do { \ 3519 if (a##_fls > b##_fls) { \ 3520 a >>= 1; \ 3521 a##_fls--; \ 3522 } else { \ 3523 b >>= 1; \ 3524 b##_fls--; \ 3525 } \ 3526 } while (0) 3527 3528 /* 3529 * Reduce accuracy until either term fits in a u64, then proceed with 3530 * the other, so that finally we can do a u64/u64 division. 3531 */ 3532 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3533 REDUCE_FLS(nsec, frequency); 3534 REDUCE_FLS(sec, count); 3535 } 3536 3537 if (count_fls + sec_fls > 64) { 3538 divisor = nsec * frequency; 3539 3540 while (count_fls + sec_fls > 64) { 3541 REDUCE_FLS(count, sec); 3542 divisor >>= 1; 3543 } 3544 3545 dividend = count * sec; 3546 } else { 3547 dividend = count * sec; 3548 3549 while (nsec_fls + frequency_fls > 64) { 3550 REDUCE_FLS(nsec, frequency); 3551 dividend >>= 1; 3552 } 3553 3554 divisor = nsec * frequency; 3555 } 3556 3557 if (!divisor) 3558 return dividend; 3559 3560 return div64_u64(dividend, divisor); 3561 } 3562 3563 static DEFINE_PER_CPU(int, perf_throttled_count); 3564 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3565 3566 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3567 { 3568 struct hw_perf_event *hwc = &event->hw; 3569 s64 period, sample_period; 3570 s64 delta; 3571 3572 period = perf_calculate_period(event, nsec, count); 3573 3574 delta = (s64)(period - hwc->sample_period); 3575 delta = (delta + 7) / 8; /* low pass filter */ 3576 3577 sample_period = hwc->sample_period + delta; 3578 3579 if (!sample_period) 3580 sample_period = 1; 3581 3582 hwc->sample_period = sample_period; 3583 3584 if (local64_read(&hwc->period_left) > 8*sample_period) { 3585 if (disable) 3586 event->pmu->stop(event, PERF_EF_UPDATE); 3587 3588 local64_set(&hwc->period_left, 0); 3589 3590 if (disable) 3591 event->pmu->start(event, PERF_EF_RELOAD); 3592 } 3593 } 3594 3595 /* 3596 * combine freq adjustment with unthrottling to avoid two passes over the 3597 * events. At the same time, make sure, having freq events does not change 3598 * the rate of unthrottling as that would introduce bias. 3599 */ 3600 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3601 int needs_unthr) 3602 { 3603 struct perf_event *event; 3604 struct hw_perf_event *hwc; 3605 u64 now, period = TICK_NSEC; 3606 s64 delta; 3607 3608 /* 3609 * only need to iterate over all events iff: 3610 * - context have events in frequency mode (needs freq adjust) 3611 * - there are events to unthrottle on this cpu 3612 */ 3613 if (!(ctx->nr_freq || needs_unthr)) 3614 return; 3615 3616 raw_spin_lock(&ctx->lock); 3617 perf_pmu_disable(ctx->pmu); 3618 3619 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3620 if (event->state != PERF_EVENT_STATE_ACTIVE) 3621 continue; 3622 3623 if (!event_filter_match(event)) 3624 continue; 3625 3626 perf_pmu_disable(event->pmu); 3627 3628 hwc = &event->hw; 3629 3630 if (hwc->interrupts == MAX_INTERRUPTS) { 3631 hwc->interrupts = 0; 3632 perf_log_throttle(event, 1); 3633 event->pmu->start(event, 0); 3634 } 3635 3636 if (!event->attr.freq || !event->attr.sample_freq) 3637 goto next; 3638 3639 /* 3640 * stop the event and update event->count 3641 */ 3642 event->pmu->stop(event, PERF_EF_UPDATE); 3643 3644 now = local64_read(&event->count); 3645 delta = now - hwc->freq_count_stamp; 3646 hwc->freq_count_stamp = now; 3647 3648 /* 3649 * restart the event 3650 * reload only if value has changed 3651 * we have stopped the event so tell that 3652 * to perf_adjust_period() to avoid stopping it 3653 * twice. 3654 */ 3655 if (delta > 0) 3656 perf_adjust_period(event, period, delta, false); 3657 3658 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3659 next: 3660 perf_pmu_enable(event->pmu); 3661 } 3662 3663 perf_pmu_enable(ctx->pmu); 3664 raw_spin_unlock(&ctx->lock); 3665 } 3666 3667 /* 3668 * Move @event to the tail of the @ctx's elegible events. 3669 */ 3670 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3671 { 3672 /* 3673 * Rotate the first entry last of non-pinned groups. Rotation might be 3674 * disabled by the inheritance code. 3675 */ 3676 if (ctx->rotate_disable) 3677 return; 3678 3679 perf_event_groups_delete(&ctx->flexible_groups, event); 3680 perf_event_groups_insert(&ctx->flexible_groups, event); 3681 } 3682 3683 static inline struct perf_event * 3684 ctx_first_active(struct perf_event_context *ctx) 3685 { 3686 return list_first_entry_or_null(&ctx->flexible_active, 3687 struct perf_event, active_list); 3688 } 3689 3690 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3691 { 3692 struct perf_event *cpu_event = NULL, *task_event = NULL; 3693 bool cpu_rotate = false, task_rotate = false; 3694 struct perf_event_context *ctx = NULL; 3695 3696 /* 3697 * Since we run this from IRQ context, nobody can install new 3698 * events, thus the event count values are stable. 3699 */ 3700 3701 if (cpuctx->ctx.nr_events) { 3702 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3703 cpu_rotate = true; 3704 } 3705 3706 ctx = cpuctx->task_ctx; 3707 if (ctx && ctx->nr_events) { 3708 if (ctx->nr_events != ctx->nr_active) 3709 task_rotate = true; 3710 } 3711 3712 if (!(cpu_rotate || task_rotate)) 3713 return false; 3714 3715 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3716 perf_pmu_disable(cpuctx->ctx.pmu); 3717 3718 if (task_rotate) 3719 task_event = ctx_first_active(ctx); 3720 if (cpu_rotate) 3721 cpu_event = ctx_first_active(&cpuctx->ctx); 3722 3723 /* 3724 * As per the order given at ctx_resched() first 'pop' task flexible 3725 * and then, if needed CPU flexible. 3726 */ 3727 if (task_event || (ctx && cpu_event)) 3728 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3729 if (cpu_event) 3730 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3731 3732 if (task_event) 3733 rotate_ctx(ctx, task_event); 3734 if (cpu_event) 3735 rotate_ctx(&cpuctx->ctx, cpu_event); 3736 3737 perf_event_sched_in(cpuctx, ctx, current); 3738 3739 perf_pmu_enable(cpuctx->ctx.pmu); 3740 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3741 3742 return true; 3743 } 3744 3745 void perf_event_task_tick(void) 3746 { 3747 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3748 struct perf_event_context *ctx, *tmp; 3749 int throttled; 3750 3751 lockdep_assert_irqs_disabled(); 3752 3753 __this_cpu_inc(perf_throttled_seq); 3754 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3755 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3756 3757 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3758 perf_adjust_freq_unthr_context(ctx, throttled); 3759 } 3760 3761 static int event_enable_on_exec(struct perf_event *event, 3762 struct perf_event_context *ctx) 3763 { 3764 if (!event->attr.enable_on_exec) 3765 return 0; 3766 3767 event->attr.enable_on_exec = 0; 3768 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3769 return 0; 3770 3771 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3772 3773 return 1; 3774 } 3775 3776 /* 3777 * Enable all of a task's events that have been marked enable-on-exec. 3778 * This expects task == current. 3779 */ 3780 static void perf_event_enable_on_exec(int ctxn) 3781 { 3782 struct perf_event_context *ctx, *clone_ctx = NULL; 3783 enum event_type_t event_type = 0; 3784 struct perf_cpu_context *cpuctx; 3785 struct perf_event *event; 3786 unsigned long flags; 3787 int enabled = 0; 3788 3789 local_irq_save(flags); 3790 ctx = current->perf_event_ctxp[ctxn]; 3791 if (!ctx || !ctx->nr_events) 3792 goto out; 3793 3794 cpuctx = __get_cpu_context(ctx); 3795 perf_ctx_lock(cpuctx, ctx); 3796 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3797 list_for_each_entry(event, &ctx->event_list, event_entry) { 3798 enabled |= event_enable_on_exec(event, ctx); 3799 event_type |= get_event_type(event); 3800 } 3801 3802 /* 3803 * Unclone and reschedule this context if we enabled any event. 3804 */ 3805 if (enabled) { 3806 clone_ctx = unclone_ctx(ctx); 3807 ctx_resched(cpuctx, ctx, event_type); 3808 } else { 3809 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3810 } 3811 perf_ctx_unlock(cpuctx, ctx); 3812 3813 out: 3814 local_irq_restore(flags); 3815 3816 if (clone_ctx) 3817 put_ctx(clone_ctx); 3818 } 3819 3820 struct perf_read_data { 3821 struct perf_event *event; 3822 bool group; 3823 int ret; 3824 }; 3825 3826 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3827 { 3828 u16 local_pkg, event_pkg; 3829 3830 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3831 int local_cpu = smp_processor_id(); 3832 3833 event_pkg = topology_physical_package_id(event_cpu); 3834 local_pkg = topology_physical_package_id(local_cpu); 3835 3836 if (event_pkg == local_pkg) 3837 return local_cpu; 3838 } 3839 3840 return event_cpu; 3841 } 3842 3843 /* 3844 * Cross CPU call to read the hardware event 3845 */ 3846 static void __perf_event_read(void *info) 3847 { 3848 struct perf_read_data *data = info; 3849 struct perf_event *sub, *event = data->event; 3850 struct perf_event_context *ctx = event->ctx; 3851 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3852 struct pmu *pmu = event->pmu; 3853 3854 /* 3855 * If this is a task context, we need to check whether it is 3856 * the current task context of this cpu. If not it has been 3857 * scheduled out before the smp call arrived. In that case 3858 * event->count would have been updated to a recent sample 3859 * when the event was scheduled out. 3860 */ 3861 if (ctx->task && cpuctx->task_ctx != ctx) 3862 return; 3863 3864 raw_spin_lock(&ctx->lock); 3865 if (ctx->is_active & EVENT_TIME) { 3866 update_context_time(ctx); 3867 update_cgrp_time_from_event(event); 3868 } 3869 3870 perf_event_update_time(event); 3871 if (data->group) 3872 perf_event_update_sibling_time(event); 3873 3874 if (event->state != PERF_EVENT_STATE_ACTIVE) 3875 goto unlock; 3876 3877 if (!data->group) { 3878 pmu->read(event); 3879 data->ret = 0; 3880 goto unlock; 3881 } 3882 3883 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3884 3885 pmu->read(event); 3886 3887 for_each_sibling_event(sub, event) { 3888 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3889 /* 3890 * Use sibling's PMU rather than @event's since 3891 * sibling could be on different (eg: software) PMU. 3892 */ 3893 sub->pmu->read(sub); 3894 } 3895 } 3896 3897 data->ret = pmu->commit_txn(pmu); 3898 3899 unlock: 3900 raw_spin_unlock(&ctx->lock); 3901 } 3902 3903 static inline u64 perf_event_count(struct perf_event *event) 3904 { 3905 return local64_read(&event->count) + atomic64_read(&event->child_count); 3906 } 3907 3908 /* 3909 * NMI-safe method to read a local event, that is an event that 3910 * is: 3911 * - either for the current task, or for this CPU 3912 * - does not have inherit set, for inherited task events 3913 * will not be local and we cannot read them atomically 3914 * - must not have a pmu::count method 3915 */ 3916 int perf_event_read_local(struct perf_event *event, u64 *value, 3917 u64 *enabled, u64 *running) 3918 { 3919 unsigned long flags; 3920 int ret = 0; 3921 3922 /* 3923 * Disabling interrupts avoids all counter scheduling (context 3924 * switches, timer based rotation and IPIs). 3925 */ 3926 local_irq_save(flags); 3927 3928 /* 3929 * It must not be an event with inherit set, we cannot read 3930 * all child counters from atomic context. 3931 */ 3932 if (event->attr.inherit) { 3933 ret = -EOPNOTSUPP; 3934 goto out; 3935 } 3936 3937 /* If this is a per-task event, it must be for current */ 3938 if ((event->attach_state & PERF_ATTACH_TASK) && 3939 event->hw.target != current) { 3940 ret = -EINVAL; 3941 goto out; 3942 } 3943 3944 /* If this is a per-CPU event, it must be for this CPU */ 3945 if (!(event->attach_state & PERF_ATTACH_TASK) && 3946 event->cpu != smp_processor_id()) { 3947 ret = -EINVAL; 3948 goto out; 3949 } 3950 3951 /* If this is a pinned event it must be running on this CPU */ 3952 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3953 ret = -EBUSY; 3954 goto out; 3955 } 3956 3957 /* 3958 * If the event is currently on this CPU, its either a per-task event, 3959 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3960 * oncpu == -1). 3961 */ 3962 if (event->oncpu == smp_processor_id()) 3963 event->pmu->read(event); 3964 3965 *value = local64_read(&event->count); 3966 if (enabled || running) { 3967 u64 now = event->shadow_ctx_time + perf_clock(); 3968 u64 __enabled, __running; 3969 3970 __perf_update_times(event, now, &__enabled, &__running); 3971 if (enabled) 3972 *enabled = __enabled; 3973 if (running) 3974 *running = __running; 3975 } 3976 out: 3977 local_irq_restore(flags); 3978 3979 return ret; 3980 } 3981 3982 static int perf_event_read(struct perf_event *event, bool group) 3983 { 3984 enum perf_event_state state = READ_ONCE(event->state); 3985 int event_cpu, ret = 0; 3986 3987 /* 3988 * If event is enabled and currently active on a CPU, update the 3989 * value in the event structure: 3990 */ 3991 again: 3992 if (state == PERF_EVENT_STATE_ACTIVE) { 3993 struct perf_read_data data; 3994 3995 /* 3996 * Orders the ->state and ->oncpu loads such that if we see 3997 * ACTIVE we must also see the right ->oncpu. 3998 * 3999 * Matches the smp_wmb() from event_sched_in(). 4000 */ 4001 smp_rmb(); 4002 4003 event_cpu = READ_ONCE(event->oncpu); 4004 if ((unsigned)event_cpu >= nr_cpu_ids) 4005 return 0; 4006 4007 data = (struct perf_read_data){ 4008 .event = event, 4009 .group = group, 4010 .ret = 0, 4011 }; 4012 4013 preempt_disable(); 4014 event_cpu = __perf_event_read_cpu(event, event_cpu); 4015 4016 /* 4017 * Purposely ignore the smp_call_function_single() return 4018 * value. 4019 * 4020 * If event_cpu isn't a valid CPU it means the event got 4021 * scheduled out and that will have updated the event count. 4022 * 4023 * Therefore, either way, we'll have an up-to-date event count 4024 * after this. 4025 */ 4026 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4027 preempt_enable(); 4028 ret = data.ret; 4029 4030 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4031 struct perf_event_context *ctx = event->ctx; 4032 unsigned long flags; 4033 4034 raw_spin_lock_irqsave(&ctx->lock, flags); 4035 state = event->state; 4036 if (state != PERF_EVENT_STATE_INACTIVE) { 4037 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4038 goto again; 4039 } 4040 4041 /* 4042 * May read while context is not active (e.g., thread is 4043 * blocked), in that case we cannot update context time 4044 */ 4045 if (ctx->is_active & EVENT_TIME) { 4046 update_context_time(ctx); 4047 update_cgrp_time_from_event(event); 4048 } 4049 4050 perf_event_update_time(event); 4051 if (group) 4052 perf_event_update_sibling_time(event); 4053 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4054 } 4055 4056 return ret; 4057 } 4058 4059 /* 4060 * Initialize the perf_event context in a task_struct: 4061 */ 4062 static void __perf_event_init_context(struct perf_event_context *ctx) 4063 { 4064 raw_spin_lock_init(&ctx->lock); 4065 mutex_init(&ctx->mutex); 4066 INIT_LIST_HEAD(&ctx->active_ctx_list); 4067 perf_event_groups_init(&ctx->pinned_groups); 4068 perf_event_groups_init(&ctx->flexible_groups); 4069 INIT_LIST_HEAD(&ctx->event_list); 4070 INIT_LIST_HEAD(&ctx->pinned_active); 4071 INIT_LIST_HEAD(&ctx->flexible_active); 4072 refcount_set(&ctx->refcount, 1); 4073 } 4074 4075 static struct perf_event_context * 4076 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4077 { 4078 struct perf_event_context *ctx; 4079 4080 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4081 if (!ctx) 4082 return NULL; 4083 4084 __perf_event_init_context(ctx); 4085 if (task) { 4086 ctx->task = task; 4087 get_task_struct(task); 4088 } 4089 ctx->pmu = pmu; 4090 4091 return ctx; 4092 } 4093 4094 static struct task_struct * 4095 find_lively_task_by_vpid(pid_t vpid) 4096 { 4097 struct task_struct *task; 4098 4099 rcu_read_lock(); 4100 if (!vpid) 4101 task = current; 4102 else 4103 task = find_task_by_vpid(vpid); 4104 if (task) 4105 get_task_struct(task); 4106 rcu_read_unlock(); 4107 4108 if (!task) 4109 return ERR_PTR(-ESRCH); 4110 4111 return task; 4112 } 4113 4114 /* 4115 * Returns a matching context with refcount and pincount. 4116 */ 4117 static struct perf_event_context * 4118 find_get_context(struct pmu *pmu, struct task_struct *task, 4119 struct perf_event *event) 4120 { 4121 struct perf_event_context *ctx, *clone_ctx = NULL; 4122 struct perf_cpu_context *cpuctx; 4123 void *task_ctx_data = NULL; 4124 unsigned long flags; 4125 int ctxn, err; 4126 int cpu = event->cpu; 4127 4128 if (!task) { 4129 /* Must be root to operate on a CPU event: */ 4130 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4131 return ERR_PTR(-EACCES); 4132 4133 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4134 ctx = &cpuctx->ctx; 4135 get_ctx(ctx); 4136 ++ctx->pin_count; 4137 4138 return ctx; 4139 } 4140 4141 err = -EINVAL; 4142 ctxn = pmu->task_ctx_nr; 4143 if (ctxn < 0) 4144 goto errout; 4145 4146 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4147 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4148 if (!task_ctx_data) { 4149 err = -ENOMEM; 4150 goto errout; 4151 } 4152 } 4153 4154 retry: 4155 ctx = perf_lock_task_context(task, ctxn, &flags); 4156 if (ctx) { 4157 clone_ctx = unclone_ctx(ctx); 4158 ++ctx->pin_count; 4159 4160 if (task_ctx_data && !ctx->task_ctx_data) { 4161 ctx->task_ctx_data = task_ctx_data; 4162 task_ctx_data = NULL; 4163 } 4164 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4165 4166 if (clone_ctx) 4167 put_ctx(clone_ctx); 4168 } else { 4169 ctx = alloc_perf_context(pmu, task); 4170 err = -ENOMEM; 4171 if (!ctx) 4172 goto errout; 4173 4174 if (task_ctx_data) { 4175 ctx->task_ctx_data = task_ctx_data; 4176 task_ctx_data = NULL; 4177 } 4178 4179 err = 0; 4180 mutex_lock(&task->perf_event_mutex); 4181 /* 4182 * If it has already passed perf_event_exit_task(). 4183 * we must see PF_EXITING, it takes this mutex too. 4184 */ 4185 if (task->flags & PF_EXITING) 4186 err = -ESRCH; 4187 else if (task->perf_event_ctxp[ctxn]) 4188 err = -EAGAIN; 4189 else { 4190 get_ctx(ctx); 4191 ++ctx->pin_count; 4192 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4193 } 4194 mutex_unlock(&task->perf_event_mutex); 4195 4196 if (unlikely(err)) { 4197 put_ctx(ctx); 4198 4199 if (err == -EAGAIN) 4200 goto retry; 4201 goto errout; 4202 } 4203 } 4204 4205 kfree(task_ctx_data); 4206 return ctx; 4207 4208 errout: 4209 kfree(task_ctx_data); 4210 return ERR_PTR(err); 4211 } 4212 4213 static void perf_event_free_filter(struct perf_event *event); 4214 static void perf_event_free_bpf_prog(struct perf_event *event); 4215 4216 static void free_event_rcu(struct rcu_head *head) 4217 { 4218 struct perf_event *event; 4219 4220 event = container_of(head, struct perf_event, rcu_head); 4221 if (event->ns) 4222 put_pid_ns(event->ns); 4223 perf_event_free_filter(event); 4224 kfree(event); 4225 } 4226 4227 static void ring_buffer_attach(struct perf_event *event, 4228 struct ring_buffer *rb); 4229 4230 static void detach_sb_event(struct perf_event *event) 4231 { 4232 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4233 4234 raw_spin_lock(&pel->lock); 4235 list_del_rcu(&event->sb_list); 4236 raw_spin_unlock(&pel->lock); 4237 } 4238 4239 static bool is_sb_event(struct perf_event *event) 4240 { 4241 struct perf_event_attr *attr = &event->attr; 4242 4243 if (event->parent) 4244 return false; 4245 4246 if (event->attach_state & PERF_ATTACH_TASK) 4247 return false; 4248 4249 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4250 attr->comm || attr->comm_exec || 4251 attr->task || attr->ksymbol || 4252 attr->context_switch || 4253 attr->bpf_event) 4254 return true; 4255 return false; 4256 } 4257 4258 static void unaccount_pmu_sb_event(struct perf_event *event) 4259 { 4260 if (is_sb_event(event)) 4261 detach_sb_event(event); 4262 } 4263 4264 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4265 { 4266 if (event->parent) 4267 return; 4268 4269 if (is_cgroup_event(event)) 4270 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4271 } 4272 4273 #ifdef CONFIG_NO_HZ_FULL 4274 static DEFINE_SPINLOCK(nr_freq_lock); 4275 #endif 4276 4277 static void unaccount_freq_event_nohz(void) 4278 { 4279 #ifdef CONFIG_NO_HZ_FULL 4280 spin_lock(&nr_freq_lock); 4281 if (atomic_dec_and_test(&nr_freq_events)) 4282 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4283 spin_unlock(&nr_freq_lock); 4284 #endif 4285 } 4286 4287 static void unaccount_freq_event(void) 4288 { 4289 if (tick_nohz_full_enabled()) 4290 unaccount_freq_event_nohz(); 4291 else 4292 atomic_dec(&nr_freq_events); 4293 } 4294 4295 static void unaccount_event(struct perf_event *event) 4296 { 4297 bool dec = false; 4298 4299 if (event->parent) 4300 return; 4301 4302 if (event->attach_state & PERF_ATTACH_TASK) 4303 dec = true; 4304 if (event->attr.mmap || event->attr.mmap_data) 4305 atomic_dec(&nr_mmap_events); 4306 if (event->attr.comm) 4307 atomic_dec(&nr_comm_events); 4308 if (event->attr.namespaces) 4309 atomic_dec(&nr_namespaces_events); 4310 if (event->attr.task) 4311 atomic_dec(&nr_task_events); 4312 if (event->attr.freq) 4313 unaccount_freq_event(); 4314 if (event->attr.context_switch) { 4315 dec = true; 4316 atomic_dec(&nr_switch_events); 4317 } 4318 if (is_cgroup_event(event)) 4319 dec = true; 4320 if (has_branch_stack(event)) 4321 dec = true; 4322 if (event->attr.ksymbol) 4323 atomic_dec(&nr_ksymbol_events); 4324 if (event->attr.bpf_event) 4325 atomic_dec(&nr_bpf_events); 4326 4327 if (dec) { 4328 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4329 schedule_delayed_work(&perf_sched_work, HZ); 4330 } 4331 4332 unaccount_event_cpu(event, event->cpu); 4333 4334 unaccount_pmu_sb_event(event); 4335 } 4336 4337 static void perf_sched_delayed(struct work_struct *work) 4338 { 4339 mutex_lock(&perf_sched_mutex); 4340 if (atomic_dec_and_test(&perf_sched_count)) 4341 static_branch_disable(&perf_sched_events); 4342 mutex_unlock(&perf_sched_mutex); 4343 } 4344 4345 /* 4346 * The following implement mutual exclusion of events on "exclusive" pmus 4347 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4348 * at a time, so we disallow creating events that might conflict, namely: 4349 * 4350 * 1) cpu-wide events in the presence of per-task events, 4351 * 2) per-task events in the presence of cpu-wide events, 4352 * 3) two matching events on the same context. 4353 * 4354 * The former two cases are handled in the allocation path (perf_event_alloc(), 4355 * _free_event()), the latter -- before the first perf_install_in_context(). 4356 */ 4357 static int exclusive_event_init(struct perf_event *event) 4358 { 4359 struct pmu *pmu = event->pmu; 4360 4361 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4362 return 0; 4363 4364 /* 4365 * Prevent co-existence of per-task and cpu-wide events on the 4366 * same exclusive pmu. 4367 * 4368 * Negative pmu::exclusive_cnt means there are cpu-wide 4369 * events on this "exclusive" pmu, positive means there are 4370 * per-task events. 4371 * 4372 * Since this is called in perf_event_alloc() path, event::ctx 4373 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4374 * to mean "per-task event", because unlike other attach states it 4375 * never gets cleared. 4376 */ 4377 if (event->attach_state & PERF_ATTACH_TASK) { 4378 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4379 return -EBUSY; 4380 } else { 4381 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4382 return -EBUSY; 4383 } 4384 4385 return 0; 4386 } 4387 4388 static void exclusive_event_destroy(struct perf_event *event) 4389 { 4390 struct pmu *pmu = event->pmu; 4391 4392 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4393 return; 4394 4395 /* see comment in exclusive_event_init() */ 4396 if (event->attach_state & PERF_ATTACH_TASK) 4397 atomic_dec(&pmu->exclusive_cnt); 4398 else 4399 atomic_inc(&pmu->exclusive_cnt); 4400 } 4401 4402 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4403 { 4404 if ((e1->pmu == e2->pmu) && 4405 (e1->cpu == e2->cpu || 4406 e1->cpu == -1 || 4407 e2->cpu == -1)) 4408 return true; 4409 return false; 4410 } 4411 4412 /* Called under the same ctx::mutex as perf_install_in_context() */ 4413 static bool exclusive_event_installable(struct perf_event *event, 4414 struct perf_event_context *ctx) 4415 { 4416 struct perf_event *iter_event; 4417 struct pmu *pmu = event->pmu; 4418 4419 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4420 return true; 4421 4422 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4423 if (exclusive_event_match(iter_event, event)) 4424 return false; 4425 } 4426 4427 return true; 4428 } 4429 4430 static void perf_addr_filters_splice(struct perf_event *event, 4431 struct list_head *head); 4432 4433 static void _free_event(struct perf_event *event) 4434 { 4435 irq_work_sync(&event->pending); 4436 4437 unaccount_event(event); 4438 4439 if (event->rb) { 4440 /* 4441 * Can happen when we close an event with re-directed output. 4442 * 4443 * Since we have a 0 refcount, perf_mmap_close() will skip 4444 * over us; possibly making our ring_buffer_put() the last. 4445 */ 4446 mutex_lock(&event->mmap_mutex); 4447 ring_buffer_attach(event, NULL); 4448 mutex_unlock(&event->mmap_mutex); 4449 } 4450 4451 if (is_cgroup_event(event)) 4452 perf_detach_cgroup(event); 4453 4454 if (!event->parent) { 4455 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4456 put_callchain_buffers(); 4457 } 4458 4459 perf_event_free_bpf_prog(event); 4460 perf_addr_filters_splice(event, NULL); 4461 kfree(event->addr_filter_ranges); 4462 4463 if (event->destroy) 4464 event->destroy(event); 4465 4466 if (event->ctx) 4467 put_ctx(event->ctx); 4468 4469 if (event->hw.target) 4470 put_task_struct(event->hw.target); 4471 4472 exclusive_event_destroy(event); 4473 module_put(event->pmu->module); 4474 4475 call_rcu(&event->rcu_head, free_event_rcu); 4476 } 4477 4478 /* 4479 * Used to free events which have a known refcount of 1, such as in error paths 4480 * where the event isn't exposed yet and inherited events. 4481 */ 4482 static void free_event(struct perf_event *event) 4483 { 4484 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4485 "unexpected event refcount: %ld; ptr=%p\n", 4486 atomic_long_read(&event->refcount), event)) { 4487 /* leak to avoid use-after-free */ 4488 return; 4489 } 4490 4491 _free_event(event); 4492 } 4493 4494 /* 4495 * Remove user event from the owner task. 4496 */ 4497 static void perf_remove_from_owner(struct perf_event *event) 4498 { 4499 struct task_struct *owner; 4500 4501 rcu_read_lock(); 4502 /* 4503 * Matches the smp_store_release() in perf_event_exit_task(). If we 4504 * observe !owner it means the list deletion is complete and we can 4505 * indeed free this event, otherwise we need to serialize on 4506 * owner->perf_event_mutex. 4507 */ 4508 owner = READ_ONCE(event->owner); 4509 if (owner) { 4510 /* 4511 * Since delayed_put_task_struct() also drops the last 4512 * task reference we can safely take a new reference 4513 * while holding the rcu_read_lock(). 4514 */ 4515 get_task_struct(owner); 4516 } 4517 rcu_read_unlock(); 4518 4519 if (owner) { 4520 /* 4521 * If we're here through perf_event_exit_task() we're already 4522 * holding ctx->mutex which would be an inversion wrt. the 4523 * normal lock order. 4524 * 4525 * However we can safely take this lock because its the child 4526 * ctx->mutex. 4527 */ 4528 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4529 4530 /* 4531 * We have to re-check the event->owner field, if it is cleared 4532 * we raced with perf_event_exit_task(), acquiring the mutex 4533 * ensured they're done, and we can proceed with freeing the 4534 * event. 4535 */ 4536 if (event->owner) { 4537 list_del_init(&event->owner_entry); 4538 smp_store_release(&event->owner, NULL); 4539 } 4540 mutex_unlock(&owner->perf_event_mutex); 4541 put_task_struct(owner); 4542 } 4543 } 4544 4545 static void put_event(struct perf_event *event) 4546 { 4547 if (!atomic_long_dec_and_test(&event->refcount)) 4548 return; 4549 4550 _free_event(event); 4551 } 4552 4553 /* 4554 * Kill an event dead; while event:refcount will preserve the event 4555 * object, it will not preserve its functionality. Once the last 'user' 4556 * gives up the object, we'll destroy the thing. 4557 */ 4558 int perf_event_release_kernel(struct perf_event *event) 4559 { 4560 struct perf_event_context *ctx = event->ctx; 4561 struct perf_event *child, *tmp; 4562 LIST_HEAD(free_list); 4563 4564 /* 4565 * If we got here through err_file: fput(event_file); we will not have 4566 * attached to a context yet. 4567 */ 4568 if (!ctx) { 4569 WARN_ON_ONCE(event->attach_state & 4570 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4571 goto no_ctx; 4572 } 4573 4574 if (!is_kernel_event(event)) 4575 perf_remove_from_owner(event); 4576 4577 ctx = perf_event_ctx_lock(event); 4578 WARN_ON_ONCE(ctx->parent_ctx); 4579 perf_remove_from_context(event, DETACH_GROUP); 4580 4581 raw_spin_lock_irq(&ctx->lock); 4582 /* 4583 * Mark this event as STATE_DEAD, there is no external reference to it 4584 * anymore. 4585 * 4586 * Anybody acquiring event->child_mutex after the below loop _must_ 4587 * also see this, most importantly inherit_event() which will avoid 4588 * placing more children on the list. 4589 * 4590 * Thus this guarantees that we will in fact observe and kill _ALL_ 4591 * child events. 4592 */ 4593 event->state = PERF_EVENT_STATE_DEAD; 4594 raw_spin_unlock_irq(&ctx->lock); 4595 4596 perf_event_ctx_unlock(event, ctx); 4597 4598 again: 4599 mutex_lock(&event->child_mutex); 4600 list_for_each_entry(child, &event->child_list, child_list) { 4601 4602 /* 4603 * Cannot change, child events are not migrated, see the 4604 * comment with perf_event_ctx_lock_nested(). 4605 */ 4606 ctx = READ_ONCE(child->ctx); 4607 /* 4608 * Since child_mutex nests inside ctx::mutex, we must jump 4609 * through hoops. We start by grabbing a reference on the ctx. 4610 * 4611 * Since the event cannot get freed while we hold the 4612 * child_mutex, the context must also exist and have a !0 4613 * reference count. 4614 */ 4615 get_ctx(ctx); 4616 4617 /* 4618 * Now that we have a ctx ref, we can drop child_mutex, and 4619 * acquire ctx::mutex without fear of it going away. Then we 4620 * can re-acquire child_mutex. 4621 */ 4622 mutex_unlock(&event->child_mutex); 4623 mutex_lock(&ctx->mutex); 4624 mutex_lock(&event->child_mutex); 4625 4626 /* 4627 * Now that we hold ctx::mutex and child_mutex, revalidate our 4628 * state, if child is still the first entry, it didn't get freed 4629 * and we can continue doing so. 4630 */ 4631 tmp = list_first_entry_or_null(&event->child_list, 4632 struct perf_event, child_list); 4633 if (tmp == child) { 4634 perf_remove_from_context(child, DETACH_GROUP); 4635 list_move(&child->child_list, &free_list); 4636 /* 4637 * This matches the refcount bump in inherit_event(); 4638 * this can't be the last reference. 4639 */ 4640 put_event(event); 4641 } 4642 4643 mutex_unlock(&event->child_mutex); 4644 mutex_unlock(&ctx->mutex); 4645 put_ctx(ctx); 4646 goto again; 4647 } 4648 mutex_unlock(&event->child_mutex); 4649 4650 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4651 list_del(&child->child_list); 4652 free_event(child); 4653 } 4654 4655 no_ctx: 4656 put_event(event); /* Must be the 'last' reference */ 4657 return 0; 4658 } 4659 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4660 4661 /* 4662 * Called when the last reference to the file is gone. 4663 */ 4664 static int perf_release(struct inode *inode, struct file *file) 4665 { 4666 perf_event_release_kernel(file->private_data); 4667 return 0; 4668 } 4669 4670 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4671 { 4672 struct perf_event *child; 4673 u64 total = 0; 4674 4675 *enabled = 0; 4676 *running = 0; 4677 4678 mutex_lock(&event->child_mutex); 4679 4680 (void)perf_event_read(event, false); 4681 total += perf_event_count(event); 4682 4683 *enabled += event->total_time_enabled + 4684 atomic64_read(&event->child_total_time_enabled); 4685 *running += event->total_time_running + 4686 atomic64_read(&event->child_total_time_running); 4687 4688 list_for_each_entry(child, &event->child_list, child_list) { 4689 (void)perf_event_read(child, false); 4690 total += perf_event_count(child); 4691 *enabled += child->total_time_enabled; 4692 *running += child->total_time_running; 4693 } 4694 mutex_unlock(&event->child_mutex); 4695 4696 return total; 4697 } 4698 4699 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4700 { 4701 struct perf_event_context *ctx; 4702 u64 count; 4703 4704 ctx = perf_event_ctx_lock(event); 4705 count = __perf_event_read_value(event, enabled, running); 4706 perf_event_ctx_unlock(event, ctx); 4707 4708 return count; 4709 } 4710 EXPORT_SYMBOL_GPL(perf_event_read_value); 4711 4712 static int __perf_read_group_add(struct perf_event *leader, 4713 u64 read_format, u64 *values) 4714 { 4715 struct perf_event_context *ctx = leader->ctx; 4716 struct perf_event *sub; 4717 unsigned long flags; 4718 int n = 1; /* skip @nr */ 4719 int ret; 4720 4721 ret = perf_event_read(leader, true); 4722 if (ret) 4723 return ret; 4724 4725 raw_spin_lock_irqsave(&ctx->lock, flags); 4726 4727 /* 4728 * Since we co-schedule groups, {enabled,running} times of siblings 4729 * will be identical to those of the leader, so we only publish one 4730 * set. 4731 */ 4732 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4733 values[n++] += leader->total_time_enabled + 4734 atomic64_read(&leader->child_total_time_enabled); 4735 } 4736 4737 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4738 values[n++] += leader->total_time_running + 4739 atomic64_read(&leader->child_total_time_running); 4740 } 4741 4742 /* 4743 * Write {count,id} tuples for every sibling. 4744 */ 4745 values[n++] += perf_event_count(leader); 4746 if (read_format & PERF_FORMAT_ID) 4747 values[n++] = primary_event_id(leader); 4748 4749 for_each_sibling_event(sub, leader) { 4750 values[n++] += perf_event_count(sub); 4751 if (read_format & PERF_FORMAT_ID) 4752 values[n++] = primary_event_id(sub); 4753 } 4754 4755 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4756 return 0; 4757 } 4758 4759 static int perf_read_group(struct perf_event *event, 4760 u64 read_format, char __user *buf) 4761 { 4762 struct perf_event *leader = event->group_leader, *child; 4763 struct perf_event_context *ctx = leader->ctx; 4764 int ret; 4765 u64 *values; 4766 4767 lockdep_assert_held(&ctx->mutex); 4768 4769 values = kzalloc(event->read_size, GFP_KERNEL); 4770 if (!values) 4771 return -ENOMEM; 4772 4773 values[0] = 1 + leader->nr_siblings; 4774 4775 /* 4776 * By locking the child_mutex of the leader we effectively 4777 * lock the child list of all siblings.. XXX explain how. 4778 */ 4779 mutex_lock(&leader->child_mutex); 4780 4781 ret = __perf_read_group_add(leader, read_format, values); 4782 if (ret) 4783 goto unlock; 4784 4785 list_for_each_entry(child, &leader->child_list, child_list) { 4786 ret = __perf_read_group_add(child, read_format, values); 4787 if (ret) 4788 goto unlock; 4789 } 4790 4791 mutex_unlock(&leader->child_mutex); 4792 4793 ret = event->read_size; 4794 if (copy_to_user(buf, values, event->read_size)) 4795 ret = -EFAULT; 4796 goto out; 4797 4798 unlock: 4799 mutex_unlock(&leader->child_mutex); 4800 out: 4801 kfree(values); 4802 return ret; 4803 } 4804 4805 static int perf_read_one(struct perf_event *event, 4806 u64 read_format, char __user *buf) 4807 { 4808 u64 enabled, running; 4809 u64 values[4]; 4810 int n = 0; 4811 4812 values[n++] = __perf_event_read_value(event, &enabled, &running); 4813 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4814 values[n++] = enabled; 4815 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4816 values[n++] = running; 4817 if (read_format & PERF_FORMAT_ID) 4818 values[n++] = primary_event_id(event); 4819 4820 if (copy_to_user(buf, values, n * sizeof(u64))) 4821 return -EFAULT; 4822 4823 return n * sizeof(u64); 4824 } 4825 4826 static bool is_event_hup(struct perf_event *event) 4827 { 4828 bool no_children; 4829 4830 if (event->state > PERF_EVENT_STATE_EXIT) 4831 return false; 4832 4833 mutex_lock(&event->child_mutex); 4834 no_children = list_empty(&event->child_list); 4835 mutex_unlock(&event->child_mutex); 4836 return no_children; 4837 } 4838 4839 /* 4840 * Read the performance event - simple non blocking version for now 4841 */ 4842 static ssize_t 4843 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4844 { 4845 u64 read_format = event->attr.read_format; 4846 int ret; 4847 4848 /* 4849 * Return end-of-file for a read on an event that is in 4850 * error state (i.e. because it was pinned but it couldn't be 4851 * scheduled on to the CPU at some point). 4852 */ 4853 if (event->state == PERF_EVENT_STATE_ERROR) 4854 return 0; 4855 4856 if (count < event->read_size) 4857 return -ENOSPC; 4858 4859 WARN_ON_ONCE(event->ctx->parent_ctx); 4860 if (read_format & PERF_FORMAT_GROUP) 4861 ret = perf_read_group(event, read_format, buf); 4862 else 4863 ret = perf_read_one(event, read_format, buf); 4864 4865 return ret; 4866 } 4867 4868 static ssize_t 4869 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4870 { 4871 struct perf_event *event = file->private_data; 4872 struct perf_event_context *ctx; 4873 int ret; 4874 4875 ctx = perf_event_ctx_lock(event); 4876 ret = __perf_read(event, buf, count); 4877 perf_event_ctx_unlock(event, ctx); 4878 4879 return ret; 4880 } 4881 4882 static __poll_t perf_poll(struct file *file, poll_table *wait) 4883 { 4884 struct perf_event *event = file->private_data; 4885 struct ring_buffer *rb; 4886 __poll_t events = EPOLLHUP; 4887 4888 poll_wait(file, &event->waitq, wait); 4889 4890 if (is_event_hup(event)) 4891 return events; 4892 4893 /* 4894 * Pin the event->rb by taking event->mmap_mutex; otherwise 4895 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4896 */ 4897 mutex_lock(&event->mmap_mutex); 4898 rb = event->rb; 4899 if (rb) 4900 events = atomic_xchg(&rb->poll, 0); 4901 mutex_unlock(&event->mmap_mutex); 4902 return events; 4903 } 4904 4905 static void _perf_event_reset(struct perf_event *event) 4906 { 4907 (void)perf_event_read(event, false); 4908 local64_set(&event->count, 0); 4909 perf_event_update_userpage(event); 4910 } 4911 4912 /* 4913 * Holding the top-level event's child_mutex means that any 4914 * descendant process that has inherited this event will block 4915 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4916 * task existence requirements of perf_event_enable/disable. 4917 */ 4918 static void perf_event_for_each_child(struct perf_event *event, 4919 void (*func)(struct perf_event *)) 4920 { 4921 struct perf_event *child; 4922 4923 WARN_ON_ONCE(event->ctx->parent_ctx); 4924 4925 mutex_lock(&event->child_mutex); 4926 func(event); 4927 list_for_each_entry(child, &event->child_list, child_list) 4928 func(child); 4929 mutex_unlock(&event->child_mutex); 4930 } 4931 4932 static void perf_event_for_each(struct perf_event *event, 4933 void (*func)(struct perf_event *)) 4934 { 4935 struct perf_event_context *ctx = event->ctx; 4936 struct perf_event *sibling; 4937 4938 lockdep_assert_held(&ctx->mutex); 4939 4940 event = event->group_leader; 4941 4942 perf_event_for_each_child(event, func); 4943 for_each_sibling_event(sibling, event) 4944 perf_event_for_each_child(sibling, func); 4945 } 4946 4947 static void __perf_event_period(struct perf_event *event, 4948 struct perf_cpu_context *cpuctx, 4949 struct perf_event_context *ctx, 4950 void *info) 4951 { 4952 u64 value = *((u64 *)info); 4953 bool active; 4954 4955 if (event->attr.freq) { 4956 event->attr.sample_freq = value; 4957 } else { 4958 event->attr.sample_period = value; 4959 event->hw.sample_period = value; 4960 } 4961 4962 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4963 if (active) { 4964 perf_pmu_disable(ctx->pmu); 4965 /* 4966 * We could be throttled; unthrottle now to avoid the tick 4967 * trying to unthrottle while we already re-started the event. 4968 */ 4969 if (event->hw.interrupts == MAX_INTERRUPTS) { 4970 event->hw.interrupts = 0; 4971 perf_log_throttle(event, 1); 4972 } 4973 event->pmu->stop(event, PERF_EF_UPDATE); 4974 } 4975 4976 local64_set(&event->hw.period_left, 0); 4977 4978 if (active) { 4979 event->pmu->start(event, PERF_EF_RELOAD); 4980 perf_pmu_enable(ctx->pmu); 4981 } 4982 } 4983 4984 static int perf_event_check_period(struct perf_event *event, u64 value) 4985 { 4986 return event->pmu->check_period(event, value); 4987 } 4988 4989 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4990 { 4991 u64 value; 4992 4993 if (!is_sampling_event(event)) 4994 return -EINVAL; 4995 4996 if (copy_from_user(&value, arg, sizeof(value))) 4997 return -EFAULT; 4998 4999 if (!value) 5000 return -EINVAL; 5001 5002 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5003 return -EINVAL; 5004 5005 if (perf_event_check_period(event, value)) 5006 return -EINVAL; 5007 5008 event_function_call(event, __perf_event_period, &value); 5009 5010 return 0; 5011 } 5012 5013 static const struct file_operations perf_fops; 5014 5015 static inline int perf_fget_light(int fd, struct fd *p) 5016 { 5017 struct fd f = fdget(fd); 5018 if (!f.file) 5019 return -EBADF; 5020 5021 if (f.file->f_op != &perf_fops) { 5022 fdput(f); 5023 return -EBADF; 5024 } 5025 *p = f; 5026 return 0; 5027 } 5028 5029 static int perf_event_set_output(struct perf_event *event, 5030 struct perf_event *output_event); 5031 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5032 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5033 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5034 struct perf_event_attr *attr); 5035 5036 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5037 { 5038 void (*func)(struct perf_event *); 5039 u32 flags = arg; 5040 5041 switch (cmd) { 5042 case PERF_EVENT_IOC_ENABLE: 5043 func = _perf_event_enable; 5044 break; 5045 case PERF_EVENT_IOC_DISABLE: 5046 func = _perf_event_disable; 5047 break; 5048 case PERF_EVENT_IOC_RESET: 5049 func = _perf_event_reset; 5050 break; 5051 5052 case PERF_EVENT_IOC_REFRESH: 5053 return _perf_event_refresh(event, arg); 5054 5055 case PERF_EVENT_IOC_PERIOD: 5056 return perf_event_period(event, (u64 __user *)arg); 5057 5058 case PERF_EVENT_IOC_ID: 5059 { 5060 u64 id = primary_event_id(event); 5061 5062 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5063 return -EFAULT; 5064 return 0; 5065 } 5066 5067 case PERF_EVENT_IOC_SET_OUTPUT: 5068 { 5069 int ret; 5070 if (arg != -1) { 5071 struct perf_event *output_event; 5072 struct fd output; 5073 ret = perf_fget_light(arg, &output); 5074 if (ret) 5075 return ret; 5076 output_event = output.file->private_data; 5077 ret = perf_event_set_output(event, output_event); 5078 fdput(output); 5079 } else { 5080 ret = perf_event_set_output(event, NULL); 5081 } 5082 return ret; 5083 } 5084 5085 case PERF_EVENT_IOC_SET_FILTER: 5086 return perf_event_set_filter(event, (void __user *)arg); 5087 5088 case PERF_EVENT_IOC_SET_BPF: 5089 return perf_event_set_bpf_prog(event, arg); 5090 5091 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5092 struct ring_buffer *rb; 5093 5094 rcu_read_lock(); 5095 rb = rcu_dereference(event->rb); 5096 if (!rb || !rb->nr_pages) { 5097 rcu_read_unlock(); 5098 return -EINVAL; 5099 } 5100 rb_toggle_paused(rb, !!arg); 5101 rcu_read_unlock(); 5102 return 0; 5103 } 5104 5105 case PERF_EVENT_IOC_QUERY_BPF: 5106 return perf_event_query_prog_array(event, (void __user *)arg); 5107 5108 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5109 struct perf_event_attr new_attr; 5110 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5111 &new_attr); 5112 5113 if (err) 5114 return err; 5115 5116 return perf_event_modify_attr(event, &new_attr); 5117 } 5118 default: 5119 return -ENOTTY; 5120 } 5121 5122 if (flags & PERF_IOC_FLAG_GROUP) 5123 perf_event_for_each(event, func); 5124 else 5125 perf_event_for_each_child(event, func); 5126 5127 return 0; 5128 } 5129 5130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5131 { 5132 struct perf_event *event = file->private_data; 5133 struct perf_event_context *ctx; 5134 long ret; 5135 5136 ctx = perf_event_ctx_lock(event); 5137 ret = _perf_ioctl(event, cmd, arg); 5138 perf_event_ctx_unlock(event, ctx); 5139 5140 return ret; 5141 } 5142 5143 #ifdef CONFIG_COMPAT 5144 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5145 unsigned long arg) 5146 { 5147 switch (_IOC_NR(cmd)) { 5148 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5149 case _IOC_NR(PERF_EVENT_IOC_ID): 5150 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5151 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5152 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5153 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5154 cmd &= ~IOCSIZE_MASK; 5155 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5156 } 5157 break; 5158 } 5159 return perf_ioctl(file, cmd, arg); 5160 } 5161 #else 5162 # define perf_compat_ioctl NULL 5163 #endif 5164 5165 int perf_event_task_enable(void) 5166 { 5167 struct perf_event_context *ctx; 5168 struct perf_event *event; 5169 5170 mutex_lock(¤t->perf_event_mutex); 5171 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5172 ctx = perf_event_ctx_lock(event); 5173 perf_event_for_each_child(event, _perf_event_enable); 5174 perf_event_ctx_unlock(event, ctx); 5175 } 5176 mutex_unlock(¤t->perf_event_mutex); 5177 5178 return 0; 5179 } 5180 5181 int perf_event_task_disable(void) 5182 { 5183 struct perf_event_context *ctx; 5184 struct perf_event *event; 5185 5186 mutex_lock(¤t->perf_event_mutex); 5187 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5188 ctx = perf_event_ctx_lock(event); 5189 perf_event_for_each_child(event, _perf_event_disable); 5190 perf_event_ctx_unlock(event, ctx); 5191 } 5192 mutex_unlock(¤t->perf_event_mutex); 5193 5194 return 0; 5195 } 5196 5197 static int perf_event_index(struct perf_event *event) 5198 { 5199 if (event->hw.state & PERF_HES_STOPPED) 5200 return 0; 5201 5202 if (event->state != PERF_EVENT_STATE_ACTIVE) 5203 return 0; 5204 5205 return event->pmu->event_idx(event); 5206 } 5207 5208 static void calc_timer_values(struct perf_event *event, 5209 u64 *now, 5210 u64 *enabled, 5211 u64 *running) 5212 { 5213 u64 ctx_time; 5214 5215 *now = perf_clock(); 5216 ctx_time = event->shadow_ctx_time + *now; 5217 __perf_update_times(event, ctx_time, enabled, running); 5218 } 5219 5220 static void perf_event_init_userpage(struct perf_event *event) 5221 { 5222 struct perf_event_mmap_page *userpg; 5223 struct ring_buffer *rb; 5224 5225 rcu_read_lock(); 5226 rb = rcu_dereference(event->rb); 5227 if (!rb) 5228 goto unlock; 5229 5230 userpg = rb->user_page; 5231 5232 /* Allow new userspace to detect that bit 0 is deprecated */ 5233 userpg->cap_bit0_is_deprecated = 1; 5234 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5235 userpg->data_offset = PAGE_SIZE; 5236 userpg->data_size = perf_data_size(rb); 5237 5238 unlock: 5239 rcu_read_unlock(); 5240 } 5241 5242 void __weak arch_perf_update_userpage( 5243 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5244 { 5245 } 5246 5247 /* 5248 * Callers need to ensure there can be no nesting of this function, otherwise 5249 * the seqlock logic goes bad. We can not serialize this because the arch 5250 * code calls this from NMI context. 5251 */ 5252 void perf_event_update_userpage(struct perf_event *event) 5253 { 5254 struct perf_event_mmap_page *userpg; 5255 struct ring_buffer *rb; 5256 u64 enabled, running, now; 5257 5258 rcu_read_lock(); 5259 rb = rcu_dereference(event->rb); 5260 if (!rb) 5261 goto unlock; 5262 5263 /* 5264 * compute total_time_enabled, total_time_running 5265 * based on snapshot values taken when the event 5266 * was last scheduled in. 5267 * 5268 * we cannot simply called update_context_time() 5269 * because of locking issue as we can be called in 5270 * NMI context 5271 */ 5272 calc_timer_values(event, &now, &enabled, &running); 5273 5274 userpg = rb->user_page; 5275 /* 5276 * Disable preemption to guarantee consistent time stamps are stored to 5277 * the user page. 5278 */ 5279 preempt_disable(); 5280 ++userpg->lock; 5281 barrier(); 5282 userpg->index = perf_event_index(event); 5283 userpg->offset = perf_event_count(event); 5284 if (userpg->index) 5285 userpg->offset -= local64_read(&event->hw.prev_count); 5286 5287 userpg->time_enabled = enabled + 5288 atomic64_read(&event->child_total_time_enabled); 5289 5290 userpg->time_running = running + 5291 atomic64_read(&event->child_total_time_running); 5292 5293 arch_perf_update_userpage(event, userpg, now); 5294 5295 barrier(); 5296 ++userpg->lock; 5297 preempt_enable(); 5298 unlock: 5299 rcu_read_unlock(); 5300 } 5301 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5302 5303 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5304 { 5305 struct perf_event *event = vmf->vma->vm_file->private_data; 5306 struct ring_buffer *rb; 5307 vm_fault_t ret = VM_FAULT_SIGBUS; 5308 5309 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5310 if (vmf->pgoff == 0) 5311 ret = 0; 5312 return ret; 5313 } 5314 5315 rcu_read_lock(); 5316 rb = rcu_dereference(event->rb); 5317 if (!rb) 5318 goto unlock; 5319 5320 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5321 goto unlock; 5322 5323 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5324 if (!vmf->page) 5325 goto unlock; 5326 5327 get_page(vmf->page); 5328 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5329 vmf->page->index = vmf->pgoff; 5330 5331 ret = 0; 5332 unlock: 5333 rcu_read_unlock(); 5334 5335 return ret; 5336 } 5337 5338 static void ring_buffer_attach(struct perf_event *event, 5339 struct ring_buffer *rb) 5340 { 5341 struct ring_buffer *old_rb = NULL; 5342 unsigned long flags; 5343 5344 if (event->rb) { 5345 /* 5346 * Should be impossible, we set this when removing 5347 * event->rb_entry and wait/clear when adding event->rb_entry. 5348 */ 5349 WARN_ON_ONCE(event->rcu_pending); 5350 5351 old_rb = event->rb; 5352 spin_lock_irqsave(&old_rb->event_lock, flags); 5353 list_del_rcu(&event->rb_entry); 5354 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5355 5356 event->rcu_batches = get_state_synchronize_rcu(); 5357 event->rcu_pending = 1; 5358 } 5359 5360 if (rb) { 5361 if (event->rcu_pending) { 5362 cond_synchronize_rcu(event->rcu_batches); 5363 event->rcu_pending = 0; 5364 } 5365 5366 spin_lock_irqsave(&rb->event_lock, flags); 5367 list_add_rcu(&event->rb_entry, &rb->event_list); 5368 spin_unlock_irqrestore(&rb->event_lock, flags); 5369 } 5370 5371 /* 5372 * Avoid racing with perf_mmap_close(AUX): stop the event 5373 * before swizzling the event::rb pointer; if it's getting 5374 * unmapped, its aux_mmap_count will be 0 and it won't 5375 * restart. See the comment in __perf_pmu_output_stop(). 5376 * 5377 * Data will inevitably be lost when set_output is done in 5378 * mid-air, but then again, whoever does it like this is 5379 * not in for the data anyway. 5380 */ 5381 if (has_aux(event)) 5382 perf_event_stop(event, 0); 5383 5384 rcu_assign_pointer(event->rb, rb); 5385 5386 if (old_rb) { 5387 ring_buffer_put(old_rb); 5388 /* 5389 * Since we detached before setting the new rb, so that we 5390 * could attach the new rb, we could have missed a wakeup. 5391 * Provide it now. 5392 */ 5393 wake_up_all(&event->waitq); 5394 } 5395 } 5396 5397 static void ring_buffer_wakeup(struct perf_event *event) 5398 { 5399 struct ring_buffer *rb; 5400 5401 rcu_read_lock(); 5402 rb = rcu_dereference(event->rb); 5403 if (rb) { 5404 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5405 wake_up_all(&event->waitq); 5406 } 5407 rcu_read_unlock(); 5408 } 5409 5410 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5411 { 5412 struct ring_buffer *rb; 5413 5414 rcu_read_lock(); 5415 rb = rcu_dereference(event->rb); 5416 if (rb) { 5417 if (!refcount_inc_not_zero(&rb->refcount)) 5418 rb = NULL; 5419 } 5420 rcu_read_unlock(); 5421 5422 return rb; 5423 } 5424 5425 void ring_buffer_put(struct ring_buffer *rb) 5426 { 5427 if (!refcount_dec_and_test(&rb->refcount)) 5428 return; 5429 5430 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5431 5432 call_rcu(&rb->rcu_head, rb_free_rcu); 5433 } 5434 5435 static void perf_mmap_open(struct vm_area_struct *vma) 5436 { 5437 struct perf_event *event = vma->vm_file->private_data; 5438 5439 atomic_inc(&event->mmap_count); 5440 atomic_inc(&event->rb->mmap_count); 5441 5442 if (vma->vm_pgoff) 5443 atomic_inc(&event->rb->aux_mmap_count); 5444 5445 if (event->pmu->event_mapped) 5446 event->pmu->event_mapped(event, vma->vm_mm); 5447 } 5448 5449 static void perf_pmu_output_stop(struct perf_event *event); 5450 5451 /* 5452 * A buffer can be mmap()ed multiple times; either directly through the same 5453 * event, or through other events by use of perf_event_set_output(). 5454 * 5455 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5456 * the buffer here, where we still have a VM context. This means we need 5457 * to detach all events redirecting to us. 5458 */ 5459 static void perf_mmap_close(struct vm_area_struct *vma) 5460 { 5461 struct perf_event *event = vma->vm_file->private_data; 5462 5463 struct ring_buffer *rb = ring_buffer_get(event); 5464 struct user_struct *mmap_user = rb->mmap_user; 5465 int mmap_locked = rb->mmap_locked; 5466 unsigned long size = perf_data_size(rb); 5467 5468 if (event->pmu->event_unmapped) 5469 event->pmu->event_unmapped(event, vma->vm_mm); 5470 5471 /* 5472 * rb->aux_mmap_count will always drop before rb->mmap_count and 5473 * event->mmap_count, so it is ok to use event->mmap_mutex to 5474 * serialize with perf_mmap here. 5475 */ 5476 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5477 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5478 /* 5479 * Stop all AUX events that are writing to this buffer, 5480 * so that we can free its AUX pages and corresponding PMU 5481 * data. Note that after rb::aux_mmap_count dropped to zero, 5482 * they won't start any more (see perf_aux_output_begin()). 5483 */ 5484 perf_pmu_output_stop(event); 5485 5486 /* now it's safe to free the pages */ 5487 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5488 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5489 5490 /* this has to be the last one */ 5491 rb_free_aux(rb); 5492 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5493 5494 mutex_unlock(&event->mmap_mutex); 5495 } 5496 5497 atomic_dec(&rb->mmap_count); 5498 5499 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5500 goto out_put; 5501 5502 ring_buffer_attach(event, NULL); 5503 mutex_unlock(&event->mmap_mutex); 5504 5505 /* If there's still other mmap()s of this buffer, we're done. */ 5506 if (atomic_read(&rb->mmap_count)) 5507 goto out_put; 5508 5509 /* 5510 * No other mmap()s, detach from all other events that might redirect 5511 * into the now unreachable buffer. Somewhat complicated by the 5512 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5513 */ 5514 again: 5515 rcu_read_lock(); 5516 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5517 if (!atomic_long_inc_not_zero(&event->refcount)) { 5518 /* 5519 * This event is en-route to free_event() which will 5520 * detach it and remove it from the list. 5521 */ 5522 continue; 5523 } 5524 rcu_read_unlock(); 5525 5526 mutex_lock(&event->mmap_mutex); 5527 /* 5528 * Check we didn't race with perf_event_set_output() which can 5529 * swizzle the rb from under us while we were waiting to 5530 * acquire mmap_mutex. 5531 * 5532 * If we find a different rb; ignore this event, a next 5533 * iteration will no longer find it on the list. We have to 5534 * still restart the iteration to make sure we're not now 5535 * iterating the wrong list. 5536 */ 5537 if (event->rb == rb) 5538 ring_buffer_attach(event, NULL); 5539 5540 mutex_unlock(&event->mmap_mutex); 5541 put_event(event); 5542 5543 /* 5544 * Restart the iteration; either we're on the wrong list or 5545 * destroyed its integrity by doing a deletion. 5546 */ 5547 goto again; 5548 } 5549 rcu_read_unlock(); 5550 5551 /* 5552 * It could be there's still a few 0-ref events on the list; they'll 5553 * get cleaned up by free_event() -- they'll also still have their 5554 * ref on the rb and will free it whenever they are done with it. 5555 * 5556 * Aside from that, this buffer is 'fully' detached and unmapped, 5557 * undo the VM accounting. 5558 */ 5559 5560 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5561 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5562 free_uid(mmap_user); 5563 5564 out_put: 5565 ring_buffer_put(rb); /* could be last */ 5566 } 5567 5568 static const struct vm_operations_struct perf_mmap_vmops = { 5569 .open = perf_mmap_open, 5570 .close = perf_mmap_close, /* non mergeable */ 5571 .fault = perf_mmap_fault, 5572 .page_mkwrite = perf_mmap_fault, 5573 }; 5574 5575 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5576 { 5577 struct perf_event *event = file->private_data; 5578 unsigned long user_locked, user_lock_limit; 5579 struct user_struct *user = current_user(); 5580 unsigned long locked, lock_limit; 5581 struct ring_buffer *rb = NULL; 5582 unsigned long vma_size; 5583 unsigned long nr_pages; 5584 long user_extra = 0, extra = 0; 5585 int ret = 0, flags = 0; 5586 5587 /* 5588 * Don't allow mmap() of inherited per-task counters. This would 5589 * create a performance issue due to all children writing to the 5590 * same rb. 5591 */ 5592 if (event->cpu == -1 && event->attr.inherit) 5593 return -EINVAL; 5594 5595 if (!(vma->vm_flags & VM_SHARED)) 5596 return -EINVAL; 5597 5598 vma_size = vma->vm_end - vma->vm_start; 5599 5600 if (vma->vm_pgoff == 0) { 5601 nr_pages = (vma_size / PAGE_SIZE) - 1; 5602 } else { 5603 /* 5604 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5605 * mapped, all subsequent mappings should have the same size 5606 * and offset. Must be above the normal perf buffer. 5607 */ 5608 u64 aux_offset, aux_size; 5609 5610 if (!event->rb) 5611 return -EINVAL; 5612 5613 nr_pages = vma_size / PAGE_SIZE; 5614 5615 mutex_lock(&event->mmap_mutex); 5616 ret = -EINVAL; 5617 5618 rb = event->rb; 5619 if (!rb) 5620 goto aux_unlock; 5621 5622 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5623 aux_size = READ_ONCE(rb->user_page->aux_size); 5624 5625 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5626 goto aux_unlock; 5627 5628 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5629 goto aux_unlock; 5630 5631 /* already mapped with a different offset */ 5632 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5633 goto aux_unlock; 5634 5635 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5636 goto aux_unlock; 5637 5638 /* already mapped with a different size */ 5639 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5640 goto aux_unlock; 5641 5642 if (!is_power_of_2(nr_pages)) 5643 goto aux_unlock; 5644 5645 if (!atomic_inc_not_zero(&rb->mmap_count)) 5646 goto aux_unlock; 5647 5648 if (rb_has_aux(rb)) { 5649 atomic_inc(&rb->aux_mmap_count); 5650 ret = 0; 5651 goto unlock; 5652 } 5653 5654 atomic_set(&rb->aux_mmap_count, 1); 5655 user_extra = nr_pages; 5656 5657 goto accounting; 5658 } 5659 5660 /* 5661 * If we have rb pages ensure they're a power-of-two number, so we 5662 * can do bitmasks instead of modulo. 5663 */ 5664 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5665 return -EINVAL; 5666 5667 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5668 return -EINVAL; 5669 5670 WARN_ON_ONCE(event->ctx->parent_ctx); 5671 again: 5672 mutex_lock(&event->mmap_mutex); 5673 if (event->rb) { 5674 if (event->rb->nr_pages != nr_pages) { 5675 ret = -EINVAL; 5676 goto unlock; 5677 } 5678 5679 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5680 /* 5681 * Raced against perf_mmap_close() through 5682 * perf_event_set_output(). Try again, hope for better 5683 * luck. 5684 */ 5685 mutex_unlock(&event->mmap_mutex); 5686 goto again; 5687 } 5688 5689 goto unlock; 5690 } 5691 5692 user_extra = nr_pages + 1; 5693 5694 accounting: 5695 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5696 5697 /* 5698 * Increase the limit linearly with more CPUs: 5699 */ 5700 user_lock_limit *= num_online_cpus(); 5701 5702 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5703 5704 if (user_locked > user_lock_limit) 5705 extra = user_locked - user_lock_limit; 5706 5707 lock_limit = rlimit(RLIMIT_MEMLOCK); 5708 lock_limit >>= PAGE_SHIFT; 5709 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5710 5711 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5712 !capable(CAP_IPC_LOCK)) { 5713 ret = -EPERM; 5714 goto unlock; 5715 } 5716 5717 WARN_ON(!rb && event->rb); 5718 5719 if (vma->vm_flags & VM_WRITE) 5720 flags |= RING_BUFFER_WRITABLE; 5721 5722 if (!rb) { 5723 rb = rb_alloc(nr_pages, 5724 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5725 event->cpu, flags); 5726 5727 if (!rb) { 5728 ret = -ENOMEM; 5729 goto unlock; 5730 } 5731 5732 atomic_set(&rb->mmap_count, 1); 5733 rb->mmap_user = get_current_user(); 5734 rb->mmap_locked = extra; 5735 5736 ring_buffer_attach(event, rb); 5737 5738 perf_event_init_userpage(event); 5739 perf_event_update_userpage(event); 5740 } else { 5741 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5742 event->attr.aux_watermark, flags); 5743 if (!ret) 5744 rb->aux_mmap_locked = extra; 5745 } 5746 5747 unlock: 5748 if (!ret) { 5749 atomic_long_add(user_extra, &user->locked_vm); 5750 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5751 5752 atomic_inc(&event->mmap_count); 5753 } else if (rb) { 5754 atomic_dec(&rb->mmap_count); 5755 } 5756 aux_unlock: 5757 mutex_unlock(&event->mmap_mutex); 5758 5759 /* 5760 * Since pinned accounting is per vm we cannot allow fork() to copy our 5761 * vma. 5762 */ 5763 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5764 vma->vm_ops = &perf_mmap_vmops; 5765 5766 if (event->pmu->event_mapped) 5767 event->pmu->event_mapped(event, vma->vm_mm); 5768 5769 return ret; 5770 } 5771 5772 static int perf_fasync(int fd, struct file *filp, int on) 5773 { 5774 struct inode *inode = file_inode(filp); 5775 struct perf_event *event = filp->private_data; 5776 int retval; 5777 5778 inode_lock(inode); 5779 retval = fasync_helper(fd, filp, on, &event->fasync); 5780 inode_unlock(inode); 5781 5782 if (retval < 0) 5783 return retval; 5784 5785 return 0; 5786 } 5787 5788 static const struct file_operations perf_fops = { 5789 .llseek = no_llseek, 5790 .release = perf_release, 5791 .read = perf_read, 5792 .poll = perf_poll, 5793 .unlocked_ioctl = perf_ioctl, 5794 .compat_ioctl = perf_compat_ioctl, 5795 .mmap = perf_mmap, 5796 .fasync = perf_fasync, 5797 }; 5798 5799 /* 5800 * Perf event wakeup 5801 * 5802 * If there's data, ensure we set the poll() state and publish everything 5803 * to user-space before waking everybody up. 5804 */ 5805 5806 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5807 { 5808 /* only the parent has fasync state */ 5809 if (event->parent) 5810 event = event->parent; 5811 return &event->fasync; 5812 } 5813 5814 void perf_event_wakeup(struct perf_event *event) 5815 { 5816 ring_buffer_wakeup(event); 5817 5818 if (event->pending_kill) { 5819 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5820 event->pending_kill = 0; 5821 } 5822 } 5823 5824 static void perf_pending_event_disable(struct perf_event *event) 5825 { 5826 int cpu = READ_ONCE(event->pending_disable); 5827 5828 if (cpu < 0) 5829 return; 5830 5831 if (cpu == smp_processor_id()) { 5832 WRITE_ONCE(event->pending_disable, -1); 5833 perf_event_disable_local(event); 5834 return; 5835 } 5836 5837 /* 5838 * CPU-A CPU-B 5839 * 5840 * perf_event_disable_inatomic() 5841 * @pending_disable = CPU-A; 5842 * irq_work_queue(); 5843 * 5844 * sched-out 5845 * @pending_disable = -1; 5846 * 5847 * sched-in 5848 * perf_event_disable_inatomic() 5849 * @pending_disable = CPU-B; 5850 * irq_work_queue(); // FAILS 5851 * 5852 * irq_work_run() 5853 * perf_pending_event() 5854 * 5855 * But the event runs on CPU-B and wants disabling there. 5856 */ 5857 irq_work_queue_on(&event->pending, cpu); 5858 } 5859 5860 static void perf_pending_event(struct irq_work *entry) 5861 { 5862 struct perf_event *event = container_of(entry, struct perf_event, pending); 5863 int rctx; 5864 5865 rctx = perf_swevent_get_recursion_context(); 5866 /* 5867 * If we 'fail' here, that's OK, it means recursion is already disabled 5868 * and we won't recurse 'further'. 5869 */ 5870 5871 perf_pending_event_disable(event); 5872 5873 if (event->pending_wakeup) { 5874 event->pending_wakeup = 0; 5875 perf_event_wakeup(event); 5876 } 5877 5878 if (rctx >= 0) 5879 perf_swevent_put_recursion_context(rctx); 5880 } 5881 5882 /* 5883 * We assume there is only KVM supporting the callbacks. 5884 * Later on, we might change it to a list if there is 5885 * another virtualization implementation supporting the callbacks. 5886 */ 5887 struct perf_guest_info_callbacks *perf_guest_cbs; 5888 5889 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5890 { 5891 perf_guest_cbs = cbs; 5892 return 0; 5893 } 5894 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5895 5896 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5897 { 5898 perf_guest_cbs = NULL; 5899 return 0; 5900 } 5901 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5902 5903 static void 5904 perf_output_sample_regs(struct perf_output_handle *handle, 5905 struct pt_regs *regs, u64 mask) 5906 { 5907 int bit; 5908 DECLARE_BITMAP(_mask, 64); 5909 5910 bitmap_from_u64(_mask, mask); 5911 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5912 u64 val; 5913 5914 val = perf_reg_value(regs, bit); 5915 perf_output_put(handle, val); 5916 } 5917 } 5918 5919 static void perf_sample_regs_user(struct perf_regs *regs_user, 5920 struct pt_regs *regs, 5921 struct pt_regs *regs_user_copy) 5922 { 5923 if (user_mode(regs)) { 5924 regs_user->abi = perf_reg_abi(current); 5925 regs_user->regs = regs; 5926 } else if (current->mm) { 5927 perf_get_regs_user(regs_user, regs, regs_user_copy); 5928 } else { 5929 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5930 regs_user->regs = NULL; 5931 } 5932 } 5933 5934 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5935 struct pt_regs *regs) 5936 { 5937 regs_intr->regs = regs; 5938 regs_intr->abi = perf_reg_abi(current); 5939 } 5940 5941 5942 /* 5943 * Get remaining task size from user stack pointer. 5944 * 5945 * It'd be better to take stack vma map and limit this more 5946 * precisly, but there's no way to get it safely under interrupt, 5947 * so using TASK_SIZE as limit. 5948 */ 5949 static u64 perf_ustack_task_size(struct pt_regs *regs) 5950 { 5951 unsigned long addr = perf_user_stack_pointer(regs); 5952 5953 if (!addr || addr >= TASK_SIZE) 5954 return 0; 5955 5956 return TASK_SIZE - addr; 5957 } 5958 5959 static u16 5960 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5961 struct pt_regs *regs) 5962 { 5963 u64 task_size; 5964 5965 /* No regs, no stack pointer, no dump. */ 5966 if (!regs) 5967 return 0; 5968 5969 /* 5970 * Check if we fit in with the requested stack size into the: 5971 * - TASK_SIZE 5972 * If we don't, we limit the size to the TASK_SIZE. 5973 * 5974 * - remaining sample size 5975 * If we don't, we customize the stack size to 5976 * fit in to the remaining sample size. 5977 */ 5978 5979 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5980 stack_size = min(stack_size, (u16) task_size); 5981 5982 /* Current header size plus static size and dynamic size. */ 5983 header_size += 2 * sizeof(u64); 5984 5985 /* Do we fit in with the current stack dump size? */ 5986 if ((u16) (header_size + stack_size) < header_size) { 5987 /* 5988 * If we overflow the maximum size for the sample, 5989 * we customize the stack dump size to fit in. 5990 */ 5991 stack_size = USHRT_MAX - header_size - sizeof(u64); 5992 stack_size = round_up(stack_size, sizeof(u64)); 5993 } 5994 5995 return stack_size; 5996 } 5997 5998 static void 5999 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6000 struct pt_regs *regs) 6001 { 6002 /* Case of a kernel thread, nothing to dump */ 6003 if (!regs) { 6004 u64 size = 0; 6005 perf_output_put(handle, size); 6006 } else { 6007 unsigned long sp; 6008 unsigned int rem; 6009 u64 dyn_size; 6010 mm_segment_t fs; 6011 6012 /* 6013 * We dump: 6014 * static size 6015 * - the size requested by user or the best one we can fit 6016 * in to the sample max size 6017 * data 6018 * - user stack dump data 6019 * dynamic size 6020 * - the actual dumped size 6021 */ 6022 6023 /* Static size. */ 6024 perf_output_put(handle, dump_size); 6025 6026 /* Data. */ 6027 sp = perf_user_stack_pointer(regs); 6028 fs = get_fs(); 6029 set_fs(USER_DS); 6030 rem = __output_copy_user(handle, (void *) sp, dump_size); 6031 set_fs(fs); 6032 dyn_size = dump_size - rem; 6033 6034 perf_output_skip(handle, rem); 6035 6036 /* Dynamic size. */ 6037 perf_output_put(handle, dyn_size); 6038 } 6039 } 6040 6041 static void __perf_event_header__init_id(struct perf_event_header *header, 6042 struct perf_sample_data *data, 6043 struct perf_event *event) 6044 { 6045 u64 sample_type = event->attr.sample_type; 6046 6047 data->type = sample_type; 6048 header->size += event->id_header_size; 6049 6050 if (sample_type & PERF_SAMPLE_TID) { 6051 /* namespace issues */ 6052 data->tid_entry.pid = perf_event_pid(event, current); 6053 data->tid_entry.tid = perf_event_tid(event, current); 6054 } 6055 6056 if (sample_type & PERF_SAMPLE_TIME) 6057 data->time = perf_event_clock(event); 6058 6059 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6060 data->id = primary_event_id(event); 6061 6062 if (sample_type & PERF_SAMPLE_STREAM_ID) 6063 data->stream_id = event->id; 6064 6065 if (sample_type & PERF_SAMPLE_CPU) { 6066 data->cpu_entry.cpu = raw_smp_processor_id(); 6067 data->cpu_entry.reserved = 0; 6068 } 6069 } 6070 6071 void perf_event_header__init_id(struct perf_event_header *header, 6072 struct perf_sample_data *data, 6073 struct perf_event *event) 6074 { 6075 if (event->attr.sample_id_all) 6076 __perf_event_header__init_id(header, data, event); 6077 } 6078 6079 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6080 struct perf_sample_data *data) 6081 { 6082 u64 sample_type = data->type; 6083 6084 if (sample_type & PERF_SAMPLE_TID) 6085 perf_output_put(handle, data->tid_entry); 6086 6087 if (sample_type & PERF_SAMPLE_TIME) 6088 perf_output_put(handle, data->time); 6089 6090 if (sample_type & PERF_SAMPLE_ID) 6091 perf_output_put(handle, data->id); 6092 6093 if (sample_type & PERF_SAMPLE_STREAM_ID) 6094 perf_output_put(handle, data->stream_id); 6095 6096 if (sample_type & PERF_SAMPLE_CPU) 6097 perf_output_put(handle, data->cpu_entry); 6098 6099 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6100 perf_output_put(handle, data->id); 6101 } 6102 6103 void perf_event__output_id_sample(struct perf_event *event, 6104 struct perf_output_handle *handle, 6105 struct perf_sample_data *sample) 6106 { 6107 if (event->attr.sample_id_all) 6108 __perf_event__output_id_sample(handle, sample); 6109 } 6110 6111 static void perf_output_read_one(struct perf_output_handle *handle, 6112 struct perf_event *event, 6113 u64 enabled, u64 running) 6114 { 6115 u64 read_format = event->attr.read_format; 6116 u64 values[4]; 6117 int n = 0; 6118 6119 values[n++] = perf_event_count(event); 6120 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6121 values[n++] = enabled + 6122 atomic64_read(&event->child_total_time_enabled); 6123 } 6124 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6125 values[n++] = running + 6126 atomic64_read(&event->child_total_time_running); 6127 } 6128 if (read_format & PERF_FORMAT_ID) 6129 values[n++] = primary_event_id(event); 6130 6131 __output_copy(handle, values, n * sizeof(u64)); 6132 } 6133 6134 static void perf_output_read_group(struct perf_output_handle *handle, 6135 struct perf_event *event, 6136 u64 enabled, u64 running) 6137 { 6138 struct perf_event *leader = event->group_leader, *sub; 6139 u64 read_format = event->attr.read_format; 6140 u64 values[5]; 6141 int n = 0; 6142 6143 values[n++] = 1 + leader->nr_siblings; 6144 6145 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6146 values[n++] = enabled; 6147 6148 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6149 values[n++] = running; 6150 6151 if ((leader != event) && 6152 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6153 leader->pmu->read(leader); 6154 6155 values[n++] = perf_event_count(leader); 6156 if (read_format & PERF_FORMAT_ID) 6157 values[n++] = primary_event_id(leader); 6158 6159 __output_copy(handle, values, n * sizeof(u64)); 6160 6161 for_each_sibling_event(sub, leader) { 6162 n = 0; 6163 6164 if ((sub != event) && 6165 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6166 sub->pmu->read(sub); 6167 6168 values[n++] = perf_event_count(sub); 6169 if (read_format & PERF_FORMAT_ID) 6170 values[n++] = primary_event_id(sub); 6171 6172 __output_copy(handle, values, n * sizeof(u64)); 6173 } 6174 } 6175 6176 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6177 PERF_FORMAT_TOTAL_TIME_RUNNING) 6178 6179 /* 6180 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6181 * 6182 * The problem is that its both hard and excessively expensive to iterate the 6183 * child list, not to mention that its impossible to IPI the children running 6184 * on another CPU, from interrupt/NMI context. 6185 */ 6186 static void perf_output_read(struct perf_output_handle *handle, 6187 struct perf_event *event) 6188 { 6189 u64 enabled = 0, running = 0, now; 6190 u64 read_format = event->attr.read_format; 6191 6192 /* 6193 * compute total_time_enabled, total_time_running 6194 * based on snapshot values taken when the event 6195 * was last scheduled in. 6196 * 6197 * we cannot simply called update_context_time() 6198 * because of locking issue as we are called in 6199 * NMI context 6200 */ 6201 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6202 calc_timer_values(event, &now, &enabled, &running); 6203 6204 if (event->attr.read_format & PERF_FORMAT_GROUP) 6205 perf_output_read_group(handle, event, enabled, running); 6206 else 6207 perf_output_read_one(handle, event, enabled, running); 6208 } 6209 6210 void perf_output_sample(struct perf_output_handle *handle, 6211 struct perf_event_header *header, 6212 struct perf_sample_data *data, 6213 struct perf_event *event) 6214 { 6215 u64 sample_type = data->type; 6216 6217 perf_output_put(handle, *header); 6218 6219 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6220 perf_output_put(handle, data->id); 6221 6222 if (sample_type & PERF_SAMPLE_IP) 6223 perf_output_put(handle, data->ip); 6224 6225 if (sample_type & PERF_SAMPLE_TID) 6226 perf_output_put(handle, data->tid_entry); 6227 6228 if (sample_type & PERF_SAMPLE_TIME) 6229 perf_output_put(handle, data->time); 6230 6231 if (sample_type & PERF_SAMPLE_ADDR) 6232 perf_output_put(handle, data->addr); 6233 6234 if (sample_type & PERF_SAMPLE_ID) 6235 perf_output_put(handle, data->id); 6236 6237 if (sample_type & PERF_SAMPLE_STREAM_ID) 6238 perf_output_put(handle, data->stream_id); 6239 6240 if (sample_type & PERF_SAMPLE_CPU) 6241 perf_output_put(handle, data->cpu_entry); 6242 6243 if (sample_type & PERF_SAMPLE_PERIOD) 6244 perf_output_put(handle, data->period); 6245 6246 if (sample_type & PERF_SAMPLE_READ) 6247 perf_output_read(handle, event); 6248 6249 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6250 int size = 1; 6251 6252 size += data->callchain->nr; 6253 size *= sizeof(u64); 6254 __output_copy(handle, data->callchain, size); 6255 } 6256 6257 if (sample_type & PERF_SAMPLE_RAW) { 6258 struct perf_raw_record *raw = data->raw; 6259 6260 if (raw) { 6261 struct perf_raw_frag *frag = &raw->frag; 6262 6263 perf_output_put(handle, raw->size); 6264 do { 6265 if (frag->copy) { 6266 __output_custom(handle, frag->copy, 6267 frag->data, frag->size); 6268 } else { 6269 __output_copy(handle, frag->data, 6270 frag->size); 6271 } 6272 if (perf_raw_frag_last(frag)) 6273 break; 6274 frag = frag->next; 6275 } while (1); 6276 if (frag->pad) 6277 __output_skip(handle, NULL, frag->pad); 6278 } else { 6279 struct { 6280 u32 size; 6281 u32 data; 6282 } raw = { 6283 .size = sizeof(u32), 6284 .data = 0, 6285 }; 6286 perf_output_put(handle, raw); 6287 } 6288 } 6289 6290 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6291 if (data->br_stack) { 6292 size_t size; 6293 6294 size = data->br_stack->nr 6295 * sizeof(struct perf_branch_entry); 6296 6297 perf_output_put(handle, data->br_stack->nr); 6298 perf_output_copy(handle, data->br_stack->entries, size); 6299 } else { 6300 /* 6301 * we always store at least the value of nr 6302 */ 6303 u64 nr = 0; 6304 perf_output_put(handle, nr); 6305 } 6306 } 6307 6308 if (sample_type & PERF_SAMPLE_REGS_USER) { 6309 u64 abi = data->regs_user.abi; 6310 6311 /* 6312 * If there are no regs to dump, notice it through 6313 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6314 */ 6315 perf_output_put(handle, abi); 6316 6317 if (abi) { 6318 u64 mask = event->attr.sample_regs_user; 6319 perf_output_sample_regs(handle, 6320 data->regs_user.regs, 6321 mask); 6322 } 6323 } 6324 6325 if (sample_type & PERF_SAMPLE_STACK_USER) { 6326 perf_output_sample_ustack(handle, 6327 data->stack_user_size, 6328 data->regs_user.regs); 6329 } 6330 6331 if (sample_type & PERF_SAMPLE_WEIGHT) 6332 perf_output_put(handle, data->weight); 6333 6334 if (sample_type & PERF_SAMPLE_DATA_SRC) 6335 perf_output_put(handle, data->data_src.val); 6336 6337 if (sample_type & PERF_SAMPLE_TRANSACTION) 6338 perf_output_put(handle, data->txn); 6339 6340 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6341 u64 abi = data->regs_intr.abi; 6342 /* 6343 * If there are no regs to dump, notice it through 6344 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6345 */ 6346 perf_output_put(handle, abi); 6347 6348 if (abi) { 6349 u64 mask = event->attr.sample_regs_intr; 6350 6351 perf_output_sample_regs(handle, 6352 data->regs_intr.regs, 6353 mask); 6354 } 6355 } 6356 6357 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6358 perf_output_put(handle, data->phys_addr); 6359 6360 if (!event->attr.watermark) { 6361 int wakeup_events = event->attr.wakeup_events; 6362 6363 if (wakeup_events) { 6364 struct ring_buffer *rb = handle->rb; 6365 int events = local_inc_return(&rb->events); 6366 6367 if (events >= wakeup_events) { 6368 local_sub(wakeup_events, &rb->events); 6369 local_inc(&rb->wakeup); 6370 } 6371 } 6372 } 6373 } 6374 6375 static u64 perf_virt_to_phys(u64 virt) 6376 { 6377 u64 phys_addr = 0; 6378 struct page *p = NULL; 6379 6380 if (!virt) 6381 return 0; 6382 6383 if (virt >= TASK_SIZE) { 6384 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6385 if (virt_addr_valid((void *)(uintptr_t)virt) && 6386 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6387 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6388 } else { 6389 /* 6390 * Walking the pages tables for user address. 6391 * Interrupts are disabled, so it prevents any tear down 6392 * of the page tables. 6393 * Try IRQ-safe __get_user_pages_fast first. 6394 * If failed, leave phys_addr as 0. 6395 */ 6396 if ((current->mm != NULL) && 6397 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6398 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6399 6400 if (p) 6401 put_page(p); 6402 } 6403 6404 return phys_addr; 6405 } 6406 6407 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6408 6409 struct perf_callchain_entry * 6410 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6411 { 6412 bool kernel = !event->attr.exclude_callchain_kernel; 6413 bool user = !event->attr.exclude_callchain_user; 6414 /* Disallow cross-task user callchains. */ 6415 bool crosstask = event->ctx->task && event->ctx->task != current; 6416 const u32 max_stack = event->attr.sample_max_stack; 6417 struct perf_callchain_entry *callchain; 6418 6419 if (!kernel && !user) 6420 return &__empty_callchain; 6421 6422 callchain = get_perf_callchain(regs, 0, kernel, user, 6423 max_stack, crosstask, true); 6424 return callchain ?: &__empty_callchain; 6425 } 6426 6427 void perf_prepare_sample(struct perf_event_header *header, 6428 struct perf_sample_data *data, 6429 struct perf_event *event, 6430 struct pt_regs *regs) 6431 { 6432 u64 sample_type = event->attr.sample_type; 6433 6434 header->type = PERF_RECORD_SAMPLE; 6435 header->size = sizeof(*header) + event->header_size; 6436 6437 header->misc = 0; 6438 header->misc |= perf_misc_flags(regs); 6439 6440 __perf_event_header__init_id(header, data, event); 6441 6442 if (sample_type & PERF_SAMPLE_IP) 6443 data->ip = perf_instruction_pointer(regs); 6444 6445 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6446 int size = 1; 6447 6448 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6449 data->callchain = perf_callchain(event, regs); 6450 6451 size += data->callchain->nr; 6452 6453 header->size += size * sizeof(u64); 6454 } 6455 6456 if (sample_type & PERF_SAMPLE_RAW) { 6457 struct perf_raw_record *raw = data->raw; 6458 int size; 6459 6460 if (raw) { 6461 struct perf_raw_frag *frag = &raw->frag; 6462 u32 sum = 0; 6463 6464 do { 6465 sum += frag->size; 6466 if (perf_raw_frag_last(frag)) 6467 break; 6468 frag = frag->next; 6469 } while (1); 6470 6471 size = round_up(sum + sizeof(u32), sizeof(u64)); 6472 raw->size = size - sizeof(u32); 6473 frag->pad = raw->size - sum; 6474 } else { 6475 size = sizeof(u64); 6476 } 6477 6478 header->size += size; 6479 } 6480 6481 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6482 int size = sizeof(u64); /* nr */ 6483 if (data->br_stack) { 6484 size += data->br_stack->nr 6485 * sizeof(struct perf_branch_entry); 6486 } 6487 header->size += size; 6488 } 6489 6490 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6491 perf_sample_regs_user(&data->regs_user, regs, 6492 &data->regs_user_copy); 6493 6494 if (sample_type & PERF_SAMPLE_REGS_USER) { 6495 /* regs dump ABI info */ 6496 int size = sizeof(u64); 6497 6498 if (data->regs_user.regs) { 6499 u64 mask = event->attr.sample_regs_user; 6500 size += hweight64(mask) * sizeof(u64); 6501 } 6502 6503 header->size += size; 6504 } 6505 6506 if (sample_type & PERF_SAMPLE_STACK_USER) { 6507 /* 6508 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6509 * processed as the last one or have additional check added 6510 * in case new sample type is added, because we could eat 6511 * up the rest of the sample size. 6512 */ 6513 u16 stack_size = event->attr.sample_stack_user; 6514 u16 size = sizeof(u64); 6515 6516 stack_size = perf_sample_ustack_size(stack_size, header->size, 6517 data->regs_user.regs); 6518 6519 /* 6520 * If there is something to dump, add space for the dump 6521 * itself and for the field that tells the dynamic size, 6522 * which is how many have been actually dumped. 6523 */ 6524 if (stack_size) 6525 size += sizeof(u64) + stack_size; 6526 6527 data->stack_user_size = stack_size; 6528 header->size += size; 6529 } 6530 6531 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6532 /* regs dump ABI info */ 6533 int size = sizeof(u64); 6534 6535 perf_sample_regs_intr(&data->regs_intr, regs); 6536 6537 if (data->regs_intr.regs) { 6538 u64 mask = event->attr.sample_regs_intr; 6539 6540 size += hweight64(mask) * sizeof(u64); 6541 } 6542 6543 header->size += size; 6544 } 6545 6546 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6547 data->phys_addr = perf_virt_to_phys(data->addr); 6548 } 6549 6550 static __always_inline int 6551 __perf_event_output(struct perf_event *event, 6552 struct perf_sample_data *data, 6553 struct pt_regs *regs, 6554 int (*output_begin)(struct perf_output_handle *, 6555 struct perf_event *, 6556 unsigned int)) 6557 { 6558 struct perf_output_handle handle; 6559 struct perf_event_header header; 6560 int err; 6561 6562 /* protect the callchain buffers */ 6563 rcu_read_lock(); 6564 6565 perf_prepare_sample(&header, data, event, regs); 6566 6567 err = output_begin(&handle, event, header.size); 6568 if (err) 6569 goto exit; 6570 6571 perf_output_sample(&handle, &header, data, event); 6572 6573 perf_output_end(&handle); 6574 6575 exit: 6576 rcu_read_unlock(); 6577 return err; 6578 } 6579 6580 void 6581 perf_event_output_forward(struct perf_event *event, 6582 struct perf_sample_data *data, 6583 struct pt_regs *regs) 6584 { 6585 __perf_event_output(event, data, regs, perf_output_begin_forward); 6586 } 6587 6588 void 6589 perf_event_output_backward(struct perf_event *event, 6590 struct perf_sample_data *data, 6591 struct pt_regs *regs) 6592 { 6593 __perf_event_output(event, data, regs, perf_output_begin_backward); 6594 } 6595 6596 int 6597 perf_event_output(struct perf_event *event, 6598 struct perf_sample_data *data, 6599 struct pt_regs *regs) 6600 { 6601 return __perf_event_output(event, data, regs, perf_output_begin); 6602 } 6603 6604 /* 6605 * read event_id 6606 */ 6607 6608 struct perf_read_event { 6609 struct perf_event_header header; 6610 6611 u32 pid; 6612 u32 tid; 6613 }; 6614 6615 static void 6616 perf_event_read_event(struct perf_event *event, 6617 struct task_struct *task) 6618 { 6619 struct perf_output_handle handle; 6620 struct perf_sample_data sample; 6621 struct perf_read_event read_event = { 6622 .header = { 6623 .type = PERF_RECORD_READ, 6624 .misc = 0, 6625 .size = sizeof(read_event) + event->read_size, 6626 }, 6627 .pid = perf_event_pid(event, task), 6628 .tid = perf_event_tid(event, task), 6629 }; 6630 int ret; 6631 6632 perf_event_header__init_id(&read_event.header, &sample, event); 6633 ret = perf_output_begin(&handle, event, read_event.header.size); 6634 if (ret) 6635 return; 6636 6637 perf_output_put(&handle, read_event); 6638 perf_output_read(&handle, event); 6639 perf_event__output_id_sample(event, &handle, &sample); 6640 6641 perf_output_end(&handle); 6642 } 6643 6644 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6645 6646 static void 6647 perf_iterate_ctx(struct perf_event_context *ctx, 6648 perf_iterate_f output, 6649 void *data, bool all) 6650 { 6651 struct perf_event *event; 6652 6653 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6654 if (!all) { 6655 if (event->state < PERF_EVENT_STATE_INACTIVE) 6656 continue; 6657 if (!event_filter_match(event)) 6658 continue; 6659 } 6660 6661 output(event, data); 6662 } 6663 } 6664 6665 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6666 { 6667 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6668 struct perf_event *event; 6669 6670 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6671 /* 6672 * Skip events that are not fully formed yet; ensure that 6673 * if we observe event->ctx, both event and ctx will be 6674 * complete enough. See perf_install_in_context(). 6675 */ 6676 if (!smp_load_acquire(&event->ctx)) 6677 continue; 6678 6679 if (event->state < PERF_EVENT_STATE_INACTIVE) 6680 continue; 6681 if (!event_filter_match(event)) 6682 continue; 6683 output(event, data); 6684 } 6685 } 6686 6687 /* 6688 * Iterate all events that need to receive side-band events. 6689 * 6690 * For new callers; ensure that account_pmu_sb_event() includes 6691 * your event, otherwise it might not get delivered. 6692 */ 6693 static void 6694 perf_iterate_sb(perf_iterate_f output, void *data, 6695 struct perf_event_context *task_ctx) 6696 { 6697 struct perf_event_context *ctx; 6698 int ctxn; 6699 6700 rcu_read_lock(); 6701 preempt_disable(); 6702 6703 /* 6704 * If we have task_ctx != NULL we only notify the task context itself. 6705 * The task_ctx is set only for EXIT events before releasing task 6706 * context. 6707 */ 6708 if (task_ctx) { 6709 perf_iterate_ctx(task_ctx, output, data, false); 6710 goto done; 6711 } 6712 6713 perf_iterate_sb_cpu(output, data); 6714 6715 for_each_task_context_nr(ctxn) { 6716 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6717 if (ctx) 6718 perf_iterate_ctx(ctx, output, data, false); 6719 } 6720 done: 6721 preempt_enable(); 6722 rcu_read_unlock(); 6723 } 6724 6725 /* 6726 * Clear all file-based filters at exec, they'll have to be 6727 * re-instated when/if these objects are mmapped again. 6728 */ 6729 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6730 { 6731 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6732 struct perf_addr_filter *filter; 6733 unsigned int restart = 0, count = 0; 6734 unsigned long flags; 6735 6736 if (!has_addr_filter(event)) 6737 return; 6738 6739 raw_spin_lock_irqsave(&ifh->lock, flags); 6740 list_for_each_entry(filter, &ifh->list, entry) { 6741 if (filter->path.dentry) { 6742 event->addr_filter_ranges[count].start = 0; 6743 event->addr_filter_ranges[count].size = 0; 6744 restart++; 6745 } 6746 6747 count++; 6748 } 6749 6750 if (restart) 6751 event->addr_filters_gen++; 6752 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6753 6754 if (restart) 6755 perf_event_stop(event, 1); 6756 } 6757 6758 void perf_event_exec(void) 6759 { 6760 struct perf_event_context *ctx; 6761 int ctxn; 6762 6763 rcu_read_lock(); 6764 for_each_task_context_nr(ctxn) { 6765 ctx = current->perf_event_ctxp[ctxn]; 6766 if (!ctx) 6767 continue; 6768 6769 perf_event_enable_on_exec(ctxn); 6770 6771 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6772 true); 6773 } 6774 rcu_read_unlock(); 6775 } 6776 6777 struct remote_output { 6778 struct ring_buffer *rb; 6779 int err; 6780 }; 6781 6782 static void __perf_event_output_stop(struct perf_event *event, void *data) 6783 { 6784 struct perf_event *parent = event->parent; 6785 struct remote_output *ro = data; 6786 struct ring_buffer *rb = ro->rb; 6787 struct stop_event_data sd = { 6788 .event = event, 6789 }; 6790 6791 if (!has_aux(event)) 6792 return; 6793 6794 if (!parent) 6795 parent = event; 6796 6797 /* 6798 * In case of inheritance, it will be the parent that links to the 6799 * ring-buffer, but it will be the child that's actually using it. 6800 * 6801 * We are using event::rb to determine if the event should be stopped, 6802 * however this may race with ring_buffer_attach() (through set_output), 6803 * which will make us skip the event that actually needs to be stopped. 6804 * So ring_buffer_attach() has to stop an aux event before re-assigning 6805 * its rb pointer. 6806 */ 6807 if (rcu_dereference(parent->rb) == rb) 6808 ro->err = __perf_event_stop(&sd); 6809 } 6810 6811 static int __perf_pmu_output_stop(void *info) 6812 { 6813 struct perf_event *event = info; 6814 struct pmu *pmu = event->pmu; 6815 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6816 struct remote_output ro = { 6817 .rb = event->rb, 6818 }; 6819 6820 rcu_read_lock(); 6821 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6822 if (cpuctx->task_ctx) 6823 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6824 &ro, false); 6825 rcu_read_unlock(); 6826 6827 return ro.err; 6828 } 6829 6830 static void perf_pmu_output_stop(struct perf_event *event) 6831 { 6832 struct perf_event *iter; 6833 int err, cpu; 6834 6835 restart: 6836 rcu_read_lock(); 6837 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6838 /* 6839 * For per-CPU events, we need to make sure that neither they 6840 * nor their children are running; for cpu==-1 events it's 6841 * sufficient to stop the event itself if it's active, since 6842 * it can't have children. 6843 */ 6844 cpu = iter->cpu; 6845 if (cpu == -1) 6846 cpu = READ_ONCE(iter->oncpu); 6847 6848 if (cpu == -1) 6849 continue; 6850 6851 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6852 if (err == -EAGAIN) { 6853 rcu_read_unlock(); 6854 goto restart; 6855 } 6856 } 6857 rcu_read_unlock(); 6858 } 6859 6860 /* 6861 * task tracking -- fork/exit 6862 * 6863 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6864 */ 6865 6866 struct perf_task_event { 6867 struct task_struct *task; 6868 struct perf_event_context *task_ctx; 6869 6870 struct { 6871 struct perf_event_header header; 6872 6873 u32 pid; 6874 u32 ppid; 6875 u32 tid; 6876 u32 ptid; 6877 u64 time; 6878 } event_id; 6879 }; 6880 6881 static int perf_event_task_match(struct perf_event *event) 6882 { 6883 return event->attr.comm || event->attr.mmap || 6884 event->attr.mmap2 || event->attr.mmap_data || 6885 event->attr.task; 6886 } 6887 6888 static void perf_event_task_output(struct perf_event *event, 6889 void *data) 6890 { 6891 struct perf_task_event *task_event = data; 6892 struct perf_output_handle handle; 6893 struct perf_sample_data sample; 6894 struct task_struct *task = task_event->task; 6895 int ret, size = task_event->event_id.header.size; 6896 6897 if (!perf_event_task_match(event)) 6898 return; 6899 6900 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6901 6902 ret = perf_output_begin(&handle, event, 6903 task_event->event_id.header.size); 6904 if (ret) 6905 goto out; 6906 6907 task_event->event_id.pid = perf_event_pid(event, task); 6908 task_event->event_id.ppid = perf_event_pid(event, current); 6909 6910 task_event->event_id.tid = perf_event_tid(event, task); 6911 task_event->event_id.ptid = perf_event_tid(event, current); 6912 6913 task_event->event_id.time = perf_event_clock(event); 6914 6915 perf_output_put(&handle, task_event->event_id); 6916 6917 perf_event__output_id_sample(event, &handle, &sample); 6918 6919 perf_output_end(&handle); 6920 out: 6921 task_event->event_id.header.size = size; 6922 } 6923 6924 static void perf_event_task(struct task_struct *task, 6925 struct perf_event_context *task_ctx, 6926 int new) 6927 { 6928 struct perf_task_event task_event; 6929 6930 if (!atomic_read(&nr_comm_events) && 6931 !atomic_read(&nr_mmap_events) && 6932 !atomic_read(&nr_task_events)) 6933 return; 6934 6935 task_event = (struct perf_task_event){ 6936 .task = task, 6937 .task_ctx = task_ctx, 6938 .event_id = { 6939 .header = { 6940 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6941 .misc = 0, 6942 .size = sizeof(task_event.event_id), 6943 }, 6944 /* .pid */ 6945 /* .ppid */ 6946 /* .tid */ 6947 /* .ptid */ 6948 /* .time */ 6949 }, 6950 }; 6951 6952 perf_iterate_sb(perf_event_task_output, 6953 &task_event, 6954 task_ctx); 6955 } 6956 6957 void perf_event_fork(struct task_struct *task) 6958 { 6959 perf_event_task(task, NULL, 1); 6960 perf_event_namespaces(task); 6961 } 6962 6963 /* 6964 * comm tracking 6965 */ 6966 6967 struct perf_comm_event { 6968 struct task_struct *task; 6969 char *comm; 6970 int comm_size; 6971 6972 struct { 6973 struct perf_event_header header; 6974 6975 u32 pid; 6976 u32 tid; 6977 } event_id; 6978 }; 6979 6980 static int perf_event_comm_match(struct perf_event *event) 6981 { 6982 return event->attr.comm; 6983 } 6984 6985 static void perf_event_comm_output(struct perf_event *event, 6986 void *data) 6987 { 6988 struct perf_comm_event *comm_event = data; 6989 struct perf_output_handle handle; 6990 struct perf_sample_data sample; 6991 int size = comm_event->event_id.header.size; 6992 int ret; 6993 6994 if (!perf_event_comm_match(event)) 6995 return; 6996 6997 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6998 ret = perf_output_begin(&handle, event, 6999 comm_event->event_id.header.size); 7000 7001 if (ret) 7002 goto out; 7003 7004 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7005 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7006 7007 perf_output_put(&handle, comm_event->event_id); 7008 __output_copy(&handle, comm_event->comm, 7009 comm_event->comm_size); 7010 7011 perf_event__output_id_sample(event, &handle, &sample); 7012 7013 perf_output_end(&handle); 7014 out: 7015 comm_event->event_id.header.size = size; 7016 } 7017 7018 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7019 { 7020 char comm[TASK_COMM_LEN]; 7021 unsigned int size; 7022 7023 memset(comm, 0, sizeof(comm)); 7024 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7025 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7026 7027 comm_event->comm = comm; 7028 comm_event->comm_size = size; 7029 7030 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7031 7032 perf_iterate_sb(perf_event_comm_output, 7033 comm_event, 7034 NULL); 7035 } 7036 7037 void perf_event_comm(struct task_struct *task, bool exec) 7038 { 7039 struct perf_comm_event comm_event; 7040 7041 if (!atomic_read(&nr_comm_events)) 7042 return; 7043 7044 comm_event = (struct perf_comm_event){ 7045 .task = task, 7046 /* .comm */ 7047 /* .comm_size */ 7048 .event_id = { 7049 .header = { 7050 .type = PERF_RECORD_COMM, 7051 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7052 /* .size */ 7053 }, 7054 /* .pid */ 7055 /* .tid */ 7056 }, 7057 }; 7058 7059 perf_event_comm_event(&comm_event); 7060 } 7061 7062 /* 7063 * namespaces tracking 7064 */ 7065 7066 struct perf_namespaces_event { 7067 struct task_struct *task; 7068 7069 struct { 7070 struct perf_event_header header; 7071 7072 u32 pid; 7073 u32 tid; 7074 u64 nr_namespaces; 7075 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7076 } event_id; 7077 }; 7078 7079 static int perf_event_namespaces_match(struct perf_event *event) 7080 { 7081 return event->attr.namespaces; 7082 } 7083 7084 static void perf_event_namespaces_output(struct perf_event *event, 7085 void *data) 7086 { 7087 struct perf_namespaces_event *namespaces_event = data; 7088 struct perf_output_handle handle; 7089 struct perf_sample_data sample; 7090 u16 header_size = namespaces_event->event_id.header.size; 7091 int ret; 7092 7093 if (!perf_event_namespaces_match(event)) 7094 return; 7095 7096 perf_event_header__init_id(&namespaces_event->event_id.header, 7097 &sample, event); 7098 ret = perf_output_begin(&handle, event, 7099 namespaces_event->event_id.header.size); 7100 if (ret) 7101 goto out; 7102 7103 namespaces_event->event_id.pid = perf_event_pid(event, 7104 namespaces_event->task); 7105 namespaces_event->event_id.tid = perf_event_tid(event, 7106 namespaces_event->task); 7107 7108 perf_output_put(&handle, namespaces_event->event_id); 7109 7110 perf_event__output_id_sample(event, &handle, &sample); 7111 7112 perf_output_end(&handle); 7113 out: 7114 namespaces_event->event_id.header.size = header_size; 7115 } 7116 7117 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7118 struct task_struct *task, 7119 const struct proc_ns_operations *ns_ops) 7120 { 7121 struct path ns_path; 7122 struct inode *ns_inode; 7123 void *error; 7124 7125 error = ns_get_path(&ns_path, task, ns_ops); 7126 if (!error) { 7127 ns_inode = ns_path.dentry->d_inode; 7128 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7129 ns_link_info->ino = ns_inode->i_ino; 7130 path_put(&ns_path); 7131 } 7132 } 7133 7134 void perf_event_namespaces(struct task_struct *task) 7135 { 7136 struct perf_namespaces_event namespaces_event; 7137 struct perf_ns_link_info *ns_link_info; 7138 7139 if (!atomic_read(&nr_namespaces_events)) 7140 return; 7141 7142 namespaces_event = (struct perf_namespaces_event){ 7143 .task = task, 7144 .event_id = { 7145 .header = { 7146 .type = PERF_RECORD_NAMESPACES, 7147 .misc = 0, 7148 .size = sizeof(namespaces_event.event_id), 7149 }, 7150 /* .pid */ 7151 /* .tid */ 7152 .nr_namespaces = NR_NAMESPACES, 7153 /* .link_info[NR_NAMESPACES] */ 7154 }, 7155 }; 7156 7157 ns_link_info = namespaces_event.event_id.link_info; 7158 7159 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7160 task, &mntns_operations); 7161 7162 #ifdef CONFIG_USER_NS 7163 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7164 task, &userns_operations); 7165 #endif 7166 #ifdef CONFIG_NET_NS 7167 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7168 task, &netns_operations); 7169 #endif 7170 #ifdef CONFIG_UTS_NS 7171 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7172 task, &utsns_operations); 7173 #endif 7174 #ifdef CONFIG_IPC_NS 7175 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7176 task, &ipcns_operations); 7177 #endif 7178 #ifdef CONFIG_PID_NS 7179 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7180 task, &pidns_operations); 7181 #endif 7182 #ifdef CONFIG_CGROUPS 7183 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7184 task, &cgroupns_operations); 7185 #endif 7186 7187 perf_iterate_sb(perf_event_namespaces_output, 7188 &namespaces_event, 7189 NULL); 7190 } 7191 7192 /* 7193 * mmap tracking 7194 */ 7195 7196 struct perf_mmap_event { 7197 struct vm_area_struct *vma; 7198 7199 const char *file_name; 7200 int file_size; 7201 int maj, min; 7202 u64 ino; 7203 u64 ino_generation; 7204 u32 prot, flags; 7205 7206 struct { 7207 struct perf_event_header header; 7208 7209 u32 pid; 7210 u32 tid; 7211 u64 start; 7212 u64 len; 7213 u64 pgoff; 7214 } event_id; 7215 }; 7216 7217 static int perf_event_mmap_match(struct perf_event *event, 7218 void *data) 7219 { 7220 struct perf_mmap_event *mmap_event = data; 7221 struct vm_area_struct *vma = mmap_event->vma; 7222 int executable = vma->vm_flags & VM_EXEC; 7223 7224 return (!executable && event->attr.mmap_data) || 7225 (executable && (event->attr.mmap || event->attr.mmap2)); 7226 } 7227 7228 static void perf_event_mmap_output(struct perf_event *event, 7229 void *data) 7230 { 7231 struct perf_mmap_event *mmap_event = data; 7232 struct perf_output_handle handle; 7233 struct perf_sample_data sample; 7234 int size = mmap_event->event_id.header.size; 7235 u32 type = mmap_event->event_id.header.type; 7236 int ret; 7237 7238 if (!perf_event_mmap_match(event, data)) 7239 return; 7240 7241 if (event->attr.mmap2) { 7242 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7243 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7244 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7245 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7246 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7247 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7248 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7249 } 7250 7251 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7252 ret = perf_output_begin(&handle, event, 7253 mmap_event->event_id.header.size); 7254 if (ret) 7255 goto out; 7256 7257 mmap_event->event_id.pid = perf_event_pid(event, current); 7258 mmap_event->event_id.tid = perf_event_tid(event, current); 7259 7260 perf_output_put(&handle, mmap_event->event_id); 7261 7262 if (event->attr.mmap2) { 7263 perf_output_put(&handle, mmap_event->maj); 7264 perf_output_put(&handle, mmap_event->min); 7265 perf_output_put(&handle, mmap_event->ino); 7266 perf_output_put(&handle, mmap_event->ino_generation); 7267 perf_output_put(&handle, mmap_event->prot); 7268 perf_output_put(&handle, mmap_event->flags); 7269 } 7270 7271 __output_copy(&handle, mmap_event->file_name, 7272 mmap_event->file_size); 7273 7274 perf_event__output_id_sample(event, &handle, &sample); 7275 7276 perf_output_end(&handle); 7277 out: 7278 mmap_event->event_id.header.size = size; 7279 mmap_event->event_id.header.type = type; 7280 } 7281 7282 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7283 { 7284 struct vm_area_struct *vma = mmap_event->vma; 7285 struct file *file = vma->vm_file; 7286 int maj = 0, min = 0; 7287 u64 ino = 0, gen = 0; 7288 u32 prot = 0, flags = 0; 7289 unsigned int size; 7290 char tmp[16]; 7291 char *buf = NULL; 7292 char *name; 7293 7294 if (vma->vm_flags & VM_READ) 7295 prot |= PROT_READ; 7296 if (vma->vm_flags & VM_WRITE) 7297 prot |= PROT_WRITE; 7298 if (vma->vm_flags & VM_EXEC) 7299 prot |= PROT_EXEC; 7300 7301 if (vma->vm_flags & VM_MAYSHARE) 7302 flags = MAP_SHARED; 7303 else 7304 flags = MAP_PRIVATE; 7305 7306 if (vma->vm_flags & VM_DENYWRITE) 7307 flags |= MAP_DENYWRITE; 7308 if (vma->vm_flags & VM_MAYEXEC) 7309 flags |= MAP_EXECUTABLE; 7310 if (vma->vm_flags & VM_LOCKED) 7311 flags |= MAP_LOCKED; 7312 if (vma->vm_flags & VM_HUGETLB) 7313 flags |= MAP_HUGETLB; 7314 7315 if (file) { 7316 struct inode *inode; 7317 dev_t dev; 7318 7319 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7320 if (!buf) { 7321 name = "//enomem"; 7322 goto cpy_name; 7323 } 7324 /* 7325 * d_path() works from the end of the rb backwards, so we 7326 * need to add enough zero bytes after the string to handle 7327 * the 64bit alignment we do later. 7328 */ 7329 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7330 if (IS_ERR(name)) { 7331 name = "//toolong"; 7332 goto cpy_name; 7333 } 7334 inode = file_inode(vma->vm_file); 7335 dev = inode->i_sb->s_dev; 7336 ino = inode->i_ino; 7337 gen = inode->i_generation; 7338 maj = MAJOR(dev); 7339 min = MINOR(dev); 7340 7341 goto got_name; 7342 } else { 7343 if (vma->vm_ops && vma->vm_ops->name) { 7344 name = (char *) vma->vm_ops->name(vma); 7345 if (name) 7346 goto cpy_name; 7347 } 7348 7349 name = (char *)arch_vma_name(vma); 7350 if (name) 7351 goto cpy_name; 7352 7353 if (vma->vm_start <= vma->vm_mm->start_brk && 7354 vma->vm_end >= vma->vm_mm->brk) { 7355 name = "[heap]"; 7356 goto cpy_name; 7357 } 7358 if (vma->vm_start <= vma->vm_mm->start_stack && 7359 vma->vm_end >= vma->vm_mm->start_stack) { 7360 name = "[stack]"; 7361 goto cpy_name; 7362 } 7363 7364 name = "//anon"; 7365 goto cpy_name; 7366 } 7367 7368 cpy_name: 7369 strlcpy(tmp, name, sizeof(tmp)); 7370 name = tmp; 7371 got_name: 7372 /* 7373 * Since our buffer works in 8 byte units we need to align our string 7374 * size to a multiple of 8. However, we must guarantee the tail end is 7375 * zero'd out to avoid leaking random bits to userspace. 7376 */ 7377 size = strlen(name)+1; 7378 while (!IS_ALIGNED(size, sizeof(u64))) 7379 name[size++] = '\0'; 7380 7381 mmap_event->file_name = name; 7382 mmap_event->file_size = size; 7383 mmap_event->maj = maj; 7384 mmap_event->min = min; 7385 mmap_event->ino = ino; 7386 mmap_event->ino_generation = gen; 7387 mmap_event->prot = prot; 7388 mmap_event->flags = flags; 7389 7390 if (!(vma->vm_flags & VM_EXEC)) 7391 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7392 7393 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7394 7395 perf_iterate_sb(perf_event_mmap_output, 7396 mmap_event, 7397 NULL); 7398 7399 kfree(buf); 7400 } 7401 7402 /* 7403 * Check whether inode and address range match filter criteria. 7404 */ 7405 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7406 struct file *file, unsigned long offset, 7407 unsigned long size) 7408 { 7409 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7410 if (!filter->path.dentry) 7411 return false; 7412 7413 if (d_inode(filter->path.dentry) != file_inode(file)) 7414 return false; 7415 7416 if (filter->offset > offset + size) 7417 return false; 7418 7419 if (filter->offset + filter->size < offset) 7420 return false; 7421 7422 return true; 7423 } 7424 7425 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7426 struct vm_area_struct *vma, 7427 struct perf_addr_filter_range *fr) 7428 { 7429 unsigned long vma_size = vma->vm_end - vma->vm_start; 7430 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7431 struct file *file = vma->vm_file; 7432 7433 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7434 return false; 7435 7436 if (filter->offset < off) { 7437 fr->start = vma->vm_start; 7438 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7439 } else { 7440 fr->start = vma->vm_start + filter->offset - off; 7441 fr->size = min(vma->vm_end - fr->start, filter->size); 7442 } 7443 7444 return true; 7445 } 7446 7447 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7448 { 7449 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7450 struct vm_area_struct *vma = data; 7451 struct perf_addr_filter *filter; 7452 unsigned int restart = 0, count = 0; 7453 unsigned long flags; 7454 7455 if (!has_addr_filter(event)) 7456 return; 7457 7458 if (!vma->vm_file) 7459 return; 7460 7461 raw_spin_lock_irqsave(&ifh->lock, flags); 7462 list_for_each_entry(filter, &ifh->list, entry) { 7463 if (perf_addr_filter_vma_adjust(filter, vma, 7464 &event->addr_filter_ranges[count])) 7465 restart++; 7466 7467 count++; 7468 } 7469 7470 if (restart) 7471 event->addr_filters_gen++; 7472 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7473 7474 if (restart) 7475 perf_event_stop(event, 1); 7476 } 7477 7478 /* 7479 * Adjust all task's events' filters to the new vma 7480 */ 7481 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7482 { 7483 struct perf_event_context *ctx; 7484 int ctxn; 7485 7486 /* 7487 * Data tracing isn't supported yet and as such there is no need 7488 * to keep track of anything that isn't related to executable code: 7489 */ 7490 if (!(vma->vm_flags & VM_EXEC)) 7491 return; 7492 7493 rcu_read_lock(); 7494 for_each_task_context_nr(ctxn) { 7495 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7496 if (!ctx) 7497 continue; 7498 7499 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7500 } 7501 rcu_read_unlock(); 7502 } 7503 7504 void perf_event_mmap(struct vm_area_struct *vma) 7505 { 7506 struct perf_mmap_event mmap_event; 7507 7508 if (!atomic_read(&nr_mmap_events)) 7509 return; 7510 7511 mmap_event = (struct perf_mmap_event){ 7512 .vma = vma, 7513 /* .file_name */ 7514 /* .file_size */ 7515 .event_id = { 7516 .header = { 7517 .type = PERF_RECORD_MMAP, 7518 .misc = PERF_RECORD_MISC_USER, 7519 /* .size */ 7520 }, 7521 /* .pid */ 7522 /* .tid */ 7523 .start = vma->vm_start, 7524 .len = vma->vm_end - vma->vm_start, 7525 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7526 }, 7527 /* .maj (attr_mmap2 only) */ 7528 /* .min (attr_mmap2 only) */ 7529 /* .ino (attr_mmap2 only) */ 7530 /* .ino_generation (attr_mmap2 only) */ 7531 /* .prot (attr_mmap2 only) */ 7532 /* .flags (attr_mmap2 only) */ 7533 }; 7534 7535 perf_addr_filters_adjust(vma); 7536 perf_event_mmap_event(&mmap_event); 7537 } 7538 7539 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7540 unsigned long size, u64 flags) 7541 { 7542 struct perf_output_handle handle; 7543 struct perf_sample_data sample; 7544 struct perf_aux_event { 7545 struct perf_event_header header; 7546 u64 offset; 7547 u64 size; 7548 u64 flags; 7549 } rec = { 7550 .header = { 7551 .type = PERF_RECORD_AUX, 7552 .misc = 0, 7553 .size = sizeof(rec), 7554 }, 7555 .offset = head, 7556 .size = size, 7557 .flags = flags, 7558 }; 7559 int ret; 7560 7561 perf_event_header__init_id(&rec.header, &sample, event); 7562 ret = perf_output_begin(&handle, event, rec.header.size); 7563 7564 if (ret) 7565 return; 7566 7567 perf_output_put(&handle, rec); 7568 perf_event__output_id_sample(event, &handle, &sample); 7569 7570 perf_output_end(&handle); 7571 } 7572 7573 /* 7574 * Lost/dropped samples logging 7575 */ 7576 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7577 { 7578 struct perf_output_handle handle; 7579 struct perf_sample_data sample; 7580 int ret; 7581 7582 struct { 7583 struct perf_event_header header; 7584 u64 lost; 7585 } lost_samples_event = { 7586 .header = { 7587 .type = PERF_RECORD_LOST_SAMPLES, 7588 .misc = 0, 7589 .size = sizeof(lost_samples_event), 7590 }, 7591 .lost = lost, 7592 }; 7593 7594 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7595 7596 ret = perf_output_begin(&handle, event, 7597 lost_samples_event.header.size); 7598 if (ret) 7599 return; 7600 7601 perf_output_put(&handle, lost_samples_event); 7602 perf_event__output_id_sample(event, &handle, &sample); 7603 perf_output_end(&handle); 7604 } 7605 7606 /* 7607 * context_switch tracking 7608 */ 7609 7610 struct perf_switch_event { 7611 struct task_struct *task; 7612 struct task_struct *next_prev; 7613 7614 struct { 7615 struct perf_event_header header; 7616 u32 next_prev_pid; 7617 u32 next_prev_tid; 7618 } event_id; 7619 }; 7620 7621 static int perf_event_switch_match(struct perf_event *event) 7622 { 7623 return event->attr.context_switch; 7624 } 7625 7626 static void perf_event_switch_output(struct perf_event *event, void *data) 7627 { 7628 struct perf_switch_event *se = data; 7629 struct perf_output_handle handle; 7630 struct perf_sample_data sample; 7631 int ret; 7632 7633 if (!perf_event_switch_match(event)) 7634 return; 7635 7636 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7637 if (event->ctx->task) { 7638 se->event_id.header.type = PERF_RECORD_SWITCH; 7639 se->event_id.header.size = sizeof(se->event_id.header); 7640 } else { 7641 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7642 se->event_id.header.size = sizeof(se->event_id); 7643 se->event_id.next_prev_pid = 7644 perf_event_pid(event, se->next_prev); 7645 se->event_id.next_prev_tid = 7646 perf_event_tid(event, se->next_prev); 7647 } 7648 7649 perf_event_header__init_id(&se->event_id.header, &sample, event); 7650 7651 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7652 if (ret) 7653 return; 7654 7655 if (event->ctx->task) 7656 perf_output_put(&handle, se->event_id.header); 7657 else 7658 perf_output_put(&handle, se->event_id); 7659 7660 perf_event__output_id_sample(event, &handle, &sample); 7661 7662 perf_output_end(&handle); 7663 } 7664 7665 static void perf_event_switch(struct task_struct *task, 7666 struct task_struct *next_prev, bool sched_in) 7667 { 7668 struct perf_switch_event switch_event; 7669 7670 /* N.B. caller checks nr_switch_events != 0 */ 7671 7672 switch_event = (struct perf_switch_event){ 7673 .task = task, 7674 .next_prev = next_prev, 7675 .event_id = { 7676 .header = { 7677 /* .type */ 7678 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7679 /* .size */ 7680 }, 7681 /* .next_prev_pid */ 7682 /* .next_prev_tid */ 7683 }, 7684 }; 7685 7686 if (!sched_in && task->state == TASK_RUNNING) 7687 switch_event.event_id.header.misc |= 7688 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7689 7690 perf_iterate_sb(perf_event_switch_output, 7691 &switch_event, 7692 NULL); 7693 } 7694 7695 /* 7696 * IRQ throttle logging 7697 */ 7698 7699 static void perf_log_throttle(struct perf_event *event, int enable) 7700 { 7701 struct perf_output_handle handle; 7702 struct perf_sample_data sample; 7703 int ret; 7704 7705 struct { 7706 struct perf_event_header header; 7707 u64 time; 7708 u64 id; 7709 u64 stream_id; 7710 } throttle_event = { 7711 .header = { 7712 .type = PERF_RECORD_THROTTLE, 7713 .misc = 0, 7714 .size = sizeof(throttle_event), 7715 }, 7716 .time = perf_event_clock(event), 7717 .id = primary_event_id(event), 7718 .stream_id = event->id, 7719 }; 7720 7721 if (enable) 7722 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7723 7724 perf_event_header__init_id(&throttle_event.header, &sample, event); 7725 7726 ret = perf_output_begin(&handle, event, 7727 throttle_event.header.size); 7728 if (ret) 7729 return; 7730 7731 perf_output_put(&handle, throttle_event); 7732 perf_event__output_id_sample(event, &handle, &sample); 7733 perf_output_end(&handle); 7734 } 7735 7736 /* 7737 * ksymbol register/unregister tracking 7738 */ 7739 7740 struct perf_ksymbol_event { 7741 const char *name; 7742 int name_len; 7743 struct { 7744 struct perf_event_header header; 7745 u64 addr; 7746 u32 len; 7747 u16 ksym_type; 7748 u16 flags; 7749 } event_id; 7750 }; 7751 7752 static int perf_event_ksymbol_match(struct perf_event *event) 7753 { 7754 return event->attr.ksymbol; 7755 } 7756 7757 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7758 { 7759 struct perf_ksymbol_event *ksymbol_event = data; 7760 struct perf_output_handle handle; 7761 struct perf_sample_data sample; 7762 int ret; 7763 7764 if (!perf_event_ksymbol_match(event)) 7765 return; 7766 7767 perf_event_header__init_id(&ksymbol_event->event_id.header, 7768 &sample, event); 7769 ret = perf_output_begin(&handle, event, 7770 ksymbol_event->event_id.header.size); 7771 if (ret) 7772 return; 7773 7774 perf_output_put(&handle, ksymbol_event->event_id); 7775 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7776 perf_event__output_id_sample(event, &handle, &sample); 7777 7778 perf_output_end(&handle); 7779 } 7780 7781 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7782 const char *sym) 7783 { 7784 struct perf_ksymbol_event ksymbol_event; 7785 char name[KSYM_NAME_LEN]; 7786 u16 flags = 0; 7787 int name_len; 7788 7789 if (!atomic_read(&nr_ksymbol_events)) 7790 return; 7791 7792 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7793 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7794 goto err; 7795 7796 strlcpy(name, sym, KSYM_NAME_LEN); 7797 name_len = strlen(name) + 1; 7798 while (!IS_ALIGNED(name_len, sizeof(u64))) 7799 name[name_len++] = '\0'; 7800 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7801 7802 if (unregister) 7803 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7804 7805 ksymbol_event = (struct perf_ksymbol_event){ 7806 .name = name, 7807 .name_len = name_len, 7808 .event_id = { 7809 .header = { 7810 .type = PERF_RECORD_KSYMBOL, 7811 .size = sizeof(ksymbol_event.event_id) + 7812 name_len, 7813 }, 7814 .addr = addr, 7815 .len = len, 7816 .ksym_type = ksym_type, 7817 .flags = flags, 7818 }, 7819 }; 7820 7821 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7822 return; 7823 err: 7824 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7825 } 7826 7827 /* 7828 * bpf program load/unload tracking 7829 */ 7830 7831 struct perf_bpf_event { 7832 struct bpf_prog *prog; 7833 struct { 7834 struct perf_event_header header; 7835 u16 type; 7836 u16 flags; 7837 u32 id; 7838 u8 tag[BPF_TAG_SIZE]; 7839 } event_id; 7840 }; 7841 7842 static int perf_event_bpf_match(struct perf_event *event) 7843 { 7844 return event->attr.bpf_event; 7845 } 7846 7847 static void perf_event_bpf_output(struct perf_event *event, void *data) 7848 { 7849 struct perf_bpf_event *bpf_event = data; 7850 struct perf_output_handle handle; 7851 struct perf_sample_data sample; 7852 int ret; 7853 7854 if (!perf_event_bpf_match(event)) 7855 return; 7856 7857 perf_event_header__init_id(&bpf_event->event_id.header, 7858 &sample, event); 7859 ret = perf_output_begin(&handle, event, 7860 bpf_event->event_id.header.size); 7861 if (ret) 7862 return; 7863 7864 perf_output_put(&handle, bpf_event->event_id); 7865 perf_event__output_id_sample(event, &handle, &sample); 7866 7867 perf_output_end(&handle); 7868 } 7869 7870 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7871 enum perf_bpf_event_type type) 7872 { 7873 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7874 char sym[KSYM_NAME_LEN]; 7875 int i; 7876 7877 if (prog->aux->func_cnt == 0) { 7878 bpf_get_prog_name(prog, sym); 7879 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7880 (u64)(unsigned long)prog->bpf_func, 7881 prog->jited_len, unregister, sym); 7882 } else { 7883 for (i = 0; i < prog->aux->func_cnt; i++) { 7884 struct bpf_prog *subprog = prog->aux->func[i]; 7885 7886 bpf_get_prog_name(subprog, sym); 7887 perf_event_ksymbol( 7888 PERF_RECORD_KSYMBOL_TYPE_BPF, 7889 (u64)(unsigned long)subprog->bpf_func, 7890 subprog->jited_len, unregister, sym); 7891 } 7892 } 7893 } 7894 7895 void perf_event_bpf_event(struct bpf_prog *prog, 7896 enum perf_bpf_event_type type, 7897 u16 flags) 7898 { 7899 struct perf_bpf_event bpf_event; 7900 7901 if (type <= PERF_BPF_EVENT_UNKNOWN || 7902 type >= PERF_BPF_EVENT_MAX) 7903 return; 7904 7905 switch (type) { 7906 case PERF_BPF_EVENT_PROG_LOAD: 7907 case PERF_BPF_EVENT_PROG_UNLOAD: 7908 if (atomic_read(&nr_ksymbol_events)) 7909 perf_event_bpf_emit_ksymbols(prog, type); 7910 break; 7911 default: 7912 break; 7913 } 7914 7915 if (!atomic_read(&nr_bpf_events)) 7916 return; 7917 7918 bpf_event = (struct perf_bpf_event){ 7919 .prog = prog, 7920 .event_id = { 7921 .header = { 7922 .type = PERF_RECORD_BPF_EVENT, 7923 .size = sizeof(bpf_event.event_id), 7924 }, 7925 .type = type, 7926 .flags = flags, 7927 .id = prog->aux->id, 7928 }, 7929 }; 7930 7931 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7932 7933 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7934 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7935 } 7936 7937 void perf_event_itrace_started(struct perf_event *event) 7938 { 7939 event->attach_state |= PERF_ATTACH_ITRACE; 7940 } 7941 7942 static void perf_log_itrace_start(struct perf_event *event) 7943 { 7944 struct perf_output_handle handle; 7945 struct perf_sample_data sample; 7946 struct perf_aux_event { 7947 struct perf_event_header header; 7948 u32 pid; 7949 u32 tid; 7950 } rec; 7951 int ret; 7952 7953 if (event->parent) 7954 event = event->parent; 7955 7956 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7957 event->attach_state & PERF_ATTACH_ITRACE) 7958 return; 7959 7960 rec.header.type = PERF_RECORD_ITRACE_START; 7961 rec.header.misc = 0; 7962 rec.header.size = sizeof(rec); 7963 rec.pid = perf_event_pid(event, current); 7964 rec.tid = perf_event_tid(event, current); 7965 7966 perf_event_header__init_id(&rec.header, &sample, event); 7967 ret = perf_output_begin(&handle, event, rec.header.size); 7968 7969 if (ret) 7970 return; 7971 7972 perf_output_put(&handle, rec); 7973 perf_event__output_id_sample(event, &handle, &sample); 7974 7975 perf_output_end(&handle); 7976 } 7977 7978 static int 7979 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7980 { 7981 struct hw_perf_event *hwc = &event->hw; 7982 int ret = 0; 7983 u64 seq; 7984 7985 seq = __this_cpu_read(perf_throttled_seq); 7986 if (seq != hwc->interrupts_seq) { 7987 hwc->interrupts_seq = seq; 7988 hwc->interrupts = 1; 7989 } else { 7990 hwc->interrupts++; 7991 if (unlikely(throttle 7992 && hwc->interrupts >= max_samples_per_tick)) { 7993 __this_cpu_inc(perf_throttled_count); 7994 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7995 hwc->interrupts = MAX_INTERRUPTS; 7996 perf_log_throttle(event, 0); 7997 ret = 1; 7998 } 7999 } 8000 8001 if (event->attr.freq) { 8002 u64 now = perf_clock(); 8003 s64 delta = now - hwc->freq_time_stamp; 8004 8005 hwc->freq_time_stamp = now; 8006 8007 if (delta > 0 && delta < 2*TICK_NSEC) 8008 perf_adjust_period(event, delta, hwc->last_period, true); 8009 } 8010 8011 return ret; 8012 } 8013 8014 int perf_event_account_interrupt(struct perf_event *event) 8015 { 8016 return __perf_event_account_interrupt(event, 1); 8017 } 8018 8019 /* 8020 * Generic event overflow handling, sampling. 8021 */ 8022 8023 static int __perf_event_overflow(struct perf_event *event, 8024 int throttle, struct perf_sample_data *data, 8025 struct pt_regs *regs) 8026 { 8027 int events = atomic_read(&event->event_limit); 8028 int ret = 0; 8029 8030 /* 8031 * Non-sampling counters might still use the PMI to fold short 8032 * hardware counters, ignore those. 8033 */ 8034 if (unlikely(!is_sampling_event(event))) 8035 return 0; 8036 8037 ret = __perf_event_account_interrupt(event, throttle); 8038 8039 /* 8040 * XXX event_limit might not quite work as expected on inherited 8041 * events 8042 */ 8043 8044 event->pending_kill = POLL_IN; 8045 if (events && atomic_dec_and_test(&event->event_limit)) { 8046 ret = 1; 8047 event->pending_kill = POLL_HUP; 8048 8049 perf_event_disable_inatomic(event); 8050 } 8051 8052 READ_ONCE(event->overflow_handler)(event, data, regs); 8053 8054 if (*perf_event_fasync(event) && event->pending_kill) { 8055 event->pending_wakeup = 1; 8056 irq_work_queue(&event->pending); 8057 } 8058 8059 return ret; 8060 } 8061 8062 int perf_event_overflow(struct perf_event *event, 8063 struct perf_sample_data *data, 8064 struct pt_regs *regs) 8065 { 8066 return __perf_event_overflow(event, 1, data, regs); 8067 } 8068 8069 /* 8070 * Generic software event infrastructure 8071 */ 8072 8073 struct swevent_htable { 8074 struct swevent_hlist *swevent_hlist; 8075 struct mutex hlist_mutex; 8076 int hlist_refcount; 8077 8078 /* Recursion avoidance in each contexts */ 8079 int recursion[PERF_NR_CONTEXTS]; 8080 }; 8081 8082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8083 8084 /* 8085 * We directly increment event->count and keep a second value in 8086 * event->hw.period_left to count intervals. This period event 8087 * is kept in the range [-sample_period, 0] so that we can use the 8088 * sign as trigger. 8089 */ 8090 8091 u64 perf_swevent_set_period(struct perf_event *event) 8092 { 8093 struct hw_perf_event *hwc = &event->hw; 8094 u64 period = hwc->last_period; 8095 u64 nr, offset; 8096 s64 old, val; 8097 8098 hwc->last_period = hwc->sample_period; 8099 8100 again: 8101 old = val = local64_read(&hwc->period_left); 8102 if (val < 0) 8103 return 0; 8104 8105 nr = div64_u64(period + val, period); 8106 offset = nr * period; 8107 val -= offset; 8108 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8109 goto again; 8110 8111 return nr; 8112 } 8113 8114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8115 struct perf_sample_data *data, 8116 struct pt_regs *regs) 8117 { 8118 struct hw_perf_event *hwc = &event->hw; 8119 int throttle = 0; 8120 8121 if (!overflow) 8122 overflow = perf_swevent_set_period(event); 8123 8124 if (hwc->interrupts == MAX_INTERRUPTS) 8125 return; 8126 8127 for (; overflow; overflow--) { 8128 if (__perf_event_overflow(event, throttle, 8129 data, regs)) { 8130 /* 8131 * We inhibit the overflow from happening when 8132 * hwc->interrupts == MAX_INTERRUPTS. 8133 */ 8134 break; 8135 } 8136 throttle = 1; 8137 } 8138 } 8139 8140 static void perf_swevent_event(struct perf_event *event, u64 nr, 8141 struct perf_sample_data *data, 8142 struct pt_regs *regs) 8143 { 8144 struct hw_perf_event *hwc = &event->hw; 8145 8146 local64_add(nr, &event->count); 8147 8148 if (!regs) 8149 return; 8150 8151 if (!is_sampling_event(event)) 8152 return; 8153 8154 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8155 data->period = nr; 8156 return perf_swevent_overflow(event, 1, data, regs); 8157 } else 8158 data->period = event->hw.last_period; 8159 8160 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8161 return perf_swevent_overflow(event, 1, data, regs); 8162 8163 if (local64_add_negative(nr, &hwc->period_left)) 8164 return; 8165 8166 perf_swevent_overflow(event, 0, data, regs); 8167 } 8168 8169 static int perf_exclude_event(struct perf_event *event, 8170 struct pt_regs *regs) 8171 { 8172 if (event->hw.state & PERF_HES_STOPPED) 8173 return 1; 8174 8175 if (regs) { 8176 if (event->attr.exclude_user && user_mode(regs)) 8177 return 1; 8178 8179 if (event->attr.exclude_kernel && !user_mode(regs)) 8180 return 1; 8181 } 8182 8183 return 0; 8184 } 8185 8186 static int perf_swevent_match(struct perf_event *event, 8187 enum perf_type_id type, 8188 u32 event_id, 8189 struct perf_sample_data *data, 8190 struct pt_regs *regs) 8191 { 8192 if (event->attr.type != type) 8193 return 0; 8194 8195 if (event->attr.config != event_id) 8196 return 0; 8197 8198 if (perf_exclude_event(event, regs)) 8199 return 0; 8200 8201 return 1; 8202 } 8203 8204 static inline u64 swevent_hash(u64 type, u32 event_id) 8205 { 8206 u64 val = event_id | (type << 32); 8207 8208 return hash_64(val, SWEVENT_HLIST_BITS); 8209 } 8210 8211 static inline struct hlist_head * 8212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8213 { 8214 u64 hash = swevent_hash(type, event_id); 8215 8216 return &hlist->heads[hash]; 8217 } 8218 8219 /* For the read side: events when they trigger */ 8220 static inline struct hlist_head * 8221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8222 { 8223 struct swevent_hlist *hlist; 8224 8225 hlist = rcu_dereference(swhash->swevent_hlist); 8226 if (!hlist) 8227 return NULL; 8228 8229 return __find_swevent_head(hlist, type, event_id); 8230 } 8231 8232 /* For the event head insertion and removal in the hlist */ 8233 static inline struct hlist_head * 8234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8235 { 8236 struct swevent_hlist *hlist; 8237 u32 event_id = event->attr.config; 8238 u64 type = event->attr.type; 8239 8240 /* 8241 * Event scheduling is always serialized against hlist allocation 8242 * and release. Which makes the protected version suitable here. 8243 * The context lock guarantees that. 8244 */ 8245 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8246 lockdep_is_held(&event->ctx->lock)); 8247 if (!hlist) 8248 return NULL; 8249 8250 return __find_swevent_head(hlist, type, event_id); 8251 } 8252 8253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8254 u64 nr, 8255 struct perf_sample_data *data, 8256 struct pt_regs *regs) 8257 { 8258 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8259 struct perf_event *event; 8260 struct hlist_head *head; 8261 8262 rcu_read_lock(); 8263 head = find_swevent_head_rcu(swhash, type, event_id); 8264 if (!head) 8265 goto end; 8266 8267 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8268 if (perf_swevent_match(event, type, event_id, data, regs)) 8269 perf_swevent_event(event, nr, data, regs); 8270 } 8271 end: 8272 rcu_read_unlock(); 8273 } 8274 8275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8276 8277 int perf_swevent_get_recursion_context(void) 8278 { 8279 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8280 8281 return get_recursion_context(swhash->recursion); 8282 } 8283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8284 8285 void perf_swevent_put_recursion_context(int rctx) 8286 { 8287 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8288 8289 put_recursion_context(swhash->recursion, rctx); 8290 } 8291 8292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8293 { 8294 struct perf_sample_data data; 8295 8296 if (WARN_ON_ONCE(!regs)) 8297 return; 8298 8299 perf_sample_data_init(&data, addr, 0); 8300 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8301 } 8302 8303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8304 { 8305 int rctx; 8306 8307 preempt_disable_notrace(); 8308 rctx = perf_swevent_get_recursion_context(); 8309 if (unlikely(rctx < 0)) 8310 goto fail; 8311 8312 ___perf_sw_event(event_id, nr, regs, addr); 8313 8314 perf_swevent_put_recursion_context(rctx); 8315 fail: 8316 preempt_enable_notrace(); 8317 } 8318 8319 static void perf_swevent_read(struct perf_event *event) 8320 { 8321 } 8322 8323 static int perf_swevent_add(struct perf_event *event, int flags) 8324 { 8325 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8326 struct hw_perf_event *hwc = &event->hw; 8327 struct hlist_head *head; 8328 8329 if (is_sampling_event(event)) { 8330 hwc->last_period = hwc->sample_period; 8331 perf_swevent_set_period(event); 8332 } 8333 8334 hwc->state = !(flags & PERF_EF_START); 8335 8336 head = find_swevent_head(swhash, event); 8337 if (WARN_ON_ONCE(!head)) 8338 return -EINVAL; 8339 8340 hlist_add_head_rcu(&event->hlist_entry, head); 8341 perf_event_update_userpage(event); 8342 8343 return 0; 8344 } 8345 8346 static void perf_swevent_del(struct perf_event *event, int flags) 8347 { 8348 hlist_del_rcu(&event->hlist_entry); 8349 } 8350 8351 static void perf_swevent_start(struct perf_event *event, int flags) 8352 { 8353 event->hw.state = 0; 8354 } 8355 8356 static void perf_swevent_stop(struct perf_event *event, int flags) 8357 { 8358 event->hw.state = PERF_HES_STOPPED; 8359 } 8360 8361 /* Deref the hlist from the update side */ 8362 static inline struct swevent_hlist * 8363 swevent_hlist_deref(struct swevent_htable *swhash) 8364 { 8365 return rcu_dereference_protected(swhash->swevent_hlist, 8366 lockdep_is_held(&swhash->hlist_mutex)); 8367 } 8368 8369 static void swevent_hlist_release(struct swevent_htable *swhash) 8370 { 8371 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8372 8373 if (!hlist) 8374 return; 8375 8376 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8377 kfree_rcu(hlist, rcu_head); 8378 } 8379 8380 static void swevent_hlist_put_cpu(int cpu) 8381 { 8382 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8383 8384 mutex_lock(&swhash->hlist_mutex); 8385 8386 if (!--swhash->hlist_refcount) 8387 swevent_hlist_release(swhash); 8388 8389 mutex_unlock(&swhash->hlist_mutex); 8390 } 8391 8392 static void swevent_hlist_put(void) 8393 { 8394 int cpu; 8395 8396 for_each_possible_cpu(cpu) 8397 swevent_hlist_put_cpu(cpu); 8398 } 8399 8400 static int swevent_hlist_get_cpu(int cpu) 8401 { 8402 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8403 int err = 0; 8404 8405 mutex_lock(&swhash->hlist_mutex); 8406 if (!swevent_hlist_deref(swhash) && 8407 cpumask_test_cpu(cpu, perf_online_mask)) { 8408 struct swevent_hlist *hlist; 8409 8410 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8411 if (!hlist) { 8412 err = -ENOMEM; 8413 goto exit; 8414 } 8415 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8416 } 8417 swhash->hlist_refcount++; 8418 exit: 8419 mutex_unlock(&swhash->hlist_mutex); 8420 8421 return err; 8422 } 8423 8424 static int swevent_hlist_get(void) 8425 { 8426 int err, cpu, failed_cpu; 8427 8428 mutex_lock(&pmus_lock); 8429 for_each_possible_cpu(cpu) { 8430 err = swevent_hlist_get_cpu(cpu); 8431 if (err) { 8432 failed_cpu = cpu; 8433 goto fail; 8434 } 8435 } 8436 mutex_unlock(&pmus_lock); 8437 return 0; 8438 fail: 8439 for_each_possible_cpu(cpu) { 8440 if (cpu == failed_cpu) 8441 break; 8442 swevent_hlist_put_cpu(cpu); 8443 } 8444 mutex_unlock(&pmus_lock); 8445 return err; 8446 } 8447 8448 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8449 8450 static void sw_perf_event_destroy(struct perf_event *event) 8451 { 8452 u64 event_id = event->attr.config; 8453 8454 WARN_ON(event->parent); 8455 8456 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8457 swevent_hlist_put(); 8458 } 8459 8460 static int perf_swevent_init(struct perf_event *event) 8461 { 8462 u64 event_id = event->attr.config; 8463 8464 if (event->attr.type != PERF_TYPE_SOFTWARE) 8465 return -ENOENT; 8466 8467 /* 8468 * no branch sampling for software events 8469 */ 8470 if (has_branch_stack(event)) 8471 return -EOPNOTSUPP; 8472 8473 switch (event_id) { 8474 case PERF_COUNT_SW_CPU_CLOCK: 8475 case PERF_COUNT_SW_TASK_CLOCK: 8476 return -ENOENT; 8477 8478 default: 8479 break; 8480 } 8481 8482 if (event_id >= PERF_COUNT_SW_MAX) 8483 return -ENOENT; 8484 8485 if (!event->parent) { 8486 int err; 8487 8488 err = swevent_hlist_get(); 8489 if (err) 8490 return err; 8491 8492 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8493 event->destroy = sw_perf_event_destroy; 8494 } 8495 8496 return 0; 8497 } 8498 8499 static struct pmu perf_swevent = { 8500 .task_ctx_nr = perf_sw_context, 8501 8502 .capabilities = PERF_PMU_CAP_NO_NMI, 8503 8504 .event_init = perf_swevent_init, 8505 .add = perf_swevent_add, 8506 .del = perf_swevent_del, 8507 .start = perf_swevent_start, 8508 .stop = perf_swevent_stop, 8509 .read = perf_swevent_read, 8510 }; 8511 8512 #ifdef CONFIG_EVENT_TRACING 8513 8514 static int perf_tp_filter_match(struct perf_event *event, 8515 struct perf_sample_data *data) 8516 { 8517 void *record = data->raw->frag.data; 8518 8519 /* only top level events have filters set */ 8520 if (event->parent) 8521 event = event->parent; 8522 8523 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8524 return 1; 8525 return 0; 8526 } 8527 8528 static int perf_tp_event_match(struct perf_event *event, 8529 struct perf_sample_data *data, 8530 struct pt_regs *regs) 8531 { 8532 if (event->hw.state & PERF_HES_STOPPED) 8533 return 0; 8534 /* 8535 * All tracepoints are from kernel-space. 8536 */ 8537 if (event->attr.exclude_kernel) 8538 return 0; 8539 8540 if (!perf_tp_filter_match(event, data)) 8541 return 0; 8542 8543 return 1; 8544 } 8545 8546 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8547 struct trace_event_call *call, u64 count, 8548 struct pt_regs *regs, struct hlist_head *head, 8549 struct task_struct *task) 8550 { 8551 if (bpf_prog_array_valid(call)) { 8552 *(struct pt_regs **)raw_data = regs; 8553 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8554 perf_swevent_put_recursion_context(rctx); 8555 return; 8556 } 8557 } 8558 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8559 rctx, task); 8560 } 8561 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8562 8563 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8564 struct pt_regs *regs, struct hlist_head *head, int rctx, 8565 struct task_struct *task) 8566 { 8567 struct perf_sample_data data; 8568 struct perf_event *event; 8569 8570 struct perf_raw_record raw = { 8571 .frag = { 8572 .size = entry_size, 8573 .data = record, 8574 }, 8575 }; 8576 8577 perf_sample_data_init(&data, 0, 0); 8578 data.raw = &raw; 8579 8580 perf_trace_buf_update(record, event_type); 8581 8582 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8583 if (perf_tp_event_match(event, &data, regs)) 8584 perf_swevent_event(event, count, &data, regs); 8585 } 8586 8587 /* 8588 * If we got specified a target task, also iterate its context and 8589 * deliver this event there too. 8590 */ 8591 if (task && task != current) { 8592 struct perf_event_context *ctx; 8593 struct trace_entry *entry = record; 8594 8595 rcu_read_lock(); 8596 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8597 if (!ctx) 8598 goto unlock; 8599 8600 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8601 if (event->cpu != smp_processor_id()) 8602 continue; 8603 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8604 continue; 8605 if (event->attr.config != entry->type) 8606 continue; 8607 if (perf_tp_event_match(event, &data, regs)) 8608 perf_swevent_event(event, count, &data, regs); 8609 } 8610 unlock: 8611 rcu_read_unlock(); 8612 } 8613 8614 perf_swevent_put_recursion_context(rctx); 8615 } 8616 EXPORT_SYMBOL_GPL(perf_tp_event); 8617 8618 static void tp_perf_event_destroy(struct perf_event *event) 8619 { 8620 perf_trace_destroy(event); 8621 } 8622 8623 static int perf_tp_event_init(struct perf_event *event) 8624 { 8625 int err; 8626 8627 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8628 return -ENOENT; 8629 8630 /* 8631 * no branch sampling for tracepoint events 8632 */ 8633 if (has_branch_stack(event)) 8634 return -EOPNOTSUPP; 8635 8636 err = perf_trace_init(event); 8637 if (err) 8638 return err; 8639 8640 event->destroy = tp_perf_event_destroy; 8641 8642 return 0; 8643 } 8644 8645 static struct pmu perf_tracepoint = { 8646 .task_ctx_nr = perf_sw_context, 8647 8648 .event_init = perf_tp_event_init, 8649 .add = perf_trace_add, 8650 .del = perf_trace_del, 8651 .start = perf_swevent_start, 8652 .stop = perf_swevent_stop, 8653 .read = perf_swevent_read, 8654 }; 8655 8656 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8657 /* 8658 * Flags in config, used by dynamic PMU kprobe and uprobe 8659 * The flags should match following PMU_FORMAT_ATTR(). 8660 * 8661 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8662 * if not set, create kprobe/uprobe 8663 * 8664 * The following values specify a reference counter (or semaphore in the 8665 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8666 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8667 * 8668 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8669 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8670 */ 8671 enum perf_probe_config { 8672 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8673 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8674 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8675 }; 8676 8677 PMU_FORMAT_ATTR(retprobe, "config:0"); 8678 #endif 8679 8680 #ifdef CONFIG_KPROBE_EVENTS 8681 static struct attribute *kprobe_attrs[] = { 8682 &format_attr_retprobe.attr, 8683 NULL, 8684 }; 8685 8686 static struct attribute_group kprobe_format_group = { 8687 .name = "format", 8688 .attrs = kprobe_attrs, 8689 }; 8690 8691 static const struct attribute_group *kprobe_attr_groups[] = { 8692 &kprobe_format_group, 8693 NULL, 8694 }; 8695 8696 static int perf_kprobe_event_init(struct perf_event *event); 8697 static struct pmu perf_kprobe = { 8698 .task_ctx_nr = perf_sw_context, 8699 .event_init = perf_kprobe_event_init, 8700 .add = perf_trace_add, 8701 .del = perf_trace_del, 8702 .start = perf_swevent_start, 8703 .stop = perf_swevent_stop, 8704 .read = perf_swevent_read, 8705 .attr_groups = kprobe_attr_groups, 8706 }; 8707 8708 static int perf_kprobe_event_init(struct perf_event *event) 8709 { 8710 int err; 8711 bool is_retprobe; 8712 8713 if (event->attr.type != perf_kprobe.type) 8714 return -ENOENT; 8715 8716 if (!capable(CAP_SYS_ADMIN)) 8717 return -EACCES; 8718 8719 /* 8720 * no branch sampling for probe events 8721 */ 8722 if (has_branch_stack(event)) 8723 return -EOPNOTSUPP; 8724 8725 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8726 err = perf_kprobe_init(event, is_retprobe); 8727 if (err) 8728 return err; 8729 8730 event->destroy = perf_kprobe_destroy; 8731 8732 return 0; 8733 } 8734 #endif /* CONFIG_KPROBE_EVENTS */ 8735 8736 #ifdef CONFIG_UPROBE_EVENTS 8737 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8738 8739 static struct attribute *uprobe_attrs[] = { 8740 &format_attr_retprobe.attr, 8741 &format_attr_ref_ctr_offset.attr, 8742 NULL, 8743 }; 8744 8745 static struct attribute_group uprobe_format_group = { 8746 .name = "format", 8747 .attrs = uprobe_attrs, 8748 }; 8749 8750 static const struct attribute_group *uprobe_attr_groups[] = { 8751 &uprobe_format_group, 8752 NULL, 8753 }; 8754 8755 static int perf_uprobe_event_init(struct perf_event *event); 8756 static struct pmu perf_uprobe = { 8757 .task_ctx_nr = perf_sw_context, 8758 .event_init = perf_uprobe_event_init, 8759 .add = perf_trace_add, 8760 .del = perf_trace_del, 8761 .start = perf_swevent_start, 8762 .stop = perf_swevent_stop, 8763 .read = perf_swevent_read, 8764 .attr_groups = uprobe_attr_groups, 8765 }; 8766 8767 static int perf_uprobe_event_init(struct perf_event *event) 8768 { 8769 int err; 8770 unsigned long ref_ctr_offset; 8771 bool is_retprobe; 8772 8773 if (event->attr.type != perf_uprobe.type) 8774 return -ENOENT; 8775 8776 if (!capable(CAP_SYS_ADMIN)) 8777 return -EACCES; 8778 8779 /* 8780 * no branch sampling for probe events 8781 */ 8782 if (has_branch_stack(event)) 8783 return -EOPNOTSUPP; 8784 8785 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8786 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8787 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8788 if (err) 8789 return err; 8790 8791 event->destroy = perf_uprobe_destroy; 8792 8793 return 0; 8794 } 8795 #endif /* CONFIG_UPROBE_EVENTS */ 8796 8797 static inline void perf_tp_register(void) 8798 { 8799 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8800 #ifdef CONFIG_KPROBE_EVENTS 8801 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8802 #endif 8803 #ifdef CONFIG_UPROBE_EVENTS 8804 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8805 #endif 8806 } 8807 8808 static void perf_event_free_filter(struct perf_event *event) 8809 { 8810 ftrace_profile_free_filter(event); 8811 } 8812 8813 #ifdef CONFIG_BPF_SYSCALL 8814 static void bpf_overflow_handler(struct perf_event *event, 8815 struct perf_sample_data *data, 8816 struct pt_regs *regs) 8817 { 8818 struct bpf_perf_event_data_kern ctx = { 8819 .data = data, 8820 .event = event, 8821 }; 8822 int ret = 0; 8823 8824 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8825 preempt_disable(); 8826 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8827 goto out; 8828 rcu_read_lock(); 8829 ret = BPF_PROG_RUN(event->prog, &ctx); 8830 rcu_read_unlock(); 8831 out: 8832 __this_cpu_dec(bpf_prog_active); 8833 preempt_enable(); 8834 if (!ret) 8835 return; 8836 8837 event->orig_overflow_handler(event, data, regs); 8838 } 8839 8840 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8841 { 8842 struct bpf_prog *prog; 8843 8844 if (event->overflow_handler_context) 8845 /* hw breakpoint or kernel counter */ 8846 return -EINVAL; 8847 8848 if (event->prog) 8849 return -EEXIST; 8850 8851 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8852 if (IS_ERR(prog)) 8853 return PTR_ERR(prog); 8854 8855 event->prog = prog; 8856 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8857 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8858 return 0; 8859 } 8860 8861 static void perf_event_free_bpf_handler(struct perf_event *event) 8862 { 8863 struct bpf_prog *prog = event->prog; 8864 8865 if (!prog) 8866 return; 8867 8868 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8869 event->prog = NULL; 8870 bpf_prog_put(prog); 8871 } 8872 #else 8873 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8874 { 8875 return -EOPNOTSUPP; 8876 } 8877 static void perf_event_free_bpf_handler(struct perf_event *event) 8878 { 8879 } 8880 #endif 8881 8882 /* 8883 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8884 * with perf_event_open() 8885 */ 8886 static inline bool perf_event_is_tracing(struct perf_event *event) 8887 { 8888 if (event->pmu == &perf_tracepoint) 8889 return true; 8890 #ifdef CONFIG_KPROBE_EVENTS 8891 if (event->pmu == &perf_kprobe) 8892 return true; 8893 #endif 8894 #ifdef CONFIG_UPROBE_EVENTS 8895 if (event->pmu == &perf_uprobe) 8896 return true; 8897 #endif 8898 return false; 8899 } 8900 8901 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8902 { 8903 bool is_kprobe, is_tracepoint, is_syscall_tp; 8904 struct bpf_prog *prog; 8905 int ret; 8906 8907 if (!perf_event_is_tracing(event)) 8908 return perf_event_set_bpf_handler(event, prog_fd); 8909 8910 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8911 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8912 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8913 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8914 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8915 return -EINVAL; 8916 8917 prog = bpf_prog_get(prog_fd); 8918 if (IS_ERR(prog)) 8919 return PTR_ERR(prog); 8920 8921 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8922 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8923 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8924 /* valid fd, but invalid bpf program type */ 8925 bpf_prog_put(prog); 8926 return -EINVAL; 8927 } 8928 8929 /* Kprobe override only works for kprobes, not uprobes. */ 8930 if (prog->kprobe_override && 8931 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8932 bpf_prog_put(prog); 8933 return -EINVAL; 8934 } 8935 8936 if (is_tracepoint || is_syscall_tp) { 8937 int off = trace_event_get_offsets(event->tp_event); 8938 8939 if (prog->aux->max_ctx_offset > off) { 8940 bpf_prog_put(prog); 8941 return -EACCES; 8942 } 8943 } 8944 8945 ret = perf_event_attach_bpf_prog(event, prog); 8946 if (ret) 8947 bpf_prog_put(prog); 8948 return ret; 8949 } 8950 8951 static void perf_event_free_bpf_prog(struct perf_event *event) 8952 { 8953 if (!perf_event_is_tracing(event)) { 8954 perf_event_free_bpf_handler(event); 8955 return; 8956 } 8957 perf_event_detach_bpf_prog(event); 8958 } 8959 8960 #else 8961 8962 static inline void perf_tp_register(void) 8963 { 8964 } 8965 8966 static void perf_event_free_filter(struct perf_event *event) 8967 { 8968 } 8969 8970 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8971 { 8972 return -ENOENT; 8973 } 8974 8975 static void perf_event_free_bpf_prog(struct perf_event *event) 8976 { 8977 } 8978 #endif /* CONFIG_EVENT_TRACING */ 8979 8980 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8981 void perf_bp_event(struct perf_event *bp, void *data) 8982 { 8983 struct perf_sample_data sample; 8984 struct pt_regs *regs = data; 8985 8986 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8987 8988 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8989 perf_swevent_event(bp, 1, &sample, regs); 8990 } 8991 #endif 8992 8993 /* 8994 * Allocate a new address filter 8995 */ 8996 static struct perf_addr_filter * 8997 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8998 { 8999 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9000 struct perf_addr_filter *filter; 9001 9002 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9003 if (!filter) 9004 return NULL; 9005 9006 INIT_LIST_HEAD(&filter->entry); 9007 list_add_tail(&filter->entry, filters); 9008 9009 return filter; 9010 } 9011 9012 static void free_filters_list(struct list_head *filters) 9013 { 9014 struct perf_addr_filter *filter, *iter; 9015 9016 list_for_each_entry_safe(filter, iter, filters, entry) { 9017 path_put(&filter->path); 9018 list_del(&filter->entry); 9019 kfree(filter); 9020 } 9021 } 9022 9023 /* 9024 * Free existing address filters and optionally install new ones 9025 */ 9026 static void perf_addr_filters_splice(struct perf_event *event, 9027 struct list_head *head) 9028 { 9029 unsigned long flags; 9030 LIST_HEAD(list); 9031 9032 if (!has_addr_filter(event)) 9033 return; 9034 9035 /* don't bother with children, they don't have their own filters */ 9036 if (event->parent) 9037 return; 9038 9039 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9040 9041 list_splice_init(&event->addr_filters.list, &list); 9042 if (head) 9043 list_splice(head, &event->addr_filters.list); 9044 9045 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9046 9047 free_filters_list(&list); 9048 } 9049 9050 /* 9051 * Scan through mm's vmas and see if one of them matches the 9052 * @filter; if so, adjust filter's address range. 9053 * Called with mm::mmap_sem down for reading. 9054 */ 9055 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9056 struct mm_struct *mm, 9057 struct perf_addr_filter_range *fr) 9058 { 9059 struct vm_area_struct *vma; 9060 9061 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9062 if (!vma->vm_file) 9063 continue; 9064 9065 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9066 return; 9067 } 9068 } 9069 9070 /* 9071 * Update event's address range filters based on the 9072 * task's existing mappings, if any. 9073 */ 9074 static void perf_event_addr_filters_apply(struct perf_event *event) 9075 { 9076 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9077 struct task_struct *task = READ_ONCE(event->ctx->task); 9078 struct perf_addr_filter *filter; 9079 struct mm_struct *mm = NULL; 9080 unsigned int count = 0; 9081 unsigned long flags; 9082 9083 /* 9084 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9085 * will stop on the parent's child_mutex that our caller is also holding 9086 */ 9087 if (task == TASK_TOMBSTONE) 9088 return; 9089 9090 if (ifh->nr_file_filters) { 9091 mm = get_task_mm(event->ctx->task); 9092 if (!mm) 9093 goto restart; 9094 9095 down_read(&mm->mmap_sem); 9096 } 9097 9098 raw_spin_lock_irqsave(&ifh->lock, flags); 9099 list_for_each_entry(filter, &ifh->list, entry) { 9100 if (filter->path.dentry) { 9101 /* 9102 * Adjust base offset if the filter is associated to a 9103 * binary that needs to be mapped: 9104 */ 9105 event->addr_filter_ranges[count].start = 0; 9106 event->addr_filter_ranges[count].size = 0; 9107 9108 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9109 } else { 9110 event->addr_filter_ranges[count].start = filter->offset; 9111 event->addr_filter_ranges[count].size = filter->size; 9112 } 9113 9114 count++; 9115 } 9116 9117 event->addr_filters_gen++; 9118 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9119 9120 if (ifh->nr_file_filters) { 9121 up_read(&mm->mmap_sem); 9122 9123 mmput(mm); 9124 } 9125 9126 restart: 9127 perf_event_stop(event, 1); 9128 } 9129 9130 /* 9131 * Address range filtering: limiting the data to certain 9132 * instruction address ranges. Filters are ioctl()ed to us from 9133 * userspace as ascii strings. 9134 * 9135 * Filter string format: 9136 * 9137 * ACTION RANGE_SPEC 9138 * where ACTION is one of the 9139 * * "filter": limit the trace to this region 9140 * * "start": start tracing from this address 9141 * * "stop": stop tracing at this address/region; 9142 * RANGE_SPEC is 9143 * * for kernel addresses: <start address>[/<size>] 9144 * * for object files: <start address>[/<size>]@</path/to/object/file> 9145 * 9146 * if <size> is not specified or is zero, the range is treated as a single 9147 * address; not valid for ACTION=="filter". 9148 */ 9149 enum { 9150 IF_ACT_NONE = -1, 9151 IF_ACT_FILTER, 9152 IF_ACT_START, 9153 IF_ACT_STOP, 9154 IF_SRC_FILE, 9155 IF_SRC_KERNEL, 9156 IF_SRC_FILEADDR, 9157 IF_SRC_KERNELADDR, 9158 }; 9159 9160 enum { 9161 IF_STATE_ACTION = 0, 9162 IF_STATE_SOURCE, 9163 IF_STATE_END, 9164 }; 9165 9166 static const match_table_t if_tokens = { 9167 { IF_ACT_FILTER, "filter" }, 9168 { IF_ACT_START, "start" }, 9169 { IF_ACT_STOP, "stop" }, 9170 { IF_SRC_FILE, "%u/%u@%s" }, 9171 { IF_SRC_KERNEL, "%u/%u" }, 9172 { IF_SRC_FILEADDR, "%u@%s" }, 9173 { IF_SRC_KERNELADDR, "%u" }, 9174 { IF_ACT_NONE, NULL }, 9175 }; 9176 9177 /* 9178 * Address filter string parser 9179 */ 9180 static int 9181 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9182 struct list_head *filters) 9183 { 9184 struct perf_addr_filter *filter = NULL; 9185 char *start, *orig, *filename = NULL; 9186 substring_t args[MAX_OPT_ARGS]; 9187 int state = IF_STATE_ACTION, token; 9188 unsigned int kernel = 0; 9189 int ret = -EINVAL; 9190 9191 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9192 if (!fstr) 9193 return -ENOMEM; 9194 9195 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9196 static const enum perf_addr_filter_action_t actions[] = { 9197 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9198 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9199 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9200 }; 9201 ret = -EINVAL; 9202 9203 if (!*start) 9204 continue; 9205 9206 /* filter definition begins */ 9207 if (state == IF_STATE_ACTION) { 9208 filter = perf_addr_filter_new(event, filters); 9209 if (!filter) 9210 goto fail; 9211 } 9212 9213 token = match_token(start, if_tokens, args); 9214 switch (token) { 9215 case IF_ACT_FILTER: 9216 case IF_ACT_START: 9217 case IF_ACT_STOP: 9218 if (state != IF_STATE_ACTION) 9219 goto fail; 9220 9221 filter->action = actions[token]; 9222 state = IF_STATE_SOURCE; 9223 break; 9224 9225 case IF_SRC_KERNELADDR: 9226 case IF_SRC_KERNEL: 9227 kernel = 1; 9228 /* fall through */ 9229 9230 case IF_SRC_FILEADDR: 9231 case IF_SRC_FILE: 9232 if (state != IF_STATE_SOURCE) 9233 goto fail; 9234 9235 *args[0].to = 0; 9236 ret = kstrtoul(args[0].from, 0, &filter->offset); 9237 if (ret) 9238 goto fail; 9239 9240 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9241 *args[1].to = 0; 9242 ret = kstrtoul(args[1].from, 0, &filter->size); 9243 if (ret) 9244 goto fail; 9245 } 9246 9247 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9248 int fpos = token == IF_SRC_FILE ? 2 : 1; 9249 9250 filename = match_strdup(&args[fpos]); 9251 if (!filename) { 9252 ret = -ENOMEM; 9253 goto fail; 9254 } 9255 } 9256 9257 state = IF_STATE_END; 9258 break; 9259 9260 default: 9261 goto fail; 9262 } 9263 9264 /* 9265 * Filter definition is fully parsed, validate and install it. 9266 * Make sure that it doesn't contradict itself or the event's 9267 * attribute. 9268 */ 9269 if (state == IF_STATE_END) { 9270 ret = -EINVAL; 9271 if (kernel && event->attr.exclude_kernel) 9272 goto fail; 9273 9274 /* 9275 * ACTION "filter" must have a non-zero length region 9276 * specified. 9277 */ 9278 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9279 !filter->size) 9280 goto fail; 9281 9282 if (!kernel) { 9283 if (!filename) 9284 goto fail; 9285 9286 /* 9287 * For now, we only support file-based filters 9288 * in per-task events; doing so for CPU-wide 9289 * events requires additional context switching 9290 * trickery, since same object code will be 9291 * mapped at different virtual addresses in 9292 * different processes. 9293 */ 9294 ret = -EOPNOTSUPP; 9295 if (!event->ctx->task) 9296 goto fail_free_name; 9297 9298 /* look up the path and grab its inode */ 9299 ret = kern_path(filename, LOOKUP_FOLLOW, 9300 &filter->path); 9301 if (ret) 9302 goto fail_free_name; 9303 9304 kfree(filename); 9305 filename = NULL; 9306 9307 ret = -EINVAL; 9308 if (!filter->path.dentry || 9309 !S_ISREG(d_inode(filter->path.dentry) 9310 ->i_mode)) 9311 goto fail; 9312 9313 event->addr_filters.nr_file_filters++; 9314 } 9315 9316 /* ready to consume more filters */ 9317 state = IF_STATE_ACTION; 9318 filter = NULL; 9319 } 9320 } 9321 9322 if (state != IF_STATE_ACTION) 9323 goto fail; 9324 9325 kfree(orig); 9326 9327 return 0; 9328 9329 fail_free_name: 9330 kfree(filename); 9331 fail: 9332 free_filters_list(filters); 9333 kfree(orig); 9334 9335 return ret; 9336 } 9337 9338 static int 9339 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9340 { 9341 LIST_HEAD(filters); 9342 int ret; 9343 9344 /* 9345 * Since this is called in perf_ioctl() path, we're already holding 9346 * ctx::mutex. 9347 */ 9348 lockdep_assert_held(&event->ctx->mutex); 9349 9350 if (WARN_ON_ONCE(event->parent)) 9351 return -EINVAL; 9352 9353 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9354 if (ret) 9355 goto fail_clear_files; 9356 9357 ret = event->pmu->addr_filters_validate(&filters); 9358 if (ret) 9359 goto fail_free_filters; 9360 9361 /* remove existing filters, if any */ 9362 perf_addr_filters_splice(event, &filters); 9363 9364 /* install new filters */ 9365 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9366 9367 return ret; 9368 9369 fail_free_filters: 9370 free_filters_list(&filters); 9371 9372 fail_clear_files: 9373 event->addr_filters.nr_file_filters = 0; 9374 9375 return ret; 9376 } 9377 9378 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9379 { 9380 int ret = -EINVAL; 9381 char *filter_str; 9382 9383 filter_str = strndup_user(arg, PAGE_SIZE); 9384 if (IS_ERR(filter_str)) 9385 return PTR_ERR(filter_str); 9386 9387 #ifdef CONFIG_EVENT_TRACING 9388 if (perf_event_is_tracing(event)) { 9389 struct perf_event_context *ctx = event->ctx; 9390 9391 /* 9392 * Beware, here be dragons!! 9393 * 9394 * the tracepoint muck will deadlock against ctx->mutex, but 9395 * the tracepoint stuff does not actually need it. So 9396 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9397 * already have a reference on ctx. 9398 * 9399 * This can result in event getting moved to a different ctx, 9400 * but that does not affect the tracepoint state. 9401 */ 9402 mutex_unlock(&ctx->mutex); 9403 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9404 mutex_lock(&ctx->mutex); 9405 } else 9406 #endif 9407 if (has_addr_filter(event)) 9408 ret = perf_event_set_addr_filter(event, filter_str); 9409 9410 kfree(filter_str); 9411 return ret; 9412 } 9413 9414 /* 9415 * hrtimer based swevent callback 9416 */ 9417 9418 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9419 { 9420 enum hrtimer_restart ret = HRTIMER_RESTART; 9421 struct perf_sample_data data; 9422 struct pt_regs *regs; 9423 struct perf_event *event; 9424 u64 period; 9425 9426 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9427 9428 if (event->state != PERF_EVENT_STATE_ACTIVE) 9429 return HRTIMER_NORESTART; 9430 9431 event->pmu->read(event); 9432 9433 perf_sample_data_init(&data, 0, event->hw.last_period); 9434 regs = get_irq_regs(); 9435 9436 if (regs && !perf_exclude_event(event, regs)) { 9437 if (!(event->attr.exclude_idle && is_idle_task(current))) 9438 if (__perf_event_overflow(event, 1, &data, regs)) 9439 ret = HRTIMER_NORESTART; 9440 } 9441 9442 period = max_t(u64, 10000, event->hw.sample_period); 9443 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9444 9445 return ret; 9446 } 9447 9448 static void perf_swevent_start_hrtimer(struct perf_event *event) 9449 { 9450 struct hw_perf_event *hwc = &event->hw; 9451 s64 period; 9452 9453 if (!is_sampling_event(event)) 9454 return; 9455 9456 period = local64_read(&hwc->period_left); 9457 if (period) { 9458 if (period < 0) 9459 period = 10000; 9460 9461 local64_set(&hwc->period_left, 0); 9462 } else { 9463 period = max_t(u64, 10000, hwc->sample_period); 9464 } 9465 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9466 HRTIMER_MODE_REL_PINNED); 9467 } 9468 9469 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9470 { 9471 struct hw_perf_event *hwc = &event->hw; 9472 9473 if (is_sampling_event(event)) { 9474 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9475 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9476 9477 hrtimer_cancel(&hwc->hrtimer); 9478 } 9479 } 9480 9481 static void perf_swevent_init_hrtimer(struct perf_event *event) 9482 { 9483 struct hw_perf_event *hwc = &event->hw; 9484 9485 if (!is_sampling_event(event)) 9486 return; 9487 9488 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9489 hwc->hrtimer.function = perf_swevent_hrtimer; 9490 9491 /* 9492 * Since hrtimers have a fixed rate, we can do a static freq->period 9493 * mapping and avoid the whole period adjust feedback stuff. 9494 */ 9495 if (event->attr.freq) { 9496 long freq = event->attr.sample_freq; 9497 9498 event->attr.sample_period = NSEC_PER_SEC / freq; 9499 hwc->sample_period = event->attr.sample_period; 9500 local64_set(&hwc->period_left, hwc->sample_period); 9501 hwc->last_period = hwc->sample_period; 9502 event->attr.freq = 0; 9503 } 9504 } 9505 9506 /* 9507 * Software event: cpu wall time clock 9508 */ 9509 9510 static void cpu_clock_event_update(struct perf_event *event) 9511 { 9512 s64 prev; 9513 u64 now; 9514 9515 now = local_clock(); 9516 prev = local64_xchg(&event->hw.prev_count, now); 9517 local64_add(now - prev, &event->count); 9518 } 9519 9520 static void cpu_clock_event_start(struct perf_event *event, int flags) 9521 { 9522 local64_set(&event->hw.prev_count, local_clock()); 9523 perf_swevent_start_hrtimer(event); 9524 } 9525 9526 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9527 { 9528 perf_swevent_cancel_hrtimer(event); 9529 cpu_clock_event_update(event); 9530 } 9531 9532 static int cpu_clock_event_add(struct perf_event *event, int flags) 9533 { 9534 if (flags & PERF_EF_START) 9535 cpu_clock_event_start(event, flags); 9536 perf_event_update_userpage(event); 9537 9538 return 0; 9539 } 9540 9541 static void cpu_clock_event_del(struct perf_event *event, int flags) 9542 { 9543 cpu_clock_event_stop(event, flags); 9544 } 9545 9546 static void cpu_clock_event_read(struct perf_event *event) 9547 { 9548 cpu_clock_event_update(event); 9549 } 9550 9551 static int cpu_clock_event_init(struct perf_event *event) 9552 { 9553 if (event->attr.type != PERF_TYPE_SOFTWARE) 9554 return -ENOENT; 9555 9556 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9557 return -ENOENT; 9558 9559 /* 9560 * no branch sampling for software events 9561 */ 9562 if (has_branch_stack(event)) 9563 return -EOPNOTSUPP; 9564 9565 perf_swevent_init_hrtimer(event); 9566 9567 return 0; 9568 } 9569 9570 static struct pmu perf_cpu_clock = { 9571 .task_ctx_nr = perf_sw_context, 9572 9573 .capabilities = PERF_PMU_CAP_NO_NMI, 9574 9575 .event_init = cpu_clock_event_init, 9576 .add = cpu_clock_event_add, 9577 .del = cpu_clock_event_del, 9578 .start = cpu_clock_event_start, 9579 .stop = cpu_clock_event_stop, 9580 .read = cpu_clock_event_read, 9581 }; 9582 9583 /* 9584 * Software event: task time clock 9585 */ 9586 9587 static void task_clock_event_update(struct perf_event *event, u64 now) 9588 { 9589 u64 prev; 9590 s64 delta; 9591 9592 prev = local64_xchg(&event->hw.prev_count, now); 9593 delta = now - prev; 9594 local64_add(delta, &event->count); 9595 } 9596 9597 static void task_clock_event_start(struct perf_event *event, int flags) 9598 { 9599 local64_set(&event->hw.prev_count, event->ctx->time); 9600 perf_swevent_start_hrtimer(event); 9601 } 9602 9603 static void task_clock_event_stop(struct perf_event *event, int flags) 9604 { 9605 perf_swevent_cancel_hrtimer(event); 9606 task_clock_event_update(event, event->ctx->time); 9607 } 9608 9609 static int task_clock_event_add(struct perf_event *event, int flags) 9610 { 9611 if (flags & PERF_EF_START) 9612 task_clock_event_start(event, flags); 9613 perf_event_update_userpage(event); 9614 9615 return 0; 9616 } 9617 9618 static void task_clock_event_del(struct perf_event *event, int flags) 9619 { 9620 task_clock_event_stop(event, PERF_EF_UPDATE); 9621 } 9622 9623 static void task_clock_event_read(struct perf_event *event) 9624 { 9625 u64 now = perf_clock(); 9626 u64 delta = now - event->ctx->timestamp; 9627 u64 time = event->ctx->time + delta; 9628 9629 task_clock_event_update(event, time); 9630 } 9631 9632 static int task_clock_event_init(struct perf_event *event) 9633 { 9634 if (event->attr.type != PERF_TYPE_SOFTWARE) 9635 return -ENOENT; 9636 9637 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9638 return -ENOENT; 9639 9640 /* 9641 * no branch sampling for software events 9642 */ 9643 if (has_branch_stack(event)) 9644 return -EOPNOTSUPP; 9645 9646 perf_swevent_init_hrtimer(event); 9647 9648 return 0; 9649 } 9650 9651 static struct pmu perf_task_clock = { 9652 .task_ctx_nr = perf_sw_context, 9653 9654 .capabilities = PERF_PMU_CAP_NO_NMI, 9655 9656 .event_init = task_clock_event_init, 9657 .add = task_clock_event_add, 9658 .del = task_clock_event_del, 9659 .start = task_clock_event_start, 9660 .stop = task_clock_event_stop, 9661 .read = task_clock_event_read, 9662 }; 9663 9664 static void perf_pmu_nop_void(struct pmu *pmu) 9665 { 9666 } 9667 9668 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9669 { 9670 } 9671 9672 static int perf_pmu_nop_int(struct pmu *pmu) 9673 { 9674 return 0; 9675 } 9676 9677 static int perf_event_nop_int(struct perf_event *event, u64 value) 9678 { 9679 return 0; 9680 } 9681 9682 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9683 9684 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9685 { 9686 __this_cpu_write(nop_txn_flags, flags); 9687 9688 if (flags & ~PERF_PMU_TXN_ADD) 9689 return; 9690 9691 perf_pmu_disable(pmu); 9692 } 9693 9694 static int perf_pmu_commit_txn(struct pmu *pmu) 9695 { 9696 unsigned int flags = __this_cpu_read(nop_txn_flags); 9697 9698 __this_cpu_write(nop_txn_flags, 0); 9699 9700 if (flags & ~PERF_PMU_TXN_ADD) 9701 return 0; 9702 9703 perf_pmu_enable(pmu); 9704 return 0; 9705 } 9706 9707 static void perf_pmu_cancel_txn(struct pmu *pmu) 9708 { 9709 unsigned int flags = __this_cpu_read(nop_txn_flags); 9710 9711 __this_cpu_write(nop_txn_flags, 0); 9712 9713 if (flags & ~PERF_PMU_TXN_ADD) 9714 return; 9715 9716 perf_pmu_enable(pmu); 9717 } 9718 9719 static int perf_event_idx_default(struct perf_event *event) 9720 { 9721 return 0; 9722 } 9723 9724 /* 9725 * Ensures all contexts with the same task_ctx_nr have the same 9726 * pmu_cpu_context too. 9727 */ 9728 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9729 { 9730 struct pmu *pmu; 9731 9732 if (ctxn < 0) 9733 return NULL; 9734 9735 list_for_each_entry(pmu, &pmus, entry) { 9736 if (pmu->task_ctx_nr == ctxn) 9737 return pmu->pmu_cpu_context; 9738 } 9739 9740 return NULL; 9741 } 9742 9743 static void free_pmu_context(struct pmu *pmu) 9744 { 9745 /* 9746 * Static contexts such as perf_sw_context have a global lifetime 9747 * and may be shared between different PMUs. Avoid freeing them 9748 * when a single PMU is going away. 9749 */ 9750 if (pmu->task_ctx_nr > perf_invalid_context) 9751 return; 9752 9753 free_percpu(pmu->pmu_cpu_context); 9754 } 9755 9756 /* 9757 * Let userspace know that this PMU supports address range filtering: 9758 */ 9759 static ssize_t nr_addr_filters_show(struct device *dev, 9760 struct device_attribute *attr, 9761 char *page) 9762 { 9763 struct pmu *pmu = dev_get_drvdata(dev); 9764 9765 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9766 } 9767 DEVICE_ATTR_RO(nr_addr_filters); 9768 9769 static struct idr pmu_idr; 9770 9771 static ssize_t 9772 type_show(struct device *dev, struct device_attribute *attr, char *page) 9773 { 9774 struct pmu *pmu = dev_get_drvdata(dev); 9775 9776 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9777 } 9778 static DEVICE_ATTR_RO(type); 9779 9780 static ssize_t 9781 perf_event_mux_interval_ms_show(struct device *dev, 9782 struct device_attribute *attr, 9783 char *page) 9784 { 9785 struct pmu *pmu = dev_get_drvdata(dev); 9786 9787 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9788 } 9789 9790 static DEFINE_MUTEX(mux_interval_mutex); 9791 9792 static ssize_t 9793 perf_event_mux_interval_ms_store(struct device *dev, 9794 struct device_attribute *attr, 9795 const char *buf, size_t count) 9796 { 9797 struct pmu *pmu = dev_get_drvdata(dev); 9798 int timer, cpu, ret; 9799 9800 ret = kstrtoint(buf, 0, &timer); 9801 if (ret) 9802 return ret; 9803 9804 if (timer < 1) 9805 return -EINVAL; 9806 9807 /* same value, noting to do */ 9808 if (timer == pmu->hrtimer_interval_ms) 9809 return count; 9810 9811 mutex_lock(&mux_interval_mutex); 9812 pmu->hrtimer_interval_ms = timer; 9813 9814 /* update all cpuctx for this PMU */ 9815 cpus_read_lock(); 9816 for_each_online_cpu(cpu) { 9817 struct perf_cpu_context *cpuctx; 9818 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9820 9821 cpu_function_call(cpu, 9822 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9823 } 9824 cpus_read_unlock(); 9825 mutex_unlock(&mux_interval_mutex); 9826 9827 return count; 9828 } 9829 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9830 9831 static struct attribute *pmu_dev_attrs[] = { 9832 &dev_attr_type.attr, 9833 &dev_attr_perf_event_mux_interval_ms.attr, 9834 NULL, 9835 }; 9836 ATTRIBUTE_GROUPS(pmu_dev); 9837 9838 static int pmu_bus_running; 9839 static struct bus_type pmu_bus = { 9840 .name = "event_source", 9841 .dev_groups = pmu_dev_groups, 9842 }; 9843 9844 static void pmu_dev_release(struct device *dev) 9845 { 9846 kfree(dev); 9847 } 9848 9849 static int pmu_dev_alloc(struct pmu *pmu) 9850 { 9851 int ret = -ENOMEM; 9852 9853 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9854 if (!pmu->dev) 9855 goto out; 9856 9857 pmu->dev->groups = pmu->attr_groups; 9858 device_initialize(pmu->dev); 9859 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9860 if (ret) 9861 goto free_dev; 9862 9863 dev_set_drvdata(pmu->dev, pmu); 9864 pmu->dev->bus = &pmu_bus; 9865 pmu->dev->release = pmu_dev_release; 9866 ret = device_add(pmu->dev); 9867 if (ret) 9868 goto free_dev; 9869 9870 /* For PMUs with address filters, throw in an extra attribute: */ 9871 if (pmu->nr_addr_filters) 9872 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9873 9874 if (ret) 9875 goto del_dev; 9876 9877 out: 9878 return ret; 9879 9880 del_dev: 9881 device_del(pmu->dev); 9882 9883 free_dev: 9884 put_device(pmu->dev); 9885 goto out; 9886 } 9887 9888 static struct lock_class_key cpuctx_mutex; 9889 static struct lock_class_key cpuctx_lock; 9890 9891 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9892 { 9893 int cpu, ret; 9894 9895 mutex_lock(&pmus_lock); 9896 ret = -ENOMEM; 9897 pmu->pmu_disable_count = alloc_percpu(int); 9898 if (!pmu->pmu_disable_count) 9899 goto unlock; 9900 9901 pmu->type = -1; 9902 if (!name) 9903 goto skip_type; 9904 pmu->name = name; 9905 9906 if (type < 0) { 9907 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9908 if (type < 0) { 9909 ret = type; 9910 goto free_pdc; 9911 } 9912 } 9913 pmu->type = type; 9914 9915 if (pmu_bus_running) { 9916 ret = pmu_dev_alloc(pmu); 9917 if (ret) 9918 goto free_idr; 9919 } 9920 9921 skip_type: 9922 if (pmu->task_ctx_nr == perf_hw_context) { 9923 static int hw_context_taken = 0; 9924 9925 /* 9926 * Other than systems with heterogeneous CPUs, it never makes 9927 * sense for two PMUs to share perf_hw_context. PMUs which are 9928 * uncore must use perf_invalid_context. 9929 */ 9930 if (WARN_ON_ONCE(hw_context_taken && 9931 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9932 pmu->task_ctx_nr = perf_invalid_context; 9933 9934 hw_context_taken = 1; 9935 } 9936 9937 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9938 if (pmu->pmu_cpu_context) 9939 goto got_cpu_context; 9940 9941 ret = -ENOMEM; 9942 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9943 if (!pmu->pmu_cpu_context) 9944 goto free_dev; 9945 9946 for_each_possible_cpu(cpu) { 9947 struct perf_cpu_context *cpuctx; 9948 9949 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9950 __perf_event_init_context(&cpuctx->ctx); 9951 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9952 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9953 cpuctx->ctx.pmu = pmu; 9954 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9955 9956 __perf_mux_hrtimer_init(cpuctx, cpu); 9957 } 9958 9959 got_cpu_context: 9960 if (!pmu->start_txn) { 9961 if (pmu->pmu_enable) { 9962 /* 9963 * If we have pmu_enable/pmu_disable calls, install 9964 * transaction stubs that use that to try and batch 9965 * hardware accesses. 9966 */ 9967 pmu->start_txn = perf_pmu_start_txn; 9968 pmu->commit_txn = perf_pmu_commit_txn; 9969 pmu->cancel_txn = perf_pmu_cancel_txn; 9970 } else { 9971 pmu->start_txn = perf_pmu_nop_txn; 9972 pmu->commit_txn = perf_pmu_nop_int; 9973 pmu->cancel_txn = perf_pmu_nop_void; 9974 } 9975 } 9976 9977 if (!pmu->pmu_enable) { 9978 pmu->pmu_enable = perf_pmu_nop_void; 9979 pmu->pmu_disable = perf_pmu_nop_void; 9980 } 9981 9982 if (!pmu->check_period) 9983 pmu->check_period = perf_event_nop_int; 9984 9985 if (!pmu->event_idx) 9986 pmu->event_idx = perf_event_idx_default; 9987 9988 list_add_rcu(&pmu->entry, &pmus); 9989 atomic_set(&pmu->exclusive_cnt, 0); 9990 ret = 0; 9991 unlock: 9992 mutex_unlock(&pmus_lock); 9993 9994 return ret; 9995 9996 free_dev: 9997 device_del(pmu->dev); 9998 put_device(pmu->dev); 9999 10000 free_idr: 10001 if (pmu->type >= PERF_TYPE_MAX) 10002 idr_remove(&pmu_idr, pmu->type); 10003 10004 free_pdc: 10005 free_percpu(pmu->pmu_disable_count); 10006 goto unlock; 10007 } 10008 EXPORT_SYMBOL_GPL(perf_pmu_register); 10009 10010 void perf_pmu_unregister(struct pmu *pmu) 10011 { 10012 mutex_lock(&pmus_lock); 10013 list_del_rcu(&pmu->entry); 10014 10015 /* 10016 * We dereference the pmu list under both SRCU and regular RCU, so 10017 * synchronize against both of those. 10018 */ 10019 synchronize_srcu(&pmus_srcu); 10020 synchronize_rcu(); 10021 10022 free_percpu(pmu->pmu_disable_count); 10023 if (pmu->type >= PERF_TYPE_MAX) 10024 idr_remove(&pmu_idr, pmu->type); 10025 if (pmu_bus_running) { 10026 if (pmu->nr_addr_filters) 10027 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10028 device_del(pmu->dev); 10029 put_device(pmu->dev); 10030 } 10031 free_pmu_context(pmu); 10032 mutex_unlock(&pmus_lock); 10033 } 10034 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10035 10036 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10037 { 10038 struct perf_event_context *ctx = NULL; 10039 int ret; 10040 10041 if (!try_module_get(pmu->module)) 10042 return -ENODEV; 10043 10044 /* 10045 * A number of pmu->event_init() methods iterate the sibling_list to, 10046 * for example, validate if the group fits on the PMU. Therefore, 10047 * if this is a sibling event, acquire the ctx->mutex to protect 10048 * the sibling_list. 10049 */ 10050 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10051 /* 10052 * This ctx->mutex can nest when we're called through 10053 * inheritance. See the perf_event_ctx_lock_nested() comment. 10054 */ 10055 ctx = perf_event_ctx_lock_nested(event->group_leader, 10056 SINGLE_DEPTH_NESTING); 10057 BUG_ON(!ctx); 10058 } 10059 10060 event->pmu = pmu; 10061 ret = pmu->event_init(event); 10062 10063 if (ctx) 10064 perf_event_ctx_unlock(event->group_leader, ctx); 10065 10066 if (!ret) { 10067 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10068 event_has_any_exclude_flag(event)) { 10069 if (event->destroy) 10070 event->destroy(event); 10071 ret = -EINVAL; 10072 } 10073 } 10074 10075 if (ret) 10076 module_put(pmu->module); 10077 10078 return ret; 10079 } 10080 10081 static struct pmu *perf_init_event(struct perf_event *event) 10082 { 10083 struct pmu *pmu; 10084 int idx; 10085 int ret; 10086 10087 idx = srcu_read_lock(&pmus_srcu); 10088 10089 /* Try parent's PMU first: */ 10090 if (event->parent && event->parent->pmu) { 10091 pmu = event->parent->pmu; 10092 ret = perf_try_init_event(pmu, event); 10093 if (!ret) 10094 goto unlock; 10095 } 10096 10097 rcu_read_lock(); 10098 pmu = idr_find(&pmu_idr, event->attr.type); 10099 rcu_read_unlock(); 10100 if (pmu) { 10101 ret = perf_try_init_event(pmu, event); 10102 if (ret) 10103 pmu = ERR_PTR(ret); 10104 goto unlock; 10105 } 10106 10107 list_for_each_entry_rcu(pmu, &pmus, entry) { 10108 ret = perf_try_init_event(pmu, event); 10109 if (!ret) 10110 goto unlock; 10111 10112 if (ret != -ENOENT) { 10113 pmu = ERR_PTR(ret); 10114 goto unlock; 10115 } 10116 } 10117 pmu = ERR_PTR(-ENOENT); 10118 unlock: 10119 srcu_read_unlock(&pmus_srcu, idx); 10120 10121 return pmu; 10122 } 10123 10124 static void attach_sb_event(struct perf_event *event) 10125 { 10126 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10127 10128 raw_spin_lock(&pel->lock); 10129 list_add_rcu(&event->sb_list, &pel->list); 10130 raw_spin_unlock(&pel->lock); 10131 } 10132 10133 /* 10134 * We keep a list of all !task (and therefore per-cpu) events 10135 * that need to receive side-band records. 10136 * 10137 * This avoids having to scan all the various PMU per-cpu contexts 10138 * looking for them. 10139 */ 10140 static void account_pmu_sb_event(struct perf_event *event) 10141 { 10142 if (is_sb_event(event)) 10143 attach_sb_event(event); 10144 } 10145 10146 static void account_event_cpu(struct perf_event *event, int cpu) 10147 { 10148 if (event->parent) 10149 return; 10150 10151 if (is_cgroup_event(event)) 10152 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10153 } 10154 10155 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10156 static void account_freq_event_nohz(void) 10157 { 10158 #ifdef CONFIG_NO_HZ_FULL 10159 /* Lock so we don't race with concurrent unaccount */ 10160 spin_lock(&nr_freq_lock); 10161 if (atomic_inc_return(&nr_freq_events) == 1) 10162 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10163 spin_unlock(&nr_freq_lock); 10164 #endif 10165 } 10166 10167 static void account_freq_event(void) 10168 { 10169 if (tick_nohz_full_enabled()) 10170 account_freq_event_nohz(); 10171 else 10172 atomic_inc(&nr_freq_events); 10173 } 10174 10175 10176 static void account_event(struct perf_event *event) 10177 { 10178 bool inc = false; 10179 10180 if (event->parent) 10181 return; 10182 10183 if (event->attach_state & PERF_ATTACH_TASK) 10184 inc = true; 10185 if (event->attr.mmap || event->attr.mmap_data) 10186 atomic_inc(&nr_mmap_events); 10187 if (event->attr.comm) 10188 atomic_inc(&nr_comm_events); 10189 if (event->attr.namespaces) 10190 atomic_inc(&nr_namespaces_events); 10191 if (event->attr.task) 10192 atomic_inc(&nr_task_events); 10193 if (event->attr.freq) 10194 account_freq_event(); 10195 if (event->attr.context_switch) { 10196 atomic_inc(&nr_switch_events); 10197 inc = true; 10198 } 10199 if (has_branch_stack(event)) 10200 inc = true; 10201 if (is_cgroup_event(event)) 10202 inc = true; 10203 if (event->attr.ksymbol) 10204 atomic_inc(&nr_ksymbol_events); 10205 if (event->attr.bpf_event) 10206 atomic_inc(&nr_bpf_events); 10207 10208 if (inc) { 10209 /* 10210 * We need the mutex here because static_branch_enable() 10211 * must complete *before* the perf_sched_count increment 10212 * becomes visible. 10213 */ 10214 if (atomic_inc_not_zero(&perf_sched_count)) 10215 goto enabled; 10216 10217 mutex_lock(&perf_sched_mutex); 10218 if (!atomic_read(&perf_sched_count)) { 10219 static_branch_enable(&perf_sched_events); 10220 /* 10221 * Guarantee that all CPUs observe they key change and 10222 * call the perf scheduling hooks before proceeding to 10223 * install events that need them. 10224 */ 10225 synchronize_rcu(); 10226 } 10227 /* 10228 * Now that we have waited for the sync_sched(), allow further 10229 * increments to by-pass the mutex. 10230 */ 10231 atomic_inc(&perf_sched_count); 10232 mutex_unlock(&perf_sched_mutex); 10233 } 10234 enabled: 10235 10236 account_event_cpu(event, event->cpu); 10237 10238 account_pmu_sb_event(event); 10239 } 10240 10241 /* 10242 * Allocate and initialize an event structure 10243 */ 10244 static struct perf_event * 10245 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10246 struct task_struct *task, 10247 struct perf_event *group_leader, 10248 struct perf_event *parent_event, 10249 perf_overflow_handler_t overflow_handler, 10250 void *context, int cgroup_fd) 10251 { 10252 struct pmu *pmu; 10253 struct perf_event *event; 10254 struct hw_perf_event *hwc; 10255 long err = -EINVAL; 10256 10257 if ((unsigned)cpu >= nr_cpu_ids) { 10258 if (!task || cpu != -1) 10259 return ERR_PTR(-EINVAL); 10260 } 10261 10262 event = kzalloc(sizeof(*event), GFP_KERNEL); 10263 if (!event) 10264 return ERR_PTR(-ENOMEM); 10265 10266 /* 10267 * Single events are their own group leaders, with an 10268 * empty sibling list: 10269 */ 10270 if (!group_leader) 10271 group_leader = event; 10272 10273 mutex_init(&event->child_mutex); 10274 INIT_LIST_HEAD(&event->child_list); 10275 10276 INIT_LIST_HEAD(&event->event_entry); 10277 INIT_LIST_HEAD(&event->sibling_list); 10278 INIT_LIST_HEAD(&event->active_list); 10279 init_event_group(event); 10280 INIT_LIST_HEAD(&event->rb_entry); 10281 INIT_LIST_HEAD(&event->active_entry); 10282 INIT_LIST_HEAD(&event->addr_filters.list); 10283 INIT_HLIST_NODE(&event->hlist_entry); 10284 10285 10286 init_waitqueue_head(&event->waitq); 10287 event->pending_disable = -1; 10288 init_irq_work(&event->pending, perf_pending_event); 10289 10290 mutex_init(&event->mmap_mutex); 10291 raw_spin_lock_init(&event->addr_filters.lock); 10292 10293 atomic_long_set(&event->refcount, 1); 10294 event->cpu = cpu; 10295 event->attr = *attr; 10296 event->group_leader = group_leader; 10297 event->pmu = NULL; 10298 event->oncpu = -1; 10299 10300 event->parent = parent_event; 10301 10302 event->ns = get_pid_ns(task_active_pid_ns(current)); 10303 event->id = atomic64_inc_return(&perf_event_id); 10304 10305 event->state = PERF_EVENT_STATE_INACTIVE; 10306 10307 if (task) { 10308 event->attach_state = PERF_ATTACH_TASK; 10309 /* 10310 * XXX pmu::event_init needs to know what task to account to 10311 * and we cannot use the ctx information because we need the 10312 * pmu before we get a ctx. 10313 */ 10314 get_task_struct(task); 10315 event->hw.target = task; 10316 } 10317 10318 event->clock = &local_clock; 10319 if (parent_event) 10320 event->clock = parent_event->clock; 10321 10322 if (!overflow_handler && parent_event) { 10323 overflow_handler = parent_event->overflow_handler; 10324 context = parent_event->overflow_handler_context; 10325 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10326 if (overflow_handler == bpf_overflow_handler) { 10327 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10328 10329 if (IS_ERR(prog)) { 10330 err = PTR_ERR(prog); 10331 goto err_ns; 10332 } 10333 event->prog = prog; 10334 event->orig_overflow_handler = 10335 parent_event->orig_overflow_handler; 10336 } 10337 #endif 10338 } 10339 10340 if (overflow_handler) { 10341 event->overflow_handler = overflow_handler; 10342 event->overflow_handler_context = context; 10343 } else if (is_write_backward(event)){ 10344 event->overflow_handler = perf_event_output_backward; 10345 event->overflow_handler_context = NULL; 10346 } else { 10347 event->overflow_handler = perf_event_output_forward; 10348 event->overflow_handler_context = NULL; 10349 } 10350 10351 perf_event__state_init(event); 10352 10353 pmu = NULL; 10354 10355 hwc = &event->hw; 10356 hwc->sample_period = attr->sample_period; 10357 if (attr->freq && attr->sample_freq) 10358 hwc->sample_period = 1; 10359 hwc->last_period = hwc->sample_period; 10360 10361 local64_set(&hwc->period_left, hwc->sample_period); 10362 10363 /* 10364 * We currently do not support PERF_SAMPLE_READ on inherited events. 10365 * See perf_output_read(). 10366 */ 10367 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10368 goto err_ns; 10369 10370 if (!has_branch_stack(event)) 10371 event->attr.branch_sample_type = 0; 10372 10373 if (cgroup_fd != -1) { 10374 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10375 if (err) 10376 goto err_ns; 10377 } 10378 10379 pmu = perf_init_event(event); 10380 if (IS_ERR(pmu)) { 10381 err = PTR_ERR(pmu); 10382 goto err_ns; 10383 } 10384 10385 err = exclusive_event_init(event); 10386 if (err) 10387 goto err_pmu; 10388 10389 if (has_addr_filter(event)) { 10390 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10391 sizeof(struct perf_addr_filter_range), 10392 GFP_KERNEL); 10393 if (!event->addr_filter_ranges) { 10394 err = -ENOMEM; 10395 goto err_per_task; 10396 } 10397 10398 /* 10399 * Clone the parent's vma offsets: they are valid until exec() 10400 * even if the mm is not shared with the parent. 10401 */ 10402 if (event->parent) { 10403 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10404 10405 raw_spin_lock_irq(&ifh->lock); 10406 memcpy(event->addr_filter_ranges, 10407 event->parent->addr_filter_ranges, 10408 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10409 raw_spin_unlock_irq(&ifh->lock); 10410 } 10411 10412 /* force hw sync on the address filters */ 10413 event->addr_filters_gen = 1; 10414 } 10415 10416 if (!event->parent) { 10417 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10418 err = get_callchain_buffers(attr->sample_max_stack); 10419 if (err) 10420 goto err_addr_filters; 10421 } 10422 } 10423 10424 /* symmetric to unaccount_event() in _free_event() */ 10425 account_event(event); 10426 10427 return event; 10428 10429 err_addr_filters: 10430 kfree(event->addr_filter_ranges); 10431 10432 err_per_task: 10433 exclusive_event_destroy(event); 10434 10435 err_pmu: 10436 if (event->destroy) 10437 event->destroy(event); 10438 module_put(pmu->module); 10439 err_ns: 10440 if (is_cgroup_event(event)) 10441 perf_detach_cgroup(event); 10442 if (event->ns) 10443 put_pid_ns(event->ns); 10444 if (event->hw.target) 10445 put_task_struct(event->hw.target); 10446 kfree(event); 10447 10448 return ERR_PTR(err); 10449 } 10450 10451 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10452 struct perf_event_attr *attr) 10453 { 10454 u32 size; 10455 int ret; 10456 10457 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10458 return -EFAULT; 10459 10460 /* 10461 * zero the full structure, so that a short copy will be nice. 10462 */ 10463 memset(attr, 0, sizeof(*attr)); 10464 10465 ret = get_user(size, &uattr->size); 10466 if (ret) 10467 return ret; 10468 10469 if (size > PAGE_SIZE) /* silly large */ 10470 goto err_size; 10471 10472 if (!size) /* abi compat */ 10473 size = PERF_ATTR_SIZE_VER0; 10474 10475 if (size < PERF_ATTR_SIZE_VER0) 10476 goto err_size; 10477 10478 /* 10479 * If we're handed a bigger struct than we know of, 10480 * ensure all the unknown bits are 0 - i.e. new 10481 * user-space does not rely on any kernel feature 10482 * extensions we dont know about yet. 10483 */ 10484 if (size > sizeof(*attr)) { 10485 unsigned char __user *addr; 10486 unsigned char __user *end; 10487 unsigned char val; 10488 10489 addr = (void __user *)uattr + sizeof(*attr); 10490 end = (void __user *)uattr + size; 10491 10492 for (; addr < end; addr++) { 10493 ret = get_user(val, addr); 10494 if (ret) 10495 return ret; 10496 if (val) 10497 goto err_size; 10498 } 10499 size = sizeof(*attr); 10500 } 10501 10502 ret = copy_from_user(attr, uattr, size); 10503 if (ret) 10504 return -EFAULT; 10505 10506 attr->size = size; 10507 10508 if (attr->__reserved_1) 10509 return -EINVAL; 10510 10511 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10512 return -EINVAL; 10513 10514 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10515 return -EINVAL; 10516 10517 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10518 u64 mask = attr->branch_sample_type; 10519 10520 /* only using defined bits */ 10521 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10522 return -EINVAL; 10523 10524 /* at least one branch bit must be set */ 10525 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10526 return -EINVAL; 10527 10528 /* propagate priv level, when not set for branch */ 10529 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10530 10531 /* exclude_kernel checked on syscall entry */ 10532 if (!attr->exclude_kernel) 10533 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10534 10535 if (!attr->exclude_user) 10536 mask |= PERF_SAMPLE_BRANCH_USER; 10537 10538 if (!attr->exclude_hv) 10539 mask |= PERF_SAMPLE_BRANCH_HV; 10540 /* 10541 * adjust user setting (for HW filter setup) 10542 */ 10543 attr->branch_sample_type = mask; 10544 } 10545 /* privileged levels capture (kernel, hv): check permissions */ 10546 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10547 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10548 return -EACCES; 10549 } 10550 10551 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10552 ret = perf_reg_validate(attr->sample_regs_user); 10553 if (ret) 10554 return ret; 10555 } 10556 10557 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10558 if (!arch_perf_have_user_stack_dump()) 10559 return -ENOSYS; 10560 10561 /* 10562 * We have __u32 type for the size, but so far 10563 * we can only use __u16 as maximum due to the 10564 * __u16 sample size limit. 10565 */ 10566 if (attr->sample_stack_user >= USHRT_MAX) 10567 return -EINVAL; 10568 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10569 return -EINVAL; 10570 } 10571 10572 if (!attr->sample_max_stack) 10573 attr->sample_max_stack = sysctl_perf_event_max_stack; 10574 10575 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10576 ret = perf_reg_validate(attr->sample_regs_intr); 10577 out: 10578 return ret; 10579 10580 err_size: 10581 put_user(sizeof(*attr), &uattr->size); 10582 ret = -E2BIG; 10583 goto out; 10584 } 10585 10586 static int 10587 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10588 { 10589 struct ring_buffer *rb = NULL; 10590 int ret = -EINVAL; 10591 10592 if (!output_event) 10593 goto set; 10594 10595 /* don't allow circular references */ 10596 if (event == output_event) 10597 goto out; 10598 10599 /* 10600 * Don't allow cross-cpu buffers 10601 */ 10602 if (output_event->cpu != event->cpu) 10603 goto out; 10604 10605 /* 10606 * If its not a per-cpu rb, it must be the same task. 10607 */ 10608 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10609 goto out; 10610 10611 /* 10612 * Mixing clocks in the same buffer is trouble you don't need. 10613 */ 10614 if (output_event->clock != event->clock) 10615 goto out; 10616 10617 /* 10618 * Either writing ring buffer from beginning or from end. 10619 * Mixing is not allowed. 10620 */ 10621 if (is_write_backward(output_event) != is_write_backward(event)) 10622 goto out; 10623 10624 /* 10625 * If both events generate aux data, they must be on the same PMU 10626 */ 10627 if (has_aux(event) && has_aux(output_event) && 10628 event->pmu != output_event->pmu) 10629 goto out; 10630 10631 set: 10632 mutex_lock(&event->mmap_mutex); 10633 /* Can't redirect output if we've got an active mmap() */ 10634 if (atomic_read(&event->mmap_count)) 10635 goto unlock; 10636 10637 if (output_event) { 10638 /* get the rb we want to redirect to */ 10639 rb = ring_buffer_get(output_event); 10640 if (!rb) 10641 goto unlock; 10642 } 10643 10644 ring_buffer_attach(event, rb); 10645 10646 ret = 0; 10647 unlock: 10648 mutex_unlock(&event->mmap_mutex); 10649 10650 out: 10651 return ret; 10652 } 10653 10654 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10655 { 10656 if (b < a) 10657 swap(a, b); 10658 10659 mutex_lock(a); 10660 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10661 } 10662 10663 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10664 { 10665 bool nmi_safe = false; 10666 10667 switch (clk_id) { 10668 case CLOCK_MONOTONIC: 10669 event->clock = &ktime_get_mono_fast_ns; 10670 nmi_safe = true; 10671 break; 10672 10673 case CLOCK_MONOTONIC_RAW: 10674 event->clock = &ktime_get_raw_fast_ns; 10675 nmi_safe = true; 10676 break; 10677 10678 case CLOCK_REALTIME: 10679 event->clock = &ktime_get_real_ns; 10680 break; 10681 10682 case CLOCK_BOOTTIME: 10683 event->clock = &ktime_get_boot_ns; 10684 break; 10685 10686 case CLOCK_TAI: 10687 event->clock = &ktime_get_tai_ns; 10688 break; 10689 10690 default: 10691 return -EINVAL; 10692 } 10693 10694 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10695 return -EINVAL; 10696 10697 return 0; 10698 } 10699 10700 /* 10701 * Variation on perf_event_ctx_lock_nested(), except we take two context 10702 * mutexes. 10703 */ 10704 static struct perf_event_context * 10705 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10706 struct perf_event_context *ctx) 10707 { 10708 struct perf_event_context *gctx; 10709 10710 again: 10711 rcu_read_lock(); 10712 gctx = READ_ONCE(group_leader->ctx); 10713 if (!refcount_inc_not_zero(&gctx->refcount)) { 10714 rcu_read_unlock(); 10715 goto again; 10716 } 10717 rcu_read_unlock(); 10718 10719 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10720 10721 if (group_leader->ctx != gctx) { 10722 mutex_unlock(&ctx->mutex); 10723 mutex_unlock(&gctx->mutex); 10724 put_ctx(gctx); 10725 goto again; 10726 } 10727 10728 return gctx; 10729 } 10730 10731 /** 10732 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10733 * 10734 * @attr_uptr: event_id type attributes for monitoring/sampling 10735 * @pid: target pid 10736 * @cpu: target cpu 10737 * @group_fd: group leader event fd 10738 */ 10739 SYSCALL_DEFINE5(perf_event_open, 10740 struct perf_event_attr __user *, attr_uptr, 10741 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10742 { 10743 struct perf_event *group_leader = NULL, *output_event = NULL; 10744 struct perf_event *event, *sibling; 10745 struct perf_event_attr attr; 10746 struct perf_event_context *ctx, *uninitialized_var(gctx); 10747 struct file *event_file = NULL; 10748 struct fd group = {NULL, 0}; 10749 struct task_struct *task = NULL; 10750 struct pmu *pmu; 10751 int event_fd; 10752 int move_group = 0; 10753 int err; 10754 int f_flags = O_RDWR; 10755 int cgroup_fd = -1; 10756 10757 /* for future expandability... */ 10758 if (flags & ~PERF_FLAG_ALL) 10759 return -EINVAL; 10760 10761 err = perf_copy_attr(attr_uptr, &attr); 10762 if (err) 10763 return err; 10764 10765 if (!attr.exclude_kernel) { 10766 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10767 return -EACCES; 10768 } 10769 10770 if (attr.namespaces) { 10771 if (!capable(CAP_SYS_ADMIN)) 10772 return -EACCES; 10773 } 10774 10775 if (attr.freq) { 10776 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10777 return -EINVAL; 10778 } else { 10779 if (attr.sample_period & (1ULL << 63)) 10780 return -EINVAL; 10781 } 10782 10783 /* Only privileged users can get physical addresses */ 10784 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10785 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10786 return -EACCES; 10787 10788 /* 10789 * In cgroup mode, the pid argument is used to pass the fd 10790 * opened to the cgroup directory in cgroupfs. The cpu argument 10791 * designates the cpu on which to monitor threads from that 10792 * cgroup. 10793 */ 10794 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10795 return -EINVAL; 10796 10797 if (flags & PERF_FLAG_FD_CLOEXEC) 10798 f_flags |= O_CLOEXEC; 10799 10800 event_fd = get_unused_fd_flags(f_flags); 10801 if (event_fd < 0) 10802 return event_fd; 10803 10804 if (group_fd != -1) { 10805 err = perf_fget_light(group_fd, &group); 10806 if (err) 10807 goto err_fd; 10808 group_leader = group.file->private_data; 10809 if (flags & PERF_FLAG_FD_OUTPUT) 10810 output_event = group_leader; 10811 if (flags & PERF_FLAG_FD_NO_GROUP) 10812 group_leader = NULL; 10813 } 10814 10815 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10816 task = find_lively_task_by_vpid(pid); 10817 if (IS_ERR(task)) { 10818 err = PTR_ERR(task); 10819 goto err_group_fd; 10820 } 10821 } 10822 10823 if (task && group_leader && 10824 group_leader->attr.inherit != attr.inherit) { 10825 err = -EINVAL; 10826 goto err_task; 10827 } 10828 10829 if (task) { 10830 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10831 if (err) 10832 goto err_task; 10833 10834 /* 10835 * Reuse ptrace permission checks for now. 10836 * 10837 * We must hold cred_guard_mutex across this and any potential 10838 * perf_install_in_context() call for this new event to 10839 * serialize against exec() altering our credentials (and the 10840 * perf_event_exit_task() that could imply). 10841 */ 10842 err = -EACCES; 10843 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10844 goto err_cred; 10845 } 10846 10847 if (flags & PERF_FLAG_PID_CGROUP) 10848 cgroup_fd = pid; 10849 10850 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10851 NULL, NULL, cgroup_fd); 10852 if (IS_ERR(event)) { 10853 err = PTR_ERR(event); 10854 goto err_cred; 10855 } 10856 10857 if (is_sampling_event(event)) { 10858 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10859 err = -EOPNOTSUPP; 10860 goto err_alloc; 10861 } 10862 } 10863 10864 /* 10865 * Special case software events and allow them to be part of 10866 * any hardware group. 10867 */ 10868 pmu = event->pmu; 10869 10870 if (attr.use_clockid) { 10871 err = perf_event_set_clock(event, attr.clockid); 10872 if (err) 10873 goto err_alloc; 10874 } 10875 10876 if (pmu->task_ctx_nr == perf_sw_context) 10877 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10878 10879 if (group_leader) { 10880 if (is_software_event(event) && 10881 !in_software_context(group_leader)) { 10882 /* 10883 * If the event is a sw event, but the group_leader 10884 * is on hw context. 10885 * 10886 * Allow the addition of software events to hw 10887 * groups, this is safe because software events 10888 * never fail to schedule. 10889 */ 10890 pmu = group_leader->ctx->pmu; 10891 } else if (!is_software_event(event) && 10892 is_software_event(group_leader) && 10893 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10894 /* 10895 * In case the group is a pure software group, and we 10896 * try to add a hardware event, move the whole group to 10897 * the hardware context. 10898 */ 10899 move_group = 1; 10900 } 10901 } 10902 10903 /* 10904 * Get the target context (task or percpu): 10905 */ 10906 ctx = find_get_context(pmu, task, event); 10907 if (IS_ERR(ctx)) { 10908 err = PTR_ERR(ctx); 10909 goto err_alloc; 10910 } 10911 10912 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10913 err = -EBUSY; 10914 goto err_context; 10915 } 10916 10917 /* 10918 * Look up the group leader (we will attach this event to it): 10919 */ 10920 if (group_leader) { 10921 err = -EINVAL; 10922 10923 /* 10924 * Do not allow a recursive hierarchy (this new sibling 10925 * becoming part of another group-sibling): 10926 */ 10927 if (group_leader->group_leader != group_leader) 10928 goto err_context; 10929 10930 /* All events in a group should have the same clock */ 10931 if (group_leader->clock != event->clock) 10932 goto err_context; 10933 10934 /* 10935 * Make sure we're both events for the same CPU; 10936 * grouping events for different CPUs is broken; since 10937 * you can never concurrently schedule them anyhow. 10938 */ 10939 if (group_leader->cpu != event->cpu) 10940 goto err_context; 10941 10942 /* 10943 * Make sure we're both on the same task, or both 10944 * per-CPU events. 10945 */ 10946 if (group_leader->ctx->task != ctx->task) 10947 goto err_context; 10948 10949 /* 10950 * Do not allow to attach to a group in a different task 10951 * or CPU context. If we're moving SW events, we'll fix 10952 * this up later, so allow that. 10953 */ 10954 if (!move_group && group_leader->ctx != ctx) 10955 goto err_context; 10956 10957 /* 10958 * Only a group leader can be exclusive or pinned 10959 */ 10960 if (attr.exclusive || attr.pinned) 10961 goto err_context; 10962 } 10963 10964 if (output_event) { 10965 err = perf_event_set_output(event, output_event); 10966 if (err) 10967 goto err_context; 10968 } 10969 10970 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10971 f_flags); 10972 if (IS_ERR(event_file)) { 10973 err = PTR_ERR(event_file); 10974 event_file = NULL; 10975 goto err_context; 10976 } 10977 10978 if (move_group) { 10979 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10980 10981 if (gctx->task == TASK_TOMBSTONE) { 10982 err = -ESRCH; 10983 goto err_locked; 10984 } 10985 10986 /* 10987 * Check if we raced against another sys_perf_event_open() call 10988 * moving the software group underneath us. 10989 */ 10990 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10991 /* 10992 * If someone moved the group out from under us, check 10993 * if this new event wound up on the same ctx, if so 10994 * its the regular !move_group case, otherwise fail. 10995 */ 10996 if (gctx != ctx) { 10997 err = -EINVAL; 10998 goto err_locked; 10999 } else { 11000 perf_event_ctx_unlock(group_leader, gctx); 11001 move_group = 0; 11002 } 11003 } 11004 } else { 11005 mutex_lock(&ctx->mutex); 11006 } 11007 11008 if (ctx->task == TASK_TOMBSTONE) { 11009 err = -ESRCH; 11010 goto err_locked; 11011 } 11012 11013 if (!perf_event_validate_size(event)) { 11014 err = -E2BIG; 11015 goto err_locked; 11016 } 11017 11018 if (!task) { 11019 /* 11020 * Check if the @cpu we're creating an event for is online. 11021 * 11022 * We use the perf_cpu_context::ctx::mutex to serialize against 11023 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11024 */ 11025 struct perf_cpu_context *cpuctx = 11026 container_of(ctx, struct perf_cpu_context, ctx); 11027 11028 if (!cpuctx->online) { 11029 err = -ENODEV; 11030 goto err_locked; 11031 } 11032 } 11033 11034 11035 /* 11036 * Must be under the same ctx::mutex as perf_install_in_context(), 11037 * because we need to serialize with concurrent event creation. 11038 */ 11039 if (!exclusive_event_installable(event, ctx)) { 11040 /* exclusive and group stuff are assumed mutually exclusive */ 11041 WARN_ON_ONCE(move_group); 11042 11043 err = -EBUSY; 11044 goto err_locked; 11045 } 11046 11047 WARN_ON_ONCE(ctx->parent_ctx); 11048 11049 /* 11050 * This is the point on no return; we cannot fail hereafter. This is 11051 * where we start modifying current state. 11052 */ 11053 11054 if (move_group) { 11055 /* 11056 * See perf_event_ctx_lock() for comments on the details 11057 * of swizzling perf_event::ctx. 11058 */ 11059 perf_remove_from_context(group_leader, 0); 11060 put_ctx(gctx); 11061 11062 for_each_sibling_event(sibling, group_leader) { 11063 perf_remove_from_context(sibling, 0); 11064 put_ctx(gctx); 11065 } 11066 11067 /* 11068 * Wait for everybody to stop referencing the events through 11069 * the old lists, before installing it on new lists. 11070 */ 11071 synchronize_rcu(); 11072 11073 /* 11074 * Install the group siblings before the group leader. 11075 * 11076 * Because a group leader will try and install the entire group 11077 * (through the sibling list, which is still in-tact), we can 11078 * end up with siblings installed in the wrong context. 11079 * 11080 * By installing siblings first we NO-OP because they're not 11081 * reachable through the group lists. 11082 */ 11083 for_each_sibling_event(sibling, group_leader) { 11084 perf_event__state_init(sibling); 11085 perf_install_in_context(ctx, sibling, sibling->cpu); 11086 get_ctx(ctx); 11087 } 11088 11089 /* 11090 * Removing from the context ends up with disabled 11091 * event. What we want here is event in the initial 11092 * startup state, ready to be add into new context. 11093 */ 11094 perf_event__state_init(group_leader); 11095 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11096 get_ctx(ctx); 11097 } 11098 11099 /* 11100 * Precalculate sample_data sizes; do while holding ctx::mutex such 11101 * that we're serialized against further additions and before 11102 * perf_install_in_context() which is the point the event is active and 11103 * can use these values. 11104 */ 11105 perf_event__header_size(event); 11106 perf_event__id_header_size(event); 11107 11108 event->owner = current; 11109 11110 perf_install_in_context(ctx, event, event->cpu); 11111 perf_unpin_context(ctx); 11112 11113 if (move_group) 11114 perf_event_ctx_unlock(group_leader, gctx); 11115 mutex_unlock(&ctx->mutex); 11116 11117 if (task) { 11118 mutex_unlock(&task->signal->cred_guard_mutex); 11119 put_task_struct(task); 11120 } 11121 11122 mutex_lock(¤t->perf_event_mutex); 11123 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11124 mutex_unlock(¤t->perf_event_mutex); 11125 11126 /* 11127 * Drop the reference on the group_event after placing the 11128 * new event on the sibling_list. This ensures destruction 11129 * of the group leader will find the pointer to itself in 11130 * perf_group_detach(). 11131 */ 11132 fdput(group); 11133 fd_install(event_fd, event_file); 11134 return event_fd; 11135 11136 err_locked: 11137 if (move_group) 11138 perf_event_ctx_unlock(group_leader, gctx); 11139 mutex_unlock(&ctx->mutex); 11140 /* err_file: */ 11141 fput(event_file); 11142 err_context: 11143 perf_unpin_context(ctx); 11144 put_ctx(ctx); 11145 err_alloc: 11146 /* 11147 * If event_file is set, the fput() above will have called ->release() 11148 * and that will take care of freeing the event. 11149 */ 11150 if (!event_file) 11151 free_event(event); 11152 err_cred: 11153 if (task) 11154 mutex_unlock(&task->signal->cred_guard_mutex); 11155 err_task: 11156 if (task) 11157 put_task_struct(task); 11158 err_group_fd: 11159 fdput(group); 11160 err_fd: 11161 put_unused_fd(event_fd); 11162 return err; 11163 } 11164 11165 /** 11166 * perf_event_create_kernel_counter 11167 * 11168 * @attr: attributes of the counter to create 11169 * @cpu: cpu in which the counter is bound 11170 * @task: task to profile (NULL for percpu) 11171 */ 11172 struct perf_event * 11173 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11174 struct task_struct *task, 11175 perf_overflow_handler_t overflow_handler, 11176 void *context) 11177 { 11178 struct perf_event_context *ctx; 11179 struct perf_event *event; 11180 int err; 11181 11182 /* 11183 * Get the target context (task or percpu): 11184 */ 11185 11186 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11187 overflow_handler, context, -1); 11188 if (IS_ERR(event)) { 11189 err = PTR_ERR(event); 11190 goto err; 11191 } 11192 11193 /* Mark owner so we could distinguish it from user events. */ 11194 event->owner = TASK_TOMBSTONE; 11195 11196 ctx = find_get_context(event->pmu, task, event); 11197 if (IS_ERR(ctx)) { 11198 err = PTR_ERR(ctx); 11199 goto err_free; 11200 } 11201 11202 WARN_ON_ONCE(ctx->parent_ctx); 11203 mutex_lock(&ctx->mutex); 11204 if (ctx->task == TASK_TOMBSTONE) { 11205 err = -ESRCH; 11206 goto err_unlock; 11207 } 11208 11209 if (!task) { 11210 /* 11211 * Check if the @cpu we're creating an event for is online. 11212 * 11213 * We use the perf_cpu_context::ctx::mutex to serialize against 11214 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11215 */ 11216 struct perf_cpu_context *cpuctx = 11217 container_of(ctx, struct perf_cpu_context, ctx); 11218 if (!cpuctx->online) { 11219 err = -ENODEV; 11220 goto err_unlock; 11221 } 11222 } 11223 11224 if (!exclusive_event_installable(event, ctx)) { 11225 err = -EBUSY; 11226 goto err_unlock; 11227 } 11228 11229 perf_install_in_context(ctx, event, cpu); 11230 perf_unpin_context(ctx); 11231 mutex_unlock(&ctx->mutex); 11232 11233 return event; 11234 11235 err_unlock: 11236 mutex_unlock(&ctx->mutex); 11237 perf_unpin_context(ctx); 11238 put_ctx(ctx); 11239 err_free: 11240 free_event(event); 11241 err: 11242 return ERR_PTR(err); 11243 } 11244 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11245 11246 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11247 { 11248 struct perf_event_context *src_ctx; 11249 struct perf_event_context *dst_ctx; 11250 struct perf_event *event, *tmp; 11251 LIST_HEAD(events); 11252 11253 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11254 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11255 11256 /* 11257 * See perf_event_ctx_lock() for comments on the details 11258 * of swizzling perf_event::ctx. 11259 */ 11260 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11261 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11262 event_entry) { 11263 perf_remove_from_context(event, 0); 11264 unaccount_event_cpu(event, src_cpu); 11265 put_ctx(src_ctx); 11266 list_add(&event->migrate_entry, &events); 11267 } 11268 11269 /* 11270 * Wait for the events to quiesce before re-instating them. 11271 */ 11272 synchronize_rcu(); 11273 11274 /* 11275 * Re-instate events in 2 passes. 11276 * 11277 * Skip over group leaders and only install siblings on this first 11278 * pass, siblings will not get enabled without a leader, however a 11279 * leader will enable its siblings, even if those are still on the old 11280 * context. 11281 */ 11282 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11283 if (event->group_leader == event) 11284 continue; 11285 11286 list_del(&event->migrate_entry); 11287 if (event->state >= PERF_EVENT_STATE_OFF) 11288 event->state = PERF_EVENT_STATE_INACTIVE; 11289 account_event_cpu(event, dst_cpu); 11290 perf_install_in_context(dst_ctx, event, dst_cpu); 11291 get_ctx(dst_ctx); 11292 } 11293 11294 /* 11295 * Once all the siblings are setup properly, install the group leaders 11296 * to make it go. 11297 */ 11298 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11299 list_del(&event->migrate_entry); 11300 if (event->state >= PERF_EVENT_STATE_OFF) 11301 event->state = PERF_EVENT_STATE_INACTIVE; 11302 account_event_cpu(event, dst_cpu); 11303 perf_install_in_context(dst_ctx, event, dst_cpu); 11304 get_ctx(dst_ctx); 11305 } 11306 mutex_unlock(&dst_ctx->mutex); 11307 mutex_unlock(&src_ctx->mutex); 11308 } 11309 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11310 11311 static void sync_child_event(struct perf_event *child_event, 11312 struct task_struct *child) 11313 { 11314 struct perf_event *parent_event = child_event->parent; 11315 u64 child_val; 11316 11317 if (child_event->attr.inherit_stat) 11318 perf_event_read_event(child_event, child); 11319 11320 child_val = perf_event_count(child_event); 11321 11322 /* 11323 * Add back the child's count to the parent's count: 11324 */ 11325 atomic64_add(child_val, &parent_event->child_count); 11326 atomic64_add(child_event->total_time_enabled, 11327 &parent_event->child_total_time_enabled); 11328 atomic64_add(child_event->total_time_running, 11329 &parent_event->child_total_time_running); 11330 } 11331 11332 static void 11333 perf_event_exit_event(struct perf_event *child_event, 11334 struct perf_event_context *child_ctx, 11335 struct task_struct *child) 11336 { 11337 struct perf_event *parent_event = child_event->parent; 11338 11339 /* 11340 * Do not destroy the 'original' grouping; because of the context 11341 * switch optimization the original events could've ended up in a 11342 * random child task. 11343 * 11344 * If we were to destroy the original group, all group related 11345 * operations would cease to function properly after this random 11346 * child dies. 11347 * 11348 * Do destroy all inherited groups, we don't care about those 11349 * and being thorough is better. 11350 */ 11351 raw_spin_lock_irq(&child_ctx->lock); 11352 WARN_ON_ONCE(child_ctx->is_active); 11353 11354 if (parent_event) 11355 perf_group_detach(child_event); 11356 list_del_event(child_event, child_ctx); 11357 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11358 raw_spin_unlock_irq(&child_ctx->lock); 11359 11360 /* 11361 * Parent events are governed by their filedesc, retain them. 11362 */ 11363 if (!parent_event) { 11364 perf_event_wakeup(child_event); 11365 return; 11366 } 11367 /* 11368 * Child events can be cleaned up. 11369 */ 11370 11371 sync_child_event(child_event, child); 11372 11373 /* 11374 * Remove this event from the parent's list 11375 */ 11376 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11377 mutex_lock(&parent_event->child_mutex); 11378 list_del_init(&child_event->child_list); 11379 mutex_unlock(&parent_event->child_mutex); 11380 11381 /* 11382 * Kick perf_poll() for is_event_hup(). 11383 */ 11384 perf_event_wakeup(parent_event); 11385 free_event(child_event); 11386 put_event(parent_event); 11387 } 11388 11389 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11390 { 11391 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11392 struct perf_event *child_event, *next; 11393 11394 WARN_ON_ONCE(child != current); 11395 11396 child_ctx = perf_pin_task_context(child, ctxn); 11397 if (!child_ctx) 11398 return; 11399 11400 /* 11401 * In order to reduce the amount of tricky in ctx tear-down, we hold 11402 * ctx::mutex over the entire thing. This serializes against almost 11403 * everything that wants to access the ctx. 11404 * 11405 * The exception is sys_perf_event_open() / 11406 * perf_event_create_kernel_count() which does find_get_context() 11407 * without ctx::mutex (it cannot because of the move_group double mutex 11408 * lock thing). See the comments in perf_install_in_context(). 11409 */ 11410 mutex_lock(&child_ctx->mutex); 11411 11412 /* 11413 * In a single ctx::lock section, de-schedule the events and detach the 11414 * context from the task such that we cannot ever get it scheduled back 11415 * in. 11416 */ 11417 raw_spin_lock_irq(&child_ctx->lock); 11418 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11419 11420 /* 11421 * Now that the context is inactive, destroy the task <-> ctx relation 11422 * and mark the context dead. 11423 */ 11424 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11425 put_ctx(child_ctx); /* cannot be last */ 11426 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11427 put_task_struct(current); /* cannot be last */ 11428 11429 clone_ctx = unclone_ctx(child_ctx); 11430 raw_spin_unlock_irq(&child_ctx->lock); 11431 11432 if (clone_ctx) 11433 put_ctx(clone_ctx); 11434 11435 /* 11436 * Report the task dead after unscheduling the events so that we 11437 * won't get any samples after PERF_RECORD_EXIT. We can however still 11438 * get a few PERF_RECORD_READ events. 11439 */ 11440 perf_event_task(child, child_ctx, 0); 11441 11442 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11443 perf_event_exit_event(child_event, child_ctx, child); 11444 11445 mutex_unlock(&child_ctx->mutex); 11446 11447 put_ctx(child_ctx); 11448 } 11449 11450 /* 11451 * When a child task exits, feed back event values to parent events. 11452 * 11453 * Can be called with cred_guard_mutex held when called from 11454 * install_exec_creds(). 11455 */ 11456 void perf_event_exit_task(struct task_struct *child) 11457 { 11458 struct perf_event *event, *tmp; 11459 int ctxn; 11460 11461 mutex_lock(&child->perf_event_mutex); 11462 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11463 owner_entry) { 11464 list_del_init(&event->owner_entry); 11465 11466 /* 11467 * Ensure the list deletion is visible before we clear 11468 * the owner, closes a race against perf_release() where 11469 * we need to serialize on the owner->perf_event_mutex. 11470 */ 11471 smp_store_release(&event->owner, NULL); 11472 } 11473 mutex_unlock(&child->perf_event_mutex); 11474 11475 for_each_task_context_nr(ctxn) 11476 perf_event_exit_task_context(child, ctxn); 11477 11478 /* 11479 * The perf_event_exit_task_context calls perf_event_task 11480 * with child's task_ctx, which generates EXIT events for 11481 * child contexts and sets child->perf_event_ctxp[] to NULL. 11482 * At this point we need to send EXIT events to cpu contexts. 11483 */ 11484 perf_event_task(child, NULL, 0); 11485 } 11486 11487 static void perf_free_event(struct perf_event *event, 11488 struct perf_event_context *ctx) 11489 { 11490 struct perf_event *parent = event->parent; 11491 11492 if (WARN_ON_ONCE(!parent)) 11493 return; 11494 11495 mutex_lock(&parent->child_mutex); 11496 list_del_init(&event->child_list); 11497 mutex_unlock(&parent->child_mutex); 11498 11499 put_event(parent); 11500 11501 raw_spin_lock_irq(&ctx->lock); 11502 perf_group_detach(event); 11503 list_del_event(event, ctx); 11504 raw_spin_unlock_irq(&ctx->lock); 11505 free_event(event); 11506 } 11507 11508 /* 11509 * Free an unexposed, unused context as created by inheritance by 11510 * perf_event_init_task below, used by fork() in case of fail. 11511 * 11512 * Not all locks are strictly required, but take them anyway to be nice and 11513 * help out with the lockdep assertions. 11514 */ 11515 void perf_event_free_task(struct task_struct *task) 11516 { 11517 struct perf_event_context *ctx; 11518 struct perf_event *event, *tmp; 11519 int ctxn; 11520 11521 for_each_task_context_nr(ctxn) { 11522 ctx = task->perf_event_ctxp[ctxn]; 11523 if (!ctx) 11524 continue; 11525 11526 mutex_lock(&ctx->mutex); 11527 raw_spin_lock_irq(&ctx->lock); 11528 /* 11529 * Destroy the task <-> ctx relation and mark the context dead. 11530 * 11531 * This is important because even though the task hasn't been 11532 * exposed yet the context has been (through child_list). 11533 */ 11534 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11535 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11536 put_task_struct(task); /* cannot be last */ 11537 raw_spin_unlock_irq(&ctx->lock); 11538 11539 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11540 perf_free_event(event, ctx); 11541 11542 mutex_unlock(&ctx->mutex); 11543 put_ctx(ctx); 11544 } 11545 } 11546 11547 void perf_event_delayed_put(struct task_struct *task) 11548 { 11549 int ctxn; 11550 11551 for_each_task_context_nr(ctxn) 11552 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11553 } 11554 11555 struct file *perf_event_get(unsigned int fd) 11556 { 11557 struct file *file; 11558 11559 file = fget_raw(fd); 11560 if (!file) 11561 return ERR_PTR(-EBADF); 11562 11563 if (file->f_op != &perf_fops) { 11564 fput(file); 11565 return ERR_PTR(-EBADF); 11566 } 11567 11568 return file; 11569 } 11570 11571 const struct perf_event *perf_get_event(struct file *file) 11572 { 11573 if (file->f_op != &perf_fops) 11574 return ERR_PTR(-EINVAL); 11575 11576 return file->private_data; 11577 } 11578 11579 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11580 { 11581 if (!event) 11582 return ERR_PTR(-EINVAL); 11583 11584 return &event->attr; 11585 } 11586 11587 /* 11588 * Inherit an event from parent task to child task. 11589 * 11590 * Returns: 11591 * - valid pointer on success 11592 * - NULL for orphaned events 11593 * - IS_ERR() on error 11594 */ 11595 static struct perf_event * 11596 inherit_event(struct perf_event *parent_event, 11597 struct task_struct *parent, 11598 struct perf_event_context *parent_ctx, 11599 struct task_struct *child, 11600 struct perf_event *group_leader, 11601 struct perf_event_context *child_ctx) 11602 { 11603 enum perf_event_state parent_state = parent_event->state; 11604 struct perf_event *child_event; 11605 unsigned long flags; 11606 11607 /* 11608 * Instead of creating recursive hierarchies of events, 11609 * we link inherited events back to the original parent, 11610 * which has a filp for sure, which we use as the reference 11611 * count: 11612 */ 11613 if (parent_event->parent) 11614 parent_event = parent_event->parent; 11615 11616 child_event = perf_event_alloc(&parent_event->attr, 11617 parent_event->cpu, 11618 child, 11619 group_leader, parent_event, 11620 NULL, NULL, -1); 11621 if (IS_ERR(child_event)) 11622 return child_event; 11623 11624 11625 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11626 !child_ctx->task_ctx_data) { 11627 struct pmu *pmu = child_event->pmu; 11628 11629 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11630 GFP_KERNEL); 11631 if (!child_ctx->task_ctx_data) { 11632 free_event(child_event); 11633 return NULL; 11634 } 11635 } 11636 11637 /* 11638 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11639 * must be under the same lock in order to serialize against 11640 * perf_event_release_kernel(), such that either we must observe 11641 * is_orphaned_event() or they will observe us on the child_list. 11642 */ 11643 mutex_lock(&parent_event->child_mutex); 11644 if (is_orphaned_event(parent_event) || 11645 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11646 mutex_unlock(&parent_event->child_mutex); 11647 /* task_ctx_data is freed with child_ctx */ 11648 free_event(child_event); 11649 return NULL; 11650 } 11651 11652 get_ctx(child_ctx); 11653 11654 /* 11655 * Make the child state follow the state of the parent event, 11656 * not its attr.disabled bit. We hold the parent's mutex, 11657 * so we won't race with perf_event_{en, dis}able_family. 11658 */ 11659 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11660 child_event->state = PERF_EVENT_STATE_INACTIVE; 11661 else 11662 child_event->state = PERF_EVENT_STATE_OFF; 11663 11664 if (parent_event->attr.freq) { 11665 u64 sample_period = parent_event->hw.sample_period; 11666 struct hw_perf_event *hwc = &child_event->hw; 11667 11668 hwc->sample_period = sample_period; 11669 hwc->last_period = sample_period; 11670 11671 local64_set(&hwc->period_left, sample_period); 11672 } 11673 11674 child_event->ctx = child_ctx; 11675 child_event->overflow_handler = parent_event->overflow_handler; 11676 child_event->overflow_handler_context 11677 = parent_event->overflow_handler_context; 11678 11679 /* 11680 * Precalculate sample_data sizes 11681 */ 11682 perf_event__header_size(child_event); 11683 perf_event__id_header_size(child_event); 11684 11685 /* 11686 * Link it up in the child's context: 11687 */ 11688 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11689 add_event_to_ctx(child_event, child_ctx); 11690 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11691 11692 /* 11693 * Link this into the parent event's child list 11694 */ 11695 list_add_tail(&child_event->child_list, &parent_event->child_list); 11696 mutex_unlock(&parent_event->child_mutex); 11697 11698 return child_event; 11699 } 11700 11701 /* 11702 * Inherits an event group. 11703 * 11704 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11705 * This matches with perf_event_release_kernel() removing all child events. 11706 * 11707 * Returns: 11708 * - 0 on success 11709 * - <0 on error 11710 */ 11711 static int inherit_group(struct perf_event *parent_event, 11712 struct task_struct *parent, 11713 struct perf_event_context *parent_ctx, 11714 struct task_struct *child, 11715 struct perf_event_context *child_ctx) 11716 { 11717 struct perf_event *leader; 11718 struct perf_event *sub; 11719 struct perf_event *child_ctr; 11720 11721 leader = inherit_event(parent_event, parent, parent_ctx, 11722 child, NULL, child_ctx); 11723 if (IS_ERR(leader)) 11724 return PTR_ERR(leader); 11725 /* 11726 * @leader can be NULL here because of is_orphaned_event(). In this 11727 * case inherit_event() will create individual events, similar to what 11728 * perf_group_detach() would do anyway. 11729 */ 11730 for_each_sibling_event(sub, parent_event) { 11731 child_ctr = inherit_event(sub, parent, parent_ctx, 11732 child, leader, child_ctx); 11733 if (IS_ERR(child_ctr)) 11734 return PTR_ERR(child_ctr); 11735 } 11736 return 0; 11737 } 11738 11739 /* 11740 * Creates the child task context and tries to inherit the event-group. 11741 * 11742 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11743 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11744 * consistent with perf_event_release_kernel() removing all child events. 11745 * 11746 * Returns: 11747 * - 0 on success 11748 * - <0 on error 11749 */ 11750 static int 11751 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11752 struct perf_event_context *parent_ctx, 11753 struct task_struct *child, int ctxn, 11754 int *inherited_all) 11755 { 11756 int ret; 11757 struct perf_event_context *child_ctx; 11758 11759 if (!event->attr.inherit) { 11760 *inherited_all = 0; 11761 return 0; 11762 } 11763 11764 child_ctx = child->perf_event_ctxp[ctxn]; 11765 if (!child_ctx) { 11766 /* 11767 * This is executed from the parent task context, so 11768 * inherit events that have been marked for cloning. 11769 * First allocate and initialize a context for the 11770 * child. 11771 */ 11772 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11773 if (!child_ctx) 11774 return -ENOMEM; 11775 11776 child->perf_event_ctxp[ctxn] = child_ctx; 11777 } 11778 11779 ret = inherit_group(event, parent, parent_ctx, 11780 child, child_ctx); 11781 11782 if (ret) 11783 *inherited_all = 0; 11784 11785 return ret; 11786 } 11787 11788 /* 11789 * Initialize the perf_event context in task_struct 11790 */ 11791 static int perf_event_init_context(struct task_struct *child, int ctxn) 11792 { 11793 struct perf_event_context *child_ctx, *parent_ctx; 11794 struct perf_event_context *cloned_ctx; 11795 struct perf_event *event; 11796 struct task_struct *parent = current; 11797 int inherited_all = 1; 11798 unsigned long flags; 11799 int ret = 0; 11800 11801 if (likely(!parent->perf_event_ctxp[ctxn])) 11802 return 0; 11803 11804 /* 11805 * If the parent's context is a clone, pin it so it won't get 11806 * swapped under us. 11807 */ 11808 parent_ctx = perf_pin_task_context(parent, ctxn); 11809 if (!parent_ctx) 11810 return 0; 11811 11812 /* 11813 * No need to check if parent_ctx != NULL here; since we saw 11814 * it non-NULL earlier, the only reason for it to become NULL 11815 * is if we exit, and since we're currently in the middle of 11816 * a fork we can't be exiting at the same time. 11817 */ 11818 11819 /* 11820 * Lock the parent list. No need to lock the child - not PID 11821 * hashed yet and not running, so nobody can access it. 11822 */ 11823 mutex_lock(&parent_ctx->mutex); 11824 11825 /* 11826 * We dont have to disable NMIs - we are only looking at 11827 * the list, not manipulating it: 11828 */ 11829 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11830 ret = inherit_task_group(event, parent, parent_ctx, 11831 child, ctxn, &inherited_all); 11832 if (ret) 11833 goto out_unlock; 11834 } 11835 11836 /* 11837 * We can't hold ctx->lock when iterating the ->flexible_group list due 11838 * to allocations, but we need to prevent rotation because 11839 * rotate_ctx() will change the list from interrupt context. 11840 */ 11841 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11842 parent_ctx->rotate_disable = 1; 11843 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11844 11845 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11846 ret = inherit_task_group(event, parent, parent_ctx, 11847 child, ctxn, &inherited_all); 11848 if (ret) 11849 goto out_unlock; 11850 } 11851 11852 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11853 parent_ctx->rotate_disable = 0; 11854 11855 child_ctx = child->perf_event_ctxp[ctxn]; 11856 11857 if (child_ctx && inherited_all) { 11858 /* 11859 * Mark the child context as a clone of the parent 11860 * context, or of whatever the parent is a clone of. 11861 * 11862 * Note that if the parent is a clone, the holding of 11863 * parent_ctx->lock avoids it from being uncloned. 11864 */ 11865 cloned_ctx = parent_ctx->parent_ctx; 11866 if (cloned_ctx) { 11867 child_ctx->parent_ctx = cloned_ctx; 11868 child_ctx->parent_gen = parent_ctx->parent_gen; 11869 } else { 11870 child_ctx->parent_ctx = parent_ctx; 11871 child_ctx->parent_gen = parent_ctx->generation; 11872 } 11873 get_ctx(child_ctx->parent_ctx); 11874 } 11875 11876 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11877 out_unlock: 11878 mutex_unlock(&parent_ctx->mutex); 11879 11880 perf_unpin_context(parent_ctx); 11881 put_ctx(parent_ctx); 11882 11883 return ret; 11884 } 11885 11886 /* 11887 * Initialize the perf_event context in task_struct 11888 */ 11889 int perf_event_init_task(struct task_struct *child) 11890 { 11891 int ctxn, ret; 11892 11893 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11894 mutex_init(&child->perf_event_mutex); 11895 INIT_LIST_HEAD(&child->perf_event_list); 11896 11897 for_each_task_context_nr(ctxn) { 11898 ret = perf_event_init_context(child, ctxn); 11899 if (ret) { 11900 perf_event_free_task(child); 11901 return ret; 11902 } 11903 } 11904 11905 return 0; 11906 } 11907 11908 static void __init perf_event_init_all_cpus(void) 11909 { 11910 struct swevent_htable *swhash; 11911 int cpu; 11912 11913 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11914 11915 for_each_possible_cpu(cpu) { 11916 swhash = &per_cpu(swevent_htable, cpu); 11917 mutex_init(&swhash->hlist_mutex); 11918 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11919 11920 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11921 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11922 11923 #ifdef CONFIG_CGROUP_PERF 11924 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11925 #endif 11926 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11927 } 11928 } 11929 11930 static void perf_swevent_init_cpu(unsigned int cpu) 11931 { 11932 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11933 11934 mutex_lock(&swhash->hlist_mutex); 11935 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11936 struct swevent_hlist *hlist; 11937 11938 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11939 WARN_ON(!hlist); 11940 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11941 } 11942 mutex_unlock(&swhash->hlist_mutex); 11943 } 11944 11945 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11946 static void __perf_event_exit_context(void *__info) 11947 { 11948 struct perf_event_context *ctx = __info; 11949 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11950 struct perf_event *event; 11951 11952 raw_spin_lock(&ctx->lock); 11953 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11954 list_for_each_entry(event, &ctx->event_list, event_entry) 11955 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11956 raw_spin_unlock(&ctx->lock); 11957 } 11958 11959 static void perf_event_exit_cpu_context(int cpu) 11960 { 11961 struct perf_cpu_context *cpuctx; 11962 struct perf_event_context *ctx; 11963 struct pmu *pmu; 11964 11965 mutex_lock(&pmus_lock); 11966 list_for_each_entry(pmu, &pmus, entry) { 11967 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11968 ctx = &cpuctx->ctx; 11969 11970 mutex_lock(&ctx->mutex); 11971 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11972 cpuctx->online = 0; 11973 mutex_unlock(&ctx->mutex); 11974 } 11975 cpumask_clear_cpu(cpu, perf_online_mask); 11976 mutex_unlock(&pmus_lock); 11977 } 11978 #else 11979 11980 static void perf_event_exit_cpu_context(int cpu) { } 11981 11982 #endif 11983 11984 int perf_event_init_cpu(unsigned int cpu) 11985 { 11986 struct perf_cpu_context *cpuctx; 11987 struct perf_event_context *ctx; 11988 struct pmu *pmu; 11989 11990 perf_swevent_init_cpu(cpu); 11991 11992 mutex_lock(&pmus_lock); 11993 cpumask_set_cpu(cpu, perf_online_mask); 11994 list_for_each_entry(pmu, &pmus, entry) { 11995 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11996 ctx = &cpuctx->ctx; 11997 11998 mutex_lock(&ctx->mutex); 11999 cpuctx->online = 1; 12000 mutex_unlock(&ctx->mutex); 12001 } 12002 mutex_unlock(&pmus_lock); 12003 12004 return 0; 12005 } 12006 12007 int perf_event_exit_cpu(unsigned int cpu) 12008 { 12009 perf_event_exit_cpu_context(cpu); 12010 return 0; 12011 } 12012 12013 static int 12014 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12015 { 12016 int cpu; 12017 12018 for_each_online_cpu(cpu) 12019 perf_event_exit_cpu(cpu); 12020 12021 return NOTIFY_OK; 12022 } 12023 12024 /* 12025 * Run the perf reboot notifier at the very last possible moment so that 12026 * the generic watchdog code runs as long as possible. 12027 */ 12028 static struct notifier_block perf_reboot_notifier = { 12029 .notifier_call = perf_reboot, 12030 .priority = INT_MIN, 12031 }; 12032 12033 void __init perf_event_init(void) 12034 { 12035 int ret; 12036 12037 idr_init(&pmu_idr); 12038 12039 perf_event_init_all_cpus(); 12040 init_srcu_struct(&pmus_srcu); 12041 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12042 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12043 perf_pmu_register(&perf_task_clock, NULL, -1); 12044 perf_tp_register(); 12045 perf_event_init_cpu(smp_processor_id()); 12046 register_reboot_notifier(&perf_reboot_notifier); 12047 12048 ret = init_hw_breakpoint(); 12049 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12050 12051 /* 12052 * Build time assertion that we keep the data_head at the intended 12053 * location. IOW, validation we got the __reserved[] size right. 12054 */ 12055 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12056 != 1024); 12057 } 12058 12059 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12060 char *page) 12061 { 12062 struct perf_pmu_events_attr *pmu_attr = 12063 container_of(attr, struct perf_pmu_events_attr, attr); 12064 12065 if (pmu_attr->event_str) 12066 return sprintf(page, "%s\n", pmu_attr->event_str); 12067 12068 return 0; 12069 } 12070 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12071 12072 static int __init perf_event_sysfs_init(void) 12073 { 12074 struct pmu *pmu; 12075 int ret; 12076 12077 mutex_lock(&pmus_lock); 12078 12079 ret = bus_register(&pmu_bus); 12080 if (ret) 12081 goto unlock; 12082 12083 list_for_each_entry(pmu, &pmus, entry) { 12084 if (!pmu->name || pmu->type < 0) 12085 continue; 12086 12087 ret = pmu_dev_alloc(pmu); 12088 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12089 } 12090 pmu_bus_running = 1; 12091 ret = 0; 12092 12093 unlock: 12094 mutex_unlock(&pmus_lock); 12095 12096 return ret; 12097 } 12098 device_initcall(perf_event_sysfs_init); 12099 12100 #ifdef CONFIG_CGROUP_PERF 12101 static struct cgroup_subsys_state * 12102 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12103 { 12104 struct perf_cgroup *jc; 12105 12106 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12107 if (!jc) 12108 return ERR_PTR(-ENOMEM); 12109 12110 jc->info = alloc_percpu(struct perf_cgroup_info); 12111 if (!jc->info) { 12112 kfree(jc); 12113 return ERR_PTR(-ENOMEM); 12114 } 12115 12116 return &jc->css; 12117 } 12118 12119 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12120 { 12121 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12122 12123 free_percpu(jc->info); 12124 kfree(jc); 12125 } 12126 12127 static int __perf_cgroup_move(void *info) 12128 { 12129 struct task_struct *task = info; 12130 rcu_read_lock(); 12131 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12132 rcu_read_unlock(); 12133 return 0; 12134 } 12135 12136 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12137 { 12138 struct task_struct *task; 12139 struct cgroup_subsys_state *css; 12140 12141 cgroup_taskset_for_each(task, css, tset) 12142 task_function_call(task, __perf_cgroup_move, task); 12143 } 12144 12145 struct cgroup_subsys perf_event_cgrp_subsys = { 12146 .css_alloc = perf_cgroup_css_alloc, 12147 .css_free = perf_cgroup_css_free, 12148 .attach = perf_cgroup_attach, 12149 /* 12150 * Implicitly enable on dfl hierarchy so that perf events can 12151 * always be filtered by cgroup2 path as long as perf_event 12152 * controller is not mounted on a legacy hierarchy. 12153 */ 12154 .implicit_on_dfl = true, 12155 .threaded = true, 12156 }; 12157 #endif /* CONFIG_CGROUP_PERF */ 12158