1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 enum event_type_t { 122 EVENT_FLEXIBLE = 0x1, 123 EVENT_PINNED = 0x2, 124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 125 }; 126 127 /* 128 * perf_sched_events : >0 events exist 129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 130 */ 131 struct jump_label_key_deferred perf_sched_events __read_mostly; 132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 133 134 static atomic_t nr_mmap_events __read_mostly; 135 static atomic_t nr_comm_events __read_mostly; 136 static atomic_t nr_task_events __read_mostly; 137 138 static LIST_HEAD(pmus); 139 static DEFINE_MUTEX(pmus_lock); 140 static struct srcu_struct pmus_srcu; 141 142 /* 143 * perf event paranoia level: 144 * -1 - not paranoid at all 145 * 0 - disallow raw tracepoint access for unpriv 146 * 1 - disallow cpu events for unpriv 147 * 2 - disallow kernel profiling for unpriv 148 */ 149 int sysctl_perf_event_paranoid __read_mostly = 1; 150 151 /* Minimum for 512 kiB + 1 user control page */ 152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 153 154 /* 155 * max perf event sample rate 156 */ 157 #define DEFAULT_MAX_SAMPLE_RATE 100000 158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 159 static int max_samples_per_tick __read_mostly = 160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 161 162 int perf_proc_update_handler(struct ctl_table *table, int write, 163 void __user *buffer, size_t *lenp, 164 loff_t *ppos) 165 { 166 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 167 168 if (ret || !write) 169 return ret; 170 171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 172 173 return 0; 174 } 175 176 static atomic64_t perf_event_id; 177 178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 179 enum event_type_t event_type); 180 181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 182 enum event_type_t event_type, 183 struct task_struct *task); 184 185 static void update_context_time(struct perf_event_context *ctx); 186 static u64 perf_event_time(struct perf_event *event); 187 188 static void ring_buffer_attach(struct perf_event *event, 189 struct ring_buffer *rb); 190 191 void __weak perf_event_print_debug(void) { } 192 193 extern __weak const char *perf_pmu_name(void) 194 { 195 return "pmu"; 196 } 197 198 static inline u64 perf_clock(void) 199 { 200 return local_clock(); 201 } 202 203 static inline struct perf_cpu_context * 204 __get_cpu_context(struct perf_event_context *ctx) 205 { 206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 207 } 208 209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 210 struct perf_event_context *ctx) 211 { 212 raw_spin_lock(&cpuctx->ctx.lock); 213 if (ctx) 214 raw_spin_lock(&ctx->lock); 215 } 216 217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 if (ctx) 221 raw_spin_unlock(&ctx->lock); 222 raw_spin_unlock(&cpuctx->ctx.lock); 223 } 224 225 #ifdef CONFIG_CGROUP_PERF 226 227 /* 228 * Must ensure cgroup is pinned (css_get) before calling 229 * this function. In other words, we cannot call this function 230 * if there is no cgroup event for the current CPU context. 231 */ 232 static inline struct perf_cgroup * 233 perf_cgroup_from_task(struct task_struct *task) 234 { 235 return container_of(task_subsys_state(task, perf_subsys_id), 236 struct perf_cgroup, css); 237 } 238 239 static inline bool 240 perf_cgroup_match(struct perf_event *event) 241 { 242 struct perf_event_context *ctx = event->ctx; 243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 244 245 return !event->cgrp || event->cgrp == cpuctx->cgrp; 246 } 247 248 static inline void perf_get_cgroup(struct perf_event *event) 249 { 250 css_get(&event->cgrp->css); 251 } 252 253 static inline void perf_put_cgroup(struct perf_event *event) 254 { 255 css_put(&event->cgrp->css); 256 } 257 258 static inline void perf_detach_cgroup(struct perf_event *event) 259 { 260 perf_put_cgroup(event); 261 event->cgrp = NULL; 262 } 263 264 static inline int is_cgroup_event(struct perf_event *event) 265 { 266 return event->cgrp != NULL; 267 } 268 269 static inline u64 perf_cgroup_event_time(struct perf_event *event) 270 { 271 struct perf_cgroup_info *t; 272 273 t = per_cpu_ptr(event->cgrp->info, event->cpu); 274 return t->time; 275 } 276 277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 278 { 279 struct perf_cgroup_info *info; 280 u64 now; 281 282 now = perf_clock(); 283 284 info = this_cpu_ptr(cgrp->info); 285 286 info->time += now - info->timestamp; 287 info->timestamp = now; 288 } 289 290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 291 { 292 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 293 if (cgrp_out) 294 __update_cgrp_time(cgrp_out); 295 } 296 297 static inline void update_cgrp_time_from_event(struct perf_event *event) 298 { 299 struct perf_cgroup *cgrp; 300 301 /* 302 * ensure we access cgroup data only when needed and 303 * when we know the cgroup is pinned (css_get) 304 */ 305 if (!is_cgroup_event(event)) 306 return; 307 308 cgrp = perf_cgroup_from_task(current); 309 /* 310 * Do not update time when cgroup is not active 311 */ 312 if (cgrp == event->cgrp) 313 __update_cgrp_time(event->cgrp); 314 } 315 316 static inline void 317 perf_cgroup_set_timestamp(struct task_struct *task, 318 struct perf_event_context *ctx) 319 { 320 struct perf_cgroup *cgrp; 321 struct perf_cgroup_info *info; 322 323 /* 324 * ctx->lock held by caller 325 * ensure we do not access cgroup data 326 * unless we have the cgroup pinned (css_get) 327 */ 328 if (!task || !ctx->nr_cgroups) 329 return; 330 331 cgrp = perf_cgroup_from_task(task); 332 info = this_cpu_ptr(cgrp->info); 333 info->timestamp = ctx->timestamp; 334 } 335 336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 338 339 /* 340 * reschedule events based on the cgroup constraint of task. 341 * 342 * mode SWOUT : schedule out everything 343 * mode SWIN : schedule in based on cgroup for next 344 */ 345 void perf_cgroup_switch(struct task_struct *task, int mode) 346 { 347 struct perf_cpu_context *cpuctx; 348 struct pmu *pmu; 349 unsigned long flags; 350 351 /* 352 * disable interrupts to avoid geting nr_cgroup 353 * changes via __perf_event_disable(). Also 354 * avoids preemption. 355 */ 356 local_irq_save(flags); 357 358 /* 359 * we reschedule only in the presence of cgroup 360 * constrained events. 361 */ 362 rcu_read_lock(); 363 364 list_for_each_entry_rcu(pmu, &pmus, entry) { 365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 366 367 /* 368 * perf_cgroup_events says at least one 369 * context on this CPU has cgroup events. 370 * 371 * ctx->nr_cgroups reports the number of cgroup 372 * events for a context. 373 */ 374 if (cpuctx->ctx.nr_cgroups > 0) { 375 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 376 perf_pmu_disable(cpuctx->ctx.pmu); 377 378 if (mode & PERF_CGROUP_SWOUT) { 379 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 380 /* 381 * must not be done before ctxswout due 382 * to event_filter_match() in event_sched_out() 383 */ 384 cpuctx->cgrp = NULL; 385 } 386 387 if (mode & PERF_CGROUP_SWIN) { 388 WARN_ON_ONCE(cpuctx->cgrp); 389 /* set cgrp before ctxsw in to 390 * allow event_filter_match() to not 391 * have to pass task around 392 */ 393 cpuctx->cgrp = perf_cgroup_from_task(task); 394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 395 } 396 perf_pmu_enable(cpuctx->ctx.pmu); 397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 398 } 399 } 400 401 rcu_read_unlock(); 402 403 local_irq_restore(flags); 404 } 405 406 static inline void perf_cgroup_sched_out(struct task_struct *task, 407 struct task_struct *next) 408 { 409 struct perf_cgroup *cgrp1; 410 struct perf_cgroup *cgrp2 = NULL; 411 412 /* 413 * we come here when we know perf_cgroup_events > 0 414 */ 415 cgrp1 = perf_cgroup_from_task(task); 416 417 /* 418 * next is NULL when called from perf_event_enable_on_exec() 419 * that will systematically cause a cgroup_switch() 420 */ 421 if (next) 422 cgrp2 = perf_cgroup_from_task(next); 423 424 /* 425 * only schedule out current cgroup events if we know 426 * that we are switching to a different cgroup. Otherwise, 427 * do no touch the cgroup events. 428 */ 429 if (cgrp1 != cgrp2) 430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 431 } 432 433 static inline void perf_cgroup_sched_in(struct task_struct *prev, 434 struct task_struct *task) 435 { 436 struct perf_cgroup *cgrp1; 437 struct perf_cgroup *cgrp2 = NULL; 438 439 /* 440 * we come here when we know perf_cgroup_events > 0 441 */ 442 cgrp1 = perf_cgroup_from_task(task); 443 444 /* prev can never be NULL */ 445 cgrp2 = perf_cgroup_from_task(prev); 446 447 /* 448 * only need to schedule in cgroup events if we are changing 449 * cgroup during ctxsw. Cgroup events were not scheduled 450 * out of ctxsw out if that was not the case. 451 */ 452 if (cgrp1 != cgrp2) 453 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 454 } 455 456 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 457 struct perf_event_attr *attr, 458 struct perf_event *group_leader) 459 { 460 struct perf_cgroup *cgrp; 461 struct cgroup_subsys_state *css; 462 struct file *file; 463 int ret = 0, fput_needed; 464 465 file = fget_light(fd, &fput_needed); 466 if (!file) 467 return -EBADF; 468 469 css = cgroup_css_from_dir(file, perf_subsys_id); 470 if (IS_ERR(css)) { 471 ret = PTR_ERR(css); 472 goto out; 473 } 474 475 cgrp = container_of(css, struct perf_cgroup, css); 476 event->cgrp = cgrp; 477 478 /* must be done before we fput() the file */ 479 perf_get_cgroup(event); 480 481 /* 482 * all events in a group must monitor 483 * the same cgroup because a task belongs 484 * to only one perf cgroup at a time 485 */ 486 if (group_leader && group_leader->cgrp != cgrp) { 487 perf_detach_cgroup(event); 488 ret = -EINVAL; 489 } 490 out: 491 fput_light(file, fput_needed); 492 return ret; 493 } 494 495 static inline void 496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 497 { 498 struct perf_cgroup_info *t; 499 t = per_cpu_ptr(event->cgrp->info, event->cpu); 500 event->shadow_ctx_time = now - t->timestamp; 501 } 502 503 static inline void 504 perf_cgroup_defer_enabled(struct perf_event *event) 505 { 506 /* 507 * when the current task's perf cgroup does not match 508 * the event's, we need to remember to call the 509 * perf_mark_enable() function the first time a task with 510 * a matching perf cgroup is scheduled in. 511 */ 512 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 513 event->cgrp_defer_enabled = 1; 514 } 515 516 static inline void 517 perf_cgroup_mark_enabled(struct perf_event *event, 518 struct perf_event_context *ctx) 519 { 520 struct perf_event *sub; 521 u64 tstamp = perf_event_time(event); 522 523 if (!event->cgrp_defer_enabled) 524 return; 525 526 event->cgrp_defer_enabled = 0; 527 528 event->tstamp_enabled = tstamp - event->total_time_enabled; 529 list_for_each_entry(sub, &event->sibling_list, group_entry) { 530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 531 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 532 sub->cgrp_defer_enabled = 0; 533 } 534 } 535 } 536 #else /* !CONFIG_CGROUP_PERF */ 537 538 static inline bool 539 perf_cgroup_match(struct perf_event *event) 540 { 541 return true; 542 } 543 544 static inline void perf_detach_cgroup(struct perf_event *event) 545 {} 546 547 static inline int is_cgroup_event(struct perf_event *event) 548 { 549 return 0; 550 } 551 552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 553 { 554 return 0; 555 } 556 557 static inline void update_cgrp_time_from_event(struct perf_event *event) 558 { 559 } 560 561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 562 { 563 } 564 565 static inline void perf_cgroup_sched_out(struct task_struct *task, 566 struct task_struct *next) 567 { 568 } 569 570 static inline void perf_cgroup_sched_in(struct task_struct *prev, 571 struct task_struct *task) 572 { 573 } 574 575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 576 struct perf_event_attr *attr, 577 struct perf_event *group_leader) 578 { 579 return -EINVAL; 580 } 581 582 static inline void 583 perf_cgroup_set_timestamp(struct task_struct *task, 584 struct perf_event_context *ctx) 585 { 586 } 587 588 void 589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 590 { 591 } 592 593 static inline void 594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 595 { 596 } 597 598 static inline u64 perf_cgroup_event_time(struct perf_event *event) 599 { 600 return 0; 601 } 602 603 static inline void 604 perf_cgroup_defer_enabled(struct perf_event *event) 605 { 606 } 607 608 static inline void 609 perf_cgroup_mark_enabled(struct perf_event *event, 610 struct perf_event_context *ctx) 611 { 612 } 613 #endif 614 615 void perf_pmu_disable(struct pmu *pmu) 616 { 617 int *count = this_cpu_ptr(pmu->pmu_disable_count); 618 if (!(*count)++) 619 pmu->pmu_disable(pmu); 620 } 621 622 void perf_pmu_enable(struct pmu *pmu) 623 { 624 int *count = this_cpu_ptr(pmu->pmu_disable_count); 625 if (!--(*count)) 626 pmu->pmu_enable(pmu); 627 } 628 629 static DEFINE_PER_CPU(struct list_head, rotation_list); 630 631 /* 632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 633 * because they're strictly cpu affine and rotate_start is called with IRQs 634 * disabled, while rotate_context is called from IRQ context. 635 */ 636 static void perf_pmu_rotate_start(struct pmu *pmu) 637 { 638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 639 struct list_head *head = &__get_cpu_var(rotation_list); 640 641 WARN_ON(!irqs_disabled()); 642 643 if (list_empty(&cpuctx->rotation_list)) 644 list_add(&cpuctx->rotation_list, head); 645 } 646 647 static void get_ctx(struct perf_event_context *ctx) 648 { 649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 650 } 651 652 static void put_ctx(struct perf_event_context *ctx) 653 { 654 if (atomic_dec_and_test(&ctx->refcount)) { 655 if (ctx->parent_ctx) 656 put_ctx(ctx->parent_ctx); 657 if (ctx->task) 658 put_task_struct(ctx->task); 659 kfree_rcu(ctx, rcu_head); 660 } 661 } 662 663 static void unclone_ctx(struct perf_event_context *ctx) 664 { 665 if (ctx->parent_ctx) { 666 put_ctx(ctx->parent_ctx); 667 ctx->parent_ctx = NULL; 668 } 669 } 670 671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 672 { 673 /* 674 * only top level events have the pid namespace they were created in 675 */ 676 if (event->parent) 677 event = event->parent; 678 679 return task_tgid_nr_ns(p, event->ns); 680 } 681 682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 683 { 684 /* 685 * only top level events have the pid namespace they were created in 686 */ 687 if (event->parent) 688 event = event->parent; 689 690 return task_pid_nr_ns(p, event->ns); 691 } 692 693 /* 694 * If we inherit events we want to return the parent event id 695 * to userspace. 696 */ 697 static u64 primary_event_id(struct perf_event *event) 698 { 699 u64 id = event->id; 700 701 if (event->parent) 702 id = event->parent->id; 703 704 return id; 705 } 706 707 /* 708 * Get the perf_event_context for a task and lock it. 709 * This has to cope with with the fact that until it is locked, 710 * the context could get moved to another task. 711 */ 712 static struct perf_event_context * 713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 714 { 715 struct perf_event_context *ctx; 716 717 rcu_read_lock(); 718 retry: 719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 720 if (ctx) { 721 /* 722 * If this context is a clone of another, it might 723 * get swapped for another underneath us by 724 * perf_event_task_sched_out, though the 725 * rcu_read_lock() protects us from any context 726 * getting freed. Lock the context and check if it 727 * got swapped before we could get the lock, and retry 728 * if so. If we locked the right context, then it 729 * can't get swapped on us any more. 730 */ 731 raw_spin_lock_irqsave(&ctx->lock, *flags); 732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 733 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 734 goto retry; 735 } 736 737 if (!atomic_inc_not_zero(&ctx->refcount)) { 738 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 739 ctx = NULL; 740 } 741 } 742 rcu_read_unlock(); 743 return ctx; 744 } 745 746 /* 747 * Get the context for a task and increment its pin_count so it 748 * can't get swapped to another task. This also increments its 749 * reference count so that the context can't get freed. 750 */ 751 static struct perf_event_context * 752 perf_pin_task_context(struct task_struct *task, int ctxn) 753 { 754 struct perf_event_context *ctx; 755 unsigned long flags; 756 757 ctx = perf_lock_task_context(task, ctxn, &flags); 758 if (ctx) { 759 ++ctx->pin_count; 760 raw_spin_unlock_irqrestore(&ctx->lock, flags); 761 } 762 return ctx; 763 } 764 765 static void perf_unpin_context(struct perf_event_context *ctx) 766 { 767 unsigned long flags; 768 769 raw_spin_lock_irqsave(&ctx->lock, flags); 770 --ctx->pin_count; 771 raw_spin_unlock_irqrestore(&ctx->lock, flags); 772 } 773 774 /* 775 * Update the record of the current time in a context. 776 */ 777 static void update_context_time(struct perf_event_context *ctx) 778 { 779 u64 now = perf_clock(); 780 781 ctx->time += now - ctx->timestamp; 782 ctx->timestamp = now; 783 } 784 785 static u64 perf_event_time(struct perf_event *event) 786 { 787 struct perf_event_context *ctx = event->ctx; 788 789 if (is_cgroup_event(event)) 790 return perf_cgroup_event_time(event); 791 792 return ctx ? ctx->time : 0; 793 } 794 795 /* 796 * Update the total_time_enabled and total_time_running fields for a event. 797 * The caller of this function needs to hold the ctx->lock. 798 */ 799 static void update_event_times(struct perf_event *event) 800 { 801 struct perf_event_context *ctx = event->ctx; 802 u64 run_end; 803 804 if (event->state < PERF_EVENT_STATE_INACTIVE || 805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 806 return; 807 /* 808 * in cgroup mode, time_enabled represents 809 * the time the event was enabled AND active 810 * tasks were in the monitored cgroup. This is 811 * independent of the activity of the context as 812 * there may be a mix of cgroup and non-cgroup events. 813 * 814 * That is why we treat cgroup events differently 815 * here. 816 */ 817 if (is_cgroup_event(event)) 818 run_end = perf_event_time(event); 819 else if (ctx->is_active) 820 run_end = ctx->time; 821 else 822 run_end = event->tstamp_stopped; 823 824 event->total_time_enabled = run_end - event->tstamp_enabled; 825 826 if (event->state == PERF_EVENT_STATE_INACTIVE) 827 run_end = event->tstamp_stopped; 828 else 829 run_end = perf_event_time(event); 830 831 event->total_time_running = run_end - event->tstamp_running; 832 833 } 834 835 /* 836 * Update total_time_enabled and total_time_running for all events in a group. 837 */ 838 static void update_group_times(struct perf_event *leader) 839 { 840 struct perf_event *event; 841 842 update_event_times(leader); 843 list_for_each_entry(event, &leader->sibling_list, group_entry) 844 update_event_times(event); 845 } 846 847 static struct list_head * 848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 849 { 850 if (event->attr.pinned) 851 return &ctx->pinned_groups; 852 else 853 return &ctx->flexible_groups; 854 } 855 856 /* 857 * Add a event from the lists for its context. 858 * Must be called with ctx->mutex and ctx->lock held. 859 */ 860 static void 861 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 862 { 863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 864 event->attach_state |= PERF_ATTACH_CONTEXT; 865 866 /* 867 * If we're a stand alone event or group leader, we go to the context 868 * list, group events are kept attached to the group so that 869 * perf_group_detach can, at all times, locate all siblings. 870 */ 871 if (event->group_leader == event) { 872 struct list_head *list; 873 874 if (is_software_event(event)) 875 event->group_flags |= PERF_GROUP_SOFTWARE; 876 877 list = ctx_group_list(event, ctx); 878 list_add_tail(&event->group_entry, list); 879 } 880 881 if (is_cgroup_event(event)) 882 ctx->nr_cgroups++; 883 884 list_add_rcu(&event->event_entry, &ctx->event_list); 885 if (!ctx->nr_events) 886 perf_pmu_rotate_start(ctx->pmu); 887 ctx->nr_events++; 888 if (event->attr.inherit_stat) 889 ctx->nr_stat++; 890 } 891 892 /* 893 * Called at perf_event creation and when events are attached/detached from a 894 * group. 895 */ 896 static void perf_event__read_size(struct perf_event *event) 897 { 898 int entry = sizeof(u64); /* value */ 899 int size = 0; 900 int nr = 1; 901 902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 903 size += sizeof(u64); 904 905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 906 size += sizeof(u64); 907 908 if (event->attr.read_format & PERF_FORMAT_ID) 909 entry += sizeof(u64); 910 911 if (event->attr.read_format & PERF_FORMAT_GROUP) { 912 nr += event->group_leader->nr_siblings; 913 size += sizeof(u64); 914 } 915 916 size += entry * nr; 917 event->read_size = size; 918 } 919 920 static void perf_event__header_size(struct perf_event *event) 921 { 922 struct perf_sample_data *data; 923 u64 sample_type = event->attr.sample_type; 924 u16 size = 0; 925 926 perf_event__read_size(event); 927 928 if (sample_type & PERF_SAMPLE_IP) 929 size += sizeof(data->ip); 930 931 if (sample_type & PERF_SAMPLE_ADDR) 932 size += sizeof(data->addr); 933 934 if (sample_type & PERF_SAMPLE_PERIOD) 935 size += sizeof(data->period); 936 937 if (sample_type & PERF_SAMPLE_READ) 938 size += event->read_size; 939 940 event->header_size = size; 941 } 942 943 static void perf_event__id_header_size(struct perf_event *event) 944 { 945 struct perf_sample_data *data; 946 u64 sample_type = event->attr.sample_type; 947 u16 size = 0; 948 949 if (sample_type & PERF_SAMPLE_TID) 950 size += sizeof(data->tid_entry); 951 952 if (sample_type & PERF_SAMPLE_TIME) 953 size += sizeof(data->time); 954 955 if (sample_type & PERF_SAMPLE_ID) 956 size += sizeof(data->id); 957 958 if (sample_type & PERF_SAMPLE_STREAM_ID) 959 size += sizeof(data->stream_id); 960 961 if (sample_type & PERF_SAMPLE_CPU) 962 size += sizeof(data->cpu_entry); 963 964 event->id_header_size = size; 965 } 966 967 static void perf_group_attach(struct perf_event *event) 968 { 969 struct perf_event *group_leader = event->group_leader, *pos; 970 971 /* 972 * We can have double attach due to group movement in perf_event_open. 973 */ 974 if (event->attach_state & PERF_ATTACH_GROUP) 975 return; 976 977 event->attach_state |= PERF_ATTACH_GROUP; 978 979 if (group_leader == event) 980 return; 981 982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 983 !is_software_event(event)) 984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 985 986 list_add_tail(&event->group_entry, &group_leader->sibling_list); 987 group_leader->nr_siblings++; 988 989 perf_event__header_size(group_leader); 990 991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 992 perf_event__header_size(pos); 993 } 994 995 /* 996 * Remove a event from the lists for its context. 997 * Must be called with ctx->mutex and ctx->lock held. 998 */ 999 static void 1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 /* 1004 * We can have double detach due to exit/hot-unplug + close. 1005 */ 1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1007 return; 1008 1009 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1010 1011 if (is_cgroup_event(event)) { 1012 ctx->nr_cgroups--; 1013 cpuctx = __get_cpu_context(ctx); 1014 /* 1015 * if there are no more cgroup events 1016 * then cler cgrp to avoid stale pointer 1017 * in update_cgrp_time_from_cpuctx() 1018 */ 1019 if (!ctx->nr_cgroups) 1020 cpuctx->cgrp = NULL; 1021 } 1022 1023 ctx->nr_events--; 1024 if (event->attr.inherit_stat) 1025 ctx->nr_stat--; 1026 1027 list_del_rcu(&event->event_entry); 1028 1029 if (event->group_leader == event) 1030 list_del_init(&event->group_entry); 1031 1032 update_group_times(event); 1033 1034 /* 1035 * If event was in error state, then keep it 1036 * that way, otherwise bogus counts will be 1037 * returned on read(). The only way to get out 1038 * of error state is by explicit re-enabling 1039 * of the event 1040 */ 1041 if (event->state > PERF_EVENT_STATE_OFF) 1042 event->state = PERF_EVENT_STATE_OFF; 1043 } 1044 1045 static void perf_group_detach(struct perf_event *event) 1046 { 1047 struct perf_event *sibling, *tmp; 1048 struct list_head *list = NULL; 1049 1050 /* 1051 * We can have double detach due to exit/hot-unplug + close. 1052 */ 1053 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1054 return; 1055 1056 event->attach_state &= ~PERF_ATTACH_GROUP; 1057 1058 /* 1059 * If this is a sibling, remove it from its group. 1060 */ 1061 if (event->group_leader != event) { 1062 list_del_init(&event->group_entry); 1063 event->group_leader->nr_siblings--; 1064 goto out; 1065 } 1066 1067 if (!list_empty(&event->group_entry)) 1068 list = &event->group_entry; 1069 1070 /* 1071 * If this was a group event with sibling events then 1072 * upgrade the siblings to singleton events by adding them 1073 * to whatever list we are on. 1074 */ 1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1076 if (list) 1077 list_move_tail(&sibling->group_entry, list); 1078 sibling->group_leader = sibling; 1079 1080 /* Inherit group flags from the previous leader */ 1081 sibling->group_flags = event->group_flags; 1082 } 1083 1084 out: 1085 perf_event__header_size(event->group_leader); 1086 1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1088 perf_event__header_size(tmp); 1089 } 1090 1091 static inline int 1092 event_filter_match(struct perf_event *event) 1093 { 1094 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1095 && perf_cgroup_match(event); 1096 } 1097 1098 static void 1099 event_sched_out(struct perf_event *event, 1100 struct perf_cpu_context *cpuctx, 1101 struct perf_event_context *ctx) 1102 { 1103 u64 tstamp = perf_event_time(event); 1104 u64 delta; 1105 /* 1106 * An event which could not be activated because of 1107 * filter mismatch still needs to have its timings 1108 * maintained, otherwise bogus information is return 1109 * via read() for time_enabled, time_running: 1110 */ 1111 if (event->state == PERF_EVENT_STATE_INACTIVE 1112 && !event_filter_match(event)) { 1113 delta = tstamp - event->tstamp_stopped; 1114 event->tstamp_running += delta; 1115 event->tstamp_stopped = tstamp; 1116 } 1117 1118 if (event->state != PERF_EVENT_STATE_ACTIVE) 1119 return; 1120 1121 event->state = PERF_EVENT_STATE_INACTIVE; 1122 if (event->pending_disable) { 1123 event->pending_disable = 0; 1124 event->state = PERF_EVENT_STATE_OFF; 1125 } 1126 event->tstamp_stopped = tstamp; 1127 event->pmu->del(event, 0); 1128 event->oncpu = -1; 1129 1130 if (!is_software_event(event)) 1131 cpuctx->active_oncpu--; 1132 ctx->nr_active--; 1133 if (event->attr.freq && event->attr.sample_freq) 1134 ctx->nr_freq--; 1135 if (event->attr.exclusive || !cpuctx->active_oncpu) 1136 cpuctx->exclusive = 0; 1137 } 1138 1139 static void 1140 group_sched_out(struct perf_event *group_event, 1141 struct perf_cpu_context *cpuctx, 1142 struct perf_event_context *ctx) 1143 { 1144 struct perf_event *event; 1145 int state = group_event->state; 1146 1147 event_sched_out(group_event, cpuctx, ctx); 1148 1149 /* 1150 * Schedule out siblings (if any): 1151 */ 1152 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1153 event_sched_out(event, cpuctx, ctx); 1154 1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1156 cpuctx->exclusive = 0; 1157 } 1158 1159 /* 1160 * Cross CPU call to remove a performance event 1161 * 1162 * We disable the event on the hardware level first. After that we 1163 * remove it from the context list. 1164 */ 1165 static int __perf_remove_from_context(void *info) 1166 { 1167 struct perf_event *event = info; 1168 struct perf_event_context *ctx = event->ctx; 1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1170 1171 raw_spin_lock(&ctx->lock); 1172 event_sched_out(event, cpuctx, ctx); 1173 list_del_event(event, ctx); 1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1175 ctx->is_active = 0; 1176 cpuctx->task_ctx = NULL; 1177 } 1178 raw_spin_unlock(&ctx->lock); 1179 1180 return 0; 1181 } 1182 1183 1184 /* 1185 * Remove the event from a task's (or a CPU's) list of events. 1186 * 1187 * CPU events are removed with a smp call. For task events we only 1188 * call when the task is on a CPU. 1189 * 1190 * If event->ctx is a cloned context, callers must make sure that 1191 * every task struct that event->ctx->task could possibly point to 1192 * remains valid. This is OK when called from perf_release since 1193 * that only calls us on the top-level context, which can't be a clone. 1194 * When called from perf_event_exit_task, it's OK because the 1195 * context has been detached from its task. 1196 */ 1197 static void perf_remove_from_context(struct perf_event *event) 1198 { 1199 struct perf_event_context *ctx = event->ctx; 1200 struct task_struct *task = ctx->task; 1201 1202 lockdep_assert_held(&ctx->mutex); 1203 1204 if (!task) { 1205 /* 1206 * Per cpu events are removed via an smp call and 1207 * the removal is always successful. 1208 */ 1209 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1210 return; 1211 } 1212 1213 retry: 1214 if (!task_function_call(task, __perf_remove_from_context, event)) 1215 return; 1216 1217 raw_spin_lock_irq(&ctx->lock); 1218 /* 1219 * If we failed to find a running task, but find the context active now 1220 * that we've acquired the ctx->lock, retry. 1221 */ 1222 if (ctx->is_active) { 1223 raw_spin_unlock_irq(&ctx->lock); 1224 goto retry; 1225 } 1226 1227 /* 1228 * Since the task isn't running, its safe to remove the event, us 1229 * holding the ctx->lock ensures the task won't get scheduled in. 1230 */ 1231 list_del_event(event, ctx); 1232 raw_spin_unlock_irq(&ctx->lock); 1233 } 1234 1235 /* 1236 * Cross CPU call to disable a performance event 1237 */ 1238 static int __perf_event_disable(void *info) 1239 { 1240 struct perf_event *event = info; 1241 struct perf_event_context *ctx = event->ctx; 1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1243 1244 /* 1245 * If this is a per-task event, need to check whether this 1246 * event's task is the current task on this cpu. 1247 * 1248 * Can trigger due to concurrent perf_event_context_sched_out() 1249 * flipping contexts around. 1250 */ 1251 if (ctx->task && cpuctx->task_ctx != ctx) 1252 return -EINVAL; 1253 1254 raw_spin_lock(&ctx->lock); 1255 1256 /* 1257 * If the event is on, turn it off. 1258 * If it is in error state, leave it in error state. 1259 */ 1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1261 update_context_time(ctx); 1262 update_cgrp_time_from_event(event); 1263 update_group_times(event); 1264 if (event == event->group_leader) 1265 group_sched_out(event, cpuctx, ctx); 1266 else 1267 event_sched_out(event, cpuctx, ctx); 1268 event->state = PERF_EVENT_STATE_OFF; 1269 } 1270 1271 raw_spin_unlock(&ctx->lock); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Disable a event. 1278 * 1279 * If event->ctx is a cloned context, callers must make sure that 1280 * every task struct that event->ctx->task could possibly point to 1281 * remains valid. This condition is satisifed when called through 1282 * perf_event_for_each_child or perf_event_for_each because they 1283 * hold the top-level event's child_mutex, so any descendant that 1284 * goes to exit will block in sync_child_event. 1285 * When called from perf_pending_event it's OK because event->ctx 1286 * is the current context on this CPU and preemption is disabled, 1287 * hence we can't get into perf_event_task_sched_out for this context. 1288 */ 1289 void perf_event_disable(struct perf_event *event) 1290 { 1291 struct perf_event_context *ctx = event->ctx; 1292 struct task_struct *task = ctx->task; 1293 1294 if (!task) { 1295 /* 1296 * Disable the event on the cpu that it's on 1297 */ 1298 cpu_function_call(event->cpu, __perf_event_disable, event); 1299 return; 1300 } 1301 1302 retry: 1303 if (!task_function_call(task, __perf_event_disable, event)) 1304 return; 1305 1306 raw_spin_lock_irq(&ctx->lock); 1307 /* 1308 * If the event is still active, we need to retry the cross-call. 1309 */ 1310 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1311 raw_spin_unlock_irq(&ctx->lock); 1312 /* 1313 * Reload the task pointer, it might have been changed by 1314 * a concurrent perf_event_context_sched_out(). 1315 */ 1316 task = ctx->task; 1317 goto retry; 1318 } 1319 1320 /* 1321 * Since we have the lock this context can't be scheduled 1322 * in, so we can change the state safely. 1323 */ 1324 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1325 update_group_times(event); 1326 event->state = PERF_EVENT_STATE_OFF; 1327 } 1328 raw_spin_unlock_irq(&ctx->lock); 1329 } 1330 EXPORT_SYMBOL_GPL(perf_event_disable); 1331 1332 static void perf_set_shadow_time(struct perf_event *event, 1333 struct perf_event_context *ctx, 1334 u64 tstamp) 1335 { 1336 /* 1337 * use the correct time source for the time snapshot 1338 * 1339 * We could get by without this by leveraging the 1340 * fact that to get to this function, the caller 1341 * has most likely already called update_context_time() 1342 * and update_cgrp_time_xx() and thus both timestamp 1343 * are identical (or very close). Given that tstamp is, 1344 * already adjusted for cgroup, we could say that: 1345 * tstamp - ctx->timestamp 1346 * is equivalent to 1347 * tstamp - cgrp->timestamp. 1348 * 1349 * Then, in perf_output_read(), the calculation would 1350 * work with no changes because: 1351 * - event is guaranteed scheduled in 1352 * - no scheduled out in between 1353 * - thus the timestamp would be the same 1354 * 1355 * But this is a bit hairy. 1356 * 1357 * So instead, we have an explicit cgroup call to remain 1358 * within the time time source all along. We believe it 1359 * is cleaner and simpler to understand. 1360 */ 1361 if (is_cgroup_event(event)) 1362 perf_cgroup_set_shadow_time(event, tstamp); 1363 else 1364 event->shadow_ctx_time = tstamp - ctx->timestamp; 1365 } 1366 1367 #define MAX_INTERRUPTS (~0ULL) 1368 1369 static void perf_log_throttle(struct perf_event *event, int enable); 1370 1371 static int 1372 event_sched_in(struct perf_event *event, 1373 struct perf_cpu_context *cpuctx, 1374 struct perf_event_context *ctx) 1375 { 1376 u64 tstamp = perf_event_time(event); 1377 1378 if (event->state <= PERF_EVENT_STATE_OFF) 1379 return 0; 1380 1381 event->state = PERF_EVENT_STATE_ACTIVE; 1382 event->oncpu = smp_processor_id(); 1383 1384 /* 1385 * Unthrottle events, since we scheduled we might have missed several 1386 * ticks already, also for a heavily scheduling task there is little 1387 * guarantee it'll get a tick in a timely manner. 1388 */ 1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1390 perf_log_throttle(event, 1); 1391 event->hw.interrupts = 0; 1392 } 1393 1394 /* 1395 * The new state must be visible before we turn it on in the hardware: 1396 */ 1397 smp_wmb(); 1398 1399 if (event->pmu->add(event, PERF_EF_START)) { 1400 event->state = PERF_EVENT_STATE_INACTIVE; 1401 event->oncpu = -1; 1402 return -EAGAIN; 1403 } 1404 1405 event->tstamp_running += tstamp - event->tstamp_stopped; 1406 1407 perf_set_shadow_time(event, ctx, tstamp); 1408 1409 if (!is_software_event(event)) 1410 cpuctx->active_oncpu++; 1411 ctx->nr_active++; 1412 if (event->attr.freq && event->attr.sample_freq) 1413 ctx->nr_freq++; 1414 1415 if (event->attr.exclusive) 1416 cpuctx->exclusive = 1; 1417 1418 return 0; 1419 } 1420 1421 static int 1422 group_sched_in(struct perf_event *group_event, 1423 struct perf_cpu_context *cpuctx, 1424 struct perf_event_context *ctx) 1425 { 1426 struct perf_event *event, *partial_group = NULL; 1427 struct pmu *pmu = group_event->pmu; 1428 u64 now = ctx->time; 1429 bool simulate = false; 1430 1431 if (group_event->state == PERF_EVENT_STATE_OFF) 1432 return 0; 1433 1434 pmu->start_txn(pmu); 1435 1436 if (event_sched_in(group_event, cpuctx, ctx)) { 1437 pmu->cancel_txn(pmu); 1438 return -EAGAIN; 1439 } 1440 1441 /* 1442 * Schedule in siblings as one group (if any): 1443 */ 1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1445 if (event_sched_in(event, cpuctx, ctx)) { 1446 partial_group = event; 1447 goto group_error; 1448 } 1449 } 1450 1451 if (!pmu->commit_txn(pmu)) 1452 return 0; 1453 1454 group_error: 1455 /* 1456 * Groups can be scheduled in as one unit only, so undo any 1457 * partial group before returning: 1458 * The events up to the failed event are scheduled out normally, 1459 * tstamp_stopped will be updated. 1460 * 1461 * The failed events and the remaining siblings need to have 1462 * their timings updated as if they had gone thru event_sched_in() 1463 * and event_sched_out(). This is required to get consistent timings 1464 * across the group. This also takes care of the case where the group 1465 * could never be scheduled by ensuring tstamp_stopped is set to mark 1466 * the time the event was actually stopped, such that time delta 1467 * calculation in update_event_times() is correct. 1468 */ 1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1470 if (event == partial_group) 1471 simulate = true; 1472 1473 if (simulate) { 1474 event->tstamp_running += now - event->tstamp_stopped; 1475 event->tstamp_stopped = now; 1476 } else { 1477 event_sched_out(event, cpuctx, ctx); 1478 } 1479 } 1480 event_sched_out(group_event, cpuctx, ctx); 1481 1482 pmu->cancel_txn(pmu); 1483 1484 return -EAGAIN; 1485 } 1486 1487 /* 1488 * Work out whether we can put this event group on the CPU now. 1489 */ 1490 static int group_can_go_on(struct perf_event *event, 1491 struct perf_cpu_context *cpuctx, 1492 int can_add_hw) 1493 { 1494 /* 1495 * Groups consisting entirely of software events can always go on. 1496 */ 1497 if (event->group_flags & PERF_GROUP_SOFTWARE) 1498 return 1; 1499 /* 1500 * If an exclusive group is already on, no other hardware 1501 * events can go on. 1502 */ 1503 if (cpuctx->exclusive) 1504 return 0; 1505 /* 1506 * If this group is exclusive and there are already 1507 * events on the CPU, it can't go on. 1508 */ 1509 if (event->attr.exclusive && cpuctx->active_oncpu) 1510 return 0; 1511 /* 1512 * Otherwise, try to add it if all previous groups were able 1513 * to go on. 1514 */ 1515 return can_add_hw; 1516 } 1517 1518 static void add_event_to_ctx(struct perf_event *event, 1519 struct perf_event_context *ctx) 1520 { 1521 u64 tstamp = perf_event_time(event); 1522 1523 list_add_event(event, ctx); 1524 perf_group_attach(event); 1525 event->tstamp_enabled = tstamp; 1526 event->tstamp_running = tstamp; 1527 event->tstamp_stopped = tstamp; 1528 } 1529 1530 static void task_ctx_sched_out(struct perf_event_context *ctx); 1531 static void 1532 ctx_sched_in(struct perf_event_context *ctx, 1533 struct perf_cpu_context *cpuctx, 1534 enum event_type_t event_type, 1535 struct task_struct *task); 1536 1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1538 struct perf_event_context *ctx, 1539 struct task_struct *task) 1540 { 1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1542 if (ctx) 1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1545 if (ctx) 1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1547 } 1548 1549 /* 1550 * Cross CPU call to install and enable a performance event 1551 * 1552 * Must be called with ctx->mutex held 1553 */ 1554 static int __perf_install_in_context(void *info) 1555 { 1556 struct perf_event *event = info; 1557 struct perf_event_context *ctx = event->ctx; 1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1559 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1560 struct task_struct *task = current; 1561 1562 perf_ctx_lock(cpuctx, task_ctx); 1563 perf_pmu_disable(cpuctx->ctx.pmu); 1564 1565 /* 1566 * If there was an active task_ctx schedule it out. 1567 */ 1568 if (task_ctx) 1569 task_ctx_sched_out(task_ctx); 1570 1571 /* 1572 * If the context we're installing events in is not the 1573 * active task_ctx, flip them. 1574 */ 1575 if (ctx->task && task_ctx != ctx) { 1576 if (task_ctx) 1577 raw_spin_unlock(&task_ctx->lock); 1578 raw_spin_lock(&ctx->lock); 1579 task_ctx = ctx; 1580 } 1581 1582 if (task_ctx) { 1583 cpuctx->task_ctx = task_ctx; 1584 task = task_ctx->task; 1585 } 1586 1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1588 1589 update_context_time(ctx); 1590 /* 1591 * update cgrp time only if current cgrp 1592 * matches event->cgrp. Must be done before 1593 * calling add_event_to_ctx() 1594 */ 1595 update_cgrp_time_from_event(event); 1596 1597 add_event_to_ctx(event, ctx); 1598 1599 /* 1600 * Schedule everything back in 1601 */ 1602 perf_event_sched_in(cpuctx, task_ctx, task); 1603 1604 perf_pmu_enable(cpuctx->ctx.pmu); 1605 perf_ctx_unlock(cpuctx, task_ctx); 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * Attach a performance event to a context 1612 * 1613 * First we add the event to the list with the hardware enable bit 1614 * in event->hw_config cleared. 1615 * 1616 * If the event is attached to a task which is on a CPU we use a smp 1617 * call to enable it in the task context. The task might have been 1618 * scheduled away, but we check this in the smp call again. 1619 */ 1620 static void 1621 perf_install_in_context(struct perf_event_context *ctx, 1622 struct perf_event *event, 1623 int cpu) 1624 { 1625 struct task_struct *task = ctx->task; 1626 1627 lockdep_assert_held(&ctx->mutex); 1628 1629 event->ctx = ctx; 1630 1631 if (!task) { 1632 /* 1633 * Per cpu events are installed via an smp call and 1634 * the install is always successful. 1635 */ 1636 cpu_function_call(cpu, __perf_install_in_context, event); 1637 return; 1638 } 1639 1640 retry: 1641 if (!task_function_call(task, __perf_install_in_context, event)) 1642 return; 1643 1644 raw_spin_lock_irq(&ctx->lock); 1645 /* 1646 * If we failed to find a running task, but find the context active now 1647 * that we've acquired the ctx->lock, retry. 1648 */ 1649 if (ctx->is_active) { 1650 raw_spin_unlock_irq(&ctx->lock); 1651 goto retry; 1652 } 1653 1654 /* 1655 * Since the task isn't running, its safe to add the event, us holding 1656 * the ctx->lock ensures the task won't get scheduled in. 1657 */ 1658 add_event_to_ctx(event, ctx); 1659 raw_spin_unlock_irq(&ctx->lock); 1660 } 1661 1662 /* 1663 * Put a event into inactive state and update time fields. 1664 * Enabling the leader of a group effectively enables all 1665 * the group members that aren't explicitly disabled, so we 1666 * have to update their ->tstamp_enabled also. 1667 * Note: this works for group members as well as group leaders 1668 * since the non-leader members' sibling_lists will be empty. 1669 */ 1670 static void __perf_event_mark_enabled(struct perf_event *event) 1671 { 1672 struct perf_event *sub; 1673 u64 tstamp = perf_event_time(event); 1674 1675 event->state = PERF_EVENT_STATE_INACTIVE; 1676 event->tstamp_enabled = tstamp - event->total_time_enabled; 1677 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1680 } 1681 } 1682 1683 /* 1684 * Cross CPU call to enable a performance event 1685 */ 1686 static int __perf_event_enable(void *info) 1687 { 1688 struct perf_event *event = info; 1689 struct perf_event_context *ctx = event->ctx; 1690 struct perf_event *leader = event->group_leader; 1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1692 int err; 1693 1694 if (WARN_ON_ONCE(!ctx->is_active)) 1695 return -EINVAL; 1696 1697 raw_spin_lock(&ctx->lock); 1698 update_context_time(ctx); 1699 1700 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1701 goto unlock; 1702 1703 /* 1704 * set current task's cgroup time reference point 1705 */ 1706 perf_cgroup_set_timestamp(current, ctx); 1707 1708 __perf_event_mark_enabled(event); 1709 1710 if (!event_filter_match(event)) { 1711 if (is_cgroup_event(event)) 1712 perf_cgroup_defer_enabled(event); 1713 goto unlock; 1714 } 1715 1716 /* 1717 * If the event is in a group and isn't the group leader, 1718 * then don't put it on unless the group is on. 1719 */ 1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1721 goto unlock; 1722 1723 if (!group_can_go_on(event, cpuctx, 1)) { 1724 err = -EEXIST; 1725 } else { 1726 if (event == leader) 1727 err = group_sched_in(event, cpuctx, ctx); 1728 else 1729 err = event_sched_in(event, cpuctx, ctx); 1730 } 1731 1732 if (err) { 1733 /* 1734 * If this event can't go on and it's part of a 1735 * group, then the whole group has to come off. 1736 */ 1737 if (leader != event) 1738 group_sched_out(leader, cpuctx, ctx); 1739 if (leader->attr.pinned) { 1740 update_group_times(leader); 1741 leader->state = PERF_EVENT_STATE_ERROR; 1742 } 1743 } 1744 1745 unlock: 1746 raw_spin_unlock(&ctx->lock); 1747 1748 return 0; 1749 } 1750 1751 /* 1752 * Enable a event. 1753 * 1754 * If event->ctx is a cloned context, callers must make sure that 1755 * every task struct that event->ctx->task could possibly point to 1756 * remains valid. This condition is satisfied when called through 1757 * perf_event_for_each_child or perf_event_for_each as described 1758 * for perf_event_disable. 1759 */ 1760 void perf_event_enable(struct perf_event *event) 1761 { 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Enable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_enable, event); 1770 return; 1771 } 1772 1773 raw_spin_lock_irq(&ctx->lock); 1774 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1775 goto out; 1776 1777 /* 1778 * If the event is in error state, clear that first. 1779 * That way, if we see the event in error state below, we 1780 * know that it has gone back into error state, as distinct 1781 * from the task having been scheduled away before the 1782 * cross-call arrived. 1783 */ 1784 if (event->state == PERF_EVENT_STATE_ERROR) 1785 event->state = PERF_EVENT_STATE_OFF; 1786 1787 retry: 1788 if (!ctx->is_active) { 1789 __perf_event_mark_enabled(event); 1790 goto out; 1791 } 1792 1793 raw_spin_unlock_irq(&ctx->lock); 1794 1795 if (!task_function_call(task, __perf_event_enable, event)) 1796 return; 1797 1798 raw_spin_lock_irq(&ctx->lock); 1799 1800 /* 1801 * If the context is active and the event is still off, 1802 * we need to retry the cross-call. 1803 */ 1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1805 /* 1806 * task could have been flipped by a concurrent 1807 * perf_event_context_sched_out() 1808 */ 1809 task = ctx->task; 1810 goto retry; 1811 } 1812 1813 out: 1814 raw_spin_unlock_irq(&ctx->lock); 1815 } 1816 EXPORT_SYMBOL_GPL(perf_event_enable); 1817 1818 int perf_event_refresh(struct perf_event *event, int refresh) 1819 { 1820 /* 1821 * not supported on inherited events 1822 */ 1823 if (event->attr.inherit || !is_sampling_event(event)) 1824 return -EINVAL; 1825 1826 atomic_add(refresh, &event->event_limit); 1827 perf_event_enable(event); 1828 1829 return 0; 1830 } 1831 EXPORT_SYMBOL_GPL(perf_event_refresh); 1832 1833 static void ctx_sched_out(struct perf_event_context *ctx, 1834 struct perf_cpu_context *cpuctx, 1835 enum event_type_t event_type) 1836 { 1837 struct perf_event *event; 1838 int is_active = ctx->is_active; 1839 1840 ctx->is_active &= ~event_type; 1841 if (likely(!ctx->nr_events)) 1842 return; 1843 1844 update_context_time(ctx); 1845 update_cgrp_time_from_cpuctx(cpuctx); 1846 if (!ctx->nr_active) 1847 return; 1848 1849 perf_pmu_disable(ctx->pmu); 1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1852 group_sched_out(event, cpuctx, ctx); 1853 } 1854 1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1857 group_sched_out(event, cpuctx, ctx); 1858 } 1859 perf_pmu_enable(ctx->pmu); 1860 } 1861 1862 /* 1863 * Test whether two contexts are equivalent, i.e. whether they 1864 * have both been cloned from the same version of the same context 1865 * and they both have the same number of enabled events. 1866 * If the number of enabled events is the same, then the set 1867 * of enabled events should be the same, because these are both 1868 * inherited contexts, therefore we can't access individual events 1869 * in them directly with an fd; we can only enable/disable all 1870 * events via prctl, or enable/disable all events in a family 1871 * via ioctl, which will have the same effect on both contexts. 1872 */ 1873 static int context_equiv(struct perf_event_context *ctx1, 1874 struct perf_event_context *ctx2) 1875 { 1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1877 && ctx1->parent_gen == ctx2->parent_gen 1878 && !ctx1->pin_count && !ctx2->pin_count; 1879 } 1880 1881 static void __perf_event_sync_stat(struct perf_event *event, 1882 struct perf_event *next_event) 1883 { 1884 u64 value; 1885 1886 if (!event->attr.inherit_stat) 1887 return; 1888 1889 /* 1890 * Update the event value, we cannot use perf_event_read() 1891 * because we're in the middle of a context switch and have IRQs 1892 * disabled, which upsets smp_call_function_single(), however 1893 * we know the event must be on the current CPU, therefore we 1894 * don't need to use it. 1895 */ 1896 switch (event->state) { 1897 case PERF_EVENT_STATE_ACTIVE: 1898 event->pmu->read(event); 1899 /* fall-through */ 1900 1901 case PERF_EVENT_STATE_INACTIVE: 1902 update_event_times(event); 1903 break; 1904 1905 default: 1906 break; 1907 } 1908 1909 /* 1910 * In order to keep per-task stats reliable we need to flip the event 1911 * values when we flip the contexts. 1912 */ 1913 value = local64_read(&next_event->count); 1914 value = local64_xchg(&event->count, value); 1915 local64_set(&next_event->count, value); 1916 1917 swap(event->total_time_enabled, next_event->total_time_enabled); 1918 swap(event->total_time_running, next_event->total_time_running); 1919 1920 /* 1921 * Since we swizzled the values, update the user visible data too. 1922 */ 1923 perf_event_update_userpage(event); 1924 perf_event_update_userpage(next_event); 1925 } 1926 1927 #define list_next_entry(pos, member) \ 1928 list_entry(pos->member.next, typeof(*pos), member) 1929 1930 static void perf_event_sync_stat(struct perf_event_context *ctx, 1931 struct perf_event_context *next_ctx) 1932 { 1933 struct perf_event *event, *next_event; 1934 1935 if (!ctx->nr_stat) 1936 return; 1937 1938 update_context_time(ctx); 1939 1940 event = list_first_entry(&ctx->event_list, 1941 struct perf_event, event_entry); 1942 1943 next_event = list_first_entry(&next_ctx->event_list, 1944 struct perf_event, event_entry); 1945 1946 while (&event->event_entry != &ctx->event_list && 1947 &next_event->event_entry != &next_ctx->event_list) { 1948 1949 __perf_event_sync_stat(event, next_event); 1950 1951 event = list_next_entry(event, event_entry); 1952 next_event = list_next_entry(next_event, event_entry); 1953 } 1954 } 1955 1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1957 struct task_struct *next) 1958 { 1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1960 struct perf_event_context *next_ctx; 1961 struct perf_event_context *parent; 1962 struct perf_cpu_context *cpuctx; 1963 int do_switch = 1; 1964 1965 if (likely(!ctx)) 1966 return; 1967 1968 cpuctx = __get_cpu_context(ctx); 1969 if (!cpuctx->task_ctx) 1970 return; 1971 1972 rcu_read_lock(); 1973 parent = rcu_dereference(ctx->parent_ctx); 1974 next_ctx = next->perf_event_ctxp[ctxn]; 1975 if (parent && next_ctx && 1976 rcu_dereference(next_ctx->parent_ctx) == parent) { 1977 /* 1978 * Looks like the two contexts are clones, so we might be 1979 * able to optimize the context switch. We lock both 1980 * contexts and check that they are clones under the 1981 * lock (including re-checking that neither has been 1982 * uncloned in the meantime). It doesn't matter which 1983 * order we take the locks because no other cpu could 1984 * be trying to lock both of these tasks. 1985 */ 1986 raw_spin_lock(&ctx->lock); 1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1988 if (context_equiv(ctx, next_ctx)) { 1989 /* 1990 * XXX do we need a memory barrier of sorts 1991 * wrt to rcu_dereference() of perf_event_ctxp 1992 */ 1993 task->perf_event_ctxp[ctxn] = next_ctx; 1994 next->perf_event_ctxp[ctxn] = ctx; 1995 ctx->task = next; 1996 next_ctx->task = task; 1997 do_switch = 0; 1998 1999 perf_event_sync_stat(ctx, next_ctx); 2000 } 2001 raw_spin_unlock(&next_ctx->lock); 2002 raw_spin_unlock(&ctx->lock); 2003 } 2004 rcu_read_unlock(); 2005 2006 if (do_switch) { 2007 raw_spin_lock(&ctx->lock); 2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2009 cpuctx->task_ctx = NULL; 2010 raw_spin_unlock(&ctx->lock); 2011 } 2012 } 2013 2014 #define for_each_task_context_nr(ctxn) \ 2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2016 2017 /* 2018 * Called from scheduler to remove the events of the current task, 2019 * with interrupts disabled. 2020 * 2021 * We stop each event and update the event value in event->count. 2022 * 2023 * This does not protect us against NMI, but disable() 2024 * sets the disabled bit in the control field of event _before_ 2025 * accessing the event control register. If a NMI hits, then it will 2026 * not restart the event. 2027 */ 2028 void __perf_event_task_sched_out(struct task_struct *task, 2029 struct task_struct *next) 2030 { 2031 int ctxn; 2032 2033 for_each_task_context_nr(ctxn) 2034 perf_event_context_sched_out(task, ctxn, next); 2035 2036 /* 2037 * if cgroup events exist on this CPU, then we need 2038 * to check if we have to switch out PMU state. 2039 * cgroup event are system-wide mode only 2040 */ 2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2042 perf_cgroup_sched_out(task, next); 2043 } 2044 2045 static void task_ctx_sched_out(struct perf_event_context *ctx) 2046 { 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2048 2049 if (!cpuctx->task_ctx) 2050 return; 2051 2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2053 return; 2054 2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2056 cpuctx->task_ctx = NULL; 2057 } 2058 2059 /* 2060 * Called with IRQs disabled 2061 */ 2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2063 enum event_type_t event_type) 2064 { 2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2066 } 2067 2068 static void 2069 ctx_pinned_sched_in(struct perf_event_context *ctx, 2070 struct perf_cpu_context *cpuctx) 2071 { 2072 struct perf_event *event; 2073 2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2075 if (event->state <= PERF_EVENT_STATE_OFF) 2076 continue; 2077 if (!event_filter_match(event)) 2078 continue; 2079 2080 /* may need to reset tstamp_enabled */ 2081 if (is_cgroup_event(event)) 2082 perf_cgroup_mark_enabled(event, ctx); 2083 2084 if (group_can_go_on(event, cpuctx, 1)) 2085 group_sched_in(event, cpuctx, ctx); 2086 2087 /* 2088 * If this pinned group hasn't been scheduled, 2089 * put it in error state. 2090 */ 2091 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2092 update_group_times(event); 2093 event->state = PERF_EVENT_STATE_ERROR; 2094 } 2095 } 2096 } 2097 2098 static void 2099 ctx_flexible_sched_in(struct perf_event_context *ctx, 2100 struct perf_cpu_context *cpuctx) 2101 { 2102 struct perf_event *event; 2103 int can_add_hw = 1; 2104 2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2106 /* Ignore events in OFF or ERROR state */ 2107 if (event->state <= PERF_EVENT_STATE_OFF) 2108 continue; 2109 /* 2110 * Listen to the 'cpu' scheduling filter constraint 2111 * of events: 2112 */ 2113 if (!event_filter_match(event)) 2114 continue; 2115 2116 /* may need to reset tstamp_enabled */ 2117 if (is_cgroup_event(event)) 2118 perf_cgroup_mark_enabled(event, ctx); 2119 2120 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2121 if (group_sched_in(event, cpuctx, ctx)) 2122 can_add_hw = 0; 2123 } 2124 } 2125 } 2126 2127 static void 2128 ctx_sched_in(struct perf_event_context *ctx, 2129 struct perf_cpu_context *cpuctx, 2130 enum event_type_t event_type, 2131 struct task_struct *task) 2132 { 2133 u64 now; 2134 int is_active = ctx->is_active; 2135 2136 ctx->is_active |= event_type; 2137 if (likely(!ctx->nr_events)) 2138 return; 2139 2140 now = perf_clock(); 2141 ctx->timestamp = now; 2142 perf_cgroup_set_timestamp(task, ctx); 2143 /* 2144 * First go through the list and put on any pinned groups 2145 * in order to give them the best chance of going on. 2146 */ 2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2148 ctx_pinned_sched_in(ctx, cpuctx); 2149 2150 /* Then walk through the lower prio flexible groups */ 2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2152 ctx_flexible_sched_in(ctx, cpuctx); 2153 } 2154 2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2156 enum event_type_t event_type, 2157 struct task_struct *task) 2158 { 2159 struct perf_event_context *ctx = &cpuctx->ctx; 2160 2161 ctx_sched_in(ctx, cpuctx, event_type, task); 2162 } 2163 2164 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2165 struct task_struct *task) 2166 { 2167 struct perf_cpu_context *cpuctx; 2168 2169 cpuctx = __get_cpu_context(ctx); 2170 if (cpuctx->task_ctx == ctx) 2171 return; 2172 2173 perf_ctx_lock(cpuctx, ctx); 2174 perf_pmu_disable(ctx->pmu); 2175 /* 2176 * We want to keep the following priority order: 2177 * cpu pinned (that don't need to move), task pinned, 2178 * cpu flexible, task flexible. 2179 */ 2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2181 2182 if (ctx->nr_events) 2183 cpuctx->task_ctx = ctx; 2184 2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2186 2187 perf_pmu_enable(ctx->pmu); 2188 perf_ctx_unlock(cpuctx, ctx); 2189 2190 /* 2191 * Since these rotations are per-cpu, we need to ensure the 2192 * cpu-context we got scheduled on is actually rotating. 2193 */ 2194 perf_pmu_rotate_start(ctx->pmu); 2195 } 2196 2197 /* 2198 * Called from scheduler to add the events of the current task 2199 * with interrupts disabled. 2200 * 2201 * We restore the event value and then enable it. 2202 * 2203 * This does not protect us against NMI, but enable() 2204 * sets the enabled bit in the control field of event _before_ 2205 * accessing the event control register. If a NMI hits, then it will 2206 * keep the event running. 2207 */ 2208 void __perf_event_task_sched_in(struct task_struct *prev, 2209 struct task_struct *task) 2210 { 2211 struct perf_event_context *ctx; 2212 int ctxn; 2213 2214 for_each_task_context_nr(ctxn) { 2215 ctx = task->perf_event_ctxp[ctxn]; 2216 if (likely(!ctx)) 2217 continue; 2218 2219 perf_event_context_sched_in(ctx, task); 2220 } 2221 /* 2222 * if cgroup events exist on this CPU, then we need 2223 * to check if we have to switch in PMU state. 2224 * cgroup event are system-wide mode only 2225 */ 2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2227 perf_cgroup_sched_in(prev, task); 2228 } 2229 2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2231 { 2232 u64 frequency = event->attr.sample_freq; 2233 u64 sec = NSEC_PER_SEC; 2234 u64 divisor, dividend; 2235 2236 int count_fls, nsec_fls, frequency_fls, sec_fls; 2237 2238 count_fls = fls64(count); 2239 nsec_fls = fls64(nsec); 2240 frequency_fls = fls64(frequency); 2241 sec_fls = 30; 2242 2243 /* 2244 * We got @count in @nsec, with a target of sample_freq HZ 2245 * the target period becomes: 2246 * 2247 * @count * 10^9 2248 * period = ------------------- 2249 * @nsec * sample_freq 2250 * 2251 */ 2252 2253 /* 2254 * Reduce accuracy by one bit such that @a and @b converge 2255 * to a similar magnitude. 2256 */ 2257 #define REDUCE_FLS(a, b) \ 2258 do { \ 2259 if (a##_fls > b##_fls) { \ 2260 a >>= 1; \ 2261 a##_fls--; \ 2262 } else { \ 2263 b >>= 1; \ 2264 b##_fls--; \ 2265 } \ 2266 } while (0) 2267 2268 /* 2269 * Reduce accuracy until either term fits in a u64, then proceed with 2270 * the other, so that finally we can do a u64/u64 division. 2271 */ 2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2273 REDUCE_FLS(nsec, frequency); 2274 REDUCE_FLS(sec, count); 2275 } 2276 2277 if (count_fls + sec_fls > 64) { 2278 divisor = nsec * frequency; 2279 2280 while (count_fls + sec_fls > 64) { 2281 REDUCE_FLS(count, sec); 2282 divisor >>= 1; 2283 } 2284 2285 dividend = count * sec; 2286 } else { 2287 dividend = count * sec; 2288 2289 while (nsec_fls + frequency_fls > 64) { 2290 REDUCE_FLS(nsec, frequency); 2291 dividend >>= 1; 2292 } 2293 2294 divisor = nsec * frequency; 2295 } 2296 2297 if (!divisor) 2298 return dividend; 2299 2300 return div64_u64(dividend, divisor); 2301 } 2302 2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2304 { 2305 struct hw_perf_event *hwc = &event->hw; 2306 s64 period, sample_period; 2307 s64 delta; 2308 2309 period = perf_calculate_period(event, nsec, count); 2310 2311 delta = (s64)(period - hwc->sample_period); 2312 delta = (delta + 7) / 8; /* low pass filter */ 2313 2314 sample_period = hwc->sample_period + delta; 2315 2316 if (!sample_period) 2317 sample_period = 1; 2318 2319 hwc->sample_period = sample_period; 2320 2321 if (local64_read(&hwc->period_left) > 8*sample_period) { 2322 event->pmu->stop(event, PERF_EF_UPDATE); 2323 local64_set(&hwc->period_left, 0); 2324 event->pmu->start(event, PERF_EF_RELOAD); 2325 } 2326 } 2327 2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2329 { 2330 struct perf_event *event; 2331 struct hw_perf_event *hwc; 2332 u64 interrupts, now; 2333 s64 delta; 2334 2335 if (!ctx->nr_freq) 2336 return; 2337 2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2339 if (event->state != PERF_EVENT_STATE_ACTIVE) 2340 continue; 2341 2342 if (!event_filter_match(event)) 2343 continue; 2344 2345 hwc = &event->hw; 2346 2347 interrupts = hwc->interrupts; 2348 hwc->interrupts = 0; 2349 2350 /* 2351 * unthrottle events on the tick 2352 */ 2353 if (interrupts == MAX_INTERRUPTS) { 2354 perf_log_throttle(event, 1); 2355 event->pmu->start(event, 0); 2356 } 2357 2358 if (!event->attr.freq || !event->attr.sample_freq) 2359 continue; 2360 2361 event->pmu->read(event); 2362 now = local64_read(&event->count); 2363 delta = now - hwc->freq_count_stamp; 2364 hwc->freq_count_stamp = now; 2365 2366 if (delta > 0) 2367 perf_adjust_period(event, period, delta); 2368 } 2369 } 2370 2371 /* 2372 * Round-robin a context's events: 2373 */ 2374 static void rotate_ctx(struct perf_event_context *ctx) 2375 { 2376 /* 2377 * Rotate the first entry last of non-pinned groups. Rotation might be 2378 * disabled by the inheritance code. 2379 */ 2380 if (!ctx->rotate_disable) 2381 list_rotate_left(&ctx->flexible_groups); 2382 } 2383 2384 /* 2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2386 * because they're strictly cpu affine and rotate_start is called with IRQs 2387 * disabled, while rotate_context is called from IRQ context. 2388 */ 2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2390 { 2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2392 struct perf_event_context *ctx = NULL; 2393 int rotate = 0, remove = 1, freq = 0; 2394 2395 if (cpuctx->ctx.nr_events) { 2396 remove = 0; 2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2398 rotate = 1; 2399 if (cpuctx->ctx.nr_freq) 2400 freq = 1; 2401 } 2402 2403 ctx = cpuctx->task_ctx; 2404 if (ctx && ctx->nr_events) { 2405 remove = 0; 2406 if (ctx->nr_events != ctx->nr_active) 2407 rotate = 1; 2408 if (ctx->nr_freq) 2409 freq = 1; 2410 } 2411 2412 if (!rotate && !freq) 2413 goto done; 2414 2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2416 perf_pmu_disable(cpuctx->ctx.pmu); 2417 2418 if (freq) { 2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2420 if (ctx) 2421 perf_ctx_adjust_freq(ctx, interval); 2422 } 2423 2424 if (rotate) { 2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2426 if (ctx) 2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2428 2429 rotate_ctx(&cpuctx->ctx); 2430 if (ctx) 2431 rotate_ctx(ctx); 2432 2433 perf_event_sched_in(cpuctx, ctx, current); 2434 } 2435 2436 perf_pmu_enable(cpuctx->ctx.pmu); 2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2438 2439 done: 2440 if (remove) 2441 list_del_init(&cpuctx->rotation_list); 2442 } 2443 2444 void perf_event_task_tick(void) 2445 { 2446 struct list_head *head = &__get_cpu_var(rotation_list); 2447 struct perf_cpu_context *cpuctx, *tmp; 2448 2449 WARN_ON(!irqs_disabled()); 2450 2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2452 if (cpuctx->jiffies_interval == 1 || 2453 !(jiffies % cpuctx->jiffies_interval)) 2454 perf_rotate_context(cpuctx); 2455 } 2456 } 2457 2458 static int event_enable_on_exec(struct perf_event *event, 2459 struct perf_event_context *ctx) 2460 { 2461 if (!event->attr.enable_on_exec) 2462 return 0; 2463 2464 event->attr.enable_on_exec = 0; 2465 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2466 return 0; 2467 2468 __perf_event_mark_enabled(event); 2469 2470 return 1; 2471 } 2472 2473 /* 2474 * Enable all of a task's events that have been marked enable-on-exec. 2475 * This expects task == current. 2476 */ 2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2478 { 2479 struct perf_event *event; 2480 unsigned long flags; 2481 int enabled = 0; 2482 int ret; 2483 2484 local_irq_save(flags); 2485 if (!ctx || !ctx->nr_events) 2486 goto out; 2487 2488 /* 2489 * We must ctxsw out cgroup events to avoid conflict 2490 * when invoking perf_task_event_sched_in() later on 2491 * in this function. Otherwise we end up trying to 2492 * ctxswin cgroup events which are already scheduled 2493 * in. 2494 */ 2495 perf_cgroup_sched_out(current, NULL); 2496 2497 raw_spin_lock(&ctx->lock); 2498 task_ctx_sched_out(ctx); 2499 2500 list_for_each_entry(event, &ctx->event_list, event_entry) { 2501 ret = event_enable_on_exec(event, ctx); 2502 if (ret) 2503 enabled = 1; 2504 } 2505 2506 /* 2507 * Unclone this context if we enabled any event. 2508 */ 2509 if (enabled) 2510 unclone_ctx(ctx); 2511 2512 raw_spin_unlock(&ctx->lock); 2513 2514 /* 2515 * Also calls ctxswin for cgroup events, if any: 2516 */ 2517 perf_event_context_sched_in(ctx, ctx->task); 2518 out: 2519 local_irq_restore(flags); 2520 } 2521 2522 /* 2523 * Cross CPU call to read the hardware event 2524 */ 2525 static void __perf_event_read(void *info) 2526 { 2527 struct perf_event *event = info; 2528 struct perf_event_context *ctx = event->ctx; 2529 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2530 2531 /* 2532 * If this is a task context, we need to check whether it is 2533 * the current task context of this cpu. If not it has been 2534 * scheduled out before the smp call arrived. In that case 2535 * event->count would have been updated to a recent sample 2536 * when the event was scheduled out. 2537 */ 2538 if (ctx->task && cpuctx->task_ctx != ctx) 2539 return; 2540 2541 raw_spin_lock(&ctx->lock); 2542 if (ctx->is_active) { 2543 update_context_time(ctx); 2544 update_cgrp_time_from_event(event); 2545 } 2546 update_event_times(event); 2547 if (event->state == PERF_EVENT_STATE_ACTIVE) 2548 event->pmu->read(event); 2549 raw_spin_unlock(&ctx->lock); 2550 } 2551 2552 static inline u64 perf_event_count(struct perf_event *event) 2553 { 2554 return local64_read(&event->count) + atomic64_read(&event->child_count); 2555 } 2556 2557 static u64 perf_event_read(struct perf_event *event) 2558 { 2559 /* 2560 * If event is enabled and currently active on a CPU, update the 2561 * value in the event structure: 2562 */ 2563 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2564 smp_call_function_single(event->oncpu, 2565 __perf_event_read, event, 1); 2566 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2567 struct perf_event_context *ctx = event->ctx; 2568 unsigned long flags; 2569 2570 raw_spin_lock_irqsave(&ctx->lock, flags); 2571 /* 2572 * may read while context is not active 2573 * (e.g., thread is blocked), in that case 2574 * we cannot update context time 2575 */ 2576 if (ctx->is_active) { 2577 update_context_time(ctx); 2578 update_cgrp_time_from_event(event); 2579 } 2580 update_event_times(event); 2581 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2582 } 2583 2584 return perf_event_count(event); 2585 } 2586 2587 /* 2588 * Initialize the perf_event context in a task_struct: 2589 */ 2590 static void __perf_event_init_context(struct perf_event_context *ctx) 2591 { 2592 raw_spin_lock_init(&ctx->lock); 2593 mutex_init(&ctx->mutex); 2594 INIT_LIST_HEAD(&ctx->pinned_groups); 2595 INIT_LIST_HEAD(&ctx->flexible_groups); 2596 INIT_LIST_HEAD(&ctx->event_list); 2597 atomic_set(&ctx->refcount, 1); 2598 } 2599 2600 static struct perf_event_context * 2601 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2602 { 2603 struct perf_event_context *ctx; 2604 2605 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2606 if (!ctx) 2607 return NULL; 2608 2609 __perf_event_init_context(ctx); 2610 if (task) { 2611 ctx->task = task; 2612 get_task_struct(task); 2613 } 2614 ctx->pmu = pmu; 2615 2616 return ctx; 2617 } 2618 2619 static struct task_struct * 2620 find_lively_task_by_vpid(pid_t vpid) 2621 { 2622 struct task_struct *task; 2623 int err; 2624 2625 rcu_read_lock(); 2626 if (!vpid) 2627 task = current; 2628 else 2629 task = find_task_by_vpid(vpid); 2630 if (task) 2631 get_task_struct(task); 2632 rcu_read_unlock(); 2633 2634 if (!task) 2635 return ERR_PTR(-ESRCH); 2636 2637 /* Reuse ptrace permission checks for now. */ 2638 err = -EACCES; 2639 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2640 goto errout; 2641 2642 return task; 2643 errout: 2644 put_task_struct(task); 2645 return ERR_PTR(err); 2646 2647 } 2648 2649 /* 2650 * Returns a matching context with refcount and pincount. 2651 */ 2652 static struct perf_event_context * 2653 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2654 { 2655 struct perf_event_context *ctx; 2656 struct perf_cpu_context *cpuctx; 2657 unsigned long flags; 2658 int ctxn, err; 2659 2660 if (!task) { 2661 /* Must be root to operate on a CPU event: */ 2662 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2663 return ERR_PTR(-EACCES); 2664 2665 /* 2666 * We could be clever and allow to attach a event to an 2667 * offline CPU and activate it when the CPU comes up, but 2668 * that's for later. 2669 */ 2670 if (!cpu_online(cpu)) 2671 return ERR_PTR(-ENODEV); 2672 2673 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2674 ctx = &cpuctx->ctx; 2675 get_ctx(ctx); 2676 ++ctx->pin_count; 2677 2678 return ctx; 2679 } 2680 2681 err = -EINVAL; 2682 ctxn = pmu->task_ctx_nr; 2683 if (ctxn < 0) 2684 goto errout; 2685 2686 retry: 2687 ctx = perf_lock_task_context(task, ctxn, &flags); 2688 if (ctx) { 2689 unclone_ctx(ctx); 2690 ++ctx->pin_count; 2691 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2692 } else { 2693 ctx = alloc_perf_context(pmu, task); 2694 err = -ENOMEM; 2695 if (!ctx) 2696 goto errout; 2697 2698 err = 0; 2699 mutex_lock(&task->perf_event_mutex); 2700 /* 2701 * If it has already passed perf_event_exit_task(). 2702 * we must see PF_EXITING, it takes this mutex too. 2703 */ 2704 if (task->flags & PF_EXITING) 2705 err = -ESRCH; 2706 else if (task->perf_event_ctxp[ctxn]) 2707 err = -EAGAIN; 2708 else { 2709 get_ctx(ctx); 2710 ++ctx->pin_count; 2711 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2712 } 2713 mutex_unlock(&task->perf_event_mutex); 2714 2715 if (unlikely(err)) { 2716 put_ctx(ctx); 2717 2718 if (err == -EAGAIN) 2719 goto retry; 2720 goto errout; 2721 } 2722 } 2723 2724 return ctx; 2725 2726 errout: 2727 return ERR_PTR(err); 2728 } 2729 2730 static void perf_event_free_filter(struct perf_event *event); 2731 2732 static void free_event_rcu(struct rcu_head *head) 2733 { 2734 struct perf_event *event; 2735 2736 event = container_of(head, struct perf_event, rcu_head); 2737 if (event->ns) 2738 put_pid_ns(event->ns); 2739 perf_event_free_filter(event); 2740 kfree(event); 2741 } 2742 2743 static void ring_buffer_put(struct ring_buffer *rb); 2744 2745 static void free_event(struct perf_event *event) 2746 { 2747 irq_work_sync(&event->pending); 2748 2749 if (!event->parent) { 2750 if (event->attach_state & PERF_ATTACH_TASK) 2751 jump_label_dec_deferred(&perf_sched_events); 2752 if (event->attr.mmap || event->attr.mmap_data) 2753 atomic_dec(&nr_mmap_events); 2754 if (event->attr.comm) 2755 atomic_dec(&nr_comm_events); 2756 if (event->attr.task) 2757 atomic_dec(&nr_task_events); 2758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2759 put_callchain_buffers(); 2760 if (is_cgroup_event(event)) { 2761 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2762 jump_label_dec_deferred(&perf_sched_events); 2763 } 2764 } 2765 2766 if (event->rb) { 2767 ring_buffer_put(event->rb); 2768 event->rb = NULL; 2769 } 2770 2771 if (is_cgroup_event(event)) 2772 perf_detach_cgroup(event); 2773 2774 if (event->destroy) 2775 event->destroy(event); 2776 2777 if (event->ctx) 2778 put_ctx(event->ctx); 2779 2780 call_rcu(&event->rcu_head, free_event_rcu); 2781 } 2782 2783 int perf_event_release_kernel(struct perf_event *event) 2784 { 2785 struct perf_event_context *ctx = event->ctx; 2786 2787 WARN_ON_ONCE(ctx->parent_ctx); 2788 /* 2789 * There are two ways this annotation is useful: 2790 * 2791 * 1) there is a lock recursion from perf_event_exit_task 2792 * see the comment there. 2793 * 2794 * 2) there is a lock-inversion with mmap_sem through 2795 * perf_event_read_group(), which takes faults while 2796 * holding ctx->mutex, however this is called after 2797 * the last filedesc died, so there is no possibility 2798 * to trigger the AB-BA case. 2799 */ 2800 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2801 raw_spin_lock_irq(&ctx->lock); 2802 perf_group_detach(event); 2803 raw_spin_unlock_irq(&ctx->lock); 2804 perf_remove_from_context(event); 2805 mutex_unlock(&ctx->mutex); 2806 2807 free_event(event); 2808 2809 return 0; 2810 } 2811 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2812 2813 /* 2814 * Called when the last reference to the file is gone. 2815 */ 2816 static int perf_release(struct inode *inode, struct file *file) 2817 { 2818 struct perf_event *event = file->private_data; 2819 struct task_struct *owner; 2820 2821 file->private_data = NULL; 2822 2823 rcu_read_lock(); 2824 owner = ACCESS_ONCE(event->owner); 2825 /* 2826 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2827 * !owner it means the list deletion is complete and we can indeed 2828 * free this event, otherwise we need to serialize on 2829 * owner->perf_event_mutex. 2830 */ 2831 smp_read_barrier_depends(); 2832 if (owner) { 2833 /* 2834 * Since delayed_put_task_struct() also drops the last 2835 * task reference we can safely take a new reference 2836 * while holding the rcu_read_lock(). 2837 */ 2838 get_task_struct(owner); 2839 } 2840 rcu_read_unlock(); 2841 2842 if (owner) { 2843 mutex_lock(&owner->perf_event_mutex); 2844 /* 2845 * We have to re-check the event->owner field, if it is cleared 2846 * we raced with perf_event_exit_task(), acquiring the mutex 2847 * ensured they're done, and we can proceed with freeing the 2848 * event. 2849 */ 2850 if (event->owner) 2851 list_del_init(&event->owner_entry); 2852 mutex_unlock(&owner->perf_event_mutex); 2853 put_task_struct(owner); 2854 } 2855 2856 return perf_event_release_kernel(event); 2857 } 2858 2859 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2860 { 2861 struct perf_event *child; 2862 u64 total = 0; 2863 2864 *enabled = 0; 2865 *running = 0; 2866 2867 mutex_lock(&event->child_mutex); 2868 total += perf_event_read(event); 2869 *enabled += event->total_time_enabled + 2870 atomic64_read(&event->child_total_time_enabled); 2871 *running += event->total_time_running + 2872 atomic64_read(&event->child_total_time_running); 2873 2874 list_for_each_entry(child, &event->child_list, child_list) { 2875 total += perf_event_read(child); 2876 *enabled += child->total_time_enabled; 2877 *running += child->total_time_running; 2878 } 2879 mutex_unlock(&event->child_mutex); 2880 2881 return total; 2882 } 2883 EXPORT_SYMBOL_GPL(perf_event_read_value); 2884 2885 static int perf_event_read_group(struct perf_event *event, 2886 u64 read_format, char __user *buf) 2887 { 2888 struct perf_event *leader = event->group_leader, *sub; 2889 int n = 0, size = 0, ret = -EFAULT; 2890 struct perf_event_context *ctx = leader->ctx; 2891 u64 values[5]; 2892 u64 count, enabled, running; 2893 2894 mutex_lock(&ctx->mutex); 2895 count = perf_event_read_value(leader, &enabled, &running); 2896 2897 values[n++] = 1 + leader->nr_siblings; 2898 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2899 values[n++] = enabled; 2900 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2901 values[n++] = running; 2902 values[n++] = count; 2903 if (read_format & PERF_FORMAT_ID) 2904 values[n++] = primary_event_id(leader); 2905 2906 size = n * sizeof(u64); 2907 2908 if (copy_to_user(buf, values, size)) 2909 goto unlock; 2910 2911 ret = size; 2912 2913 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 2914 n = 0; 2915 2916 values[n++] = perf_event_read_value(sub, &enabled, &running); 2917 if (read_format & PERF_FORMAT_ID) 2918 values[n++] = primary_event_id(sub); 2919 2920 size = n * sizeof(u64); 2921 2922 if (copy_to_user(buf + ret, values, size)) { 2923 ret = -EFAULT; 2924 goto unlock; 2925 } 2926 2927 ret += size; 2928 } 2929 unlock: 2930 mutex_unlock(&ctx->mutex); 2931 2932 return ret; 2933 } 2934 2935 static int perf_event_read_one(struct perf_event *event, 2936 u64 read_format, char __user *buf) 2937 { 2938 u64 enabled, running; 2939 u64 values[4]; 2940 int n = 0; 2941 2942 values[n++] = perf_event_read_value(event, &enabled, &running); 2943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2944 values[n++] = enabled; 2945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2946 values[n++] = running; 2947 if (read_format & PERF_FORMAT_ID) 2948 values[n++] = primary_event_id(event); 2949 2950 if (copy_to_user(buf, values, n * sizeof(u64))) 2951 return -EFAULT; 2952 2953 return n * sizeof(u64); 2954 } 2955 2956 /* 2957 * Read the performance event - simple non blocking version for now 2958 */ 2959 static ssize_t 2960 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 2961 { 2962 u64 read_format = event->attr.read_format; 2963 int ret; 2964 2965 /* 2966 * Return end-of-file for a read on a event that is in 2967 * error state (i.e. because it was pinned but it couldn't be 2968 * scheduled on to the CPU at some point). 2969 */ 2970 if (event->state == PERF_EVENT_STATE_ERROR) 2971 return 0; 2972 2973 if (count < event->read_size) 2974 return -ENOSPC; 2975 2976 WARN_ON_ONCE(event->ctx->parent_ctx); 2977 if (read_format & PERF_FORMAT_GROUP) 2978 ret = perf_event_read_group(event, read_format, buf); 2979 else 2980 ret = perf_event_read_one(event, read_format, buf); 2981 2982 return ret; 2983 } 2984 2985 static ssize_t 2986 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 2987 { 2988 struct perf_event *event = file->private_data; 2989 2990 return perf_read_hw(event, buf, count); 2991 } 2992 2993 static unsigned int perf_poll(struct file *file, poll_table *wait) 2994 { 2995 struct perf_event *event = file->private_data; 2996 struct ring_buffer *rb; 2997 unsigned int events = POLL_HUP; 2998 2999 /* 3000 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3001 * grabs the rb reference but perf_event_set_output() overrides it. 3002 * Here is the timeline for two threads T1, T2: 3003 * t0: T1, rb = rcu_dereference(event->rb) 3004 * t1: T2, old_rb = event->rb 3005 * t2: T2, event->rb = new rb 3006 * t3: T2, ring_buffer_detach(old_rb) 3007 * t4: T1, ring_buffer_attach(rb1) 3008 * t5: T1, poll_wait(event->waitq) 3009 * 3010 * To avoid this problem, we grab mmap_mutex in perf_poll() 3011 * thereby ensuring that the assignment of the new ring buffer 3012 * and the detachment of the old buffer appear atomic to perf_poll() 3013 */ 3014 mutex_lock(&event->mmap_mutex); 3015 3016 rcu_read_lock(); 3017 rb = rcu_dereference(event->rb); 3018 if (rb) { 3019 ring_buffer_attach(event, rb); 3020 events = atomic_xchg(&rb->poll, 0); 3021 } 3022 rcu_read_unlock(); 3023 3024 mutex_unlock(&event->mmap_mutex); 3025 3026 poll_wait(file, &event->waitq, wait); 3027 3028 return events; 3029 } 3030 3031 static void perf_event_reset(struct perf_event *event) 3032 { 3033 (void)perf_event_read(event); 3034 local64_set(&event->count, 0); 3035 perf_event_update_userpage(event); 3036 } 3037 3038 /* 3039 * Holding the top-level event's child_mutex means that any 3040 * descendant process that has inherited this event will block 3041 * in sync_child_event if it goes to exit, thus satisfying the 3042 * task existence requirements of perf_event_enable/disable. 3043 */ 3044 static void perf_event_for_each_child(struct perf_event *event, 3045 void (*func)(struct perf_event *)) 3046 { 3047 struct perf_event *child; 3048 3049 WARN_ON_ONCE(event->ctx->parent_ctx); 3050 mutex_lock(&event->child_mutex); 3051 func(event); 3052 list_for_each_entry(child, &event->child_list, child_list) 3053 func(child); 3054 mutex_unlock(&event->child_mutex); 3055 } 3056 3057 static void perf_event_for_each(struct perf_event *event, 3058 void (*func)(struct perf_event *)) 3059 { 3060 struct perf_event_context *ctx = event->ctx; 3061 struct perf_event *sibling; 3062 3063 WARN_ON_ONCE(ctx->parent_ctx); 3064 mutex_lock(&ctx->mutex); 3065 event = event->group_leader; 3066 3067 perf_event_for_each_child(event, func); 3068 func(event); 3069 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3070 perf_event_for_each_child(event, func); 3071 mutex_unlock(&ctx->mutex); 3072 } 3073 3074 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3075 { 3076 struct perf_event_context *ctx = event->ctx; 3077 int ret = 0; 3078 u64 value; 3079 3080 if (!is_sampling_event(event)) 3081 return -EINVAL; 3082 3083 if (copy_from_user(&value, arg, sizeof(value))) 3084 return -EFAULT; 3085 3086 if (!value) 3087 return -EINVAL; 3088 3089 raw_spin_lock_irq(&ctx->lock); 3090 if (event->attr.freq) { 3091 if (value > sysctl_perf_event_sample_rate) { 3092 ret = -EINVAL; 3093 goto unlock; 3094 } 3095 3096 event->attr.sample_freq = value; 3097 } else { 3098 event->attr.sample_period = value; 3099 event->hw.sample_period = value; 3100 } 3101 unlock: 3102 raw_spin_unlock_irq(&ctx->lock); 3103 3104 return ret; 3105 } 3106 3107 static const struct file_operations perf_fops; 3108 3109 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3110 { 3111 struct file *file; 3112 3113 file = fget_light(fd, fput_needed); 3114 if (!file) 3115 return ERR_PTR(-EBADF); 3116 3117 if (file->f_op != &perf_fops) { 3118 fput_light(file, *fput_needed); 3119 *fput_needed = 0; 3120 return ERR_PTR(-EBADF); 3121 } 3122 3123 return file->private_data; 3124 } 3125 3126 static int perf_event_set_output(struct perf_event *event, 3127 struct perf_event *output_event); 3128 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3129 3130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3131 { 3132 struct perf_event *event = file->private_data; 3133 void (*func)(struct perf_event *); 3134 u32 flags = arg; 3135 3136 switch (cmd) { 3137 case PERF_EVENT_IOC_ENABLE: 3138 func = perf_event_enable; 3139 break; 3140 case PERF_EVENT_IOC_DISABLE: 3141 func = perf_event_disable; 3142 break; 3143 case PERF_EVENT_IOC_RESET: 3144 func = perf_event_reset; 3145 break; 3146 3147 case PERF_EVENT_IOC_REFRESH: 3148 return perf_event_refresh(event, arg); 3149 3150 case PERF_EVENT_IOC_PERIOD: 3151 return perf_event_period(event, (u64 __user *)arg); 3152 3153 case PERF_EVENT_IOC_SET_OUTPUT: 3154 { 3155 struct perf_event *output_event = NULL; 3156 int fput_needed = 0; 3157 int ret; 3158 3159 if (arg != -1) { 3160 output_event = perf_fget_light(arg, &fput_needed); 3161 if (IS_ERR(output_event)) 3162 return PTR_ERR(output_event); 3163 } 3164 3165 ret = perf_event_set_output(event, output_event); 3166 if (output_event) 3167 fput_light(output_event->filp, fput_needed); 3168 3169 return ret; 3170 } 3171 3172 case PERF_EVENT_IOC_SET_FILTER: 3173 return perf_event_set_filter(event, (void __user *)arg); 3174 3175 default: 3176 return -ENOTTY; 3177 } 3178 3179 if (flags & PERF_IOC_FLAG_GROUP) 3180 perf_event_for_each(event, func); 3181 else 3182 perf_event_for_each_child(event, func); 3183 3184 return 0; 3185 } 3186 3187 int perf_event_task_enable(void) 3188 { 3189 struct perf_event *event; 3190 3191 mutex_lock(¤t->perf_event_mutex); 3192 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3193 perf_event_for_each_child(event, perf_event_enable); 3194 mutex_unlock(¤t->perf_event_mutex); 3195 3196 return 0; 3197 } 3198 3199 int perf_event_task_disable(void) 3200 { 3201 struct perf_event *event; 3202 3203 mutex_lock(¤t->perf_event_mutex); 3204 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3205 perf_event_for_each_child(event, perf_event_disable); 3206 mutex_unlock(¤t->perf_event_mutex); 3207 3208 return 0; 3209 } 3210 3211 #ifndef PERF_EVENT_INDEX_OFFSET 3212 # define PERF_EVENT_INDEX_OFFSET 0 3213 #endif 3214 3215 static int perf_event_index(struct perf_event *event) 3216 { 3217 if (event->hw.state & PERF_HES_STOPPED) 3218 return 0; 3219 3220 if (event->state != PERF_EVENT_STATE_ACTIVE) 3221 return 0; 3222 3223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3224 } 3225 3226 static void calc_timer_values(struct perf_event *event, 3227 u64 *enabled, 3228 u64 *running) 3229 { 3230 u64 now, ctx_time; 3231 3232 now = perf_clock(); 3233 ctx_time = event->shadow_ctx_time + now; 3234 *enabled = ctx_time - event->tstamp_enabled; 3235 *running = ctx_time - event->tstamp_running; 3236 } 3237 3238 /* 3239 * Callers need to ensure there can be no nesting of this function, otherwise 3240 * the seqlock logic goes bad. We can not serialize this because the arch 3241 * code calls this from NMI context. 3242 */ 3243 void perf_event_update_userpage(struct perf_event *event) 3244 { 3245 struct perf_event_mmap_page *userpg; 3246 struct ring_buffer *rb; 3247 u64 enabled, running; 3248 3249 rcu_read_lock(); 3250 /* 3251 * compute total_time_enabled, total_time_running 3252 * based on snapshot values taken when the event 3253 * was last scheduled in. 3254 * 3255 * we cannot simply called update_context_time() 3256 * because of locking issue as we can be called in 3257 * NMI context 3258 */ 3259 calc_timer_values(event, &enabled, &running); 3260 rb = rcu_dereference(event->rb); 3261 if (!rb) 3262 goto unlock; 3263 3264 userpg = rb->user_page; 3265 3266 /* 3267 * Disable preemption so as to not let the corresponding user-space 3268 * spin too long if we get preempted. 3269 */ 3270 preempt_disable(); 3271 ++userpg->lock; 3272 barrier(); 3273 userpg->index = perf_event_index(event); 3274 userpg->offset = perf_event_count(event); 3275 if (event->state == PERF_EVENT_STATE_ACTIVE) 3276 userpg->offset -= local64_read(&event->hw.prev_count); 3277 3278 userpg->time_enabled = enabled + 3279 atomic64_read(&event->child_total_time_enabled); 3280 3281 userpg->time_running = running + 3282 atomic64_read(&event->child_total_time_running); 3283 3284 barrier(); 3285 ++userpg->lock; 3286 preempt_enable(); 3287 unlock: 3288 rcu_read_unlock(); 3289 } 3290 3291 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3292 { 3293 struct perf_event *event = vma->vm_file->private_data; 3294 struct ring_buffer *rb; 3295 int ret = VM_FAULT_SIGBUS; 3296 3297 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3298 if (vmf->pgoff == 0) 3299 ret = 0; 3300 return ret; 3301 } 3302 3303 rcu_read_lock(); 3304 rb = rcu_dereference(event->rb); 3305 if (!rb) 3306 goto unlock; 3307 3308 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3309 goto unlock; 3310 3311 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3312 if (!vmf->page) 3313 goto unlock; 3314 3315 get_page(vmf->page); 3316 vmf->page->mapping = vma->vm_file->f_mapping; 3317 vmf->page->index = vmf->pgoff; 3318 3319 ret = 0; 3320 unlock: 3321 rcu_read_unlock(); 3322 3323 return ret; 3324 } 3325 3326 static void ring_buffer_attach(struct perf_event *event, 3327 struct ring_buffer *rb) 3328 { 3329 unsigned long flags; 3330 3331 if (!list_empty(&event->rb_entry)) 3332 return; 3333 3334 spin_lock_irqsave(&rb->event_lock, flags); 3335 if (!list_empty(&event->rb_entry)) 3336 goto unlock; 3337 3338 list_add(&event->rb_entry, &rb->event_list); 3339 unlock: 3340 spin_unlock_irqrestore(&rb->event_lock, flags); 3341 } 3342 3343 static void ring_buffer_detach(struct perf_event *event, 3344 struct ring_buffer *rb) 3345 { 3346 unsigned long flags; 3347 3348 if (list_empty(&event->rb_entry)) 3349 return; 3350 3351 spin_lock_irqsave(&rb->event_lock, flags); 3352 list_del_init(&event->rb_entry); 3353 wake_up_all(&event->waitq); 3354 spin_unlock_irqrestore(&rb->event_lock, flags); 3355 } 3356 3357 static void ring_buffer_wakeup(struct perf_event *event) 3358 { 3359 struct ring_buffer *rb; 3360 3361 rcu_read_lock(); 3362 rb = rcu_dereference(event->rb); 3363 if (!rb) 3364 goto unlock; 3365 3366 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3367 wake_up_all(&event->waitq); 3368 3369 unlock: 3370 rcu_read_unlock(); 3371 } 3372 3373 static void rb_free_rcu(struct rcu_head *rcu_head) 3374 { 3375 struct ring_buffer *rb; 3376 3377 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3378 rb_free(rb); 3379 } 3380 3381 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3382 { 3383 struct ring_buffer *rb; 3384 3385 rcu_read_lock(); 3386 rb = rcu_dereference(event->rb); 3387 if (rb) { 3388 if (!atomic_inc_not_zero(&rb->refcount)) 3389 rb = NULL; 3390 } 3391 rcu_read_unlock(); 3392 3393 return rb; 3394 } 3395 3396 static void ring_buffer_put(struct ring_buffer *rb) 3397 { 3398 struct perf_event *event, *n; 3399 unsigned long flags; 3400 3401 if (!atomic_dec_and_test(&rb->refcount)) 3402 return; 3403 3404 spin_lock_irqsave(&rb->event_lock, flags); 3405 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3406 list_del_init(&event->rb_entry); 3407 wake_up_all(&event->waitq); 3408 } 3409 spin_unlock_irqrestore(&rb->event_lock, flags); 3410 3411 call_rcu(&rb->rcu_head, rb_free_rcu); 3412 } 3413 3414 static void perf_mmap_open(struct vm_area_struct *vma) 3415 { 3416 struct perf_event *event = vma->vm_file->private_data; 3417 3418 atomic_inc(&event->mmap_count); 3419 } 3420 3421 static void perf_mmap_close(struct vm_area_struct *vma) 3422 { 3423 struct perf_event *event = vma->vm_file->private_data; 3424 3425 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3426 unsigned long size = perf_data_size(event->rb); 3427 struct user_struct *user = event->mmap_user; 3428 struct ring_buffer *rb = event->rb; 3429 3430 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3431 vma->vm_mm->pinned_vm -= event->mmap_locked; 3432 rcu_assign_pointer(event->rb, NULL); 3433 ring_buffer_detach(event, rb); 3434 mutex_unlock(&event->mmap_mutex); 3435 3436 ring_buffer_put(rb); 3437 free_uid(user); 3438 } 3439 } 3440 3441 static const struct vm_operations_struct perf_mmap_vmops = { 3442 .open = perf_mmap_open, 3443 .close = perf_mmap_close, 3444 .fault = perf_mmap_fault, 3445 .page_mkwrite = perf_mmap_fault, 3446 }; 3447 3448 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3449 { 3450 struct perf_event *event = file->private_data; 3451 unsigned long user_locked, user_lock_limit; 3452 struct user_struct *user = current_user(); 3453 unsigned long locked, lock_limit; 3454 struct ring_buffer *rb; 3455 unsigned long vma_size; 3456 unsigned long nr_pages; 3457 long user_extra, extra; 3458 int ret = 0, flags = 0; 3459 3460 /* 3461 * Don't allow mmap() of inherited per-task counters. This would 3462 * create a performance issue due to all children writing to the 3463 * same rb. 3464 */ 3465 if (event->cpu == -1 && event->attr.inherit) 3466 return -EINVAL; 3467 3468 if (!(vma->vm_flags & VM_SHARED)) 3469 return -EINVAL; 3470 3471 vma_size = vma->vm_end - vma->vm_start; 3472 nr_pages = (vma_size / PAGE_SIZE) - 1; 3473 3474 /* 3475 * If we have rb pages ensure they're a power-of-two number, so we 3476 * can do bitmasks instead of modulo. 3477 */ 3478 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3479 return -EINVAL; 3480 3481 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3482 return -EINVAL; 3483 3484 if (vma->vm_pgoff != 0) 3485 return -EINVAL; 3486 3487 WARN_ON_ONCE(event->ctx->parent_ctx); 3488 mutex_lock(&event->mmap_mutex); 3489 if (event->rb) { 3490 if (event->rb->nr_pages == nr_pages) 3491 atomic_inc(&event->rb->refcount); 3492 else 3493 ret = -EINVAL; 3494 goto unlock; 3495 } 3496 3497 user_extra = nr_pages + 1; 3498 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3499 3500 /* 3501 * Increase the limit linearly with more CPUs: 3502 */ 3503 user_lock_limit *= num_online_cpus(); 3504 3505 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3506 3507 extra = 0; 3508 if (user_locked > user_lock_limit) 3509 extra = user_locked - user_lock_limit; 3510 3511 lock_limit = rlimit(RLIMIT_MEMLOCK); 3512 lock_limit >>= PAGE_SHIFT; 3513 locked = vma->vm_mm->pinned_vm + extra; 3514 3515 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3516 !capable(CAP_IPC_LOCK)) { 3517 ret = -EPERM; 3518 goto unlock; 3519 } 3520 3521 WARN_ON(event->rb); 3522 3523 if (vma->vm_flags & VM_WRITE) 3524 flags |= RING_BUFFER_WRITABLE; 3525 3526 rb = rb_alloc(nr_pages, 3527 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3528 event->cpu, flags); 3529 3530 if (!rb) { 3531 ret = -ENOMEM; 3532 goto unlock; 3533 } 3534 rcu_assign_pointer(event->rb, rb); 3535 3536 atomic_long_add(user_extra, &user->locked_vm); 3537 event->mmap_locked = extra; 3538 event->mmap_user = get_current_user(); 3539 vma->vm_mm->pinned_vm += event->mmap_locked; 3540 3541 unlock: 3542 if (!ret) 3543 atomic_inc(&event->mmap_count); 3544 mutex_unlock(&event->mmap_mutex); 3545 3546 vma->vm_flags |= VM_RESERVED; 3547 vma->vm_ops = &perf_mmap_vmops; 3548 3549 return ret; 3550 } 3551 3552 static int perf_fasync(int fd, struct file *filp, int on) 3553 { 3554 struct inode *inode = filp->f_path.dentry->d_inode; 3555 struct perf_event *event = filp->private_data; 3556 int retval; 3557 3558 mutex_lock(&inode->i_mutex); 3559 retval = fasync_helper(fd, filp, on, &event->fasync); 3560 mutex_unlock(&inode->i_mutex); 3561 3562 if (retval < 0) 3563 return retval; 3564 3565 return 0; 3566 } 3567 3568 static const struct file_operations perf_fops = { 3569 .llseek = no_llseek, 3570 .release = perf_release, 3571 .read = perf_read, 3572 .poll = perf_poll, 3573 .unlocked_ioctl = perf_ioctl, 3574 .compat_ioctl = perf_ioctl, 3575 .mmap = perf_mmap, 3576 .fasync = perf_fasync, 3577 }; 3578 3579 /* 3580 * Perf event wakeup 3581 * 3582 * If there's data, ensure we set the poll() state and publish everything 3583 * to user-space before waking everybody up. 3584 */ 3585 3586 void perf_event_wakeup(struct perf_event *event) 3587 { 3588 ring_buffer_wakeup(event); 3589 3590 if (event->pending_kill) { 3591 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3592 event->pending_kill = 0; 3593 } 3594 } 3595 3596 static void perf_pending_event(struct irq_work *entry) 3597 { 3598 struct perf_event *event = container_of(entry, 3599 struct perf_event, pending); 3600 3601 if (event->pending_disable) { 3602 event->pending_disable = 0; 3603 __perf_event_disable(event); 3604 } 3605 3606 if (event->pending_wakeup) { 3607 event->pending_wakeup = 0; 3608 perf_event_wakeup(event); 3609 } 3610 } 3611 3612 /* 3613 * We assume there is only KVM supporting the callbacks. 3614 * Later on, we might change it to a list if there is 3615 * another virtualization implementation supporting the callbacks. 3616 */ 3617 struct perf_guest_info_callbacks *perf_guest_cbs; 3618 3619 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3620 { 3621 perf_guest_cbs = cbs; 3622 return 0; 3623 } 3624 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3625 3626 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3627 { 3628 perf_guest_cbs = NULL; 3629 return 0; 3630 } 3631 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3632 3633 static void __perf_event_header__init_id(struct perf_event_header *header, 3634 struct perf_sample_data *data, 3635 struct perf_event *event) 3636 { 3637 u64 sample_type = event->attr.sample_type; 3638 3639 data->type = sample_type; 3640 header->size += event->id_header_size; 3641 3642 if (sample_type & PERF_SAMPLE_TID) { 3643 /* namespace issues */ 3644 data->tid_entry.pid = perf_event_pid(event, current); 3645 data->tid_entry.tid = perf_event_tid(event, current); 3646 } 3647 3648 if (sample_type & PERF_SAMPLE_TIME) 3649 data->time = perf_clock(); 3650 3651 if (sample_type & PERF_SAMPLE_ID) 3652 data->id = primary_event_id(event); 3653 3654 if (sample_type & PERF_SAMPLE_STREAM_ID) 3655 data->stream_id = event->id; 3656 3657 if (sample_type & PERF_SAMPLE_CPU) { 3658 data->cpu_entry.cpu = raw_smp_processor_id(); 3659 data->cpu_entry.reserved = 0; 3660 } 3661 } 3662 3663 void perf_event_header__init_id(struct perf_event_header *header, 3664 struct perf_sample_data *data, 3665 struct perf_event *event) 3666 { 3667 if (event->attr.sample_id_all) 3668 __perf_event_header__init_id(header, data, event); 3669 } 3670 3671 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3672 struct perf_sample_data *data) 3673 { 3674 u64 sample_type = data->type; 3675 3676 if (sample_type & PERF_SAMPLE_TID) 3677 perf_output_put(handle, data->tid_entry); 3678 3679 if (sample_type & PERF_SAMPLE_TIME) 3680 perf_output_put(handle, data->time); 3681 3682 if (sample_type & PERF_SAMPLE_ID) 3683 perf_output_put(handle, data->id); 3684 3685 if (sample_type & PERF_SAMPLE_STREAM_ID) 3686 perf_output_put(handle, data->stream_id); 3687 3688 if (sample_type & PERF_SAMPLE_CPU) 3689 perf_output_put(handle, data->cpu_entry); 3690 } 3691 3692 void perf_event__output_id_sample(struct perf_event *event, 3693 struct perf_output_handle *handle, 3694 struct perf_sample_data *sample) 3695 { 3696 if (event->attr.sample_id_all) 3697 __perf_event__output_id_sample(handle, sample); 3698 } 3699 3700 static void perf_output_read_one(struct perf_output_handle *handle, 3701 struct perf_event *event, 3702 u64 enabled, u64 running) 3703 { 3704 u64 read_format = event->attr.read_format; 3705 u64 values[4]; 3706 int n = 0; 3707 3708 values[n++] = perf_event_count(event); 3709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3710 values[n++] = enabled + 3711 atomic64_read(&event->child_total_time_enabled); 3712 } 3713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3714 values[n++] = running + 3715 atomic64_read(&event->child_total_time_running); 3716 } 3717 if (read_format & PERF_FORMAT_ID) 3718 values[n++] = primary_event_id(event); 3719 3720 __output_copy(handle, values, n * sizeof(u64)); 3721 } 3722 3723 /* 3724 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3725 */ 3726 static void perf_output_read_group(struct perf_output_handle *handle, 3727 struct perf_event *event, 3728 u64 enabled, u64 running) 3729 { 3730 struct perf_event *leader = event->group_leader, *sub; 3731 u64 read_format = event->attr.read_format; 3732 u64 values[5]; 3733 int n = 0; 3734 3735 values[n++] = 1 + leader->nr_siblings; 3736 3737 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3738 values[n++] = enabled; 3739 3740 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3741 values[n++] = running; 3742 3743 if (leader != event) 3744 leader->pmu->read(leader); 3745 3746 values[n++] = perf_event_count(leader); 3747 if (read_format & PERF_FORMAT_ID) 3748 values[n++] = primary_event_id(leader); 3749 3750 __output_copy(handle, values, n * sizeof(u64)); 3751 3752 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3753 n = 0; 3754 3755 if (sub != event) 3756 sub->pmu->read(sub); 3757 3758 values[n++] = perf_event_count(sub); 3759 if (read_format & PERF_FORMAT_ID) 3760 values[n++] = primary_event_id(sub); 3761 3762 __output_copy(handle, values, n * sizeof(u64)); 3763 } 3764 } 3765 3766 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3767 PERF_FORMAT_TOTAL_TIME_RUNNING) 3768 3769 static void perf_output_read(struct perf_output_handle *handle, 3770 struct perf_event *event) 3771 { 3772 u64 enabled = 0, running = 0; 3773 u64 read_format = event->attr.read_format; 3774 3775 /* 3776 * compute total_time_enabled, total_time_running 3777 * based on snapshot values taken when the event 3778 * was last scheduled in. 3779 * 3780 * we cannot simply called update_context_time() 3781 * because of locking issue as we are called in 3782 * NMI context 3783 */ 3784 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3785 calc_timer_values(event, &enabled, &running); 3786 3787 if (event->attr.read_format & PERF_FORMAT_GROUP) 3788 perf_output_read_group(handle, event, enabled, running); 3789 else 3790 perf_output_read_one(handle, event, enabled, running); 3791 } 3792 3793 void perf_output_sample(struct perf_output_handle *handle, 3794 struct perf_event_header *header, 3795 struct perf_sample_data *data, 3796 struct perf_event *event) 3797 { 3798 u64 sample_type = data->type; 3799 3800 perf_output_put(handle, *header); 3801 3802 if (sample_type & PERF_SAMPLE_IP) 3803 perf_output_put(handle, data->ip); 3804 3805 if (sample_type & PERF_SAMPLE_TID) 3806 perf_output_put(handle, data->tid_entry); 3807 3808 if (sample_type & PERF_SAMPLE_TIME) 3809 perf_output_put(handle, data->time); 3810 3811 if (sample_type & PERF_SAMPLE_ADDR) 3812 perf_output_put(handle, data->addr); 3813 3814 if (sample_type & PERF_SAMPLE_ID) 3815 perf_output_put(handle, data->id); 3816 3817 if (sample_type & PERF_SAMPLE_STREAM_ID) 3818 perf_output_put(handle, data->stream_id); 3819 3820 if (sample_type & PERF_SAMPLE_CPU) 3821 perf_output_put(handle, data->cpu_entry); 3822 3823 if (sample_type & PERF_SAMPLE_PERIOD) 3824 perf_output_put(handle, data->period); 3825 3826 if (sample_type & PERF_SAMPLE_READ) 3827 perf_output_read(handle, event); 3828 3829 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3830 if (data->callchain) { 3831 int size = 1; 3832 3833 if (data->callchain) 3834 size += data->callchain->nr; 3835 3836 size *= sizeof(u64); 3837 3838 __output_copy(handle, data->callchain, size); 3839 } else { 3840 u64 nr = 0; 3841 perf_output_put(handle, nr); 3842 } 3843 } 3844 3845 if (sample_type & PERF_SAMPLE_RAW) { 3846 if (data->raw) { 3847 perf_output_put(handle, data->raw->size); 3848 __output_copy(handle, data->raw->data, 3849 data->raw->size); 3850 } else { 3851 struct { 3852 u32 size; 3853 u32 data; 3854 } raw = { 3855 .size = sizeof(u32), 3856 .data = 0, 3857 }; 3858 perf_output_put(handle, raw); 3859 } 3860 } 3861 3862 if (!event->attr.watermark) { 3863 int wakeup_events = event->attr.wakeup_events; 3864 3865 if (wakeup_events) { 3866 struct ring_buffer *rb = handle->rb; 3867 int events = local_inc_return(&rb->events); 3868 3869 if (events >= wakeup_events) { 3870 local_sub(wakeup_events, &rb->events); 3871 local_inc(&rb->wakeup); 3872 } 3873 } 3874 } 3875 } 3876 3877 void perf_prepare_sample(struct perf_event_header *header, 3878 struct perf_sample_data *data, 3879 struct perf_event *event, 3880 struct pt_regs *regs) 3881 { 3882 u64 sample_type = event->attr.sample_type; 3883 3884 header->type = PERF_RECORD_SAMPLE; 3885 header->size = sizeof(*header) + event->header_size; 3886 3887 header->misc = 0; 3888 header->misc |= perf_misc_flags(regs); 3889 3890 __perf_event_header__init_id(header, data, event); 3891 3892 if (sample_type & PERF_SAMPLE_IP) 3893 data->ip = perf_instruction_pointer(regs); 3894 3895 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3896 int size = 1; 3897 3898 data->callchain = perf_callchain(regs); 3899 3900 if (data->callchain) 3901 size += data->callchain->nr; 3902 3903 header->size += size * sizeof(u64); 3904 } 3905 3906 if (sample_type & PERF_SAMPLE_RAW) { 3907 int size = sizeof(u32); 3908 3909 if (data->raw) 3910 size += data->raw->size; 3911 else 3912 size += sizeof(u32); 3913 3914 WARN_ON_ONCE(size & (sizeof(u64)-1)); 3915 header->size += size; 3916 } 3917 } 3918 3919 static void perf_event_output(struct perf_event *event, 3920 struct perf_sample_data *data, 3921 struct pt_regs *regs) 3922 { 3923 struct perf_output_handle handle; 3924 struct perf_event_header header; 3925 3926 /* protect the callchain buffers */ 3927 rcu_read_lock(); 3928 3929 perf_prepare_sample(&header, data, event, regs); 3930 3931 if (perf_output_begin(&handle, event, header.size)) 3932 goto exit; 3933 3934 perf_output_sample(&handle, &header, data, event); 3935 3936 perf_output_end(&handle); 3937 3938 exit: 3939 rcu_read_unlock(); 3940 } 3941 3942 /* 3943 * read event_id 3944 */ 3945 3946 struct perf_read_event { 3947 struct perf_event_header header; 3948 3949 u32 pid; 3950 u32 tid; 3951 }; 3952 3953 static void 3954 perf_event_read_event(struct perf_event *event, 3955 struct task_struct *task) 3956 { 3957 struct perf_output_handle handle; 3958 struct perf_sample_data sample; 3959 struct perf_read_event read_event = { 3960 .header = { 3961 .type = PERF_RECORD_READ, 3962 .misc = 0, 3963 .size = sizeof(read_event) + event->read_size, 3964 }, 3965 .pid = perf_event_pid(event, task), 3966 .tid = perf_event_tid(event, task), 3967 }; 3968 int ret; 3969 3970 perf_event_header__init_id(&read_event.header, &sample, event); 3971 ret = perf_output_begin(&handle, event, read_event.header.size); 3972 if (ret) 3973 return; 3974 3975 perf_output_put(&handle, read_event); 3976 perf_output_read(&handle, event); 3977 perf_event__output_id_sample(event, &handle, &sample); 3978 3979 perf_output_end(&handle); 3980 } 3981 3982 /* 3983 * task tracking -- fork/exit 3984 * 3985 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 3986 */ 3987 3988 struct perf_task_event { 3989 struct task_struct *task; 3990 struct perf_event_context *task_ctx; 3991 3992 struct { 3993 struct perf_event_header header; 3994 3995 u32 pid; 3996 u32 ppid; 3997 u32 tid; 3998 u32 ptid; 3999 u64 time; 4000 } event_id; 4001 }; 4002 4003 static void perf_event_task_output(struct perf_event *event, 4004 struct perf_task_event *task_event) 4005 { 4006 struct perf_output_handle handle; 4007 struct perf_sample_data sample; 4008 struct task_struct *task = task_event->task; 4009 int ret, size = task_event->event_id.header.size; 4010 4011 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4012 4013 ret = perf_output_begin(&handle, event, 4014 task_event->event_id.header.size); 4015 if (ret) 4016 goto out; 4017 4018 task_event->event_id.pid = perf_event_pid(event, task); 4019 task_event->event_id.ppid = perf_event_pid(event, current); 4020 4021 task_event->event_id.tid = perf_event_tid(event, task); 4022 task_event->event_id.ptid = perf_event_tid(event, current); 4023 4024 perf_output_put(&handle, task_event->event_id); 4025 4026 perf_event__output_id_sample(event, &handle, &sample); 4027 4028 perf_output_end(&handle); 4029 out: 4030 task_event->event_id.header.size = size; 4031 } 4032 4033 static int perf_event_task_match(struct perf_event *event) 4034 { 4035 if (event->state < PERF_EVENT_STATE_INACTIVE) 4036 return 0; 4037 4038 if (!event_filter_match(event)) 4039 return 0; 4040 4041 if (event->attr.comm || event->attr.mmap || 4042 event->attr.mmap_data || event->attr.task) 4043 return 1; 4044 4045 return 0; 4046 } 4047 4048 static void perf_event_task_ctx(struct perf_event_context *ctx, 4049 struct perf_task_event *task_event) 4050 { 4051 struct perf_event *event; 4052 4053 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4054 if (perf_event_task_match(event)) 4055 perf_event_task_output(event, task_event); 4056 } 4057 } 4058 4059 static void perf_event_task_event(struct perf_task_event *task_event) 4060 { 4061 struct perf_cpu_context *cpuctx; 4062 struct perf_event_context *ctx; 4063 struct pmu *pmu; 4064 int ctxn; 4065 4066 rcu_read_lock(); 4067 list_for_each_entry_rcu(pmu, &pmus, entry) { 4068 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4069 if (cpuctx->active_pmu != pmu) 4070 goto next; 4071 perf_event_task_ctx(&cpuctx->ctx, task_event); 4072 4073 ctx = task_event->task_ctx; 4074 if (!ctx) { 4075 ctxn = pmu->task_ctx_nr; 4076 if (ctxn < 0) 4077 goto next; 4078 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4079 } 4080 if (ctx) 4081 perf_event_task_ctx(ctx, task_event); 4082 next: 4083 put_cpu_ptr(pmu->pmu_cpu_context); 4084 } 4085 rcu_read_unlock(); 4086 } 4087 4088 static void perf_event_task(struct task_struct *task, 4089 struct perf_event_context *task_ctx, 4090 int new) 4091 { 4092 struct perf_task_event task_event; 4093 4094 if (!atomic_read(&nr_comm_events) && 4095 !atomic_read(&nr_mmap_events) && 4096 !atomic_read(&nr_task_events)) 4097 return; 4098 4099 task_event = (struct perf_task_event){ 4100 .task = task, 4101 .task_ctx = task_ctx, 4102 .event_id = { 4103 .header = { 4104 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4105 .misc = 0, 4106 .size = sizeof(task_event.event_id), 4107 }, 4108 /* .pid */ 4109 /* .ppid */ 4110 /* .tid */ 4111 /* .ptid */ 4112 .time = perf_clock(), 4113 }, 4114 }; 4115 4116 perf_event_task_event(&task_event); 4117 } 4118 4119 void perf_event_fork(struct task_struct *task) 4120 { 4121 perf_event_task(task, NULL, 1); 4122 } 4123 4124 /* 4125 * comm tracking 4126 */ 4127 4128 struct perf_comm_event { 4129 struct task_struct *task; 4130 char *comm; 4131 int comm_size; 4132 4133 struct { 4134 struct perf_event_header header; 4135 4136 u32 pid; 4137 u32 tid; 4138 } event_id; 4139 }; 4140 4141 static void perf_event_comm_output(struct perf_event *event, 4142 struct perf_comm_event *comm_event) 4143 { 4144 struct perf_output_handle handle; 4145 struct perf_sample_data sample; 4146 int size = comm_event->event_id.header.size; 4147 int ret; 4148 4149 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4150 ret = perf_output_begin(&handle, event, 4151 comm_event->event_id.header.size); 4152 4153 if (ret) 4154 goto out; 4155 4156 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4157 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4158 4159 perf_output_put(&handle, comm_event->event_id); 4160 __output_copy(&handle, comm_event->comm, 4161 comm_event->comm_size); 4162 4163 perf_event__output_id_sample(event, &handle, &sample); 4164 4165 perf_output_end(&handle); 4166 out: 4167 comm_event->event_id.header.size = size; 4168 } 4169 4170 static int perf_event_comm_match(struct perf_event *event) 4171 { 4172 if (event->state < PERF_EVENT_STATE_INACTIVE) 4173 return 0; 4174 4175 if (!event_filter_match(event)) 4176 return 0; 4177 4178 if (event->attr.comm) 4179 return 1; 4180 4181 return 0; 4182 } 4183 4184 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4185 struct perf_comm_event *comm_event) 4186 { 4187 struct perf_event *event; 4188 4189 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4190 if (perf_event_comm_match(event)) 4191 perf_event_comm_output(event, comm_event); 4192 } 4193 } 4194 4195 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4196 { 4197 struct perf_cpu_context *cpuctx; 4198 struct perf_event_context *ctx; 4199 char comm[TASK_COMM_LEN]; 4200 unsigned int size; 4201 struct pmu *pmu; 4202 int ctxn; 4203 4204 memset(comm, 0, sizeof(comm)); 4205 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4206 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4207 4208 comm_event->comm = comm; 4209 comm_event->comm_size = size; 4210 4211 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4212 rcu_read_lock(); 4213 list_for_each_entry_rcu(pmu, &pmus, entry) { 4214 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4215 if (cpuctx->active_pmu != pmu) 4216 goto next; 4217 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4218 4219 ctxn = pmu->task_ctx_nr; 4220 if (ctxn < 0) 4221 goto next; 4222 4223 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4224 if (ctx) 4225 perf_event_comm_ctx(ctx, comm_event); 4226 next: 4227 put_cpu_ptr(pmu->pmu_cpu_context); 4228 } 4229 rcu_read_unlock(); 4230 } 4231 4232 void perf_event_comm(struct task_struct *task) 4233 { 4234 struct perf_comm_event comm_event; 4235 struct perf_event_context *ctx; 4236 int ctxn; 4237 4238 for_each_task_context_nr(ctxn) { 4239 ctx = task->perf_event_ctxp[ctxn]; 4240 if (!ctx) 4241 continue; 4242 4243 perf_event_enable_on_exec(ctx); 4244 } 4245 4246 if (!atomic_read(&nr_comm_events)) 4247 return; 4248 4249 comm_event = (struct perf_comm_event){ 4250 .task = task, 4251 /* .comm */ 4252 /* .comm_size */ 4253 .event_id = { 4254 .header = { 4255 .type = PERF_RECORD_COMM, 4256 .misc = 0, 4257 /* .size */ 4258 }, 4259 /* .pid */ 4260 /* .tid */ 4261 }, 4262 }; 4263 4264 perf_event_comm_event(&comm_event); 4265 } 4266 4267 /* 4268 * mmap tracking 4269 */ 4270 4271 struct perf_mmap_event { 4272 struct vm_area_struct *vma; 4273 4274 const char *file_name; 4275 int file_size; 4276 4277 struct { 4278 struct perf_event_header header; 4279 4280 u32 pid; 4281 u32 tid; 4282 u64 start; 4283 u64 len; 4284 u64 pgoff; 4285 } event_id; 4286 }; 4287 4288 static void perf_event_mmap_output(struct perf_event *event, 4289 struct perf_mmap_event *mmap_event) 4290 { 4291 struct perf_output_handle handle; 4292 struct perf_sample_data sample; 4293 int size = mmap_event->event_id.header.size; 4294 int ret; 4295 4296 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4297 ret = perf_output_begin(&handle, event, 4298 mmap_event->event_id.header.size); 4299 if (ret) 4300 goto out; 4301 4302 mmap_event->event_id.pid = perf_event_pid(event, current); 4303 mmap_event->event_id.tid = perf_event_tid(event, current); 4304 4305 perf_output_put(&handle, mmap_event->event_id); 4306 __output_copy(&handle, mmap_event->file_name, 4307 mmap_event->file_size); 4308 4309 perf_event__output_id_sample(event, &handle, &sample); 4310 4311 perf_output_end(&handle); 4312 out: 4313 mmap_event->event_id.header.size = size; 4314 } 4315 4316 static int perf_event_mmap_match(struct perf_event *event, 4317 struct perf_mmap_event *mmap_event, 4318 int executable) 4319 { 4320 if (event->state < PERF_EVENT_STATE_INACTIVE) 4321 return 0; 4322 4323 if (!event_filter_match(event)) 4324 return 0; 4325 4326 if ((!executable && event->attr.mmap_data) || 4327 (executable && event->attr.mmap)) 4328 return 1; 4329 4330 return 0; 4331 } 4332 4333 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4334 struct perf_mmap_event *mmap_event, 4335 int executable) 4336 { 4337 struct perf_event *event; 4338 4339 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4340 if (perf_event_mmap_match(event, mmap_event, executable)) 4341 perf_event_mmap_output(event, mmap_event); 4342 } 4343 } 4344 4345 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4346 { 4347 struct perf_cpu_context *cpuctx; 4348 struct perf_event_context *ctx; 4349 struct vm_area_struct *vma = mmap_event->vma; 4350 struct file *file = vma->vm_file; 4351 unsigned int size; 4352 char tmp[16]; 4353 char *buf = NULL; 4354 const char *name; 4355 struct pmu *pmu; 4356 int ctxn; 4357 4358 memset(tmp, 0, sizeof(tmp)); 4359 4360 if (file) { 4361 /* 4362 * d_path works from the end of the rb backwards, so we 4363 * need to add enough zero bytes after the string to handle 4364 * the 64bit alignment we do later. 4365 */ 4366 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4367 if (!buf) { 4368 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4369 goto got_name; 4370 } 4371 name = d_path(&file->f_path, buf, PATH_MAX); 4372 if (IS_ERR(name)) { 4373 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4374 goto got_name; 4375 } 4376 } else { 4377 if (arch_vma_name(mmap_event->vma)) { 4378 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4379 sizeof(tmp)); 4380 goto got_name; 4381 } 4382 4383 if (!vma->vm_mm) { 4384 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4385 goto got_name; 4386 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4387 vma->vm_end >= vma->vm_mm->brk) { 4388 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4389 goto got_name; 4390 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4391 vma->vm_end >= vma->vm_mm->start_stack) { 4392 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4393 goto got_name; 4394 } 4395 4396 name = strncpy(tmp, "//anon", sizeof(tmp)); 4397 goto got_name; 4398 } 4399 4400 got_name: 4401 size = ALIGN(strlen(name)+1, sizeof(u64)); 4402 4403 mmap_event->file_name = name; 4404 mmap_event->file_size = size; 4405 4406 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4407 4408 rcu_read_lock(); 4409 list_for_each_entry_rcu(pmu, &pmus, entry) { 4410 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4411 if (cpuctx->active_pmu != pmu) 4412 goto next; 4413 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4414 vma->vm_flags & VM_EXEC); 4415 4416 ctxn = pmu->task_ctx_nr; 4417 if (ctxn < 0) 4418 goto next; 4419 4420 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4421 if (ctx) { 4422 perf_event_mmap_ctx(ctx, mmap_event, 4423 vma->vm_flags & VM_EXEC); 4424 } 4425 next: 4426 put_cpu_ptr(pmu->pmu_cpu_context); 4427 } 4428 rcu_read_unlock(); 4429 4430 kfree(buf); 4431 } 4432 4433 void perf_event_mmap(struct vm_area_struct *vma) 4434 { 4435 struct perf_mmap_event mmap_event; 4436 4437 if (!atomic_read(&nr_mmap_events)) 4438 return; 4439 4440 mmap_event = (struct perf_mmap_event){ 4441 .vma = vma, 4442 /* .file_name */ 4443 /* .file_size */ 4444 .event_id = { 4445 .header = { 4446 .type = PERF_RECORD_MMAP, 4447 .misc = PERF_RECORD_MISC_USER, 4448 /* .size */ 4449 }, 4450 /* .pid */ 4451 /* .tid */ 4452 .start = vma->vm_start, 4453 .len = vma->vm_end - vma->vm_start, 4454 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4455 }, 4456 }; 4457 4458 perf_event_mmap_event(&mmap_event); 4459 } 4460 4461 /* 4462 * IRQ throttle logging 4463 */ 4464 4465 static void perf_log_throttle(struct perf_event *event, int enable) 4466 { 4467 struct perf_output_handle handle; 4468 struct perf_sample_data sample; 4469 int ret; 4470 4471 struct { 4472 struct perf_event_header header; 4473 u64 time; 4474 u64 id; 4475 u64 stream_id; 4476 } throttle_event = { 4477 .header = { 4478 .type = PERF_RECORD_THROTTLE, 4479 .misc = 0, 4480 .size = sizeof(throttle_event), 4481 }, 4482 .time = perf_clock(), 4483 .id = primary_event_id(event), 4484 .stream_id = event->id, 4485 }; 4486 4487 if (enable) 4488 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4489 4490 perf_event_header__init_id(&throttle_event.header, &sample, event); 4491 4492 ret = perf_output_begin(&handle, event, 4493 throttle_event.header.size); 4494 if (ret) 4495 return; 4496 4497 perf_output_put(&handle, throttle_event); 4498 perf_event__output_id_sample(event, &handle, &sample); 4499 perf_output_end(&handle); 4500 } 4501 4502 /* 4503 * Generic event overflow handling, sampling. 4504 */ 4505 4506 static int __perf_event_overflow(struct perf_event *event, 4507 int throttle, struct perf_sample_data *data, 4508 struct pt_regs *regs) 4509 { 4510 int events = atomic_read(&event->event_limit); 4511 struct hw_perf_event *hwc = &event->hw; 4512 int ret = 0; 4513 4514 /* 4515 * Non-sampling counters might still use the PMI to fold short 4516 * hardware counters, ignore those. 4517 */ 4518 if (unlikely(!is_sampling_event(event))) 4519 return 0; 4520 4521 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4522 if (throttle) { 4523 hwc->interrupts = MAX_INTERRUPTS; 4524 perf_log_throttle(event, 0); 4525 ret = 1; 4526 } 4527 } else 4528 hwc->interrupts++; 4529 4530 if (event->attr.freq) { 4531 u64 now = perf_clock(); 4532 s64 delta = now - hwc->freq_time_stamp; 4533 4534 hwc->freq_time_stamp = now; 4535 4536 if (delta > 0 && delta < 2*TICK_NSEC) 4537 perf_adjust_period(event, delta, hwc->last_period); 4538 } 4539 4540 /* 4541 * XXX event_limit might not quite work as expected on inherited 4542 * events 4543 */ 4544 4545 event->pending_kill = POLL_IN; 4546 if (events && atomic_dec_and_test(&event->event_limit)) { 4547 ret = 1; 4548 event->pending_kill = POLL_HUP; 4549 event->pending_disable = 1; 4550 irq_work_queue(&event->pending); 4551 } 4552 4553 if (event->overflow_handler) 4554 event->overflow_handler(event, data, regs); 4555 else 4556 perf_event_output(event, data, regs); 4557 4558 if (event->fasync && event->pending_kill) { 4559 event->pending_wakeup = 1; 4560 irq_work_queue(&event->pending); 4561 } 4562 4563 return ret; 4564 } 4565 4566 int perf_event_overflow(struct perf_event *event, 4567 struct perf_sample_data *data, 4568 struct pt_regs *regs) 4569 { 4570 return __perf_event_overflow(event, 1, data, regs); 4571 } 4572 4573 /* 4574 * Generic software event infrastructure 4575 */ 4576 4577 struct swevent_htable { 4578 struct swevent_hlist *swevent_hlist; 4579 struct mutex hlist_mutex; 4580 int hlist_refcount; 4581 4582 /* Recursion avoidance in each contexts */ 4583 int recursion[PERF_NR_CONTEXTS]; 4584 }; 4585 4586 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4587 4588 /* 4589 * We directly increment event->count and keep a second value in 4590 * event->hw.period_left to count intervals. This period event 4591 * is kept in the range [-sample_period, 0] so that we can use the 4592 * sign as trigger. 4593 */ 4594 4595 static u64 perf_swevent_set_period(struct perf_event *event) 4596 { 4597 struct hw_perf_event *hwc = &event->hw; 4598 u64 period = hwc->last_period; 4599 u64 nr, offset; 4600 s64 old, val; 4601 4602 hwc->last_period = hwc->sample_period; 4603 4604 again: 4605 old = val = local64_read(&hwc->period_left); 4606 if (val < 0) 4607 return 0; 4608 4609 nr = div64_u64(period + val, period); 4610 offset = nr * period; 4611 val -= offset; 4612 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4613 goto again; 4614 4615 return nr; 4616 } 4617 4618 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4619 struct perf_sample_data *data, 4620 struct pt_regs *regs) 4621 { 4622 struct hw_perf_event *hwc = &event->hw; 4623 int throttle = 0; 4624 4625 if (!overflow) 4626 overflow = perf_swevent_set_period(event); 4627 4628 if (hwc->interrupts == MAX_INTERRUPTS) 4629 return; 4630 4631 for (; overflow; overflow--) { 4632 if (__perf_event_overflow(event, throttle, 4633 data, regs)) { 4634 /* 4635 * We inhibit the overflow from happening when 4636 * hwc->interrupts == MAX_INTERRUPTS. 4637 */ 4638 break; 4639 } 4640 throttle = 1; 4641 } 4642 } 4643 4644 static void perf_swevent_event(struct perf_event *event, u64 nr, 4645 struct perf_sample_data *data, 4646 struct pt_regs *regs) 4647 { 4648 struct hw_perf_event *hwc = &event->hw; 4649 4650 local64_add(nr, &event->count); 4651 4652 if (!regs) 4653 return; 4654 4655 if (!is_sampling_event(event)) 4656 return; 4657 4658 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4659 data->period = nr; 4660 return perf_swevent_overflow(event, 1, data, regs); 4661 } else 4662 data->period = event->hw.last_period; 4663 4664 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4665 return perf_swevent_overflow(event, 1, data, regs); 4666 4667 if (local64_add_negative(nr, &hwc->period_left)) 4668 return; 4669 4670 perf_swevent_overflow(event, 0, data, regs); 4671 } 4672 4673 static int perf_exclude_event(struct perf_event *event, 4674 struct pt_regs *regs) 4675 { 4676 if (event->hw.state & PERF_HES_STOPPED) 4677 return 1; 4678 4679 if (regs) { 4680 if (event->attr.exclude_user && user_mode(regs)) 4681 return 1; 4682 4683 if (event->attr.exclude_kernel && !user_mode(regs)) 4684 return 1; 4685 } 4686 4687 return 0; 4688 } 4689 4690 static int perf_swevent_match(struct perf_event *event, 4691 enum perf_type_id type, 4692 u32 event_id, 4693 struct perf_sample_data *data, 4694 struct pt_regs *regs) 4695 { 4696 if (event->attr.type != type) 4697 return 0; 4698 4699 if (event->attr.config != event_id) 4700 return 0; 4701 4702 if (perf_exclude_event(event, regs)) 4703 return 0; 4704 4705 return 1; 4706 } 4707 4708 static inline u64 swevent_hash(u64 type, u32 event_id) 4709 { 4710 u64 val = event_id | (type << 32); 4711 4712 return hash_64(val, SWEVENT_HLIST_BITS); 4713 } 4714 4715 static inline struct hlist_head * 4716 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4717 { 4718 u64 hash = swevent_hash(type, event_id); 4719 4720 return &hlist->heads[hash]; 4721 } 4722 4723 /* For the read side: events when they trigger */ 4724 static inline struct hlist_head * 4725 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4726 { 4727 struct swevent_hlist *hlist; 4728 4729 hlist = rcu_dereference(swhash->swevent_hlist); 4730 if (!hlist) 4731 return NULL; 4732 4733 return __find_swevent_head(hlist, type, event_id); 4734 } 4735 4736 /* For the event head insertion and removal in the hlist */ 4737 static inline struct hlist_head * 4738 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4739 { 4740 struct swevent_hlist *hlist; 4741 u32 event_id = event->attr.config; 4742 u64 type = event->attr.type; 4743 4744 /* 4745 * Event scheduling is always serialized against hlist allocation 4746 * and release. Which makes the protected version suitable here. 4747 * The context lock guarantees that. 4748 */ 4749 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4750 lockdep_is_held(&event->ctx->lock)); 4751 if (!hlist) 4752 return NULL; 4753 4754 return __find_swevent_head(hlist, type, event_id); 4755 } 4756 4757 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4758 u64 nr, 4759 struct perf_sample_data *data, 4760 struct pt_regs *regs) 4761 { 4762 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4763 struct perf_event *event; 4764 struct hlist_node *node; 4765 struct hlist_head *head; 4766 4767 rcu_read_lock(); 4768 head = find_swevent_head_rcu(swhash, type, event_id); 4769 if (!head) 4770 goto end; 4771 4772 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4773 if (perf_swevent_match(event, type, event_id, data, regs)) 4774 perf_swevent_event(event, nr, data, regs); 4775 } 4776 end: 4777 rcu_read_unlock(); 4778 } 4779 4780 int perf_swevent_get_recursion_context(void) 4781 { 4782 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4783 4784 return get_recursion_context(swhash->recursion); 4785 } 4786 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4787 4788 inline void perf_swevent_put_recursion_context(int rctx) 4789 { 4790 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4791 4792 put_recursion_context(swhash->recursion, rctx); 4793 } 4794 4795 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4796 { 4797 struct perf_sample_data data; 4798 int rctx; 4799 4800 preempt_disable_notrace(); 4801 rctx = perf_swevent_get_recursion_context(); 4802 if (rctx < 0) 4803 return; 4804 4805 perf_sample_data_init(&data, addr); 4806 4807 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4808 4809 perf_swevent_put_recursion_context(rctx); 4810 preempt_enable_notrace(); 4811 } 4812 4813 static void perf_swevent_read(struct perf_event *event) 4814 { 4815 } 4816 4817 static int perf_swevent_add(struct perf_event *event, int flags) 4818 { 4819 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4820 struct hw_perf_event *hwc = &event->hw; 4821 struct hlist_head *head; 4822 4823 if (is_sampling_event(event)) { 4824 hwc->last_period = hwc->sample_period; 4825 perf_swevent_set_period(event); 4826 } 4827 4828 hwc->state = !(flags & PERF_EF_START); 4829 4830 head = find_swevent_head(swhash, event); 4831 if (WARN_ON_ONCE(!head)) 4832 return -EINVAL; 4833 4834 hlist_add_head_rcu(&event->hlist_entry, head); 4835 4836 return 0; 4837 } 4838 4839 static void perf_swevent_del(struct perf_event *event, int flags) 4840 { 4841 hlist_del_rcu(&event->hlist_entry); 4842 } 4843 4844 static void perf_swevent_start(struct perf_event *event, int flags) 4845 { 4846 event->hw.state = 0; 4847 } 4848 4849 static void perf_swevent_stop(struct perf_event *event, int flags) 4850 { 4851 event->hw.state = PERF_HES_STOPPED; 4852 } 4853 4854 /* Deref the hlist from the update side */ 4855 static inline struct swevent_hlist * 4856 swevent_hlist_deref(struct swevent_htable *swhash) 4857 { 4858 return rcu_dereference_protected(swhash->swevent_hlist, 4859 lockdep_is_held(&swhash->hlist_mutex)); 4860 } 4861 4862 static void swevent_hlist_release(struct swevent_htable *swhash) 4863 { 4864 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4865 4866 if (!hlist) 4867 return; 4868 4869 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4870 kfree_rcu(hlist, rcu_head); 4871 } 4872 4873 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4874 { 4875 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4876 4877 mutex_lock(&swhash->hlist_mutex); 4878 4879 if (!--swhash->hlist_refcount) 4880 swevent_hlist_release(swhash); 4881 4882 mutex_unlock(&swhash->hlist_mutex); 4883 } 4884 4885 static void swevent_hlist_put(struct perf_event *event) 4886 { 4887 int cpu; 4888 4889 if (event->cpu != -1) { 4890 swevent_hlist_put_cpu(event, event->cpu); 4891 return; 4892 } 4893 4894 for_each_possible_cpu(cpu) 4895 swevent_hlist_put_cpu(event, cpu); 4896 } 4897 4898 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 4899 { 4900 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4901 int err = 0; 4902 4903 mutex_lock(&swhash->hlist_mutex); 4904 4905 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 4906 struct swevent_hlist *hlist; 4907 4908 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 4909 if (!hlist) { 4910 err = -ENOMEM; 4911 goto exit; 4912 } 4913 rcu_assign_pointer(swhash->swevent_hlist, hlist); 4914 } 4915 swhash->hlist_refcount++; 4916 exit: 4917 mutex_unlock(&swhash->hlist_mutex); 4918 4919 return err; 4920 } 4921 4922 static int swevent_hlist_get(struct perf_event *event) 4923 { 4924 int err; 4925 int cpu, failed_cpu; 4926 4927 if (event->cpu != -1) 4928 return swevent_hlist_get_cpu(event, event->cpu); 4929 4930 get_online_cpus(); 4931 for_each_possible_cpu(cpu) { 4932 err = swevent_hlist_get_cpu(event, cpu); 4933 if (err) { 4934 failed_cpu = cpu; 4935 goto fail; 4936 } 4937 } 4938 put_online_cpus(); 4939 4940 return 0; 4941 fail: 4942 for_each_possible_cpu(cpu) { 4943 if (cpu == failed_cpu) 4944 break; 4945 swevent_hlist_put_cpu(event, cpu); 4946 } 4947 4948 put_online_cpus(); 4949 return err; 4950 } 4951 4952 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 4953 4954 static void sw_perf_event_destroy(struct perf_event *event) 4955 { 4956 u64 event_id = event->attr.config; 4957 4958 WARN_ON(event->parent); 4959 4960 jump_label_dec(&perf_swevent_enabled[event_id]); 4961 swevent_hlist_put(event); 4962 } 4963 4964 static int perf_swevent_init(struct perf_event *event) 4965 { 4966 int event_id = event->attr.config; 4967 4968 if (event->attr.type != PERF_TYPE_SOFTWARE) 4969 return -ENOENT; 4970 4971 switch (event_id) { 4972 case PERF_COUNT_SW_CPU_CLOCK: 4973 case PERF_COUNT_SW_TASK_CLOCK: 4974 return -ENOENT; 4975 4976 default: 4977 break; 4978 } 4979 4980 if (event_id >= PERF_COUNT_SW_MAX) 4981 return -ENOENT; 4982 4983 if (!event->parent) { 4984 int err; 4985 4986 err = swevent_hlist_get(event); 4987 if (err) 4988 return err; 4989 4990 jump_label_inc(&perf_swevent_enabled[event_id]); 4991 event->destroy = sw_perf_event_destroy; 4992 } 4993 4994 return 0; 4995 } 4996 4997 static struct pmu perf_swevent = { 4998 .task_ctx_nr = perf_sw_context, 4999 5000 .event_init = perf_swevent_init, 5001 .add = perf_swevent_add, 5002 .del = perf_swevent_del, 5003 .start = perf_swevent_start, 5004 .stop = perf_swevent_stop, 5005 .read = perf_swevent_read, 5006 }; 5007 5008 #ifdef CONFIG_EVENT_TRACING 5009 5010 static int perf_tp_filter_match(struct perf_event *event, 5011 struct perf_sample_data *data) 5012 { 5013 void *record = data->raw->data; 5014 5015 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5016 return 1; 5017 return 0; 5018 } 5019 5020 static int perf_tp_event_match(struct perf_event *event, 5021 struct perf_sample_data *data, 5022 struct pt_regs *regs) 5023 { 5024 if (event->hw.state & PERF_HES_STOPPED) 5025 return 0; 5026 /* 5027 * All tracepoints are from kernel-space. 5028 */ 5029 if (event->attr.exclude_kernel) 5030 return 0; 5031 5032 if (!perf_tp_filter_match(event, data)) 5033 return 0; 5034 5035 return 1; 5036 } 5037 5038 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5039 struct pt_regs *regs, struct hlist_head *head, int rctx) 5040 { 5041 struct perf_sample_data data; 5042 struct perf_event *event; 5043 struct hlist_node *node; 5044 5045 struct perf_raw_record raw = { 5046 .size = entry_size, 5047 .data = record, 5048 }; 5049 5050 perf_sample_data_init(&data, addr); 5051 data.raw = &raw; 5052 5053 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5054 if (perf_tp_event_match(event, &data, regs)) 5055 perf_swevent_event(event, count, &data, regs); 5056 } 5057 5058 perf_swevent_put_recursion_context(rctx); 5059 } 5060 EXPORT_SYMBOL_GPL(perf_tp_event); 5061 5062 static void tp_perf_event_destroy(struct perf_event *event) 5063 { 5064 perf_trace_destroy(event); 5065 } 5066 5067 static int perf_tp_event_init(struct perf_event *event) 5068 { 5069 int err; 5070 5071 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5072 return -ENOENT; 5073 5074 err = perf_trace_init(event); 5075 if (err) 5076 return err; 5077 5078 event->destroy = tp_perf_event_destroy; 5079 5080 return 0; 5081 } 5082 5083 static struct pmu perf_tracepoint = { 5084 .task_ctx_nr = perf_sw_context, 5085 5086 .event_init = perf_tp_event_init, 5087 .add = perf_trace_add, 5088 .del = perf_trace_del, 5089 .start = perf_swevent_start, 5090 .stop = perf_swevent_stop, 5091 .read = perf_swevent_read, 5092 }; 5093 5094 static inline void perf_tp_register(void) 5095 { 5096 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5097 } 5098 5099 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5100 { 5101 char *filter_str; 5102 int ret; 5103 5104 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5105 return -EINVAL; 5106 5107 filter_str = strndup_user(arg, PAGE_SIZE); 5108 if (IS_ERR(filter_str)) 5109 return PTR_ERR(filter_str); 5110 5111 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5112 5113 kfree(filter_str); 5114 return ret; 5115 } 5116 5117 static void perf_event_free_filter(struct perf_event *event) 5118 { 5119 ftrace_profile_free_filter(event); 5120 } 5121 5122 #else 5123 5124 static inline void perf_tp_register(void) 5125 { 5126 } 5127 5128 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5129 { 5130 return -ENOENT; 5131 } 5132 5133 static void perf_event_free_filter(struct perf_event *event) 5134 { 5135 } 5136 5137 #endif /* CONFIG_EVENT_TRACING */ 5138 5139 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5140 void perf_bp_event(struct perf_event *bp, void *data) 5141 { 5142 struct perf_sample_data sample; 5143 struct pt_regs *regs = data; 5144 5145 perf_sample_data_init(&sample, bp->attr.bp_addr); 5146 5147 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5148 perf_swevent_event(bp, 1, &sample, regs); 5149 } 5150 #endif 5151 5152 /* 5153 * hrtimer based swevent callback 5154 */ 5155 5156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5157 { 5158 enum hrtimer_restart ret = HRTIMER_RESTART; 5159 struct perf_sample_data data; 5160 struct pt_regs *regs; 5161 struct perf_event *event; 5162 u64 period; 5163 5164 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5165 5166 if (event->state != PERF_EVENT_STATE_ACTIVE) 5167 return HRTIMER_NORESTART; 5168 5169 event->pmu->read(event); 5170 5171 perf_sample_data_init(&data, 0); 5172 data.period = event->hw.last_period; 5173 regs = get_irq_regs(); 5174 5175 if (regs && !perf_exclude_event(event, regs)) { 5176 if (!(event->attr.exclude_idle && is_idle_task(current))) 5177 if (perf_event_overflow(event, &data, regs)) 5178 ret = HRTIMER_NORESTART; 5179 } 5180 5181 period = max_t(u64, 10000, event->hw.sample_period); 5182 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5183 5184 return ret; 5185 } 5186 5187 static void perf_swevent_start_hrtimer(struct perf_event *event) 5188 { 5189 struct hw_perf_event *hwc = &event->hw; 5190 s64 period; 5191 5192 if (!is_sampling_event(event)) 5193 return; 5194 5195 period = local64_read(&hwc->period_left); 5196 if (period) { 5197 if (period < 0) 5198 period = 10000; 5199 5200 local64_set(&hwc->period_left, 0); 5201 } else { 5202 period = max_t(u64, 10000, hwc->sample_period); 5203 } 5204 __hrtimer_start_range_ns(&hwc->hrtimer, 5205 ns_to_ktime(period), 0, 5206 HRTIMER_MODE_REL_PINNED, 0); 5207 } 5208 5209 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5210 { 5211 struct hw_perf_event *hwc = &event->hw; 5212 5213 if (is_sampling_event(event)) { 5214 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5215 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5216 5217 hrtimer_cancel(&hwc->hrtimer); 5218 } 5219 } 5220 5221 static void perf_swevent_init_hrtimer(struct perf_event *event) 5222 { 5223 struct hw_perf_event *hwc = &event->hw; 5224 5225 if (!is_sampling_event(event)) 5226 return; 5227 5228 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5229 hwc->hrtimer.function = perf_swevent_hrtimer; 5230 5231 /* 5232 * Since hrtimers have a fixed rate, we can do a static freq->period 5233 * mapping and avoid the whole period adjust feedback stuff. 5234 */ 5235 if (event->attr.freq) { 5236 long freq = event->attr.sample_freq; 5237 5238 event->attr.sample_period = NSEC_PER_SEC / freq; 5239 hwc->sample_period = event->attr.sample_period; 5240 local64_set(&hwc->period_left, hwc->sample_period); 5241 event->attr.freq = 0; 5242 } 5243 } 5244 5245 /* 5246 * Software event: cpu wall time clock 5247 */ 5248 5249 static void cpu_clock_event_update(struct perf_event *event) 5250 { 5251 s64 prev; 5252 u64 now; 5253 5254 now = local_clock(); 5255 prev = local64_xchg(&event->hw.prev_count, now); 5256 local64_add(now - prev, &event->count); 5257 } 5258 5259 static void cpu_clock_event_start(struct perf_event *event, int flags) 5260 { 5261 local64_set(&event->hw.prev_count, local_clock()); 5262 perf_swevent_start_hrtimer(event); 5263 } 5264 5265 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5266 { 5267 perf_swevent_cancel_hrtimer(event); 5268 cpu_clock_event_update(event); 5269 } 5270 5271 static int cpu_clock_event_add(struct perf_event *event, int flags) 5272 { 5273 if (flags & PERF_EF_START) 5274 cpu_clock_event_start(event, flags); 5275 5276 return 0; 5277 } 5278 5279 static void cpu_clock_event_del(struct perf_event *event, int flags) 5280 { 5281 cpu_clock_event_stop(event, flags); 5282 } 5283 5284 static void cpu_clock_event_read(struct perf_event *event) 5285 { 5286 cpu_clock_event_update(event); 5287 } 5288 5289 static int cpu_clock_event_init(struct perf_event *event) 5290 { 5291 if (event->attr.type != PERF_TYPE_SOFTWARE) 5292 return -ENOENT; 5293 5294 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5295 return -ENOENT; 5296 5297 perf_swevent_init_hrtimer(event); 5298 5299 return 0; 5300 } 5301 5302 static struct pmu perf_cpu_clock = { 5303 .task_ctx_nr = perf_sw_context, 5304 5305 .event_init = cpu_clock_event_init, 5306 .add = cpu_clock_event_add, 5307 .del = cpu_clock_event_del, 5308 .start = cpu_clock_event_start, 5309 .stop = cpu_clock_event_stop, 5310 .read = cpu_clock_event_read, 5311 }; 5312 5313 /* 5314 * Software event: task time clock 5315 */ 5316 5317 static void task_clock_event_update(struct perf_event *event, u64 now) 5318 { 5319 u64 prev; 5320 s64 delta; 5321 5322 prev = local64_xchg(&event->hw.prev_count, now); 5323 delta = now - prev; 5324 local64_add(delta, &event->count); 5325 } 5326 5327 static void task_clock_event_start(struct perf_event *event, int flags) 5328 { 5329 local64_set(&event->hw.prev_count, event->ctx->time); 5330 perf_swevent_start_hrtimer(event); 5331 } 5332 5333 static void task_clock_event_stop(struct perf_event *event, int flags) 5334 { 5335 perf_swevent_cancel_hrtimer(event); 5336 task_clock_event_update(event, event->ctx->time); 5337 } 5338 5339 static int task_clock_event_add(struct perf_event *event, int flags) 5340 { 5341 if (flags & PERF_EF_START) 5342 task_clock_event_start(event, flags); 5343 5344 return 0; 5345 } 5346 5347 static void task_clock_event_del(struct perf_event *event, int flags) 5348 { 5349 task_clock_event_stop(event, PERF_EF_UPDATE); 5350 } 5351 5352 static void task_clock_event_read(struct perf_event *event) 5353 { 5354 u64 now = perf_clock(); 5355 u64 delta = now - event->ctx->timestamp; 5356 u64 time = event->ctx->time + delta; 5357 5358 task_clock_event_update(event, time); 5359 } 5360 5361 static int task_clock_event_init(struct perf_event *event) 5362 { 5363 if (event->attr.type != PERF_TYPE_SOFTWARE) 5364 return -ENOENT; 5365 5366 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5367 return -ENOENT; 5368 5369 perf_swevent_init_hrtimer(event); 5370 5371 return 0; 5372 } 5373 5374 static struct pmu perf_task_clock = { 5375 .task_ctx_nr = perf_sw_context, 5376 5377 .event_init = task_clock_event_init, 5378 .add = task_clock_event_add, 5379 .del = task_clock_event_del, 5380 .start = task_clock_event_start, 5381 .stop = task_clock_event_stop, 5382 .read = task_clock_event_read, 5383 }; 5384 5385 static void perf_pmu_nop_void(struct pmu *pmu) 5386 { 5387 } 5388 5389 static int perf_pmu_nop_int(struct pmu *pmu) 5390 { 5391 return 0; 5392 } 5393 5394 static void perf_pmu_start_txn(struct pmu *pmu) 5395 { 5396 perf_pmu_disable(pmu); 5397 } 5398 5399 static int perf_pmu_commit_txn(struct pmu *pmu) 5400 { 5401 perf_pmu_enable(pmu); 5402 return 0; 5403 } 5404 5405 static void perf_pmu_cancel_txn(struct pmu *pmu) 5406 { 5407 perf_pmu_enable(pmu); 5408 } 5409 5410 /* 5411 * Ensures all contexts with the same task_ctx_nr have the same 5412 * pmu_cpu_context too. 5413 */ 5414 static void *find_pmu_context(int ctxn) 5415 { 5416 struct pmu *pmu; 5417 5418 if (ctxn < 0) 5419 return NULL; 5420 5421 list_for_each_entry(pmu, &pmus, entry) { 5422 if (pmu->task_ctx_nr == ctxn) 5423 return pmu->pmu_cpu_context; 5424 } 5425 5426 return NULL; 5427 } 5428 5429 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5430 { 5431 int cpu; 5432 5433 for_each_possible_cpu(cpu) { 5434 struct perf_cpu_context *cpuctx; 5435 5436 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5437 5438 if (cpuctx->active_pmu == old_pmu) 5439 cpuctx->active_pmu = pmu; 5440 } 5441 } 5442 5443 static void free_pmu_context(struct pmu *pmu) 5444 { 5445 struct pmu *i; 5446 5447 mutex_lock(&pmus_lock); 5448 /* 5449 * Like a real lame refcount. 5450 */ 5451 list_for_each_entry(i, &pmus, entry) { 5452 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5453 update_pmu_context(i, pmu); 5454 goto out; 5455 } 5456 } 5457 5458 free_percpu(pmu->pmu_cpu_context); 5459 out: 5460 mutex_unlock(&pmus_lock); 5461 } 5462 static struct idr pmu_idr; 5463 5464 static ssize_t 5465 type_show(struct device *dev, struct device_attribute *attr, char *page) 5466 { 5467 struct pmu *pmu = dev_get_drvdata(dev); 5468 5469 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5470 } 5471 5472 static struct device_attribute pmu_dev_attrs[] = { 5473 __ATTR_RO(type), 5474 __ATTR_NULL, 5475 }; 5476 5477 static int pmu_bus_running; 5478 static struct bus_type pmu_bus = { 5479 .name = "event_source", 5480 .dev_attrs = pmu_dev_attrs, 5481 }; 5482 5483 static void pmu_dev_release(struct device *dev) 5484 { 5485 kfree(dev); 5486 } 5487 5488 static int pmu_dev_alloc(struct pmu *pmu) 5489 { 5490 int ret = -ENOMEM; 5491 5492 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5493 if (!pmu->dev) 5494 goto out; 5495 5496 device_initialize(pmu->dev); 5497 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5498 if (ret) 5499 goto free_dev; 5500 5501 dev_set_drvdata(pmu->dev, pmu); 5502 pmu->dev->bus = &pmu_bus; 5503 pmu->dev->release = pmu_dev_release; 5504 ret = device_add(pmu->dev); 5505 if (ret) 5506 goto free_dev; 5507 5508 out: 5509 return ret; 5510 5511 free_dev: 5512 put_device(pmu->dev); 5513 goto out; 5514 } 5515 5516 static struct lock_class_key cpuctx_mutex; 5517 static struct lock_class_key cpuctx_lock; 5518 5519 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5520 { 5521 int cpu, ret; 5522 5523 mutex_lock(&pmus_lock); 5524 ret = -ENOMEM; 5525 pmu->pmu_disable_count = alloc_percpu(int); 5526 if (!pmu->pmu_disable_count) 5527 goto unlock; 5528 5529 pmu->type = -1; 5530 if (!name) 5531 goto skip_type; 5532 pmu->name = name; 5533 5534 if (type < 0) { 5535 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5536 if (!err) 5537 goto free_pdc; 5538 5539 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5540 if (err) { 5541 ret = err; 5542 goto free_pdc; 5543 } 5544 } 5545 pmu->type = type; 5546 5547 if (pmu_bus_running) { 5548 ret = pmu_dev_alloc(pmu); 5549 if (ret) 5550 goto free_idr; 5551 } 5552 5553 skip_type: 5554 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5555 if (pmu->pmu_cpu_context) 5556 goto got_cpu_context; 5557 5558 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5559 if (!pmu->pmu_cpu_context) 5560 goto free_dev; 5561 5562 for_each_possible_cpu(cpu) { 5563 struct perf_cpu_context *cpuctx; 5564 5565 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5566 __perf_event_init_context(&cpuctx->ctx); 5567 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5568 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5569 cpuctx->ctx.type = cpu_context; 5570 cpuctx->ctx.pmu = pmu; 5571 cpuctx->jiffies_interval = 1; 5572 INIT_LIST_HEAD(&cpuctx->rotation_list); 5573 cpuctx->active_pmu = pmu; 5574 } 5575 5576 got_cpu_context: 5577 if (!pmu->start_txn) { 5578 if (pmu->pmu_enable) { 5579 /* 5580 * If we have pmu_enable/pmu_disable calls, install 5581 * transaction stubs that use that to try and batch 5582 * hardware accesses. 5583 */ 5584 pmu->start_txn = perf_pmu_start_txn; 5585 pmu->commit_txn = perf_pmu_commit_txn; 5586 pmu->cancel_txn = perf_pmu_cancel_txn; 5587 } else { 5588 pmu->start_txn = perf_pmu_nop_void; 5589 pmu->commit_txn = perf_pmu_nop_int; 5590 pmu->cancel_txn = perf_pmu_nop_void; 5591 } 5592 } 5593 5594 if (!pmu->pmu_enable) { 5595 pmu->pmu_enable = perf_pmu_nop_void; 5596 pmu->pmu_disable = perf_pmu_nop_void; 5597 } 5598 5599 list_add_rcu(&pmu->entry, &pmus); 5600 ret = 0; 5601 unlock: 5602 mutex_unlock(&pmus_lock); 5603 5604 return ret; 5605 5606 free_dev: 5607 device_del(pmu->dev); 5608 put_device(pmu->dev); 5609 5610 free_idr: 5611 if (pmu->type >= PERF_TYPE_MAX) 5612 idr_remove(&pmu_idr, pmu->type); 5613 5614 free_pdc: 5615 free_percpu(pmu->pmu_disable_count); 5616 goto unlock; 5617 } 5618 5619 void perf_pmu_unregister(struct pmu *pmu) 5620 { 5621 mutex_lock(&pmus_lock); 5622 list_del_rcu(&pmu->entry); 5623 mutex_unlock(&pmus_lock); 5624 5625 /* 5626 * We dereference the pmu list under both SRCU and regular RCU, so 5627 * synchronize against both of those. 5628 */ 5629 synchronize_srcu(&pmus_srcu); 5630 synchronize_rcu(); 5631 5632 free_percpu(pmu->pmu_disable_count); 5633 if (pmu->type >= PERF_TYPE_MAX) 5634 idr_remove(&pmu_idr, pmu->type); 5635 device_del(pmu->dev); 5636 put_device(pmu->dev); 5637 free_pmu_context(pmu); 5638 } 5639 5640 struct pmu *perf_init_event(struct perf_event *event) 5641 { 5642 struct pmu *pmu = NULL; 5643 int idx; 5644 int ret; 5645 5646 idx = srcu_read_lock(&pmus_srcu); 5647 5648 rcu_read_lock(); 5649 pmu = idr_find(&pmu_idr, event->attr.type); 5650 rcu_read_unlock(); 5651 if (pmu) { 5652 event->pmu = pmu; 5653 ret = pmu->event_init(event); 5654 if (ret) 5655 pmu = ERR_PTR(ret); 5656 goto unlock; 5657 } 5658 5659 list_for_each_entry_rcu(pmu, &pmus, entry) { 5660 event->pmu = pmu; 5661 ret = pmu->event_init(event); 5662 if (!ret) 5663 goto unlock; 5664 5665 if (ret != -ENOENT) { 5666 pmu = ERR_PTR(ret); 5667 goto unlock; 5668 } 5669 } 5670 pmu = ERR_PTR(-ENOENT); 5671 unlock: 5672 srcu_read_unlock(&pmus_srcu, idx); 5673 5674 return pmu; 5675 } 5676 5677 /* 5678 * Allocate and initialize a event structure 5679 */ 5680 static struct perf_event * 5681 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5682 struct task_struct *task, 5683 struct perf_event *group_leader, 5684 struct perf_event *parent_event, 5685 perf_overflow_handler_t overflow_handler, 5686 void *context) 5687 { 5688 struct pmu *pmu; 5689 struct perf_event *event; 5690 struct hw_perf_event *hwc; 5691 long err; 5692 5693 if ((unsigned)cpu >= nr_cpu_ids) { 5694 if (!task || cpu != -1) 5695 return ERR_PTR(-EINVAL); 5696 } 5697 5698 event = kzalloc(sizeof(*event), GFP_KERNEL); 5699 if (!event) 5700 return ERR_PTR(-ENOMEM); 5701 5702 /* 5703 * Single events are their own group leaders, with an 5704 * empty sibling list: 5705 */ 5706 if (!group_leader) 5707 group_leader = event; 5708 5709 mutex_init(&event->child_mutex); 5710 INIT_LIST_HEAD(&event->child_list); 5711 5712 INIT_LIST_HEAD(&event->group_entry); 5713 INIT_LIST_HEAD(&event->event_entry); 5714 INIT_LIST_HEAD(&event->sibling_list); 5715 INIT_LIST_HEAD(&event->rb_entry); 5716 5717 init_waitqueue_head(&event->waitq); 5718 init_irq_work(&event->pending, perf_pending_event); 5719 5720 mutex_init(&event->mmap_mutex); 5721 5722 event->cpu = cpu; 5723 event->attr = *attr; 5724 event->group_leader = group_leader; 5725 event->pmu = NULL; 5726 event->oncpu = -1; 5727 5728 event->parent = parent_event; 5729 5730 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5731 event->id = atomic64_inc_return(&perf_event_id); 5732 5733 event->state = PERF_EVENT_STATE_INACTIVE; 5734 5735 if (task) { 5736 event->attach_state = PERF_ATTACH_TASK; 5737 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5738 /* 5739 * hw_breakpoint is a bit difficult here.. 5740 */ 5741 if (attr->type == PERF_TYPE_BREAKPOINT) 5742 event->hw.bp_target = task; 5743 #endif 5744 } 5745 5746 if (!overflow_handler && parent_event) { 5747 overflow_handler = parent_event->overflow_handler; 5748 context = parent_event->overflow_handler_context; 5749 } 5750 5751 event->overflow_handler = overflow_handler; 5752 event->overflow_handler_context = context; 5753 5754 if (attr->disabled) 5755 event->state = PERF_EVENT_STATE_OFF; 5756 5757 pmu = NULL; 5758 5759 hwc = &event->hw; 5760 hwc->sample_period = attr->sample_period; 5761 if (attr->freq && attr->sample_freq) 5762 hwc->sample_period = 1; 5763 hwc->last_period = hwc->sample_period; 5764 5765 local64_set(&hwc->period_left, hwc->sample_period); 5766 5767 /* 5768 * we currently do not support PERF_FORMAT_GROUP on inherited events 5769 */ 5770 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5771 goto done; 5772 5773 pmu = perf_init_event(event); 5774 5775 done: 5776 err = 0; 5777 if (!pmu) 5778 err = -EINVAL; 5779 else if (IS_ERR(pmu)) 5780 err = PTR_ERR(pmu); 5781 5782 if (err) { 5783 if (event->ns) 5784 put_pid_ns(event->ns); 5785 kfree(event); 5786 return ERR_PTR(err); 5787 } 5788 5789 if (!event->parent) { 5790 if (event->attach_state & PERF_ATTACH_TASK) 5791 jump_label_inc(&perf_sched_events.key); 5792 if (event->attr.mmap || event->attr.mmap_data) 5793 atomic_inc(&nr_mmap_events); 5794 if (event->attr.comm) 5795 atomic_inc(&nr_comm_events); 5796 if (event->attr.task) 5797 atomic_inc(&nr_task_events); 5798 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5799 err = get_callchain_buffers(); 5800 if (err) { 5801 free_event(event); 5802 return ERR_PTR(err); 5803 } 5804 } 5805 } 5806 5807 return event; 5808 } 5809 5810 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5811 struct perf_event_attr *attr) 5812 { 5813 u32 size; 5814 int ret; 5815 5816 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5817 return -EFAULT; 5818 5819 /* 5820 * zero the full structure, so that a short copy will be nice. 5821 */ 5822 memset(attr, 0, sizeof(*attr)); 5823 5824 ret = get_user(size, &uattr->size); 5825 if (ret) 5826 return ret; 5827 5828 if (size > PAGE_SIZE) /* silly large */ 5829 goto err_size; 5830 5831 if (!size) /* abi compat */ 5832 size = PERF_ATTR_SIZE_VER0; 5833 5834 if (size < PERF_ATTR_SIZE_VER0) 5835 goto err_size; 5836 5837 /* 5838 * If we're handed a bigger struct than we know of, 5839 * ensure all the unknown bits are 0 - i.e. new 5840 * user-space does not rely on any kernel feature 5841 * extensions we dont know about yet. 5842 */ 5843 if (size > sizeof(*attr)) { 5844 unsigned char __user *addr; 5845 unsigned char __user *end; 5846 unsigned char val; 5847 5848 addr = (void __user *)uattr + sizeof(*attr); 5849 end = (void __user *)uattr + size; 5850 5851 for (; addr < end; addr++) { 5852 ret = get_user(val, addr); 5853 if (ret) 5854 return ret; 5855 if (val) 5856 goto err_size; 5857 } 5858 size = sizeof(*attr); 5859 } 5860 5861 ret = copy_from_user(attr, uattr, size); 5862 if (ret) 5863 return -EFAULT; 5864 5865 if (attr->__reserved_1) 5866 return -EINVAL; 5867 5868 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5869 return -EINVAL; 5870 5871 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5872 return -EINVAL; 5873 5874 out: 5875 return ret; 5876 5877 err_size: 5878 put_user(sizeof(*attr), &uattr->size); 5879 ret = -E2BIG; 5880 goto out; 5881 } 5882 5883 static int 5884 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5885 { 5886 struct ring_buffer *rb = NULL, *old_rb = NULL; 5887 int ret = -EINVAL; 5888 5889 if (!output_event) 5890 goto set; 5891 5892 /* don't allow circular references */ 5893 if (event == output_event) 5894 goto out; 5895 5896 /* 5897 * Don't allow cross-cpu buffers 5898 */ 5899 if (output_event->cpu != event->cpu) 5900 goto out; 5901 5902 /* 5903 * If its not a per-cpu rb, it must be the same task. 5904 */ 5905 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 5906 goto out; 5907 5908 set: 5909 mutex_lock(&event->mmap_mutex); 5910 /* Can't redirect output if we've got an active mmap() */ 5911 if (atomic_read(&event->mmap_count)) 5912 goto unlock; 5913 5914 if (output_event) { 5915 /* get the rb we want to redirect to */ 5916 rb = ring_buffer_get(output_event); 5917 if (!rb) 5918 goto unlock; 5919 } 5920 5921 old_rb = event->rb; 5922 rcu_assign_pointer(event->rb, rb); 5923 if (old_rb) 5924 ring_buffer_detach(event, old_rb); 5925 ret = 0; 5926 unlock: 5927 mutex_unlock(&event->mmap_mutex); 5928 5929 if (old_rb) 5930 ring_buffer_put(old_rb); 5931 out: 5932 return ret; 5933 } 5934 5935 /** 5936 * sys_perf_event_open - open a performance event, associate it to a task/cpu 5937 * 5938 * @attr_uptr: event_id type attributes for monitoring/sampling 5939 * @pid: target pid 5940 * @cpu: target cpu 5941 * @group_fd: group leader event fd 5942 */ 5943 SYSCALL_DEFINE5(perf_event_open, 5944 struct perf_event_attr __user *, attr_uptr, 5945 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 5946 { 5947 struct perf_event *group_leader = NULL, *output_event = NULL; 5948 struct perf_event *event, *sibling; 5949 struct perf_event_attr attr; 5950 struct perf_event_context *ctx; 5951 struct file *event_file = NULL; 5952 struct file *group_file = NULL; 5953 struct task_struct *task = NULL; 5954 struct pmu *pmu; 5955 int event_fd; 5956 int move_group = 0; 5957 int fput_needed = 0; 5958 int err; 5959 5960 /* for future expandability... */ 5961 if (flags & ~PERF_FLAG_ALL) 5962 return -EINVAL; 5963 5964 err = perf_copy_attr(attr_uptr, &attr); 5965 if (err) 5966 return err; 5967 5968 if (!attr.exclude_kernel) { 5969 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 5970 return -EACCES; 5971 } 5972 5973 if (attr.freq) { 5974 if (attr.sample_freq > sysctl_perf_event_sample_rate) 5975 return -EINVAL; 5976 } 5977 5978 /* 5979 * In cgroup mode, the pid argument is used to pass the fd 5980 * opened to the cgroup directory in cgroupfs. The cpu argument 5981 * designates the cpu on which to monitor threads from that 5982 * cgroup. 5983 */ 5984 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 5985 return -EINVAL; 5986 5987 event_fd = get_unused_fd_flags(O_RDWR); 5988 if (event_fd < 0) 5989 return event_fd; 5990 5991 if (group_fd != -1) { 5992 group_leader = perf_fget_light(group_fd, &fput_needed); 5993 if (IS_ERR(group_leader)) { 5994 err = PTR_ERR(group_leader); 5995 goto err_fd; 5996 } 5997 group_file = group_leader->filp; 5998 if (flags & PERF_FLAG_FD_OUTPUT) 5999 output_event = group_leader; 6000 if (flags & PERF_FLAG_FD_NO_GROUP) 6001 group_leader = NULL; 6002 } 6003 6004 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6005 task = find_lively_task_by_vpid(pid); 6006 if (IS_ERR(task)) { 6007 err = PTR_ERR(task); 6008 goto err_group_fd; 6009 } 6010 } 6011 6012 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6013 NULL, NULL); 6014 if (IS_ERR(event)) { 6015 err = PTR_ERR(event); 6016 goto err_task; 6017 } 6018 6019 if (flags & PERF_FLAG_PID_CGROUP) { 6020 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6021 if (err) 6022 goto err_alloc; 6023 /* 6024 * one more event: 6025 * - that has cgroup constraint on event->cpu 6026 * - that may need work on context switch 6027 */ 6028 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6029 jump_label_inc(&perf_sched_events.key); 6030 } 6031 6032 /* 6033 * Special case software events and allow them to be part of 6034 * any hardware group. 6035 */ 6036 pmu = event->pmu; 6037 6038 if (group_leader && 6039 (is_software_event(event) != is_software_event(group_leader))) { 6040 if (is_software_event(event)) { 6041 /* 6042 * If event and group_leader are not both a software 6043 * event, and event is, then group leader is not. 6044 * 6045 * Allow the addition of software events to !software 6046 * groups, this is safe because software events never 6047 * fail to schedule. 6048 */ 6049 pmu = group_leader->pmu; 6050 } else if (is_software_event(group_leader) && 6051 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6052 /* 6053 * In case the group is a pure software group, and we 6054 * try to add a hardware event, move the whole group to 6055 * the hardware context. 6056 */ 6057 move_group = 1; 6058 } 6059 } 6060 6061 /* 6062 * Get the target context (task or percpu): 6063 */ 6064 ctx = find_get_context(pmu, task, cpu); 6065 if (IS_ERR(ctx)) { 6066 err = PTR_ERR(ctx); 6067 goto err_alloc; 6068 } 6069 6070 if (task) { 6071 put_task_struct(task); 6072 task = NULL; 6073 } 6074 6075 /* 6076 * Look up the group leader (we will attach this event to it): 6077 */ 6078 if (group_leader) { 6079 err = -EINVAL; 6080 6081 /* 6082 * Do not allow a recursive hierarchy (this new sibling 6083 * becoming part of another group-sibling): 6084 */ 6085 if (group_leader->group_leader != group_leader) 6086 goto err_context; 6087 /* 6088 * Do not allow to attach to a group in a different 6089 * task or CPU context: 6090 */ 6091 if (move_group) { 6092 if (group_leader->ctx->type != ctx->type) 6093 goto err_context; 6094 } else { 6095 if (group_leader->ctx != ctx) 6096 goto err_context; 6097 } 6098 6099 /* 6100 * Only a group leader can be exclusive or pinned 6101 */ 6102 if (attr.exclusive || attr.pinned) 6103 goto err_context; 6104 } 6105 6106 if (output_event) { 6107 err = perf_event_set_output(event, output_event); 6108 if (err) 6109 goto err_context; 6110 } 6111 6112 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6113 if (IS_ERR(event_file)) { 6114 err = PTR_ERR(event_file); 6115 goto err_context; 6116 } 6117 6118 if (move_group) { 6119 struct perf_event_context *gctx = group_leader->ctx; 6120 6121 mutex_lock(&gctx->mutex); 6122 perf_remove_from_context(group_leader); 6123 list_for_each_entry(sibling, &group_leader->sibling_list, 6124 group_entry) { 6125 perf_remove_from_context(sibling); 6126 put_ctx(gctx); 6127 } 6128 mutex_unlock(&gctx->mutex); 6129 put_ctx(gctx); 6130 } 6131 6132 event->filp = event_file; 6133 WARN_ON_ONCE(ctx->parent_ctx); 6134 mutex_lock(&ctx->mutex); 6135 6136 if (move_group) { 6137 perf_install_in_context(ctx, group_leader, cpu); 6138 get_ctx(ctx); 6139 list_for_each_entry(sibling, &group_leader->sibling_list, 6140 group_entry) { 6141 perf_install_in_context(ctx, sibling, cpu); 6142 get_ctx(ctx); 6143 } 6144 } 6145 6146 perf_install_in_context(ctx, event, cpu); 6147 ++ctx->generation; 6148 perf_unpin_context(ctx); 6149 mutex_unlock(&ctx->mutex); 6150 6151 event->owner = current; 6152 6153 mutex_lock(¤t->perf_event_mutex); 6154 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6155 mutex_unlock(¤t->perf_event_mutex); 6156 6157 /* 6158 * Precalculate sample_data sizes 6159 */ 6160 perf_event__header_size(event); 6161 perf_event__id_header_size(event); 6162 6163 /* 6164 * Drop the reference on the group_event after placing the 6165 * new event on the sibling_list. This ensures destruction 6166 * of the group leader will find the pointer to itself in 6167 * perf_group_detach(). 6168 */ 6169 fput_light(group_file, fput_needed); 6170 fd_install(event_fd, event_file); 6171 return event_fd; 6172 6173 err_context: 6174 perf_unpin_context(ctx); 6175 put_ctx(ctx); 6176 err_alloc: 6177 free_event(event); 6178 err_task: 6179 if (task) 6180 put_task_struct(task); 6181 err_group_fd: 6182 fput_light(group_file, fput_needed); 6183 err_fd: 6184 put_unused_fd(event_fd); 6185 return err; 6186 } 6187 6188 /** 6189 * perf_event_create_kernel_counter 6190 * 6191 * @attr: attributes of the counter to create 6192 * @cpu: cpu in which the counter is bound 6193 * @task: task to profile (NULL for percpu) 6194 */ 6195 struct perf_event * 6196 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6197 struct task_struct *task, 6198 perf_overflow_handler_t overflow_handler, 6199 void *context) 6200 { 6201 struct perf_event_context *ctx; 6202 struct perf_event *event; 6203 int err; 6204 6205 /* 6206 * Get the target context (task or percpu): 6207 */ 6208 6209 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6210 overflow_handler, context); 6211 if (IS_ERR(event)) { 6212 err = PTR_ERR(event); 6213 goto err; 6214 } 6215 6216 ctx = find_get_context(event->pmu, task, cpu); 6217 if (IS_ERR(ctx)) { 6218 err = PTR_ERR(ctx); 6219 goto err_free; 6220 } 6221 6222 event->filp = NULL; 6223 WARN_ON_ONCE(ctx->parent_ctx); 6224 mutex_lock(&ctx->mutex); 6225 perf_install_in_context(ctx, event, cpu); 6226 ++ctx->generation; 6227 perf_unpin_context(ctx); 6228 mutex_unlock(&ctx->mutex); 6229 6230 return event; 6231 6232 err_free: 6233 free_event(event); 6234 err: 6235 return ERR_PTR(err); 6236 } 6237 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6238 6239 static void sync_child_event(struct perf_event *child_event, 6240 struct task_struct *child) 6241 { 6242 struct perf_event *parent_event = child_event->parent; 6243 u64 child_val; 6244 6245 if (child_event->attr.inherit_stat) 6246 perf_event_read_event(child_event, child); 6247 6248 child_val = perf_event_count(child_event); 6249 6250 /* 6251 * Add back the child's count to the parent's count: 6252 */ 6253 atomic64_add(child_val, &parent_event->child_count); 6254 atomic64_add(child_event->total_time_enabled, 6255 &parent_event->child_total_time_enabled); 6256 atomic64_add(child_event->total_time_running, 6257 &parent_event->child_total_time_running); 6258 6259 /* 6260 * Remove this event from the parent's list 6261 */ 6262 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6263 mutex_lock(&parent_event->child_mutex); 6264 list_del_init(&child_event->child_list); 6265 mutex_unlock(&parent_event->child_mutex); 6266 6267 /* 6268 * Release the parent event, if this was the last 6269 * reference to it. 6270 */ 6271 fput(parent_event->filp); 6272 } 6273 6274 static void 6275 __perf_event_exit_task(struct perf_event *child_event, 6276 struct perf_event_context *child_ctx, 6277 struct task_struct *child) 6278 { 6279 if (child_event->parent) { 6280 raw_spin_lock_irq(&child_ctx->lock); 6281 perf_group_detach(child_event); 6282 raw_spin_unlock_irq(&child_ctx->lock); 6283 } 6284 6285 perf_remove_from_context(child_event); 6286 6287 /* 6288 * It can happen that the parent exits first, and has events 6289 * that are still around due to the child reference. These 6290 * events need to be zapped. 6291 */ 6292 if (child_event->parent) { 6293 sync_child_event(child_event, child); 6294 free_event(child_event); 6295 } 6296 } 6297 6298 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6299 { 6300 struct perf_event *child_event, *tmp; 6301 struct perf_event_context *child_ctx; 6302 unsigned long flags; 6303 6304 if (likely(!child->perf_event_ctxp[ctxn])) { 6305 perf_event_task(child, NULL, 0); 6306 return; 6307 } 6308 6309 local_irq_save(flags); 6310 /* 6311 * We can't reschedule here because interrupts are disabled, 6312 * and either child is current or it is a task that can't be 6313 * scheduled, so we are now safe from rescheduling changing 6314 * our context. 6315 */ 6316 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6317 6318 /* 6319 * Take the context lock here so that if find_get_context is 6320 * reading child->perf_event_ctxp, we wait until it has 6321 * incremented the context's refcount before we do put_ctx below. 6322 */ 6323 raw_spin_lock(&child_ctx->lock); 6324 task_ctx_sched_out(child_ctx); 6325 child->perf_event_ctxp[ctxn] = NULL; 6326 /* 6327 * If this context is a clone; unclone it so it can't get 6328 * swapped to another process while we're removing all 6329 * the events from it. 6330 */ 6331 unclone_ctx(child_ctx); 6332 update_context_time(child_ctx); 6333 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6334 6335 /* 6336 * Report the task dead after unscheduling the events so that we 6337 * won't get any samples after PERF_RECORD_EXIT. We can however still 6338 * get a few PERF_RECORD_READ events. 6339 */ 6340 perf_event_task(child, child_ctx, 0); 6341 6342 /* 6343 * We can recurse on the same lock type through: 6344 * 6345 * __perf_event_exit_task() 6346 * sync_child_event() 6347 * fput(parent_event->filp) 6348 * perf_release() 6349 * mutex_lock(&ctx->mutex) 6350 * 6351 * But since its the parent context it won't be the same instance. 6352 */ 6353 mutex_lock(&child_ctx->mutex); 6354 6355 again: 6356 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6357 group_entry) 6358 __perf_event_exit_task(child_event, child_ctx, child); 6359 6360 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6361 group_entry) 6362 __perf_event_exit_task(child_event, child_ctx, child); 6363 6364 /* 6365 * If the last event was a group event, it will have appended all 6366 * its siblings to the list, but we obtained 'tmp' before that which 6367 * will still point to the list head terminating the iteration. 6368 */ 6369 if (!list_empty(&child_ctx->pinned_groups) || 6370 !list_empty(&child_ctx->flexible_groups)) 6371 goto again; 6372 6373 mutex_unlock(&child_ctx->mutex); 6374 6375 put_ctx(child_ctx); 6376 } 6377 6378 /* 6379 * When a child task exits, feed back event values to parent events. 6380 */ 6381 void perf_event_exit_task(struct task_struct *child) 6382 { 6383 struct perf_event *event, *tmp; 6384 int ctxn; 6385 6386 mutex_lock(&child->perf_event_mutex); 6387 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6388 owner_entry) { 6389 list_del_init(&event->owner_entry); 6390 6391 /* 6392 * Ensure the list deletion is visible before we clear 6393 * the owner, closes a race against perf_release() where 6394 * we need to serialize on the owner->perf_event_mutex. 6395 */ 6396 smp_wmb(); 6397 event->owner = NULL; 6398 } 6399 mutex_unlock(&child->perf_event_mutex); 6400 6401 for_each_task_context_nr(ctxn) 6402 perf_event_exit_task_context(child, ctxn); 6403 } 6404 6405 static void perf_free_event(struct perf_event *event, 6406 struct perf_event_context *ctx) 6407 { 6408 struct perf_event *parent = event->parent; 6409 6410 if (WARN_ON_ONCE(!parent)) 6411 return; 6412 6413 mutex_lock(&parent->child_mutex); 6414 list_del_init(&event->child_list); 6415 mutex_unlock(&parent->child_mutex); 6416 6417 fput(parent->filp); 6418 6419 perf_group_detach(event); 6420 list_del_event(event, ctx); 6421 free_event(event); 6422 } 6423 6424 /* 6425 * free an unexposed, unused context as created by inheritance by 6426 * perf_event_init_task below, used by fork() in case of fail. 6427 */ 6428 void perf_event_free_task(struct task_struct *task) 6429 { 6430 struct perf_event_context *ctx; 6431 struct perf_event *event, *tmp; 6432 int ctxn; 6433 6434 for_each_task_context_nr(ctxn) { 6435 ctx = task->perf_event_ctxp[ctxn]; 6436 if (!ctx) 6437 continue; 6438 6439 mutex_lock(&ctx->mutex); 6440 again: 6441 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6442 group_entry) 6443 perf_free_event(event, ctx); 6444 6445 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6446 group_entry) 6447 perf_free_event(event, ctx); 6448 6449 if (!list_empty(&ctx->pinned_groups) || 6450 !list_empty(&ctx->flexible_groups)) 6451 goto again; 6452 6453 mutex_unlock(&ctx->mutex); 6454 6455 put_ctx(ctx); 6456 } 6457 } 6458 6459 void perf_event_delayed_put(struct task_struct *task) 6460 { 6461 int ctxn; 6462 6463 for_each_task_context_nr(ctxn) 6464 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6465 } 6466 6467 /* 6468 * inherit a event from parent task to child task: 6469 */ 6470 static struct perf_event * 6471 inherit_event(struct perf_event *parent_event, 6472 struct task_struct *parent, 6473 struct perf_event_context *parent_ctx, 6474 struct task_struct *child, 6475 struct perf_event *group_leader, 6476 struct perf_event_context *child_ctx) 6477 { 6478 struct perf_event *child_event; 6479 unsigned long flags; 6480 6481 /* 6482 * Instead of creating recursive hierarchies of events, 6483 * we link inherited events back to the original parent, 6484 * which has a filp for sure, which we use as the reference 6485 * count: 6486 */ 6487 if (parent_event->parent) 6488 parent_event = parent_event->parent; 6489 6490 child_event = perf_event_alloc(&parent_event->attr, 6491 parent_event->cpu, 6492 child, 6493 group_leader, parent_event, 6494 NULL, NULL); 6495 if (IS_ERR(child_event)) 6496 return child_event; 6497 get_ctx(child_ctx); 6498 6499 /* 6500 * Make the child state follow the state of the parent event, 6501 * not its attr.disabled bit. We hold the parent's mutex, 6502 * so we won't race with perf_event_{en, dis}able_family. 6503 */ 6504 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6505 child_event->state = PERF_EVENT_STATE_INACTIVE; 6506 else 6507 child_event->state = PERF_EVENT_STATE_OFF; 6508 6509 if (parent_event->attr.freq) { 6510 u64 sample_period = parent_event->hw.sample_period; 6511 struct hw_perf_event *hwc = &child_event->hw; 6512 6513 hwc->sample_period = sample_period; 6514 hwc->last_period = sample_period; 6515 6516 local64_set(&hwc->period_left, sample_period); 6517 } 6518 6519 child_event->ctx = child_ctx; 6520 child_event->overflow_handler = parent_event->overflow_handler; 6521 child_event->overflow_handler_context 6522 = parent_event->overflow_handler_context; 6523 6524 /* 6525 * Precalculate sample_data sizes 6526 */ 6527 perf_event__header_size(child_event); 6528 perf_event__id_header_size(child_event); 6529 6530 /* 6531 * Link it up in the child's context: 6532 */ 6533 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6534 add_event_to_ctx(child_event, child_ctx); 6535 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6536 6537 /* 6538 * Get a reference to the parent filp - we will fput it 6539 * when the child event exits. This is safe to do because 6540 * we are in the parent and we know that the filp still 6541 * exists and has a nonzero count: 6542 */ 6543 atomic_long_inc(&parent_event->filp->f_count); 6544 6545 /* 6546 * Link this into the parent event's child list 6547 */ 6548 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6549 mutex_lock(&parent_event->child_mutex); 6550 list_add_tail(&child_event->child_list, &parent_event->child_list); 6551 mutex_unlock(&parent_event->child_mutex); 6552 6553 return child_event; 6554 } 6555 6556 static int inherit_group(struct perf_event *parent_event, 6557 struct task_struct *parent, 6558 struct perf_event_context *parent_ctx, 6559 struct task_struct *child, 6560 struct perf_event_context *child_ctx) 6561 { 6562 struct perf_event *leader; 6563 struct perf_event *sub; 6564 struct perf_event *child_ctr; 6565 6566 leader = inherit_event(parent_event, parent, parent_ctx, 6567 child, NULL, child_ctx); 6568 if (IS_ERR(leader)) 6569 return PTR_ERR(leader); 6570 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6571 child_ctr = inherit_event(sub, parent, parent_ctx, 6572 child, leader, child_ctx); 6573 if (IS_ERR(child_ctr)) 6574 return PTR_ERR(child_ctr); 6575 } 6576 return 0; 6577 } 6578 6579 static int 6580 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6581 struct perf_event_context *parent_ctx, 6582 struct task_struct *child, int ctxn, 6583 int *inherited_all) 6584 { 6585 int ret; 6586 struct perf_event_context *child_ctx; 6587 6588 if (!event->attr.inherit) { 6589 *inherited_all = 0; 6590 return 0; 6591 } 6592 6593 child_ctx = child->perf_event_ctxp[ctxn]; 6594 if (!child_ctx) { 6595 /* 6596 * This is executed from the parent task context, so 6597 * inherit events that have been marked for cloning. 6598 * First allocate and initialize a context for the 6599 * child. 6600 */ 6601 6602 child_ctx = alloc_perf_context(event->pmu, child); 6603 if (!child_ctx) 6604 return -ENOMEM; 6605 6606 child->perf_event_ctxp[ctxn] = child_ctx; 6607 } 6608 6609 ret = inherit_group(event, parent, parent_ctx, 6610 child, child_ctx); 6611 6612 if (ret) 6613 *inherited_all = 0; 6614 6615 return ret; 6616 } 6617 6618 /* 6619 * Initialize the perf_event context in task_struct 6620 */ 6621 int perf_event_init_context(struct task_struct *child, int ctxn) 6622 { 6623 struct perf_event_context *child_ctx, *parent_ctx; 6624 struct perf_event_context *cloned_ctx; 6625 struct perf_event *event; 6626 struct task_struct *parent = current; 6627 int inherited_all = 1; 6628 unsigned long flags; 6629 int ret = 0; 6630 6631 if (likely(!parent->perf_event_ctxp[ctxn])) 6632 return 0; 6633 6634 /* 6635 * If the parent's context is a clone, pin it so it won't get 6636 * swapped under us. 6637 */ 6638 parent_ctx = perf_pin_task_context(parent, ctxn); 6639 6640 /* 6641 * No need to check if parent_ctx != NULL here; since we saw 6642 * it non-NULL earlier, the only reason for it to become NULL 6643 * is if we exit, and since we're currently in the middle of 6644 * a fork we can't be exiting at the same time. 6645 */ 6646 6647 /* 6648 * Lock the parent list. No need to lock the child - not PID 6649 * hashed yet and not running, so nobody can access it. 6650 */ 6651 mutex_lock(&parent_ctx->mutex); 6652 6653 /* 6654 * We dont have to disable NMIs - we are only looking at 6655 * the list, not manipulating it: 6656 */ 6657 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6658 ret = inherit_task_group(event, parent, parent_ctx, 6659 child, ctxn, &inherited_all); 6660 if (ret) 6661 break; 6662 } 6663 6664 /* 6665 * We can't hold ctx->lock when iterating the ->flexible_group list due 6666 * to allocations, but we need to prevent rotation because 6667 * rotate_ctx() will change the list from interrupt context. 6668 */ 6669 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6670 parent_ctx->rotate_disable = 1; 6671 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6672 6673 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6674 ret = inherit_task_group(event, parent, parent_ctx, 6675 child, ctxn, &inherited_all); 6676 if (ret) 6677 break; 6678 } 6679 6680 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6681 parent_ctx->rotate_disable = 0; 6682 6683 child_ctx = child->perf_event_ctxp[ctxn]; 6684 6685 if (child_ctx && inherited_all) { 6686 /* 6687 * Mark the child context as a clone of the parent 6688 * context, or of whatever the parent is a clone of. 6689 * 6690 * Note that if the parent is a clone, the holding of 6691 * parent_ctx->lock avoids it from being uncloned. 6692 */ 6693 cloned_ctx = parent_ctx->parent_ctx; 6694 if (cloned_ctx) { 6695 child_ctx->parent_ctx = cloned_ctx; 6696 child_ctx->parent_gen = parent_ctx->parent_gen; 6697 } else { 6698 child_ctx->parent_ctx = parent_ctx; 6699 child_ctx->parent_gen = parent_ctx->generation; 6700 } 6701 get_ctx(child_ctx->parent_ctx); 6702 } 6703 6704 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6705 mutex_unlock(&parent_ctx->mutex); 6706 6707 perf_unpin_context(parent_ctx); 6708 put_ctx(parent_ctx); 6709 6710 return ret; 6711 } 6712 6713 /* 6714 * Initialize the perf_event context in task_struct 6715 */ 6716 int perf_event_init_task(struct task_struct *child) 6717 { 6718 int ctxn, ret; 6719 6720 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6721 mutex_init(&child->perf_event_mutex); 6722 INIT_LIST_HEAD(&child->perf_event_list); 6723 6724 for_each_task_context_nr(ctxn) { 6725 ret = perf_event_init_context(child, ctxn); 6726 if (ret) 6727 return ret; 6728 } 6729 6730 return 0; 6731 } 6732 6733 static void __init perf_event_init_all_cpus(void) 6734 { 6735 struct swevent_htable *swhash; 6736 int cpu; 6737 6738 for_each_possible_cpu(cpu) { 6739 swhash = &per_cpu(swevent_htable, cpu); 6740 mutex_init(&swhash->hlist_mutex); 6741 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6742 } 6743 } 6744 6745 static void __cpuinit perf_event_init_cpu(int cpu) 6746 { 6747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6748 6749 mutex_lock(&swhash->hlist_mutex); 6750 if (swhash->hlist_refcount > 0) { 6751 struct swevent_hlist *hlist; 6752 6753 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6754 WARN_ON(!hlist); 6755 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6756 } 6757 mutex_unlock(&swhash->hlist_mutex); 6758 } 6759 6760 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6761 static void perf_pmu_rotate_stop(struct pmu *pmu) 6762 { 6763 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6764 6765 WARN_ON(!irqs_disabled()); 6766 6767 list_del_init(&cpuctx->rotation_list); 6768 } 6769 6770 static void __perf_event_exit_context(void *__info) 6771 { 6772 struct perf_event_context *ctx = __info; 6773 struct perf_event *event, *tmp; 6774 6775 perf_pmu_rotate_stop(ctx->pmu); 6776 6777 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6778 __perf_remove_from_context(event); 6779 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6780 __perf_remove_from_context(event); 6781 } 6782 6783 static void perf_event_exit_cpu_context(int cpu) 6784 { 6785 struct perf_event_context *ctx; 6786 struct pmu *pmu; 6787 int idx; 6788 6789 idx = srcu_read_lock(&pmus_srcu); 6790 list_for_each_entry_rcu(pmu, &pmus, entry) { 6791 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6792 6793 mutex_lock(&ctx->mutex); 6794 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6795 mutex_unlock(&ctx->mutex); 6796 } 6797 srcu_read_unlock(&pmus_srcu, idx); 6798 } 6799 6800 static void perf_event_exit_cpu(int cpu) 6801 { 6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6803 6804 mutex_lock(&swhash->hlist_mutex); 6805 swevent_hlist_release(swhash); 6806 mutex_unlock(&swhash->hlist_mutex); 6807 6808 perf_event_exit_cpu_context(cpu); 6809 } 6810 #else 6811 static inline void perf_event_exit_cpu(int cpu) { } 6812 #endif 6813 6814 static int 6815 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6816 { 6817 int cpu; 6818 6819 for_each_online_cpu(cpu) 6820 perf_event_exit_cpu(cpu); 6821 6822 return NOTIFY_OK; 6823 } 6824 6825 /* 6826 * Run the perf reboot notifier at the very last possible moment so that 6827 * the generic watchdog code runs as long as possible. 6828 */ 6829 static struct notifier_block perf_reboot_notifier = { 6830 .notifier_call = perf_reboot, 6831 .priority = INT_MIN, 6832 }; 6833 6834 static int __cpuinit 6835 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6836 { 6837 unsigned int cpu = (long)hcpu; 6838 6839 switch (action & ~CPU_TASKS_FROZEN) { 6840 6841 case CPU_UP_PREPARE: 6842 case CPU_DOWN_FAILED: 6843 perf_event_init_cpu(cpu); 6844 break; 6845 6846 case CPU_UP_CANCELED: 6847 case CPU_DOWN_PREPARE: 6848 perf_event_exit_cpu(cpu); 6849 break; 6850 6851 default: 6852 break; 6853 } 6854 6855 return NOTIFY_OK; 6856 } 6857 6858 void __init perf_event_init(void) 6859 { 6860 int ret; 6861 6862 idr_init(&pmu_idr); 6863 6864 perf_event_init_all_cpus(); 6865 init_srcu_struct(&pmus_srcu); 6866 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6867 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6868 perf_pmu_register(&perf_task_clock, NULL, -1); 6869 perf_tp_register(); 6870 perf_cpu_notifier(perf_cpu_notify); 6871 register_reboot_notifier(&perf_reboot_notifier); 6872 6873 ret = init_hw_breakpoint(); 6874 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6875 6876 /* do not patch jump label more than once per second */ 6877 jump_label_rate_limit(&perf_sched_events, HZ); 6878 } 6879 6880 static int __init perf_event_sysfs_init(void) 6881 { 6882 struct pmu *pmu; 6883 int ret; 6884 6885 mutex_lock(&pmus_lock); 6886 6887 ret = bus_register(&pmu_bus); 6888 if (ret) 6889 goto unlock; 6890 6891 list_for_each_entry(pmu, &pmus, entry) { 6892 if (!pmu->name || pmu->type < 0) 6893 continue; 6894 6895 ret = pmu_dev_alloc(pmu); 6896 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 6897 } 6898 pmu_bus_running = 1; 6899 ret = 0; 6900 6901 unlock: 6902 mutex_unlock(&pmus_lock); 6903 6904 return ret; 6905 } 6906 device_initcall(perf_event_sysfs_init); 6907 6908 #ifdef CONFIG_CGROUP_PERF 6909 static struct cgroup_subsys_state *perf_cgroup_create( 6910 struct cgroup_subsys *ss, struct cgroup *cont) 6911 { 6912 struct perf_cgroup *jc; 6913 6914 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 6915 if (!jc) 6916 return ERR_PTR(-ENOMEM); 6917 6918 jc->info = alloc_percpu(struct perf_cgroup_info); 6919 if (!jc->info) { 6920 kfree(jc); 6921 return ERR_PTR(-ENOMEM); 6922 } 6923 6924 return &jc->css; 6925 } 6926 6927 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 6928 struct cgroup *cont) 6929 { 6930 struct perf_cgroup *jc; 6931 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 6932 struct perf_cgroup, css); 6933 free_percpu(jc->info); 6934 kfree(jc); 6935 } 6936 6937 static int __perf_cgroup_move(void *info) 6938 { 6939 struct task_struct *task = info; 6940 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 6941 return 0; 6942 } 6943 6944 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 6945 struct cgroup_taskset *tset) 6946 { 6947 struct task_struct *task; 6948 6949 cgroup_taskset_for_each(task, cgrp, tset) 6950 task_function_call(task, __perf_cgroup_move, task); 6951 } 6952 6953 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 6954 struct cgroup *old_cgrp, struct task_struct *task) 6955 { 6956 /* 6957 * cgroup_exit() is called in the copy_process() failure path. 6958 * Ignore this case since the task hasn't ran yet, this avoids 6959 * trying to poke a half freed task state from generic code. 6960 */ 6961 if (!(task->flags & PF_EXITING)) 6962 return; 6963 6964 task_function_call(task, __perf_cgroup_move, task); 6965 } 6966 6967 struct cgroup_subsys perf_subsys = { 6968 .name = "perf_event", 6969 .subsys_id = perf_subsys_id, 6970 .create = perf_cgroup_create, 6971 .destroy = perf_cgroup_destroy, 6972 .exit = perf_cgroup_exit, 6973 .attach = perf_cgroup_attach, 6974 }; 6975 #endif /* CONFIG_CGROUP_PERF */ 6976