xref: /linux/kernel/events/core.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 enum event_type_t {
122 	EVENT_FLEXIBLE = 0x1,
123 	EVENT_PINNED = 0x2,
124 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126 
127 /*
128  * perf_sched_events : >0 events exist
129  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130  */
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133 
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137 
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141 
142 /*
143  * perf event paranoia level:
144  *  -1 - not paranoid at all
145  *   0 - disallow raw tracepoint access for unpriv
146  *   1 - disallow cpu events for unpriv
147  *   2 - disallow kernel profiling for unpriv
148  */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150 
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 
154 /*
155  * max perf event sample rate
156  */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161 
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 		void __user *buffer, size_t *lenp,
164 		loff_t *ppos)
165 {
166 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167 
168 	if (ret || !write)
169 		return ret;
170 
171 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172 
173 	return 0;
174 }
175 
176 static atomic64_t perf_event_id;
177 
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 			      enum event_type_t event_type);
180 
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 			     enum event_type_t event_type,
183 			     struct task_struct *task);
184 
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187 
188 static void ring_buffer_attach(struct perf_event *event,
189 			       struct ring_buffer *rb);
190 
191 void __weak perf_event_print_debug(void)	{ }
192 
193 extern __weak const char *perf_pmu_name(void)
194 {
195 	return "pmu";
196 }
197 
198 static inline u64 perf_clock(void)
199 {
200 	return local_clock();
201 }
202 
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208 
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 			  struct perf_event_context *ctx)
211 {
212 	raw_spin_lock(&cpuctx->ctx.lock);
213 	if (ctx)
214 		raw_spin_lock(&ctx->lock);
215 }
216 
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 			    struct perf_event_context *ctx)
219 {
220 	if (ctx)
221 		raw_spin_unlock(&ctx->lock);
222 	raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224 
225 #ifdef CONFIG_CGROUP_PERF
226 
227 /*
228  * Must ensure cgroup is pinned (css_get) before calling
229  * this function. In other words, we cannot call this function
230  * if there is no cgroup event for the current CPU context.
231  */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 	return container_of(task_subsys_state(task, perf_subsys_id),
236 			struct perf_cgroup, css);
237 }
238 
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 	struct perf_event_context *ctx = event->ctx;
243 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244 
245 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247 
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 	css_get(&event->cgrp->css);
251 }
252 
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 	css_put(&event->cgrp->css);
256 }
257 
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 	perf_put_cgroup(event);
261 	event->cgrp = NULL;
262 }
263 
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 	return event->cgrp != NULL;
267 }
268 
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 	struct perf_cgroup_info *t;
272 
273 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 	return t->time;
275 }
276 
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 	struct perf_cgroup_info *info;
280 	u64 now;
281 
282 	now = perf_clock();
283 
284 	info = this_cpu_ptr(cgrp->info);
285 
286 	info->time += now - info->timestamp;
287 	info->timestamp = now;
288 }
289 
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 	if (cgrp_out)
294 		__update_cgrp_time(cgrp_out);
295 }
296 
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 	struct perf_cgroup *cgrp;
300 
301 	/*
302 	 * ensure we access cgroup data only when needed and
303 	 * when we know the cgroup is pinned (css_get)
304 	 */
305 	if (!is_cgroup_event(event))
306 		return;
307 
308 	cgrp = perf_cgroup_from_task(current);
309 	/*
310 	 * Do not update time when cgroup is not active
311 	 */
312 	if (cgrp == event->cgrp)
313 		__update_cgrp_time(event->cgrp);
314 }
315 
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 			  struct perf_event_context *ctx)
319 {
320 	struct perf_cgroup *cgrp;
321 	struct perf_cgroup_info *info;
322 
323 	/*
324 	 * ctx->lock held by caller
325 	 * ensure we do not access cgroup data
326 	 * unless we have the cgroup pinned (css_get)
327 	 */
328 	if (!task || !ctx->nr_cgroups)
329 		return;
330 
331 	cgrp = perf_cgroup_from_task(task);
332 	info = this_cpu_ptr(cgrp->info);
333 	info->timestamp = ctx->timestamp;
334 }
335 
336 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
338 
339 /*
340  * reschedule events based on the cgroup constraint of task.
341  *
342  * mode SWOUT : schedule out everything
343  * mode SWIN : schedule in based on cgroup for next
344  */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 	struct perf_cpu_context *cpuctx;
348 	struct pmu *pmu;
349 	unsigned long flags;
350 
351 	/*
352 	 * disable interrupts to avoid geting nr_cgroup
353 	 * changes via __perf_event_disable(). Also
354 	 * avoids preemption.
355 	 */
356 	local_irq_save(flags);
357 
358 	/*
359 	 * we reschedule only in the presence of cgroup
360 	 * constrained events.
361 	 */
362 	rcu_read_lock();
363 
364 	list_for_each_entry_rcu(pmu, &pmus, entry) {
365 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366 
367 		/*
368 		 * perf_cgroup_events says at least one
369 		 * context on this CPU has cgroup events.
370 		 *
371 		 * ctx->nr_cgroups reports the number of cgroup
372 		 * events for a context.
373 		 */
374 		if (cpuctx->ctx.nr_cgroups > 0) {
375 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 			perf_pmu_disable(cpuctx->ctx.pmu);
377 
378 			if (mode & PERF_CGROUP_SWOUT) {
379 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 				/*
381 				 * must not be done before ctxswout due
382 				 * to event_filter_match() in event_sched_out()
383 				 */
384 				cpuctx->cgrp = NULL;
385 			}
386 
387 			if (mode & PERF_CGROUP_SWIN) {
388 				WARN_ON_ONCE(cpuctx->cgrp);
389 				/* set cgrp before ctxsw in to
390 				 * allow event_filter_match() to not
391 				 * have to pass task around
392 				 */
393 				cpuctx->cgrp = perf_cgroup_from_task(task);
394 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 			}
396 			perf_pmu_enable(cpuctx->ctx.pmu);
397 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 		}
399 	}
400 
401 	rcu_read_unlock();
402 
403 	local_irq_restore(flags);
404 }
405 
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 					 struct task_struct *next)
408 {
409 	struct perf_cgroup *cgrp1;
410 	struct perf_cgroup *cgrp2 = NULL;
411 
412 	/*
413 	 * we come here when we know perf_cgroup_events > 0
414 	 */
415 	cgrp1 = perf_cgroup_from_task(task);
416 
417 	/*
418 	 * next is NULL when called from perf_event_enable_on_exec()
419 	 * that will systematically cause a cgroup_switch()
420 	 */
421 	if (next)
422 		cgrp2 = perf_cgroup_from_task(next);
423 
424 	/*
425 	 * only schedule out current cgroup events if we know
426 	 * that we are switching to a different cgroup. Otherwise,
427 	 * do no touch the cgroup events.
428 	 */
429 	if (cgrp1 != cgrp2)
430 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432 
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 					struct task_struct *task)
435 {
436 	struct perf_cgroup *cgrp1;
437 	struct perf_cgroup *cgrp2 = NULL;
438 
439 	/*
440 	 * we come here when we know perf_cgroup_events > 0
441 	 */
442 	cgrp1 = perf_cgroup_from_task(task);
443 
444 	/* prev can never be NULL */
445 	cgrp2 = perf_cgroup_from_task(prev);
446 
447 	/*
448 	 * only need to schedule in cgroup events if we are changing
449 	 * cgroup during ctxsw. Cgroup events were not scheduled
450 	 * out of ctxsw out if that was not the case.
451 	 */
452 	if (cgrp1 != cgrp2)
453 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455 
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 				      struct perf_event_attr *attr,
458 				      struct perf_event *group_leader)
459 {
460 	struct perf_cgroup *cgrp;
461 	struct cgroup_subsys_state *css;
462 	struct file *file;
463 	int ret = 0, fput_needed;
464 
465 	file = fget_light(fd, &fput_needed);
466 	if (!file)
467 		return -EBADF;
468 
469 	css = cgroup_css_from_dir(file, perf_subsys_id);
470 	if (IS_ERR(css)) {
471 		ret = PTR_ERR(css);
472 		goto out;
473 	}
474 
475 	cgrp = container_of(css, struct perf_cgroup, css);
476 	event->cgrp = cgrp;
477 
478 	/* must be done before we fput() the file */
479 	perf_get_cgroup(event);
480 
481 	/*
482 	 * all events in a group must monitor
483 	 * the same cgroup because a task belongs
484 	 * to only one perf cgroup at a time
485 	 */
486 	if (group_leader && group_leader->cgrp != cgrp) {
487 		perf_detach_cgroup(event);
488 		ret = -EINVAL;
489 	}
490 out:
491 	fput_light(file, fput_needed);
492 	return ret;
493 }
494 
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 	struct perf_cgroup_info *t;
499 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 	event->shadow_ctx_time = now - t->timestamp;
501 }
502 
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 	/*
507 	 * when the current task's perf cgroup does not match
508 	 * the event's, we need to remember to call the
509 	 * perf_mark_enable() function the first time a task with
510 	 * a matching perf cgroup is scheduled in.
511 	 */
512 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 		event->cgrp_defer_enabled = 1;
514 }
515 
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 			 struct perf_event_context *ctx)
519 {
520 	struct perf_event *sub;
521 	u64 tstamp = perf_event_time(event);
522 
523 	if (!event->cgrp_defer_enabled)
524 		return;
525 
526 	event->cgrp_defer_enabled = 0;
527 
528 	event->tstamp_enabled = tstamp - event->total_time_enabled;
529 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 			sub->cgrp_defer_enabled = 0;
533 		}
534 	}
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537 
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 	return true;
542 }
543 
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546 
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 	return 0;
550 }
551 
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 	return 0;
555 }
556 
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560 
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564 
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 					 struct task_struct *next)
567 {
568 }
569 
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 					struct task_struct *task)
572 {
573 }
574 
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 				      struct perf_event_attr *attr,
577 				      struct perf_event *group_leader)
578 {
579 	return -EINVAL;
580 }
581 
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 			  struct perf_event_context *ctx)
585 {
586 }
587 
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592 
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597 
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 	return 0;
601 }
602 
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607 
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 			 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614 
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 	if (!(*count)++)
619 		pmu->pmu_disable(pmu);
620 }
621 
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 	if (!--(*count))
626 		pmu->pmu_enable(pmu);
627 }
628 
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630 
631 /*
632  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633  * because they're strictly cpu affine and rotate_start is called with IRQs
634  * disabled, while rotate_context is called from IRQ context.
635  */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 	struct list_head *head = &__get_cpu_var(rotation_list);
640 
641 	WARN_ON(!irqs_disabled());
642 
643 	if (list_empty(&cpuctx->rotation_list))
644 		list_add(&cpuctx->rotation_list, head);
645 }
646 
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651 
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 	if (atomic_dec_and_test(&ctx->refcount)) {
655 		if (ctx->parent_ctx)
656 			put_ctx(ctx->parent_ctx);
657 		if (ctx->task)
658 			put_task_struct(ctx->task);
659 		kfree_rcu(ctx, rcu_head);
660 	}
661 }
662 
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 	if (ctx->parent_ctx) {
666 		put_ctx(ctx->parent_ctx);
667 		ctx->parent_ctx = NULL;
668 	}
669 }
670 
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 	/*
674 	 * only top level events have the pid namespace they were created in
675 	 */
676 	if (event->parent)
677 		event = event->parent;
678 
679 	return task_tgid_nr_ns(p, event->ns);
680 }
681 
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 	/*
685 	 * only top level events have the pid namespace they were created in
686 	 */
687 	if (event->parent)
688 		event = event->parent;
689 
690 	return task_pid_nr_ns(p, event->ns);
691 }
692 
693 /*
694  * If we inherit events we want to return the parent event id
695  * to userspace.
696  */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 	u64 id = event->id;
700 
701 	if (event->parent)
702 		id = event->parent->id;
703 
704 	return id;
705 }
706 
707 /*
708  * Get the perf_event_context for a task and lock it.
709  * This has to cope with with the fact that until it is locked,
710  * the context could get moved to another task.
711  */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 	struct perf_event_context *ctx;
716 
717 	rcu_read_lock();
718 retry:
719 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 	if (ctx) {
721 		/*
722 		 * If this context is a clone of another, it might
723 		 * get swapped for another underneath us by
724 		 * perf_event_task_sched_out, though the
725 		 * rcu_read_lock() protects us from any context
726 		 * getting freed.  Lock the context and check if it
727 		 * got swapped before we could get the lock, and retry
728 		 * if so.  If we locked the right context, then it
729 		 * can't get swapped on us any more.
730 		 */
731 		raw_spin_lock_irqsave(&ctx->lock, *flags);
732 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 			goto retry;
735 		}
736 
737 		if (!atomic_inc_not_zero(&ctx->refcount)) {
738 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 			ctx = NULL;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return ctx;
744 }
745 
746 /*
747  * Get the context for a task and increment its pin_count so it
748  * can't get swapped to another task.  This also increments its
749  * reference count so that the context can't get freed.
750  */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 	struct perf_event_context *ctx;
755 	unsigned long flags;
756 
757 	ctx = perf_lock_task_context(task, ctxn, &flags);
758 	if (ctx) {
759 		++ctx->pin_count;
760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 	}
762 	return ctx;
763 }
764 
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 	unsigned long flags;
768 
769 	raw_spin_lock_irqsave(&ctx->lock, flags);
770 	--ctx->pin_count;
771 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773 
774 /*
775  * Update the record of the current time in a context.
776  */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 	u64 now = perf_clock();
780 
781 	ctx->time += now - ctx->timestamp;
782 	ctx->timestamp = now;
783 }
784 
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 	struct perf_event_context *ctx = event->ctx;
788 
789 	if (is_cgroup_event(event))
790 		return perf_cgroup_event_time(event);
791 
792 	return ctx ? ctx->time : 0;
793 }
794 
795 /*
796  * Update the total_time_enabled and total_time_running fields for a event.
797  * The caller of this function needs to hold the ctx->lock.
798  */
799 static void update_event_times(struct perf_event *event)
800 {
801 	struct perf_event_context *ctx = event->ctx;
802 	u64 run_end;
803 
804 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 		return;
807 	/*
808 	 * in cgroup mode, time_enabled represents
809 	 * the time the event was enabled AND active
810 	 * tasks were in the monitored cgroup. This is
811 	 * independent of the activity of the context as
812 	 * there may be a mix of cgroup and non-cgroup events.
813 	 *
814 	 * That is why we treat cgroup events differently
815 	 * here.
816 	 */
817 	if (is_cgroup_event(event))
818 		run_end = perf_event_time(event);
819 	else if (ctx->is_active)
820 		run_end = ctx->time;
821 	else
822 		run_end = event->tstamp_stopped;
823 
824 	event->total_time_enabled = run_end - event->tstamp_enabled;
825 
826 	if (event->state == PERF_EVENT_STATE_INACTIVE)
827 		run_end = event->tstamp_stopped;
828 	else
829 		run_end = perf_event_time(event);
830 
831 	event->total_time_running = run_end - event->tstamp_running;
832 
833 }
834 
835 /*
836  * Update total_time_enabled and total_time_running for all events in a group.
837  */
838 static void update_group_times(struct perf_event *leader)
839 {
840 	struct perf_event *event;
841 
842 	update_event_times(leader);
843 	list_for_each_entry(event, &leader->sibling_list, group_entry)
844 		update_event_times(event);
845 }
846 
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 	if (event->attr.pinned)
851 		return &ctx->pinned_groups;
852 	else
853 		return &ctx->flexible_groups;
854 }
855 
856 /*
857  * Add a event from the lists for its context.
858  * Must be called with ctx->mutex and ctx->lock held.
859  */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 	event->attach_state |= PERF_ATTACH_CONTEXT;
865 
866 	/*
867 	 * If we're a stand alone event or group leader, we go to the context
868 	 * list, group events are kept attached to the group so that
869 	 * perf_group_detach can, at all times, locate all siblings.
870 	 */
871 	if (event->group_leader == event) {
872 		struct list_head *list;
873 
874 		if (is_software_event(event))
875 			event->group_flags |= PERF_GROUP_SOFTWARE;
876 
877 		list = ctx_group_list(event, ctx);
878 		list_add_tail(&event->group_entry, list);
879 	}
880 
881 	if (is_cgroup_event(event))
882 		ctx->nr_cgroups++;
883 
884 	list_add_rcu(&event->event_entry, &ctx->event_list);
885 	if (!ctx->nr_events)
886 		perf_pmu_rotate_start(ctx->pmu);
887 	ctx->nr_events++;
888 	if (event->attr.inherit_stat)
889 		ctx->nr_stat++;
890 }
891 
892 /*
893  * Called at perf_event creation and when events are attached/detached from a
894  * group.
895  */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 	int entry = sizeof(u64); /* value */
899 	int size = 0;
900 	int nr = 1;
901 
902 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 		size += sizeof(u64);
904 
905 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 		size += sizeof(u64);
907 
908 	if (event->attr.read_format & PERF_FORMAT_ID)
909 		entry += sizeof(u64);
910 
911 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 		nr += event->group_leader->nr_siblings;
913 		size += sizeof(u64);
914 	}
915 
916 	size += entry * nr;
917 	event->read_size = size;
918 }
919 
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 	struct perf_sample_data *data;
923 	u64 sample_type = event->attr.sample_type;
924 	u16 size = 0;
925 
926 	perf_event__read_size(event);
927 
928 	if (sample_type & PERF_SAMPLE_IP)
929 		size += sizeof(data->ip);
930 
931 	if (sample_type & PERF_SAMPLE_ADDR)
932 		size += sizeof(data->addr);
933 
934 	if (sample_type & PERF_SAMPLE_PERIOD)
935 		size += sizeof(data->period);
936 
937 	if (sample_type & PERF_SAMPLE_READ)
938 		size += event->read_size;
939 
940 	event->header_size = size;
941 }
942 
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 	struct perf_sample_data *data;
946 	u64 sample_type = event->attr.sample_type;
947 	u16 size = 0;
948 
949 	if (sample_type & PERF_SAMPLE_TID)
950 		size += sizeof(data->tid_entry);
951 
952 	if (sample_type & PERF_SAMPLE_TIME)
953 		size += sizeof(data->time);
954 
955 	if (sample_type & PERF_SAMPLE_ID)
956 		size += sizeof(data->id);
957 
958 	if (sample_type & PERF_SAMPLE_STREAM_ID)
959 		size += sizeof(data->stream_id);
960 
961 	if (sample_type & PERF_SAMPLE_CPU)
962 		size += sizeof(data->cpu_entry);
963 
964 	event->id_header_size = size;
965 }
966 
967 static void perf_group_attach(struct perf_event *event)
968 {
969 	struct perf_event *group_leader = event->group_leader, *pos;
970 
971 	/*
972 	 * We can have double attach due to group movement in perf_event_open.
973 	 */
974 	if (event->attach_state & PERF_ATTACH_GROUP)
975 		return;
976 
977 	event->attach_state |= PERF_ATTACH_GROUP;
978 
979 	if (group_leader == event)
980 		return;
981 
982 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 			!is_software_event(event))
984 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985 
986 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 	group_leader->nr_siblings++;
988 
989 	perf_event__header_size(group_leader);
990 
991 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 		perf_event__header_size(pos);
993 }
994 
995 /*
996  * Remove a event from the lists for its context.
997  * Must be called with ctx->mutex and ctx->lock held.
998  */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 	/*
1004 	 * We can have double detach due to exit/hot-unplug + close.
1005 	 */
1006 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 		return;
1008 
1009 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010 
1011 	if (is_cgroup_event(event)) {
1012 		ctx->nr_cgroups--;
1013 		cpuctx = __get_cpu_context(ctx);
1014 		/*
1015 		 * if there are no more cgroup events
1016 		 * then cler cgrp to avoid stale pointer
1017 		 * in update_cgrp_time_from_cpuctx()
1018 		 */
1019 		if (!ctx->nr_cgroups)
1020 			cpuctx->cgrp = NULL;
1021 	}
1022 
1023 	ctx->nr_events--;
1024 	if (event->attr.inherit_stat)
1025 		ctx->nr_stat--;
1026 
1027 	list_del_rcu(&event->event_entry);
1028 
1029 	if (event->group_leader == event)
1030 		list_del_init(&event->group_entry);
1031 
1032 	update_group_times(event);
1033 
1034 	/*
1035 	 * If event was in error state, then keep it
1036 	 * that way, otherwise bogus counts will be
1037 	 * returned on read(). The only way to get out
1038 	 * of error state is by explicit re-enabling
1039 	 * of the event
1040 	 */
1041 	if (event->state > PERF_EVENT_STATE_OFF)
1042 		event->state = PERF_EVENT_STATE_OFF;
1043 }
1044 
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 	struct perf_event *sibling, *tmp;
1048 	struct list_head *list = NULL;
1049 
1050 	/*
1051 	 * We can have double detach due to exit/hot-unplug + close.
1052 	 */
1053 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 		return;
1055 
1056 	event->attach_state &= ~PERF_ATTACH_GROUP;
1057 
1058 	/*
1059 	 * If this is a sibling, remove it from its group.
1060 	 */
1061 	if (event->group_leader != event) {
1062 		list_del_init(&event->group_entry);
1063 		event->group_leader->nr_siblings--;
1064 		goto out;
1065 	}
1066 
1067 	if (!list_empty(&event->group_entry))
1068 		list = &event->group_entry;
1069 
1070 	/*
1071 	 * If this was a group event with sibling events then
1072 	 * upgrade the siblings to singleton events by adding them
1073 	 * to whatever list we are on.
1074 	 */
1075 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 		if (list)
1077 			list_move_tail(&sibling->group_entry, list);
1078 		sibling->group_leader = sibling;
1079 
1080 		/* Inherit group flags from the previous leader */
1081 		sibling->group_flags = event->group_flags;
1082 	}
1083 
1084 out:
1085 	perf_event__header_size(event->group_leader);
1086 
1087 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 		perf_event__header_size(tmp);
1089 }
1090 
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 	    && perf_cgroup_match(event);
1096 }
1097 
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 		  struct perf_cpu_context *cpuctx,
1101 		  struct perf_event_context *ctx)
1102 {
1103 	u64 tstamp = perf_event_time(event);
1104 	u64 delta;
1105 	/*
1106 	 * An event which could not be activated because of
1107 	 * filter mismatch still needs to have its timings
1108 	 * maintained, otherwise bogus information is return
1109 	 * via read() for time_enabled, time_running:
1110 	 */
1111 	if (event->state == PERF_EVENT_STATE_INACTIVE
1112 	    && !event_filter_match(event)) {
1113 		delta = tstamp - event->tstamp_stopped;
1114 		event->tstamp_running += delta;
1115 		event->tstamp_stopped = tstamp;
1116 	}
1117 
1118 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 		return;
1120 
1121 	event->state = PERF_EVENT_STATE_INACTIVE;
1122 	if (event->pending_disable) {
1123 		event->pending_disable = 0;
1124 		event->state = PERF_EVENT_STATE_OFF;
1125 	}
1126 	event->tstamp_stopped = tstamp;
1127 	event->pmu->del(event, 0);
1128 	event->oncpu = -1;
1129 
1130 	if (!is_software_event(event))
1131 		cpuctx->active_oncpu--;
1132 	ctx->nr_active--;
1133 	if (event->attr.freq && event->attr.sample_freq)
1134 		ctx->nr_freq--;
1135 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 		cpuctx->exclusive = 0;
1137 }
1138 
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 		struct perf_cpu_context *cpuctx,
1142 		struct perf_event_context *ctx)
1143 {
1144 	struct perf_event *event;
1145 	int state = group_event->state;
1146 
1147 	event_sched_out(group_event, cpuctx, ctx);
1148 
1149 	/*
1150 	 * Schedule out siblings (if any):
1151 	 */
1152 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 		event_sched_out(event, cpuctx, ctx);
1154 
1155 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 		cpuctx->exclusive = 0;
1157 }
1158 
1159 /*
1160  * Cross CPU call to remove a performance event
1161  *
1162  * We disable the event on the hardware level first. After that we
1163  * remove it from the context list.
1164  */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 	struct perf_event *event = info;
1168 	struct perf_event_context *ctx = event->ctx;
1169 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170 
1171 	raw_spin_lock(&ctx->lock);
1172 	event_sched_out(event, cpuctx, ctx);
1173 	list_del_event(event, ctx);
1174 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 		ctx->is_active = 0;
1176 		cpuctx->task_ctx = NULL;
1177 	}
1178 	raw_spin_unlock(&ctx->lock);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 /*
1185  * Remove the event from a task's (or a CPU's) list of events.
1186  *
1187  * CPU events are removed with a smp call. For task events we only
1188  * call when the task is on a CPU.
1189  *
1190  * If event->ctx is a cloned context, callers must make sure that
1191  * every task struct that event->ctx->task could possibly point to
1192  * remains valid.  This is OK when called from perf_release since
1193  * that only calls us on the top-level context, which can't be a clone.
1194  * When called from perf_event_exit_task, it's OK because the
1195  * context has been detached from its task.
1196  */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 	struct perf_event_context *ctx = event->ctx;
1200 	struct task_struct *task = ctx->task;
1201 
1202 	lockdep_assert_held(&ctx->mutex);
1203 
1204 	if (!task) {
1205 		/*
1206 		 * Per cpu events are removed via an smp call and
1207 		 * the removal is always successful.
1208 		 */
1209 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 		return;
1211 	}
1212 
1213 retry:
1214 	if (!task_function_call(task, __perf_remove_from_context, event))
1215 		return;
1216 
1217 	raw_spin_lock_irq(&ctx->lock);
1218 	/*
1219 	 * If we failed to find a running task, but find the context active now
1220 	 * that we've acquired the ctx->lock, retry.
1221 	 */
1222 	if (ctx->is_active) {
1223 		raw_spin_unlock_irq(&ctx->lock);
1224 		goto retry;
1225 	}
1226 
1227 	/*
1228 	 * Since the task isn't running, its safe to remove the event, us
1229 	 * holding the ctx->lock ensures the task won't get scheduled in.
1230 	 */
1231 	list_del_event(event, ctx);
1232 	raw_spin_unlock_irq(&ctx->lock);
1233 }
1234 
1235 /*
1236  * Cross CPU call to disable a performance event
1237  */
1238 static int __perf_event_disable(void *info)
1239 {
1240 	struct perf_event *event = info;
1241 	struct perf_event_context *ctx = event->ctx;
1242 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 
1244 	/*
1245 	 * If this is a per-task event, need to check whether this
1246 	 * event's task is the current task on this cpu.
1247 	 *
1248 	 * Can trigger due to concurrent perf_event_context_sched_out()
1249 	 * flipping contexts around.
1250 	 */
1251 	if (ctx->task && cpuctx->task_ctx != ctx)
1252 		return -EINVAL;
1253 
1254 	raw_spin_lock(&ctx->lock);
1255 
1256 	/*
1257 	 * If the event is on, turn it off.
1258 	 * If it is in error state, leave it in error state.
1259 	 */
1260 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 		update_context_time(ctx);
1262 		update_cgrp_time_from_event(event);
1263 		update_group_times(event);
1264 		if (event == event->group_leader)
1265 			group_sched_out(event, cpuctx, ctx);
1266 		else
1267 			event_sched_out(event, cpuctx, ctx);
1268 		event->state = PERF_EVENT_STATE_OFF;
1269 	}
1270 
1271 	raw_spin_unlock(&ctx->lock);
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Disable a event.
1278  *
1279  * If event->ctx is a cloned context, callers must make sure that
1280  * every task struct that event->ctx->task could possibly point to
1281  * remains valid.  This condition is satisifed when called through
1282  * perf_event_for_each_child or perf_event_for_each because they
1283  * hold the top-level event's child_mutex, so any descendant that
1284  * goes to exit will block in sync_child_event.
1285  * When called from perf_pending_event it's OK because event->ctx
1286  * is the current context on this CPU and preemption is disabled,
1287  * hence we can't get into perf_event_task_sched_out for this context.
1288  */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 	struct perf_event_context *ctx = event->ctx;
1292 	struct task_struct *task = ctx->task;
1293 
1294 	if (!task) {
1295 		/*
1296 		 * Disable the event on the cpu that it's on
1297 		 */
1298 		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 		return;
1300 	}
1301 
1302 retry:
1303 	if (!task_function_call(task, __perf_event_disable, event))
1304 		return;
1305 
1306 	raw_spin_lock_irq(&ctx->lock);
1307 	/*
1308 	 * If the event is still active, we need to retry the cross-call.
1309 	 */
1310 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 		raw_spin_unlock_irq(&ctx->lock);
1312 		/*
1313 		 * Reload the task pointer, it might have been changed by
1314 		 * a concurrent perf_event_context_sched_out().
1315 		 */
1316 		task = ctx->task;
1317 		goto retry;
1318 	}
1319 
1320 	/*
1321 	 * Since we have the lock this context can't be scheduled
1322 	 * in, so we can change the state safely.
1323 	 */
1324 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 		update_group_times(event);
1326 		event->state = PERF_EVENT_STATE_OFF;
1327 	}
1328 	raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331 
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 				 struct perf_event_context *ctx,
1334 				 u64 tstamp)
1335 {
1336 	/*
1337 	 * use the correct time source for the time snapshot
1338 	 *
1339 	 * We could get by without this by leveraging the
1340 	 * fact that to get to this function, the caller
1341 	 * has most likely already called update_context_time()
1342 	 * and update_cgrp_time_xx() and thus both timestamp
1343 	 * are identical (or very close). Given that tstamp is,
1344 	 * already adjusted for cgroup, we could say that:
1345 	 *    tstamp - ctx->timestamp
1346 	 * is equivalent to
1347 	 *    tstamp - cgrp->timestamp.
1348 	 *
1349 	 * Then, in perf_output_read(), the calculation would
1350 	 * work with no changes because:
1351 	 * - event is guaranteed scheduled in
1352 	 * - no scheduled out in between
1353 	 * - thus the timestamp would be the same
1354 	 *
1355 	 * But this is a bit hairy.
1356 	 *
1357 	 * So instead, we have an explicit cgroup call to remain
1358 	 * within the time time source all along. We believe it
1359 	 * is cleaner and simpler to understand.
1360 	 */
1361 	if (is_cgroup_event(event))
1362 		perf_cgroup_set_shadow_time(event, tstamp);
1363 	else
1364 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366 
1367 #define MAX_INTERRUPTS (~0ULL)
1368 
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370 
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 		 struct perf_cpu_context *cpuctx,
1374 		 struct perf_event_context *ctx)
1375 {
1376 	u64 tstamp = perf_event_time(event);
1377 
1378 	if (event->state <= PERF_EVENT_STATE_OFF)
1379 		return 0;
1380 
1381 	event->state = PERF_EVENT_STATE_ACTIVE;
1382 	event->oncpu = smp_processor_id();
1383 
1384 	/*
1385 	 * Unthrottle events, since we scheduled we might have missed several
1386 	 * ticks already, also for a heavily scheduling task there is little
1387 	 * guarantee it'll get a tick in a timely manner.
1388 	 */
1389 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 		perf_log_throttle(event, 1);
1391 		event->hw.interrupts = 0;
1392 	}
1393 
1394 	/*
1395 	 * The new state must be visible before we turn it on in the hardware:
1396 	 */
1397 	smp_wmb();
1398 
1399 	if (event->pmu->add(event, PERF_EF_START)) {
1400 		event->state = PERF_EVENT_STATE_INACTIVE;
1401 		event->oncpu = -1;
1402 		return -EAGAIN;
1403 	}
1404 
1405 	event->tstamp_running += tstamp - event->tstamp_stopped;
1406 
1407 	perf_set_shadow_time(event, ctx, tstamp);
1408 
1409 	if (!is_software_event(event))
1410 		cpuctx->active_oncpu++;
1411 	ctx->nr_active++;
1412 	if (event->attr.freq && event->attr.sample_freq)
1413 		ctx->nr_freq++;
1414 
1415 	if (event->attr.exclusive)
1416 		cpuctx->exclusive = 1;
1417 
1418 	return 0;
1419 }
1420 
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 	       struct perf_cpu_context *cpuctx,
1424 	       struct perf_event_context *ctx)
1425 {
1426 	struct perf_event *event, *partial_group = NULL;
1427 	struct pmu *pmu = group_event->pmu;
1428 	u64 now = ctx->time;
1429 	bool simulate = false;
1430 
1431 	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 		return 0;
1433 
1434 	pmu->start_txn(pmu);
1435 
1436 	if (event_sched_in(group_event, cpuctx, ctx)) {
1437 		pmu->cancel_txn(pmu);
1438 		return -EAGAIN;
1439 	}
1440 
1441 	/*
1442 	 * Schedule in siblings as one group (if any):
1443 	 */
1444 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 		if (event_sched_in(event, cpuctx, ctx)) {
1446 			partial_group = event;
1447 			goto group_error;
1448 		}
1449 	}
1450 
1451 	if (!pmu->commit_txn(pmu))
1452 		return 0;
1453 
1454 group_error:
1455 	/*
1456 	 * Groups can be scheduled in as one unit only, so undo any
1457 	 * partial group before returning:
1458 	 * The events up to the failed event are scheduled out normally,
1459 	 * tstamp_stopped will be updated.
1460 	 *
1461 	 * The failed events and the remaining siblings need to have
1462 	 * their timings updated as if they had gone thru event_sched_in()
1463 	 * and event_sched_out(). This is required to get consistent timings
1464 	 * across the group. This also takes care of the case where the group
1465 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 	 * the time the event was actually stopped, such that time delta
1467 	 * calculation in update_event_times() is correct.
1468 	 */
1469 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 		if (event == partial_group)
1471 			simulate = true;
1472 
1473 		if (simulate) {
1474 			event->tstamp_running += now - event->tstamp_stopped;
1475 			event->tstamp_stopped = now;
1476 		} else {
1477 			event_sched_out(event, cpuctx, ctx);
1478 		}
1479 	}
1480 	event_sched_out(group_event, cpuctx, ctx);
1481 
1482 	pmu->cancel_txn(pmu);
1483 
1484 	return -EAGAIN;
1485 }
1486 
1487 /*
1488  * Work out whether we can put this event group on the CPU now.
1489  */
1490 static int group_can_go_on(struct perf_event *event,
1491 			   struct perf_cpu_context *cpuctx,
1492 			   int can_add_hw)
1493 {
1494 	/*
1495 	 * Groups consisting entirely of software events can always go on.
1496 	 */
1497 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 		return 1;
1499 	/*
1500 	 * If an exclusive group is already on, no other hardware
1501 	 * events can go on.
1502 	 */
1503 	if (cpuctx->exclusive)
1504 		return 0;
1505 	/*
1506 	 * If this group is exclusive and there are already
1507 	 * events on the CPU, it can't go on.
1508 	 */
1509 	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 		return 0;
1511 	/*
1512 	 * Otherwise, try to add it if all previous groups were able
1513 	 * to go on.
1514 	 */
1515 	return can_add_hw;
1516 }
1517 
1518 static void add_event_to_ctx(struct perf_event *event,
1519 			       struct perf_event_context *ctx)
1520 {
1521 	u64 tstamp = perf_event_time(event);
1522 
1523 	list_add_event(event, ctx);
1524 	perf_group_attach(event);
1525 	event->tstamp_enabled = tstamp;
1526 	event->tstamp_running = tstamp;
1527 	event->tstamp_stopped = tstamp;
1528 }
1529 
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 	     struct perf_cpu_context *cpuctx,
1534 	     enum event_type_t event_type,
1535 	     struct task_struct *task);
1536 
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 				struct perf_event_context *ctx,
1539 				struct task_struct *task)
1540 {
1541 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 	if (ctx)
1543 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 	if (ctx)
1546 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548 
1549 /*
1550  * Cross CPU call to install and enable a performance event
1551  *
1552  * Must be called with ctx->mutex held
1553  */
1554 static int  __perf_install_in_context(void *info)
1555 {
1556 	struct perf_event *event = info;
1557 	struct perf_event_context *ctx = event->ctx;
1558 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 	struct task_struct *task = current;
1561 
1562 	perf_ctx_lock(cpuctx, task_ctx);
1563 	perf_pmu_disable(cpuctx->ctx.pmu);
1564 
1565 	/*
1566 	 * If there was an active task_ctx schedule it out.
1567 	 */
1568 	if (task_ctx)
1569 		task_ctx_sched_out(task_ctx);
1570 
1571 	/*
1572 	 * If the context we're installing events in is not the
1573 	 * active task_ctx, flip them.
1574 	 */
1575 	if (ctx->task && task_ctx != ctx) {
1576 		if (task_ctx)
1577 			raw_spin_unlock(&task_ctx->lock);
1578 		raw_spin_lock(&ctx->lock);
1579 		task_ctx = ctx;
1580 	}
1581 
1582 	if (task_ctx) {
1583 		cpuctx->task_ctx = task_ctx;
1584 		task = task_ctx->task;
1585 	}
1586 
1587 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588 
1589 	update_context_time(ctx);
1590 	/*
1591 	 * update cgrp time only if current cgrp
1592 	 * matches event->cgrp. Must be done before
1593 	 * calling add_event_to_ctx()
1594 	 */
1595 	update_cgrp_time_from_event(event);
1596 
1597 	add_event_to_ctx(event, ctx);
1598 
1599 	/*
1600 	 * Schedule everything back in
1601 	 */
1602 	perf_event_sched_in(cpuctx, task_ctx, task);
1603 
1604 	perf_pmu_enable(cpuctx->ctx.pmu);
1605 	perf_ctx_unlock(cpuctx, task_ctx);
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Attach a performance event to a context
1612  *
1613  * First we add the event to the list with the hardware enable bit
1614  * in event->hw_config cleared.
1615  *
1616  * If the event is attached to a task which is on a CPU we use a smp
1617  * call to enable it in the task context. The task might have been
1618  * scheduled away, but we check this in the smp call again.
1619  */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 			struct perf_event *event,
1623 			int cpu)
1624 {
1625 	struct task_struct *task = ctx->task;
1626 
1627 	lockdep_assert_held(&ctx->mutex);
1628 
1629 	event->ctx = ctx;
1630 
1631 	if (!task) {
1632 		/*
1633 		 * Per cpu events are installed via an smp call and
1634 		 * the install is always successful.
1635 		 */
1636 		cpu_function_call(cpu, __perf_install_in_context, event);
1637 		return;
1638 	}
1639 
1640 retry:
1641 	if (!task_function_call(task, __perf_install_in_context, event))
1642 		return;
1643 
1644 	raw_spin_lock_irq(&ctx->lock);
1645 	/*
1646 	 * If we failed to find a running task, but find the context active now
1647 	 * that we've acquired the ctx->lock, retry.
1648 	 */
1649 	if (ctx->is_active) {
1650 		raw_spin_unlock_irq(&ctx->lock);
1651 		goto retry;
1652 	}
1653 
1654 	/*
1655 	 * Since the task isn't running, its safe to add the event, us holding
1656 	 * the ctx->lock ensures the task won't get scheduled in.
1657 	 */
1658 	add_event_to_ctx(event, ctx);
1659 	raw_spin_unlock_irq(&ctx->lock);
1660 }
1661 
1662 /*
1663  * Put a event into inactive state and update time fields.
1664  * Enabling the leader of a group effectively enables all
1665  * the group members that aren't explicitly disabled, so we
1666  * have to update their ->tstamp_enabled also.
1667  * Note: this works for group members as well as group leaders
1668  * since the non-leader members' sibling_lists will be empty.
1669  */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 	struct perf_event *sub;
1673 	u64 tstamp = perf_event_time(event);
1674 
1675 	event->state = PERF_EVENT_STATE_INACTIVE;
1676 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 	}
1681 }
1682 
1683 /*
1684  * Cross CPU call to enable a performance event
1685  */
1686 static int __perf_event_enable(void *info)
1687 {
1688 	struct perf_event *event = info;
1689 	struct perf_event_context *ctx = event->ctx;
1690 	struct perf_event *leader = event->group_leader;
1691 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 	int err;
1693 
1694 	if (WARN_ON_ONCE(!ctx->is_active))
1695 		return -EINVAL;
1696 
1697 	raw_spin_lock(&ctx->lock);
1698 	update_context_time(ctx);
1699 
1700 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 		goto unlock;
1702 
1703 	/*
1704 	 * set current task's cgroup time reference point
1705 	 */
1706 	perf_cgroup_set_timestamp(current, ctx);
1707 
1708 	__perf_event_mark_enabled(event);
1709 
1710 	if (!event_filter_match(event)) {
1711 		if (is_cgroup_event(event))
1712 			perf_cgroup_defer_enabled(event);
1713 		goto unlock;
1714 	}
1715 
1716 	/*
1717 	 * If the event is in a group and isn't the group leader,
1718 	 * then don't put it on unless the group is on.
1719 	 */
1720 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 		goto unlock;
1722 
1723 	if (!group_can_go_on(event, cpuctx, 1)) {
1724 		err = -EEXIST;
1725 	} else {
1726 		if (event == leader)
1727 			err = group_sched_in(event, cpuctx, ctx);
1728 		else
1729 			err = event_sched_in(event, cpuctx, ctx);
1730 	}
1731 
1732 	if (err) {
1733 		/*
1734 		 * If this event can't go on and it's part of a
1735 		 * group, then the whole group has to come off.
1736 		 */
1737 		if (leader != event)
1738 			group_sched_out(leader, cpuctx, ctx);
1739 		if (leader->attr.pinned) {
1740 			update_group_times(leader);
1741 			leader->state = PERF_EVENT_STATE_ERROR;
1742 		}
1743 	}
1744 
1745 unlock:
1746 	raw_spin_unlock(&ctx->lock);
1747 
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Enable a event.
1753  *
1754  * If event->ctx is a cloned context, callers must make sure that
1755  * every task struct that event->ctx->task could possibly point to
1756  * remains valid.  This condition is satisfied when called through
1757  * perf_event_for_each_child or perf_event_for_each as described
1758  * for perf_event_disable.
1759  */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct task_struct *task = ctx->task;
1764 
1765 	if (!task) {
1766 		/*
1767 		 * Enable the event on the cpu that it's on
1768 		 */
1769 		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 		return;
1771 	}
1772 
1773 	raw_spin_lock_irq(&ctx->lock);
1774 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 		goto out;
1776 
1777 	/*
1778 	 * If the event is in error state, clear that first.
1779 	 * That way, if we see the event in error state below, we
1780 	 * know that it has gone back into error state, as distinct
1781 	 * from the task having been scheduled away before the
1782 	 * cross-call arrived.
1783 	 */
1784 	if (event->state == PERF_EVENT_STATE_ERROR)
1785 		event->state = PERF_EVENT_STATE_OFF;
1786 
1787 retry:
1788 	if (!ctx->is_active) {
1789 		__perf_event_mark_enabled(event);
1790 		goto out;
1791 	}
1792 
1793 	raw_spin_unlock_irq(&ctx->lock);
1794 
1795 	if (!task_function_call(task, __perf_event_enable, event))
1796 		return;
1797 
1798 	raw_spin_lock_irq(&ctx->lock);
1799 
1800 	/*
1801 	 * If the context is active and the event is still off,
1802 	 * we need to retry the cross-call.
1803 	 */
1804 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 		/*
1806 		 * task could have been flipped by a concurrent
1807 		 * perf_event_context_sched_out()
1808 		 */
1809 		task = ctx->task;
1810 		goto retry;
1811 	}
1812 
1813 out:
1814 	raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817 
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 	/*
1821 	 * not supported on inherited events
1822 	 */
1823 	if (event->attr.inherit || !is_sampling_event(event))
1824 		return -EINVAL;
1825 
1826 	atomic_add(refresh, &event->event_limit);
1827 	perf_event_enable(event);
1828 
1829 	return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832 
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 			  struct perf_cpu_context *cpuctx,
1835 			  enum event_type_t event_type)
1836 {
1837 	struct perf_event *event;
1838 	int is_active = ctx->is_active;
1839 
1840 	ctx->is_active &= ~event_type;
1841 	if (likely(!ctx->nr_events))
1842 		return;
1843 
1844 	update_context_time(ctx);
1845 	update_cgrp_time_from_cpuctx(cpuctx);
1846 	if (!ctx->nr_active)
1847 		return;
1848 
1849 	perf_pmu_disable(ctx->pmu);
1850 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 			group_sched_out(event, cpuctx, ctx);
1853 	}
1854 
1855 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 			group_sched_out(event, cpuctx, ctx);
1858 	}
1859 	perf_pmu_enable(ctx->pmu);
1860 }
1861 
1862 /*
1863  * Test whether two contexts are equivalent, i.e. whether they
1864  * have both been cloned from the same version of the same context
1865  * and they both have the same number of enabled events.
1866  * If the number of enabled events is the same, then the set
1867  * of enabled events should be the same, because these are both
1868  * inherited contexts, therefore we can't access individual events
1869  * in them directly with an fd; we can only enable/disable all
1870  * events via prctl, or enable/disable all events in a family
1871  * via ioctl, which will have the same effect on both contexts.
1872  */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 			 struct perf_event_context *ctx2)
1875 {
1876 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 		&& ctx1->parent_gen == ctx2->parent_gen
1878 		&& !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880 
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 				     struct perf_event *next_event)
1883 {
1884 	u64 value;
1885 
1886 	if (!event->attr.inherit_stat)
1887 		return;
1888 
1889 	/*
1890 	 * Update the event value, we cannot use perf_event_read()
1891 	 * because we're in the middle of a context switch and have IRQs
1892 	 * disabled, which upsets smp_call_function_single(), however
1893 	 * we know the event must be on the current CPU, therefore we
1894 	 * don't need to use it.
1895 	 */
1896 	switch (event->state) {
1897 	case PERF_EVENT_STATE_ACTIVE:
1898 		event->pmu->read(event);
1899 		/* fall-through */
1900 
1901 	case PERF_EVENT_STATE_INACTIVE:
1902 		update_event_times(event);
1903 		break;
1904 
1905 	default:
1906 		break;
1907 	}
1908 
1909 	/*
1910 	 * In order to keep per-task stats reliable we need to flip the event
1911 	 * values when we flip the contexts.
1912 	 */
1913 	value = local64_read(&next_event->count);
1914 	value = local64_xchg(&event->count, value);
1915 	local64_set(&next_event->count, value);
1916 
1917 	swap(event->total_time_enabled, next_event->total_time_enabled);
1918 	swap(event->total_time_running, next_event->total_time_running);
1919 
1920 	/*
1921 	 * Since we swizzled the values, update the user visible data too.
1922 	 */
1923 	perf_event_update_userpage(event);
1924 	perf_event_update_userpage(next_event);
1925 }
1926 
1927 #define list_next_entry(pos, member) \
1928 	list_entry(pos->member.next, typeof(*pos), member)
1929 
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 				   struct perf_event_context *next_ctx)
1932 {
1933 	struct perf_event *event, *next_event;
1934 
1935 	if (!ctx->nr_stat)
1936 		return;
1937 
1938 	update_context_time(ctx);
1939 
1940 	event = list_first_entry(&ctx->event_list,
1941 				   struct perf_event, event_entry);
1942 
1943 	next_event = list_first_entry(&next_ctx->event_list,
1944 					struct perf_event, event_entry);
1945 
1946 	while (&event->event_entry != &ctx->event_list &&
1947 	       &next_event->event_entry != &next_ctx->event_list) {
1948 
1949 		__perf_event_sync_stat(event, next_event);
1950 
1951 		event = list_next_entry(event, event_entry);
1952 		next_event = list_next_entry(next_event, event_entry);
1953 	}
1954 }
1955 
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 					 struct task_struct *next)
1958 {
1959 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 	struct perf_event_context *next_ctx;
1961 	struct perf_event_context *parent;
1962 	struct perf_cpu_context *cpuctx;
1963 	int do_switch = 1;
1964 
1965 	if (likely(!ctx))
1966 		return;
1967 
1968 	cpuctx = __get_cpu_context(ctx);
1969 	if (!cpuctx->task_ctx)
1970 		return;
1971 
1972 	rcu_read_lock();
1973 	parent = rcu_dereference(ctx->parent_ctx);
1974 	next_ctx = next->perf_event_ctxp[ctxn];
1975 	if (parent && next_ctx &&
1976 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 		/*
1978 		 * Looks like the two contexts are clones, so we might be
1979 		 * able to optimize the context switch.  We lock both
1980 		 * contexts and check that they are clones under the
1981 		 * lock (including re-checking that neither has been
1982 		 * uncloned in the meantime).  It doesn't matter which
1983 		 * order we take the locks because no other cpu could
1984 		 * be trying to lock both of these tasks.
1985 		 */
1986 		raw_spin_lock(&ctx->lock);
1987 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 		if (context_equiv(ctx, next_ctx)) {
1989 			/*
1990 			 * XXX do we need a memory barrier of sorts
1991 			 * wrt to rcu_dereference() of perf_event_ctxp
1992 			 */
1993 			task->perf_event_ctxp[ctxn] = next_ctx;
1994 			next->perf_event_ctxp[ctxn] = ctx;
1995 			ctx->task = next;
1996 			next_ctx->task = task;
1997 			do_switch = 0;
1998 
1999 			perf_event_sync_stat(ctx, next_ctx);
2000 		}
2001 		raw_spin_unlock(&next_ctx->lock);
2002 		raw_spin_unlock(&ctx->lock);
2003 	}
2004 	rcu_read_unlock();
2005 
2006 	if (do_switch) {
2007 		raw_spin_lock(&ctx->lock);
2008 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 		cpuctx->task_ctx = NULL;
2010 		raw_spin_unlock(&ctx->lock);
2011 	}
2012 }
2013 
2014 #define for_each_task_context_nr(ctxn)					\
2015 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016 
2017 /*
2018  * Called from scheduler to remove the events of the current task,
2019  * with interrupts disabled.
2020  *
2021  * We stop each event and update the event value in event->count.
2022  *
2023  * This does not protect us against NMI, but disable()
2024  * sets the disabled bit in the control field of event _before_
2025  * accessing the event control register. If a NMI hits, then it will
2026  * not restart the event.
2027  */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 				 struct task_struct *next)
2030 {
2031 	int ctxn;
2032 
2033 	for_each_task_context_nr(ctxn)
2034 		perf_event_context_sched_out(task, ctxn, next);
2035 
2036 	/*
2037 	 * if cgroup events exist on this CPU, then we need
2038 	 * to check if we have to switch out PMU state.
2039 	 * cgroup event are system-wide mode only
2040 	 */
2041 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 		perf_cgroup_sched_out(task, next);
2043 }
2044 
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048 
2049 	if (!cpuctx->task_ctx)
2050 		return;
2051 
2052 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 		return;
2054 
2055 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 	cpuctx->task_ctx = NULL;
2057 }
2058 
2059 /*
2060  * Called with IRQs disabled
2061  */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 			      enum event_type_t event_type)
2064 {
2065 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067 
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 		    struct perf_cpu_context *cpuctx)
2071 {
2072 	struct perf_event *event;
2073 
2074 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 		if (event->state <= PERF_EVENT_STATE_OFF)
2076 			continue;
2077 		if (!event_filter_match(event))
2078 			continue;
2079 
2080 		/* may need to reset tstamp_enabled */
2081 		if (is_cgroup_event(event))
2082 			perf_cgroup_mark_enabled(event, ctx);
2083 
2084 		if (group_can_go_on(event, cpuctx, 1))
2085 			group_sched_in(event, cpuctx, ctx);
2086 
2087 		/*
2088 		 * If this pinned group hasn't been scheduled,
2089 		 * put it in error state.
2090 		 */
2091 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 			update_group_times(event);
2093 			event->state = PERF_EVENT_STATE_ERROR;
2094 		}
2095 	}
2096 }
2097 
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 		      struct perf_cpu_context *cpuctx)
2101 {
2102 	struct perf_event *event;
2103 	int can_add_hw = 1;
2104 
2105 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 		/* Ignore events in OFF or ERROR state */
2107 		if (event->state <= PERF_EVENT_STATE_OFF)
2108 			continue;
2109 		/*
2110 		 * Listen to the 'cpu' scheduling filter constraint
2111 		 * of events:
2112 		 */
2113 		if (!event_filter_match(event))
2114 			continue;
2115 
2116 		/* may need to reset tstamp_enabled */
2117 		if (is_cgroup_event(event))
2118 			perf_cgroup_mark_enabled(event, ctx);
2119 
2120 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 			if (group_sched_in(event, cpuctx, ctx))
2122 				can_add_hw = 0;
2123 		}
2124 	}
2125 }
2126 
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 	     struct perf_cpu_context *cpuctx,
2130 	     enum event_type_t event_type,
2131 	     struct task_struct *task)
2132 {
2133 	u64 now;
2134 	int is_active = ctx->is_active;
2135 
2136 	ctx->is_active |= event_type;
2137 	if (likely(!ctx->nr_events))
2138 		return;
2139 
2140 	now = perf_clock();
2141 	ctx->timestamp = now;
2142 	perf_cgroup_set_timestamp(task, ctx);
2143 	/*
2144 	 * First go through the list and put on any pinned groups
2145 	 * in order to give them the best chance of going on.
2146 	 */
2147 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 		ctx_pinned_sched_in(ctx, cpuctx);
2149 
2150 	/* Then walk through the lower prio flexible groups */
2151 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 		ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154 
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 			     enum event_type_t event_type,
2157 			     struct task_struct *task)
2158 {
2159 	struct perf_event_context *ctx = &cpuctx->ctx;
2160 
2161 	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163 
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 					struct task_struct *task)
2166 {
2167 	struct perf_cpu_context *cpuctx;
2168 
2169 	cpuctx = __get_cpu_context(ctx);
2170 	if (cpuctx->task_ctx == ctx)
2171 		return;
2172 
2173 	perf_ctx_lock(cpuctx, ctx);
2174 	perf_pmu_disable(ctx->pmu);
2175 	/*
2176 	 * We want to keep the following priority order:
2177 	 * cpu pinned (that don't need to move), task pinned,
2178 	 * cpu flexible, task flexible.
2179 	 */
2180 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181 
2182 	if (ctx->nr_events)
2183 		cpuctx->task_ctx = ctx;
2184 
2185 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186 
2187 	perf_pmu_enable(ctx->pmu);
2188 	perf_ctx_unlock(cpuctx, ctx);
2189 
2190 	/*
2191 	 * Since these rotations are per-cpu, we need to ensure the
2192 	 * cpu-context we got scheduled on is actually rotating.
2193 	 */
2194 	perf_pmu_rotate_start(ctx->pmu);
2195 }
2196 
2197 /*
2198  * Called from scheduler to add the events of the current task
2199  * with interrupts disabled.
2200  *
2201  * We restore the event value and then enable it.
2202  *
2203  * This does not protect us against NMI, but enable()
2204  * sets the enabled bit in the control field of event _before_
2205  * accessing the event control register. If a NMI hits, then it will
2206  * keep the event running.
2207  */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 				struct task_struct *task)
2210 {
2211 	struct perf_event_context *ctx;
2212 	int ctxn;
2213 
2214 	for_each_task_context_nr(ctxn) {
2215 		ctx = task->perf_event_ctxp[ctxn];
2216 		if (likely(!ctx))
2217 			continue;
2218 
2219 		perf_event_context_sched_in(ctx, task);
2220 	}
2221 	/*
2222 	 * if cgroup events exist on this CPU, then we need
2223 	 * to check if we have to switch in PMU state.
2224 	 * cgroup event are system-wide mode only
2225 	 */
2226 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 		perf_cgroup_sched_in(prev, task);
2228 }
2229 
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 	u64 frequency = event->attr.sample_freq;
2233 	u64 sec = NSEC_PER_SEC;
2234 	u64 divisor, dividend;
2235 
2236 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2237 
2238 	count_fls = fls64(count);
2239 	nsec_fls = fls64(nsec);
2240 	frequency_fls = fls64(frequency);
2241 	sec_fls = 30;
2242 
2243 	/*
2244 	 * We got @count in @nsec, with a target of sample_freq HZ
2245 	 * the target period becomes:
2246 	 *
2247 	 *             @count * 10^9
2248 	 * period = -------------------
2249 	 *          @nsec * sample_freq
2250 	 *
2251 	 */
2252 
2253 	/*
2254 	 * Reduce accuracy by one bit such that @a and @b converge
2255 	 * to a similar magnitude.
2256 	 */
2257 #define REDUCE_FLS(a, b)		\
2258 do {					\
2259 	if (a##_fls > b##_fls) {	\
2260 		a >>= 1;		\
2261 		a##_fls--;		\
2262 	} else {			\
2263 		b >>= 1;		\
2264 		b##_fls--;		\
2265 	}				\
2266 } while (0)
2267 
2268 	/*
2269 	 * Reduce accuracy until either term fits in a u64, then proceed with
2270 	 * the other, so that finally we can do a u64/u64 division.
2271 	 */
2272 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 		REDUCE_FLS(nsec, frequency);
2274 		REDUCE_FLS(sec, count);
2275 	}
2276 
2277 	if (count_fls + sec_fls > 64) {
2278 		divisor = nsec * frequency;
2279 
2280 		while (count_fls + sec_fls > 64) {
2281 			REDUCE_FLS(count, sec);
2282 			divisor >>= 1;
2283 		}
2284 
2285 		dividend = count * sec;
2286 	} else {
2287 		dividend = count * sec;
2288 
2289 		while (nsec_fls + frequency_fls > 64) {
2290 			REDUCE_FLS(nsec, frequency);
2291 			dividend >>= 1;
2292 		}
2293 
2294 		divisor = nsec * frequency;
2295 	}
2296 
2297 	if (!divisor)
2298 		return dividend;
2299 
2300 	return div64_u64(dividend, divisor);
2301 }
2302 
2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2304 {
2305 	struct hw_perf_event *hwc = &event->hw;
2306 	s64 period, sample_period;
2307 	s64 delta;
2308 
2309 	period = perf_calculate_period(event, nsec, count);
2310 
2311 	delta = (s64)(period - hwc->sample_period);
2312 	delta = (delta + 7) / 8; /* low pass filter */
2313 
2314 	sample_period = hwc->sample_period + delta;
2315 
2316 	if (!sample_period)
2317 		sample_period = 1;
2318 
2319 	hwc->sample_period = sample_period;
2320 
2321 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2322 		event->pmu->stop(event, PERF_EF_UPDATE);
2323 		local64_set(&hwc->period_left, 0);
2324 		event->pmu->start(event, PERF_EF_RELOAD);
2325 	}
2326 }
2327 
2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2329 {
2330 	struct perf_event *event;
2331 	struct hw_perf_event *hwc;
2332 	u64 interrupts, now;
2333 	s64 delta;
2334 
2335 	if (!ctx->nr_freq)
2336 		return;
2337 
2338 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2340 			continue;
2341 
2342 		if (!event_filter_match(event))
2343 			continue;
2344 
2345 		hwc = &event->hw;
2346 
2347 		interrupts = hwc->interrupts;
2348 		hwc->interrupts = 0;
2349 
2350 		/*
2351 		 * unthrottle events on the tick
2352 		 */
2353 		if (interrupts == MAX_INTERRUPTS) {
2354 			perf_log_throttle(event, 1);
2355 			event->pmu->start(event, 0);
2356 		}
2357 
2358 		if (!event->attr.freq || !event->attr.sample_freq)
2359 			continue;
2360 
2361 		event->pmu->read(event);
2362 		now = local64_read(&event->count);
2363 		delta = now - hwc->freq_count_stamp;
2364 		hwc->freq_count_stamp = now;
2365 
2366 		if (delta > 0)
2367 			perf_adjust_period(event, period, delta);
2368 	}
2369 }
2370 
2371 /*
2372  * Round-robin a context's events:
2373  */
2374 static void rotate_ctx(struct perf_event_context *ctx)
2375 {
2376 	/*
2377 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 	 * disabled by the inheritance code.
2379 	 */
2380 	if (!ctx->rotate_disable)
2381 		list_rotate_left(&ctx->flexible_groups);
2382 }
2383 
2384 /*
2385  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386  * because they're strictly cpu affine and rotate_start is called with IRQs
2387  * disabled, while rotate_context is called from IRQ context.
2388  */
2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2390 {
2391 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2392 	struct perf_event_context *ctx = NULL;
2393 	int rotate = 0, remove = 1, freq = 0;
2394 
2395 	if (cpuctx->ctx.nr_events) {
2396 		remove = 0;
2397 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2398 			rotate = 1;
2399 		if (cpuctx->ctx.nr_freq)
2400 			freq = 1;
2401 	}
2402 
2403 	ctx = cpuctx->task_ctx;
2404 	if (ctx && ctx->nr_events) {
2405 		remove = 0;
2406 		if (ctx->nr_events != ctx->nr_active)
2407 			rotate = 1;
2408 		if (ctx->nr_freq)
2409 			freq = 1;
2410 	}
2411 
2412 	if (!rotate && !freq)
2413 		goto done;
2414 
2415 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2416 	perf_pmu_disable(cpuctx->ctx.pmu);
2417 
2418 	if (freq) {
2419 		perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2420 		if (ctx)
2421 			perf_ctx_adjust_freq(ctx, interval);
2422 	}
2423 
2424 	if (rotate) {
2425 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2426 		if (ctx)
2427 			ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2428 
2429 		rotate_ctx(&cpuctx->ctx);
2430 		if (ctx)
2431 			rotate_ctx(ctx);
2432 
2433 		perf_event_sched_in(cpuctx, ctx, current);
2434 	}
2435 
2436 	perf_pmu_enable(cpuctx->ctx.pmu);
2437 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2438 
2439 done:
2440 	if (remove)
2441 		list_del_init(&cpuctx->rotation_list);
2442 }
2443 
2444 void perf_event_task_tick(void)
2445 {
2446 	struct list_head *head = &__get_cpu_var(rotation_list);
2447 	struct perf_cpu_context *cpuctx, *tmp;
2448 
2449 	WARN_ON(!irqs_disabled());
2450 
2451 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 		if (cpuctx->jiffies_interval == 1 ||
2453 				!(jiffies % cpuctx->jiffies_interval))
2454 			perf_rotate_context(cpuctx);
2455 	}
2456 }
2457 
2458 static int event_enable_on_exec(struct perf_event *event,
2459 				struct perf_event_context *ctx)
2460 {
2461 	if (!event->attr.enable_on_exec)
2462 		return 0;
2463 
2464 	event->attr.enable_on_exec = 0;
2465 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2466 		return 0;
2467 
2468 	__perf_event_mark_enabled(event);
2469 
2470 	return 1;
2471 }
2472 
2473 /*
2474  * Enable all of a task's events that have been marked enable-on-exec.
2475  * This expects task == current.
2476  */
2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2478 {
2479 	struct perf_event *event;
2480 	unsigned long flags;
2481 	int enabled = 0;
2482 	int ret;
2483 
2484 	local_irq_save(flags);
2485 	if (!ctx || !ctx->nr_events)
2486 		goto out;
2487 
2488 	/*
2489 	 * We must ctxsw out cgroup events to avoid conflict
2490 	 * when invoking perf_task_event_sched_in() later on
2491 	 * in this function. Otherwise we end up trying to
2492 	 * ctxswin cgroup events which are already scheduled
2493 	 * in.
2494 	 */
2495 	perf_cgroup_sched_out(current, NULL);
2496 
2497 	raw_spin_lock(&ctx->lock);
2498 	task_ctx_sched_out(ctx);
2499 
2500 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2501 		ret = event_enable_on_exec(event, ctx);
2502 		if (ret)
2503 			enabled = 1;
2504 	}
2505 
2506 	/*
2507 	 * Unclone this context if we enabled any event.
2508 	 */
2509 	if (enabled)
2510 		unclone_ctx(ctx);
2511 
2512 	raw_spin_unlock(&ctx->lock);
2513 
2514 	/*
2515 	 * Also calls ctxswin for cgroup events, if any:
2516 	 */
2517 	perf_event_context_sched_in(ctx, ctx->task);
2518 out:
2519 	local_irq_restore(flags);
2520 }
2521 
2522 /*
2523  * Cross CPU call to read the hardware event
2524  */
2525 static void __perf_event_read(void *info)
2526 {
2527 	struct perf_event *event = info;
2528 	struct perf_event_context *ctx = event->ctx;
2529 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2530 
2531 	/*
2532 	 * If this is a task context, we need to check whether it is
2533 	 * the current task context of this cpu.  If not it has been
2534 	 * scheduled out before the smp call arrived.  In that case
2535 	 * event->count would have been updated to a recent sample
2536 	 * when the event was scheduled out.
2537 	 */
2538 	if (ctx->task && cpuctx->task_ctx != ctx)
2539 		return;
2540 
2541 	raw_spin_lock(&ctx->lock);
2542 	if (ctx->is_active) {
2543 		update_context_time(ctx);
2544 		update_cgrp_time_from_event(event);
2545 	}
2546 	update_event_times(event);
2547 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2548 		event->pmu->read(event);
2549 	raw_spin_unlock(&ctx->lock);
2550 }
2551 
2552 static inline u64 perf_event_count(struct perf_event *event)
2553 {
2554 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2555 }
2556 
2557 static u64 perf_event_read(struct perf_event *event)
2558 {
2559 	/*
2560 	 * If event is enabled and currently active on a CPU, update the
2561 	 * value in the event structure:
2562 	 */
2563 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2564 		smp_call_function_single(event->oncpu,
2565 					 __perf_event_read, event, 1);
2566 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2567 		struct perf_event_context *ctx = event->ctx;
2568 		unsigned long flags;
2569 
2570 		raw_spin_lock_irqsave(&ctx->lock, flags);
2571 		/*
2572 		 * may read while context is not active
2573 		 * (e.g., thread is blocked), in that case
2574 		 * we cannot update context time
2575 		 */
2576 		if (ctx->is_active) {
2577 			update_context_time(ctx);
2578 			update_cgrp_time_from_event(event);
2579 		}
2580 		update_event_times(event);
2581 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2582 	}
2583 
2584 	return perf_event_count(event);
2585 }
2586 
2587 /*
2588  * Initialize the perf_event context in a task_struct:
2589  */
2590 static void __perf_event_init_context(struct perf_event_context *ctx)
2591 {
2592 	raw_spin_lock_init(&ctx->lock);
2593 	mutex_init(&ctx->mutex);
2594 	INIT_LIST_HEAD(&ctx->pinned_groups);
2595 	INIT_LIST_HEAD(&ctx->flexible_groups);
2596 	INIT_LIST_HEAD(&ctx->event_list);
2597 	atomic_set(&ctx->refcount, 1);
2598 }
2599 
2600 static struct perf_event_context *
2601 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2602 {
2603 	struct perf_event_context *ctx;
2604 
2605 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2606 	if (!ctx)
2607 		return NULL;
2608 
2609 	__perf_event_init_context(ctx);
2610 	if (task) {
2611 		ctx->task = task;
2612 		get_task_struct(task);
2613 	}
2614 	ctx->pmu = pmu;
2615 
2616 	return ctx;
2617 }
2618 
2619 static struct task_struct *
2620 find_lively_task_by_vpid(pid_t vpid)
2621 {
2622 	struct task_struct *task;
2623 	int err;
2624 
2625 	rcu_read_lock();
2626 	if (!vpid)
2627 		task = current;
2628 	else
2629 		task = find_task_by_vpid(vpid);
2630 	if (task)
2631 		get_task_struct(task);
2632 	rcu_read_unlock();
2633 
2634 	if (!task)
2635 		return ERR_PTR(-ESRCH);
2636 
2637 	/* Reuse ptrace permission checks for now. */
2638 	err = -EACCES;
2639 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2640 		goto errout;
2641 
2642 	return task;
2643 errout:
2644 	put_task_struct(task);
2645 	return ERR_PTR(err);
2646 
2647 }
2648 
2649 /*
2650  * Returns a matching context with refcount and pincount.
2651  */
2652 static struct perf_event_context *
2653 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2654 {
2655 	struct perf_event_context *ctx;
2656 	struct perf_cpu_context *cpuctx;
2657 	unsigned long flags;
2658 	int ctxn, err;
2659 
2660 	if (!task) {
2661 		/* Must be root to operate on a CPU event: */
2662 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2663 			return ERR_PTR(-EACCES);
2664 
2665 		/*
2666 		 * We could be clever and allow to attach a event to an
2667 		 * offline CPU and activate it when the CPU comes up, but
2668 		 * that's for later.
2669 		 */
2670 		if (!cpu_online(cpu))
2671 			return ERR_PTR(-ENODEV);
2672 
2673 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2674 		ctx = &cpuctx->ctx;
2675 		get_ctx(ctx);
2676 		++ctx->pin_count;
2677 
2678 		return ctx;
2679 	}
2680 
2681 	err = -EINVAL;
2682 	ctxn = pmu->task_ctx_nr;
2683 	if (ctxn < 0)
2684 		goto errout;
2685 
2686 retry:
2687 	ctx = perf_lock_task_context(task, ctxn, &flags);
2688 	if (ctx) {
2689 		unclone_ctx(ctx);
2690 		++ctx->pin_count;
2691 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2692 	} else {
2693 		ctx = alloc_perf_context(pmu, task);
2694 		err = -ENOMEM;
2695 		if (!ctx)
2696 			goto errout;
2697 
2698 		err = 0;
2699 		mutex_lock(&task->perf_event_mutex);
2700 		/*
2701 		 * If it has already passed perf_event_exit_task().
2702 		 * we must see PF_EXITING, it takes this mutex too.
2703 		 */
2704 		if (task->flags & PF_EXITING)
2705 			err = -ESRCH;
2706 		else if (task->perf_event_ctxp[ctxn])
2707 			err = -EAGAIN;
2708 		else {
2709 			get_ctx(ctx);
2710 			++ctx->pin_count;
2711 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2712 		}
2713 		mutex_unlock(&task->perf_event_mutex);
2714 
2715 		if (unlikely(err)) {
2716 			put_ctx(ctx);
2717 
2718 			if (err == -EAGAIN)
2719 				goto retry;
2720 			goto errout;
2721 		}
2722 	}
2723 
2724 	return ctx;
2725 
2726 errout:
2727 	return ERR_PTR(err);
2728 }
2729 
2730 static void perf_event_free_filter(struct perf_event *event);
2731 
2732 static void free_event_rcu(struct rcu_head *head)
2733 {
2734 	struct perf_event *event;
2735 
2736 	event = container_of(head, struct perf_event, rcu_head);
2737 	if (event->ns)
2738 		put_pid_ns(event->ns);
2739 	perf_event_free_filter(event);
2740 	kfree(event);
2741 }
2742 
2743 static void ring_buffer_put(struct ring_buffer *rb);
2744 
2745 static void free_event(struct perf_event *event)
2746 {
2747 	irq_work_sync(&event->pending);
2748 
2749 	if (!event->parent) {
2750 		if (event->attach_state & PERF_ATTACH_TASK)
2751 			jump_label_dec_deferred(&perf_sched_events);
2752 		if (event->attr.mmap || event->attr.mmap_data)
2753 			atomic_dec(&nr_mmap_events);
2754 		if (event->attr.comm)
2755 			atomic_dec(&nr_comm_events);
2756 		if (event->attr.task)
2757 			atomic_dec(&nr_task_events);
2758 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2759 			put_callchain_buffers();
2760 		if (is_cgroup_event(event)) {
2761 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2762 			jump_label_dec_deferred(&perf_sched_events);
2763 		}
2764 	}
2765 
2766 	if (event->rb) {
2767 		ring_buffer_put(event->rb);
2768 		event->rb = NULL;
2769 	}
2770 
2771 	if (is_cgroup_event(event))
2772 		perf_detach_cgroup(event);
2773 
2774 	if (event->destroy)
2775 		event->destroy(event);
2776 
2777 	if (event->ctx)
2778 		put_ctx(event->ctx);
2779 
2780 	call_rcu(&event->rcu_head, free_event_rcu);
2781 }
2782 
2783 int perf_event_release_kernel(struct perf_event *event)
2784 {
2785 	struct perf_event_context *ctx = event->ctx;
2786 
2787 	WARN_ON_ONCE(ctx->parent_ctx);
2788 	/*
2789 	 * There are two ways this annotation is useful:
2790 	 *
2791 	 *  1) there is a lock recursion from perf_event_exit_task
2792 	 *     see the comment there.
2793 	 *
2794 	 *  2) there is a lock-inversion with mmap_sem through
2795 	 *     perf_event_read_group(), which takes faults while
2796 	 *     holding ctx->mutex, however this is called after
2797 	 *     the last filedesc died, so there is no possibility
2798 	 *     to trigger the AB-BA case.
2799 	 */
2800 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2801 	raw_spin_lock_irq(&ctx->lock);
2802 	perf_group_detach(event);
2803 	raw_spin_unlock_irq(&ctx->lock);
2804 	perf_remove_from_context(event);
2805 	mutex_unlock(&ctx->mutex);
2806 
2807 	free_event(event);
2808 
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2812 
2813 /*
2814  * Called when the last reference to the file is gone.
2815  */
2816 static int perf_release(struct inode *inode, struct file *file)
2817 {
2818 	struct perf_event *event = file->private_data;
2819 	struct task_struct *owner;
2820 
2821 	file->private_data = NULL;
2822 
2823 	rcu_read_lock();
2824 	owner = ACCESS_ONCE(event->owner);
2825 	/*
2826 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2827 	 * !owner it means the list deletion is complete and we can indeed
2828 	 * free this event, otherwise we need to serialize on
2829 	 * owner->perf_event_mutex.
2830 	 */
2831 	smp_read_barrier_depends();
2832 	if (owner) {
2833 		/*
2834 		 * Since delayed_put_task_struct() also drops the last
2835 		 * task reference we can safely take a new reference
2836 		 * while holding the rcu_read_lock().
2837 		 */
2838 		get_task_struct(owner);
2839 	}
2840 	rcu_read_unlock();
2841 
2842 	if (owner) {
2843 		mutex_lock(&owner->perf_event_mutex);
2844 		/*
2845 		 * We have to re-check the event->owner field, if it is cleared
2846 		 * we raced with perf_event_exit_task(), acquiring the mutex
2847 		 * ensured they're done, and we can proceed with freeing the
2848 		 * event.
2849 		 */
2850 		if (event->owner)
2851 			list_del_init(&event->owner_entry);
2852 		mutex_unlock(&owner->perf_event_mutex);
2853 		put_task_struct(owner);
2854 	}
2855 
2856 	return perf_event_release_kernel(event);
2857 }
2858 
2859 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2860 {
2861 	struct perf_event *child;
2862 	u64 total = 0;
2863 
2864 	*enabled = 0;
2865 	*running = 0;
2866 
2867 	mutex_lock(&event->child_mutex);
2868 	total += perf_event_read(event);
2869 	*enabled += event->total_time_enabled +
2870 			atomic64_read(&event->child_total_time_enabled);
2871 	*running += event->total_time_running +
2872 			atomic64_read(&event->child_total_time_running);
2873 
2874 	list_for_each_entry(child, &event->child_list, child_list) {
2875 		total += perf_event_read(child);
2876 		*enabled += child->total_time_enabled;
2877 		*running += child->total_time_running;
2878 	}
2879 	mutex_unlock(&event->child_mutex);
2880 
2881 	return total;
2882 }
2883 EXPORT_SYMBOL_GPL(perf_event_read_value);
2884 
2885 static int perf_event_read_group(struct perf_event *event,
2886 				   u64 read_format, char __user *buf)
2887 {
2888 	struct perf_event *leader = event->group_leader, *sub;
2889 	int n = 0, size = 0, ret = -EFAULT;
2890 	struct perf_event_context *ctx = leader->ctx;
2891 	u64 values[5];
2892 	u64 count, enabled, running;
2893 
2894 	mutex_lock(&ctx->mutex);
2895 	count = perf_event_read_value(leader, &enabled, &running);
2896 
2897 	values[n++] = 1 + leader->nr_siblings;
2898 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2899 		values[n++] = enabled;
2900 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2901 		values[n++] = running;
2902 	values[n++] = count;
2903 	if (read_format & PERF_FORMAT_ID)
2904 		values[n++] = primary_event_id(leader);
2905 
2906 	size = n * sizeof(u64);
2907 
2908 	if (copy_to_user(buf, values, size))
2909 		goto unlock;
2910 
2911 	ret = size;
2912 
2913 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2914 		n = 0;
2915 
2916 		values[n++] = perf_event_read_value(sub, &enabled, &running);
2917 		if (read_format & PERF_FORMAT_ID)
2918 			values[n++] = primary_event_id(sub);
2919 
2920 		size = n * sizeof(u64);
2921 
2922 		if (copy_to_user(buf + ret, values, size)) {
2923 			ret = -EFAULT;
2924 			goto unlock;
2925 		}
2926 
2927 		ret += size;
2928 	}
2929 unlock:
2930 	mutex_unlock(&ctx->mutex);
2931 
2932 	return ret;
2933 }
2934 
2935 static int perf_event_read_one(struct perf_event *event,
2936 				 u64 read_format, char __user *buf)
2937 {
2938 	u64 enabled, running;
2939 	u64 values[4];
2940 	int n = 0;
2941 
2942 	values[n++] = perf_event_read_value(event, &enabled, &running);
2943 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2944 		values[n++] = enabled;
2945 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2946 		values[n++] = running;
2947 	if (read_format & PERF_FORMAT_ID)
2948 		values[n++] = primary_event_id(event);
2949 
2950 	if (copy_to_user(buf, values, n * sizeof(u64)))
2951 		return -EFAULT;
2952 
2953 	return n * sizeof(u64);
2954 }
2955 
2956 /*
2957  * Read the performance event - simple non blocking version for now
2958  */
2959 static ssize_t
2960 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2961 {
2962 	u64 read_format = event->attr.read_format;
2963 	int ret;
2964 
2965 	/*
2966 	 * Return end-of-file for a read on a event that is in
2967 	 * error state (i.e. because it was pinned but it couldn't be
2968 	 * scheduled on to the CPU at some point).
2969 	 */
2970 	if (event->state == PERF_EVENT_STATE_ERROR)
2971 		return 0;
2972 
2973 	if (count < event->read_size)
2974 		return -ENOSPC;
2975 
2976 	WARN_ON_ONCE(event->ctx->parent_ctx);
2977 	if (read_format & PERF_FORMAT_GROUP)
2978 		ret = perf_event_read_group(event, read_format, buf);
2979 	else
2980 		ret = perf_event_read_one(event, read_format, buf);
2981 
2982 	return ret;
2983 }
2984 
2985 static ssize_t
2986 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2987 {
2988 	struct perf_event *event = file->private_data;
2989 
2990 	return perf_read_hw(event, buf, count);
2991 }
2992 
2993 static unsigned int perf_poll(struct file *file, poll_table *wait)
2994 {
2995 	struct perf_event *event = file->private_data;
2996 	struct ring_buffer *rb;
2997 	unsigned int events = POLL_HUP;
2998 
2999 	/*
3000 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3001 	 * grabs the rb reference but perf_event_set_output() overrides it.
3002 	 * Here is the timeline for two threads T1, T2:
3003 	 * t0: T1, rb = rcu_dereference(event->rb)
3004 	 * t1: T2, old_rb = event->rb
3005 	 * t2: T2, event->rb = new rb
3006 	 * t3: T2, ring_buffer_detach(old_rb)
3007 	 * t4: T1, ring_buffer_attach(rb1)
3008 	 * t5: T1, poll_wait(event->waitq)
3009 	 *
3010 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3011 	 * thereby ensuring that the assignment of the new ring buffer
3012 	 * and the detachment of the old buffer appear atomic to perf_poll()
3013 	 */
3014 	mutex_lock(&event->mmap_mutex);
3015 
3016 	rcu_read_lock();
3017 	rb = rcu_dereference(event->rb);
3018 	if (rb) {
3019 		ring_buffer_attach(event, rb);
3020 		events = atomic_xchg(&rb->poll, 0);
3021 	}
3022 	rcu_read_unlock();
3023 
3024 	mutex_unlock(&event->mmap_mutex);
3025 
3026 	poll_wait(file, &event->waitq, wait);
3027 
3028 	return events;
3029 }
3030 
3031 static void perf_event_reset(struct perf_event *event)
3032 {
3033 	(void)perf_event_read(event);
3034 	local64_set(&event->count, 0);
3035 	perf_event_update_userpage(event);
3036 }
3037 
3038 /*
3039  * Holding the top-level event's child_mutex means that any
3040  * descendant process that has inherited this event will block
3041  * in sync_child_event if it goes to exit, thus satisfying the
3042  * task existence requirements of perf_event_enable/disable.
3043  */
3044 static void perf_event_for_each_child(struct perf_event *event,
3045 					void (*func)(struct perf_event *))
3046 {
3047 	struct perf_event *child;
3048 
3049 	WARN_ON_ONCE(event->ctx->parent_ctx);
3050 	mutex_lock(&event->child_mutex);
3051 	func(event);
3052 	list_for_each_entry(child, &event->child_list, child_list)
3053 		func(child);
3054 	mutex_unlock(&event->child_mutex);
3055 }
3056 
3057 static void perf_event_for_each(struct perf_event *event,
3058 				  void (*func)(struct perf_event *))
3059 {
3060 	struct perf_event_context *ctx = event->ctx;
3061 	struct perf_event *sibling;
3062 
3063 	WARN_ON_ONCE(ctx->parent_ctx);
3064 	mutex_lock(&ctx->mutex);
3065 	event = event->group_leader;
3066 
3067 	perf_event_for_each_child(event, func);
3068 	func(event);
3069 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3070 		perf_event_for_each_child(event, func);
3071 	mutex_unlock(&ctx->mutex);
3072 }
3073 
3074 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3075 {
3076 	struct perf_event_context *ctx = event->ctx;
3077 	int ret = 0;
3078 	u64 value;
3079 
3080 	if (!is_sampling_event(event))
3081 		return -EINVAL;
3082 
3083 	if (copy_from_user(&value, arg, sizeof(value)))
3084 		return -EFAULT;
3085 
3086 	if (!value)
3087 		return -EINVAL;
3088 
3089 	raw_spin_lock_irq(&ctx->lock);
3090 	if (event->attr.freq) {
3091 		if (value > sysctl_perf_event_sample_rate) {
3092 			ret = -EINVAL;
3093 			goto unlock;
3094 		}
3095 
3096 		event->attr.sample_freq = value;
3097 	} else {
3098 		event->attr.sample_period = value;
3099 		event->hw.sample_period = value;
3100 	}
3101 unlock:
3102 	raw_spin_unlock_irq(&ctx->lock);
3103 
3104 	return ret;
3105 }
3106 
3107 static const struct file_operations perf_fops;
3108 
3109 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3110 {
3111 	struct file *file;
3112 
3113 	file = fget_light(fd, fput_needed);
3114 	if (!file)
3115 		return ERR_PTR(-EBADF);
3116 
3117 	if (file->f_op != &perf_fops) {
3118 		fput_light(file, *fput_needed);
3119 		*fput_needed = 0;
3120 		return ERR_PTR(-EBADF);
3121 	}
3122 
3123 	return file->private_data;
3124 }
3125 
3126 static int perf_event_set_output(struct perf_event *event,
3127 				 struct perf_event *output_event);
3128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3129 
3130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3131 {
3132 	struct perf_event *event = file->private_data;
3133 	void (*func)(struct perf_event *);
3134 	u32 flags = arg;
3135 
3136 	switch (cmd) {
3137 	case PERF_EVENT_IOC_ENABLE:
3138 		func = perf_event_enable;
3139 		break;
3140 	case PERF_EVENT_IOC_DISABLE:
3141 		func = perf_event_disable;
3142 		break;
3143 	case PERF_EVENT_IOC_RESET:
3144 		func = perf_event_reset;
3145 		break;
3146 
3147 	case PERF_EVENT_IOC_REFRESH:
3148 		return perf_event_refresh(event, arg);
3149 
3150 	case PERF_EVENT_IOC_PERIOD:
3151 		return perf_event_period(event, (u64 __user *)arg);
3152 
3153 	case PERF_EVENT_IOC_SET_OUTPUT:
3154 	{
3155 		struct perf_event *output_event = NULL;
3156 		int fput_needed = 0;
3157 		int ret;
3158 
3159 		if (arg != -1) {
3160 			output_event = perf_fget_light(arg, &fput_needed);
3161 			if (IS_ERR(output_event))
3162 				return PTR_ERR(output_event);
3163 		}
3164 
3165 		ret = perf_event_set_output(event, output_event);
3166 		if (output_event)
3167 			fput_light(output_event->filp, fput_needed);
3168 
3169 		return ret;
3170 	}
3171 
3172 	case PERF_EVENT_IOC_SET_FILTER:
3173 		return perf_event_set_filter(event, (void __user *)arg);
3174 
3175 	default:
3176 		return -ENOTTY;
3177 	}
3178 
3179 	if (flags & PERF_IOC_FLAG_GROUP)
3180 		perf_event_for_each(event, func);
3181 	else
3182 		perf_event_for_each_child(event, func);
3183 
3184 	return 0;
3185 }
3186 
3187 int perf_event_task_enable(void)
3188 {
3189 	struct perf_event *event;
3190 
3191 	mutex_lock(&current->perf_event_mutex);
3192 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3193 		perf_event_for_each_child(event, perf_event_enable);
3194 	mutex_unlock(&current->perf_event_mutex);
3195 
3196 	return 0;
3197 }
3198 
3199 int perf_event_task_disable(void)
3200 {
3201 	struct perf_event *event;
3202 
3203 	mutex_lock(&current->perf_event_mutex);
3204 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3205 		perf_event_for_each_child(event, perf_event_disable);
3206 	mutex_unlock(&current->perf_event_mutex);
3207 
3208 	return 0;
3209 }
3210 
3211 #ifndef PERF_EVENT_INDEX_OFFSET
3212 # define PERF_EVENT_INDEX_OFFSET 0
3213 #endif
3214 
3215 static int perf_event_index(struct perf_event *event)
3216 {
3217 	if (event->hw.state & PERF_HES_STOPPED)
3218 		return 0;
3219 
3220 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3221 		return 0;
3222 
3223 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3224 }
3225 
3226 static void calc_timer_values(struct perf_event *event,
3227 				u64 *enabled,
3228 				u64 *running)
3229 {
3230 	u64 now, ctx_time;
3231 
3232 	now = perf_clock();
3233 	ctx_time = event->shadow_ctx_time + now;
3234 	*enabled = ctx_time - event->tstamp_enabled;
3235 	*running = ctx_time - event->tstamp_running;
3236 }
3237 
3238 /*
3239  * Callers need to ensure there can be no nesting of this function, otherwise
3240  * the seqlock logic goes bad. We can not serialize this because the arch
3241  * code calls this from NMI context.
3242  */
3243 void perf_event_update_userpage(struct perf_event *event)
3244 {
3245 	struct perf_event_mmap_page *userpg;
3246 	struct ring_buffer *rb;
3247 	u64 enabled, running;
3248 
3249 	rcu_read_lock();
3250 	/*
3251 	 * compute total_time_enabled, total_time_running
3252 	 * based on snapshot values taken when the event
3253 	 * was last scheduled in.
3254 	 *
3255 	 * we cannot simply called update_context_time()
3256 	 * because of locking issue as we can be called in
3257 	 * NMI context
3258 	 */
3259 	calc_timer_values(event, &enabled, &running);
3260 	rb = rcu_dereference(event->rb);
3261 	if (!rb)
3262 		goto unlock;
3263 
3264 	userpg = rb->user_page;
3265 
3266 	/*
3267 	 * Disable preemption so as to not let the corresponding user-space
3268 	 * spin too long if we get preempted.
3269 	 */
3270 	preempt_disable();
3271 	++userpg->lock;
3272 	barrier();
3273 	userpg->index = perf_event_index(event);
3274 	userpg->offset = perf_event_count(event);
3275 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3276 		userpg->offset -= local64_read(&event->hw.prev_count);
3277 
3278 	userpg->time_enabled = enabled +
3279 			atomic64_read(&event->child_total_time_enabled);
3280 
3281 	userpg->time_running = running +
3282 			atomic64_read(&event->child_total_time_running);
3283 
3284 	barrier();
3285 	++userpg->lock;
3286 	preempt_enable();
3287 unlock:
3288 	rcu_read_unlock();
3289 }
3290 
3291 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3292 {
3293 	struct perf_event *event = vma->vm_file->private_data;
3294 	struct ring_buffer *rb;
3295 	int ret = VM_FAULT_SIGBUS;
3296 
3297 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3298 		if (vmf->pgoff == 0)
3299 			ret = 0;
3300 		return ret;
3301 	}
3302 
3303 	rcu_read_lock();
3304 	rb = rcu_dereference(event->rb);
3305 	if (!rb)
3306 		goto unlock;
3307 
3308 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3309 		goto unlock;
3310 
3311 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3312 	if (!vmf->page)
3313 		goto unlock;
3314 
3315 	get_page(vmf->page);
3316 	vmf->page->mapping = vma->vm_file->f_mapping;
3317 	vmf->page->index   = vmf->pgoff;
3318 
3319 	ret = 0;
3320 unlock:
3321 	rcu_read_unlock();
3322 
3323 	return ret;
3324 }
3325 
3326 static void ring_buffer_attach(struct perf_event *event,
3327 			       struct ring_buffer *rb)
3328 {
3329 	unsigned long flags;
3330 
3331 	if (!list_empty(&event->rb_entry))
3332 		return;
3333 
3334 	spin_lock_irqsave(&rb->event_lock, flags);
3335 	if (!list_empty(&event->rb_entry))
3336 		goto unlock;
3337 
3338 	list_add(&event->rb_entry, &rb->event_list);
3339 unlock:
3340 	spin_unlock_irqrestore(&rb->event_lock, flags);
3341 }
3342 
3343 static void ring_buffer_detach(struct perf_event *event,
3344 			       struct ring_buffer *rb)
3345 {
3346 	unsigned long flags;
3347 
3348 	if (list_empty(&event->rb_entry))
3349 		return;
3350 
3351 	spin_lock_irqsave(&rb->event_lock, flags);
3352 	list_del_init(&event->rb_entry);
3353 	wake_up_all(&event->waitq);
3354 	spin_unlock_irqrestore(&rb->event_lock, flags);
3355 }
3356 
3357 static void ring_buffer_wakeup(struct perf_event *event)
3358 {
3359 	struct ring_buffer *rb;
3360 
3361 	rcu_read_lock();
3362 	rb = rcu_dereference(event->rb);
3363 	if (!rb)
3364 		goto unlock;
3365 
3366 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3367 		wake_up_all(&event->waitq);
3368 
3369 unlock:
3370 	rcu_read_unlock();
3371 }
3372 
3373 static void rb_free_rcu(struct rcu_head *rcu_head)
3374 {
3375 	struct ring_buffer *rb;
3376 
3377 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3378 	rb_free(rb);
3379 }
3380 
3381 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3382 {
3383 	struct ring_buffer *rb;
3384 
3385 	rcu_read_lock();
3386 	rb = rcu_dereference(event->rb);
3387 	if (rb) {
3388 		if (!atomic_inc_not_zero(&rb->refcount))
3389 			rb = NULL;
3390 	}
3391 	rcu_read_unlock();
3392 
3393 	return rb;
3394 }
3395 
3396 static void ring_buffer_put(struct ring_buffer *rb)
3397 {
3398 	struct perf_event *event, *n;
3399 	unsigned long flags;
3400 
3401 	if (!atomic_dec_and_test(&rb->refcount))
3402 		return;
3403 
3404 	spin_lock_irqsave(&rb->event_lock, flags);
3405 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3406 		list_del_init(&event->rb_entry);
3407 		wake_up_all(&event->waitq);
3408 	}
3409 	spin_unlock_irqrestore(&rb->event_lock, flags);
3410 
3411 	call_rcu(&rb->rcu_head, rb_free_rcu);
3412 }
3413 
3414 static void perf_mmap_open(struct vm_area_struct *vma)
3415 {
3416 	struct perf_event *event = vma->vm_file->private_data;
3417 
3418 	atomic_inc(&event->mmap_count);
3419 }
3420 
3421 static void perf_mmap_close(struct vm_area_struct *vma)
3422 {
3423 	struct perf_event *event = vma->vm_file->private_data;
3424 
3425 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3426 		unsigned long size = perf_data_size(event->rb);
3427 		struct user_struct *user = event->mmap_user;
3428 		struct ring_buffer *rb = event->rb;
3429 
3430 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3431 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3432 		rcu_assign_pointer(event->rb, NULL);
3433 		ring_buffer_detach(event, rb);
3434 		mutex_unlock(&event->mmap_mutex);
3435 
3436 		ring_buffer_put(rb);
3437 		free_uid(user);
3438 	}
3439 }
3440 
3441 static const struct vm_operations_struct perf_mmap_vmops = {
3442 	.open		= perf_mmap_open,
3443 	.close		= perf_mmap_close,
3444 	.fault		= perf_mmap_fault,
3445 	.page_mkwrite	= perf_mmap_fault,
3446 };
3447 
3448 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3449 {
3450 	struct perf_event *event = file->private_data;
3451 	unsigned long user_locked, user_lock_limit;
3452 	struct user_struct *user = current_user();
3453 	unsigned long locked, lock_limit;
3454 	struct ring_buffer *rb;
3455 	unsigned long vma_size;
3456 	unsigned long nr_pages;
3457 	long user_extra, extra;
3458 	int ret = 0, flags = 0;
3459 
3460 	/*
3461 	 * Don't allow mmap() of inherited per-task counters. This would
3462 	 * create a performance issue due to all children writing to the
3463 	 * same rb.
3464 	 */
3465 	if (event->cpu == -1 && event->attr.inherit)
3466 		return -EINVAL;
3467 
3468 	if (!(vma->vm_flags & VM_SHARED))
3469 		return -EINVAL;
3470 
3471 	vma_size = vma->vm_end - vma->vm_start;
3472 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3473 
3474 	/*
3475 	 * If we have rb pages ensure they're a power-of-two number, so we
3476 	 * can do bitmasks instead of modulo.
3477 	 */
3478 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3479 		return -EINVAL;
3480 
3481 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3482 		return -EINVAL;
3483 
3484 	if (vma->vm_pgoff != 0)
3485 		return -EINVAL;
3486 
3487 	WARN_ON_ONCE(event->ctx->parent_ctx);
3488 	mutex_lock(&event->mmap_mutex);
3489 	if (event->rb) {
3490 		if (event->rb->nr_pages == nr_pages)
3491 			atomic_inc(&event->rb->refcount);
3492 		else
3493 			ret = -EINVAL;
3494 		goto unlock;
3495 	}
3496 
3497 	user_extra = nr_pages + 1;
3498 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3499 
3500 	/*
3501 	 * Increase the limit linearly with more CPUs:
3502 	 */
3503 	user_lock_limit *= num_online_cpus();
3504 
3505 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3506 
3507 	extra = 0;
3508 	if (user_locked > user_lock_limit)
3509 		extra = user_locked - user_lock_limit;
3510 
3511 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3512 	lock_limit >>= PAGE_SHIFT;
3513 	locked = vma->vm_mm->pinned_vm + extra;
3514 
3515 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3516 		!capable(CAP_IPC_LOCK)) {
3517 		ret = -EPERM;
3518 		goto unlock;
3519 	}
3520 
3521 	WARN_ON(event->rb);
3522 
3523 	if (vma->vm_flags & VM_WRITE)
3524 		flags |= RING_BUFFER_WRITABLE;
3525 
3526 	rb = rb_alloc(nr_pages,
3527 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3528 		event->cpu, flags);
3529 
3530 	if (!rb) {
3531 		ret = -ENOMEM;
3532 		goto unlock;
3533 	}
3534 	rcu_assign_pointer(event->rb, rb);
3535 
3536 	atomic_long_add(user_extra, &user->locked_vm);
3537 	event->mmap_locked = extra;
3538 	event->mmap_user = get_current_user();
3539 	vma->vm_mm->pinned_vm += event->mmap_locked;
3540 
3541 unlock:
3542 	if (!ret)
3543 		atomic_inc(&event->mmap_count);
3544 	mutex_unlock(&event->mmap_mutex);
3545 
3546 	vma->vm_flags |= VM_RESERVED;
3547 	vma->vm_ops = &perf_mmap_vmops;
3548 
3549 	return ret;
3550 }
3551 
3552 static int perf_fasync(int fd, struct file *filp, int on)
3553 {
3554 	struct inode *inode = filp->f_path.dentry->d_inode;
3555 	struct perf_event *event = filp->private_data;
3556 	int retval;
3557 
3558 	mutex_lock(&inode->i_mutex);
3559 	retval = fasync_helper(fd, filp, on, &event->fasync);
3560 	mutex_unlock(&inode->i_mutex);
3561 
3562 	if (retval < 0)
3563 		return retval;
3564 
3565 	return 0;
3566 }
3567 
3568 static const struct file_operations perf_fops = {
3569 	.llseek			= no_llseek,
3570 	.release		= perf_release,
3571 	.read			= perf_read,
3572 	.poll			= perf_poll,
3573 	.unlocked_ioctl		= perf_ioctl,
3574 	.compat_ioctl		= perf_ioctl,
3575 	.mmap			= perf_mmap,
3576 	.fasync			= perf_fasync,
3577 };
3578 
3579 /*
3580  * Perf event wakeup
3581  *
3582  * If there's data, ensure we set the poll() state and publish everything
3583  * to user-space before waking everybody up.
3584  */
3585 
3586 void perf_event_wakeup(struct perf_event *event)
3587 {
3588 	ring_buffer_wakeup(event);
3589 
3590 	if (event->pending_kill) {
3591 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3592 		event->pending_kill = 0;
3593 	}
3594 }
3595 
3596 static void perf_pending_event(struct irq_work *entry)
3597 {
3598 	struct perf_event *event = container_of(entry,
3599 			struct perf_event, pending);
3600 
3601 	if (event->pending_disable) {
3602 		event->pending_disable = 0;
3603 		__perf_event_disable(event);
3604 	}
3605 
3606 	if (event->pending_wakeup) {
3607 		event->pending_wakeup = 0;
3608 		perf_event_wakeup(event);
3609 	}
3610 }
3611 
3612 /*
3613  * We assume there is only KVM supporting the callbacks.
3614  * Later on, we might change it to a list if there is
3615  * another virtualization implementation supporting the callbacks.
3616  */
3617 struct perf_guest_info_callbacks *perf_guest_cbs;
3618 
3619 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3620 {
3621 	perf_guest_cbs = cbs;
3622 	return 0;
3623 }
3624 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3625 
3626 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3627 {
3628 	perf_guest_cbs = NULL;
3629 	return 0;
3630 }
3631 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3632 
3633 static void __perf_event_header__init_id(struct perf_event_header *header,
3634 					 struct perf_sample_data *data,
3635 					 struct perf_event *event)
3636 {
3637 	u64 sample_type = event->attr.sample_type;
3638 
3639 	data->type = sample_type;
3640 	header->size += event->id_header_size;
3641 
3642 	if (sample_type & PERF_SAMPLE_TID) {
3643 		/* namespace issues */
3644 		data->tid_entry.pid = perf_event_pid(event, current);
3645 		data->tid_entry.tid = perf_event_tid(event, current);
3646 	}
3647 
3648 	if (sample_type & PERF_SAMPLE_TIME)
3649 		data->time = perf_clock();
3650 
3651 	if (sample_type & PERF_SAMPLE_ID)
3652 		data->id = primary_event_id(event);
3653 
3654 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3655 		data->stream_id = event->id;
3656 
3657 	if (sample_type & PERF_SAMPLE_CPU) {
3658 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3659 		data->cpu_entry.reserved = 0;
3660 	}
3661 }
3662 
3663 void perf_event_header__init_id(struct perf_event_header *header,
3664 				struct perf_sample_data *data,
3665 				struct perf_event *event)
3666 {
3667 	if (event->attr.sample_id_all)
3668 		__perf_event_header__init_id(header, data, event);
3669 }
3670 
3671 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3672 					   struct perf_sample_data *data)
3673 {
3674 	u64 sample_type = data->type;
3675 
3676 	if (sample_type & PERF_SAMPLE_TID)
3677 		perf_output_put(handle, data->tid_entry);
3678 
3679 	if (sample_type & PERF_SAMPLE_TIME)
3680 		perf_output_put(handle, data->time);
3681 
3682 	if (sample_type & PERF_SAMPLE_ID)
3683 		perf_output_put(handle, data->id);
3684 
3685 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3686 		perf_output_put(handle, data->stream_id);
3687 
3688 	if (sample_type & PERF_SAMPLE_CPU)
3689 		perf_output_put(handle, data->cpu_entry);
3690 }
3691 
3692 void perf_event__output_id_sample(struct perf_event *event,
3693 				  struct perf_output_handle *handle,
3694 				  struct perf_sample_data *sample)
3695 {
3696 	if (event->attr.sample_id_all)
3697 		__perf_event__output_id_sample(handle, sample);
3698 }
3699 
3700 static void perf_output_read_one(struct perf_output_handle *handle,
3701 				 struct perf_event *event,
3702 				 u64 enabled, u64 running)
3703 {
3704 	u64 read_format = event->attr.read_format;
3705 	u64 values[4];
3706 	int n = 0;
3707 
3708 	values[n++] = perf_event_count(event);
3709 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3710 		values[n++] = enabled +
3711 			atomic64_read(&event->child_total_time_enabled);
3712 	}
3713 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3714 		values[n++] = running +
3715 			atomic64_read(&event->child_total_time_running);
3716 	}
3717 	if (read_format & PERF_FORMAT_ID)
3718 		values[n++] = primary_event_id(event);
3719 
3720 	__output_copy(handle, values, n * sizeof(u64));
3721 }
3722 
3723 /*
3724  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3725  */
3726 static void perf_output_read_group(struct perf_output_handle *handle,
3727 			    struct perf_event *event,
3728 			    u64 enabled, u64 running)
3729 {
3730 	struct perf_event *leader = event->group_leader, *sub;
3731 	u64 read_format = event->attr.read_format;
3732 	u64 values[5];
3733 	int n = 0;
3734 
3735 	values[n++] = 1 + leader->nr_siblings;
3736 
3737 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3738 		values[n++] = enabled;
3739 
3740 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3741 		values[n++] = running;
3742 
3743 	if (leader != event)
3744 		leader->pmu->read(leader);
3745 
3746 	values[n++] = perf_event_count(leader);
3747 	if (read_format & PERF_FORMAT_ID)
3748 		values[n++] = primary_event_id(leader);
3749 
3750 	__output_copy(handle, values, n * sizeof(u64));
3751 
3752 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3753 		n = 0;
3754 
3755 		if (sub != event)
3756 			sub->pmu->read(sub);
3757 
3758 		values[n++] = perf_event_count(sub);
3759 		if (read_format & PERF_FORMAT_ID)
3760 			values[n++] = primary_event_id(sub);
3761 
3762 		__output_copy(handle, values, n * sizeof(u64));
3763 	}
3764 }
3765 
3766 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3767 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3768 
3769 static void perf_output_read(struct perf_output_handle *handle,
3770 			     struct perf_event *event)
3771 {
3772 	u64 enabled = 0, running = 0;
3773 	u64 read_format = event->attr.read_format;
3774 
3775 	/*
3776 	 * compute total_time_enabled, total_time_running
3777 	 * based on snapshot values taken when the event
3778 	 * was last scheduled in.
3779 	 *
3780 	 * we cannot simply called update_context_time()
3781 	 * because of locking issue as we are called in
3782 	 * NMI context
3783 	 */
3784 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3785 		calc_timer_values(event, &enabled, &running);
3786 
3787 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3788 		perf_output_read_group(handle, event, enabled, running);
3789 	else
3790 		perf_output_read_one(handle, event, enabled, running);
3791 }
3792 
3793 void perf_output_sample(struct perf_output_handle *handle,
3794 			struct perf_event_header *header,
3795 			struct perf_sample_data *data,
3796 			struct perf_event *event)
3797 {
3798 	u64 sample_type = data->type;
3799 
3800 	perf_output_put(handle, *header);
3801 
3802 	if (sample_type & PERF_SAMPLE_IP)
3803 		perf_output_put(handle, data->ip);
3804 
3805 	if (sample_type & PERF_SAMPLE_TID)
3806 		perf_output_put(handle, data->tid_entry);
3807 
3808 	if (sample_type & PERF_SAMPLE_TIME)
3809 		perf_output_put(handle, data->time);
3810 
3811 	if (sample_type & PERF_SAMPLE_ADDR)
3812 		perf_output_put(handle, data->addr);
3813 
3814 	if (sample_type & PERF_SAMPLE_ID)
3815 		perf_output_put(handle, data->id);
3816 
3817 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3818 		perf_output_put(handle, data->stream_id);
3819 
3820 	if (sample_type & PERF_SAMPLE_CPU)
3821 		perf_output_put(handle, data->cpu_entry);
3822 
3823 	if (sample_type & PERF_SAMPLE_PERIOD)
3824 		perf_output_put(handle, data->period);
3825 
3826 	if (sample_type & PERF_SAMPLE_READ)
3827 		perf_output_read(handle, event);
3828 
3829 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3830 		if (data->callchain) {
3831 			int size = 1;
3832 
3833 			if (data->callchain)
3834 				size += data->callchain->nr;
3835 
3836 			size *= sizeof(u64);
3837 
3838 			__output_copy(handle, data->callchain, size);
3839 		} else {
3840 			u64 nr = 0;
3841 			perf_output_put(handle, nr);
3842 		}
3843 	}
3844 
3845 	if (sample_type & PERF_SAMPLE_RAW) {
3846 		if (data->raw) {
3847 			perf_output_put(handle, data->raw->size);
3848 			__output_copy(handle, data->raw->data,
3849 					   data->raw->size);
3850 		} else {
3851 			struct {
3852 				u32	size;
3853 				u32	data;
3854 			} raw = {
3855 				.size = sizeof(u32),
3856 				.data = 0,
3857 			};
3858 			perf_output_put(handle, raw);
3859 		}
3860 	}
3861 
3862 	if (!event->attr.watermark) {
3863 		int wakeup_events = event->attr.wakeup_events;
3864 
3865 		if (wakeup_events) {
3866 			struct ring_buffer *rb = handle->rb;
3867 			int events = local_inc_return(&rb->events);
3868 
3869 			if (events >= wakeup_events) {
3870 				local_sub(wakeup_events, &rb->events);
3871 				local_inc(&rb->wakeup);
3872 			}
3873 		}
3874 	}
3875 }
3876 
3877 void perf_prepare_sample(struct perf_event_header *header,
3878 			 struct perf_sample_data *data,
3879 			 struct perf_event *event,
3880 			 struct pt_regs *regs)
3881 {
3882 	u64 sample_type = event->attr.sample_type;
3883 
3884 	header->type = PERF_RECORD_SAMPLE;
3885 	header->size = sizeof(*header) + event->header_size;
3886 
3887 	header->misc = 0;
3888 	header->misc |= perf_misc_flags(regs);
3889 
3890 	__perf_event_header__init_id(header, data, event);
3891 
3892 	if (sample_type & PERF_SAMPLE_IP)
3893 		data->ip = perf_instruction_pointer(regs);
3894 
3895 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3896 		int size = 1;
3897 
3898 		data->callchain = perf_callchain(regs);
3899 
3900 		if (data->callchain)
3901 			size += data->callchain->nr;
3902 
3903 		header->size += size * sizeof(u64);
3904 	}
3905 
3906 	if (sample_type & PERF_SAMPLE_RAW) {
3907 		int size = sizeof(u32);
3908 
3909 		if (data->raw)
3910 			size += data->raw->size;
3911 		else
3912 			size += sizeof(u32);
3913 
3914 		WARN_ON_ONCE(size & (sizeof(u64)-1));
3915 		header->size += size;
3916 	}
3917 }
3918 
3919 static void perf_event_output(struct perf_event *event,
3920 				struct perf_sample_data *data,
3921 				struct pt_regs *regs)
3922 {
3923 	struct perf_output_handle handle;
3924 	struct perf_event_header header;
3925 
3926 	/* protect the callchain buffers */
3927 	rcu_read_lock();
3928 
3929 	perf_prepare_sample(&header, data, event, regs);
3930 
3931 	if (perf_output_begin(&handle, event, header.size))
3932 		goto exit;
3933 
3934 	perf_output_sample(&handle, &header, data, event);
3935 
3936 	perf_output_end(&handle);
3937 
3938 exit:
3939 	rcu_read_unlock();
3940 }
3941 
3942 /*
3943  * read event_id
3944  */
3945 
3946 struct perf_read_event {
3947 	struct perf_event_header	header;
3948 
3949 	u32				pid;
3950 	u32				tid;
3951 };
3952 
3953 static void
3954 perf_event_read_event(struct perf_event *event,
3955 			struct task_struct *task)
3956 {
3957 	struct perf_output_handle handle;
3958 	struct perf_sample_data sample;
3959 	struct perf_read_event read_event = {
3960 		.header = {
3961 			.type = PERF_RECORD_READ,
3962 			.misc = 0,
3963 			.size = sizeof(read_event) + event->read_size,
3964 		},
3965 		.pid = perf_event_pid(event, task),
3966 		.tid = perf_event_tid(event, task),
3967 	};
3968 	int ret;
3969 
3970 	perf_event_header__init_id(&read_event.header, &sample, event);
3971 	ret = perf_output_begin(&handle, event, read_event.header.size);
3972 	if (ret)
3973 		return;
3974 
3975 	perf_output_put(&handle, read_event);
3976 	perf_output_read(&handle, event);
3977 	perf_event__output_id_sample(event, &handle, &sample);
3978 
3979 	perf_output_end(&handle);
3980 }
3981 
3982 /*
3983  * task tracking -- fork/exit
3984  *
3985  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3986  */
3987 
3988 struct perf_task_event {
3989 	struct task_struct		*task;
3990 	struct perf_event_context	*task_ctx;
3991 
3992 	struct {
3993 		struct perf_event_header	header;
3994 
3995 		u32				pid;
3996 		u32				ppid;
3997 		u32				tid;
3998 		u32				ptid;
3999 		u64				time;
4000 	} event_id;
4001 };
4002 
4003 static void perf_event_task_output(struct perf_event *event,
4004 				     struct perf_task_event *task_event)
4005 {
4006 	struct perf_output_handle handle;
4007 	struct perf_sample_data	sample;
4008 	struct task_struct *task = task_event->task;
4009 	int ret, size = task_event->event_id.header.size;
4010 
4011 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4012 
4013 	ret = perf_output_begin(&handle, event,
4014 				task_event->event_id.header.size);
4015 	if (ret)
4016 		goto out;
4017 
4018 	task_event->event_id.pid = perf_event_pid(event, task);
4019 	task_event->event_id.ppid = perf_event_pid(event, current);
4020 
4021 	task_event->event_id.tid = perf_event_tid(event, task);
4022 	task_event->event_id.ptid = perf_event_tid(event, current);
4023 
4024 	perf_output_put(&handle, task_event->event_id);
4025 
4026 	perf_event__output_id_sample(event, &handle, &sample);
4027 
4028 	perf_output_end(&handle);
4029 out:
4030 	task_event->event_id.header.size = size;
4031 }
4032 
4033 static int perf_event_task_match(struct perf_event *event)
4034 {
4035 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4036 		return 0;
4037 
4038 	if (!event_filter_match(event))
4039 		return 0;
4040 
4041 	if (event->attr.comm || event->attr.mmap ||
4042 	    event->attr.mmap_data || event->attr.task)
4043 		return 1;
4044 
4045 	return 0;
4046 }
4047 
4048 static void perf_event_task_ctx(struct perf_event_context *ctx,
4049 				  struct perf_task_event *task_event)
4050 {
4051 	struct perf_event *event;
4052 
4053 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4054 		if (perf_event_task_match(event))
4055 			perf_event_task_output(event, task_event);
4056 	}
4057 }
4058 
4059 static void perf_event_task_event(struct perf_task_event *task_event)
4060 {
4061 	struct perf_cpu_context *cpuctx;
4062 	struct perf_event_context *ctx;
4063 	struct pmu *pmu;
4064 	int ctxn;
4065 
4066 	rcu_read_lock();
4067 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4068 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4069 		if (cpuctx->active_pmu != pmu)
4070 			goto next;
4071 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4072 
4073 		ctx = task_event->task_ctx;
4074 		if (!ctx) {
4075 			ctxn = pmu->task_ctx_nr;
4076 			if (ctxn < 0)
4077 				goto next;
4078 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4079 		}
4080 		if (ctx)
4081 			perf_event_task_ctx(ctx, task_event);
4082 next:
4083 		put_cpu_ptr(pmu->pmu_cpu_context);
4084 	}
4085 	rcu_read_unlock();
4086 }
4087 
4088 static void perf_event_task(struct task_struct *task,
4089 			      struct perf_event_context *task_ctx,
4090 			      int new)
4091 {
4092 	struct perf_task_event task_event;
4093 
4094 	if (!atomic_read(&nr_comm_events) &&
4095 	    !atomic_read(&nr_mmap_events) &&
4096 	    !atomic_read(&nr_task_events))
4097 		return;
4098 
4099 	task_event = (struct perf_task_event){
4100 		.task	  = task,
4101 		.task_ctx = task_ctx,
4102 		.event_id    = {
4103 			.header = {
4104 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4105 				.misc = 0,
4106 				.size = sizeof(task_event.event_id),
4107 			},
4108 			/* .pid  */
4109 			/* .ppid */
4110 			/* .tid  */
4111 			/* .ptid */
4112 			.time = perf_clock(),
4113 		},
4114 	};
4115 
4116 	perf_event_task_event(&task_event);
4117 }
4118 
4119 void perf_event_fork(struct task_struct *task)
4120 {
4121 	perf_event_task(task, NULL, 1);
4122 }
4123 
4124 /*
4125  * comm tracking
4126  */
4127 
4128 struct perf_comm_event {
4129 	struct task_struct	*task;
4130 	char			*comm;
4131 	int			comm_size;
4132 
4133 	struct {
4134 		struct perf_event_header	header;
4135 
4136 		u32				pid;
4137 		u32				tid;
4138 	} event_id;
4139 };
4140 
4141 static void perf_event_comm_output(struct perf_event *event,
4142 				     struct perf_comm_event *comm_event)
4143 {
4144 	struct perf_output_handle handle;
4145 	struct perf_sample_data sample;
4146 	int size = comm_event->event_id.header.size;
4147 	int ret;
4148 
4149 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4150 	ret = perf_output_begin(&handle, event,
4151 				comm_event->event_id.header.size);
4152 
4153 	if (ret)
4154 		goto out;
4155 
4156 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4157 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4158 
4159 	perf_output_put(&handle, comm_event->event_id);
4160 	__output_copy(&handle, comm_event->comm,
4161 				   comm_event->comm_size);
4162 
4163 	perf_event__output_id_sample(event, &handle, &sample);
4164 
4165 	perf_output_end(&handle);
4166 out:
4167 	comm_event->event_id.header.size = size;
4168 }
4169 
4170 static int perf_event_comm_match(struct perf_event *event)
4171 {
4172 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4173 		return 0;
4174 
4175 	if (!event_filter_match(event))
4176 		return 0;
4177 
4178 	if (event->attr.comm)
4179 		return 1;
4180 
4181 	return 0;
4182 }
4183 
4184 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4185 				  struct perf_comm_event *comm_event)
4186 {
4187 	struct perf_event *event;
4188 
4189 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4190 		if (perf_event_comm_match(event))
4191 			perf_event_comm_output(event, comm_event);
4192 	}
4193 }
4194 
4195 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4196 {
4197 	struct perf_cpu_context *cpuctx;
4198 	struct perf_event_context *ctx;
4199 	char comm[TASK_COMM_LEN];
4200 	unsigned int size;
4201 	struct pmu *pmu;
4202 	int ctxn;
4203 
4204 	memset(comm, 0, sizeof(comm));
4205 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4206 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4207 
4208 	comm_event->comm = comm;
4209 	comm_event->comm_size = size;
4210 
4211 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4212 	rcu_read_lock();
4213 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4214 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4215 		if (cpuctx->active_pmu != pmu)
4216 			goto next;
4217 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4218 
4219 		ctxn = pmu->task_ctx_nr;
4220 		if (ctxn < 0)
4221 			goto next;
4222 
4223 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4224 		if (ctx)
4225 			perf_event_comm_ctx(ctx, comm_event);
4226 next:
4227 		put_cpu_ptr(pmu->pmu_cpu_context);
4228 	}
4229 	rcu_read_unlock();
4230 }
4231 
4232 void perf_event_comm(struct task_struct *task)
4233 {
4234 	struct perf_comm_event comm_event;
4235 	struct perf_event_context *ctx;
4236 	int ctxn;
4237 
4238 	for_each_task_context_nr(ctxn) {
4239 		ctx = task->perf_event_ctxp[ctxn];
4240 		if (!ctx)
4241 			continue;
4242 
4243 		perf_event_enable_on_exec(ctx);
4244 	}
4245 
4246 	if (!atomic_read(&nr_comm_events))
4247 		return;
4248 
4249 	comm_event = (struct perf_comm_event){
4250 		.task	= task,
4251 		/* .comm      */
4252 		/* .comm_size */
4253 		.event_id  = {
4254 			.header = {
4255 				.type = PERF_RECORD_COMM,
4256 				.misc = 0,
4257 				/* .size */
4258 			},
4259 			/* .pid */
4260 			/* .tid */
4261 		},
4262 	};
4263 
4264 	perf_event_comm_event(&comm_event);
4265 }
4266 
4267 /*
4268  * mmap tracking
4269  */
4270 
4271 struct perf_mmap_event {
4272 	struct vm_area_struct	*vma;
4273 
4274 	const char		*file_name;
4275 	int			file_size;
4276 
4277 	struct {
4278 		struct perf_event_header	header;
4279 
4280 		u32				pid;
4281 		u32				tid;
4282 		u64				start;
4283 		u64				len;
4284 		u64				pgoff;
4285 	} event_id;
4286 };
4287 
4288 static void perf_event_mmap_output(struct perf_event *event,
4289 				     struct perf_mmap_event *mmap_event)
4290 {
4291 	struct perf_output_handle handle;
4292 	struct perf_sample_data sample;
4293 	int size = mmap_event->event_id.header.size;
4294 	int ret;
4295 
4296 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4297 	ret = perf_output_begin(&handle, event,
4298 				mmap_event->event_id.header.size);
4299 	if (ret)
4300 		goto out;
4301 
4302 	mmap_event->event_id.pid = perf_event_pid(event, current);
4303 	mmap_event->event_id.tid = perf_event_tid(event, current);
4304 
4305 	perf_output_put(&handle, mmap_event->event_id);
4306 	__output_copy(&handle, mmap_event->file_name,
4307 				   mmap_event->file_size);
4308 
4309 	perf_event__output_id_sample(event, &handle, &sample);
4310 
4311 	perf_output_end(&handle);
4312 out:
4313 	mmap_event->event_id.header.size = size;
4314 }
4315 
4316 static int perf_event_mmap_match(struct perf_event *event,
4317 				   struct perf_mmap_event *mmap_event,
4318 				   int executable)
4319 {
4320 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4321 		return 0;
4322 
4323 	if (!event_filter_match(event))
4324 		return 0;
4325 
4326 	if ((!executable && event->attr.mmap_data) ||
4327 	    (executable && event->attr.mmap))
4328 		return 1;
4329 
4330 	return 0;
4331 }
4332 
4333 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4334 				  struct perf_mmap_event *mmap_event,
4335 				  int executable)
4336 {
4337 	struct perf_event *event;
4338 
4339 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4340 		if (perf_event_mmap_match(event, mmap_event, executable))
4341 			perf_event_mmap_output(event, mmap_event);
4342 	}
4343 }
4344 
4345 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4346 {
4347 	struct perf_cpu_context *cpuctx;
4348 	struct perf_event_context *ctx;
4349 	struct vm_area_struct *vma = mmap_event->vma;
4350 	struct file *file = vma->vm_file;
4351 	unsigned int size;
4352 	char tmp[16];
4353 	char *buf = NULL;
4354 	const char *name;
4355 	struct pmu *pmu;
4356 	int ctxn;
4357 
4358 	memset(tmp, 0, sizeof(tmp));
4359 
4360 	if (file) {
4361 		/*
4362 		 * d_path works from the end of the rb backwards, so we
4363 		 * need to add enough zero bytes after the string to handle
4364 		 * the 64bit alignment we do later.
4365 		 */
4366 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4367 		if (!buf) {
4368 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4369 			goto got_name;
4370 		}
4371 		name = d_path(&file->f_path, buf, PATH_MAX);
4372 		if (IS_ERR(name)) {
4373 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4374 			goto got_name;
4375 		}
4376 	} else {
4377 		if (arch_vma_name(mmap_event->vma)) {
4378 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4379 				       sizeof(tmp));
4380 			goto got_name;
4381 		}
4382 
4383 		if (!vma->vm_mm) {
4384 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4385 			goto got_name;
4386 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4387 				vma->vm_end >= vma->vm_mm->brk) {
4388 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4389 			goto got_name;
4390 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4391 				vma->vm_end >= vma->vm_mm->start_stack) {
4392 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4393 			goto got_name;
4394 		}
4395 
4396 		name = strncpy(tmp, "//anon", sizeof(tmp));
4397 		goto got_name;
4398 	}
4399 
4400 got_name:
4401 	size = ALIGN(strlen(name)+1, sizeof(u64));
4402 
4403 	mmap_event->file_name = name;
4404 	mmap_event->file_size = size;
4405 
4406 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4407 
4408 	rcu_read_lock();
4409 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4410 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4411 		if (cpuctx->active_pmu != pmu)
4412 			goto next;
4413 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4414 					vma->vm_flags & VM_EXEC);
4415 
4416 		ctxn = pmu->task_ctx_nr;
4417 		if (ctxn < 0)
4418 			goto next;
4419 
4420 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4421 		if (ctx) {
4422 			perf_event_mmap_ctx(ctx, mmap_event,
4423 					vma->vm_flags & VM_EXEC);
4424 		}
4425 next:
4426 		put_cpu_ptr(pmu->pmu_cpu_context);
4427 	}
4428 	rcu_read_unlock();
4429 
4430 	kfree(buf);
4431 }
4432 
4433 void perf_event_mmap(struct vm_area_struct *vma)
4434 {
4435 	struct perf_mmap_event mmap_event;
4436 
4437 	if (!atomic_read(&nr_mmap_events))
4438 		return;
4439 
4440 	mmap_event = (struct perf_mmap_event){
4441 		.vma	= vma,
4442 		/* .file_name */
4443 		/* .file_size */
4444 		.event_id  = {
4445 			.header = {
4446 				.type = PERF_RECORD_MMAP,
4447 				.misc = PERF_RECORD_MISC_USER,
4448 				/* .size */
4449 			},
4450 			/* .pid */
4451 			/* .tid */
4452 			.start  = vma->vm_start,
4453 			.len    = vma->vm_end - vma->vm_start,
4454 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4455 		},
4456 	};
4457 
4458 	perf_event_mmap_event(&mmap_event);
4459 }
4460 
4461 /*
4462  * IRQ throttle logging
4463  */
4464 
4465 static void perf_log_throttle(struct perf_event *event, int enable)
4466 {
4467 	struct perf_output_handle handle;
4468 	struct perf_sample_data sample;
4469 	int ret;
4470 
4471 	struct {
4472 		struct perf_event_header	header;
4473 		u64				time;
4474 		u64				id;
4475 		u64				stream_id;
4476 	} throttle_event = {
4477 		.header = {
4478 			.type = PERF_RECORD_THROTTLE,
4479 			.misc = 0,
4480 			.size = sizeof(throttle_event),
4481 		},
4482 		.time		= perf_clock(),
4483 		.id		= primary_event_id(event),
4484 		.stream_id	= event->id,
4485 	};
4486 
4487 	if (enable)
4488 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4489 
4490 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4491 
4492 	ret = perf_output_begin(&handle, event,
4493 				throttle_event.header.size);
4494 	if (ret)
4495 		return;
4496 
4497 	perf_output_put(&handle, throttle_event);
4498 	perf_event__output_id_sample(event, &handle, &sample);
4499 	perf_output_end(&handle);
4500 }
4501 
4502 /*
4503  * Generic event overflow handling, sampling.
4504  */
4505 
4506 static int __perf_event_overflow(struct perf_event *event,
4507 				   int throttle, struct perf_sample_data *data,
4508 				   struct pt_regs *regs)
4509 {
4510 	int events = atomic_read(&event->event_limit);
4511 	struct hw_perf_event *hwc = &event->hw;
4512 	int ret = 0;
4513 
4514 	/*
4515 	 * Non-sampling counters might still use the PMI to fold short
4516 	 * hardware counters, ignore those.
4517 	 */
4518 	if (unlikely(!is_sampling_event(event)))
4519 		return 0;
4520 
4521 	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4522 		if (throttle) {
4523 			hwc->interrupts = MAX_INTERRUPTS;
4524 			perf_log_throttle(event, 0);
4525 			ret = 1;
4526 		}
4527 	} else
4528 		hwc->interrupts++;
4529 
4530 	if (event->attr.freq) {
4531 		u64 now = perf_clock();
4532 		s64 delta = now - hwc->freq_time_stamp;
4533 
4534 		hwc->freq_time_stamp = now;
4535 
4536 		if (delta > 0 && delta < 2*TICK_NSEC)
4537 			perf_adjust_period(event, delta, hwc->last_period);
4538 	}
4539 
4540 	/*
4541 	 * XXX event_limit might not quite work as expected on inherited
4542 	 * events
4543 	 */
4544 
4545 	event->pending_kill = POLL_IN;
4546 	if (events && atomic_dec_and_test(&event->event_limit)) {
4547 		ret = 1;
4548 		event->pending_kill = POLL_HUP;
4549 		event->pending_disable = 1;
4550 		irq_work_queue(&event->pending);
4551 	}
4552 
4553 	if (event->overflow_handler)
4554 		event->overflow_handler(event, data, regs);
4555 	else
4556 		perf_event_output(event, data, regs);
4557 
4558 	if (event->fasync && event->pending_kill) {
4559 		event->pending_wakeup = 1;
4560 		irq_work_queue(&event->pending);
4561 	}
4562 
4563 	return ret;
4564 }
4565 
4566 int perf_event_overflow(struct perf_event *event,
4567 			  struct perf_sample_data *data,
4568 			  struct pt_regs *regs)
4569 {
4570 	return __perf_event_overflow(event, 1, data, regs);
4571 }
4572 
4573 /*
4574  * Generic software event infrastructure
4575  */
4576 
4577 struct swevent_htable {
4578 	struct swevent_hlist		*swevent_hlist;
4579 	struct mutex			hlist_mutex;
4580 	int				hlist_refcount;
4581 
4582 	/* Recursion avoidance in each contexts */
4583 	int				recursion[PERF_NR_CONTEXTS];
4584 };
4585 
4586 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4587 
4588 /*
4589  * We directly increment event->count and keep a second value in
4590  * event->hw.period_left to count intervals. This period event
4591  * is kept in the range [-sample_period, 0] so that we can use the
4592  * sign as trigger.
4593  */
4594 
4595 static u64 perf_swevent_set_period(struct perf_event *event)
4596 {
4597 	struct hw_perf_event *hwc = &event->hw;
4598 	u64 period = hwc->last_period;
4599 	u64 nr, offset;
4600 	s64 old, val;
4601 
4602 	hwc->last_period = hwc->sample_period;
4603 
4604 again:
4605 	old = val = local64_read(&hwc->period_left);
4606 	if (val < 0)
4607 		return 0;
4608 
4609 	nr = div64_u64(period + val, period);
4610 	offset = nr * period;
4611 	val -= offset;
4612 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4613 		goto again;
4614 
4615 	return nr;
4616 }
4617 
4618 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4619 				    struct perf_sample_data *data,
4620 				    struct pt_regs *regs)
4621 {
4622 	struct hw_perf_event *hwc = &event->hw;
4623 	int throttle = 0;
4624 
4625 	if (!overflow)
4626 		overflow = perf_swevent_set_period(event);
4627 
4628 	if (hwc->interrupts == MAX_INTERRUPTS)
4629 		return;
4630 
4631 	for (; overflow; overflow--) {
4632 		if (__perf_event_overflow(event, throttle,
4633 					    data, regs)) {
4634 			/*
4635 			 * We inhibit the overflow from happening when
4636 			 * hwc->interrupts == MAX_INTERRUPTS.
4637 			 */
4638 			break;
4639 		}
4640 		throttle = 1;
4641 	}
4642 }
4643 
4644 static void perf_swevent_event(struct perf_event *event, u64 nr,
4645 			       struct perf_sample_data *data,
4646 			       struct pt_regs *regs)
4647 {
4648 	struct hw_perf_event *hwc = &event->hw;
4649 
4650 	local64_add(nr, &event->count);
4651 
4652 	if (!regs)
4653 		return;
4654 
4655 	if (!is_sampling_event(event))
4656 		return;
4657 
4658 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4659 		data->period = nr;
4660 		return perf_swevent_overflow(event, 1, data, regs);
4661 	} else
4662 		data->period = event->hw.last_period;
4663 
4664 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4665 		return perf_swevent_overflow(event, 1, data, regs);
4666 
4667 	if (local64_add_negative(nr, &hwc->period_left))
4668 		return;
4669 
4670 	perf_swevent_overflow(event, 0, data, regs);
4671 }
4672 
4673 static int perf_exclude_event(struct perf_event *event,
4674 			      struct pt_regs *regs)
4675 {
4676 	if (event->hw.state & PERF_HES_STOPPED)
4677 		return 1;
4678 
4679 	if (regs) {
4680 		if (event->attr.exclude_user && user_mode(regs))
4681 			return 1;
4682 
4683 		if (event->attr.exclude_kernel && !user_mode(regs))
4684 			return 1;
4685 	}
4686 
4687 	return 0;
4688 }
4689 
4690 static int perf_swevent_match(struct perf_event *event,
4691 				enum perf_type_id type,
4692 				u32 event_id,
4693 				struct perf_sample_data *data,
4694 				struct pt_regs *regs)
4695 {
4696 	if (event->attr.type != type)
4697 		return 0;
4698 
4699 	if (event->attr.config != event_id)
4700 		return 0;
4701 
4702 	if (perf_exclude_event(event, regs))
4703 		return 0;
4704 
4705 	return 1;
4706 }
4707 
4708 static inline u64 swevent_hash(u64 type, u32 event_id)
4709 {
4710 	u64 val = event_id | (type << 32);
4711 
4712 	return hash_64(val, SWEVENT_HLIST_BITS);
4713 }
4714 
4715 static inline struct hlist_head *
4716 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4717 {
4718 	u64 hash = swevent_hash(type, event_id);
4719 
4720 	return &hlist->heads[hash];
4721 }
4722 
4723 /* For the read side: events when they trigger */
4724 static inline struct hlist_head *
4725 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4726 {
4727 	struct swevent_hlist *hlist;
4728 
4729 	hlist = rcu_dereference(swhash->swevent_hlist);
4730 	if (!hlist)
4731 		return NULL;
4732 
4733 	return __find_swevent_head(hlist, type, event_id);
4734 }
4735 
4736 /* For the event head insertion and removal in the hlist */
4737 static inline struct hlist_head *
4738 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4739 {
4740 	struct swevent_hlist *hlist;
4741 	u32 event_id = event->attr.config;
4742 	u64 type = event->attr.type;
4743 
4744 	/*
4745 	 * Event scheduling is always serialized against hlist allocation
4746 	 * and release. Which makes the protected version suitable here.
4747 	 * The context lock guarantees that.
4748 	 */
4749 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4750 					  lockdep_is_held(&event->ctx->lock));
4751 	if (!hlist)
4752 		return NULL;
4753 
4754 	return __find_swevent_head(hlist, type, event_id);
4755 }
4756 
4757 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4758 				    u64 nr,
4759 				    struct perf_sample_data *data,
4760 				    struct pt_regs *regs)
4761 {
4762 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4763 	struct perf_event *event;
4764 	struct hlist_node *node;
4765 	struct hlist_head *head;
4766 
4767 	rcu_read_lock();
4768 	head = find_swevent_head_rcu(swhash, type, event_id);
4769 	if (!head)
4770 		goto end;
4771 
4772 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4773 		if (perf_swevent_match(event, type, event_id, data, regs))
4774 			perf_swevent_event(event, nr, data, regs);
4775 	}
4776 end:
4777 	rcu_read_unlock();
4778 }
4779 
4780 int perf_swevent_get_recursion_context(void)
4781 {
4782 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4783 
4784 	return get_recursion_context(swhash->recursion);
4785 }
4786 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4787 
4788 inline void perf_swevent_put_recursion_context(int rctx)
4789 {
4790 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4791 
4792 	put_recursion_context(swhash->recursion, rctx);
4793 }
4794 
4795 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4796 {
4797 	struct perf_sample_data data;
4798 	int rctx;
4799 
4800 	preempt_disable_notrace();
4801 	rctx = perf_swevent_get_recursion_context();
4802 	if (rctx < 0)
4803 		return;
4804 
4805 	perf_sample_data_init(&data, addr);
4806 
4807 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4808 
4809 	perf_swevent_put_recursion_context(rctx);
4810 	preempt_enable_notrace();
4811 }
4812 
4813 static void perf_swevent_read(struct perf_event *event)
4814 {
4815 }
4816 
4817 static int perf_swevent_add(struct perf_event *event, int flags)
4818 {
4819 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4820 	struct hw_perf_event *hwc = &event->hw;
4821 	struct hlist_head *head;
4822 
4823 	if (is_sampling_event(event)) {
4824 		hwc->last_period = hwc->sample_period;
4825 		perf_swevent_set_period(event);
4826 	}
4827 
4828 	hwc->state = !(flags & PERF_EF_START);
4829 
4830 	head = find_swevent_head(swhash, event);
4831 	if (WARN_ON_ONCE(!head))
4832 		return -EINVAL;
4833 
4834 	hlist_add_head_rcu(&event->hlist_entry, head);
4835 
4836 	return 0;
4837 }
4838 
4839 static void perf_swevent_del(struct perf_event *event, int flags)
4840 {
4841 	hlist_del_rcu(&event->hlist_entry);
4842 }
4843 
4844 static void perf_swevent_start(struct perf_event *event, int flags)
4845 {
4846 	event->hw.state = 0;
4847 }
4848 
4849 static void perf_swevent_stop(struct perf_event *event, int flags)
4850 {
4851 	event->hw.state = PERF_HES_STOPPED;
4852 }
4853 
4854 /* Deref the hlist from the update side */
4855 static inline struct swevent_hlist *
4856 swevent_hlist_deref(struct swevent_htable *swhash)
4857 {
4858 	return rcu_dereference_protected(swhash->swevent_hlist,
4859 					 lockdep_is_held(&swhash->hlist_mutex));
4860 }
4861 
4862 static void swevent_hlist_release(struct swevent_htable *swhash)
4863 {
4864 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4865 
4866 	if (!hlist)
4867 		return;
4868 
4869 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4870 	kfree_rcu(hlist, rcu_head);
4871 }
4872 
4873 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4874 {
4875 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4876 
4877 	mutex_lock(&swhash->hlist_mutex);
4878 
4879 	if (!--swhash->hlist_refcount)
4880 		swevent_hlist_release(swhash);
4881 
4882 	mutex_unlock(&swhash->hlist_mutex);
4883 }
4884 
4885 static void swevent_hlist_put(struct perf_event *event)
4886 {
4887 	int cpu;
4888 
4889 	if (event->cpu != -1) {
4890 		swevent_hlist_put_cpu(event, event->cpu);
4891 		return;
4892 	}
4893 
4894 	for_each_possible_cpu(cpu)
4895 		swevent_hlist_put_cpu(event, cpu);
4896 }
4897 
4898 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4899 {
4900 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4901 	int err = 0;
4902 
4903 	mutex_lock(&swhash->hlist_mutex);
4904 
4905 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4906 		struct swevent_hlist *hlist;
4907 
4908 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4909 		if (!hlist) {
4910 			err = -ENOMEM;
4911 			goto exit;
4912 		}
4913 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4914 	}
4915 	swhash->hlist_refcount++;
4916 exit:
4917 	mutex_unlock(&swhash->hlist_mutex);
4918 
4919 	return err;
4920 }
4921 
4922 static int swevent_hlist_get(struct perf_event *event)
4923 {
4924 	int err;
4925 	int cpu, failed_cpu;
4926 
4927 	if (event->cpu != -1)
4928 		return swevent_hlist_get_cpu(event, event->cpu);
4929 
4930 	get_online_cpus();
4931 	for_each_possible_cpu(cpu) {
4932 		err = swevent_hlist_get_cpu(event, cpu);
4933 		if (err) {
4934 			failed_cpu = cpu;
4935 			goto fail;
4936 		}
4937 	}
4938 	put_online_cpus();
4939 
4940 	return 0;
4941 fail:
4942 	for_each_possible_cpu(cpu) {
4943 		if (cpu == failed_cpu)
4944 			break;
4945 		swevent_hlist_put_cpu(event, cpu);
4946 	}
4947 
4948 	put_online_cpus();
4949 	return err;
4950 }
4951 
4952 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4953 
4954 static void sw_perf_event_destroy(struct perf_event *event)
4955 {
4956 	u64 event_id = event->attr.config;
4957 
4958 	WARN_ON(event->parent);
4959 
4960 	jump_label_dec(&perf_swevent_enabled[event_id]);
4961 	swevent_hlist_put(event);
4962 }
4963 
4964 static int perf_swevent_init(struct perf_event *event)
4965 {
4966 	int event_id = event->attr.config;
4967 
4968 	if (event->attr.type != PERF_TYPE_SOFTWARE)
4969 		return -ENOENT;
4970 
4971 	switch (event_id) {
4972 	case PERF_COUNT_SW_CPU_CLOCK:
4973 	case PERF_COUNT_SW_TASK_CLOCK:
4974 		return -ENOENT;
4975 
4976 	default:
4977 		break;
4978 	}
4979 
4980 	if (event_id >= PERF_COUNT_SW_MAX)
4981 		return -ENOENT;
4982 
4983 	if (!event->parent) {
4984 		int err;
4985 
4986 		err = swevent_hlist_get(event);
4987 		if (err)
4988 			return err;
4989 
4990 		jump_label_inc(&perf_swevent_enabled[event_id]);
4991 		event->destroy = sw_perf_event_destroy;
4992 	}
4993 
4994 	return 0;
4995 }
4996 
4997 static struct pmu perf_swevent = {
4998 	.task_ctx_nr	= perf_sw_context,
4999 
5000 	.event_init	= perf_swevent_init,
5001 	.add		= perf_swevent_add,
5002 	.del		= perf_swevent_del,
5003 	.start		= perf_swevent_start,
5004 	.stop		= perf_swevent_stop,
5005 	.read		= perf_swevent_read,
5006 };
5007 
5008 #ifdef CONFIG_EVENT_TRACING
5009 
5010 static int perf_tp_filter_match(struct perf_event *event,
5011 				struct perf_sample_data *data)
5012 {
5013 	void *record = data->raw->data;
5014 
5015 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5016 		return 1;
5017 	return 0;
5018 }
5019 
5020 static int perf_tp_event_match(struct perf_event *event,
5021 				struct perf_sample_data *data,
5022 				struct pt_regs *regs)
5023 {
5024 	if (event->hw.state & PERF_HES_STOPPED)
5025 		return 0;
5026 	/*
5027 	 * All tracepoints are from kernel-space.
5028 	 */
5029 	if (event->attr.exclude_kernel)
5030 		return 0;
5031 
5032 	if (!perf_tp_filter_match(event, data))
5033 		return 0;
5034 
5035 	return 1;
5036 }
5037 
5038 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5039 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5040 {
5041 	struct perf_sample_data data;
5042 	struct perf_event *event;
5043 	struct hlist_node *node;
5044 
5045 	struct perf_raw_record raw = {
5046 		.size = entry_size,
5047 		.data = record,
5048 	};
5049 
5050 	perf_sample_data_init(&data, addr);
5051 	data.raw = &raw;
5052 
5053 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5054 		if (perf_tp_event_match(event, &data, regs))
5055 			perf_swevent_event(event, count, &data, regs);
5056 	}
5057 
5058 	perf_swevent_put_recursion_context(rctx);
5059 }
5060 EXPORT_SYMBOL_GPL(perf_tp_event);
5061 
5062 static void tp_perf_event_destroy(struct perf_event *event)
5063 {
5064 	perf_trace_destroy(event);
5065 }
5066 
5067 static int perf_tp_event_init(struct perf_event *event)
5068 {
5069 	int err;
5070 
5071 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5072 		return -ENOENT;
5073 
5074 	err = perf_trace_init(event);
5075 	if (err)
5076 		return err;
5077 
5078 	event->destroy = tp_perf_event_destroy;
5079 
5080 	return 0;
5081 }
5082 
5083 static struct pmu perf_tracepoint = {
5084 	.task_ctx_nr	= perf_sw_context,
5085 
5086 	.event_init	= perf_tp_event_init,
5087 	.add		= perf_trace_add,
5088 	.del		= perf_trace_del,
5089 	.start		= perf_swevent_start,
5090 	.stop		= perf_swevent_stop,
5091 	.read		= perf_swevent_read,
5092 };
5093 
5094 static inline void perf_tp_register(void)
5095 {
5096 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5097 }
5098 
5099 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5100 {
5101 	char *filter_str;
5102 	int ret;
5103 
5104 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5105 		return -EINVAL;
5106 
5107 	filter_str = strndup_user(arg, PAGE_SIZE);
5108 	if (IS_ERR(filter_str))
5109 		return PTR_ERR(filter_str);
5110 
5111 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5112 
5113 	kfree(filter_str);
5114 	return ret;
5115 }
5116 
5117 static void perf_event_free_filter(struct perf_event *event)
5118 {
5119 	ftrace_profile_free_filter(event);
5120 }
5121 
5122 #else
5123 
5124 static inline void perf_tp_register(void)
5125 {
5126 }
5127 
5128 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5129 {
5130 	return -ENOENT;
5131 }
5132 
5133 static void perf_event_free_filter(struct perf_event *event)
5134 {
5135 }
5136 
5137 #endif /* CONFIG_EVENT_TRACING */
5138 
5139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5140 void perf_bp_event(struct perf_event *bp, void *data)
5141 {
5142 	struct perf_sample_data sample;
5143 	struct pt_regs *regs = data;
5144 
5145 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5146 
5147 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5148 		perf_swevent_event(bp, 1, &sample, regs);
5149 }
5150 #endif
5151 
5152 /*
5153  * hrtimer based swevent callback
5154  */
5155 
5156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5157 {
5158 	enum hrtimer_restart ret = HRTIMER_RESTART;
5159 	struct perf_sample_data data;
5160 	struct pt_regs *regs;
5161 	struct perf_event *event;
5162 	u64 period;
5163 
5164 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5165 
5166 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5167 		return HRTIMER_NORESTART;
5168 
5169 	event->pmu->read(event);
5170 
5171 	perf_sample_data_init(&data, 0);
5172 	data.period = event->hw.last_period;
5173 	regs = get_irq_regs();
5174 
5175 	if (regs && !perf_exclude_event(event, regs)) {
5176 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5177 			if (perf_event_overflow(event, &data, regs))
5178 				ret = HRTIMER_NORESTART;
5179 	}
5180 
5181 	period = max_t(u64, 10000, event->hw.sample_period);
5182 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5183 
5184 	return ret;
5185 }
5186 
5187 static void perf_swevent_start_hrtimer(struct perf_event *event)
5188 {
5189 	struct hw_perf_event *hwc = &event->hw;
5190 	s64 period;
5191 
5192 	if (!is_sampling_event(event))
5193 		return;
5194 
5195 	period = local64_read(&hwc->period_left);
5196 	if (period) {
5197 		if (period < 0)
5198 			period = 10000;
5199 
5200 		local64_set(&hwc->period_left, 0);
5201 	} else {
5202 		period = max_t(u64, 10000, hwc->sample_period);
5203 	}
5204 	__hrtimer_start_range_ns(&hwc->hrtimer,
5205 				ns_to_ktime(period), 0,
5206 				HRTIMER_MODE_REL_PINNED, 0);
5207 }
5208 
5209 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5210 {
5211 	struct hw_perf_event *hwc = &event->hw;
5212 
5213 	if (is_sampling_event(event)) {
5214 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5215 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5216 
5217 		hrtimer_cancel(&hwc->hrtimer);
5218 	}
5219 }
5220 
5221 static void perf_swevent_init_hrtimer(struct perf_event *event)
5222 {
5223 	struct hw_perf_event *hwc = &event->hw;
5224 
5225 	if (!is_sampling_event(event))
5226 		return;
5227 
5228 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5229 	hwc->hrtimer.function = perf_swevent_hrtimer;
5230 
5231 	/*
5232 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5233 	 * mapping and avoid the whole period adjust feedback stuff.
5234 	 */
5235 	if (event->attr.freq) {
5236 		long freq = event->attr.sample_freq;
5237 
5238 		event->attr.sample_period = NSEC_PER_SEC / freq;
5239 		hwc->sample_period = event->attr.sample_period;
5240 		local64_set(&hwc->period_left, hwc->sample_period);
5241 		event->attr.freq = 0;
5242 	}
5243 }
5244 
5245 /*
5246  * Software event: cpu wall time clock
5247  */
5248 
5249 static void cpu_clock_event_update(struct perf_event *event)
5250 {
5251 	s64 prev;
5252 	u64 now;
5253 
5254 	now = local_clock();
5255 	prev = local64_xchg(&event->hw.prev_count, now);
5256 	local64_add(now - prev, &event->count);
5257 }
5258 
5259 static void cpu_clock_event_start(struct perf_event *event, int flags)
5260 {
5261 	local64_set(&event->hw.prev_count, local_clock());
5262 	perf_swevent_start_hrtimer(event);
5263 }
5264 
5265 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5266 {
5267 	perf_swevent_cancel_hrtimer(event);
5268 	cpu_clock_event_update(event);
5269 }
5270 
5271 static int cpu_clock_event_add(struct perf_event *event, int flags)
5272 {
5273 	if (flags & PERF_EF_START)
5274 		cpu_clock_event_start(event, flags);
5275 
5276 	return 0;
5277 }
5278 
5279 static void cpu_clock_event_del(struct perf_event *event, int flags)
5280 {
5281 	cpu_clock_event_stop(event, flags);
5282 }
5283 
5284 static void cpu_clock_event_read(struct perf_event *event)
5285 {
5286 	cpu_clock_event_update(event);
5287 }
5288 
5289 static int cpu_clock_event_init(struct perf_event *event)
5290 {
5291 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5292 		return -ENOENT;
5293 
5294 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5295 		return -ENOENT;
5296 
5297 	perf_swevent_init_hrtimer(event);
5298 
5299 	return 0;
5300 }
5301 
5302 static struct pmu perf_cpu_clock = {
5303 	.task_ctx_nr	= perf_sw_context,
5304 
5305 	.event_init	= cpu_clock_event_init,
5306 	.add		= cpu_clock_event_add,
5307 	.del		= cpu_clock_event_del,
5308 	.start		= cpu_clock_event_start,
5309 	.stop		= cpu_clock_event_stop,
5310 	.read		= cpu_clock_event_read,
5311 };
5312 
5313 /*
5314  * Software event: task time clock
5315  */
5316 
5317 static void task_clock_event_update(struct perf_event *event, u64 now)
5318 {
5319 	u64 prev;
5320 	s64 delta;
5321 
5322 	prev = local64_xchg(&event->hw.prev_count, now);
5323 	delta = now - prev;
5324 	local64_add(delta, &event->count);
5325 }
5326 
5327 static void task_clock_event_start(struct perf_event *event, int flags)
5328 {
5329 	local64_set(&event->hw.prev_count, event->ctx->time);
5330 	perf_swevent_start_hrtimer(event);
5331 }
5332 
5333 static void task_clock_event_stop(struct perf_event *event, int flags)
5334 {
5335 	perf_swevent_cancel_hrtimer(event);
5336 	task_clock_event_update(event, event->ctx->time);
5337 }
5338 
5339 static int task_clock_event_add(struct perf_event *event, int flags)
5340 {
5341 	if (flags & PERF_EF_START)
5342 		task_clock_event_start(event, flags);
5343 
5344 	return 0;
5345 }
5346 
5347 static void task_clock_event_del(struct perf_event *event, int flags)
5348 {
5349 	task_clock_event_stop(event, PERF_EF_UPDATE);
5350 }
5351 
5352 static void task_clock_event_read(struct perf_event *event)
5353 {
5354 	u64 now = perf_clock();
5355 	u64 delta = now - event->ctx->timestamp;
5356 	u64 time = event->ctx->time + delta;
5357 
5358 	task_clock_event_update(event, time);
5359 }
5360 
5361 static int task_clock_event_init(struct perf_event *event)
5362 {
5363 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5364 		return -ENOENT;
5365 
5366 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5367 		return -ENOENT;
5368 
5369 	perf_swevent_init_hrtimer(event);
5370 
5371 	return 0;
5372 }
5373 
5374 static struct pmu perf_task_clock = {
5375 	.task_ctx_nr	= perf_sw_context,
5376 
5377 	.event_init	= task_clock_event_init,
5378 	.add		= task_clock_event_add,
5379 	.del		= task_clock_event_del,
5380 	.start		= task_clock_event_start,
5381 	.stop		= task_clock_event_stop,
5382 	.read		= task_clock_event_read,
5383 };
5384 
5385 static void perf_pmu_nop_void(struct pmu *pmu)
5386 {
5387 }
5388 
5389 static int perf_pmu_nop_int(struct pmu *pmu)
5390 {
5391 	return 0;
5392 }
5393 
5394 static void perf_pmu_start_txn(struct pmu *pmu)
5395 {
5396 	perf_pmu_disable(pmu);
5397 }
5398 
5399 static int perf_pmu_commit_txn(struct pmu *pmu)
5400 {
5401 	perf_pmu_enable(pmu);
5402 	return 0;
5403 }
5404 
5405 static void perf_pmu_cancel_txn(struct pmu *pmu)
5406 {
5407 	perf_pmu_enable(pmu);
5408 }
5409 
5410 /*
5411  * Ensures all contexts with the same task_ctx_nr have the same
5412  * pmu_cpu_context too.
5413  */
5414 static void *find_pmu_context(int ctxn)
5415 {
5416 	struct pmu *pmu;
5417 
5418 	if (ctxn < 0)
5419 		return NULL;
5420 
5421 	list_for_each_entry(pmu, &pmus, entry) {
5422 		if (pmu->task_ctx_nr == ctxn)
5423 			return pmu->pmu_cpu_context;
5424 	}
5425 
5426 	return NULL;
5427 }
5428 
5429 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5430 {
5431 	int cpu;
5432 
5433 	for_each_possible_cpu(cpu) {
5434 		struct perf_cpu_context *cpuctx;
5435 
5436 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5437 
5438 		if (cpuctx->active_pmu == old_pmu)
5439 			cpuctx->active_pmu = pmu;
5440 	}
5441 }
5442 
5443 static void free_pmu_context(struct pmu *pmu)
5444 {
5445 	struct pmu *i;
5446 
5447 	mutex_lock(&pmus_lock);
5448 	/*
5449 	 * Like a real lame refcount.
5450 	 */
5451 	list_for_each_entry(i, &pmus, entry) {
5452 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5453 			update_pmu_context(i, pmu);
5454 			goto out;
5455 		}
5456 	}
5457 
5458 	free_percpu(pmu->pmu_cpu_context);
5459 out:
5460 	mutex_unlock(&pmus_lock);
5461 }
5462 static struct idr pmu_idr;
5463 
5464 static ssize_t
5465 type_show(struct device *dev, struct device_attribute *attr, char *page)
5466 {
5467 	struct pmu *pmu = dev_get_drvdata(dev);
5468 
5469 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5470 }
5471 
5472 static struct device_attribute pmu_dev_attrs[] = {
5473        __ATTR_RO(type),
5474        __ATTR_NULL,
5475 };
5476 
5477 static int pmu_bus_running;
5478 static struct bus_type pmu_bus = {
5479 	.name		= "event_source",
5480 	.dev_attrs	= pmu_dev_attrs,
5481 };
5482 
5483 static void pmu_dev_release(struct device *dev)
5484 {
5485 	kfree(dev);
5486 }
5487 
5488 static int pmu_dev_alloc(struct pmu *pmu)
5489 {
5490 	int ret = -ENOMEM;
5491 
5492 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5493 	if (!pmu->dev)
5494 		goto out;
5495 
5496 	device_initialize(pmu->dev);
5497 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5498 	if (ret)
5499 		goto free_dev;
5500 
5501 	dev_set_drvdata(pmu->dev, pmu);
5502 	pmu->dev->bus = &pmu_bus;
5503 	pmu->dev->release = pmu_dev_release;
5504 	ret = device_add(pmu->dev);
5505 	if (ret)
5506 		goto free_dev;
5507 
5508 out:
5509 	return ret;
5510 
5511 free_dev:
5512 	put_device(pmu->dev);
5513 	goto out;
5514 }
5515 
5516 static struct lock_class_key cpuctx_mutex;
5517 static struct lock_class_key cpuctx_lock;
5518 
5519 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5520 {
5521 	int cpu, ret;
5522 
5523 	mutex_lock(&pmus_lock);
5524 	ret = -ENOMEM;
5525 	pmu->pmu_disable_count = alloc_percpu(int);
5526 	if (!pmu->pmu_disable_count)
5527 		goto unlock;
5528 
5529 	pmu->type = -1;
5530 	if (!name)
5531 		goto skip_type;
5532 	pmu->name = name;
5533 
5534 	if (type < 0) {
5535 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5536 		if (!err)
5537 			goto free_pdc;
5538 
5539 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5540 		if (err) {
5541 			ret = err;
5542 			goto free_pdc;
5543 		}
5544 	}
5545 	pmu->type = type;
5546 
5547 	if (pmu_bus_running) {
5548 		ret = pmu_dev_alloc(pmu);
5549 		if (ret)
5550 			goto free_idr;
5551 	}
5552 
5553 skip_type:
5554 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5555 	if (pmu->pmu_cpu_context)
5556 		goto got_cpu_context;
5557 
5558 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5559 	if (!pmu->pmu_cpu_context)
5560 		goto free_dev;
5561 
5562 	for_each_possible_cpu(cpu) {
5563 		struct perf_cpu_context *cpuctx;
5564 
5565 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5566 		__perf_event_init_context(&cpuctx->ctx);
5567 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5568 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5569 		cpuctx->ctx.type = cpu_context;
5570 		cpuctx->ctx.pmu = pmu;
5571 		cpuctx->jiffies_interval = 1;
5572 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5573 		cpuctx->active_pmu = pmu;
5574 	}
5575 
5576 got_cpu_context:
5577 	if (!pmu->start_txn) {
5578 		if (pmu->pmu_enable) {
5579 			/*
5580 			 * If we have pmu_enable/pmu_disable calls, install
5581 			 * transaction stubs that use that to try and batch
5582 			 * hardware accesses.
5583 			 */
5584 			pmu->start_txn  = perf_pmu_start_txn;
5585 			pmu->commit_txn = perf_pmu_commit_txn;
5586 			pmu->cancel_txn = perf_pmu_cancel_txn;
5587 		} else {
5588 			pmu->start_txn  = perf_pmu_nop_void;
5589 			pmu->commit_txn = perf_pmu_nop_int;
5590 			pmu->cancel_txn = perf_pmu_nop_void;
5591 		}
5592 	}
5593 
5594 	if (!pmu->pmu_enable) {
5595 		pmu->pmu_enable  = perf_pmu_nop_void;
5596 		pmu->pmu_disable = perf_pmu_nop_void;
5597 	}
5598 
5599 	list_add_rcu(&pmu->entry, &pmus);
5600 	ret = 0;
5601 unlock:
5602 	mutex_unlock(&pmus_lock);
5603 
5604 	return ret;
5605 
5606 free_dev:
5607 	device_del(pmu->dev);
5608 	put_device(pmu->dev);
5609 
5610 free_idr:
5611 	if (pmu->type >= PERF_TYPE_MAX)
5612 		idr_remove(&pmu_idr, pmu->type);
5613 
5614 free_pdc:
5615 	free_percpu(pmu->pmu_disable_count);
5616 	goto unlock;
5617 }
5618 
5619 void perf_pmu_unregister(struct pmu *pmu)
5620 {
5621 	mutex_lock(&pmus_lock);
5622 	list_del_rcu(&pmu->entry);
5623 	mutex_unlock(&pmus_lock);
5624 
5625 	/*
5626 	 * We dereference the pmu list under both SRCU and regular RCU, so
5627 	 * synchronize against both of those.
5628 	 */
5629 	synchronize_srcu(&pmus_srcu);
5630 	synchronize_rcu();
5631 
5632 	free_percpu(pmu->pmu_disable_count);
5633 	if (pmu->type >= PERF_TYPE_MAX)
5634 		idr_remove(&pmu_idr, pmu->type);
5635 	device_del(pmu->dev);
5636 	put_device(pmu->dev);
5637 	free_pmu_context(pmu);
5638 }
5639 
5640 struct pmu *perf_init_event(struct perf_event *event)
5641 {
5642 	struct pmu *pmu = NULL;
5643 	int idx;
5644 	int ret;
5645 
5646 	idx = srcu_read_lock(&pmus_srcu);
5647 
5648 	rcu_read_lock();
5649 	pmu = idr_find(&pmu_idr, event->attr.type);
5650 	rcu_read_unlock();
5651 	if (pmu) {
5652 		event->pmu = pmu;
5653 		ret = pmu->event_init(event);
5654 		if (ret)
5655 			pmu = ERR_PTR(ret);
5656 		goto unlock;
5657 	}
5658 
5659 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5660 		event->pmu = pmu;
5661 		ret = pmu->event_init(event);
5662 		if (!ret)
5663 			goto unlock;
5664 
5665 		if (ret != -ENOENT) {
5666 			pmu = ERR_PTR(ret);
5667 			goto unlock;
5668 		}
5669 	}
5670 	pmu = ERR_PTR(-ENOENT);
5671 unlock:
5672 	srcu_read_unlock(&pmus_srcu, idx);
5673 
5674 	return pmu;
5675 }
5676 
5677 /*
5678  * Allocate and initialize a event structure
5679  */
5680 static struct perf_event *
5681 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5682 		 struct task_struct *task,
5683 		 struct perf_event *group_leader,
5684 		 struct perf_event *parent_event,
5685 		 perf_overflow_handler_t overflow_handler,
5686 		 void *context)
5687 {
5688 	struct pmu *pmu;
5689 	struct perf_event *event;
5690 	struct hw_perf_event *hwc;
5691 	long err;
5692 
5693 	if ((unsigned)cpu >= nr_cpu_ids) {
5694 		if (!task || cpu != -1)
5695 			return ERR_PTR(-EINVAL);
5696 	}
5697 
5698 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5699 	if (!event)
5700 		return ERR_PTR(-ENOMEM);
5701 
5702 	/*
5703 	 * Single events are their own group leaders, with an
5704 	 * empty sibling list:
5705 	 */
5706 	if (!group_leader)
5707 		group_leader = event;
5708 
5709 	mutex_init(&event->child_mutex);
5710 	INIT_LIST_HEAD(&event->child_list);
5711 
5712 	INIT_LIST_HEAD(&event->group_entry);
5713 	INIT_LIST_HEAD(&event->event_entry);
5714 	INIT_LIST_HEAD(&event->sibling_list);
5715 	INIT_LIST_HEAD(&event->rb_entry);
5716 
5717 	init_waitqueue_head(&event->waitq);
5718 	init_irq_work(&event->pending, perf_pending_event);
5719 
5720 	mutex_init(&event->mmap_mutex);
5721 
5722 	event->cpu		= cpu;
5723 	event->attr		= *attr;
5724 	event->group_leader	= group_leader;
5725 	event->pmu		= NULL;
5726 	event->oncpu		= -1;
5727 
5728 	event->parent		= parent_event;
5729 
5730 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5731 	event->id		= atomic64_inc_return(&perf_event_id);
5732 
5733 	event->state		= PERF_EVENT_STATE_INACTIVE;
5734 
5735 	if (task) {
5736 		event->attach_state = PERF_ATTACH_TASK;
5737 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5738 		/*
5739 		 * hw_breakpoint is a bit difficult here..
5740 		 */
5741 		if (attr->type == PERF_TYPE_BREAKPOINT)
5742 			event->hw.bp_target = task;
5743 #endif
5744 	}
5745 
5746 	if (!overflow_handler && parent_event) {
5747 		overflow_handler = parent_event->overflow_handler;
5748 		context = parent_event->overflow_handler_context;
5749 	}
5750 
5751 	event->overflow_handler	= overflow_handler;
5752 	event->overflow_handler_context = context;
5753 
5754 	if (attr->disabled)
5755 		event->state = PERF_EVENT_STATE_OFF;
5756 
5757 	pmu = NULL;
5758 
5759 	hwc = &event->hw;
5760 	hwc->sample_period = attr->sample_period;
5761 	if (attr->freq && attr->sample_freq)
5762 		hwc->sample_period = 1;
5763 	hwc->last_period = hwc->sample_period;
5764 
5765 	local64_set(&hwc->period_left, hwc->sample_period);
5766 
5767 	/*
5768 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5769 	 */
5770 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5771 		goto done;
5772 
5773 	pmu = perf_init_event(event);
5774 
5775 done:
5776 	err = 0;
5777 	if (!pmu)
5778 		err = -EINVAL;
5779 	else if (IS_ERR(pmu))
5780 		err = PTR_ERR(pmu);
5781 
5782 	if (err) {
5783 		if (event->ns)
5784 			put_pid_ns(event->ns);
5785 		kfree(event);
5786 		return ERR_PTR(err);
5787 	}
5788 
5789 	if (!event->parent) {
5790 		if (event->attach_state & PERF_ATTACH_TASK)
5791 			jump_label_inc(&perf_sched_events.key);
5792 		if (event->attr.mmap || event->attr.mmap_data)
5793 			atomic_inc(&nr_mmap_events);
5794 		if (event->attr.comm)
5795 			atomic_inc(&nr_comm_events);
5796 		if (event->attr.task)
5797 			atomic_inc(&nr_task_events);
5798 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5799 			err = get_callchain_buffers();
5800 			if (err) {
5801 				free_event(event);
5802 				return ERR_PTR(err);
5803 			}
5804 		}
5805 	}
5806 
5807 	return event;
5808 }
5809 
5810 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5811 			  struct perf_event_attr *attr)
5812 {
5813 	u32 size;
5814 	int ret;
5815 
5816 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5817 		return -EFAULT;
5818 
5819 	/*
5820 	 * zero the full structure, so that a short copy will be nice.
5821 	 */
5822 	memset(attr, 0, sizeof(*attr));
5823 
5824 	ret = get_user(size, &uattr->size);
5825 	if (ret)
5826 		return ret;
5827 
5828 	if (size > PAGE_SIZE)	/* silly large */
5829 		goto err_size;
5830 
5831 	if (!size)		/* abi compat */
5832 		size = PERF_ATTR_SIZE_VER0;
5833 
5834 	if (size < PERF_ATTR_SIZE_VER0)
5835 		goto err_size;
5836 
5837 	/*
5838 	 * If we're handed a bigger struct than we know of,
5839 	 * ensure all the unknown bits are 0 - i.e. new
5840 	 * user-space does not rely on any kernel feature
5841 	 * extensions we dont know about yet.
5842 	 */
5843 	if (size > sizeof(*attr)) {
5844 		unsigned char __user *addr;
5845 		unsigned char __user *end;
5846 		unsigned char val;
5847 
5848 		addr = (void __user *)uattr + sizeof(*attr);
5849 		end  = (void __user *)uattr + size;
5850 
5851 		for (; addr < end; addr++) {
5852 			ret = get_user(val, addr);
5853 			if (ret)
5854 				return ret;
5855 			if (val)
5856 				goto err_size;
5857 		}
5858 		size = sizeof(*attr);
5859 	}
5860 
5861 	ret = copy_from_user(attr, uattr, size);
5862 	if (ret)
5863 		return -EFAULT;
5864 
5865 	if (attr->__reserved_1)
5866 		return -EINVAL;
5867 
5868 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5869 		return -EINVAL;
5870 
5871 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5872 		return -EINVAL;
5873 
5874 out:
5875 	return ret;
5876 
5877 err_size:
5878 	put_user(sizeof(*attr), &uattr->size);
5879 	ret = -E2BIG;
5880 	goto out;
5881 }
5882 
5883 static int
5884 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5885 {
5886 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5887 	int ret = -EINVAL;
5888 
5889 	if (!output_event)
5890 		goto set;
5891 
5892 	/* don't allow circular references */
5893 	if (event == output_event)
5894 		goto out;
5895 
5896 	/*
5897 	 * Don't allow cross-cpu buffers
5898 	 */
5899 	if (output_event->cpu != event->cpu)
5900 		goto out;
5901 
5902 	/*
5903 	 * If its not a per-cpu rb, it must be the same task.
5904 	 */
5905 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5906 		goto out;
5907 
5908 set:
5909 	mutex_lock(&event->mmap_mutex);
5910 	/* Can't redirect output if we've got an active mmap() */
5911 	if (atomic_read(&event->mmap_count))
5912 		goto unlock;
5913 
5914 	if (output_event) {
5915 		/* get the rb we want to redirect to */
5916 		rb = ring_buffer_get(output_event);
5917 		if (!rb)
5918 			goto unlock;
5919 	}
5920 
5921 	old_rb = event->rb;
5922 	rcu_assign_pointer(event->rb, rb);
5923 	if (old_rb)
5924 		ring_buffer_detach(event, old_rb);
5925 	ret = 0;
5926 unlock:
5927 	mutex_unlock(&event->mmap_mutex);
5928 
5929 	if (old_rb)
5930 		ring_buffer_put(old_rb);
5931 out:
5932 	return ret;
5933 }
5934 
5935 /**
5936  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5937  *
5938  * @attr_uptr:	event_id type attributes for monitoring/sampling
5939  * @pid:		target pid
5940  * @cpu:		target cpu
5941  * @group_fd:		group leader event fd
5942  */
5943 SYSCALL_DEFINE5(perf_event_open,
5944 		struct perf_event_attr __user *, attr_uptr,
5945 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5946 {
5947 	struct perf_event *group_leader = NULL, *output_event = NULL;
5948 	struct perf_event *event, *sibling;
5949 	struct perf_event_attr attr;
5950 	struct perf_event_context *ctx;
5951 	struct file *event_file = NULL;
5952 	struct file *group_file = NULL;
5953 	struct task_struct *task = NULL;
5954 	struct pmu *pmu;
5955 	int event_fd;
5956 	int move_group = 0;
5957 	int fput_needed = 0;
5958 	int err;
5959 
5960 	/* for future expandability... */
5961 	if (flags & ~PERF_FLAG_ALL)
5962 		return -EINVAL;
5963 
5964 	err = perf_copy_attr(attr_uptr, &attr);
5965 	if (err)
5966 		return err;
5967 
5968 	if (!attr.exclude_kernel) {
5969 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5970 			return -EACCES;
5971 	}
5972 
5973 	if (attr.freq) {
5974 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5975 			return -EINVAL;
5976 	}
5977 
5978 	/*
5979 	 * In cgroup mode, the pid argument is used to pass the fd
5980 	 * opened to the cgroup directory in cgroupfs. The cpu argument
5981 	 * designates the cpu on which to monitor threads from that
5982 	 * cgroup.
5983 	 */
5984 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
5985 		return -EINVAL;
5986 
5987 	event_fd = get_unused_fd_flags(O_RDWR);
5988 	if (event_fd < 0)
5989 		return event_fd;
5990 
5991 	if (group_fd != -1) {
5992 		group_leader = perf_fget_light(group_fd, &fput_needed);
5993 		if (IS_ERR(group_leader)) {
5994 			err = PTR_ERR(group_leader);
5995 			goto err_fd;
5996 		}
5997 		group_file = group_leader->filp;
5998 		if (flags & PERF_FLAG_FD_OUTPUT)
5999 			output_event = group_leader;
6000 		if (flags & PERF_FLAG_FD_NO_GROUP)
6001 			group_leader = NULL;
6002 	}
6003 
6004 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6005 		task = find_lively_task_by_vpid(pid);
6006 		if (IS_ERR(task)) {
6007 			err = PTR_ERR(task);
6008 			goto err_group_fd;
6009 		}
6010 	}
6011 
6012 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6013 				 NULL, NULL);
6014 	if (IS_ERR(event)) {
6015 		err = PTR_ERR(event);
6016 		goto err_task;
6017 	}
6018 
6019 	if (flags & PERF_FLAG_PID_CGROUP) {
6020 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6021 		if (err)
6022 			goto err_alloc;
6023 		/*
6024 		 * one more event:
6025 		 * - that has cgroup constraint on event->cpu
6026 		 * - that may need work on context switch
6027 		 */
6028 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6029 		jump_label_inc(&perf_sched_events.key);
6030 	}
6031 
6032 	/*
6033 	 * Special case software events and allow them to be part of
6034 	 * any hardware group.
6035 	 */
6036 	pmu = event->pmu;
6037 
6038 	if (group_leader &&
6039 	    (is_software_event(event) != is_software_event(group_leader))) {
6040 		if (is_software_event(event)) {
6041 			/*
6042 			 * If event and group_leader are not both a software
6043 			 * event, and event is, then group leader is not.
6044 			 *
6045 			 * Allow the addition of software events to !software
6046 			 * groups, this is safe because software events never
6047 			 * fail to schedule.
6048 			 */
6049 			pmu = group_leader->pmu;
6050 		} else if (is_software_event(group_leader) &&
6051 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6052 			/*
6053 			 * In case the group is a pure software group, and we
6054 			 * try to add a hardware event, move the whole group to
6055 			 * the hardware context.
6056 			 */
6057 			move_group = 1;
6058 		}
6059 	}
6060 
6061 	/*
6062 	 * Get the target context (task or percpu):
6063 	 */
6064 	ctx = find_get_context(pmu, task, cpu);
6065 	if (IS_ERR(ctx)) {
6066 		err = PTR_ERR(ctx);
6067 		goto err_alloc;
6068 	}
6069 
6070 	if (task) {
6071 		put_task_struct(task);
6072 		task = NULL;
6073 	}
6074 
6075 	/*
6076 	 * Look up the group leader (we will attach this event to it):
6077 	 */
6078 	if (group_leader) {
6079 		err = -EINVAL;
6080 
6081 		/*
6082 		 * Do not allow a recursive hierarchy (this new sibling
6083 		 * becoming part of another group-sibling):
6084 		 */
6085 		if (group_leader->group_leader != group_leader)
6086 			goto err_context;
6087 		/*
6088 		 * Do not allow to attach to a group in a different
6089 		 * task or CPU context:
6090 		 */
6091 		if (move_group) {
6092 			if (group_leader->ctx->type != ctx->type)
6093 				goto err_context;
6094 		} else {
6095 			if (group_leader->ctx != ctx)
6096 				goto err_context;
6097 		}
6098 
6099 		/*
6100 		 * Only a group leader can be exclusive or pinned
6101 		 */
6102 		if (attr.exclusive || attr.pinned)
6103 			goto err_context;
6104 	}
6105 
6106 	if (output_event) {
6107 		err = perf_event_set_output(event, output_event);
6108 		if (err)
6109 			goto err_context;
6110 	}
6111 
6112 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6113 	if (IS_ERR(event_file)) {
6114 		err = PTR_ERR(event_file);
6115 		goto err_context;
6116 	}
6117 
6118 	if (move_group) {
6119 		struct perf_event_context *gctx = group_leader->ctx;
6120 
6121 		mutex_lock(&gctx->mutex);
6122 		perf_remove_from_context(group_leader);
6123 		list_for_each_entry(sibling, &group_leader->sibling_list,
6124 				    group_entry) {
6125 			perf_remove_from_context(sibling);
6126 			put_ctx(gctx);
6127 		}
6128 		mutex_unlock(&gctx->mutex);
6129 		put_ctx(gctx);
6130 	}
6131 
6132 	event->filp = event_file;
6133 	WARN_ON_ONCE(ctx->parent_ctx);
6134 	mutex_lock(&ctx->mutex);
6135 
6136 	if (move_group) {
6137 		perf_install_in_context(ctx, group_leader, cpu);
6138 		get_ctx(ctx);
6139 		list_for_each_entry(sibling, &group_leader->sibling_list,
6140 				    group_entry) {
6141 			perf_install_in_context(ctx, sibling, cpu);
6142 			get_ctx(ctx);
6143 		}
6144 	}
6145 
6146 	perf_install_in_context(ctx, event, cpu);
6147 	++ctx->generation;
6148 	perf_unpin_context(ctx);
6149 	mutex_unlock(&ctx->mutex);
6150 
6151 	event->owner = current;
6152 
6153 	mutex_lock(&current->perf_event_mutex);
6154 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6155 	mutex_unlock(&current->perf_event_mutex);
6156 
6157 	/*
6158 	 * Precalculate sample_data sizes
6159 	 */
6160 	perf_event__header_size(event);
6161 	perf_event__id_header_size(event);
6162 
6163 	/*
6164 	 * Drop the reference on the group_event after placing the
6165 	 * new event on the sibling_list. This ensures destruction
6166 	 * of the group leader will find the pointer to itself in
6167 	 * perf_group_detach().
6168 	 */
6169 	fput_light(group_file, fput_needed);
6170 	fd_install(event_fd, event_file);
6171 	return event_fd;
6172 
6173 err_context:
6174 	perf_unpin_context(ctx);
6175 	put_ctx(ctx);
6176 err_alloc:
6177 	free_event(event);
6178 err_task:
6179 	if (task)
6180 		put_task_struct(task);
6181 err_group_fd:
6182 	fput_light(group_file, fput_needed);
6183 err_fd:
6184 	put_unused_fd(event_fd);
6185 	return err;
6186 }
6187 
6188 /**
6189  * perf_event_create_kernel_counter
6190  *
6191  * @attr: attributes of the counter to create
6192  * @cpu: cpu in which the counter is bound
6193  * @task: task to profile (NULL for percpu)
6194  */
6195 struct perf_event *
6196 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6197 				 struct task_struct *task,
6198 				 perf_overflow_handler_t overflow_handler,
6199 				 void *context)
6200 {
6201 	struct perf_event_context *ctx;
6202 	struct perf_event *event;
6203 	int err;
6204 
6205 	/*
6206 	 * Get the target context (task or percpu):
6207 	 */
6208 
6209 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6210 				 overflow_handler, context);
6211 	if (IS_ERR(event)) {
6212 		err = PTR_ERR(event);
6213 		goto err;
6214 	}
6215 
6216 	ctx = find_get_context(event->pmu, task, cpu);
6217 	if (IS_ERR(ctx)) {
6218 		err = PTR_ERR(ctx);
6219 		goto err_free;
6220 	}
6221 
6222 	event->filp = NULL;
6223 	WARN_ON_ONCE(ctx->parent_ctx);
6224 	mutex_lock(&ctx->mutex);
6225 	perf_install_in_context(ctx, event, cpu);
6226 	++ctx->generation;
6227 	perf_unpin_context(ctx);
6228 	mutex_unlock(&ctx->mutex);
6229 
6230 	return event;
6231 
6232 err_free:
6233 	free_event(event);
6234 err:
6235 	return ERR_PTR(err);
6236 }
6237 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6238 
6239 static void sync_child_event(struct perf_event *child_event,
6240 			       struct task_struct *child)
6241 {
6242 	struct perf_event *parent_event = child_event->parent;
6243 	u64 child_val;
6244 
6245 	if (child_event->attr.inherit_stat)
6246 		perf_event_read_event(child_event, child);
6247 
6248 	child_val = perf_event_count(child_event);
6249 
6250 	/*
6251 	 * Add back the child's count to the parent's count:
6252 	 */
6253 	atomic64_add(child_val, &parent_event->child_count);
6254 	atomic64_add(child_event->total_time_enabled,
6255 		     &parent_event->child_total_time_enabled);
6256 	atomic64_add(child_event->total_time_running,
6257 		     &parent_event->child_total_time_running);
6258 
6259 	/*
6260 	 * Remove this event from the parent's list
6261 	 */
6262 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6263 	mutex_lock(&parent_event->child_mutex);
6264 	list_del_init(&child_event->child_list);
6265 	mutex_unlock(&parent_event->child_mutex);
6266 
6267 	/*
6268 	 * Release the parent event, if this was the last
6269 	 * reference to it.
6270 	 */
6271 	fput(parent_event->filp);
6272 }
6273 
6274 static void
6275 __perf_event_exit_task(struct perf_event *child_event,
6276 			 struct perf_event_context *child_ctx,
6277 			 struct task_struct *child)
6278 {
6279 	if (child_event->parent) {
6280 		raw_spin_lock_irq(&child_ctx->lock);
6281 		perf_group_detach(child_event);
6282 		raw_spin_unlock_irq(&child_ctx->lock);
6283 	}
6284 
6285 	perf_remove_from_context(child_event);
6286 
6287 	/*
6288 	 * It can happen that the parent exits first, and has events
6289 	 * that are still around due to the child reference. These
6290 	 * events need to be zapped.
6291 	 */
6292 	if (child_event->parent) {
6293 		sync_child_event(child_event, child);
6294 		free_event(child_event);
6295 	}
6296 }
6297 
6298 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6299 {
6300 	struct perf_event *child_event, *tmp;
6301 	struct perf_event_context *child_ctx;
6302 	unsigned long flags;
6303 
6304 	if (likely(!child->perf_event_ctxp[ctxn])) {
6305 		perf_event_task(child, NULL, 0);
6306 		return;
6307 	}
6308 
6309 	local_irq_save(flags);
6310 	/*
6311 	 * We can't reschedule here because interrupts are disabled,
6312 	 * and either child is current or it is a task that can't be
6313 	 * scheduled, so we are now safe from rescheduling changing
6314 	 * our context.
6315 	 */
6316 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6317 
6318 	/*
6319 	 * Take the context lock here so that if find_get_context is
6320 	 * reading child->perf_event_ctxp, we wait until it has
6321 	 * incremented the context's refcount before we do put_ctx below.
6322 	 */
6323 	raw_spin_lock(&child_ctx->lock);
6324 	task_ctx_sched_out(child_ctx);
6325 	child->perf_event_ctxp[ctxn] = NULL;
6326 	/*
6327 	 * If this context is a clone; unclone it so it can't get
6328 	 * swapped to another process while we're removing all
6329 	 * the events from it.
6330 	 */
6331 	unclone_ctx(child_ctx);
6332 	update_context_time(child_ctx);
6333 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6334 
6335 	/*
6336 	 * Report the task dead after unscheduling the events so that we
6337 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6338 	 * get a few PERF_RECORD_READ events.
6339 	 */
6340 	perf_event_task(child, child_ctx, 0);
6341 
6342 	/*
6343 	 * We can recurse on the same lock type through:
6344 	 *
6345 	 *   __perf_event_exit_task()
6346 	 *     sync_child_event()
6347 	 *       fput(parent_event->filp)
6348 	 *         perf_release()
6349 	 *           mutex_lock(&ctx->mutex)
6350 	 *
6351 	 * But since its the parent context it won't be the same instance.
6352 	 */
6353 	mutex_lock(&child_ctx->mutex);
6354 
6355 again:
6356 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6357 				 group_entry)
6358 		__perf_event_exit_task(child_event, child_ctx, child);
6359 
6360 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6361 				 group_entry)
6362 		__perf_event_exit_task(child_event, child_ctx, child);
6363 
6364 	/*
6365 	 * If the last event was a group event, it will have appended all
6366 	 * its siblings to the list, but we obtained 'tmp' before that which
6367 	 * will still point to the list head terminating the iteration.
6368 	 */
6369 	if (!list_empty(&child_ctx->pinned_groups) ||
6370 	    !list_empty(&child_ctx->flexible_groups))
6371 		goto again;
6372 
6373 	mutex_unlock(&child_ctx->mutex);
6374 
6375 	put_ctx(child_ctx);
6376 }
6377 
6378 /*
6379  * When a child task exits, feed back event values to parent events.
6380  */
6381 void perf_event_exit_task(struct task_struct *child)
6382 {
6383 	struct perf_event *event, *tmp;
6384 	int ctxn;
6385 
6386 	mutex_lock(&child->perf_event_mutex);
6387 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6388 				 owner_entry) {
6389 		list_del_init(&event->owner_entry);
6390 
6391 		/*
6392 		 * Ensure the list deletion is visible before we clear
6393 		 * the owner, closes a race against perf_release() where
6394 		 * we need to serialize on the owner->perf_event_mutex.
6395 		 */
6396 		smp_wmb();
6397 		event->owner = NULL;
6398 	}
6399 	mutex_unlock(&child->perf_event_mutex);
6400 
6401 	for_each_task_context_nr(ctxn)
6402 		perf_event_exit_task_context(child, ctxn);
6403 }
6404 
6405 static void perf_free_event(struct perf_event *event,
6406 			    struct perf_event_context *ctx)
6407 {
6408 	struct perf_event *parent = event->parent;
6409 
6410 	if (WARN_ON_ONCE(!parent))
6411 		return;
6412 
6413 	mutex_lock(&parent->child_mutex);
6414 	list_del_init(&event->child_list);
6415 	mutex_unlock(&parent->child_mutex);
6416 
6417 	fput(parent->filp);
6418 
6419 	perf_group_detach(event);
6420 	list_del_event(event, ctx);
6421 	free_event(event);
6422 }
6423 
6424 /*
6425  * free an unexposed, unused context as created by inheritance by
6426  * perf_event_init_task below, used by fork() in case of fail.
6427  */
6428 void perf_event_free_task(struct task_struct *task)
6429 {
6430 	struct perf_event_context *ctx;
6431 	struct perf_event *event, *tmp;
6432 	int ctxn;
6433 
6434 	for_each_task_context_nr(ctxn) {
6435 		ctx = task->perf_event_ctxp[ctxn];
6436 		if (!ctx)
6437 			continue;
6438 
6439 		mutex_lock(&ctx->mutex);
6440 again:
6441 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6442 				group_entry)
6443 			perf_free_event(event, ctx);
6444 
6445 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6446 				group_entry)
6447 			perf_free_event(event, ctx);
6448 
6449 		if (!list_empty(&ctx->pinned_groups) ||
6450 				!list_empty(&ctx->flexible_groups))
6451 			goto again;
6452 
6453 		mutex_unlock(&ctx->mutex);
6454 
6455 		put_ctx(ctx);
6456 	}
6457 }
6458 
6459 void perf_event_delayed_put(struct task_struct *task)
6460 {
6461 	int ctxn;
6462 
6463 	for_each_task_context_nr(ctxn)
6464 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6465 }
6466 
6467 /*
6468  * inherit a event from parent task to child task:
6469  */
6470 static struct perf_event *
6471 inherit_event(struct perf_event *parent_event,
6472 	      struct task_struct *parent,
6473 	      struct perf_event_context *parent_ctx,
6474 	      struct task_struct *child,
6475 	      struct perf_event *group_leader,
6476 	      struct perf_event_context *child_ctx)
6477 {
6478 	struct perf_event *child_event;
6479 	unsigned long flags;
6480 
6481 	/*
6482 	 * Instead of creating recursive hierarchies of events,
6483 	 * we link inherited events back to the original parent,
6484 	 * which has a filp for sure, which we use as the reference
6485 	 * count:
6486 	 */
6487 	if (parent_event->parent)
6488 		parent_event = parent_event->parent;
6489 
6490 	child_event = perf_event_alloc(&parent_event->attr,
6491 					   parent_event->cpu,
6492 					   child,
6493 					   group_leader, parent_event,
6494 				           NULL, NULL);
6495 	if (IS_ERR(child_event))
6496 		return child_event;
6497 	get_ctx(child_ctx);
6498 
6499 	/*
6500 	 * Make the child state follow the state of the parent event,
6501 	 * not its attr.disabled bit.  We hold the parent's mutex,
6502 	 * so we won't race with perf_event_{en, dis}able_family.
6503 	 */
6504 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6505 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6506 	else
6507 		child_event->state = PERF_EVENT_STATE_OFF;
6508 
6509 	if (parent_event->attr.freq) {
6510 		u64 sample_period = parent_event->hw.sample_period;
6511 		struct hw_perf_event *hwc = &child_event->hw;
6512 
6513 		hwc->sample_period = sample_period;
6514 		hwc->last_period   = sample_period;
6515 
6516 		local64_set(&hwc->period_left, sample_period);
6517 	}
6518 
6519 	child_event->ctx = child_ctx;
6520 	child_event->overflow_handler = parent_event->overflow_handler;
6521 	child_event->overflow_handler_context
6522 		= parent_event->overflow_handler_context;
6523 
6524 	/*
6525 	 * Precalculate sample_data sizes
6526 	 */
6527 	perf_event__header_size(child_event);
6528 	perf_event__id_header_size(child_event);
6529 
6530 	/*
6531 	 * Link it up in the child's context:
6532 	 */
6533 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6534 	add_event_to_ctx(child_event, child_ctx);
6535 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6536 
6537 	/*
6538 	 * Get a reference to the parent filp - we will fput it
6539 	 * when the child event exits. This is safe to do because
6540 	 * we are in the parent and we know that the filp still
6541 	 * exists and has a nonzero count:
6542 	 */
6543 	atomic_long_inc(&parent_event->filp->f_count);
6544 
6545 	/*
6546 	 * Link this into the parent event's child list
6547 	 */
6548 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6549 	mutex_lock(&parent_event->child_mutex);
6550 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6551 	mutex_unlock(&parent_event->child_mutex);
6552 
6553 	return child_event;
6554 }
6555 
6556 static int inherit_group(struct perf_event *parent_event,
6557 	      struct task_struct *parent,
6558 	      struct perf_event_context *parent_ctx,
6559 	      struct task_struct *child,
6560 	      struct perf_event_context *child_ctx)
6561 {
6562 	struct perf_event *leader;
6563 	struct perf_event *sub;
6564 	struct perf_event *child_ctr;
6565 
6566 	leader = inherit_event(parent_event, parent, parent_ctx,
6567 				 child, NULL, child_ctx);
6568 	if (IS_ERR(leader))
6569 		return PTR_ERR(leader);
6570 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6571 		child_ctr = inherit_event(sub, parent, parent_ctx,
6572 					    child, leader, child_ctx);
6573 		if (IS_ERR(child_ctr))
6574 			return PTR_ERR(child_ctr);
6575 	}
6576 	return 0;
6577 }
6578 
6579 static int
6580 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6581 		   struct perf_event_context *parent_ctx,
6582 		   struct task_struct *child, int ctxn,
6583 		   int *inherited_all)
6584 {
6585 	int ret;
6586 	struct perf_event_context *child_ctx;
6587 
6588 	if (!event->attr.inherit) {
6589 		*inherited_all = 0;
6590 		return 0;
6591 	}
6592 
6593 	child_ctx = child->perf_event_ctxp[ctxn];
6594 	if (!child_ctx) {
6595 		/*
6596 		 * This is executed from the parent task context, so
6597 		 * inherit events that have been marked for cloning.
6598 		 * First allocate and initialize a context for the
6599 		 * child.
6600 		 */
6601 
6602 		child_ctx = alloc_perf_context(event->pmu, child);
6603 		if (!child_ctx)
6604 			return -ENOMEM;
6605 
6606 		child->perf_event_ctxp[ctxn] = child_ctx;
6607 	}
6608 
6609 	ret = inherit_group(event, parent, parent_ctx,
6610 			    child, child_ctx);
6611 
6612 	if (ret)
6613 		*inherited_all = 0;
6614 
6615 	return ret;
6616 }
6617 
6618 /*
6619  * Initialize the perf_event context in task_struct
6620  */
6621 int perf_event_init_context(struct task_struct *child, int ctxn)
6622 {
6623 	struct perf_event_context *child_ctx, *parent_ctx;
6624 	struct perf_event_context *cloned_ctx;
6625 	struct perf_event *event;
6626 	struct task_struct *parent = current;
6627 	int inherited_all = 1;
6628 	unsigned long flags;
6629 	int ret = 0;
6630 
6631 	if (likely(!parent->perf_event_ctxp[ctxn]))
6632 		return 0;
6633 
6634 	/*
6635 	 * If the parent's context is a clone, pin it so it won't get
6636 	 * swapped under us.
6637 	 */
6638 	parent_ctx = perf_pin_task_context(parent, ctxn);
6639 
6640 	/*
6641 	 * No need to check if parent_ctx != NULL here; since we saw
6642 	 * it non-NULL earlier, the only reason for it to become NULL
6643 	 * is if we exit, and since we're currently in the middle of
6644 	 * a fork we can't be exiting at the same time.
6645 	 */
6646 
6647 	/*
6648 	 * Lock the parent list. No need to lock the child - not PID
6649 	 * hashed yet and not running, so nobody can access it.
6650 	 */
6651 	mutex_lock(&parent_ctx->mutex);
6652 
6653 	/*
6654 	 * We dont have to disable NMIs - we are only looking at
6655 	 * the list, not manipulating it:
6656 	 */
6657 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6658 		ret = inherit_task_group(event, parent, parent_ctx,
6659 					 child, ctxn, &inherited_all);
6660 		if (ret)
6661 			break;
6662 	}
6663 
6664 	/*
6665 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6666 	 * to allocations, but we need to prevent rotation because
6667 	 * rotate_ctx() will change the list from interrupt context.
6668 	 */
6669 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6670 	parent_ctx->rotate_disable = 1;
6671 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6672 
6673 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6674 		ret = inherit_task_group(event, parent, parent_ctx,
6675 					 child, ctxn, &inherited_all);
6676 		if (ret)
6677 			break;
6678 	}
6679 
6680 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6681 	parent_ctx->rotate_disable = 0;
6682 
6683 	child_ctx = child->perf_event_ctxp[ctxn];
6684 
6685 	if (child_ctx && inherited_all) {
6686 		/*
6687 		 * Mark the child context as a clone of the parent
6688 		 * context, or of whatever the parent is a clone of.
6689 		 *
6690 		 * Note that if the parent is a clone, the holding of
6691 		 * parent_ctx->lock avoids it from being uncloned.
6692 		 */
6693 		cloned_ctx = parent_ctx->parent_ctx;
6694 		if (cloned_ctx) {
6695 			child_ctx->parent_ctx = cloned_ctx;
6696 			child_ctx->parent_gen = parent_ctx->parent_gen;
6697 		} else {
6698 			child_ctx->parent_ctx = parent_ctx;
6699 			child_ctx->parent_gen = parent_ctx->generation;
6700 		}
6701 		get_ctx(child_ctx->parent_ctx);
6702 	}
6703 
6704 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6705 	mutex_unlock(&parent_ctx->mutex);
6706 
6707 	perf_unpin_context(parent_ctx);
6708 	put_ctx(parent_ctx);
6709 
6710 	return ret;
6711 }
6712 
6713 /*
6714  * Initialize the perf_event context in task_struct
6715  */
6716 int perf_event_init_task(struct task_struct *child)
6717 {
6718 	int ctxn, ret;
6719 
6720 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6721 	mutex_init(&child->perf_event_mutex);
6722 	INIT_LIST_HEAD(&child->perf_event_list);
6723 
6724 	for_each_task_context_nr(ctxn) {
6725 		ret = perf_event_init_context(child, ctxn);
6726 		if (ret)
6727 			return ret;
6728 	}
6729 
6730 	return 0;
6731 }
6732 
6733 static void __init perf_event_init_all_cpus(void)
6734 {
6735 	struct swevent_htable *swhash;
6736 	int cpu;
6737 
6738 	for_each_possible_cpu(cpu) {
6739 		swhash = &per_cpu(swevent_htable, cpu);
6740 		mutex_init(&swhash->hlist_mutex);
6741 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6742 	}
6743 }
6744 
6745 static void __cpuinit perf_event_init_cpu(int cpu)
6746 {
6747 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6748 
6749 	mutex_lock(&swhash->hlist_mutex);
6750 	if (swhash->hlist_refcount > 0) {
6751 		struct swevent_hlist *hlist;
6752 
6753 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6754 		WARN_ON(!hlist);
6755 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6756 	}
6757 	mutex_unlock(&swhash->hlist_mutex);
6758 }
6759 
6760 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6761 static void perf_pmu_rotate_stop(struct pmu *pmu)
6762 {
6763 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6764 
6765 	WARN_ON(!irqs_disabled());
6766 
6767 	list_del_init(&cpuctx->rotation_list);
6768 }
6769 
6770 static void __perf_event_exit_context(void *__info)
6771 {
6772 	struct perf_event_context *ctx = __info;
6773 	struct perf_event *event, *tmp;
6774 
6775 	perf_pmu_rotate_stop(ctx->pmu);
6776 
6777 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6778 		__perf_remove_from_context(event);
6779 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6780 		__perf_remove_from_context(event);
6781 }
6782 
6783 static void perf_event_exit_cpu_context(int cpu)
6784 {
6785 	struct perf_event_context *ctx;
6786 	struct pmu *pmu;
6787 	int idx;
6788 
6789 	idx = srcu_read_lock(&pmus_srcu);
6790 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6791 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6792 
6793 		mutex_lock(&ctx->mutex);
6794 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6795 		mutex_unlock(&ctx->mutex);
6796 	}
6797 	srcu_read_unlock(&pmus_srcu, idx);
6798 }
6799 
6800 static void perf_event_exit_cpu(int cpu)
6801 {
6802 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803 
6804 	mutex_lock(&swhash->hlist_mutex);
6805 	swevent_hlist_release(swhash);
6806 	mutex_unlock(&swhash->hlist_mutex);
6807 
6808 	perf_event_exit_cpu_context(cpu);
6809 }
6810 #else
6811 static inline void perf_event_exit_cpu(int cpu) { }
6812 #endif
6813 
6814 static int
6815 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6816 {
6817 	int cpu;
6818 
6819 	for_each_online_cpu(cpu)
6820 		perf_event_exit_cpu(cpu);
6821 
6822 	return NOTIFY_OK;
6823 }
6824 
6825 /*
6826  * Run the perf reboot notifier at the very last possible moment so that
6827  * the generic watchdog code runs as long as possible.
6828  */
6829 static struct notifier_block perf_reboot_notifier = {
6830 	.notifier_call = perf_reboot,
6831 	.priority = INT_MIN,
6832 };
6833 
6834 static int __cpuinit
6835 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6836 {
6837 	unsigned int cpu = (long)hcpu;
6838 
6839 	switch (action & ~CPU_TASKS_FROZEN) {
6840 
6841 	case CPU_UP_PREPARE:
6842 	case CPU_DOWN_FAILED:
6843 		perf_event_init_cpu(cpu);
6844 		break;
6845 
6846 	case CPU_UP_CANCELED:
6847 	case CPU_DOWN_PREPARE:
6848 		perf_event_exit_cpu(cpu);
6849 		break;
6850 
6851 	default:
6852 		break;
6853 	}
6854 
6855 	return NOTIFY_OK;
6856 }
6857 
6858 void __init perf_event_init(void)
6859 {
6860 	int ret;
6861 
6862 	idr_init(&pmu_idr);
6863 
6864 	perf_event_init_all_cpus();
6865 	init_srcu_struct(&pmus_srcu);
6866 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6867 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6868 	perf_pmu_register(&perf_task_clock, NULL, -1);
6869 	perf_tp_register();
6870 	perf_cpu_notifier(perf_cpu_notify);
6871 	register_reboot_notifier(&perf_reboot_notifier);
6872 
6873 	ret = init_hw_breakpoint();
6874 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6875 
6876 	/* do not patch jump label more than once per second */
6877 	jump_label_rate_limit(&perf_sched_events, HZ);
6878 }
6879 
6880 static int __init perf_event_sysfs_init(void)
6881 {
6882 	struct pmu *pmu;
6883 	int ret;
6884 
6885 	mutex_lock(&pmus_lock);
6886 
6887 	ret = bus_register(&pmu_bus);
6888 	if (ret)
6889 		goto unlock;
6890 
6891 	list_for_each_entry(pmu, &pmus, entry) {
6892 		if (!pmu->name || pmu->type < 0)
6893 			continue;
6894 
6895 		ret = pmu_dev_alloc(pmu);
6896 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6897 	}
6898 	pmu_bus_running = 1;
6899 	ret = 0;
6900 
6901 unlock:
6902 	mutex_unlock(&pmus_lock);
6903 
6904 	return ret;
6905 }
6906 device_initcall(perf_event_sysfs_init);
6907 
6908 #ifdef CONFIG_CGROUP_PERF
6909 static struct cgroup_subsys_state *perf_cgroup_create(
6910 	struct cgroup_subsys *ss, struct cgroup *cont)
6911 {
6912 	struct perf_cgroup *jc;
6913 
6914 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6915 	if (!jc)
6916 		return ERR_PTR(-ENOMEM);
6917 
6918 	jc->info = alloc_percpu(struct perf_cgroup_info);
6919 	if (!jc->info) {
6920 		kfree(jc);
6921 		return ERR_PTR(-ENOMEM);
6922 	}
6923 
6924 	return &jc->css;
6925 }
6926 
6927 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6928 				struct cgroup *cont)
6929 {
6930 	struct perf_cgroup *jc;
6931 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6932 			  struct perf_cgroup, css);
6933 	free_percpu(jc->info);
6934 	kfree(jc);
6935 }
6936 
6937 static int __perf_cgroup_move(void *info)
6938 {
6939 	struct task_struct *task = info;
6940 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6941 	return 0;
6942 }
6943 
6944 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6945 			       struct cgroup_taskset *tset)
6946 {
6947 	struct task_struct *task;
6948 
6949 	cgroup_taskset_for_each(task, cgrp, tset)
6950 		task_function_call(task, __perf_cgroup_move, task);
6951 }
6952 
6953 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6954 		struct cgroup *old_cgrp, struct task_struct *task)
6955 {
6956 	/*
6957 	 * cgroup_exit() is called in the copy_process() failure path.
6958 	 * Ignore this case since the task hasn't ran yet, this avoids
6959 	 * trying to poke a half freed task state from generic code.
6960 	 */
6961 	if (!(task->flags & PF_EXITING))
6962 		return;
6963 
6964 	task_function_call(task, __perf_cgroup_move, task);
6965 }
6966 
6967 struct cgroup_subsys perf_subsys = {
6968 	.name		= "perf_event",
6969 	.subsys_id	= perf_subsys_id,
6970 	.create		= perf_cgroup_create,
6971 	.destroy	= perf_cgroup_destroy,
6972 	.exit		= perf_cgroup_exit,
6973 	.attach		= perf_cgroup_attach,
6974 };
6975 #endif /* CONFIG_CGROUP_PERF */
6976