xref: /linux/kernel/events/core.c (revision b45d5511aa9029264740e2353ad7faf3cd444703)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 static atomic_t nr_ksymbol_events __read_mostly;
389 static atomic_t nr_bpf_events __read_mostly;
390 
391 static LIST_HEAD(pmus);
392 static DEFINE_MUTEX(pmus_lock);
393 static struct srcu_struct pmus_srcu;
394 static cpumask_var_t perf_online_mask;
395 
396 /*
397  * perf event paranoia level:
398  *  -1 - not paranoid at all
399  *   0 - disallow raw tracepoint access for unpriv
400  *   1 - disallow cpu events for unpriv
401  *   2 - disallow kernel profiling for unpriv
402  */
403 int sysctl_perf_event_paranoid __read_mostly = 2;
404 
405 /* Minimum for 512 kiB + 1 user control page */
406 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 
408 /*
409  * max perf event sample rate
410  */
411 #define DEFAULT_MAX_SAMPLE_RATE		100000
412 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
413 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
414 
415 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
416 
417 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
418 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
419 
420 static int perf_sample_allowed_ns __read_mostly =
421 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
422 
423 static void update_perf_cpu_limits(void)
424 {
425 	u64 tmp = perf_sample_period_ns;
426 
427 	tmp *= sysctl_perf_cpu_time_max_percent;
428 	tmp = div_u64(tmp, 100);
429 	if (!tmp)
430 		tmp = 1;
431 
432 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 }
434 
435 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
436 
437 int perf_proc_update_handler(struct ctl_table *table, int write,
438 		void __user *buffer, size_t *lenp,
439 		loff_t *ppos)
440 {
441 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
442 
443 	if (ret || !write)
444 		return ret;
445 
446 	/*
447 	 * If throttling is disabled don't allow the write:
448 	 */
449 	if (sysctl_perf_cpu_time_max_percent == 100 ||
450 	    sysctl_perf_cpu_time_max_percent == 0)
451 		return -EINVAL;
452 
453 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
454 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
455 	update_perf_cpu_limits();
456 
457 	return 0;
458 }
459 
460 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461 
462 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
463 				void __user *buffer, size_t *lenp,
464 				loff_t *ppos)
465 {
466 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
467 
468 	if (ret || !write)
469 		return ret;
470 
471 	if (sysctl_perf_cpu_time_max_percent == 100 ||
472 	    sysctl_perf_cpu_time_max_percent == 0) {
473 		printk(KERN_WARNING
474 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
475 		WRITE_ONCE(perf_sample_allowed_ns, 0);
476 	} else {
477 		update_perf_cpu_limits();
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * perf samples are done in some very critical code paths (NMIs).
485  * If they take too much CPU time, the system can lock up and not
486  * get any real work done.  This will drop the sample rate when
487  * we detect that events are taking too long.
488  */
489 #define NR_ACCUMULATED_SAMPLES 128
490 static DEFINE_PER_CPU(u64, running_sample_length);
491 
492 static u64 __report_avg;
493 static u64 __report_allowed;
494 
495 static void perf_duration_warn(struct irq_work *w)
496 {
497 	printk_ratelimited(KERN_INFO
498 		"perf: interrupt took too long (%lld > %lld), lowering "
499 		"kernel.perf_event_max_sample_rate to %d\n",
500 		__report_avg, __report_allowed,
501 		sysctl_perf_event_sample_rate);
502 }
503 
504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505 
506 void perf_sample_event_took(u64 sample_len_ns)
507 {
508 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
509 	u64 running_len;
510 	u64 avg_len;
511 	u32 max;
512 
513 	if (max_len == 0)
514 		return;
515 
516 	/* Decay the counter by 1 average sample. */
517 	running_len = __this_cpu_read(running_sample_length);
518 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
519 	running_len += sample_len_ns;
520 	__this_cpu_write(running_sample_length, running_len);
521 
522 	/*
523 	 * Note: this will be biased artifically low until we have
524 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
525 	 * from having to maintain a count.
526 	 */
527 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
528 	if (avg_len <= max_len)
529 		return;
530 
531 	__report_avg = avg_len;
532 	__report_allowed = max_len;
533 
534 	/*
535 	 * Compute a throttle threshold 25% below the current duration.
536 	 */
537 	avg_len += avg_len / 4;
538 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
539 	if (avg_len < max)
540 		max /= (u32)avg_len;
541 	else
542 		max = 1;
543 
544 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
545 	WRITE_ONCE(max_samples_per_tick, max);
546 
547 	sysctl_perf_event_sample_rate = max * HZ;
548 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
549 
550 	if (!irq_work_queue(&perf_duration_work)) {
551 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
552 			     "kernel.perf_event_max_sample_rate to %d\n",
553 			     __report_avg, __report_allowed,
554 			     sysctl_perf_event_sample_rate);
555 	}
556 }
557 
558 static atomic64_t perf_event_id;
559 
560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
561 			      enum event_type_t event_type);
562 
563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
564 			     enum event_type_t event_type,
565 			     struct task_struct *task);
566 
567 static void update_context_time(struct perf_event_context *ctx);
568 static u64 perf_event_time(struct perf_event *event);
569 
570 void __weak perf_event_print_debug(void)	{ }
571 
572 extern __weak const char *perf_pmu_name(void)
573 {
574 	return "pmu";
575 }
576 
577 static inline u64 perf_clock(void)
578 {
579 	return local_clock();
580 }
581 
582 static inline u64 perf_event_clock(struct perf_event *event)
583 {
584 	return event->clock();
585 }
586 
587 /*
588  * State based event timekeeping...
589  *
590  * The basic idea is to use event->state to determine which (if any) time
591  * fields to increment with the current delta. This means we only need to
592  * update timestamps when we change state or when they are explicitly requested
593  * (read).
594  *
595  * Event groups make things a little more complicated, but not terribly so. The
596  * rules for a group are that if the group leader is OFF the entire group is
597  * OFF, irrespecive of what the group member states are. This results in
598  * __perf_effective_state().
599  *
600  * A futher ramification is that when a group leader flips between OFF and
601  * !OFF, we need to update all group member times.
602  *
603  *
604  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
605  * need to make sure the relevant context time is updated before we try and
606  * update our timestamps.
607  */
608 
609 static __always_inline enum perf_event_state
610 __perf_effective_state(struct perf_event *event)
611 {
612 	struct perf_event *leader = event->group_leader;
613 
614 	if (leader->state <= PERF_EVENT_STATE_OFF)
615 		return leader->state;
616 
617 	return event->state;
618 }
619 
620 static __always_inline void
621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622 {
623 	enum perf_event_state state = __perf_effective_state(event);
624 	u64 delta = now - event->tstamp;
625 
626 	*enabled = event->total_time_enabled;
627 	if (state >= PERF_EVENT_STATE_INACTIVE)
628 		*enabled += delta;
629 
630 	*running = event->total_time_running;
631 	if (state >= PERF_EVENT_STATE_ACTIVE)
632 		*running += delta;
633 }
634 
635 static void perf_event_update_time(struct perf_event *event)
636 {
637 	u64 now = perf_event_time(event);
638 
639 	__perf_update_times(event, now, &event->total_time_enabled,
640 					&event->total_time_running);
641 	event->tstamp = now;
642 }
643 
644 static void perf_event_update_sibling_time(struct perf_event *leader)
645 {
646 	struct perf_event *sibling;
647 
648 	for_each_sibling_event(sibling, leader)
649 		perf_event_update_time(sibling);
650 }
651 
652 static void
653 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654 {
655 	if (event->state == state)
656 		return;
657 
658 	perf_event_update_time(event);
659 	/*
660 	 * If a group leader gets enabled/disabled all its siblings
661 	 * are affected too.
662 	 */
663 	if ((event->state < 0) ^ (state < 0))
664 		perf_event_update_sibling_time(event);
665 
666 	WRITE_ONCE(event->state, state);
667 }
668 
669 #ifdef CONFIG_CGROUP_PERF
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	struct perf_event_context *ctx = event->ctx;
675 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676 
677 	/* @event doesn't care about cgroup */
678 	if (!event->cgrp)
679 		return true;
680 
681 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
682 	if (!cpuctx->cgrp)
683 		return false;
684 
685 	/*
686 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
687 	 * also enabled for all its descendant cgroups.  If @cpuctx's
688 	 * cgroup is a descendant of @event's (the test covers identity
689 	 * case), it's a match.
690 	 */
691 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
692 				    event->cgrp->css.cgroup);
693 }
694 
695 static inline void perf_detach_cgroup(struct perf_event *event)
696 {
697 	css_put(&event->cgrp->css);
698 	event->cgrp = NULL;
699 }
700 
701 static inline int is_cgroup_event(struct perf_event *event)
702 {
703 	return event->cgrp != NULL;
704 }
705 
706 static inline u64 perf_cgroup_event_time(struct perf_event *event)
707 {
708 	struct perf_cgroup_info *t;
709 
710 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
711 	return t->time;
712 }
713 
714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715 {
716 	struct perf_cgroup_info *info;
717 	u64 now;
718 
719 	now = perf_clock();
720 
721 	info = this_cpu_ptr(cgrp->info);
722 
723 	info->time += now - info->timestamp;
724 	info->timestamp = now;
725 }
726 
727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728 {
729 	struct perf_cgroup *cgrp = cpuctx->cgrp;
730 	struct cgroup_subsys_state *css;
731 
732 	if (cgrp) {
733 		for (css = &cgrp->css; css; css = css->parent) {
734 			cgrp = container_of(css, struct perf_cgroup, css);
735 			__update_cgrp_time(cgrp);
736 		}
737 	}
738 }
739 
740 static inline void update_cgrp_time_from_event(struct perf_event *event)
741 {
742 	struct perf_cgroup *cgrp;
743 
744 	/*
745 	 * ensure we access cgroup data only when needed and
746 	 * when we know the cgroup is pinned (css_get)
747 	 */
748 	if (!is_cgroup_event(event))
749 		return;
750 
751 	cgrp = perf_cgroup_from_task(current, event->ctx);
752 	/*
753 	 * Do not update time when cgroup is not active
754 	 */
755 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
756 		__update_cgrp_time(event->cgrp);
757 }
758 
759 static inline void
760 perf_cgroup_set_timestamp(struct task_struct *task,
761 			  struct perf_event_context *ctx)
762 {
763 	struct perf_cgroup *cgrp;
764 	struct perf_cgroup_info *info;
765 	struct cgroup_subsys_state *css;
766 
767 	/*
768 	 * ctx->lock held by caller
769 	 * ensure we do not access cgroup data
770 	 * unless we have the cgroup pinned (css_get)
771 	 */
772 	if (!task || !ctx->nr_cgroups)
773 		return;
774 
775 	cgrp = perf_cgroup_from_task(task, ctx);
776 
777 	for (css = &cgrp->css; css; css = css->parent) {
778 		cgrp = container_of(css, struct perf_cgroup, css);
779 		info = this_cpu_ptr(cgrp->info);
780 		info->timestamp = ctx->timestamp;
781 	}
782 }
783 
784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785 
786 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
787 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
788 
789 /*
790  * reschedule events based on the cgroup constraint of task.
791  *
792  * mode SWOUT : schedule out everything
793  * mode SWIN : schedule in based on cgroup for next
794  */
795 static void perf_cgroup_switch(struct task_struct *task, int mode)
796 {
797 	struct perf_cpu_context *cpuctx;
798 	struct list_head *list;
799 	unsigned long flags;
800 
801 	/*
802 	 * Disable interrupts and preemption to avoid this CPU's
803 	 * cgrp_cpuctx_entry to change under us.
804 	 */
805 	local_irq_save(flags);
806 
807 	list = this_cpu_ptr(&cgrp_cpuctx_list);
808 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
809 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
810 
811 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
812 		perf_pmu_disable(cpuctx->ctx.pmu);
813 
814 		if (mode & PERF_CGROUP_SWOUT) {
815 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816 			/*
817 			 * must not be done before ctxswout due
818 			 * to event_filter_match() in event_sched_out()
819 			 */
820 			cpuctx->cgrp = NULL;
821 		}
822 
823 		if (mode & PERF_CGROUP_SWIN) {
824 			WARN_ON_ONCE(cpuctx->cgrp);
825 			/*
826 			 * set cgrp before ctxsw in to allow
827 			 * event_filter_match() to not have to pass
828 			 * task around
829 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
830 			 * because cgorup events are only per-cpu
831 			 */
832 			cpuctx->cgrp = perf_cgroup_from_task(task,
833 							     &cpuctx->ctx);
834 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
835 		}
836 		perf_pmu_enable(cpuctx->ctx.pmu);
837 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
838 	}
839 
840 	local_irq_restore(flags);
841 }
842 
843 static inline void perf_cgroup_sched_out(struct task_struct *task,
844 					 struct task_struct *next)
845 {
846 	struct perf_cgroup *cgrp1;
847 	struct perf_cgroup *cgrp2 = NULL;
848 
849 	rcu_read_lock();
850 	/*
851 	 * we come here when we know perf_cgroup_events > 0
852 	 * we do not need to pass the ctx here because we know
853 	 * we are holding the rcu lock
854 	 */
855 	cgrp1 = perf_cgroup_from_task(task, NULL);
856 	cgrp2 = perf_cgroup_from_task(next, NULL);
857 
858 	/*
859 	 * only schedule out current cgroup events if we know
860 	 * that we are switching to a different cgroup. Otherwise,
861 	 * do no touch the cgroup events.
862 	 */
863 	if (cgrp1 != cgrp2)
864 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
865 
866 	rcu_read_unlock();
867 }
868 
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 					struct task_struct *task)
871 {
872 	struct perf_cgroup *cgrp1;
873 	struct perf_cgroup *cgrp2 = NULL;
874 
875 	rcu_read_lock();
876 	/*
877 	 * we come here when we know perf_cgroup_events > 0
878 	 * we do not need to pass the ctx here because we know
879 	 * we are holding the rcu lock
880 	 */
881 	cgrp1 = perf_cgroup_from_task(task, NULL);
882 	cgrp2 = perf_cgroup_from_task(prev, NULL);
883 
884 	/*
885 	 * only need to schedule in cgroup events if we are changing
886 	 * cgroup during ctxsw. Cgroup events were not scheduled
887 	 * out of ctxsw out if that was not the case.
888 	 */
889 	if (cgrp1 != cgrp2)
890 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
891 
892 	rcu_read_unlock();
893 }
894 
895 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
896 				      struct perf_event_attr *attr,
897 				      struct perf_event *group_leader)
898 {
899 	struct perf_cgroup *cgrp;
900 	struct cgroup_subsys_state *css;
901 	struct fd f = fdget(fd);
902 	int ret = 0;
903 
904 	if (!f.file)
905 		return -EBADF;
906 
907 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
908 					 &perf_event_cgrp_subsys);
909 	if (IS_ERR(css)) {
910 		ret = PTR_ERR(css);
911 		goto out;
912 	}
913 
914 	cgrp = container_of(css, struct perf_cgroup, css);
915 	event->cgrp = cgrp;
916 
917 	/*
918 	 * all events in a group must monitor
919 	 * the same cgroup because a task belongs
920 	 * to only one perf cgroup at a time
921 	 */
922 	if (group_leader && group_leader->cgrp != cgrp) {
923 		perf_detach_cgroup(event);
924 		ret = -EINVAL;
925 	}
926 out:
927 	fdput(f);
928 	return ret;
929 }
930 
931 static inline void
932 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
933 {
934 	struct perf_cgroup_info *t;
935 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
936 	event->shadow_ctx_time = now - t->timestamp;
937 }
938 
939 /*
940  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
941  * cleared when last cgroup event is removed.
942  */
943 static inline void
944 list_update_cgroup_event(struct perf_event *event,
945 			 struct perf_event_context *ctx, bool add)
946 {
947 	struct perf_cpu_context *cpuctx;
948 	struct list_head *cpuctx_entry;
949 
950 	if (!is_cgroup_event(event))
951 		return;
952 
953 	/*
954 	 * Because cgroup events are always per-cpu events,
955 	 * this will always be called from the right CPU.
956 	 */
957 	cpuctx = __get_cpu_context(ctx);
958 
959 	/*
960 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
961 	 * matching the event's cgroup, we must do this for every new event,
962 	 * because if the first would mismatch, the second would not try again
963 	 * and we would leave cpuctx->cgrp unset.
964 	 */
965 	if (add && !cpuctx->cgrp) {
966 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
967 
968 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
969 			cpuctx->cgrp = cgrp;
970 	}
971 
972 	if (add && ctx->nr_cgroups++)
973 		return;
974 	else if (!add && --ctx->nr_cgroups)
975 		return;
976 
977 	/* no cgroup running */
978 	if (!add)
979 		cpuctx->cgrp = NULL;
980 
981 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
982 	if (add)
983 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
984 	else
985 		list_del(cpuctx_entry);
986 }
987 
988 #else /* !CONFIG_CGROUP_PERF */
989 
990 static inline bool
991 perf_cgroup_match(struct perf_event *event)
992 {
993 	return true;
994 }
995 
996 static inline void perf_detach_cgroup(struct perf_event *event)
997 {}
998 
999 static inline int is_cgroup_event(struct perf_event *event)
1000 {
1001 	return 0;
1002 }
1003 
1004 static inline void update_cgrp_time_from_event(struct perf_event *event)
1005 {
1006 }
1007 
1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1009 {
1010 }
1011 
1012 static inline void perf_cgroup_sched_out(struct task_struct *task,
1013 					 struct task_struct *next)
1014 {
1015 }
1016 
1017 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1018 					struct task_struct *task)
1019 {
1020 }
1021 
1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1023 				      struct perf_event_attr *attr,
1024 				      struct perf_event *group_leader)
1025 {
1026 	return -EINVAL;
1027 }
1028 
1029 static inline void
1030 perf_cgroup_set_timestamp(struct task_struct *task,
1031 			  struct perf_event_context *ctx)
1032 {
1033 }
1034 
1035 void
1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1037 {
1038 }
1039 
1040 static inline void
1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1042 {
1043 }
1044 
1045 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1046 {
1047 	return 0;
1048 }
1049 
1050 static inline void
1051 list_update_cgroup_event(struct perf_event *event,
1052 			 struct perf_event_context *ctx, bool add)
1053 {
1054 }
1055 
1056 #endif
1057 
1058 /*
1059  * set default to be dependent on timer tick just
1060  * like original code
1061  */
1062 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 /*
1064  * function must be called with interrupts disabled
1065  */
1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1067 {
1068 	struct perf_cpu_context *cpuctx;
1069 	bool rotations;
1070 
1071 	lockdep_assert_irqs_disabled();
1072 
1073 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1074 	rotations = perf_rotate_context(cpuctx);
1075 
1076 	raw_spin_lock(&cpuctx->hrtimer_lock);
1077 	if (rotations)
1078 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1079 	else
1080 		cpuctx->hrtimer_active = 0;
1081 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1082 
1083 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 }
1085 
1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	u64 interval;
1091 
1092 	/* no multiplexing needed for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return;
1095 
1096 	/*
1097 	 * check default is sane, if not set then force to
1098 	 * default interval (1/tick)
1099 	 */
1100 	interval = pmu->hrtimer_interval_ms;
1101 	if (interval < 1)
1102 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103 
1104 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105 
1106 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1107 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1108 	timer->function = perf_mux_hrtimer_handler;
1109 }
1110 
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1112 {
1113 	struct hrtimer *timer = &cpuctx->hrtimer;
1114 	struct pmu *pmu = cpuctx->ctx.pmu;
1115 	unsigned long flags;
1116 
1117 	/* not for SW PMU */
1118 	if (pmu->task_ctx_nr == perf_sw_context)
1119 		return 0;
1120 
1121 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1122 	if (!cpuctx->hrtimer_active) {
1123 		cpuctx->hrtimer_active = 1;
1124 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1125 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1126 	}
1127 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1128 
1129 	return 0;
1130 }
1131 
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135 	if (!(*count)++)
1136 		pmu->pmu_disable(pmu);
1137 }
1138 
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142 	if (!--(*count))
1143 		pmu->pmu_enable(pmu);
1144 }
1145 
1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147 
1148 /*
1149  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1150  * perf_event_task_tick() are fully serialized because they're strictly cpu
1151  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1152  * disabled, while perf_event_task_tick is called from IRQ context.
1153  */
1154 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1155 {
1156 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1157 
1158 	lockdep_assert_irqs_disabled();
1159 
1160 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1161 
1162 	list_add(&ctx->active_ctx_list, head);
1163 }
1164 
1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166 {
1167 	lockdep_assert_irqs_disabled();
1168 
1169 	WARN_ON(list_empty(&ctx->active_ctx_list));
1170 
1171 	list_del_init(&ctx->active_ctx_list);
1172 }
1173 
1174 static void get_ctx(struct perf_event_context *ctx)
1175 {
1176 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1177 }
1178 
1179 static void free_ctx(struct rcu_head *head)
1180 {
1181 	struct perf_event_context *ctx;
1182 
1183 	ctx = container_of(head, struct perf_event_context, rcu_head);
1184 	kfree(ctx->task_ctx_data);
1185 	kfree(ctx);
1186 }
1187 
1188 static void put_ctx(struct perf_event_context *ctx)
1189 {
1190 	if (atomic_dec_and_test(&ctx->refcount)) {
1191 		if (ctx->parent_ctx)
1192 			put_ctx(ctx->parent_ctx);
1193 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1194 			put_task_struct(ctx->task);
1195 		call_rcu(&ctx->rcu_head, free_ctx);
1196 	}
1197 }
1198 
1199 /*
1200  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1201  * perf_pmu_migrate_context() we need some magic.
1202  *
1203  * Those places that change perf_event::ctx will hold both
1204  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205  *
1206  * Lock ordering is by mutex address. There are two other sites where
1207  * perf_event_context::mutex nests and those are:
1208  *
1209  *  - perf_event_exit_task_context()	[ child , 0 ]
1210  *      perf_event_exit_event()
1211  *        put_event()			[ parent, 1 ]
1212  *
1213  *  - perf_event_init_context()		[ parent, 0 ]
1214  *      inherit_task_group()
1215  *        inherit_group()
1216  *          inherit_event()
1217  *            perf_event_alloc()
1218  *              perf_init_event()
1219  *                perf_try_init_event()	[ child , 1 ]
1220  *
1221  * While it appears there is an obvious deadlock here -- the parent and child
1222  * nesting levels are inverted between the two. This is in fact safe because
1223  * life-time rules separate them. That is an exiting task cannot fork, and a
1224  * spawning task cannot (yet) exit.
1225  *
1226  * But remember that that these are parent<->child context relations, and
1227  * migration does not affect children, therefore these two orderings should not
1228  * interact.
1229  *
1230  * The change in perf_event::ctx does not affect children (as claimed above)
1231  * because the sys_perf_event_open() case will install a new event and break
1232  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1233  * concerned with cpuctx and that doesn't have children.
1234  *
1235  * The places that change perf_event::ctx will issue:
1236  *
1237  *   perf_remove_from_context();
1238  *   synchronize_rcu();
1239  *   perf_install_in_context();
1240  *
1241  * to affect the change. The remove_from_context() + synchronize_rcu() should
1242  * quiesce the event, after which we can install it in the new location. This
1243  * means that only external vectors (perf_fops, prctl) can perturb the event
1244  * while in transit. Therefore all such accessors should also acquire
1245  * perf_event_context::mutex to serialize against this.
1246  *
1247  * However; because event->ctx can change while we're waiting to acquire
1248  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1249  * function.
1250  *
1251  * Lock order:
1252  *    cred_guard_mutex
1253  *	task_struct::perf_event_mutex
1254  *	  perf_event_context::mutex
1255  *	    perf_event::child_mutex;
1256  *	      perf_event_context::lock
1257  *	    perf_event::mmap_mutex
1258  *	    mmap_sem
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !atomic_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892 	struct perf_event *sibling, *tmp;
1893 	struct perf_event_context *ctx = event->ctx;
1894 
1895 	lockdep_assert_held(&ctx->lock);
1896 
1897 	/*
1898 	 * We can have double detach due to exit/hot-unplug + close.
1899 	 */
1900 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 		return;
1902 
1903 	event->attach_state &= ~PERF_ATTACH_GROUP;
1904 
1905 	/*
1906 	 * If this is a sibling, remove it from its group.
1907 	 */
1908 	if (event->group_leader != event) {
1909 		list_del_init(&event->sibling_list);
1910 		event->group_leader->nr_siblings--;
1911 		goto out;
1912 	}
1913 
1914 	/*
1915 	 * If this was a group event with sibling events then
1916 	 * upgrade the siblings to singleton events by adding them
1917 	 * to whatever list we are on.
1918 	 */
1919 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920 
1921 		sibling->group_leader = sibling;
1922 		list_del_init(&sibling->sibling_list);
1923 
1924 		/* Inherit group flags from the previous leader */
1925 		sibling->group_caps = event->group_caps;
1926 
1927 		if (!RB_EMPTY_NODE(&event->group_node)) {
1928 			add_event_to_groups(sibling, event->ctx);
1929 
1930 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 				struct list_head *list = sibling->attr.pinned ?
1932 					&ctx->pinned_active : &ctx->flexible_active;
1933 
1934 				list_add_tail(&sibling->active_list, list);
1935 			}
1936 		}
1937 
1938 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 	}
1940 
1941 out:
1942 	perf_event__header_size(event->group_leader);
1943 
1944 	for_each_sibling_event(tmp, event->group_leader)
1945 		perf_event__header_size(tmp);
1946 }
1947 
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950 	return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952 
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955 	struct pmu *pmu = event->pmu;
1956 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958 
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967 	struct perf_event *sibling;
1968 
1969 	if (!__pmu_filter_match(event))
1970 		return 0;
1971 
1972 	for_each_sibling_event(sibling, event) {
1973 		if (!__pmu_filter_match(sibling))
1974 			return 0;
1975 	}
1976 
1977 	return 1;
1978 }
1979 
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 	       perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986 
1987 static void
1988 event_sched_out(struct perf_event *event,
1989 		  struct perf_cpu_context *cpuctx,
1990 		  struct perf_event_context *ctx)
1991 {
1992 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993 
1994 	WARN_ON_ONCE(event->ctx != ctx);
1995 	lockdep_assert_held(&ctx->lock);
1996 
1997 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1998 		return;
1999 
2000 	/*
2001 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 	 * we can schedule events _OUT_ individually through things like
2003 	 * __perf_remove_from_context().
2004 	 */
2005 	list_del_init(&event->active_list);
2006 
2007 	perf_pmu_disable(event->pmu);
2008 
2009 	event->pmu->del(event, 0);
2010 	event->oncpu = -1;
2011 
2012 	if (event->pending_disable) {
2013 		event->pending_disable = 0;
2014 		state = PERF_EVENT_STATE_OFF;
2015 	}
2016 	perf_event_set_state(event, state);
2017 
2018 	if (!is_software_event(event))
2019 		cpuctx->active_oncpu--;
2020 	if (!--ctx->nr_active)
2021 		perf_event_ctx_deactivate(ctx);
2022 	if (event->attr.freq && event->attr.sample_freq)
2023 		ctx->nr_freq--;
2024 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 		cpuctx->exclusive = 0;
2026 
2027 	perf_pmu_enable(event->pmu);
2028 }
2029 
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032 		struct perf_cpu_context *cpuctx,
2033 		struct perf_event_context *ctx)
2034 {
2035 	struct perf_event *event;
2036 
2037 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 		return;
2039 
2040 	perf_pmu_disable(ctx->pmu);
2041 
2042 	event_sched_out(group_event, cpuctx, ctx);
2043 
2044 	/*
2045 	 * Schedule out siblings (if any):
2046 	 */
2047 	for_each_sibling_event(event, group_event)
2048 		event_sched_out(event, cpuctx, ctx);
2049 
2050 	perf_pmu_enable(ctx->pmu);
2051 
2052 	if (group_event->attr.exclusive)
2053 		cpuctx->exclusive = 0;
2054 }
2055 
2056 #define DETACH_GROUP	0x01UL
2057 
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066 			   struct perf_cpu_context *cpuctx,
2067 			   struct perf_event_context *ctx,
2068 			   void *info)
2069 {
2070 	unsigned long flags = (unsigned long)info;
2071 
2072 	if (ctx->is_active & EVENT_TIME) {
2073 		update_context_time(ctx);
2074 		update_cgrp_time_from_cpuctx(cpuctx);
2075 	}
2076 
2077 	event_sched_out(event, cpuctx, ctx);
2078 	if (flags & DETACH_GROUP)
2079 		perf_group_detach(event);
2080 	list_del_event(event, ctx);
2081 
2082 	if (!ctx->nr_events && ctx->is_active) {
2083 		ctx->is_active = 0;
2084 		if (ctx->task) {
2085 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 			cpuctx->task_ctx = NULL;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103 	struct perf_event_context *ctx = event->ctx;
2104 
2105 	lockdep_assert_held(&ctx->mutex);
2106 
2107 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 
2109 	/*
2110 	 * The above event_function_call() can NO-OP when it hits
2111 	 * TASK_TOMBSTONE. In that case we must already have been detached
2112 	 * from the context (by perf_event_exit_event()) but the grouping
2113 	 * might still be in-tact.
2114 	 */
2115 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 	if ((flags & DETACH_GROUP) &&
2117 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2118 		/*
2119 		 * Since in that case we cannot possibly be scheduled, simply
2120 		 * detach now.
2121 		 */
2122 		raw_spin_lock_irq(&ctx->lock);
2123 		perf_group_detach(event);
2124 		raw_spin_unlock_irq(&ctx->lock);
2125 	}
2126 }
2127 
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132 				 struct perf_cpu_context *cpuctx,
2133 				 struct perf_event_context *ctx,
2134 				 void *info)
2135 {
2136 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 		return;
2138 
2139 	if (ctx->is_active & EVENT_TIME) {
2140 		update_context_time(ctx);
2141 		update_cgrp_time_from_event(event);
2142 	}
2143 
2144 	if (event == event->group_leader)
2145 		group_sched_out(event, cpuctx, ctx);
2146 	else
2147 		event_sched_out(event, cpuctx, ctx);
2148 
2149 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151 
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168 	struct perf_event_context *ctx = event->ctx;
2169 
2170 	raw_spin_lock_irq(&ctx->lock);
2171 	if (event->state <= PERF_EVENT_STATE_OFF) {
2172 		raw_spin_unlock_irq(&ctx->lock);
2173 		return;
2174 	}
2175 	raw_spin_unlock_irq(&ctx->lock);
2176 
2177 	event_function_call(event, __perf_event_disable, NULL);
2178 }
2179 
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182 	event_function_local(event, __perf_event_disable, NULL);
2183 }
2184 
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191 	struct perf_event_context *ctx;
2192 
2193 	ctx = perf_event_ctx_lock(event);
2194 	_perf_event_disable(event);
2195 	perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198 
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201 	event->pending_disable = 1;
2202 	irq_work_queue(&event->pending);
2203 }
2204 
2205 static void perf_set_shadow_time(struct perf_event *event,
2206 				 struct perf_event_context *ctx)
2207 {
2208 	/*
2209 	 * use the correct time source for the time snapshot
2210 	 *
2211 	 * We could get by without this by leveraging the
2212 	 * fact that to get to this function, the caller
2213 	 * has most likely already called update_context_time()
2214 	 * and update_cgrp_time_xx() and thus both timestamp
2215 	 * are identical (or very close). Given that tstamp is,
2216 	 * already adjusted for cgroup, we could say that:
2217 	 *    tstamp - ctx->timestamp
2218 	 * is equivalent to
2219 	 *    tstamp - cgrp->timestamp.
2220 	 *
2221 	 * Then, in perf_output_read(), the calculation would
2222 	 * work with no changes because:
2223 	 * - event is guaranteed scheduled in
2224 	 * - no scheduled out in between
2225 	 * - thus the timestamp would be the same
2226 	 *
2227 	 * But this is a bit hairy.
2228 	 *
2229 	 * So instead, we have an explicit cgroup call to remain
2230 	 * within the time time source all along. We believe it
2231 	 * is cleaner and simpler to understand.
2232 	 */
2233 	if (is_cgroup_event(event))
2234 		perf_cgroup_set_shadow_time(event, event->tstamp);
2235 	else
2236 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 }
2238 
2239 #define MAX_INTERRUPTS (~0ULL)
2240 
2241 static void perf_log_throttle(struct perf_event *event, int enable);
2242 static void perf_log_itrace_start(struct perf_event *event);
2243 
2244 static int
2245 event_sched_in(struct perf_event *event,
2246 		 struct perf_cpu_context *cpuctx,
2247 		 struct perf_event_context *ctx)
2248 {
2249 	int ret = 0;
2250 
2251 	lockdep_assert_held(&ctx->lock);
2252 
2253 	if (event->state <= PERF_EVENT_STATE_OFF)
2254 		return 0;
2255 
2256 	WRITE_ONCE(event->oncpu, smp_processor_id());
2257 	/*
2258 	 * Order event::oncpu write to happen before the ACTIVE state is
2259 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2260 	 * ->oncpu if it sees ACTIVE.
2261 	 */
2262 	smp_wmb();
2263 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264 
2265 	/*
2266 	 * Unthrottle events, since we scheduled we might have missed several
2267 	 * ticks already, also for a heavily scheduling task there is little
2268 	 * guarantee it'll get a tick in a timely manner.
2269 	 */
2270 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271 		perf_log_throttle(event, 1);
2272 		event->hw.interrupts = 0;
2273 	}
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	perf_set_shadow_time(event, ctx);
2278 
2279 	perf_log_itrace_start(event);
2280 
2281 	if (event->pmu->add(event, PERF_EF_START)) {
2282 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2283 		event->oncpu = -1;
2284 		ret = -EAGAIN;
2285 		goto out;
2286 	}
2287 
2288 	if (!is_software_event(event))
2289 		cpuctx->active_oncpu++;
2290 	if (!ctx->nr_active++)
2291 		perf_event_ctx_activate(ctx);
2292 	if (event->attr.freq && event->attr.sample_freq)
2293 		ctx->nr_freq++;
2294 
2295 	if (event->attr.exclusive)
2296 		cpuctx->exclusive = 1;
2297 
2298 out:
2299 	perf_pmu_enable(event->pmu);
2300 
2301 	return ret;
2302 }
2303 
2304 static int
2305 group_sched_in(struct perf_event *group_event,
2306 	       struct perf_cpu_context *cpuctx,
2307 	       struct perf_event_context *ctx)
2308 {
2309 	struct perf_event *event, *partial_group = NULL;
2310 	struct pmu *pmu = ctx->pmu;
2311 
2312 	if (group_event->state == PERF_EVENT_STATE_OFF)
2313 		return 0;
2314 
2315 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2316 
2317 	if (event_sched_in(group_event, cpuctx, ctx)) {
2318 		pmu->cancel_txn(pmu);
2319 		perf_mux_hrtimer_restart(cpuctx);
2320 		return -EAGAIN;
2321 	}
2322 
2323 	/*
2324 	 * Schedule in siblings as one group (if any):
2325 	 */
2326 	for_each_sibling_event(event, group_event) {
2327 		if (event_sched_in(event, cpuctx, ctx)) {
2328 			partial_group = event;
2329 			goto group_error;
2330 		}
2331 	}
2332 
2333 	if (!pmu->commit_txn(pmu))
2334 		return 0;
2335 
2336 group_error:
2337 	/*
2338 	 * Groups can be scheduled in as one unit only, so undo any
2339 	 * partial group before returning:
2340 	 * The events up to the failed event are scheduled out normally.
2341 	 */
2342 	for_each_sibling_event(event, group_event) {
2343 		if (event == partial_group)
2344 			break;
2345 
2346 		event_sched_out(event, cpuctx, ctx);
2347 	}
2348 	event_sched_out(group_event, cpuctx, ctx);
2349 
2350 	pmu->cancel_txn(pmu);
2351 
2352 	perf_mux_hrtimer_restart(cpuctx);
2353 
2354 	return -EAGAIN;
2355 }
2356 
2357 /*
2358  * Work out whether we can put this event group on the CPU now.
2359  */
2360 static int group_can_go_on(struct perf_event *event,
2361 			   struct perf_cpu_context *cpuctx,
2362 			   int can_add_hw)
2363 {
2364 	/*
2365 	 * Groups consisting entirely of software events can always go on.
2366 	 */
2367 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368 		return 1;
2369 	/*
2370 	 * If an exclusive group is already on, no other hardware
2371 	 * events can go on.
2372 	 */
2373 	if (cpuctx->exclusive)
2374 		return 0;
2375 	/*
2376 	 * If this group is exclusive and there are already
2377 	 * events on the CPU, it can't go on.
2378 	 */
2379 	if (event->attr.exclusive && cpuctx->active_oncpu)
2380 		return 0;
2381 	/*
2382 	 * Otherwise, try to add it if all previous groups were able
2383 	 * to go on.
2384 	 */
2385 	return can_add_hw;
2386 }
2387 
2388 static void add_event_to_ctx(struct perf_event *event,
2389 			       struct perf_event_context *ctx)
2390 {
2391 	list_add_event(event, ctx);
2392 	perf_group_attach(event);
2393 }
2394 
2395 static void ctx_sched_out(struct perf_event_context *ctx,
2396 			  struct perf_cpu_context *cpuctx,
2397 			  enum event_type_t event_type);
2398 static void
2399 ctx_sched_in(struct perf_event_context *ctx,
2400 	     struct perf_cpu_context *cpuctx,
2401 	     enum event_type_t event_type,
2402 	     struct task_struct *task);
2403 
2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405 			       struct perf_event_context *ctx,
2406 			       enum event_type_t event_type)
2407 {
2408 	if (!cpuctx->task_ctx)
2409 		return;
2410 
2411 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412 		return;
2413 
2414 	ctx_sched_out(ctx, cpuctx, event_type);
2415 }
2416 
2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418 				struct perf_event_context *ctx,
2419 				struct task_struct *task)
2420 {
2421 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422 	if (ctx)
2423 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425 	if (ctx)
2426 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427 }
2428 
2429 /*
2430  * We want to maintain the following priority of scheduling:
2431  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432  *  - task pinned (EVENT_PINNED)
2433  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434  *  - task flexible (EVENT_FLEXIBLE).
2435  *
2436  * In order to avoid unscheduling and scheduling back in everything every
2437  * time an event is added, only do it for the groups of equal priority and
2438  * below.
2439  *
2440  * This can be called after a batch operation on task events, in which case
2441  * event_type is a bit mask of the types of events involved. For CPU events,
2442  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443  */
2444 static void ctx_resched(struct perf_cpu_context *cpuctx,
2445 			struct perf_event_context *task_ctx,
2446 			enum event_type_t event_type)
2447 {
2448 	enum event_type_t ctx_event_type;
2449 	bool cpu_event = !!(event_type & EVENT_CPU);
2450 
2451 	/*
2452 	 * If pinned groups are involved, flexible groups also need to be
2453 	 * scheduled out.
2454 	 */
2455 	if (event_type & EVENT_PINNED)
2456 		event_type |= EVENT_FLEXIBLE;
2457 
2458 	ctx_event_type = event_type & EVENT_ALL;
2459 
2460 	perf_pmu_disable(cpuctx->ctx.pmu);
2461 	if (task_ctx)
2462 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463 
2464 	/*
2465 	 * Decide which cpu ctx groups to schedule out based on the types
2466 	 * of events that caused rescheduling:
2467 	 *  - EVENT_CPU: schedule out corresponding groups;
2468 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469 	 *  - otherwise, do nothing more.
2470 	 */
2471 	if (cpu_event)
2472 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473 	else if (ctx_event_type & EVENT_PINNED)
2474 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475 
2476 	perf_event_sched_in(cpuctx, task_ctx, current);
2477 	perf_pmu_enable(cpuctx->ctx.pmu);
2478 }
2479 
2480 /*
2481  * Cross CPU call to install and enable a performance event
2482  *
2483  * Very similar to remote_function() + event_function() but cannot assume that
2484  * things like ctx->is_active and cpuctx->task_ctx are set.
2485  */
2486 static int  __perf_install_in_context(void *info)
2487 {
2488 	struct perf_event *event = info;
2489 	struct perf_event_context *ctx = event->ctx;
2490 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2491 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2492 	bool reprogram = true;
2493 	int ret = 0;
2494 
2495 	raw_spin_lock(&cpuctx->ctx.lock);
2496 	if (ctx->task) {
2497 		raw_spin_lock(&ctx->lock);
2498 		task_ctx = ctx;
2499 
2500 		reprogram = (ctx->task == current);
2501 
2502 		/*
2503 		 * If the task is running, it must be running on this CPU,
2504 		 * otherwise we cannot reprogram things.
2505 		 *
2506 		 * If its not running, we don't care, ctx->lock will
2507 		 * serialize against it becoming runnable.
2508 		 */
2509 		if (task_curr(ctx->task) && !reprogram) {
2510 			ret = -ESRCH;
2511 			goto unlock;
2512 		}
2513 
2514 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2515 	} else if (task_ctx) {
2516 		raw_spin_lock(&task_ctx->lock);
2517 	}
2518 
2519 #ifdef CONFIG_CGROUP_PERF
2520 	if (is_cgroup_event(event)) {
2521 		/*
2522 		 * If the current cgroup doesn't match the event's
2523 		 * cgroup, we should not try to schedule it.
2524 		 */
2525 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527 					event->cgrp->css.cgroup);
2528 	}
2529 #endif
2530 
2531 	if (reprogram) {
2532 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533 		add_event_to_ctx(event, ctx);
2534 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2535 	} else {
2536 		add_event_to_ctx(event, ctx);
2537 	}
2538 
2539 unlock:
2540 	perf_ctx_unlock(cpuctx, task_ctx);
2541 
2542 	return ret;
2543 }
2544 
2545 /*
2546  * Attach a performance event to a context.
2547  *
2548  * Very similar to event_function_call, see comment there.
2549  */
2550 static void
2551 perf_install_in_context(struct perf_event_context *ctx,
2552 			struct perf_event *event,
2553 			int cpu)
2554 {
2555 	struct task_struct *task = READ_ONCE(ctx->task);
2556 
2557 	lockdep_assert_held(&ctx->mutex);
2558 
2559 	if (event->cpu != -1)
2560 		event->cpu = cpu;
2561 
2562 	/*
2563 	 * Ensures that if we can observe event->ctx, both the event and ctx
2564 	 * will be 'complete'. See perf_iterate_sb_cpu().
2565 	 */
2566 	smp_store_release(&event->ctx, ctx);
2567 
2568 	if (!task) {
2569 		cpu_function_call(cpu, __perf_install_in_context, event);
2570 		return;
2571 	}
2572 
2573 	/*
2574 	 * Should not happen, we validate the ctx is still alive before calling.
2575 	 */
2576 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577 		return;
2578 
2579 	/*
2580 	 * Installing events is tricky because we cannot rely on ctx->is_active
2581 	 * to be set in case this is the nr_events 0 -> 1 transition.
2582 	 *
2583 	 * Instead we use task_curr(), which tells us if the task is running.
2584 	 * However, since we use task_curr() outside of rq::lock, we can race
2585 	 * against the actual state. This means the result can be wrong.
2586 	 *
2587 	 * If we get a false positive, we retry, this is harmless.
2588 	 *
2589 	 * If we get a false negative, things are complicated. If we are after
2590 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591 	 * value must be correct. If we're before, it doesn't matter since
2592 	 * perf_event_context_sched_in() will program the counter.
2593 	 *
2594 	 * However, this hinges on the remote context switch having observed
2595 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2596 	 * ctx::lock in perf_event_context_sched_in().
2597 	 *
2598 	 * We do this by task_function_call(), if the IPI fails to hit the task
2599 	 * we know any future context switch of task must see the
2600 	 * perf_event_ctpx[] store.
2601 	 */
2602 
2603 	/*
2604 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605 	 * task_cpu() load, such that if the IPI then does not find the task
2606 	 * running, a future context switch of that task must observe the
2607 	 * store.
2608 	 */
2609 	smp_mb();
2610 again:
2611 	if (!task_function_call(task, __perf_install_in_context, event))
2612 		return;
2613 
2614 	raw_spin_lock_irq(&ctx->lock);
2615 	task = ctx->task;
2616 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2617 		/*
2618 		 * Cannot happen because we already checked above (which also
2619 		 * cannot happen), and we hold ctx->mutex, which serializes us
2620 		 * against perf_event_exit_task_context().
2621 		 */
2622 		raw_spin_unlock_irq(&ctx->lock);
2623 		return;
2624 	}
2625 	/*
2626 	 * If the task is not running, ctx->lock will avoid it becoming so,
2627 	 * thus we can safely install the event.
2628 	 */
2629 	if (task_curr(task)) {
2630 		raw_spin_unlock_irq(&ctx->lock);
2631 		goto again;
2632 	}
2633 	add_event_to_ctx(event, ctx);
2634 	raw_spin_unlock_irq(&ctx->lock);
2635 }
2636 
2637 /*
2638  * Cross CPU call to enable a performance event
2639  */
2640 static void __perf_event_enable(struct perf_event *event,
2641 				struct perf_cpu_context *cpuctx,
2642 				struct perf_event_context *ctx,
2643 				void *info)
2644 {
2645 	struct perf_event *leader = event->group_leader;
2646 	struct perf_event_context *task_ctx;
2647 
2648 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649 	    event->state <= PERF_EVENT_STATE_ERROR)
2650 		return;
2651 
2652 	if (ctx->is_active)
2653 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654 
2655 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2656 
2657 	if (!ctx->is_active)
2658 		return;
2659 
2660 	if (!event_filter_match(event)) {
2661 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2662 		return;
2663 	}
2664 
2665 	/*
2666 	 * If the event is in a group and isn't the group leader,
2667 	 * then don't put it on unless the group is on.
2668 	 */
2669 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2671 		return;
2672 	}
2673 
2674 	task_ctx = cpuctx->task_ctx;
2675 	if (ctx->task)
2676 		WARN_ON_ONCE(task_ctx != ctx);
2677 
2678 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2679 }
2680 
2681 /*
2682  * Enable an event.
2683  *
2684  * If event->ctx is a cloned context, callers must make sure that
2685  * every task struct that event->ctx->task could possibly point to
2686  * remains valid.  This condition is satisfied when called through
2687  * perf_event_for_each_child or perf_event_for_each as described
2688  * for perf_event_disable.
2689  */
2690 static void _perf_event_enable(struct perf_event *event)
2691 {
2692 	struct perf_event_context *ctx = event->ctx;
2693 
2694 	raw_spin_lock_irq(&ctx->lock);
2695 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696 	    event->state <  PERF_EVENT_STATE_ERROR) {
2697 		raw_spin_unlock_irq(&ctx->lock);
2698 		return;
2699 	}
2700 
2701 	/*
2702 	 * If the event is in error state, clear that first.
2703 	 *
2704 	 * That way, if we see the event in error state below, we know that it
2705 	 * has gone back into error state, as distinct from the task having
2706 	 * been scheduled away before the cross-call arrived.
2707 	 */
2708 	if (event->state == PERF_EVENT_STATE_ERROR)
2709 		event->state = PERF_EVENT_STATE_OFF;
2710 	raw_spin_unlock_irq(&ctx->lock);
2711 
2712 	event_function_call(event, __perf_event_enable, NULL);
2713 }
2714 
2715 /*
2716  * See perf_event_disable();
2717  */
2718 void perf_event_enable(struct perf_event *event)
2719 {
2720 	struct perf_event_context *ctx;
2721 
2722 	ctx = perf_event_ctx_lock(event);
2723 	_perf_event_enable(event);
2724 	perf_event_ctx_unlock(event, ctx);
2725 }
2726 EXPORT_SYMBOL_GPL(perf_event_enable);
2727 
2728 struct stop_event_data {
2729 	struct perf_event	*event;
2730 	unsigned int		restart;
2731 };
2732 
2733 static int __perf_event_stop(void *info)
2734 {
2735 	struct stop_event_data *sd = info;
2736 	struct perf_event *event = sd->event;
2737 
2738 	/* if it's already INACTIVE, do nothing */
2739 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740 		return 0;
2741 
2742 	/* matches smp_wmb() in event_sched_in() */
2743 	smp_rmb();
2744 
2745 	/*
2746 	 * There is a window with interrupts enabled before we get here,
2747 	 * so we need to check again lest we try to stop another CPU's event.
2748 	 */
2749 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2750 		return -EAGAIN;
2751 
2752 	event->pmu->stop(event, PERF_EF_UPDATE);
2753 
2754 	/*
2755 	 * May race with the actual stop (through perf_pmu_output_stop()),
2756 	 * but it is only used for events with AUX ring buffer, and such
2757 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2758 	 * see comments in perf_aux_output_begin().
2759 	 *
2760 	 * Since this is happening on an event-local CPU, no trace is lost
2761 	 * while restarting.
2762 	 */
2763 	if (sd->restart)
2764 		event->pmu->start(event, 0);
2765 
2766 	return 0;
2767 }
2768 
2769 static int perf_event_stop(struct perf_event *event, int restart)
2770 {
2771 	struct stop_event_data sd = {
2772 		.event		= event,
2773 		.restart	= restart,
2774 	};
2775 	int ret = 0;
2776 
2777 	do {
2778 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779 			return 0;
2780 
2781 		/* matches smp_wmb() in event_sched_in() */
2782 		smp_rmb();
2783 
2784 		/*
2785 		 * We only want to restart ACTIVE events, so if the event goes
2786 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2787 		 * fall through with ret==-ENXIO.
2788 		 */
2789 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2790 					__perf_event_stop, &sd);
2791 	} while (ret == -EAGAIN);
2792 
2793 	return ret;
2794 }
2795 
2796 /*
2797  * In order to contain the amount of racy and tricky in the address filter
2798  * configuration management, it is a two part process:
2799  *
2800  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801  *      we update the addresses of corresponding vmas in
2802  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2803  * (p2) when an event is scheduled in (pmu::add), it calls
2804  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805  *      if the generation has changed since the previous call.
2806  *
2807  * If (p1) happens while the event is active, we restart it to force (p2).
2808  *
2809  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2811  *     ioctl;
2812  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2814  *     for reading;
2815  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816  *     of exec.
2817  */
2818 void perf_event_addr_filters_sync(struct perf_event *event)
2819 {
2820 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821 
2822 	if (!has_addr_filter(event))
2823 		return;
2824 
2825 	raw_spin_lock(&ifh->lock);
2826 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827 		event->pmu->addr_filters_sync(event);
2828 		event->hw.addr_filters_gen = event->addr_filters_gen;
2829 	}
2830 	raw_spin_unlock(&ifh->lock);
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833 
2834 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 {
2836 	/*
2837 	 * not supported on inherited events
2838 	 */
2839 	if (event->attr.inherit || !is_sampling_event(event))
2840 		return -EINVAL;
2841 
2842 	atomic_add(refresh, &event->event_limit);
2843 	_perf_event_enable(event);
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * See perf_event_disable()
2850  */
2851 int perf_event_refresh(struct perf_event *event, int refresh)
2852 {
2853 	struct perf_event_context *ctx;
2854 	int ret;
2855 
2856 	ctx = perf_event_ctx_lock(event);
2857 	ret = _perf_event_refresh(event, refresh);
2858 	perf_event_ctx_unlock(event, ctx);
2859 
2860 	return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_refresh);
2863 
2864 static int perf_event_modify_breakpoint(struct perf_event *bp,
2865 					 struct perf_event_attr *attr)
2866 {
2867 	int err;
2868 
2869 	_perf_event_disable(bp);
2870 
2871 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2872 
2873 	if (!bp->attr.disabled)
2874 		_perf_event_enable(bp);
2875 
2876 	return err;
2877 }
2878 
2879 static int perf_event_modify_attr(struct perf_event *event,
2880 				  struct perf_event_attr *attr)
2881 {
2882 	if (event->attr.type != attr->type)
2883 		return -EINVAL;
2884 
2885 	switch (event->attr.type) {
2886 	case PERF_TYPE_BREAKPOINT:
2887 		return perf_event_modify_breakpoint(event, attr);
2888 	default:
2889 		/* Place holder for future additions. */
2890 		return -EOPNOTSUPP;
2891 	}
2892 }
2893 
2894 static void ctx_sched_out(struct perf_event_context *ctx,
2895 			  struct perf_cpu_context *cpuctx,
2896 			  enum event_type_t event_type)
2897 {
2898 	struct perf_event *event, *tmp;
2899 	int is_active = ctx->is_active;
2900 
2901 	lockdep_assert_held(&ctx->lock);
2902 
2903 	if (likely(!ctx->nr_events)) {
2904 		/*
2905 		 * See __perf_remove_from_context().
2906 		 */
2907 		WARN_ON_ONCE(ctx->is_active);
2908 		if (ctx->task)
2909 			WARN_ON_ONCE(cpuctx->task_ctx);
2910 		return;
2911 	}
2912 
2913 	ctx->is_active &= ~event_type;
2914 	if (!(ctx->is_active & EVENT_ALL))
2915 		ctx->is_active = 0;
2916 
2917 	if (ctx->task) {
2918 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919 		if (!ctx->is_active)
2920 			cpuctx->task_ctx = NULL;
2921 	}
2922 
2923 	/*
2924 	 * Always update time if it was set; not only when it changes.
2925 	 * Otherwise we can 'forget' to update time for any but the last
2926 	 * context we sched out. For example:
2927 	 *
2928 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2930 	 *
2931 	 * would only update time for the pinned events.
2932 	 */
2933 	if (is_active & EVENT_TIME) {
2934 		/* update (and stop) ctx time */
2935 		update_context_time(ctx);
2936 		update_cgrp_time_from_cpuctx(cpuctx);
2937 	}
2938 
2939 	is_active ^= ctx->is_active; /* changed bits */
2940 
2941 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2942 		return;
2943 
2944 	perf_pmu_disable(ctx->pmu);
2945 	if (is_active & EVENT_PINNED) {
2946 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2947 			group_sched_out(event, cpuctx, ctx);
2948 	}
2949 
2950 	if (is_active & EVENT_FLEXIBLE) {
2951 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2952 			group_sched_out(event, cpuctx, ctx);
2953 	}
2954 	perf_pmu_enable(ctx->pmu);
2955 }
2956 
2957 /*
2958  * Test whether two contexts are equivalent, i.e. whether they have both been
2959  * cloned from the same version of the same context.
2960  *
2961  * Equivalence is measured using a generation number in the context that is
2962  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963  * and list_del_event().
2964  */
2965 static int context_equiv(struct perf_event_context *ctx1,
2966 			 struct perf_event_context *ctx2)
2967 {
2968 	lockdep_assert_held(&ctx1->lock);
2969 	lockdep_assert_held(&ctx2->lock);
2970 
2971 	/* Pinning disables the swap optimization */
2972 	if (ctx1->pin_count || ctx2->pin_count)
2973 		return 0;
2974 
2975 	/* If ctx1 is the parent of ctx2 */
2976 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977 		return 1;
2978 
2979 	/* If ctx2 is the parent of ctx1 */
2980 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981 		return 1;
2982 
2983 	/*
2984 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2985 	 * hierarchy, see perf_event_init_context().
2986 	 */
2987 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988 			ctx1->parent_gen == ctx2->parent_gen)
2989 		return 1;
2990 
2991 	/* Unmatched */
2992 	return 0;
2993 }
2994 
2995 static void __perf_event_sync_stat(struct perf_event *event,
2996 				     struct perf_event *next_event)
2997 {
2998 	u64 value;
2999 
3000 	if (!event->attr.inherit_stat)
3001 		return;
3002 
3003 	/*
3004 	 * Update the event value, we cannot use perf_event_read()
3005 	 * because we're in the middle of a context switch and have IRQs
3006 	 * disabled, which upsets smp_call_function_single(), however
3007 	 * we know the event must be on the current CPU, therefore we
3008 	 * don't need to use it.
3009 	 */
3010 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3011 		event->pmu->read(event);
3012 
3013 	perf_event_update_time(event);
3014 
3015 	/*
3016 	 * In order to keep per-task stats reliable we need to flip the event
3017 	 * values when we flip the contexts.
3018 	 */
3019 	value = local64_read(&next_event->count);
3020 	value = local64_xchg(&event->count, value);
3021 	local64_set(&next_event->count, value);
3022 
3023 	swap(event->total_time_enabled, next_event->total_time_enabled);
3024 	swap(event->total_time_running, next_event->total_time_running);
3025 
3026 	/*
3027 	 * Since we swizzled the values, update the user visible data too.
3028 	 */
3029 	perf_event_update_userpage(event);
3030 	perf_event_update_userpage(next_event);
3031 }
3032 
3033 static void perf_event_sync_stat(struct perf_event_context *ctx,
3034 				   struct perf_event_context *next_ctx)
3035 {
3036 	struct perf_event *event, *next_event;
3037 
3038 	if (!ctx->nr_stat)
3039 		return;
3040 
3041 	update_context_time(ctx);
3042 
3043 	event = list_first_entry(&ctx->event_list,
3044 				   struct perf_event, event_entry);
3045 
3046 	next_event = list_first_entry(&next_ctx->event_list,
3047 					struct perf_event, event_entry);
3048 
3049 	while (&event->event_entry != &ctx->event_list &&
3050 	       &next_event->event_entry != &next_ctx->event_list) {
3051 
3052 		__perf_event_sync_stat(event, next_event);
3053 
3054 		event = list_next_entry(event, event_entry);
3055 		next_event = list_next_entry(next_event, event_entry);
3056 	}
3057 }
3058 
3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060 					 struct task_struct *next)
3061 {
3062 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3063 	struct perf_event_context *next_ctx;
3064 	struct perf_event_context *parent, *next_parent;
3065 	struct perf_cpu_context *cpuctx;
3066 	int do_switch = 1;
3067 
3068 	if (likely(!ctx))
3069 		return;
3070 
3071 	cpuctx = __get_cpu_context(ctx);
3072 	if (!cpuctx->task_ctx)
3073 		return;
3074 
3075 	rcu_read_lock();
3076 	next_ctx = next->perf_event_ctxp[ctxn];
3077 	if (!next_ctx)
3078 		goto unlock;
3079 
3080 	parent = rcu_dereference(ctx->parent_ctx);
3081 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3082 
3083 	/* If neither context have a parent context; they cannot be clones. */
3084 	if (!parent && !next_parent)
3085 		goto unlock;
3086 
3087 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3088 		/*
3089 		 * Looks like the two contexts are clones, so we might be
3090 		 * able to optimize the context switch.  We lock both
3091 		 * contexts and check that they are clones under the
3092 		 * lock (including re-checking that neither has been
3093 		 * uncloned in the meantime).  It doesn't matter which
3094 		 * order we take the locks because no other cpu could
3095 		 * be trying to lock both of these tasks.
3096 		 */
3097 		raw_spin_lock(&ctx->lock);
3098 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3099 		if (context_equiv(ctx, next_ctx)) {
3100 			WRITE_ONCE(ctx->task, next);
3101 			WRITE_ONCE(next_ctx->task, task);
3102 
3103 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104 
3105 			/*
3106 			 * RCU_INIT_POINTER here is safe because we've not
3107 			 * modified the ctx and the above modification of
3108 			 * ctx->task and ctx->task_ctx_data are immaterial
3109 			 * since those values are always verified under
3110 			 * ctx->lock which we're now holding.
3111 			 */
3112 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114 
3115 			do_switch = 0;
3116 
3117 			perf_event_sync_stat(ctx, next_ctx);
3118 		}
3119 		raw_spin_unlock(&next_ctx->lock);
3120 		raw_spin_unlock(&ctx->lock);
3121 	}
3122 unlock:
3123 	rcu_read_unlock();
3124 
3125 	if (do_switch) {
3126 		raw_spin_lock(&ctx->lock);
3127 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3128 		raw_spin_unlock(&ctx->lock);
3129 	}
3130 }
3131 
3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133 
3134 void perf_sched_cb_dec(struct pmu *pmu)
3135 {
3136 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137 
3138 	this_cpu_dec(perf_sched_cb_usages);
3139 
3140 	if (!--cpuctx->sched_cb_usage)
3141 		list_del(&cpuctx->sched_cb_entry);
3142 }
3143 
3144 
3145 void perf_sched_cb_inc(struct pmu *pmu)
3146 {
3147 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148 
3149 	if (!cpuctx->sched_cb_usage++)
3150 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151 
3152 	this_cpu_inc(perf_sched_cb_usages);
3153 }
3154 
3155 /*
3156  * This function provides the context switch callback to the lower code
3157  * layer. It is invoked ONLY when the context switch callback is enabled.
3158  *
3159  * This callback is relevant even to per-cpu events; for example multi event
3160  * PEBS requires this to provide PID/TID information. This requires we flush
3161  * all queued PEBS records before we context switch to a new task.
3162  */
3163 static void perf_pmu_sched_task(struct task_struct *prev,
3164 				struct task_struct *next,
3165 				bool sched_in)
3166 {
3167 	struct perf_cpu_context *cpuctx;
3168 	struct pmu *pmu;
3169 
3170 	if (prev == next)
3171 		return;
3172 
3173 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3174 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3175 
3176 		if (WARN_ON_ONCE(!pmu->sched_task))
3177 			continue;
3178 
3179 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180 		perf_pmu_disable(pmu);
3181 
3182 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3183 
3184 		perf_pmu_enable(pmu);
3185 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3186 	}
3187 }
3188 
3189 static void perf_event_switch(struct task_struct *task,
3190 			      struct task_struct *next_prev, bool sched_in);
3191 
3192 #define for_each_task_context_nr(ctxn)					\
3193 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194 
3195 /*
3196  * Called from scheduler to remove the events of the current task,
3197  * with interrupts disabled.
3198  *
3199  * We stop each event and update the event value in event->count.
3200  *
3201  * This does not protect us against NMI, but disable()
3202  * sets the disabled bit in the control field of event _before_
3203  * accessing the event control register. If a NMI hits, then it will
3204  * not restart the event.
3205  */
3206 void __perf_event_task_sched_out(struct task_struct *task,
3207 				 struct task_struct *next)
3208 {
3209 	int ctxn;
3210 
3211 	if (__this_cpu_read(perf_sched_cb_usages))
3212 		perf_pmu_sched_task(task, next, false);
3213 
3214 	if (atomic_read(&nr_switch_events))
3215 		perf_event_switch(task, next, false);
3216 
3217 	for_each_task_context_nr(ctxn)
3218 		perf_event_context_sched_out(task, ctxn, next);
3219 
3220 	/*
3221 	 * if cgroup events exist on this CPU, then we need
3222 	 * to check if we have to switch out PMU state.
3223 	 * cgroup event are system-wide mode only
3224 	 */
3225 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3226 		perf_cgroup_sched_out(task, next);
3227 }
3228 
3229 /*
3230  * Called with IRQs disabled
3231  */
3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233 			      enum event_type_t event_type)
3234 {
3235 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3236 }
3237 
3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239 			      int (*func)(struct perf_event *, void *), void *data)
3240 {
3241 	struct perf_event **evt, *evt1, *evt2;
3242 	int ret;
3243 
3244 	evt1 = perf_event_groups_first(groups, -1);
3245 	evt2 = perf_event_groups_first(groups, cpu);
3246 
3247 	while (evt1 || evt2) {
3248 		if (evt1 && evt2) {
3249 			if (evt1->group_index < evt2->group_index)
3250 				evt = &evt1;
3251 			else
3252 				evt = &evt2;
3253 		} else if (evt1) {
3254 			evt = &evt1;
3255 		} else {
3256 			evt = &evt2;
3257 		}
3258 
3259 		ret = func(*evt, data);
3260 		if (ret)
3261 			return ret;
3262 
3263 		*evt = perf_event_groups_next(*evt);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 struct sched_in_data {
3270 	struct perf_event_context *ctx;
3271 	struct perf_cpu_context *cpuctx;
3272 	int can_add_hw;
3273 };
3274 
3275 static int pinned_sched_in(struct perf_event *event, void *data)
3276 {
3277 	struct sched_in_data *sid = data;
3278 
3279 	if (event->state <= PERF_EVENT_STATE_OFF)
3280 		return 0;
3281 
3282 	if (!event_filter_match(event))
3283 		return 0;
3284 
3285 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288 	}
3289 
3290 	/*
3291 	 * If this pinned group hasn't been scheduled,
3292 	 * put it in error state.
3293 	 */
3294 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3295 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296 
3297 	return 0;
3298 }
3299 
3300 static int flexible_sched_in(struct perf_event *event, void *data)
3301 {
3302 	struct sched_in_data *sid = data;
3303 
3304 	if (event->state <= PERF_EVENT_STATE_OFF)
3305 		return 0;
3306 
3307 	if (!event_filter_match(event))
3308 		return 0;
3309 
3310 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3311 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313 		else
3314 			sid->can_add_hw = 0;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 static void
3321 ctx_pinned_sched_in(struct perf_event_context *ctx,
3322 		    struct perf_cpu_context *cpuctx)
3323 {
3324 	struct sched_in_data sid = {
3325 		.ctx = ctx,
3326 		.cpuctx = cpuctx,
3327 		.can_add_hw = 1,
3328 	};
3329 
3330 	visit_groups_merge(&ctx->pinned_groups,
3331 			   smp_processor_id(),
3332 			   pinned_sched_in, &sid);
3333 }
3334 
3335 static void
3336 ctx_flexible_sched_in(struct perf_event_context *ctx,
3337 		      struct perf_cpu_context *cpuctx)
3338 {
3339 	struct sched_in_data sid = {
3340 		.ctx = ctx,
3341 		.cpuctx = cpuctx,
3342 		.can_add_hw = 1,
3343 	};
3344 
3345 	visit_groups_merge(&ctx->flexible_groups,
3346 			   smp_processor_id(),
3347 			   flexible_sched_in, &sid);
3348 }
3349 
3350 static void
3351 ctx_sched_in(struct perf_event_context *ctx,
3352 	     struct perf_cpu_context *cpuctx,
3353 	     enum event_type_t event_type,
3354 	     struct task_struct *task)
3355 {
3356 	int is_active = ctx->is_active;
3357 	u64 now;
3358 
3359 	lockdep_assert_held(&ctx->lock);
3360 
3361 	if (likely(!ctx->nr_events))
3362 		return;
3363 
3364 	ctx->is_active |= (event_type | EVENT_TIME);
3365 	if (ctx->task) {
3366 		if (!is_active)
3367 			cpuctx->task_ctx = ctx;
3368 		else
3369 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370 	}
3371 
3372 	is_active ^= ctx->is_active; /* changed bits */
3373 
3374 	if (is_active & EVENT_TIME) {
3375 		/* start ctx time */
3376 		now = perf_clock();
3377 		ctx->timestamp = now;
3378 		perf_cgroup_set_timestamp(task, ctx);
3379 	}
3380 
3381 	/*
3382 	 * First go through the list and put on any pinned groups
3383 	 * in order to give them the best chance of going on.
3384 	 */
3385 	if (is_active & EVENT_PINNED)
3386 		ctx_pinned_sched_in(ctx, cpuctx);
3387 
3388 	/* Then walk through the lower prio flexible groups */
3389 	if (is_active & EVENT_FLEXIBLE)
3390 		ctx_flexible_sched_in(ctx, cpuctx);
3391 }
3392 
3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3394 			     enum event_type_t event_type,
3395 			     struct task_struct *task)
3396 {
3397 	struct perf_event_context *ctx = &cpuctx->ctx;
3398 
3399 	ctx_sched_in(ctx, cpuctx, event_type, task);
3400 }
3401 
3402 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403 					struct task_struct *task)
3404 {
3405 	struct perf_cpu_context *cpuctx;
3406 
3407 	cpuctx = __get_cpu_context(ctx);
3408 	if (cpuctx->task_ctx == ctx)
3409 		return;
3410 
3411 	perf_ctx_lock(cpuctx, ctx);
3412 	/*
3413 	 * We must check ctx->nr_events while holding ctx->lock, such
3414 	 * that we serialize against perf_install_in_context().
3415 	 */
3416 	if (!ctx->nr_events)
3417 		goto unlock;
3418 
3419 	perf_pmu_disable(ctx->pmu);
3420 	/*
3421 	 * We want to keep the following priority order:
3422 	 * cpu pinned (that don't need to move), task pinned,
3423 	 * cpu flexible, task flexible.
3424 	 *
3425 	 * However, if task's ctx is not carrying any pinned
3426 	 * events, no need to flip the cpuctx's events around.
3427 	 */
3428 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3429 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3430 	perf_event_sched_in(cpuctx, ctx, task);
3431 	perf_pmu_enable(ctx->pmu);
3432 
3433 unlock:
3434 	perf_ctx_unlock(cpuctx, ctx);
3435 }
3436 
3437 /*
3438  * Called from scheduler to add the events of the current task
3439  * with interrupts disabled.
3440  *
3441  * We restore the event value and then enable it.
3442  *
3443  * This does not protect us against NMI, but enable()
3444  * sets the enabled bit in the control field of event _before_
3445  * accessing the event control register. If a NMI hits, then it will
3446  * keep the event running.
3447  */
3448 void __perf_event_task_sched_in(struct task_struct *prev,
3449 				struct task_struct *task)
3450 {
3451 	struct perf_event_context *ctx;
3452 	int ctxn;
3453 
3454 	/*
3455 	 * If cgroup events exist on this CPU, then we need to check if we have
3456 	 * to switch in PMU state; cgroup event are system-wide mode only.
3457 	 *
3458 	 * Since cgroup events are CPU events, we must schedule these in before
3459 	 * we schedule in the task events.
3460 	 */
3461 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462 		perf_cgroup_sched_in(prev, task);
3463 
3464 	for_each_task_context_nr(ctxn) {
3465 		ctx = task->perf_event_ctxp[ctxn];
3466 		if (likely(!ctx))
3467 			continue;
3468 
3469 		perf_event_context_sched_in(ctx, task);
3470 	}
3471 
3472 	if (atomic_read(&nr_switch_events))
3473 		perf_event_switch(task, prev, true);
3474 
3475 	if (__this_cpu_read(perf_sched_cb_usages))
3476 		perf_pmu_sched_task(prev, task, true);
3477 }
3478 
3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480 {
3481 	u64 frequency = event->attr.sample_freq;
3482 	u64 sec = NSEC_PER_SEC;
3483 	u64 divisor, dividend;
3484 
3485 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3486 
3487 	count_fls = fls64(count);
3488 	nsec_fls = fls64(nsec);
3489 	frequency_fls = fls64(frequency);
3490 	sec_fls = 30;
3491 
3492 	/*
3493 	 * We got @count in @nsec, with a target of sample_freq HZ
3494 	 * the target period becomes:
3495 	 *
3496 	 *             @count * 10^9
3497 	 * period = -------------------
3498 	 *          @nsec * sample_freq
3499 	 *
3500 	 */
3501 
3502 	/*
3503 	 * Reduce accuracy by one bit such that @a and @b converge
3504 	 * to a similar magnitude.
3505 	 */
3506 #define REDUCE_FLS(a, b)		\
3507 do {					\
3508 	if (a##_fls > b##_fls) {	\
3509 		a >>= 1;		\
3510 		a##_fls--;		\
3511 	} else {			\
3512 		b >>= 1;		\
3513 		b##_fls--;		\
3514 	}				\
3515 } while (0)
3516 
3517 	/*
3518 	 * Reduce accuracy until either term fits in a u64, then proceed with
3519 	 * the other, so that finally we can do a u64/u64 division.
3520 	 */
3521 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522 		REDUCE_FLS(nsec, frequency);
3523 		REDUCE_FLS(sec, count);
3524 	}
3525 
3526 	if (count_fls + sec_fls > 64) {
3527 		divisor = nsec * frequency;
3528 
3529 		while (count_fls + sec_fls > 64) {
3530 			REDUCE_FLS(count, sec);
3531 			divisor >>= 1;
3532 		}
3533 
3534 		dividend = count * sec;
3535 	} else {
3536 		dividend = count * sec;
3537 
3538 		while (nsec_fls + frequency_fls > 64) {
3539 			REDUCE_FLS(nsec, frequency);
3540 			dividend >>= 1;
3541 		}
3542 
3543 		divisor = nsec * frequency;
3544 	}
3545 
3546 	if (!divisor)
3547 		return dividend;
3548 
3549 	return div64_u64(dividend, divisor);
3550 }
3551 
3552 static DEFINE_PER_CPU(int, perf_throttled_count);
3553 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554 
3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3556 {
3557 	struct hw_perf_event *hwc = &event->hw;
3558 	s64 period, sample_period;
3559 	s64 delta;
3560 
3561 	period = perf_calculate_period(event, nsec, count);
3562 
3563 	delta = (s64)(period - hwc->sample_period);
3564 	delta = (delta + 7) / 8; /* low pass filter */
3565 
3566 	sample_period = hwc->sample_period + delta;
3567 
3568 	if (!sample_period)
3569 		sample_period = 1;
3570 
3571 	hwc->sample_period = sample_period;
3572 
3573 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3574 		if (disable)
3575 			event->pmu->stop(event, PERF_EF_UPDATE);
3576 
3577 		local64_set(&hwc->period_left, 0);
3578 
3579 		if (disable)
3580 			event->pmu->start(event, PERF_EF_RELOAD);
3581 	}
3582 }
3583 
3584 /*
3585  * combine freq adjustment with unthrottling to avoid two passes over the
3586  * events. At the same time, make sure, having freq events does not change
3587  * the rate of unthrottling as that would introduce bias.
3588  */
3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590 					   int needs_unthr)
3591 {
3592 	struct perf_event *event;
3593 	struct hw_perf_event *hwc;
3594 	u64 now, period = TICK_NSEC;
3595 	s64 delta;
3596 
3597 	/*
3598 	 * only need to iterate over all events iff:
3599 	 * - context have events in frequency mode (needs freq adjust)
3600 	 * - there are events to unthrottle on this cpu
3601 	 */
3602 	if (!(ctx->nr_freq || needs_unthr))
3603 		return;
3604 
3605 	raw_spin_lock(&ctx->lock);
3606 	perf_pmu_disable(ctx->pmu);
3607 
3608 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3609 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 			continue;
3611 
3612 		if (!event_filter_match(event))
3613 			continue;
3614 
3615 		perf_pmu_disable(event->pmu);
3616 
3617 		hwc = &event->hw;
3618 
3619 		if (hwc->interrupts == MAX_INTERRUPTS) {
3620 			hwc->interrupts = 0;
3621 			perf_log_throttle(event, 1);
3622 			event->pmu->start(event, 0);
3623 		}
3624 
3625 		if (!event->attr.freq || !event->attr.sample_freq)
3626 			goto next;
3627 
3628 		/*
3629 		 * stop the event and update event->count
3630 		 */
3631 		event->pmu->stop(event, PERF_EF_UPDATE);
3632 
3633 		now = local64_read(&event->count);
3634 		delta = now - hwc->freq_count_stamp;
3635 		hwc->freq_count_stamp = now;
3636 
3637 		/*
3638 		 * restart the event
3639 		 * reload only if value has changed
3640 		 * we have stopped the event so tell that
3641 		 * to perf_adjust_period() to avoid stopping it
3642 		 * twice.
3643 		 */
3644 		if (delta > 0)
3645 			perf_adjust_period(event, period, delta, false);
3646 
3647 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3648 	next:
3649 		perf_pmu_enable(event->pmu);
3650 	}
3651 
3652 	perf_pmu_enable(ctx->pmu);
3653 	raw_spin_unlock(&ctx->lock);
3654 }
3655 
3656 /*
3657  * Move @event to the tail of the @ctx's elegible events.
3658  */
3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3660 {
3661 	/*
3662 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3663 	 * disabled by the inheritance code.
3664 	 */
3665 	if (ctx->rotate_disable)
3666 		return;
3667 
3668 	perf_event_groups_delete(&ctx->flexible_groups, event);
3669 	perf_event_groups_insert(&ctx->flexible_groups, event);
3670 }
3671 
3672 static inline struct perf_event *
3673 ctx_first_active(struct perf_event_context *ctx)
3674 {
3675 	return list_first_entry_or_null(&ctx->flexible_active,
3676 					struct perf_event, active_list);
3677 }
3678 
3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680 {
3681 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3682 	bool cpu_rotate = false, task_rotate = false;
3683 	struct perf_event_context *ctx = NULL;
3684 
3685 	/*
3686 	 * Since we run this from IRQ context, nobody can install new
3687 	 * events, thus the event count values are stable.
3688 	 */
3689 
3690 	if (cpuctx->ctx.nr_events) {
3691 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3692 			cpu_rotate = true;
3693 	}
3694 
3695 	ctx = cpuctx->task_ctx;
3696 	if (ctx && ctx->nr_events) {
3697 		if (ctx->nr_events != ctx->nr_active)
3698 			task_rotate = true;
3699 	}
3700 
3701 	if (!(cpu_rotate || task_rotate))
3702 		return false;
3703 
3704 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3705 	perf_pmu_disable(cpuctx->ctx.pmu);
3706 
3707 	if (task_rotate)
3708 		task_event = ctx_first_active(ctx);
3709 	if (cpu_rotate)
3710 		cpu_event = ctx_first_active(&cpuctx->ctx);
3711 
3712 	/*
3713 	 * As per the order given at ctx_resched() first 'pop' task flexible
3714 	 * and then, if needed CPU flexible.
3715 	 */
3716 	if (task_event || (ctx && cpu_event))
3717 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3718 	if (cpu_event)
3719 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3720 
3721 	if (task_event)
3722 		rotate_ctx(ctx, task_event);
3723 	if (cpu_event)
3724 		rotate_ctx(&cpuctx->ctx, cpu_event);
3725 
3726 	perf_event_sched_in(cpuctx, ctx, current);
3727 
3728 	perf_pmu_enable(cpuctx->ctx.pmu);
3729 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3730 
3731 	return true;
3732 }
3733 
3734 void perf_event_task_tick(void)
3735 {
3736 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737 	struct perf_event_context *ctx, *tmp;
3738 	int throttled;
3739 
3740 	lockdep_assert_irqs_disabled();
3741 
3742 	__this_cpu_inc(perf_throttled_seq);
3743 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3744 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3745 
3746 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3747 		perf_adjust_freq_unthr_context(ctx, throttled);
3748 }
3749 
3750 static int event_enable_on_exec(struct perf_event *event,
3751 				struct perf_event_context *ctx)
3752 {
3753 	if (!event->attr.enable_on_exec)
3754 		return 0;
3755 
3756 	event->attr.enable_on_exec = 0;
3757 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758 		return 0;
3759 
3760 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3761 
3762 	return 1;
3763 }
3764 
3765 /*
3766  * Enable all of a task's events that have been marked enable-on-exec.
3767  * This expects task == current.
3768  */
3769 static void perf_event_enable_on_exec(int ctxn)
3770 {
3771 	struct perf_event_context *ctx, *clone_ctx = NULL;
3772 	enum event_type_t event_type = 0;
3773 	struct perf_cpu_context *cpuctx;
3774 	struct perf_event *event;
3775 	unsigned long flags;
3776 	int enabled = 0;
3777 
3778 	local_irq_save(flags);
3779 	ctx = current->perf_event_ctxp[ctxn];
3780 	if (!ctx || !ctx->nr_events)
3781 		goto out;
3782 
3783 	cpuctx = __get_cpu_context(ctx);
3784 	perf_ctx_lock(cpuctx, ctx);
3785 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3786 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3787 		enabled |= event_enable_on_exec(event, ctx);
3788 		event_type |= get_event_type(event);
3789 	}
3790 
3791 	/*
3792 	 * Unclone and reschedule this context if we enabled any event.
3793 	 */
3794 	if (enabled) {
3795 		clone_ctx = unclone_ctx(ctx);
3796 		ctx_resched(cpuctx, ctx, event_type);
3797 	} else {
3798 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3799 	}
3800 	perf_ctx_unlock(cpuctx, ctx);
3801 
3802 out:
3803 	local_irq_restore(flags);
3804 
3805 	if (clone_ctx)
3806 		put_ctx(clone_ctx);
3807 }
3808 
3809 struct perf_read_data {
3810 	struct perf_event *event;
3811 	bool group;
3812 	int ret;
3813 };
3814 
3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3816 {
3817 	u16 local_pkg, event_pkg;
3818 
3819 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3820 		int local_cpu = smp_processor_id();
3821 
3822 		event_pkg = topology_physical_package_id(event_cpu);
3823 		local_pkg = topology_physical_package_id(local_cpu);
3824 
3825 		if (event_pkg == local_pkg)
3826 			return local_cpu;
3827 	}
3828 
3829 	return event_cpu;
3830 }
3831 
3832 /*
3833  * Cross CPU call to read the hardware event
3834  */
3835 static void __perf_event_read(void *info)
3836 {
3837 	struct perf_read_data *data = info;
3838 	struct perf_event *sub, *event = data->event;
3839 	struct perf_event_context *ctx = event->ctx;
3840 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3841 	struct pmu *pmu = event->pmu;
3842 
3843 	/*
3844 	 * If this is a task context, we need to check whether it is
3845 	 * the current task context of this cpu.  If not it has been
3846 	 * scheduled out before the smp call arrived.  In that case
3847 	 * event->count would have been updated to a recent sample
3848 	 * when the event was scheduled out.
3849 	 */
3850 	if (ctx->task && cpuctx->task_ctx != ctx)
3851 		return;
3852 
3853 	raw_spin_lock(&ctx->lock);
3854 	if (ctx->is_active & EVENT_TIME) {
3855 		update_context_time(ctx);
3856 		update_cgrp_time_from_event(event);
3857 	}
3858 
3859 	perf_event_update_time(event);
3860 	if (data->group)
3861 		perf_event_update_sibling_time(event);
3862 
3863 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3864 		goto unlock;
3865 
3866 	if (!data->group) {
3867 		pmu->read(event);
3868 		data->ret = 0;
3869 		goto unlock;
3870 	}
3871 
3872 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873 
3874 	pmu->read(event);
3875 
3876 	for_each_sibling_event(sub, event) {
3877 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878 			/*
3879 			 * Use sibling's PMU rather than @event's since
3880 			 * sibling could be on different (eg: software) PMU.
3881 			 */
3882 			sub->pmu->read(sub);
3883 		}
3884 	}
3885 
3886 	data->ret = pmu->commit_txn(pmu);
3887 
3888 unlock:
3889 	raw_spin_unlock(&ctx->lock);
3890 }
3891 
3892 static inline u64 perf_event_count(struct perf_event *event)
3893 {
3894 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3895 }
3896 
3897 /*
3898  * NMI-safe method to read a local event, that is an event that
3899  * is:
3900  *   - either for the current task, or for this CPU
3901  *   - does not have inherit set, for inherited task events
3902  *     will not be local and we cannot read them atomically
3903  *   - must not have a pmu::count method
3904  */
3905 int perf_event_read_local(struct perf_event *event, u64 *value,
3906 			  u64 *enabled, u64 *running)
3907 {
3908 	unsigned long flags;
3909 	int ret = 0;
3910 
3911 	/*
3912 	 * Disabling interrupts avoids all counter scheduling (context
3913 	 * switches, timer based rotation and IPIs).
3914 	 */
3915 	local_irq_save(flags);
3916 
3917 	/*
3918 	 * It must not be an event with inherit set, we cannot read
3919 	 * all child counters from atomic context.
3920 	 */
3921 	if (event->attr.inherit) {
3922 		ret = -EOPNOTSUPP;
3923 		goto out;
3924 	}
3925 
3926 	/* If this is a per-task event, it must be for current */
3927 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3928 	    event->hw.target != current) {
3929 		ret = -EINVAL;
3930 		goto out;
3931 	}
3932 
3933 	/* If this is a per-CPU event, it must be for this CPU */
3934 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935 	    event->cpu != smp_processor_id()) {
3936 		ret = -EINVAL;
3937 		goto out;
3938 	}
3939 
3940 	/* If this is a pinned event it must be running on this CPU */
3941 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942 		ret = -EBUSY;
3943 		goto out;
3944 	}
3945 
3946 	/*
3947 	 * If the event is currently on this CPU, its either a per-task event,
3948 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949 	 * oncpu == -1).
3950 	 */
3951 	if (event->oncpu == smp_processor_id())
3952 		event->pmu->read(event);
3953 
3954 	*value = local64_read(&event->count);
3955 	if (enabled || running) {
3956 		u64 now = event->shadow_ctx_time + perf_clock();
3957 		u64 __enabled, __running;
3958 
3959 		__perf_update_times(event, now, &__enabled, &__running);
3960 		if (enabled)
3961 			*enabled = __enabled;
3962 		if (running)
3963 			*running = __running;
3964 	}
3965 out:
3966 	local_irq_restore(flags);
3967 
3968 	return ret;
3969 }
3970 
3971 static int perf_event_read(struct perf_event *event, bool group)
3972 {
3973 	enum perf_event_state state = READ_ONCE(event->state);
3974 	int event_cpu, ret = 0;
3975 
3976 	/*
3977 	 * If event is enabled and currently active on a CPU, update the
3978 	 * value in the event structure:
3979 	 */
3980 again:
3981 	if (state == PERF_EVENT_STATE_ACTIVE) {
3982 		struct perf_read_data data;
3983 
3984 		/*
3985 		 * Orders the ->state and ->oncpu loads such that if we see
3986 		 * ACTIVE we must also see the right ->oncpu.
3987 		 *
3988 		 * Matches the smp_wmb() from event_sched_in().
3989 		 */
3990 		smp_rmb();
3991 
3992 		event_cpu = READ_ONCE(event->oncpu);
3993 		if ((unsigned)event_cpu >= nr_cpu_ids)
3994 			return 0;
3995 
3996 		data = (struct perf_read_data){
3997 			.event = event,
3998 			.group = group,
3999 			.ret = 0,
4000 		};
4001 
4002 		preempt_disable();
4003 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4004 
4005 		/*
4006 		 * Purposely ignore the smp_call_function_single() return
4007 		 * value.
4008 		 *
4009 		 * If event_cpu isn't a valid CPU it means the event got
4010 		 * scheduled out and that will have updated the event count.
4011 		 *
4012 		 * Therefore, either way, we'll have an up-to-date event count
4013 		 * after this.
4014 		 */
4015 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016 		preempt_enable();
4017 		ret = data.ret;
4018 
4019 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4020 		struct perf_event_context *ctx = event->ctx;
4021 		unsigned long flags;
4022 
4023 		raw_spin_lock_irqsave(&ctx->lock, flags);
4024 		state = event->state;
4025 		if (state != PERF_EVENT_STATE_INACTIVE) {
4026 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027 			goto again;
4028 		}
4029 
4030 		/*
4031 		 * May read while context is not active (e.g., thread is
4032 		 * blocked), in that case we cannot update context time
4033 		 */
4034 		if (ctx->is_active & EVENT_TIME) {
4035 			update_context_time(ctx);
4036 			update_cgrp_time_from_event(event);
4037 		}
4038 
4039 		perf_event_update_time(event);
4040 		if (group)
4041 			perf_event_update_sibling_time(event);
4042 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4043 	}
4044 
4045 	return ret;
4046 }
4047 
4048 /*
4049  * Initialize the perf_event context in a task_struct:
4050  */
4051 static void __perf_event_init_context(struct perf_event_context *ctx)
4052 {
4053 	raw_spin_lock_init(&ctx->lock);
4054 	mutex_init(&ctx->mutex);
4055 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4056 	perf_event_groups_init(&ctx->pinned_groups);
4057 	perf_event_groups_init(&ctx->flexible_groups);
4058 	INIT_LIST_HEAD(&ctx->event_list);
4059 	INIT_LIST_HEAD(&ctx->pinned_active);
4060 	INIT_LIST_HEAD(&ctx->flexible_active);
4061 	atomic_set(&ctx->refcount, 1);
4062 }
4063 
4064 static struct perf_event_context *
4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066 {
4067 	struct perf_event_context *ctx;
4068 
4069 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070 	if (!ctx)
4071 		return NULL;
4072 
4073 	__perf_event_init_context(ctx);
4074 	if (task) {
4075 		ctx->task = task;
4076 		get_task_struct(task);
4077 	}
4078 	ctx->pmu = pmu;
4079 
4080 	return ctx;
4081 }
4082 
4083 static struct task_struct *
4084 find_lively_task_by_vpid(pid_t vpid)
4085 {
4086 	struct task_struct *task;
4087 
4088 	rcu_read_lock();
4089 	if (!vpid)
4090 		task = current;
4091 	else
4092 		task = find_task_by_vpid(vpid);
4093 	if (task)
4094 		get_task_struct(task);
4095 	rcu_read_unlock();
4096 
4097 	if (!task)
4098 		return ERR_PTR(-ESRCH);
4099 
4100 	return task;
4101 }
4102 
4103 /*
4104  * Returns a matching context with refcount and pincount.
4105  */
4106 static struct perf_event_context *
4107 find_get_context(struct pmu *pmu, struct task_struct *task,
4108 		struct perf_event *event)
4109 {
4110 	struct perf_event_context *ctx, *clone_ctx = NULL;
4111 	struct perf_cpu_context *cpuctx;
4112 	void *task_ctx_data = NULL;
4113 	unsigned long flags;
4114 	int ctxn, err;
4115 	int cpu = event->cpu;
4116 
4117 	if (!task) {
4118 		/* Must be root to operate on a CPU event: */
4119 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4120 			return ERR_PTR(-EACCES);
4121 
4122 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4123 		ctx = &cpuctx->ctx;
4124 		get_ctx(ctx);
4125 		++ctx->pin_count;
4126 
4127 		return ctx;
4128 	}
4129 
4130 	err = -EINVAL;
4131 	ctxn = pmu->task_ctx_nr;
4132 	if (ctxn < 0)
4133 		goto errout;
4134 
4135 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137 		if (!task_ctx_data) {
4138 			err = -ENOMEM;
4139 			goto errout;
4140 		}
4141 	}
4142 
4143 retry:
4144 	ctx = perf_lock_task_context(task, ctxn, &flags);
4145 	if (ctx) {
4146 		clone_ctx = unclone_ctx(ctx);
4147 		++ctx->pin_count;
4148 
4149 		if (task_ctx_data && !ctx->task_ctx_data) {
4150 			ctx->task_ctx_data = task_ctx_data;
4151 			task_ctx_data = NULL;
4152 		}
4153 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4154 
4155 		if (clone_ctx)
4156 			put_ctx(clone_ctx);
4157 	} else {
4158 		ctx = alloc_perf_context(pmu, task);
4159 		err = -ENOMEM;
4160 		if (!ctx)
4161 			goto errout;
4162 
4163 		if (task_ctx_data) {
4164 			ctx->task_ctx_data = task_ctx_data;
4165 			task_ctx_data = NULL;
4166 		}
4167 
4168 		err = 0;
4169 		mutex_lock(&task->perf_event_mutex);
4170 		/*
4171 		 * If it has already passed perf_event_exit_task().
4172 		 * we must see PF_EXITING, it takes this mutex too.
4173 		 */
4174 		if (task->flags & PF_EXITING)
4175 			err = -ESRCH;
4176 		else if (task->perf_event_ctxp[ctxn])
4177 			err = -EAGAIN;
4178 		else {
4179 			get_ctx(ctx);
4180 			++ctx->pin_count;
4181 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4182 		}
4183 		mutex_unlock(&task->perf_event_mutex);
4184 
4185 		if (unlikely(err)) {
4186 			put_ctx(ctx);
4187 
4188 			if (err == -EAGAIN)
4189 				goto retry;
4190 			goto errout;
4191 		}
4192 	}
4193 
4194 	kfree(task_ctx_data);
4195 	return ctx;
4196 
4197 errout:
4198 	kfree(task_ctx_data);
4199 	return ERR_PTR(err);
4200 }
4201 
4202 static void perf_event_free_filter(struct perf_event *event);
4203 static void perf_event_free_bpf_prog(struct perf_event *event);
4204 
4205 static void free_event_rcu(struct rcu_head *head)
4206 {
4207 	struct perf_event *event;
4208 
4209 	event = container_of(head, struct perf_event, rcu_head);
4210 	if (event->ns)
4211 		put_pid_ns(event->ns);
4212 	perf_event_free_filter(event);
4213 	kfree(event);
4214 }
4215 
4216 static void ring_buffer_attach(struct perf_event *event,
4217 			       struct ring_buffer *rb);
4218 
4219 static void detach_sb_event(struct perf_event *event)
4220 {
4221 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222 
4223 	raw_spin_lock(&pel->lock);
4224 	list_del_rcu(&event->sb_list);
4225 	raw_spin_unlock(&pel->lock);
4226 }
4227 
4228 static bool is_sb_event(struct perf_event *event)
4229 {
4230 	struct perf_event_attr *attr = &event->attr;
4231 
4232 	if (event->parent)
4233 		return false;
4234 
4235 	if (event->attach_state & PERF_ATTACH_TASK)
4236 		return false;
4237 
4238 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239 	    attr->comm || attr->comm_exec ||
4240 	    attr->task || attr->ksymbol ||
4241 	    attr->context_switch)
4242 		return true;
4243 	return false;
4244 }
4245 
4246 static void unaccount_pmu_sb_event(struct perf_event *event)
4247 {
4248 	if (is_sb_event(event))
4249 		detach_sb_event(event);
4250 }
4251 
4252 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4253 {
4254 	if (event->parent)
4255 		return;
4256 
4257 	if (is_cgroup_event(event))
4258 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4259 }
4260 
4261 #ifdef CONFIG_NO_HZ_FULL
4262 static DEFINE_SPINLOCK(nr_freq_lock);
4263 #endif
4264 
4265 static void unaccount_freq_event_nohz(void)
4266 {
4267 #ifdef CONFIG_NO_HZ_FULL
4268 	spin_lock(&nr_freq_lock);
4269 	if (atomic_dec_and_test(&nr_freq_events))
4270 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4271 	spin_unlock(&nr_freq_lock);
4272 #endif
4273 }
4274 
4275 static void unaccount_freq_event(void)
4276 {
4277 	if (tick_nohz_full_enabled())
4278 		unaccount_freq_event_nohz();
4279 	else
4280 		atomic_dec(&nr_freq_events);
4281 }
4282 
4283 static void unaccount_event(struct perf_event *event)
4284 {
4285 	bool dec = false;
4286 
4287 	if (event->parent)
4288 		return;
4289 
4290 	if (event->attach_state & PERF_ATTACH_TASK)
4291 		dec = true;
4292 	if (event->attr.mmap || event->attr.mmap_data)
4293 		atomic_dec(&nr_mmap_events);
4294 	if (event->attr.comm)
4295 		atomic_dec(&nr_comm_events);
4296 	if (event->attr.namespaces)
4297 		atomic_dec(&nr_namespaces_events);
4298 	if (event->attr.task)
4299 		atomic_dec(&nr_task_events);
4300 	if (event->attr.freq)
4301 		unaccount_freq_event();
4302 	if (event->attr.context_switch) {
4303 		dec = true;
4304 		atomic_dec(&nr_switch_events);
4305 	}
4306 	if (is_cgroup_event(event))
4307 		dec = true;
4308 	if (has_branch_stack(event))
4309 		dec = true;
4310 	if (event->attr.ksymbol)
4311 		atomic_dec(&nr_ksymbol_events);
4312 	if (event->attr.bpf_event)
4313 		atomic_dec(&nr_bpf_events);
4314 
4315 	if (dec) {
4316 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4317 			schedule_delayed_work(&perf_sched_work, HZ);
4318 	}
4319 
4320 	unaccount_event_cpu(event, event->cpu);
4321 
4322 	unaccount_pmu_sb_event(event);
4323 }
4324 
4325 static void perf_sched_delayed(struct work_struct *work)
4326 {
4327 	mutex_lock(&perf_sched_mutex);
4328 	if (atomic_dec_and_test(&perf_sched_count))
4329 		static_branch_disable(&perf_sched_events);
4330 	mutex_unlock(&perf_sched_mutex);
4331 }
4332 
4333 /*
4334  * The following implement mutual exclusion of events on "exclusive" pmus
4335  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4336  * at a time, so we disallow creating events that might conflict, namely:
4337  *
4338  *  1) cpu-wide events in the presence of per-task events,
4339  *  2) per-task events in the presence of cpu-wide events,
4340  *  3) two matching events on the same context.
4341  *
4342  * The former two cases are handled in the allocation path (perf_event_alloc(),
4343  * _free_event()), the latter -- before the first perf_install_in_context().
4344  */
4345 static int exclusive_event_init(struct perf_event *event)
4346 {
4347 	struct pmu *pmu = event->pmu;
4348 
4349 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4350 		return 0;
4351 
4352 	/*
4353 	 * Prevent co-existence of per-task and cpu-wide events on the
4354 	 * same exclusive pmu.
4355 	 *
4356 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4357 	 * events on this "exclusive" pmu, positive means there are
4358 	 * per-task events.
4359 	 *
4360 	 * Since this is called in perf_event_alloc() path, event::ctx
4361 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4362 	 * to mean "per-task event", because unlike other attach states it
4363 	 * never gets cleared.
4364 	 */
4365 	if (event->attach_state & PERF_ATTACH_TASK) {
4366 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4367 			return -EBUSY;
4368 	} else {
4369 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4370 			return -EBUSY;
4371 	}
4372 
4373 	return 0;
4374 }
4375 
4376 static void exclusive_event_destroy(struct perf_event *event)
4377 {
4378 	struct pmu *pmu = event->pmu;
4379 
4380 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4381 		return;
4382 
4383 	/* see comment in exclusive_event_init() */
4384 	if (event->attach_state & PERF_ATTACH_TASK)
4385 		atomic_dec(&pmu->exclusive_cnt);
4386 	else
4387 		atomic_inc(&pmu->exclusive_cnt);
4388 }
4389 
4390 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4391 {
4392 	if ((e1->pmu == e2->pmu) &&
4393 	    (e1->cpu == e2->cpu ||
4394 	     e1->cpu == -1 ||
4395 	     e2->cpu == -1))
4396 		return true;
4397 	return false;
4398 }
4399 
4400 /* Called under the same ctx::mutex as perf_install_in_context() */
4401 static bool exclusive_event_installable(struct perf_event *event,
4402 					struct perf_event_context *ctx)
4403 {
4404 	struct perf_event *iter_event;
4405 	struct pmu *pmu = event->pmu;
4406 
4407 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4408 		return true;
4409 
4410 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4411 		if (exclusive_event_match(iter_event, event))
4412 			return false;
4413 	}
4414 
4415 	return true;
4416 }
4417 
4418 static void perf_addr_filters_splice(struct perf_event *event,
4419 				       struct list_head *head);
4420 
4421 static void _free_event(struct perf_event *event)
4422 {
4423 	irq_work_sync(&event->pending);
4424 
4425 	unaccount_event(event);
4426 
4427 	if (event->rb) {
4428 		/*
4429 		 * Can happen when we close an event with re-directed output.
4430 		 *
4431 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4432 		 * over us; possibly making our ring_buffer_put() the last.
4433 		 */
4434 		mutex_lock(&event->mmap_mutex);
4435 		ring_buffer_attach(event, NULL);
4436 		mutex_unlock(&event->mmap_mutex);
4437 	}
4438 
4439 	if (is_cgroup_event(event))
4440 		perf_detach_cgroup(event);
4441 
4442 	if (!event->parent) {
4443 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4444 			put_callchain_buffers();
4445 	}
4446 
4447 	perf_event_free_bpf_prog(event);
4448 	perf_addr_filters_splice(event, NULL);
4449 	kfree(event->addr_filters_offs);
4450 
4451 	if (event->destroy)
4452 		event->destroy(event);
4453 
4454 	if (event->ctx)
4455 		put_ctx(event->ctx);
4456 
4457 	if (event->hw.target)
4458 		put_task_struct(event->hw.target);
4459 
4460 	exclusive_event_destroy(event);
4461 	module_put(event->pmu->module);
4462 
4463 	call_rcu(&event->rcu_head, free_event_rcu);
4464 }
4465 
4466 /*
4467  * Used to free events which have a known refcount of 1, such as in error paths
4468  * where the event isn't exposed yet and inherited events.
4469  */
4470 static void free_event(struct perf_event *event)
4471 {
4472 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4473 				"unexpected event refcount: %ld; ptr=%p\n",
4474 				atomic_long_read(&event->refcount), event)) {
4475 		/* leak to avoid use-after-free */
4476 		return;
4477 	}
4478 
4479 	_free_event(event);
4480 }
4481 
4482 /*
4483  * Remove user event from the owner task.
4484  */
4485 static void perf_remove_from_owner(struct perf_event *event)
4486 {
4487 	struct task_struct *owner;
4488 
4489 	rcu_read_lock();
4490 	/*
4491 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4492 	 * observe !owner it means the list deletion is complete and we can
4493 	 * indeed free this event, otherwise we need to serialize on
4494 	 * owner->perf_event_mutex.
4495 	 */
4496 	owner = READ_ONCE(event->owner);
4497 	if (owner) {
4498 		/*
4499 		 * Since delayed_put_task_struct() also drops the last
4500 		 * task reference we can safely take a new reference
4501 		 * while holding the rcu_read_lock().
4502 		 */
4503 		get_task_struct(owner);
4504 	}
4505 	rcu_read_unlock();
4506 
4507 	if (owner) {
4508 		/*
4509 		 * If we're here through perf_event_exit_task() we're already
4510 		 * holding ctx->mutex which would be an inversion wrt. the
4511 		 * normal lock order.
4512 		 *
4513 		 * However we can safely take this lock because its the child
4514 		 * ctx->mutex.
4515 		 */
4516 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4517 
4518 		/*
4519 		 * We have to re-check the event->owner field, if it is cleared
4520 		 * we raced with perf_event_exit_task(), acquiring the mutex
4521 		 * ensured they're done, and we can proceed with freeing the
4522 		 * event.
4523 		 */
4524 		if (event->owner) {
4525 			list_del_init(&event->owner_entry);
4526 			smp_store_release(&event->owner, NULL);
4527 		}
4528 		mutex_unlock(&owner->perf_event_mutex);
4529 		put_task_struct(owner);
4530 	}
4531 }
4532 
4533 static void put_event(struct perf_event *event)
4534 {
4535 	if (!atomic_long_dec_and_test(&event->refcount))
4536 		return;
4537 
4538 	_free_event(event);
4539 }
4540 
4541 /*
4542  * Kill an event dead; while event:refcount will preserve the event
4543  * object, it will not preserve its functionality. Once the last 'user'
4544  * gives up the object, we'll destroy the thing.
4545  */
4546 int perf_event_release_kernel(struct perf_event *event)
4547 {
4548 	struct perf_event_context *ctx = event->ctx;
4549 	struct perf_event *child, *tmp;
4550 	LIST_HEAD(free_list);
4551 
4552 	/*
4553 	 * If we got here through err_file: fput(event_file); we will not have
4554 	 * attached to a context yet.
4555 	 */
4556 	if (!ctx) {
4557 		WARN_ON_ONCE(event->attach_state &
4558 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4559 		goto no_ctx;
4560 	}
4561 
4562 	if (!is_kernel_event(event))
4563 		perf_remove_from_owner(event);
4564 
4565 	ctx = perf_event_ctx_lock(event);
4566 	WARN_ON_ONCE(ctx->parent_ctx);
4567 	perf_remove_from_context(event, DETACH_GROUP);
4568 
4569 	raw_spin_lock_irq(&ctx->lock);
4570 	/*
4571 	 * Mark this event as STATE_DEAD, there is no external reference to it
4572 	 * anymore.
4573 	 *
4574 	 * Anybody acquiring event->child_mutex after the below loop _must_
4575 	 * also see this, most importantly inherit_event() which will avoid
4576 	 * placing more children on the list.
4577 	 *
4578 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4579 	 * child events.
4580 	 */
4581 	event->state = PERF_EVENT_STATE_DEAD;
4582 	raw_spin_unlock_irq(&ctx->lock);
4583 
4584 	perf_event_ctx_unlock(event, ctx);
4585 
4586 again:
4587 	mutex_lock(&event->child_mutex);
4588 	list_for_each_entry(child, &event->child_list, child_list) {
4589 
4590 		/*
4591 		 * Cannot change, child events are not migrated, see the
4592 		 * comment with perf_event_ctx_lock_nested().
4593 		 */
4594 		ctx = READ_ONCE(child->ctx);
4595 		/*
4596 		 * Since child_mutex nests inside ctx::mutex, we must jump
4597 		 * through hoops. We start by grabbing a reference on the ctx.
4598 		 *
4599 		 * Since the event cannot get freed while we hold the
4600 		 * child_mutex, the context must also exist and have a !0
4601 		 * reference count.
4602 		 */
4603 		get_ctx(ctx);
4604 
4605 		/*
4606 		 * Now that we have a ctx ref, we can drop child_mutex, and
4607 		 * acquire ctx::mutex without fear of it going away. Then we
4608 		 * can re-acquire child_mutex.
4609 		 */
4610 		mutex_unlock(&event->child_mutex);
4611 		mutex_lock(&ctx->mutex);
4612 		mutex_lock(&event->child_mutex);
4613 
4614 		/*
4615 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4616 		 * state, if child is still the first entry, it didn't get freed
4617 		 * and we can continue doing so.
4618 		 */
4619 		tmp = list_first_entry_or_null(&event->child_list,
4620 					       struct perf_event, child_list);
4621 		if (tmp == child) {
4622 			perf_remove_from_context(child, DETACH_GROUP);
4623 			list_move(&child->child_list, &free_list);
4624 			/*
4625 			 * This matches the refcount bump in inherit_event();
4626 			 * this can't be the last reference.
4627 			 */
4628 			put_event(event);
4629 		}
4630 
4631 		mutex_unlock(&event->child_mutex);
4632 		mutex_unlock(&ctx->mutex);
4633 		put_ctx(ctx);
4634 		goto again;
4635 	}
4636 	mutex_unlock(&event->child_mutex);
4637 
4638 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4639 		list_del(&child->child_list);
4640 		free_event(child);
4641 	}
4642 
4643 no_ctx:
4644 	put_event(event); /* Must be the 'last' reference */
4645 	return 0;
4646 }
4647 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4648 
4649 /*
4650  * Called when the last reference to the file is gone.
4651  */
4652 static int perf_release(struct inode *inode, struct file *file)
4653 {
4654 	perf_event_release_kernel(file->private_data);
4655 	return 0;
4656 }
4657 
4658 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4659 {
4660 	struct perf_event *child;
4661 	u64 total = 0;
4662 
4663 	*enabled = 0;
4664 	*running = 0;
4665 
4666 	mutex_lock(&event->child_mutex);
4667 
4668 	(void)perf_event_read(event, false);
4669 	total += perf_event_count(event);
4670 
4671 	*enabled += event->total_time_enabled +
4672 			atomic64_read(&event->child_total_time_enabled);
4673 	*running += event->total_time_running +
4674 			atomic64_read(&event->child_total_time_running);
4675 
4676 	list_for_each_entry(child, &event->child_list, child_list) {
4677 		(void)perf_event_read(child, false);
4678 		total += perf_event_count(child);
4679 		*enabled += child->total_time_enabled;
4680 		*running += child->total_time_running;
4681 	}
4682 	mutex_unlock(&event->child_mutex);
4683 
4684 	return total;
4685 }
4686 
4687 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4688 {
4689 	struct perf_event_context *ctx;
4690 	u64 count;
4691 
4692 	ctx = perf_event_ctx_lock(event);
4693 	count = __perf_event_read_value(event, enabled, running);
4694 	perf_event_ctx_unlock(event, ctx);
4695 
4696 	return count;
4697 }
4698 EXPORT_SYMBOL_GPL(perf_event_read_value);
4699 
4700 static int __perf_read_group_add(struct perf_event *leader,
4701 					u64 read_format, u64 *values)
4702 {
4703 	struct perf_event_context *ctx = leader->ctx;
4704 	struct perf_event *sub;
4705 	unsigned long flags;
4706 	int n = 1; /* skip @nr */
4707 	int ret;
4708 
4709 	ret = perf_event_read(leader, true);
4710 	if (ret)
4711 		return ret;
4712 
4713 	raw_spin_lock_irqsave(&ctx->lock, flags);
4714 
4715 	/*
4716 	 * Since we co-schedule groups, {enabled,running} times of siblings
4717 	 * will be identical to those of the leader, so we only publish one
4718 	 * set.
4719 	 */
4720 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4721 		values[n++] += leader->total_time_enabled +
4722 			atomic64_read(&leader->child_total_time_enabled);
4723 	}
4724 
4725 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4726 		values[n++] += leader->total_time_running +
4727 			atomic64_read(&leader->child_total_time_running);
4728 	}
4729 
4730 	/*
4731 	 * Write {count,id} tuples for every sibling.
4732 	 */
4733 	values[n++] += perf_event_count(leader);
4734 	if (read_format & PERF_FORMAT_ID)
4735 		values[n++] = primary_event_id(leader);
4736 
4737 	for_each_sibling_event(sub, leader) {
4738 		values[n++] += perf_event_count(sub);
4739 		if (read_format & PERF_FORMAT_ID)
4740 			values[n++] = primary_event_id(sub);
4741 	}
4742 
4743 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4744 	return 0;
4745 }
4746 
4747 static int perf_read_group(struct perf_event *event,
4748 				   u64 read_format, char __user *buf)
4749 {
4750 	struct perf_event *leader = event->group_leader, *child;
4751 	struct perf_event_context *ctx = leader->ctx;
4752 	int ret;
4753 	u64 *values;
4754 
4755 	lockdep_assert_held(&ctx->mutex);
4756 
4757 	values = kzalloc(event->read_size, GFP_KERNEL);
4758 	if (!values)
4759 		return -ENOMEM;
4760 
4761 	values[0] = 1 + leader->nr_siblings;
4762 
4763 	/*
4764 	 * By locking the child_mutex of the leader we effectively
4765 	 * lock the child list of all siblings.. XXX explain how.
4766 	 */
4767 	mutex_lock(&leader->child_mutex);
4768 
4769 	ret = __perf_read_group_add(leader, read_format, values);
4770 	if (ret)
4771 		goto unlock;
4772 
4773 	list_for_each_entry(child, &leader->child_list, child_list) {
4774 		ret = __perf_read_group_add(child, read_format, values);
4775 		if (ret)
4776 			goto unlock;
4777 	}
4778 
4779 	mutex_unlock(&leader->child_mutex);
4780 
4781 	ret = event->read_size;
4782 	if (copy_to_user(buf, values, event->read_size))
4783 		ret = -EFAULT;
4784 	goto out;
4785 
4786 unlock:
4787 	mutex_unlock(&leader->child_mutex);
4788 out:
4789 	kfree(values);
4790 	return ret;
4791 }
4792 
4793 static int perf_read_one(struct perf_event *event,
4794 				 u64 read_format, char __user *buf)
4795 {
4796 	u64 enabled, running;
4797 	u64 values[4];
4798 	int n = 0;
4799 
4800 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4801 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4802 		values[n++] = enabled;
4803 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4804 		values[n++] = running;
4805 	if (read_format & PERF_FORMAT_ID)
4806 		values[n++] = primary_event_id(event);
4807 
4808 	if (copy_to_user(buf, values, n * sizeof(u64)))
4809 		return -EFAULT;
4810 
4811 	return n * sizeof(u64);
4812 }
4813 
4814 static bool is_event_hup(struct perf_event *event)
4815 {
4816 	bool no_children;
4817 
4818 	if (event->state > PERF_EVENT_STATE_EXIT)
4819 		return false;
4820 
4821 	mutex_lock(&event->child_mutex);
4822 	no_children = list_empty(&event->child_list);
4823 	mutex_unlock(&event->child_mutex);
4824 	return no_children;
4825 }
4826 
4827 /*
4828  * Read the performance event - simple non blocking version for now
4829  */
4830 static ssize_t
4831 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4832 {
4833 	u64 read_format = event->attr.read_format;
4834 	int ret;
4835 
4836 	/*
4837 	 * Return end-of-file for a read on an event that is in
4838 	 * error state (i.e. because it was pinned but it couldn't be
4839 	 * scheduled on to the CPU at some point).
4840 	 */
4841 	if (event->state == PERF_EVENT_STATE_ERROR)
4842 		return 0;
4843 
4844 	if (count < event->read_size)
4845 		return -ENOSPC;
4846 
4847 	WARN_ON_ONCE(event->ctx->parent_ctx);
4848 	if (read_format & PERF_FORMAT_GROUP)
4849 		ret = perf_read_group(event, read_format, buf);
4850 	else
4851 		ret = perf_read_one(event, read_format, buf);
4852 
4853 	return ret;
4854 }
4855 
4856 static ssize_t
4857 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4858 {
4859 	struct perf_event *event = file->private_data;
4860 	struct perf_event_context *ctx;
4861 	int ret;
4862 
4863 	ctx = perf_event_ctx_lock(event);
4864 	ret = __perf_read(event, buf, count);
4865 	perf_event_ctx_unlock(event, ctx);
4866 
4867 	return ret;
4868 }
4869 
4870 static __poll_t perf_poll(struct file *file, poll_table *wait)
4871 {
4872 	struct perf_event *event = file->private_data;
4873 	struct ring_buffer *rb;
4874 	__poll_t events = EPOLLHUP;
4875 
4876 	poll_wait(file, &event->waitq, wait);
4877 
4878 	if (is_event_hup(event))
4879 		return events;
4880 
4881 	/*
4882 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4883 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4884 	 */
4885 	mutex_lock(&event->mmap_mutex);
4886 	rb = event->rb;
4887 	if (rb)
4888 		events = atomic_xchg(&rb->poll, 0);
4889 	mutex_unlock(&event->mmap_mutex);
4890 	return events;
4891 }
4892 
4893 static void _perf_event_reset(struct perf_event *event)
4894 {
4895 	(void)perf_event_read(event, false);
4896 	local64_set(&event->count, 0);
4897 	perf_event_update_userpage(event);
4898 }
4899 
4900 /*
4901  * Holding the top-level event's child_mutex means that any
4902  * descendant process that has inherited this event will block
4903  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4904  * task existence requirements of perf_event_enable/disable.
4905  */
4906 static void perf_event_for_each_child(struct perf_event *event,
4907 					void (*func)(struct perf_event *))
4908 {
4909 	struct perf_event *child;
4910 
4911 	WARN_ON_ONCE(event->ctx->parent_ctx);
4912 
4913 	mutex_lock(&event->child_mutex);
4914 	func(event);
4915 	list_for_each_entry(child, &event->child_list, child_list)
4916 		func(child);
4917 	mutex_unlock(&event->child_mutex);
4918 }
4919 
4920 static void perf_event_for_each(struct perf_event *event,
4921 				  void (*func)(struct perf_event *))
4922 {
4923 	struct perf_event_context *ctx = event->ctx;
4924 	struct perf_event *sibling;
4925 
4926 	lockdep_assert_held(&ctx->mutex);
4927 
4928 	event = event->group_leader;
4929 
4930 	perf_event_for_each_child(event, func);
4931 	for_each_sibling_event(sibling, event)
4932 		perf_event_for_each_child(sibling, func);
4933 }
4934 
4935 static void __perf_event_period(struct perf_event *event,
4936 				struct perf_cpu_context *cpuctx,
4937 				struct perf_event_context *ctx,
4938 				void *info)
4939 {
4940 	u64 value = *((u64 *)info);
4941 	bool active;
4942 
4943 	if (event->attr.freq) {
4944 		event->attr.sample_freq = value;
4945 	} else {
4946 		event->attr.sample_period = value;
4947 		event->hw.sample_period = value;
4948 	}
4949 
4950 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4951 	if (active) {
4952 		perf_pmu_disable(ctx->pmu);
4953 		/*
4954 		 * We could be throttled; unthrottle now to avoid the tick
4955 		 * trying to unthrottle while we already re-started the event.
4956 		 */
4957 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4958 			event->hw.interrupts = 0;
4959 			perf_log_throttle(event, 1);
4960 		}
4961 		event->pmu->stop(event, PERF_EF_UPDATE);
4962 	}
4963 
4964 	local64_set(&event->hw.period_left, 0);
4965 
4966 	if (active) {
4967 		event->pmu->start(event, PERF_EF_RELOAD);
4968 		perf_pmu_enable(ctx->pmu);
4969 	}
4970 }
4971 
4972 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4973 {
4974 	u64 value;
4975 
4976 	if (!is_sampling_event(event))
4977 		return -EINVAL;
4978 
4979 	if (copy_from_user(&value, arg, sizeof(value)))
4980 		return -EFAULT;
4981 
4982 	if (!value)
4983 		return -EINVAL;
4984 
4985 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4986 		return -EINVAL;
4987 
4988 	event_function_call(event, __perf_event_period, &value);
4989 
4990 	return 0;
4991 }
4992 
4993 static const struct file_operations perf_fops;
4994 
4995 static inline int perf_fget_light(int fd, struct fd *p)
4996 {
4997 	struct fd f = fdget(fd);
4998 	if (!f.file)
4999 		return -EBADF;
5000 
5001 	if (f.file->f_op != &perf_fops) {
5002 		fdput(f);
5003 		return -EBADF;
5004 	}
5005 	*p = f;
5006 	return 0;
5007 }
5008 
5009 static int perf_event_set_output(struct perf_event *event,
5010 				 struct perf_event *output_event);
5011 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5013 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5014 			  struct perf_event_attr *attr);
5015 
5016 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5017 {
5018 	void (*func)(struct perf_event *);
5019 	u32 flags = arg;
5020 
5021 	switch (cmd) {
5022 	case PERF_EVENT_IOC_ENABLE:
5023 		func = _perf_event_enable;
5024 		break;
5025 	case PERF_EVENT_IOC_DISABLE:
5026 		func = _perf_event_disable;
5027 		break;
5028 	case PERF_EVENT_IOC_RESET:
5029 		func = _perf_event_reset;
5030 		break;
5031 
5032 	case PERF_EVENT_IOC_REFRESH:
5033 		return _perf_event_refresh(event, arg);
5034 
5035 	case PERF_EVENT_IOC_PERIOD:
5036 		return perf_event_period(event, (u64 __user *)arg);
5037 
5038 	case PERF_EVENT_IOC_ID:
5039 	{
5040 		u64 id = primary_event_id(event);
5041 
5042 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5043 			return -EFAULT;
5044 		return 0;
5045 	}
5046 
5047 	case PERF_EVENT_IOC_SET_OUTPUT:
5048 	{
5049 		int ret;
5050 		if (arg != -1) {
5051 			struct perf_event *output_event;
5052 			struct fd output;
5053 			ret = perf_fget_light(arg, &output);
5054 			if (ret)
5055 				return ret;
5056 			output_event = output.file->private_data;
5057 			ret = perf_event_set_output(event, output_event);
5058 			fdput(output);
5059 		} else {
5060 			ret = perf_event_set_output(event, NULL);
5061 		}
5062 		return ret;
5063 	}
5064 
5065 	case PERF_EVENT_IOC_SET_FILTER:
5066 		return perf_event_set_filter(event, (void __user *)arg);
5067 
5068 	case PERF_EVENT_IOC_SET_BPF:
5069 		return perf_event_set_bpf_prog(event, arg);
5070 
5071 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5072 		struct ring_buffer *rb;
5073 
5074 		rcu_read_lock();
5075 		rb = rcu_dereference(event->rb);
5076 		if (!rb || !rb->nr_pages) {
5077 			rcu_read_unlock();
5078 			return -EINVAL;
5079 		}
5080 		rb_toggle_paused(rb, !!arg);
5081 		rcu_read_unlock();
5082 		return 0;
5083 	}
5084 
5085 	case PERF_EVENT_IOC_QUERY_BPF:
5086 		return perf_event_query_prog_array(event, (void __user *)arg);
5087 
5088 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5089 		struct perf_event_attr new_attr;
5090 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5091 					 &new_attr);
5092 
5093 		if (err)
5094 			return err;
5095 
5096 		return perf_event_modify_attr(event,  &new_attr);
5097 	}
5098 	default:
5099 		return -ENOTTY;
5100 	}
5101 
5102 	if (flags & PERF_IOC_FLAG_GROUP)
5103 		perf_event_for_each(event, func);
5104 	else
5105 		perf_event_for_each_child(event, func);
5106 
5107 	return 0;
5108 }
5109 
5110 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5111 {
5112 	struct perf_event *event = file->private_data;
5113 	struct perf_event_context *ctx;
5114 	long ret;
5115 
5116 	ctx = perf_event_ctx_lock(event);
5117 	ret = _perf_ioctl(event, cmd, arg);
5118 	perf_event_ctx_unlock(event, ctx);
5119 
5120 	return ret;
5121 }
5122 
5123 #ifdef CONFIG_COMPAT
5124 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5125 				unsigned long arg)
5126 {
5127 	switch (_IOC_NR(cmd)) {
5128 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5129 	case _IOC_NR(PERF_EVENT_IOC_ID):
5130 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5131 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5132 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5133 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5134 			cmd &= ~IOCSIZE_MASK;
5135 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5136 		}
5137 		break;
5138 	}
5139 	return perf_ioctl(file, cmd, arg);
5140 }
5141 #else
5142 # define perf_compat_ioctl NULL
5143 #endif
5144 
5145 int perf_event_task_enable(void)
5146 {
5147 	struct perf_event_context *ctx;
5148 	struct perf_event *event;
5149 
5150 	mutex_lock(&current->perf_event_mutex);
5151 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5152 		ctx = perf_event_ctx_lock(event);
5153 		perf_event_for_each_child(event, _perf_event_enable);
5154 		perf_event_ctx_unlock(event, ctx);
5155 	}
5156 	mutex_unlock(&current->perf_event_mutex);
5157 
5158 	return 0;
5159 }
5160 
5161 int perf_event_task_disable(void)
5162 {
5163 	struct perf_event_context *ctx;
5164 	struct perf_event *event;
5165 
5166 	mutex_lock(&current->perf_event_mutex);
5167 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5168 		ctx = perf_event_ctx_lock(event);
5169 		perf_event_for_each_child(event, _perf_event_disable);
5170 		perf_event_ctx_unlock(event, ctx);
5171 	}
5172 	mutex_unlock(&current->perf_event_mutex);
5173 
5174 	return 0;
5175 }
5176 
5177 static int perf_event_index(struct perf_event *event)
5178 {
5179 	if (event->hw.state & PERF_HES_STOPPED)
5180 		return 0;
5181 
5182 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5183 		return 0;
5184 
5185 	return event->pmu->event_idx(event);
5186 }
5187 
5188 static void calc_timer_values(struct perf_event *event,
5189 				u64 *now,
5190 				u64 *enabled,
5191 				u64 *running)
5192 {
5193 	u64 ctx_time;
5194 
5195 	*now = perf_clock();
5196 	ctx_time = event->shadow_ctx_time + *now;
5197 	__perf_update_times(event, ctx_time, enabled, running);
5198 }
5199 
5200 static void perf_event_init_userpage(struct perf_event *event)
5201 {
5202 	struct perf_event_mmap_page *userpg;
5203 	struct ring_buffer *rb;
5204 
5205 	rcu_read_lock();
5206 	rb = rcu_dereference(event->rb);
5207 	if (!rb)
5208 		goto unlock;
5209 
5210 	userpg = rb->user_page;
5211 
5212 	/* Allow new userspace to detect that bit 0 is deprecated */
5213 	userpg->cap_bit0_is_deprecated = 1;
5214 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5215 	userpg->data_offset = PAGE_SIZE;
5216 	userpg->data_size = perf_data_size(rb);
5217 
5218 unlock:
5219 	rcu_read_unlock();
5220 }
5221 
5222 void __weak arch_perf_update_userpage(
5223 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5224 {
5225 }
5226 
5227 /*
5228  * Callers need to ensure there can be no nesting of this function, otherwise
5229  * the seqlock logic goes bad. We can not serialize this because the arch
5230  * code calls this from NMI context.
5231  */
5232 void perf_event_update_userpage(struct perf_event *event)
5233 {
5234 	struct perf_event_mmap_page *userpg;
5235 	struct ring_buffer *rb;
5236 	u64 enabled, running, now;
5237 
5238 	rcu_read_lock();
5239 	rb = rcu_dereference(event->rb);
5240 	if (!rb)
5241 		goto unlock;
5242 
5243 	/*
5244 	 * compute total_time_enabled, total_time_running
5245 	 * based on snapshot values taken when the event
5246 	 * was last scheduled in.
5247 	 *
5248 	 * we cannot simply called update_context_time()
5249 	 * because of locking issue as we can be called in
5250 	 * NMI context
5251 	 */
5252 	calc_timer_values(event, &now, &enabled, &running);
5253 
5254 	userpg = rb->user_page;
5255 	/*
5256 	 * Disable preemption to guarantee consistent time stamps are stored to
5257 	 * the user page.
5258 	 */
5259 	preempt_disable();
5260 	++userpg->lock;
5261 	barrier();
5262 	userpg->index = perf_event_index(event);
5263 	userpg->offset = perf_event_count(event);
5264 	if (userpg->index)
5265 		userpg->offset -= local64_read(&event->hw.prev_count);
5266 
5267 	userpg->time_enabled = enabled +
5268 			atomic64_read(&event->child_total_time_enabled);
5269 
5270 	userpg->time_running = running +
5271 			atomic64_read(&event->child_total_time_running);
5272 
5273 	arch_perf_update_userpage(event, userpg, now);
5274 
5275 	barrier();
5276 	++userpg->lock;
5277 	preempt_enable();
5278 unlock:
5279 	rcu_read_unlock();
5280 }
5281 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5282 
5283 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5284 {
5285 	struct perf_event *event = vmf->vma->vm_file->private_data;
5286 	struct ring_buffer *rb;
5287 	vm_fault_t ret = VM_FAULT_SIGBUS;
5288 
5289 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5290 		if (vmf->pgoff == 0)
5291 			ret = 0;
5292 		return ret;
5293 	}
5294 
5295 	rcu_read_lock();
5296 	rb = rcu_dereference(event->rb);
5297 	if (!rb)
5298 		goto unlock;
5299 
5300 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5301 		goto unlock;
5302 
5303 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5304 	if (!vmf->page)
5305 		goto unlock;
5306 
5307 	get_page(vmf->page);
5308 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5309 	vmf->page->index   = vmf->pgoff;
5310 
5311 	ret = 0;
5312 unlock:
5313 	rcu_read_unlock();
5314 
5315 	return ret;
5316 }
5317 
5318 static void ring_buffer_attach(struct perf_event *event,
5319 			       struct ring_buffer *rb)
5320 {
5321 	struct ring_buffer *old_rb = NULL;
5322 	unsigned long flags;
5323 
5324 	if (event->rb) {
5325 		/*
5326 		 * Should be impossible, we set this when removing
5327 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5328 		 */
5329 		WARN_ON_ONCE(event->rcu_pending);
5330 
5331 		old_rb = event->rb;
5332 		spin_lock_irqsave(&old_rb->event_lock, flags);
5333 		list_del_rcu(&event->rb_entry);
5334 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5335 
5336 		event->rcu_batches = get_state_synchronize_rcu();
5337 		event->rcu_pending = 1;
5338 	}
5339 
5340 	if (rb) {
5341 		if (event->rcu_pending) {
5342 			cond_synchronize_rcu(event->rcu_batches);
5343 			event->rcu_pending = 0;
5344 		}
5345 
5346 		spin_lock_irqsave(&rb->event_lock, flags);
5347 		list_add_rcu(&event->rb_entry, &rb->event_list);
5348 		spin_unlock_irqrestore(&rb->event_lock, flags);
5349 	}
5350 
5351 	/*
5352 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5353 	 * before swizzling the event::rb pointer; if it's getting
5354 	 * unmapped, its aux_mmap_count will be 0 and it won't
5355 	 * restart. See the comment in __perf_pmu_output_stop().
5356 	 *
5357 	 * Data will inevitably be lost when set_output is done in
5358 	 * mid-air, but then again, whoever does it like this is
5359 	 * not in for the data anyway.
5360 	 */
5361 	if (has_aux(event))
5362 		perf_event_stop(event, 0);
5363 
5364 	rcu_assign_pointer(event->rb, rb);
5365 
5366 	if (old_rb) {
5367 		ring_buffer_put(old_rb);
5368 		/*
5369 		 * Since we detached before setting the new rb, so that we
5370 		 * could attach the new rb, we could have missed a wakeup.
5371 		 * Provide it now.
5372 		 */
5373 		wake_up_all(&event->waitq);
5374 	}
5375 }
5376 
5377 static void ring_buffer_wakeup(struct perf_event *event)
5378 {
5379 	struct ring_buffer *rb;
5380 
5381 	rcu_read_lock();
5382 	rb = rcu_dereference(event->rb);
5383 	if (rb) {
5384 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5385 			wake_up_all(&event->waitq);
5386 	}
5387 	rcu_read_unlock();
5388 }
5389 
5390 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5391 {
5392 	struct ring_buffer *rb;
5393 
5394 	rcu_read_lock();
5395 	rb = rcu_dereference(event->rb);
5396 	if (rb) {
5397 		if (!atomic_inc_not_zero(&rb->refcount))
5398 			rb = NULL;
5399 	}
5400 	rcu_read_unlock();
5401 
5402 	return rb;
5403 }
5404 
5405 void ring_buffer_put(struct ring_buffer *rb)
5406 {
5407 	if (!atomic_dec_and_test(&rb->refcount))
5408 		return;
5409 
5410 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5411 
5412 	call_rcu(&rb->rcu_head, rb_free_rcu);
5413 }
5414 
5415 static void perf_mmap_open(struct vm_area_struct *vma)
5416 {
5417 	struct perf_event *event = vma->vm_file->private_data;
5418 
5419 	atomic_inc(&event->mmap_count);
5420 	atomic_inc(&event->rb->mmap_count);
5421 
5422 	if (vma->vm_pgoff)
5423 		atomic_inc(&event->rb->aux_mmap_count);
5424 
5425 	if (event->pmu->event_mapped)
5426 		event->pmu->event_mapped(event, vma->vm_mm);
5427 }
5428 
5429 static void perf_pmu_output_stop(struct perf_event *event);
5430 
5431 /*
5432  * A buffer can be mmap()ed multiple times; either directly through the same
5433  * event, or through other events by use of perf_event_set_output().
5434  *
5435  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5436  * the buffer here, where we still have a VM context. This means we need
5437  * to detach all events redirecting to us.
5438  */
5439 static void perf_mmap_close(struct vm_area_struct *vma)
5440 {
5441 	struct perf_event *event = vma->vm_file->private_data;
5442 
5443 	struct ring_buffer *rb = ring_buffer_get(event);
5444 	struct user_struct *mmap_user = rb->mmap_user;
5445 	int mmap_locked = rb->mmap_locked;
5446 	unsigned long size = perf_data_size(rb);
5447 
5448 	if (event->pmu->event_unmapped)
5449 		event->pmu->event_unmapped(event, vma->vm_mm);
5450 
5451 	/*
5452 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5453 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5454 	 * serialize with perf_mmap here.
5455 	 */
5456 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5457 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5458 		/*
5459 		 * Stop all AUX events that are writing to this buffer,
5460 		 * so that we can free its AUX pages and corresponding PMU
5461 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5462 		 * they won't start any more (see perf_aux_output_begin()).
5463 		 */
5464 		perf_pmu_output_stop(event);
5465 
5466 		/* now it's safe to free the pages */
5467 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5468 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5469 
5470 		/* this has to be the last one */
5471 		rb_free_aux(rb);
5472 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5473 
5474 		mutex_unlock(&event->mmap_mutex);
5475 	}
5476 
5477 	atomic_dec(&rb->mmap_count);
5478 
5479 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5480 		goto out_put;
5481 
5482 	ring_buffer_attach(event, NULL);
5483 	mutex_unlock(&event->mmap_mutex);
5484 
5485 	/* If there's still other mmap()s of this buffer, we're done. */
5486 	if (atomic_read(&rb->mmap_count))
5487 		goto out_put;
5488 
5489 	/*
5490 	 * No other mmap()s, detach from all other events that might redirect
5491 	 * into the now unreachable buffer. Somewhat complicated by the
5492 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5493 	 */
5494 again:
5495 	rcu_read_lock();
5496 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5497 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5498 			/*
5499 			 * This event is en-route to free_event() which will
5500 			 * detach it and remove it from the list.
5501 			 */
5502 			continue;
5503 		}
5504 		rcu_read_unlock();
5505 
5506 		mutex_lock(&event->mmap_mutex);
5507 		/*
5508 		 * Check we didn't race with perf_event_set_output() which can
5509 		 * swizzle the rb from under us while we were waiting to
5510 		 * acquire mmap_mutex.
5511 		 *
5512 		 * If we find a different rb; ignore this event, a next
5513 		 * iteration will no longer find it on the list. We have to
5514 		 * still restart the iteration to make sure we're not now
5515 		 * iterating the wrong list.
5516 		 */
5517 		if (event->rb == rb)
5518 			ring_buffer_attach(event, NULL);
5519 
5520 		mutex_unlock(&event->mmap_mutex);
5521 		put_event(event);
5522 
5523 		/*
5524 		 * Restart the iteration; either we're on the wrong list or
5525 		 * destroyed its integrity by doing a deletion.
5526 		 */
5527 		goto again;
5528 	}
5529 	rcu_read_unlock();
5530 
5531 	/*
5532 	 * It could be there's still a few 0-ref events on the list; they'll
5533 	 * get cleaned up by free_event() -- they'll also still have their
5534 	 * ref on the rb and will free it whenever they are done with it.
5535 	 *
5536 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5537 	 * undo the VM accounting.
5538 	 */
5539 
5540 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5541 	vma->vm_mm->pinned_vm -= mmap_locked;
5542 	free_uid(mmap_user);
5543 
5544 out_put:
5545 	ring_buffer_put(rb); /* could be last */
5546 }
5547 
5548 static const struct vm_operations_struct perf_mmap_vmops = {
5549 	.open		= perf_mmap_open,
5550 	.close		= perf_mmap_close, /* non mergeable */
5551 	.fault		= perf_mmap_fault,
5552 	.page_mkwrite	= perf_mmap_fault,
5553 };
5554 
5555 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5556 {
5557 	struct perf_event *event = file->private_data;
5558 	unsigned long user_locked, user_lock_limit;
5559 	struct user_struct *user = current_user();
5560 	unsigned long locked, lock_limit;
5561 	struct ring_buffer *rb = NULL;
5562 	unsigned long vma_size;
5563 	unsigned long nr_pages;
5564 	long user_extra = 0, extra = 0;
5565 	int ret = 0, flags = 0;
5566 
5567 	/*
5568 	 * Don't allow mmap() of inherited per-task counters. This would
5569 	 * create a performance issue due to all children writing to the
5570 	 * same rb.
5571 	 */
5572 	if (event->cpu == -1 && event->attr.inherit)
5573 		return -EINVAL;
5574 
5575 	if (!(vma->vm_flags & VM_SHARED))
5576 		return -EINVAL;
5577 
5578 	vma_size = vma->vm_end - vma->vm_start;
5579 
5580 	if (vma->vm_pgoff == 0) {
5581 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5582 	} else {
5583 		/*
5584 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5585 		 * mapped, all subsequent mappings should have the same size
5586 		 * and offset. Must be above the normal perf buffer.
5587 		 */
5588 		u64 aux_offset, aux_size;
5589 
5590 		if (!event->rb)
5591 			return -EINVAL;
5592 
5593 		nr_pages = vma_size / PAGE_SIZE;
5594 
5595 		mutex_lock(&event->mmap_mutex);
5596 		ret = -EINVAL;
5597 
5598 		rb = event->rb;
5599 		if (!rb)
5600 			goto aux_unlock;
5601 
5602 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5603 		aux_size = READ_ONCE(rb->user_page->aux_size);
5604 
5605 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5606 			goto aux_unlock;
5607 
5608 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5609 			goto aux_unlock;
5610 
5611 		/* already mapped with a different offset */
5612 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5613 			goto aux_unlock;
5614 
5615 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5616 			goto aux_unlock;
5617 
5618 		/* already mapped with a different size */
5619 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5620 			goto aux_unlock;
5621 
5622 		if (!is_power_of_2(nr_pages))
5623 			goto aux_unlock;
5624 
5625 		if (!atomic_inc_not_zero(&rb->mmap_count))
5626 			goto aux_unlock;
5627 
5628 		if (rb_has_aux(rb)) {
5629 			atomic_inc(&rb->aux_mmap_count);
5630 			ret = 0;
5631 			goto unlock;
5632 		}
5633 
5634 		atomic_set(&rb->aux_mmap_count, 1);
5635 		user_extra = nr_pages;
5636 
5637 		goto accounting;
5638 	}
5639 
5640 	/*
5641 	 * If we have rb pages ensure they're a power-of-two number, so we
5642 	 * can do bitmasks instead of modulo.
5643 	 */
5644 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5645 		return -EINVAL;
5646 
5647 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5648 		return -EINVAL;
5649 
5650 	WARN_ON_ONCE(event->ctx->parent_ctx);
5651 again:
5652 	mutex_lock(&event->mmap_mutex);
5653 	if (event->rb) {
5654 		if (event->rb->nr_pages != nr_pages) {
5655 			ret = -EINVAL;
5656 			goto unlock;
5657 		}
5658 
5659 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5660 			/*
5661 			 * Raced against perf_mmap_close() through
5662 			 * perf_event_set_output(). Try again, hope for better
5663 			 * luck.
5664 			 */
5665 			mutex_unlock(&event->mmap_mutex);
5666 			goto again;
5667 		}
5668 
5669 		goto unlock;
5670 	}
5671 
5672 	user_extra = nr_pages + 1;
5673 
5674 accounting:
5675 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5676 
5677 	/*
5678 	 * Increase the limit linearly with more CPUs:
5679 	 */
5680 	user_lock_limit *= num_online_cpus();
5681 
5682 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5683 
5684 	if (user_locked > user_lock_limit)
5685 		extra = user_locked - user_lock_limit;
5686 
5687 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5688 	lock_limit >>= PAGE_SHIFT;
5689 	locked = vma->vm_mm->pinned_vm + extra;
5690 
5691 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5692 		!capable(CAP_IPC_LOCK)) {
5693 		ret = -EPERM;
5694 		goto unlock;
5695 	}
5696 
5697 	WARN_ON(!rb && event->rb);
5698 
5699 	if (vma->vm_flags & VM_WRITE)
5700 		flags |= RING_BUFFER_WRITABLE;
5701 
5702 	if (!rb) {
5703 		rb = rb_alloc(nr_pages,
5704 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5705 			      event->cpu, flags);
5706 
5707 		if (!rb) {
5708 			ret = -ENOMEM;
5709 			goto unlock;
5710 		}
5711 
5712 		atomic_set(&rb->mmap_count, 1);
5713 		rb->mmap_user = get_current_user();
5714 		rb->mmap_locked = extra;
5715 
5716 		ring_buffer_attach(event, rb);
5717 
5718 		perf_event_init_userpage(event);
5719 		perf_event_update_userpage(event);
5720 	} else {
5721 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5722 				   event->attr.aux_watermark, flags);
5723 		if (!ret)
5724 			rb->aux_mmap_locked = extra;
5725 	}
5726 
5727 unlock:
5728 	if (!ret) {
5729 		atomic_long_add(user_extra, &user->locked_vm);
5730 		vma->vm_mm->pinned_vm += extra;
5731 
5732 		atomic_inc(&event->mmap_count);
5733 	} else if (rb) {
5734 		atomic_dec(&rb->mmap_count);
5735 	}
5736 aux_unlock:
5737 	mutex_unlock(&event->mmap_mutex);
5738 
5739 	/*
5740 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5741 	 * vma.
5742 	 */
5743 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5744 	vma->vm_ops = &perf_mmap_vmops;
5745 
5746 	if (event->pmu->event_mapped)
5747 		event->pmu->event_mapped(event, vma->vm_mm);
5748 
5749 	return ret;
5750 }
5751 
5752 static int perf_fasync(int fd, struct file *filp, int on)
5753 {
5754 	struct inode *inode = file_inode(filp);
5755 	struct perf_event *event = filp->private_data;
5756 	int retval;
5757 
5758 	inode_lock(inode);
5759 	retval = fasync_helper(fd, filp, on, &event->fasync);
5760 	inode_unlock(inode);
5761 
5762 	if (retval < 0)
5763 		return retval;
5764 
5765 	return 0;
5766 }
5767 
5768 static const struct file_operations perf_fops = {
5769 	.llseek			= no_llseek,
5770 	.release		= perf_release,
5771 	.read			= perf_read,
5772 	.poll			= perf_poll,
5773 	.unlocked_ioctl		= perf_ioctl,
5774 	.compat_ioctl		= perf_compat_ioctl,
5775 	.mmap			= perf_mmap,
5776 	.fasync			= perf_fasync,
5777 };
5778 
5779 /*
5780  * Perf event wakeup
5781  *
5782  * If there's data, ensure we set the poll() state and publish everything
5783  * to user-space before waking everybody up.
5784  */
5785 
5786 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5787 {
5788 	/* only the parent has fasync state */
5789 	if (event->parent)
5790 		event = event->parent;
5791 	return &event->fasync;
5792 }
5793 
5794 void perf_event_wakeup(struct perf_event *event)
5795 {
5796 	ring_buffer_wakeup(event);
5797 
5798 	if (event->pending_kill) {
5799 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5800 		event->pending_kill = 0;
5801 	}
5802 }
5803 
5804 static void perf_pending_event(struct irq_work *entry)
5805 {
5806 	struct perf_event *event = container_of(entry,
5807 			struct perf_event, pending);
5808 	int rctx;
5809 
5810 	rctx = perf_swevent_get_recursion_context();
5811 	/*
5812 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5813 	 * and we won't recurse 'further'.
5814 	 */
5815 
5816 	if (event->pending_disable) {
5817 		event->pending_disable = 0;
5818 		perf_event_disable_local(event);
5819 	}
5820 
5821 	if (event->pending_wakeup) {
5822 		event->pending_wakeup = 0;
5823 		perf_event_wakeup(event);
5824 	}
5825 
5826 	if (rctx >= 0)
5827 		perf_swevent_put_recursion_context(rctx);
5828 }
5829 
5830 /*
5831  * We assume there is only KVM supporting the callbacks.
5832  * Later on, we might change it to a list if there is
5833  * another virtualization implementation supporting the callbacks.
5834  */
5835 struct perf_guest_info_callbacks *perf_guest_cbs;
5836 
5837 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5838 {
5839 	perf_guest_cbs = cbs;
5840 	return 0;
5841 }
5842 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5843 
5844 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5845 {
5846 	perf_guest_cbs = NULL;
5847 	return 0;
5848 }
5849 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5850 
5851 static void
5852 perf_output_sample_regs(struct perf_output_handle *handle,
5853 			struct pt_regs *regs, u64 mask)
5854 {
5855 	int bit;
5856 	DECLARE_BITMAP(_mask, 64);
5857 
5858 	bitmap_from_u64(_mask, mask);
5859 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5860 		u64 val;
5861 
5862 		val = perf_reg_value(regs, bit);
5863 		perf_output_put(handle, val);
5864 	}
5865 }
5866 
5867 static void perf_sample_regs_user(struct perf_regs *regs_user,
5868 				  struct pt_regs *regs,
5869 				  struct pt_regs *regs_user_copy)
5870 {
5871 	if (user_mode(regs)) {
5872 		regs_user->abi = perf_reg_abi(current);
5873 		regs_user->regs = regs;
5874 	} else if (current->mm) {
5875 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5876 	} else {
5877 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5878 		regs_user->regs = NULL;
5879 	}
5880 }
5881 
5882 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5883 				  struct pt_regs *regs)
5884 {
5885 	regs_intr->regs = regs;
5886 	regs_intr->abi  = perf_reg_abi(current);
5887 }
5888 
5889 
5890 /*
5891  * Get remaining task size from user stack pointer.
5892  *
5893  * It'd be better to take stack vma map and limit this more
5894  * precisly, but there's no way to get it safely under interrupt,
5895  * so using TASK_SIZE as limit.
5896  */
5897 static u64 perf_ustack_task_size(struct pt_regs *regs)
5898 {
5899 	unsigned long addr = perf_user_stack_pointer(regs);
5900 
5901 	if (!addr || addr >= TASK_SIZE)
5902 		return 0;
5903 
5904 	return TASK_SIZE - addr;
5905 }
5906 
5907 static u16
5908 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5909 			struct pt_regs *regs)
5910 {
5911 	u64 task_size;
5912 
5913 	/* No regs, no stack pointer, no dump. */
5914 	if (!regs)
5915 		return 0;
5916 
5917 	/*
5918 	 * Check if we fit in with the requested stack size into the:
5919 	 * - TASK_SIZE
5920 	 *   If we don't, we limit the size to the TASK_SIZE.
5921 	 *
5922 	 * - remaining sample size
5923 	 *   If we don't, we customize the stack size to
5924 	 *   fit in to the remaining sample size.
5925 	 */
5926 
5927 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5928 	stack_size = min(stack_size, (u16) task_size);
5929 
5930 	/* Current header size plus static size and dynamic size. */
5931 	header_size += 2 * sizeof(u64);
5932 
5933 	/* Do we fit in with the current stack dump size? */
5934 	if ((u16) (header_size + stack_size) < header_size) {
5935 		/*
5936 		 * If we overflow the maximum size for the sample,
5937 		 * we customize the stack dump size to fit in.
5938 		 */
5939 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5940 		stack_size = round_up(stack_size, sizeof(u64));
5941 	}
5942 
5943 	return stack_size;
5944 }
5945 
5946 static void
5947 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5948 			  struct pt_regs *regs)
5949 {
5950 	/* Case of a kernel thread, nothing to dump */
5951 	if (!regs) {
5952 		u64 size = 0;
5953 		perf_output_put(handle, size);
5954 	} else {
5955 		unsigned long sp;
5956 		unsigned int rem;
5957 		u64 dyn_size;
5958 		mm_segment_t fs;
5959 
5960 		/*
5961 		 * We dump:
5962 		 * static size
5963 		 *   - the size requested by user or the best one we can fit
5964 		 *     in to the sample max size
5965 		 * data
5966 		 *   - user stack dump data
5967 		 * dynamic size
5968 		 *   - the actual dumped size
5969 		 */
5970 
5971 		/* Static size. */
5972 		perf_output_put(handle, dump_size);
5973 
5974 		/* Data. */
5975 		sp = perf_user_stack_pointer(regs);
5976 		fs = get_fs();
5977 		set_fs(USER_DS);
5978 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5979 		set_fs(fs);
5980 		dyn_size = dump_size - rem;
5981 
5982 		perf_output_skip(handle, rem);
5983 
5984 		/* Dynamic size. */
5985 		perf_output_put(handle, dyn_size);
5986 	}
5987 }
5988 
5989 static void __perf_event_header__init_id(struct perf_event_header *header,
5990 					 struct perf_sample_data *data,
5991 					 struct perf_event *event)
5992 {
5993 	u64 sample_type = event->attr.sample_type;
5994 
5995 	data->type = sample_type;
5996 	header->size += event->id_header_size;
5997 
5998 	if (sample_type & PERF_SAMPLE_TID) {
5999 		/* namespace issues */
6000 		data->tid_entry.pid = perf_event_pid(event, current);
6001 		data->tid_entry.tid = perf_event_tid(event, current);
6002 	}
6003 
6004 	if (sample_type & PERF_SAMPLE_TIME)
6005 		data->time = perf_event_clock(event);
6006 
6007 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6008 		data->id = primary_event_id(event);
6009 
6010 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6011 		data->stream_id = event->id;
6012 
6013 	if (sample_type & PERF_SAMPLE_CPU) {
6014 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6015 		data->cpu_entry.reserved = 0;
6016 	}
6017 }
6018 
6019 void perf_event_header__init_id(struct perf_event_header *header,
6020 				struct perf_sample_data *data,
6021 				struct perf_event *event)
6022 {
6023 	if (event->attr.sample_id_all)
6024 		__perf_event_header__init_id(header, data, event);
6025 }
6026 
6027 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6028 					   struct perf_sample_data *data)
6029 {
6030 	u64 sample_type = data->type;
6031 
6032 	if (sample_type & PERF_SAMPLE_TID)
6033 		perf_output_put(handle, data->tid_entry);
6034 
6035 	if (sample_type & PERF_SAMPLE_TIME)
6036 		perf_output_put(handle, data->time);
6037 
6038 	if (sample_type & PERF_SAMPLE_ID)
6039 		perf_output_put(handle, data->id);
6040 
6041 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6042 		perf_output_put(handle, data->stream_id);
6043 
6044 	if (sample_type & PERF_SAMPLE_CPU)
6045 		perf_output_put(handle, data->cpu_entry);
6046 
6047 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6048 		perf_output_put(handle, data->id);
6049 }
6050 
6051 void perf_event__output_id_sample(struct perf_event *event,
6052 				  struct perf_output_handle *handle,
6053 				  struct perf_sample_data *sample)
6054 {
6055 	if (event->attr.sample_id_all)
6056 		__perf_event__output_id_sample(handle, sample);
6057 }
6058 
6059 static void perf_output_read_one(struct perf_output_handle *handle,
6060 				 struct perf_event *event,
6061 				 u64 enabled, u64 running)
6062 {
6063 	u64 read_format = event->attr.read_format;
6064 	u64 values[4];
6065 	int n = 0;
6066 
6067 	values[n++] = perf_event_count(event);
6068 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6069 		values[n++] = enabled +
6070 			atomic64_read(&event->child_total_time_enabled);
6071 	}
6072 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6073 		values[n++] = running +
6074 			atomic64_read(&event->child_total_time_running);
6075 	}
6076 	if (read_format & PERF_FORMAT_ID)
6077 		values[n++] = primary_event_id(event);
6078 
6079 	__output_copy(handle, values, n * sizeof(u64));
6080 }
6081 
6082 static void perf_output_read_group(struct perf_output_handle *handle,
6083 			    struct perf_event *event,
6084 			    u64 enabled, u64 running)
6085 {
6086 	struct perf_event *leader = event->group_leader, *sub;
6087 	u64 read_format = event->attr.read_format;
6088 	u64 values[5];
6089 	int n = 0;
6090 
6091 	values[n++] = 1 + leader->nr_siblings;
6092 
6093 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6094 		values[n++] = enabled;
6095 
6096 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6097 		values[n++] = running;
6098 
6099 	if ((leader != event) &&
6100 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6101 		leader->pmu->read(leader);
6102 
6103 	values[n++] = perf_event_count(leader);
6104 	if (read_format & PERF_FORMAT_ID)
6105 		values[n++] = primary_event_id(leader);
6106 
6107 	__output_copy(handle, values, n * sizeof(u64));
6108 
6109 	for_each_sibling_event(sub, leader) {
6110 		n = 0;
6111 
6112 		if ((sub != event) &&
6113 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6114 			sub->pmu->read(sub);
6115 
6116 		values[n++] = perf_event_count(sub);
6117 		if (read_format & PERF_FORMAT_ID)
6118 			values[n++] = primary_event_id(sub);
6119 
6120 		__output_copy(handle, values, n * sizeof(u64));
6121 	}
6122 }
6123 
6124 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6125 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6126 
6127 /*
6128  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6129  *
6130  * The problem is that its both hard and excessively expensive to iterate the
6131  * child list, not to mention that its impossible to IPI the children running
6132  * on another CPU, from interrupt/NMI context.
6133  */
6134 static void perf_output_read(struct perf_output_handle *handle,
6135 			     struct perf_event *event)
6136 {
6137 	u64 enabled = 0, running = 0, now;
6138 	u64 read_format = event->attr.read_format;
6139 
6140 	/*
6141 	 * compute total_time_enabled, total_time_running
6142 	 * based on snapshot values taken when the event
6143 	 * was last scheduled in.
6144 	 *
6145 	 * we cannot simply called update_context_time()
6146 	 * because of locking issue as we are called in
6147 	 * NMI context
6148 	 */
6149 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6150 		calc_timer_values(event, &now, &enabled, &running);
6151 
6152 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6153 		perf_output_read_group(handle, event, enabled, running);
6154 	else
6155 		perf_output_read_one(handle, event, enabled, running);
6156 }
6157 
6158 void perf_output_sample(struct perf_output_handle *handle,
6159 			struct perf_event_header *header,
6160 			struct perf_sample_data *data,
6161 			struct perf_event *event)
6162 {
6163 	u64 sample_type = data->type;
6164 
6165 	perf_output_put(handle, *header);
6166 
6167 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6168 		perf_output_put(handle, data->id);
6169 
6170 	if (sample_type & PERF_SAMPLE_IP)
6171 		perf_output_put(handle, data->ip);
6172 
6173 	if (sample_type & PERF_SAMPLE_TID)
6174 		perf_output_put(handle, data->tid_entry);
6175 
6176 	if (sample_type & PERF_SAMPLE_TIME)
6177 		perf_output_put(handle, data->time);
6178 
6179 	if (sample_type & PERF_SAMPLE_ADDR)
6180 		perf_output_put(handle, data->addr);
6181 
6182 	if (sample_type & PERF_SAMPLE_ID)
6183 		perf_output_put(handle, data->id);
6184 
6185 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6186 		perf_output_put(handle, data->stream_id);
6187 
6188 	if (sample_type & PERF_SAMPLE_CPU)
6189 		perf_output_put(handle, data->cpu_entry);
6190 
6191 	if (sample_type & PERF_SAMPLE_PERIOD)
6192 		perf_output_put(handle, data->period);
6193 
6194 	if (sample_type & PERF_SAMPLE_READ)
6195 		perf_output_read(handle, event);
6196 
6197 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6198 		int size = 1;
6199 
6200 		size += data->callchain->nr;
6201 		size *= sizeof(u64);
6202 		__output_copy(handle, data->callchain, size);
6203 	}
6204 
6205 	if (sample_type & PERF_SAMPLE_RAW) {
6206 		struct perf_raw_record *raw = data->raw;
6207 
6208 		if (raw) {
6209 			struct perf_raw_frag *frag = &raw->frag;
6210 
6211 			perf_output_put(handle, raw->size);
6212 			do {
6213 				if (frag->copy) {
6214 					__output_custom(handle, frag->copy,
6215 							frag->data, frag->size);
6216 				} else {
6217 					__output_copy(handle, frag->data,
6218 						      frag->size);
6219 				}
6220 				if (perf_raw_frag_last(frag))
6221 					break;
6222 				frag = frag->next;
6223 			} while (1);
6224 			if (frag->pad)
6225 				__output_skip(handle, NULL, frag->pad);
6226 		} else {
6227 			struct {
6228 				u32	size;
6229 				u32	data;
6230 			} raw = {
6231 				.size = sizeof(u32),
6232 				.data = 0,
6233 			};
6234 			perf_output_put(handle, raw);
6235 		}
6236 	}
6237 
6238 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6239 		if (data->br_stack) {
6240 			size_t size;
6241 
6242 			size = data->br_stack->nr
6243 			     * sizeof(struct perf_branch_entry);
6244 
6245 			perf_output_put(handle, data->br_stack->nr);
6246 			perf_output_copy(handle, data->br_stack->entries, size);
6247 		} else {
6248 			/*
6249 			 * we always store at least the value of nr
6250 			 */
6251 			u64 nr = 0;
6252 			perf_output_put(handle, nr);
6253 		}
6254 	}
6255 
6256 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6257 		u64 abi = data->regs_user.abi;
6258 
6259 		/*
6260 		 * If there are no regs to dump, notice it through
6261 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6262 		 */
6263 		perf_output_put(handle, abi);
6264 
6265 		if (abi) {
6266 			u64 mask = event->attr.sample_regs_user;
6267 			perf_output_sample_regs(handle,
6268 						data->regs_user.regs,
6269 						mask);
6270 		}
6271 	}
6272 
6273 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6274 		perf_output_sample_ustack(handle,
6275 					  data->stack_user_size,
6276 					  data->regs_user.regs);
6277 	}
6278 
6279 	if (sample_type & PERF_SAMPLE_WEIGHT)
6280 		perf_output_put(handle, data->weight);
6281 
6282 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6283 		perf_output_put(handle, data->data_src.val);
6284 
6285 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6286 		perf_output_put(handle, data->txn);
6287 
6288 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6289 		u64 abi = data->regs_intr.abi;
6290 		/*
6291 		 * If there are no regs to dump, notice it through
6292 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6293 		 */
6294 		perf_output_put(handle, abi);
6295 
6296 		if (abi) {
6297 			u64 mask = event->attr.sample_regs_intr;
6298 
6299 			perf_output_sample_regs(handle,
6300 						data->regs_intr.regs,
6301 						mask);
6302 		}
6303 	}
6304 
6305 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6306 		perf_output_put(handle, data->phys_addr);
6307 
6308 	if (!event->attr.watermark) {
6309 		int wakeup_events = event->attr.wakeup_events;
6310 
6311 		if (wakeup_events) {
6312 			struct ring_buffer *rb = handle->rb;
6313 			int events = local_inc_return(&rb->events);
6314 
6315 			if (events >= wakeup_events) {
6316 				local_sub(wakeup_events, &rb->events);
6317 				local_inc(&rb->wakeup);
6318 			}
6319 		}
6320 	}
6321 }
6322 
6323 static u64 perf_virt_to_phys(u64 virt)
6324 {
6325 	u64 phys_addr = 0;
6326 	struct page *p = NULL;
6327 
6328 	if (!virt)
6329 		return 0;
6330 
6331 	if (virt >= TASK_SIZE) {
6332 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6333 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6334 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6335 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6336 	} else {
6337 		/*
6338 		 * Walking the pages tables for user address.
6339 		 * Interrupts are disabled, so it prevents any tear down
6340 		 * of the page tables.
6341 		 * Try IRQ-safe __get_user_pages_fast first.
6342 		 * If failed, leave phys_addr as 0.
6343 		 */
6344 		if ((current->mm != NULL) &&
6345 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6346 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6347 
6348 		if (p)
6349 			put_page(p);
6350 	}
6351 
6352 	return phys_addr;
6353 }
6354 
6355 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6356 
6357 struct perf_callchain_entry *
6358 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6359 {
6360 	bool kernel = !event->attr.exclude_callchain_kernel;
6361 	bool user   = !event->attr.exclude_callchain_user;
6362 	/* Disallow cross-task user callchains. */
6363 	bool crosstask = event->ctx->task && event->ctx->task != current;
6364 	const u32 max_stack = event->attr.sample_max_stack;
6365 	struct perf_callchain_entry *callchain;
6366 
6367 	if (!kernel && !user)
6368 		return &__empty_callchain;
6369 
6370 	callchain = get_perf_callchain(regs, 0, kernel, user,
6371 				       max_stack, crosstask, true);
6372 	return callchain ?: &__empty_callchain;
6373 }
6374 
6375 void perf_prepare_sample(struct perf_event_header *header,
6376 			 struct perf_sample_data *data,
6377 			 struct perf_event *event,
6378 			 struct pt_regs *regs)
6379 {
6380 	u64 sample_type = event->attr.sample_type;
6381 
6382 	header->type = PERF_RECORD_SAMPLE;
6383 	header->size = sizeof(*header) + event->header_size;
6384 
6385 	header->misc = 0;
6386 	header->misc |= perf_misc_flags(regs);
6387 
6388 	__perf_event_header__init_id(header, data, event);
6389 
6390 	if (sample_type & PERF_SAMPLE_IP)
6391 		data->ip = perf_instruction_pointer(regs);
6392 
6393 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6394 		int size = 1;
6395 
6396 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6397 			data->callchain = perf_callchain(event, regs);
6398 
6399 		size += data->callchain->nr;
6400 
6401 		header->size += size * sizeof(u64);
6402 	}
6403 
6404 	if (sample_type & PERF_SAMPLE_RAW) {
6405 		struct perf_raw_record *raw = data->raw;
6406 		int size;
6407 
6408 		if (raw) {
6409 			struct perf_raw_frag *frag = &raw->frag;
6410 			u32 sum = 0;
6411 
6412 			do {
6413 				sum += frag->size;
6414 				if (perf_raw_frag_last(frag))
6415 					break;
6416 				frag = frag->next;
6417 			} while (1);
6418 
6419 			size = round_up(sum + sizeof(u32), sizeof(u64));
6420 			raw->size = size - sizeof(u32);
6421 			frag->pad = raw->size - sum;
6422 		} else {
6423 			size = sizeof(u64);
6424 		}
6425 
6426 		header->size += size;
6427 	}
6428 
6429 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6430 		int size = sizeof(u64); /* nr */
6431 		if (data->br_stack) {
6432 			size += data->br_stack->nr
6433 			      * sizeof(struct perf_branch_entry);
6434 		}
6435 		header->size += size;
6436 	}
6437 
6438 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6439 		perf_sample_regs_user(&data->regs_user, regs,
6440 				      &data->regs_user_copy);
6441 
6442 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6443 		/* regs dump ABI info */
6444 		int size = sizeof(u64);
6445 
6446 		if (data->regs_user.regs) {
6447 			u64 mask = event->attr.sample_regs_user;
6448 			size += hweight64(mask) * sizeof(u64);
6449 		}
6450 
6451 		header->size += size;
6452 	}
6453 
6454 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6455 		/*
6456 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6457 		 * processed as the last one or have additional check added
6458 		 * in case new sample type is added, because we could eat
6459 		 * up the rest of the sample size.
6460 		 */
6461 		u16 stack_size = event->attr.sample_stack_user;
6462 		u16 size = sizeof(u64);
6463 
6464 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6465 						     data->regs_user.regs);
6466 
6467 		/*
6468 		 * If there is something to dump, add space for the dump
6469 		 * itself and for the field that tells the dynamic size,
6470 		 * which is how many have been actually dumped.
6471 		 */
6472 		if (stack_size)
6473 			size += sizeof(u64) + stack_size;
6474 
6475 		data->stack_user_size = stack_size;
6476 		header->size += size;
6477 	}
6478 
6479 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6480 		/* regs dump ABI info */
6481 		int size = sizeof(u64);
6482 
6483 		perf_sample_regs_intr(&data->regs_intr, regs);
6484 
6485 		if (data->regs_intr.regs) {
6486 			u64 mask = event->attr.sample_regs_intr;
6487 
6488 			size += hweight64(mask) * sizeof(u64);
6489 		}
6490 
6491 		header->size += size;
6492 	}
6493 
6494 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6495 		data->phys_addr = perf_virt_to_phys(data->addr);
6496 }
6497 
6498 static __always_inline int
6499 __perf_event_output(struct perf_event *event,
6500 		    struct perf_sample_data *data,
6501 		    struct pt_regs *regs,
6502 		    int (*output_begin)(struct perf_output_handle *,
6503 					struct perf_event *,
6504 					unsigned int))
6505 {
6506 	struct perf_output_handle handle;
6507 	struct perf_event_header header;
6508 	int err;
6509 
6510 	/* protect the callchain buffers */
6511 	rcu_read_lock();
6512 
6513 	perf_prepare_sample(&header, data, event, regs);
6514 
6515 	err = output_begin(&handle, event, header.size);
6516 	if (err)
6517 		goto exit;
6518 
6519 	perf_output_sample(&handle, &header, data, event);
6520 
6521 	perf_output_end(&handle);
6522 
6523 exit:
6524 	rcu_read_unlock();
6525 	return err;
6526 }
6527 
6528 void
6529 perf_event_output_forward(struct perf_event *event,
6530 			 struct perf_sample_data *data,
6531 			 struct pt_regs *regs)
6532 {
6533 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6534 }
6535 
6536 void
6537 perf_event_output_backward(struct perf_event *event,
6538 			   struct perf_sample_data *data,
6539 			   struct pt_regs *regs)
6540 {
6541 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6542 }
6543 
6544 int
6545 perf_event_output(struct perf_event *event,
6546 		  struct perf_sample_data *data,
6547 		  struct pt_regs *regs)
6548 {
6549 	return __perf_event_output(event, data, regs, perf_output_begin);
6550 }
6551 
6552 /*
6553  * read event_id
6554  */
6555 
6556 struct perf_read_event {
6557 	struct perf_event_header	header;
6558 
6559 	u32				pid;
6560 	u32				tid;
6561 };
6562 
6563 static void
6564 perf_event_read_event(struct perf_event *event,
6565 			struct task_struct *task)
6566 {
6567 	struct perf_output_handle handle;
6568 	struct perf_sample_data sample;
6569 	struct perf_read_event read_event = {
6570 		.header = {
6571 			.type = PERF_RECORD_READ,
6572 			.misc = 0,
6573 			.size = sizeof(read_event) + event->read_size,
6574 		},
6575 		.pid = perf_event_pid(event, task),
6576 		.tid = perf_event_tid(event, task),
6577 	};
6578 	int ret;
6579 
6580 	perf_event_header__init_id(&read_event.header, &sample, event);
6581 	ret = perf_output_begin(&handle, event, read_event.header.size);
6582 	if (ret)
6583 		return;
6584 
6585 	perf_output_put(&handle, read_event);
6586 	perf_output_read(&handle, event);
6587 	perf_event__output_id_sample(event, &handle, &sample);
6588 
6589 	perf_output_end(&handle);
6590 }
6591 
6592 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6593 
6594 static void
6595 perf_iterate_ctx(struct perf_event_context *ctx,
6596 		   perf_iterate_f output,
6597 		   void *data, bool all)
6598 {
6599 	struct perf_event *event;
6600 
6601 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6602 		if (!all) {
6603 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6604 				continue;
6605 			if (!event_filter_match(event))
6606 				continue;
6607 		}
6608 
6609 		output(event, data);
6610 	}
6611 }
6612 
6613 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6614 {
6615 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6616 	struct perf_event *event;
6617 
6618 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6619 		/*
6620 		 * Skip events that are not fully formed yet; ensure that
6621 		 * if we observe event->ctx, both event and ctx will be
6622 		 * complete enough. See perf_install_in_context().
6623 		 */
6624 		if (!smp_load_acquire(&event->ctx))
6625 			continue;
6626 
6627 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6628 			continue;
6629 		if (!event_filter_match(event))
6630 			continue;
6631 		output(event, data);
6632 	}
6633 }
6634 
6635 /*
6636  * Iterate all events that need to receive side-band events.
6637  *
6638  * For new callers; ensure that account_pmu_sb_event() includes
6639  * your event, otherwise it might not get delivered.
6640  */
6641 static void
6642 perf_iterate_sb(perf_iterate_f output, void *data,
6643 	       struct perf_event_context *task_ctx)
6644 {
6645 	struct perf_event_context *ctx;
6646 	int ctxn;
6647 
6648 	rcu_read_lock();
6649 	preempt_disable();
6650 
6651 	/*
6652 	 * If we have task_ctx != NULL we only notify the task context itself.
6653 	 * The task_ctx is set only for EXIT events before releasing task
6654 	 * context.
6655 	 */
6656 	if (task_ctx) {
6657 		perf_iterate_ctx(task_ctx, output, data, false);
6658 		goto done;
6659 	}
6660 
6661 	perf_iterate_sb_cpu(output, data);
6662 
6663 	for_each_task_context_nr(ctxn) {
6664 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6665 		if (ctx)
6666 			perf_iterate_ctx(ctx, output, data, false);
6667 	}
6668 done:
6669 	preempt_enable();
6670 	rcu_read_unlock();
6671 }
6672 
6673 /*
6674  * Clear all file-based filters at exec, they'll have to be
6675  * re-instated when/if these objects are mmapped again.
6676  */
6677 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6678 {
6679 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6680 	struct perf_addr_filter *filter;
6681 	unsigned int restart = 0, count = 0;
6682 	unsigned long flags;
6683 
6684 	if (!has_addr_filter(event))
6685 		return;
6686 
6687 	raw_spin_lock_irqsave(&ifh->lock, flags);
6688 	list_for_each_entry(filter, &ifh->list, entry) {
6689 		if (filter->path.dentry) {
6690 			event->addr_filters_offs[count] = 0;
6691 			restart++;
6692 		}
6693 
6694 		count++;
6695 	}
6696 
6697 	if (restart)
6698 		event->addr_filters_gen++;
6699 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6700 
6701 	if (restart)
6702 		perf_event_stop(event, 1);
6703 }
6704 
6705 void perf_event_exec(void)
6706 {
6707 	struct perf_event_context *ctx;
6708 	int ctxn;
6709 
6710 	rcu_read_lock();
6711 	for_each_task_context_nr(ctxn) {
6712 		ctx = current->perf_event_ctxp[ctxn];
6713 		if (!ctx)
6714 			continue;
6715 
6716 		perf_event_enable_on_exec(ctxn);
6717 
6718 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6719 				   true);
6720 	}
6721 	rcu_read_unlock();
6722 }
6723 
6724 struct remote_output {
6725 	struct ring_buffer	*rb;
6726 	int			err;
6727 };
6728 
6729 static void __perf_event_output_stop(struct perf_event *event, void *data)
6730 {
6731 	struct perf_event *parent = event->parent;
6732 	struct remote_output *ro = data;
6733 	struct ring_buffer *rb = ro->rb;
6734 	struct stop_event_data sd = {
6735 		.event	= event,
6736 	};
6737 
6738 	if (!has_aux(event))
6739 		return;
6740 
6741 	if (!parent)
6742 		parent = event;
6743 
6744 	/*
6745 	 * In case of inheritance, it will be the parent that links to the
6746 	 * ring-buffer, but it will be the child that's actually using it.
6747 	 *
6748 	 * We are using event::rb to determine if the event should be stopped,
6749 	 * however this may race with ring_buffer_attach() (through set_output),
6750 	 * which will make us skip the event that actually needs to be stopped.
6751 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6752 	 * its rb pointer.
6753 	 */
6754 	if (rcu_dereference(parent->rb) == rb)
6755 		ro->err = __perf_event_stop(&sd);
6756 }
6757 
6758 static int __perf_pmu_output_stop(void *info)
6759 {
6760 	struct perf_event *event = info;
6761 	struct pmu *pmu = event->pmu;
6762 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6763 	struct remote_output ro = {
6764 		.rb	= event->rb,
6765 	};
6766 
6767 	rcu_read_lock();
6768 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6769 	if (cpuctx->task_ctx)
6770 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6771 				   &ro, false);
6772 	rcu_read_unlock();
6773 
6774 	return ro.err;
6775 }
6776 
6777 static void perf_pmu_output_stop(struct perf_event *event)
6778 {
6779 	struct perf_event *iter;
6780 	int err, cpu;
6781 
6782 restart:
6783 	rcu_read_lock();
6784 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6785 		/*
6786 		 * For per-CPU events, we need to make sure that neither they
6787 		 * nor their children are running; for cpu==-1 events it's
6788 		 * sufficient to stop the event itself if it's active, since
6789 		 * it can't have children.
6790 		 */
6791 		cpu = iter->cpu;
6792 		if (cpu == -1)
6793 			cpu = READ_ONCE(iter->oncpu);
6794 
6795 		if (cpu == -1)
6796 			continue;
6797 
6798 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6799 		if (err == -EAGAIN) {
6800 			rcu_read_unlock();
6801 			goto restart;
6802 		}
6803 	}
6804 	rcu_read_unlock();
6805 }
6806 
6807 /*
6808  * task tracking -- fork/exit
6809  *
6810  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6811  */
6812 
6813 struct perf_task_event {
6814 	struct task_struct		*task;
6815 	struct perf_event_context	*task_ctx;
6816 
6817 	struct {
6818 		struct perf_event_header	header;
6819 
6820 		u32				pid;
6821 		u32				ppid;
6822 		u32				tid;
6823 		u32				ptid;
6824 		u64				time;
6825 	} event_id;
6826 };
6827 
6828 static int perf_event_task_match(struct perf_event *event)
6829 {
6830 	return event->attr.comm  || event->attr.mmap ||
6831 	       event->attr.mmap2 || event->attr.mmap_data ||
6832 	       event->attr.task;
6833 }
6834 
6835 static void perf_event_task_output(struct perf_event *event,
6836 				   void *data)
6837 {
6838 	struct perf_task_event *task_event = data;
6839 	struct perf_output_handle handle;
6840 	struct perf_sample_data	sample;
6841 	struct task_struct *task = task_event->task;
6842 	int ret, size = task_event->event_id.header.size;
6843 
6844 	if (!perf_event_task_match(event))
6845 		return;
6846 
6847 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6848 
6849 	ret = perf_output_begin(&handle, event,
6850 				task_event->event_id.header.size);
6851 	if (ret)
6852 		goto out;
6853 
6854 	task_event->event_id.pid = perf_event_pid(event, task);
6855 	task_event->event_id.ppid = perf_event_pid(event, current);
6856 
6857 	task_event->event_id.tid = perf_event_tid(event, task);
6858 	task_event->event_id.ptid = perf_event_tid(event, current);
6859 
6860 	task_event->event_id.time = perf_event_clock(event);
6861 
6862 	perf_output_put(&handle, task_event->event_id);
6863 
6864 	perf_event__output_id_sample(event, &handle, &sample);
6865 
6866 	perf_output_end(&handle);
6867 out:
6868 	task_event->event_id.header.size = size;
6869 }
6870 
6871 static void perf_event_task(struct task_struct *task,
6872 			      struct perf_event_context *task_ctx,
6873 			      int new)
6874 {
6875 	struct perf_task_event task_event;
6876 
6877 	if (!atomic_read(&nr_comm_events) &&
6878 	    !atomic_read(&nr_mmap_events) &&
6879 	    !atomic_read(&nr_task_events))
6880 		return;
6881 
6882 	task_event = (struct perf_task_event){
6883 		.task	  = task,
6884 		.task_ctx = task_ctx,
6885 		.event_id    = {
6886 			.header = {
6887 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6888 				.misc = 0,
6889 				.size = sizeof(task_event.event_id),
6890 			},
6891 			/* .pid  */
6892 			/* .ppid */
6893 			/* .tid  */
6894 			/* .ptid */
6895 			/* .time */
6896 		},
6897 	};
6898 
6899 	perf_iterate_sb(perf_event_task_output,
6900 		       &task_event,
6901 		       task_ctx);
6902 }
6903 
6904 void perf_event_fork(struct task_struct *task)
6905 {
6906 	perf_event_task(task, NULL, 1);
6907 	perf_event_namespaces(task);
6908 }
6909 
6910 /*
6911  * comm tracking
6912  */
6913 
6914 struct perf_comm_event {
6915 	struct task_struct	*task;
6916 	char			*comm;
6917 	int			comm_size;
6918 
6919 	struct {
6920 		struct perf_event_header	header;
6921 
6922 		u32				pid;
6923 		u32				tid;
6924 	} event_id;
6925 };
6926 
6927 static int perf_event_comm_match(struct perf_event *event)
6928 {
6929 	return event->attr.comm;
6930 }
6931 
6932 static void perf_event_comm_output(struct perf_event *event,
6933 				   void *data)
6934 {
6935 	struct perf_comm_event *comm_event = data;
6936 	struct perf_output_handle handle;
6937 	struct perf_sample_data sample;
6938 	int size = comm_event->event_id.header.size;
6939 	int ret;
6940 
6941 	if (!perf_event_comm_match(event))
6942 		return;
6943 
6944 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6945 	ret = perf_output_begin(&handle, event,
6946 				comm_event->event_id.header.size);
6947 
6948 	if (ret)
6949 		goto out;
6950 
6951 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6952 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6953 
6954 	perf_output_put(&handle, comm_event->event_id);
6955 	__output_copy(&handle, comm_event->comm,
6956 				   comm_event->comm_size);
6957 
6958 	perf_event__output_id_sample(event, &handle, &sample);
6959 
6960 	perf_output_end(&handle);
6961 out:
6962 	comm_event->event_id.header.size = size;
6963 }
6964 
6965 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6966 {
6967 	char comm[TASK_COMM_LEN];
6968 	unsigned int size;
6969 
6970 	memset(comm, 0, sizeof(comm));
6971 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6972 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6973 
6974 	comm_event->comm = comm;
6975 	comm_event->comm_size = size;
6976 
6977 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6978 
6979 	perf_iterate_sb(perf_event_comm_output,
6980 		       comm_event,
6981 		       NULL);
6982 }
6983 
6984 void perf_event_comm(struct task_struct *task, bool exec)
6985 {
6986 	struct perf_comm_event comm_event;
6987 
6988 	if (!atomic_read(&nr_comm_events))
6989 		return;
6990 
6991 	comm_event = (struct perf_comm_event){
6992 		.task	= task,
6993 		/* .comm      */
6994 		/* .comm_size */
6995 		.event_id  = {
6996 			.header = {
6997 				.type = PERF_RECORD_COMM,
6998 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6999 				/* .size */
7000 			},
7001 			/* .pid */
7002 			/* .tid */
7003 		},
7004 	};
7005 
7006 	perf_event_comm_event(&comm_event);
7007 }
7008 
7009 /*
7010  * namespaces tracking
7011  */
7012 
7013 struct perf_namespaces_event {
7014 	struct task_struct		*task;
7015 
7016 	struct {
7017 		struct perf_event_header	header;
7018 
7019 		u32				pid;
7020 		u32				tid;
7021 		u64				nr_namespaces;
7022 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7023 	} event_id;
7024 };
7025 
7026 static int perf_event_namespaces_match(struct perf_event *event)
7027 {
7028 	return event->attr.namespaces;
7029 }
7030 
7031 static void perf_event_namespaces_output(struct perf_event *event,
7032 					 void *data)
7033 {
7034 	struct perf_namespaces_event *namespaces_event = data;
7035 	struct perf_output_handle handle;
7036 	struct perf_sample_data sample;
7037 	u16 header_size = namespaces_event->event_id.header.size;
7038 	int ret;
7039 
7040 	if (!perf_event_namespaces_match(event))
7041 		return;
7042 
7043 	perf_event_header__init_id(&namespaces_event->event_id.header,
7044 				   &sample, event);
7045 	ret = perf_output_begin(&handle, event,
7046 				namespaces_event->event_id.header.size);
7047 	if (ret)
7048 		goto out;
7049 
7050 	namespaces_event->event_id.pid = perf_event_pid(event,
7051 							namespaces_event->task);
7052 	namespaces_event->event_id.tid = perf_event_tid(event,
7053 							namespaces_event->task);
7054 
7055 	perf_output_put(&handle, namespaces_event->event_id);
7056 
7057 	perf_event__output_id_sample(event, &handle, &sample);
7058 
7059 	perf_output_end(&handle);
7060 out:
7061 	namespaces_event->event_id.header.size = header_size;
7062 }
7063 
7064 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7065 				   struct task_struct *task,
7066 				   const struct proc_ns_operations *ns_ops)
7067 {
7068 	struct path ns_path;
7069 	struct inode *ns_inode;
7070 	void *error;
7071 
7072 	error = ns_get_path(&ns_path, task, ns_ops);
7073 	if (!error) {
7074 		ns_inode = ns_path.dentry->d_inode;
7075 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7076 		ns_link_info->ino = ns_inode->i_ino;
7077 		path_put(&ns_path);
7078 	}
7079 }
7080 
7081 void perf_event_namespaces(struct task_struct *task)
7082 {
7083 	struct perf_namespaces_event namespaces_event;
7084 	struct perf_ns_link_info *ns_link_info;
7085 
7086 	if (!atomic_read(&nr_namespaces_events))
7087 		return;
7088 
7089 	namespaces_event = (struct perf_namespaces_event){
7090 		.task	= task,
7091 		.event_id  = {
7092 			.header = {
7093 				.type = PERF_RECORD_NAMESPACES,
7094 				.misc = 0,
7095 				.size = sizeof(namespaces_event.event_id),
7096 			},
7097 			/* .pid */
7098 			/* .tid */
7099 			.nr_namespaces = NR_NAMESPACES,
7100 			/* .link_info[NR_NAMESPACES] */
7101 		},
7102 	};
7103 
7104 	ns_link_info = namespaces_event.event_id.link_info;
7105 
7106 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7107 			       task, &mntns_operations);
7108 
7109 #ifdef CONFIG_USER_NS
7110 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7111 			       task, &userns_operations);
7112 #endif
7113 #ifdef CONFIG_NET_NS
7114 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7115 			       task, &netns_operations);
7116 #endif
7117 #ifdef CONFIG_UTS_NS
7118 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7119 			       task, &utsns_operations);
7120 #endif
7121 #ifdef CONFIG_IPC_NS
7122 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7123 			       task, &ipcns_operations);
7124 #endif
7125 #ifdef CONFIG_PID_NS
7126 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7127 			       task, &pidns_operations);
7128 #endif
7129 #ifdef CONFIG_CGROUPS
7130 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7131 			       task, &cgroupns_operations);
7132 #endif
7133 
7134 	perf_iterate_sb(perf_event_namespaces_output,
7135 			&namespaces_event,
7136 			NULL);
7137 }
7138 
7139 /*
7140  * mmap tracking
7141  */
7142 
7143 struct perf_mmap_event {
7144 	struct vm_area_struct	*vma;
7145 
7146 	const char		*file_name;
7147 	int			file_size;
7148 	int			maj, min;
7149 	u64			ino;
7150 	u64			ino_generation;
7151 	u32			prot, flags;
7152 
7153 	struct {
7154 		struct perf_event_header	header;
7155 
7156 		u32				pid;
7157 		u32				tid;
7158 		u64				start;
7159 		u64				len;
7160 		u64				pgoff;
7161 	} event_id;
7162 };
7163 
7164 static int perf_event_mmap_match(struct perf_event *event,
7165 				 void *data)
7166 {
7167 	struct perf_mmap_event *mmap_event = data;
7168 	struct vm_area_struct *vma = mmap_event->vma;
7169 	int executable = vma->vm_flags & VM_EXEC;
7170 
7171 	return (!executable && event->attr.mmap_data) ||
7172 	       (executable && (event->attr.mmap || event->attr.mmap2));
7173 }
7174 
7175 static void perf_event_mmap_output(struct perf_event *event,
7176 				   void *data)
7177 {
7178 	struct perf_mmap_event *mmap_event = data;
7179 	struct perf_output_handle handle;
7180 	struct perf_sample_data sample;
7181 	int size = mmap_event->event_id.header.size;
7182 	int ret;
7183 
7184 	if (!perf_event_mmap_match(event, data))
7185 		return;
7186 
7187 	if (event->attr.mmap2) {
7188 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7189 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7190 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7191 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7192 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7193 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7194 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7195 	}
7196 
7197 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7198 	ret = perf_output_begin(&handle, event,
7199 				mmap_event->event_id.header.size);
7200 	if (ret)
7201 		goto out;
7202 
7203 	mmap_event->event_id.pid = perf_event_pid(event, current);
7204 	mmap_event->event_id.tid = perf_event_tid(event, current);
7205 
7206 	perf_output_put(&handle, mmap_event->event_id);
7207 
7208 	if (event->attr.mmap2) {
7209 		perf_output_put(&handle, mmap_event->maj);
7210 		perf_output_put(&handle, mmap_event->min);
7211 		perf_output_put(&handle, mmap_event->ino);
7212 		perf_output_put(&handle, mmap_event->ino_generation);
7213 		perf_output_put(&handle, mmap_event->prot);
7214 		perf_output_put(&handle, mmap_event->flags);
7215 	}
7216 
7217 	__output_copy(&handle, mmap_event->file_name,
7218 				   mmap_event->file_size);
7219 
7220 	perf_event__output_id_sample(event, &handle, &sample);
7221 
7222 	perf_output_end(&handle);
7223 out:
7224 	mmap_event->event_id.header.size = size;
7225 }
7226 
7227 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7228 {
7229 	struct vm_area_struct *vma = mmap_event->vma;
7230 	struct file *file = vma->vm_file;
7231 	int maj = 0, min = 0;
7232 	u64 ino = 0, gen = 0;
7233 	u32 prot = 0, flags = 0;
7234 	unsigned int size;
7235 	char tmp[16];
7236 	char *buf = NULL;
7237 	char *name;
7238 
7239 	if (vma->vm_flags & VM_READ)
7240 		prot |= PROT_READ;
7241 	if (vma->vm_flags & VM_WRITE)
7242 		prot |= PROT_WRITE;
7243 	if (vma->vm_flags & VM_EXEC)
7244 		prot |= PROT_EXEC;
7245 
7246 	if (vma->vm_flags & VM_MAYSHARE)
7247 		flags = MAP_SHARED;
7248 	else
7249 		flags = MAP_PRIVATE;
7250 
7251 	if (vma->vm_flags & VM_DENYWRITE)
7252 		flags |= MAP_DENYWRITE;
7253 	if (vma->vm_flags & VM_MAYEXEC)
7254 		flags |= MAP_EXECUTABLE;
7255 	if (vma->vm_flags & VM_LOCKED)
7256 		flags |= MAP_LOCKED;
7257 	if (vma->vm_flags & VM_HUGETLB)
7258 		flags |= MAP_HUGETLB;
7259 
7260 	if (file) {
7261 		struct inode *inode;
7262 		dev_t dev;
7263 
7264 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7265 		if (!buf) {
7266 			name = "//enomem";
7267 			goto cpy_name;
7268 		}
7269 		/*
7270 		 * d_path() works from the end of the rb backwards, so we
7271 		 * need to add enough zero bytes after the string to handle
7272 		 * the 64bit alignment we do later.
7273 		 */
7274 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7275 		if (IS_ERR(name)) {
7276 			name = "//toolong";
7277 			goto cpy_name;
7278 		}
7279 		inode = file_inode(vma->vm_file);
7280 		dev = inode->i_sb->s_dev;
7281 		ino = inode->i_ino;
7282 		gen = inode->i_generation;
7283 		maj = MAJOR(dev);
7284 		min = MINOR(dev);
7285 
7286 		goto got_name;
7287 	} else {
7288 		if (vma->vm_ops && vma->vm_ops->name) {
7289 			name = (char *) vma->vm_ops->name(vma);
7290 			if (name)
7291 				goto cpy_name;
7292 		}
7293 
7294 		name = (char *)arch_vma_name(vma);
7295 		if (name)
7296 			goto cpy_name;
7297 
7298 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7299 				vma->vm_end >= vma->vm_mm->brk) {
7300 			name = "[heap]";
7301 			goto cpy_name;
7302 		}
7303 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7304 				vma->vm_end >= vma->vm_mm->start_stack) {
7305 			name = "[stack]";
7306 			goto cpy_name;
7307 		}
7308 
7309 		name = "//anon";
7310 		goto cpy_name;
7311 	}
7312 
7313 cpy_name:
7314 	strlcpy(tmp, name, sizeof(tmp));
7315 	name = tmp;
7316 got_name:
7317 	/*
7318 	 * Since our buffer works in 8 byte units we need to align our string
7319 	 * size to a multiple of 8. However, we must guarantee the tail end is
7320 	 * zero'd out to avoid leaking random bits to userspace.
7321 	 */
7322 	size = strlen(name)+1;
7323 	while (!IS_ALIGNED(size, sizeof(u64)))
7324 		name[size++] = '\0';
7325 
7326 	mmap_event->file_name = name;
7327 	mmap_event->file_size = size;
7328 	mmap_event->maj = maj;
7329 	mmap_event->min = min;
7330 	mmap_event->ino = ino;
7331 	mmap_event->ino_generation = gen;
7332 	mmap_event->prot = prot;
7333 	mmap_event->flags = flags;
7334 
7335 	if (!(vma->vm_flags & VM_EXEC))
7336 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7337 
7338 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7339 
7340 	perf_iterate_sb(perf_event_mmap_output,
7341 		       mmap_event,
7342 		       NULL);
7343 
7344 	kfree(buf);
7345 }
7346 
7347 /*
7348  * Check whether inode and address range match filter criteria.
7349  */
7350 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7351 				     struct file *file, unsigned long offset,
7352 				     unsigned long size)
7353 {
7354 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7355 	if (!filter->path.dentry)
7356 		return false;
7357 
7358 	if (d_inode(filter->path.dentry) != file_inode(file))
7359 		return false;
7360 
7361 	if (filter->offset > offset + size)
7362 		return false;
7363 
7364 	if (filter->offset + filter->size < offset)
7365 		return false;
7366 
7367 	return true;
7368 }
7369 
7370 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7371 {
7372 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7373 	struct vm_area_struct *vma = data;
7374 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7375 	struct file *file = vma->vm_file;
7376 	struct perf_addr_filter *filter;
7377 	unsigned int restart = 0, count = 0;
7378 
7379 	if (!has_addr_filter(event))
7380 		return;
7381 
7382 	if (!file)
7383 		return;
7384 
7385 	raw_spin_lock_irqsave(&ifh->lock, flags);
7386 	list_for_each_entry(filter, &ifh->list, entry) {
7387 		if (perf_addr_filter_match(filter, file, off,
7388 					     vma->vm_end - vma->vm_start)) {
7389 			event->addr_filters_offs[count] = vma->vm_start;
7390 			restart++;
7391 		}
7392 
7393 		count++;
7394 	}
7395 
7396 	if (restart)
7397 		event->addr_filters_gen++;
7398 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7399 
7400 	if (restart)
7401 		perf_event_stop(event, 1);
7402 }
7403 
7404 /*
7405  * Adjust all task's events' filters to the new vma
7406  */
7407 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7408 {
7409 	struct perf_event_context *ctx;
7410 	int ctxn;
7411 
7412 	/*
7413 	 * Data tracing isn't supported yet and as such there is no need
7414 	 * to keep track of anything that isn't related to executable code:
7415 	 */
7416 	if (!(vma->vm_flags & VM_EXEC))
7417 		return;
7418 
7419 	rcu_read_lock();
7420 	for_each_task_context_nr(ctxn) {
7421 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7422 		if (!ctx)
7423 			continue;
7424 
7425 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7426 	}
7427 	rcu_read_unlock();
7428 }
7429 
7430 void perf_event_mmap(struct vm_area_struct *vma)
7431 {
7432 	struct perf_mmap_event mmap_event;
7433 
7434 	if (!atomic_read(&nr_mmap_events))
7435 		return;
7436 
7437 	mmap_event = (struct perf_mmap_event){
7438 		.vma	= vma,
7439 		/* .file_name */
7440 		/* .file_size */
7441 		.event_id  = {
7442 			.header = {
7443 				.type = PERF_RECORD_MMAP,
7444 				.misc = PERF_RECORD_MISC_USER,
7445 				/* .size */
7446 			},
7447 			/* .pid */
7448 			/* .tid */
7449 			.start  = vma->vm_start,
7450 			.len    = vma->vm_end - vma->vm_start,
7451 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7452 		},
7453 		/* .maj (attr_mmap2 only) */
7454 		/* .min (attr_mmap2 only) */
7455 		/* .ino (attr_mmap2 only) */
7456 		/* .ino_generation (attr_mmap2 only) */
7457 		/* .prot (attr_mmap2 only) */
7458 		/* .flags (attr_mmap2 only) */
7459 	};
7460 
7461 	perf_addr_filters_adjust(vma);
7462 	perf_event_mmap_event(&mmap_event);
7463 }
7464 
7465 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7466 			  unsigned long size, u64 flags)
7467 {
7468 	struct perf_output_handle handle;
7469 	struct perf_sample_data sample;
7470 	struct perf_aux_event {
7471 		struct perf_event_header	header;
7472 		u64				offset;
7473 		u64				size;
7474 		u64				flags;
7475 	} rec = {
7476 		.header = {
7477 			.type = PERF_RECORD_AUX,
7478 			.misc = 0,
7479 			.size = sizeof(rec),
7480 		},
7481 		.offset		= head,
7482 		.size		= size,
7483 		.flags		= flags,
7484 	};
7485 	int ret;
7486 
7487 	perf_event_header__init_id(&rec.header, &sample, event);
7488 	ret = perf_output_begin(&handle, event, rec.header.size);
7489 
7490 	if (ret)
7491 		return;
7492 
7493 	perf_output_put(&handle, rec);
7494 	perf_event__output_id_sample(event, &handle, &sample);
7495 
7496 	perf_output_end(&handle);
7497 }
7498 
7499 /*
7500  * Lost/dropped samples logging
7501  */
7502 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7503 {
7504 	struct perf_output_handle handle;
7505 	struct perf_sample_data sample;
7506 	int ret;
7507 
7508 	struct {
7509 		struct perf_event_header	header;
7510 		u64				lost;
7511 	} lost_samples_event = {
7512 		.header = {
7513 			.type = PERF_RECORD_LOST_SAMPLES,
7514 			.misc = 0,
7515 			.size = sizeof(lost_samples_event),
7516 		},
7517 		.lost		= lost,
7518 	};
7519 
7520 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7521 
7522 	ret = perf_output_begin(&handle, event,
7523 				lost_samples_event.header.size);
7524 	if (ret)
7525 		return;
7526 
7527 	perf_output_put(&handle, lost_samples_event);
7528 	perf_event__output_id_sample(event, &handle, &sample);
7529 	perf_output_end(&handle);
7530 }
7531 
7532 /*
7533  * context_switch tracking
7534  */
7535 
7536 struct perf_switch_event {
7537 	struct task_struct	*task;
7538 	struct task_struct	*next_prev;
7539 
7540 	struct {
7541 		struct perf_event_header	header;
7542 		u32				next_prev_pid;
7543 		u32				next_prev_tid;
7544 	} event_id;
7545 };
7546 
7547 static int perf_event_switch_match(struct perf_event *event)
7548 {
7549 	return event->attr.context_switch;
7550 }
7551 
7552 static void perf_event_switch_output(struct perf_event *event, void *data)
7553 {
7554 	struct perf_switch_event *se = data;
7555 	struct perf_output_handle handle;
7556 	struct perf_sample_data sample;
7557 	int ret;
7558 
7559 	if (!perf_event_switch_match(event))
7560 		return;
7561 
7562 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7563 	if (event->ctx->task) {
7564 		se->event_id.header.type = PERF_RECORD_SWITCH;
7565 		se->event_id.header.size = sizeof(se->event_id.header);
7566 	} else {
7567 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7568 		se->event_id.header.size = sizeof(se->event_id);
7569 		se->event_id.next_prev_pid =
7570 					perf_event_pid(event, se->next_prev);
7571 		se->event_id.next_prev_tid =
7572 					perf_event_tid(event, se->next_prev);
7573 	}
7574 
7575 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7576 
7577 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7578 	if (ret)
7579 		return;
7580 
7581 	if (event->ctx->task)
7582 		perf_output_put(&handle, se->event_id.header);
7583 	else
7584 		perf_output_put(&handle, se->event_id);
7585 
7586 	perf_event__output_id_sample(event, &handle, &sample);
7587 
7588 	perf_output_end(&handle);
7589 }
7590 
7591 static void perf_event_switch(struct task_struct *task,
7592 			      struct task_struct *next_prev, bool sched_in)
7593 {
7594 	struct perf_switch_event switch_event;
7595 
7596 	/* N.B. caller checks nr_switch_events != 0 */
7597 
7598 	switch_event = (struct perf_switch_event){
7599 		.task		= task,
7600 		.next_prev	= next_prev,
7601 		.event_id	= {
7602 			.header = {
7603 				/* .type */
7604 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7605 				/* .size */
7606 			},
7607 			/* .next_prev_pid */
7608 			/* .next_prev_tid */
7609 		},
7610 	};
7611 
7612 	if (!sched_in && task->state == TASK_RUNNING)
7613 		switch_event.event_id.header.misc |=
7614 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7615 
7616 	perf_iterate_sb(perf_event_switch_output,
7617 		       &switch_event,
7618 		       NULL);
7619 }
7620 
7621 /*
7622  * IRQ throttle logging
7623  */
7624 
7625 static void perf_log_throttle(struct perf_event *event, int enable)
7626 {
7627 	struct perf_output_handle handle;
7628 	struct perf_sample_data sample;
7629 	int ret;
7630 
7631 	struct {
7632 		struct perf_event_header	header;
7633 		u64				time;
7634 		u64				id;
7635 		u64				stream_id;
7636 	} throttle_event = {
7637 		.header = {
7638 			.type = PERF_RECORD_THROTTLE,
7639 			.misc = 0,
7640 			.size = sizeof(throttle_event),
7641 		},
7642 		.time		= perf_event_clock(event),
7643 		.id		= primary_event_id(event),
7644 		.stream_id	= event->id,
7645 	};
7646 
7647 	if (enable)
7648 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7649 
7650 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7651 
7652 	ret = perf_output_begin(&handle, event,
7653 				throttle_event.header.size);
7654 	if (ret)
7655 		return;
7656 
7657 	perf_output_put(&handle, throttle_event);
7658 	perf_event__output_id_sample(event, &handle, &sample);
7659 	perf_output_end(&handle);
7660 }
7661 
7662 /*
7663  * ksymbol register/unregister tracking
7664  */
7665 
7666 struct perf_ksymbol_event {
7667 	const char	*name;
7668 	int		name_len;
7669 	struct {
7670 		struct perf_event_header        header;
7671 		u64				addr;
7672 		u32				len;
7673 		u16				ksym_type;
7674 		u16				flags;
7675 	} event_id;
7676 };
7677 
7678 static int perf_event_ksymbol_match(struct perf_event *event)
7679 {
7680 	return event->attr.ksymbol;
7681 }
7682 
7683 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7684 {
7685 	struct perf_ksymbol_event *ksymbol_event = data;
7686 	struct perf_output_handle handle;
7687 	struct perf_sample_data sample;
7688 	int ret;
7689 
7690 	if (!perf_event_ksymbol_match(event))
7691 		return;
7692 
7693 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7694 				   &sample, event);
7695 	ret = perf_output_begin(&handle, event,
7696 				ksymbol_event->event_id.header.size);
7697 	if (ret)
7698 		return;
7699 
7700 	perf_output_put(&handle, ksymbol_event->event_id);
7701 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7702 	perf_event__output_id_sample(event, &handle, &sample);
7703 
7704 	perf_output_end(&handle);
7705 }
7706 
7707 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7708 			const char *sym)
7709 {
7710 	struct perf_ksymbol_event ksymbol_event;
7711 	char name[KSYM_NAME_LEN];
7712 	u16 flags = 0;
7713 	int name_len;
7714 
7715 	if (!atomic_read(&nr_ksymbol_events))
7716 		return;
7717 
7718 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7719 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7720 		goto err;
7721 
7722 	strlcpy(name, sym, KSYM_NAME_LEN);
7723 	name_len = strlen(name) + 1;
7724 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7725 		name[name_len++] = '\0';
7726 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7727 
7728 	if (unregister)
7729 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7730 
7731 	ksymbol_event = (struct perf_ksymbol_event){
7732 		.name = name,
7733 		.name_len = name_len,
7734 		.event_id = {
7735 			.header = {
7736 				.type = PERF_RECORD_KSYMBOL,
7737 				.size = sizeof(ksymbol_event.event_id) +
7738 					name_len,
7739 			},
7740 			.addr = addr,
7741 			.len = len,
7742 			.ksym_type = ksym_type,
7743 			.flags = flags,
7744 		},
7745 	};
7746 
7747 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7748 	return;
7749 err:
7750 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7751 }
7752 
7753 /*
7754  * bpf program load/unload tracking
7755  */
7756 
7757 struct perf_bpf_event {
7758 	struct bpf_prog	*prog;
7759 	struct {
7760 		struct perf_event_header        header;
7761 		u16				type;
7762 		u16				flags;
7763 		u32				id;
7764 		u8				tag[BPF_TAG_SIZE];
7765 	} event_id;
7766 };
7767 
7768 static int perf_event_bpf_match(struct perf_event *event)
7769 {
7770 	return event->attr.bpf_event;
7771 }
7772 
7773 static void perf_event_bpf_output(struct perf_event *event, void *data)
7774 {
7775 	struct perf_bpf_event *bpf_event = data;
7776 	struct perf_output_handle handle;
7777 	struct perf_sample_data sample;
7778 	int ret;
7779 
7780 	if (!perf_event_bpf_match(event))
7781 		return;
7782 
7783 	perf_event_header__init_id(&bpf_event->event_id.header,
7784 				   &sample, event);
7785 	ret = perf_output_begin(&handle, event,
7786 				bpf_event->event_id.header.size);
7787 	if (ret)
7788 		return;
7789 
7790 	perf_output_put(&handle, bpf_event->event_id);
7791 	perf_event__output_id_sample(event, &handle, &sample);
7792 
7793 	perf_output_end(&handle);
7794 }
7795 
7796 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7797 					 enum perf_bpf_event_type type)
7798 {
7799 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7800 	char sym[KSYM_NAME_LEN];
7801 	int i;
7802 
7803 	if (prog->aux->func_cnt == 0) {
7804 		bpf_get_prog_name(prog, sym);
7805 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7806 				   (u64)(unsigned long)prog->bpf_func,
7807 				   prog->jited_len, unregister, sym);
7808 	} else {
7809 		for (i = 0; i < prog->aux->func_cnt; i++) {
7810 			struct bpf_prog *subprog = prog->aux->func[i];
7811 
7812 			bpf_get_prog_name(subprog, sym);
7813 			perf_event_ksymbol(
7814 				PERF_RECORD_KSYMBOL_TYPE_BPF,
7815 				(u64)(unsigned long)subprog->bpf_func,
7816 				subprog->jited_len, unregister, sym);
7817 		}
7818 	}
7819 }
7820 
7821 void perf_event_bpf_event(struct bpf_prog *prog,
7822 			  enum perf_bpf_event_type type,
7823 			  u16 flags)
7824 {
7825 	struct perf_bpf_event bpf_event;
7826 
7827 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
7828 	    type >= PERF_BPF_EVENT_MAX)
7829 		return;
7830 
7831 	switch (type) {
7832 	case PERF_BPF_EVENT_PROG_LOAD:
7833 	case PERF_BPF_EVENT_PROG_UNLOAD:
7834 		if (atomic_read(&nr_ksymbol_events))
7835 			perf_event_bpf_emit_ksymbols(prog, type);
7836 		break;
7837 	default:
7838 		break;
7839 	}
7840 
7841 	if (!atomic_read(&nr_bpf_events))
7842 		return;
7843 
7844 	bpf_event = (struct perf_bpf_event){
7845 		.prog = prog,
7846 		.event_id = {
7847 			.header = {
7848 				.type = PERF_RECORD_BPF_EVENT,
7849 				.size = sizeof(bpf_event.event_id),
7850 			},
7851 			.type = type,
7852 			.flags = flags,
7853 			.id = prog->aux->id,
7854 		},
7855 	};
7856 
7857 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7858 
7859 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7860 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7861 }
7862 
7863 void perf_event_itrace_started(struct perf_event *event)
7864 {
7865 	event->attach_state |= PERF_ATTACH_ITRACE;
7866 }
7867 
7868 static void perf_log_itrace_start(struct perf_event *event)
7869 {
7870 	struct perf_output_handle handle;
7871 	struct perf_sample_data sample;
7872 	struct perf_aux_event {
7873 		struct perf_event_header        header;
7874 		u32				pid;
7875 		u32				tid;
7876 	} rec;
7877 	int ret;
7878 
7879 	if (event->parent)
7880 		event = event->parent;
7881 
7882 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7883 	    event->attach_state & PERF_ATTACH_ITRACE)
7884 		return;
7885 
7886 	rec.header.type	= PERF_RECORD_ITRACE_START;
7887 	rec.header.misc	= 0;
7888 	rec.header.size	= sizeof(rec);
7889 	rec.pid	= perf_event_pid(event, current);
7890 	rec.tid	= perf_event_tid(event, current);
7891 
7892 	perf_event_header__init_id(&rec.header, &sample, event);
7893 	ret = perf_output_begin(&handle, event, rec.header.size);
7894 
7895 	if (ret)
7896 		return;
7897 
7898 	perf_output_put(&handle, rec);
7899 	perf_event__output_id_sample(event, &handle, &sample);
7900 
7901 	perf_output_end(&handle);
7902 }
7903 
7904 static int
7905 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7906 {
7907 	struct hw_perf_event *hwc = &event->hw;
7908 	int ret = 0;
7909 	u64 seq;
7910 
7911 	seq = __this_cpu_read(perf_throttled_seq);
7912 	if (seq != hwc->interrupts_seq) {
7913 		hwc->interrupts_seq = seq;
7914 		hwc->interrupts = 1;
7915 	} else {
7916 		hwc->interrupts++;
7917 		if (unlikely(throttle
7918 			     && hwc->interrupts >= max_samples_per_tick)) {
7919 			__this_cpu_inc(perf_throttled_count);
7920 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7921 			hwc->interrupts = MAX_INTERRUPTS;
7922 			perf_log_throttle(event, 0);
7923 			ret = 1;
7924 		}
7925 	}
7926 
7927 	if (event->attr.freq) {
7928 		u64 now = perf_clock();
7929 		s64 delta = now - hwc->freq_time_stamp;
7930 
7931 		hwc->freq_time_stamp = now;
7932 
7933 		if (delta > 0 && delta < 2*TICK_NSEC)
7934 			perf_adjust_period(event, delta, hwc->last_period, true);
7935 	}
7936 
7937 	return ret;
7938 }
7939 
7940 int perf_event_account_interrupt(struct perf_event *event)
7941 {
7942 	return __perf_event_account_interrupt(event, 1);
7943 }
7944 
7945 /*
7946  * Generic event overflow handling, sampling.
7947  */
7948 
7949 static int __perf_event_overflow(struct perf_event *event,
7950 				   int throttle, struct perf_sample_data *data,
7951 				   struct pt_regs *regs)
7952 {
7953 	int events = atomic_read(&event->event_limit);
7954 	int ret = 0;
7955 
7956 	/*
7957 	 * Non-sampling counters might still use the PMI to fold short
7958 	 * hardware counters, ignore those.
7959 	 */
7960 	if (unlikely(!is_sampling_event(event)))
7961 		return 0;
7962 
7963 	ret = __perf_event_account_interrupt(event, throttle);
7964 
7965 	/*
7966 	 * XXX event_limit might not quite work as expected on inherited
7967 	 * events
7968 	 */
7969 
7970 	event->pending_kill = POLL_IN;
7971 	if (events && atomic_dec_and_test(&event->event_limit)) {
7972 		ret = 1;
7973 		event->pending_kill = POLL_HUP;
7974 
7975 		perf_event_disable_inatomic(event);
7976 	}
7977 
7978 	READ_ONCE(event->overflow_handler)(event, data, regs);
7979 
7980 	if (*perf_event_fasync(event) && event->pending_kill) {
7981 		event->pending_wakeup = 1;
7982 		irq_work_queue(&event->pending);
7983 	}
7984 
7985 	return ret;
7986 }
7987 
7988 int perf_event_overflow(struct perf_event *event,
7989 			  struct perf_sample_data *data,
7990 			  struct pt_regs *regs)
7991 {
7992 	return __perf_event_overflow(event, 1, data, regs);
7993 }
7994 
7995 /*
7996  * Generic software event infrastructure
7997  */
7998 
7999 struct swevent_htable {
8000 	struct swevent_hlist		*swevent_hlist;
8001 	struct mutex			hlist_mutex;
8002 	int				hlist_refcount;
8003 
8004 	/* Recursion avoidance in each contexts */
8005 	int				recursion[PERF_NR_CONTEXTS];
8006 };
8007 
8008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8009 
8010 /*
8011  * We directly increment event->count and keep a second value in
8012  * event->hw.period_left to count intervals. This period event
8013  * is kept in the range [-sample_period, 0] so that we can use the
8014  * sign as trigger.
8015  */
8016 
8017 u64 perf_swevent_set_period(struct perf_event *event)
8018 {
8019 	struct hw_perf_event *hwc = &event->hw;
8020 	u64 period = hwc->last_period;
8021 	u64 nr, offset;
8022 	s64 old, val;
8023 
8024 	hwc->last_period = hwc->sample_period;
8025 
8026 again:
8027 	old = val = local64_read(&hwc->period_left);
8028 	if (val < 0)
8029 		return 0;
8030 
8031 	nr = div64_u64(period + val, period);
8032 	offset = nr * period;
8033 	val -= offset;
8034 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8035 		goto again;
8036 
8037 	return nr;
8038 }
8039 
8040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8041 				    struct perf_sample_data *data,
8042 				    struct pt_regs *regs)
8043 {
8044 	struct hw_perf_event *hwc = &event->hw;
8045 	int throttle = 0;
8046 
8047 	if (!overflow)
8048 		overflow = perf_swevent_set_period(event);
8049 
8050 	if (hwc->interrupts == MAX_INTERRUPTS)
8051 		return;
8052 
8053 	for (; overflow; overflow--) {
8054 		if (__perf_event_overflow(event, throttle,
8055 					    data, regs)) {
8056 			/*
8057 			 * We inhibit the overflow from happening when
8058 			 * hwc->interrupts == MAX_INTERRUPTS.
8059 			 */
8060 			break;
8061 		}
8062 		throttle = 1;
8063 	}
8064 }
8065 
8066 static void perf_swevent_event(struct perf_event *event, u64 nr,
8067 			       struct perf_sample_data *data,
8068 			       struct pt_regs *regs)
8069 {
8070 	struct hw_perf_event *hwc = &event->hw;
8071 
8072 	local64_add(nr, &event->count);
8073 
8074 	if (!regs)
8075 		return;
8076 
8077 	if (!is_sampling_event(event))
8078 		return;
8079 
8080 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8081 		data->period = nr;
8082 		return perf_swevent_overflow(event, 1, data, regs);
8083 	} else
8084 		data->period = event->hw.last_period;
8085 
8086 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8087 		return perf_swevent_overflow(event, 1, data, regs);
8088 
8089 	if (local64_add_negative(nr, &hwc->period_left))
8090 		return;
8091 
8092 	perf_swevent_overflow(event, 0, data, regs);
8093 }
8094 
8095 static int perf_exclude_event(struct perf_event *event,
8096 			      struct pt_regs *regs)
8097 {
8098 	if (event->hw.state & PERF_HES_STOPPED)
8099 		return 1;
8100 
8101 	if (regs) {
8102 		if (event->attr.exclude_user && user_mode(regs))
8103 			return 1;
8104 
8105 		if (event->attr.exclude_kernel && !user_mode(regs))
8106 			return 1;
8107 	}
8108 
8109 	return 0;
8110 }
8111 
8112 static int perf_swevent_match(struct perf_event *event,
8113 				enum perf_type_id type,
8114 				u32 event_id,
8115 				struct perf_sample_data *data,
8116 				struct pt_regs *regs)
8117 {
8118 	if (event->attr.type != type)
8119 		return 0;
8120 
8121 	if (event->attr.config != event_id)
8122 		return 0;
8123 
8124 	if (perf_exclude_event(event, regs))
8125 		return 0;
8126 
8127 	return 1;
8128 }
8129 
8130 static inline u64 swevent_hash(u64 type, u32 event_id)
8131 {
8132 	u64 val = event_id | (type << 32);
8133 
8134 	return hash_64(val, SWEVENT_HLIST_BITS);
8135 }
8136 
8137 static inline struct hlist_head *
8138 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8139 {
8140 	u64 hash = swevent_hash(type, event_id);
8141 
8142 	return &hlist->heads[hash];
8143 }
8144 
8145 /* For the read side: events when they trigger */
8146 static inline struct hlist_head *
8147 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8148 {
8149 	struct swevent_hlist *hlist;
8150 
8151 	hlist = rcu_dereference(swhash->swevent_hlist);
8152 	if (!hlist)
8153 		return NULL;
8154 
8155 	return __find_swevent_head(hlist, type, event_id);
8156 }
8157 
8158 /* For the event head insertion and removal in the hlist */
8159 static inline struct hlist_head *
8160 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8161 {
8162 	struct swevent_hlist *hlist;
8163 	u32 event_id = event->attr.config;
8164 	u64 type = event->attr.type;
8165 
8166 	/*
8167 	 * Event scheduling is always serialized against hlist allocation
8168 	 * and release. Which makes the protected version suitable here.
8169 	 * The context lock guarantees that.
8170 	 */
8171 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8172 					  lockdep_is_held(&event->ctx->lock));
8173 	if (!hlist)
8174 		return NULL;
8175 
8176 	return __find_swevent_head(hlist, type, event_id);
8177 }
8178 
8179 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8180 				    u64 nr,
8181 				    struct perf_sample_data *data,
8182 				    struct pt_regs *regs)
8183 {
8184 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8185 	struct perf_event *event;
8186 	struct hlist_head *head;
8187 
8188 	rcu_read_lock();
8189 	head = find_swevent_head_rcu(swhash, type, event_id);
8190 	if (!head)
8191 		goto end;
8192 
8193 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8194 		if (perf_swevent_match(event, type, event_id, data, regs))
8195 			perf_swevent_event(event, nr, data, regs);
8196 	}
8197 end:
8198 	rcu_read_unlock();
8199 }
8200 
8201 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8202 
8203 int perf_swevent_get_recursion_context(void)
8204 {
8205 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8206 
8207 	return get_recursion_context(swhash->recursion);
8208 }
8209 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8210 
8211 void perf_swevent_put_recursion_context(int rctx)
8212 {
8213 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8214 
8215 	put_recursion_context(swhash->recursion, rctx);
8216 }
8217 
8218 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8219 {
8220 	struct perf_sample_data data;
8221 
8222 	if (WARN_ON_ONCE(!regs))
8223 		return;
8224 
8225 	perf_sample_data_init(&data, addr, 0);
8226 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8227 }
8228 
8229 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8230 {
8231 	int rctx;
8232 
8233 	preempt_disable_notrace();
8234 	rctx = perf_swevent_get_recursion_context();
8235 	if (unlikely(rctx < 0))
8236 		goto fail;
8237 
8238 	___perf_sw_event(event_id, nr, regs, addr);
8239 
8240 	perf_swevent_put_recursion_context(rctx);
8241 fail:
8242 	preempt_enable_notrace();
8243 }
8244 
8245 static void perf_swevent_read(struct perf_event *event)
8246 {
8247 }
8248 
8249 static int perf_swevent_add(struct perf_event *event, int flags)
8250 {
8251 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8252 	struct hw_perf_event *hwc = &event->hw;
8253 	struct hlist_head *head;
8254 
8255 	if (is_sampling_event(event)) {
8256 		hwc->last_period = hwc->sample_period;
8257 		perf_swevent_set_period(event);
8258 	}
8259 
8260 	hwc->state = !(flags & PERF_EF_START);
8261 
8262 	head = find_swevent_head(swhash, event);
8263 	if (WARN_ON_ONCE(!head))
8264 		return -EINVAL;
8265 
8266 	hlist_add_head_rcu(&event->hlist_entry, head);
8267 	perf_event_update_userpage(event);
8268 
8269 	return 0;
8270 }
8271 
8272 static void perf_swevent_del(struct perf_event *event, int flags)
8273 {
8274 	hlist_del_rcu(&event->hlist_entry);
8275 }
8276 
8277 static void perf_swevent_start(struct perf_event *event, int flags)
8278 {
8279 	event->hw.state = 0;
8280 }
8281 
8282 static void perf_swevent_stop(struct perf_event *event, int flags)
8283 {
8284 	event->hw.state = PERF_HES_STOPPED;
8285 }
8286 
8287 /* Deref the hlist from the update side */
8288 static inline struct swevent_hlist *
8289 swevent_hlist_deref(struct swevent_htable *swhash)
8290 {
8291 	return rcu_dereference_protected(swhash->swevent_hlist,
8292 					 lockdep_is_held(&swhash->hlist_mutex));
8293 }
8294 
8295 static void swevent_hlist_release(struct swevent_htable *swhash)
8296 {
8297 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8298 
8299 	if (!hlist)
8300 		return;
8301 
8302 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8303 	kfree_rcu(hlist, rcu_head);
8304 }
8305 
8306 static void swevent_hlist_put_cpu(int cpu)
8307 {
8308 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8309 
8310 	mutex_lock(&swhash->hlist_mutex);
8311 
8312 	if (!--swhash->hlist_refcount)
8313 		swevent_hlist_release(swhash);
8314 
8315 	mutex_unlock(&swhash->hlist_mutex);
8316 }
8317 
8318 static void swevent_hlist_put(void)
8319 {
8320 	int cpu;
8321 
8322 	for_each_possible_cpu(cpu)
8323 		swevent_hlist_put_cpu(cpu);
8324 }
8325 
8326 static int swevent_hlist_get_cpu(int cpu)
8327 {
8328 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8329 	int err = 0;
8330 
8331 	mutex_lock(&swhash->hlist_mutex);
8332 	if (!swevent_hlist_deref(swhash) &&
8333 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8334 		struct swevent_hlist *hlist;
8335 
8336 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8337 		if (!hlist) {
8338 			err = -ENOMEM;
8339 			goto exit;
8340 		}
8341 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8342 	}
8343 	swhash->hlist_refcount++;
8344 exit:
8345 	mutex_unlock(&swhash->hlist_mutex);
8346 
8347 	return err;
8348 }
8349 
8350 static int swevent_hlist_get(void)
8351 {
8352 	int err, cpu, failed_cpu;
8353 
8354 	mutex_lock(&pmus_lock);
8355 	for_each_possible_cpu(cpu) {
8356 		err = swevent_hlist_get_cpu(cpu);
8357 		if (err) {
8358 			failed_cpu = cpu;
8359 			goto fail;
8360 		}
8361 	}
8362 	mutex_unlock(&pmus_lock);
8363 	return 0;
8364 fail:
8365 	for_each_possible_cpu(cpu) {
8366 		if (cpu == failed_cpu)
8367 			break;
8368 		swevent_hlist_put_cpu(cpu);
8369 	}
8370 	mutex_unlock(&pmus_lock);
8371 	return err;
8372 }
8373 
8374 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8375 
8376 static void sw_perf_event_destroy(struct perf_event *event)
8377 {
8378 	u64 event_id = event->attr.config;
8379 
8380 	WARN_ON(event->parent);
8381 
8382 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8383 	swevent_hlist_put();
8384 }
8385 
8386 static int perf_swevent_init(struct perf_event *event)
8387 {
8388 	u64 event_id = event->attr.config;
8389 
8390 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8391 		return -ENOENT;
8392 
8393 	/*
8394 	 * no branch sampling for software events
8395 	 */
8396 	if (has_branch_stack(event))
8397 		return -EOPNOTSUPP;
8398 
8399 	switch (event_id) {
8400 	case PERF_COUNT_SW_CPU_CLOCK:
8401 	case PERF_COUNT_SW_TASK_CLOCK:
8402 		return -ENOENT;
8403 
8404 	default:
8405 		break;
8406 	}
8407 
8408 	if (event_id >= PERF_COUNT_SW_MAX)
8409 		return -ENOENT;
8410 
8411 	if (!event->parent) {
8412 		int err;
8413 
8414 		err = swevent_hlist_get();
8415 		if (err)
8416 			return err;
8417 
8418 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8419 		event->destroy = sw_perf_event_destroy;
8420 	}
8421 
8422 	return 0;
8423 }
8424 
8425 static struct pmu perf_swevent = {
8426 	.task_ctx_nr	= perf_sw_context,
8427 
8428 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8429 
8430 	.event_init	= perf_swevent_init,
8431 	.add		= perf_swevent_add,
8432 	.del		= perf_swevent_del,
8433 	.start		= perf_swevent_start,
8434 	.stop		= perf_swevent_stop,
8435 	.read		= perf_swevent_read,
8436 };
8437 
8438 #ifdef CONFIG_EVENT_TRACING
8439 
8440 static int perf_tp_filter_match(struct perf_event *event,
8441 				struct perf_sample_data *data)
8442 {
8443 	void *record = data->raw->frag.data;
8444 
8445 	/* only top level events have filters set */
8446 	if (event->parent)
8447 		event = event->parent;
8448 
8449 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8450 		return 1;
8451 	return 0;
8452 }
8453 
8454 static int perf_tp_event_match(struct perf_event *event,
8455 				struct perf_sample_data *data,
8456 				struct pt_regs *regs)
8457 {
8458 	if (event->hw.state & PERF_HES_STOPPED)
8459 		return 0;
8460 	/*
8461 	 * All tracepoints are from kernel-space.
8462 	 */
8463 	if (event->attr.exclude_kernel)
8464 		return 0;
8465 
8466 	if (!perf_tp_filter_match(event, data))
8467 		return 0;
8468 
8469 	return 1;
8470 }
8471 
8472 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8473 			       struct trace_event_call *call, u64 count,
8474 			       struct pt_regs *regs, struct hlist_head *head,
8475 			       struct task_struct *task)
8476 {
8477 	if (bpf_prog_array_valid(call)) {
8478 		*(struct pt_regs **)raw_data = regs;
8479 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8480 			perf_swevent_put_recursion_context(rctx);
8481 			return;
8482 		}
8483 	}
8484 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8485 		      rctx, task);
8486 }
8487 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8488 
8489 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8490 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8491 		   struct task_struct *task)
8492 {
8493 	struct perf_sample_data data;
8494 	struct perf_event *event;
8495 
8496 	struct perf_raw_record raw = {
8497 		.frag = {
8498 			.size = entry_size,
8499 			.data = record,
8500 		},
8501 	};
8502 
8503 	perf_sample_data_init(&data, 0, 0);
8504 	data.raw = &raw;
8505 
8506 	perf_trace_buf_update(record, event_type);
8507 
8508 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8509 		if (perf_tp_event_match(event, &data, regs))
8510 			perf_swevent_event(event, count, &data, regs);
8511 	}
8512 
8513 	/*
8514 	 * If we got specified a target task, also iterate its context and
8515 	 * deliver this event there too.
8516 	 */
8517 	if (task && task != current) {
8518 		struct perf_event_context *ctx;
8519 		struct trace_entry *entry = record;
8520 
8521 		rcu_read_lock();
8522 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8523 		if (!ctx)
8524 			goto unlock;
8525 
8526 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8527 			if (event->cpu != smp_processor_id())
8528 				continue;
8529 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8530 				continue;
8531 			if (event->attr.config != entry->type)
8532 				continue;
8533 			if (perf_tp_event_match(event, &data, regs))
8534 				perf_swevent_event(event, count, &data, regs);
8535 		}
8536 unlock:
8537 		rcu_read_unlock();
8538 	}
8539 
8540 	perf_swevent_put_recursion_context(rctx);
8541 }
8542 EXPORT_SYMBOL_GPL(perf_tp_event);
8543 
8544 static void tp_perf_event_destroy(struct perf_event *event)
8545 {
8546 	perf_trace_destroy(event);
8547 }
8548 
8549 static int perf_tp_event_init(struct perf_event *event)
8550 {
8551 	int err;
8552 
8553 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8554 		return -ENOENT;
8555 
8556 	/*
8557 	 * no branch sampling for tracepoint events
8558 	 */
8559 	if (has_branch_stack(event))
8560 		return -EOPNOTSUPP;
8561 
8562 	err = perf_trace_init(event);
8563 	if (err)
8564 		return err;
8565 
8566 	event->destroy = tp_perf_event_destroy;
8567 
8568 	return 0;
8569 }
8570 
8571 static struct pmu perf_tracepoint = {
8572 	.task_ctx_nr	= perf_sw_context,
8573 
8574 	.event_init	= perf_tp_event_init,
8575 	.add		= perf_trace_add,
8576 	.del		= perf_trace_del,
8577 	.start		= perf_swevent_start,
8578 	.stop		= perf_swevent_stop,
8579 	.read		= perf_swevent_read,
8580 };
8581 
8582 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8583 /*
8584  * Flags in config, used by dynamic PMU kprobe and uprobe
8585  * The flags should match following PMU_FORMAT_ATTR().
8586  *
8587  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8588  *                               if not set, create kprobe/uprobe
8589  *
8590  * The following values specify a reference counter (or semaphore in the
8591  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8592  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8593  *
8594  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8595  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8596  */
8597 enum perf_probe_config {
8598 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8599 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8600 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8601 };
8602 
8603 PMU_FORMAT_ATTR(retprobe, "config:0");
8604 #endif
8605 
8606 #ifdef CONFIG_KPROBE_EVENTS
8607 static struct attribute *kprobe_attrs[] = {
8608 	&format_attr_retprobe.attr,
8609 	NULL,
8610 };
8611 
8612 static struct attribute_group kprobe_format_group = {
8613 	.name = "format",
8614 	.attrs = kprobe_attrs,
8615 };
8616 
8617 static const struct attribute_group *kprobe_attr_groups[] = {
8618 	&kprobe_format_group,
8619 	NULL,
8620 };
8621 
8622 static int perf_kprobe_event_init(struct perf_event *event);
8623 static struct pmu perf_kprobe = {
8624 	.task_ctx_nr	= perf_sw_context,
8625 	.event_init	= perf_kprobe_event_init,
8626 	.add		= perf_trace_add,
8627 	.del		= perf_trace_del,
8628 	.start		= perf_swevent_start,
8629 	.stop		= perf_swevent_stop,
8630 	.read		= perf_swevent_read,
8631 	.attr_groups	= kprobe_attr_groups,
8632 };
8633 
8634 static int perf_kprobe_event_init(struct perf_event *event)
8635 {
8636 	int err;
8637 	bool is_retprobe;
8638 
8639 	if (event->attr.type != perf_kprobe.type)
8640 		return -ENOENT;
8641 
8642 	if (!capable(CAP_SYS_ADMIN))
8643 		return -EACCES;
8644 
8645 	/*
8646 	 * no branch sampling for probe events
8647 	 */
8648 	if (has_branch_stack(event))
8649 		return -EOPNOTSUPP;
8650 
8651 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8652 	err = perf_kprobe_init(event, is_retprobe);
8653 	if (err)
8654 		return err;
8655 
8656 	event->destroy = perf_kprobe_destroy;
8657 
8658 	return 0;
8659 }
8660 #endif /* CONFIG_KPROBE_EVENTS */
8661 
8662 #ifdef CONFIG_UPROBE_EVENTS
8663 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8664 
8665 static struct attribute *uprobe_attrs[] = {
8666 	&format_attr_retprobe.attr,
8667 	&format_attr_ref_ctr_offset.attr,
8668 	NULL,
8669 };
8670 
8671 static struct attribute_group uprobe_format_group = {
8672 	.name = "format",
8673 	.attrs = uprobe_attrs,
8674 };
8675 
8676 static const struct attribute_group *uprobe_attr_groups[] = {
8677 	&uprobe_format_group,
8678 	NULL,
8679 };
8680 
8681 static int perf_uprobe_event_init(struct perf_event *event);
8682 static struct pmu perf_uprobe = {
8683 	.task_ctx_nr	= perf_sw_context,
8684 	.event_init	= perf_uprobe_event_init,
8685 	.add		= perf_trace_add,
8686 	.del		= perf_trace_del,
8687 	.start		= perf_swevent_start,
8688 	.stop		= perf_swevent_stop,
8689 	.read		= perf_swevent_read,
8690 	.attr_groups	= uprobe_attr_groups,
8691 };
8692 
8693 static int perf_uprobe_event_init(struct perf_event *event)
8694 {
8695 	int err;
8696 	unsigned long ref_ctr_offset;
8697 	bool is_retprobe;
8698 
8699 	if (event->attr.type != perf_uprobe.type)
8700 		return -ENOENT;
8701 
8702 	if (!capable(CAP_SYS_ADMIN))
8703 		return -EACCES;
8704 
8705 	/*
8706 	 * no branch sampling for probe events
8707 	 */
8708 	if (has_branch_stack(event))
8709 		return -EOPNOTSUPP;
8710 
8711 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8712 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8713 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8714 	if (err)
8715 		return err;
8716 
8717 	event->destroy = perf_uprobe_destroy;
8718 
8719 	return 0;
8720 }
8721 #endif /* CONFIG_UPROBE_EVENTS */
8722 
8723 static inline void perf_tp_register(void)
8724 {
8725 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8726 #ifdef CONFIG_KPROBE_EVENTS
8727 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8728 #endif
8729 #ifdef CONFIG_UPROBE_EVENTS
8730 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8731 #endif
8732 }
8733 
8734 static void perf_event_free_filter(struct perf_event *event)
8735 {
8736 	ftrace_profile_free_filter(event);
8737 }
8738 
8739 #ifdef CONFIG_BPF_SYSCALL
8740 static void bpf_overflow_handler(struct perf_event *event,
8741 				 struct perf_sample_data *data,
8742 				 struct pt_regs *regs)
8743 {
8744 	struct bpf_perf_event_data_kern ctx = {
8745 		.data = data,
8746 		.event = event,
8747 	};
8748 	int ret = 0;
8749 
8750 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8751 	preempt_disable();
8752 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8753 		goto out;
8754 	rcu_read_lock();
8755 	ret = BPF_PROG_RUN(event->prog, &ctx);
8756 	rcu_read_unlock();
8757 out:
8758 	__this_cpu_dec(bpf_prog_active);
8759 	preempt_enable();
8760 	if (!ret)
8761 		return;
8762 
8763 	event->orig_overflow_handler(event, data, regs);
8764 }
8765 
8766 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8767 {
8768 	struct bpf_prog *prog;
8769 
8770 	if (event->overflow_handler_context)
8771 		/* hw breakpoint or kernel counter */
8772 		return -EINVAL;
8773 
8774 	if (event->prog)
8775 		return -EEXIST;
8776 
8777 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8778 	if (IS_ERR(prog))
8779 		return PTR_ERR(prog);
8780 
8781 	event->prog = prog;
8782 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8783 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8784 	return 0;
8785 }
8786 
8787 static void perf_event_free_bpf_handler(struct perf_event *event)
8788 {
8789 	struct bpf_prog *prog = event->prog;
8790 
8791 	if (!prog)
8792 		return;
8793 
8794 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8795 	event->prog = NULL;
8796 	bpf_prog_put(prog);
8797 }
8798 #else
8799 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8800 {
8801 	return -EOPNOTSUPP;
8802 }
8803 static void perf_event_free_bpf_handler(struct perf_event *event)
8804 {
8805 }
8806 #endif
8807 
8808 /*
8809  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8810  * with perf_event_open()
8811  */
8812 static inline bool perf_event_is_tracing(struct perf_event *event)
8813 {
8814 	if (event->pmu == &perf_tracepoint)
8815 		return true;
8816 #ifdef CONFIG_KPROBE_EVENTS
8817 	if (event->pmu == &perf_kprobe)
8818 		return true;
8819 #endif
8820 #ifdef CONFIG_UPROBE_EVENTS
8821 	if (event->pmu == &perf_uprobe)
8822 		return true;
8823 #endif
8824 	return false;
8825 }
8826 
8827 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8828 {
8829 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8830 	struct bpf_prog *prog;
8831 	int ret;
8832 
8833 	if (!perf_event_is_tracing(event))
8834 		return perf_event_set_bpf_handler(event, prog_fd);
8835 
8836 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8837 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8838 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8839 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8840 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8841 		return -EINVAL;
8842 
8843 	prog = bpf_prog_get(prog_fd);
8844 	if (IS_ERR(prog))
8845 		return PTR_ERR(prog);
8846 
8847 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8848 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8849 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8850 		/* valid fd, but invalid bpf program type */
8851 		bpf_prog_put(prog);
8852 		return -EINVAL;
8853 	}
8854 
8855 	/* Kprobe override only works for kprobes, not uprobes. */
8856 	if (prog->kprobe_override &&
8857 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8858 		bpf_prog_put(prog);
8859 		return -EINVAL;
8860 	}
8861 
8862 	if (is_tracepoint || is_syscall_tp) {
8863 		int off = trace_event_get_offsets(event->tp_event);
8864 
8865 		if (prog->aux->max_ctx_offset > off) {
8866 			bpf_prog_put(prog);
8867 			return -EACCES;
8868 		}
8869 	}
8870 
8871 	ret = perf_event_attach_bpf_prog(event, prog);
8872 	if (ret)
8873 		bpf_prog_put(prog);
8874 	return ret;
8875 }
8876 
8877 static void perf_event_free_bpf_prog(struct perf_event *event)
8878 {
8879 	if (!perf_event_is_tracing(event)) {
8880 		perf_event_free_bpf_handler(event);
8881 		return;
8882 	}
8883 	perf_event_detach_bpf_prog(event);
8884 }
8885 
8886 #else
8887 
8888 static inline void perf_tp_register(void)
8889 {
8890 }
8891 
8892 static void perf_event_free_filter(struct perf_event *event)
8893 {
8894 }
8895 
8896 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8897 {
8898 	return -ENOENT;
8899 }
8900 
8901 static void perf_event_free_bpf_prog(struct perf_event *event)
8902 {
8903 }
8904 #endif /* CONFIG_EVENT_TRACING */
8905 
8906 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8907 void perf_bp_event(struct perf_event *bp, void *data)
8908 {
8909 	struct perf_sample_data sample;
8910 	struct pt_regs *regs = data;
8911 
8912 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8913 
8914 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8915 		perf_swevent_event(bp, 1, &sample, regs);
8916 }
8917 #endif
8918 
8919 /*
8920  * Allocate a new address filter
8921  */
8922 static struct perf_addr_filter *
8923 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8924 {
8925 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8926 	struct perf_addr_filter *filter;
8927 
8928 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8929 	if (!filter)
8930 		return NULL;
8931 
8932 	INIT_LIST_HEAD(&filter->entry);
8933 	list_add_tail(&filter->entry, filters);
8934 
8935 	return filter;
8936 }
8937 
8938 static void free_filters_list(struct list_head *filters)
8939 {
8940 	struct perf_addr_filter *filter, *iter;
8941 
8942 	list_for_each_entry_safe(filter, iter, filters, entry) {
8943 		path_put(&filter->path);
8944 		list_del(&filter->entry);
8945 		kfree(filter);
8946 	}
8947 }
8948 
8949 /*
8950  * Free existing address filters and optionally install new ones
8951  */
8952 static void perf_addr_filters_splice(struct perf_event *event,
8953 				     struct list_head *head)
8954 {
8955 	unsigned long flags;
8956 	LIST_HEAD(list);
8957 
8958 	if (!has_addr_filter(event))
8959 		return;
8960 
8961 	/* don't bother with children, they don't have their own filters */
8962 	if (event->parent)
8963 		return;
8964 
8965 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8966 
8967 	list_splice_init(&event->addr_filters.list, &list);
8968 	if (head)
8969 		list_splice(head, &event->addr_filters.list);
8970 
8971 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8972 
8973 	free_filters_list(&list);
8974 }
8975 
8976 /*
8977  * Scan through mm's vmas and see if one of them matches the
8978  * @filter; if so, adjust filter's address range.
8979  * Called with mm::mmap_sem down for reading.
8980  */
8981 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8982 					    struct mm_struct *mm)
8983 {
8984 	struct vm_area_struct *vma;
8985 
8986 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8987 		struct file *file = vma->vm_file;
8988 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8989 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8990 
8991 		if (!file)
8992 			continue;
8993 
8994 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8995 			continue;
8996 
8997 		return vma->vm_start;
8998 	}
8999 
9000 	return 0;
9001 }
9002 
9003 /*
9004  * Update event's address range filters based on the
9005  * task's existing mappings, if any.
9006  */
9007 static void perf_event_addr_filters_apply(struct perf_event *event)
9008 {
9009 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9010 	struct task_struct *task = READ_ONCE(event->ctx->task);
9011 	struct perf_addr_filter *filter;
9012 	struct mm_struct *mm = NULL;
9013 	unsigned int count = 0;
9014 	unsigned long flags;
9015 
9016 	/*
9017 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9018 	 * will stop on the parent's child_mutex that our caller is also holding
9019 	 */
9020 	if (task == TASK_TOMBSTONE)
9021 		return;
9022 
9023 	if (!ifh->nr_file_filters)
9024 		return;
9025 
9026 	mm = get_task_mm(event->ctx->task);
9027 	if (!mm)
9028 		goto restart;
9029 
9030 	down_read(&mm->mmap_sem);
9031 
9032 	raw_spin_lock_irqsave(&ifh->lock, flags);
9033 	list_for_each_entry(filter, &ifh->list, entry) {
9034 		event->addr_filters_offs[count] = 0;
9035 
9036 		/*
9037 		 * Adjust base offset if the filter is associated to a binary
9038 		 * that needs to be mapped:
9039 		 */
9040 		if (filter->path.dentry)
9041 			event->addr_filters_offs[count] =
9042 				perf_addr_filter_apply(filter, mm);
9043 
9044 		count++;
9045 	}
9046 
9047 	event->addr_filters_gen++;
9048 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9049 
9050 	up_read(&mm->mmap_sem);
9051 
9052 	mmput(mm);
9053 
9054 restart:
9055 	perf_event_stop(event, 1);
9056 }
9057 
9058 /*
9059  * Address range filtering: limiting the data to certain
9060  * instruction address ranges. Filters are ioctl()ed to us from
9061  * userspace as ascii strings.
9062  *
9063  * Filter string format:
9064  *
9065  * ACTION RANGE_SPEC
9066  * where ACTION is one of the
9067  *  * "filter": limit the trace to this region
9068  *  * "start": start tracing from this address
9069  *  * "stop": stop tracing at this address/region;
9070  * RANGE_SPEC is
9071  *  * for kernel addresses: <start address>[/<size>]
9072  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9073  *
9074  * if <size> is not specified or is zero, the range is treated as a single
9075  * address; not valid for ACTION=="filter".
9076  */
9077 enum {
9078 	IF_ACT_NONE = -1,
9079 	IF_ACT_FILTER,
9080 	IF_ACT_START,
9081 	IF_ACT_STOP,
9082 	IF_SRC_FILE,
9083 	IF_SRC_KERNEL,
9084 	IF_SRC_FILEADDR,
9085 	IF_SRC_KERNELADDR,
9086 };
9087 
9088 enum {
9089 	IF_STATE_ACTION = 0,
9090 	IF_STATE_SOURCE,
9091 	IF_STATE_END,
9092 };
9093 
9094 static const match_table_t if_tokens = {
9095 	{ IF_ACT_FILTER,	"filter" },
9096 	{ IF_ACT_START,		"start" },
9097 	{ IF_ACT_STOP,		"stop" },
9098 	{ IF_SRC_FILE,		"%u/%u@%s" },
9099 	{ IF_SRC_KERNEL,	"%u/%u" },
9100 	{ IF_SRC_FILEADDR,	"%u@%s" },
9101 	{ IF_SRC_KERNELADDR,	"%u" },
9102 	{ IF_ACT_NONE,		NULL },
9103 };
9104 
9105 /*
9106  * Address filter string parser
9107  */
9108 static int
9109 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9110 			     struct list_head *filters)
9111 {
9112 	struct perf_addr_filter *filter = NULL;
9113 	char *start, *orig, *filename = NULL;
9114 	substring_t args[MAX_OPT_ARGS];
9115 	int state = IF_STATE_ACTION, token;
9116 	unsigned int kernel = 0;
9117 	int ret = -EINVAL;
9118 
9119 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9120 	if (!fstr)
9121 		return -ENOMEM;
9122 
9123 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9124 		static const enum perf_addr_filter_action_t actions[] = {
9125 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9126 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9127 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9128 		};
9129 		ret = -EINVAL;
9130 
9131 		if (!*start)
9132 			continue;
9133 
9134 		/* filter definition begins */
9135 		if (state == IF_STATE_ACTION) {
9136 			filter = perf_addr_filter_new(event, filters);
9137 			if (!filter)
9138 				goto fail;
9139 		}
9140 
9141 		token = match_token(start, if_tokens, args);
9142 		switch (token) {
9143 		case IF_ACT_FILTER:
9144 		case IF_ACT_START:
9145 		case IF_ACT_STOP:
9146 			if (state != IF_STATE_ACTION)
9147 				goto fail;
9148 
9149 			filter->action = actions[token];
9150 			state = IF_STATE_SOURCE;
9151 			break;
9152 
9153 		case IF_SRC_KERNELADDR:
9154 		case IF_SRC_KERNEL:
9155 			kernel = 1;
9156 
9157 		case IF_SRC_FILEADDR:
9158 		case IF_SRC_FILE:
9159 			if (state != IF_STATE_SOURCE)
9160 				goto fail;
9161 
9162 			*args[0].to = 0;
9163 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9164 			if (ret)
9165 				goto fail;
9166 
9167 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9168 				*args[1].to = 0;
9169 				ret = kstrtoul(args[1].from, 0, &filter->size);
9170 				if (ret)
9171 					goto fail;
9172 			}
9173 
9174 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9175 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9176 
9177 				filename = match_strdup(&args[fpos]);
9178 				if (!filename) {
9179 					ret = -ENOMEM;
9180 					goto fail;
9181 				}
9182 			}
9183 
9184 			state = IF_STATE_END;
9185 			break;
9186 
9187 		default:
9188 			goto fail;
9189 		}
9190 
9191 		/*
9192 		 * Filter definition is fully parsed, validate and install it.
9193 		 * Make sure that it doesn't contradict itself or the event's
9194 		 * attribute.
9195 		 */
9196 		if (state == IF_STATE_END) {
9197 			ret = -EINVAL;
9198 			if (kernel && event->attr.exclude_kernel)
9199 				goto fail;
9200 
9201 			/*
9202 			 * ACTION "filter" must have a non-zero length region
9203 			 * specified.
9204 			 */
9205 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9206 			    !filter->size)
9207 				goto fail;
9208 
9209 			if (!kernel) {
9210 				if (!filename)
9211 					goto fail;
9212 
9213 				/*
9214 				 * For now, we only support file-based filters
9215 				 * in per-task events; doing so for CPU-wide
9216 				 * events requires additional context switching
9217 				 * trickery, since same object code will be
9218 				 * mapped at different virtual addresses in
9219 				 * different processes.
9220 				 */
9221 				ret = -EOPNOTSUPP;
9222 				if (!event->ctx->task)
9223 					goto fail_free_name;
9224 
9225 				/* look up the path and grab its inode */
9226 				ret = kern_path(filename, LOOKUP_FOLLOW,
9227 						&filter->path);
9228 				if (ret)
9229 					goto fail_free_name;
9230 
9231 				kfree(filename);
9232 				filename = NULL;
9233 
9234 				ret = -EINVAL;
9235 				if (!filter->path.dentry ||
9236 				    !S_ISREG(d_inode(filter->path.dentry)
9237 					     ->i_mode))
9238 					goto fail;
9239 
9240 				event->addr_filters.nr_file_filters++;
9241 			}
9242 
9243 			/* ready to consume more filters */
9244 			state = IF_STATE_ACTION;
9245 			filter = NULL;
9246 		}
9247 	}
9248 
9249 	if (state != IF_STATE_ACTION)
9250 		goto fail;
9251 
9252 	kfree(orig);
9253 
9254 	return 0;
9255 
9256 fail_free_name:
9257 	kfree(filename);
9258 fail:
9259 	free_filters_list(filters);
9260 	kfree(orig);
9261 
9262 	return ret;
9263 }
9264 
9265 static int
9266 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9267 {
9268 	LIST_HEAD(filters);
9269 	int ret;
9270 
9271 	/*
9272 	 * Since this is called in perf_ioctl() path, we're already holding
9273 	 * ctx::mutex.
9274 	 */
9275 	lockdep_assert_held(&event->ctx->mutex);
9276 
9277 	if (WARN_ON_ONCE(event->parent))
9278 		return -EINVAL;
9279 
9280 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9281 	if (ret)
9282 		goto fail_clear_files;
9283 
9284 	ret = event->pmu->addr_filters_validate(&filters);
9285 	if (ret)
9286 		goto fail_free_filters;
9287 
9288 	/* remove existing filters, if any */
9289 	perf_addr_filters_splice(event, &filters);
9290 
9291 	/* install new filters */
9292 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9293 
9294 	return ret;
9295 
9296 fail_free_filters:
9297 	free_filters_list(&filters);
9298 
9299 fail_clear_files:
9300 	event->addr_filters.nr_file_filters = 0;
9301 
9302 	return ret;
9303 }
9304 
9305 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9306 {
9307 	int ret = -EINVAL;
9308 	char *filter_str;
9309 
9310 	filter_str = strndup_user(arg, PAGE_SIZE);
9311 	if (IS_ERR(filter_str))
9312 		return PTR_ERR(filter_str);
9313 
9314 #ifdef CONFIG_EVENT_TRACING
9315 	if (perf_event_is_tracing(event)) {
9316 		struct perf_event_context *ctx = event->ctx;
9317 
9318 		/*
9319 		 * Beware, here be dragons!!
9320 		 *
9321 		 * the tracepoint muck will deadlock against ctx->mutex, but
9322 		 * the tracepoint stuff does not actually need it. So
9323 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9324 		 * already have a reference on ctx.
9325 		 *
9326 		 * This can result in event getting moved to a different ctx,
9327 		 * but that does not affect the tracepoint state.
9328 		 */
9329 		mutex_unlock(&ctx->mutex);
9330 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9331 		mutex_lock(&ctx->mutex);
9332 	} else
9333 #endif
9334 	if (has_addr_filter(event))
9335 		ret = perf_event_set_addr_filter(event, filter_str);
9336 
9337 	kfree(filter_str);
9338 	return ret;
9339 }
9340 
9341 /*
9342  * hrtimer based swevent callback
9343  */
9344 
9345 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9346 {
9347 	enum hrtimer_restart ret = HRTIMER_RESTART;
9348 	struct perf_sample_data data;
9349 	struct pt_regs *regs;
9350 	struct perf_event *event;
9351 	u64 period;
9352 
9353 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9354 
9355 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9356 		return HRTIMER_NORESTART;
9357 
9358 	event->pmu->read(event);
9359 
9360 	perf_sample_data_init(&data, 0, event->hw.last_period);
9361 	regs = get_irq_regs();
9362 
9363 	if (regs && !perf_exclude_event(event, regs)) {
9364 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9365 			if (__perf_event_overflow(event, 1, &data, regs))
9366 				ret = HRTIMER_NORESTART;
9367 	}
9368 
9369 	period = max_t(u64, 10000, event->hw.sample_period);
9370 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9371 
9372 	return ret;
9373 }
9374 
9375 static void perf_swevent_start_hrtimer(struct perf_event *event)
9376 {
9377 	struct hw_perf_event *hwc = &event->hw;
9378 	s64 period;
9379 
9380 	if (!is_sampling_event(event))
9381 		return;
9382 
9383 	period = local64_read(&hwc->period_left);
9384 	if (period) {
9385 		if (period < 0)
9386 			period = 10000;
9387 
9388 		local64_set(&hwc->period_left, 0);
9389 	} else {
9390 		period = max_t(u64, 10000, hwc->sample_period);
9391 	}
9392 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9393 		      HRTIMER_MODE_REL_PINNED);
9394 }
9395 
9396 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9397 {
9398 	struct hw_perf_event *hwc = &event->hw;
9399 
9400 	if (is_sampling_event(event)) {
9401 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9402 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9403 
9404 		hrtimer_cancel(&hwc->hrtimer);
9405 	}
9406 }
9407 
9408 static void perf_swevent_init_hrtimer(struct perf_event *event)
9409 {
9410 	struct hw_perf_event *hwc = &event->hw;
9411 
9412 	if (!is_sampling_event(event))
9413 		return;
9414 
9415 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9416 	hwc->hrtimer.function = perf_swevent_hrtimer;
9417 
9418 	/*
9419 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9420 	 * mapping and avoid the whole period adjust feedback stuff.
9421 	 */
9422 	if (event->attr.freq) {
9423 		long freq = event->attr.sample_freq;
9424 
9425 		event->attr.sample_period = NSEC_PER_SEC / freq;
9426 		hwc->sample_period = event->attr.sample_period;
9427 		local64_set(&hwc->period_left, hwc->sample_period);
9428 		hwc->last_period = hwc->sample_period;
9429 		event->attr.freq = 0;
9430 	}
9431 }
9432 
9433 /*
9434  * Software event: cpu wall time clock
9435  */
9436 
9437 static void cpu_clock_event_update(struct perf_event *event)
9438 {
9439 	s64 prev;
9440 	u64 now;
9441 
9442 	now = local_clock();
9443 	prev = local64_xchg(&event->hw.prev_count, now);
9444 	local64_add(now - prev, &event->count);
9445 }
9446 
9447 static void cpu_clock_event_start(struct perf_event *event, int flags)
9448 {
9449 	local64_set(&event->hw.prev_count, local_clock());
9450 	perf_swevent_start_hrtimer(event);
9451 }
9452 
9453 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9454 {
9455 	perf_swevent_cancel_hrtimer(event);
9456 	cpu_clock_event_update(event);
9457 }
9458 
9459 static int cpu_clock_event_add(struct perf_event *event, int flags)
9460 {
9461 	if (flags & PERF_EF_START)
9462 		cpu_clock_event_start(event, flags);
9463 	perf_event_update_userpage(event);
9464 
9465 	return 0;
9466 }
9467 
9468 static void cpu_clock_event_del(struct perf_event *event, int flags)
9469 {
9470 	cpu_clock_event_stop(event, flags);
9471 }
9472 
9473 static void cpu_clock_event_read(struct perf_event *event)
9474 {
9475 	cpu_clock_event_update(event);
9476 }
9477 
9478 static int cpu_clock_event_init(struct perf_event *event)
9479 {
9480 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9481 		return -ENOENT;
9482 
9483 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9484 		return -ENOENT;
9485 
9486 	/*
9487 	 * no branch sampling for software events
9488 	 */
9489 	if (has_branch_stack(event))
9490 		return -EOPNOTSUPP;
9491 
9492 	perf_swevent_init_hrtimer(event);
9493 
9494 	return 0;
9495 }
9496 
9497 static struct pmu perf_cpu_clock = {
9498 	.task_ctx_nr	= perf_sw_context,
9499 
9500 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9501 
9502 	.event_init	= cpu_clock_event_init,
9503 	.add		= cpu_clock_event_add,
9504 	.del		= cpu_clock_event_del,
9505 	.start		= cpu_clock_event_start,
9506 	.stop		= cpu_clock_event_stop,
9507 	.read		= cpu_clock_event_read,
9508 };
9509 
9510 /*
9511  * Software event: task time clock
9512  */
9513 
9514 static void task_clock_event_update(struct perf_event *event, u64 now)
9515 {
9516 	u64 prev;
9517 	s64 delta;
9518 
9519 	prev = local64_xchg(&event->hw.prev_count, now);
9520 	delta = now - prev;
9521 	local64_add(delta, &event->count);
9522 }
9523 
9524 static void task_clock_event_start(struct perf_event *event, int flags)
9525 {
9526 	local64_set(&event->hw.prev_count, event->ctx->time);
9527 	perf_swevent_start_hrtimer(event);
9528 }
9529 
9530 static void task_clock_event_stop(struct perf_event *event, int flags)
9531 {
9532 	perf_swevent_cancel_hrtimer(event);
9533 	task_clock_event_update(event, event->ctx->time);
9534 }
9535 
9536 static int task_clock_event_add(struct perf_event *event, int flags)
9537 {
9538 	if (flags & PERF_EF_START)
9539 		task_clock_event_start(event, flags);
9540 	perf_event_update_userpage(event);
9541 
9542 	return 0;
9543 }
9544 
9545 static void task_clock_event_del(struct perf_event *event, int flags)
9546 {
9547 	task_clock_event_stop(event, PERF_EF_UPDATE);
9548 }
9549 
9550 static void task_clock_event_read(struct perf_event *event)
9551 {
9552 	u64 now = perf_clock();
9553 	u64 delta = now - event->ctx->timestamp;
9554 	u64 time = event->ctx->time + delta;
9555 
9556 	task_clock_event_update(event, time);
9557 }
9558 
9559 static int task_clock_event_init(struct perf_event *event)
9560 {
9561 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9562 		return -ENOENT;
9563 
9564 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9565 		return -ENOENT;
9566 
9567 	/*
9568 	 * no branch sampling for software events
9569 	 */
9570 	if (has_branch_stack(event))
9571 		return -EOPNOTSUPP;
9572 
9573 	perf_swevent_init_hrtimer(event);
9574 
9575 	return 0;
9576 }
9577 
9578 static struct pmu perf_task_clock = {
9579 	.task_ctx_nr	= perf_sw_context,
9580 
9581 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9582 
9583 	.event_init	= task_clock_event_init,
9584 	.add		= task_clock_event_add,
9585 	.del		= task_clock_event_del,
9586 	.start		= task_clock_event_start,
9587 	.stop		= task_clock_event_stop,
9588 	.read		= task_clock_event_read,
9589 };
9590 
9591 static void perf_pmu_nop_void(struct pmu *pmu)
9592 {
9593 }
9594 
9595 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9596 {
9597 }
9598 
9599 static int perf_pmu_nop_int(struct pmu *pmu)
9600 {
9601 	return 0;
9602 }
9603 
9604 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9605 
9606 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9607 {
9608 	__this_cpu_write(nop_txn_flags, flags);
9609 
9610 	if (flags & ~PERF_PMU_TXN_ADD)
9611 		return;
9612 
9613 	perf_pmu_disable(pmu);
9614 }
9615 
9616 static int perf_pmu_commit_txn(struct pmu *pmu)
9617 {
9618 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9619 
9620 	__this_cpu_write(nop_txn_flags, 0);
9621 
9622 	if (flags & ~PERF_PMU_TXN_ADD)
9623 		return 0;
9624 
9625 	perf_pmu_enable(pmu);
9626 	return 0;
9627 }
9628 
9629 static void perf_pmu_cancel_txn(struct pmu *pmu)
9630 {
9631 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9632 
9633 	__this_cpu_write(nop_txn_flags, 0);
9634 
9635 	if (flags & ~PERF_PMU_TXN_ADD)
9636 		return;
9637 
9638 	perf_pmu_enable(pmu);
9639 }
9640 
9641 static int perf_event_idx_default(struct perf_event *event)
9642 {
9643 	return 0;
9644 }
9645 
9646 /*
9647  * Ensures all contexts with the same task_ctx_nr have the same
9648  * pmu_cpu_context too.
9649  */
9650 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9651 {
9652 	struct pmu *pmu;
9653 
9654 	if (ctxn < 0)
9655 		return NULL;
9656 
9657 	list_for_each_entry(pmu, &pmus, entry) {
9658 		if (pmu->task_ctx_nr == ctxn)
9659 			return pmu->pmu_cpu_context;
9660 	}
9661 
9662 	return NULL;
9663 }
9664 
9665 static void free_pmu_context(struct pmu *pmu)
9666 {
9667 	/*
9668 	 * Static contexts such as perf_sw_context have a global lifetime
9669 	 * and may be shared between different PMUs. Avoid freeing them
9670 	 * when a single PMU is going away.
9671 	 */
9672 	if (pmu->task_ctx_nr > perf_invalid_context)
9673 		return;
9674 
9675 	free_percpu(pmu->pmu_cpu_context);
9676 }
9677 
9678 /*
9679  * Let userspace know that this PMU supports address range filtering:
9680  */
9681 static ssize_t nr_addr_filters_show(struct device *dev,
9682 				    struct device_attribute *attr,
9683 				    char *page)
9684 {
9685 	struct pmu *pmu = dev_get_drvdata(dev);
9686 
9687 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9688 }
9689 DEVICE_ATTR_RO(nr_addr_filters);
9690 
9691 static struct idr pmu_idr;
9692 
9693 static ssize_t
9694 type_show(struct device *dev, struct device_attribute *attr, char *page)
9695 {
9696 	struct pmu *pmu = dev_get_drvdata(dev);
9697 
9698 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9699 }
9700 static DEVICE_ATTR_RO(type);
9701 
9702 static ssize_t
9703 perf_event_mux_interval_ms_show(struct device *dev,
9704 				struct device_attribute *attr,
9705 				char *page)
9706 {
9707 	struct pmu *pmu = dev_get_drvdata(dev);
9708 
9709 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9710 }
9711 
9712 static DEFINE_MUTEX(mux_interval_mutex);
9713 
9714 static ssize_t
9715 perf_event_mux_interval_ms_store(struct device *dev,
9716 				 struct device_attribute *attr,
9717 				 const char *buf, size_t count)
9718 {
9719 	struct pmu *pmu = dev_get_drvdata(dev);
9720 	int timer, cpu, ret;
9721 
9722 	ret = kstrtoint(buf, 0, &timer);
9723 	if (ret)
9724 		return ret;
9725 
9726 	if (timer < 1)
9727 		return -EINVAL;
9728 
9729 	/* same value, noting to do */
9730 	if (timer == pmu->hrtimer_interval_ms)
9731 		return count;
9732 
9733 	mutex_lock(&mux_interval_mutex);
9734 	pmu->hrtimer_interval_ms = timer;
9735 
9736 	/* update all cpuctx for this PMU */
9737 	cpus_read_lock();
9738 	for_each_online_cpu(cpu) {
9739 		struct perf_cpu_context *cpuctx;
9740 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9741 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9742 
9743 		cpu_function_call(cpu,
9744 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9745 	}
9746 	cpus_read_unlock();
9747 	mutex_unlock(&mux_interval_mutex);
9748 
9749 	return count;
9750 }
9751 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9752 
9753 static struct attribute *pmu_dev_attrs[] = {
9754 	&dev_attr_type.attr,
9755 	&dev_attr_perf_event_mux_interval_ms.attr,
9756 	NULL,
9757 };
9758 ATTRIBUTE_GROUPS(pmu_dev);
9759 
9760 static int pmu_bus_running;
9761 static struct bus_type pmu_bus = {
9762 	.name		= "event_source",
9763 	.dev_groups	= pmu_dev_groups,
9764 };
9765 
9766 static void pmu_dev_release(struct device *dev)
9767 {
9768 	kfree(dev);
9769 }
9770 
9771 static int pmu_dev_alloc(struct pmu *pmu)
9772 {
9773 	int ret = -ENOMEM;
9774 
9775 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9776 	if (!pmu->dev)
9777 		goto out;
9778 
9779 	pmu->dev->groups = pmu->attr_groups;
9780 	device_initialize(pmu->dev);
9781 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9782 	if (ret)
9783 		goto free_dev;
9784 
9785 	dev_set_drvdata(pmu->dev, pmu);
9786 	pmu->dev->bus = &pmu_bus;
9787 	pmu->dev->release = pmu_dev_release;
9788 	ret = device_add(pmu->dev);
9789 	if (ret)
9790 		goto free_dev;
9791 
9792 	/* For PMUs with address filters, throw in an extra attribute: */
9793 	if (pmu->nr_addr_filters)
9794 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9795 
9796 	if (ret)
9797 		goto del_dev;
9798 
9799 out:
9800 	return ret;
9801 
9802 del_dev:
9803 	device_del(pmu->dev);
9804 
9805 free_dev:
9806 	put_device(pmu->dev);
9807 	goto out;
9808 }
9809 
9810 static struct lock_class_key cpuctx_mutex;
9811 static struct lock_class_key cpuctx_lock;
9812 
9813 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9814 {
9815 	int cpu, ret;
9816 
9817 	mutex_lock(&pmus_lock);
9818 	ret = -ENOMEM;
9819 	pmu->pmu_disable_count = alloc_percpu(int);
9820 	if (!pmu->pmu_disable_count)
9821 		goto unlock;
9822 
9823 	pmu->type = -1;
9824 	if (!name)
9825 		goto skip_type;
9826 	pmu->name = name;
9827 
9828 	if (type < 0) {
9829 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9830 		if (type < 0) {
9831 			ret = type;
9832 			goto free_pdc;
9833 		}
9834 	}
9835 	pmu->type = type;
9836 
9837 	if (pmu_bus_running) {
9838 		ret = pmu_dev_alloc(pmu);
9839 		if (ret)
9840 			goto free_idr;
9841 	}
9842 
9843 skip_type:
9844 	if (pmu->task_ctx_nr == perf_hw_context) {
9845 		static int hw_context_taken = 0;
9846 
9847 		/*
9848 		 * Other than systems with heterogeneous CPUs, it never makes
9849 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9850 		 * uncore must use perf_invalid_context.
9851 		 */
9852 		if (WARN_ON_ONCE(hw_context_taken &&
9853 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9854 			pmu->task_ctx_nr = perf_invalid_context;
9855 
9856 		hw_context_taken = 1;
9857 	}
9858 
9859 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9860 	if (pmu->pmu_cpu_context)
9861 		goto got_cpu_context;
9862 
9863 	ret = -ENOMEM;
9864 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9865 	if (!pmu->pmu_cpu_context)
9866 		goto free_dev;
9867 
9868 	for_each_possible_cpu(cpu) {
9869 		struct perf_cpu_context *cpuctx;
9870 
9871 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9872 		__perf_event_init_context(&cpuctx->ctx);
9873 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9874 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9875 		cpuctx->ctx.pmu = pmu;
9876 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9877 
9878 		__perf_mux_hrtimer_init(cpuctx, cpu);
9879 	}
9880 
9881 got_cpu_context:
9882 	if (!pmu->start_txn) {
9883 		if (pmu->pmu_enable) {
9884 			/*
9885 			 * If we have pmu_enable/pmu_disable calls, install
9886 			 * transaction stubs that use that to try and batch
9887 			 * hardware accesses.
9888 			 */
9889 			pmu->start_txn  = perf_pmu_start_txn;
9890 			pmu->commit_txn = perf_pmu_commit_txn;
9891 			pmu->cancel_txn = perf_pmu_cancel_txn;
9892 		} else {
9893 			pmu->start_txn  = perf_pmu_nop_txn;
9894 			pmu->commit_txn = perf_pmu_nop_int;
9895 			pmu->cancel_txn = perf_pmu_nop_void;
9896 		}
9897 	}
9898 
9899 	if (!pmu->pmu_enable) {
9900 		pmu->pmu_enable  = perf_pmu_nop_void;
9901 		pmu->pmu_disable = perf_pmu_nop_void;
9902 	}
9903 
9904 	if (!pmu->event_idx)
9905 		pmu->event_idx = perf_event_idx_default;
9906 
9907 	list_add_rcu(&pmu->entry, &pmus);
9908 	atomic_set(&pmu->exclusive_cnt, 0);
9909 	ret = 0;
9910 unlock:
9911 	mutex_unlock(&pmus_lock);
9912 
9913 	return ret;
9914 
9915 free_dev:
9916 	device_del(pmu->dev);
9917 	put_device(pmu->dev);
9918 
9919 free_idr:
9920 	if (pmu->type >= PERF_TYPE_MAX)
9921 		idr_remove(&pmu_idr, pmu->type);
9922 
9923 free_pdc:
9924 	free_percpu(pmu->pmu_disable_count);
9925 	goto unlock;
9926 }
9927 EXPORT_SYMBOL_GPL(perf_pmu_register);
9928 
9929 void perf_pmu_unregister(struct pmu *pmu)
9930 {
9931 	mutex_lock(&pmus_lock);
9932 	list_del_rcu(&pmu->entry);
9933 
9934 	/*
9935 	 * We dereference the pmu list under both SRCU and regular RCU, so
9936 	 * synchronize against both of those.
9937 	 */
9938 	synchronize_srcu(&pmus_srcu);
9939 	synchronize_rcu();
9940 
9941 	free_percpu(pmu->pmu_disable_count);
9942 	if (pmu->type >= PERF_TYPE_MAX)
9943 		idr_remove(&pmu_idr, pmu->type);
9944 	if (pmu_bus_running) {
9945 		if (pmu->nr_addr_filters)
9946 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9947 		device_del(pmu->dev);
9948 		put_device(pmu->dev);
9949 	}
9950 	free_pmu_context(pmu);
9951 	mutex_unlock(&pmus_lock);
9952 }
9953 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9954 
9955 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9956 {
9957 	struct perf_event_context *ctx = NULL;
9958 	int ret;
9959 
9960 	if (!try_module_get(pmu->module))
9961 		return -ENODEV;
9962 
9963 	/*
9964 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9965 	 * for example, validate if the group fits on the PMU. Therefore,
9966 	 * if this is a sibling event, acquire the ctx->mutex to protect
9967 	 * the sibling_list.
9968 	 */
9969 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9970 		/*
9971 		 * This ctx->mutex can nest when we're called through
9972 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9973 		 */
9974 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9975 						 SINGLE_DEPTH_NESTING);
9976 		BUG_ON(!ctx);
9977 	}
9978 
9979 	event->pmu = pmu;
9980 	ret = pmu->event_init(event);
9981 
9982 	if (ctx)
9983 		perf_event_ctx_unlock(event->group_leader, ctx);
9984 
9985 	if (!ret) {
9986 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
9987 				event_has_any_exclude_flag(event)) {
9988 			if (event->destroy)
9989 				event->destroy(event);
9990 			ret = -EINVAL;
9991 		}
9992 	}
9993 
9994 	if (ret)
9995 		module_put(pmu->module);
9996 
9997 	return ret;
9998 }
9999 
10000 static struct pmu *perf_init_event(struct perf_event *event)
10001 {
10002 	struct pmu *pmu;
10003 	int idx;
10004 	int ret;
10005 
10006 	idx = srcu_read_lock(&pmus_srcu);
10007 
10008 	/* Try parent's PMU first: */
10009 	if (event->parent && event->parent->pmu) {
10010 		pmu = event->parent->pmu;
10011 		ret = perf_try_init_event(pmu, event);
10012 		if (!ret)
10013 			goto unlock;
10014 	}
10015 
10016 	rcu_read_lock();
10017 	pmu = idr_find(&pmu_idr, event->attr.type);
10018 	rcu_read_unlock();
10019 	if (pmu) {
10020 		ret = perf_try_init_event(pmu, event);
10021 		if (ret)
10022 			pmu = ERR_PTR(ret);
10023 		goto unlock;
10024 	}
10025 
10026 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10027 		ret = perf_try_init_event(pmu, event);
10028 		if (!ret)
10029 			goto unlock;
10030 
10031 		if (ret != -ENOENT) {
10032 			pmu = ERR_PTR(ret);
10033 			goto unlock;
10034 		}
10035 	}
10036 	pmu = ERR_PTR(-ENOENT);
10037 unlock:
10038 	srcu_read_unlock(&pmus_srcu, idx);
10039 
10040 	return pmu;
10041 }
10042 
10043 static void attach_sb_event(struct perf_event *event)
10044 {
10045 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10046 
10047 	raw_spin_lock(&pel->lock);
10048 	list_add_rcu(&event->sb_list, &pel->list);
10049 	raw_spin_unlock(&pel->lock);
10050 }
10051 
10052 /*
10053  * We keep a list of all !task (and therefore per-cpu) events
10054  * that need to receive side-band records.
10055  *
10056  * This avoids having to scan all the various PMU per-cpu contexts
10057  * looking for them.
10058  */
10059 static void account_pmu_sb_event(struct perf_event *event)
10060 {
10061 	if (is_sb_event(event))
10062 		attach_sb_event(event);
10063 }
10064 
10065 static void account_event_cpu(struct perf_event *event, int cpu)
10066 {
10067 	if (event->parent)
10068 		return;
10069 
10070 	if (is_cgroup_event(event))
10071 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10072 }
10073 
10074 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10075 static void account_freq_event_nohz(void)
10076 {
10077 #ifdef CONFIG_NO_HZ_FULL
10078 	/* Lock so we don't race with concurrent unaccount */
10079 	spin_lock(&nr_freq_lock);
10080 	if (atomic_inc_return(&nr_freq_events) == 1)
10081 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10082 	spin_unlock(&nr_freq_lock);
10083 #endif
10084 }
10085 
10086 static void account_freq_event(void)
10087 {
10088 	if (tick_nohz_full_enabled())
10089 		account_freq_event_nohz();
10090 	else
10091 		atomic_inc(&nr_freq_events);
10092 }
10093 
10094 
10095 static void account_event(struct perf_event *event)
10096 {
10097 	bool inc = false;
10098 
10099 	if (event->parent)
10100 		return;
10101 
10102 	if (event->attach_state & PERF_ATTACH_TASK)
10103 		inc = true;
10104 	if (event->attr.mmap || event->attr.mmap_data)
10105 		atomic_inc(&nr_mmap_events);
10106 	if (event->attr.comm)
10107 		atomic_inc(&nr_comm_events);
10108 	if (event->attr.namespaces)
10109 		atomic_inc(&nr_namespaces_events);
10110 	if (event->attr.task)
10111 		atomic_inc(&nr_task_events);
10112 	if (event->attr.freq)
10113 		account_freq_event();
10114 	if (event->attr.context_switch) {
10115 		atomic_inc(&nr_switch_events);
10116 		inc = true;
10117 	}
10118 	if (has_branch_stack(event))
10119 		inc = true;
10120 	if (is_cgroup_event(event))
10121 		inc = true;
10122 	if (event->attr.ksymbol)
10123 		atomic_inc(&nr_ksymbol_events);
10124 	if (event->attr.bpf_event)
10125 		atomic_inc(&nr_bpf_events);
10126 
10127 	if (inc) {
10128 		/*
10129 		 * We need the mutex here because static_branch_enable()
10130 		 * must complete *before* the perf_sched_count increment
10131 		 * becomes visible.
10132 		 */
10133 		if (atomic_inc_not_zero(&perf_sched_count))
10134 			goto enabled;
10135 
10136 		mutex_lock(&perf_sched_mutex);
10137 		if (!atomic_read(&perf_sched_count)) {
10138 			static_branch_enable(&perf_sched_events);
10139 			/*
10140 			 * Guarantee that all CPUs observe they key change and
10141 			 * call the perf scheduling hooks before proceeding to
10142 			 * install events that need them.
10143 			 */
10144 			synchronize_rcu();
10145 		}
10146 		/*
10147 		 * Now that we have waited for the sync_sched(), allow further
10148 		 * increments to by-pass the mutex.
10149 		 */
10150 		atomic_inc(&perf_sched_count);
10151 		mutex_unlock(&perf_sched_mutex);
10152 	}
10153 enabled:
10154 
10155 	account_event_cpu(event, event->cpu);
10156 
10157 	account_pmu_sb_event(event);
10158 }
10159 
10160 /*
10161  * Allocate and initialize an event structure
10162  */
10163 static struct perf_event *
10164 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10165 		 struct task_struct *task,
10166 		 struct perf_event *group_leader,
10167 		 struct perf_event *parent_event,
10168 		 perf_overflow_handler_t overflow_handler,
10169 		 void *context, int cgroup_fd)
10170 {
10171 	struct pmu *pmu;
10172 	struct perf_event *event;
10173 	struct hw_perf_event *hwc;
10174 	long err = -EINVAL;
10175 
10176 	if ((unsigned)cpu >= nr_cpu_ids) {
10177 		if (!task || cpu != -1)
10178 			return ERR_PTR(-EINVAL);
10179 	}
10180 
10181 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10182 	if (!event)
10183 		return ERR_PTR(-ENOMEM);
10184 
10185 	/*
10186 	 * Single events are their own group leaders, with an
10187 	 * empty sibling list:
10188 	 */
10189 	if (!group_leader)
10190 		group_leader = event;
10191 
10192 	mutex_init(&event->child_mutex);
10193 	INIT_LIST_HEAD(&event->child_list);
10194 
10195 	INIT_LIST_HEAD(&event->event_entry);
10196 	INIT_LIST_HEAD(&event->sibling_list);
10197 	INIT_LIST_HEAD(&event->active_list);
10198 	init_event_group(event);
10199 	INIT_LIST_HEAD(&event->rb_entry);
10200 	INIT_LIST_HEAD(&event->active_entry);
10201 	INIT_LIST_HEAD(&event->addr_filters.list);
10202 	INIT_HLIST_NODE(&event->hlist_entry);
10203 
10204 
10205 	init_waitqueue_head(&event->waitq);
10206 	init_irq_work(&event->pending, perf_pending_event);
10207 
10208 	mutex_init(&event->mmap_mutex);
10209 	raw_spin_lock_init(&event->addr_filters.lock);
10210 
10211 	atomic_long_set(&event->refcount, 1);
10212 	event->cpu		= cpu;
10213 	event->attr		= *attr;
10214 	event->group_leader	= group_leader;
10215 	event->pmu		= NULL;
10216 	event->oncpu		= -1;
10217 
10218 	event->parent		= parent_event;
10219 
10220 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10221 	event->id		= atomic64_inc_return(&perf_event_id);
10222 
10223 	event->state		= PERF_EVENT_STATE_INACTIVE;
10224 
10225 	if (task) {
10226 		event->attach_state = PERF_ATTACH_TASK;
10227 		/*
10228 		 * XXX pmu::event_init needs to know what task to account to
10229 		 * and we cannot use the ctx information because we need the
10230 		 * pmu before we get a ctx.
10231 		 */
10232 		get_task_struct(task);
10233 		event->hw.target = task;
10234 	}
10235 
10236 	event->clock = &local_clock;
10237 	if (parent_event)
10238 		event->clock = parent_event->clock;
10239 
10240 	if (!overflow_handler && parent_event) {
10241 		overflow_handler = parent_event->overflow_handler;
10242 		context = parent_event->overflow_handler_context;
10243 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10244 		if (overflow_handler == bpf_overflow_handler) {
10245 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10246 
10247 			if (IS_ERR(prog)) {
10248 				err = PTR_ERR(prog);
10249 				goto err_ns;
10250 			}
10251 			event->prog = prog;
10252 			event->orig_overflow_handler =
10253 				parent_event->orig_overflow_handler;
10254 		}
10255 #endif
10256 	}
10257 
10258 	if (overflow_handler) {
10259 		event->overflow_handler	= overflow_handler;
10260 		event->overflow_handler_context = context;
10261 	} else if (is_write_backward(event)){
10262 		event->overflow_handler = perf_event_output_backward;
10263 		event->overflow_handler_context = NULL;
10264 	} else {
10265 		event->overflow_handler = perf_event_output_forward;
10266 		event->overflow_handler_context = NULL;
10267 	}
10268 
10269 	perf_event__state_init(event);
10270 
10271 	pmu = NULL;
10272 
10273 	hwc = &event->hw;
10274 	hwc->sample_period = attr->sample_period;
10275 	if (attr->freq && attr->sample_freq)
10276 		hwc->sample_period = 1;
10277 	hwc->last_period = hwc->sample_period;
10278 
10279 	local64_set(&hwc->period_left, hwc->sample_period);
10280 
10281 	/*
10282 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10283 	 * See perf_output_read().
10284 	 */
10285 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10286 		goto err_ns;
10287 
10288 	if (!has_branch_stack(event))
10289 		event->attr.branch_sample_type = 0;
10290 
10291 	if (cgroup_fd != -1) {
10292 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10293 		if (err)
10294 			goto err_ns;
10295 	}
10296 
10297 	pmu = perf_init_event(event);
10298 	if (IS_ERR(pmu)) {
10299 		err = PTR_ERR(pmu);
10300 		goto err_ns;
10301 	}
10302 
10303 	err = exclusive_event_init(event);
10304 	if (err)
10305 		goto err_pmu;
10306 
10307 	if (has_addr_filter(event)) {
10308 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10309 						   sizeof(unsigned long),
10310 						   GFP_KERNEL);
10311 		if (!event->addr_filters_offs) {
10312 			err = -ENOMEM;
10313 			goto err_per_task;
10314 		}
10315 
10316 		/* force hw sync on the address filters */
10317 		event->addr_filters_gen = 1;
10318 	}
10319 
10320 	if (!event->parent) {
10321 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10322 			err = get_callchain_buffers(attr->sample_max_stack);
10323 			if (err)
10324 				goto err_addr_filters;
10325 		}
10326 	}
10327 
10328 	/* symmetric to unaccount_event() in _free_event() */
10329 	account_event(event);
10330 
10331 	return event;
10332 
10333 err_addr_filters:
10334 	kfree(event->addr_filters_offs);
10335 
10336 err_per_task:
10337 	exclusive_event_destroy(event);
10338 
10339 err_pmu:
10340 	if (event->destroy)
10341 		event->destroy(event);
10342 	module_put(pmu->module);
10343 err_ns:
10344 	if (is_cgroup_event(event))
10345 		perf_detach_cgroup(event);
10346 	if (event->ns)
10347 		put_pid_ns(event->ns);
10348 	if (event->hw.target)
10349 		put_task_struct(event->hw.target);
10350 	kfree(event);
10351 
10352 	return ERR_PTR(err);
10353 }
10354 
10355 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10356 			  struct perf_event_attr *attr)
10357 {
10358 	u32 size;
10359 	int ret;
10360 
10361 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10362 		return -EFAULT;
10363 
10364 	/*
10365 	 * zero the full structure, so that a short copy will be nice.
10366 	 */
10367 	memset(attr, 0, sizeof(*attr));
10368 
10369 	ret = get_user(size, &uattr->size);
10370 	if (ret)
10371 		return ret;
10372 
10373 	if (size > PAGE_SIZE)	/* silly large */
10374 		goto err_size;
10375 
10376 	if (!size)		/* abi compat */
10377 		size = PERF_ATTR_SIZE_VER0;
10378 
10379 	if (size < PERF_ATTR_SIZE_VER0)
10380 		goto err_size;
10381 
10382 	/*
10383 	 * If we're handed a bigger struct than we know of,
10384 	 * ensure all the unknown bits are 0 - i.e. new
10385 	 * user-space does not rely on any kernel feature
10386 	 * extensions we dont know about yet.
10387 	 */
10388 	if (size > sizeof(*attr)) {
10389 		unsigned char __user *addr;
10390 		unsigned char __user *end;
10391 		unsigned char val;
10392 
10393 		addr = (void __user *)uattr + sizeof(*attr);
10394 		end  = (void __user *)uattr + size;
10395 
10396 		for (; addr < end; addr++) {
10397 			ret = get_user(val, addr);
10398 			if (ret)
10399 				return ret;
10400 			if (val)
10401 				goto err_size;
10402 		}
10403 		size = sizeof(*attr);
10404 	}
10405 
10406 	ret = copy_from_user(attr, uattr, size);
10407 	if (ret)
10408 		return -EFAULT;
10409 
10410 	attr->size = size;
10411 
10412 	if (attr->__reserved_1)
10413 		return -EINVAL;
10414 
10415 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10416 		return -EINVAL;
10417 
10418 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10419 		return -EINVAL;
10420 
10421 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10422 		u64 mask = attr->branch_sample_type;
10423 
10424 		/* only using defined bits */
10425 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10426 			return -EINVAL;
10427 
10428 		/* at least one branch bit must be set */
10429 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10430 			return -EINVAL;
10431 
10432 		/* propagate priv level, when not set for branch */
10433 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10434 
10435 			/* exclude_kernel checked on syscall entry */
10436 			if (!attr->exclude_kernel)
10437 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10438 
10439 			if (!attr->exclude_user)
10440 				mask |= PERF_SAMPLE_BRANCH_USER;
10441 
10442 			if (!attr->exclude_hv)
10443 				mask |= PERF_SAMPLE_BRANCH_HV;
10444 			/*
10445 			 * adjust user setting (for HW filter setup)
10446 			 */
10447 			attr->branch_sample_type = mask;
10448 		}
10449 		/* privileged levels capture (kernel, hv): check permissions */
10450 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10451 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10452 			return -EACCES;
10453 	}
10454 
10455 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10456 		ret = perf_reg_validate(attr->sample_regs_user);
10457 		if (ret)
10458 			return ret;
10459 	}
10460 
10461 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10462 		if (!arch_perf_have_user_stack_dump())
10463 			return -ENOSYS;
10464 
10465 		/*
10466 		 * We have __u32 type for the size, but so far
10467 		 * we can only use __u16 as maximum due to the
10468 		 * __u16 sample size limit.
10469 		 */
10470 		if (attr->sample_stack_user >= USHRT_MAX)
10471 			return -EINVAL;
10472 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10473 			return -EINVAL;
10474 	}
10475 
10476 	if (!attr->sample_max_stack)
10477 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10478 
10479 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10480 		ret = perf_reg_validate(attr->sample_regs_intr);
10481 out:
10482 	return ret;
10483 
10484 err_size:
10485 	put_user(sizeof(*attr), &uattr->size);
10486 	ret = -E2BIG;
10487 	goto out;
10488 }
10489 
10490 static int
10491 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10492 {
10493 	struct ring_buffer *rb = NULL;
10494 	int ret = -EINVAL;
10495 
10496 	if (!output_event)
10497 		goto set;
10498 
10499 	/* don't allow circular references */
10500 	if (event == output_event)
10501 		goto out;
10502 
10503 	/*
10504 	 * Don't allow cross-cpu buffers
10505 	 */
10506 	if (output_event->cpu != event->cpu)
10507 		goto out;
10508 
10509 	/*
10510 	 * If its not a per-cpu rb, it must be the same task.
10511 	 */
10512 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10513 		goto out;
10514 
10515 	/*
10516 	 * Mixing clocks in the same buffer is trouble you don't need.
10517 	 */
10518 	if (output_event->clock != event->clock)
10519 		goto out;
10520 
10521 	/*
10522 	 * Either writing ring buffer from beginning or from end.
10523 	 * Mixing is not allowed.
10524 	 */
10525 	if (is_write_backward(output_event) != is_write_backward(event))
10526 		goto out;
10527 
10528 	/*
10529 	 * If both events generate aux data, they must be on the same PMU
10530 	 */
10531 	if (has_aux(event) && has_aux(output_event) &&
10532 	    event->pmu != output_event->pmu)
10533 		goto out;
10534 
10535 set:
10536 	mutex_lock(&event->mmap_mutex);
10537 	/* Can't redirect output if we've got an active mmap() */
10538 	if (atomic_read(&event->mmap_count))
10539 		goto unlock;
10540 
10541 	if (output_event) {
10542 		/* get the rb we want to redirect to */
10543 		rb = ring_buffer_get(output_event);
10544 		if (!rb)
10545 			goto unlock;
10546 	}
10547 
10548 	ring_buffer_attach(event, rb);
10549 
10550 	ret = 0;
10551 unlock:
10552 	mutex_unlock(&event->mmap_mutex);
10553 
10554 out:
10555 	return ret;
10556 }
10557 
10558 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10559 {
10560 	if (b < a)
10561 		swap(a, b);
10562 
10563 	mutex_lock(a);
10564 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10565 }
10566 
10567 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10568 {
10569 	bool nmi_safe = false;
10570 
10571 	switch (clk_id) {
10572 	case CLOCK_MONOTONIC:
10573 		event->clock = &ktime_get_mono_fast_ns;
10574 		nmi_safe = true;
10575 		break;
10576 
10577 	case CLOCK_MONOTONIC_RAW:
10578 		event->clock = &ktime_get_raw_fast_ns;
10579 		nmi_safe = true;
10580 		break;
10581 
10582 	case CLOCK_REALTIME:
10583 		event->clock = &ktime_get_real_ns;
10584 		break;
10585 
10586 	case CLOCK_BOOTTIME:
10587 		event->clock = &ktime_get_boot_ns;
10588 		break;
10589 
10590 	case CLOCK_TAI:
10591 		event->clock = &ktime_get_tai_ns;
10592 		break;
10593 
10594 	default:
10595 		return -EINVAL;
10596 	}
10597 
10598 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10599 		return -EINVAL;
10600 
10601 	return 0;
10602 }
10603 
10604 /*
10605  * Variation on perf_event_ctx_lock_nested(), except we take two context
10606  * mutexes.
10607  */
10608 static struct perf_event_context *
10609 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10610 			     struct perf_event_context *ctx)
10611 {
10612 	struct perf_event_context *gctx;
10613 
10614 again:
10615 	rcu_read_lock();
10616 	gctx = READ_ONCE(group_leader->ctx);
10617 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10618 		rcu_read_unlock();
10619 		goto again;
10620 	}
10621 	rcu_read_unlock();
10622 
10623 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10624 
10625 	if (group_leader->ctx != gctx) {
10626 		mutex_unlock(&ctx->mutex);
10627 		mutex_unlock(&gctx->mutex);
10628 		put_ctx(gctx);
10629 		goto again;
10630 	}
10631 
10632 	return gctx;
10633 }
10634 
10635 /**
10636  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10637  *
10638  * @attr_uptr:	event_id type attributes for monitoring/sampling
10639  * @pid:		target pid
10640  * @cpu:		target cpu
10641  * @group_fd:		group leader event fd
10642  */
10643 SYSCALL_DEFINE5(perf_event_open,
10644 		struct perf_event_attr __user *, attr_uptr,
10645 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10646 {
10647 	struct perf_event *group_leader = NULL, *output_event = NULL;
10648 	struct perf_event *event, *sibling;
10649 	struct perf_event_attr attr;
10650 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10651 	struct file *event_file = NULL;
10652 	struct fd group = {NULL, 0};
10653 	struct task_struct *task = NULL;
10654 	struct pmu *pmu;
10655 	int event_fd;
10656 	int move_group = 0;
10657 	int err;
10658 	int f_flags = O_RDWR;
10659 	int cgroup_fd = -1;
10660 
10661 	/* for future expandability... */
10662 	if (flags & ~PERF_FLAG_ALL)
10663 		return -EINVAL;
10664 
10665 	err = perf_copy_attr(attr_uptr, &attr);
10666 	if (err)
10667 		return err;
10668 
10669 	if (!attr.exclude_kernel) {
10670 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10671 			return -EACCES;
10672 	}
10673 
10674 	if (attr.namespaces) {
10675 		if (!capable(CAP_SYS_ADMIN))
10676 			return -EACCES;
10677 	}
10678 
10679 	if (attr.freq) {
10680 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10681 			return -EINVAL;
10682 	} else {
10683 		if (attr.sample_period & (1ULL << 63))
10684 			return -EINVAL;
10685 	}
10686 
10687 	/* Only privileged users can get physical addresses */
10688 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10689 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10690 		return -EACCES;
10691 
10692 	/*
10693 	 * In cgroup mode, the pid argument is used to pass the fd
10694 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10695 	 * designates the cpu on which to monitor threads from that
10696 	 * cgroup.
10697 	 */
10698 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10699 		return -EINVAL;
10700 
10701 	if (flags & PERF_FLAG_FD_CLOEXEC)
10702 		f_flags |= O_CLOEXEC;
10703 
10704 	event_fd = get_unused_fd_flags(f_flags);
10705 	if (event_fd < 0)
10706 		return event_fd;
10707 
10708 	if (group_fd != -1) {
10709 		err = perf_fget_light(group_fd, &group);
10710 		if (err)
10711 			goto err_fd;
10712 		group_leader = group.file->private_data;
10713 		if (flags & PERF_FLAG_FD_OUTPUT)
10714 			output_event = group_leader;
10715 		if (flags & PERF_FLAG_FD_NO_GROUP)
10716 			group_leader = NULL;
10717 	}
10718 
10719 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10720 		task = find_lively_task_by_vpid(pid);
10721 		if (IS_ERR(task)) {
10722 			err = PTR_ERR(task);
10723 			goto err_group_fd;
10724 		}
10725 	}
10726 
10727 	if (task && group_leader &&
10728 	    group_leader->attr.inherit != attr.inherit) {
10729 		err = -EINVAL;
10730 		goto err_task;
10731 	}
10732 
10733 	if (task) {
10734 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10735 		if (err)
10736 			goto err_task;
10737 
10738 		/*
10739 		 * Reuse ptrace permission checks for now.
10740 		 *
10741 		 * We must hold cred_guard_mutex across this and any potential
10742 		 * perf_install_in_context() call for this new event to
10743 		 * serialize against exec() altering our credentials (and the
10744 		 * perf_event_exit_task() that could imply).
10745 		 */
10746 		err = -EACCES;
10747 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10748 			goto err_cred;
10749 	}
10750 
10751 	if (flags & PERF_FLAG_PID_CGROUP)
10752 		cgroup_fd = pid;
10753 
10754 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10755 				 NULL, NULL, cgroup_fd);
10756 	if (IS_ERR(event)) {
10757 		err = PTR_ERR(event);
10758 		goto err_cred;
10759 	}
10760 
10761 	if (is_sampling_event(event)) {
10762 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10763 			err = -EOPNOTSUPP;
10764 			goto err_alloc;
10765 		}
10766 	}
10767 
10768 	/*
10769 	 * Special case software events and allow them to be part of
10770 	 * any hardware group.
10771 	 */
10772 	pmu = event->pmu;
10773 
10774 	if (attr.use_clockid) {
10775 		err = perf_event_set_clock(event, attr.clockid);
10776 		if (err)
10777 			goto err_alloc;
10778 	}
10779 
10780 	if (pmu->task_ctx_nr == perf_sw_context)
10781 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10782 
10783 	if (group_leader) {
10784 		if (is_software_event(event) &&
10785 		    !in_software_context(group_leader)) {
10786 			/*
10787 			 * If the event is a sw event, but the group_leader
10788 			 * is on hw context.
10789 			 *
10790 			 * Allow the addition of software events to hw
10791 			 * groups, this is safe because software events
10792 			 * never fail to schedule.
10793 			 */
10794 			pmu = group_leader->ctx->pmu;
10795 		} else if (!is_software_event(event) &&
10796 			   is_software_event(group_leader) &&
10797 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10798 			/*
10799 			 * In case the group is a pure software group, and we
10800 			 * try to add a hardware event, move the whole group to
10801 			 * the hardware context.
10802 			 */
10803 			move_group = 1;
10804 		}
10805 	}
10806 
10807 	/*
10808 	 * Get the target context (task or percpu):
10809 	 */
10810 	ctx = find_get_context(pmu, task, event);
10811 	if (IS_ERR(ctx)) {
10812 		err = PTR_ERR(ctx);
10813 		goto err_alloc;
10814 	}
10815 
10816 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10817 		err = -EBUSY;
10818 		goto err_context;
10819 	}
10820 
10821 	/*
10822 	 * Look up the group leader (we will attach this event to it):
10823 	 */
10824 	if (group_leader) {
10825 		err = -EINVAL;
10826 
10827 		/*
10828 		 * Do not allow a recursive hierarchy (this new sibling
10829 		 * becoming part of another group-sibling):
10830 		 */
10831 		if (group_leader->group_leader != group_leader)
10832 			goto err_context;
10833 
10834 		/* All events in a group should have the same clock */
10835 		if (group_leader->clock != event->clock)
10836 			goto err_context;
10837 
10838 		/*
10839 		 * Make sure we're both events for the same CPU;
10840 		 * grouping events for different CPUs is broken; since
10841 		 * you can never concurrently schedule them anyhow.
10842 		 */
10843 		if (group_leader->cpu != event->cpu)
10844 			goto err_context;
10845 
10846 		/*
10847 		 * Make sure we're both on the same task, or both
10848 		 * per-CPU events.
10849 		 */
10850 		if (group_leader->ctx->task != ctx->task)
10851 			goto err_context;
10852 
10853 		/*
10854 		 * Do not allow to attach to a group in a different task
10855 		 * or CPU context. If we're moving SW events, we'll fix
10856 		 * this up later, so allow that.
10857 		 */
10858 		if (!move_group && group_leader->ctx != ctx)
10859 			goto err_context;
10860 
10861 		/*
10862 		 * Only a group leader can be exclusive or pinned
10863 		 */
10864 		if (attr.exclusive || attr.pinned)
10865 			goto err_context;
10866 	}
10867 
10868 	if (output_event) {
10869 		err = perf_event_set_output(event, output_event);
10870 		if (err)
10871 			goto err_context;
10872 	}
10873 
10874 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10875 					f_flags);
10876 	if (IS_ERR(event_file)) {
10877 		err = PTR_ERR(event_file);
10878 		event_file = NULL;
10879 		goto err_context;
10880 	}
10881 
10882 	if (move_group) {
10883 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10884 
10885 		if (gctx->task == TASK_TOMBSTONE) {
10886 			err = -ESRCH;
10887 			goto err_locked;
10888 		}
10889 
10890 		/*
10891 		 * Check if we raced against another sys_perf_event_open() call
10892 		 * moving the software group underneath us.
10893 		 */
10894 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10895 			/*
10896 			 * If someone moved the group out from under us, check
10897 			 * if this new event wound up on the same ctx, if so
10898 			 * its the regular !move_group case, otherwise fail.
10899 			 */
10900 			if (gctx != ctx) {
10901 				err = -EINVAL;
10902 				goto err_locked;
10903 			} else {
10904 				perf_event_ctx_unlock(group_leader, gctx);
10905 				move_group = 0;
10906 			}
10907 		}
10908 	} else {
10909 		mutex_lock(&ctx->mutex);
10910 	}
10911 
10912 	if (ctx->task == TASK_TOMBSTONE) {
10913 		err = -ESRCH;
10914 		goto err_locked;
10915 	}
10916 
10917 	if (!perf_event_validate_size(event)) {
10918 		err = -E2BIG;
10919 		goto err_locked;
10920 	}
10921 
10922 	if (!task) {
10923 		/*
10924 		 * Check if the @cpu we're creating an event for is online.
10925 		 *
10926 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10927 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10928 		 */
10929 		struct perf_cpu_context *cpuctx =
10930 			container_of(ctx, struct perf_cpu_context, ctx);
10931 
10932 		if (!cpuctx->online) {
10933 			err = -ENODEV;
10934 			goto err_locked;
10935 		}
10936 	}
10937 
10938 
10939 	/*
10940 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10941 	 * because we need to serialize with concurrent event creation.
10942 	 */
10943 	if (!exclusive_event_installable(event, ctx)) {
10944 		/* exclusive and group stuff are assumed mutually exclusive */
10945 		WARN_ON_ONCE(move_group);
10946 
10947 		err = -EBUSY;
10948 		goto err_locked;
10949 	}
10950 
10951 	WARN_ON_ONCE(ctx->parent_ctx);
10952 
10953 	/*
10954 	 * This is the point on no return; we cannot fail hereafter. This is
10955 	 * where we start modifying current state.
10956 	 */
10957 
10958 	if (move_group) {
10959 		/*
10960 		 * See perf_event_ctx_lock() for comments on the details
10961 		 * of swizzling perf_event::ctx.
10962 		 */
10963 		perf_remove_from_context(group_leader, 0);
10964 		put_ctx(gctx);
10965 
10966 		for_each_sibling_event(sibling, group_leader) {
10967 			perf_remove_from_context(sibling, 0);
10968 			put_ctx(gctx);
10969 		}
10970 
10971 		/*
10972 		 * Wait for everybody to stop referencing the events through
10973 		 * the old lists, before installing it on new lists.
10974 		 */
10975 		synchronize_rcu();
10976 
10977 		/*
10978 		 * Install the group siblings before the group leader.
10979 		 *
10980 		 * Because a group leader will try and install the entire group
10981 		 * (through the sibling list, which is still in-tact), we can
10982 		 * end up with siblings installed in the wrong context.
10983 		 *
10984 		 * By installing siblings first we NO-OP because they're not
10985 		 * reachable through the group lists.
10986 		 */
10987 		for_each_sibling_event(sibling, group_leader) {
10988 			perf_event__state_init(sibling);
10989 			perf_install_in_context(ctx, sibling, sibling->cpu);
10990 			get_ctx(ctx);
10991 		}
10992 
10993 		/*
10994 		 * Removing from the context ends up with disabled
10995 		 * event. What we want here is event in the initial
10996 		 * startup state, ready to be add into new context.
10997 		 */
10998 		perf_event__state_init(group_leader);
10999 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11000 		get_ctx(ctx);
11001 	}
11002 
11003 	/*
11004 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11005 	 * that we're serialized against further additions and before
11006 	 * perf_install_in_context() which is the point the event is active and
11007 	 * can use these values.
11008 	 */
11009 	perf_event__header_size(event);
11010 	perf_event__id_header_size(event);
11011 
11012 	event->owner = current;
11013 
11014 	perf_install_in_context(ctx, event, event->cpu);
11015 	perf_unpin_context(ctx);
11016 
11017 	if (move_group)
11018 		perf_event_ctx_unlock(group_leader, gctx);
11019 	mutex_unlock(&ctx->mutex);
11020 
11021 	if (task) {
11022 		mutex_unlock(&task->signal->cred_guard_mutex);
11023 		put_task_struct(task);
11024 	}
11025 
11026 	mutex_lock(&current->perf_event_mutex);
11027 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11028 	mutex_unlock(&current->perf_event_mutex);
11029 
11030 	/*
11031 	 * Drop the reference on the group_event after placing the
11032 	 * new event on the sibling_list. This ensures destruction
11033 	 * of the group leader will find the pointer to itself in
11034 	 * perf_group_detach().
11035 	 */
11036 	fdput(group);
11037 	fd_install(event_fd, event_file);
11038 	return event_fd;
11039 
11040 err_locked:
11041 	if (move_group)
11042 		perf_event_ctx_unlock(group_leader, gctx);
11043 	mutex_unlock(&ctx->mutex);
11044 /* err_file: */
11045 	fput(event_file);
11046 err_context:
11047 	perf_unpin_context(ctx);
11048 	put_ctx(ctx);
11049 err_alloc:
11050 	/*
11051 	 * If event_file is set, the fput() above will have called ->release()
11052 	 * and that will take care of freeing the event.
11053 	 */
11054 	if (!event_file)
11055 		free_event(event);
11056 err_cred:
11057 	if (task)
11058 		mutex_unlock(&task->signal->cred_guard_mutex);
11059 err_task:
11060 	if (task)
11061 		put_task_struct(task);
11062 err_group_fd:
11063 	fdput(group);
11064 err_fd:
11065 	put_unused_fd(event_fd);
11066 	return err;
11067 }
11068 
11069 /**
11070  * perf_event_create_kernel_counter
11071  *
11072  * @attr: attributes of the counter to create
11073  * @cpu: cpu in which the counter is bound
11074  * @task: task to profile (NULL for percpu)
11075  */
11076 struct perf_event *
11077 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11078 				 struct task_struct *task,
11079 				 perf_overflow_handler_t overflow_handler,
11080 				 void *context)
11081 {
11082 	struct perf_event_context *ctx;
11083 	struct perf_event *event;
11084 	int err;
11085 
11086 	/*
11087 	 * Get the target context (task or percpu):
11088 	 */
11089 
11090 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11091 				 overflow_handler, context, -1);
11092 	if (IS_ERR(event)) {
11093 		err = PTR_ERR(event);
11094 		goto err;
11095 	}
11096 
11097 	/* Mark owner so we could distinguish it from user events. */
11098 	event->owner = TASK_TOMBSTONE;
11099 
11100 	ctx = find_get_context(event->pmu, task, event);
11101 	if (IS_ERR(ctx)) {
11102 		err = PTR_ERR(ctx);
11103 		goto err_free;
11104 	}
11105 
11106 	WARN_ON_ONCE(ctx->parent_ctx);
11107 	mutex_lock(&ctx->mutex);
11108 	if (ctx->task == TASK_TOMBSTONE) {
11109 		err = -ESRCH;
11110 		goto err_unlock;
11111 	}
11112 
11113 	if (!task) {
11114 		/*
11115 		 * Check if the @cpu we're creating an event for is online.
11116 		 *
11117 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11118 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11119 		 */
11120 		struct perf_cpu_context *cpuctx =
11121 			container_of(ctx, struct perf_cpu_context, ctx);
11122 		if (!cpuctx->online) {
11123 			err = -ENODEV;
11124 			goto err_unlock;
11125 		}
11126 	}
11127 
11128 	if (!exclusive_event_installable(event, ctx)) {
11129 		err = -EBUSY;
11130 		goto err_unlock;
11131 	}
11132 
11133 	perf_install_in_context(ctx, event, cpu);
11134 	perf_unpin_context(ctx);
11135 	mutex_unlock(&ctx->mutex);
11136 
11137 	return event;
11138 
11139 err_unlock:
11140 	mutex_unlock(&ctx->mutex);
11141 	perf_unpin_context(ctx);
11142 	put_ctx(ctx);
11143 err_free:
11144 	free_event(event);
11145 err:
11146 	return ERR_PTR(err);
11147 }
11148 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11149 
11150 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11151 {
11152 	struct perf_event_context *src_ctx;
11153 	struct perf_event_context *dst_ctx;
11154 	struct perf_event *event, *tmp;
11155 	LIST_HEAD(events);
11156 
11157 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11158 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11159 
11160 	/*
11161 	 * See perf_event_ctx_lock() for comments on the details
11162 	 * of swizzling perf_event::ctx.
11163 	 */
11164 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11165 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11166 				 event_entry) {
11167 		perf_remove_from_context(event, 0);
11168 		unaccount_event_cpu(event, src_cpu);
11169 		put_ctx(src_ctx);
11170 		list_add(&event->migrate_entry, &events);
11171 	}
11172 
11173 	/*
11174 	 * Wait for the events to quiesce before re-instating them.
11175 	 */
11176 	synchronize_rcu();
11177 
11178 	/*
11179 	 * Re-instate events in 2 passes.
11180 	 *
11181 	 * Skip over group leaders and only install siblings on this first
11182 	 * pass, siblings will not get enabled without a leader, however a
11183 	 * leader will enable its siblings, even if those are still on the old
11184 	 * context.
11185 	 */
11186 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11187 		if (event->group_leader == event)
11188 			continue;
11189 
11190 		list_del(&event->migrate_entry);
11191 		if (event->state >= PERF_EVENT_STATE_OFF)
11192 			event->state = PERF_EVENT_STATE_INACTIVE;
11193 		account_event_cpu(event, dst_cpu);
11194 		perf_install_in_context(dst_ctx, event, dst_cpu);
11195 		get_ctx(dst_ctx);
11196 	}
11197 
11198 	/*
11199 	 * Once all the siblings are setup properly, install the group leaders
11200 	 * to make it go.
11201 	 */
11202 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11203 		list_del(&event->migrate_entry);
11204 		if (event->state >= PERF_EVENT_STATE_OFF)
11205 			event->state = PERF_EVENT_STATE_INACTIVE;
11206 		account_event_cpu(event, dst_cpu);
11207 		perf_install_in_context(dst_ctx, event, dst_cpu);
11208 		get_ctx(dst_ctx);
11209 	}
11210 	mutex_unlock(&dst_ctx->mutex);
11211 	mutex_unlock(&src_ctx->mutex);
11212 }
11213 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11214 
11215 static void sync_child_event(struct perf_event *child_event,
11216 			       struct task_struct *child)
11217 {
11218 	struct perf_event *parent_event = child_event->parent;
11219 	u64 child_val;
11220 
11221 	if (child_event->attr.inherit_stat)
11222 		perf_event_read_event(child_event, child);
11223 
11224 	child_val = perf_event_count(child_event);
11225 
11226 	/*
11227 	 * Add back the child's count to the parent's count:
11228 	 */
11229 	atomic64_add(child_val, &parent_event->child_count);
11230 	atomic64_add(child_event->total_time_enabled,
11231 		     &parent_event->child_total_time_enabled);
11232 	atomic64_add(child_event->total_time_running,
11233 		     &parent_event->child_total_time_running);
11234 }
11235 
11236 static void
11237 perf_event_exit_event(struct perf_event *child_event,
11238 		      struct perf_event_context *child_ctx,
11239 		      struct task_struct *child)
11240 {
11241 	struct perf_event *parent_event = child_event->parent;
11242 
11243 	/*
11244 	 * Do not destroy the 'original' grouping; because of the context
11245 	 * switch optimization the original events could've ended up in a
11246 	 * random child task.
11247 	 *
11248 	 * If we were to destroy the original group, all group related
11249 	 * operations would cease to function properly after this random
11250 	 * child dies.
11251 	 *
11252 	 * Do destroy all inherited groups, we don't care about those
11253 	 * and being thorough is better.
11254 	 */
11255 	raw_spin_lock_irq(&child_ctx->lock);
11256 	WARN_ON_ONCE(child_ctx->is_active);
11257 
11258 	if (parent_event)
11259 		perf_group_detach(child_event);
11260 	list_del_event(child_event, child_ctx);
11261 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11262 	raw_spin_unlock_irq(&child_ctx->lock);
11263 
11264 	/*
11265 	 * Parent events are governed by their filedesc, retain them.
11266 	 */
11267 	if (!parent_event) {
11268 		perf_event_wakeup(child_event);
11269 		return;
11270 	}
11271 	/*
11272 	 * Child events can be cleaned up.
11273 	 */
11274 
11275 	sync_child_event(child_event, child);
11276 
11277 	/*
11278 	 * Remove this event from the parent's list
11279 	 */
11280 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11281 	mutex_lock(&parent_event->child_mutex);
11282 	list_del_init(&child_event->child_list);
11283 	mutex_unlock(&parent_event->child_mutex);
11284 
11285 	/*
11286 	 * Kick perf_poll() for is_event_hup().
11287 	 */
11288 	perf_event_wakeup(parent_event);
11289 	free_event(child_event);
11290 	put_event(parent_event);
11291 }
11292 
11293 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11294 {
11295 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11296 	struct perf_event *child_event, *next;
11297 
11298 	WARN_ON_ONCE(child != current);
11299 
11300 	child_ctx = perf_pin_task_context(child, ctxn);
11301 	if (!child_ctx)
11302 		return;
11303 
11304 	/*
11305 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11306 	 * ctx::mutex over the entire thing. This serializes against almost
11307 	 * everything that wants to access the ctx.
11308 	 *
11309 	 * The exception is sys_perf_event_open() /
11310 	 * perf_event_create_kernel_count() which does find_get_context()
11311 	 * without ctx::mutex (it cannot because of the move_group double mutex
11312 	 * lock thing). See the comments in perf_install_in_context().
11313 	 */
11314 	mutex_lock(&child_ctx->mutex);
11315 
11316 	/*
11317 	 * In a single ctx::lock section, de-schedule the events and detach the
11318 	 * context from the task such that we cannot ever get it scheduled back
11319 	 * in.
11320 	 */
11321 	raw_spin_lock_irq(&child_ctx->lock);
11322 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11323 
11324 	/*
11325 	 * Now that the context is inactive, destroy the task <-> ctx relation
11326 	 * and mark the context dead.
11327 	 */
11328 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11329 	put_ctx(child_ctx); /* cannot be last */
11330 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11331 	put_task_struct(current); /* cannot be last */
11332 
11333 	clone_ctx = unclone_ctx(child_ctx);
11334 	raw_spin_unlock_irq(&child_ctx->lock);
11335 
11336 	if (clone_ctx)
11337 		put_ctx(clone_ctx);
11338 
11339 	/*
11340 	 * Report the task dead after unscheduling the events so that we
11341 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11342 	 * get a few PERF_RECORD_READ events.
11343 	 */
11344 	perf_event_task(child, child_ctx, 0);
11345 
11346 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11347 		perf_event_exit_event(child_event, child_ctx, child);
11348 
11349 	mutex_unlock(&child_ctx->mutex);
11350 
11351 	put_ctx(child_ctx);
11352 }
11353 
11354 /*
11355  * When a child task exits, feed back event values to parent events.
11356  *
11357  * Can be called with cred_guard_mutex held when called from
11358  * install_exec_creds().
11359  */
11360 void perf_event_exit_task(struct task_struct *child)
11361 {
11362 	struct perf_event *event, *tmp;
11363 	int ctxn;
11364 
11365 	mutex_lock(&child->perf_event_mutex);
11366 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11367 				 owner_entry) {
11368 		list_del_init(&event->owner_entry);
11369 
11370 		/*
11371 		 * Ensure the list deletion is visible before we clear
11372 		 * the owner, closes a race against perf_release() where
11373 		 * we need to serialize on the owner->perf_event_mutex.
11374 		 */
11375 		smp_store_release(&event->owner, NULL);
11376 	}
11377 	mutex_unlock(&child->perf_event_mutex);
11378 
11379 	for_each_task_context_nr(ctxn)
11380 		perf_event_exit_task_context(child, ctxn);
11381 
11382 	/*
11383 	 * The perf_event_exit_task_context calls perf_event_task
11384 	 * with child's task_ctx, which generates EXIT events for
11385 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11386 	 * At this point we need to send EXIT events to cpu contexts.
11387 	 */
11388 	perf_event_task(child, NULL, 0);
11389 }
11390 
11391 static void perf_free_event(struct perf_event *event,
11392 			    struct perf_event_context *ctx)
11393 {
11394 	struct perf_event *parent = event->parent;
11395 
11396 	if (WARN_ON_ONCE(!parent))
11397 		return;
11398 
11399 	mutex_lock(&parent->child_mutex);
11400 	list_del_init(&event->child_list);
11401 	mutex_unlock(&parent->child_mutex);
11402 
11403 	put_event(parent);
11404 
11405 	raw_spin_lock_irq(&ctx->lock);
11406 	perf_group_detach(event);
11407 	list_del_event(event, ctx);
11408 	raw_spin_unlock_irq(&ctx->lock);
11409 	free_event(event);
11410 }
11411 
11412 /*
11413  * Free an unexposed, unused context as created by inheritance by
11414  * perf_event_init_task below, used by fork() in case of fail.
11415  *
11416  * Not all locks are strictly required, but take them anyway to be nice and
11417  * help out with the lockdep assertions.
11418  */
11419 void perf_event_free_task(struct task_struct *task)
11420 {
11421 	struct perf_event_context *ctx;
11422 	struct perf_event *event, *tmp;
11423 	int ctxn;
11424 
11425 	for_each_task_context_nr(ctxn) {
11426 		ctx = task->perf_event_ctxp[ctxn];
11427 		if (!ctx)
11428 			continue;
11429 
11430 		mutex_lock(&ctx->mutex);
11431 		raw_spin_lock_irq(&ctx->lock);
11432 		/*
11433 		 * Destroy the task <-> ctx relation and mark the context dead.
11434 		 *
11435 		 * This is important because even though the task hasn't been
11436 		 * exposed yet the context has been (through child_list).
11437 		 */
11438 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11439 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11440 		put_task_struct(task); /* cannot be last */
11441 		raw_spin_unlock_irq(&ctx->lock);
11442 
11443 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11444 			perf_free_event(event, ctx);
11445 
11446 		mutex_unlock(&ctx->mutex);
11447 		put_ctx(ctx);
11448 	}
11449 }
11450 
11451 void perf_event_delayed_put(struct task_struct *task)
11452 {
11453 	int ctxn;
11454 
11455 	for_each_task_context_nr(ctxn)
11456 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11457 }
11458 
11459 struct file *perf_event_get(unsigned int fd)
11460 {
11461 	struct file *file;
11462 
11463 	file = fget_raw(fd);
11464 	if (!file)
11465 		return ERR_PTR(-EBADF);
11466 
11467 	if (file->f_op != &perf_fops) {
11468 		fput(file);
11469 		return ERR_PTR(-EBADF);
11470 	}
11471 
11472 	return file;
11473 }
11474 
11475 const struct perf_event *perf_get_event(struct file *file)
11476 {
11477 	if (file->f_op != &perf_fops)
11478 		return ERR_PTR(-EINVAL);
11479 
11480 	return file->private_data;
11481 }
11482 
11483 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11484 {
11485 	if (!event)
11486 		return ERR_PTR(-EINVAL);
11487 
11488 	return &event->attr;
11489 }
11490 
11491 /*
11492  * Inherit an event from parent task to child task.
11493  *
11494  * Returns:
11495  *  - valid pointer on success
11496  *  - NULL for orphaned events
11497  *  - IS_ERR() on error
11498  */
11499 static struct perf_event *
11500 inherit_event(struct perf_event *parent_event,
11501 	      struct task_struct *parent,
11502 	      struct perf_event_context *parent_ctx,
11503 	      struct task_struct *child,
11504 	      struct perf_event *group_leader,
11505 	      struct perf_event_context *child_ctx)
11506 {
11507 	enum perf_event_state parent_state = parent_event->state;
11508 	struct perf_event *child_event;
11509 	unsigned long flags;
11510 
11511 	/*
11512 	 * Instead of creating recursive hierarchies of events,
11513 	 * we link inherited events back to the original parent,
11514 	 * which has a filp for sure, which we use as the reference
11515 	 * count:
11516 	 */
11517 	if (parent_event->parent)
11518 		parent_event = parent_event->parent;
11519 
11520 	child_event = perf_event_alloc(&parent_event->attr,
11521 					   parent_event->cpu,
11522 					   child,
11523 					   group_leader, parent_event,
11524 					   NULL, NULL, -1);
11525 	if (IS_ERR(child_event))
11526 		return child_event;
11527 
11528 
11529 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11530 	    !child_ctx->task_ctx_data) {
11531 		struct pmu *pmu = child_event->pmu;
11532 
11533 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11534 						   GFP_KERNEL);
11535 		if (!child_ctx->task_ctx_data) {
11536 			free_event(child_event);
11537 			return NULL;
11538 		}
11539 	}
11540 
11541 	/*
11542 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11543 	 * must be under the same lock in order to serialize against
11544 	 * perf_event_release_kernel(), such that either we must observe
11545 	 * is_orphaned_event() or they will observe us on the child_list.
11546 	 */
11547 	mutex_lock(&parent_event->child_mutex);
11548 	if (is_orphaned_event(parent_event) ||
11549 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11550 		mutex_unlock(&parent_event->child_mutex);
11551 		/* task_ctx_data is freed with child_ctx */
11552 		free_event(child_event);
11553 		return NULL;
11554 	}
11555 
11556 	get_ctx(child_ctx);
11557 
11558 	/*
11559 	 * Make the child state follow the state of the parent event,
11560 	 * not its attr.disabled bit.  We hold the parent's mutex,
11561 	 * so we won't race with perf_event_{en, dis}able_family.
11562 	 */
11563 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11564 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11565 	else
11566 		child_event->state = PERF_EVENT_STATE_OFF;
11567 
11568 	if (parent_event->attr.freq) {
11569 		u64 sample_period = parent_event->hw.sample_period;
11570 		struct hw_perf_event *hwc = &child_event->hw;
11571 
11572 		hwc->sample_period = sample_period;
11573 		hwc->last_period   = sample_period;
11574 
11575 		local64_set(&hwc->period_left, sample_period);
11576 	}
11577 
11578 	child_event->ctx = child_ctx;
11579 	child_event->overflow_handler = parent_event->overflow_handler;
11580 	child_event->overflow_handler_context
11581 		= parent_event->overflow_handler_context;
11582 
11583 	/*
11584 	 * Precalculate sample_data sizes
11585 	 */
11586 	perf_event__header_size(child_event);
11587 	perf_event__id_header_size(child_event);
11588 
11589 	/*
11590 	 * Link it up in the child's context:
11591 	 */
11592 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11593 	add_event_to_ctx(child_event, child_ctx);
11594 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11595 
11596 	/*
11597 	 * Link this into the parent event's child list
11598 	 */
11599 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11600 	mutex_unlock(&parent_event->child_mutex);
11601 
11602 	return child_event;
11603 }
11604 
11605 /*
11606  * Inherits an event group.
11607  *
11608  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11609  * This matches with perf_event_release_kernel() removing all child events.
11610  *
11611  * Returns:
11612  *  - 0 on success
11613  *  - <0 on error
11614  */
11615 static int inherit_group(struct perf_event *parent_event,
11616 	      struct task_struct *parent,
11617 	      struct perf_event_context *parent_ctx,
11618 	      struct task_struct *child,
11619 	      struct perf_event_context *child_ctx)
11620 {
11621 	struct perf_event *leader;
11622 	struct perf_event *sub;
11623 	struct perf_event *child_ctr;
11624 
11625 	leader = inherit_event(parent_event, parent, parent_ctx,
11626 				 child, NULL, child_ctx);
11627 	if (IS_ERR(leader))
11628 		return PTR_ERR(leader);
11629 	/*
11630 	 * @leader can be NULL here because of is_orphaned_event(). In this
11631 	 * case inherit_event() will create individual events, similar to what
11632 	 * perf_group_detach() would do anyway.
11633 	 */
11634 	for_each_sibling_event(sub, parent_event) {
11635 		child_ctr = inherit_event(sub, parent, parent_ctx,
11636 					    child, leader, child_ctx);
11637 		if (IS_ERR(child_ctr))
11638 			return PTR_ERR(child_ctr);
11639 	}
11640 	return 0;
11641 }
11642 
11643 /*
11644  * Creates the child task context and tries to inherit the event-group.
11645  *
11646  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11647  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11648  * consistent with perf_event_release_kernel() removing all child events.
11649  *
11650  * Returns:
11651  *  - 0 on success
11652  *  - <0 on error
11653  */
11654 static int
11655 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11656 		   struct perf_event_context *parent_ctx,
11657 		   struct task_struct *child, int ctxn,
11658 		   int *inherited_all)
11659 {
11660 	int ret;
11661 	struct perf_event_context *child_ctx;
11662 
11663 	if (!event->attr.inherit) {
11664 		*inherited_all = 0;
11665 		return 0;
11666 	}
11667 
11668 	child_ctx = child->perf_event_ctxp[ctxn];
11669 	if (!child_ctx) {
11670 		/*
11671 		 * This is executed from the parent task context, so
11672 		 * inherit events that have been marked for cloning.
11673 		 * First allocate and initialize a context for the
11674 		 * child.
11675 		 */
11676 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11677 		if (!child_ctx)
11678 			return -ENOMEM;
11679 
11680 		child->perf_event_ctxp[ctxn] = child_ctx;
11681 	}
11682 
11683 	ret = inherit_group(event, parent, parent_ctx,
11684 			    child, child_ctx);
11685 
11686 	if (ret)
11687 		*inherited_all = 0;
11688 
11689 	return ret;
11690 }
11691 
11692 /*
11693  * Initialize the perf_event context in task_struct
11694  */
11695 static int perf_event_init_context(struct task_struct *child, int ctxn)
11696 {
11697 	struct perf_event_context *child_ctx, *parent_ctx;
11698 	struct perf_event_context *cloned_ctx;
11699 	struct perf_event *event;
11700 	struct task_struct *parent = current;
11701 	int inherited_all = 1;
11702 	unsigned long flags;
11703 	int ret = 0;
11704 
11705 	if (likely(!parent->perf_event_ctxp[ctxn]))
11706 		return 0;
11707 
11708 	/*
11709 	 * If the parent's context is a clone, pin it so it won't get
11710 	 * swapped under us.
11711 	 */
11712 	parent_ctx = perf_pin_task_context(parent, ctxn);
11713 	if (!parent_ctx)
11714 		return 0;
11715 
11716 	/*
11717 	 * No need to check if parent_ctx != NULL here; since we saw
11718 	 * it non-NULL earlier, the only reason for it to become NULL
11719 	 * is if we exit, and since we're currently in the middle of
11720 	 * a fork we can't be exiting at the same time.
11721 	 */
11722 
11723 	/*
11724 	 * Lock the parent list. No need to lock the child - not PID
11725 	 * hashed yet and not running, so nobody can access it.
11726 	 */
11727 	mutex_lock(&parent_ctx->mutex);
11728 
11729 	/*
11730 	 * We dont have to disable NMIs - we are only looking at
11731 	 * the list, not manipulating it:
11732 	 */
11733 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11734 		ret = inherit_task_group(event, parent, parent_ctx,
11735 					 child, ctxn, &inherited_all);
11736 		if (ret)
11737 			goto out_unlock;
11738 	}
11739 
11740 	/*
11741 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11742 	 * to allocations, but we need to prevent rotation because
11743 	 * rotate_ctx() will change the list from interrupt context.
11744 	 */
11745 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11746 	parent_ctx->rotate_disable = 1;
11747 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11748 
11749 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11750 		ret = inherit_task_group(event, parent, parent_ctx,
11751 					 child, ctxn, &inherited_all);
11752 		if (ret)
11753 			goto out_unlock;
11754 	}
11755 
11756 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11757 	parent_ctx->rotate_disable = 0;
11758 
11759 	child_ctx = child->perf_event_ctxp[ctxn];
11760 
11761 	if (child_ctx && inherited_all) {
11762 		/*
11763 		 * Mark the child context as a clone of the parent
11764 		 * context, or of whatever the parent is a clone of.
11765 		 *
11766 		 * Note that if the parent is a clone, the holding of
11767 		 * parent_ctx->lock avoids it from being uncloned.
11768 		 */
11769 		cloned_ctx = parent_ctx->parent_ctx;
11770 		if (cloned_ctx) {
11771 			child_ctx->parent_ctx = cloned_ctx;
11772 			child_ctx->parent_gen = parent_ctx->parent_gen;
11773 		} else {
11774 			child_ctx->parent_ctx = parent_ctx;
11775 			child_ctx->parent_gen = parent_ctx->generation;
11776 		}
11777 		get_ctx(child_ctx->parent_ctx);
11778 	}
11779 
11780 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11781 out_unlock:
11782 	mutex_unlock(&parent_ctx->mutex);
11783 
11784 	perf_unpin_context(parent_ctx);
11785 	put_ctx(parent_ctx);
11786 
11787 	return ret;
11788 }
11789 
11790 /*
11791  * Initialize the perf_event context in task_struct
11792  */
11793 int perf_event_init_task(struct task_struct *child)
11794 {
11795 	int ctxn, ret;
11796 
11797 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11798 	mutex_init(&child->perf_event_mutex);
11799 	INIT_LIST_HEAD(&child->perf_event_list);
11800 
11801 	for_each_task_context_nr(ctxn) {
11802 		ret = perf_event_init_context(child, ctxn);
11803 		if (ret) {
11804 			perf_event_free_task(child);
11805 			return ret;
11806 		}
11807 	}
11808 
11809 	return 0;
11810 }
11811 
11812 static void __init perf_event_init_all_cpus(void)
11813 {
11814 	struct swevent_htable *swhash;
11815 	int cpu;
11816 
11817 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11818 
11819 	for_each_possible_cpu(cpu) {
11820 		swhash = &per_cpu(swevent_htable, cpu);
11821 		mutex_init(&swhash->hlist_mutex);
11822 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11823 
11824 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11825 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11826 
11827 #ifdef CONFIG_CGROUP_PERF
11828 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11829 #endif
11830 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11831 	}
11832 }
11833 
11834 void perf_swevent_init_cpu(unsigned int cpu)
11835 {
11836 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11837 
11838 	mutex_lock(&swhash->hlist_mutex);
11839 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11840 		struct swevent_hlist *hlist;
11841 
11842 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11843 		WARN_ON(!hlist);
11844 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11845 	}
11846 	mutex_unlock(&swhash->hlist_mutex);
11847 }
11848 
11849 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11850 static void __perf_event_exit_context(void *__info)
11851 {
11852 	struct perf_event_context *ctx = __info;
11853 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11854 	struct perf_event *event;
11855 
11856 	raw_spin_lock(&ctx->lock);
11857 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11858 	list_for_each_entry(event, &ctx->event_list, event_entry)
11859 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11860 	raw_spin_unlock(&ctx->lock);
11861 }
11862 
11863 static void perf_event_exit_cpu_context(int cpu)
11864 {
11865 	struct perf_cpu_context *cpuctx;
11866 	struct perf_event_context *ctx;
11867 	struct pmu *pmu;
11868 
11869 	mutex_lock(&pmus_lock);
11870 	list_for_each_entry(pmu, &pmus, entry) {
11871 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11872 		ctx = &cpuctx->ctx;
11873 
11874 		mutex_lock(&ctx->mutex);
11875 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11876 		cpuctx->online = 0;
11877 		mutex_unlock(&ctx->mutex);
11878 	}
11879 	cpumask_clear_cpu(cpu, perf_online_mask);
11880 	mutex_unlock(&pmus_lock);
11881 }
11882 #else
11883 
11884 static void perf_event_exit_cpu_context(int cpu) { }
11885 
11886 #endif
11887 
11888 int perf_event_init_cpu(unsigned int cpu)
11889 {
11890 	struct perf_cpu_context *cpuctx;
11891 	struct perf_event_context *ctx;
11892 	struct pmu *pmu;
11893 
11894 	perf_swevent_init_cpu(cpu);
11895 
11896 	mutex_lock(&pmus_lock);
11897 	cpumask_set_cpu(cpu, perf_online_mask);
11898 	list_for_each_entry(pmu, &pmus, entry) {
11899 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11900 		ctx = &cpuctx->ctx;
11901 
11902 		mutex_lock(&ctx->mutex);
11903 		cpuctx->online = 1;
11904 		mutex_unlock(&ctx->mutex);
11905 	}
11906 	mutex_unlock(&pmus_lock);
11907 
11908 	return 0;
11909 }
11910 
11911 int perf_event_exit_cpu(unsigned int cpu)
11912 {
11913 	perf_event_exit_cpu_context(cpu);
11914 	return 0;
11915 }
11916 
11917 static int
11918 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11919 {
11920 	int cpu;
11921 
11922 	for_each_online_cpu(cpu)
11923 		perf_event_exit_cpu(cpu);
11924 
11925 	return NOTIFY_OK;
11926 }
11927 
11928 /*
11929  * Run the perf reboot notifier at the very last possible moment so that
11930  * the generic watchdog code runs as long as possible.
11931  */
11932 static struct notifier_block perf_reboot_notifier = {
11933 	.notifier_call = perf_reboot,
11934 	.priority = INT_MIN,
11935 };
11936 
11937 void __init perf_event_init(void)
11938 {
11939 	int ret;
11940 
11941 	idr_init(&pmu_idr);
11942 
11943 	perf_event_init_all_cpus();
11944 	init_srcu_struct(&pmus_srcu);
11945 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11946 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11947 	perf_pmu_register(&perf_task_clock, NULL, -1);
11948 	perf_tp_register();
11949 	perf_event_init_cpu(smp_processor_id());
11950 	register_reboot_notifier(&perf_reboot_notifier);
11951 
11952 	ret = init_hw_breakpoint();
11953 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11954 
11955 	/*
11956 	 * Build time assertion that we keep the data_head at the intended
11957 	 * location.  IOW, validation we got the __reserved[] size right.
11958 	 */
11959 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11960 		     != 1024);
11961 }
11962 
11963 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11964 			      char *page)
11965 {
11966 	struct perf_pmu_events_attr *pmu_attr =
11967 		container_of(attr, struct perf_pmu_events_attr, attr);
11968 
11969 	if (pmu_attr->event_str)
11970 		return sprintf(page, "%s\n", pmu_attr->event_str);
11971 
11972 	return 0;
11973 }
11974 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11975 
11976 static int __init perf_event_sysfs_init(void)
11977 {
11978 	struct pmu *pmu;
11979 	int ret;
11980 
11981 	mutex_lock(&pmus_lock);
11982 
11983 	ret = bus_register(&pmu_bus);
11984 	if (ret)
11985 		goto unlock;
11986 
11987 	list_for_each_entry(pmu, &pmus, entry) {
11988 		if (!pmu->name || pmu->type < 0)
11989 			continue;
11990 
11991 		ret = pmu_dev_alloc(pmu);
11992 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11993 	}
11994 	pmu_bus_running = 1;
11995 	ret = 0;
11996 
11997 unlock:
11998 	mutex_unlock(&pmus_lock);
11999 
12000 	return ret;
12001 }
12002 device_initcall(perf_event_sysfs_init);
12003 
12004 #ifdef CONFIG_CGROUP_PERF
12005 static struct cgroup_subsys_state *
12006 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12007 {
12008 	struct perf_cgroup *jc;
12009 
12010 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12011 	if (!jc)
12012 		return ERR_PTR(-ENOMEM);
12013 
12014 	jc->info = alloc_percpu(struct perf_cgroup_info);
12015 	if (!jc->info) {
12016 		kfree(jc);
12017 		return ERR_PTR(-ENOMEM);
12018 	}
12019 
12020 	return &jc->css;
12021 }
12022 
12023 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12024 {
12025 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12026 
12027 	free_percpu(jc->info);
12028 	kfree(jc);
12029 }
12030 
12031 static int __perf_cgroup_move(void *info)
12032 {
12033 	struct task_struct *task = info;
12034 	rcu_read_lock();
12035 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12036 	rcu_read_unlock();
12037 	return 0;
12038 }
12039 
12040 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12041 {
12042 	struct task_struct *task;
12043 	struct cgroup_subsys_state *css;
12044 
12045 	cgroup_taskset_for_each(task, css, tset)
12046 		task_function_call(task, __perf_cgroup_move, task);
12047 }
12048 
12049 struct cgroup_subsys perf_event_cgrp_subsys = {
12050 	.css_alloc	= perf_cgroup_css_alloc,
12051 	.css_free	= perf_cgroup_css_free,
12052 	.attach		= perf_cgroup_attach,
12053 	/*
12054 	 * Implicitly enable on dfl hierarchy so that perf events can
12055 	 * always be filtered by cgroup2 path as long as perf_event
12056 	 * controller is not mounted on a legacy hierarchy.
12057 	 */
12058 	.implicit_on_dfl = true,
12059 	.threaded	= true,
12060 };
12061 #endif /* CONFIG_CGROUP_PERF */
12062