1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 static atomic_t nr_ksymbol_events __read_mostly; 389 static atomic_t nr_bpf_events __read_mostly; 390 391 static LIST_HEAD(pmus); 392 static DEFINE_MUTEX(pmus_lock); 393 static struct srcu_struct pmus_srcu; 394 static cpumask_var_t perf_online_mask; 395 396 /* 397 * perf event paranoia level: 398 * -1 - not paranoid at all 399 * 0 - disallow raw tracepoint access for unpriv 400 * 1 - disallow cpu events for unpriv 401 * 2 - disallow kernel profiling for unpriv 402 */ 403 int sysctl_perf_event_paranoid __read_mostly = 2; 404 405 /* Minimum for 512 kiB + 1 user control page */ 406 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 407 408 /* 409 * max perf event sample rate 410 */ 411 #define DEFAULT_MAX_SAMPLE_RATE 100000 412 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 413 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 414 415 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 416 417 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 418 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 419 420 static int perf_sample_allowed_ns __read_mostly = 421 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 422 423 static void update_perf_cpu_limits(void) 424 { 425 u64 tmp = perf_sample_period_ns; 426 427 tmp *= sysctl_perf_cpu_time_max_percent; 428 tmp = div_u64(tmp, 100); 429 if (!tmp) 430 tmp = 1; 431 432 WRITE_ONCE(perf_sample_allowed_ns, tmp); 433 } 434 435 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 436 437 int perf_proc_update_handler(struct ctl_table *table, int write, 438 void __user *buffer, size_t *lenp, 439 loff_t *ppos) 440 { 441 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 442 443 if (ret || !write) 444 return ret; 445 446 /* 447 * If throttling is disabled don't allow the write: 448 */ 449 if (sysctl_perf_cpu_time_max_percent == 100 || 450 sysctl_perf_cpu_time_max_percent == 0) 451 return -EINVAL; 452 453 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 454 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 455 update_perf_cpu_limits(); 456 457 return 0; 458 } 459 460 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 461 462 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 463 void __user *buffer, size_t *lenp, 464 loff_t *ppos) 465 { 466 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 467 468 if (ret || !write) 469 return ret; 470 471 if (sysctl_perf_cpu_time_max_percent == 100 || 472 sysctl_perf_cpu_time_max_percent == 0) { 473 printk(KERN_WARNING 474 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 475 WRITE_ONCE(perf_sample_allowed_ns, 0); 476 } else { 477 update_perf_cpu_limits(); 478 } 479 480 return 0; 481 } 482 483 /* 484 * perf samples are done in some very critical code paths (NMIs). 485 * If they take too much CPU time, the system can lock up and not 486 * get any real work done. This will drop the sample rate when 487 * we detect that events are taking too long. 488 */ 489 #define NR_ACCUMULATED_SAMPLES 128 490 static DEFINE_PER_CPU(u64, running_sample_length); 491 492 static u64 __report_avg; 493 static u64 __report_allowed; 494 495 static void perf_duration_warn(struct irq_work *w) 496 { 497 printk_ratelimited(KERN_INFO 498 "perf: interrupt took too long (%lld > %lld), lowering " 499 "kernel.perf_event_max_sample_rate to %d\n", 500 __report_avg, __report_allowed, 501 sysctl_perf_event_sample_rate); 502 } 503 504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 505 506 void perf_sample_event_took(u64 sample_len_ns) 507 { 508 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 509 u64 running_len; 510 u64 avg_len; 511 u32 max; 512 513 if (max_len == 0) 514 return; 515 516 /* Decay the counter by 1 average sample. */ 517 running_len = __this_cpu_read(running_sample_length); 518 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 519 running_len += sample_len_ns; 520 __this_cpu_write(running_sample_length, running_len); 521 522 /* 523 * Note: this will be biased artifically low until we have 524 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 525 * from having to maintain a count. 526 */ 527 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 528 if (avg_len <= max_len) 529 return; 530 531 __report_avg = avg_len; 532 __report_allowed = max_len; 533 534 /* 535 * Compute a throttle threshold 25% below the current duration. 536 */ 537 avg_len += avg_len / 4; 538 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 539 if (avg_len < max) 540 max /= (u32)avg_len; 541 else 542 max = 1; 543 544 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 545 WRITE_ONCE(max_samples_per_tick, max); 546 547 sysctl_perf_event_sample_rate = max * HZ; 548 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 549 550 if (!irq_work_queue(&perf_duration_work)) { 551 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 552 "kernel.perf_event_max_sample_rate to %d\n", 553 __report_avg, __report_allowed, 554 sysctl_perf_event_sample_rate); 555 } 556 } 557 558 static atomic64_t perf_event_id; 559 560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 561 enum event_type_t event_type); 562 563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 564 enum event_type_t event_type, 565 struct task_struct *task); 566 567 static void update_context_time(struct perf_event_context *ctx); 568 static u64 perf_event_time(struct perf_event *event); 569 570 void __weak perf_event_print_debug(void) { } 571 572 extern __weak const char *perf_pmu_name(void) 573 { 574 return "pmu"; 575 } 576 577 static inline u64 perf_clock(void) 578 { 579 return local_clock(); 580 } 581 582 static inline u64 perf_event_clock(struct perf_event *event) 583 { 584 return event->clock(); 585 } 586 587 /* 588 * State based event timekeeping... 589 * 590 * The basic idea is to use event->state to determine which (if any) time 591 * fields to increment with the current delta. This means we only need to 592 * update timestamps when we change state or when they are explicitly requested 593 * (read). 594 * 595 * Event groups make things a little more complicated, but not terribly so. The 596 * rules for a group are that if the group leader is OFF the entire group is 597 * OFF, irrespecive of what the group member states are. This results in 598 * __perf_effective_state(). 599 * 600 * A futher ramification is that when a group leader flips between OFF and 601 * !OFF, we need to update all group member times. 602 * 603 * 604 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 605 * need to make sure the relevant context time is updated before we try and 606 * update our timestamps. 607 */ 608 609 static __always_inline enum perf_event_state 610 __perf_effective_state(struct perf_event *event) 611 { 612 struct perf_event *leader = event->group_leader; 613 614 if (leader->state <= PERF_EVENT_STATE_OFF) 615 return leader->state; 616 617 return event->state; 618 } 619 620 static __always_inline void 621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 622 { 623 enum perf_event_state state = __perf_effective_state(event); 624 u64 delta = now - event->tstamp; 625 626 *enabled = event->total_time_enabled; 627 if (state >= PERF_EVENT_STATE_INACTIVE) 628 *enabled += delta; 629 630 *running = event->total_time_running; 631 if (state >= PERF_EVENT_STATE_ACTIVE) 632 *running += delta; 633 } 634 635 static void perf_event_update_time(struct perf_event *event) 636 { 637 u64 now = perf_event_time(event); 638 639 __perf_update_times(event, now, &event->total_time_enabled, 640 &event->total_time_running); 641 event->tstamp = now; 642 } 643 644 static void perf_event_update_sibling_time(struct perf_event *leader) 645 { 646 struct perf_event *sibling; 647 648 for_each_sibling_event(sibling, leader) 649 perf_event_update_time(sibling); 650 } 651 652 static void 653 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 654 { 655 if (event->state == state) 656 return; 657 658 perf_event_update_time(event); 659 /* 660 * If a group leader gets enabled/disabled all its siblings 661 * are affected too. 662 */ 663 if ((event->state < 0) ^ (state < 0)) 664 perf_event_update_sibling_time(event); 665 666 WRITE_ONCE(event->state, state); 667 } 668 669 #ifdef CONFIG_CGROUP_PERF 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 struct perf_event_context *ctx = event->ctx; 675 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 676 677 /* @event doesn't care about cgroup */ 678 if (!event->cgrp) 679 return true; 680 681 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 682 if (!cpuctx->cgrp) 683 return false; 684 685 /* 686 * Cgroup scoping is recursive. An event enabled for a cgroup is 687 * also enabled for all its descendant cgroups. If @cpuctx's 688 * cgroup is a descendant of @event's (the test covers identity 689 * case), it's a match. 690 */ 691 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 692 event->cgrp->css.cgroup); 693 } 694 695 static inline void perf_detach_cgroup(struct perf_event *event) 696 { 697 css_put(&event->cgrp->css); 698 event->cgrp = NULL; 699 } 700 701 static inline int is_cgroup_event(struct perf_event *event) 702 { 703 return event->cgrp != NULL; 704 } 705 706 static inline u64 perf_cgroup_event_time(struct perf_event *event) 707 { 708 struct perf_cgroup_info *t; 709 710 t = per_cpu_ptr(event->cgrp->info, event->cpu); 711 return t->time; 712 } 713 714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 715 { 716 struct perf_cgroup_info *info; 717 u64 now; 718 719 now = perf_clock(); 720 721 info = this_cpu_ptr(cgrp->info); 722 723 info->time += now - info->timestamp; 724 info->timestamp = now; 725 } 726 727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 728 { 729 struct perf_cgroup *cgrp = cpuctx->cgrp; 730 struct cgroup_subsys_state *css; 731 732 if (cgrp) { 733 for (css = &cgrp->css; css; css = css->parent) { 734 cgrp = container_of(css, struct perf_cgroup, css); 735 __update_cgrp_time(cgrp); 736 } 737 } 738 } 739 740 static inline void update_cgrp_time_from_event(struct perf_event *event) 741 { 742 struct perf_cgroup *cgrp; 743 744 /* 745 * ensure we access cgroup data only when needed and 746 * when we know the cgroup is pinned (css_get) 747 */ 748 if (!is_cgroup_event(event)) 749 return; 750 751 cgrp = perf_cgroup_from_task(current, event->ctx); 752 /* 753 * Do not update time when cgroup is not active 754 */ 755 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 756 __update_cgrp_time(event->cgrp); 757 } 758 759 static inline void 760 perf_cgroup_set_timestamp(struct task_struct *task, 761 struct perf_event_context *ctx) 762 { 763 struct perf_cgroup *cgrp; 764 struct perf_cgroup_info *info; 765 struct cgroup_subsys_state *css; 766 767 /* 768 * ctx->lock held by caller 769 * ensure we do not access cgroup data 770 * unless we have the cgroup pinned (css_get) 771 */ 772 if (!task || !ctx->nr_cgroups) 773 return; 774 775 cgrp = perf_cgroup_from_task(task, ctx); 776 777 for (css = &cgrp->css; css; css = css->parent) { 778 cgrp = container_of(css, struct perf_cgroup, css); 779 info = this_cpu_ptr(cgrp->info); 780 info->timestamp = ctx->timestamp; 781 } 782 } 783 784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 785 786 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 787 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 788 789 /* 790 * reschedule events based on the cgroup constraint of task. 791 * 792 * mode SWOUT : schedule out everything 793 * mode SWIN : schedule in based on cgroup for next 794 */ 795 static void perf_cgroup_switch(struct task_struct *task, int mode) 796 { 797 struct perf_cpu_context *cpuctx; 798 struct list_head *list; 799 unsigned long flags; 800 801 /* 802 * Disable interrupts and preemption to avoid this CPU's 803 * cgrp_cpuctx_entry to change under us. 804 */ 805 local_irq_save(flags); 806 807 list = this_cpu_ptr(&cgrp_cpuctx_list); 808 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 809 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 810 811 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 812 perf_pmu_disable(cpuctx->ctx.pmu); 813 814 if (mode & PERF_CGROUP_SWOUT) { 815 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 816 /* 817 * must not be done before ctxswout due 818 * to event_filter_match() in event_sched_out() 819 */ 820 cpuctx->cgrp = NULL; 821 } 822 823 if (mode & PERF_CGROUP_SWIN) { 824 WARN_ON_ONCE(cpuctx->cgrp); 825 /* 826 * set cgrp before ctxsw in to allow 827 * event_filter_match() to not have to pass 828 * task around 829 * we pass the cpuctx->ctx to perf_cgroup_from_task() 830 * because cgorup events are only per-cpu 831 */ 832 cpuctx->cgrp = perf_cgroup_from_task(task, 833 &cpuctx->ctx); 834 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 835 } 836 perf_pmu_enable(cpuctx->ctx.pmu); 837 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 838 } 839 840 local_irq_restore(flags); 841 } 842 843 static inline void perf_cgroup_sched_out(struct task_struct *task, 844 struct task_struct *next) 845 { 846 struct perf_cgroup *cgrp1; 847 struct perf_cgroup *cgrp2 = NULL; 848 849 rcu_read_lock(); 850 /* 851 * we come here when we know perf_cgroup_events > 0 852 * we do not need to pass the ctx here because we know 853 * we are holding the rcu lock 854 */ 855 cgrp1 = perf_cgroup_from_task(task, NULL); 856 cgrp2 = perf_cgroup_from_task(next, NULL); 857 858 /* 859 * only schedule out current cgroup events if we know 860 * that we are switching to a different cgroup. Otherwise, 861 * do no touch the cgroup events. 862 */ 863 if (cgrp1 != cgrp2) 864 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 865 866 rcu_read_unlock(); 867 } 868 869 static inline void perf_cgroup_sched_in(struct task_struct *prev, 870 struct task_struct *task) 871 { 872 struct perf_cgroup *cgrp1; 873 struct perf_cgroup *cgrp2 = NULL; 874 875 rcu_read_lock(); 876 /* 877 * we come here when we know perf_cgroup_events > 0 878 * we do not need to pass the ctx here because we know 879 * we are holding the rcu lock 880 */ 881 cgrp1 = perf_cgroup_from_task(task, NULL); 882 cgrp2 = perf_cgroup_from_task(prev, NULL); 883 884 /* 885 * only need to schedule in cgroup events if we are changing 886 * cgroup during ctxsw. Cgroup events were not scheduled 887 * out of ctxsw out if that was not the case. 888 */ 889 if (cgrp1 != cgrp2) 890 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 891 892 rcu_read_unlock(); 893 } 894 895 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 896 struct perf_event_attr *attr, 897 struct perf_event *group_leader) 898 { 899 struct perf_cgroup *cgrp; 900 struct cgroup_subsys_state *css; 901 struct fd f = fdget(fd); 902 int ret = 0; 903 904 if (!f.file) 905 return -EBADF; 906 907 css = css_tryget_online_from_dir(f.file->f_path.dentry, 908 &perf_event_cgrp_subsys); 909 if (IS_ERR(css)) { 910 ret = PTR_ERR(css); 911 goto out; 912 } 913 914 cgrp = container_of(css, struct perf_cgroup, css); 915 event->cgrp = cgrp; 916 917 /* 918 * all events in a group must monitor 919 * the same cgroup because a task belongs 920 * to only one perf cgroup at a time 921 */ 922 if (group_leader && group_leader->cgrp != cgrp) { 923 perf_detach_cgroup(event); 924 ret = -EINVAL; 925 } 926 out: 927 fdput(f); 928 return ret; 929 } 930 931 static inline void 932 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 933 { 934 struct perf_cgroup_info *t; 935 t = per_cpu_ptr(event->cgrp->info, event->cpu); 936 event->shadow_ctx_time = now - t->timestamp; 937 } 938 939 /* 940 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 941 * cleared when last cgroup event is removed. 942 */ 943 static inline void 944 list_update_cgroup_event(struct perf_event *event, 945 struct perf_event_context *ctx, bool add) 946 { 947 struct perf_cpu_context *cpuctx; 948 struct list_head *cpuctx_entry; 949 950 if (!is_cgroup_event(event)) 951 return; 952 953 /* 954 * Because cgroup events are always per-cpu events, 955 * this will always be called from the right CPU. 956 */ 957 cpuctx = __get_cpu_context(ctx); 958 959 /* 960 * Since setting cpuctx->cgrp is conditional on the current @cgrp 961 * matching the event's cgroup, we must do this for every new event, 962 * because if the first would mismatch, the second would not try again 963 * and we would leave cpuctx->cgrp unset. 964 */ 965 if (add && !cpuctx->cgrp) { 966 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 967 968 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 969 cpuctx->cgrp = cgrp; 970 } 971 972 if (add && ctx->nr_cgroups++) 973 return; 974 else if (!add && --ctx->nr_cgroups) 975 return; 976 977 /* no cgroup running */ 978 if (!add) 979 cpuctx->cgrp = NULL; 980 981 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 982 if (add) 983 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 984 else 985 list_del(cpuctx_entry); 986 } 987 988 #else /* !CONFIG_CGROUP_PERF */ 989 990 static inline bool 991 perf_cgroup_match(struct perf_event *event) 992 { 993 return true; 994 } 995 996 static inline void perf_detach_cgroup(struct perf_event *event) 997 {} 998 999 static inline int is_cgroup_event(struct perf_event *event) 1000 { 1001 return 0; 1002 } 1003 1004 static inline void update_cgrp_time_from_event(struct perf_event *event) 1005 { 1006 } 1007 1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1009 { 1010 } 1011 1012 static inline void perf_cgroup_sched_out(struct task_struct *task, 1013 struct task_struct *next) 1014 { 1015 } 1016 1017 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1018 struct task_struct *task) 1019 { 1020 } 1021 1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1023 struct perf_event_attr *attr, 1024 struct perf_event *group_leader) 1025 { 1026 return -EINVAL; 1027 } 1028 1029 static inline void 1030 perf_cgroup_set_timestamp(struct task_struct *task, 1031 struct perf_event_context *ctx) 1032 { 1033 } 1034 1035 void 1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1037 { 1038 } 1039 1040 static inline void 1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1042 { 1043 } 1044 1045 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1046 { 1047 return 0; 1048 } 1049 1050 static inline void 1051 list_update_cgroup_event(struct perf_event *event, 1052 struct perf_event_context *ctx, bool add) 1053 { 1054 } 1055 1056 #endif 1057 1058 /* 1059 * set default to be dependent on timer tick just 1060 * like original code 1061 */ 1062 #define PERF_CPU_HRTIMER (1000 / HZ) 1063 /* 1064 * function must be called with interrupts disabled 1065 */ 1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1067 { 1068 struct perf_cpu_context *cpuctx; 1069 bool rotations; 1070 1071 lockdep_assert_irqs_disabled(); 1072 1073 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1074 rotations = perf_rotate_context(cpuctx); 1075 1076 raw_spin_lock(&cpuctx->hrtimer_lock); 1077 if (rotations) 1078 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1079 else 1080 cpuctx->hrtimer_active = 0; 1081 raw_spin_unlock(&cpuctx->hrtimer_lock); 1082 1083 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1084 } 1085 1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1087 { 1088 struct hrtimer *timer = &cpuctx->hrtimer; 1089 struct pmu *pmu = cpuctx->ctx.pmu; 1090 u64 interval; 1091 1092 /* no multiplexing needed for SW PMU */ 1093 if (pmu->task_ctx_nr == perf_sw_context) 1094 return; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1108 timer->function = perf_mux_hrtimer_handler; 1109 } 1110 1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1112 { 1113 struct hrtimer *timer = &cpuctx->hrtimer; 1114 struct pmu *pmu = cpuctx->ctx.pmu; 1115 unsigned long flags; 1116 1117 /* not for SW PMU */ 1118 if (pmu->task_ctx_nr == perf_sw_context) 1119 return 0; 1120 1121 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1122 if (!cpuctx->hrtimer_active) { 1123 cpuctx->hrtimer_active = 1; 1124 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1125 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1126 } 1127 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1128 1129 return 0; 1130 } 1131 1132 void perf_pmu_disable(struct pmu *pmu) 1133 { 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137 } 1138 1139 void perf_pmu_enable(struct pmu *pmu) 1140 { 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144 } 1145 1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1147 1148 /* 1149 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1150 * perf_event_task_tick() are fully serialized because they're strictly cpu 1151 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1152 * disabled, while perf_event_task_tick is called from IRQ context. 1153 */ 1154 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1155 { 1156 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1157 1158 lockdep_assert_irqs_disabled(); 1159 1160 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1161 1162 list_add(&ctx->active_ctx_list, head); 1163 } 1164 1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1166 { 1167 lockdep_assert_irqs_disabled(); 1168 1169 WARN_ON(list_empty(&ctx->active_ctx_list)); 1170 1171 list_del_init(&ctx->active_ctx_list); 1172 } 1173 1174 static void get_ctx(struct perf_event_context *ctx) 1175 { 1176 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1177 } 1178 1179 static void free_ctx(struct rcu_head *head) 1180 { 1181 struct perf_event_context *ctx; 1182 1183 ctx = container_of(head, struct perf_event_context, rcu_head); 1184 kfree(ctx->task_ctx_data); 1185 kfree(ctx); 1186 } 1187 1188 static void put_ctx(struct perf_event_context *ctx) 1189 { 1190 if (atomic_dec_and_test(&ctx->refcount)) { 1191 if (ctx->parent_ctx) 1192 put_ctx(ctx->parent_ctx); 1193 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1194 put_task_struct(ctx->task); 1195 call_rcu(&ctx->rcu_head, free_ctx); 1196 } 1197 } 1198 1199 /* 1200 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1201 * perf_pmu_migrate_context() we need some magic. 1202 * 1203 * Those places that change perf_event::ctx will hold both 1204 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1205 * 1206 * Lock ordering is by mutex address. There are two other sites where 1207 * perf_event_context::mutex nests and those are: 1208 * 1209 * - perf_event_exit_task_context() [ child , 0 ] 1210 * perf_event_exit_event() 1211 * put_event() [ parent, 1 ] 1212 * 1213 * - perf_event_init_context() [ parent, 0 ] 1214 * inherit_task_group() 1215 * inherit_group() 1216 * inherit_event() 1217 * perf_event_alloc() 1218 * perf_init_event() 1219 * perf_try_init_event() [ child , 1 ] 1220 * 1221 * While it appears there is an obvious deadlock here -- the parent and child 1222 * nesting levels are inverted between the two. This is in fact safe because 1223 * life-time rules separate them. That is an exiting task cannot fork, and a 1224 * spawning task cannot (yet) exit. 1225 * 1226 * But remember that that these are parent<->child context relations, and 1227 * migration does not affect children, therefore these two orderings should not 1228 * interact. 1229 * 1230 * The change in perf_event::ctx does not affect children (as claimed above) 1231 * because the sys_perf_event_open() case will install a new event and break 1232 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1233 * concerned with cpuctx and that doesn't have children. 1234 * 1235 * The places that change perf_event::ctx will issue: 1236 * 1237 * perf_remove_from_context(); 1238 * synchronize_rcu(); 1239 * perf_install_in_context(); 1240 * 1241 * to affect the change. The remove_from_context() + synchronize_rcu() should 1242 * quiesce the event, after which we can install it in the new location. This 1243 * means that only external vectors (perf_fops, prctl) can perturb the event 1244 * while in transit. Therefore all such accessors should also acquire 1245 * perf_event_context::mutex to serialize against this. 1246 * 1247 * However; because event->ctx can change while we're waiting to acquire 1248 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1249 * function. 1250 * 1251 * Lock order: 1252 * cred_guard_mutex 1253 * task_struct::perf_event_mutex 1254 * perf_event_context::mutex 1255 * perf_event::child_mutex; 1256 * perf_event_context::lock 1257 * perf_event::mmap_mutex 1258 * mmap_sem 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!atomic_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !atomic_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (event->pending_disable) { 2013 event->pending_disable = 0; 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 event->pending_disable = 1; 2202 irq_work_queue(&event->pending); 2203 } 2204 2205 static void perf_set_shadow_time(struct perf_event *event, 2206 struct perf_event_context *ctx) 2207 { 2208 /* 2209 * use the correct time source for the time snapshot 2210 * 2211 * We could get by without this by leveraging the 2212 * fact that to get to this function, the caller 2213 * has most likely already called update_context_time() 2214 * and update_cgrp_time_xx() and thus both timestamp 2215 * are identical (or very close). Given that tstamp is, 2216 * already adjusted for cgroup, we could say that: 2217 * tstamp - ctx->timestamp 2218 * is equivalent to 2219 * tstamp - cgrp->timestamp. 2220 * 2221 * Then, in perf_output_read(), the calculation would 2222 * work with no changes because: 2223 * - event is guaranteed scheduled in 2224 * - no scheduled out in between 2225 * - thus the timestamp would be the same 2226 * 2227 * But this is a bit hairy. 2228 * 2229 * So instead, we have an explicit cgroup call to remain 2230 * within the time time source all along. We believe it 2231 * is cleaner and simpler to understand. 2232 */ 2233 if (is_cgroup_event(event)) 2234 perf_cgroup_set_shadow_time(event, event->tstamp); 2235 else 2236 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2237 } 2238 2239 #define MAX_INTERRUPTS (~0ULL) 2240 2241 static void perf_log_throttle(struct perf_event *event, int enable); 2242 static void perf_log_itrace_start(struct perf_event *event); 2243 2244 static int 2245 event_sched_in(struct perf_event *event, 2246 struct perf_cpu_context *cpuctx, 2247 struct perf_event_context *ctx) 2248 { 2249 int ret = 0; 2250 2251 lockdep_assert_held(&ctx->lock); 2252 2253 if (event->state <= PERF_EVENT_STATE_OFF) 2254 return 0; 2255 2256 WRITE_ONCE(event->oncpu, smp_processor_id()); 2257 /* 2258 * Order event::oncpu write to happen before the ACTIVE state is 2259 * visible. This allows perf_event_{stop,read}() to observe the correct 2260 * ->oncpu if it sees ACTIVE. 2261 */ 2262 smp_wmb(); 2263 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2264 2265 /* 2266 * Unthrottle events, since we scheduled we might have missed several 2267 * ticks already, also for a heavily scheduling task there is little 2268 * guarantee it'll get a tick in a timely manner. 2269 */ 2270 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2271 perf_log_throttle(event, 1); 2272 event->hw.interrupts = 0; 2273 } 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 perf_set_shadow_time(event, ctx); 2278 2279 perf_log_itrace_start(event); 2280 2281 if (event->pmu->add(event, PERF_EF_START)) { 2282 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2283 event->oncpu = -1; 2284 ret = -EAGAIN; 2285 goto out; 2286 } 2287 2288 if (!is_software_event(event)) 2289 cpuctx->active_oncpu++; 2290 if (!ctx->nr_active++) 2291 perf_event_ctx_activate(ctx); 2292 if (event->attr.freq && event->attr.sample_freq) 2293 ctx->nr_freq++; 2294 2295 if (event->attr.exclusive) 2296 cpuctx->exclusive = 1; 2297 2298 out: 2299 perf_pmu_enable(event->pmu); 2300 2301 return ret; 2302 } 2303 2304 static int 2305 group_sched_in(struct perf_event *group_event, 2306 struct perf_cpu_context *cpuctx, 2307 struct perf_event_context *ctx) 2308 { 2309 struct perf_event *event, *partial_group = NULL; 2310 struct pmu *pmu = ctx->pmu; 2311 2312 if (group_event->state == PERF_EVENT_STATE_OFF) 2313 return 0; 2314 2315 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2316 2317 if (event_sched_in(group_event, cpuctx, ctx)) { 2318 pmu->cancel_txn(pmu); 2319 perf_mux_hrtimer_restart(cpuctx); 2320 return -EAGAIN; 2321 } 2322 2323 /* 2324 * Schedule in siblings as one group (if any): 2325 */ 2326 for_each_sibling_event(event, group_event) { 2327 if (event_sched_in(event, cpuctx, ctx)) { 2328 partial_group = event; 2329 goto group_error; 2330 } 2331 } 2332 2333 if (!pmu->commit_txn(pmu)) 2334 return 0; 2335 2336 group_error: 2337 /* 2338 * Groups can be scheduled in as one unit only, so undo any 2339 * partial group before returning: 2340 * The events up to the failed event are scheduled out normally. 2341 */ 2342 for_each_sibling_event(event, group_event) { 2343 if (event == partial_group) 2344 break; 2345 2346 event_sched_out(event, cpuctx, ctx); 2347 } 2348 event_sched_out(group_event, cpuctx, ctx); 2349 2350 pmu->cancel_txn(pmu); 2351 2352 perf_mux_hrtimer_restart(cpuctx); 2353 2354 return -EAGAIN; 2355 } 2356 2357 /* 2358 * Work out whether we can put this event group on the CPU now. 2359 */ 2360 static int group_can_go_on(struct perf_event *event, 2361 struct perf_cpu_context *cpuctx, 2362 int can_add_hw) 2363 { 2364 /* 2365 * Groups consisting entirely of software events can always go on. 2366 */ 2367 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2368 return 1; 2369 /* 2370 * If an exclusive group is already on, no other hardware 2371 * events can go on. 2372 */ 2373 if (cpuctx->exclusive) 2374 return 0; 2375 /* 2376 * If this group is exclusive and there are already 2377 * events on the CPU, it can't go on. 2378 */ 2379 if (event->attr.exclusive && cpuctx->active_oncpu) 2380 return 0; 2381 /* 2382 * Otherwise, try to add it if all previous groups were able 2383 * to go on. 2384 */ 2385 return can_add_hw; 2386 } 2387 2388 static void add_event_to_ctx(struct perf_event *event, 2389 struct perf_event_context *ctx) 2390 { 2391 list_add_event(event, ctx); 2392 perf_group_attach(event); 2393 } 2394 2395 static void ctx_sched_out(struct perf_event_context *ctx, 2396 struct perf_cpu_context *cpuctx, 2397 enum event_type_t event_type); 2398 static void 2399 ctx_sched_in(struct perf_event_context *ctx, 2400 struct perf_cpu_context *cpuctx, 2401 enum event_type_t event_type, 2402 struct task_struct *task); 2403 2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2405 struct perf_event_context *ctx, 2406 enum event_type_t event_type) 2407 { 2408 if (!cpuctx->task_ctx) 2409 return; 2410 2411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2412 return; 2413 2414 ctx_sched_out(ctx, cpuctx, event_type); 2415 } 2416 2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2418 struct perf_event_context *ctx, 2419 struct task_struct *task) 2420 { 2421 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2422 if (ctx) 2423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2425 if (ctx) 2426 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2427 } 2428 2429 /* 2430 * We want to maintain the following priority of scheduling: 2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2432 * - task pinned (EVENT_PINNED) 2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2434 * - task flexible (EVENT_FLEXIBLE). 2435 * 2436 * In order to avoid unscheduling and scheduling back in everything every 2437 * time an event is added, only do it for the groups of equal priority and 2438 * below. 2439 * 2440 * This can be called after a batch operation on task events, in which case 2441 * event_type is a bit mask of the types of events involved. For CPU events, 2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2443 */ 2444 static void ctx_resched(struct perf_cpu_context *cpuctx, 2445 struct perf_event_context *task_ctx, 2446 enum event_type_t event_type) 2447 { 2448 enum event_type_t ctx_event_type; 2449 bool cpu_event = !!(event_type & EVENT_CPU); 2450 2451 /* 2452 * If pinned groups are involved, flexible groups also need to be 2453 * scheduled out. 2454 */ 2455 if (event_type & EVENT_PINNED) 2456 event_type |= EVENT_FLEXIBLE; 2457 2458 ctx_event_type = event_type & EVENT_ALL; 2459 2460 perf_pmu_disable(cpuctx->ctx.pmu); 2461 if (task_ctx) 2462 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2463 2464 /* 2465 * Decide which cpu ctx groups to schedule out based on the types 2466 * of events that caused rescheduling: 2467 * - EVENT_CPU: schedule out corresponding groups; 2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2469 * - otherwise, do nothing more. 2470 */ 2471 if (cpu_event) 2472 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2473 else if (ctx_event_type & EVENT_PINNED) 2474 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2475 2476 perf_event_sched_in(cpuctx, task_ctx, current); 2477 perf_pmu_enable(cpuctx->ctx.pmu); 2478 } 2479 2480 /* 2481 * Cross CPU call to install and enable a performance event 2482 * 2483 * Very similar to remote_function() + event_function() but cannot assume that 2484 * things like ctx->is_active and cpuctx->task_ctx are set. 2485 */ 2486 static int __perf_install_in_context(void *info) 2487 { 2488 struct perf_event *event = info; 2489 struct perf_event_context *ctx = event->ctx; 2490 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2491 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2492 bool reprogram = true; 2493 int ret = 0; 2494 2495 raw_spin_lock(&cpuctx->ctx.lock); 2496 if (ctx->task) { 2497 raw_spin_lock(&ctx->lock); 2498 task_ctx = ctx; 2499 2500 reprogram = (ctx->task == current); 2501 2502 /* 2503 * If the task is running, it must be running on this CPU, 2504 * otherwise we cannot reprogram things. 2505 * 2506 * If its not running, we don't care, ctx->lock will 2507 * serialize against it becoming runnable. 2508 */ 2509 if (task_curr(ctx->task) && !reprogram) { 2510 ret = -ESRCH; 2511 goto unlock; 2512 } 2513 2514 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2515 } else if (task_ctx) { 2516 raw_spin_lock(&task_ctx->lock); 2517 } 2518 2519 #ifdef CONFIG_CGROUP_PERF 2520 if (is_cgroup_event(event)) { 2521 /* 2522 * If the current cgroup doesn't match the event's 2523 * cgroup, we should not try to schedule it. 2524 */ 2525 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2526 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2527 event->cgrp->css.cgroup); 2528 } 2529 #endif 2530 2531 if (reprogram) { 2532 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2533 add_event_to_ctx(event, ctx); 2534 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2535 } else { 2536 add_event_to_ctx(event, ctx); 2537 } 2538 2539 unlock: 2540 perf_ctx_unlock(cpuctx, task_ctx); 2541 2542 return ret; 2543 } 2544 2545 /* 2546 * Attach a performance event to a context. 2547 * 2548 * Very similar to event_function_call, see comment there. 2549 */ 2550 static void 2551 perf_install_in_context(struct perf_event_context *ctx, 2552 struct perf_event *event, 2553 int cpu) 2554 { 2555 struct task_struct *task = READ_ONCE(ctx->task); 2556 2557 lockdep_assert_held(&ctx->mutex); 2558 2559 if (event->cpu != -1) 2560 event->cpu = cpu; 2561 2562 /* 2563 * Ensures that if we can observe event->ctx, both the event and ctx 2564 * will be 'complete'. See perf_iterate_sb_cpu(). 2565 */ 2566 smp_store_release(&event->ctx, ctx); 2567 2568 if (!task) { 2569 cpu_function_call(cpu, __perf_install_in_context, event); 2570 return; 2571 } 2572 2573 /* 2574 * Should not happen, we validate the ctx is still alive before calling. 2575 */ 2576 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2577 return; 2578 2579 /* 2580 * Installing events is tricky because we cannot rely on ctx->is_active 2581 * to be set in case this is the nr_events 0 -> 1 transition. 2582 * 2583 * Instead we use task_curr(), which tells us if the task is running. 2584 * However, since we use task_curr() outside of rq::lock, we can race 2585 * against the actual state. This means the result can be wrong. 2586 * 2587 * If we get a false positive, we retry, this is harmless. 2588 * 2589 * If we get a false negative, things are complicated. If we are after 2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2591 * value must be correct. If we're before, it doesn't matter since 2592 * perf_event_context_sched_in() will program the counter. 2593 * 2594 * However, this hinges on the remote context switch having observed 2595 * our task->perf_event_ctxp[] store, such that it will in fact take 2596 * ctx::lock in perf_event_context_sched_in(). 2597 * 2598 * We do this by task_function_call(), if the IPI fails to hit the task 2599 * we know any future context switch of task must see the 2600 * perf_event_ctpx[] store. 2601 */ 2602 2603 /* 2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2605 * task_cpu() load, such that if the IPI then does not find the task 2606 * running, a future context switch of that task must observe the 2607 * store. 2608 */ 2609 smp_mb(); 2610 again: 2611 if (!task_function_call(task, __perf_install_in_context, event)) 2612 return; 2613 2614 raw_spin_lock_irq(&ctx->lock); 2615 task = ctx->task; 2616 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2617 /* 2618 * Cannot happen because we already checked above (which also 2619 * cannot happen), and we hold ctx->mutex, which serializes us 2620 * against perf_event_exit_task_context(). 2621 */ 2622 raw_spin_unlock_irq(&ctx->lock); 2623 return; 2624 } 2625 /* 2626 * If the task is not running, ctx->lock will avoid it becoming so, 2627 * thus we can safely install the event. 2628 */ 2629 if (task_curr(task)) { 2630 raw_spin_unlock_irq(&ctx->lock); 2631 goto again; 2632 } 2633 add_event_to_ctx(event, ctx); 2634 raw_spin_unlock_irq(&ctx->lock); 2635 } 2636 2637 /* 2638 * Cross CPU call to enable a performance event 2639 */ 2640 static void __perf_event_enable(struct perf_event *event, 2641 struct perf_cpu_context *cpuctx, 2642 struct perf_event_context *ctx, 2643 void *info) 2644 { 2645 struct perf_event *leader = event->group_leader; 2646 struct perf_event_context *task_ctx; 2647 2648 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2649 event->state <= PERF_EVENT_STATE_ERROR) 2650 return; 2651 2652 if (ctx->is_active) 2653 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2654 2655 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2656 2657 if (!ctx->is_active) 2658 return; 2659 2660 if (!event_filter_match(event)) { 2661 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2662 return; 2663 } 2664 2665 /* 2666 * If the event is in a group and isn't the group leader, 2667 * then don't put it on unless the group is on. 2668 */ 2669 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2670 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2671 return; 2672 } 2673 2674 task_ctx = cpuctx->task_ctx; 2675 if (ctx->task) 2676 WARN_ON_ONCE(task_ctx != ctx); 2677 2678 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2679 } 2680 2681 /* 2682 * Enable an event. 2683 * 2684 * If event->ctx is a cloned context, callers must make sure that 2685 * every task struct that event->ctx->task could possibly point to 2686 * remains valid. This condition is satisfied when called through 2687 * perf_event_for_each_child or perf_event_for_each as described 2688 * for perf_event_disable. 2689 */ 2690 static void _perf_event_enable(struct perf_event *event) 2691 { 2692 struct perf_event_context *ctx = event->ctx; 2693 2694 raw_spin_lock_irq(&ctx->lock); 2695 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2696 event->state < PERF_EVENT_STATE_ERROR) { 2697 raw_spin_unlock_irq(&ctx->lock); 2698 return; 2699 } 2700 2701 /* 2702 * If the event is in error state, clear that first. 2703 * 2704 * That way, if we see the event in error state below, we know that it 2705 * has gone back into error state, as distinct from the task having 2706 * been scheduled away before the cross-call arrived. 2707 */ 2708 if (event->state == PERF_EVENT_STATE_ERROR) 2709 event->state = PERF_EVENT_STATE_OFF; 2710 raw_spin_unlock_irq(&ctx->lock); 2711 2712 event_function_call(event, __perf_event_enable, NULL); 2713 } 2714 2715 /* 2716 * See perf_event_disable(); 2717 */ 2718 void perf_event_enable(struct perf_event *event) 2719 { 2720 struct perf_event_context *ctx; 2721 2722 ctx = perf_event_ctx_lock(event); 2723 _perf_event_enable(event); 2724 perf_event_ctx_unlock(event, ctx); 2725 } 2726 EXPORT_SYMBOL_GPL(perf_event_enable); 2727 2728 struct stop_event_data { 2729 struct perf_event *event; 2730 unsigned int restart; 2731 }; 2732 2733 static int __perf_event_stop(void *info) 2734 { 2735 struct stop_event_data *sd = info; 2736 struct perf_event *event = sd->event; 2737 2738 /* if it's already INACTIVE, do nothing */ 2739 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2740 return 0; 2741 2742 /* matches smp_wmb() in event_sched_in() */ 2743 smp_rmb(); 2744 2745 /* 2746 * There is a window with interrupts enabled before we get here, 2747 * so we need to check again lest we try to stop another CPU's event. 2748 */ 2749 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2750 return -EAGAIN; 2751 2752 event->pmu->stop(event, PERF_EF_UPDATE); 2753 2754 /* 2755 * May race with the actual stop (through perf_pmu_output_stop()), 2756 * but it is only used for events with AUX ring buffer, and such 2757 * events will refuse to restart because of rb::aux_mmap_count==0, 2758 * see comments in perf_aux_output_begin(). 2759 * 2760 * Since this is happening on an event-local CPU, no trace is lost 2761 * while restarting. 2762 */ 2763 if (sd->restart) 2764 event->pmu->start(event, 0); 2765 2766 return 0; 2767 } 2768 2769 static int perf_event_stop(struct perf_event *event, int restart) 2770 { 2771 struct stop_event_data sd = { 2772 .event = event, 2773 .restart = restart, 2774 }; 2775 int ret = 0; 2776 2777 do { 2778 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2779 return 0; 2780 2781 /* matches smp_wmb() in event_sched_in() */ 2782 smp_rmb(); 2783 2784 /* 2785 * We only want to restart ACTIVE events, so if the event goes 2786 * inactive here (event->oncpu==-1), there's nothing more to do; 2787 * fall through with ret==-ENXIO. 2788 */ 2789 ret = cpu_function_call(READ_ONCE(event->oncpu), 2790 __perf_event_stop, &sd); 2791 } while (ret == -EAGAIN); 2792 2793 return ret; 2794 } 2795 2796 /* 2797 * In order to contain the amount of racy and tricky in the address filter 2798 * configuration management, it is a two part process: 2799 * 2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2801 * we update the addresses of corresponding vmas in 2802 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2803 * (p2) when an event is scheduled in (pmu::add), it calls 2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2805 * if the generation has changed since the previous call. 2806 * 2807 * If (p1) happens while the event is active, we restart it to force (p2). 2808 * 2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2811 * ioctl; 2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2814 * for reading; 2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2816 * of exec. 2817 */ 2818 void perf_event_addr_filters_sync(struct perf_event *event) 2819 { 2820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2821 2822 if (!has_addr_filter(event)) 2823 return; 2824 2825 raw_spin_lock(&ifh->lock); 2826 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2827 event->pmu->addr_filters_sync(event); 2828 event->hw.addr_filters_gen = event->addr_filters_gen; 2829 } 2830 raw_spin_unlock(&ifh->lock); 2831 } 2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2833 2834 static int _perf_event_refresh(struct perf_event *event, int refresh) 2835 { 2836 /* 2837 * not supported on inherited events 2838 */ 2839 if (event->attr.inherit || !is_sampling_event(event)) 2840 return -EINVAL; 2841 2842 atomic_add(refresh, &event->event_limit); 2843 _perf_event_enable(event); 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * See perf_event_disable() 2850 */ 2851 int perf_event_refresh(struct perf_event *event, int refresh) 2852 { 2853 struct perf_event_context *ctx; 2854 int ret; 2855 2856 ctx = perf_event_ctx_lock(event); 2857 ret = _perf_event_refresh(event, refresh); 2858 perf_event_ctx_unlock(event, ctx); 2859 2860 return ret; 2861 } 2862 EXPORT_SYMBOL_GPL(perf_event_refresh); 2863 2864 static int perf_event_modify_breakpoint(struct perf_event *bp, 2865 struct perf_event_attr *attr) 2866 { 2867 int err; 2868 2869 _perf_event_disable(bp); 2870 2871 err = modify_user_hw_breakpoint_check(bp, attr, true); 2872 2873 if (!bp->attr.disabled) 2874 _perf_event_enable(bp); 2875 2876 return err; 2877 } 2878 2879 static int perf_event_modify_attr(struct perf_event *event, 2880 struct perf_event_attr *attr) 2881 { 2882 if (event->attr.type != attr->type) 2883 return -EINVAL; 2884 2885 switch (event->attr.type) { 2886 case PERF_TYPE_BREAKPOINT: 2887 return perf_event_modify_breakpoint(event, attr); 2888 default: 2889 /* Place holder for future additions. */ 2890 return -EOPNOTSUPP; 2891 } 2892 } 2893 2894 static void ctx_sched_out(struct perf_event_context *ctx, 2895 struct perf_cpu_context *cpuctx, 2896 enum event_type_t event_type) 2897 { 2898 struct perf_event *event, *tmp; 2899 int is_active = ctx->is_active; 2900 2901 lockdep_assert_held(&ctx->lock); 2902 2903 if (likely(!ctx->nr_events)) { 2904 /* 2905 * See __perf_remove_from_context(). 2906 */ 2907 WARN_ON_ONCE(ctx->is_active); 2908 if (ctx->task) 2909 WARN_ON_ONCE(cpuctx->task_ctx); 2910 return; 2911 } 2912 2913 ctx->is_active &= ~event_type; 2914 if (!(ctx->is_active & EVENT_ALL)) 2915 ctx->is_active = 0; 2916 2917 if (ctx->task) { 2918 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2919 if (!ctx->is_active) 2920 cpuctx->task_ctx = NULL; 2921 } 2922 2923 /* 2924 * Always update time if it was set; not only when it changes. 2925 * Otherwise we can 'forget' to update time for any but the last 2926 * context we sched out. For example: 2927 * 2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2929 * ctx_sched_out(.event_type = EVENT_PINNED) 2930 * 2931 * would only update time for the pinned events. 2932 */ 2933 if (is_active & EVENT_TIME) { 2934 /* update (and stop) ctx time */ 2935 update_context_time(ctx); 2936 update_cgrp_time_from_cpuctx(cpuctx); 2937 } 2938 2939 is_active ^= ctx->is_active; /* changed bits */ 2940 2941 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2942 return; 2943 2944 perf_pmu_disable(ctx->pmu); 2945 if (is_active & EVENT_PINNED) { 2946 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2947 group_sched_out(event, cpuctx, ctx); 2948 } 2949 2950 if (is_active & EVENT_FLEXIBLE) { 2951 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2952 group_sched_out(event, cpuctx, ctx); 2953 } 2954 perf_pmu_enable(ctx->pmu); 2955 } 2956 2957 /* 2958 * Test whether two contexts are equivalent, i.e. whether they have both been 2959 * cloned from the same version of the same context. 2960 * 2961 * Equivalence is measured using a generation number in the context that is 2962 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2963 * and list_del_event(). 2964 */ 2965 static int context_equiv(struct perf_event_context *ctx1, 2966 struct perf_event_context *ctx2) 2967 { 2968 lockdep_assert_held(&ctx1->lock); 2969 lockdep_assert_held(&ctx2->lock); 2970 2971 /* Pinning disables the swap optimization */ 2972 if (ctx1->pin_count || ctx2->pin_count) 2973 return 0; 2974 2975 /* If ctx1 is the parent of ctx2 */ 2976 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2977 return 1; 2978 2979 /* If ctx2 is the parent of ctx1 */ 2980 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2981 return 1; 2982 2983 /* 2984 * If ctx1 and ctx2 have the same parent; we flatten the parent 2985 * hierarchy, see perf_event_init_context(). 2986 */ 2987 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2988 ctx1->parent_gen == ctx2->parent_gen) 2989 return 1; 2990 2991 /* Unmatched */ 2992 return 0; 2993 } 2994 2995 static void __perf_event_sync_stat(struct perf_event *event, 2996 struct perf_event *next_event) 2997 { 2998 u64 value; 2999 3000 if (!event->attr.inherit_stat) 3001 return; 3002 3003 /* 3004 * Update the event value, we cannot use perf_event_read() 3005 * because we're in the middle of a context switch and have IRQs 3006 * disabled, which upsets smp_call_function_single(), however 3007 * we know the event must be on the current CPU, therefore we 3008 * don't need to use it. 3009 */ 3010 if (event->state == PERF_EVENT_STATE_ACTIVE) 3011 event->pmu->read(event); 3012 3013 perf_event_update_time(event); 3014 3015 /* 3016 * In order to keep per-task stats reliable we need to flip the event 3017 * values when we flip the contexts. 3018 */ 3019 value = local64_read(&next_event->count); 3020 value = local64_xchg(&event->count, value); 3021 local64_set(&next_event->count, value); 3022 3023 swap(event->total_time_enabled, next_event->total_time_enabled); 3024 swap(event->total_time_running, next_event->total_time_running); 3025 3026 /* 3027 * Since we swizzled the values, update the user visible data too. 3028 */ 3029 perf_event_update_userpage(event); 3030 perf_event_update_userpage(next_event); 3031 } 3032 3033 static void perf_event_sync_stat(struct perf_event_context *ctx, 3034 struct perf_event_context *next_ctx) 3035 { 3036 struct perf_event *event, *next_event; 3037 3038 if (!ctx->nr_stat) 3039 return; 3040 3041 update_context_time(ctx); 3042 3043 event = list_first_entry(&ctx->event_list, 3044 struct perf_event, event_entry); 3045 3046 next_event = list_first_entry(&next_ctx->event_list, 3047 struct perf_event, event_entry); 3048 3049 while (&event->event_entry != &ctx->event_list && 3050 &next_event->event_entry != &next_ctx->event_list) { 3051 3052 __perf_event_sync_stat(event, next_event); 3053 3054 event = list_next_entry(event, event_entry); 3055 next_event = list_next_entry(next_event, event_entry); 3056 } 3057 } 3058 3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3060 struct task_struct *next) 3061 { 3062 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3063 struct perf_event_context *next_ctx; 3064 struct perf_event_context *parent, *next_parent; 3065 struct perf_cpu_context *cpuctx; 3066 int do_switch = 1; 3067 3068 if (likely(!ctx)) 3069 return; 3070 3071 cpuctx = __get_cpu_context(ctx); 3072 if (!cpuctx->task_ctx) 3073 return; 3074 3075 rcu_read_lock(); 3076 next_ctx = next->perf_event_ctxp[ctxn]; 3077 if (!next_ctx) 3078 goto unlock; 3079 3080 parent = rcu_dereference(ctx->parent_ctx); 3081 next_parent = rcu_dereference(next_ctx->parent_ctx); 3082 3083 /* If neither context have a parent context; they cannot be clones. */ 3084 if (!parent && !next_parent) 3085 goto unlock; 3086 3087 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3088 /* 3089 * Looks like the two contexts are clones, so we might be 3090 * able to optimize the context switch. We lock both 3091 * contexts and check that they are clones under the 3092 * lock (including re-checking that neither has been 3093 * uncloned in the meantime). It doesn't matter which 3094 * order we take the locks because no other cpu could 3095 * be trying to lock both of these tasks. 3096 */ 3097 raw_spin_lock(&ctx->lock); 3098 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3099 if (context_equiv(ctx, next_ctx)) { 3100 WRITE_ONCE(ctx->task, next); 3101 WRITE_ONCE(next_ctx->task, task); 3102 3103 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3104 3105 /* 3106 * RCU_INIT_POINTER here is safe because we've not 3107 * modified the ctx and the above modification of 3108 * ctx->task and ctx->task_ctx_data are immaterial 3109 * since those values are always verified under 3110 * ctx->lock which we're now holding. 3111 */ 3112 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3113 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3114 3115 do_switch = 0; 3116 3117 perf_event_sync_stat(ctx, next_ctx); 3118 } 3119 raw_spin_unlock(&next_ctx->lock); 3120 raw_spin_unlock(&ctx->lock); 3121 } 3122 unlock: 3123 rcu_read_unlock(); 3124 3125 if (do_switch) { 3126 raw_spin_lock(&ctx->lock); 3127 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3128 raw_spin_unlock(&ctx->lock); 3129 } 3130 } 3131 3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3133 3134 void perf_sched_cb_dec(struct pmu *pmu) 3135 { 3136 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3137 3138 this_cpu_dec(perf_sched_cb_usages); 3139 3140 if (!--cpuctx->sched_cb_usage) 3141 list_del(&cpuctx->sched_cb_entry); 3142 } 3143 3144 3145 void perf_sched_cb_inc(struct pmu *pmu) 3146 { 3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3148 3149 if (!cpuctx->sched_cb_usage++) 3150 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3151 3152 this_cpu_inc(perf_sched_cb_usages); 3153 } 3154 3155 /* 3156 * This function provides the context switch callback to the lower code 3157 * layer. It is invoked ONLY when the context switch callback is enabled. 3158 * 3159 * This callback is relevant even to per-cpu events; for example multi event 3160 * PEBS requires this to provide PID/TID information. This requires we flush 3161 * all queued PEBS records before we context switch to a new task. 3162 */ 3163 static void perf_pmu_sched_task(struct task_struct *prev, 3164 struct task_struct *next, 3165 bool sched_in) 3166 { 3167 struct perf_cpu_context *cpuctx; 3168 struct pmu *pmu; 3169 3170 if (prev == next) 3171 return; 3172 3173 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3174 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3175 3176 if (WARN_ON_ONCE(!pmu->sched_task)) 3177 continue; 3178 3179 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3180 perf_pmu_disable(pmu); 3181 3182 pmu->sched_task(cpuctx->task_ctx, sched_in); 3183 3184 perf_pmu_enable(pmu); 3185 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3186 } 3187 } 3188 3189 static void perf_event_switch(struct task_struct *task, 3190 struct task_struct *next_prev, bool sched_in); 3191 3192 #define for_each_task_context_nr(ctxn) \ 3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3194 3195 /* 3196 * Called from scheduler to remove the events of the current task, 3197 * with interrupts disabled. 3198 * 3199 * We stop each event and update the event value in event->count. 3200 * 3201 * This does not protect us against NMI, but disable() 3202 * sets the disabled bit in the control field of event _before_ 3203 * accessing the event control register. If a NMI hits, then it will 3204 * not restart the event. 3205 */ 3206 void __perf_event_task_sched_out(struct task_struct *task, 3207 struct task_struct *next) 3208 { 3209 int ctxn; 3210 3211 if (__this_cpu_read(perf_sched_cb_usages)) 3212 perf_pmu_sched_task(task, next, false); 3213 3214 if (atomic_read(&nr_switch_events)) 3215 perf_event_switch(task, next, false); 3216 3217 for_each_task_context_nr(ctxn) 3218 perf_event_context_sched_out(task, ctxn, next); 3219 3220 /* 3221 * if cgroup events exist on this CPU, then we need 3222 * to check if we have to switch out PMU state. 3223 * cgroup event are system-wide mode only 3224 */ 3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3226 perf_cgroup_sched_out(task, next); 3227 } 3228 3229 /* 3230 * Called with IRQs disabled 3231 */ 3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3236 } 3237 3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3239 int (*func)(struct perf_event *, void *), void *data) 3240 { 3241 struct perf_event **evt, *evt1, *evt2; 3242 int ret; 3243 3244 evt1 = perf_event_groups_first(groups, -1); 3245 evt2 = perf_event_groups_first(groups, cpu); 3246 3247 while (evt1 || evt2) { 3248 if (evt1 && evt2) { 3249 if (evt1->group_index < evt2->group_index) 3250 evt = &evt1; 3251 else 3252 evt = &evt2; 3253 } else if (evt1) { 3254 evt = &evt1; 3255 } else { 3256 evt = &evt2; 3257 } 3258 3259 ret = func(*evt, data); 3260 if (ret) 3261 return ret; 3262 3263 *evt = perf_event_groups_next(*evt); 3264 } 3265 3266 return 0; 3267 } 3268 3269 struct sched_in_data { 3270 struct perf_event_context *ctx; 3271 struct perf_cpu_context *cpuctx; 3272 int can_add_hw; 3273 }; 3274 3275 static int pinned_sched_in(struct perf_event *event, void *data) 3276 { 3277 struct sched_in_data *sid = data; 3278 3279 if (event->state <= PERF_EVENT_STATE_OFF) 3280 return 0; 3281 3282 if (!event_filter_match(event)) 3283 return 0; 3284 3285 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3286 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3287 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3288 } 3289 3290 /* 3291 * If this pinned group hasn't been scheduled, 3292 * put it in error state. 3293 */ 3294 if (event->state == PERF_EVENT_STATE_INACTIVE) 3295 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3296 3297 return 0; 3298 } 3299 3300 static int flexible_sched_in(struct perf_event *event, void *data) 3301 { 3302 struct sched_in_data *sid = data; 3303 3304 if (event->state <= PERF_EVENT_STATE_OFF) 3305 return 0; 3306 3307 if (!event_filter_match(event)) 3308 return 0; 3309 3310 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3311 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3312 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3313 else 3314 sid->can_add_hw = 0; 3315 } 3316 3317 return 0; 3318 } 3319 3320 static void 3321 ctx_pinned_sched_in(struct perf_event_context *ctx, 3322 struct perf_cpu_context *cpuctx) 3323 { 3324 struct sched_in_data sid = { 3325 .ctx = ctx, 3326 .cpuctx = cpuctx, 3327 .can_add_hw = 1, 3328 }; 3329 3330 visit_groups_merge(&ctx->pinned_groups, 3331 smp_processor_id(), 3332 pinned_sched_in, &sid); 3333 } 3334 3335 static void 3336 ctx_flexible_sched_in(struct perf_event_context *ctx, 3337 struct perf_cpu_context *cpuctx) 3338 { 3339 struct sched_in_data sid = { 3340 .ctx = ctx, 3341 .cpuctx = cpuctx, 3342 .can_add_hw = 1, 3343 }; 3344 3345 visit_groups_merge(&ctx->flexible_groups, 3346 smp_processor_id(), 3347 flexible_sched_in, &sid); 3348 } 3349 3350 static void 3351 ctx_sched_in(struct perf_event_context *ctx, 3352 struct perf_cpu_context *cpuctx, 3353 enum event_type_t event_type, 3354 struct task_struct *task) 3355 { 3356 int is_active = ctx->is_active; 3357 u64 now; 3358 3359 lockdep_assert_held(&ctx->lock); 3360 3361 if (likely(!ctx->nr_events)) 3362 return; 3363 3364 ctx->is_active |= (event_type | EVENT_TIME); 3365 if (ctx->task) { 3366 if (!is_active) 3367 cpuctx->task_ctx = ctx; 3368 else 3369 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3370 } 3371 3372 is_active ^= ctx->is_active; /* changed bits */ 3373 3374 if (is_active & EVENT_TIME) { 3375 /* start ctx time */ 3376 now = perf_clock(); 3377 ctx->timestamp = now; 3378 perf_cgroup_set_timestamp(task, ctx); 3379 } 3380 3381 /* 3382 * First go through the list and put on any pinned groups 3383 * in order to give them the best chance of going on. 3384 */ 3385 if (is_active & EVENT_PINNED) 3386 ctx_pinned_sched_in(ctx, cpuctx); 3387 3388 /* Then walk through the lower prio flexible groups */ 3389 if (is_active & EVENT_FLEXIBLE) 3390 ctx_flexible_sched_in(ctx, cpuctx); 3391 } 3392 3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3394 enum event_type_t event_type, 3395 struct task_struct *task) 3396 { 3397 struct perf_event_context *ctx = &cpuctx->ctx; 3398 3399 ctx_sched_in(ctx, cpuctx, event_type, task); 3400 } 3401 3402 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3403 struct task_struct *task) 3404 { 3405 struct perf_cpu_context *cpuctx; 3406 3407 cpuctx = __get_cpu_context(ctx); 3408 if (cpuctx->task_ctx == ctx) 3409 return; 3410 3411 perf_ctx_lock(cpuctx, ctx); 3412 /* 3413 * We must check ctx->nr_events while holding ctx->lock, such 3414 * that we serialize against perf_install_in_context(). 3415 */ 3416 if (!ctx->nr_events) 3417 goto unlock; 3418 3419 perf_pmu_disable(ctx->pmu); 3420 /* 3421 * We want to keep the following priority order: 3422 * cpu pinned (that don't need to move), task pinned, 3423 * cpu flexible, task flexible. 3424 * 3425 * However, if task's ctx is not carrying any pinned 3426 * events, no need to flip the cpuctx's events around. 3427 */ 3428 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3429 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3430 perf_event_sched_in(cpuctx, ctx, task); 3431 perf_pmu_enable(ctx->pmu); 3432 3433 unlock: 3434 perf_ctx_unlock(cpuctx, ctx); 3435 } 3436 3437 /* 3438 * Called from scheduler to add the events of the current task 3439 * with interrupts disabled. 3440 * 3441 * We restore the event value and then enable it. 3442 * 3443 * This does not protect us against NMI, but enable() 3444 * sets the enabled bit in the control field of event _before_ 3445 * accessing the event control register. If a NMI hits, then it will 3446 * keep the event running. 3447 */ 3448 void __perf_event_task_sched_in(struct task_struct *prev, 3449 struct task_struct *task) 3450 { 3451 struct perf_event_context *ctx; 3452 int ctxn; 3453 3454 /* 3455 * If cgroup events exist on this CPU, then we need to check if we have 3456 * to switch in PMU state; cgroup event are system-wide mode only. 3457 * 3458 * Since cgroup events are CPU events, we must schedule these in before 3459 * we schedule in the task events. 3460 */ 3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3462 perf_cgroup_sched_in(prev, task); 3463 3464 for_each_task_context_nr(ctxn) { 3465 ctx = task->perf_event_ctxp[ctxn]; 3466 if (likely(!ctx)) 3467 continue; 3468 3469 perf_event_context_sched_in(ctx, task); 3470 } 3471 3472 if (atomic_read(&nr_switch_events)) 3473 perf_event_switch(task, prev, true); 3474 3475 if (__this_cpu_read(perf_sched_cb_usages)) 3476 perf_pmu_sched_task(prev, task, true); 3477 } 3478 3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3480 { 3481 u64 frequency = event->attr.sample_freq; 3482 u64 sec = NSEC_PER_SEC; 3483 u64 divisor, dividend; 3484 3485 int count_fls, nsec_fls, frequency_fls, sec_fls; 3486 3487 count_fls = fls64(count); 3488 nsec_fls = fls64(nsec); 3489 frequency_fls = fls64(frequency); 3490 sec_fls = 30; 3491 3492 /* 3493 * We got @count in @nsec, with a target of sample_freq HZ 3494 * the target period becomes: 3495 * 3496 * @count * 10^9 3497 * period = ------------------- 3498 * @nsec * sample_freq 3499 * 3500 */ 3501 3502 /* 3503 * Reduce accuracy by one bit such that @a and @b converge 3504 * to a similar magnitude. 3505 */ 3506 #define REDUCE_FLS(a, b) \ 3507 do { \ 3508 if (a##_fls > b##_fls) { \ 3509 a >>= 1; \ 3510 a##_fls--; \ 3511 } else { \ 3512 b >>= 1; \ 3513 b##_fls--; \ 3514 } \ 3515 } while (0) 3516 3517 /* 3518 * Reduce accuracy until either term fits in a u64, then proceed with 3519 * the other, so that finally we can do a u64/u64 division. 3520 */ 3521 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3522 REDUCE_FLS(nsec, frequency); 3523 REDUCE_FLS(sec, count); 3524 } 3525 3526 if (count_fls + sec_fls > 64) { 3527 divisor = nsec * frequency; 3528 3529 while (count_fls + sec_fls > 64) { 3530 REDUCE_FLS(count, sec); 3531 divisor >>= 1; 3532 } 3533 3534 dividend = count * sec; 3535 } else { 3536 dividend = count * sec; 3537 3538 while (nsec_fls + frequency_fls > 64) { 3539 REDUCE_FLS(nsec, frequency); 3540 dividend >>= 1; 3541 } 3542 3543 divisor = nsec * frequency; 3544 } 3545 3546 if (!divisor) 3547 return dividend; 3548 3549 return div64_u64(dividend, divisor); 3550 } 3551 3552 static DEFINE_PER_CPU(int, perf_throttled_count); 3553 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3554 3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3556 { 3557 struct hw_perf_event *hwc = &event->hw; 3558 s64 period, sample_period; 3559 s64 delta; 3560 3561 period = perf_calculate_period(event, nsec, count); 3562 3563 delta = (s64)(period - hwc->sample_period); 3564 delta = (delta + 7) / 8; /* low pass filter */ 3565 3566 sample_period = hwc->sample_period + delta; 3567 3568 if (!sample_period) 3569 sample_period = 1; 3570 3571 hwc->sample_period = sample_period; 3572 3573 if (local64_read(&hwc->period_left) > 8*sample_period) { 3574 if (disable) 3575 event->pmu->stop(event, PERF_EF_UPDATE); 3576 3577 local64_set(&hwc->period_left, 0); 3578 3579 if (disable) 3580 event->pmu->start(event, PERF_EF_RELOAD); 3581 } 3582 } 3583 3584 /* 3585 * combine freq adjustment with unthrottling to avoid two passes over the 3586 * events. At the same time, make sure, having freq events does not change 3587 * the rate of unthrottling as that would introduce bias. 3588 */ 3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3590 int needs_unthr) 3591 { 3592 struct perf_event *event; 3593 struct hw_perf_event *hwc; 3594 u64 now, period = TICK_NSEC; 3595 s64 delta; 3596 3597 /* 3598 * only need to iterate over all events iff: 3599 * - context have events in frequency mode (needs freq adjust) 3600 * - there are events to unthrottle on this cpu 3601 */ 3602 if (!(ctx->nr_freq || needs_unthr)) 3603 return; 3604 3605 raw_spin_lock(&ctx->lock); 3606 perf_pmu_disable(ctx->pmu); 3607 3608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3609 if (event->state != PERF_EVENT_STATE_ACTIVE) 3610 continue; 3611 3612 if (!event_filter_match(event)) 3613 continue; 3614 3615 perf_pmu_disable(event->pmu); 3616 3617 hwc = &event->hw; 3618 3619 if (hwc->interrupts == MAX_INTERRUPTS) { 3620 hwc->interrupts = 0; 3621 perf_log_throttle(event, 1); 3622 event->pmu->start(event, 0); 3623 } 3624 3625 if (!event->attr.freq || !event->attr.sample_freq) 3626 goto next; 3627 3628 /* 3629 * stop the event and update event->count 3630 */ 3631 event->pmu->stop(event, PERF_EF_UPDATE); 3632 3633 now = local64_read(&event->count); 3634 delta = now - hwc->freq_count_stamp; 3635 hwc->freq_count_stamp = now; 3636 3637 /* 3638 * restart the event 3639 * reload only if value has changed 3640 * we have stopped the event so tell that 3641 * to perf_adjust_period() to avoid stopping it 3642 * twice. 3643 */ 3644 if (delta > 0) 3645 perf_adjust_period(event, period, delta, false); 3646 3647 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3648 next: 3649 perf_pmu_enable(event->pmu); 3650 } 3651 3652 perf_pmu_enable(ctx->pmu); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 3656 /* 3657 * Move @event to the tail of the @ctx's elegible events. 3658 */ 3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3660 { 3661 /* 3662 * Rotate the first entry last of non-pinned groups. Rotation might be 3663 * disabled by the inheritance code. 3664 */ 3665 if (ctx->rotate_disable) 3666 return; 3667 3668 perf_event_groups_delete(&ctx->flexible_groups, event); 3669 perf_event_groups_insert(&ctx->flexible_groups, event); 3670 } 3671 3672 static inline struct perf_event * 3673 ctx_first_active(struct perf_event_context *ctx) 3674 { 3675 return list_first_entry_or_null(&ctx->flexible_active, 3676 struct perf_event, active_list); 3677 } 3678 3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3680 { 3681 struct perf_event *cpu_event = NULL, *task_event = NULL; 3682 bool cpu_rotate = false, task_rotate = false; 3683 struct perf_event_context *ctx = NULL; 3684 3685 /* 3686 * Since we run this from IRQ context, nobody can install new 3687 * events, thus the event count values are stable. 3688 */ 3689 3690 if (cpuctx->ctx.nr_events) { 3691 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3692 cpu_rotate = true; 3693 } 3694 3695 ctx = cpuctx->task_ctx; 3696 if (ctx && ctx->nr_events) { 3697 if (ctx->nr_events != ctx->nr_active) 3698 task_rotate = true; 3699 } 3700 3701 if (!(cpu_rotate || task_rotate)) 3702 return false; 3703 3704 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3705 perf_pmu_disable(cpuctx->ctx.pmu); 3706 3707 if (task_rotate) 3708 task_event = ctx_first_active(ctx); 3709 if (cpu_rotate) 3710 cpu_event = ctx_first_active(&cpuctx->ctx); 3711 3712 /* 3713 * As per the order given at ctx_resched() first 'pop' task flexible 3714 * and then, if needed CPU flexible. 3715 */ 3716 if (task_event || (ctx && cpu_event)) 3717 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3718 if (cpu_event) 3719 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3720 3721 if (task_event) 3722 rotate_ctx(ctx, task_event); 3723 if (cpu_event) 3724 rotate_ctx(&cpuctx->ctx, cpu_event); 3725 3726 perf_event_sched_in(cpuctx, ctx, current); 3727 3728 perf_pmu_enable(cpuctx->ctx.pmu); 3729 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3730 3731 return true; 3732 } 3733 3734 void perf_event_task_tick(void) 3735 { 3736 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3737 struct perf_event_context *ctx, *tmp; 3738 int throttled; 3739 3740 lockdep_assert_irqs_disabled(); 3741 3742 __this_cpu_inc(perf_throttled_seq); 3743 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3745 3746 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3747 perf_adjust_freq_unthr_context(ctx, throttled); 3748 } 3749 3750 static int event_enable_on_exec(struct perf_event *event, 3751 struct perf_event_context *ctx) 3752 { 3753 if (!event->attr.enable_on_exec) 3754 return 0; 3755 3756 event->attr.enable_on_exec = 0; 3757 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3758 return 0; 3759 3760 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3761 3762 return 1; 3763 } 3764 3765 /* 3766 * Enable all of a task's events that have been marked enable-on-exec. 3767 * This expects task == current. 3768 */ 3769 static void perf_event_enable_on_exec(int ctxn) 3770 { 3771 struct perf_event_context *ctx, *clone_ctx = NULL; 3772 enum event_type_t event_type = 0; 3773 struct perf_cpu_context *cpuctx; 3774 struct perf_event *event; 3775 unsigned long flags; 3776 int enabled = 0; 3777 3778 local_irq_save(flags); 3779 ctx = current->perf_event_ctxp[ctxn]; 3780 if (!ctx || !ctx->nr_events) 3781 goto out; 3782 3783 cpuctx = __get_cpu_context(ctx); 3784 perf_ctx_lock(cpuctx, ctx); 3785 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3786 list_for_each_entry(event, &ctx->event_list, event_entry) { 3787 enabled |= event_enable_on_exec(event, ctx); 3788 event_type |= get_event_type(event); 3789 } 3790 3791 /* 3792 * Unclone and reschedule this context if we enabled any event. 3793 */ 3794 if (enabled) { 3795 clone_ctx = unclone_ctx(ctx); 3796 ctx_resched(cpuctx, ctx, event_type); 3797 } else { 3798 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3799 } 3800 perf_ctx_unlock(cpuctx, ctx); 3801 3802 out: 3803 local_irq_restore(flags); 3804 3805 if (clone_ctx) 3806 put_ctx(clone_ctx); 3807 } 3808 3809 struct perf_read_data { 3810 struct perf_event *event; 3811 bool group; 3812 int ret; 3813 }; 3814 3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3816 { 3817 u16 local_pkg, event_pkg; 3818 3819 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3820 int local_cpu = smp_processor_id(); 3821 3822 event_pkg = topology_physical_package_id(event_cpu); 3823 local_pkg = topology_physical_package_id(local_cpu); 3824 3825 if (event_pkg == local_pkg) 3826 return local_cpu; 3827 } 3828 3829 return event_cpu; 3830 } 3831 3832 /* 3833 * Cross CPU call to read the hardware event 3834 */ 3835 static void __perf_event_read(void *info) 3836 { 3837 struct perf_read_data *data = info; 3838 struct perf_event *sub, *event = data->event; 3839 struct perf_event_context *ctx = event->ctx; 3840 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3841 struct pmu *pmu = event->pmu; 3842 3843 /* 3844 * If this is a task context, we need to check whether it is 3845 * the current task context of this cpu. If not it has been 3846 * scheduled out before the smp call arrived. In that case 3847 * event->count would have been updated to a recent sample 3848 * when the event was scheduled out. 3849 */ 3850 if (ctx->task && cpuctx->task_ctx != ctx) 3851 return; 3852 3853 raw_spin_lock(&ctx->lock); 3854 if (ctx->is_active & EVENT_TIME) { 3855 update_context_time(ctx); 3856 update_cgrp_time_from_event(event); 3857 } 3858 3859 perf_event_update_time(event); 3860 if (data->group) 3861 perf_event_update_sibling_time(event); 3862 3863 if (event->state != PERF_EVENT_STATE_ACTIVE) 3864 goto unlock; 3865 3866 if (!data->group) { 3867 pmu->read(event); 3868 data->ret = 0; 3869 goto unlock; 3870 } 3871 3872 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3873 3874 pmu->read(event); 3875 3876 for_each_sibling_event(sub, event) { 3877 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3878 /* 3879 * Use sibling's PMU rather than @event's since 3880 * sibling could be on different (eg: software) PMU. 3881 */ 3882 sub->pmu->read(sub); 3883 } 3884 } 3885 3886 data->ret = pmu->commit_txn(pmu); 3887 3888 unlock: 3889 raw_spin_unlock(&ctx->lock); 3890 } 3891 3892 static inline u64 perf_event_count(struct perf_event *event) 3893 { 3894 return local64_read(&event->count) + atomic64_read(&event->child_count); 3895 } 3896 3897 /* 3898 * NMI-safe method to read a local event, that is an event that 3899 * is: 3900 * - either for the current task, or for this CPU 3901 * - does not have inherit set, for inherited task events 3902 * will not be local and we cannot read them atomically 3903 * - must not have a pmu::count method 3904 */ 3905 int perf_event_read_local(struct perf_event *event, u64 *value, 3906 u64 *enabled, u64 *running) 3907 { 3908 unsigned long flags; 3909 int ret = 0; 3910 3911 /* 3912 * Disabling interrupts avoids all counter scheduling (context 3913 * switches, timer based rotation and IPIs). 3914 */ 3915 local_irq_save(flags); 3916 3917 /* 3918 * It must not be an event with inherit set, we cannot read 3919 * all child counters from atomic context. 3920 */ 3921 if (event->attr.inherit) { 3922 ret = -EOPNOTSUPP; 3923 goto out; 3924 } 3925 3926 /* If this is a per-task event, it must be for current */ 3927 if ((event->attach_state & PERF_ATTACH_TASK) && 3928 event->hw.target != current) { 3929 ret = -EINVAL; 3930 goto out; 3931 } 3932 3933 /* If this is a per-CPU event, it must be for this CPU */ 3934 if (!(event->attach_state & PERF_ATTACH_TASK) && 3935 event->cpu != smp_processor_id()) { 3936 ret = -EINVAL; 3937 goto out; 3938 } 3939 3940 /* If this is a pinned event it must be running on this CPU */ 3941 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3942 ret = -EBUSY; 3943 goto out; 3944 } 3945 3946 /* 3947 * If the event is currently on this CPU, its either a per-task event, 3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3949 * oncpu == -1). 3950 */ 3951 if (event->oncpu == smp_processor_id()) 3952 event->pmu->read(event); 3953 3954 *value = local64_read(&event->count); 3955 if (enabled || running) { 3956 u64 now = event->shadow_ctx_time + perf_clock(); 3957 u64 __enabled, __running; 3958 3959 __perf_update_times(event, now, &__enabled, &__running); 3960 if (enabled) 3961 *enabled = __enabled; 3962 if (running) 3963 *running = __running; 3964 } 3965 out: 3966 local_irq_restore(flags); 3967 3968 return ret; 3969 } 3970 3971 static int perf_event_read(struct perf_event *event, bool group) 3972 { 3973 enum perf_event_state state = READ_ONCE(event->state); 3974 int event_cpu, ret = 0; 3975 3976 /* 3977 * If event is enabled and currently active on a CPU, update the 3978 * value in the event structure: 3979 */ 3980 again: 3981 if (state == PERF_EVENT_STATE_ACTIVE) { 3982 struct perf_read_data data; 3983 3984 /* 3985 * Orders the ->state and ->oncpu loads such that if we see 3986 * ACTIVE we must also see the right ->oncpu. 3987 * 3988 * Matches the smp_wmb() from event_sched_in(). 3989 */ 3990 smp_rmb(); 3991 3992 event_cpu = READ_ONCE(event->oncpu); 3993 if ((unsigned)event_cpu >= nr_cpu_ids) 3994 return 0; 3995 3996 data = (struct perf_read_data){ 3997 .event = event, 3998 .group = group, 3999 .ret = 0, 4000 }; 4001 4002 preempt_disable(); 4003 event_cpu = __perf_event_read_cpu(event, event_cpu); 4004 4005 /* 4006 * Purposely ignore the smp_call_function_single() return 4007 * value. 4008 * 4009 * If event_cpu isn't a valid CPU it means the event got 4010 * scheduled out and that will have updated the event count. 4011 * 4012 * Therefore, either way, we'll have an up-to-date event count 4013 * after this. 4014 */ 4015 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4016 preempt_enable(); 4017 ret = data.ret; 4018 4019 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4020 struct perf_event_context *ctx = event->ctx; 4021 unsigned long flags; 4022 4023 raw_spin_lock_irqsave(&ctx->lock, flags); 4024 state = event->state; 4025 if (state != PERF_EVENT_STATE_INACTIVE) { 4026 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4027 goto again; 4028 } 4029 4030 /* 4031 * May read while context is not active (e.g., thread is 4032 * blocked), in that case we cannot update context time 4033 */ 4034 if (ctx->is_active & EVENT_TIME) { 4035 update_context_time(ctx); 4036 update_cgrp_time_from_event(event); 4037 } 4038 4039 perf_event_update_time(event); 4040 if (group) 4041 perf_event_update_sibling_time(event); 4042 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4043 } 4044 4045 return ret; 4046 } 4047 4048 /* 4049 * Initialize the perf_event context in a task_struct: 4050 */ 4051 static void __perf_event_init_context(struct perf_event_context *ctx) 4052 { 4053 raw_spin_lock_init(&ctx->lock); 4054 mutex_init(&ctx->mutex); 4055 INIT_LIST_HEAD(&ctx->active_ctx_list); 4056 perf_event_groups_init(&ctx->pinned_groups); 4057 perf_event_groups_init(&ctx->flexible_groups); 4058 INIT_LIST_HEAD(&ctx->event_list); 4059 INIT_LIST_HEAD(&ctx->pinned_active); 4060 INIT_LIST_HEAD(&ctx->flexible_active); 4061 atomic_set(&ctx->refcount, 1); 4062 } 4063 4064 static struct perf_event_context * 4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4066 { 4067 struct perf_event_context *ctx; 4068 4069 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4070 if (!ctx) 4071 return NULL; 4072 4073 __perf_event_init_context(ctx); 4074 if (task) { 4075 ctx->task = task; 4076 get_task_struct(task); 4077 } 4078 ctx->pmu = pmu; 4079 4080 return ctx; 4081 } 4082 4083 static struct task_struct * 4084 find_lively_task_by_vpid(pid_t vpid) 4085 { 4086 struct task_struct *task; 4087 4088 rcu_read_lock(); 4089 if (!vpid) 4090 task = current; 4091 else 4092 task = find_task_by_vpid(vpid); 4093 if (task) 4094 get_task_struct(task); 4095 rcu_read_unlock(); 4096 4097 if (!task) 4098 return ERR_PTR(-ESRCH); 4099 4100 return task; 4101 } 4102 4103 /* 4104 * Returns a matching context with refcount and pincount. 4105 */ 4106 static struct perf_event_context * 4107 find_get_context(struct pmu *pmu, struct task_struct *task, 4108 struct perf_event *event) 4109 { 4110 struct perf_event_context *ctx, *clone_ctx = NULL; 4111 struct perf_cpu_context *cpuctx; 4112 void *task_ctx_data = NULL; 4113 unsigned long flags; 4114 int ctxn, err; 4115 int cpu = event->cpu; 4116 4117 if (!task) { 4118 /* Must be root to operate on a CPU event: */ 4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4120 return ERR_PTR(-EACCES); 4121 4122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4123 ctx = &cpuctx->ctx; 4124 get_ctx(ctx); 4125 ++ctx->pin_count; 4126 4127 return ctx; 4128 } 4129 4130 err = -EINVAL; 4131 ctxn = pmu->task_ctx_nr; 4132 if (ctxn < 0) 4133 goto errout; 4134 4135 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4136 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4137 if (!task_ctx_data) { 4138 err = -ENOMEM; 4139 goto errout; 4140 } 4141 } 4142 4143 retry: 4144 ctx = perf_lock_task_context(task, ctxn, &flags); 4145 if (ctx) { 4146 clone_ctx = unclone_ctx(ctx); 4147 ++ctx->pin_count; 4148 4149 if (task_ctx_data && !ctx->task_ctx_data) { 4150 ctx->task_ctx_data = task_ctx_data; 4151 task_ctx_data = NULL; 4152 } 4153 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4154 4155 if (clone_ctx) 4156 put_ctx(clone_ctx); 4157 } else { 4158 ctx = alloc_perf_context(pmu, task); 4159 err = -ENOMEM; 4160 if (!ctx) 4161 goto errout; 4162 4163 if (task_ctx_data) { 4164 ctx->task_ctx_data = task_ctx_data; 4165 task_ctx_data = NULL; 4166 } 4167 4168 err = 0; 4169 mutex_lock(&task->perf_event_mutex); 4170 /* 4171 * If it has already passed perf_event_exit_task(). 4172 * we must see PF_EXITING, it takes this mutex too. 4173 */ 4174 if (task->flags & PF_EXITING) 4175 err = -ESRCH; 4176 else if (task->perf_event_ctxp[ctxn]) 4177 err = -EAGAIN; 4178 else { 4179 get_ctx(ctx); 4180 ++ctx->pin_count; 4181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4182 } 4183 mutex_unlock(&task->perf_event_mutex); 4184 4185 if (unlikely(err)) { 4186 put_ctx(ctx); 4187 4188 if (err == -EAGAIN) 4189 goto retry; 4190 goto errout; 4191 } 4192 } 4193 4194 kfree(task_ctx_data); 4195 return ctx; 4196 4197 errout: 4198 kfree(task_ctx_data); 4199 return ERR_PTR(err); 4200 } 4201 4202 static void perf_event_free_filter(struct perf_event *event); 4203 static void perf_event_free_bpf_prog(struct perf_event *event); 4204 4205 static void free_event_rcu(struct rcu_head *head) 4206 { 4207 struct perf_event *event; 4208 4209 event = container_of(head, struct perf_event, rcu_head); 4210 if (event->ns) 4211 put_pid_ns(event->ns); 4212 perf_event_free_filter(event); 4213 kfree(event); 4214 } 4215 4216 static void ring_buffer_attach(struct perf_event *event, 4217 struct ring_buffer *rb); 4218 4219 static void detach_sb_event(struct perf_event *event) 4220 { 4221 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4222 4223 raw_spin_lock(&pel->lock); 4224 list_del_rcu(&event->sb_list); 4225 raw_spin_unlock(&pel->lock); 4226 } 4227 4228 static bool is_sb_event(struct perf_event *event) 4229 { 4230 struct perf_event_attr *attr = &event->attr; 4231 4232 if (event->parent) 4233 return false; 4234 4235 if (event->attach_state & PERF_ATTACH_TASK) 4236 return false; 4237 4238 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4239 attr->comm || attr->comm_exec || 4240 attr->task || attr->ksymbol || 4241 attr->context_switch) 4242 return true; 4243 return false; 4244 } 4245 4246 static void unaccount_pmu_sb_event(struct perf_event *event) 4247 { 4248 if (is_sb_event(event)) 4249 detach_sb_event(event); 4250 } 4251 4252 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4253 { 4254 if (event->parent) 4255 return; 4256 4257 if (is_cgroup_event(event)) 4258 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4259 } 4260 4261 #ifdef CONFIG_NO_HZ_FULL 4262 static DEFINE_SPINLOCK(nr_freq_lock); 4263 #endif 4264 4265 static void unaccount_freq_event_nohz(void) 4266 { 4267 #ifdef CONFIG_NO_HZ_FULL 4268 spin_lock(&nr_freq_lock); 4269 if (atomic_dec_and_test(&nr_freq_events)) 4270 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4271 spin_unlock(&nr_freq_lock); 4272 #endif 4273 } 4274 4275 static void unaccount_freq_event(void) 4276 { 4277 if (tick_nohz_full_enabled()) 4278 unaccount_freq_event_nohz(); 4279 else 4280 atomic_dec(&nr_freq_events); 4281 } 4282 4283 static void unaccount_event(struct perf_event *event) 4284 { 4285 bool dec = false; 4286 4287 if (event->parent) 4288 return; 4289 4290 if (event->attach_state & PERF_ATTACH_TASK) 4291 dec = true; 4292 if (event->attr.mmap || event->attr.mmap_data) 4293 atomic_dec(&nr_mmap_events); 4294 if (event->attr.comm) 4295 atomic_dec(&nr_comm_events); 4296 if (event->attr.namespaces) 4297 atomic_dec(&nr_namespaces_events); 4298 if (event->attr.task) 4299 atomic_dec(&nr_task_events); 4300 if (event->attr.freq) 4301 unaccount_freq_event(); 4302 if (event->attr.context_switch) { 4303 dec = true; 4304 atomic_dec(&nr_switch_events); 4305 } 4306 if (is_cgroup_event(event)) 4307 dec = true; 4308 if (has_branch_stack(event)) 4309 dec = true; 4310 if (event->attr.ksymbol) 4311 atomic_dec(&nr_ksymbol_events); 4312 if (event->attr.bpf_event) 4313 atomic_dec(&nr_bpf_events); 4314 4315 if (dec) { 4316 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4317 schedule_delayed_work(&perf_sched_work, HZ); 4318 } 4319 4320 unaccount_event_cpu(event, event->cpu); 4321 4322 unaccount_pmu_sb_event(event); 4323 } 4324 4325 static void perf_sched_delayed(struct work_struct *work) 4326 { 4327 mutex_lock(&perf_sched_mutex); 4328 if (atomic_dec_and_test(&perf_sched_count)) 4329 static_branch_disable(&perf_sched_events); 4330 mutex_unlock(&perf_sched_mutex); 4331 } 4332 4333 /* 4334 * The following implement mutual exclusion of events on "exclusive" pmus 4335 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4336 * at a time, so we disallow creating events that might conflict, namely: 4337 * 4338 * 1) cpu-wide events in the presence of per-task events, 4339 * 2) per-task events in the presence of cpu-wide events, 4340 * 3) two matching events on the same context. 4341 * 4342 * The former two cases are handled in the allocation path (perf_event_alloc(), 4343 * _free_event()), the latter -- before the first perf_install_in_context(). 4344 */ 4345 static int exclusive_event_init(struct perf_event *event) 4346 { 4347 struct pmu *pmu = event->pmu; 4348 4349 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4350 return 0; 4351 4352 /* 4353 * Prevent co-existence of per-task and cpu-wide events on the 4354 * same exclusive pmu. 4355 * 4356 * Negative pmu::exclusive_cnt means there are cpu-wide 4357 * events on this "exclusive" pmu, positive means there are 4358 * per-task events. 4359 * 4360 * Since this is called in perf_event_alloc() path, event::ctx 4361 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4362 * to mean "per-task event", because unlike other attach states it 4363 * never gets cleared. 4364 */ 4365 if (event->attach_state & PERF_ATTACH_TASK) { 4366 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4367 return -EBUSY; 4368 } else { 4369 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4370 return -EBUSY; 4371 } 4372 4373 return 0; 4374 } 4375 4376 static void exclusive_event_destroy(struct perf_event *event) 4377 { 4378 struct pmu *pmu = event->pmu; 4379 4380 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4381 return; 4382 4383 /* see comment in exclusive_event_init() */ 4384 if (event->attach_state & PERF_ATTACH_TASK) 4385 atomic_dec(&pmu->exclusive_cnt); 4386 else 4387 atomic_inc(&pmu->exclusive_cnt); 4388 } 4389 4390 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4391 { 4392 if ((e1->pmu == e2->pmu) && 4393 (e1->cpu == e2->cpu || 4394 e1->cpu == -1 || 4395 e2->cpu == -1)) 4396 return true; 4397 return false; 4398 } 4399 4400 /* Called under the same ctx::mutex as perf_install_in_context() */ 4401 static bool exclusive_event_installable(struct perf_event *event, 4402 struct perf_event_context *ctx) 4403 { 4404 struct perf_event *iter_event; 4405 struct pmu *pmu = event->pmu; 4406 4407 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4408 return true; 4409 4410 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4411 if (exclusive_event_match(iter_event, event)) 4412 return false; 4413 } 4414 4415 return true; 4416 } 4417 4418 static void perf_addr_filters_splice(struct perf_event *event, 4419 struct list_head *head); 4420 4421 static void _free_event(struct perf_event *event) 4422 { 4423 irq_work_sync(&event->pending); 4424 4425 unaccount_event(event); 4426 4427 if (event->rb) { 4428 /* 4429 * Can happen when we close an event with re-directed output. 4430 * 4431 * Since we have a 0 refcount, perf_mmap_close() will skip 4432 * over us; possibly making our ring_buffer_put() the last. 4433 */ 4434 mutex_lock(&event->mmap_mutex); 4435 ring_buffer_attach(event, NULL); 4436 mutex_unlock(&event->mmap_mutex); 4437 } 4438 4439 if (is_cgroup_event(event)) 4440 perf_detach_cgroup(event); 4441 4442 if (!event->parent) { 4443 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4444 put_callchain_buffers(); 4445 } 4446 4447 perf_event_free_bpf_prog(event); 4448 perf_addr_filters_splice(event, NULL); 4449 kfree(event->addr_filters_offs); 4450 4451 if (event->destroy) 4452 event->destroy(event); 4453 4454 if (event->ctx) 4455 put_ctx(event->ctx); 4456 4457 if (event->hw.target) 4458 put_task_struct(event->hw.target); 4459 4460 exclusive_event_destroy(event); 4461 module_put(event->pmu->module); 4462 4463 call_rcu(&event->rcu_head, free_event_rcu); 4464 } 4465 4466 /* 4467 * Used to free events which have a known refcount of 1, such as in error paths 4468 * where the event isn't exposed yet and inherited events. 4469 */ 4470 static void free_event(struct perf_event *event) 4471 { 4472 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4473 "unexpected event refcount: %ld; ptr=%p\n", 4474 atomic_long_read(&event->refcount), event)) { 4475 /* leak to avoid use-after-free */ 4476 return; 4477 } 4478 4479 _free_event(event); 4480 } 4481 4482 /* 4483 * Remove user event from the owner task. 4484 */ 4485 static void perf_remove_from_owner(struct perf_event *event) 4486 { 4487 struct task_struct *owner; 4488 4489 rcu_read_lock(); 4490 /* 4491 * Matches the smp_store_release() in perf_event_exit_task(). If we 4492 * observe !owner it means the list deletion is complete and we can 4493 * indeed free this event, otherwise we need to serialize on 4494 * owner->perf_event_mutex. 4495 */ 4496 owner = READ_ONCE(event->owner); 4497 if (owner) { 4498 /* 4499 * Since delayed_put_task_struct() also drops the last 4500 * task reference we can safely take a new reference 4501 * while holding the rcu_read_lock(). 4502 */ 4503 get_task_struct(owner); 4504 } 4505 rcu_read_unlock(); 4506 4507 if (owner) { 4508 /* 4509 * If we're here through perf_event_exit_task() we're already 4510 * holding ctx->mutex which would be an inversion wrt. the 4511 * normal lock order. 4512 * 4513 * However we can safely take this lock because its the child 4514 * ctx->mutex. 4515 */ 4516 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4517 4518 /* 4519 * We have to re-check the event->owner field, if it is cleared 4520 * we raced with perf_event_exit_task(), acquiring the mutex 4521 * ensured they're done, and we can proceed with freeing the 4522 * event. 4523 */ 4524 if (event->owner) { 4525 list_del_init(&event->owner_entry); 4526 smp_store_release(&event->owner, NULL); 4527 } 4528 mutex_unlock(&owner->perf_event_mutex); 4529 put_task_struct(owner); 4530 } 4531 } 4532 4533 static void put_event(struct perf_event *event) 4534 { 4535 if (!atomic_long_dec_and_test(&event->refcount)) 4536 return; 4537 4538 _free_event(event); 4539 } 4540 4541 /* 4542 * Kill an event dead; while event:refcount will preserve the event 4543 * object, it will not preserve its functionality. Once the last 'user' 4544 * gives up the object, we'll destroy the thing. 4545 */ 4546 int perf_event_release_kernel(struct perf_event *event) 4547 { 4548 struct perf_event_context *ctx = event->ctx; 4549 struct perf_event *child, *tmp; 4550 LIST_HEAD(free_list); 4551 4552 /* 4553 * If we got here through err_file: fput(event_file); we will not have 4554 * attached to a context yet. 4555 */ 4556 if (!ctx) { 4557 WARN_ON_ONCE(event->attach_state & 4558 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4559 goto no_ctx; 4560 } 4561 4562 if (!is_kernel_event(event)) 4563 perf_remove_from_owner(event); 4564 4565 ctx = perf_event_ctx_lock(event); 4566 WARN_ON_ONCE(ctx->parent_ctx); 4567 perf_remove_from_context(event, DETACH_GROUP); 4568 4569 raw_spin_lock_irq(&ctx->lock); 4570 /* 4571 * Mark this event as STATE_DEAD, there is no external reference to it 4572 * anymore. 4573 * 4574 * Anybody acquiring event->child_mutex after the below loop _must_ 4575 * also see this, most importantly inherit_event() which will avoid 4576 * placing more children on the list. 4577 * 4578 * Thus this guarantees that we will in fact observe and kill _ALL_ 4579 * child events. 4580 */ 4581 event->state = PERF_EVENT_STATE_DEAD; 4582 raw_spin_unlock_irq(&ctx->lock); 4583 4584 perf_event_ctx_unlock(event, ctx); 4585 4586 again: 4587 mutex_lock(&event->child_mutex); 4588 list_for_each_entry(child, &event->child_list, child_list) { 4589 4590 /* 4591 * Cannot change, child events are not migrated, see the 4592 * comment with perf_event_ctx_lock_nested(). 4593 */ 4594 ctx = READ_ONCE(child->ctx); 4595 /* 4596 * Since child_mutex nests inside ctx::mutex, we must jump 4597 * through hoops. We start by grabbing a reference on the ctx. 4598 * 4599 * Since the event cannot get freed while we hold the 4600 * child_mutex, the context must also exist and have a !0 4601 * reference count. 4602 */ 4603 get_ctx(ctx); 4604 4605 /* 4606 * Now that we have a ctx ref, we can drop child_mutex, and 4607 * acquire ctx::mutex without fear of it going away. Then we 4608 * can re-acquire child_mutex. 4609 */ 4610 mutex_unlock(&event->child_mutex); 4611 mutex_lock(&ctx->mutex); 4612 mutex_lock(&event->child_mutex); 4613 4614 /* 4615 * Now that we hold ctx::mutex and child_mutex, revalidate our 4616 * state, if child is still the first entry, it didn't get freed 4617 * and we can continue doing so. 4618 */ 4619 tmp = list_first_entry_or_null(&event->child_list, 4620 struct perf_event, child_list); 4621 if (tmp == child) { 4622 perf_remove_from_context(child, DETACH_GROUP); 4623 list_move(&child->child_list, &free_list); 4624 /* 4625 * This matches the refcount bump in inherit_event(); 4626 * this can't be the last reference. 4627 */ 4628 put_event(event); 4629 } 4630 4631 mutex_unlock(&event->child_mutex); 4632 mutex_unlock(&ctx->mutex); 4633 put_ctx(ctx); 4634 goto again; 4635 } 4636 mutex_unlock(&event->child_mutex); 4637 4638 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4639 list_del(&child->child_list); 4640 free_event(child); 4641 } 4642 4643 no_ctx: 4644 put_event(event); /* Must be the 'last' reference */ 4645 return 0; 4646 } 4647 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4648 4649 /* 4650 * Called when the last reference to the file is gone. 4651 */ 4652 static int perf_release(struct inode *inode, struct file *file) 4653 { 4654 perf_event_release_kernel(file->private_data); 4655 return 0; 4656 } 4657 4658 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4659 { 4660 struct perf_event *child; 4661 u64 total = 0; 4662 4663 *enabled = 0; 4664 *running = 0; 4665 4666 mutex_lock(&event->child_mutex); 4667 4668 (void)perf_event_read(event, false); 4669 total += perf_event_count(event); 4670 4671 *enabled += event->total_time_enabled + 4672 atomic64_read(&event->child_total_time_enabled); 4673 *running += event->total_time_running + 4674 atomic64_read(&event->child_total_time_running); 4675 4676 list_for_each_entry(child, &event->child_list, child_list) { 4677 (void)perf_event_read(child, false); 4678 total += perf_event_count(child); 4679 *enabled += child->total_time_enabled; 4680 *running += child->total_time_running; 4681 } 4682 mutex_unlock(&event->child_mutex); 4683 4684 return total; 4685 } 4686 4687 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4688 { 4689 struct perf_event_context *ctx; 4690 u64 count; 4691 4692 ctx = perf_event_ctx_lock(event); 4693 count = __perf_event_read_value(event, enabled, running); 4694 perf_event_ctx_unlock(event, ctx); 4695 4696 return count; 4697 } 4698 EXPORT_SYMBOL_GPL(perf_event_read_value); 4699 4700 static int __perf_read_group_add(struct perf_event *leader, 4701 u64 read_format, u64 *values) 4702 { 4703 struct perf_event_context *ctx = leader->ctx; 4704 struct perf_event *sub; 4705 unsigned long flags; 4706 int n = 1; /* skip @nr */ 4707 int ret; 4708 4709 ret = perf_event_read(leader, true); 4710 if (ret) 4711 return ret; 4712 4713 raw_spin_lock_irqsave(&ctx->lock, flags); 4714 4715 /* 4716 * Since we co-schedule groups, {enabled,running} times of siblings 4717 * will be identical to those of the leader, so we only publish one 4718 * set. 4719 */ 4720 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4721 values[n++] += leader->total_time_enabled + 4722 atomic64_read(&leader->child_total_time_enabled); 4723 } 4724 4725 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4726 values[n++] += leader->total_time_running + 4727 atomic64_read(&leader->child_total_time_running); 4728 } 4729 4730 /* 4731 * Write {count,id} tuples for every sibling. 4732 */ 4733 values[n++] += perf_event_count(leader); 4734 if (read_format & PERF_FORMAT_ID) 4735 values[n++] = primary_event_id(leader); 4736 4737 for_each_sibling_event(sub, leader) { 4738 values[n++] += perf_event_count(sub); 4739 if (read_format & PERF_FORMAT_ID) 4740 values[n++] = primary_event_id(sub); 4741 } 4742 4743 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4744 return 0; 4745 } 4746 4747 static int perf_read_group(struct perf_event *event, 4748 u64 read_format, char __user *buf) 4749 { 4750 struct perf_event *leader = event->group_leader, *child; 4751 struct perf_event_context *ctx = leader->ctx; 4752 int ret; 4753 u64 *values; 4754 4755 lockdep_assert_held(&ctx->mutex); 4756 4757 values = kzalloc(event->read_size, GFP_KERNEL); 4758 if (!values) 4759 return -ENOMEM; 4760 4761 values[0] = 1 + leader->nr_siblings; 4762 4763 /* 4764 * By locking the child_mutex of the leader we effectively 4765 * lock the child list of all siblings.. XXX explain how. 4766 */ 4767 mutex_lock(&leader->child_mutex); 4768 4769 ret = __perf_read_group_add(leader, read_format, values); 4770 if (ret) 4771 goto unlock; 4772 4773 list_for_each_entry(child, &leader->child_list, child_list) { 4774 ret = __perf_read_group_add(child, read_format, values); 4775 if (ret) 4776 goto unlock; 4777 } 4778 4779 mutex_unlock(&leader->child_mutex); 4780 4781 ret = event->read_size; 4782 if (copy_to_user(buf, values, event->read_size)) 4783 ret = -EFAULT; 4784 goto out; 4785 4786 unlock: 4787 mutex_unlock(&leader->child_mutex); 4788 out: 4789 kfree(values); 4790 return ret; 4791 } 4792 4793 static int perf_read_one(struct perf_event *event, 4794 u64 read_format, char __user *buf) 4795 { 4796 u64 enabled, running; 4797 u64 values[4]; 4798 int n = 0; 4799 4800 values[n++] = __perf_event_read_value(event, &enabled, &running); 4801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4802 values[n++] = enabled; 4803 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4804 values[n++] = running; 4805 if (read_format & PERF_FORMAT_ID) 4806 values[n++] = primary_event_id(event); 4807 4808 if (copy_to_user(buf, values, n * sizeof(u64))) 4809 return -EFAULT; 4810 4811 return n * sizeof(u64); 4812 } 4813 4814 static bool is_event_hup(struct perf_event *event) 4815 { 4816 bool no_children; 4817 4818 if (event->state > PERF_EVENT_STATE_EXIT) 4819 return false; 4820 4821 mutex_lock(&event->child_mutex); 4822 no_children = list_empty(&event->child_list); 4823 mutex_unlock(&event->child_mutex); 4824 return no_children; 4825 } 4826 4827 /* 4828 * Read the performance event - simple non blocking version for now 4829 */ 4830 static ssize_t 4831 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4832 { 4833 u64 read_format = event->attr.read_format; 4834 int ret; 4835 4836 /* 4837 * Return end-of-file for a read on an event that is in 4838 * error state (i.e. because it was pinned but it couldn't be 4839 * scheduled on to the CPU at some point). 4840 */ 4841 if (event->state == PERF_EVENT_STATE_ERROR) 4842 return 0; 4843 4844 if (count < event->read_size) 4845 return -ENOSPC; 4846 4847 WARN_ON_ONCE(event->ctx->parent_ctx); 4848 if (read_format & PERF_FORMAT_GROUP) 4849 ret = perf_read_group(event, read_format, buf); 4850 else 4851 ret = perf_read_one(event, read_format, buf); 4852 4853 return ret; 4854 } 4855 4856 static ssize_t 4857 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4858 { 4859 struct perf_event *event = file->private_data; 4860 struct perf_event_context *ctx; 4861 int ret; 4862 4863 ctx = perf_event_ctx_lock(event); 4864 ret = __perf_read(event, buf, count); 4865 perf_event_ctx_unlock(event, ctx); 4866 4867 return ret; 4868 } 4869 4870 static __poll_t perf_poll(struct file *file, poll_table *wait) 4871 { 4872 struct perf_event *event = file->private_data; 4873 struct ring_buffer *rb; 4874 __poll_t events = EPOLLHUP; 4875 4876 poll_wait(file, &event->waitq, wait); 4877 4878 if (is_event_hup(event)) 4879 return events; 4880 4881 /* 4882 * Pin the event->rb by taking event->mmap_mutex; otherwise 4883 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4884 */ 4885 mutex_lock(&event->mmap_mutex); 4886 rb = event->rb; 4887 if (rb) 4888 events = atomic_xchg(&rb->poll, 0); 4889 mutex_unlock(&event->mmap_mutex); 4890 return events; 4891 } 4892 4893 static void _perf_event_reset(struct perf_event *event) 4894 { 4895 (void)perf_event_read(event, false); 4896 local64_set(&event->count, 0); 4897 perf_event_update_userpage(event); 4898 } 4899 4900 /* 4901 * Holding the top-level event's child_mutex means that any 4902 * descendant process that has inherited this event will block 4903 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4904 * task existence requirements of perf_event_enable/disable. 4905 */ 4906 static void perf_event_for_each_child(struct perf_event *event, 4907 void (*func)(struct perf_event *)) 4908 { 4909 struct perf_event *child; 4910 4911 WARN_ON_ONCE(event->ctx->parent_ctx); 4912 4913 mutex_lock(&event->child_mutex); 4914 func(event); 4915 list_for_each_entry(child, &event->child_list, child_list) 4916 func(child); 4917 mutex_unlock(&event->child_mutex); 4918 } 4919 4920 static void perf_event_for_each(struct perf_event *event, 4921 void (*func)(struct perf_event *)) 4922 { 4923 struct perf_event_context *ctx = event->ctx; 4924 struct perf_event *sibling; 4925 4926 lockdep_assert_held(&ctx->mutex); 4927 4928 event = event->group_leader; 4929 4930 perf_event_for_each_child(event, func); 4931 for_each_sibling_event(sibling, event) 4932 perf_event_for_each_child(sibling, func); 4933 } 4934 4935 static void __perf_event_period(struct perf_event *event, 4936 struct perf_cpu_context *cpuctx, 4937 struct perf_event_context *ctx, 4938 void *info) 4939 { 4940 u64 value = *((u64 *)info); 4941 bool active; 4942 4943 if (event->attr.freq) { 4944 event->attr.sample_freq = value; 4945 } else { 4946 event->attr.sample_period = value; 4947 event->hw.sample_period = value; 4948 } 4949 4950 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4951 if (active) { 4952 perf_pmu_disable(ctx->pmu); 4953 /* 4954 * We could be throttled; unthrottle now to avoid the tick 4955 * trying to unthrottle while we already re-started the event. 4956 */ 4957 if (event->hw.interrupts == MAX_INTERRUPTS) { 4958 event->hw.interrupts = 0; 4959 perf_log_throttle(event, 1); 4960 } 4961 event->pmu->stop(event, PERF_EF_UPDATE); 4962 } 4963 4964 local64_set(&event->hw.period_left, 0); 4965 4966 if (active) { 4967 event->pmu->start(event, PERF_EF_RELOAD); 4968 perf_pmu_enable(ctx->pmu); 4969 } 4970 } 4971 4972 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4973 { 4974 u64 value; 4975 4976 if (!is_sampling_event(event)) 4977 return -EINVAL; 4978 4979 if (copy_from_user(&value, arg, sizeof(value))) 4980 return -EFAULT; 4981 4982 if (!value) 4983 return -EINVAL; 4984 4985 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4986 return -EINVAL; 4987 4988 event_function_call(event, __perf_event_period, &value); 4989 4990 return 0; 4991 } 4992 4993 static const struct file_operations perf_fops; 4994 4995 static inline int perf_fget_light(int fd, struct fd *p) 4996 { 4997 struct fd f = fdget(fd); 4998 if (!f.file) 4999 return -EBADF; 5000 5001 if (f.file->f_op != &perf_fops) { 5002 fdput(f); 5003 return -EBADF; 5004 } 5005 *p = f; 5006 return 0; 5007 } 5008 5009 static int perf_event_set_output(struct perf_event *event, 5010 struct perf_event *output_event); 5011 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5013 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5014 struct perf_event_attr *attr); 5015 5016 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5017 { 5018 void (*func)(struct perf_event *); 5019 u32 flags = arg; 5020 5021 switch (cmd) { 5022 case PERF_EVENT_IOC_ENABLE: 5023 func = _perf_event_enable; 5024 break; 5025 case PERF_EVENT_IOC_DISABLE: 5026 func = _perf_event_disable; 5027 break; 5028 case PERF_EVENT_IOC_RESET: 5029 func = _perf_event_reset; 5030 break; 5031 5032 case PERF_EVENT_IOC_REFRESH: 5033 return _perf_event_refresh(event, arg); 5034 5035 case PERF_EVENT_IOC_PERIOD: 5036 return perf_event_period(event, (u64 __user *)arg); 5037 5038 case PERF_EVENT_IOC_ID: 5039 { 5040 u64 id = primary_event_id(event); 5041 5042 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5043 return -EFAULT; 5044 return 0; 5045 } 5046 5047 case PERF_EVENT_IOC_SET_OUTPUT: 5048 { 5049 int ret; 5050 if (arg != -1) { 5051 struct perf_event *output_event; 5052 struct fd output; 5053 ret = perf_fget_light(arg, &output); 5054 if (ret) 5055 return ret; 5056 output_event = output.file->private_data; 5057 ret = perf_event_set_output(event, output_event); 5058 fdput(output); 5059 } else { 5060 ret = perf_event_set_output(event, NULL); 5061 } 5062 return ret; 5063 } 5064 5065 case PERF_EVENT_IOC_SET_FILTER: 5066 return perf_event_set_filter(event, (void __user *)arg); 5067 5068 case PERF_EVENT_IOC_SET_BPF: 5069 return perf_event_set_bpf_prog(event, arg); 5070 5071 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5072 struct ring_buffer *rb; 5073 5074 rcu_read_lock(); 5075 rb = rcu_dereference(event->rb); 5076 if (!rb || !rb->nr_pages) { 5077 rcu_read_unlock(); 5078 return -EINVAL; 5079 } 5080 rb_toggle_paused(rb, !!arg); 5081 rcu_read_unlock(); 5082 return 0; 5083 } 5084 5085 case PERF_EVENT_IOC_QUERY_BPF: 5086 return perf_event_query_prog_array(event, (void __user *)arg); 5087 5088 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5089 struct perf_event_attr new_attr; 5090 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5091 &new_attr); 5092 5093 if (err) 5094 return err; 5095 5096 return perf_event_modify_attr(event, &new_attr); 5097 } 5098 default: 5099 return -ENOTTY; 5100 } 5101 5102 if (flags & PERF_IOC_FLAG_GROUP) 5103 perf_event_for_each(event, func); 5104 else 5105 perf_event_for_each_child(event, func); 5106 5107 return 0; 5108 } 5109 5110 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5111 { 5112 struct perf_event *event = file->private_data; 5113 struct perf_event_context *ctx; 5114 long ret; 5115 5116 ctx = perf_event_ctx_lock(event); 5117 ret = _perf_ioctl(event, cmd, arg); 5118 perf_event_ctx_unlock(event, ctx); 5119 5120 return ret; 5121 } 5122 5123 #ifdef CONFIG_COMPAT 5124 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5125 unsigned long arg) 5126 { 5127 switch (_IOC_NR(cmd)) { 5128 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5129 case _IOC_NR(PERF_EVENT_IOC_ID): 5130 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5131 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5132 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5133 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5134 cmd &= ~IOCSIZE_MASK; 5135 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5136 } 5137 break; 5138 } 5139 return perf_ioctl(file, cmd, arg); 5140 } 5141 #else 5142 # define perf_compat_ioctl NULL 5143 #endif 5144 5145 int perf_event_task_enable(void) 5146 { 5147 struct perf_event_context *ctx; 5148 struct perf_event *event; 5149 5150 mutex_lock(¤t->perf_event_mutex); 5151 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5152 ctx = perf_event_ctx_lock(event); 5153 perf_event_for_each_child(event, _perf_event_enable); 5154 perf_event_ctx_unlock(event, ctx); 5155 } 5156 mutex_unlock(¤t->perf_event_mutex); 5157 5158 return 0; 5159 } 5160 5161 int perf_event_task_disable(void) 5162 { 5163 struct perf_event_context *ctx; 5164 struct perf_event *event; 5165 5166 mutex_lock(¤t->perf_event_mutex); 5167 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5168 ctx = perf_event_ctx_lock(event); 5169 perf_event_for_each_child(event, _perf_event_disable); 5170 perf_event_ctx_unlock(event, ctx); 5171 } 5172 mutex_unlock(¤t->perf_event_mutex); 5173 5174 return 0; 5175 } 5176 5177 static int perf_event_index(struct perf_event *event) 5178 { 5179 if (event->hw.state & PERF_HES_STOPPED) 5180 return 0; 5181 5182 if (event->state != PERF_EVENT_STATE_ACTIVE) 5183 return 0; 5184 5185 return event->pmu->event_idx(event); 5186 } 5187 5188 static void calc_timer_values(struct perf_event *event, 5189 u64 *now, 5190 u64 *enabled, 5191 u64 *running) 5192 { 5193 u64 ctx_time; 5194 5195 *now = perf_clock(); 5196 ctx_time = event->shadow_ctx_time + *now; 5197 __perf_update_times(event, ctx_time, enabled, running); 5198 } 5199 5200 static void perf_event_init_userpage(struct perf_event *event) 5201 { 5202 struct perf_event_mmap_page *userpg; 5203 struct ring_buffer *rb; 5204 5205 rcu_read_lock(); 5206 rb = rcu_dereference(event->rb); 5207 if (!rb) 5208 goto unlock; 5209 5210 userpg = rb->user_page; 5211 5212 /* Allow new userspace to detect that bit 0 is deprecated */ 5213 userpg->cap_bit0_is_deprecated = 1; 5214 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5215 userpg->data_offset = PAGE_SIZE; 5216 userpg->data_size = perf_data_size(rb); 5217 5218 unlock: 5219 rcu_read_unlock(); 5220 } 5221 5222 void __weak arch_perf_update_userpage( 5223 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5224 { 5225 } 5226 5227 /* 5228 * Callers need to ensure there can be no nesting of this function, otherwise 5229 * the seqlock logic goes bad. We can not serialize this because the arch 5230 * code calls this from NMI context. 5231 */ 5232 void perf_event_update_userpage(struct perf_event *event) 5233 { 5234 struct perf_event_mmap_page *userpg; 5235 struct ring_buffer *rb; 5236 u64 enabled, running, now; 5237 5238 rcu_read_lock(); 5239 rb = rcu_dereference(event->rb); 5240 if (!rb) 5241 goto unlock; 5242 5243 /* 5244 * compute total_time_enabled, total_time_running 5245 * based on snapshot values taken when the event 5246 * was last scheduled in. 5247 * 5248 * we cannot simply called update_context_time() 5249 * because of locking issue as we can be called in 5250 * NMI context 5251 */ 5252 calc_timer_values(event, &now, &enabled, &running); 5253 5254 userpg = rb->user_page; 5255 /* 5256 * Disable preemption to guarantee consistent time stamps are stored to 5257 * the user page. 5258 */ 5259 preempt_disable(); 5260 ++userpg->lock; 5261 barrier(); 5262 userpg->index = perf_event_index(event); 5263 userpg->offset = perf_event_count(event); 5264 if (userpg->index) 5265 userpg->offset -= local64_read(&event->hw.prev_count); 5266 5267 userpg->time_enabled = enabled + 5268 atomic64_read(&event->child_total_time_enabled); 5269 5270 userpg->time_running = running + 5271 atomic64_read(&event->child_total_time_running); 5272 5273 arch_perf_update_userpage(event, userpg, now); 5274 5275 barrier(); 5276 ++userpg->lock; 5277 preempt_enable(); 5278 unlock: 5279 rcu_read_unlock(); 5280 } 5281 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5282 5283 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5284 { 5285 struct perf_event *event = vmf->vma->vm_file->private_data; 5286 struct ring_buffer *rb; 5287 vm_fault_t ret = VM_FAULT_SIGBUS; 5288 5289 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5290 if (vmf->pgoff == 0) 5291 ret = 0; 5292 return ret; 5293 } 5294 5295 rcu_read_lock(); 5296 rb = rcu_dereference(event->rb); 5297 if (!rb) 5298 goto unlock; 5299 5300 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5301 goto unlock; 5302 5303 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5304 if (!vmf->page) 5305 goto unlock; 5306 5307 get_page(vmf->page); 5308 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5309 vmf->page->index = vmf->pgoff; 5310 5311 ret = 0; 5312 unlock: 5313 rcu_read_unlock(); 5314 5315 return ret; 5316 } 5317 5318 static void ring_buffer_attach(struct perf_event *event, 5319 struct ring_buffer *rb) 5320 { 5321 struct ring_buffer *old_rb = NULL; 5322 unsigned long flags; 5323 5324 if (event->rb) { 5325 /* 5326 * Should be impossible, we set this when removing 5327 * event->rb_entry and wait/clear when adding event->rb_entry. 5328 */ 5329 WARN_ON_ONCE(event->rcu_pending); 5330 5331 old_rb = event->rb; 5332 spin_lock_irqsave(&old_rb->event_lock, flags); 5333 list_del_rcu(&event->rb_entry); 5334 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5335 5336 event->rcu_batches = get_state_synchronize_rcu(); 5337 event->rcu_pending = 1; 5338 } 5339 5340 if (rb) { 5341 if (event->rcu_pending) { 5342 cond_synchronize_rcu(event->rcu_batches); 5343 event->rcu_pending = 0; 5344 } 5345 5346 spin_lock_irqsave(&rb->event_lock, flags); 5347 list_add_rcu(&event->rb_entry, &rb->event_list); 5348 spin_unlock_irqrestore(&rb->event_lock, flags); 5349 } 5350 5351 /* 5352 * Avoid racing with perf_mmap_close(AUX): stop the event 5353 * before swizzling the event::rb pointer; if it's getting 5354 * unmapped, its aux_mmap_count will be 0 and it won't 5355 * restart. See the comment in __perf_pmu_output_stop(). 5356 * 5357 * Data will inevitably be lost when set_output is done in 5358 * mid-air, but then again, whoever does it like this is 5359 * not in for the data anyway. 5360 */ 5361 if (has_aux(event)) 5362 perf_event_stop(event, 0); 5363 5364 rcu_assign_pointer(event->rb, rb); 5365 5366 if (old_rb) { 5367 ring_buffer_put(old_rb); 5368 /* 5369 * Since we detached before setting the new rb, so that we 5370 * could attach the new rb, we could have missed a wakeup. 5371 * Provide it now. 5372 */ 5373 wake_up_all(&event->waitq); 5374 } 5375 } 5376 5377 static void ring_buffer_wakeup(struct perf_event *event) 5378 { 5379 struct ring_buffer *rb; 5380 5381 rcu_read_lock(); 5382 rb = rcu_dereference(event->rb); 5383 if (rb) { 5384 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5385 wake_up_all(&event->waitq); 5386 } 5387 rcu_read_unlock(); 5388 } 5389 5390 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5391 { 5392 struct ring_buffer *rb; 5393 5394 rcu_read_lock(); 5395 rb = rcu_dereference(event->rb); 5396 if (rb) { 5397 if (!atomic_inc_not_zero(&rb->refcount)) 5398 rb = NULL; 5399 } 5400 rcu_read_unlock(); 5401 5402 return rb; 5403 } 5404 5405 void ring_buffer_put(struct ring_buffer *rb) 5406 { 5407 if (!atomic_dec_and_test(&rb->refcount)) 5408 return; 5409 5410 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5411 5412 call_rcu(&rb->rcu_head, rb_free_rcu); 5413 } 5414 5415 static void perf_mmap_open(struct vm_area_struct *vma) 5416 { 5417 struct perf_event *event = vma->vm_file->private_data; 5418 5419 atomic_inc(&event->mmap_count); 5420 atomic_inc(&event->rb->mmap_count); 5421 5422 if (vma->vm_pgoff) 5423 atomic_inc(&event->rb->aux_mmap_count); 5424 5425 if (event->pmu->event_mapped) 5426 event->pmu->event_mapped(event, vma->vm_mm); 5427 } 5428 5429 static void perf_pmu_output_stop(struct perf_event *event); 5430 5431 /* 5432 * A buffer can be mmap()ed multiple times; either directly through the same 5433 * event, or through other events by use of perf_event_set_output(). 5434 * 5435 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5436 * the buffer here, where we still have a VM context. This means we need 5437 * to detach all events redirecting to us. 5438 */ 5439 static void perf_mmap_close(struct vm_area_struct *vma) 5440 { 5441 struct perf_event *event = vma->vm_file->private_data; 5442 5443 struct ring_buffer *rb = ring_buffer_get(event); 5444 struct user_struct *mmap_user = rb->mmap_user; 5445 int mmap_locked = rb->mmap_locked; 5446 unsigned long size = perf_data_size(rb); 5447 5448 if (event->pmu->event_unmapped) 5449 event->pmu->event_unmapped(event, vma->vm_mm); 5450 5451 /* 5452 * rb->aux_mmap_count will always drop before rb->mmap_count and 5453 * event->mmap_count, so it is ok to use event->mmap_mutex to 5454 * serialize with perf_mmap here. 5455 */ 5456 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5457 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5458 /* 5459 * Stop all AUX events that are writing to this buffer, 5460 * so that we can free its AUX pages and corresponding PMU 5461 * data. Note that after rb::aux_mmap_count dropped to zero, 5462 * they won't start any more (see perf_aux_output_begin()). 5463 */ 5464 perf_pmu_output_stop(event); 5465 5466 /* now it's safe to free the pages */ 5467 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5468 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5469 5470 /* this has to be the last one */ 5471 rb_free_aux(rb); 5472 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5473 5474 mutex_unlock(&event->mmap_mutex); 5475 } 5476 5477 atomic_dec(&rb->mmap_count); 5478 5479 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5480 goto out_put; 5481 5482 ring_buffer_attach(event, NULL); 5483 mutex_unlock(&event->mmap_mutex); 5484 5485 /* If there's still other mmap()s of this buffer, we're done. */ 5486 if (atomic_read(&rb->mmap_count)) 5487 goto out_put; 5488 5489 /* 5490 * No other mmap()s, detach from all other events that might redirect 5491 * into the now unreachable buffer. Somewhat complicated by the 5492 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5493 */ 5494 again: 5495 rcu_read_lock(); 5496 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5497 if (!atomic_long_inc_not_zero(&event->refcount)) { 5498 /* 5499 * This event is en-route to free_event() which will 5500 * detach it and remove it from the list. 5501 */ 5502 continue; 5503 } 5504 rcu_read_unlock(); 5505 5506 mutex_lock(&event->mmap_mutex); 5507 /* 5508 * Check we didn't race with perf_event_set_output() which can 5509 * swizzle the rb from under us while we were waiting to 5510 * acquire mmap_mutex. 5511 * 5512 * If we find a different rb; ignore this event, a next 5513 * iteration will no longer find it on the list. We have to 5514 * still restart the iteration to make sure we're not now 5515 * iterating the wrong list. 5516 */ 5517 if (event->rb == rb) 5518 ring_buffer_attach(event, NULL); 5519 5520 mutex_unlock(&event->mmap_mutex); 5521 put_event(event); 5522 5523 /* 5524 * Restart the iteration; either we're on the wrong list or 5525 * destroyed its integrity by doing a deletion. 5526 */ 5527 goto again; 5528 } 5529 rcu_read_unlock(); 5530 5531 /* 5532 * It could be there's still a few 0-ref events on the list; they'll 5533 * get cleaned up by free_event() -- they'll also still have their 5534 * ref on the rb and will free it whenever they are done with it. 5535 * 5536 * Aside from that, this buffer is 'fully' detached and unmapped, 5537 * undo the VM accounting. 5538 */ 5539 5540 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5541 vma->vm_mm->pinned_vm -= mmap_locked; 5542 free_uid(mmap_user); 5543 5544 out_put: 5545 ring_buffer_put(rb); /* could be last */ 5546 } 5547 5548 static const struct vm_operations_struct perf_mmap_vmops = { 5549 .open = perf_mmap_open, 5550 .close = perf_mmap_close, /* non mergeable */ 5551 .fault = perf_mmap_fault, 5552 .page_mkwrite = perf_mmap_fault, 5553 }; 5554 5555 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5556 { 5557 struct perf_event *event = file->private_data; 5558 unsigned long user_locked, user_lock_limit; 5559 struct user_struct *user = current_user(); 5560 unsigned long locked, lock_limit; 5561 struct ring_buffer *rb = NULL; 5562 unsigned long vma_size; 5563 unsigned long nr_pages; 5564 long user_extra = 0, extra = 0; 5565 int ret = 0, flags = 0; 5566 5567 /* 5568 * Don't allow mmap() of inherited per-task counters. This would 5569 * create a performance issue due to all children writing to the 5570 * same rb. 5571 */ 5572 if (event->cpu == -1 && event->attr.inherit) 5573 return -EINVAL; 5574 5575 if (!(vma->vm_flags & VM_SHARED)) 5576 return -EINVAL; 5577 5578 vma_size = vma->vm_end - vma->vm_start; 5579 5580 if (vma->vm_pgoff == 0) { 5581 nr_pages = (vma_size / PAGE_SIZE) - 1; 5582 } else { 5583 /* 5584 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5585 * mapped, all subsequent mappings should have the same size 5586 * and offset. Must be above the normal perf buffer. 5587 */ 5588 u64 aux_offset, aux_size; 5589 5590 if (!event->rb) 5591 return -EINVAL; 5592 5593 nr_pages = vma_size / PAGE_SIZE; 5594 5595 mutex_lock(&event->mmap_mutex); 5596 ret = -EINVAL; 5597 5598 rb = event->rb; 5599 if (!rb) 5600 goto aux_unlock; 5601 5602 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5603 aux_size = READ_ONCE(rb->user_page->aux_size); 5604 5605 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5606 goto aux_unlock; 5607 5608 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5609 goto aux_unlock; 5610 5611 /* already mapped with a different offset */ 5612 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5613 goto aux_unlock; 5614 5615 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5616 goto aux_unlock; 5617 5618 /* already mapped with a different size */ 5619 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5620 goto aux_unlock; 5621 5622 if (!is_power_of_2(nr_pages)) 5623 goto aux_unlock; 5624 5625 if (!atomic_inc_not_zero(&rb->mmap_count)) 5626 goto aux_unlock; 5627 5628 if (rb_has_aux(rb)) { 5629 atomic_inc(&rb->aux_mmap_count); 5630 ret = 0; 5631 goto unlock; 5632 } 5633 5634 atomic_set(&rb->aux_mmap_count, 1); 5635 user_extra = nr_pages; 5636 5637 goto accounting; 5638 } 5639 5640 /* 5641 * If we have rb pages ensure they're a power-of-two number, so we 5642 * can do bitmasks instead of modulo. 5643 */ 5644 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5645 return -EINVAL; 5646 5647 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5648 return -EINVAL; 5649 5650 WARN_ON_ONCE(event->ctx->parent_ctx); 5651 again: 5652 mutex_lock(&event->mmap_mutex); 5653 if (event->rb) { 5654 if (event->rb->nr_pages != nr_pages) { 5655 ret = -EINVAL; 5656 goto unlock; 5657 } 5658 5659 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5660 /* 5661 * Raced against perf_mmap_close() through 5662 * perf_event_set_output(). Try again, hope for better 5663 * luck. 5664 */ 5665 mutex_unlock(&event->mmap_mutex); 5666 goto again; 5667 } 5668 5669 goto unlock; 5670 } 5671 5672 user_extra = nr_pages + 1; 5673 5674 accounting: 5675 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5676 5677 /* 5678 * Increase the limit linearly with more CPUs: 5679 */ 5680 user_lock_limit *= num_online_cpus(); 5681 5682 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5683 5684 if (user_locked > user_lock_limit) 5685 extra = user_locked - user_lock_limit; 5686 5687 lock_limit = rlimit(RLIMIT_MEMLOCK); 5688 lock_limit >>= PAGE_SHIFT; 5689 locked = vma->vm_mm->pinned_vm + extra; 5690 5691 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5692 !capable(CAP_IPC_LOCK)) { 5693 ret = -EPERM; 5694 goto unlock; 5695 } 5696 5697 WARN_ON(!rb && event->rb); 5698 5699 if (vma->vm_flags & VM_WRITE) 5700 flags |= RING_BUFFER_WRITABLE; 5701 5702 if (!rb) { 5703 rb = rb_alloc(nr_pages, 5704 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5705 event->cpu, flags); 5706 5707 if (!rb) { 5708 ret = -ENOMEM; 5709 goto unlock; 5710 } 5711 5712 atomic_set(&rb->mmap_count, 1); 5713 rb->mmap_user = get_current_user(); 5714 rb->mmap_locked = extra; 5715 5716 ring_buffer_attach(event, rb); 5717 5718 perf_event_init_userpage(event); 5719 perf_event_update_userpage(event); 5720 } else { 5721 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5722 event->attr.aux_watermark, flags); 5723 if (!ret) 5724 rb->aux_mmap_locked = extra; 5725 } 5726 5727 unlock: 5728 if (!ret) { 5729 atomic_long_add(user_extra, &user->locked_vm); 5730 vma->vm_mm->pinned_vm += extra; 5731 5732 atomic_inc(&event->mmap_count); 5733 } else if (rb) { 5734 atomic_dec(&rb->mmap_count); 5735 } 5736 aux_unlock: 5737 mutex_unlock(&event->mmap_mutex); 5738 5739 /* 5740 * Since pinned accounting is per vm we cannot allow fork() to copy our 5741 * vma. 5742 */ 5743 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5744 vma->vm_ops = &perf_mmap_vmops; 5745 5746 if (event->pmu->event_mapped) 5747 event->pmu->event_mapped(event, vma->vm_mm); 5748 5749 return ret; 5750 } 5751 5752 static int perf_fasync(int fd, struct file *filp, int on) 5753 { 5754 struct inode *inode = file_inode(filp); 5755 struct perf_event *event = filp->private_data; 5756 int retval; 5757 5758 inode_lock(inode); 5759 retval = fasync_helper(fd, filp, on, &event->fasync); 5760 inode_unlock(inode); 5761 5762 if (retval < 0) 5763 return retval; 5764 5765 return 0; 5766 } 5767 5768 static const struct file_operations perf_fops = { 5769 .llseek = no_llseek, 5770 .release = perf_release, 5771 .read = perf_read, 5772 .poll = perf_poll, 5773 .unlocked_ioctl = perf_ioctl, 5774 .compat_ioctl = perf_compat_ioctl, 5775 .mmap = perf_mmap, 5776 .fasync = perf_fasync, 5777 }; 5778 5779 /* 5780 * Perf event wakeup 5781 * 5782 * If there's data, ensure we set the poll() state and publish everything 5783 * to user-space before waking everybody up. 5784 */ 5785 5786 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5787 { 5788 /* only the parent has fasync state */ 5789 if (event->parent) 5790 event = event->parent; 5791 return &event->fasync; 5792 } 5793 5794 void perf_event_wakeup(struct perf_event *event) 5795 { 5796 ring_buffer_wakeup(event); 5797 5798 if (event->pending_kill) { 5799 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5800 event->pending_kill = 0; 5801 } 5802 } 5803 5804 static void perf_pending_event(struct irq_work *entry) 5805 { 5806 struct perf_event *event = container_of(entry, 5807 struct perf_event, pending); 5808 int rctx; 5809 5810 rctx = perf_swevent_get_recursion_context(); 5811 /* 5812 * If we 'fail' here, that's OK, it means recursion is already disabled 5813 * and we won't recurse 'further'. 5814 */ 5815 5816 if (event->pending_disable) { 5817 event->pending_disable = 0; 5818 perf_event_disable_local(event); 5819 } 5820 5821 if (event->pending_wakeup) { 5822 event->pending_wakeup = 0; 5823 perf_event_wakeup(event); 5824 } 5825 5826 if (rctx >= 0) 5827 perf_swevent_put_recursion_context(rctx); 5828 } 5829 5830 /* 5831 * We assume there is only KVM supporting the callbacks. 5832 * Later on, we might change it to a list if there is 5833 * another virtualization implementation supporting the callbacks. 5834 */ 5835 struct perf_guest_info_callbacks *perf_guest_cbs; 5836 5837 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5838 { 5839 perf_guest_cbs = cbs; 5840 return 0; 5841 } 5842 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5843 5844 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5845 { 5846 perf_guest_cbs = NULL; 5847 return 0; 5848 } 5849 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5850 5851 static void 5852 perf_output_sample_regs(struct perf_output_handle *handle, 5853 struct pt_regs *regs, u64 mask) 5854 { 5855 int bit; 5856 DECLARE_BITMAP(_mask, 64); 5857 5858 bitmap_from_u64(_mask, mask); 5859 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5860 u64 val; 5861 5862 val = perf_reg_value(regs, bit); 5863 perf_output_put(handle, val); 5864 } 5865 } 5866 5867 static void perf_sample_regs_user(struct perf_regs *regs_user, 5868 struct pt_regs *regs, 5869 struct pt_regs *regs_user_copy) 5870 { 5871 if (user_mode(regs)) { 5872 regs_user->abi = perf_reg_abi(current); 5873 regs_user->regs = regs; 5874 } else if (current->mm) { 5875 perf_get_regs_user(regs_user, regs, regs_user_copy); 5876 } else { 5877 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5878 regs_user->regs = NULL; 5879 } 5880 } 5881 5882 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5883 struct pt_regs *regs) 5884 { 5885 regs_intr->regs = regs; 5886 regs_intr->abi = perf_reg_abi(current); 5887 } 5888 5889 5890 /* 5891 * Get remaining task size from user stack pointer. 5892 * 5893 * It'd be better to take stack vma map and limit this more 5894 * precisly, but there's no way to get it safely under interrupt, 5895 * so using TASK_SIZE as limit. 5896 */ 5897 static u64 perf_ustack_task_size(struct pt_regs *regs) 5898 { 5899 unsigned long addr = perf_user_stack_pointer(regs); 5900 5901 if (!addr || addr >= TASK_SIZE) 5902 return 0; 5903 5904 return TASK_SIZE - addr; 5905 } 5906 5907 static u16 5908 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5909 struct pt_regs *regs) 5910 { 5911 u64 task_size; 5912 5913 /* No regs, no stack pointer, no dump. */ 5914 if (!regs) 5915 return 0; 5916 5917 /* 5918 * Check if we fit in with the requested stack size into the: 5919 * - TASK_SIZE 5920 * If we don't, we limit the size to the TASK_SIZE. 5921 * 5922 * - remaining sample size 5923 * If we don't, we customize the stack size to 5924 * fit in to the remaining sample size. 5925 */ 5926 5927 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5928 stack_size = min(stack_size, (u16) task_size); 5929 5930 /* Current header size plus static size and dynamic size. */ 5931 header_size += 2 * sizeof(u64); 5932 5933 /* Do we fit in with the current stack dump size? */ 5934 if ((u16) (header_size + stack_size) < header_size) { 5935 /* 5936 * If we overflow the maximum size for the sample, 5937 * we customize the stack dump size to fit in. 5938 */ 5939 stack_size = USHRT_MAX - header_size - sizeof(u64); 5940 stack_size = round_up(stack_size, sizeof(u64)); 5941 } 5942 5943 return stack_size; 5944 } 5945 5946 static void 5947 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5948 struct pt_regs *regs) 5949 { 5950 /* Case of a kernel thread, nothing to dump */ 5951 if (!regs) { 5952 u64 size = 0; 5953 perf_output_put(handle, size); 5954 } else { 5955 unsigned long sp; 5956 unsigned int rem; 5957 u64 dyn_size; 5958 mm_segment_t fs; 5959 5960 /* 5961 * We dump: 5962 * static size 5963 * - the size requested by user or the best one we can fit 5964 * in to the sample max size 5965 * data 5966 * - user stack dump data 5967 * dynamic size 5968 * - the actual dumped size 5969 */ 5970 5971 /* Static size. */ 5972 perf_output_put(handle, dump_size); 5973 5974 /* Data. */ 5975 sp = perf_user_stack_pointer(regs); 5976 fs = get_fs(); 5977 set_fs(USER_DS); 5978 rem = __output_copy_user(handle, (void *) sp, dump_size); 5979 set_fs(fs); 5980 dyn_size = dump_size - rem; 5981 5982 perf_output_skip(handle, rem); 5983 5984 /* Dynamic size. */ 5985 perf_output_put(handle, dyn_size); 5986 } 5987 } 5988 5989 static void __perf_event_header__init_id(struct perf_event_header *header, 5990 struct perf_sample_data *data, 5991 struct perf_event *event) 5992 { 5993 u64 sample_type = event->attr.sample_type; 5994 5995 data->type = sample_type; 5996 header->size += event->id_header_size; 5997 5998 if (sample_type & PERF_SAMPLE_TID) { 5999 /* namespace issues */ 6000 data->tid_entry.pid = perf_event_pid(event, current); 6001 data->tid_entry.tid = perf_event_tid(event, current); 6002 } 6003 6004 if (sample_type & PERF_SAMPLE_TIME) 6005 data->time = perf_event_clock(event); 6006 6007 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6008 data->id = primary_event_id(event); 6009 6010 if (sample_type & PERF_SAMPLE_STREAM_ID) 6011 data->stream_id = event->id; 6012 6013 if (sample_type & PERF_SAMPLE_CPU) { 6014 data->cpu_entry.cpu = raw_smp_processor_id(); 6015 data->cpu_entry.reserved = 0; 6016 } 6017 } 6018 6019 void perf_event_header__init_id(struct perf_event_header *header, 6020 struct perf_sample_data *data, 6021 struct perf_event *event) 6022 { 6023 if (event->attr.sample_id_all) 6024 __perf_event_header__init_id(header, data, event); 6025 } 6026 6027 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6028 struct perf_sample_data *data) 6029 { 6030 u64 sample_type = data->type; 6031 6032 if (sample_type & PERF_SAMPLE_TID) 6033 perf_output_put(handle, data->tid_entry); 6034 6035 if (sample_type & PERF_SAMPLE_TIME) 6036 perf_output_put(handle, data->time); 6037 6038 if (sample_type & PERF_SAMPLE_ID) 6039 perf_output_put(handle, data->id); 6040 6041 if (sample_type & PERF_SAMPLE_STREAM_ID) 6042 perf_output_put(handle, data->stream_id); 6043 6044 if (sample_type & PERF_SAMPLE_CPU) 6045 perf_output_put(handle, data->cpu_entry); 6046 6047 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6048 perf_output_put(handle, data->id); 6049 } 6050 6051 void perf_event__output_id_sample(struct perf_event *event, 6052 struct perf_output_handle *handle, 6053 struct perf_sample_data *sample) 6054 { 6055 if (event->attr.sample_id_all) 6056 __perf_event__output_id_sample(handle, sample); 6057 } 6058 6059 static void perf_output_read_one(struct perf_output_handle *handle, 6060 struct perf_event *event, 6061 u64 enabled, u64 running) 6062 { 6063 u64 read_format = event->attr.read_format; 6064 u64 values[4]; 6065 int n = 0; 6066 6067 values[n++] = perf_event_count(event); 6068 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6069 values[n++] = enabled + 6070 atomic64_read(&event->child_total_time_enabled); 6071 } 6072 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6073 values[n++] = running + 6074 atomic64_read(&event->child_total_time_running); 6075 } 6076 if (read_format & PERF_FORMAT_ID) 6077 values[n++] = primary_event_id(event); 6078 6079 __output_copy(handle, values, n * sizeof(u64)); 6080 } 6081 6082 static void perf_output_read_group(struct perf_output_handle *handle, 6083 struct perf_event *event, 6084 u64 enabled, u64 running) 6085 { 6086 struct perf_event *leader = event->group_leader, *sub; 6087 u64 read_format = event->attr.read_format; 6088 u64 values[5]; 6089 int n = 0; 6090 6091 values[n++] = 1 + leader->nr_siblings; 6092 6093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6094 values[n++] = enabled; 6095 6096 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6097 values[n++] = running; 6098 6099 if ((leader != event) && 6100 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6101 leader->pmu->read(leader); 6102 6103 values[n++] = perf_event_count(leader); 6104 if (read_format & PERF_FORMAT_ID) 6105 values[n++] = primary_event_id(leader); 6106 6107 __output_copy(handle, values, n * sizeof(u64)); 6108 6109 for_each_sibling_event(sub, leader) { 6110 n = 0; 6111 6112 if ((sub != event) && 6113 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6114 sub->pmu->read(sub); 6115 6116 values[n++] = perf_event_count(sub); 6117 if (read_format & PERF_FORMAT_ID) 6118 values[n++] = primary_event_id(sub); 6119 6120 __output_copy(handle, values, n * sizeof(u64)); 6121 } 6122 } 6123 6124 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6125 PERF_FORMAT_TOTAL_TIME_RUNNING) 6126 6127 /* 6128 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6129 * 6130 * The problem is that its both hard and excessively expensive to iterate the 6131 * child list, not to mention that its impossible to IPI the children running 6132 * on another CPU, from interrupt/NMI context. 6133 */ 6134 static void perf_output_read(struct perf_output_handle *handle, 6135 struct perf_event *event) 6136 { 6137 u64 enabled = 0, running = 0, now; 6138 u64 read_format = event->attr.read_format; 6139 6140 /* 6141 * compute total_time_enabled, total_time_running 6142 * based on snapshot values taken when the event 6143 * was last scheduled in. 6144 * 6145 * we cannot simply called update_context_time() 6146 * because of locking issue as we are called in 6147 * NMI context 6148 */ 6149 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6150 calc_timer_values(event, &now, &enabled, &running); 6151 6152 if (event->attr.read_format & PERF_FORMAT_GROUP) 6153 perf_output_read_group(handle, event, enabled, running); 6154 else 6155 perf_output_read_one(handle, event, enabled, running); 6156 } 6157 6158 void perf_output_sample(struct perf_output_handle *handle, 6159 struct perf_event_header *header, 6160 struct perf_sample_data *data, 6161 struct perf_event *event) 6162 { 6163 u64 sample_type = data->type; 6164 6165 perf_output_put(handle, *header); 6166 6167 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6168 perf_output_put(handle, data->id); 6169 6170 if (sample_type & PERF_SAMPLE_IP) 6171 perf_output_put(handle, data->ip); 6172 6173 if (sample_type & PERF_SAMPLE_TID) 6174 perf_output_put(handle, data->tid_entry); 6175 6176 if (sample_type & PERF_SAMPLE_TIME) 6177 perf_output_put(handle, data->time); 6178 6179 if (sample_type & PERF_SAMPLE_ADDR) 6180 perf_output_put(handle, data->addr); 6181 6182 if (sample_type & PERF_SAMPLE_ID) 6183 perf_output_put(handle, data->id); 6184 6185 if (sample_type & PERF_SAMPLE_STREAM_ID) 6186 perf_output_put(handle, data->stream_id); 6187 6188 if (sample_type & PERF_SAMPLE_CPU) 6189 perf_output_put(handle, data->cpu_entry); 6190 6191 if (sample_type & PERF_SAMPLE_PERIOD) 6192 perf_output_put(handle, data->period); 6193 6194 if (sample_type & PERF_SAMPLE_READ) 6195 perf_output_read(handle, event); 6196 6197 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6198 int size = 1; 6199 6200 size += data->callchain->nr; 6201 size *= sizeof(u64); 6202 __output_copy(handle, data->callchain, size); 6203 } 6204 6205 if (sample_type & PERF_SAMPLE_RAW) { 6206 struct perf_raw_record *raw = data->raw; 6207 6208 if (raw) { 6209 struct perf_raw_frag *frag = &raw->frag; 6210 6211 perf_output_put(handle, raw->size); 6212 do { 6213 if (frag->copy) { 6214 __output_custom(handle, frag->copy, 6215 frag->data, frag->size); 6216 } else { 6217 __output_copy(handle, frag->data, 6218 frag->size); 6219 } 6220 if (perf_raw_frag_last(frag)) 6221 break; 6222 frag = frag->next; 6223 } while (1); 6224 if (frag->pad) 6225 __output_skip(handle, NULL, frag->pad); 6226 } else { 6227 struct { 6228 u32 size; 6229 u32 data; 6230 } raw = { 6231 .size = sizeof(u32), 6232 .data = 0, 6233 }; 6234 perf_output_put(handle, raw); 6235 } 6236 } 6237 6238 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6239 if (data->br_stack) { 6240 size_t size; 6241 6242 size = data->br_stack->nr 6243 * sizeof(struct perf_branch_entry); 6244 6245 perf_output_put(handle, data->br_stack->nr); 6246 perf_output_copy(handle, data->br_stack->entries, size); 6247 } else { 6248 /* 6249 * we always store at least the value of nr 6250 */ 6251 u64 nr = 0; 6252 perf_output_put(handle, nr); 6253 } 6254 } 6255 6256 if (sample_type & PERF_SAMPLE_REGS_USER) { 6257 u64 abi = data->regs_user.abi; 6258 6259 /* 6260 * If there are no regs to dump, notice it through 6261 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6262 */ 6263 perf_output_put(handle, abi); 6264 6265 if (abi) { 6266 u64 mask = event->attr.sample_regs_user; 6267 perf_output_sample_regs(handle, 6268 data->regs_user.regs, 6269 mask); 6270 } 6271 } 6272 6273 if (sample_type & PERF_SAMPLE_STACK_USER) { 6274 perf_output_sample_ustack(handle, 6275 data->stack_user_size, 6276 data->regs_user.regs); 6277 } 6278 6279 if (sample_type & PERF_SAMPLE_WEIGHT) 6280 perf_output_put(handle, data->weight); 6281 6282 if (sample_type & PERF_SAMPLE_DATA_SRC) 6283 perf_output_put(handle, data->data_src.val); 6284 6285 if (sample_type & PERF_SAMPLE_TRANSACTION) 6286 perf_output_put(handle, data->txn); 6287 6288 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6289 u64 abi = data->regs_intr.abi; 6290 /* 6291 * If there are no regs to dump, notice it through 6292 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6293 */ 6294 perf_output_put(handle, abi); 6295 6296 if (abi) { 6297 u64 mask = event->attr.sample_regs_intr; 6298 6299 perf_output_sample_regs(handle, 6300 data->regs_intr.regs, 6301 mask); 6302 } 6303 } 6304 6305 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6306 perf_output_put(handle, data->phys_addr); 6307 6308 if (!event->attr.watermark) { 6309 int wakeup_events = event->attr.wakeup_events; 6310 6311 if (wakeup_events) { 6312 struct ring_buffer *rb = handle->rb; 6313 int events = local_inc_return(&rb->events); 6314 6315 if (events >= wakeup_events) { 6316 local_sub(wakeup_events, &rb->events); 6317 local_inc(&rb->wakeup); 6318 } 6319 } 6320 } 6321 } 6322 6323 static u64 perf_virt_to_phys(u64 virt) 6324 { 6325 u64 phys_addr = 0; 6326 struct page *p = NULL; 6327 6328 if (!virt) 6329 return 0; 6330 6331 if (virt >= TASK_SIZE) { 6332 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6333 if (virt_addr_valid((void *)(uintptr_t)virt) && 6334 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6335 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6336 } else { 6337 /* 6338 * Walking the pages tables for user address. 6339 * Interrupts are disabled, so it prevents any tear down 6340 * of the page tables. 6341 * Try IRQ-safe __get_user_pages_fast first. 6342 * If failed, leave phys_addr as 0. 6343 */ 6344 if ((current->mm != NULL) && 6345 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6346 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6347 6348 if (p) 6349 put_page(p); 6350 } 6351 6352 return phys_addr; 6353 } 6354 6355 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6356 6357 struct perf_callchain_entry * 6358 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6359 { 6360 bool kernel = !event->attr.exclude_callchain_kernel; 6361 bool user = !event->attr.exclude_callchain_user; 6362 /* Disallow cross-task user callchains. */ 6363 bool crosstask = event->ctx->task && event->ctx->task != current; 6364 const u32 max_stack = event->attr.sample_max_stack; 6365 struct perf_callchain_entry *callchain; 6366 6367 if (!kernel && !user) 6368 return &__empty_callchain; 6369 6370 callchain = get_perf_callchain(regs, 0, kernel, user, 6371 max_stack, crosstask, true); 6372 return callchain ?: &__empty_callchain; 6373 } 6374 6375 void perf_prepare_sample(struct perf_event_header *header, 6376 struct perf_sample_data *data, 6377 struct perf_event *event, 6378 struct pt_regs *regs) 6379 { 6380 u64 sample_type = event->attr.sample_type; 6381 6382 header->type = PERF_RECORD_SAMPLE; 6383 header->size = sizeof(*header) + event->header_size; 6384 6385 header->misc = 0; 6386 header->misc |= perf_misc_flags(regs); 6387 6388 __perf_event_header__init_id(header, data, event); 6389 6390 if (sample_type & PERF_SAMPLE_IP) 6391 data->ip = perf_instruction_pointer(regs); 6392 6393 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6394 int size = 1; 6395 6396 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6397 data->callchain = perf_callchain(event, regs); 6398 6399 size += data->callchain->nr; 6400 6401 header->size += size * sizeof(u64); 6402 } 6403 6404 if (sample_type & PERF_SAMPLE_RAW) { 6405 struct perf_raw_record *raw = data->raw; 6406 int size; 6407 6408 if (raw) { 6409 struct perf_raw_frag *frag = &raw->frag; 6410 u32 sum = 0; 6411 6412 do { 6413 sum += frag->size; 6414 if (perf_raw_frag_last(frag)) 6415 break; 6416 frag = frag->next; 6417 } while (1); 6418 6419 size = round_up(sum + sizeof(u32), sizeof(u64)); 6420 raw->size = size - sizeof(u32); 6421 frag->pad = raw->size - sum; 6422 } else { 6423 size = sizeof(u64); 6424 } 6425 6426 header->size += size; 6427 } 6428 6429 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6430 int size = sizeof(u64); /* nr */ 6431 if (data->br_stack) { 6432 size += data->br_stack->nr 6433 * sizeof(struct perf_branch_entry); 6434 } 6435 header->size += size; 6436 } 6437 6438 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6439 perf_sample_regs_user(&data->regs_user, regs, 6440 &data->regs_user_copy); 6441 6442 if (sample_type & PERF_SAMPLE_REGS_USER) { 6443 /* regs dump ABI info */ 6444 int size = sizeof(u64); 6445 6446 if (data->regs_user.regs) { 6447 u64 mask = event->attr.sample_regs_user; 6448 size += hweight64(mask) * sizeof(u64); 6449 } 6450 6451 header->size += size; 6452 } 6453 6454 if (sample_type & PERF_SAMPLE_STACK_USER) { 6455 /* 6456 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6457 * processed as the last one or have additional check added 6458 * in case new sample type is added, because we could eat 6459 * up the rest of the sample size. 6460 */ 6461 u16 stack_size = event->attr.sample_stack_user; 6462 u16 size = sizeof(u64); 6463 6464 stack_size = perf_sample_ustack_size(stack_size, header->size, 6465 data->regs_user.regs); 6466 6467 /* 6468 * If there is something to dump, add space for the dump 6469 * itself and for the field that tells the dynamic size, 6470 * which is how many have been actually dumped. 6471 */ 6472 if (stack_size) 6473 size += sizeof(u64) + stack_size; 6474 6475 data->stack_user_size = stack_size; 6476 header->size += size; 6477 } 6478 6479 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6480 /* regs dump ABI info */ 6481 int size = sizeof(u64); 6482 6483 perf_sample_regs_intr(&data->regs_intr, regs); 6484 6485 if (data->regs_intr.regs) { 6486 u64 mask = event->attr.sample_regs_intr; 6487 6488 size += hweight64(mask) * sizeof(u64); 6489 } 6490 6491 header->size += size; 6492 } 6493 6494 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6495 data->phys_addr = perf_virt_to_phys(data->addr); 6496 } 6497 6498 static __always_inline int 6499 __perf_event_output(struct perf_event *event, 6500 struct perf_sample_data *data, 6501 struct pt_regs *regs, 6502 int (*output_begin)(struct perf_output_handle *, 6503 struct perf_event *, 6504 unsigned int)) 6505 { 6506 struct perf_output_handle handle; 6507 struct perf_event_header header; 6508 int err; 6509 6510 /* protect the callchain buffers */ 6511 rcu_read_lock(); 6512 6513 perf_prepare_sample(&header, data, event, regs); 6514 6515 err = output_begin(&handle, event, header.size); 6516 if (err) 6517 goto exit; 6518 6519 perf_output_sample(&handle, &header, data, event); 6520 6521 perf_output_end(&handle); 6522 6523 exit: 6524 rcu_read_unlock(); 6525 return err; 6526 } 6527 6528 void 6529 perf_event_output_forward(struct perf_event *event, 6530 struct perf_sample_data *data, 6531 struct pt_regs *regs) 6532 { 6533 __perf_event_output(event, data, regs, perf_output_begin_forward); 6534 } 6535 6536 void 6537 perf_event_output_backward(struct perf_event *event, 6538 struct perf_sample_data *data, 6539 struct pt_regs *regs) 6540 { 6541 __perf_event_output(event, data, regs, perf_output_begin_backward); 6542 } 6543 6544 int 6545 perf_event_output(struct perf_event *event, 6546 struct perf_sample_data *data, 6547 struct pt_regs *regs) 6548 { 6549 return __perf_event_output(event, data, regs, perf_output_begin); 6550 } 6551 6552 /* 6553 * read event_id 6554 */ 6555 6556 struct perf_read_event { 6557 struct perf_event_header header; 6558 6559 u32 pid; 6560 u32 tid; 6561 }; 6562 6563 static void 6564 perf_event_read_event(struct perf_event *event, 6565 struct task_struct *task) 6566 { 6567 struct perf_output_handle handle; 6568 struct perf_sample_data sample; 6569 struct perf_read_event read_event = { 6570 .header = { 6571 .type = PERF_RECORD_READ, 6572 .misc = 0, 6573 .size = sizeof(read_event) + event->read_size, 6574 }, 6575 .pid = perf_event_pid(event, task), 6576 .tid = perf_event_tid(event, task), 6577 }; 6578 int ret; 6579 6580 perf_event_header__init_id(&read_event.header, &sample, event); 6581 ret = perf_output_begin(&handle, event, read_event.header.size); 6582 if (ret) 6583 return; 6584 6585 perf_output_put(&handle, read_event); 6586 perf_output_read(&handle, event); 6587 perf_event__output_id_sample(event, &handle, &sample); 6588 6589 perf_output_end(&handle); 6590 } 6591 6592 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6593 6594 static void 6595 perf_iterate_ctx(struct perf_event_context *ctx, 6596 perf_iterate_f output, 6597 void *data, bool all) 6598 { 6599 struct perf_event *event; 6600 6601 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6602 if (!all) { 6603 if (event->state < PERF_EVENT_STATE_INACTIVE) 6604 continue; 6605 if (!event_filter_match(event)) 6606 continue; 6607 } 6608 6609 output(event, data); 6610 } 6611 } 6612 6613 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6614 { 6615 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6616 struct perf_event *event; 6617 6618 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6619 /* 6620 * Skip events that are not fully formed yet; ensure that 6621 * if we observe event->ctx, both event and ctx will be 6622 * complete enough. See perf_install_in_context(). 6623 */ 6624 if (!smp_load_acquire(&event->ctx)) 6625 continue; 6626 6627 if (event->state < PERF_EVENT_STATE_INACTIVE) 6628 continue; 6629 if (!event_filter_match(event)) 6630 continue; 6631 output(event, data); 6632 } 6633 } 6634 6635 /* 6636 * Iterate all events that need to receive side-band events. 6637 * 6638 * For new callers; ensure that account_pmu_sb_event() includes 6639 * your event, otherwise it might not get delivered. 6640 */ 6641 static void 6642 perf_iterate_sb(perf_iterate_f output, void *data, 6643 struct perf_event_context *task_ctx) 6644 { 6645 struct perf_event_context *ctx; 6646 int ctxn; 6647 6648 rcu_read_lock(); 6649 preempt_disable(); 6650 6651 /* 6652 * If we have task_ctx != NULL we only notify the task context itself. 6653 * The task_ctx is set only for EXIT events before releasing task 6654 * context. 6655 */ 6656 if (task_ctx) { 6657 perf_iterate_ctx(task_ctx, output, data, false); 6658 goto done; 6659 } 6660 6661 perf_iterate_sb_cpu(output, data); 6662 6663 for_each_task_context_nr(ctxn) { 6664 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6665 if (ctx) 6666 perf_iterate_ctx(ctx, output, data, false); 6667 } 6668 done: 6669 preempt_enable(); 6670 rcu_read_unlock(); 6671 } 6672 6673 /* 6674 * Clear all file-based filters at exec, they'll have to be 6675 * re-instated when/if these objects are mmapped again. 6676 */ 6677 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6678 { 6679 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6680 struct perf_addr_filter *filter; 6681 unsigned int restart = 0, count = 0; 6682 unsigned long flags; 6683 6684 if (!has_addr_filter(event)) 6685 return; 6686 6687 raw_spin_lock_irqsave(&ifh->lock, flags); 6688 list_for_each_entry(filter, &ifh->list, entry) { 6689 if (filter->path.dentry) { 6690 event->addr_filters_offs[count] = 0; 6691 restart++; 6692 } 6693 6694 count++; 6695 } 6696 6697 if (restart) 6698 event->addr_filters_gen++; 6699 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6700 6701 if (restart) 6702 perf_event_stop(event, 1); 6703 } 6704 6705 void perf_event_exec(void) 6706 { 6707 struct perf_event_context *ctx; 6708 int ctxn; 6709 6710 rcu_read_lock(); 6711 for_each_task_context_nr(ctxn) { 6712 ctx = current->perf_event_ctxp[ctxn]; 6713 if (!ctx) 6714 continue; 6715 6716 perf_event_enable_on_exec(ctxn); 6717 6718 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6719 true); 6720 } 6721 rcu_read_unlock(); 6722 } 6723 6724 struct remote_output { 6725 struct ring_buffer *rb; 6726 int err; 6727 }; 6728 6729 static void __perf_event_output_stop(struct perf_event *event, void *data) 6730 { 6731 struct perf_event *parent = event->parent; 6732 struct remote_output *ro = data; 6733 struct ring_buffer *rb = ro->rb; 6734 struct stop_event_data sd = { 6735 .event = event, 6736 }; 6737 6738 if (!has_aux(event)) 6739 return; 6740 6741 if (!parent) 6742 parent = event; 6743 6744 /* 6745 * In case of inheritance, it will be the parent that links to the 6746 * ring-buffer, but it will be the child that's actually using it. 6747 * 6748 * We are using event::rb to determine if the event should be stopped, 6749 * however this may race with ring_buffer_attach() (through set_output), 6750 * which will make us skip the event that actually needs to be stopped. 6751 * So ring_buffer_attach() has to stop an aux event before re-assigning 6752 * its rb pointer. 6753 */ 6754 if (rcu_dereference(parent->rb) == rb) 6755 ro->err = __perf_event_stop(&sd); 6756 } 6757 6758 static int __perf_pmu_output_stop(void *info) 6759 { 6760 struct perf_event *event = info; 6761 struct pmu *pmu = event->pmu; 6762 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6763 struct remote_output ro = { 6764 .rb = event->rb, 6765 }; 6766 6767 rcu_read_lock(); 6768 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6769 if (cpuctx->task_ctx) 6770 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6771 &ro, false); 6772 rcu_read_unlock(); 6773 6774 return ro.err; 6775 } 6776 6777 static void perf_pmu_output_stop(struct perf_event *event) 6778 { 6779 struct perf_event *iter; 6780 int err, cpu; 6781 6782 restart: 6783 rcu_read_lock(); 6784 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6785 /* 6786 * For per-CPU events, we need to make sure that neither they 6787 * nor their children are running; for cpu==-1 events it's 6788 * sufficient to stop the event itself if it's active, since 6789 * it can't have children. 6790 */ 6791 cpu = iter->cpu; 6792 if (cpu == -1) 6793 cpu = READ_ONCE(iter->oncpu); 6794 6795 if (cpu == -1) 6796 continue; 6797 6798 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6799 if (err == -EAGAIN) { 6800 rcu_read_unlock(); 6801 goto restart; 6802 } 6803 } 6804 rcu_read_unlock(); 6805 } 6806 6807 /* 6808 * task tracking -- fork/exit 6809 * 6810 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6811 */ 6812 6813 struct perf_task_event { 6814 struct task_struct *task; 6815 struct perf_event_context *task_ctx; 6816 6817 struct { 6818 struct perf_event_header header; 6819 6820 u32 pid; 6821 u32 ppid; 6822 u32 tid; 6823 u32 ptid; 6824 u64 time; 6825 } event_id; 6826 }; 6827 6828 static int perf_event_task_match(struct perf_event *event) 6829 { 6830 return event->attr.comm || event->attr.mmap || 6831 event->attr.mmap2 || event->attr.mmap_data || 6832 event->attr.task; 6833 } 6834 6835 static void perf_event_task_output(struct perf_event *event, 6836 void *data) 6837 { 6838 struct perf_task_event *task_event = data; 6839 struct perf_output_handle handle; 6840 struct perf_sample_data sample; 6841 struct task_struct *task = task_event->task; 6842 int ret, size = task_event->event_id.header.size; 6843 6844 if (!perf_event_task_match(event)) 6845 return; 6846 6847 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6848 6849 ret = perf_output_begin(&handle, event, 6850 task_event->event_id.header.size); 6851 if (ret) 6852 goto out; 6853 6854 task_event->event_id.pid = perf_event_pid(event, task); 6855 task_event->event_id.ppid = perf_event_pid(event, current); 6856 6857 task_event->event_id.tid = perf_event_tid(event, task); 6858 task_event->event_id.ptid = perf_event_tid(event, current); 6859 6860 task_event->event_id.time = perf_event_clock(event); 6861 6862 perf_output_put(&handle, task_event->event_id); 6863 6864 perf_event__output_id_sample(event, &handle, &sample); 6865 6866 perf_output_end(&handle); 6867 out: 6868 task_event->event_id.header.size = size; 6869 } 6870 6871 static void perf_event_task(struct task_struct *task, 6872 struct perf_event_context *task_ctx, 6873 int new) 6874 { 6875 struct perf_task_event task_event; 6876 6877 if (!atomic_read(&nr_comm_events) && 6878 !atomic_read(&nr_mmap_events) && 6879 !atomic_read(&nr_task_events)) 6880 return; 6881 6882 task_event = (struct perf_task_event){ 6883 .task = task, 6884 .task_ctx = task_ctx, 6885 .event_id = { 6886 .header = { 6887 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6888 .misc = 0, 6889 .size = sizeof(task_event.event_id), 6890 }, 6891 /* .pid */ 6892 /* .ppid */ 6893 /* .tid */ 6894 /* .ptid */ 6895 /* .time */ 6896 }, 6897 }; 6898 6899 perf_iterate_sb(perf_event_task_output, 6900 &task_event, 6901 task_ctx); 6902 } 6903 6904 void perf_event_fork(struct task_struct *task) 6905 { 6906 perf_event_task(task, NULL, 1); 6907 perf_event_namespaces(task); 6908 } 6909 6910 /* 6911 * comm tracking 6912 */ 6913 6914 struct perf_comm_event { 6915 struct task_struct *task; 6916 char *comm; 6917 int comm_size; 6918 6919 struct { 6920 struct perf_event_header header; 6921 6922 u32 pid; 6923 u32 tid; 6924 } event_id; 6925 }; 6926 6927 static int perf_event_comm_match(struct perf_event *event) 6928 { 6929 return event->attr.comm; 6930 } 6931 6932 static void perf_event_comm_output(struct perf_event *event, 6933 void *data) 6934 { 6935 struct perf_comm_event *comm_event = data; 6936 struct perf_output_handle handle; 6937 struct perf_sample_data sample; 6938 int size = comm_event->event_id.header.size; 6939 int ret; 6940 6941 if (!perf_event_comm_match(event)) 6942 return; 6943 6944 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6945 ret = perf_output_begin(&handle, event, 6946 comm_event->event_id.header.size); 6947 6948 if (ret) 6949 goto out; 6950 6951 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6952 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6953 6954 perf_output_put(&handle, comm_event->event_id); 6955 __output_copy(&handle, comm_event->comm, 6956 comm_event->comm_size); 6957 6958 perf_event__output_id_sample(event, &handle, &sample); 6959 6960 perf_output_end(&handle); 6961 out: 6962 comm_event->event_id.header.size = size; 6963 } 6964 6965 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6966 { 6967 char comm[TASK_COMM_LEN]; 6968 unsigned int size; 6969 6970 memset(comm, 0, sizeof(comm)); 6971 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6972 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6973 6974 comm_event->comm = comm; 6975 comm_event->comm_size = size; 6976 6977 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6978 6979 perf_iterate_sb(perf_event_comm_output, 6980 comm_event, 6981 NULL); 6982 } 6983 6984 void perf_event_comm(struct task_struct *task, bool exec) 6985 { 6986 struct perf_comm_event comm_event; 6987 6988 if (!atomic_read(&nr_comm_events)) 6989 return; 6990 6991 comm_event = (struct perf_comm_event){ 6992 .task = task, 6993 /* .comm */ 6994 /* .comm_size */ 6995 .event_id = { 6996 .header = { 6997 .type = PERF_RECORD_COMM, 6998 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6999 /* .size */ 7000 }, 7001 /* .pid */ 7002 /* .tid */ 7003 }, 7004 }; 7005 7006 perf_event_comm_event(&comm_event); 7007 } 7008 7009 /* 7010 * namespaces tracking 7011 */ 7012 7013 struct perf_namespaces_event { 7014 struct task_struct *task; 7015 7016 struct { 7017 struct perf_event_header header; 7018 7019 u32 pid; 7020 u32 tid; 7021 u64 nr_namespaces; 7022 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7023 } event_id; 7024 }; 7025 7026 static int perf_event_namespaces_match(struct perf_event *event) 7027 { 7028 return event->attr.namespaces; 7029 } 7030 7031 static void perf_event_namespaces_output(struct perf_event *event, 7032 void *data) 7033 { 7034 struct perf_namespaces_event *namespaces_event = data; 7035 struct perf_output_handle handle; 7036 struct perf_sample_data sample; 7037 u16 header_size = namespaces_event->event_id.header.size; 7038 int ret; 7039 7040 if (!perf_event_namespaces_match(event)) 7041 return; 7042 7043 perf_event_header__init_id(&namespaces_event->event_id.header, 7044 &sample, event); 7045 ret = perf_output_begin(&handle, event, 7046 namespaces_event->event_id.header.size); 7047 if (ret) 7048 goto out; 7049 7050 namespaces_event->event_id.pid = perf_event_pid(event, 7051 namespaces_event->task); 7052 namespaces_event->event_id.tid = perf_event_tid(event, 7053 namespaces_event->task); 7054 7055 perf_output_put(&handle, namespaces_event->event_id); 7056 7057 perf_event__output_id_sample(event, &handle, &sample); 7058 7059 perf_output_end(&handle); 7060 out: 7061 namespaces_event->event_id.header.size = header_size; 7062 } 7063 7064 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7065 struct task_struct *task, 7066 const struct proc_ns_operations *ns_ops) 7067 { 7068 struct path ns_path; 7069 struct inode *ns_inode; 7070 void *error; 7071 7072 error = ns_get_path(&ns_path, task, ns_ops); 7073 if (!error) { 7074 ns_inode = ns_path.dentry->d_inode; 7075 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7076 ns_link_info->ino = ns_inode->i_ino; 7077 path_put(&ns_path); 7078 } 7079 } 7080 7081 void perf_event_namespaces(struct task_struct *task) 7082 { 7083 struct perf_namespaces_event namespaces_event; 7084 struct perf_ns_link_info *ns_link_info; 7085 7086 if (!atomic_read(&nr_namespaces_events)) 7087 return; 7088 7089 namespaces_event = (struct perf_namespaces_event){ 7090 .task = task, 7091 .event_id = { 7092 .header = { 7093 .type = PERF_RECORD_NAMESPACES, 7094 .misc = 0, 7095 .size = sizeof(namespaces_event.event_id), 7096 }, 7097 /* .pid */ 7098 /* .tid */ 7099 .nr_namespaces = NR_NAMESPACES, 7100 /* .link_info[NR_NAMESPACES] */ 7101 }, 7102 }; 7103 7104 ns_link_info = namespaces_event.event_id.link_info; 7105 7106 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7107 task, &mntns_operations); 7108 7109 #ifdef CONFIG_USER_NS 7110 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7111 task, &userns_operations); 7112 #endif 7113 #ifdef CONFIG_NET_NS 7114 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7115 task, &netns_operations); 7116 #endif 7117 #ifdef CONFIG_UTS_NS 7118 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7119 task, &utsns_operations); 7120 #endif 7121 #ifdef CONFIG_IPC_NS 7122 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7123 task, &ipcns_operations); 7124 #endif 7125 #ifdef CONFIG_PID_NS 7126 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7127 task, &pidns_operations); 7128 #endif 7129 #ifdef CONFIG_CGROUPS 7130 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7131 task, &cgroupns_operations); 7132 #endif 7133 7134 perf_iterate_sb(perf_event_namespaces_output, 7135 &namespaces_event, 7136 NULL); 7137 } 7138 7139 /* 7140 * mmap tracking 7141 */ 7142 7143 struct perf_mmap_event { 7144 struct vm_area_struct *vma; 7145 7146 const char *file_name; 7147 int file_size; 7148 int maj, min; 7149 u64 ino; 7150 u64 ino_generation; 7151 u32 prot, flags; 7152 7153 struct { 7154 struct perf_event_header header; 7155 7156 u32 pid; 7157 u32 tid; 7158 u64 start; 7159 u64 len; 7160 u64 pgoff; 7161 } event_id; 7162 }; 7163 7164 static int perf_event_mmap_match(struct perf_event *event, 7165 void *data) 7166 { 7167 struct perf_mmap_event *mmap_event = data; 7168 struct vm_area_struct *vma = mmap_event->vma; 7169 int executable = vma->vm_flags & VM_EXEC; 7170 7171 return (!executable && event->attr.mmap_data) || 7172 (executable && (event->attr.mmap || event->attr.mmap2)); 7173 } 7174 7175 static void perf_event_mmap_output(struct perf_event *event, 7176 void *data) 7177 { 7178 struct perf_mmap_event *mmap_event = data; 7179 struct perf_output_handle handle; 7180 struct perf_sample_data sample; 7181 int size = mmap_event->event_id.header.size; 7182 int ret; 7183 7184 if (!perf_event_mmap_match(event, data)) 7185 return; 7186 7187 if (event->attr.mmap2) { 7188 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7189 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7190 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7191 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7192 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7193 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7194 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7195 } 7196 7197 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7198 ret = perf_output_begin(&handle, event, 7199 mmap_event->event_id.header.size); 7200 if (ret) 7201 goto out; 7202 7203 mmap_event->event_id.pid = perf_event_pid(event, current); 7204 mmap_event->event_id.tid = perf_event_tid(event, current); 7205 7206 perf_output_put(&handle, mmap_event->event_id); 7207 7208 if (event->attr.mmap2) { 7209 perf_output_put(&handle, mmap_event->maj); 7210 perf_output_put(&handle, mmap_event->min); 7211 perf_output_put(&handle, mmap_event->ino); 7212 perf_output_put(&handle, mmap_event->ino_generation); 7213 perf_output_put(&handle, mmap_event->prot); 7214 perf_output_put(&handle, mmap_event->flags); 7215 } 7216 7217 __output_copy(&handle, mmap_event->file_name, 7218 mmap_event->file_size); 7219 7220 perf_event__output_id_sample(event, &handle, &sample); 7221 7222 perf_output_end(&handle); 7223 out: 7224 mmap_event->event_id.header.size = size; 7225 } 7226 7227 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7228 { 7229 struct vm_area_struct *vma = mmap_event->vma; 7230 struct file *file = vma->vm_file; 7231 int maj = 0, min = 0; 7232 u64 ino = 0, gen = 0; 7233 u32 prot = 0, flags = 0; 7234 unsigned int size; 7235 char tmp[16]; 7236 char *buf = NULL; 7237 char *name; 7238 7239 if (vma->vm_flags & VM_READ) 7240 prot |= PROT_READ; 7241 if (vma->vm_flags & VM_WRITE) 7242 prot |= PROT_WRITE; 7243 if (vma->vm_flags & VM_EXEC) 7244 prot |= PROT_EXEC; 7245 7246 if (vma->vm_flags & VM_MAYSHARE) 7247 flags = MAP_SHARED; 7248 else 7249 flags = MAP_PRIVATE; 7250 7251 if (vma->vm_flags & VM_DENYWRITE) 7252 flags |= MAP_DENYWRITE; 7253 if (vma->vm_flags & VM_MAYEXEC) 7254 flags |= MAP_EXECUTABLE; 7255 if (vma->vm_flags & VM_LOCKED) 7256 flags |= MAP_LOCKED; 7257 if (vma->vm_flags & VM_HUGETLB) 7258 flags |= MAP_HUGETLB; 7259 7260 if (file) { 7261 struct inode *inode; 7262 dev_t dev; 7263 7264 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7265 if (!buf) { 7266 name = "//enomem"; 7267 goto cpy_name; 7268 } 7269 /* 7270 * d_path() works from the end of the rb backwards, so we 7271 * need to add enough zero bytes after the string to handle 7272 * the 64bit alignment we do later. 7273 */ 7274 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7275 if (IS_ERR(name)) { 7276 name = "//toolong"; 7277 goto cpy_name; 7278 } 7279 inode = file_inode(vma->vm_file); 7280 dev = inode->i_sb->s_dev; 7281 ino = inode->i_ino; 7282 gen = inode->i_generation; 7283 maj = MAJOR(dev); 7284 min = MINOR(dev); 7285 7286 goto got_name; 7287 } else { 7288 if (vma->vm_ops && vma->vm_ops->name) { 7289 name = (char *) vma->vm_ops->name(vma); 7290 if (name) 7291 goto cpy_name; 7292 } 7293 7294 name = (char *)arch_vma_name(vma); 7295 if (name) 7296 goto cpy_name; 7297 7298 if (vma->vm_start <= vma->vm_mm->start_brk && 7299 vma->vm_end >= vma->vm_mm->brk) { 7300 name = "[heap]"; 7301 goto cpy_name; 7302 } 7303 if (vma->vm_start <= vma->vm_mm->start_stack && 7304 vma->vm_end >= vma->vm_mm->start_stack) { 7305 name = "[stack]"; 7306 goto cpy_name; 7307 } 7308 7309 name = "//anon"; 7310 goto cpy_name; 7311 } 7312 7313 cpy_name: 7314 strlcpy(tmp, name, sizeof(tmp)); 7315 name = tmp; 7316 got_name: 7317 /* 7318 * Since our buffer works in 8 byte units we need to align our string 7319 * size to a multiple of 8. However, we must guarantee the tail end is 7320 * zero'd out to avoid leaking random bits to userspace. 7321 */ 7322 size = strlen(name)+1; 7323 while (!IS_ALIGNED(size, sizeof(u64))) 7324 name[size++] = '\0'; 7325 7326 mmap_event->file_name = name; 7327 mmap_event->file_size = size; 7328 mmap_event->maj = maj; 7329 mmap_event->min = min; 7330 mmap_event->ino = ino; 7331 mmap_event->ino_generation = gen; 7332 mmap_event->prot = prot; 7333 mmap_event->flags = flags; 7334 7335 if (!(vma->vm_flags & VM_EXEC)) 7336 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7337 7338 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7339 7340 perf_iterate_sb(perf_event_mmap_output, 7341 mmap_event, 7342 NULL); 7343 7344 kfree(buf); 7345 } 7346 7347 /* 7348 * Check whether inode and address range match filter criteria. 7349 */ 7350 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7351 struct file *file, unsigned long offset, 7352 unsigned long size) 7353 { 7354 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7355 if (!filter->path.dentry) 7356 return false; 7357 7358 if (d_inode(filter->path.dentry) != file_inode(file)) 7359 return false; 7360 7361 if (filter->offset > offset + size) 7362 return false; 7363 7364 if (filter->offset + filter->size < offset) 7365 return false; 7366 7367 return true; 7368 } 7369 7370 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7371 { 7372 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7373 struct vm_area_struct *vma = data; 7374 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7375 struct file *file = vma->vm_file; 7376 struct perf_addr_filter *filter; 7377 unsigned int restart = 0, count = 0; 7378 7379 if (!has_addr_filter(event)) 7380 return; 7381 7382 if (!file) 7383 return; 7384 7385 raw_spin_lock_irqsave(&ifh->lock, flags); 7386 list_for_each_entry(filter, &ifh->list, entry) { 7387 if (perf_addr_filter_match(filter, file, off, 7388 vma->vm_end - vma->vm_start)) { 7389 event->addr_filters_offs[count] = vma->vm_start; 7390 restart++; 7391 } 7392 7393 count++; 7394 } 7395 7396 if (restart) 7397 event->addr_filters_gen++; 7398 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7399 7400 if (restart) 7401 perf_event_stop(event, 1); 7402 } 7403 7404 /* 7405 * Adjust all task's events' filters to the new vma 7406 */ 7407 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7408 { 7409 struct perf_event_context *ctx; 7410 int ctxn; 7411 7412 /* 7413 * Data tracing isn't supported yet and as such there is no need 7414 * to keep track of anything that isn't related to executable code: 7415 */ 7416 if (!(vma->vm_flags & VM_EXEC)) 7417 return; 7418 7419 rcu_read_lock(); 7420 for_each_task_context_nr(ctxn) { 7421 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7422 if (!ctx) 7423 continue; 7424 7425 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7426 } 7427 rcu_read_unlock(); 7428 } 7429 7430 void perf_event_mmap(struct vm_area_struct *vma) 7431 { 7432 struct perf_mmap_event mmap_event; 7433 7434 if (!atomic_read(&nr_mmap_events)) 7435 return; 7436 7437 mmap_event = (struct perf_mmap_event){ 7438 .vma = vma, 7439 /* .file_name */ 7440 /* .file_size */ 7441 .event_id = { 7442 .header = { 7443 .type = PERF_RECORD_MMAP, 7444 .misc = PERF_RECORD_MISC_USER, 7445 /* .size */ 7446 }, 7447 /* .pid */ 7448 /* .tid */ 7449 .start = vma->vm_start, 7450 .len = vma->vm_end - vma->vm_start, 7451 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7452 }, 7453 /* .maj (attr_mmap2 only) */ 7454 /* .min (attr_mmap2 only) */ 7455 /* .ino (attr_mmap2 only) */ 7456 /* .ino_generation (attr_mmap2 only) */ 7457 /* .prot (attr_mmap2 only) */ 7458 /* .flags (attr_mmap2 only) */ 7459 }; 7460 7461 perf_addr_filters_adjust(vma); 7462 perf_event_mmap_event(&mmap_event); 7463 } 7464 7465 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7466 unsigned long size, u64 flags) 7467 { 7468 struct perf_output_handle handle; 7469 struct perf_sample_data sample; 7470 struct perf_aux_event { 7471 struct perf_event_header header; 7472 u64 offset; 7473 u64 size; 7474 u64 flags; 7475 } rec = { 7476 .header = { 7477 .type = PERF_RECORD_AUX, 7478 .misc = 0, 7479 .size = sizeof(rec), 7480 }, 7481 .offset = head, 7482 .size = size, 7483 .flags = flags, 7484 }; 7485 int ret; 7486 7487 perf_event_header__init_id(&rec.header, &sample, event); 7488 ret = perf_output_begin(&handle, event, rec.header.size); 7489 7490 if (ret) 7491 return; 7492 7493 perf_output_put(&handle, rec); 7494 perf_event__output_id_sample(event, &handle, &sample); 7495 7496 perf_output_end(&handle); 7497 } 7498 7499 /* 7500 * Lost/dropped samples logging 7501 */ 7502 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7503 { 7504 struct perf_output_handle handle; 7505 struct perf_sample_data sample; 7506 int ret; 7507 7508 struct { 7509 struct perf_event_header header; 7510 u64 lost; 7511 } lost_samples_event = { 7512 .header = { 7513 .type = PERF_RECORD_LOST_SAMPLES, 7514 .misc = 0, 7515 .size = sizeof(lost_samples_event), 7516 }, 7517 .lost = lost, 7518 }; 7519 7520 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7521 7522 ret = perf_output_begin(&handle, event, 7523 lost_samples_event.header.size); 7524 if (ret) 7525 return; 7526 7527 perf_output_put(&handle, lost_samples_event); 7528 perf_event__output_id_sample(event, &handle, &sample); 7529 perf_output_end(&handle); 7530 } 7531 7532 /* 7533 * context_switch tracking 7534 */ 7535 7536 struct perf_switch_event { 7537 struct task_struct *task; 7538 struct task_struct *next_prev; 7539 7540 struct { 7541 struct perf_event_header header; 7542 u32 next_prev_pid; 7543 u32 next_prev_tid; 7544 } event_id; 7545 }; 7546 7547 static int perf_event_switch_match(struct perf_event *event) 7548 { 7549 return event->attr.context_switch; 7550 } 7551 7552 static void perf_event_switch_output(struct perf_event *event, void *data) 7553 { 7554 struct perf_switch_event *se = data; 7555 struct perf_output_handle handle; 7556 struct perf_sample_data sample; 7557 int ret; 7558 7559 if (!perf_event_switch_match(event)) 7560 return; 7561 7562 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7563 if (event->ctx->task) { 7564 se->event_id.header.type = PERF_RECORD_SWITCH; 7565 se->event_id.header.size = sizeof(se->event_id.header); 7566 } else { 7567 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7568 se->event_id.header.size = sizeof(se->event_id); 7569 se->event_id.next_prev_pid = 7570 perf_event_pid(event, se->next_prev); 7571 se->event_id.next_prev_tid = 7572 perf_event_tid(event, se->next_prev); 7573 } 7574 7575 perf_event_header__init_id(&se->event_id.header, &sample, event); 7576 7577 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7578 if (ret) 7579 return; 7580 7581 if (event->ctx->task) 7582 perf_output_put(&handle, se->event_id.header); 7583 else 7584 perf_output_put(&handle, se->event_id); 7585 7586 perf_event__output_id_sample(event, &handle, &sample); 7587 7588 perf_output_end(&handle); 7589 } 7590 7591 static void perf_event_switch(struct task_struct *task, 7592 struct task_struct *next_prev, bool sched_in) 7593 { 7594 struct perf_switch_event switch_event; 7595 7596 /* N.B. caller checks nr_switch_events != 0 */ 7597 7598 switch_event = (struct perf_switch_event){ 7599 .task = task, 7600 .next_prev = next_prev, 7601 .event_id = { 7602 .header = { 7603 /* .type */ 7604 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7605 /* .size */ 7606 }, 7607 /* .next_prev_pid */ 7608 /* .next_prev_tid */ 7609 }, 7610 }; 7611 7612 if (!sched_in && task->state == TASK_RUNNING) 7613 switch_event.event_id.header.misc |= 7614 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7615 7616 perf_iterate_sb(perf_event_switch_output, 7617 &switch_event, 7618 NULL); 7619 } 7620 7621 /* 7622 * IRQ throttle logging 7623 */ 7624 7625 static void perf_log_throttle(struct perf_event *event, int enable) 7626 { 7627 struct perf_output_handle handle; 7628 struct perf_sample_data sample; 7629 int ret; 7630 7631 struct { 7632 struct perf_event_header header; 7633 u64 time; 7634 u64 id; 7635 u64 stream_id; 7636 } throttle_event = { 7637 .header = { 7638 .type = PERF_RECORD_THROTTLE, 7639 .misc = 0, 7640 .size = sizeof(throttle_event), 7641 }, 7642 .time = perf_event_clock(event), 7643 .id = primary_event_id(event), 7644 .stream_id = event->id, 7645 }; 7646 7647 if (enable) 7648 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7649 7650 perf_event_header__init_id(&throttle_event.header, &sample, event); 7651 7652 ret = perf_output_begin(&handle, event, 7653 throttle_event.header.size); 7654 if (ret) 7655 return; 7656 7657 perf_output_put(&handle, throttle_event); 7658 perf_event__output_id_sample(event, &handle, &sample); 7659 perf_output_end(&handle); 7660 } 7661 7662 /* 7663 * ksymbol register/unregister tracking 7664 */ 7665 7666 struct perf_ksymbol_event { 7667 const char *name; 7668 int name_len; 7669 struct { 7670 struct perf_event_header header; 7671 u64 addr; 7672 u32 len; 7673 u16 ksym_type; 7674 u16 flags; 7675 } event_id; 7676 }; 7677 7678 static int perf_event_ksymbol_match(struct perf_event *event) 7679 { 7680 return event->attr.ksymbol; 7681 } 7682 7683 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7684 { 7685 struct perf_ksymbol_event *ksymbol_event = data; 7686 struct perf_output_handle handle; 7687 struct perf_sample_data sample; 7688 int ret; 7689 7690 if (!perf_event_ksymbol_match(event)) 7691 return; 7692 7693 perf_event_header__init_id(&ksymbol_event->event_id.header, 7694 &sample, event); 7695 ret = perf_output_begin(&handle, event, 7696 ksymbol_event->event_id.header.size); 7697 if (ret) 7698 return; 7699 7700 perf_output_put(&handle, ksymbol_event->event_id); 7701 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7702 perf_event__output_id_sample(event, &handle, &sample); 7703 7704 perf_output_end(&handle); 7705 } 7706 7707 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7708 const char *sym) 7709 { 7710 struct perf_ksymbol_event ksymbol_event; 7711 char name[KSYM_NAME_LEN]; 7712 u16 flags = 0; 7713 int name_len; 7714 7715 if (!atomic_read(&nr_ksymbol_events)) 7716 return; 7717 7718 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7719 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7720 goto err; 7721 7722 strlcpy(name, sym, KSYM_NAME_LEN); 7723 name_len = strlen(name) + 1; 7724 while (!IS_ALIGNED(name_len, sizeof(u64))) 7725 name[name_len++] = '\0'; 7726 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7727 7728 if (unregister) 7729 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7730 7731 ksymbol_event = (struct perf_ksymbol_event){ 7732 .name = name, 7733 .name_len = name_len, 7734 .event_id = { 7735 .header = { 7736 .type = PERF_RECORD_KSYMBOL, 7737 .size = sizeof(ksymbol_event.event_id) + 7738 name_len, 7739 }, 7740 .addr = addr, 7741 .len = len, 7742 .ksym_type = ksym_type, 7743 .flags = flags, 7744 }, 7745 }; 7746 7747 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7748 return; 7749 err: 7750 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7751 } 7752 7753 /* 7754 * bpf program load/unload tracking 7755 */ 7756 7757 struct perf_bpf_event { 7758 struct bpf_prog *prog; 7759 struct { 7760 struct perf_event_header header; 7761 u16 type; 7762 u16 flags; 7763 u32 id; 7764 u8 tag[BPF_TAG_SIZE]; 7765 } event_id; 7766 }; 7767 7768 static int perf_event_bpf_match(struct perf_event *event) 7769 { 7770 return event->attr.bpf_event; 7771 } 7772 7773 static void perf_event_bpf_output(struct perf_event *event, void *data) 7774 { 7775 struct perf_bpf_event *bpf_event = data; 7776 struct perf_output_handle handle; 7777 struct perf_sample_data sample; 7778 int ret; 7779 7780 if (!perf_event_bpf_match(event)) 7781 return; 7782 7783 perf_event_header__init_id(&bpf_event->event_id.header, 7784 &sample, event); 7785 ret = perf_output_begin(&handle, event, 7786 bpf_event->event_id.header.size); 7787 if (ret) 7788 return; 7789 7790 perf_output_put(&handle, bpf_event->event_id); 7791 perf_event__output_id_sample(event, &handle, &sample); 7792 7793 perf_output_end(&handle); 7794 } 7795 7796 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7797 enum perf_bpf_event_type type) 7798 { 7799 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7800 char sym[KSYM_NAME_LEN]; 7801 int i; 7802 7803 if (prog->aux->func_cnt == 0) { 7804 bpf_get_prog_name(prog, sym); 7805 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7806 (u64)(unsigned long)prog->bpf_func, 7807 prog->jited_len, unregister, sym); 7808 } else { 7809 for (i = 0; i < prog->aux->func_cnt; i++) { 7810 struct bpf_prog *subprog = prog->aux->func[i]; 7811 7812 bpf_get_prog_name(subprog, sym); 7813 perf_event_ksymbol( 7814 PERF_RECORD_KSYMBOL_TYPE_BPF, 7815 (u64)(unsigned long)subprog->bpf_func, 7816 subprog->jited_len, unregister, sym); 7817 } 7818 } 7819 } 7820 7821 void perf_event_bpf_event(struct bpf_prog *prog, 7822 enum perf_bpf_event_type type, 7823 u16 flags) 7824 { 7825 struct perf_bpf_event bpf_event; 7826 7827 if (type <= PERF_BPF_EVENT_UNKNOWN || 7828 type >= PERF_BPF_EVENT_MAX) 7829 return; 7830 7831 switch (type) { 7832 case PERF_BPF_EVENT_PROG_LOAD: 7833 case PERF_BPF_EVENT_PROG_UNLOAD: 7834 if (atomic_read(&nr_ksymbol_events)) 7835 perf_event_bpf_emit_ksymbols(prog, type); 7836 break; 7837 default: 7838 break; 7839 } 7840 7841 if (!atomic_read(&nr_bpf_events)) 7842 return; 7843 7844 bpf_event = (struct perf_bpf_event){ 7845 .prog = prog, 7846 .event_id = { 7847 .header = { 7848 .type = PERF_RECORD_BPF_EVENT, 7849 .size = sizeof(bpf_event.event_id), 7850 }, 7851 .type = type, 7852 .flags = flags, 7853 .id = prog->aux->id, 7854 }, 7855 }; 7856 7857 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7858 7859 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7860 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7861 } 7862 7863 void perf_event_itrace_started(struct perf_event *event) 7864 { 7865 event->attach_state |= PERF_ATTACH_ITRACE; 7866 } 7867 7868 static void perf_log_itrace_start(struct perf_event *event) 7869 { 7870 struct perf_output_handle handle; 7871 struct perf_sample_data sample; 7872 struct perf_aux_event { 7873 struct perf_event_header header; 7874 u32 pid; 7875 u32 tid; 7876 } rec; 7877 int ret; 7878 7879 if (event->parent) 7880 event = event->parent; 7881 7882 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7883 event->attach_state & PERF_ATTACH_ITRACE) 7884 return; 7885 7886 rec.header.type = PERF_RECORD_ITRACE_START; 7887 rec.header.misc = 0; 7888 rec.header.size = sizeof(rec); 7889 rec.pid = perf_event_pid(event, current); 7890 rec.tid = perf_event_tid(event, current); 7891 7892 perf_event_header__init_id(&rec.header, &sample, event); 7893 ret = perf_output_begin(&handle, event, rec.header.size); 7894 7895 if (ret) 7896 return; 7897 7898 perf_output_put(&handle, rec); 7899 perf_event__output_id_sample(event, &handle, &sample); 7900 7901 perf_output_end(&handle); 7902 } 7903 7904 static int 7905 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7906 { 7907 struct hw_perf_event *hwc = &event->hw; 7908 int ret = 0; 7909 u64 seq; 7910 7911 seq = __this_cpu_read(perf_throttled_seq); 7912 if (seq != hwc->interrupts_seq) { 7913 hwc->interrupts_seq = seq; 7914 hwc->interrupts = 1; 7915 } else { 7916 hwc->interrupts++; 7917 if (unlikely(throttle 7918 && hwc->interrupts >= max_samples_per_tick)) { 7919 __this_cpu_inc(perf_throttled_count); 7920 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7921 hwc->interrupts = MAX_INTERRUPTS; 7922 perf_log_throttle(event, 0); 7923 ret = 1; 7924 } 7925 } 7926 7927 if (event->attr.freq) { 7928 u64 now = perf_clock(); 7929 s64 delta = now - hwc->freq_time_stamp; 7930 7931 hwc->freq_time_stamp = now; 7932 7933 if (delta > 0 && delta < 2*TICK_NSEC) 7934 perf_adjust_period(event, delta, hwc->last_period, true); 7935 } 7936 7937 return ret; 7938 } 7939 7940 int perf_event_account_interrupt(struct perf_event *event) 7941 { 7942 return __perf_event_account_interrupt(event, 1); 7943 } 7944 7945 /* 7946 * Generic event overflow handling, sampling. 7947 */ 7948 7949 static int __perf_event_overflow(struct perf_event *event, 7950 int throttle, struct perf_sample_data *data, 7951 struct pt_regs *regs) 7952 { 7953 int events = atomic_read(&event->event_limit); 7954 int ret = 0; 7955 7956 /* 7957 * Non-sampling counters might still use the PMI to fold short 7958 * hardware counters, ignore those. 7959 */ 7960 if (unlikely(!is_sampling_event(event))) 7961 return 0; 7962 7963 ret = __perf_event_account_interrupt(event, throttle); 7964 7965 /* 7966 * XXX event_limit might not quite work as expected on inherited 7967 * events 7968 */ 7969 7970 event->pending_kill = POLL_IN; 7971 if (events && atomic_dec_and_test(&event->event_limit)) { 7972 ret = 1; 7973 event->pending_kill = POLL_HUP; 7974 7975 perf_event_disable_inatomic(event); 7976 } 7977 7978 READ_ONCE(event->overflow_handler)(event, data, regs); 7979 7980 if (*perf_event_fasync(event) && event->pending_kill) { 7981 event->pending_wakeup = 1; 7982 irq_work_queue(&event->pending); 7983 } 7984 7985 return ret; 7986 } 7987 7988 int perf_event_overflow(struct perf_event *event, 7989 struct perf_sample_data *data, 7990 struct pt_regs *regs) 7991 { 7992 return __perf_event_overflow(event, 1, data, regs); 7993 } 7994 7995 /* 7996 * Generic software event infrastructure 7997 */ 7998 7999 struct swevent_htable { 8000 struct swevent_hlist *swevent_hlist; 8001 struct mutex hlist_mutex; 8002 int hlist_refcount; 8003 8004 /* Recursion avoidance in each contexts */ 8005 int recursion[PERF_NR_CONTEXTS]; 8006 }; 8007 8008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8009 8010 /* 8011 * We directly increment event->count and keep a second value in 8012 * event->hw.period_left to count intervals. This period event 8013 * is kept in the range [-sample_period, 0] so that we can use the 8014 * sign as trigger. 8015 */ 8016 8017 u64 perf_swevent_set_period(struct perf_event *event) 8018 { 8019 struct hw_perf_event *hwc = &event->hw; 8020 u64 period = hwc->last_period; 8021 u64 nr, offset; 8022 s64 old, val; 8023 8024 hwc->last_period = hwc->sample_period; 8025 8026 again: 8027 old = val = local64_read(&hwc->period_left); 8028 if (val < 0) 8029 return 0; 8030 8031 nr = div64_u64(period + val, period); 8032 offset = nr * period; 8033 val -= offset; 8034 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8035 goto again; 8036 8037 return nr; 8038 } 8039 8040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8041 struct perf_sample_data *data, 8042 struct pt_regs *regs) 8043 { 8044 struct hw_perf_event *hwc = &event->hw; 8045 int throttle = 0; 8046 8047 if (!overflow) 8048 overflow = perf_swevent_set_period(event); 8049 8050 if (hwc->interrupts == MAX_INTERRUPTS) 8051 return; 8052 8053 for (; overflow; overflow--) { 8054 if (__perf_event_overflow(event, throttle, 8055 data, regs)) { 8056 /* 8057 * We inhibit the overflow from happening when 8058 * hwc->interrupts == MAX_INTERRUPTS. 8059 */ 8060 break; 8061 } 8062 throttle = 1; 8063 } 8064 } 8065 8066 static void perf_swevent_event(struct perf_event *event, u64 nr, 8067 struct perf_sample_data *data, 8068 struct pt_regs *regs) 8069 { 8070 struct hw_perf_event *hwc = &event->hw; 8071 8072 local64_add(nr, &event->count); 8073 8074 if (!regs) 8075 return; 8076 8077 if (!is_sampling_event(event)) 8078 return; 8079 8080 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8081 data->period = nr; 8082 return perf_swevent_overflow(event, 1, data, regs); 8083 } else 8084 data->period = event->hw.last_period; 8085 8086 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8087 return perf_swevent_overflow(event, 1, data, regs); 8088 8089 if (local64_add_negative(nr, &hwc->period_left)) 8090 return; 8091 8092 perf_swevent_overflow(event, 0, data, regs); 8093 } 8094 8095 static int perf_exclude_event(struct perf_event *event, 8096 struct pt_regs *regs) 8097 { 8098 if (event->hw.state & PERF_HES_STOPPED) 8099 return 1; 8100 8101 if (regs) { 8102 if (event->attr.exclude_user && user_mode(regs)) 8103 return 1; 8104 8105 if (event->attr.exclude_kernel && !user_mode(regs)) 8106 return 1; 8107 } 8108 8109 return 0; 8110 } 8111 8112 static int perf_swevent_match(struct perf_event *event, 8113 enum perf_type_id type, 8114 u32 event_id, 8115 struct perf_sample_data *data, 8116 struct pt_regs *regs) 8117 { 8118 if (event->attr.type != type) 8119 return 0; 8120 8121 if (event->attr.config != event_id) 8122 return 0; 8123 8124 if (perf_exclude_event(event, regs)) 8125 return 0; 8126 8127 return 1; 8128 } 8129 8130 static inline u64 swevent_hash(u64 type, u32 event_id) 8131 { 8132 u64 val = event_id | (type << 32); 8133 8134 return hash_64(val, SWEVENT_HLIST_BITS); 8135 } 8136 8137 static inline struct hlist_head * 8138 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8139 { 8140 u64 hash = swevent_hash(type, event_id); 8141 8142 return &hlist->heads[hash]; 8143 } 8144 8145 /* For the read side: events when they trigger */ 8146 static inline struct hlist_head * 8147 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8148 { 8149 struct swevent_hlist *hlist; 8150 8151 hlist = rcu_dereference(swhash->swevent_hlist); 8152 if (!hlist) 8153 return NULL; 8154 8155 return __find_swevent_head(hlist, type, event_id); 8156 } 8157 8158 /* For the event head insertion and removal in the hlist */ 8159 static inline struct hlist_head * 8160 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8161 { 8162 struct swevent_hlist *hlist; 8163 u32 event_id = event->attr.config; 8164 u64 type = event->attr.type; 8165 8166 /* 8167 * Event scheduling is always serialized against hlist allocation 8168 * and release. Which makes the protected version suitable here. 8169 * The context lock guarantees that. 8170 */ 8171 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8172 lockdep_is_held(&event->ctx->lock)); 8173 if (!hlist) 8174 return NULL; 8175 8176 return __find_swevent_head(hlist, type, event_id); 8177 } 8178 8179 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8180 u64 nr, 8181 struct perf_sample_data *data, 8182 struct pt_regs *regs) 8183 { 8184 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8185 struct perf_event *event; 8186 struct hlist_head *head; 8187 8188 rcu_read_lock(); 8189 head = find_swevent_head_rcu(swhash, type, event_id); 8190 if (!head) 8191 goto end; 8192 8193 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8194 if (perf_swevent_match(event, type, event_id, data, regs)) 8195 perf_swevent_event(event, nr, data, regs); 8196 } 8197 end: 8198 rcu_read_unlock(); 8199 } 8200 8201 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8202 8203 int perf_swevent_get_recursion_context(void) 8204 { 8205 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8206 8207 return get_recursion_context(swhash->recursion); 8208 } 8209 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8210 8211 void perf_swevent_put_recursion_context(int rctx) 8212 { 8213 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8214 8215 put_recursion_context(swhash->recursion, rctx); 8216 } 8217 8218 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8219 { 8220 struct perf_sample_data data; 8221 8222 if (WARN_ON_ONCE(!regs)) 8223 return; 8224 8225 perf_sample_data_init(&data, addr, 0); 8226 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8227 } 8228 8229 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8230 { 8231 int rctx; 8232 8233 preempt_disable_notrace(); 8234 rctx = perf_swevent_get_recursion_context(); 8235 if (unlikely(rctx < 0)) 8236 goto fail; 8237 8238 ___perf_sw_event(event_id, nr, regs, addr); 8239 8240 perf_swevent_put_recursion_context(rctx); 8241 fail: 8242 preempt_enable_notrace(); 8243 } 8244 8245 static void perf_swevent_read(struct perf_event *event) 8246 { 8247 } 8248 8249 static int perf_swevent_add(struct perf_event *event, int flags) 8250 { 8251 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8252 struct hw_perf_event *hwc = &event->hw; 8253 struct hlist_head *head; 8254 8255 if (is_sampling_event(event)) { 8256 hwc->last_period = hwc->sample_period; 8257 perf_swevent_set_period(event); 8258 } 8259 8260 hwc->state = !(flags & PERF_EF_START); 8261 8262 head = find_swevent_head(swhash, event); 8263 if (WARN_ON_ONCE(!head)) 8264 return -EINVAL; 8265 8266 hlist_add_head_rcu(&event->hlist_entry, head); 8267 perf_event_update_userpage(event); 8268 8269 return 0; 8270 } 8271 8272 static void perf_swevent_del(struct perf_event *event, int flags) 8273 { 8274 hlist_del_rcu(&event->hlist_entry); 8275 } 8276 8277 static void perf_swevent_start(struct perf_event *event, int flags) 8278 { 8279 event->hw.state = 0; 8280 } 8281 8282 static void perf_swevent_stop(struct perf_event *event, int flags) 8283 { 8284 event->hw.state = PERF_HES_STOPPED; 8285 } 8286 8287 /* Deref the hlist from the update side */ 8288 static inline struct swevent_hlist * 8289 swevent_hlist_deref(struct swevent_htable *swhash) 8290 { 8291 return rcu_dereference_protected(swhash->swevent_hlist, 8292 lockdep_is_held(&swhash->hlist_mutex)); 8293 } 8294 8295 static void swevent_hlist_release(struct swevent_htable *swhash) 8296 { 8297 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8298 8299 if (!hlist) 8300 return; 8301 8302 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8303 kfree_rcu(hlist, rcu_head); 8304 } 8305 8306 static void swevent_hlist_put_cpu(int cpu) 8307 { 8308 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8309 8310 mutex_lock(&swhash->hlist_mutex); 8311 8312 if (!--swhash->hlist_refcount) 8313 swevent_hlist_release(swhash); 8314 8315 mutex_unlock(&swhash->hlist_mutex); 8316 } 8317 8318 static void swevent_hlist_put(void) 8319 { 8320 int cpu; 8321 8322 for_each_possible_cpu(cpu) 8323 swevent_hlist_put_cpu(cpu); 8324 } 8325 8326 static int swevent_hlist_get_cpu(int cpu) 8327 { 8328 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8329 int err = 0; 8330 8331 mutex_lock(&swhash->hlist_mutex); 8332 if (!swevent_hlist_deref(swhash) && 8333 cpumask_test_cpu(cpu, perf_online_mask)) { 8334 struct swevent_hlist *hlist; 8335 8336 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8337 if (!hlist) { 8338 err = -ENOMEM; 8339 goto exit; 8340 } 8341 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8342 } 8343 swhash->hlist_refcount++; 8344 exit: 8345 mutex_unlock(&swhash->hlist_mutex); 8346 8347 return err; 8348 } 8349 8350 static int swevent_hlist_get(void) 8351 { 8352 int err, cpu, failed_cpu; 8353 8354 mutex_lock(&pmus_lock); 8355 for_each_possible_cpu(cpu) { 8356 err = swevent_hlist_get_cpu(cpu); 8357 if (err) { 8358 failed_cpu = cpu; 8359 goto fail; 8360 } 8361 } 8362 mutex_unlock(&pmus_lock); 8363 return 0; 8364 fail: 8365 for_each_possible_cpu(cpu) { 8366 if (cpu == failed_cpu) 8367 break; 8368 swevent_hlist_put_cpu(cpu); 8369 } 8370 mutex_unlock(&pmus_lock); 8371 return err; 8372 } 8373 8374 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8375 8376 static void sw_perf_event_destroy(struct perf_event *event) 8377 { 8378 u64 event_id = event->attr.config; 8379 8380 WARN_ON(event->parent); 8381 8382 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8383 swevent_hlist_put(); 8384 } 8385 8386 static int perf_swevent_init(struct perf_event *event) 8387 { 8388 u64 event_id = event->attr.config; 8389 8390 if (event->attr.type != PERF_TYPE_SOFTWARE) 8391 return -ENOENT; 8392 8393 /* 8394 * no branch sampling for software events 8395 */ 8396 if (has_branch_stack(event)) 8397 return -EOPNOTSUPP; 8398 8399 switch (event_id) { 8400 case PERF_COUNT_SW_CPU_CLOCK: 8401 case PERF_COUNT_SW_TASK_CLOCK: 8402 return -ENOENT; 8403 8404 default: 8405 break; 8406 } 8407 8408 if (event_id >= PERF_COUNT_SW_MAX) 8409 return -ENOENT; 8410 8411 if (!event->parent) { 8412 int err; 8413 8414 err = swevent_hlist_get(); 8415 if (err) 8416 return err; 8417 8418 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8419 event->destroy = sw_perf_event_destroy; 8420 } 8421 8422 return 0; 8423 } 8424 8425 static struct pmu perf_swevent = { 8426 .task_ctx_nr = perf_sw_context, 8427 8428 .capabilities = PERF_PMU_CAP_NO_NMI, 8429 8430 .event_init = perf_swevent_init, 8431 .add = perf_swevent_add, 8432 .del = perf_swevent_del, 8433 .start = perf_swevent_start, 8434 .stop = perf_swevent_stop, 8435 .read = perf_swevent_read, 8436 }; 8437 8438 #ifdef CONFIG_EVENT_TRACING 8439 8440 static int perf_tp_filter_match(struct perf_event *event, 8441 struct perf_sample_data *data) 8442 { 8443 void *record = data->raw->frag.data; 8444 8445 /* only top level events have filters set */ 8446 if (event->parent) 8447 event = event->parent; 8448 8449 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8450 return 1; 8451 return 0; 8452 } 8453 8454 static int perf_tp_event_match(struct perf_event *event, 8455 struct perf_sample_data *data, 8456 struct pt_regs *regs) 8457 { 8458 if (event->hw.state & PERF_HES_STOPPED) 8459 return 0; 8460 /* 8461 * All tracepoints are from kernel-space. 8462 */ 8463 if (event->attr.exclude_kernel) 8464 return 0; 8465 8466 if (!perf_tp_filter_match(event, data)) 8467 return 0; 8468 8469 return 1; 8470 } 8471 8472 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8473 struct trace_event_call *call, u64 count, 8474 struct pt_regs *regs, struct hlist_head *head, 8475 struct task_struct *task) 8476 { 8477 if (bpf_prog_array_valid(call)) { 8478 *(struct pt_regs **)raw_data = regs; 8479 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8480 perf_swevent_put_recursion_context(rctx); 8481 return; 8482 } 8483 } 8484 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8485 rctx, task); 8486 } 8487 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8488 8489 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8490 struct pt_regs *regs, struct hlist_head *head, int rctx, 8491 struct task_struct *task) 8492 { 8493 struct perf_sample_data data; 8494 struct perf_event *event; 8495 8496 struct perf_raw_record raw = { 8497 .frag = { 8498 .size = entry_size, 8499 .data = record, 8500 }, 8501 }; 8502 8503 perf_sample_data_init(&data, 0, 0); 8504 data.raw = &raw; 8505 8506 perf_trace_buf_update(record, event_type); 8507 8508 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8509 if (perf_tp_event_match(event, &data, regs)) 8510 perf_swevent_event(event, count, &data, regs); 8511 } 8512 8513 /* 8514 * If we got specified a target task, also iterate its context and 8515 * deliver this event there too. 8516 */ 8517 if (task && task != current) { 8518 struct perf_event_context *ctx; 8519 struct trace_entry *entry = record; 8520 8521 rcu_read_lock(); 8522 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8523 if (!ctx) 8524 goto unlock; 8525 8526 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8527 if (event->cpu != smp_processor_id()) 8528 continue; 8529 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8530 continue; 8531 if (event->attr.config != entry->type) 8532 continue; 8533 if (perf_tp_event_match(event, &data, regs)) 8534 perf_swevent_event(event, count, &data, regs); 8535 } 8536 unlock: 8537 rcu_read_unlock(); 8538 } 8539 8540 perf_swevent_put_recursion_context(rctx); 8541 } 8542 EXPORT_SYMBOL_GPL(perf_tp_event); 8543 8544 static void tp_perf_event_destroy(struct perf_event *event) 8545 { 8546 perf_trace_destroy(event); 8547 } 8548 8549 static int perf_tp_event_init(struct perf_event *event) 8550 { 8551 int err; 8552 8553 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8554 return -ENOENT; 8555 8556 /* 8557 * no branch sampling for tracepoint events 8558 */ 8559 if (has_branch_stack(event)) 8560 return -EOPNOTSUPP; 8561 8562 err = perf_trace_init(event); 8563 if (err) 8564 return err; 8565 8566 event->destroy = tp_perf_event_destroy; 8567 8568 return 0; 8569 } 8570 8571 static struct pmu perf_tracepoint = { 8572 .task_ctx_nr = perf_sw_context, 8573 8574 .event_init = perf_tp_event_init, 8575 .add = perf_trace_add, 8576 .del = perf_trace_del, 8577 .start = perf_swevent_start, 8578 .stop = perf_swevent_stop, 8579 .read = perf_swevent_read, 8580 }; 8581 8582 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8583 /* 8584 * Flags in config, used by dynamic PMU kprobe and uprobe 8585 * The flags should match following PMU_FORMAT_ATTR(). 8586 * 8587 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8588 * if not set, create kprobe/uprobe 8589 * 8590 * The following values specify a reference counter (or semaphore in the 8591 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8592 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8593 * 8594 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8595 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8596 */ 8597 enum perf_probe_config { 8598 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8599 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8600 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8601 }; 8602 8603 PMU_FORMAT_ATTR(retprobe, "config:0"); 8604 #endif 8605 8606 #ifdef CONFIG_KPROBE_EVENTS 8607 static struct attribute *kprobe_attrs[] = { 8608 &format_attr_retprobe.attr, 8609 NULL, 8610 }; 8611 8612 static struct attribute_group kprobe_format_group = { 8613 .name = "format", 8614 .attrs = kprobe_attrs, 8615 }; 8616 8617 static const struct attribute_group *kprobe_attr_groups[] = { 8618 &kprobe_format_group, 8619 NULL, 8620 }; 8621 8622 static int perf_kprobe_event_init(struct perf_event *event); 8623 static struct pmu perf_kprobe = { 8624 .task_ctx_nr = perf_sw_context, 8625 .event_init = perf_kprobe_event_init, 8626 .add = perf_trace_add, 8627 .del = perf_trace_del, 8628 .start = perf_swevent_start, 8629 .stop = perf_swevent_stop, 8630 .read = perf_swevent_read, 8631 .attr_groups = kprobe_attr_groups, 8632 }; 8633 8634 static int perf_kprobe_event_init(struct perf_event *event) 8635 { 8636 int err; 8637 bool is_retprobe; 8638 8639 if (event->attr.type != perf_kprobe.type) 8640 return -ENOENT; 8641 8642 if (!capable(CAP_SYS_ADMIN)) 8643 return -EACCES; 8644 8645 /* 8646 * no branch sampling for probe events 8647 */ 8648 if (has_branch_stack(event)) 8649 return -EOPNOTSUPP; 8650 8651 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8652 err = perf_kprobe_init(event, is_retprobe); 8653 if (err) 8654 return err; 8655 8656 event->destroy = perf_kprobe_destroy; 8657 8658 return 0; 8659 } 8660 #endif /* CONFIG_KPROBE_EVENTS */ 8661 8662 #ifdef CONFIG_UPROBE_EVENTS 8663 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8664 8665 static struct attribute *uprobe_attrs[] = { 8666 &format_attr_retprobe.attr, 8667 &format_attr_ref_ctr_offset.attr, 8668 NULL, 8669 }; 8670 8671 static struct attribute_group uprobe_format_group = { 8672 .name = "format", 8673 .attrs = uprobe_attrs, 8674 }; 8675 8676 static const struct attribute_group *uprobe_attr_groups[] = { 8677 &uprobe_format_group, 8678 NULL, 8679 }; 8680 8681 static int perf_uprobe_event_init(struct perf_event *event); 8682 static struct pmu perf_uprobe = { 8683 .task_ctx_nr = perf_sw_context, 8684 .event_init = perf_uprobe_event_init, 8685 .add = perf_trace_add, 8686 .del = perf_trace_del, 8687 .start = perf_swevent_start, 8688 .stop = perf_swevent_stop, 8689 .read = perf_swevent_read, 8690 .attr_groups = uprobe_attr_groups, 8691 }; 8692 8693 static int perf_uprobe_event_init(struct perf_event *event) 8694 { 8695 int err; 8696 unsigned long ref_ctr_offset; 8697 bool is_retprobe; 8698 8699 if (event->attr.type != perf_uprobe.type) 8700 return -ENOENT; 8701 8702 if (!capable(CAP_SYS_ADMIN)) 8703 return -EACCES; 8704 8705 /* 8706 * no branch sampling for probe events 8707 */ 8708 if (has_branch_stack(event)) 8709 return -EOPNOTSUPP; 8710 8711 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8712 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8713 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8714 if (err) 8715 return err; 8716 8717 event->destroy = perf_uprobe_destroy; 8718 8719 return 0; 8720 } 8721 #endif /* CONFIG_UPROBE_EVENTS */ 8722 8723 static inline void perf_tp_register(void) 8724 { 8725 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8726 #ifdef CONFIG_KPROBE_EVENTS 8727 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8728 #endif 8729 #ifdef CONFIG_UPROBE_EVENTS 8730 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8731 #endif 8732 } 8733 8734 static void perf_event_free_filter(struct perf_event *event) 8735 { 8736 ftrace_profile_free_filter(event); 8737 } 8738 8739 #ifdef CONFIG_BPF_SYSCALL 8740 static void bpf_overflow_handler(struct perf_event *event, 8741 struct perf_sample_data *data, 8742 struct pt_regs *regs) 8743 { 8744 struct bpf_perf_event_data_kern ctx = { 8745 .data = data, 8746 .event = event, 8747 }; 8748 int ret = 0; 8749 8750 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8751 preempt_disable(); 8752 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8753 goto out; 8754 rcu_read_lock(); 8755 ret = BPF_PROG_RUN(event->prog, &ctx); 8756 rcu_read_unlock(); 8757 out: 8758 __this_cpu_dec(bpf_prog_active); 8759 preempt_enable(); 8760 if (!ret) 8761 return; 8762 8763 event->orig_overflow_handler(event, data, regs); 8764 } 8765 8766 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8767 { 8768 struct bpf_prog *prog; 8769 8770 if (event->overflow_handler_context) 8771 /* hw breakpoint or kernel counter */ 8772 return -EINVAL; 8773 8774 if (event->prog) 8775 return -EEXIST; 8776 8777 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8778 if (IS_ERR(prog)) 8779 return PTR_ERR(prog); 8780 8781 event->prog = prog; 8782 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8783 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8784 return 0; 8785 } 8786 8787 static void perf_event_free_bpf_handler(struct perf_event *event) 8788 { 8789 struct bpf_prog *prog = event->prog; 8790 8791 if (!prog) 8792 return; 8793 8794 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8795 event->prog = NULL; 8796 bpf_prog_put(prog); 8797 } 8798 #else 8799 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8800 { 8801 return -EOPNOTSUPP; 8802 } 8803 static void perf_event_free_bpf_handler(struct perf_event *event) 8804 { 8805 } 8806 #endif 8807 8808 /* 8809 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8810 * with perf_event_open() 8811 */ 8812 static inline bool perf_event_is_tracing(struct perf_event *event) 8813 { 8814 if (event->pmu == &perf_tracepoint) 8815 return true; 8816 #ifdef CONFIG_KPROBE_EVENTS 8817 if (event->pmu == &perf_kprobe) 8818 return true; 8819 #endif 8820 #ifdef CONFIG_UPROBE_EVENTS 8821 if (event->pmu == &perf_uprobe) 8822 return true; 8823 #endif 8824 return false; 8825 } 8826 8827 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8828 { 8829 bool is_kprobe, is_tracepoint, is_syscall_tp; 8830 struct bpf_prog *prog; 8831 int ret; 8832 8833 if (!perf_event_is_tracing(event)) 8834 return perf_event_set_bpf_handler(event, prog_fd); 8835 8836 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8837 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8838 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8839 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8840 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8841 return -EINVAL; 8842 8843 prog = bpf_prog_get(prog_fd); 8844 if (IS_ERR(prog)) 8845 return PTR_ERR(prog); 8846 8847 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8848 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8849 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8850 /* valid fd, but invalid bpf program type */ 8851 bpf_prog_put(prog); 8852 return -EINVAL; 8853 } 8854 8855 /* Kprobe override only works for kprobes, not uprobes. */ 8856 if (prog->kprobe_override && 8857 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8858 bpf_prog_put(prog); 8859 return -EINVAL; 8860 } 8861 8862 if (is_tracepoint || is_syscall_tp) { 8863 int off = trace_event_get_offsets(event->tp_event); 8864 8865 if (prog->aux->max_ctx_offset > off) { 8866 bpf_prog_put(prog); 8867 return -EACCES; 8868 } 8869 } 8870 8871 ret = perf_event_attach_bpf_prog(event, prog); 8872 if (ret) 8873 bpf_prog_put(prog); 8874 return ret; 8875 } 8876 8877 static void perf_event_free_bpf_prog(struct perf_event *event) 8878 { 8879 if (!perf_event_is_tracing(event)) { 8880 perf_event_free_bpf_handler(event); 8881 return; 8882 } 8883 perf_event_detach_bpf_prog(event); 8884 } 8885 8886 #else 8887 8888 static inline void perf_tp_register(void) 8889 { 8890 } 8891 8892 static void perf_event_free_filter(struct perf_event *event) 8893 { 8894 } 8895 8896 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8897 { 8898 return -ENOENT; 8899 } 8900 8901 static void perf_event_free_bpf_prog(struct perf_event *event) 8902 { 8903 } 8904 #endif /* CONFIG_EVENT_TRACING */ 8905 8906 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8907 void perf_bp_event(struct perf_event *bp, void *data) 8908 { 8909 struct perf_sample_data sample; 8910 struct pt_regs *regs = data; 8911 8912 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8913 8914 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8915 perf_swevent_event(bp, 1, &sample, regs); 8916 } 8917 #endif 8918 8919 /* 8920 * Allocate a new address filter 8921 */ 8922 static struct perf_addr_filter * 8923 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8924 { 8925 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8926 struct perf_addr_filter *filter; 8927 8928 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8929 if (!filter) 8930 return NULL; 8931 8932 INIT_LIST_HEAD(&filter->entry); 8933 list_add_tail(&filter->entry, filters); 8934 8935 return filter; 8936 } 8937 8938 static void free_filters_list(struct list_head *filters) 8939 { 8940 struct perf_addr_filter *filter, *iter; 8941 8942 list_for_each_entry_safe(filter, iter, filters, entry) { 8943 path_put(&filter->path); 8944 list_del(&filter->entry); 8945 kfree(filter); 8946 } 8947 } 8948 8949 /* 8950 * Free existing address filters and optionally install new ones 8951 */ 8952 static void perf_addr_filters_splice(struct perf_event *event, 8953 struct list_head *head) 8954 { 8955 unsigned long flags; 8956 LIST_HEAD(list); 8957 8958 if (!has_addr_filter(event)) 8959 return; 8960 8961 /* don't bother with children, they don't have their own filters */ 8962 if (event->parent) 8963 return; 8964 8965 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8966 8967 list_splice_init(&event->addr_filters.list, &list); 8968 if (head) 8969 list_splice(head, &event->addr_filters.list); 8970 8971 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8972 8973 free_filters_list(&list); 8974 } 8975 8976 /* 8977 * Scan through mm's vmas and see if one of them matches the 8978 * @filter; if so, adjust filter's address range. 8979 * Called with mm::mmap_sem down for reading. 8980 */ 8981 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8982 struct mm_struct *mm) 8983 { 8984 struct vm_area_struct *vma; 8985 8986 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8987 struct file *file = vma->vm_file; 8988 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8989 unsigned long vma_size = vma->vm_end - vma->vm_start; 8990 8991 if (!file) 8992 continue; 8993 8994 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8995 continue; 8996 8997 return vma->vm_start; 8998 } 8999 9000 return 0; 9001 } 9002 9003 /* 9004 * Update event's address range filters based on the 9005 * task's existing mappings, if any. 9006 */ 9007 static void perf_event_addr_filters_apply(struct perf_event *event) 9008 { 9009 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9010 struct task_struct *task = READ_ONCE(event->ctx->task); 9011 struct perf_addr_filter *filter; 9012 struct mm_struct *mm = NULL; 9013 unsigned int count = 0; 9014 unsigned long flags; 9015 9016 /* 9017 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9018 * will stop on the parent's child_mutex that our caller is also holding 9019 */ 9020 if (task == TASK_TOMBSTONE) 9021 return; 9022 9023 if (!ifh->nr_file_filters) 9024 return; 9025 9026 mm = get_task_mm(event->ctx->task); 9027 if (!mm) 9028 goto restart; 9029 9030 down_read(&mm->mmap_sem); 9031 9032 raw_spin_lock_irqsave(&ifh->lock, flags); 9033 list_for_each_entry(filter, &ifh->list, entry) { 9034 event->addr_filters_offs[count] = 0; 9035 9036 /* 9037 * Adjust base offset if the filter is associated to a binary 9038 * that needs to be mapped: 9039 */ 9040 if (filter->path.dentry) 9041 event->addr_filters_offs[count] = 9042 perf_addr_filter_apply(filter, mm); 9043 9044 count++; 9045 } 9046 9047 event->addr_filters_gen++; 9048 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9049 9050 up_read(&mm->mmap_sem); 9051 9052 mmput(mm); 9053 9054 restart: 9055 perf_event_stop(event, 1); 9056 } 9057 9058 /* 9059 * Address range filtering: limiting the data to certain 9060 * instruction address ranges. Filters are ioctl()ed to us from 9061 * userspace as ascii strings. 9062 * 9063 * Filter string format: 9064 * 9065 * ACTION RANGE_SPEC 9066 * where ACTION is one of the 9067 * * "filter": limit the trace to this region 9068 * * "start": start tracing from this address 9069 * * "stop": stop tracing at this address/region; 9070 * RANGE_SPEC is 9071 * * for kernel addresses: <start address>[/<size>] 9072 * * for object files: <start address>[/<size>]@</path/to/object/file> 9073 * 9074 * if <size> is not specified or is zero, the range is treated as a single 9075 * address; not valid for ACTION=="filter". 9076 */ 9077 enum { 9078 IF_ACT_NONE = -1, 9079 IF_ACT_FILTER, 9080 IF_ACT_START, 9081 IF_ACT_STOP, 9082 IF_SRC_FILE, 9083 IF_SRC_KERNEL, 9084 IF_SRC_FILEADDR, 9085 IF_SRC_KERNELADDR, 9086 }; 9087 9088 enum { 9089 IF_STATE_ACTION = 0, 9090 IF_STATE_SOURCE, 9091 IF_STATE_END, 9092 }; 9093 9094 static const match_table_t if_tokens = { 9095 { IF_ACT_FILTER, "filter" }, 9096 { IF_ACT_START, "start" }, 9097 { IF_ACT_STOP, "stop" }, 9098 { IF_SRC_FILE, "%u/%u@%s" }, 9099 { IF_SRC_KERNEL, "%u/%u" }, 9100 { IF_SRC_FILEADDR, "%u@%s" }, 9101 { IF_SRC_KERNELADDR, "%u" }, 9102 { IF_ACT_NONE, NULL }, 9103 }; 9104 9105 /* 9106 * Address filter string parser 9107 */ 9108 static int 9109 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9110 struct list_head *filters) 9111 { 9112 struct perf_addr_filter *filter = NULL; 9113 char *start, *orig, *filename = NULL; 9114 substring_t args[MAX_OPT_ARGS]; 9115 int state = IF_STATE_ACTION, token; 9116 unsigned int kernel = 0; 9117 int ret = -EINVAL; 9118 9119 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9120 if (!fstr) 9121 return -ENOMEM; 9122 9123 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9124 static const enum perf_addr_filter_action_t actions[] = { 9125 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9126 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9127 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9128 }; 9129 ret = -EINVAL; 9130 9131 if (!*start) 9132 continue; 9133 9134 /* filter definition begins */ 9135 if (state == IF_STATE_ACTION) { 9136 filter = perf_addr_filter_new(event, filters); 9137 if (!filter) 9138 goto fail; 9139 } 9140 9141 token = match_token(start, if_tokens, args); 9142 switch (token) { 9143 case IF_ACT_FILTER: 9144 case IF_ACT_START: 9145 case IF_ACT_STOP: 9146 if (state != IF_STATE_ACTION) 9147 goto fail; 9148 9149 filter->action = actions[token]; 9150 state = IF_STATE_SOURCE; 9151 break; 9152 9153 case IF_SRC_KERNELADDR: 9154 case IF_SRC_KERNEL: 9155 kernel = 1; 9156 9157 case IF_SRC_FILEADDR: 9158 case IF_SRC_FILE: 9159 if (state != IF_STATE_SOURCE) 9160 goto fail; 9161 9162 *args[0].to = 0; 9163 ret = kstrtoul(args[0].from, 0, &filter->offset); 9164 if (ret) 9165 goto fail; 9166 9167 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9168 *args[1].to = 0; 9169 ret = kstrtoul(args[1].from, 0, &filter->size); 9170 if (ret) 9171 goto fail; 9172 } 9173 9174 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9175 int fpos = token == IF_SRC_FILE ? 2 : 1; 9176 9177 filename = match_strdup(&args[fpos]); 9178 if (!filename) { 9179 ret = -ENOMEM; 9180 goto fail; 9181 } 9182 } 9183 9184 state = IF_STATE_END; 9185 break; 9186 9187 default: 9188 goto fail; 9189 } 9190 9191 /* 9192 * Filter definition is fully parsed, validate and install it. 9193 * Make sure that it doesn't contradict itself or the event's 9194 * attribute. 9195 */ 9196 if (state == IF_STATE_END) { 9197 ret = -EINVAL; 9198 if (kernel && event->attr.exclude_kernel) 9199 goto fail; 9200 9201 /* 9202 * ACTION "filter" must have a non-zero length region 9203 * specified. 9204 */ 9205 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9206 !filter->size) 9207 goto fail; 9208 9209 if (!kernel) { 9210 if (!filename) 9211 goto fail; 9212 9213 /* 9214 * For now, we only support file-based filters 9215 * in per-task events; doing so for CPU-wide 9216 * events requires additional context switching 9217 * trickery, since same object code will be 9218 * mapped at different virtual addresses in 9219 * different processes. 9220 */ 9221 ret = -EOPNOTSUPP; 9222 if (!event->ctx->task) 9223 goto fail_free_name; 9224 9225 /* look up the path and grab its inode */ 9226 ret = kern_path(filename, LOOKUP_FOLLOW, 9227 &filter->path); 9228 if (ret) 9229 goto fail_free_name; 9230 9231 kfree(filename); 9232 filename = NULL; 9233 9234 ret = -EINVAL; 9235 if (!filter->path.dentry || 9236 !S_ISREG(d_inode(filter->path.dentry) 9237 ->i_mode)) 9238 goto fail; 9239 9240 event->addr_filters.nr_file_filters++; 9241 } 9242 9243 /* ready to consume more filters */ 9244 state = IF_STATE_ACTION; 9245 filter = NULL; 9246 } 9247 } 9248 9249 if (state != IF_STATE_ACTION) 9250 goto fail; 9251 9252 kfree(orig); 9253 9254 return 0; 9255 9256 fail_free_name: 9257 kfree(filename); 9258 fail: 9259 free_filters_list(filters); 9260 kfree(orig); 9261 9262 return ret; 9263 } 9264 9265 static int 9266 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9267 { 9268 LIST_HEAD(filters); 9269 int ret; 9270 9271 /* 9272 * Since this is called in perf_ioctl() path, we're already holding 9273 * ctx::mutex. 9274 */ 9275 lockdep_assert_held(&event->ctx->mutex); 9276 9277 if (WARN_ON_ONCE(event->parent)) 9278 return -EINVAL; 9279 9280 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9281 if (ret) 9282 goto fail_clear_files; 9283 9284 ret = event->pmu->addr_filters_validate(&filters); 9285 if (ret) 9286 goto fail_free_filters; 9287 9288 /* remove existing filters, if any */ 9289 perf_addr_filters_splice(event, &filters); 9290 9291 /* install new filters */ 9292 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9293 9294 return ret; 9295 9296 fail_free_filters: 9297 free_filters_list(&filters); 9298 9299 fail_clear_files: 9300 event->addr_filters.nr_file_filters = 0; 9301 9302 return ret; 9303 } 9304 9305 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9306 { 9307 int ret = -EINVAL; 9308 char *filter_str; 9309 9310 filter_str = strndup_user(arg, PAGE_SIZE); 9311 if (IS_ERR(filter_str)) 9312 return PTR_ERR(filter_str); 9313 9314 #ifdef CONFIG_EVENT_TRACING 9315 if (perf_event_is_tracing(event)) { 9316 struct perf_event_context *ctx = event->ctx; 9317 9318 /* 9319 * Beware, here be dragons!! 9320 * 9321 * the tracepoint muck will deadlock against ctx->mutex, but 9322 * the tracepoint stuff does not actually need it. So 9323 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9324 * already have a reference on ctx. 9325 * 9326 * This can result in event getting moved to a different ctx, 9327 * but that does not affect the tracepoint state. 9328 */ 9329 mutex_unlock(&ctx->mutex); 9330 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9331 mutex_lock(&ctx->mutex); 9332 } else 9333 #endif 9334 if (has_addr_filter(event)) 9335 ret = perf_event_set_addr_filter(event, filter_str); 9336 9337 kfree(filter_str); 9338 return ret; 9339 } 9340 9341 /* 9342 * hrtimer based swevent callback 9343 */ 9344 9345 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9346 { 9347 enum hrtimer_restart ret = HRTIMER_RESTART; 9348 struct perf_sample_data data; 9349 struct pt_regs *regs; 9350 struct perf_event *event; 9351 u64 period; 9352 9353 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9354 9355 if (event->state != PERF_EVENT_STATE_ACTIVE) 9356 return HRTIMER_NORESTART; 9357 9358 event->pmu->read(event); 9359 9360 perf_sample_data_init(&data, 0, event->hw.last_period); 9361 regs = get_irq_regs(); 9362 9363 if (regs && !perf_exclude_event(event, regs)) { 9364 if (!(event->attr.exclude_idle && is_idle_task(current))) 9365 if (__perf_event_overflow(event, 1, &data, regs)) 9366 ret = HRTIMER_NORESTART; 9367 } 9368 9369 period = max_t(u64, 10000, event->hw.sample_period); 9370 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9371 9372 return ret; 9373 } 9374 9375 static void perf_swevent_start_hrtimer(struct perf_event *event) 9376 { 9377 struct hw_perf_event *hwc = &event->hw; 9378 s64 period; 9379 9380 if (!is_sampling_event(event)) 9381 return; 9382 9383 period = local64_read(&hwc->period_left); 9384 if (period) { 9385 if (period < 0) 9386 period = 10000; 9387 9388 local64_set(&hwc->period_left, 0); 9389 } else { 9390 period = max_t(u64, 10000, hwc->sample_period); 9391 } 9392 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9393 HRTIMER_MODE_REL_PINNED); 9394 } 9395 9396 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9397 { 9398 struct hw_perf_event *hwc = &event->hw; 9399 9400 if (is_sampling_event(event)) { 9401 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9402 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9403 9404 hrtimer_cancel(&hwc->hrtimer); 9405 } 9406 } 9407 9408 static void perf_swevent_init_hrtimer(struct perf_event *event) 9409 { 9410 struct hw_perf_event *hwc = &event->hw; 9411 9412 if (!is_sampling_event(event)) 9413 return; 9414 9415 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9416 hwc->hrtimer.function = perf_swevent_hrtimer; 9417 9418 /* 9419 * Since hrtimers have a fixed rate, we can do a static freq->period 9420 * mapping and avoid the whole period adjust feedback stuff. 9421 */ 9422 if (event->attr.freq) { 9423 long freq = event->attr.sample_freq; 9424 9425 event->attr.sample_period = NSEC_PER_SEC / freq; 9426 hwc->sample_period = event->attr.sample_period; 9427 local64_set(&hwc->period_left, hwc->sample_period); 9428 hwc->last_period = hwc->sample_period; 9429 event->attr.freq = 0; 9430 } 9431 } 9432 9433 /* 9434 * Software event: cpu wall time clock 9435 */ 9436 9437 static void cpu_clock_event_update(struct perf_event *event) 9438 { 9439 s64 prev; 9440 u64 now; 9441 9442 now = local_clock(); 9443 prev = local64_xchg(&event->hw.prev_count, now); 9444 local64_add(now - prev, &event->count); 9445 } 9446 9447 static void cpu_clock_event_start(struct perf_event *event, int flags) 9448 { 9449 local64_set(&event->hw.prev_count, local_clock()); 9450 perf_swevent_start_hrtimer(event); 9451 } 9452 9453 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9454 { 9455 perf_swevent_cancel_hrtimer(event); 9456 cpu_clock_event_update(event); 9457 } 9458 9459 static int cpu_clock_event_add(struct perf_event *event, int flags) 9460 { 9461 if (flags & PERF_EF_START) 9462 cpu_clock_event_start(event, flags); 9463 perf_event_update_userpage(event); 9464 9465 return 0; 9466 } 9467 9468 static void cpu_clock_event_del(struct perf_event *event, int flags) 9469 { 9470 cpu_clock_event_stop(event, flags); 9471 } 9472 9473 static void cpu_clock_event_read(struct perf_event *event) 9474 { 9475 cpu_clock_event_update(event); 9476 } 9477 9478 static int cpu_clock_event_init(struct perf_event *event) 9479 { 9480 if (event->attr.type != PERF_TYPE_SOFTWARE) 9481 return -ENOENT; 9482 9483 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9484 return -ENOENT; 9485 9486 /* 9487 * no branch sampling for software events 9488 */ 9489 if (has_branch_stack(event)) 9490 return -EOPNOTSUPP; 9491 9492 perf_swevent_init_hrtimer(event); 9493 9494 return 0; 9495 } 9496 9497 static struct pmu perf_cpu_clock = { 9498 .task_ctx_nr = perf_sw_context, 9499 9500 .capabilities = PERF_PMU_CAP_NO_NMI, 9501 9502 .event_init = cpu_clock_event_init, 9503 .add = cpu_clock_event_add, 9504 .del = cpu_clock_event_del, 9505 .start = cpu_clock_event_start, 9506 .stop = cpu_clock_event_stop, 9507 .read = cpu_clock_event_read, 9508 }; 9509 9510 /* 9511 * Software event: task time clock 9512 */ 9513 9514 static void task_clock_event_update(struct perf_event *event, u64 now) 9515 { 9516 u64 prev; 9517 s64 delta; 9518 9519 prev = local64_xchg(&event->hw.prev_count, now); 9520 delta = now - prev; 9521 local64_add(delta, &event->count); 9522 } 9523 9524 static void task_clock_event_start(struct perf_event *event, int flags) 9525 { 9526 local64_set(&event->hw.prev_count, event->ctx->time); 9527 perf_swevent_start_hrtimer(event); 9528 } 9529 9530 static void task_clock_event_stop(struct perf_event *event, int flags) 9531 { 9532 perf_swevent_cancel_hrtimer(event); 9533 task_clock_event_update(event, event->ctx->time); 9534 } 9535 9536 static int task_clock_event_add(struct perf_event *event, int flags) 9537 { 9538 if (flags & PERF_EF_START) 9539 task_clock_event_start(event, flags); 9540 perf_event_update_userpage(event); 9541 9542 return 0; 9543 } 9544 9545 static void task_clock_event_del(struct perf_event *event, int flags) 9546 { 9547 task_clock_event_stop(event, PERF_EF_UPDATE); 9548 } 9549 9550 static void task_clock_event_read(struct perf_event *event) 9551 { 9552 u64 now = perf_clock(); 9553 u64 delta = now - event->ctx->timestamp; 9554 u64 time = event->ctx->time + delta; 9555 9556 task_clock_event_update(event, time); 9557 } 9558 9559 static int task_clock_event_init(struct perf_event *event) 9560 { 9561 if (event->attr.type != PERF_TYPE_SOFTWARE) 9562 return -ENOENT; 9563 9564 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9565 return -ENOENT; 9566 9567 /* 9568 * no branch sampling for software events 9569 */ 9570 if (has_branch_stack(event)) 9571 return -EOPNOTSUPP; 9572 9573 perf_swevent_init_hrtimer(event); 9574 9575 return 0; 9576 } 9577 9578 static struct pmu perf_task_clock = { 9579 .task_ctx_nr = perf_sw_context, 9580 9581 .capabilities = PERF_PMU_CAP_NO_NMI, 9582 9583 .event_init = task_clock_event_init, 9584 .add = task_clock_event_add, 9585 .del = task_clock_event_del, 9586 .start = task_clock_event_start, 9587 .stop = task_clock_event_stop, 9588 .read = task_clock_event_read, 9589 }; 9590 9591 static void perf_pmu_nop_void(struct pmu *pmu) 9592 { 9593 } 9594 9595 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9596 { 9597 } 9598 9599 static int perf_pmu_nop_int(struct pmu *pmu) 9600 { 9601 return 0; 9602 } 9603 9604 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9605 9606 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9607 { 9608 __this_cpu_write(nop_txn_flags, flags); 9609 9610 if (flags & ~PERF_PMU_TXN_ADD) 9611 return; 9612 9613 perf_pmu_disable(pmu); 9614 } 9615 9616 static int perf_pmu_commit_txn(struct pmu *pmu) 9617 { 9618 unsigned int flags = __this_cpu_read(nop_txn_flags); 9619 9620 __this_cpu_write(nop_txn_flags, 0); 9621 9622 if (flags & ~PERF_PMU_TXN_ADD) 9623 return 0; 9624 9625 perf_pmu_enable(pmu); 9626 return 0; 9627 } 9628 9629 static void perf_pmu_cancel_txn(struct pmu *pmu) 9630 { 9631 unsigned int flags = __this_cpu_read(nop_txn_flags); 9632 9633 __this_cpu_write(nop_txn_flags, 0); 9634 9635 if (flags & ~PERF_PMU_TXN_ADD) 9636 return; 9637 9638 perf_pmu_enable(pmu); 9639 } 9640 9641 static int perf_event_idx_default(struct perf_event *event) 9642 { 9643 return 0; 9644 } 9645 9646 /* 9647 * Ensures all contexts with the same task_ctx_nr have the same 9648 * pmu_cpu_context too. 9649 */ 9650 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9651 { 9652 struct pmu *pmu; 9653 9654 if (ctxn < 0) 9655 return NULL; 9656 9657 list_for_each_entry(pmu, &pmus, entry) { 9658 if (pmu->task_ctx_nr == ctxn) 9659 return pmu->pmu_cpu_context; 9660 } 9661 9662 return NULL; 9663 } 9664 9665 static void free_pmu_context(struct pmu *pmu) 9666 { 9667 /* 9668 * Static contexts such as perf_sw_context have a global lifetime 9669 * and may be shared between different PMUs. Avoid freeing them 9670 * when a single PMU is going away. 9671 */ 9672 if (pmu->task_ctx_nr > perf_invalid_context) 9673 return; 9674 9675 free_percpu(pmu->pmu_cpu_context); 9676 } 9677 9678 /* 9679 * Let userspace know that this PMU supports address range filtering: 9680 */ 9681 static ssize_t nr_addr_filters_show(struct device *dev, 9682 struct device_attribute *attr, 9683 char *page) 9684 { 9685 struct pmu *pmu = dev_get_drvdata(dev); 9686 9687 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9688 } 9689 DEVICE_ATTR_RO(nr_addr_filters); 9690 9691 static struct idr pmu_idr; 9692 9693 static ssize_t 9694 type_show(struct device *dev, struct device_attribute *attr, char *page) 9695 { 9696 struct pmu *pmu = dev_get_drvdata(dev); 9697 9698 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9699 } 9700 static DEVICE_ATTR_RO(type); 9701 9702 static ssize_t 9703 perf_event_mux_interval_ms_show(struct device *dev, 9704 struct device_attribute *attr, 9705 char *page) 9706 { 9707 struct pmu *pmu = dev_get_drvdata(dev); 9708 9709 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9710 } 9711 9712 static DEFINE_MUTEX(mux_interval_mutex); 9713 9714 static ssize_t 9715 perf_event_mux_interval_ms_store(struct device *dev, 9716 struct device_attribute *attr, 9717 const char *buf, size_t count) 9718 { 9719 struct pmu *pmu = dev_get_drvdata(dev); 9720 int timer, cpu, ret; 9721 9722 ret = kstrtoint(buf, 0, &timer); 9723 if (ret) 9724 return ret; 9725 9726 if (timer < 1) 9727 return -EINVAL; 9728 9729 /* same value, noting to do */ 9730 if (timer == pmu->hrtimer_interval_ms) 9731 return count; 9732 9733 mutex_lock(&mux_interval_mutex); 9734 pmu->hrtimer_interval_ms = timer; 9735 9736 /* update all cpuctx for this PMU */ 9737 cpus_read_lock(); 9738 for_each_online_cpu(cpu) { 9739 struct perf_cpu_context *cpuctx; 9740 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9741 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9742 9743 cpu_function_call(cpu, 9744 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9745 } 9746 cpus_read_unlock(); 9747 mutex_unlock(&mux_interval_mutex); 9748 9749 return count; 9750 } 9751 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9752 9753 static struct attribute *pmu_dev_attrs[] = { 9754 &dev_attr_type.attr, 9755 &dev_attr_perf_event_mux_interval_ms.attr, 9756 NULL, 9757 }; 9758 ATTRIBUTE_GROUPS(pmu_dev); 9759 9760 static int pmu_bus_running; 9761 static struct bus_type pmu_bus = { 9762 .name = "event_source", 9763 .dev_groups = pmu_dev_groups, 9764 }; 9765 9766 static void pmu_dev_release(struct device *dev) 9767 { 9768 kfree(dev); 9769 } 9770 9771 static int pmu_dev_alloc(struct pmu *pmu) 9772 { 9773 int ret = -ENOMEM; 9774 9775 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9776 if (!pmu->dev) 9777 goto out; 9778 9779 pmu->dev->groups = pmu->attr_groups; 9780 device_initialize(pmu->dev); 9781 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9782 if (ret) 9783 goto free_dev; 9784 9785 dev_set_drvdata(pmu->dev, pmu); 9786 pmu->dev->bus = &pmu_bus; 9787 pmu->dev->release = pmu_dev_release; 9788 ret = device_add(pmu->dev); 9789 if (ret) 9790 goto free_dev; 9791 9792 /* For PMUs with address filters, throw in an extra attribute: */ 9793 if (pmu->nr_addr_filters) 9794 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9795 9796 if (ret) 9797 goto del_dev; 9798 9799 out: 9800 return ret; 9801 9802 del_dev: 9803 device_del(pmu->dev); 9804 9805 free_dev: 9806 put_device(pmu->dev); 9807 goto out; 9808 } 9809 9810 static struct lock_class_key cpuctx_mutex; 9811 static struct lock_class_key cpuctx_lock; 9812 9813 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9814 { 9815 int cpu, ret; 9816 9817 mutex_lock(&pmus_lock); 9818 ret = -ENOMEM; 9819 pmu->pmu_disable_count = alloc_percpu(int); 9820 if (!pmu->pmu_disable_count) 9821 goto unlock; 9822 9823 pmu->type = -1; 9824 if (!name) 9825 goto skip_type; 9826 pmu->name = name; 9827 9828 if (type < 0) { 9829 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9830 if (type < 0) { 9831 ret = type; 9832 goto free_pdc; 9833 } 9834 } 9835 pmu->type = type; 9836 9837 if (pmu_bus_running) { 9838 ret = pmu_dev_alloc(pmu); 9839 if (ret) 9840 goto free_idr; 9841 } 9842 9843 skip_type: 9844 if (pmu->task_ctx_nr == perf_hw_context) { 9845 static int hw_context_taken = 0; 9846 9847 /* 9848 * Other than systems with heterogeneous CPUs, it never makes 9849 * sense for two PMUs to share perf_hw_context. PMUs which are 9850 * uncore must use perf_invalid_context. 9851 */ 9852 if (WARN_ON_ONCE(hw_context_taken && 9853 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9854 pmu->task_ctx_nr = perf_invalid_context; 9855 9856 hw_context_taken = 1; 9857 } 9858 9859 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9860 if (pmu->pmu_cpu_context) 9861 goto got_cpu_context; 9862 9863 ret = -ENOMEM; 9864 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9865 if (!pmu->pmu_cpu_context) 9866 goto free_dev; 9867 9868 for_each_possible_cpu(cpu) { 9869 struct perf_cpu_context *cpuctx; 9870 9871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9872 __perf_event_init_context(&cpuctx->ctx); 9873 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9874 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9875 cpuctx->ctx.pmu = pmu; 9876 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9877 9878 __perf_mux_hrtimer_init(cpuctx, cpu); 9879 } 9880 9881 got_cpu_context: 9882 if (!pmu->start_txn) { 9883 if (pmu->pmu_enable) { 9884 /* 9885 * If we have pmu_enable/pmu_disable calls, install 9886 * transaction stubs that use that to try and batch 9887 * hardware accesses. 9888 */ 9889 pmu->start_txn = perf_pmu_start_txn; 9890 pmu->commit_txn = perf_pmu_commit_txn; 9891 pmu->cancel_txn = perf_pmu_cancel_txn; 9892 } else { 9893 pmu->start_txn = perf_pmu_nop_txn; 9894 pmu->commit_txn = perf_pmu_nop_int; 9895 pmu->cancel_txn = perf_pmu_nop_void; 9896 } 9897 } 9898 9899 if (!pmu->pmu_enable) { 9900 pmu->pmu_enable = perf_pmu_nop_void; 9901 pmu->pmu_disable = perf_pmu_nop_void; 9902 } 9903 9904 if (!pmu->event_idx) 9905 pmu->event_idx = perf_event_idx_default; 9906 9907 list_add_rcu(&pmu->entry, &pmus); 9908 atomic_set(&pmu->exclusive_cnt, 0); 9909 ret = 0; 9910 unlock: 9911 mutex_unlock(&pmus_lock); 9912 9913 return ret; 9914 9915 free_dev: 9916 device_del(pmu->dev); 9917 put_device(pmu->dev); 9918 9919 free_idr: 9920 if (pmu->type >= PERF_TYPE_MAX) 9921 idr_remove(&pmu_idr, pmu->type); 9922 9923 free_pdc: 9924 free_percpu(pmu->pmu_disable_count); 9925 goto unlock; 9926 } 9927 EXPORT_SYMBOL_GPL(perf_pmu_register); 9928 9929 void perf_pmu_unregister(struct pmu *pmu) 9930 { 9931 mutex_lock(&pmus_lock); 9932 list_del_rcu(&pmu->entry); 9933 9934 /* 9935 * We dereference the pmu list under both SRCU and regular RCU, so 9936 * synchronize against both of those. 9937 */ 9938 synchronize_srcu(&pmus_srcu); 9939 synchronize_rcu(); 9940 9941 free_percpu(pmu->pmu_disable_count); 9942 if (pmu->type >= PERF_TYPE_MAX) 9943 idr_remove(&pmu_idr, pmu->type); 9944 if (pmu_bus_running) { 9945 if (pmu->nr_addr_filters) 9946 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9947 device_del(pmu->dev); 9948 put_device(pmu->dev); 9949 } 9950 free_pmu_context(pmu); 9951 mutex_unlock(&pmus_lock); 9952 } 9953 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9954 9955 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9956 { 9957 struct perf_event_context *ctx = NULL; 9958 int ret; 9959 9960 if (!try_module_get(pmu->module)) 9961 return -ENODEV; 9962 9963 /* 9964 * A number of pmu->event_init() methods iterate the sibling_list to, 9965 * for example, validate if the group fits on the PMU. Therefore, 9966 * if this is a sibling event, acquire the ctx->mutex to protect 9967 * the sibling_list. 9968 */ 9969 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9970 /* 9971 * This ctx->mutex can nest when we're called through 9972 * inheritance. See the perf_event_ctx_lock_nested() comment. 9973 */ 9974 ctx = perf_event_ctx_lock_nested(event->group_leader, 9975 SINGLE_DEPTH_NESTING); 9976 BUG_ON(!ctx); 9977 } 9978 9979 event->pmu = pmu; 9980 ret = pmu->event_init(event); 9981 9982 if (ctx) 9983 perf_event_ctx_unlock(event->group_leader, ctx); 9984 9985 if (!ret) { 9986 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 9987 event_has_any_exclude_flag(event)) { 9988 if (event->destroy) 9989 event->destroy(event); 9990 ret = -EINVAL; 9991 } 9992 } 9993 9994 if (ret) 9995 module_put(pmu->module); 9996 9997 return ret; 9998 } 9999 10000 static struct pmu *perf_init_event(struct perf_event *event) 10001 { 10002 struct pmu *pmu; 10003 int idx; 10004 int ret; 10005 10006 idx = srcu_read_lock(&pmus_srcu); 10007 10008 /* Try parent's PMU first: */ 10009 if (event->parent && event->parent->pmu) { 10010 pmu = event->parent->pmu; 10011 ret = perf_try_init_event(pmu, event); 10012 if (!ret) 10013 goto unlock; 10014 } 10015 10016 rcu_read_lock(); 10017 pmu = idr_find(&pmu_idr, event->attr.type); 10018 rcu_read_unlock(); 10019 if (pmu) { 10020 ret = perf_try_init_event(pmu, event); 10021 if (ret) 10022 pmu = ERR_PTR(ret); 10023 goto unlock; 10024 } 10025 10026 list_for_each_entry_rcu(pmu, &pmus, entry) { 10027 ret = perf_try_init_event(pmu, event); 10028 if (!ret) 10029 goto unlock; 10030 10031 if (ret != -ENOENT) { 10032 pmu = ERR_PTR(ret); 10033 goto unlock; 10034 } 10035 } 10036 pmu = ERR_PTR(-ENOENT); 10037 unlock: 10038 srcu_read_unlock(&pmus_srcu, idx); 10039 10040 return pmu; 10041 } 10042 10043 static void attach_sb_event(struct perf_event *event) 10044 { 10045 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10046 10047 raw_spin_lock(&pel->lock); 10048 list_add_rcu(&event->sb_list, &pel->list); 10049 raw_spin_unlock(&pel->lock); 10050 } 10051 10052 /* 10053 * We keep a list of all !task (and therefore per-cpu) events 10054 * that need to receive side-band records. 10055 * 10056 * This avoids having to scan all the various PMU per-cpu contexts 10057 * looking for them. 10058 */ 10059 static void account_pmu_sb_event(struct perf_event *event) 10060 { 10061 if (is_sb_event(event)) 10062 attach_sb_event(event); 10063 } 10064 10065 static void account_event_cpu(struct perf_event *event, int cpu) 10066 { 10067 if (event->parent) 10068 return; 10069 10070 if (is_cgroup_event(event)) 10071 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10072 } 10073 10074 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10075 static void account_freq_event_nohz(void) 10076 { 10077 #ifdef CONFIG_NO_HZ_FULL 10078 /* Lock so we don't race with concurrent unaccount */ 10079 spin_lock(&nr_freq_lock); 10080 if (atomic_inc_return(&nr_freq_events) == 1) 10081 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10082 spin_unlock(&nr_freq_lock); 10083 #endif 10084 } 10085 10086 static void account_freq_event(void) 10087 { 10088 if (tick_nohz_full_enabled()) 10089 account_freq_event_nohz(); 10090 else 10091 atomic_inc(&nr_freq_events); 10092 } 10093 10094 10095 static void account_event(struct perf_event *event) 10096 { 10097 bool inc = false; 10098 10099 if (event->parent) 10100 return; 10101 10102 if (event->attach_state & PERF_ATTACH_TASK) 10103 inc = true; 10104 if (event->attr.mmap || event->attr.mmap_data) 10105 atomic_inc(&nr_mmap_events); 10106 if (event->attr.comm) 10107 atomic_inc(&nr_comm_events); 10108 if (event->attr.namespaces) 10109 atomic_inc(&nr_namespaces_events); 10110 if (event->attr.task) 10111 atomic_inc(&nr_task_events); 10112 if (event->attr.freq) 10113 account_freq_event(); 10114 if (event->attr.context_switch) { 10115 atomic_inc(&nr_switch_events); 10116 inc = true; 10117 } 10118 if (has_branch_stack(event)) 10119 inc = true; 10120 if (is_cgroup_event(event)) 10121 inc = true; 10122 if (event->attr.ksymbol) 10123 atomic_inc(&nr_ksymbol_events); 10124 if (event->attr.bpf_event) 10125 atomic_inc(&nr_bpf_events); 10126 10127 if (inc) { 10128 /* 10129 * We need the mutex here because static_branch_enable() 10130 * must complete *before* the perf_sched_count increment 10131 * becomes visible. 10132 */ 10133 if (atomic_inc_not_zero(&perf_sched_count)) 10134 goto enabled; 10135 10136 mutex_lock(&perf_sched_mutex); 10137 if (!atomic_read(&perf_sched_count)) { 10138 static_branch_enable(&perf_sched_events); 10139 /* 10140 * Guarantee that all CPUs observe they key change and 10141 * call the perf scheduling hooks before proceeding to 10142 * install events that need them. 10143 */ 10144 synchronize_rcu(); 10145 } 10146 /* 10147 * Now that we have waited for the sync_sched(), allow further 10148 * increments to by-pass the mutex. 10149 */ 10150 atomic_inc(&perf_sched_count); 10151 mutex_unlock(&perf_sched_mutex); 10152 } 10153 enabled: 10154 10155 account_event_cpu(event, event->cpu); 10156 10157 account_pmu_sb_event(event); 10158 } 10159 10160 /* 10161 * Allocate and initialize an event structure 10162 */ 10163 static struct perf_event * 10164 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10165 struct task_struct *task, 10166 struct perf_event *group_leader, 10167 struct perf_event *parent_event, 10168 perf_overflow_handler_t overflow_handler, 10169 void *context, int cgroup_fd) 10170 { 10171 struct pmu *pmu; 10172 struct perf_event *event; 10173 struct hw_perf_event *hwc; 10174 long err = -EINVAL; 10175 10176 if ((unsigned)cpu >= nr_cpu_ids) { 10177 if (!task || cpu != -1) 10178 return ERR_PTR(-EINVAL); 10179 } 10180 10181 event = kzalloc(sizeof(*event), GFP_KERNEL); 10182 if (!event) 10183 return ERR_PTR(-ENOMEM); 10184 10185 /* 10186 * Single events are their own group leaders, with an 10187 * empty sibling list: 10188 */ 10189 if (!group_leader) 10190 group_leader = event; 10191 10192 mutex_init(&event->child_mutex); 10193 INIT_LIST_HEAD(&event->child_list); 10194 10195 INIT_LIST_HEAD(&event->event_entry); 10196 INIT_LIST_HEAD(&event->sibling_list); 10197 INIT_LIST_HEAD(&event->active_list); 10198 init_event_group(event); 10199 INIT_LIST_HEAD(&event->rb_entry); 10200 INIT_LIST_HEAD(&event->active_entry); 10201 INIT_LIST_HEAD(&event->addr_filters.list); 10202 INIT_HLIST_NODE(&event->hlist_entry); 10203 10204 10205 init_waitqueue_head(&event->waitq); 10206 init_irq_work(&event->pending, perf_pending_event); 10207 10208 mutex_init(&event->mmap_mutex); 10209 raw_spin_lock_init(&event->addr_filters.lock); 10210 10211 atomic_long_set(&event->refcount, 1); 10212 event->cpu = cpu; 10213 event->attr = *attr; 10214 event->group_leader = group_leader; 10215 event->pmu = NULL; 10216 event->oncpu = -1; 10217 10218 event->parent = parent_event; 10219 10220 event->ns = get_pid_ns(task_active_pid_ns(current)); 10221 event->id = atomic64_inc_return(&perf_event_id); 10222 10223 event->state = PERF_EVENT_STATE_INACTIVE; 10224 10225 if (task) { 10226 event->attach_state = PERF_ATTACH_TASK; 10227 /* 10228 * XXX pmu::event_init needs to know what task to account to 10229 * and we cannot use the ctx information because we need the 10230 * pmu before we get a ctx. 10231 */ 10232 get_task_struct(task); 10233 event->hw.target = task; 10234 } 10235 10236 event->clock = &local_clock; 10237 if (parent_event) 10238 event->clock = parent_event->clock; 10239 10240 if (!overflow_handler && parent_event) { 10241 overflow_handler = parent_event->overflow_handler; 10242 context = parent_event->overflow_handler_context; 10243 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10244 if (overflow_handler == bpf_overflow_handler) { 10245 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10246 10247 if (IS_ERR(prog)) { 10248 err = PTR_ERR(prog); 10249 goto err_ns; 10250 } 10251 event->prog = prog; 10252 event->orig_overflow_handler = 10253 parent_event->orig_overflow_handler; 10254 } 10255 #endif 10256 } 10257 10258 if (overflow_handler) { 10259 event->overflow_handler = overflow_handler; 10260 event->overflow_handler_context = context; 10261 } else if (is_write_backward(event)){ 10262 event->overflow_handler = perf_event_output_backward; 10263 event->overflow_handler_context = NULL; 10264 } else { 10265 event->overflow_handler = perf_event_output_forward; 10266 event->overflow_handler_context = NULL; 10267 } 10268 10269 perf_event__state_init(event); 10270 10271 pmu = NULL; 10272 10273 hwc = &event->hw; 10274 hwc->sample_period = attr->sample_period; 10275 if (attr->freq && attr->sample_freq) 10276 hwc->sample_period = 1; 10277 hwc->last_period = hwc->sample_period; 10278 10279 local64_set(&hwc->period_left, hwc->sample_period); 10280 10281 /* 10282 * We currently do not support PERF_SAMPLE_READ on inherited events. 10283 * See perf_output_read(). 10284 */ 10285 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10286 goto err_ns; 10287 10288 if (!has_branch_stack(event)) 10289 event->attr.branch_sample_type = 0; 10290 10291 if (cgroup_fd != -1) { 10292 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10293 if (err) 10294 goto err_ns; 10295 } 10296 10297 pmu = perf_init_event(event); 10298 if (IS_ERR(pmu)) { 10299 err = PTR_ERR(pmu); 10300 goto err_ns; 10301 } 10302 10303 err = exclusive_event_init(event); 10304 if (err) 10305 goto err_pmu; 10306 10307 if (has_addr_filter(event)) { 10308 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10309 sizeof(unsigned long), 10310 GFP_KERNEL); 10311 if (!event->addr_filters_offs) { 10312 err = -ENOMEM; 10313 goto err_per_task; 10314 } 10315 10316 /* force hw sync on the address filters */ 10317 event->addr_filters_gen = 1; 10318 } 10319 10320 if (!event->parent) { 10321 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10322 err = get_callchain_buffers(attr->sample_max_stack); 10323 if (err) 10324 goto err_addr_filters; 10325 } 10326 } 10327 10328 /* symmetric to unaccount_event() in _free_event() */ 10329 account_event(event); 10330 10331 return event; 10332 10333 err_addr_filters: 10334 kfree(event->addr_filters_offs); 10335 10336 err_per_task: 10337 exclusive_event_destroy(event); 10338 10339 err_pmu: 10340 if (event->destroy) 10341 event->destroy(event); 10342 module_put(pmu->module); 10343 err_ns: 10344 if (is_cgroup_event(event)) 10345 perf_detach_cgroup(event); 10346 if (event->ns) 10347 put_pid_ns(event->ns); 10348 if (event->hw.target) 10349 put_task_struct(event->hw.target); 10350 kfree(event); 10351 10352 return ERR_PTR(err); 10353 } 10354 10355 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10356 struct perf_event_attr *attr) 10357 { 10358 u32 size; 10359 int ret; 10360 10361 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10362 return -EFAULT; 10363 10364 /* 10365 * zero the full structure, so that a short copy will be nice. 10366 */ 10367 memset(attr, 0, sizeof(*attr)); 10368 10369 ret = get_user(size, &uattr->size); 10370 if (ret) 10371 return ret; 10372 10373 if (size > PAGE_SIZE) /* silly large */ 10374 goto err_size; 10375 10376 if (!size) /* abi compat */ 10377 size = PERF_ATTR_SIZE_VER0; 10378 10379 if (size < PERF_ATTR_SIZE_VER0) 10380 goto err_size; 10381 10382 /* 10383 * If we're handed a bigger struct than we know of, 10384 * ensure all the unknown bits are 0 - i.e. new 10385 * user-space does not rely on any kernel feature 10386 * extensions we dont know about yet. 10387 */ 10388 if (size > sizeof(*attr)) { 10389 unsigned char __user *addr; 10390 unsigned char __user *end; 10391 unsigned char val; 10392 10393 addr = (void __user *)uattr + sizeof(*attr); 10394 end = (void __user *)uattr + size; 10395 10396 for (; addr < end; addr++) { 10397 ret = get_user(val, addr); 10398 if (ret) 10399 return ret; 10400 if (val) 10401 goto err_size; 10402 } 10403 size = sizeof(*attr); 10404 } 10405 10406 ret = copy_from_user(attr, uattr, size); 10407 if (ret) 10408 return -EFAULT; 10409 10410 attr->size = size; 10411 10412 if (attr->__reserved_1) 10413 return -EINVAL; 10414 10415 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10416 return -EINVAL; 10417 10418 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10419 return -EINVAL; 10420 10421 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10422 u64 mask = attr->branch_sample_type; 10423 10424 /* only using defined bits */ 10425 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10426 return -EINVAL; 10427 10428 /* at least one branch bit must be set */ 10429 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10430 return -EINVAL; 10431 10432 /* propagate priv level, when not set for branch */ 10433 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10434 10435 /* exclude_kernel checked on syscall entry */ 10436 if (!attr->exclude_kernel) 10437 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10438 10439 if (!attr->exclude_user) 10440 mask |= PERF_SAMPLE_BRANCH_USER; 10441 10442 if (!attr->exclude_hv) 10443 mask |= PERF_SAMPLE_BRANCH_HV; 10444 /* 10445 * adjust user setting (for HW filter setup) 10446 */ 10447 attr->branch_sample_type = mask; 10448 } 10449 /* privileged levels capture (kernel, hv): check permissions */ 10450 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10451 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10452 return -EACCES; 10453 } 10454 10455 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10456 ret = perf_reg_validate(attr->sample_regs_user); 10457 if (ret) 10458 return ret; 10459 } 10460 10461 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10462 if (!arch_perf_have_user_stack_dump()) 10463 return -ENOSYS; 10464 10465 /* 10466 * We have __u32 type for the size, but so far 10467 * we can only use __u16 as maximum due to the 10468 * __u16 sample size limit. 10469 */ 10470 if (attr->sample_stack_user >= USHRT_MAX) 10471 return -EINVAL; 10472 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10473 return -EINVAL; 10474 } 10475 10476 if (!attr->sample_max_stack) 10477 attr->sample_max_stack = sysctl_perf_event_max_stack; 10478 10479 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10480 ret = perf_reg_validate(attr->sample_regs_intr); 10481 out: 10482 return ret; 10483 10484 err_size: 10485 put_user(sizeof(*attr), &uattr->size); 10486 ret = -E2BIG; 10487 goto out; 10488 } 10489 10490 static int 10491 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10492 { 10493 struct ring_buffer *rb = NULL; 10494 int ret = -EINVAL; 10495 10496 if (!output_event) 10497 goto set; 10498 10499 /* don't allow circular references */ 10500 if (event == output_event) 10501 goto out; 10502 10503 /* 10504 * Don't allow cross-cpu buffers 10505 */ 10506 if (output_event->cpu != event->cpu) 10507 goto out; 10508 10509 /* 10510 * If its not a per-cpu rb, it must be the same task. 10511 */ 10512 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10513 goto out; 10514 10515 /* 10516 * Mixing clocks in the same buffer is trouble you don't need. 10517 */ 10518 if (output_event->clock != event->clock) 10519 goto out; 10520 10521 /* 10522 * Either writing ring buffer from beginning or from end. 10523 * Mixing is not allowed. 10524 */ 10525 if (is_write_backward(output_event) != is_write_backward(event)) 10526 goto out; 10527 10528 /* 10529 * If both events generate aux data, they must be on the same PMU 10530 */ 10531 if (has_aux(event) && has_aux(output_event) && 10532 event->pmu != output_event->pmu) 10533 goto out; 10534 10535 set: 10536 mutex_lock(&event->mmap_mutex); 10537 /* Can't redirect output if we've got an active mmap() */ 10538 if (atomic_read(&event->mmap_count)) 10539 goto unlock; 10540 10541 if (output_event) { 10542 /* get the rb we want to redirect to */ 10543 rb = ring_buffer_get(output_event); 10544 if (!rb) 10545 goto unlock; 10546 } 10547 10548 ring_buffer_attach(event, rb); 10549 10550 ret = 0; 10551 unlock: 10552 mutex_unlock(&event->mmap_mutex); 10553 10554 out: 10555 return ret; 10556 } 10557 10558 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10559 { 10560 if (b < a) 10561 swap(a, b); 10562 10563 mutex_lock(a); 10564 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10565 } 10566 10567 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10568 { 10569 bool nmi_safe = false; 10570 10571 switch (clk_id) { 10572 case CLOCK_MONOTONIC: 10573 event->clock = &ktime_get_mono_fast_ns; 10574 nmi_safe = true; 10575 break; 10576 10577 case CLOCK_MONOTONIC_RAW: 10578 event->clock = &ktime_get_raw_fast_ns; 10579 nmi_safe = true; 10580 break; 10581 10582 case CLOCK_REALTIME: 10583 event->clock = &ktime_get_real_ns; 10584 break; 10585 10586 case CLOCK_BOOTTIME: 10587 event->clock = &ktime_get_boot_ns; 10588 break; 10589 10590 case CLOCK_TAI: 10591 event->clock = &ktime_get_tai_ns; 10592 break; 10593 10594 default: 10595 return -EINVAL; 10596 } 10597 10598 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10599 return -EINVAL; 10600 10601 return 0; 10602 } 10603 10604 /* 10605 * Variation on perf_event_ctx_lock_nested(), except we take two context 10606 * mutexes. 10607 */ 10608 static struct perf_event_context * 10609 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10610 struct perf_event_context *ctx) 10611 { 10612 struct perf_event_context *gctx; 10613 10614 again: 10615 rcu_read_lock(); 10616 gctx = READ_ONCE(group_leader->ctx); 10617 if (!atomic_inc_not_zero(&gctx->refcount)) { 10618 rcu_read_unlock(); 10619 goto again; 10620 } 10621 rcu_read_unlock(); 10622 10623 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10624 10625 if (group_leader->ctx != gctx) { 10626 mutex_unlock(&ctx->mutex); 10627 mutex_unlock(&gctx->mutex); 10628 put_ctx(gctx); 10629 goto again; 10630 } 10631 10632 return gctx; 10633 } 10634 10635 /** 10636 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10637 * 10638 * @attr_uptr: event_id type attributes for monitoring/sampling 10639 * @pid: target pid 10640 * @cpu: target cpu 10641 * @group_fd: group leader event fd 10642 */ 10643 SYSCALL_DEFINE5(perf_event_open, 10644 struct perf_event_attr __user *, attr_uptr, 10645 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10646 { 10647 struct perf_event *group_leader = NULL, *output_event = NULL; 10648 struct perf_event *event, *sibling; 10649 struct perf_event_attr attr; 10650 struct perf_event_context *ctx, *uninitialized_var(gctx); 10651 struct file *event_file = NULL; 10652 struct fd group = {NULL, 0}; 10653 struct task_struct *task = NULL; 10654 struct pmu *pmu; 10655 int event_fd; 10656 int move_group = 0; 10657 int err; 10658 int f_flags = O_RDWR; 10659 int cgroup_fd = -1; 10660 10661 /* for future expandability... */ 10662 if (flags & ~PERF_FLAG_ALL) 10663 return -EINVAL; 10664 10665 err = perf_copy_attr(attr_uptr, &attr); 10666 if (err) 10667 return err; 10668 10669 if (!attr.exclude_kernel) { 10670 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10671 return -EACCES; 10672 } 10673 10674 if (attr.namespaces) { 10675 if (!capable(CAP_SYS_ADMIN)) 10676 return -EACCES; 10677 } 10678 10679 if (attr.freq) { 10680 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10681 return -EINVAL; 10682 } else { 10683 if (attr.sample_period & (1ULL << 63)) 10684 return -EINVAL; 10685 } 10686 10687 /* Only privileged users can get physical addresses */ 10688 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10689 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10690 return -EACCES; 10691 10692 /* 10693 * In cgroup mode, the pid argument is used to pass the fd 10694 * opened to the cgroup directory in cgroupfs. The cpu argument 10695 * designates the cpu on which to monitor threads from that 10696 * cgroup. 10697 */ 10698 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10699 return -EINVAL; 10700 10701 if (flags & PERF_FLAG_FD_CLOEXEC) 10702 f_flags |= O_CLOEXEC; 10703 10704 event_fd = get_unused_fd_flags(f_flags); 10705 if (event_fd < 0) 10706 return event_fd; 10707 10708 if (group_fd != -1) { 10709 err = perf_fget_light(group_fd, &group); 10710 if (err) 10711 goto err_fd; 10712 group_leader = group.file->private_data; 10713 if (flags & PERF_FLAG_FD_OUTPUT) 10714 output_event = group_leader; 10715 if (flags & PERF_FLAG_FD_NO_GROUP) 10716 group_leader = NULL; 10717 } 10718 10719 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10720 task = find_lively_task_by_vpid(pid); 10721 if (IS_ERR(task)) { 10722 err = PTR_ERR(task); 10723 goto err_group_fd; 10724 } 10725 } 10726 10727 if (task && group_leader && 10728 group_leader->attr.inherit != attr.inherit) { 10729 err = -EINVAL; 10730 goto err_task; 10731 } 10732 10733 if (task) { 10734 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10735 if (err) 10736 goto err_task; 10737 10738 /* 10739 * Reuse ptrace permission checks for now. 10740 * 10741 * We must hold cred_guard_mutex across this and any potential 10742 * perf_install_in_context() call for this new event to 10743 * serialize against exec() altering our credentials (and the 10744 * perf_event_exit_task() that could imply). 10745 */ 10746 err = -EACCES; 10747 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10748 goto err_cred; 10749 } 10750 10751 if (flags & PERF_FLAG_PID_CGROUP) 10752 cgroup_fd = pid; 10753 10754 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10755 NULL, NULL, cgroup_fd); 10756 if (IS_ERR(event)) { 10757 err = PTR_ERR(event); 10758 goto err_cred; 10759 } 10760 10761 if (is_sampling_event(event)) { 10762 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10763 err = -EOPNOTSUPP; 10764 goto err_alloc; 10765 } 10766 } 10767 10768 /* 10769 * Special case software events and allow them to be part of 10770 * any hardware group. 10771 */ 10772 pmu = event->pmu; 10773 10774 if (attr.use_clockid) { 10775 err = perf_event_set_clock(event, attr.clockid); 10776 if (err) 10777 goto err_alloc; 10778 } 10779 10780 if (pmu->task_ctx_nr == perf_sw_context) 10781 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10782 10783 if (group_leader) { 10784 if (is_software_event(event) && 10785 !in_software_context(group_leader)) { 10786 /* 10787 * If the event is a sw event, but the group_leader 10788 * is on hw context. 10789 * 10790 * Allow the addition of software events to hw 10791 * groups, this is safe because software events 10792 * never fail to schedule. 10793 */ 10794 pmu = group_leader->ctx->pmu; 10795 } else if (!is_software_event(event) && 10796 is_software_event(group_leader) && 10797 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10798 /* 10799 * In case the group is a pure software group, and we 10800 * try to add a hardware event, move the whole group to 10801 * the hardware context. 10802 */ 10803 move_group = 1; 10804 } 10805 } 10806 10807 /* 10808 * Get the target context (task or percpu): 10809 */ 10810 ctx = find_get_context(pmu, task, event); 10811 if (IS_ERR(ctx)) { 10812 err = PTR_ERR(ctx); 10813 goto err_alloc; 10814 } 10815 10816 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10817 err = -EBUSY; 10818 goto err_context; 10819 } 10820 10821 /* 10822 * Look up the group leader (we will attach this event to it): 10823 */ 10824 if (group_leader) { 10825 err = -EINVAL; 10826 10827 /* 10828 * Do not allow a recursive hierarchy (this new sibling 10829 * becoming part of another group-sibling): 10830 */ 10831 if (group_leader->group_leader != group_leader) 10832 goto err_context; 10833 10834 /* All events in a group should have the same clock */ 10835 if (group_leader->clock != event->clock) 10836 goto err_context; 10837 10838 /* 10839 * Make sure we're both events for the same CPU; 10840 * grouping events for different CPUs is broken; since 10841 * you can never concurrently schedule them anyhow. 10842 */ 10843 if (group_leader->cpu != event->cpu) 10844 goto err_context; 10845 10846 /* 10847 * Make sure we're both on the same task, or both 10848 * per-CPU events. 10849 */ 10850 if (group_leader->ctx->task != ctx->task) 10851 goto err_context; 10852 10853 /* 10854 * Do not allow to attach to a group in a different task 10855 * or CPU context. If we're moving SW events, we'll fix 10856 * this up later, so allow that. 10857 */ 10858 if (!move_group && group_leader->ctx != ctx) 10859 goto err_context; 10860 10861 /* 10862 * Only a group leader can be exclusive or pinned 10863 */ 10864 if (attr.exclusive || attr.pinned) 10865 goto err_context; 10866 } 10867 10868 if (output_event) { 10869 err = perf_event_set_output(event, output_event); 10870 if (err) 10871 goto err_context; 10872 } 10873 10874 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10875 f_flags); 10876 if (IS_ERR(event_file)) { 10877 err = PTR_ERR(event_file); 10878 event_file = NULL; 10879 goto err_context; 10880 } 10881 10882 if (move_group) { 10883 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10884 10885 if (gctx->task == TASK_TOMBSTONE) { 10886 err = -ESRCH; 10887 goto err_locked; 10888 } 10889 10890 /* 10891 * Check if we raced against another sys_perf_event_open() call 10892 * moving the software group underneath us. 10893 */ 10894 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10895 /* 10896 * If someone moved the group out from under us, check 10897 * if this new event wound up on the same ctx, if so 10898 * its the regular !move_group case, otherwise fail. 10899 */ 10900 if (gctx != ctx) { 10901 err = -EINVAL; 10902 goto err_locked; 10903 } else { 10904 perf_event_ctx_unlock(group_leader, gctx); 10905 move_group = 0; 10906 } 10907 } 10908 } else { 10909 mutex_lock(&ctx->mutex); 10910 } 10911 10912 if (ctx->task == TASK_TOMBSTONE) { 10913 err = -ESRCH; 10914 goto err_locked; 10915 } 10916 10917 if (!perf_event_validate_size(event)) { 10918 err = -E2BIG; 10919 goto err_locked; 10920 } 10921 10922 if (!task) { 10923 /* 10924 * Check if the @cpu we're creating an event for is online. 10925 * 10926 * We use the perf_cpu_context::ctx::mutex to serialize against 10927 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10928 */ 10929 struct perf_cpu_context *cpuctx = 10930 container_of(ctx, struct perf_cpu_context, ctx); 10931 10932 if (!cpuctx->online) { 10933 err = -ENODEV; 10934 goto err_locked; 10935 } 10936 } 10937 10938 10939 /* 10940 * Must be under the same ctx::mutex as perf_install_in_context(), 10941 * because we need to serialize with concurrent event creation. 10942 */ 10943 if (!exclusive_event_installable(event, ctx)) { 10944 /* exclusive and group stuff are assumed mutually exclusive */ 10945 WARN_ON_ONCE(move_group); 10946 10947 err = -EBUSY; 10948 goto err_locked; 10949 } 10950 10951 WARN_ON_ONCE(ctx->parent_ctx); 10952 10953 /* 10954 * This is the point on no return; we cannot fail hereafter. This is 10955 * where we start modifying current state. 10956 */ 10957 10958 if (move_group) { 10959 /* 10960 * See perf_event_ctx_lock() for comments on the details 10961 * of swizzling perf_event::ctx. 10962 */ 10963 perf_remove_from_context(group_leader, 0); 10964 put_ctx(gctx); 10965 10966 for_each_sibling_event(sibling, group_leader) { 10967 perf_remove_from_context(sibling, 0); 10968 put_ctx(gctx); 10969 } 10970 10971 /* 10972 * Wait for everybody to stop referencing the events through 10973 * the old lists, before installing it on new lists. 10974 */ 10975 synchronize_rcu(); 10976 10977 /* 10978 * Install the group siblings before the group leader. 10979 * 10980 * Because a group leader will try and install the entire group 10981 * (through the sibling list, which is still in-tact), we can 10982 * end up with siblings installed in the wrong context. 10983 * 10984 * By installing siblings first we NO-OP because they're not 10985 * reachable through the group lists. 10986 */ 10987 for_each_sibling_event(sibling, group_leader) { 10988 perf_event__state_init(sibling); 10989 perf_install_in_context(ctx, sibling, sibling->cpu); 10990 get_ctx(ctx); 10991 } 10992 10993 /* 10994 * Removing from the context ends up with disabled 10995 * event. What we want here is event in the initial 10996 * startup state, ready to be add into new context. 10997 */ 10998 perf_event__state_init(group_leader); 10999 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11000 get_ctx(ctx); 11001 } 11002 11003 /* 11004 * Precalculate sample_data sizes; do while holding ctx::mutex such 11005 * that we're serialized against further additions and before 11006 * perf_install_in_context() which is the point the event is active and 11007 * can use these values. 11008 */ 11009 perf_event__header_size(event); 11010 perf_event__id_header_size(event); 11011 11012 event->owner = current; 11013 11014 perf_install_in_context(ctx, event, event->cpu); 11015 perf_unpin_context(ctx); 11016 11017 if (move_group) 11018 perf_event_ctx_unlock(group_leader, gctx); 11019 mutex_unlock(&ctx->mutex); 11020 11021 if (task) { 11022 mutex_unlock(&task->signal->cred_guard_mutex); 11023 put_task_struct(task); 11024 } 11025 11026 mutex_lock(¤t->perf_event_mutex); 11027 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11028 mutex_unlock(¤t->perf_event_mutex); 11029 11030 /* 11031 * Drop the reference on the group_event after placing the 11032 * new event on the sibling_list. This ensures destruction 11033 * of the group leader will find the pointer to itself in 11034 * perf_group_detach(). 11035 */ 11036 fdput(group); 11037 fd_install(event_fd, event_file); 11038 return event_fd; 11039 11040 err_locked: 11041 if (move_group) 11042 perf_event_ctx_unlock(group_leader, gctx); 11043 mutex_unlock(&ctx->mutex); 11044 /* err_file: */ 11045 fput(event_file); 11046 err_context: 11047 perf_unpin_context(ctx); 11048 put_ctx(ctx); 11049 err_alloc: 11050 /* 11051 * If event_file is set, the fput() above will have called ->release() 11052 * and that will take care of freeing the event. 11053 */ 11054 if (!event_file) 11055 free_event(event); 11056 err_cred: 11057 if (task) 11058 mutex_unlock(&task->signal->cred_guard_mutex); 11059 err_task: 11060 if (task) 11061 put_task_struct(task); 11062 err_group_fd: 11063 fdput(group); 11064 err_fd: 11065 put_unused_fd(event_fd); 11066 return err; 11067 } 11068 11069 /** 11070 * perf_event_create_kernel_counter 11071 * 11072 * @attr: attributes of the counter to create 11073 * @cpu: cpu in which the counter is bound 11074 * @task: task to profile (NULL for percpu) 11075 */ 11076 struct perf_event * 11077 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11078 struct task_struct *task, 11079 perf_overflow_handler_t overflow_handler, 11080 void *context) 11081 { 11082 struct perf_event_context *ctx; 11083 struct perf_event *event; 11084 int err; 11085 11086 /* 11087 * Get the target context (task or percpu): 11088 */ 11089 11090 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11091 overflow_handler, context, -1); 11092 if (IS_ERR(event)) { 11093 err = PTR_ERR(event); 11094 goto err; 11095 } 11096 11097 /* Mark owner so we could distinguish it from user events. */ 11098 event->owner = TASK_TOMBSTONE; 11099 11100 ctx = find_get_context(event->pmu, task, event); 11101 if (IS_ERR(ctx)) { 11102 err = PTR_ERR(ctx); 11103 goto err_free; 11104 } 11105 11106 WARN_ON_ONCE(ctx->parent_ctx); 11107 mutex_lock(&ctx->mutex); 11108 if (ctx->task == TASK_TOMBSTONE) { 11109 err = -ESRCH; 11110 goto err_unlock; 11111 } 11112 11113 if (!task) { 11114 /* 11115 * Check if the @cpu we're creating an event for is online. 11116 * 11117 * We use the perf_cpu_context::ctx::mutex to serialize against 11118 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11119 */ 11120 struct perf_cpu_context *cpuctx = 11121 container_of(ctx, struct perf_cpu_context, ctx); 11122 if (!cpuctx->online) { 11123 err = -ENODEV; 11124 goto err_unlock; 11125 } 11126 } 11127 11128 if (!exclusive_event_installable(event, ctx)) { 11129 err = -EBUSY; 11130 goto err_unlock; 11131 } 11132 11133 perf_install_in_context(ctx, event, cpu); 11134 perf_unpin_context(ctx); 11135 mutex_unlock(&ctx->mutex); 11136 11137 return event; 11138 11139 err_unlock: 11140 mutex_unlock(&ctx->mutex); 11141 perf_unpin_context(ctx); 11142 put_ctx(ctx); 11143 err_free: 11144 free_event(event); 11145 err: 11146 return ERR_PTR(err); 11147 } 11148 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11149 11150 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11151 { 11152 struct perf_event_context *src_ctx; 11153 struct perf_event_context *dst_ctx; 11154 struct perf_event *event, *tmp; 11155 LIST_HEAD(events); 11156 11157 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11158 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11159 11160 /* 11161 * See perf_event_ctx_lock() for comments on the details 11162 * of swizzling perf_event::ctx. 11163 */ 11164 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11165 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11166 event_entry) { 11167 perf_remove_from_context(event, 0); 11168 unaccount_event_cpu(event, src_cpu); 11169 put_ctx(src_ctx); 11170 list_add(&event->migrate_entry, &events); 11171 } 11172 11173 /* 11174 * Wait for the events to quiesce before re-instating them. 11175 */ 11176 synchronize_rcu(); 11177 11178 /* 11179 * Re-instate events in 2 passes. 11180 * 11181 * Skip over group leaders and only install siblings on this first 11182 * pass, siblings will not get enabled without a leader, however a 11183 * leader will enable its siblings, even if those are still on the old 11184 * context. 11185 */ 11186 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11187 if (event->group_leader == event) 11188 continue; 11189 11190 list_del(&event->migrate_entry); 11191 if (event->state >= PERF_EVENT_STATE_OFF) 11192 event->state = PERF_EVENT_STATE_INACTIVE; 11193 account_event_cpu(event, dst_cpu); 11194 perf_install_in_context(dst_ctx, event, dst_cpu); 11195 get_ctx(dst_ctx); 11196 } 11197 11198 /* 11199 * Once all the siblings are setup properly, install the group leaders 11200 * to make it go. 11201 */ 11202 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11203 list_del(&event->migrate_entry); 11204 if (event->state >= PERF_EVENT_STATE_OFF) 11205 event->state = PERF_EVENT_STATE_INACTIVE; 11206 account_event_cpu(event, dst_cpu); 11207 perf_install_in_context(dst_ctx, event, dst_cpu); 11208 get_ctx(dst_ctx); 11209 } 11210 mutex_unlock(&dst_ctx->mutex); 11211 mutex_unlock(&src_ctx->mutex); 11212 } 11213 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11214 11215 static void sync_child_event(struct perf_event *child_event, 11216 struct task_struct *child) 11217 { 11218 struct perf_event *parent_event = child_event->parent; 11219 u64 child_val; 11220 11221 if (child_event->attr.inherit_stat) 11222 perf_event_read_event(child_event, child); 11223 11224 child_val = perf_event_count(child_event); 11225 11226 /* 11227 * Add back the child's count to the parent's count: 11228 */ 11229 atomic64_add(child_val, &parent_event->child_count); 11230 atomic64_add(child_event->total_time_enabled, 11231 &parent_event->child_total_time_enabled); 11232 atomic64_add(child_event->total_time_running, 11233 &parent_event->child_total_time_running); 11234 } 11235 11236 static void 11237 perf_event_exit_event(struct perf_event *child_event, 11238 struct perf_event_context *child_ctx, 11239 struct task_struct *child) 11240 { 11241 struct perf_event *parent_event = child_event->parent; 11242 11243 /* 11244 * Do not destroy the 'original' grouping; because of the context 11245 * switch optimization the original events could've ended up in a 11246 * random child task. 11247 * 11248 * If we were to destroy the original group, all group related 11249 * operations would cease to function properly after this random 11250 * child dies. 11251 * 11252 * Do destroy all inherited groups, we don't care about those 11253 * and being thorough is better. 11254 */ 11255 raw_spin_lock_irq(&child_ctx->lock); 11256 WARN_ON_ONCE(child_ctx->is_active); 11257 11258 if (parent_event) 11259 perf_group_detach(child_event); 11260 list_del_event(child_event, child_ctx); 11261 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11262 raw_spin_unlock_irq(&child_ctx->lock); 11263 11264 /* 11265 * Parent events are governed by their filedesc, retain them. 11266 */ 11267 if (!parent_event) { 11268 perf_event_wakeup(child_event); 11269 return; 11270 } 11271 /* 11272 * Child events can be cleaned up. 11273 */ 11274 11275 sync_child_event(child_event, child); 11276 11277 /* 11278 * Remove this event from the parent's list 11279 */ 11280 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11281 mutex_lock(&parent_event->child_mutex); 11282 list_del_init(&child_event->child_list); 11283 mutex_unlock(&parent_event->child_mutex); 11284 11285 /* 11286 * Kick perf_poll() for is_event_hup(). 11287 */ 11288 perf_event_wakeup(parent_event); 11289 free_event(child_event); 11290 put_event(parent_event); 11291 } 11292 11293 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11294 { 11295 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11296 struct perf_event *child_event, *next; 11297 11298 WARN_ON_ONCE(child != current); 11299 11300 child_ctx = perf_pin_task_context(child, ctxn); 11301 if (!child_ctx) 11302 return; 11303 11304 /* 11305 * In order to reduce the amount of tricky in ctx tear-down, we hold 11306 * ctx::mutex over the entire thing. This serializes against almost 11307 * everything that wants to access the ctx. 11308 * 11309 * The exception is sys_perf_event_open() / 11310 * perf_event_create_kernel_count() which does find_get_context() 11311 * without ctx::mutex (it cannot because of the move_group double mutex 11312 * lock thing). See the comments in perf_install_in_context(). 11313 */ 11314 mutex_lock(&child_ctx->mutex); 11315 11316 /* 11317 * In a single ctx::lock section, de-schedule the events and detach the 11318 * context from the task such that we cannot ever get it scheduled back 11319 * in. 11320 */ 11321 raw_spin_lock_irq(&child_ctx->lock); 11322 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11323 11324 /* 11325 * Now that the context is inactive, destroy the task <-> ctx relation 11326 * and mark the context dead. 11327 */ 11328 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11329 put_ctx(child_ctx); /* cannot be last */ 11330 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11331 put_task_struct(current); /* cannot be last */ 11332 11333 clone_ctx = unclone_ctx(child_ctx); 11334 raw_spin_unlock_irq(&child_ctx->lock); 11335 11336 if (clone_ctx) 11337 put_ctx(clone_ctx); 11338 11339 /* 11340 * Report the task dead after unscheduling the events so that we 11341 * won't get any samples after PERF_RECORD_EXIT. We can however still 11342 * get a few PERF_RECORD_READ events. 11343 */ 11344 perf_event_task(child, child_ctx, 0); 11345 11346 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11347 perf_event_exit_event(child_event, child_ctx, child); 11348 11349 mutex_unlock(&child_ctx->mutex); 11350 11351 put_ctx(child_ctx); 11352 } 11353 11354 /* 11355 * When a child task exits, feed back event values to parent events. 11356 * 11357 * Can be called with cred_guard_mutex held when called from 11358 * install_exec_creds(). 11359 */ 11360 void perf_event_exit_task(struct task_struct *child) 11361 { 11362 struct perf_event *event, *tmp; 11363 int ctxn; 11364 11365 mutex_lock(&child->perf_event_mutex); 11366 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11367 owner_entry) { 11368 list_del_init(&event->owner_entry); 11369 11370 /* 11371 * Ensure the list deletion is visible before we clear 11372 * the owner, closes a race against perf_release() where 11373 * we need to serialize on the owner->perf_event_mutex. 11374 */ 11375 smp_store_release(&event->owner, NULL); 11376 } 11377 mutex_unlock(&child->perf_event_mutex); 11378 11379 for_each_task_context_nr(ctxn) 11380 perf_event_exit_task_context(child, ctxn); 11381 11382 /* 11383 * The perf_event_exit_task_context calls perf_event_task 11384 * with child's task_ctx, which generates EXIT events for 11385 * child contexts and sets child->perf_event_ctxp[] to NULL. 11386 * At this point we need to send EXIT events to cpu contexts. 11387 */ 11388 perf_event_task(child, NULL, 0); 11389 } 11390 11391 static void perf_free_event(struct perf_event *event, 11392 struct perf_event_context *ctx) 11393 { 11394 struct perf_event *parent = event->parent; 11395 11396 if (WARN_ON_ONCE(!parent)) 11397 return; 11398 11399 mutex_lock(&parent->child_mutex); 11400 list_del_init(&event->child_list); 11401 mutex_unlock(&parent->child_mutex); 11402 11403 put_event(parent); 11404 11405 raw_spin_lock_irq(&ctx->lock); 11406 perf_group_detach(event); 11407 list_del_event(event, ctx); 11408 raw_spin_unlock_irq(&ctx->lock); 11409 free_event(event); 11410 } 11411 11412 /* 11413 * Free an unexposed, unused context as created by inheritance by 11414 * perf_event_init_task below, used by fork() in case of fail. 11415 * 11416 * Not all locks are strictly required, but take them anyway to be nice and 11417 * help out with the lockdep assertions. 11418 */ 11419 void perf_event_free_task(struct task_struct *task) 11420 { 11421 struct perf_event_context *ctx; 11422 struct perf_event *event, *tmp; 11423 int ctxn; 11424 11425 for_each_task_context_nr(ctxn) { 11426 ctx = task->perf_event_ctxp[ctxn]; 11427 if (!ctx) 11428 continue; 11429 11430 mutex_lock(&ctx->mutex); 11431 raw_spin_lock_irq(&ctx->lock); 11432 /* 11433 * Destroy the task <-> ctx relation and mark the context dead. 11434 * 11435 * This is important because even though the task hasn't been 11436 * exposed yet the context has been (through child_list). 11437 */ 11438 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11439 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11440 put_task_struct(task); /* cannot be last */ 11441 raw_spin_unlock_irq(&ctx->lock); 11442 11443 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11444 perf_free_event(event, ctx); 11445 11446 mutex_unlock(&ctx->mutex); 11447 put_ctx(ctx); 11448 } 11449 } 11450 11451 void perf_event_delayed_put(struct task_struct *task) 11452 { 11453 int ctxn; 11454 11455 for_each_task_context_nr(ctxn) 11456 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11457 } 11458 11459 struct file *perf_event_get(unsigned int fd) 11460 { 11461 struct file *file; 11462 11463 file = fget_raw(fd); 11464 if (!file) 11465 return ERR_PTR(-EBADF); 11466 11467 if (file->f_op != &perf_fops) { 11468 fput(file); 11469 return ERR_PTR(-EBADF); 11470 } 11471 11472 return file; 11473 } 11474 11475 const struct perf_event *perf_get_event(struct file *file) 11476 { 11477 if (file->f_op != &perf_fops) 11478 return ERR_PTR(-EINVAL); 11479 11480 return file->private_data; 11481 } 11482 11483 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11484 { 11485 if (!event) 11486 return ERR_PTR(-EINVAL); 11487 11488 return &event->attr; 11489 } 11490 11491 /* 11492 * Inherit an event from parent task to child task. 11493 * 11494 * Returns: 11495 * - valid pointer on success 11496 * - NULL for orphaned events 11497 * - IS_ERR() on error 11498 */ 11499 static struct perf_event * 11500 inherit_event(struct perf_event *parent_event, 11501 struct task_struct *parent, 11502 struct perf_event_context *parent_ctx, 11503 struct task_struct *child, 11504 struct perf_event *group_leader, 11505 struct perf_event_context *child_ctx) 11506 { 11507 enum perf_event_state parent_state = parent_event->state; 11508 struct perf_event *child_event; 11509 unsigned long flags; 11510 11511 /* 11512 * Instead of creating recursive hierarchies of events, 11513 * we link inherited events back to the original parent, 11514 * which has a filp for sure, which we use as the reference 11515 * count: 11516 */ 11517 if (parent_event->parent) 11518 parent_event = parent_event->parent; 11519 11520 child_event = perf_event_alloc(&parent_event->attr, 11521 parent_event->cpu, 11522 child, 11523 group_leader, parent_event, 11524 NULL, NULL, -1); 11525 if (IS_ERR(child_event)) 11526 return child_event; 11527 11528 11529 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11530 !child_ctx->task_ctx_data) { 11531 struct pmu *pmu = child_event->pmu; 11532 11533 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11534 GFP_KERNEL); 11535 if (!child_ctx->task_ctx_data) { 11536 free_event(child_event); 11537 return NULL; 11538 } 11539 } 11540 11541 /* 11542 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11543 * must be under the same lock in order to serialize against 11544 * perf_event_release_kernel(), such that either we must observe 11545 * is_orphaned_event() or they will observe us on the child_list. 11546 */ 11547 mutex_lock(&parent_event->child_mutex); 11548 if (is_orphaned_event(parent_event) || 11549 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11550 mutex_unlock(&parent_event->child_mutex); 11551 /* task_ctx_data is freed with child_ctx */ 11552 free_event(child_event); 11553 return NULL; 11554 } 11555 11556 get_ctx(child_ctx); 11557 11558 /* 11559 * Make the child state follow the state of the parent event, 11560 * not its attr.disabled bit. We hold the parent's mutex, 11561 * so we won't race with perf_event_{en, dis}able_family. 11562 */ 11563 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11564 child_event->state = PERF_EVENT_STATE_INACTIVE; 11565 else 11566 child_event->state = PERF_EVENT_STATE_OFF; 11567 11568 if (parent_event->attr.freq) { 11569 u64 sample_period = parent_event->hw.sample_period; 11570 struct hw_perf_event *hwc = &child_event->hw; 11571 11572 hwc->sample_period = sample_period; 11573 hwc->last_period = sample_period; 11574 11575 local64_set(&hwc->period_left, sample_period); 11576 } 11577 11578 child_event->ctx = child_ctx; 11579 child_event->overflow_handler = parent_event->overflow_handler; 11580 child_event->overflow_handler_context 11581 = parent_event->overflow_handler_context; 11582 11583 /* 11584 * Precalculate sample_data sizes 11585 */ 11586 perf_event__header_size(child_event); 11587 perf_event__id_header_size(child_event); 11588 11589 /* 11590 * Link it up in the child's context: 11591 */ 11592 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11593 add_event_to_ctx(child_event, child_ctx); 11594 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11595 11596 /* 11597 * Link this into the parent event's child list 11598 */ 11599 list_add_tail(&child_event->child_list, &parent_event->child_list); 11600 mutex_unlock(&parent_event->child_mutex); 11601 11602 return child_event; 11603 } 11604 11605 /* 11606 * Inherits an event group. 11607 * 11608 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11609 * This matches with perf_event_release_kernel() removing all child events. 11610 * 11611 * Returns: 11612 * - 0 on success 11613 * - <0 on error 11614 */ 11615 static int inherit_group(struct perf_event *parent_event, 11616 struct task_struct *parent, 11617 struct perf_event_context *parent_ctx, 11618 struct task_struct *child, 11619 struct perf_event_context *child_ctx) 11620 { 11621 struct perf_event *leader; 11622 struct perf_event *sub; 11623 struct perf_event *child_ctr; 11624 11625 leader = inherit_event(parent_event, parent, parent_ctx, 11626 child, NULL, child_ctx); 11627 if (IS_ERR(leader)) 11628 return PTR_ERR(leader); 11629 /* 11630 * @leader can be NULL here because of is_orphaned_event(). In this 11631 * case inherit_event() will create individual events, similar to what 11632 * perf_group_detach() would do anyway. 11633 */ 11634 for_each_sibling_event(sub, parent_event) { 11635 child_ctr = inherit_event(sub, parent, parent_ctx, 11636 child, leader, child_ctx); 11637 if (IS_ERR(child_ctr)) 11638 return PTR_ERR(child_ctr); 11639 } 11640 return 0; 11641 } 11642 11643 /* 11644 * Creates the child task context and tries to inherit the event-group. 11645 * 11646 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11647 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11648 * consistent with perf_event_release_kernel() removing all child events. 11649 * 11650 * Returns: 11651 * - 0 on success 11652 * - <0 on error 11653 */ 11654 static int 11655 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11656 struct perf_event_context *parent_ctx, 11657 struct task_struct *child, int ctxn, 11658 int *inherited_all) 11659 { 11660 int ret; 11661 struct perf_event_context *child_ctx; 11662 11663 if (!event->attr.inherit) { 11664 *inherited_all = 0; 11665 return 0; 11666 } 11667 11668 child_ctx = child->perf_event_ctxp[ctxn]; 11669 if (!child_ctx) { 11670 /* 11671 * This is executed from the parent task context, so 11672 * inherit events that have been marked for cloning. 11673 * First allocate and initialize a context for the 11674 * child. 11675 */ 11676 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11677 if (!child_ctx) 11678 return -ENOMEM; 11679 11680 child->perf_event_ctxp[ctxn] = child_ctx; 11681 } 11682 11683 ret = inherit_group(event, parent, parent_ctx, 11684 child, child_ctx); 11685 11686 if (ret) 11687 *inherited_all = 0; 11688 11689 return ret; 11690 } 11691 11692 /* 11693 * Initialize the perf_event context in task_struct 11694 */ 11695 static int perf_event_init_context(struct task_struct *child, int ctxn) 11696 { 11697 struct perf_event_context *child_ctx, *parent_ctx; 11698 struct perf_event_context *cloned_ctx; 11699 struct perf_event *event; 11700 struct task_struct *parent = current; 11701 int inherited_all = 1; 11702 unsigned long flags; 11703 int ret = 0; 11704 11705 if (likely(!parent->perf_event_ctxp[ctxn])) 11706 return 0; 11707 11708 /* 11709 * If the parent's context is a clone, pin it so it won't get 11710 * swapped under us. 11711 */ 11712 parent_ctx = perf_pin_task_context(parent, ctxn); 11713 if (!parent_ctx) 11714 return 0; 11715 11716 /* 11717 * No need to check if parent_ctx != NULL here; since we saw 11718 * it non-NULL earlier, the only reason for it to become NULL 11719 * is if we exit, and since we're currently in the middle of 11720 * a fork we can't be exiting at the same time. 11721 */ 11722 11723 /* 11724 * Lock the parent list. No need to lock the child - not PID 11725 * hashed yet and not running, so nobody can access it. 11726 */ 11727 mutex_lock(&parent_ctx->mutex); 11728 11729 /* 11730 * We dont have to disable NMIs - we are only looking at 11731 * the list, not manipulating it: 11732 */ 11733 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11734 ret = inherit_task_group(event, parent, parent_ctx, 11735 child, ctxn, &inherited_all); 11736 if (ret) 11737 goto out_unlock; 11738 } 11739 11740 /* 11741 * We can't hold ctx->lock when iterating the ->flexible_group list due 11742 * to allocations, but we need to prevent rotation because 11743 * rotate_ctx() will change the list from interrupt context. 11744 */ 11745 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11746 parent_ctx->rotate_disable = 1; 11747 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11748 11749 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11750 ret = inherit_task_group(event, parent, parent_ctx, 11751 child, ctxn, &inherited_all); 11752 if (ret) 11753 goto out_unlock; 11754 } 11755 11756 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11757 parent_ctx->rotate_disable = 0; 11758 11759 child_ctx = child->perf_event_ctxp[ctxn]; 11760 11761 if (child_ctx && inherited_all) { 11762 /* 11763 * Mark the child context as a clone of the parent 11764 * context, or of whatever the parent is a clone of. 11765 * 11766 * Note that if the parent is a clone, the holding of 11767 * parent_ctx->lock avoids it from being uncloned. 11768 */ 11769 cloned_ctx = parent_ctx->parent_ctx; 11770 if (cloned_ctx) { 11771 child_ctx->parent_ctx = cloned_ctx; 11772 child_ctx->parent_gen = parent_ctx->parent_gen; 11773 } else { 11774 child_ctx->parent_ctx = parent_ctx; 11775 child_ctx->parent_gen = parent_ctx->generation; 11776 } 11777 get_ctx(child_ctx->parent_ctx); 11778 } 11779 11780 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11781 out_unlock: 11782 mutex_unlock(&parent_ctx->mutex); 11783 11784 perf_unpin_context(parent_ctx); 11785 put_ctx(parent_ctx); 11786 11787 return ret; 11788 } 11789 11790 /* 11791 * Initialize the perf_event context in task_struct 11792 */ 11793 int perf_event_init_task(struct task_struct *child) 11794 { 11795 int ctxn, ret; 11796 11797 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11798 mutex_init(&child->perf_event_mutex); 11799 INIT_LIST_HEAD(&child->perf_event_list); 11800 11801 for_each_task_context_nr(ctxn) { 11802 ret = perf_event_init_context(child, ctxn); 11803 if (ret) { 11804 perf_event_free_task(child); 11805 return ret; 11806 } 11807 } 11808 11809 return 0; 11810 } 11811 11812 static void __init perf_event_init_all_cpus(void) 11813 { 11814 struct swevent_htable *swhash; 11815 int cpu; 11816 11817 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11818 11819 for_each_possible_cpu(cpu) { 11820 swhash = &per_cpu(swevent_htable, cpu); 11821 mutex_init(&swhash->hlist_mutex); 11822 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11823 11824 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11825 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11826 11827 #ifdef CONFIG_CGROUP_PERF 11828 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11829 #endif 11830 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11831 } 11832 } 11833 11834 void perf_swevent_init_cpu(unsigned int cpu) 11835 { 11836 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11837 11838 mutex_lock(&swhash->hlist_mutex); 11839 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11840 struct swevent_hlist *hlist; 11841 11842 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11843 WARN_ON(!hlist); 11844 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11845 } 11846 mutex_unlock(&swhash->hlist_mutex); 11847 } 11848 11849 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11850 static void __perf_event_exit_context(void *__info) 11851 { 11852 struct perf_event_context *ctx = __info; 11853 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11854 struct perf_event *event; 11855 11856 raw_spin_lock(&ctx->lock); 11857 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11858 list_for_each_entry(event, &ctx->event_list, event_entry) 11859 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11860 raw_spin_unlock(&ctx->lock); 11861 } 11862 11863 static void perf_event_exit_cpu_context(int cpu) 11864 { 11865 struct perf_cpu_context *cpuctx; 11866 struct perf_event_context *ctx; 11867 struct pmu *pmu; 11868 11869 mutex_lock(&pmus_lock); 11870 list_for_each_entry(pmu, &pmus, entry) { 11871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11872 ctx = &cpuctx->ctx; 11873 11874 mutex_lock(&ctx->mutex); 11875 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11876 cpuctx->online = 0; 11877 mutex_unlock(&ctx->mutex); 11878 } 11879 cpumask_clear_cpu(cpu, perf_online_mask); 11880 mutex_unlock(&pmus_lock); 11881 } 11882 #else 11883 11884 static void perf_event_exit_cpu_context(int cpu) { } 11885 11886 #endif 11887 11888 int perf_event_init_cpu(unsigned int cpu) 11889 { 11890 struct perf_cpu_context *cpuctx; 11891 struct perf_event_context *ctx; 11892 struct pmu *pmu; 11893 11894 perf_swevent_init_cpu(cpu); 11895 11896 mutex_lock(&pmus_lock); 11897 cpumask_set_cpu(cpu, perf_online_mask); 11898 list_for_each_entry(pmu, &pmus, entry) { 11899 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11900 ctx = &cpuctx->ctx; 11901 11902 mutex_lock(&ctx->mutex); 11903 cpuctx->online = 1; 11904 mutex_unlock(&ctx->mutex); 11905 } 11906 mutex_unlock(&pmus_lock); 11907 11908 return 0; 11909 } 11910 11911 int perf_event_exit_cpu(unsigned int cpu) 11912 { 11913 perf_event_exit_cpu_context(cpu); 11914 return 0; 11915 } 11916 11917 static int 11918 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11919 { 11920 int cpu; 11921 11922 for_each_online_cpu(cpu) 11923 perf_event_exit_cpu(cpu); 11924 11925 return NOTIFY_OK; 11926 } 11927 11928 /* 11929 * Run the perf reboot notifier at the very last possible moment so that 11930 * the generic watchdog code runs as long as possible. 11931 */ 11932 static struct notifier_block perf_reboot_notifier = { 11933 .notifier_call = perf_reboot, 11934 .priority = INT_MIN, 11935 }; 11936 11937 void __init perf_event_init(void) 11938 { 11939 int ret; 11940 11941 idr_init(&pmu_idr); 11942 11943 perf_event_init_all_cpus(); 11944 init_srcu_struct(&pmus_srcu); 11945 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11946 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11947 perf_pmu_register(&perf_task_clock, NULL, -1); 11948 perf_tp_register(); 11949 perf_event_init_cpu(smp_processor_id()); 11950 register_reboot_notifier(&perf_reboot_notifier); 11951 11952 ret = init_hw_breakpoint(); 11953 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11954 11955 /* 11956 * Build time assertion that we keep the data_head at the intended 11957 * location. IOW, validation we got the __reserved[] size right. 11958 */ 11959 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11960 != 1024); 11961 } 11962 11963 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11964 char *page) 11965 { 11966 struct perf_pmu_events_attr *pmu_attr = 11967 container_of(attr, struct perf_pmu_events_attr, attr); 11968 11969 if (pmu_attr->event_str) 11970 return sprintf(page, "%s\n", pmu_attr->event_str); 11971 11972 return 0; 11973 } 11974 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11975 11976 static int __init perf_event_sysfs_init(void) 11977 { 11978 struct pmu *pmu; 11979 int ret; 11980 11981 mutex_lock(&pmus_lock); 11982 11983 ret = bus_register(&pmu_bus); 11984 if (ret) 11985 goto unlock; 11986 11987 list_for_each_entry(pmu, &pmus, entry) { 11988 if (!pmu->name || pmu->type < 0) 11989 continue; 11990 11991 ret = pmu_dev_alloc(pmu); 11992 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11993 } 11994 pmu_bus_running = 1; 11995 ret = 0; 11996 11997 unlock: 11998 mutex_unlock(&pmus_lock); 11999 12000 return ret; 12001 } 12002 device_initcall(perf_event_sysfs_init); 12003 12004 #ifdef CONFIG_CGROUP_PERF 12005 static struct cgroup_subsys_state * 12006 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12007 { 12008 struct perf_cgroup *jc; 12009 12010 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12011 if (!jc) 12012 return ERR_PTR(-ENOMEM); 12013 12014 jc->info = alloc_percpu(struct perf_cgroup_info); 12015 if (!jc->info) { 12016 kfree(jc); 12017 return ERR_PTR(-ENOMEM); 12018 } 12019 12020 return &jc->css; 12021 } 12022 12023 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12024 { 12025 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12026 12027 free_percpu(jc->info); 12028 kfree(jc); 12029 } 12030 12031 static int __perf_cgroup_move(void *info) 12032 { 12033 struct task_struct *task = info; 12034 rcu_read_lock(); 12035 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12036 rcu_read_unlock(); 12037 return 0; 12038 } 12039 12040 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12041 { 12042 struct task_struct *task; 12043 struct cgroup_subsys_state *css; 12044 12045 cgroup_taskset_for_each(task, css, tset) 12046 task_function_call(task, __perf_cgroup_move, task); 12047 } 12048 12049 struct cgroup_subsys perf_event_cgrp_subsys = { 12050 .css_alloc = perf_cgroup_css_alloc, 12051 .css_free = perf_cgroup_css_free, 12052 .attach = perf_cgroup_attach, 12053 /* 12054 * Implicitly enable on dfl hierarchy so that perf events can 12055 * always be filtered by cgroup2 path as long as perf_event 12056 * controller is not mounted on a legacy hierarchy. 12057 */ 12058 .implicit_on_dfl = true, 12059 .threaded = true, 12060 }; 12061 #endif /* CONFIG_CGROUP_PERF */ 12062