xref: /linux/kernel/events/core.c (revision b3ce7a30847a54a7f96a35e609303d8afecd460b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	perf_event_set_state(event, state);
2287 
2288 	if (!is_software_event(event))
2289 		cpc->active_oncpu--;
2290 	if (event->attr.freq && event->attr.sample_freq) {
2291 		ctx->nr_freq--;
2292 		epc->nr_freq--;
2293 	}
2294 	if (event->attr.exclusive || !cpc->active_oncpu)
2295 		cpc->exclusive = 0;
2296 
2297 	perf_pmu_enable(event->pmu);
2298 }
2299 
2300 static void
2301 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2302 {
2303 	struct perf_event *event;
2304 
2305 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2306 		return;
2307 
2308 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2309 
2310 	event_sched_out(group_event, ctx);
2311 
2312 	/*
2313 	 * Schedule out siblings (if any):
2314 	 */
2315 	for_each_sibling_event(event, group_event)
2316 		event_sched_out(event, ctx);
2317 }
2318 
2319 #define DETACH_GROUP	0x01UL
2320 #define DETACH_CHILD	0x02UL
2321 #define DETACH_DEAD	0x04UL
2322 
2323 /*
2324  * Cross CPU call to remove a performance event
2325  *
2326  * We disable the event on the hardware level first. After that we
2327  * remove it from the context list.
2328  */
2329 static void
2330 __perf_remove_from_context(struct perf_event *event,
2331 			   struct perf_cpu_context *cpuctx,
2332 			   struct perf_event_context *ctx,
2333 			   void *info)
2334 {
2335 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2336 	unsigned long flags = (unsigned long)info;
2337 
2338 	if (ctx->is_active & EVENT_TIME) {
2339 		update_context_time(ctx);
2340 		update_cgrp_time_from_cpuctx(cpuctx, false);
2341 	}
2342 
2343 	/*
2344 	 * Ensure event_sched_out() switches to OFF, at the very least
2345 	 * this avoids raising perf_pending_task() at this time.
2346 	 */
2347 	if (flags & DETACH_DEAD)
2348 		event->pending_disable = 1;
2349 	event_sched_out(event, ctx);
2350 	if (flags & DETACH_GROUP)
2351 		perf_group_detach(event);
2352 	if (flags & DETACH_CHILD)
2353 		perf_child_detach(event);
2354 	list_del_event(event, ctx);
2355 	if (flags & DETACH_DEAD)
2356 		event->state = PERF_EVENT_STATE_DEAD;
2357 
2358 	if (!pmu_ctx->nr_events) {
2359 		pmu_ctx->rotate_necessary = 0;
2360 
2361 		if (ctx->task && ctx->is_active) {
2362 			struct perf_cpu_pmu_context *cpc;
2363 
2364 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2365 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2366 			cpc->task_epc = NULL;
2367 		}
2368 	}
2369 
2370 	if (!ctx->nr_events && ctx->is_active) {
2371 		if (ctx == &cpuctx->ctx)
2372 			update_cgrp_time_from_cpuctx(cpuctx, true);
2373 
2374 		ctx->is_active = 0;
2375 		if (ctx->task) {
2376 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2377 			cpuctx->task_ctx = NULL;
2378 		}
2379 	}
2380 }
2381 
2382 /*
2383  * Remove the event from a task's (or a CPU's) list of events.
2384  *
2385  * If event->ctx is a cloned context, callers must make sure that
2386  * every task struct that event->ctx->task could possibly point to
2387  * remains valid.  This is OK when called from perf_release since
2388  * that only calls us on the top-level context, which can't be a clone.
2389  * When called from perf_event_exit_task, it's OK because the
2390  * context has been detached from its task.
2391  */
2392 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2393 {
2394 	struct perf_event_context *ctx = event->ctx;
2395 
2396 	lockdep_assert_held(&ctx->mutex);
2397 
2398 	/*
2399 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2400 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2401 	 * event_function_call() user.
2402 	 */
2403 	raw_spin_lock_irq(&ctx->lock);
2404 	if (!ctx->is_active) {
2405 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2406 					   ctx, (void *)flags);
2407 		raw_spin_unlock_irq(&ctx->lock);
2408 		return;
2409 	}
2410 	raw_spin_unlock_irq(&ctx->lock);
2411 
2412 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2413 }
2414 
2415 /*
2416  * Cross CPU call to disable a performance event
2417  */
2418 static void __perf_event_disable(struct perf_event *event,
2419 				 struct perf_cpu_context *cpuctx,
2420 				 struct perf_event_context *ctx,
2421 				 void *info)
2422 {
2423 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2424 		return;
2425 
2426 	if (ctx->is_active & EVENT_TIME) {
2427 		update_context_time(ctx);
2428 		update_cgrp_time_from_event(event);
2429 	}
2430 
2431 	perf_pmu_disable(event->pmu_ctx->pmu);
2432 
2433 	if (event == event->group_leader)
2434 		group_sched_out(event, ctx);
2435 	else
2436 		event_sched_out(event, ctx);
2437 
2438 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2439 	perf_cgroup_event_disable(event, ctx);
2440 
2441 	perf_pmu_enable(event->pmu_ctx->pmu);
2442 }
2443 
2444 /*
2445  * Disable an event.
2446  *
2447  * If event->ctx is a cloned context, callers must make sure that
2448  * every task struct that event->ctx->task could possibly point to
2449  * remains valid.  This condition is satisfied when called through
2450  * perf_event_for_each_child or perf_event_for_each because they
2451  * hold the top-level event's child_mutex, so any descendant that
2452  * goes to exit will block in perf_event_exit_event().
2453  *
2454  * When called from perf_pending_disable it's OK because event->ctx
2455  * is the current context on this CPU and preemption is disabled,
2456  * hence we can't get into perf_event_task_sched_out for this context.
2457  */
2458 static void _perf_event_disable(struct perf_event *event)
2459 {
2460 	struct perf_event_context *ctx = event->ctx;
2461 
2462 	raw_spin_lock_irq(&ctx->lock);
2463 	if (event->state <= PERF_EVENT_STATE_OFF) {
2464 		raw_spin_unlock_irq(&ctx->lock);
2465 		return;
2466 	}
2467 	raw_spin_unlock_irq(&ctx->lock);
2468 
2469 	event_function_call(event, __perf_event_disable, NULL);
2470 }
2471 
2472 void perf_event_disable_local(struct perf_event *event)
2473 {
2474 	event_function_local(event, __perf_event_disable, NULL);
2475 }
2476 
2477 /*
2478  * Strictly speaking kernel users cannot create groups and therefore this
2479  * interface does not need the perf_event_ctx_lock() magic.
2480  */
2481 void perf_event_disable(struct perf_event *event)
2482 {
2483 	struct perf_event_context *ctx;
2484 
2485 	ctx = perf_event_ctx_lock(event);
2486 	_perf_event_disable(event);
2487 	perf_event_ctx_unlock(event, ctx);
2488 }
2489 EXPORT_SYMBOL_GPL(perf_event_disable);
2490 
2491 void perf_event_disable_inatomic(struct perf_event *event)
2492 {
2493 	event->pending_disable = 1;
2494 	irq_work_queue(&event->pending_disable_irq);
2495 }
2496 
2497 #define MAX_INTERRUPTS (~0ULL)
2498 
2499 static void perf_log_throttle(struct perf_event *event, int enable);
2500 static void perf_log_itrace_start(struct perf_event *event);
2501 
2502 static int
2503 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2504 {
2505 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2506 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2507 	int ret = 0;
2508 
2509 	WARN_ON_ONCE(event->ctx != ctx);
2510 
2511 	lockdep_assert_held(&ctx->lock);
2512 
2513 	if (event->state <= PERF_EVENT_STATE_OFF)
2514 		return 0;
2515 
2516 	WRITE_ONCE(event->oncpu, smp_processor_id());
2517 	/*
2518 	 * Order event::oncpu write to happen before the ACTIVE state is
2519 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2520 	 * ->oncpu if it sees ACTIVE.
2521 	 */
2522 	smp_wmb();
2523 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2524 
2525 	/*
2526 	 * Unthrottle events, since we scheduled we might have missed several
2527 	 * ticks already, also for a heavily scheduling task there is little
2528 	 * guarantee it'll get a tick in a timely manner.
2529 	 */
2530 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2531 		perf_log_throttle(event, 1);
2532 		event->hw.interrupts = 0;
2533 	}
2534 
2535 	perf_pmu_disable(event->pmu);
2536 
2537 	perf_log_itrace_start(event);
2538 
2539 	if (event->pmu->add(event, PERF_EF_START)) {
2540 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2541 		event->oncpu = -1;
2542 		ret = -EAGAIN;
2543 		goto out;
2544 	}
2545 
2546 	if (!is_software_event(event))
2547 		cpc->active_oncpu++;
2548 	if (event->attr.freq && event->attr.sample_freq) {
2549 		ctx->nr_freq++;
2550 		epc->nr_freq++;
2551 	}
2552 	if (event->attr.exclusive)
2553 		cpc->exclusive = 1;
2554 
2555 out:
2556 	perf_pmu_enable(event->pmu);
2557 
2558 	return ret;
2559 }
2560 
2561 static int
2562 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2563 {
2564 	struct perf_event *event, *partial_group = NULL;
2565 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2566 
2567 	if (group_event->state == PERF_EVENT_STATE_OFF)
2568 		return 0;
2569 
2570 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2571 
2572 	if (event_sched_in(group_event, ctx))
2573 		goto error;
2574 
2575 	/*
2576 	 * Schedule in siblings as one group (if any):
2577 	 */
2578 	for_each_sibling_event(event, group_event) {
2579 		if (event_sched_in(event, ctx)) {
2580 			partial_group = event;
2581 			goto group_error;
2582 		}
2583 	}
2584 
2585 	if (!pmu->commit_txn(pmu))
2586 		return 0;
2587 
2588 group_error:
2589 	/*
2590 	 * Groups can be scheduled in as one unit only, so undo any
2591 	 * partial group before returning:
2592 	 * The events up to the failed event are scheduled out normally.
2593 	 */
2594 	for_each_sibling_event(event, group_event) {
2595 		if (event == partial_group)
2596 			break;
2597 
2598 		event_sched_out(event, ctx);
2599 	}
2600 	event_sched_out(group_event, ctx);
2601 
2602 error:
2603 	pmu->cancel_txn(pmu);
2604 	return -EAGAIN;
2605 }
2606 
2607 /*
2608  * Work out whether we can put this event group on the CPU now.
2609  */
2610 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2611 {
2612 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2613 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2614 
2615 	/*
2616 	 * Groups consisting entirely of software events can always go on.
2617 	 */
2618 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2619 		return 1;
2620 	/*
2621 	 * If an exclusive group is already on, no other hardware
2622 	 * events can go on.
2623 	 */
2624 	if (cpc->exclusive)
2625 		return 0;
2626 	/*
2627 	 * If this group is exclusive and there are already
2628 	 * events on the CPU, it can't go on.
2629 	 */
2630 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2631 		return 0;
2632 	/*
2633 	 * Otherwise, try to add it if all previous groups were able
2634 	 * to go on.
2635 	 */
2636 	return can_add_hw;
2637 }
2638 
2639 static void add_event_to_ctx(struct perf_event *event,
2640 			       struct perf_event_context *ctx)
2641 {
2642 	list_add_event(event, ctx);
2643 	perf_group_attach(event);
2644 }
2645 
2646 static void task_ctx_sched_out(struct perf_event_context *ctx,
2647 				enum event_type_t event_type)
2648 {
2649 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2650 
2651 	if (!cpuctx->task_ctx)
2652 		return;
2653 
2654 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2655 		return;
2656 
2657 	ctx_sched_out(ctx, event_type);
2658 }
2659 
2660 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2661 				struct perf_event_context *ctx)
2662 {
2663 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2664 	if (ctx)
2665 		 ctx_sched_in(ctx, EVENT_PINNED);
2666 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2667 	if (ctx)
2668 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2669 }
2670 
2671 /*
2672  * We want to maintain the following priority of scheduling:
2673  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2674  *  - task pinned (EVENT_PINNED)
2675  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2676  *  - task flexible (EVENT_FLEXIBLE).
2677  *
2678  * In order to avoid unscheduling and scheduling back in everything every
2679  * time an event is added, only do it for the groups of equal priority and
2680  * below.
2681  *
2682  * This can be called after a batch operation on task events, in which case
2683  * event_type is a bit mask of the types of events involved. For CPU events,
2684  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2685  */
2686 /*
2687  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2688  * event to the context or enabling existing event in the context. We can
2689  * probably optimize it by rescheduling only affected pmu_ctx.
2690  */
2691 static void ctx_resched(struct perf_cpu_context *cpuctx,
2692 			struct perf_event_context *task_ctx,
2693 			enum event_type_t event_type)
2694 {
2695 	bool cpu_event = !!(event_type & EVENT_CPU);
2696 
2697 	/*
2698 	 * If pinned groups are involved, flexible groups also need to be
2699 	 * scheduled out.
2700 	 */
2701 	if (event_type & EVENT_PINNED)
2702 		event_type |= EVENT_FLEXIBLE;
2703 
2704 	event_type &= EVENT_ALL;
2705 
2706 	perf_ctx_disable(&cpuctx->ctx, false);
2707 	if (task_ctx) {
2708 		perf_ctx_disable(task_ctx, false);
2709 		task_ctx_sched_out(task_ctx, event_type);
2710 	}
2711 
2712 	/*
2713 	 * Decide which cpu ctx groups to schedule out based on the types
2714 	 * of events that caused rescheduling:
2715 	 *  - EVENT_CPU: schedule out corresponding groups;
2716 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2717 	 *  - otherwise, do nothing more.
2718 	 */
2719 	if (cpu_event)
2720 		ctx_sched_out(&cpuctx->ctx, event_type);
2721 	else if (event_type & EVENT_PINNED)
2722 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2723 
2724 	perf_event_sched_in(cpuctx, task_ctx);
2725 
2726 	perf_ctx_enable(&cpuctx->ctx, false);
2727 	if (task_ctx)
2728 		perf_ctx_enable(task_ctx, false);
2729 }
2730 
2731 void perf_pmu_resched(struct pmu *pmu)
2732 {
2733 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2734 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2735 
2736 	perf_ctx_lock(cpuctx, task_ctx);
2737 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2738 	perf_ctx_unlock(cpuctx, task_ctx);
2739 }
2740 
2741 /*
2742  * Cross CPU call to install and enable a performance event
2743  *
2744  * Very similar to remote_function() + event_function() but cannot assume that
2745  * things like ctx->is_active and cpuctx->task_ctx are set.
2746  */
2747 static int  __perf_install_in_context(void *info)
2748 {
2749 	struct perf_event *event = info;
2750 	struct perf_event_context *ctx = event->ctx;
2751 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2752 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2753 	bool reprogram = true;
2754 	int ret = 0;
2755 
2756 	raw_spin_lock(&cpuctx->ctx.lock);
2757 	if (ctx->task) {
2758 		raw_spin_lock(&ctx->lock);
2759 		task_ctx = ctx;
2760 
2761 		reprogram = (ctx->task == current);
2762 
2763 		/*
2764 		 * If the task is running, it must be running on this CPU,
2765 		 * otherwise we cannot reprogram things.
2766 		 *
2767 		 * If its not running, we don't care, ctx->lock will
2768 		 * serialize against it becoming runnable.
2769 		 */
2770 		if (task_curr(ctx->task) && !reprogram) {
2771 			ret = -ESRCH;
2772 			goto unlock;
2773 		}
2774 
2775 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2776 	} else if (task_ctx) {
2777 		raw_spin_lock(&task_ctx->lock);
2778 	}
2779 
2780 #ifdef CONFIG_CGROUP_PERF
2781 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2782 		/*
2783 		 * If the current cgroup doesn't match the event's
2784 		 * cgroup, we should not try to schedule it.
2785 		 */
2786 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2787 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2788 					event->cgrp->css.cgroup);
2789 	}
2790 #endif
2791 
2792 	if (reprogram) {
2793 		ctx_sched_out(ctx, EVENT_TIME);
2794 		add_event_to_ctx(event, ctx);
2795 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2796 	} else {
2797 		add_event_to_ctx(event, ctx);
2798 	}
2799 
2800 unlock:
2801 	perf_ctx_unlock(cpuctx, task_ctx);
2802 
2803 	return ret;
2804 }
2805 
2806 static bool exclusive_event_installable(struct perf_event *event,
2807 					struct perf_event_context *ctx);
2808 
2809 /*
2810  * Attach a performance event to a context.
2811  *
2812  * Very similar to event_function_call, see comment there.
2813  */
2814 static void
2815 perf_install_in_context(struct perf_event_context *ctx,
2816 			struct perf_event *event,
2817 			int cpu)
2818 {
2819 	struct task_struct *task = READ_ONCE(ctx->task);
2820 
2821 	lockdep_assert_held(&ctx->mutex);
2822 
2823 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2824 
2825 	if (event->cpu != -1)
2826 		WARN_ON_ONCE(event->cpu != cpu);
2827 
2828 	/*
2829 	 * Ensures that if we can observe event->ctx, both the event and ctx
2830 	 * will be 'complete'. See perf_iterate_sb_cpu().
2831 	 */
2832 	smp_store_release(&event->ctx, ctx);
2833 
2834 	/*
2835 	 * perf_event_attr::disabled events will not run and can be initialized
2836 	 * without IPI. Except when this is the first event for the context, in
2837 	 * that case we need the magic of the IPI to set ctx->is_active.
2838 	 *
2839 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2840 	 * event will issue the IPI and reprogram the hardware.
2841 	 */
2842 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2843 	    ctx->nr_events && !is_cgroup_event(event)) {
2844 		raw_spin_lock_irq(&ctx->lock);
2845 		if (ctx->task == TASK_TOMBSTONE) {
2846 			raw_spin_unlock_irq(&ctx->lock);
2847 			return;
2848 		}
2849 		add_event_to_ctx(event, ctx);
2850 		raw_spin_unlock_irq(&ctx->lock);
2851 		return;
2852 	}
2853 
2854 	if (!task) {
2855 		cpu_function_call(cpu, __perf_install_in_context, event);
2856 		return;
2857 	}
2858 
2859 	/*
2860 	 * Should not happen, we validate the ctx is still alive before calling.
2861 	 */
2862 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2863 		return;
2864 
2865 	/*
2866 	 * Installing events is tricky because we cannot rely on ctx->is_active
2867 	 * to be set in case this is the nr_events 0 -> 1 transition.
2868 	 *
2869 	 * Instead we use task_curr(), which tells us if the task is running.
2870 	 * However, since we use task_curr() outside of rq::lock, we can race
2871 	 * against the actual state. This means the result can be wrong.
2872 	 *
2873 	 * If we get a false positive, we retry, this is harmless.
2874 	 *
2875 	 * If we get a false negative, things are complicated. If we are after
2876 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2877 	 * value must be correct. If we're before, it doesn't matter since
2878 	 * perf_event_context_sched_in() will program the counter.
2879 	 *
2880 	 * However, this hinges on the remote context switch having observed
2881 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2882 	 * ctx::lock in perf_event_context_sched_in().
2883 	 *
2884 	 * We do this by task_function_call(), if the IPI fails to hit the task
2885 	 * we know any future context switch of task must see the
2886 	 * perf_event_ctpx[] store.
2887 	 */
2888 
2889 	/*
2890 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2891 	 * task_cpu() load, such that if the IPI then does not find the task
2892 	 * running, a future context switch of that task must observe the
2893 	 * store.
2894 	 */
2895 	smp_mb();
2896 again:
2897 	if (!task_function_call(task, __perf_install_in_context, event))
2898 		return;
2899 
2900 	raw_spin_lock_irq(&ctx->lock);
2901 	task = ctx->task;
2902 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2903 		/*
2904 		 * Cannot happen because we already checked above (which also
2905 		 * cannot happen), and we hold ctx->mutex, which serializes us
2906 		 * against perf_event_exit_task_context().
2907 		 */
2908 		raw_spin_unlock_irq(&ctx->lock);
2909 		return;
2910 	}
2911 	/*
2912 	 * If the task is not running, ctx->lock will avoid it becoming so,
2913 	 * thus we can safely install the event.
2914 	 */
2915 	if (task_curr(task)) {
2916 		raw_spin_unlock_irq(&ctx->lock);
2917 		goto again;
2918 	}
2919 	add_event_to_ctx(event, ctx);
2920 	raw_spin_unlock_irq(&ctx->lock);
2921 }
2922 
2923 /*
2924  * Cross CPU call to enable a performance event
2925  */
2926 static void __perf_event_enable(struct perf_event *event,
2927 				struct perf_cpu_context *cpuctx,
2928 				struct perf_event_context *ctx,
2929 				void *info)
2930 {
2931 	struct perf_event *leader = event->group_leader;
2932 	struct perf_event_context *task_ctx;
2933 
2934 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2935 	    event->state <= PERF_EVENT_STATE_ERROR)
2936 		return;
2937 
2938 	if (ctx->is_active)
2939 		ctx_sched_out(ctx, EVENT_TIME);
2940 
2941 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2942 	perf_cgroup_event_enable(event, ctx);
2943 
2944 	if (!ctx->is_active)
2945 		return;
2946 
2947 	if (!event_filter_match(event)) {
2948 		ctx_sched_in(ctx, EVENT_TIME);
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * If the event is in a group and isn't the group leader,
2954 	 * then don't put it on unless the group is on.
2955 	 */
2956 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2957 		ctx_sched_in(ctx, EVENT_TIME);
2958 		return;
2959 	}
2960 
2961 	task_ctx = cpuctx->task_ctx;
2962 	if (ctx->task)
2963 		WARN_ON_ONCE(task_ctx != ctx);
2964 
2965 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2966 }
2967 
2968 /*
2969  * Enable an event.
2970  *
2971  * If event->ctx is a cloned context, callers must make sure that
2972  * every task struct that event->ctx->task could possibly point to
2973  * remains valid.  This condition is satisfied when called through
2974  * perf_event_for_each_child or perf_event_for_each as described
2975  * for perf_event_disable.
2976  */
2977 static void _perf_event_enable(struct perf_event *event)
2978 {
2979 	struct perf_event_context *ctx = event->ctx;
2980 
2981 	raw_spin_lock_irq(&ctx->lock);
2982 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2983 	    event->state <  PERF_EVENT_STATE_ERROR) {
2984 out:
2985 		raw_spin_unlock_irq(&ctx->lock);
2986 		return;
2987 	}
2988 
2989 	/*
2990 	 * If the event is in error state, clear that first.
2991 	 *
2992 	 * That way, if we see the event in error state below, we know that it
2993 	 * has gone back into error state, as distinct from the task having
2994 	 * been scheduled away before the cross-call arrived.
2995 	 */
2996 	if (event->state == PERF_EVENT_STATE_ERROR) {
2997 		/*
2998 		 * Detached SIBLING events cannot leave ERROR state.
2999 		 */
3000 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3001 		    event->group_leader == event)
3002 			goto out;
3003 
3004 		event->state = PERF_EVENT_STATE_OFF;
3005 	}
3006 	raw_spin_unlock_irq(&ctx->lock);
3007 
3008 	event_function_call(event, __perf_event_enable, NULL);
3009 }
3010 
3011 /*
3012  * See perf_event_disable();
3013  */
3014 void perf_event_enable(struct perf_event *event)
3015 {
3016 	struct perf_event_context *ctx;
3017 
3018 	ctx = perf_event_ctx_lock(event);
3019 	_perf_event_enable(event);
3020 	perf_event_ctx_unlock(event, ctx);
3021 }
3022 EXPORT_SYMBOL_GPL(perf_event_enable);
3023 
3024 struct stop_event_data {
3025 	struct perf_event	*event;
3026 	unsigned int		restart;
3027 };
3028 
3029 static int __perf_event_stop(void *info)
3030 {
3031 	struct stop_event_data *sd = info;
3032 	struct perf_event *event = sd->event;
3033 
3034 	/* if it's already INACTIVE, do nothing */
3035 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3036 		return 0;
3037 
3038 	/* matches smp_wmb() in event_sched_in() */
3039 	smp_rmb();
3040 
3041 	/*
3042 	 * There is a window with interrupts enabled before we get here,
3043 	 * so we need to check again lest we try to stop another CPU's event.
3044 	 */
3045 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3046 		return -EAGAIN;
3047 
3048 	event->pmu->stop(event, PERF_EF_UPDATE);
3049 
3050 	/*
3051 	 * May race with the actual stop (through perf_pmu_output_stop()),
3052 	 * but it is only used for events with AUX ring buffer, and such
3053 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3054 	 * see comments in perf_aux_output_begin().
3055 	 *
3056 	 * Since this is happening on an event-local CPU, no trace is lost
3057 	 * while restarting.
3058 	 */
3059 	if (sd->restart)
3060 		event->pmu->start(event, 0);
3061 
3062 	return 0;
3063 }
3064 
3065 static int perf_event_stop(struct perf_event *event, int restart)
3066 {
3067 	struct stop_event_data sd = {
3068 		.event		= event,
3069 		.restart	= restart,
3070 	};
3071 	int ret = 0;
3072 
3073 	do {
3074 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3075 			return 0;
3076 
3077 		/* matches smp_wmb() in event_sched_in() */
3078 		smp_rmb();
3079 
3080 		/*
3081 		 * We only want to restart ACTIVE events, so if the event goes
3082 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3083 		 * fall through with ret==-ENXIO.
3084 		 */
3085 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3086 					__perf_event_stop, &sd);
3087 	} while (ret == -EAGAIN);
3088 
3089 	return ret;
3090 }
3091 
3092 /*
3093  * In order to contain the amount of racy and tricky in the address filter
3094  * configuration management, it is a two part process:
3095  *
3096  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3097  *      we update the addresses of corresponding vmas in
3098  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3099  * (p2) when an event is scheduled in (pmu::add), it calls
3100  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3101  *      if the generation has changed since the previous call.
3102  *
3103  * If (p1) happens while the event is active, we restart it to force (p2).
3104  *
3105  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3106  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3107  *     ioctl;
3108  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3109  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3110  *     for reading;
3111  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3112  *     of exec.
3113  */
3114 void perf_event_addr_filters_sync(struct perf_event *event)
3115 {
3116 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3117 
3118 	if (!has_addr_filter(event))
3119 		return;
3120 
3121 	raw_spin_lock(&ifh->lock);
3122 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3123 		event->pmu->addr_filters_sync(event);
3124 		event->hw.addr_filters_gen = event->addr_filters_gen;
3125 	}
3126 	raw_spin_unlock(&ifh->lock);
3127 }
3128 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3129 
3130 static int _perf_event_refresh(struct perf_event *event, int refresh)
3131 {
3132 	/*
3133 	 * not supported on inherited events
3134 	 */
3135 	if (event->attr.inherit || !is_sampling_event(event))
3136 		return -EINVAL;
3137 
3138 	atomic_add(refresh, &event->event_limit);
3139 	_perf_event_enable(event);
3140 
3141 	return 0;
3142 }
3143 
3144 /*
3145  * See perf_event_disable()
3146  */
3147 int perf_event_refresh(struct perf_event *event, int refresh)
3148 {
3149 	struct perf_event_context *ctx;
3150 	int ret;
3151 
3152 	ctx = perf_event_ctx_lock(event);
3153 	ret = _perf_event_refresh(event, refresh);
3154 	perf_event_ctx_unlock(event, ctx);
3155 
3156 	return ret;
3157 }
3158 EXPORT_SYMBOL_GPL(perf_event_refresh);
3159 
3160 static int perf_event_modify_breakpoint(struct perf_event *bp,
3161 					 struct perf_event_attr *attr)
3162 {
3163 	int err;
3164 
3165 	_perf_event_disable(bp);
3166 
3167 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3168 
3169 	if (!bp->attr.disabled)
3170 		_perf_event_enable(bp);
3171 
3172 	return err;
3173 }
3174 
3175 /*
3176  * Copy event-type-independent attributes that may be modified.
3177  */
3178 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3179 					const struct perf_event_attr *from)
3180 {
3181 	to->sig_data = from->sig_data;
3182 }
3183 
3184 static int perf_event_modify_attr(struct perf_event *event,
3185 				  struct perf_event_attr *attr)
3186 {
3187 	int (*func)(struct perf_event *, struct perf_event_attr *);
3188 	struct perf_event *child;
3189 	int err;
3190 
3191 	if (event->attr.type != attr->type)
3192 		return -EINVAL;
3193 
3194 	switch (event->attr.type) {
3195 	case PERF_TYPE_BREAKPOINT:
3196 		func = perf_event_modify_breakpoint;
3197 		break;
3198 	default:
3199 		/* Place holder for future additions. */
3200 		return -EOPNOTSUPP;
3201 	}
3202 
3203 	WARN_ON_ONCE(event->ctx->parent_ctx);
3204 
3205 	mutex_lock(&event->child_mutex);
3206 	/*
3207 	 * Event-type-independent attributes must be copied before event-type
3208 	 * modification, which will validate that final attributes match the
3209 	 * source attributes after all relevant attributes have been copied.
3210 	 */
3211 	perf_event_modify_copy_attr(&event->attr, attr);
3212 	err = func(event, attr);
3213 	if (err)
3214 		goto out;
3215 	list_for_each_entry(child, &event->child_list, child_list) {
3216 		perf_event_modify_copy_attr(&child->attr, attr);
3217 		err = func(child, attr);
3218 		if (err)
3219 			goto out;
3220 	}
3221 out:
3222 	mutex_unlock(&event->child_mutex);
3223 	return err;
3224 }
3225 
3226 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3227 				enum event_type_t event_type)
3228 {
3229 	struct perf_event_context *ctx = pmu_ctx->ctx;
3230 	struct perf_event *event, *tmp;
3231 	struct pmu *pmu = pmu_ctx->pmu;
3232 
3233 	if (ctx->task && !ctx->is_active) {
3234 		struct perf_cpu_pmu_context *cpc;
3235 
3236 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3237 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3238 		cpc->task_epc = NULL;
3239 	}
3240 
3241 	if (!event_type)
3242 		return;
3243 
3244 	perf_pmu_disable(pmu);
3245 	if (event_type & EVENT_PINNED) {
3246 		list_for_each_entry_safe(event, tmp,
3247 					 &pmu_ctx->pinned_active,
3248 					 active_list)
3249 			group_sched_out(event, ctx);
3250 	}
3251 
3252 	if (event_type & EVENT_FLEXIBLE) {
3253 		list_for_each_entry_safe(event, tmp,
3254 					 &pmu_ctx->flexible_active,
3255 					 active_list)
3256 			group_sched_out(event, ctx);
3257 		/*
3258 		 * Since we cleared EVENT_FLEXIBLE, also clear
3259 		 * rotate_necessary, is will be reset by
3260 		 * ctx_flexible_sched_in() when needed.
3261 		 */
3262 		pmu_ctx->rotate_necessary = 0;
3263 	}
3264 	perf_pmu_enable(pmu);
3265 }
3266 
3267 static void
3268 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3269 {
3270 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3271 	struct perf_event_pmu_context *pmu_ctx;
3272 	int is_active = ctx->is_active;
3273 	bool cgroup = event_type & EVENT_CGROUP;
3274 
3275 	event_type &= ~EVENT_CGROUP;
3276 
3277 	lockdep_assert_held(&ctx->lock);
3278 
3279 	if (likely(!ctx->nr_events)) {
3280 		/*
3281 		 * See __perf_remove_from_context().
3282 		 */
3283 		WARN_ON_ONCE(ctx->is_active);
3284 		if (ctx->task)
3285 			WARN_ON_ONCE(cpuctx->task_ctx);
3286 		return;
3287 	}
3288 
3289 	/*
3290 	 * Always update time if it was set; not only when it changes.
3291 	 * Otherwise we can 'forget' to update time for any but the last
3292 	 * context we sched out. For example:
3293 	 *
3294 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3295 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3296 	 *
3297 	 * would only update time for the pinned events.
3298 	 */
3299 	if (is_active & EVENT_TIME) {
3300 		/* update (and stop) ctx time */
3301 		update_context_time(ctx);
3302 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3303 		/*
3304 		 * CPU-release for the below ->is_active store,
3305 		 * see __load_acquire() in perf_event_time_now()
3306 		 */
3307 		barrier();
3308 	}
3309 
3310 	ctx->is_active &= ~event_type;
3311 	if (!(ctx->is_active & EVENT_ALL))
3312 		ctx->is_active = 0;
3313 
3314 	if (ctx->task) {
3315 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3316 		if (!ctx->is_active)
3317 			cpuctx->task_ctx = NULL;
3318 	}
3319 
3320 	is_active ^= ctx->is_active; /* changed bits */
3321 
3322 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3323 		if (cgroup && !pmu_ctx->nr_cgroups)
3324 			continue;
3325 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3326 	}
3327 }
3328 
3329 /*
3330  * Test whether two contexts are equivalent, i.e. whether they have both been
3331  * cloned from the same version of the same context.
3332  *
3333  * Equivalence is measured using a generation number in the context that is
3334  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3335  * and list_del_event().
3336  */
3337 static int context_equiv(struct perf_event_context *ctx1,
3338 			 struct perf_event_context *ctx2)
3339 {
3340 	lockdep_assert_held(&ctx1->lock);
3341 	lockdep_assert_held(&ctx2->lock);
3342 
3343 	/* Pinning disables the swap optimization */
3344 	if (ctx1->pin_count || ctx2->pin_count)
3345 		return 0;
3346 
3347 	/* If ctx1 is the parent of ctx2 */
3348 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3349 		return 1;
3350 
3351 	/* If ctx2 is the parent of ctx1 */
3352 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3353 		return 1;
3354 
3355 	/*
3356 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3357 	 * hierarchy, see perf_event_init_context().
3358 	 */
3359 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3360 			ctx1->parent_gen == ctx2->parent_gen)
3361 		return 1;
3362 
3363 	/* Unmatched */
3364 	return 0;
3365 }
3366 
3367 static void __perf_event_sync_stat(struct perf_event *event,
3368 				     struct perf_event *next_event)
3369 {
3370 	u64 value;
3371 
3372 	if (!event->attr.inherit_stat)
3373 		return;
3374 
3375 	/*
3376 	 * Update the event value, we cannot use perf_event_read()
3377 	 * because we're in the middle of a context switch and have IRQs
3378 	 * disabled, which upsets smp_call_function_single(), however
3379 	 * we know the event must be on the current CPU, therefore we
3380 	 * don't need to use it.
3381 	 */
3382 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3383 		event->pmu->read(event);
3384 
3385 	perf_event_update_time(event);
3386 
3387 	/*
3388 	 * In order to keep per-task stats reliable we need to flip the event
3389 	 * values when we flip the contexts.
3390 	 */
3391 	value = local64_read(&next_event->count);
3392 	value = local64_xchg(&event->count, value);
3393 	local64_set(&next_event->count, value);
3394 
3395 	swap(event->total_time_enabled, next_event->total_time_enabled);
3396 	swap(event->total_time_running, next_event->total_time_running);
3397 
3398 	/*
3399 	 * Since we swizzled the values, update the user visible data too.
3400 	 */
3401 	perf_event_update_userpage(event);
3402 	perf_event_update_userpage(next_event);
3403 }
3404 
3405 static void perf_event_sync_stat(struct perf_event_context *ctx,
3406 				   struct perf_event_context *next_ctx)
3407 {
3408 	struct perf_event *event, *next_event;
3409 
3410 	if (!ctx->nr_stat)
3411 		return;
3412 
3413 	update_context_time(ctx);
3414 
3415 	event = list_first_entry(&ctx->event_list,
3416 				   struct perf_event, event_entry);
3417 
3418 	next_event = list_first_entry(&next_ctx->event_list,
3419 					struct perf_event, event_entry);
3420 
3421 	while (&event->event_entry != &ctx->event_list &&
3422 	       &next_event->event_entry != &next_ctx->event_list) {
3423 
3424 		__perf_event_sync_stat(event, next_event);
3425 
3426 		event = list_next_entry(event, event_entry);
3427 		next_event = list_next_entry(next_event, event_entry);
3428 	}
3429 }
3430 
3431 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3432 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3433 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3434 	     !list_entry_is_head(pos1, head1, member) &&		\
3435 	     !list_entry_is_head(pos2, head2, member);			\
3436 	     pos1 = list_next_entry(pos1, member),			\
3437 	     pos2 = list_next_entry(pos2, member))
3438 
3439 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3440 					  struct perf_event_context *next_ctx)
3441 {
3442 	struct perf_event_pmu_context *prev_epc, *next_epc;
3443 
3444 	if (!prev_ctx->nr_task_data)
3445 		return;
3446 
3447 	double_list_for_each_entry(prev_epc, next_epc,
3448 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3449 				   pmu_ctx_entry) {
3450 
3451 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3452 			continue;
3453 
3454 		/*
3455 		 * PMU specific parts of task perf context can require
3456 		 * additional synchronization. As an example of such
3457 		 * synchronization see implementation details of Intel
3458 		 * LBR call stack data profiling;
3459 		 */
3460 		if (prev_epc->pmu->swap_task_ctx)
3461 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3462 		else
3463 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3464 	}
3465 }
3466 
3467 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3468 {
3469 	struct perf_event_pmu_context *pmu_ctx;
3470 	struct perf_cpu_pmu_context *cpc;
3471 
3472 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3473 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3474 
3475 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3476 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3477 	}
3478 }
3479 
3480 static void
3481 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3482 {
3483 	struct perf_event_context *ctx = task->perf_event_ctxp;
3484 	struct perf_event_context *next_ctx;
3485 	struct perf_event_context *parent, *next_parent;
3486 	int do_switch = 1;
3487 
3488 	if (likely(!ctx))
3489 		return;
3490 
3491 	rcu_read_lock();
3492 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3493 	if (!next_ctx)
3494 		goto unlock;
3495 
3496 	parent = rcu_dereference(ctx->parent_ctx);
3497 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3498 
3499 	/* If neither context have a parent context; they cannot be clones. */
3500 	if (!parent && !next_parent)
3501 		goto unlock;
3502 
3503 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3504 		/*
3505 		 * Looks like the two contexts are clones, so we might be
3506 		 * able to optimize the context switch.  We lock both
3507 		 * contexts and check that they are clones under the
3508 		 * lock (including re-checking that neither has been
3509 		 * uncloned in the meantime).  It doesn't matter which
3510 		 * order we take the locks because no other cpu could
3511 		 * be trying to lock both of these tasks.
3512 		 */
3513 		raw_spin_lock(&ctx->lock);
3514 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3515 		if (context_equiv(ctx, next_ctx)) {
3516 
3517 			perf_ctx_disable(ctx, false);
3518 
3519 			/* PMIs are disabled; ctx->nr_pending is stable. */
3520 			if (local_read(&ctx->nr_pending) ||
3521 			    local_read(&next_ctx->nr_pending)) {
3522 				/*
3523 				 * Must not swap out ctx when there's pending
3524 				 * events that rely on the ctx->task relation.
3525 				 */
3526 				raw_spin_unlock(&next_ctx->lock);
3527 				rcu_read_unlock();
3528 				goto inside_switch;
3529 			}
3530 
3531 			WRITE_ONCE(ctx->task, next);
3532 			WRITE_ONCE(next_ctx->task, task);
3533 
3534 			perf_ctx_sched_task_cb(ctx, false);
3535 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3536 
3537 			perf_ctx_enable(ctx, false);
3538 
3539 			/*
3540 			 * RCU_INIT_POINTER here is safe because we've not
3541 			 * modified the ctx and the above modification of
3542 			 * ctx->task and ctx->task_ctx_data are immaterial
3543 			 * since those values are always verified under
3544 			 * ctx->lock which we're now holding.
3545 			 */
3546 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3547 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3548 
3549 			do_switch = 0;
3550 
3551 			perf_event_sync_stat(ctx, next_ctx);
3552 		}
3553 		raw_spin_unlock(&next_ctx->lock);
3554 		raw_spin_unlock(&ctx->lock);
3555 	}
3556 unlock:
3557 	rcu_read_unlock();
3558 
3559 	if (do_switch) {
3560 		raw_spin_lock(&ctx->lock);
3561 		perf_ctx_disable(ctx, false);
3562 
3563 inside_switch:
3564 		perf_ctx_sched_task_cb(ctx, false);
3565 		task_ctx_sched_out(ctx, EVENT_ALL);
3566 
3567 		perf_ctx_enable(ctx, false);
3568 		raw_spin_unlock(&ctx->lock);
3569 	}
3570 }
3571 
3572 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3573 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3574 
3575 void perf_sched_cb_dec(struct pmu *pmu)
3576 {
3577 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3578 
3579 	this_cpu_dec(perf_sched_cb_usages);
3580 	barrier();
3581 
3582 	if (!--cpc->sched_cb_usage)
3583 		list_del(&cpc->sched_cb_entry);
3584 }
3585 
3586 
3587 void perf_sched_cb_inc(struct pmu *pmu)
3588 {
3589 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3590 
3591 	if (!cpc->sched_cb_usage++)
3592 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3593 
3594 	barrier();
3595 	this_cpu_inc(perf_sched_cb_usages);
3596 }
3597 
3598 /*
3599  * This function provides the context switch callback to the lower code
3600  * layer. It is invoked ONLY when the context switch callback is enabled.
3601  *
3602  * This callback is relevant even to per-cpu events; for example multi event
3603  * PEBS requires this to provide PID/TID information. This requires we flush
3604  * all queued PEBS records before we context switch to a new task.
3605  */
3606 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3607 {
3608 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3609 	struct pmu *pmu;
3610 
3611 	pmu = cpc->epc.pmu;
3612 
3613 	/* software PMUs will not have sched_task */
3614 	if (WARN_ON_ONCE(!pmu->sched_task))
3615 		return;
3616 
3617 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3618 	perf_pmu_disable(pmu);
3619 
3620 	pmu->sched_task(cpc->task_epc, sched_in);
3621 
3622 	perf_pmu_enable(pmu);
3623 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3624 }
3625 
3626 static void perf_pmu_sched_task(struct task_struct *prev,
3627 				struct task_struct *next,
3628 				bool sched_in)
3629 {
3630 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3631 	struct perf_cpu_pmu_context *cpc;
3632 
3633 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3634 	if (prev == next || cpuctx->task_ctx)
3635 		return;
3636 
3637 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3638 		__perf_pmu_sched_task(cpc, sched_in);
3639 }
3640 
3641 static void perf_event_switch(struct task_struct *task,
3642 			      struct task_struct *next_prev, bool sched_in);
3643 
3644 /*
3645  * Called from scheduler to remove the events of the current task,
3646  * with interrupts disabled.
3647  *
3648  * We stop each event and update the event value in event->count.
3649  *
3650  * This does not protect us against NMI, but disable()
3651  * sets the disabled bit in the control field of event _before_
3652  * accessing the event control register. If a NMI hits, then it will
3653  * not restart the event.
3654  */
3655 void __perf_event_task_sched_out(struct task_struct *task,
3656 				 struct task_struct *next)
3657 {
3658 	if (__this_cpu_read(perf_sched_cb_usages))
3659 		perf_pmu_sched_task(task, next, false);
3660 
3661 	if (atomic_read(&nr_switch_events))
3662 		perf_event_switch(task, next, false);
3663 
3664 	perf_event_context_sched_out(task, next);
3665 
3666 	/*
3667 	 * if cgroup events exist on this CPU, then we need
3668 	 * to check if we have to switch out PMU state.
3669 	 * cgroup event are system-wide mode only
3670 	 */
3671 	perf_cgroup_switch(next);
3672 }
3673 
3674 static bool perf_less_group_idx(const void *l, const void *r)
3675 {
3676 	const struct perf_event *le = *(const struct perf_event **)l;
3677 	const struct perf_event *re = *(const struct perf_event **)r;
3678 
3679 	return le->group_index < re->group_index;
3680 }
3681 
3682 static void swap_ptr(void *l, void *r)
3683 {
3684 	void **lp = l, **rp = r;
3685 
3686 	swap(*lp, *rp);
3687 }
3688 
3689 static const struct min_heap_callbacks perf_min_heap = {
3690 	.elem_size = sizeof(struct perf_event *),
3691 	.less = perf_less_group_idx,
3692 	.swp = swap_ptr,
3693 };
3694 
3695 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3696 {
3697 	struct perf_event **itrs = heap->data;
3698 
3699 	if (event) {
3700 		itrs[heap->nr] = event;
3701 		heap->nr++;
3702 	}
3703 }
3704 
3705 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3706 {
3707 	struct perf_cpu_pmu_context *cpc;
3708 
3709 	if (!pmu_ctx->ctx->task)
3710 		return;
3711 
3712 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3713 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3714 	cpc->task_epc = pmu_ctx;
3715 }
3716 
3717 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3718 				struct perf_event_groups *groups, int cpu,
3719 				struct pmu *pmu,
3720 				int (*func)(struct perf_event *, void *),
3721 				void *data)
3722 {
3723 #ifdef CONFIG_CGROUP_PERF
3724 	struct cgroup_subsys_state *css = NULL;
3725 #endif
3726 	struct perf_cpu_context *cpuctx = NULL;
3727 	/* Space for per CPU and/or any CPU event iterators. */
3728 	struct perf_event *itrs[2];
3729 	struct min_heap event_heap;
3730 	struct perf_event **evt;
3731 	int ret;
3732 
3733 	if (pmu->filter && pmu->filter(pmu, cpu))
3734 		return 0;
3735 
3736 	if (!ctx->task) {
3737 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3738 		event_heap = (struct min_heap){
3739 			.data = cpuctx->heap,
3740 			.nr = 0,
3741 			.size = cpuctx->heap_size,
3742 		};
3743 
3744 		lockdep_assert_held(&cpuctx->ctx.lock);
3745 
3746 #ifdef CONFIG_CGROUP_PERF
3747 		if (cpuctx->cgrp)
3748 			css = &cpuctx->cgrp->css;
3749 #endif
3750 	} else {
3751 		event_heap = (struct min_heap){
3752 			.data = itrs,
3753 			.nr = 0,
3754 			.size = ARRAY_SIZE(itrs),
3755 		};
3756 		/* Events not within a CPU context may be on any CPU. */
3757 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3758 	}
3759 	evt = event_heap.data;
3760 
3761 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3762 
3763 #ifdef CONFIG_CGROUP_PERF
3764 	for (; css; css = css->parent)
3765 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3766 #endif
3767 
3768 	if (event_heap.nr) {
3769 		__link_epc((*evt)->pmu_ctx);
3770 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3771 	}
3772 
3773 	min_heapify_all(&event_heap, &perf_min_heap);
3774 
3775 	while (event_heap.nr) {
3776 		ret = func(*evt, data);
3777 		if (ret)
3778 			return ret;
3779 
3780 		*evt = perf_event_groups_next(*evt, pmu);
3781 		if (*evt)
3782 			min_heapify(&event_heap, 0, &perf_min_heap);
3783 		else
3784 			min_heap_pop(&event_heap, &perf_min_heap);
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 /*
3791  * Because the userpage is strictly per-event (there is no concept of context,
3792  * so there cannot be a context indirection), every userpage must be updated
3793  * when context time starts :-(
3794  *
3795  * IOW, we must not miss EVENT_TIME edges.
3796  */
3797 static inline bool event_update_userpage(struct perf_event *event)
3798 {
3799 	if (likely(!atomic_read(&event->mmap_count)))
3800 		return false;
3801 
3802 	perf_event_update_time(event);
3803 	perf_event_update_userpage(event);
3804 
3805 	return true;
3806 }
3807 
3808 static inline void group_update_userpage(struct perf_event *group_event)
3809 {
3810 	struct perf_event *event;
3811 
3812 	if (!event_update_userpage(group_event))
3813 		return;
3814 
3815 	for_each_sibling_event(event, group_event)
3816 		event_update_userpage(event);
3817 }
3818 
3819 static int merge_sched_in(struct perf_event *event, void *data)
3820 {
3821 	struct perf_event_context *ctx = event->ctx;
3822 	int *can_add_hw = data;
3823 
3824 	if (event->state <= PERF_EVENT_STATE_OFF)
3825 		return 0;
3826 
3827 	if (!event_filter_match(event))
3828 		return 0;
3829 
3830 	if (group_can_go_on(event, *can_add_hw)) {
3831 		if (!group_sched_in(event, ctx))
3832 			list_add_tail(&event->active_list, get_event_list(event));
3833 	}
3834 
3835 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3836 		*can_add_hw = 0;
3837 		if (event->attr.pinned) {
3838 			perf_cgroup_event_disable(event, ctx);
3839 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3840 		} else {
3841 			struct perf_cpu_pmu_context *cpc;
3842 
3843 			event->pmu_ctx->rotate_necessary = 1;
3844 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3845 			perf_mux_hrtimer_restart(cpc);
3846 			group_update_userpage(event);
3847 		}
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3854 				struct perf_event_groups *groups,
3855 				struct pmu *pmu)
3856 {
3857 	int can_add_hw = 1;
3858 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3859 			   merge_sched_in, &can_add_hw);
3860 }
3861 
3862 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3863 				struct perf_event_groups *groups,
3864 				bool cgroup)
3865 {
3866 	struct perf_event_pmu_context *pmu_ctx;
3867 
3868 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3869 		if (cgroup && !pmu_ctx->nr_cgroups)
3870 			continue;
3871 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3872 	}
3873 }
3874 
3875 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3876 			       struct pmu *pmu)
3877 {
3878 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3879 }
3880 
3881 static void
3882 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3883 {
3884 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3885 	int is_active = ctx->is_active;
3886 	bool cgroup = event_type & EVENT_CGROUP;
3887 
3888 	event_type &= ~EVENT_CGROUP;
3889 
3890 	lockdep_assert_held(&ctx->lock);
3891 
3892 	if (likely(!ctx->nr_events))
3893 		return;
3894 
3895 	if (!(is_active & EVENT_TIME)) {
3896 		/* start ctx time */
3897 		__update_context_time(ctx, false);
3898 		perf_cgroup_set_timestamp(cpuctx);
3899 		/*
3900 		 * CPU-release for the below ->is_active store,
3901 		 * see __load_acquire() in perf_event_time_now()
3902 		 */
3903 		barrier();
3904 	}
3905 
3906 	ctx->is_active |= (event_type | EVENT_TIME);
3907 	if (ctx->task) {
3908 		if (!is_active)
3909 			cpuctx->task_ctx = ctx;
3910 		else
3911 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3912 	}
3913 
3914 	is_active ^= ctx->is_active; /* changed bits */
3915 
3916 	/*
3917 	 * First go through the list and put on any pinned groups
3918 	 * in order to give them the best chance of going on.
3919 	 */
3920 	if (is_active & EVENT_PINNED)
3921 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3922 
3923 	/* Then walk through the lower prio flexible groups */
3924 	if (is_active & EVENT_FLEXIBLE)
3925 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3926 }
3927 
3928 static void perf_event_context_sched_in(struct task_struct *task)
3929 {
3930 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3931 	struct perf_event_context *ctx;
3932 
3933 	rcu_read_lock();
3934 	ctx = rcu_dereference(task->perf_event_ctxp);
3935 	if (!ctx)
3936 		goto rcu_unlock;
3937 
3938 	if (cpuctx->task_ctx == ctx) {
3939 		perf_ctx_lock(cpuctx, ctx);
3940 		perf_ctx_disable(ctx, false);
3941 
3942 		perf_ctx_sched_task_cb(ctx, true);
3943 
3944 		perf_ctx_enable(ctx, false);
3945 		perf_ctx_unlock(cpuctx, ctx);
3946 		goto rcu_unlock;
3947 	}
3948 
3949 	perf_ctx_lock(cpuctx, ctx);
3950 	/*
3951 	 * We must check ctx->nr_events while holding ctx->lock, such
3952 	 * that we serialize against perf_install_in_context().
3953 	 */
3954 	if (!ctx->nr_events)
3955 		goto unlock;
3956 
3957 	perf_ctx_disable(ctx, false);
3958 	/*
3959 	 * We want to keep the following priority order:
3960 	 * cpu pinned (that don't need to move), task pinned,
3961 	 * cpu flexible, task flexible.
3962 	 *
3963 	 * However, if task's ctx is not carrying any pinned
3964 	 * events, no need to flip the cpuctx's events around.
3965 	 */
3966 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3967 		perf_ctx_disable(&cpuctx->ctx, false);
3968 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3969 	}
3970 
3971 	perf_event_sched_in(cpuctx, ctx);
3972 
3973 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3974 
3975 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3976 		perf_ctx_enable(&cpuctx->ctx, false);
3977 
3978 	perf_ctx_enable(ctx, false);
3979 
3980 unlock:
3981 	perf_ctx_unlock(cpuctx, ctx);
3982 rcu_unlock:
3983 	rcu_read_unlock();
3984 }
3985 
3986 /*
3987  * Called from scheduler to add the events of the current task
3988  * with interrupts disabled.
3989  *
3990  * We restore the event value and then enable it.
3991  *
3992  * This does not protect us against NMI, but enable()
3993  * sets the enabled bit in the control field of event _before_
3994  * accessing the event control register. If a NMI hits, then it will
3995  * keep the event running.
3996  */
3997 void __perf_event_task_sched_in(struct task_struct *prev,
3998 				struct task_struct *task)
3999 {
4000 	perf_event_context_sched_in(task);
4001 
4002 	if (atomic_read(&nr_switch_events))
4003 		perf_event_switch(task, prev, true);
4004 
4005 	if (__this_cpu_read(perf_sched_cb_usages))
4006 		perf_pmu_sched_task(prev, task, true);
4007 }
4008 
4009 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4010 {
4011 	u64 frequency = event->attr.sample_freq;
4012 	u64 sec = NSEC_PER_SEC;
4013 	u64 divisor, dividend;
4014 
4015 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4016 
4017 	count_fls = fls64(count);
4018 	nsec_fls = fls64(nsec);
4019 	frequency_fls = fls64(frequency);
4020 	sec_fls = 30;
4021 
4022 	/*
4023 	 * We got @count in @nsec, with a target of sample_freq HZ
4024 	 * the target period becomes:
4025 	 *
4026 	 *             @count * 10^9
4027 	 * period = -------------------
4028 	 *          @nsec * sample_freq
4029 	 *
4030 	 */
4031 
4032 	/*
4033 	 * Reduce accuracy by one bit such that @a and @b converge
4034 	 * to a similar magnitude.
4035 	 */
4036 #define REDUCE_FLS(a, b)		\
4037 do {					\
4038 	if (a##_fls > b##_fls) {	\
4039 		a >>= 1;		\
4040 		a##_fls--;		\
4041 	} else {			\
4042 		b >>= 1;		\
4043 		b##_fls--;		\
4044 	}				\
4045 } while (0)
4046 
4047 	/*
4048 	 * Reduce accuracy until either term fits in a u64, then proceed with
4049 	 * the other, so that finally we can do a u64/u64 division.
4050 	 */
4051 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4052 		REDUCE_FLS(nsec, frequency);
4053 		REDUCE_FLS(sec, count);
4054 	}
4055 
4056 	if (count_fls + sec_fls > 64) {
4057 		divisor = nsec * frequency;
4058 
4059 		while (count_fls + sec_fls > 64) {
4060 			REDUCE_FLS(count, sec);
4061 			divisor >>= 1;
4062 		}
4063 
4064 		dividend = count * sec;
4065 	} else {
4066 		dividend = count * sec;
4067 
4068 		while (nsec_fls + frequency_fls > 64) {
4069 			REDUCE_FLS(nsec, frequency);
4070 			dividend >>= 1;
4071 		}
4072 
4073 		divisor = nsec * frequency;
4074 	}
4075 
4076 	if (!divisor)
4077 		return dividend;
4078 
4079 	return div64_u64(dividend, divisor);
4080 }
4081 
4082 static DEFINE_PER_CPU(int, perf_throttled_count);
4083 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4084 
4085 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4086 {
4087 	struct hw_perf_event *hwc = &event->hw;
4088 	s64 period, sample_period;
4089 	s64 delta;
4090 
4091 	period = perf_calculate_period(event, nsec, count);
4092 
4093 	delta = (s64)(period - hwc->sample_period);
4094 	delta = (delta + 7) / 8; /* low pass filter */
4095 
4096 	sample_period = hwc->sample_period + delta;
4097 
4098 	if (!sample_period)
4099 		sample_period = 1;
4100 
4101 	hwc->sample_period = sample_period;
4102 
4103 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4104 		if (disable)
4105 			event->pmu->stop(event, PERF_EF_UPDATE);
4106 
4107 		local64_set(&hwc->period_left, 0);
4108 
4109 		if (disable)
4110 			event->pmu->start(event, PERF_EF_RELOAD);
4111 	}
4112 }
4113 
4114 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4115 {
4116 	struct perf_event *event;
4117 	struct hw_perf_event *hwc;
4118 	u64 now, period = TICK_NSEC;
4119 	s64 delta;
4120 
4121 	list_for_each_entry(event, event_list, active_list) {
4122 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4123 			continue;
4124 
4125 		// XXX use visit thingy to avoid the -1,cpu match
4126 		if (!event_filter_match(event))
4127 			continue;
4128 
4129 		hwc = &event->hw;
4130 
4131 		if (hwc->interrupts == MAX_INTERRUPTS) {
4132 			hwc->interrupts = 0;
4133 			perf_log_throttle(event, 1);
4134 			if (!event->attr.freq || !event->attr.sample_freq)
4135 				event->pmu->start(event, 0);
4136 		}
4137 
4138 		if (!event->attr.freq || !event->attr.sample_freq)
4139 			continue;
4140 
4141 		/*
4142 		 * stop the event and update event->count
4143 		 */
4144 		event->pmu->stop(event, PERF_EF_UPDATE);
4145 
4146 		now = local64_read(&event->count);
4147 		delta = now - hwc->freq_count_stamp;
4148 		hwc->freq_count_stamp = now;
4149 
4150 		/*
4151 		 * restart the event
4152 		 * reload only if value has changed
4153 		 * we have stopped the event so tell that
4154 		 * to perf_adjust_period() to avoid stopping it
4155 		 * twice.
4156 		 */
4157 		if (delta > 0)
4158 			perf_adjust_period(event, period, delta, false);
4159 
4160 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4161 	}
4162 }
4163 
4164 /*
4165  * combine freq adjustment with unthrottling to avoid two passes over the
4166  * events. At the same time, make sure, having freq events does not change
4167  * the rate of unthrottling as that would introduce bias.
4168  */
4169 static void
4170 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4171 {
4172 	struct perf_event_pmu_context *pmu_ctx;
4173 
4174 	/*
4175 	 * only need to iterate over all events iff:
4176 	 * - context have events in frequency mode (needs freq adjust)
4177 	 * - there are events to unthrottle on this cpu
4178 	 */
4179 	if (!(ctx->nr_freq || unthrottle))
4180 		return;
4181 
4182 	raw_spin_lock(&ctx->lock);
4183 
4184 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4185 		if (!(pmu_ctx->nr_freq || unthrottle))
4186 			continue;
4187 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4188 			continue;
4189 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4190 			continue;
4191 
4192 		perf_pmu_disable(pmu_ctx->pmu);
4193 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4194 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4195 		perf_pmu_enable(pmu_ctx->pmu);
4196 	}
4197 
4198 	raw_spin_unlock(&ctx->lock);
4199 }
4200 
4201 /*
4202  * Move @event to the tail of the @ctx's elegible events.
4203  */
4204 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4205 {
4206 	/*
4207 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4208 	 * disabled by the inheritance code.
4209 	 */
4210 	if (ctx->rotate_disable)
4211 		return;
4212 
4213 	perf_event_groups_delete(&ctx->flexible_groups, event);
4214 	perf_event_groups_insert(&ctx->flexible_groups, event);
4215 }
4216 
4217 /* pick an event from the flexible_groups to rotate */
4218 static inline struct perf_event *
4219 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4220 {
4221 	struct perf_event *event;
4222 	struct rb_node *node;
4223 	struct rb_root *tree;
4224 	struct __group_key key = {
4225 		.pmu = pmu_ctx->pmu,
4226 	};
4227 
4228 	/* pick the first active flexible event */
4229 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4230 					 struct perf_event, active_list);
4231 	if (event)
4232 		goto out;
4233 
4234 	/* if no active flexible event, pick the first event */
4235 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4236 
4237 	if (!pmu_ctx->ctx->task) {
4238 		key.cpu = smp_processor_id();
4239 
4240 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 		if (node)
4242 			event = __node_2_pe(node);
4243 		goto out;
4244 	}
4245 
4246 	key.cpu = -1;
4247 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4248 	if (node) {
4249 		event = __node_2_pe(node);
4250 		goto out;
4251 	}
4252 
4253 	key.cpu = smp_processor_id();
4254 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4255 	if (node)
4256 		event = __node_2_pe(node);
4257 
4258 out:
4259 	/*
4260 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4261 	 * finds there are unschedulable events, it will set it again.
4262 	 */
4263 	pmu_ctx->rotate_necessary = 0;
4264 
4265 	return event;
4266 }
4267 
4268 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4269 {
4270 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4271 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4272 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4273 	int cpu_rotate, task_rotate;
4274 	struct pmu *pmu;
4275 
4276 	/*
4277 	 * Since we run this from IRQ context, nobody can install new
4278 	 * events, thus the event count values are stable.
4279 	 */
4280 
4281 	cpu_epc = &cpc->epc;
4282 	pmu = cpu_epc->pmu;
4283 	task_epc = cpc->task_epc;
4284 
4285 	cpu_rotate = cpu_epc->rotate_necessary;
4286 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4287 
4288 	if (!(cpu_rotate || task_rotate))
4289 		return false;
4290 
4291 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4292 	perf_pmu_disable(pmu);
4293 
4294 	if (task_rotate)
4295 		task_event = ctx_event_to_rotate(task_epc);
4296 	if (cpu_rotate)
4297 		cpu_event = ctx_event_to_rotate(cpu_epc);
4298 
4299 	/*
4300 	 * As per the order given at ctx_resched() first 'pop' task flexible
4301 	 * and then, if needed CPU flexible.
4302 	 */
4303 	if (task_event || (task_epc && cpu_event)) {
4304 		update_context_time(task_epc->ctx);
4305 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4306 	}
4307 
4308 	if (cpu_event) {
4309 		update_context_time(&cpuctx->ctx);
4310 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4311 		rotate_ctx(&cpuctx->ctx, cpu_event);
4312 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4313 	}
4314 
4315 	if (task_event)
4316 		rotate_ctx(task_epc->ctx, task_event);
4317 
4318 	if (task_event || (task_epc && cpu_event))
4319 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4320 
4321 	perf_pmu_enable(pmu);
4322 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4323 
4324 	return true;
4325 }
4326 
4327 void perf_event_task_tick(void)
4328 {
4329 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4330 	struct perf_event_context *ctx;
4331 	int throttled;
4332 
4333 	lockdep_assert_irqs_disabled();
4334 
4335 	__this_cpu_inc(perf_throttled_seq);
4336 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4337 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4338 
4339 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4340 
4341 	rcu_read_lock();
4342 	ctx = rcu_dereference(current->perf_event_ctxp);
4343 	if (ctx)
4344 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4345 	rcu_read_unlock();
4346 }
4347 
4348 static int event_enable_on_exec(struct perf_event *event,
4349 				struct perf_event_context *ctx)
4350 {
4351 	if (!event->attr.enable_on_exec)
4352 		return 0;
4353 
4354 	event->attr.enable_on_exec = 0;
4355 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4356 		return 0;
4357 
4358 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4359 
4360 	return 1;
4361 }
4362 
4363 /*
4364  * Enable all of a task's events that have been marked enable-on-exec.
4365  * This expects task == current.
4366  */
4367 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4368 {
4369 	struct perf_event_context *clone_ctx = NULL;
4370 	enum event_type_t event_type = 0;
4371 	struct perf_cpu_context *cpuctx;
4372 	struct perf_event *event;
4373 	unsigned long flags;
4374 	int enabled = 0;
4375 
4376 	local_irq_save(flags);
4377 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4378 		goto out;
4379 
4380 	if (!ctx->nr_events)
4381 		goto out;
4382 
4383 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4384 	perf_ctx_lock(cpuctx, ctx);
4385 	ctx_sched_out(ctx, EVENT_TIME);
4386 
4387 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4388 		enabled |= event_enable_on_exec(event, ctx);
4389 		event_type |= get_event_type(event);
4390 	}
4391 
4392 	/*
4393 	 * Unclone and reschedule this context if we enabled any event.
4394 	 */
4395 	if (enabled) {
4396 		clone_ctx = unclone_ctx(ctx);
4397 		ctx_resched(cpuctx, ctx, event_type);
4398 	} else {
4399 		ctx_sched_in(ctx, EVENT_TIME);
4400 	}
4401 	perf_ctx_unlock(cpuctx, ctx);
4402 
4403 out:
4404 	local_irq_restore(flags);
4405 
4406 	if (clone_ctx)
4407 		put_ctx(clone_ctx);
4408 }
4409 
4410 static void perf_remove_from_owner(struct perf_event *event);
4411 static void perf_event_exit_event(struct perf_event *event,
4412 				  struct perf_event_context *ctx);
4413 
4414 /*
4415  * Removes all events from the current task that have been marked
4416  * remove-on-exec, and feeds their values back to parent events.
4417  */
4418 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4419 {
4420 	struct perf_event_context *clone_ctx = NULL;
4421 	struct perf_event *event, *next;
4422 	unsigned long flags;
4423 	bool modified = false;
4424 
4425 	mutex_lock(&ctx->mutex);
4426 
4427 	if (WARN_ON_ONCE(ctx->task != current))
4428 		goto unlock;
4429 
4430 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4431 		if (!event->attr.remove_on_exec)
4432 			continue;
4433 
4434 		if (!is_kernel_event(event))
4435 			perf_remove_from_owner(event);
4436 
4437 		modified = true;
4438 
4439 		perf_event_exit_event(event, ctx);
4440 	}
4441 
4442 	raw_spin_lock_irqsave(&ctx->lock, flags);
4443 	if (modified)
4444 		clone_ctx = unclone_ctx(ctx);
4445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4446 
4447 unlock:
4448 	mutex_unlock(&ctx->mutex);
4449 
4450 	if (clone_ctx)
4451 		put_ctx(clone_ctx);
4452 }
4453 
4454 struct perf_read_data {
4455 	struct perf_event *event;
4456 	bool group;
4457 	int ret;
4458 };
4459 
4460 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4461 {
4462 	u16 local_pkg, event_pkg;
4463 
4464 	if ((unsigned)event_cpu >= nr_cpu_ids)
4465 		return event_cpu;
4466 
4467 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4468 		int local_cpu = smp_processor_id();
4469 
4470 		event_pkg = topology_physical_package_id(event_cpu);
4471 		local_pkg = topology_physical_package_id(local_cpu);
4472 
4473 		if (event_pkg == local_pkg)
4474 			return local_cpu;
4475 	}
4476 
4477 	return event_cpu;
4478 }
4479 
4480 /*
4481  * Cross CPU call to read the hardware event
4482  */
4483 static void __perf_event_read(void *info)
4484 {
4485 	struct perf_read_data *data = info;
4486 	struct perf_event *sub, *event = data->event;
4487 	struct perf_event_context *ctx = event->ctx;
4488 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4489 	struct pmu *pmu = event->pmu;
4490 
4491 	/*
4492 	 * If this is a task context, we need to check whether it is
4493 	 * the current task context of this cpu.  If not it has been
4494 	 * scheduled out before the smp call arrived.  In that case
4495 	 * event->count would have been updated to a recent sample
4496 	 * when the event was scheduled out.
4497 	 */
4498 	if (ctx->task && cpuctx->task_ctx != ctx)
4499 		return;
4500 
4501 	raw_spin_lock(&ctx->lock);
4502 	if (ctx->is_active & EVENT_TIME) {
4503 		update_context_time(ctx);
4504 		update_cgrp_time_from_event(event);
4505 	}
4506 
4507 	perf_event_update_time(event);
4508 	if (data->group)
4509 		perf_event_update_sibling_time(event);
4510 
4511 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4512 		goto unlock;
4513 
4514 	if (!data->group) {
4515 		pmu->read(event);
4516 		data->ret = 0;
4517 		goto unlock;
4518 	}
4519 
4520 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4521 
4522 	pmu->read(event);
4523 
4524 	for_each_sibling_event(sub, event) {
4525 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4526 			/*
4527 			 * Use sibling's PMU rather than @event's since
4528 			 * sibling could be on different (eg: software) PMU.
4529 			 */
4530 			sub->pmu->read(sub);
4531 		}
4532 	}
4533 
4534 	data->ret = pmu->commit_txn(pmu);
4535 
4536 unlock:
4537 	raw_spin_unlock(&ctx->lock);
4538 }
4539 
4540 static inline u64 perf_event_count(struct perf_event *event)
4541 {
4542 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4543 }
4544 
4545 static void calc_timer_values(struct perf_event *event,
4546 				u64 *now,
4547 				u64 *enabled,
4548 				u64 *running)
4549 {
4550 	u64 ctx_time;
4551 
4552 	*now = perf_clock();
4553 	ctx_time = perf_event_time_now(event, *now);
4554 	__perf_update_times(event, ctx_time, enabled, running);
4555 }
4556 
4557 /*
4558  * NMI-safe method to read a local event, that is an event that
4559  * is:
4560  *   - either for the current task, or for this CPU
4561  *   - does not have inherit set, for inherited task events
4562  *     will not be local and we cannot read them atomically
4563  *   - must not have a pmu::count method
4564  */
4565 int perf_event_read_local(struct perf_event *event, u64 *value,
4566 			  u64 *enabled, u64 *running)
4567 {
4568 	unsigned long flags;
4569 	int event_oncpu;
4570 	int event_cpu;
4571 	int ret = 0;
4572 
4573 	/*
4574 	 * Disabling interrupts avoids all counter scheduling (context
4575 	 * switches, timer based rotation and IPIs).
4576 	 */
4577 	local_irq_save(flags);
4578 
4579 	/*
4580 	 * It must not be an event with inherit set, we cannot read
4581 	 * all child counters from atomic context.
4582 	 */
4583 	if (event->attr.inherit) {
4584 		ret = -EOPNOTSUPP;
4585 		goto out;
4586 	}
4587 
4588 	/* If this is a per-task event, it must be for current */
4589 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4590 	    event->hw.target != current) {
4591 		ret = -EINVAL;
4592 		goto out;
4593 	}
4594 
4595 	/*
4596 	 * Get the event CPU numbers, and adjust them to local if the event is
4597 	 * a per-package event that can be read locally
4598 	 */
4599 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4600 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4601 
4602 	/* If this is a per-CPU event, it must be for this CPU */
4603 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4604 	    event_cpu != smp_processor_id()) {
4605 		ret = -EINVAL;
4606 		goto out;
4607 	}
4608 
4609 	/* If this is a pinned event it must be running on this CPU */
4610 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4611 		ret = -EBUSY;
4612 		goto out;
4613 	}
4614 
4615 	/*
4616 	 * If the event is currently on this CPU, its either a per-task event,
4617 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4618 	 * oncpu == -1).
4619 	 */
4620 	if (event_oncpu == smp_processor_id())
4621 		event->pmu->read(event);
4622 
4623 	*value = local64_read(&event->count);
4624 	if (enabled || running) {
4625 		u64 __enabled, __running, __now;
4626 
4627 		calc_timer_values(event, &__now, &__enabled, &__running);
4628 		if (enabled)
4629 			*enabled = __enabled;
4630 		if (running)
4631 			*running = __running;
4632 	}
4633 out:
4634 	local_irq_restore(flags);
4635 
4636 	return ret;
4637 }
4638 
4639 static int perf_event_read(struct perf_event *event, bool group)
4640 {
4641 	enum perf_event_state state = READ_ONCE(event->state);
4642 	int event_cpu, ret = 0;
4643 
4644 	/*
4645 	 * If event is enabled and currently active on a CPU, update the
4646 	 * value in the event structure:
4647 	 */
4648 again:
4649 	if (state == PERF_EVENT_STATE_ACTIVE) {
4650 		struct perf_read_data data;
4651 
4652 		/*
4653 		 * Orders the ->state and ->oncpu loads such that if we see
4654 		 * ACTIVE we must also see the right ->oncpu.
4655 		 *
4656 		 * Matches the smp_wmb() from event_sched_in().
4657 		 */
4658 		smp_rmb();
4659 
4660 		event_cpu = READ_ONCE(event->oncpu);
4661 		if ((unsigned)event_cpu >= nr_cpu_ids)
4662 			return 0;
4663 
4664 		data = (struct perf_read_data){
4665 			.event = event,
4666 			.group = group,
4667 			.ret = 0,
4668 		};
4669 
4670 		preempt_disable();
4671 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4672 
4673 		/*
4674 		 * Purposely ignore the smp_call_function_single() return
4675 		 * value.
4676 		 *
4677 		 * If event_cpu isn't a valid CPU it means the event got
4678 		 * scheduled out and that will have updated the event count.
4679 		 *
4680 		 * Therefore, either way, we'll have an up-to-date event count
4681 		 * after this.
4682 		 */
4683 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4684 		preempt_enable();
4685 		ret = data.ret;
4686 
4687 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4688 		struct perf_event_context *ctx = event->ctx;
4689 		unsigned long flags;
4690 
4691 		raw_spin_lock_irqsave(&ctx->lock, flags);
4692 		state = event->state;
4693 		if (state != PERF_EVENT_STATE_INACTIVE) {
4694 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4695 			goto again;
4696 		}
4697 
4698 		/*
4699 		 * May read while context is not active (e.g., thread is
4700 		 * blocked), in that case we cannot update context time
4701 		 */
4702 		if (ctx->is_active & EVENT_TIME) {
4703 			update_context_time(ctx);
4704 			update_cgrp_time_from_event(event);
4705 		}
4706 
4707 		perf_event_update_time(event);
4708 		if (group)
4709 			perf_event_update_sibling_time(event);
4710 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4711 	}
4712 
4713 	return ret;
4714 }
4715 
4716 /*
4717  * Initialize the perf_event context in a task_struct:
4718  */
4719 static void __perf_event_init_context(struct perf_event_context *ctx)
4720 {
4721 	raw_spin_lock_init(&ctx->lock);
4722 	mutex_init(&ctx->mutex);
4723 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4724 	perf_event_groups_init(&ctx->pinned_groups);
4725 	perf_event_groups_init(&ctx->flexible_groups);
4726 	INIT_LIST_HEAD(&ctx->event_list);
4727 	refcount_set(&ctx->refcount, 1);
4728 }
4729 
4730 static void
4731 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4732 {
4733 	epc->pmu = pmu;
4734 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4735 	INIT_LIST_HEAD(&epc->pinned_active);
4736 	INIT_LIST_HEAD(&epc->flexible_active);
4737 	atomic_set(&epc->refcount, 1);
4738 }
4739 
4740 static struct perf_event_context *
4741 alloc_perf_context(struct task_struct *task)
4742 {
4743 	struct perf_event_context *ctx;
4744 
4745 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4746 	if (!ctx)
4747 		return NULL;
4748 
4749 	__perf_event_init_context(ctx);
4750 	if (task)
4751 		ctx->task = get_task_struct(task);
4752 
4753 	return ctx;
4754 }
4755 
4756 static struct task_struct *
4757 find_lively_task_by_vpid(pid_t vpid)
4758 {
4759 	struct task_struct *task;
4760 
4761 	rcu_read_lock();
4762 	if (!vpid)
4763 		task = current;
4764 	else
4765 		task = find_task_by_vpid(vpid);
4766 	if (task)
4767 		get_task_struct(task);
4768 	rcu_read_unlock();
4769 
4770 	if (!task)
4771 		return ERR_PTR(-ESRCH);
4772 
4773 	return task;
4774 }
4775 
4776 /*
4777  * Returns a matching context with refcount and pincount.
4778  */
4779 static struct perf_event_context *
4780 find_get_context(struct task_struct *task, struct perf_event *event)
4781 {
4782 	struct perf_event_context *ctx, *clone_ctx = NULL;
4783 	struct perf_cpu_context *cpuctx;
4784 	unsigned long flags;
4785 	int err;
4786 
4787 	if (!task) {
4788 		/* Must be root to operate on a CPU event: */
4789 		err = perf_allow_cpu(&event->attr);
4790 		if (err)
4791 			return ERR_PTR(err);
4792 
4793 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4794 		ctx = &cpuctx->ctx;
4795 		get_ctx(ctx);
4796 		raw_spin_lock_irqsave(&ctx->lock, flags);
4797 		++ctx->pin_count;
4798 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4799 
4800 		return ctx;
4801 	}
4802 
4803 	err = -EINVAL;
4804 retry:
4805 	ctx = perf_lock_task_context(task, &flags);
4806 	if (ctx) {
4807 		clone_ctx = unclone_ctx(ctx);
4808 		++ctx->pin_count;
4809 
4810 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4811 
4812 		if (clone_ctx)
4813 			put_ctx(clone_ctx);
4814 	} else {
4815 		ctx = alloc_perf_context(task);
4816 		err = -ENOMEM;
4817 		if (!ctx)
4818 			goto errout;
4819 
4820 		err = 0;
4821 		mutex_lock(&task->perf_event_mutex);
4822 		/*
4823 		 * If it has already passed perf_event_exit_task().
4824 		 * we must see PF_EXITING, it takes this mutex too.
4825 		 */
4826 		if (task->flags & PF_EXITING)
4827 			err = -ESRCH;
4828 		else if (task->perf_event_ctxp)
4829 			err = -EAGAIN;
4830 		else {
4831 			get_ctx(ctx);
4832 			++ctx->pin_count;
4833 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4834 		}
4835 		mutex_unlock(&task->perf_event_mutex);
4836 
4837 		if (unlikely(err)) {
4838 			put_ctx(ctx);
4839 
4840 			if (err == -EAGAIN)
4841 				goto retry;
4842 			goto errout;
4843 		}
4844 	}
4845 
4846 	return ctx;
4847 
4848 errout:
4849 	return ERR_PTR(err);
4850 }
4851 
4852 static struct perf_event_pmu_context *
4853 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4854 		     struct perf_event *event)
4855 {
4856 	struct perf_event_pmu_context *new = NULL, *epc;
4857 	void *task_ctx_data = NULL;
4858 
4859 	if (!ctx->task) {
4860 		/*
4861 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4862 		 * relies on the fact that find_get_pmu_context() cannot fail
4863 		 * for CPU contexts.
4864 		 */
4865 		struct perf_cpu_pmu_context *cpc;
4866 
4867 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4868 		epc = &cpc->epc;
4869 		raw_spin_lock_irq(&ctx->lock);
4870 		if (!epc->ctx) {
4871 			atomic_set(&epc->refcount, 1);
4872 			epc->embedded = 1;
4873 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4874 			epc->ctx = ctx;
4875 		} else {
4876 			WARN_ON_ONCE(epc->ctx != ctx);
4877 			atomic_inc(&epc->refcount);
4878 		}
4879 		raw_spin_unlock_irq(&ctx->lock);
4880 		return epc;
4881 	}
4882 
4883 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4884 	if (!new)
4885 		return ERR_PTR(-ENOMEM);
4886 
4887 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4888 		task_ctx_data = alloc_task_ctx_data(pmu);
4889 		if (!task_ctx_data) {
4890 			kfree(new);
4891 			return ERR_PTR(-ENOMEM);
4892 		}
4893 	}
4894 
4895 	__perf_init_event_pmu_context(new, pmu);
4896 
4897 	/*
4898 	 * XXX
4899 	 *
4900 	 * lockdep_assert_held(&ctx->mutex);
4901 	 *
4902 	 * can't because perf_event_init_task() doesn't actually hold the
4903 	 * child_ctx->mutex.
4904 	 */
4905 
4906 	raw_spin_lock_irq(&ctx->lock);
4907 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4908 		if (epc->pmu == pmu) {
4909 			WARN_ON_ONCE(epc->ctx != ctx);
4910 			atomic_inc(&epc->refcount);
4911 			goto found_epc;
4912 		}
4913 	}
4914 
4915 	epc = new;
4916 	new = NULL;
4917 
4918 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4919 	epc->ctx = ctx;
4920 
4921 found_epc:
4922 	if (task_ctx_data && !epc->task_ctx_data) {
4923 		epc->task_ctx_data = task_ctx_data;
4924 		task_ctx_data = NULL;
4925 		ctx->nr_task_data++;
4926 	}
4927 	raw_spin_unlock_irq(&ctx->lock);
4928 
4929 	free_task_ctx_data(pmu, task_ctx_data);
4930 	kfree(new);
4931 
4932 	return epc;
4933 }
4934 
4935 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4936 {
4937 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4938 }
4939 
4940 static void free_epc_rcu(struct rcu_head *head)
4941 {
4942 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4943 
4944 	kfree(epc->task_ctx_data);
4945 	kfree(epc);
4946 }
4947 
4948 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4949 {
4950 	struct perf_event_context *ctx = epc->ctx;
4951 	unsigned long flags;
4952 
4953 	/*
4954 	 * XXX
4955 	 *
4956 	 * lockdep_assert_held(&ctx->mutex);
4957 	 *
4958 	 * can't because of the call-site in _free_event()/put_event()
4959 	 * which isn't always called under ctx->mutex.
4960 	 */
4961 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4962 		return;
4963 
4964 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4965 
4966 	list_del_init(&epc->pmu_ctx_entry);
4967 	epc->ctx = NULL;
4968 
4969 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4970 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4971 
4972 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4973 
4974 	if (epc->embedded)
4975 		return;
4976 
4977 	call_rcu(&epc->rcu_head, free_epc_rcu);
4978 }
4979 
4980 static void perf_event_free_filter(struct perf_event *event);
4981 
4982 static void free_event_rcu(struct rcu_head *head)
4983 {
4984 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4985 
4986 	if (event->ns)
4987 		put_pid_ns(event->ns);
4988 	perf_event_free_filter(event);
4989 	kmem_cache_free(perf_event_cache, event);
4990 }
4991 
4992 static void ring_buffer_attach(struct perf_event *event,
4993 			       struct perf_buffer *rb);
4994 
4995 static void detach_sb_event(struct perf_event *event)
4996 {
4997 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4998 
4999 	raw_spin_lock(&pel->lock);
5000 	list_del_rcu(&event->sb_list);
5001 	raw_spin_unlock(&pel->lock);
5002 }
5003 
5004 static bool is_sb_event(struct perf_event *event)
5005 {
5006 	struct perf_event_attr *attr = &event->attr;
5007 
5008 	if (event->parent)
5009 		return false;
5010 
5011 	if (event->attach_state & PERF_ATTACH_TASK)
5012 		return false;
5013 
5014 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5015 	    attr->comm || attr->comm_exec ||
5016 	    attr->task || attr->ksymbol ||
5017 	    attr->context_switch || attr->text_poke ||
5018 	    attr->bpf_event)
5019 		return true;
5020 	return false;
5021 }
5022 
5023 static void unaccount_pmu_sb_event(struct perf_event *event)
5024 {
5025 	if (is_sb_event(event))
5026 		detach_sb_event(event);
5027 }
5028 
5029 #ifdef CONFIG_NO_HZ_FULL
5030 static DEFINE_SPINLOCK(nr_freq_lock);
5031 #endif
5032 
5033 static void unaccount_freq_event_nohz(void)
5034 {
5035 #ifdef CONFIG_NO_HZ_FULL
5036 	spin_lock(&nr_freq_lock);
5037 	if (atomic_dec_and_test(&nr_freq_events))
5038 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5039 	spin_unlock(&nr_freq_lock);
5040 #endif
5041 }
5042 
5043 static void unaccount_freq_event(void)
5044 {
5045 	if (tick_nohz_full_enabled())
5046 		unaccount_freq_event_nohz();
5047 	else
5048 		atomic_dec(&nr_freq_events);
5049 }
5050 
5051 static void unaccount_event(struct perf_event *event)
5052 {
5053 	bool dec = false;
5054 
5055 	if (event->parent)
5056 		return;
5057 
5058 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5059 		dec = true;
5060 	if (event->attr.mmap || event->attr.mmap_data)
5061 		atomic_dec(&nr_mmap_events);
5062 	if (event->attr.build_id)
5063 		atomic_dec(&nr_build_id_events);
5064 	if (event->attr.comm)
5065 		atomic_dec(&nr_comm_events);
5066 	if (event->attr.namespaces)
5067 		atomic_dec(&nr_namespaces_events);
5068 	if (event->attr.cgroup)
5069 		atomic_dec(&nr_cgroup_events);
5070 	if (event->attr.task)
5071 		atomic_dec(&nr_task_events);
5072 	if (event->attr.freq)
5073 		unaccount_freq_event();
5074 	if (event->attr.context_switch) {
5075 		dec = true;
5076 		atomic_dec(&nr_switch_events);
5077 	}
5078 	if (is_cgroup_event(event))
5079 		dec = true;
5080 	if (has_branch_stack(event))
5081 		dec = true;
5082 	if (event->attr.ksymbol)
5083 		atomic_dec(&nr_ksymbol_events);
5084 	if (event->attr.bpf_event)
5085 		atomic_dec(&nr_bpf_events);
5086 	if (event->attr.text_poke)
5087 		atomic_dec(&nr_text_poke_events);
5088 
5089 	if (dec) {
5090 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5091 			schedule_delayed_work(&perf_sched_work, HZ);
5092 	}
5093 
5094 	unaccount_pmu_sb_event(event);
5095 }
5096 
5097 static void perf_sched_delayed(struct work_struct *work)
5098 {
5099 	mutex_lock(&perf_sched_mutex);
5100 	if (atomic_dec_and_test(&perf_sched_count))
5101 		static_branch_disable(&perf_sched_events);
5102 	mutex_unlock(&perf_sched_mutex);
5103 }
5104 
5105 /*
5106  * The following implement mutual exclusion of events on "exclusive" pmus
5107  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5108  * at a time, so we disallow creating events that might conflict, namely:
5109  *
5110  *  1) cpu-wide events in the presence of per-task events,
5111  *  2) per-task events in the presence of cpu-wide events,
5112  *  3) two matching events on the same perf_event_context.
5113  *
5114  * The former two cases are handled in the allocation path (perf_event_alloc(),
5115  * _free_event()), the latter -- before the first perf_install_in_context().
5116  */
5117 static int exclusive_event_init(struct perf_event *event)
5118 {
5119 	struct pmu *pmu = event->pmu;
5120 
5121 	if (!is_exclusive_pmu(pmu))
5122 		return 0;
5123 
5124 	/*
5125 	 * Prevent co-existence of per-task and cpu-wide events on the
5126 	 * same exclusive pmu.
5127 	 *
5128 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5129 	 * events on this "exclusive" pmu, positive means there are
5130 	 * per-task events.
5131 	 *
5132 	 * Since this is called in perf_event_alloc() path, event::ctx
5133 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5134 	 * to mean "per-task event", because unlike other attach states it
5135 	 * never gets cleared.
5136 	 */
5137 	if (event->attach_state & PERF_ATTACH_TASK) {
5138 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5139 			return -EBUSY;
5140 	} else {
5141 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5142 			return -EBUSY;
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 static void exclusive_event_destroy(struct perf_event *event)
5149 {
5150 	struct pmu *pmu = event->pmu;
5151 
5152 	if (!is_exclusive_pmu(pmu))
5153 		return;
5154 
5155 	/* see comment in exclusive_event_init() */
5156 	if (event->attach_state & PERF_ATTACH_TASK)
5157 		atomic_dec(&pmu->exclusive_cnt);
5158 	else
5159 		atomic_inc(&pmu->exclusive_cnt);
5160 }
5161 
5162 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5163 {
5164 	if ((e1->pmu == e2->pmu) &&
5165 	    (e1->cpu == e2->cpu ||
5166 	     e1->cpu == -1 ||
5167 	     e2->cpu == -1))
5168 		return true;
5169 	return false;
5170 }
5171 
5172 static bool exclusive_event_installable(struct perf_event *event,
5173 					struct perf_event_context *ctx)
5174 {
5175 	struct perf_event *iter_event;
5176 	struct pmu *pmu = event->pmu;
5177 
5178 	lockdep_assert_held(&ctx->mutex);
5179 
5180 	if (!is_exclusive_pmu(pmu))
5181 		return true;
5182 
5183 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5184 		if (exclusive_event_match(iter_event, event))
5185 			return false;
5186 	}
5187 
5188 	return true;
5189 }
5190 
5191 static void perf_addr_filters_splice(struct perf_event *event,
5192 				       struct list_head *head);
5193 
5194 static void perf_pending_task_sync(struct perf_event *event)
5195 {
5196 	struct callback_head *head = &event->pending_task;
5197 
5198 	if (!event->pending_work)
5199 		return;
5200 	/*
5201 	 * If the task is queued to the current task's queue, we
5202 	 * obviously can't wait for it to complete. Simply cancel it.
5203 	 */
5204 	if (task_work_cancel(current, head)) {
5205 		event->pending_work = 0;
5206 		local_dec(&event->ctx->nr_pending);
5207 		return;
5208 	}
5209 
5210 	/*
5211 	 * All accesses related to the event are within the same RCU section in
5212 	 * perf_pending_task(). The RCU grace period before the event is freed
5213 	 * will make sure all those accesses are complete by then.
5214 	 */
5215 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5216 }
5217 
5218 static void _free_event(struct perf_event *event)
5219 {
5220 	irq_work_sync(&event->pending_irq);
5221 	irq_work_sync(&event->pending_disable_irq);
5222 	perf_pending_task_sync(event);
5223 
5224 	unaccount_event(event);
5225 
5226 	security_perf_event_free(event);
5227 
5228 	if (event->rb) {
5229 		/*
5230 		 * Can happen when we close an event with re-directed output.
5231 		 *
5232 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5233 		 * over us; possibly making our ring_buffer_put() the last.
5234 		 */
5235 		mutex_lock(&event->mmap_mutex);
5236 		ring_buffer_attach(event, NULL);
5237 		mutex_unlock(&event->mmap_mutex);
5238 	}
5239 
5240 	if (is_cgroup_event(event))
5241 		perf_detach_cgroup(event);
5242 
5243 	if (!event->parent) {
5244 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5245 			put_callchain_buffers();
5246 	}
5247 
5248 	perf_event_free_bpf_prog(event);
5249 	perf_addr_filters_splice(event, NULL);
5250 	kfree(event->addr_filter_ranges);
5251 
5252 	if (event->destroy)
5253 		event->destroy(event);
5254 
5255 	/*
5256 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5257 	 * hw.target.
5258 	 */
5259 	if (event->hw.target)
5260 		put_task_struct(event->hw.target);
5261 
5262 	if (event->pmu_ctx)
5263 		put_pmu_ctx(event->pmu_ctx);
5264 
5265 	/*
5266 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5267 	 * all task references must be cleaned up.
5268 	 */
5269 	if (event->ctx)
5270 		put_ctx(event->ctx);
5271 
5272 	exclusive_event_destroy(event);
5273 	module_put(event->pmu->module);
5274 
5275 	call_rcu(&event->rcu_head, free_event_rcu);
5276 }
5277 
5278 /*
5279  * Used to free events which have a known refcount of 1, such as in error paths
5280  * where the event isn't exposed yet and inherited events.
5281  */
5282 static void free_event(struct perf_event *event)
5283 {
5284 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5285 				"unexpected event refcount: %ld; ptr=%p\n",
5286 				atomic_long_read(&event->refcount), event)) {
5287 		/* leak to avoid use-after-free */
5288 		return;
5289 	}
5290 
5291 	_free_event(event);
5292 }
5293 
5294 /*
5295  * Remove user event from the owner task.
5296  */
5297 static void perf_remove_from_owner(struct perf_event *event)
5298 {
5299 	struct task_struct *owner;
5300 
5301 	rcu_read_lock();
5302 	/*
5303 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5304 	 * observe !owner it means the list deletion is complete and we can
5305 	 * indeed free this event, otherwise we need to serialize on
5306 	 * owner->perf_event_mutex.
5307 	 */
5308 	owner = READ_ONCE(event->owner);
5309 	if (owner) {
5310 		/*
5311 		 * Since delayed_put_task_struct() also drops the last
5312 		 * task reference we can safely take a new reference
5313 		 * while holding the rcu_read_lock().
5314 		 */
5315 		get_task_struct(owner);
5316 	}
5317 	rcu_read_unlock();
5318 
5319 	if (owner) {
5320 		/*
5321 		 * If we're here through perf_event_exit_task() we're already
5322 		 * holding ctx->mutex which would be an inversion wrt. the
5323 		 * normal lock order.
5324 		 *
5325 		 * However we can safely take this lock because its the child
5326 		 * ctx->mutex.
5327 		 */
5328 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5329 
5330 		/*
5331 		 * We have to re-check the event->owner field, if it is cleared
5332 		 * we raced with perf_event_exit_task(), acquiring the mutex
5333 		 * ensured they're done, and we can proceed with freeing the
5334 		 * event.
5335 		 */
5336 		if (event->owner) {
5337 			list_del_init(&event->owner_entry);
5338 			smp_store_release(&event->owner, NULL);
5339 		}
5340 		mutex_unlock(&owner->perf_event_mutex);
5341 		put_task_struct(owner);
5342 	}
5343 }
5344 
5345 static void put_event(struct perf_event *event)
5346 {
5347 	if (!atomic_long_dec_and_test(&event->refcount))
5348 		return;
5349 
5350 	_free_event(event);
5351 }
5352 
5353 /*
5354  * Kill an event dead; while event:refcount will preserve the event
5355  * object, it will not preserve its functionality. Once the last 'user'
5356  * gives up the object, we'll destroy the thing.
5357  */
5358 int perf_event_release_kernel(struct perf_event *event)
5359 {
5360 	struct perf_event_context *ctx = event->ctx;
5361 	struct perf_event *child, *tmp;
5362 	LIST_HEAD(free_list);
5363 
5364 	/*
5365 	 * If we got here through err_alloc: free_event(event); we will not
5366 	 * have attached to a context yet.
5367 	 */
5368 	if (!ctx) {
5369 		WARN_ON_ONCE(event->attach_state &
5370 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5371 		goto no_ctx;
5372 	}
5373 
5374 	if (!is_kernel_event(event))
5375 		perf_remove_from_owner(event);
5376 
5377 	ctx = perf_event_ctx_lock(event);
5378 	WARN_ON_ONCE(ctx->parent_ctx);
5379 
5380 	/*
5381 	 * Mark this event as STATE_DEAD, there is no external reference to it
5382 	 * anymore.
5383 	 *
5384 	 * Anybody acquiring event->child_mutex after the below loop _must_
5385 	 * also see this, most importantly inherit_event() which will avoid
5386 	 * placing more children on the list.
5387 	 *
5388 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5389 	 * child events.
5390 	 */
5391 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5392 
5393 	perf_event_ctx_unlock(event, ctx);
5394 
5395 again:
5396 	mutex_lock(&event->child_mutex);
5397 	list_for_each_entry(child, &event->child_list, child_list) {
5398 		void *var = NULL;
5399 
5400 		/*
5401 		 * Cannot change, child events are not migrated, see the
5402 		 * comment with perf_event_ctx_lock_nested().
5403 		 */
5404 		ctx = READ_ONCE(child->ctx);
5405 		/*
5406 		 * Since child_mutex nests inside ctx::mutex, we must jump
5407 		 * through hoops. We start by grabbing a reference on the ctx.
5408 		 *
5409 		 * Since the event cannot get freed while we hold the
5410 		 * child_mutex, the context must also exist and have a !0
5411 		 * reference count.
5412 		 */
5413 		get_ctx(ctx);
5414 
5415 		/*
5416 		 * Now that we have a ctx ref, we can drop child_mutex, and
5417 		 * acquire ctx::mutex without fear of it going away. Then we
5418 		 * can re-acquire child_mutex.
5419 		 */
5420 		mutex_unlock(&event->child_mutex);
5421 		mutex_lock(&ctx->mutex);
5422 		mutex_lock(&event->child_mutex);
5423 
5424 		/*
5425 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5426 		 * state, if child is still the first entry, it didn't get freed
5427 		 * and we can continue doing so.
5428 		 */
5429 		tmp = list_first_entry_or_null(&event->child_list,
5430 					       struct perf_event, child_list);
5431 		if (tmp == child) {
5432 			perf_remove_from_context(child, DETACH_GROUP);
5433 			list_move(&child->child_list, &free_list);
5434 			/*
5435 			 * This matches the refcount bump in inherit_event();
5436 			 * this can't be the last reference.
5437 			 */
5438 			put_event(event);
5439 		} else {
5440 			var = &ctx->refcount;
5441 		}
5442 
5443 		mutex_unlock(&event->child_mutex);
5444 		mutex_unlock(&ctx->mutex);
5445 		put_ctx(ctx);
5446 
5447 		if (var) {
5448 			/*
5449 			 * If perf_event_free_task() has deleted all events from the
5450 			 * ctx while the child_mutex got released above, make sure to
5451 			 * notify about the preceding put_ctx().
5452 			 */
5453 			smp_mb(); /* pairs with wait_var_event() */
5454 			wake_up_var(var);
5455 		}
5456 		goto again;
5457 	}
5458 	mutex_unlock(&event->child_mutex);
5459 
5460 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5461 		void *var = &child->ctx->refcount;
5462 
5463 		list_del(&child->child_list);
5464 		free_event(child);
5465 
5466 		/*
5467 		 * Wake any perf_event_free_task() waiting for this event to be
5468 		 * freed.
5469 		 */
5470 		smp_mb(); /* pairs with wait_var_event() */
5471 		wake_up_var(var);
5472 	}
5473 
5474 no_ctx:
5475 	put_event(event); /* Must be the 'last' reference */
5476 	return 0;
5477 }
5478 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5479 
5480 /*
5481  * Called when the last reference to the file is gone.
5482  */
5483 static int perf_release(struct inode *inode, struct file *file)
5484 {
5485 	perf_event_release_kernel(file->private_data);
5486 	return 0;
5487 }
5488 
5489 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5490 {
5491 	struct perf_event *child;
5492 	u64 total = 0;
5493 
5494 	*enabled = 0;
5495 	*running = 0;
5496 
5497 	mutex_lock(&event->child_mutex);
5498 
5499 	(void)perf_event_read(event, false);
5500 	total += perf_event_count(event);
5501 
5502 	*enabled += event->total_time_enabled +
5503 			atomic64_read(&event->child_total_time_enabled);
5504 	*running += event->total_time_running +
5505 			atomic64_read(&event->child_total_time_running);
5506 
5507 	list_for_each_entry(child, &event->child_list, child_list) {
5508 		(void)perf_event_read(child, false);
5509 		total += perf_event_count(child);
5510 		*enabled += child->total_time_enabled;
5511 		*running += child->total_time_running;
5512 	}
5513 	mutex_unlock(&event->child_mutex);
5514 
5515 	return total;
5516 }
5517 
5518 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5519 {
5520 	struct perf_event_context *ctx;
5521 	u64 count;
5522 
5523 	ctx = perf_event_ctx_lock(event);
5524 	count = __perf_event_read_value(event, enabled, running);
5525 	perf_event_ctx_unlock(event, ctx);
5526 
5527 	return count;
5528 }
5529 EXPORT_SYMBOL_GPL(perf_event_read_value);
5530 
5531 static int __perf_read_group_add(struct perf_event *leader,
5532 					u64 read_format, u64 *values)
5533 {
5534 	struct perf_event_context *ctx = leader->ctx;
5535 	struct perf_event *sub, *parent;
5536 	unsigned long flags;
5537 	int n = 1; /* skip @nr */
5538 	int ret;
5539 
5540 	ret = perf_event_read(leader, true);
5541 	if (ret)
5542 		return ret;
5543 
5544 	raw_spin_lock_irqsave(&ctx->lock, flags);
5545 	/*
5546 	 * Verify the grouping between the parent and child (inherited)
5547 	 * events is still in tact.
5548 	 *
5549 	 * Specifically:
5550 	 *  - leader->ctx->lock pins leader->sibling_list
5551 	 *  - parent->child_mutex pins parent->child_list
5552 	 *  - parent->ctx->mutex pins parent->sibling_list
5553 	 *
5554 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5555 	 * ctx->mutex), group destruction is not atomic between children, also
5556 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5557 	 * group.
5558 	 *
5559 	 * Therefore it is possible to have parent and child groups in a
5560 	 * different configuration and summing over such a beast makes no sense
5561 	 * what so ever.
5562 	 *
5563 	 * Reject this.
5564 	 */
5565 	parent = leader->parent;
5566 	if (parent &&
5567 	    (parent->group_generation != leader->group_generation ||
5568 	     parent->nr_siblings != leader->nr_siblings)) {
5569 		ret = -ECHILD;
5570 		goto unlock;
5571 	}
5572 
5573 	/*
5574 	 * Since we co-schedule groups, {enabled,running} times of siblings
5575 	 * will be identical to those of the leader, so we only publish one
5576 	 * set.
5577 	 */
5578 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5579 		values[n++] += leader->total_time_enabled +
5580 			atomic64_read(&leader->child_total_time_enabled);
5581 	}
5582 
5583 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5584 		values[n++] += leader->total_time_running +
5585 			atomic64_read(&leader->child_total_time_running);
5586 	}
5587 
5588 	/*
5589 	 * Write {count,id} tuples for every sibling.
5590 	 */
5591 	values[n++] += perf_event_count(leader);
5592 	if (read_format & PERF_FORMAT_ID)
5593 		values[n++] = primary_event_id(leader);
5594 	if (read_format & PERF_FORMAT_LOST)
5595 		values[n++] = atomic64_read(&leader->lost_samples);
5596 
5597 	for_each_sibling_event(sub, leader) {
5598 		values[n++] += perf_event_count(sub);
5599 		if (read_format & PERF_FORMAT_ID)
5600 			values[n++] = primary_event_id(sub);
5601 		if (read_format & PERF_FORMAT_LOST)
5602 			values[n++] = atomic64_read(&sub->lost_samples);
5603 	}
5604 
5605 unlock:
5606 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5607 	return ret;
5608 }
5609 
5610 static int perf_read_group(struct perf_event *event,
5611 				   u64 read_format, char __user *buf)
5612 {
5613 	struct perf_event *leader = event->group_leader, *child;
5614 	struct perf_event_context *ctx = leader->ctx;
5615 	int ret;
5616 	u64 *values;
5617 
5618 	lockdep_assert_held(&ctx->mutex);
5619 
5620 	values = kzalloc(event->read_size, GFP_KERNEL);
5621 	if (!values)
5622 		return -ENOMEM;
5623 
5624 	values[0] = 1 + leader->nr_siblings;
5625 
5626 	mutex_lock(&leader->child_mutex);
5627 
5628 	ret = __perf_read_group_add(leader, read_format, values);
5629 	if (ret)
5630 		goto unlock;
5631 
5632 	list_for_each_entry(child, &leader->child_list, child_list) {
5633 		ret = __perf_read_group_add(child, read_format, values);
5634 		if (ret)
5635 			goto unlock;
5636 	}
5637 
5638 	mutex_unlock(&leader->child_mutex);
5639 
5640 	ret = event->read_size;
5641 	if (copy_to_user(buf, values, event->read_size))
5642 		ret = -EFAULT;
5643 	goto out;
5644 
5645 unlock:
5646 	mutex_unlock(&leader->child_mutex);
5647 out:
5648 	kfree(values);
5649 	return ret;
5650 }
5651 
5652 static int perf_read_one(struct perf_event *event,
5653 				 u64 read_format, char __user *buf)
5654 {
5655 	u64 enabled, running;
5656 	u64 values[5];
5657 	int n = 0;
5658 
5659 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5660 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5661 		values[n++] = enabled;
5662 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5663 		values[n++] = running;
5664 	if (read_format & PERF_FORMAT_ID)
5665 		values[n++] = primary_event_id(event);
5666 	if (read_format & PERF_FORMAT_LOST)
5667 		values[n++] = atomic64_read(&event->lost_samples);
5668 
5669 	if (copy_to_user(buf, values, n * sizeof(u64)))
5670 		return -EFAULT;
5671 
5672 	return n * sizeof(u64);
5673 }
5674 
5675 static bool is_event_hup(struct perf_event *event)
5676 {
5677 	bool no_children;
5678 
5679 	if (event->state > PERF_EVENT_STATE_EXIT)
5680 		return false;
5681 
5682 	mutex_lock(&event->child_mutex);
5683 	no_children = list_empty(&event->child_list);
5684 	mutex_unlock(&event->child_mutex);
5685 	return no_children;
5686 }
5687 
5688 /*
5689  * Read the performance event - simple non blocking version for now
5690  */
5691 static ssize_t
5692 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5693 {
5694 	u64 read_format = event->attr.read_format;
5695 	int ret;
5696 
5697 	/*
5698 	 * Return end-of-file for a read on an event that is in
5699 	 * error state (i.e. because it was pinned but it couldn't be
5700 	 * scheduled on to the CPU at some point).
5701 	 */
5702 	if (event->state == PERF_EVENT_STATE_ERROR)
5703 		return 0;
5704 
5705 	if (count < event->read_size)
5706 		return -ENOSPC;
5707 
5708 	WARN_ON_ONCE(event->ctx->parent_ctx);
5709 	if (read_format & PERF_FORMAT_GROUP)
5710 		ret = perf_read_group(event, read_format, buf);
5711 	else
5712 		ret = perf_read_one(event, read_format, buf);
5713 
5714 	return ret;
5715 }
5716 
5717 static ssize_t
5718 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5719 {
5720 	struct perf_event *event = file->private_data;
5721 	struct perf_event_context *ctx;
5722 	int ret;
5723 
5724 	ret = security_perf_event_read(event);
5725 	if (ret)
5726 		return ret;
5727 
5728 	ctx = perf_event_ctx_lock(event);
5729 	ret = __perf_read(event, buf, count);
5730 	perf_event_ctx_unlock(event, ctx);
5731 
5732 	return ret;
5733 }
5734 
5735 static __poll_t perf_poll(struct file *file, poll_table *wait)
5736 {
5737 	struct perf_event *event = file->private_data;
5738 	struct perf_buffer *rb;
5739 	__poll_t events = EPOLLHUP;
5740 
5741 	poll_wait(file, &event->waitq, wait);
5742 
5743 	if (is_event_hup(event))
5744 		return events;
5745 
5746 	/*
5747 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5748 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5749 	 */
5750 	mutex_lock(&event->mmap_mutex);
5751 	rb = event->rb;
5752 	if (rb)
5753 		events = atomic_xchg(&rb->poll, 0);
5754 	mutex_unlock(&event->mmap_mutex);
5755 	return events;
5756 }
5757 
5758 static void _perf_event_reset(struct perf_event *event)
5759 {
5760 	(void)perf_event_read(event, false);
5761 	local64_set(&event->count, 0);
5762 	perf_event_update_userpage(event);
5763 }
5764 
5765 /* Assume it's not an event with inherit set. */
5766 u64 perf_event_pause(struct perf_event *event, bool reset)
5767 {
5768 	struct perf_event_context *ctx;
5769 	u64 count;
5770 
5771 	ctx = perf_event_ctx_lock(event);
5772 	WARN_ON_ONCE(event->attr.inherit);
5773 	_perf_event_disable(event);
5774 	count = local64_read(&event->count);
5775 	if (reset)
5776 		local64_set(&event->count, 0);
5777 	perf_event_ctx_unlock(event, ctx);
5778 
5779 	return count;
5780 }
5781 EXPORT_SYMBOL_GPL(perf_event_pause);
5782 
5783 /*
5784  * Holding the top-level event's child_mutex means that any
5785  * descendant process that has inherited this event will block
5786  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5787  * task existence requirements of perf_event_enable/disable.
5788  */
5789 static void perf_event_for_each_child(struct perf_event *event,
5790 					void (*func)(struct perf_event *))
5791 {
5792 	struct perf_event *child;
5793 
5794 	WARN_ON_ONCE(event->ctx->parent_ctx);
5795 
5796 	mutex_lock(&event->child_mutex);
5797 	func(event);
5798 	list_for_each_entry(child, &event->child_list, child_list)
5799 		func(child);
5800 	mutex_unlock(&event->child_mutex);
5801 }
5802 
5803 static void perf_event_for_each(struct perf_event *event,
5804 				  void (*func)(struct perf_event *))
5805 {
5806 	struct perf_event_context *ctx = event->ctx;
5807 	struct perf_event *sibling;
5808 
5809 	lockdep_assert_held(&ctx->mutex);
5810 
5811 	event = event->group_leader;
5812 
5813 	perf_event_for_each_child(event, func);
5814 	for_each_sibling_event(sibling, event)
5815 		perf_event_for_each_child(sibling, func);
5816 }
5817 
5818 static void __perf_event_period(struct perf_event *event,
5819 				struct perf_cpu_context *cpuctx,
5820 				struct perf_event_context *ctx,
5821 				void *info)
5822 {
5823 	u64 value = *((u64 *)info);
5824 	bool active;
5825 
5826 	if (event->attr.freq) {
5827 		event->attr.sample_freq = value;
5828 	} else {
5829 		event->attr.sample_period = value;
5830 		event->hw.sample_period = value;
5831 	}
5832 
5833 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5834 	if (active) {
5835 		perf_pmu_disable(event->pmu);
5836 		/*
5837 		 * We could be throttled; unthrottle now to avoid the tick
5838 		 * trying to unthrottle while we already re-started the event.
5839 		 */
5840 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5841 			event->hw.interrupts = 0;
5842 			perf_log_throttle(event, 1);
5843 		}
5844 		event->pmu->stop(event, PERF_EF_UPDATE);
5845 	}
5846 
5847 	local64_set(&event->hw.period_left, 0);
5848 
5849 	if (active) {
5850 		event->pmu->start(event, PERF_EF_RELOAD);
5851 		perf_pmu_enable(event->pmu);
5852 	}
5853 }
5854 
5855 static int perf_event_check_period(struct perf_event *event, u64 value)
5856 {
5857 	return event->pmu->check_period(event, value);
5858 }
5859 
5860 static int _perf_event_period(struct perf_event *event, u64 value)
5861 {
5862 	if (!is_sampling_event(event))
5863 		return -EINVAL;
5864 
5865 	if (!value)
5866 		return -EINVAL;
5867 
5868 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5869 		return -EINVAL;
5870 
5871 	if (perf_event_check_period(event, value))
5872 		return -EINVAL;
5873 
5874 	if (!event->attr.freq && (value & (1ULL << 63)))
5875 		return -EINVAL;
5876 
5877 	event_function_call(event, __perf_event_period, &value);
5878 
5879 	return 0;
5880 }
5881 
5882 int perf_event_period(struct perf_event *event, u64 value)
5883 {
5884 	struct perf_event_context *ctx;
5885 	int ret;
5886 
5887 	ctx = perf_event_ctx_lock(event);
5888 	ret = _perf_event_period(event, value);
5889 	perf_event_ctx_unlock(event, ctx);
5890 
5891 	return ret;
5892 }
5893 EXPORT_SYMBOL_GPL(perf_event_period);
5894 
5895 static const struct file_operations perf_fops;
5896 
5897 static inline int perf_fget_light(int fd, struct fd *p)
5898 {
5899 	struct fd f = fdget(fd);
5900 	if (!f.file)
5901 		return -EBADF;
5902 
5903 	if (f.file->f_op != &perf_fops) {
5904 		fdput(f);
5905 		return -EBADF;
5906 	}
5907 	*p = f;
5908 	return 0;
5909 }
5910 
5911 static int perf_event_set_output(struct perf_event *event,
5912 				 struct perf_event *output_event);
5913 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5914 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5915 			  struct perf_event_attr *attr);
5916 
5917 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5918 {
5919 	void (*func)(struct perf_event *);
5920 	u32 flags = arg;
5921 
5922 	switch (cmd) {
5923 	case PERF_EVENT_IOC_ENABLE:
5924 		func = _perf_event_enable;
5925 		break;
5926 	case PERF_EVENT_IOC_DISABLE:
5927 		func = _perf_event_disable;
5928 		break;
5929 	case PERF_EVENT_IOC_RESET:
5930 		func = _perf_event_reset;
5931 		break;
5932 
5933 	case PERF_EVENT_IOC_REFRESH:
5934 		return _perf_event_refresh(event, arg);
5935 
5936 	case PERF_EVENT_IOC_PERIOD:
5937 	{
5938 		u64 value;
5939 
5940 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5941 			return -EFAULT;
5942 
5943 		return _perf_event_period(event, value);
5944 	}
5945 	case PERF_EVENT_IOC_ID:
5946 	{
5947 		u64 id = primary_event_id(event);
5948 
5949 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5950 			return -EFAULT;
5951 		return 0;
5952 	}
5953 
5954 	case PERF_EVENT_IOC_SET_OUTPUT:
5955 	{
5956 		int ret;
5957 		if (arg != -1) {
5958 			struct perf_event *output_event;
5959 			struct fd output;
5960 			ret = perf_fget_light(arg, &output);
5961 			if (ret)
5962 				return ret;
5963 			output_event = output.file->private_data;
5964 			ret = perf_event_set_output(event, output_event);
5965 			fdput(output);
5966 		} else {
5967 			ret = perf_event_set_output(event, NULL);
5968 		}
5969 		return ret;
5970 	}
5971 
5972 	case PERF_EVENT_IOC_SET_FILTER:
5973 		return perf_event_set_filter(event, (void __user *)arg);
5974 
5975 	case PERF_EVENT_IOC_SET_BPF:
5976 	{
5977 		struct bpf_prog *prog;
5978 		int err;
5979 
5980 		prog = bpf_prog_get(arg);
5981 		if (IS_ERR(prog))
5982 			return PTR_ERR(prog);
5983 
5984 		err = perf_event_set_bpf_prog(event, prog, 0);
5985 		if (err) {
5986 			bpf_prog_put(prog);
5987 			return err;
5988 		}
5989 
5990 		return 0;
5991 	}
5992 
5993 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5994 		struct perf_buffer *rb;
5995 
5996 		rcu_read_lock();
5997 		rb = rcu_dereference(event->rb);
5998 		if (!rb || !rb->nr_pages) {
5999 			rcu_read_unlock();
6000 			return -EINVAL;
6001 		}
6002 		rb_toggle_paused(rb, !!arg);
6003 		rcu_read_unlock();
6004 		return 0;
6005 	}
6006 
6007 	case PERF_EVENT_IOC_QUERY_BPF:
6008 		return perf_event_query_prog_array(event, (void __user *)arg);
6009 
6010 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6011 		struct perf_event_attr new_attr;
6012 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6013 					 &new_attr);
6014 
6015 		if (err)
6016 			return err;
6017 
6018 		return perf_event_modify_attr(event,  &new_attr);
6019 	}
6020 	default:
6021 		return -ENOTTY;
6022 	}
6023 
6024 	if (flags & PERF_IOC_FLAG_GROUP)
6025 		perf_event_for_each(event, func);
6026 	else
6027 		perf_event_for_each_child(event, func);
6028 
6029 	return 0;
6030 }
6031 
6032 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6033 {
6034 	struct perf_event *event = file->private_data;
6035 	struct perf_event_context *ctx;
6036 	long ret;
6037 
6038 	/* Treat ioctl like writes as it is likely a mutating operation. */
6039 	ret = security_perf_event_write(event);
6040 	if (ret)
6041 		return ret;
6042 
6043 	ctx = perf_event_ctx_lock(event);
6044 	ret = _perf_ioctl(event, cmd, arg);
6045 	perf_event_ctx_unlock(event, ctx);
6046 
6047 	return ret;
6048 }
6049 
6050 #ifdef CONFIG_COMPAT
6051 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6052 				unsigned long arg)
6053 {
6054 	switch (_IOC_NR(cmd)) {
6055 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6056 	case _IOC_NR(PERF_EVENT_IOC_ID):
6057 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6058 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6059 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6060 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6061 			cmd &= ~IOCSIZE_MASK;
6062 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6063 		}
6064 		break;
6065 	}
6066 	return perf_ioctl(file, cmd, arg);
6067 }
6068 #else
6069 # define perf_compat_ioctl NULL
6070 #endif
6071 
6072 int perf_event_task_enable(void)
6073 {
6074 	struct perf_event_context *ctx;
6075 	struct perf_event *event;
6076 
6077 	mutex_lock(&current->perf_event_mutex);
6078 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6079 		ctx = perf_event_ctx_lock(event);
6080 		perf_event_for_each_child(event, _perf_event_enable);
6081 		perf_event_ctx_unlock(event, ctx);
6082 	}
6083 	mutex_unlock(&current->perf_event_mutex);
6084 
6085 	return 0;
6086 }
6087 
6088 int perf_event_task_disable(void)
6089 {
6090 	struct perf_event_context *ctx;
6091 	struct perf_event *event;
6092 
6093 	mutex_lock(&current->perf_event_mutex);
6094 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6095 		ctx = perf_event_ctx_lock(event);
6096 		perf_event_for_each_child(event, _perf_event_disable);
6097 		perf_event_ctx_unlock(event, ctx);
6098 	}
6099 	mutex_unlock(&current->perf_event_mutex);
6100 
6101 	return 0;
6102 }
6103 
6104 static int perf_event_index(struct perf_event *event)
6105 {
6106 	if (event->hw.state & PERF_HES_STOPPED)
6107 		return 0;
6108 
6109 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6110 		return 0;
6111 
6112 	return event->pmu->event_idx(event);
6113 }
6114 
6115 static void perf_event_init_userpage(struct perf_event *event)
6116 {
6117 	struct perf_event_mmap_page *userpg;
6118 	struct perf_buffer *rb;
6119 
6120 	rcu_read_lock();
6121 	rb = rcu_dereference(event->rb);
6122 	if (!rb)
6123 		goto unlock;
6124 
6125 	userpg = rb->user_page;
6126 
6127 	/* Allow new userspace to detect that bit 0 is deprecated */
6128 	userpg->cap_bit0_is_deprecated = 1;
6129 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6130 	userpg->data_offset = PAGE_SIZE;
6131 	userpg->data_size = perf_data_size(rb);
6132 
6133 unlock:
6134 	rcu_read_unlock();
6135 }
6136 
6137 void __weak arch_perf_update_userpage(
6138 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6139 {
6140 }
6141 
6142 /*
6143  * Callers need to ensure there can be no nesting of this function, otherwise
6144  * the seqlock logic goes bad. We can not serialize this because the arch
6145  * code calls this from NMI context.
6146  */
6147 void perf_event_update_userpage(struct perf_event *event)
6148 {
6149 	struct perf_event_mmap_page *userpg;
6150 	struct perf_buffer *rb;
6151 	u64 enabled, running, now;
6152 
6153 	rcu_read_lock();
6154 	rb = rcu_dereference(event->rb);
6155 	if (!rb)
6156 		goto unlock;
6157 
6158 	/*
6159 	 * compute total_time_enabled, total_time_running
6160 	 * based on snapshot values taken when the event
6161 	 * was last scheduled in.
6162 	 *
6163 	 * we cannot simply called update_context_time()
6164 	 * because of locking issue as we can be called in
6165 	 * NMI context
6166 	 */
6167 	calc_timer_values(event, &now, &enabled, &running);
6168 
6169 	userpg = rb->user_page;
6170 	/*
6171 	 * Disable preemption to guarantee consistent time stamps are stored to
6172 	 * the user page.
6173 	 */
6174 	preempt_disable();
6175 	++userpg->lock;
6176 	barrier();
6177 	userpg->index = perf_event_index(event);
6178 	userpg->offset = perf_event_count(event);
6179 	if (userpg->index)
6180 		userpg->offset -= local64_read(&event->hw.prev_count);
6181 
6182 	userpg->time_enabled = enabled +
6183 			atomic64_read(&event->child_total_time_enabled);
6184 
6185 	userpg->time_running = running +
6186 			atomic64_read(&event->child_total_time_running);
6187 
6188 	arch_perf_update_userpage(event, userpg, now);
6189 
6190 	barrier();
6191 	++userpg->lock;
6192 	preempt_enable();
6193 unlock:
6194 	rcu_read_unlock();
6195 }
6196 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6197 
6198 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6199 {
6200 	struct perf_event *event = vmf->vma->vm_file->private_data;
6201 	struct perf_buffer *rb;
6202 	vm_fault_t ret = VM_FAULT_SIGBUS;
6203 
6204 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6205 		if (vmf->pgoff == 0)
6206 			ret = 0;
6207 		return ret;
6208 	}
6209 
6210 	rcu_read_lock();
6211 	rb = rcu_dereference(event->rb);
6212 	if (!rb)
6213 		goto unlock;
6214 
6215 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6216 		goto unlock;
6217 
6218 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6219 	if (!vmf->page)
6220 		goto unlock;
6221 
6222 	get_page(vmf->page);
6223 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6224 	vmf->page->index   = vmf->pgoff;
6225 
6226 	ret = 0;
6227 unlock:
6228 	rcu_read_unlock();
6229 
6230 	return ret;
6231 }
6232 
6233 static void ring_buffer_attach(struct perf_event *event,
6234 			       struct perf_buffer *rb)
6235 {
6236 	struct perf_buffer *old_rb = NULL;
6237 	unsigned long flags;
6238 
6239 	WARN_ON_ONCE(event->parent);
6240 
6241 	if (event->rb) {
6242 		/*
6243 		 * Should be impossible, we set this when removing
6244 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6245 		 */
6246 		WARN_ON_ONCE(event->rcu_pending);
6247 
6248 		old_rb = event->rb;
6249 		spin_lock_irqsave(&old_rb->event_lock, flags);
6250 		list_del_rcu(&event->rb_entry);
6251 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6252 
6253 		event->rcu_batches = get_state_synchronize_rcu();
6254 		event->rcu_pending = 1;
6255 	}
6256 
6257 	if (rb) {
6258 		if (event->rcu_pending) {
6259 			cond_synchronize_rcu(event->rcu_batches);
6260 			event->rcu_pending = 0;
6261 		}
6262 
6263 		spin_lock_irqsave(&rb->event_lock, flags);
6264 		list_add_rcu(&event->rb_entry, &rb->event_list);
6265 		spin_unlock_irqrestore(&rb->event_lock, flags);
6266 	}
6267 
6268 	/*
6269 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6270 	 * before swizzling the event::rb pointer; if it's getting
6271 	 * unmapped, its aux_mmap_count will be 0 and it won't
6272 	 * restart. See the comment in __perf_pmu_output_stop().
6273 	 *
6274 	 * Data will inevitably be lost when set_output is done in
6275 	 * mid-air, but then again, whoever does it like this is
6276 	 * not in for the data anyway.
6277 	 */
6278 	if (has_aux(event))
6279 		perf_event_stop(event, 0);
6280 
6281 	rcu_assign_pointer(event->rb, rb);
6282 
6283 	if (old_rb) {
6284 		ring_buffer_put(old_rb);
6285 		/*
6286 		 * Since we detached before setting the new rb, so that we
6287 		 * could attach the new rb, we could have missed a wakeup.
6288 		 * Provide it now.
6289 		 */
6290 		wake_up_all(&event->waitq);
6291 	}
6292 }
6293 
6294 static void ring_buffer_wakeup(struct perf_event *event)
6295 {
6296 	struct perf_buffer *rb;
6297 
6298 	if (event->parent)
6299 		event = event->parent;
6300 
6301 	rcu_read_lock();
6302 	rb = rcu_dereference(event->rb);
6303 	if (rb) {
6304 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6305 			wake_up_all(&event->waitq);
6306 	}
6307 	rcu_read_unlock();
6308 }
6309 
6310 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6311 {
6312 	struct perf_buffer *rb;
6313 
6314 	if (event->parent)
6315 		event = event->parent;
6316 
6317 	rcu_read_lock();
6318 	rb = rcu_dereference(event->rb);
6319 	if (rb) {
6320 		if (!refcount_inc_not_zero(&rb->refcount))
6321 			rb = NULL;
6322 	}
6323 	rcu_read_unlock();
6324 
6325 	return rb;
6326 }
6327 
6328 void ring_buffer_put(struct perf_buffer *rb)
6329 {
6330 	if (!refcount_dec_and_test(&rb->refcount))
6331 		return;
6332 
6333 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6334 
6335 	call_rcu(&rb->rcu_head, rb_free_rcu);
6336 }
6337 
6338 static void perf_mmap_open(struct vm_area_struct *vma)
6339 {
6340 	struct perf_event *event = vma->vm_file->private_data;
6341 
6342 	atomic_inc(&event->mmap_count);
6343 	atomic_inc(&event->rb->mmap_count);
6344 
6345 	if (vma->vm_pgoff)
6346 		atomic_inc(&event->rb->aux_mmap_count);
6347 
6348 	if (event->pmu->event_mapped)
6349 		event->pmu->event_mapped(event, vma->vm_mm);
6350 }
6351 
6352 static void perf_pmu_output_stop(struct perf_event *event);
6353 
6354 /*
6355  * A buffer can be mmap()ed multiple times; either directly through the same
6356  * event, or through other events by use of perf_event_set_output().
6357  *
6358  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6359  * the buffer here, where we still have a VM context. This means we need
6360  * to detach all events redirecting to us.
6361  */
6362 static void perf_mmap_close(struct vm_area_struct *vma)
6363 {
6364 	struct perf_event *event = vma->vm_file->private_data;
6365 	struct perf_buffer *rb = ring_buffer_get(event);
6366 	struct user_struct *mmap_user = rb->mmap_user;
6367 	int mmap_locked = rb->mmap_locked;
6368 	unsigned long size = perf_data_size(rb);
6369 	bool detach_rest = false;
6370 
6371 	if (event->pmu->event_unmapped)
6372 		event->pmu->event_unmapped(event, vma->vm_mm);
6373 
6374 	/*
6375 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6376 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6377 	 * serialize with perf_mmap here.
6378 	 */
6379 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6380 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6381 		/*
6382 		 * Stop all AUX events that are writing to this buffer,
6383 		 * so that we can free its AUX pages and corresponding PMU
6384 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6385 		 * they won't start any more (see perf_aux_output_begin()).
6386 		 */
6387 		perf_pmu_output_stop(event);
6388 
6389 		/* now it's safe to free the pages */
6390 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6391 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6392 
6393 		/* this has to be the last one */
6394 		rb_free_aux(rb);
6395 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6396 
6397 		mutex_unlock(&event->mmap_mutex);
6398 	}
6399 
6400 	if (atomic_dec_and_test(&rb->mmap_count))
6401 		detach_rest = true;
6402 
6403 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6404 		goto out_put;
6405 
6406 	ring_buffer_attach(event, NULL);
6407 	mutex_unlock(&event->mmap_mutex);
6408 
6409 	/* If there's still other mmap()s of this buffer, we're done. */
6410 	if (!detach_rest)
6411 		goto out_put;
6412 
6413 	/*
6414 	 * No other mmap()s, detach from all other events that might redirect
6415 	 * into the now unreachable buffer. Somewhat complicated by the
6416 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6417 	 */
6418 again:
6419 	rcu_read_lock();
6420 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6421 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6422 			/*
6423 			 * This event is en-route to free_event() which will
6424 			 * detach it and remove it from the list.
6425 			 */
6426 			continue;
6427 		}
6428 		rcu_read_unlock();
6429 
6430 		mutex_lock(&event->mmap_mutex);
6431 		/*
6432 		 * Check we didn't race with perf_event_set_output() which can
6433 		 * swizzle the rb from under us while we were waiting to
6434 		 * acquire mmap_mutex.
6435 		 *
6436 		 * If we find a different rb; ignore this event, a next
6437 		 * iteration will no longer find it on the list. We have to
6438 		 * still restart the iteration to make sure we're not now
6439 		 * iterating the wrong list.
6440 		 */
6441 		if (event->rb == rb)
6442 			ring_buffer_attach(event, NULL);
6443 
6444 		mutex_unlock(&event->mmap_mutex);
6445 		put_event(event);
6446 
6447 		/*
6448 		 * Restart the iteration; either we're on the wrong list or
6449 		 * destroyed its integrity by doing a deletion.
6450 		 */
6451 		goto again;
6452 	}
6453 	rcu_read_unlock();
6454 
6455 	/*
6456 	 * It could be there's still a few 0-ref events on the list; they'll
6457 	 * get cleaned up by free_event() -- they'll also still have their
6458 	 * ref on the rb and will free it whenever they are done with it.
6459 	 *
6460 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6461 	 * undo the VM accounting.
6462 	 */
6463 
6464 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6465 			&mmap_user->locked_vm);
6466 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6467 	free_uid(mmap_user);
6468 
6469 out_put:
6470 	ring_buffer_put(rb); /* could be last */
6471 }
6472 
6473 static const struct vm_operations_struct perf_mmap_vmops = {
6474 	.open		= perf_mmap_open,
6475 	.close		= perf_mmap_close, /* non mergeable */
6476 	.fault		= perf_mmap_fault,
6477 	.page_mkwrite	= perf_mmap_fault,
6478 };
6479 
6480 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6481 {
6482 	struct perf_event *event = file->private_data;
6483 	unsigned long user_locked, user_lock_limit;
6484 	struct user_struct *user = current_user();
6485 	struct perf_buffer *rb = NULL;
6486 	unsigned long locked, lock_limit;
6487 	unsigned long vma_size;
6488 	unsigned long nr_pages;
6489 	long user_extra = 0, extra = 0;
6490 	int ret = 0, flags = 0;
6491 
6492 	/*
6493 	 * Don't allow mmap() of inherited per-task counters. This would
6494 	 * create a performance issue due to all children writing to the
6495 	 * same rb.
6496 	 */
6497 	if (event->cpu == -1 && event->attr.inherit)
6498 		return -EINVAL;
6499 
6500 	if (!(vma->vm_flags & VM_SHARED))
6501 		return -EINVAL;
6502 
6503 	ret = security_perf_event_read(event);
6504 	if (ret)
6505 		return ret;
6506 
6507 	vma_size = vma->vm_end - vma->vm_start;
6508 
6509 	if (vma->vm_pgoff == 0) {
6510 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6511 	} else {
6512 		/*
6513 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6514 		 * mapped, all subsequent mappings should have the same size
6515 		 * and offset. Must be above the normal perf buffer.
6516 		 */
6517 		u64 aux_offset, aux_size;
6518 
6519 		if (!event->rb)
6520 			return -EINVAL;
6521 
6522 		nr_pages = vma_size / PAGE_SIZE;
6523 		if (nr_pages > INT_MAX)
6524 			return -ENOMEM;
6525 
6526 		mutex_lock(&event->mmap_mutex);
6527 		ret = -EINVAL;
6528 
6529 		rb = event->rb;
6530 		if (!rb)
6531 			goto aux_unlock;
6532 
6533 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6534 		aux_size = READ_ONCE(rb->user_page->aux_size);
6535 
6536 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6537 			goto aux_unlock;
6538 
6539 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6540 			goto aux_unlock;
6541 
6542 		/* already mapped with a different offset */
6543 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6544 			goto aux_unlock;
6545 
6546 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6547 			goto aux_unlock;
6548 
6549 		/* already mapped with a different size */
6550 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6551 			goto aux_unlock;
6552 
6553 		if (!is_power_of_2(nr_pages))
6554 			goto aux_unlock;
6555 
6556 		if (!atomic_inc_not_zero(&rb->mmap_count))
6557 			goto aux_unlock;
6558 
6559 		if (rb_has_aux(rb)) {
6560 			atomic_inc(&rb->aux_mmap_count);
6561 			ret = 0;
6562 			goto unlock;
6563 		}
6564 
6565 		atomic_set(&rb->aux_mmap_count, 1);
6566 		user_extra = nr_pages;
6567 
6568 		goto accounting;
6569 	}
6570 
6571 	/*
6572 	 * If we have rb pages ensure they're a power-of-two number, so we
6573 	 * can do bitmasks instead of modulo.
6574 	 */
6575 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6576 		return -EINVAL;
6577 
6578 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6579 		return -EINVAL;
6580 
6581 	WARN_ON_ONCE(event->ctx->parent_ctx);
6582 again:
6583 	mutex_lock(&event->mmap_mutex);
6584 	if (event->rb) {
6585 		if (data_page_nr(event->rb) != nr_pages) {
6586 			ret = -EINVAL;
6587 			goto unlock;
6588 		}
6589 
6590 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6591 			/*
6592 			 * Raced against perf_mmap_close(); remove the
6593 			 * event and try again.
6594 			 */
6595 			ring_buffer_attach(event, NULL);
6596 			mutex_unlock(&event->mmap_mutex);
6597 			goto again;
6598 		}
6599 
6600 		goto unlock;
6601 	}
6602 
6603 	user_extra = nr_pages + 1;
6604 
6605 accounting:
6606 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6607 
6608 	/*
6609 	 * Increase the limit linearly with more CPUs:
6610 	 */
6611 	user_lock_limit *= num_online_cpus();
6612 
6613 	user_locked = atomic_long_read(&user->locked_vm);
6614 
6615 	/*
6616 	 * sysctl_perf_event_mlock may have changed, so that
6617 	 *     user->locked_vm > user_lock_limit
6618 	 */
6619 	if (user_locked > user_lock_limit)
6620 		user_locked = user_lock_limit;
6621 	user_locked += user_extra;
6622 
6623 	if (user_locked > user_lock_limit) {
6624 		/*
6625 		 * charge locked_vm until it hits user_lock_limit;
6626 		 * charge the rest from pinned_vm
6627 		 */
6628 		extra = user_locked - user_lock_limit;
6629 		user_extra -= extra;
6630 	}
6631 
6632 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6633 	lock_limit >>= PAGE_SHIFT;
6634 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6635 
6636 	if ((locked > lock_limit) && perf_is_paranoid() &&
6637 		!capable(CAP_IPC_LOCK)) {
6638 		ret = -EPERM;
6639 		goto unlock;
6640 	}
6641 
6642 	WARN_ON(!rb && event->rb);
6643 
6644 	if (vma->vm_flags & VM_WRITE)
6645 		flags |= RING_BUFFER_WRITABLE;
6646 
6647 	if (!rb) {
6648 		rb = rb_alloc(nr_pages,
6649 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6650 			      event->cpu, flags);
6651 
6652 		if (!rb) {
6653 			ret = -ENOMEM;
6654 			goto unlock;
6655 		}
6656 
6657 		atomic_set(&rb->mmap_count, 1);
6658 		rb->mmap_user = get_current_user();
6659 		rb->mmap_locked = extra;
6660 
6661 		ring_buffer_attach(event, rb);
6662 
6663 		perf_event_update_time(event);
6664 		perf_event_init_userpage(event);
6665 		perf_event_update_userpage(event);
6666 	} else {
6667 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6668 				   event->attr.aux_watermark, flags);
6669 		if (!ret)
6670 			rb->aux_mmap_locked = extra;
6671 	}
6672 
6673 unlock:
6674 	if (!ret) {
6675 		atomic_long_add(user_extra, &user->locked_vm);
6676 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6677 
6678 		atomic_inc(&event->mmap_count);
6679 	} else if (rb) {
6680 		atomic_dec(&rb->mmap_count);
6681 	}
6682 aux_unlock:
6683 	mutex_unlock(&event->mmap_mutex);
6684 
6685 	/*
6686 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6687 	 * vma.
6688 	 */
6689 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6690 	vma->vm_ops = &perf_mmap_vmops;
6691 
6692 	if (event->pmu->event_mapped)
6693 		event->pmu->event_mapped(event, vma->vm_mm);
6694 
6695 	return ret;
6696 }
6697 
6698 static int perf_fasync(int fd, struct file *filp, int on)
6699 {
6700 	struct inode *inode = file_inode(filp);
6701 	struct perf_event *event = filp->private_data;
6702 	int retval;
6703 
6704 	inode_lock(inode);
6705 	retval = fasync_helper(fd, filp, on, &event->fasync);
6706 	inode_unlock(inode);
6707 
6708 	if (retval < 0)
6709 		return retval;
6710 
6711 	return 0;
6712 }
6713 
6714 static const struct file_operations perf_fops = {
6715 	.llseek			= no_llseek,
6716 	.release		= perf_release,
6717 	.read			= perf_read,
6718 	.poll			= perf_poll,
6719 	.unlocked_ioctl		= perf_ioctl,
6720 	.compat_ioctl		= perf_compat_ioctl,
6721 	.mmap			= perf_mmap,
6722 	.fasync			= perf_fasync,
6723 };
6724 
6725 /*
6726  * Perf event wakeup
6727  *
6728  * If there's data, ensure we set the poll() state and publish everything
6729  * to user-space before waking everybody up.
6730  */
6731 
6732 void perf_event_wakeup(struct perf_event *event)
6733 {
6734 	ring_buffer_wakeup(event);
6735 
6736 	if (event->pending_kill) {
6737 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6738 		event->pending_kill = 0;
6739 	}
6740 }
6741 
6742 static void perf_sigtrap(struct perf_event *event)
6743 {
6744 	/*
6745 	 * We'd expect this to only occur if the irq_work is delayed and either
6746 	 * ctx->task or current has changed in the meantime. This can be the
6747 	 * case on architectures that do not implement arch_irq_work_raise().
6748 	 */
6749 	if (WARN_ON_ONCE(event->ctx->task != current))
6750 		return;
6751 
6752 	/*
6753 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6754 	 * task exiting.
6755 	 */
6756 	if (current->flags & PF_EXITING)
6757 		return;
6758 
6759 	send_sig_perf((void __user *)event->pending_addr,
6760 		      event->orig_type, event->attr.sig_data);
6761 }
6762 
6763 /*
6764  * Deliver the pending work in-event-context or follow the context.
6765  */
6766 static void __perf_pending_disable(struct perf_event *event)
6767 {
6768 	int cpu = READ_ONCE(event->oncpu);
6769 
6770 	/*
6771 	 * If the event isn't running; we done. event_sched_out() will have
6772 	 * taken care of things.
6773 	 */
6774 	if (cpu < 0)
6775 		return;
6776 
6777 	/*
6778 	 * Yay, we hit home and are in the context of the event.
6779 	 */
6780 	if (cpu == smp_processor_id()) {
6781 		if (event->pending_disable) {
6782 			event->pending_disable = 0;
6783 			perf_event_disable_local(event);
6784 		}
6785 		return;
6786 	}
6787 
6788 	/*
6789 	 *  CPU-A			CPU-B
6790 	 *
6791 	 *  perf_event_disable_inatomic()
6792 	 *    @pending_disable = CPU-A;
6793 	 *    irq_work_queue();
6794 	 *
6795 	 *  sched-out
6796 	 *    @pending_disable = -1;
6797 	 *
6798 	 *				sched-in
6799 	 *				perf_event_disable_inatomic()
6800 	 *				  @pending_disable = CPU-B;
6801 	 *				  irq_work_queue(); // FAILS
6802 	 *
6803 	 *  irq_work_run()
6804 	 *    perf_pending_disable()
6805 	 *
6806 	 * But the event runs on CPU-B and wants disabling there.
6807 	 */
6808 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6809 }
6810 
6811 static void perf_pending_disable(struct irq_work *entry)
6812 {
6813 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6814 	int rctx;
6815 
6816 	/*
6817 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6818 	 * and we won't recurse 'further'.
6819 	 */
6820 	rctx = perf_swevent_get_recursion_context();
6821 	__perf_pending_disable(event);
6822 	if (rctx >= 0)
6823 		perf_swevent_put_recursion_context(rctx);
6824 }
6825 
6826 static void perf_pending_irq(struct irq_work *entry)
6827 {
6828 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6829 	int rctx;
6830 
6831 	/*
6832 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6833 	 * and we won't recurse 'further'.
6834 	 */
6835 	rctx = perf_swevent_get_recursion_context();
6836 
6837 	/*
6838 	 * The wakeup isn't bound to the context of the event -- it can happen
6839 	 * irrespective of where the event is.
6840 	 */
6841 	if (event->pending_wakeup) {
6842 		event->pending_wakeup = 0;
6843 		perf_event_wakeup(event);
6844 	}
6845 
6846 	if (rctx >= 0)
6847 		perf_swevent_put_recursion_context(rctx);
6848 }
6849 
6850 static void perf_pending_task(struct callback_head *head)
6851 {
6852 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6853 	int rctx;
6854 
6855 	/*
6856 	 * All accesses to the event must belong to the same implicit RCU read-side
6857 	 * critical section as the ->pending_work reset. See comment in
6858 	 * perf_pending_task_sync().
6859 	 */
6860 	rcu_read_lock();
6861 	/*
6862 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6863 	 * and we won't recurse 'further'.
6864 	 */
6865 	rctx = perf_swevent_get_recursion_context();
6866 
6867 	if (event->pending_work) {
6868 		event->pending_work = 0;
6869 		perf_sigtrap(event);
6870 		local_dec(&event->ctx->nr_pending);
6871 		rcuwait_wake_up(&event->pending_work_wait);
6872 	}
6873 	rcu_read_unlock();
6874 
6875 	if (rctx >= 0)
6876 		perf_swevent_put_recursion_context(rctx);
6877 }
6878 
6879 #ifdef CONFIG_GUEST_PERF_EVENTS
6880 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6881 
6882 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6883 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6884 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6885 
6886 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6887 {
6888 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6889 		return;
6890 
6891 	rcu_assign_pointer(perf_guest_cbs, cbs);
6892 	static_call_update(__perf_guest_state, cbs->state);
6893 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6894 
6895 	/* Implementing ->handle_intel_pt_intr is optional. */
6896 	if (cbs->handle_intel_pt_intr)
6897 		static_call_update(__perf_guest_handle_intel_pt_intr,
6898 				   cbs->handle_intel_pt_intr);
6899 }
6900 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6901 
6902 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6903 {
6904 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6905 		return;
6906 
6907 	rcu_assign_pointer(perf_guest_cbs, NULL);
6908 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6909 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6910 	static_call_update(__perf_guest_handle_intel_pt_intr,
6911 			   (void *)&__static_call_return0);
6912 	synchronize_rcu();
6913 }
6914 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6915 #endif
6916 
6917 static void
6918 perf_output_sample_regs(struct perf_output_handle *handle,
6919 			struct pt_regs *regs, u64 mask)
6920 {
6921 	int bit;
6922 	DECLARE_BITMAP(_mask, 64);
6923 
6924 	bitmap_from_u64(_mask, mask);
6925 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6926 		u64 val;
6927 
6928 		val = perf_reg_value(regs, bit);
6929 		perf_output_put(handle, val);
6930 	}
6931 }
6932 
6933 static void perf_sample_regs_user(struct perf_regs *regs_user,
6934 				  struct pt_regs *regs)
6935 {
6936 	if (user_mode(regs)) {
6937 		regs_user->abi = perf_reg_abi(current);
6938 		regs_user->regs = regs;
6939 	} else if (!(current->flags & PF_KTHREAD)) {
6940 		perf_get_regs_user(regs_user, regs);
6941 	} else {
6942 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6943 		regs_user->regs = NULL;
6944 	}
6945 }
6946 
6947 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6948 				  struct pt_regs *regs)
6949 {
6950 	regs_intr->regs = regs;
6951 	regs_intr->abi  = perf_reg_abi(current);
6952 }
6953 
6954 
6955 /*
6956  * Get remaining task size from user stack pointer.
6957  *
6958  * It'd be better to take stack vma map and limit this more
6959  * precisely, but there's no way to get it safely under interrupt,
6960  * so using TASK_SIZE as limit.
6961  */
6962 static u64 perf_ustack_task_size(struct pt_regs *regs)
6963 {
6964 	unsigned long addr = perf_user_stack_pointer(regs);
6965 
6966 	if (!addr || addr >= TASK_SIZE)
6967 		return 0;
6968 
6969 	return TASK_SIZE - addr;
6970 }
6971 
6972 static u16
6973 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6974 			struct pt_regs *regs)
6975 {
6976 	u64 task_size;
6977 
6978 	/* No regs, no stack pointer, no dump. */
6979 	if (!regs)
6980 		return 0;
6981 
6982 	/*
6983 	 * Check if we fit in with the requested stack size into the:
6984 	 * - TASK_SIZE
6985 	 *   If we don't, we limit the size to the TASK_SIZE.
6986 	 *
6987 	 * - remaining sample size
6988 	 *   If we don't, we customize the stack size to
6989 	 *   fit in to the remaining sample size.
6990 	 */
6991 
6992 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6993 	stack_size = min(stack_size, (u16) task_size);
6994 
6995 	/* Current header size plus static size and dynamic size. */
6996 	header_size += 2 * sizeof(u64);
6997 
6998 	/* Do we fit in with the current stack dump size? */
6999 	if ((u16) (header_size + stack_size) < header_size) {
7000 		/*
7001 		 * If we overflow the maximum size for the sample,
7002 		 * we customize the stack dump size to fit in.
7003 		 */
7004 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7005 		stack_size = round_up(stack_size, sizeof(u64));
7006 	}
7007 
7008 	return stack_size;
7009 }
7010 
7011 static void
7012 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7013 			  struct pt_regs *regs)
7014 {
7015 	/* Case of a kernel thread, nothing to dump */
7016 	if (!regs) {
7017 		u64 size = 0;
7018 		perf_output_put(handle, size);
7019 	} else {
7020 		unsigned long sp;
7021 		unsigned int rem;
7022 		u64 dyn_size;
7023 
7024 		/*
7025 		 * We dump:
7026 		 * static size
7027 		 *   - the size requested by user or the best one we can fit
7028 		 *     in to the sample max size
7029 		 * data
7030 		 *   - user stack dump data
7031 		 * dynamic size
7032 		 *   - the actual dumped size
7033 		 */
7034 
7035 		/* Static size. */
7036 		perf_output_put(handle, dump_size);
7037 
7038 		/* Data. */
7039 		sp = perf_user_stack_pointer(regs);
7040 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7041 		dyn_size = dump_size - rem;
7042 
7043 		perf_output_skip(handle, rem);
7044 
7045 		/* Dynamic size. */
7046 		perf_output_put(handle, dyn_size);
7047 	}
7048 }
7049 
7050 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7051 					  struct perf_sample_data *data,
7052 					  size_t size)
7053 {
7054 	struct perf_event *sampler = event->aux_event;
7055 	struct perf_buffer *rb;
7056 
7057 	data->aux_size = 0;
7058 
7059 	if (!sampler)
7060 		goto out;
7061 
7062 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7063 		goto out;
7064 
7065 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7066 		goto out;
7067 
7068 	rb = ring_buffer_get(sampler);
7069 	if (!rb)
7070 		goto out;
7071 
7072 	/*
7073 	 * If this is an NMI hit inside sampling code, don't take
7074 	 * the sample. See also perf_aux_sample_output().
7075 	 */
7076 	if (READ_ONCE(rb->aux_in_sampling)) {
7077 		data->aux_size = 0;
7078 	} else {
7079 		size = min_t(size_t, size, perf_aux_size(rb));
7080 		data->aux_size = ALIGN(size, sizeof(u64));
7081 	}
7082 	ring_buffer_put(rb);
7083 
7084 out:
7085 	return data->aux_size;
7086 }
7087 
7088 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7089                                  struct perf_event *event,
7090                                  struct perf_output_handle *handle,
7091                                  unsigned long size)
7092 {
7093 	unsigned long flags;
7094 	long ret;
7095 
7096 	/*
7097 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7098 	 * paths. If we start calling them in NMI context, they may race with
7099 	 * the IRQ ones, that is, for example, re-starting an event that's just
7100 	 * been stopped, which is why we're using a separate callback that
7101 	 * doesn't change the event state.
7102 	 *
7103 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7104 	 */
7105 	local_irq_save(flags);
7106 	/*
7107 	 * Guard against NMI hits inside the critical section;
7108 	 * see also perf_prepare_sample_aux().
7109 	 */
7110 	WRITE_ONCE(rb->aux_in_sampling, 1);
7111 	barrier();
7112 
7113 	ret = event->pmu->snapshot_aux(event, handle, size);
7114 
7115 	barrier();
7116 	WRITE_ONCE(rb->aux_in_sampling, 0);
7117 	local_irq_restore(flags);
7118 
7119 	return ret;
7120 }
7121 
7122 static void perf_aux_sample_output(struct perf_event *event,
7123 				   struct perf_output_handle *handle,
7124 				   struct perf_sample_data *data)
7125 {
7126 	struct perf_event *sampler = event->aux_event;
7127 	struct perf_buffer *rb;
7128 	unsigned long pad;
7129 	long size;
7130 
7131 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7132 		return;
7133 
7134 	rb = ring_buffer_get(sampler);
7135 	if (!rb)
7136 		return;
7137 
7138 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7139 
7140 	/*
7141 	 * An error here means that perf_output_copy() failed (returned a
7142 	 * non-zero surplus that it didn't copy), which in its current
7143 	 * enlightened implementation is not possible. If that changes, we'd
7144 	 * like to know.
7145 	 */
7146 	if (WARN_ON_ONCE(size < 0))
7147 		goto out_put;
7148 
7149 	/*
7150 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7151 	 * perf_prepare_sample_aux(), so should not be more than that.
7152 	 */
7153 	pad = data->aux_size - size;
7154 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7155 		pad = 8;
7156 
7157 	if (pad) {
7158 		u64 zero = 0;
7159 		perf_output_copy(handle, &zero, pad);
7160 	}
7161 
7162 out_put:
7163 	ring_buffer_put(rb);
7164 }
7165 
7166 /*
7167  * A set of common sample data types saved even for non-sample records
7168  * when event->attr.sample_id_all is set.
7169  */
7170 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7171 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7172 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7173 
7174 static void __perf_event_header__init_id(struct perf_sample_data *data,
7175 					 struct perf_event *event,
7176 					 u64 sample_type)
7177 {
7178 	data->type = event->attr.sample_type;
7179 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7180 
7181 	if (sample_type & PERF_SAMPLE_TID) {
7182 		/* namespace issues */
7183 		data->tid_entry.pid = perf_event_pid(event, current);
7184 		data->tid_entry.tid = perf_event_tid(event, current);
7185 	}
7186 
7187 	if (sample_type & PERF_SAMPLE_TIME)
7188 		data->time = perf_event_clock(event);
7189 
7190 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7191 		data->id = primary_event_id(event);
7192 
7193 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7194 		data->stream_id = event->id;
7195 
7196 	if (sample_type & PERF_SAMPLE_CPU) {
7197 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7198 		data->cpu_entry.reserved = 0;
7199 	}
7200 }
7201 
7202 void perf_event_header__init_id(struct perf_event_header *header,
7203 				struct perf_sample_data *data,
7204 				struct perf_event *event)
7205 {
7206 	if (event->attr.sample_id_all) {
7207 		header->size += event->id_header_size;
7208 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7209 	}
7210 }
7211 
7212 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7213 					   struct perf_sample_data *data)
7214 {
7215 	u64 sample_type = data->type;
7216 
7217 	if (sample_type & PERF_SAMPLE_TID)
7218 		perf_output_put(handle, data->tid_entry);
7219 
7220 	if (sample_type & PERF_SAMPLE_TIME)
7221 		perf_output_put(handle, data->time);
7222 
7223 	if (sample_type & PERF_SAMPLE_ID)
7224 		perf_output_put(handle, data->id);
7225 
7226 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7227 		perf_output_put(handle, data->stream_id);
7228 
7229 	if (sample_type & PERF_SAMPLE_CPU)
7230 		perf_output_put(handle, data->cpu_entry);
7231 
7232 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7233 		perf_output_put(handle, data->id);
7234 }
7235 
7236 void perf_event__output_id_sample(struct perf_event *event,
7237 				  struct perf_output_handle *handle,
7238 				  struct perf_sample_data *sample)
7239 {
7240 	if (event->attr.sample_id_all)
7241 		__perf_event__output_id_sample(handle, sample);
7242 }
7243 
7244 static void perf_output_read_one(struct perf_output_handle *handle,
7245 				 struct perf_event *event,
7246 				 u64 enabled, u64 running)
7247 {
7248 	u64 read_format = event->attr.read_format;
7249 	u64 values[5];
7250 	int n = 0;
7251 
7252 	values[n++] = perf_event_count(event);
7253 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7254 		values[n++] = enabled +
7255 			atomic64_read(&event->child_total_time_enabled);
7256 	}
7257 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7258 		values[n++] = running +
7259 			atomic64_read(&event->child_total_time_running);
7260 	}
7261 	if (read_format & PERF_FORMAT_ID)
7262 		values[n++] = primary_event_id(event);
7263 	if (read_format & PERF_FORMAT_LOST)
7264 		values[n++] = atomic64_read(&event->lost_samples);
7265 
7266 	__output_copy(handle, values, n * sizeof(u64));
7267 }
7268 
7269 static void perf_output_read_group(struct perf_output_handle *handle,
7270 			    struct perf_event *event,
7271 			    u64 enabled, u64 running)
7272 {
7273 	struct perf_event *leader = event->group_leader, *sub;
7274 	u64 read_format = event->attr.read_format;
7275 	unsigned long flags;
7276 	u64 values[6];
7277 	int n = 0;
7278 
7279 	/*
7280 	 * Disabling interrupts avoids all counter scheduling
7281 	 * (context switches, timer based rotation and IPIs).
7282 	 */
7283 	local_irq_save(flags);
7284 
7285 	values[n++] = 1 + leader->nr_siblings;
7286 
7287 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7288 		values[n++] = enabled;
7289 
7290 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7291 		values[n++] = running;
7292 
7293 	if ((leader != event) &&
7294 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7295 		leader->pmu->read(leader);
7296 
7297 	values[n++] = perf_event_count(leader);
7298 	if (read_format & PERF_FORMAT_ID)
7299 		values[n++] = primary_event_id(leader);
7300 	if (read_format & PERF_FORMAT_LOST)
7301 		values[n++] = atomic64_read(&leader->lost_samples);
7302 
7303 	__output_copy(handle, values, n * sizeof(u64));
7304 
7305 	for_each_sibling_event(sub, leader) {
7306 		n = 0;
7307 
7308 		if ((sub != event) &&
7309 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7310 			sub->pmu->read(sub);
7311 
7312 		values[n++] = perf_event_count(sub);
7313 		if (read_format & PERF_FORMAT_ID)
7314 			values[n++] = primary_event_id(sub);
7315 		if (read_format & PERF_FORMAT_LOST)
7316 			values[n++] = atomic64_read(&sub->lost_samples);
7317 
7318 		__output_copy(handle, values, n * sizeof(u64));
7319 	}
7320 
7321 	local_irq_restore(flags);
7322 }
7323 
7324 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7325 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7326 
7327 /*
7328  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7329  *
7330  * The problem is that its both hard and excessively expensive to iterate the
7331  * child list, not to mention that its impossible to IPI the children running
7332  * on another CPU, from interrupt/NMI context.
7333  */
7334 static void perf_output_read(struct perf_output_handle *handle,
7335 			     struct perf_event *event)
7336 {
7337 	u64 enabled = 0, running = 0, now;
7338 	u64 read_format = event->attr.read_format;
7339 
7340 	/*
7341 	 * compute total_time_enabled, total_time_running
7342 	 * based on snapshot values taken when the event
7343 	 * was last scheduled in.
7344 	 *
7345 	 * we cannot simply called update_context_time()
7346 	 * because of locking issue as we are called in
7347 	 * NMI context
7348 	 */
7349 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7350 		calc_timer_values(event, &now, &enabled, &running);
7351 
7352 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7353 		perf_output_read_group(handle, event, enabled, running);
7354 	else
7355 		perf_output_read_one(handle, event, enabled, running);
7356 }
7357 
7358 void perf_output_sample(struct perf_output_handle *handle,
7359 			struct perf_event_header *header,
7360 			struct perf_sample_data *data,
7361 			struct perf_event *event)
7362 {
7363 	u64 sample_type = data->type;
7364 
7365 	perf_output_put(handle, *header);
7366 
7367 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7368 		perf_output_put(handle, data->id);
7369 
7370 	if (sample_type & PERF_SAMPLE_IP)
7371 		perf_output_put(handle, data->ip);
7372 
7373 	if (sample_type & PERF_SAMPLE_TID)
7374 		perf_output_put(handle, data->tid_entry);
7375 
7376 	if (sample_type & PERF_SAMPLE_TIME)
7377 		perf_output_put(handle, data->time);
7378 
7379 	if (sample_type & PERF_SAMPLE_ADDR)
7380 		perf_output_put(handle, data->addr);
7381 
7382 	if (sample_type & PERF_SAMPLE_ID)
7383 		perf_output_put(handle, data->id);
7384 
7385 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7386 		perf_output_put(handle, data->stream_id);
7387 
7388 	if (sample_type & PERF_SAMPLE_CPU)
7389 		perf_output_put(handle, data->cpu_entry);
7390 
7391 	if (sample_type & PERF_SAMPLE_PERIOD)
7392 		perf_output_put(handle, data->period);
7393 
7394 	if (sample_type & PERF_SAMPLE_READ)
7395 		perf_output_read(handle, event);
7396 
7397 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7398 		int size = 1;
7399 
7400 		size += data->callchain->nr;
7401 		size *= sizeof(u64);
7402 		__output_copy(handle, data->callchain, size);
7403 	}
7404 
7405 	if (sample_type & PERF_SAMPLE_RAW) {
7406 		struct perf_raw_record *raw = data->raw;
7407 
7408 		if (raw) {
7409 			struct perf_raw_frag *frag = &raw->frag;
7410 
7411 			perf_output_put(handle, raw->size);
7412 			do {
7413 				if (frag->copy) {
7414 					__output_custom(handle, frag->copy,
7415 							frag->data, frag->size);
7416 				} else {
7417 					__output_copy(handle, frag->data,
7418 						      frag->size);
7419 				}
7420 				if (perf_raw_frag_last(frag))
7421 					break;
7422 				frag = frag->next;
7423 			} while (1);
7424 			if (frag->pad)
7425 				__output_skip(handle, NULL, frag->pad);
7426 		} else {
7427 			struct {
7428 				u32	size;
7429 				u32	data;
7430 			} raw = {
7431 				.size = sizeof(u32),
7432 				.data = 0,
7433 			};
7434 			perf_output_put(handle, raw);
7435 		}
7436 	}
7437 
7438 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7439 		if (data->br_stack) {
7440 			size_t size;
7441 
7442 			size = data->br_stack->nr
7443 			     * sizeof(struct perf_branch_entry);
7444 
7445 			perf_output_put(handle, data->br_stack->nr);
7446 			if (branch_sample_hw_index(event))
7447 				perf_output_put(handle, data->br_stack->hw_idx);
7448 			perf_output_copy(handle, data->br_stack->entries, size);
7449 			/*
7450 			 * Add the extension space which is appended
7451 			 * right after the struct perf_branch_stack.
7452 			 */
7453 			if (data->br_stack_cntr) {
7454 				size = data->br_stack->nr * sizeof(u64);
7455 				perf_output_copy(handle, data->br_stack_cntr, size);
7456 			}
7457 		} else {
7458 			/*
7459 			 * we always store at least the value of nr
7460 			 */
7461 			u64 nr = 0;
7462 			perf_output_put(handle, nr);
7463 		}
7464 	}
7465 
7466 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7467 		u64 abi = data->regs_user.abi;
7468 
7469 		/*
7470 		 * If there are no regs to dump, notice it through
7471 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7472 		 */
7473 		perf_output_put(handle, abi);
7474 
7475 		if (abi) {
7476 			u64 mask = event->attr.sample_regs_user;
7477 			perf_output_sample_regs(handle,
7478 						data->regs_user.regs,
7479 						mask);
7480 		}
7481 	}
7482 
7483 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7484 		perf_output_sample_ustack(handle,
7485 					  data->stack_user_size,
7486 					  data->regs_user.regs);
7487 	}
7488 
7489 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7490 		perf_output_put(handle, data->weight.full);
7491 
7492 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7493 		perf_output_put(handle, data->data_src.val);
7494 
7495 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7496 		perf_output_put(handle, data->txn);
7497 
7498 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7499 		u64 abi = data->regs_intr.abi;
7500 		/*
7501 		 * If there are no regs to dump, notice it through
7502 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7503 		 */
7504 		perf_output_put(handle, abi);
7505 
7506 		if (abi) {
7507 			u64 mask = event->attr.sample_regs_intr;
7508 
7509 			perf_output_sample_regs(handle,
7510 						data->regs_intr.regs,
7511 						mask);
7512 		}
7513 	}
7514 
7515 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7516 		perf_output_put(handle, data->phys_addr);
7517 
7518 	if (sample_type & PERF_SAMPLE_CGROUP)
7519 		perf_output_put(handle, data->cgroup);
7520 
7521 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7522 		perf_output_put(handle, data->data_page_size);
7523 
7524 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7525 		perf_output_put(handle, data->code_page_size);
7526 
7527 	if (sample_type & PERF_SAMPLE_AUX) {
7528 		perf_output_put(handle, data->aux_size);
7529 
7530 		if (data->aux_size)
7531 			perf_aux_sample_output(event, handle, data);
7532 	}
7533 
7534 	if (!event->attr.watermark) {
7535 		int wakeup_events = event->attr.wakeup_events;
7536 
7537 		if (wakeup_events) {
7538 			struct perf_buffer *rb = handle->rb;
7539 			int events = local_inc_return(&rb->events);
7540 
7541 			if (events >= wakeup_events) {
7542 				local_sub(wakeup_events, &rb->events);
7543 				local_inc(&rb->wakeup);
7544 			}
7545 		}
7546 	}
7547 }
7548 
7549 static u64 perf_virt_to_phys(u64 virt)
7550 {
7551 	u64 phys_addr = 0;
7552 
7553 	if (!virt)
7554 		return 0;
7555 
7556 	if (virt >= TASK_SIZE) {
7557 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7558 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7559 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7560 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7561 	} else {
7562 		/*
7563 		 * Walking the pages tables for user address.
7564 		 * Interrupts are disabled, so it prevents any tear down
7565 		 * of the page tables.
7566 		 * Try IRQ-safe get_user_page_fast_only first.
7567 		 * If failed, leave phys_addr as 0.
7568 		 */
7569 		if (current->mm != NULL) {
7570 			struct page *p;
7571 
7572 			pagefault_disable();
7573 			if (get_user_page_fast_only(virt, 0, &p)) {
7574 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7575 				put_page(p);
7576 			}
7577 			pagefault_enable();
7578 		}
7579 	}
7580 
7581 	return phys_addr;
7582 }
7583 
7584 /*
7585  * Return the pagetable size of a given virtual address.
7586  */
7587 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7588 {
7589 	u64 size = 0;
7590 
7591 #ifdef CONFIG_HAVE_GUP_FAST
7592 	pgd_t *pgdp, pgd;
7593 	p4d_t *p4dp, p4d;
7594 	pud_t *pudp, pud;
7595 	pmd_t *pmdp, pmd;
7596 	pte_t *ptep, pte;
7597 
7598 	pgdp = pgd_offset(mm, addr);
7599 	pgd = READ_ONCE(*pgdp);
7600 	if (pgd_none(pgd))
7601 		return 0;
7602 
7603 	if (pgd_leaf(pgd))
7604 		return pgd_leaf_size(pgd);
7605 
7606 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7607 	p4d = READ_ONCE(*p4dp);
7608 	if (!p4d_present(p4d))
7609 		return 0;
7610 
7611 	if (p4d_leaf(p4d))
7612 		return p4d_leaf_size(p4d);
7613 
7614 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7615 	pud = READ_ONCE(*pudp);
7616 	if (!pud_present(pud))
7617 		return 0;
7618 
7619 	if (pud_leaf(pud))
7620 		return pud_leaf_size(pud);
7621 
7622 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7623 again:
7624 	pmd = pmdp_get_lockless(pmdp);
7625 	if (!pmd_present(pmd))
7626 		return 0;
7627 
7628 	if (pmd_leaf(pmd))
7629 		return pmd_leaf_size(pmd);
7630 
7631 	ptep = pte_offset_map(&pmd, addr);
7632 	if (!ptep)
7633 		goto again;
7634 
7635 	pte = ptep_get_lockless(ptep);
7636 	if (pte_present(pte))
7637 		size = pte_leaf_size(pte);
7638 	pte_unmap(ptep);
7639 #endif /* CONFIG_HAVE_GUP_FAST */
7640 
7641 	return size;
7642 }
7643 
7644 static u64 perf_get_page_size(unsigned long addr)
7645 {
7646 	struct mm_struct *mm;
7647 	unsigned long flags;
7648 	u64 size;
7649 
7650 	if (!addr)
7651 		return 0;
7652 
7653 	/*
7654 	 * Software page-table walkers must disable IRQs,
7655 	 * which prevents any tear down of the page tables.
7656 	 */
7657 	local_irq_save(flags);
7658 
7659 	mm = current->mm;
7660 	if (!mm) {
7661 		/*
7662 		 * For kernel threads and the like, use init_mm so that
7663 		 * we can find kernel memory.
7664 		 */
7665 		mm = &init_mm;
7666 	}
7667 
7668 	size = perf_get_pgtable_size(mm, addr);
7669 
7670 	local_irq_restore(flags);
7671 
7672 	return size;
7673 }
7674 
7675 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7676 
7677 struct perf_callchain_entry *
7678 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7679 {
7680 	bool kernel = !event->attr.exclude_callchain_kernel;
7681 	bool user   = !event->attr.exclude_callchain_user;
7682 	/* Disallow cross-task user callchains. */
7683 	bool crosstask = event->ctx->task && event->ctx->task != current;
7684 	const u32 max_stack = event->attr.sample_max_stack;
7685 	struct perf_callchain_entry *callchain;
7686 
7687 	if (!kernel && !user)
7688 		return &__empty_callchain;
7689 
7690 	callchain = get_perf_callchain(regs, 0, kernel, user,
7691 				       max_stack, crosstask, true);
7692 	return callchain ?: &__empty_callchain;
7693 }
7694 
7695 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7696 {
7697 	return d * !!(flags & s);
7698 }
7699 
7700 void perf_prepare_sample(struct perf_sample_data *data,
7701 			 struct perf_event *event,
7702 			 struct pt_regs *regs)
7703 {
7704 	u64 sample_type = event->attr.sample_type;
7705 	u64 filtered_sample_type;
7706 
7707 	/*
7708 	 * Add the sample flags that are dependent to others.  And clear the
7709 	 * sample flags that have already been done by the PMU driver.
7710 	 */
7711 	filtered_sample_type = sample_type;
7712 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7713 					   PERF_SAMPLE_IP);
7714 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7715 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7716 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7717 					   PERF_SAMPLE_REGS_USER);
7718 	filtered_sample_type &= ~data->sample_flags;
7719 
7720 	if (filtered_sample_type == 0) {
7721 		/* Make sure it has the correct data->type for output */
7722 		data->type = event->attr.sample_type;
7723 		return;
7724 	}
7725 
7726 	__perf_event_header__init_id(data, event, filtered_sample_type);
7727 
7728 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7729 		data->ip = perf_instruction_pointer(regs);
7730 		data->sample_flags |= PERF_SAMPLE_IP;
7731 	}
7732 
7733 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7734 		perf_sample_save_callchain(data, event, regs);
7735 
7736 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7737 		data->raw = NULL;
7738 		data->dyn_size += sizeof(u64);
7739 		data->sample_flags |= PERF_SAMPLE_RAW;
7740 	}
7741 
7742 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7743 		data->br_stack = NULL;
7744 		data->dyn_size += sizeof(u64);
7745 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7746 	}
7747 
7748 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7749 		perf_sample_regs_user(&data->regs_user, regs);
7750 
7751 	/*
7752 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7753 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7754 	 * the dyn_size if it's not requested by users.
7755 	 */
7756 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7757 		/* regs dump ABI info */
7758 		int size = sizeof(u64);
7759 
7760 		if (data->regs_user.regs) {
7761 			u64 mask = event->attr.sample_regs_user;
7762 			size += hweight64(mask) * sizeof(u64);
7763 		}
7764 
7765 		data->dyn_size += size;
7766 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7767 	}
7768 
7769 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7770 		/*
7771 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7772 		 * processed as the last one or have additional check added
7773 		 * in case new sample type is added, because we could eat
7774 		 * up the rest of the sample size.
7775 		 */
7776 		u16 stack_size = event->attr.sample_stack_user;
7777 		u16 header_size = perf_sample_data_size(data, event);
7778 		u16 size = sizeof(u64);
7779 
7780 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7781 						     data->regs_user.regs);
7782 
7783 		/*
7784 		 * If there is something to dump, add space for the dump
7785 		 * itself and for the field that tells the dynamic size,
7786 		 * which is how many have been actually dumped.
7787 		 */
7788 		if (stack_size)
7789 			size += sizeof(u64) + stack_size;
7790 
7791 		data->stack_user_size = stack_size;
7792 		data->dyn_size += size;
7793 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7794 	}
7795 
7796 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7797 		data->weight.full = 0;
7798 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7799 	}
7800 
7801 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7802 		data->data_src.val = PERF_MEM_NA;
7803 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7804 	}
7805 
7806 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7807 		data->txn = 0;
7808 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7809 	}
7810 
7811 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7812 		data->addr = 0;
7813 		data->sample_flags |= PERF_SAMPLE_ADDR;
7814 	}
7815 
7816 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7817 		/* regs dump ABI info */
7818 		int size = sizeof(u64);
7819 
7820 		perf_sample_regs_intr(&data->regs_intr, regs);
7821 
7822 		if (data->regs_intr.regs) {
7823 			u64 mask = event->attr.sample_regs_intr;
7824 
7825 			size += hweight64(mask) * sizeof(u64);
7826 		}
7827 
7828 		data->dyn_size += size;
7829 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7830 	}
7831 
7832 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7833 		data->phys_addr = perf_virt_to_phys(data->addr);
7834 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7835 	}
7836 
7837 #ifdef CONFIG_CGROUP_PERF
7838 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7839 		struct cgroup *cgrp;
7840 
7841 		/* protected by RCU */
7842 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7843 		data->cgroup = cgroup_id(cgrp);
7844 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7845 	}
7846 #endif
7847 
7848 	/*
7849 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7850 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7851 	 * but the value will not dump to the userspace.
7852 	 */
7853 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7854 		data->data_page_size = perf_get_page_size(data->addr);
7855 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7856 	}
7857 
7858 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7859 		data->code_page_size = perf_get_page_size(data->ip);
7860 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7861 	}
7862 
7863 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7864 		u64 size;
7865 		u16 header_size = perf_sample_data_size(data, event);
7866 
7867 		header_size += sizeof(u64); /* size */
7868 
7869 		/*
7870 		 * Given the 16bit nature of header::size, an AUX sample can
7871 		 * easily overflow it, what with all the preceding sample bits.
7872 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7873 		 * per sample in total (rounded down to 8 byte boundary).
7874 		 */
7875 		size = min_t(size_t, U16_MAX - header_size,
7876 			     event->attr.aux_sample_size);
7877 		size = rounddown(size, 8);
7878 		size = perf_prepare_sample_aux(event, data, size);
7879 
7880 		WARN_ON_ONCE(size + header_size > U16_MAX);
7881 		data->dyn_size += size + sizeof(u64); /* size above */
7882 		data->sample_flags |= PERF_SAMPLE_AUX;
7883 	}
7884 }
7885 
7886 void perf_prepare_header(struct perf_event_header *header,
7887 			 struct perf_sample_data *data,
7888 			 struct perf_event *event,
7889 			 struct pt_regs *regs)
7890 {
7891 	header->type = PERF_RECORD_SAMPLE;
7892 	header->size = perf_sample_data_size(data, event);
7893 	header->misc = perf_misc_flags(regs);
7894 
7895 	/*
7896 	 * If you're adding more sample types here, you likely need to do
7897 	 * something about the overflowing header::size, like repurpose the
7898 	 * lowest 3 bits of size, which should be always zero at the moment.
7899 	 * This raises a more important question, do we really need 512k sized
7900 	 * samples and why, so good argumentation is in order for whatever you
7901 	 * do here next.
7902 	 */
7903 	WARN_ON_ONCE(header->size & 7);
7904 }
7905 
7906 static __always_inline int
7907 __perf_event_output(struct perf_event *event,
7908 		    struct perf_sample_data *data,
7909 		    struct pt_regs *regs,
7910 		    int (*output_begin)(struct perf_output_handle *,
7911 					struct perf_sample_data *,
7912 					struct perf_event *,
7913 					unsigned int))
7914 {
7915 	struct perf_output_handle handle;
7916 	struct perf_event_header header;
7917 	int err;
7918 
7919 	/* protect the callchain buffers */
7920 	rcu_read_lock();
7921 
7922 	perf_prepare_sample(data, event, regs);
7923 	perf_prepare_header(&header, data, event, regs);
7924 
7925 	err = output_begin(&handle, data, event, header.size);
7926 	if (err)
7927 		goto exit;
7928 
7929 	perf_output_sample(&handle, &header, data, event);
7930 
7931 	perf_output_end(&handle);
7932 
7933 exit:
7934 	rcu_read_unlock();
7935 	return err;
7936 }
7937 
7938 void
7939 perf_event_output_forward(struct perf_event *event,
7940 			 struct perf_sample_data *data,
7941 			 struct pt_regs *regs)
7942 {
7943 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7944 }
7945 
7946 void
7947 perf_event_output_backward(struct perf_event *event,
7948 			   struct perf_sample_data *data,
7949 			   struct pt_regs *regs)
7950 {
7951 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7952 }
7953 
7954 int
7955 perf_event_output(struct perf_event *event,
7956 		  struct perf_sample_data *data,
7957 		  struct pt_regs *regs)
7958 {
7959 	return __perf_event_output(event, data, regs, perf_output_begin);
7960 }
7961 
7962 /*
7963  * read event_id
7964  */
7965 
7966 struct perf_read_event {
7967 	struct perf_event_header	header;
7968 
7969 	u32				pid;
7970 	u32				tid;
7971 };
7972 
7973 static void
7974 perf_event_read_event(struct perf_event *event,
7975 			struct task_struct *task)
7976 {
7977 	struct perf_output_handle handle;
7978 	struct perf_sample_data sample;
7979 	struct perf_read_event read_event = {
7980 		.header = {
7981 			.type = PERF_RECORD_READ,
7982 			.misc = 0,
7983 			.size = sizeof(read_event) + event->read_size,
7984 		},
7985 		.pid = perf_event_pid(event, task),
7986 		.tid = perf_event_tid(event, task),
7987 	};
7988 	int ret;
7989 
7990 	perf_event_header__init_id(&read_event.header, &sample, event);
7991 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7992 	if (ret)
7993 		return;
7994 
7995 	perf_output_put(&handle, read_event);
7996 	perf_output_read(&handle, event);
7997 	perf_event__output_id_sample(event, &handle, &sample);
7998 
7999 	perf_output_end(&handle);
8000 }
8001 
8002 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8003 
8004 static void
8005 perf_iterate_ctx(struct perf_event_context *ctx,
8006 		   perf_iterate_f output,
8007 		   void *data, bool all)
8008 {
8009 	struct perf_event *event;
8010 
8011 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8012 		if (!all) {
8013 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8014 				continue;
8015 			if (!event_filter_match(event))
8016 				continue;
8017 		}
8018 
8019 		output(event, data);
8020 	}
8021 }
8022 
8023 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8024 {
8025 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8026 	struct perf_event *event;
8027 
8028 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8029 		/*
8030 		 * Skip events that are not fully formed yet; ensure that
8031 		 * if we observe event->ctx, both event and ctx will be
8032 		 * complete enough. See perf_install_in_context().
8033 		 */
8034 		if (!smp_load_acquire(&event->ctx))
8035 			continue;
8036 
8037 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8038 			continue;
8039 		if (!event_filter_match(event))
8040 			continue;
8041 		output(event, data);
8042 	}
8043 }
8044 
8045 /*
8046  * Iterate all events that need to receive side-band events.
8047  *
8048  * For new callers; ensure that account_pmu_sb_event() includes
8049  * your event, otherwise it might not get delivered.
8050  */
8051 static void
8052 perf_iterate_sb(perf_iterate_f output, void *data,
8053 	       struct perf_event_context *task_ctx)
8054 {
8055 	struct perf_event_context *ctx;
8056 
8057 	rcu_read_lock();
8058 	preempt_disable();
8059 
8060 	/*
8061 	 * If we have task_ctx != NULL we only notify the task context itself.
8062 	 * The task_ctx is set only for EXIT events before releasing task
8063 	 * context.
8064 	 */
8065 	if (task_ctx) {
8066 		perf_iterate_ctx(task_ctx, output, data, false);
8067 		goto done;
8068 	}
8069 
8070 	perf_iterate_sb_cpu(output, data);
8071 
8072 	ctx = rcu_dereference(current->perf_event_ctxp);
8073 	if (ctx)
8074 		perf_iterate_ctx(ctx, output, data, false);
8075 done:
8076 	preempt_enable();
8077 	rcu_read_unlock();
8078 }
8079 
8080 /*
8081  * Clear all file-based filters at exec, they'll have to be
8082  * re-instated when/if these objects are mmapped again.
8083  */
8084 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8085 {
8086 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8087 	struct perf_addr_filter *filter;
8088 	unsigned int restart = 0, count = 0;
8089 	unsigned long flags;
8090 
8091 	if (!has_addr_filter(event))
8092 		return;
8093 
8094 	raw_spin_lock_irqsave(&ifh->lock, flags);
8095 	list_for_each_entry(filter, &ifh->list, entry) {
8096 		if (filter->path.dentry) {
8097 			event->addr_filter_ranges[count].start = 0;
8098 			event->addr_filter_ranges[count].size = 0;
8099 			restart++;
8100 		}
8101 
8102 		count++;
8103 	}
8104 
8105 	if (restart)
8106 		event->addr_filters_gen++;
8107 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8108 
8109 	if (restart)
8110 		perf_event_stop(event, 1);
8111 }
8112 
8113 void perf_event_exec(void)
8114 {
8115 	struct perf_event_context *ctx;
8116 
8117 	ctx = perf_pin_task_context(current);
8118 	if (!ctx)
8119 		return;
8120 
8121 	perf_event_enable_on_exec(ctx);
8122 	perf_event_remove_on_exec(ctx);
8123 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8124 
8125 	perf_unpin_context(ctx);
8126 	put_ctx(ctx);
8127 }
8128 
8129 struct remote_output {
8130 	struct perf_buffer	*rb;
8131 	int			err;
8132 };
8133 
8134 static void __perf_event_output_stop(struct perf_event *event, void *data)
8135 {
8136 	struct perf_event *parent = event->parent;
8137 	struct remote_output *ro = data;
8138 	struct perf_buffer *rb = ro->rb;
8139 	struct stop_event_data sd = {
8140 		.event	= event,
8141 	};
8142 
8143 	if (!has_aux(event))
8144 		return;
8145 
8146 	if (!parent)
8147 		parent = event;
8148 
8149 	/*
8150 	 * In case of inheritance, it will be the parent that links to the
8151 	 * ring-buffer, but it will be the child that's actually using it.
8152 	 *
8153 	 * We are using event::rb to determine if the event should be stopped,
8154 	 * however this may race with ring_buffer_attach() (through set_output),
8155 	 * which will make us skip the event that actually needs to be stopped.
8156 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8157 	 * its rb pointer.
8158 	 */
8159 	if (rcu_dereference(parent->rb) == rb)
8160 		ro->err = __perf_event_stop(&sd);
8161 }
8162 
8163 static int __perf_pmu_output_stop(void *info)
8164 {
8165 	struct perf_event *event = info;
8166 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8167 	struct remote_output ro = {
8168 		.rb	= event->rb,
8169 	};
8170 
8171 	rcu_read_lock();
8172 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8173 	if (cpuctx->task_ctx)
8174 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8175 				   &ro, false);
8176 	rcu_read_unlock();
8177 
8178 	return ro.err;
8179 }
8180 
8181 static void perf_pmu_output_stop(struct perf_event *event)
8182 {
8183 	struct perf_event *iter;
8184 	int err, cpu;
8185 
8186 restart:
8187 	rcu_read_lock();
8188 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8189 		/*
8190 		 * For per-CPU events, we need to make sure that neither they
8191 		 * nor their children are running; for cpu==-1 events it's
8192 		 * sufficient to stop the event itself if it's active, since
8193 		 * it can't have children.
8194 		 */
8195 		cpu = iter->cpu;
8196 		if (cpu == -1)
8197 			cpu = READ_ONCE(iter->oncpu);
8198 
8199 		if (cpu == -1)
8200 			continue;
8201 
8202 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8203 		if (err == -EAGAIN) {
8204 			rcu_read_unlock();
8205 			goto restart;
8206 		}
8207 	}
8208 	rcu_read_unlock();
8209 }
8210 
8211 /*
8212  * task tracking -- fork/exit
8213  *
8214  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8215  */
8216 
8217 struct perf_task_event {
8218 	struct task_struct		*task;
8219 	struct perf_event_context	*task_ctx;
8220 
8221 	struct {
8222 		struct perf_event_header	header;
8223 
8224 		u32				pid;
8225 		u32				ppid;
8226 		u32				tid;
8227 		u32				ptid;
8228 		u64				time;
8229 	} event_id;
8230 };
8231 
8232 static int perf_event_task_match(struct perf_event *event)
8233 {
8234 	return event->attr.comm  || event->attr.mmap ||
8235 	       event->attr.mmap2 || event->attr.mmap_data ||
8236 	       event->attr.task;
8237 }
8238 
8239 static void perf_event_task_output(struct perf_event *event,
8240 				   void *data)
8241 {
8242 	struct perf_task_event *task_event = data;
8243 	struct perf_output_handle handle;
8244 	struct perf_sample_data	sample;
8245 	struct task_struct *task = task_event->task;
8246 	int ret, size = task_event->event_id.header.size;
8247 
8248 	if (!perf_event_task_match(event))
8249 		return;
8250 
8251 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8252 
8253 	ret = perf_output_begin(&handle, &sample, event,
8254 				task_event->event_id.header.size);
8255 	if (ret)
8256 		goto out;
8257 
8258 	task_event->event_id.pid = perf_event_pid(event, task);
8259 	task_event->event_id.tid = perf_event_tid(event, task);
8260 
8261 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8262 		task_event->event_id.ppid = perf_event_pid(event,
8263 							task->real_parent);
8264 		task_event->event_id.ptid = perf_event_pid(event,
8265 							task->real_parent);
8266 	} else {  /* PERF_RECORD_FORK */
8267 		task_event->event_id.ppid = perf_event_pid(event, current);
8268 		task_event->event_id.ptid = perf_event_tid(event, current);
8269 	}
8270 
8271 	task_event->event_id.time = perf_event_clock(event);
8272 
8273 	perf_output_put(&handle, task_event->event_id);
8274 
8275 	perf_event__output_id_sample(event, &handle, &sample);
8276 
8277 	perf_output_end(&handle);
8278 out:
8279 	task_event->event_id.header.size = size;
8280 }
8281 
8282 static void perf_event_task(struct task_struct *task,
8283 			      struct perf_event_context *task_ctx,
8284 			      int new)
8285 {
8286 	struct perf_task_event task_event;
8287 
8288 	if (!atomic_read(&nr_comm_events) &&
8289 	    !atomic_read(&nr_mmap_events) &&
8290 	    !atomic_read(&nr_task_events))
8291 		return;
8292 
8293 	task_event = (struct perf_task_event){
8294 		.task	  = task,
8295 		.task_ctx = task_ctx,
8296 		.event_id    = {
8297 			.header = {
8298 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8299 				.misc = 0,
8300 				.size = sizeof(task_event.event_id),
8301 			},
8302 			/* .pid  */
8303 			/* .ppid */
8304 			/* .tid  */
8305 			/* .ptid */
8306 			/* .time */
8307 		},
8308 	};
8309 
8310 	perf_iterate_sb(perf_event_task_output,
8311 		       &task_event,
8312 		       task_ctx);
8313 }
8314 
8315 void perf_event_fork(struct task_struct *task)
8316 {
8317 	perf_event_task(task, NULL, 1);
8318 	perf_event_namespaces(task);
8319 }
8320 
8321 /*
8322  * comm tracking
8323  */
8324 
8325 struct perf_comm_event {
8326 	struct task_struct	*task;
8327 	char			*comm;
8328 	int			comm_size;
8329 
8330 	struct {
8331 		struct perf_event_header	header;
8332 
8333 		u32				pid;
8334 		u32				tid;
8335 	} event_id;
8336 };
8337 
8338 static int perf_event_comm_match(struct perf_event *event)
8339 {
8340 	return event->attr.comm;
8341 }
8342 
8343 static void perf_event_comm_output(struct perf_event *event,
8344 				   void *data)
8345 {
8346 	struct perf_comm_event *comm_event = data;
8347 	struct perf_output_handle handle;
8348 	struct perf_sample_data sample;
8349 	int size = comm_event->event_id.header.size;
8350 	int ret;
8351 
8352 	if (!perf_event_comm_match(event))
8353 		return;
8354 
8355 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8356 	ret = perf_output_begin(&handle, &sample, event,
8357 				comm_event->event_id.header.size);
8358 
8359 	if (ret)
8360 		goto out;
8361 
8362 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8363 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8364 
8365 	perf_output_put(&handle, comm_event->event_id);
8366 	__output_copy(&handle, comm_event->comm,
8367 				   comm_event->comm_size);
8368 
8369 	perf_event__output_id_sample(event, &handle, &sample);
8370 
8371 	perf_output_end(&handle);
8372 out:
8373 	comm_event->event_id.header.size = size;
8374 }
8375 
8376 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8377 {
8378 	char comm[TASK_COMM_LEN];
8379 	unsigned int size;
8380 
8381 	memset(comm, 0, sizeof(comm));
8382 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8383 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8384 
8385 	comm_event->comm = comm;
8386 	comm_event->comm_size = size;
8387 
8388 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8389 
8390 	perf_iterate_sb(perf_event_comm_output,
8391 		       comm_event,
8392 		       NULL);
8393 }
8394 
8395 void perf_event_comm(struct task_struct *task, bool exec)
8396 {
8397 	struct perf_comm_event comm_event;
8398 
8399 	if (!atomic_read(&nr_comm_events))
8400 		return;
8401 
8402 	comm_event = (struct perf_comm_event){
8403 		.task	= task,
8404 		/* .comm      */
8405 		/* .comm_size */
8406 		.event_id  = {
8407 			.header = {
8408 				.type = PERF_RECORD_COMM,
8409 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8410 				/* .size */
8411 			},
8412 			/* .pid */
8413 			/* .tid */
8414 		},
8415 	};
8416 
8417 	perf_event_comm_event(&comm_event);
8418 }
8419 
8420 /*
8421  * namespaces tracking
8422  */
8423 
8424 struct perf_namespaces_event {
8425 	struct task_struct		*task;
8426 
8427 	struct {
8428 		struct perf_event_header	header;
8429 
8430 		u32				pid;
8431 		u32				tid;
8432 		u64				nr_namespaces;
8433 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8434 	} event_id;
8435 };
8436 
8437 static int perf_event_namespaces_match(struct perf_event *event)
8438 {
8439 	return event->attr.namespaces;
8440 }
8441 
8442 static void perf_event_namespaces_output(struct perf_event *event,
8443 					 void *data)
8444 {
8445 	struct perf_namespaces_event *namespaces_event = data;
8446 	struct perf_output_handle handle;
8447 	struct perf_sample_data sample;
8448 	u16 header_size = namespaces_event->event_id.header.size;
8449 	int ret;
8450 
8451 	if (!perf_event_namespaces_match(event))
8452 		return;
8453 
8454 	perf_event_header__init_id(&namespaces_event->event_id.header,
8455 				   &sample, event);
8456 	ret = perf_output_begin(&handle, &sample, event,
8457 				namespaces_event->event_id.header.size);
8458 	if (ret)
8459 		goto out;
8460 
8461 	namespaces_event->event_id.pid = perf_event_pid(event,
8462 							namespaces_event->task);
8463 	namespaces_event->event_id.tid = perf_event_tid(event,
8464 							namespaces_event->task);
8465 
8466 	perf_output_put(&handle, namespaces_event->event_id);
8467 
8468 	perf_event__output_id_sample(event, &handle, &sample);
8469 
8470 	perf_output_end(&handle);
8471 out:
8472 	namespaces_event->event_id.header.size = header_size;
8473 }
8474 
8475 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8476 				   struct task_struct *task,
8477 				   const struct proc_ns_operations *ns_ops)
8478 {
8479 	struct path ns_path;
8480 	struct inode *ns_inode;
8481 	int error;
8482 
8483 	error = ns_get_path(&ns_path, task, ns_ops);
8484 	if (!error) {
8485 		ns_inode = ns_path.dentry->d_inode;
8486 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8487 		ns_link_info->ino = ns_inode->i_ino;
8488 		path_put(&ns_path);
8489 	}
8490 }
8491 
8492 void perf_event_namespaces(struct task_struct *task)
8493 {
8494 	struct perf_namespaces_event namespaces_event;
8495 	struct perf_ns_link_info *ns_link_info;
8496 
8497 	if (!atomic_read(&nr_namespaces_events))
8498 		return;
8499 
8500 	namespaces_event = (struct perf_namespaces_event){
8501 		.task	= task,
8502 		.event_id  = {
8503 			.header = {
8504 				.type = PERF_RECORD_NAMESPACES,
8505 				.misc = 0,
8506 				.size = sizeof(namespaces_event.event_id),
8507 			},
8508 			/* .pid */
8509 			/* .tid */
8510 			.nr_namespaces = NR_NAMESPACES,
8511 			/* .link_info[NR_NAMESPACES] */
8512 		},
8513 	};
8514 
8515 	ns_link_info = namespaces_event.event_id.link_info;
8516 
8517 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8518 			       task, &mntns_operations);
8519 
8520 #ifdef CONFIG_USER_NS
8521 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8522 			       task, &userns_operations);
8523 #endif
8524 #ifdef CONFIG_NET_NS
8525 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8526 			       task, &netns_operations);
8527 #endif
8528 #ifdef CONFIG_UTS_NS
8529 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8530 			       task, &utsns_operations);
8531 #endif
8532 #ifdef CONFIG_IPC_NS
8533 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8534 			       task, &ipcns_operations);
8535 #endif
8536 #ifdef CONFIG_PID_NS
8537 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8538 			       task, &pidns_operations);
8539 #endif
8540 #ifdef CONFIG_CGROUPS
8541 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8542 			       task, &cgroupns_operations);
8543 #endif
8544 
8545 	perf_iterate_sb(perf_event_namespaces_output,
8546 			&namespaces_event,
8547 			NULL);
8548 }
8549 
8550 /*
8551  * cgroup tracking
8552  */
8553 #ifdef CONFIG_CGROUP_PERF
8554 
8555 struct perf_cgroup_event {
8556 	char				*path;
8557 	int				path_size;
8558 	struct {
8559 		struct perf_event_header	header;
8560 		u64				id;
8561 		char				path[];
8562 	} event_id;
8563 };
8564 
8565 static int perf_event_cgroup_match(struct perf_event *event)
8566 {
8567 	return event->attr.cgroup;
8568 }
8569 
8570 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8571 {
8572 	struct perf_cgroup_event *cgroup_event = data;
8573 	struct perf_output_handle handle;
8574 	struct perf_sample_data sample;
8575 	u16 header_size = cgroup_event->event_id.header.size;
8576 	int ret;
8577 
8578 	if (!perf_event_cgroup_match(event))
8579 		return;
8580 
8581 	perf_event_header__init_id(&cgroup_event->event_id.header,
8582 				   &sample, event);
8583 	ret = perf_output_begin(&handle, &sample, event,
8584 				cgroup_event->event_id.header.size);
8585 	if (ret)
8586 		goto out;
8587 
8588 	perf_output_put(&handle, cgroup_event->event_id);
8589 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8590 
8591 	perf_event__output_id_sample(event, &handle, &sample);
8592 
8593 	perf_output_end(&handle);
8594 out:
8595 	cgroup_event->event_id.header.size = header_size;
8596 }
8597 
8598 static void perf_event_cgroup(struct cgroup *cgrp)
8599 {
8600 	struct perf_cgroup_event cgroup_event;
8601 	char path_enomem[16] = "//enomem";
8602 	char *pathname;
8603 	size_t size;
8604 
8605 	if (!atomic_read(&nr_cgroup_events))
8606 		return;
8607 
8608 	cgroup_event = (struct perf_cgroup_event){
8609 		.event_id  = {
8610 			.header = {
8611 				.type = PERF_RECORD_CGROUP,
8612 				.misc = 0,
8613 				.size = sizeof(cgroup_event.event_id),
8614 			},
8615 			.id = cgroup_id(cgrp),
8616 		},
8617 	};
8618 
8619 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8620 	if (pathname == NULL) {
8621 		cgroup_event.path = path_enomem;
8622 	} else {
8623 		/* just to be sure to have enough space for alignment */
8624 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8625 		cgroup_event.path = pathname;
8626 	}
8627 
8628 	/*
8629 	 * Since our buffer works in 8 byte units we need to align our string
8630 	 * size to a multiple of 8. However, we must guarantee the tail end is
8631 	 * zero'd out to avoid leaking random bits to userspace.
8632 	 */
8633 	size = strlen(cgroup_event.path) + 1;
8634 	while (!IS_ALIGNED(size, sizeof(u64)))
8635 		cgroup_event.path[size++] = '\0';
8636 
8637 	cgroup_event.event_id.header.size += size;
8638 	cgroup_event.path_size = size;
8639 
8640 	perf_iterate_sb(perf_event_cgroup_output,
8641 			&cgroup_event,
8642 			NULL);
8643 
8644 	kfree(pathname);
8645 }
8646 
8647 #endif
8648 
8649 /*
8650  * mmap tracking
8651  */
8652 
8653 struct perf_mmap_event {
8654 	struct vm_area_struct	*vma;
8655 
8656 	const char		*file_name;
8657 	int			file_size;
8658 	int			maj, min;
8659 	u64			ino;
8660 	u64			ino_generation;
8661 	u32			prot, flags;
8662 	u8			build_id[BUILD_ID_SIZE_MAX];
8663 	u32			build_id_size;
8664 
8665 	struct {
8666 		struct perf_event_header	header;
8667 
8668 		u32				pid;
8669 		u32				tid;
8670 		u64				start;
8671 		u64				len;
8672 		u64				pgoff;
8673 	} event_id;
8674 };
8675 
8676 static int perf_event_mmap_match(struct perf_event *event,
8677 				 void *data)
8678 {
8679 	struct perf_mmap_event *mmap_event = data;
8680 	struct vm_area_struct *vma = mmap_event->vma;
8681 	int executable = vma->vm_flags & VM_EXEC;
8682 
8683 	return (!executable && event->attr.mmap_data) ||
8684 	       (executable && (event->attr.mmap || event->attr.mmap2));
8685 }
8686 
8687 static void perf_event_mmap_output(struct perf_event *event,
8688 				   void *data)
8689 {
8690 	struct perf_mmap_event *mmap_event = data;
8691 	struct perf_output_handle handle;
8692 	struct perf_sample_data sample;
8693 	int size = mmap_event->event_id.header.size;
8694 	u32 type = mmap_event->event_id.header.type;
8695 	bool use_build_id;
8696 	int ret;
8697 
8698 	if (!perf_event_mmap_match(event, data))
8699 		return;
8700 
8701 	if (event->attr.mmap2) {
8702 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8703 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8704 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8705 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8706 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8707 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8708 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8709 	}
8710 
8711 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8712 	ret = perf_output_begin(&handle, &sample, event,
8713 				mmap_event->event_id.header.size);
8714 	if (ret)
8715 		goto out;
8716 
8717 	mmap_event->event_id.pid = perf_event_pid(event, current);
8718 	mmap_event->event_id.tid = perf_event_tid(event, current);
8719 
8720 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8721 
8722 	if (event->attr.mmap2 && use_build_id)
8723 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8724 
8725 	perf_output_put(&handle, mmap_event->event_id);
8726 
8727 	if (event->attr.mmap2) {
8728 		if (use_build_id) {
8729 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8730 
8731 			__output_copy(&handle, size, 4);
8732 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8733 		} else {
8734 			perf_output_put(&handle, mmap_event->maj);
8735 			perf_output_put(&handle, mmap_event->min);
8736 			perf_output_put(&handle, mmap_event->ino);
8737 			perf_output_put(&handle, mmap_event->ino_generation);
8738 		}
8739 		perf_output_put(&handle, mmap_event->prot);
8740 		perf_output_put(&handle, mmap_event->flags);
8741 	}
8742 
8743 	__output_copy(&handle, mmap_event->file_name,
8744 				   mmap_event->file_size);
8745 
8746 	perf_event__output_id_sample(event, &handle, &sample);
8747 
8748 	perf_output_end(&handle);
8749 out:
8750 	mmap_event->event_id.header.size = size;
8751 	mmap_event->event_id.header.type = type;
8752 }
8753 
8754 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8755 {
8756 	struct vm_area_struct *vma = mmap_event->vma;
8757 	struct file *file = vma->vm_file;
8758 	int maj = 0, min = 0;
8759 	u64 ino = 0, gen = 0;
8760 	u32 prot = 0, flags = 0;
8761 	unsigned int size;
8762 	char tmp[16];
8763 	char *buf = NULL;
8764 	char *name = NULL;
8765 
8766 	if (vma->vm_flags & VM_READ)
8767 		prot |= PROT_READ;
8768 	if (vma->vm_flags & VM_WRITE)
8769 		prot |= PROT_WRITE;
8770 	if (vma->vm_flags & VM_EXEC)
8771 		prot |= PROT_EXEC;
8772 
8773 	if (vma->vm_flags & VM_MAYSHARE)
8774 		flags = MAP_SHARED;
8775 	else
8776 		flags = MAP_PRIVATE;
8777 
8778 	if (vma->vm_flags & VM_LOCKED)
8779 		flags |= MAP_LOCKED;
8780 	if (is_vm_hugetlb_page(vma))
8781 		flags |= MAP_HUGETLB;
8782 
8783 	if (file) {
8784 		struct inode *inode;
8785 		dev_t dev;
8786 
8787 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8788 		if (!buf) {
8789 			name = "//enomem";
8790 			goto cpy_name;
8791 		}
8792 		/*
8793 		 * d_path() works from the end of the rb backwards, so we
8794 		 * need to add enough zero bytes after the string to handle
8795 		 * the 64bit alignment we do later.
8796 		 */
8797 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8798 		if (IS_ERR(name)) {
8799 			name = "//toolong";
8800 			goto cpy_name;
8801 		}
8802 		inode = file_inode(vma->vm_file);
8803 		dev = inode->i_sb->s_dev;
8804 		ino = inode->i_ino;
8805 		gen = inode->i_generation;
8806 		maj = MAJOR(dev);
8807 		min = MINOR(dev);
8808 
8809 		goto got_name;
8810 	} else {
8811 		if (vma->vm_ops && vma->vm_ops->name)
8812 			name = (char *) vma->vm_ops->name(vma);
8813 		if (!name)
8814 			name = (char *)arch_vma_name(vma);
8815 		if (!name) {
8816 			if (vma_is_initial_heap(vma))
8817 				name = "[heap]";
8818 			else if (vma_is_initial_stack(vma))
8819 				name = "[stack]";
8820 			else
8821 				name = "//anon";
8822 		}
8823 	}
8824 
8825 cpy_name:
8826 	strscpy(tmp, name, sizeof(tmp));
8827 	name = tmp;
8828 got_name:
8829 	/*
8830 	 * Since our buffer works in 8 byte units we need to align our string
8831 	 * size to a multiple of 8. However, we must guarantee the tail end is
8832 	 * zero'd out to avoid leaking random bits to userspace.
8833 	 */
8834 	size = strlen(name)+1;
8835 	while (!IS_ALIGNED(size, sizeof(u64)))
8836 		name[size++] = '\0';
8837 
8838 	mmap_event->file_name = name;
8839 	mmap_event->file_size = size;
8840 	mmap_event->maj = maj;
8841 	mmap_event->min = min;
8842 	mmap_event->ino = ino;
8843 	mmap_event->ino_generation = gen;
8844 	mmap_event->prot = prot;
8845 	mmap_event->flags = flags;
8846 
8847 	if (!(vma->vm_flags & VM_EXEC))
8848 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8849 
8850 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8851 
8852 	if (atomic_read(&nr_build_id_events))
8853 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8854 
8855 	perf_iterate_sb(perf_event_mmap_output,
8856 		       mmap_event,
8857 		       NULL);
8858 
8859 	kfree(buf);
8860 }
8861 
8862 /*
8863  * Check whether inode and address range match filter criteria.
8864  */
8865 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8866 				     struct file *file, unsigned long offset,
8867 				     unsigned long size)
8868 {
8869 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8870 	if (!filter->path.dentry)
8871 		return false;
8872 
8873 	if (d_inode(filter->path.dentry) != file_inode(file))
8874 		return false;
8875 
8876 	if (filter->offset > offset + size)
8877 		return false;
8878 
8879 	if (filter->offset + filter->size < offset)
8880 		return false;
8881 
8882 	return true;
8883 }
8884 
8885 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8886 					struct vm_area_struct *vma,
8887 					struct perf_addr_filter_range *fr)
8888 {
8889 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8890 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8891 	struct file *file = vma->vm_file;
8892 
8893 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8894 		return false;
8895 
8896 	if (filter->offset < off) {
8897 		fr->start = vma->vm_start;
8898 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8899 	} else {
8900 		fr->start = vma->vm_start + filter->offset - off;
8901 		fr->size = min(vma->vm_end - fr->start, filter->size);
8902 	}
8903 
8904 	return true;
8905 }
8906 
8907 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8908 {
8909 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8910 	struct vm_area_struct *vma = data;
8911 	struct perf_addr_filter *filter;
8912 	unsigned int restart = 0, count = 0;
8913 	unsigned long flags;
8914 
8915 	if (!has_addr_filter(event))
8916 		return;
8917 
8918 	if (!vma->vm_file)
8919 		return;
8920 
8921 	raw_spin_lock_irqsave(&ifh->lock, flags);
8922 	list_for_each_entry(filter, &ifh->list, entry) {
8923 		if (perf_addr_filter_vma_adjust(filter, vma,
8924 						&event->addr_filter_ranges[count]))
8925 			restart++;
8926 
8927 		count++;
8928 	}
8929 
8930 	if (restart)
8931 		event->addr_filters_gen++;
8932 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8933 
8934 	if (restart)
8935 		perf_event_stop(event, 1);
8936 }
8937 
8938 /*
8939  * Adjust all task's events' filters to the new vma
8940  */
8941 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8942 {
8943 	struct perf_event_context *ctx;
8944 
8945 	/*
8946 	 * Data tracing isn't supported yet and as such there is no need
8947 	 * to keep track of anything that isn't related to executable code:
8948 	 */
8949 	if (!(vma->vm_flags & VM_EXEC))
8950 		return;
8951 
8952 	rcu_read_lock();
8953 	ctx = rcu_dereference(current->perf_event_ctxp);
8954 	if (ctx)
8955 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8956 	rcu_read_unlock();
8957 }
8958 
8959 void perf_event_mmap(struct vm_area_struct *vma)
8960 {
8961 	struct perf_mmap_event mmap_event;
8962 
8963 	if (!atomic_read(&nr_mmap_events))
8964 		return;
8965 
8966 	mmap_event = (struct perf_mmap_event){
8967 		.vma	= vma,
8968 		/* .file_name */
8969 		/* .file_size */
8970 		.event_id  = {
8971 			.header = {
8972 				.type = PERF_RECORD_MMAP,
8973 				.misc = PERF_RECORD_MISC_USER,
8974 				/* .size */
8975 			},
8976 			/* .pid */
8977 			/* .tid */
8978 			.start  = vma->vm_start,
8979 			.len    = vma->vm_end - vma->vm_start,
8980 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8981 		},
8982 		/* .maj (attr_mmap2 only) */
8983 		/* .min (attr_mmap2 only) */
8984 		/* .ino (attr_mmap2 only) */
8985 		/* .ino_generation (attr_mmap2 only) */
8986 		/* .prot (attr_mmap2 only) */
8987 		/* .flags (attr_mmap2 only) */
8988 	};
8989 
8990 	perf_addr_filters_adjust(vma);
8991 	perf_event_mmap_event(&mmap_event);
8992 }
8993 
8994 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8995 			  unsigned long size, u64 flags)
8996 {
8997 	struct perf_output_handle handle;
8998 	struct perf_sample_data sample;
8999 	struct perf_aux_event {
9000 		struct perf_event_header	header;
9001 		u64				offset;
9002 		u64				size;
9003 		u64				flags;
9004 	} rec = {
9005 		.header = {
9006 			.type = PERF_RECORD_AUX,
9007 			.misc = 0,
9008 			.size = sizeof(rec),
9009 		},
9010 		.offset		= head,
9011 		.size		= size,
9012 		.flags		= flags,
9013 	};
9014 	int ret;
9015 
9016 	perf_event_header__init_id(&rec.header, &sample, event);
9017 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9018 
9019 	if (ret)
9020 		return;
9021 
9022 	perf_output_put(&handle, rec);
9023 	perf_event__output_id_sample(event, &handle, &sample);
9024 
9025 	perf_output_end(&handle);
9026 }
9027 
9028 /*
9029  * Lost/dropped samples logging
9030  */
9031 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9032 {
9033 	struct perf_output_handle handle;
9034 	struct perf_sample_data sample;
9035 	int ret;
9036 
9037 	struct {
9038 		struct perf_event_header	header;
9039 		u64				lost;
9040 	} lost_samples_event = {
9041 		.header = {
9042 			.type = PERF_RECORD_LOST_SAMPLES,
9043 			.misc = 0,
9044 			.size = sizeof(lost_samples_event),
9045 		},
9046 		.lost		= lost,
9047 	};
9048 
9049 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9050 
9051 	ret = perf_output_begin(&handle, &sample, event,
9052 				lost_samples_event.header.size);
9053 	if (ret)
9054 		return;
9055 
9056 	perf_output_put(&handle, lost_samples_event);
9057 	perf_event__output_id_sample(event, &handle, &sample);
9058 	perf_output_end(&handle);
9059 }
9060 
9061 /*
9062  * context_switch tracking
9063  */
9064 
9065 struct perf_switch_event {
9066 	struct task_struct	*task;
9067 	struct task_struct	*next_prev;
9068 
9069 	struct {
9070 		struct perf_event_header	header;
9071 		u32				next_prev_pid;
9072 		u32				next_prev_tid;
9073 	} event_id;
9074 };
9075 
9076 static int perf_event_switch_match(struct perf_event *event)
9077 {
9078 	return event->attr.context_switch;
9079 }
9080 
9081 static void perf_event_switch_output(struct perf_event *event, void *data)
9082 {
9083 	struct perf_switch_event *se = data;
9084 	struct perf_output_handle handle;
9085 	struct perf_sample_data sample;
9086 	int ret;
9087 
9088 	if (!perf_event_switch_match(event))
9089 		return;
9090 
9091 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9092 	if (event->ctx->task) {
9093 		se->event_id.header.type = PERF_RECORD_SWITCH;
9094 		se->event_id.header.size = sizeof(se->event_id.header);
9095 	} else {
9096 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9097 		se->event_id.header.size = sizeof(se->event_id);
9098 		se->event_id.next_prev_pid =
9099 					perf_event_pid(event, se->next_prev);
9100 		se->event_id.next_prev_tid =
9101 					perf_event_tid(event, se->next_prev);
9102 	}
9103 
9104 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9105 
9106 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9107 	if (ret)
9108 		return;
9109 
9110 	if (event->ctx->task)
9111 		perf_output_put(&handle, se->event_id.header);
9112 	else
9113 		perf_output_put(&handle, se->event_id);
9114 
9115 	perf_event__output_id_sample(event, &handle, &sample);
9116 
9117 	perf_output_end(&handle);
9118 }
9119 
9120 static void perf_event_switch(struct task_struct *task,
9121 			      struct task_struct *next_prev, bool sched_in)
9122 {
9123 	struct perf_switch_event switch_event;
9124 
9125 	/* N.B. caller checks nr_switch_events != 0 */
9126 
9127 	switch_event = (struct perf_switch_event){
9128 		.task		= task,
9129 		.next_prev	= next_prev,
9130 		.event_id	= {
9131 			.header = {
9132 				/* .type */
9133 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9134 				/* .size */
9135 			},
9136 			/* .next_prev_pid */
9137 			/* .next_prev_tid */
9138 		},
9139 	};
9140 
9141 	if (!sched_in && task->on_rq) {
9142 		switch_event.event_id.header.misc |=
9143 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9144 	}
9145 
9146 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9147 }
9148 
9149 /*
9150  * IRQ throttle logging
9151  */
9152 
9153 static void perf_log_throttle(struct perf_event *event, int enable)
9154 {
9155 	struct perf_output_handle handle;
9156 	struct perf_sample_data sample;
9157 	int ret;
9158 
9159 	struct {
9160 		struct perf_event_header	header;
9161 		u64				time;
9162 		u64				id;
9163 		u64				stream_id;
9164 	} throttle_event = {
9165 		.header = {
9166 			.type = PERF_RECORD_THROTTLE,
9167 			.misc = 0,
9168 			.size = sizeof(throttle_event),
9169 		},
9170 		.time		= perf_event_clock(event),
9171 		.id		= primary_event_id(event),
9172 		.stream_id	= event->id,
9173 	};
9174 
9175 	if (enable)
9176 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9177 
9178 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9179 
9180 	ret = perf_output_begin(&handle, &sample, event,
9181 				throttle_event.header.size);
9182 	if (ret)
9183 		return;
9184 
9185 	perf_output_put(&handle, throttle_event);
9186 	perf_event__output_id_sample(event, &handle, &sample);
9187 	perf_output_end(&handle);
9188 }
9189 
9190 /*
9191  * ksymbol register/unregister tracking
9192  */
9193 
9194 struct perf_ksymbol_event {
9195 	const char	*name;
9196 	int		name_len;
9197 	struct {
9198 		struct perf_event_header        header;
9199 		u64				addr;
9200 		u32				len;
9201 		u16				ksym_type;
9202 		u16				flags;
9203 	} event_id;
9204 };
9205 
9206 static int perf_event_ksymbol_match(struct perf_event *event)
9207 {
9208 	return event->attr.ksymbol;
9209 }
9210 
9211 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9212 {
9213 	struct perf_ksymbol_event *ksymbol_event = data;
9214 	struct perf_output_handle handle;
9215 	struct perf_sample_data sample;
9216 	int ret;
9217 
9218 	if (!perf_event_ksymbol_match(event))
9219 		return;
9220 
9221 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9222 				   &sample, event);
9223 	ret = perf_output_begin(&handle, &sample, event,
9224 				ksymbol_event->event_id.header.size);
9225 	if (ret)
9226 		return;
9227 
9228 	perf_output_put(&handle, ksymbol_event->event_id);
9229 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9230 	perf_event__output_id_sample(event, &handle, &sample);
9231 
9232 	perf_output_end(&handle);
9233 }
9234 
9235 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9236 			const char *sym)
9237 {
9238 	struct perf_ksymbol_event ksymbol_event;
9239 	char name[KSYM_NAME_LEN];
9240 	u16 flags = 0;
9241 	int name_len;
9242 
9243 	if (!atomic_read(&nr_ksymbol_events))
9244 		return;
9245 
9246 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9247 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9248 		goto err;
9249 
9250 	strscpy(name, sym, KSYM_NAME_LEN);
9251 	name_len = strlen(name) + 1;
9252 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9253 		name[name_len++] = '\0';
9254 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9255 
9256 	if (unregister)
9257 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9258 
9259 	ksymbol_event = (struct perf_ksymbol_event){
9260 		.name = name,
9261 		.name_len = name_len,
9262 		.event_id = {
9263 			.header = {
9264 				.type = PERF_RECORD_KSYMBOL,
9265 				.size = sizeof(ksymbol_event.event_id) +
9266 					name_len,
9267 			},
9268 			.addr = addr,
9269 			.len = len,
9270 			.ksym_type = ksym_type,
9271 			.flags = flags,
9272 		},
9273 	};
9274 
9275 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9276 	return;
9277 err:
9278 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9279 }
9280 
9281 /*
9282  * bpf program load/unload tracking
9283  */
9284 
9285 struct perf_bpf_event {
9286 	struct bpf_prog	*prog;
9287 	struct {
9288 		struct perf_event_header        header;
9289 		u16				type;
9290 		u16				flags;
9291 		u32				id;
9292 		u8				tag[BPF_TAG_SIZE];
9293 	} event_id;
9294 };
9295 
9296 static int perf_event_bpf_match(struct perf_event *event)
9297 {
9298 	return event->attr.bpf_event;
9299 }
9300 
9301 static void perf_event_bpf_output(struct perf_event *event, void *data)
9302 {
9303 	struct perf_bpf_event *bpf_event = data;
9304 	struct perf_output_handle handle;
9305 	struct perf_sample_data sample;
9306 	int ret;
9307 
9308 	if (!perf_event_bpf_match(event))
9309 		return;
9310 
9311 	perf_event_header__init_id(&bpf_event->event_id.header,
9312 				   &sample, event);
9313 	ret = perf_output_begin(&handle, &sample, event,
9314 				bpf_event->event_id.header.size);
9315 	if (ret)
9316 		return;
9317 
9318 	perf_output_put(&handle, bpf_event->event_id);
9319 	perf_event__output_id_sample(event, &handle, &sample);
9320 
9321 	perf_output_end(&handle);
9322 }
9323 
9324 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9325 					 enum perf_bpf_event_type type)
9326 {
9327 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9328 	int i;
9329 
9330 	if (prog->aux->func_cnt == 0) {
9331 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9332 				   (u64)(unsigned long)prog->bpf_func,
9333 				   prog->jited_len, unregister,
9334 				   prog->aux->ksym.name);
9335 	} else {
9336 		for (i = 0; i < prog->aux->func_cnt; i++) {
9337 			struct bpf_prog *subprog = prog->aux->func[i];
9338 
9339 			perf_event_ksymbol(
9340 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9341 				(u64)(unsigned long)subprog->bpf_func,
9342 				subprog->jited_len, unregister,
9343 				subprog->aux->ksym.name);
9344 		}
9345 	}
9346 }
9347 
9348 void perf_event_bpf_event(struct bpf_prog *prog,
9349 			  enum perf_bpf_event_type type,
9350 			  u16 flags)
9351 {
9352 	struct perf_bpf_event bpf_event;
9353 
9354 	switch (type) {
9355 	case PERF_BPF_EVENT_PROG_LOAD:
9356 	case PERF_BPF_EVENT_PROG_UNLOAD:
9357 		if (atomic_read(&nr_ksymbol_events))
9358 			perf_event_bpf_emit_ksymbols(prog, type);
9359 		break;
9360 	default:
9361 		return;
9362 	}
9363 
9364 	if (!atomic_read(&nr_bpf_events))
9365 		return;
9366 
9367 	bpf_event = (struct perf_bpf_event){
9368 		.prog = prog,
9369 		.event_id = {
9370 			.header = {
9371 				.type = PERF_RECORD_BPF_EVENT,
9372 				.size = sizeof(bpf_event.event_id),
9373 			},
9374 			.type = type,
9375 			.flags = flags,
9376 			.id = prog->aux->id,
9377 		},
9378 	};
9379 
9380 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9381 
9382 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9383 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9384 }
9385 
9386 struct perf_text_poke_event {
9387 	const void		*old_bytes;
9388 	const void		*new_bytes;
9389 	size_t			pad;
9390 	u16			old_len;
9391 	u16			new_len;
9392 
9393 	struct {
9394 		struct perf_event_header	header;
9395 
9396 		u64				addr;
9397 	} event_id;
9398 };
9399 
9400 static int perf_event_text_poke_match(struct perf_event *event)
9401 {
9402 	return event->attr.text_poke;
9403 }
9404 
9405 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9406 {
9407 	struct perf_text_poke_event *text_poke_event = data;
9408 	struct perf_output_handle handle;
9409 	struct perf_sample_data sample;
9410 	u64 padding = 0;
9411 	int ret;
9412 
9413 	if (!perf_event_text_poke_match(event))
9414 		return;
9415 
9416 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9417 
9418 	ret = perf_output_begin(&handle, &sample, event,
9419 				text_poke_event->event_id.header.size);
9420 	if (ret)
9421 		return;
9422 
9423 	perf_output_put(&handle, text_poke_event->event_id);
9424 	perf_output_put(&handle, text_poke_event->old_len);
9425 	perf_output_put(&handle, text_poke_event->new_len);
9426 
9427 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9428 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9429 
9430 	if (text_poke_event->pad)
9431 		__output_copy(&handle, &padding, text_poke_event->pad);
9432 
9433 	perf_event__output_id_sample(event, &handle, &sample);
9434 
9435 	perf_output_end(&handle);
9436 }
9437 
9438 void perf_event_text_poke(const void *addr, const void *old_bytes,
9439 			  size_t old_len, const void *new_bytes, size_t new_len)
9440 {
9441 	struct perf_text_poke_event text_poke_event;
9442 	size_t tot, pad;
9443 
9444 	if (!atomic_read(&nr_text_poke_events))
9445 		return;
9446 
9447 	tot  = sizeof(text_poke_event.old_len) + old_len;
9448 	tot += sizeof(text_poke_event.new_len) + new_len;
9449 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9450 
9451 	text_poke_event = (struct perf_text_poke_event){
9452 		.old_bytes    = old_bytes,
9453 		.new_bytes    = new_bytes,
9454 		.pad          = pad,
9455 		.old_len      = old_len,
9456 		.new_len      = new_len,
9457 		.event_id  = {
9458 			.header = {
9459 				.type = PERF_RECORD_TEXT_POKE,
9460 				.misc = PERF_RECORD_MISC_KERNEL,
9461 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9462 			},
9463 			.addr = (unsigned long)addr,
9464 		},
9465 	};
9466 
9467 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9468 }
9469 
9470 void perf_event_itrace_started(struct perf_event *event)
9471 {
9472 	event->attach_state |= PERF_ATTACH_ITRACE;
9473 }
9474 
9475 static void perf_log_itrace_start(struct perf_event *event)
9476 {
9477 	struct perf_output_handle handle;
9478 	struct perf_sample_data sample;
9479 	struct perf_aux_event {
9480 		struct perf_event_header        header;
9481 		u32				pid;
9482 		u32				tid;
9483 	} rec;
9484 	int ret;
9485 
9486 	if (event->parent)
9487 		event = event->parent;
9488 
9489 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9490 	    event->attach_state & PERF_ATTACH_ITRACE)
9491 		return;
9492 
9493 	rec.header.type	= PERF_RECORD_ITRACE_START;
9494 	rec.header.misc	= 0;
9495 	rec.header.size	= sizeof(rec);
9496 	rec.pid	= perf_event_pid(event, current);
9497 	rec.tid	= perf_event_tid(event, current);
9498 
9499 	perf_event_header__init_id(&rec.header, &sample, event);
9500 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9501 
9502 	if (ret)
9503 		return;
9504 
9505 	perf_output_put(&handle, rec);
9506 	perf_event__output_id_sample(event, &handle, &sample);
9507 
9508 	perf_output_end(&handle);
9509 }
9510 
9511 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9512 {
9513 	struct perf_output_handle handle;
9514 	struct perf_sample_data sample;
9515 	struct perf_aux_event {
9516 		struct perf_event_header        header;
9517 		u64				hw_id;
9518 	} rec;
9519 	int ret;
9520 
9521 	if (event->parent)
9522 		event = event->parent;
9523 
9524 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9525 	rec.header.misc	= 0;
9526 	rec.header.size	= sizeof(rec);
9527 	rec.hw_id	= hw_id;
9528 
9529 	perf_event_header__init_id(&rec.header, &sample, event);
9530 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9531 
9532 	if (ret)
9533 		return;
9534 
9535 	perf_output_put(&handle, rec);
9536 	perf_event__output_id_sample(event, &handle, &sample);
9537 
9538 	perf_output_end(&handle);
9539 }
9540 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9541 
9542 static int
9543 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9544 {
9545 	struct hw_perf_event *hwc = &event->hw;
9546 	int ret = 0;
9547 	u64 seq;
9548 
9549 	seq = __this_cpu_read(perf_throttled_seq);
9550 	if (seq != hwc->interrupts_seq) {
9551 		hwc->interrupts_seq = seq;
9552 		hwc->interrupts = 1;
9553 	} else {
9554 		hwc->interrupts++;
9555 		if (unlikely(throttle &&
9556 			     hwc->interrupts > max_samples_per_tick)) {
9557 			__this_cpu_inc(perf_throttled_count);
9558 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9559 			hwc->interrupts = MAX_INTERRUPTS;
9560 			perf_log_throttle(event, 0);
9561 			ret = 1;
9562 		}
9563 	}
9564 
9565 	if (event->attr.freq) {
9566 		u64 now = perf_clock();
9567 		s64 delta = now - hwc->freq_time_stamp;
9568 
9569 		hwc->freq_time_stamp = now;
9570 
9571 		if (delta > 0 && delta < 2*TICK_NSEC)
9572 			perf_adjust_period(event, delta, hwc->last_period, true);
9573 	}
9574 
9575 	return ret;
9576 }
9577 
9578 int perf_event_account_interrupt(struct perf_event *event)
9579 {
9580 	return __perf_event_account_interrupt(event, 1);
9581 }
9582 
9583 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9584 {
9585 	/*
9586 	 * Due to interrupt latency (AKA "skid"), we may enter the
9587 	 * kernel before taking an overflow, even if the PMU is only
9588 	 * counting user events.
9589 	 */
9590 	if (event->attr.exclude_kernel && !user_mode(regs))
9591 		return false;
9592 
9593 	return true;
9594 }
9595 
9596 #ifdef CONFIG_BPF_SYSCALL
9597 static int bpf_overflow_handler(struct perf_event *event,
9598 				struct perf_sample_data *data,
9599 				struct pt_regs *regs)
9600 {
9601 	struct bpf_perf_event_data_kern ctx = {
9602 		.data = data,
9603 		.event = event,
9604 	};
9605 	struct bpf_prog *prog;
9606 	int ret = 0;
9607 
9608 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9609 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9610 		goto out;
9611 	rcu_read_lock();
9612 	prog = READ_ONCE(event->prog);
9613 	if (prog) {
9614 		perf_prepare_sample(data, event, regs);
9615 		ret = bpf_prog_run(prog, &ctx);
9616 	}
9617 	rcu_read_unlock();
9618 out:
9619 	__this_cpu_dec(bpf_prog_active);
9620 
9621 	return ret;
9622 }
9623 
9624 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9625 					     struct bpf_prog *prog,
9626 					     u64 bpf_cookie)
9627 {
9628 	if (event->overflow_handler_context)
9629 		/* hw breakpoint or kernel counter */
9630 		return -EINVAL;
9631 
9632 	if (event->prog)
9633 		return -EEXIST;
9634 
9635 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9636 		return -EINVAL;
9637 
9638 	if (event->attr.precise_ip &&
9639 	    prog->call_get_stack &&
9640 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9641 	     event->attr.exclude_callchain_kernel ||
9642 	     event->attr.exclude_callchain_user)) {
9643 		/*
9644 		 * On perf_event with precise_ip, calling bpf_get_stack()
9645 		 * may trigger unwinder warnings and occasional crashes.
9646 		 * bpf_get_[stack|stackid] works around this issue by using
9647 		 * callchain attached to perf_sample_data. If the
9648 		 * perf_event does not full (kernel and user) callchain
9649 		 * attached to perf_sample_data, do not allow attaching BPF
9650 		 * program that calls bpf_get_[stack|stackid].
9651 		 */
9652 		return -EPROTO;
9653 	}
9654 
9655 	event->prog = prog;
9656 	event->bpf_cookie = bpf_cookie;
9657 	return 0;
9658 }
9659 
9660 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9661 {
9662 	struct bpf_prog *prog = event->prog;
9663 
9664 	if (!prog)
9665 		return;
9666 
9667 	event->prog = NULL;
9668 	bpf_prog_put(prog);
9669 }
9670 #else
9671 static inline int bpf_overflow_handler(struct perf_event *event,
9672 				       struct perf_sample_data *data,
9673 				       struct pt_regs *regs)
9674 {
9675 	return 1;
9676 }
9677 
9678 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9679 					     struct bpf_prog *prog,
9680 					     u64 bpf_cookie)
9681 {
9682 	return -EOPNOTSUPP;
9683 }
9684 
9685 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9686 {
9687 }
9688 #endif
9689 
9690 /*
9691  * Generic event overflow handling, sampling.
9692  */
9693 
9694 static int __perf_event_overflow(struct perf_event *event,
9695 				 int throttle, struct perf_sample_data *data,
9696 				 struct pt_regs *regs)
9697 {
9698 	int events = atomic_read(&event->event_limit);
9699 	int ret = 0;
9700 
9701 	/*
9702 	 * Non-sampling counters might still use the PMI to fold short
9703 	 * hardware counters, ignore those.
9704 	 */
9705 	if (unlikely(!is_sampling_event(event)))
9706 		return 0;
9707 
9708 	ret = __perf_event_account_interrupt(event, throttle);
9709 
9710 	if (event->prog && !bpf_overflow_handler(event, data, regs))
9711 		return ret;
9712 
9713 	/*
9714 	 * XXX event_limit might not quite work as expected on inherited
9715 	 * events
9716 	 */
9717 
9718 	event->pending_kill = POLL_IN;
9719 	if (events && atomic_dec_and_test(&event->event_limit)) {
9720 		ret = 1;
9721 		event->pending_kill = POLL_HUP;
9722 		perf_event_disable_inatomic(event);
9723 	}
9724 
9725 	if (event->attr.sigtrap) {
9726 		/*
9727 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9728 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9729 		 * it is the first event, on the other hand, we should also not
9730 		 * trigger the WARN or override the data address.
9731 		 */
9732 		bool valid_sample = sample_is_allowed(event, regs);
9733 		unsigned int pending_id = 1;
9734 		enum task_work_notify_mode notify_mode;
9735 
9736 		if (regs)
9737 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9738 
9739 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9740 
9741 		if (!event->pending_work &&
9742 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9743 			event->pending_work = pending_id;
9744 			local_inc(&event->ctx->nr_pending);
9745 
9746 			event->pending_addr = 0;
9747 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9748 				event->pending_addr = data->addr;
9749 
9750 		} else if (event->attr.exclude_kernel && valid_sample) {
9751 			/*
9752 			 * Should not be able to return to user space without
9753 			 * consuming pending_work; with exceptions:
9754 			 *
9755 			 *  1. Where !exclude_kernel, events can overflow again
9756 			 *     in the kernel without returning to user space.
9757 			 *
9758 			 *  2. Events that can overflow again before the IRQ-
9759 			 *     work without user space progress (e.g. hrtimer).
9760 			 *     To approximate progress (with false negatives),
9761 			 *     check 32-bit hash of the current IP.
9762 			 */
9763 			WARN_ON_ONCE(event->pending_work != pending_id);
9764 		}
9765 	}
9766 
9767 	READ_ONCE(event->overflow_handler)(event, data, regs);
9768 
9769 	if (*perf_event_fasync(event) && event->pending_kill) {
9770 		event->pending_wakeup = 1;
9771 		irq_work_queue(&event->pending_irq);
9772 	}
9773 
9774 	return ret;
9775 }
9776 
9777 int perf_event_overflow(struct perf_event *event,
9778 			struct perf_sample_data *data,
9779 			struct pt_regs *regs)
9780 {
9781 	return __perf_event_overflow(event, 1, data, regs);
9782 }
9783 
9784 /*
9785  * Generic software event infrastructure
9786  */
9787 
9788 struct swevent_htable {
9789 	struct swevent_hlist		*swevent_hlist;
9790 	struct mutex			hlist_mutex;
9791 	int				hlist_refcount;
9792 };
9793 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9794 
9795 /*
9796  * We directly increment event->count and keep a second value in
9797  * event->hw.period_left to count intervals. This period event
9798  * is kept in the range [-sample_period, 0] so that we can use the
9799  * sign as trigger.
9800  */
9801 
9802 u64 perf_swevent_set_period(struct perf_event *event)
9803 {
9804 	struct hw_perf_event *hwc = &event->hw;
9805 	u64 period = hwc->last_period;
9806 	u64 nr, offset;
9807 	s64 old, val;
9808 
9809 	hwc->last_period = hwc->sample_period;
9810 
9811 	old = local64_read(&hwc->period_left);
9812 	do {
9813 		val = old;
9814 		if (val < 0)
9815 			return 0;
9816 
9817 		nr = div64_u64(period + val, period);
9818 		offset = nr * period;
9819 		val -= offset;
9820 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9821 
9822 	return nr;
9823 }
9824 
9825 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9826 				    struct perf_sample_data *data,
9827 				    struct pt_regs *regs)
9828 {
9829 	struct hw_perf_event *hwc = &event->hw;
9830 	int throttle = 0;
9831 
9832 	if (!overflow)
9833 		overflow = perf_swevent_set_period(event);
9834 
9835 	if (hwc->interrupts == MAX_INTERRUPTS)
9836 		return;
9837 
9838 	for (; overflow; overflow--) {
9839 		if (__perf_event_overflow(event, throttle,
9840 					    data, regs)) {
9841 			/*
9842 			 * We inhibit the overflow from happening when
9843 			 * hwc->interrupts == MAX_INTERRUPTS.
9844 			 */
9845 			break;
9846 		}
9847 		throttle = 1;
9848 	}
9849 }
9850 
9851 static void perf_swevent_event(struct perf_event *event, u64 nr,
9852 			       struct perf_sample_data *data,
9853 			       struct pt_regs *regs)
9854 {
9855 	struct hw_perf_event *hwc = &event->hw;
9856 
9857 	local64_add(nr, &event->count);
9858 
9859 	if (!regs)
9860 		return;
9861 
9862 	if (!is_sampling_event(event))
9863 		return;
9864 
9865 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9866 		data->period = nr;
9867 		return perf_swevent_overflow(event, 1, data, regs);
9868 	} else
9869 		data->period = event->hw.last_period;
9870 
9871 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9872 		return perf_swevent_overflow(event, 1, data, regs);
9873 
9874 	if (local64_add_negative(nr, &hwc->period_left))
9875 		return;
9876 
9877 	perf_swevent_overflow(event, 0, data, regs);
9878 }
9879 
9880 static int perf_exclude_event(struct perf_event *event,
9881 			      struct pt_regs *regs)
9882 {
9883 	if (event->hw.state & PERF_HES_STOPPED)
9884 		return 1;
9885 
9886 	if (regs) {
9887 		if (event->attr.exclude_user && user_mode(regs))
9888 			return 1;
9889 
9890 		if (event->attr.exclude_kernel && !user_mode(regs))
9891 			return 1;
9892 	}
9893 
9894 	return 0;
9895 }
9896 
9897 static int perf_swevent_match(struct perf_event *event,
9898 				enum perf_type_id type,
9899 				u32 event_id,
9900 				struct perf_sample_data *data,
9901 				struct pt_regs *regs)
9902 {
9903 	if (event->attr.type != type)
9904 		return 0;
9905 
9906 	if (event->attr.config != event_id)
9907 		return 0;
9908 
9909 	if (perf_exclude_event(event, regs))
9910 		return 0;
9911 
9912 	return 1;
9913 }
9914 
9915 static inline u64 swevent_hash(u64 type, u32 event_id)
9916 {
9917 	u64 val = event_id | (type << 32);
9918 
9919 	return hash_64(val, SWEVENT_HLIST_BITS);
9920 }
9921 
9922 static inline struct hlist_head *
9923 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9924 {
9925 	u64 hash = swevent_hash(type, event_id);
9926 
9927 	return &hlist->heads[hash];
9928 }
9929 
9930 /* For the read side: events when they trigger */
9931 static inline struct hlist_head *
9932 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9933 {
9934 	struct swevent_hlist *hlist;
9935 
9936 	hlist = rcu_dereference(swhash->swevent_hlist);
9937 	if (!hlist)
9938 		return NULL;
9939 
9940 	return __find_swevent_head(hlist, type, event_id);
9941 }
9942 
9943 /* For the event head insertion and removal in the hlist */
9944 static inline struct hlist_head *
9945 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9946 {
9947 	struct swevent_hlist *hlist;
9948 	u32 event_id = event->attr.config;
9949 	u64 type = event->attr.type;
9950 
9951 	/*
9952 	 * Event scheduling is always serialized against hlist allocation
9953 	 * and release. Which makes the protected version suitable here.
9954 	 * The context lock guarantees that.
9955 	 */
9956 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9957 					  lockdep_is_held(&event->ctx->lock));
9958 	if (!hlist)
9959 		return NULL;
9960 
9961 	return __find_swevent_head(hlist, type, event_id);
9962 }
9963 
9964 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9965 				    u64 nr,
9966 				    struct perf_sample_data *data,
9967 				    struct pt_regs *regs)
9968 {
9969 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9970 	struct perf_event *event;
9971 	struct hlist_head *head;
9972 
9973 	rcu_read_lock();
9974 	head = find_swevent_head_rcu(swhash, type, event_id);
9975 	if (!head)
9976 		goto end;
9977 
9978 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9979 		if (perf_swevent_match(event, type, event_id, data, regs))
9980 			perf_swevent_event(event, nr, data, regs);
9981 	}
9982 end:
9983 	rcu_read_unlock();
9984 }
9985 
9986 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9987 
9988 int perf_swevent_get_recursion_context(void)
9989 {
9990 	return get_recursion_context(current->perf_recursion);
9991 }
9992 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9993 
9994 void perf_swevent_put_recursion_context(int rctx)
9995 {
9996 	put_recursion_context(current->perf_recursion, rctx);
9997 }
9998 
9999 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10000 {
10001 	struct perf_sample_data data;
10002 
10003 	if (WARN_ON_ONCE(!regs))
10004 		return;
10005 
10006 	perf_sample_data_init(&data, addr, 0);
10007 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10008 }
10009 
10010 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10011 {
10012 	int rctx;
10013 
10014 	preempt_disable_notrace();
10015 	rctx = perf_swevent_get_recursion_context();
10016 	if (unlikely(rctx < 0))
10017 		goto fail;
10018 
10019 	___perf_sw_event(event_id, nr, regs, addr);
10020 
10021 	perf_swevent_put_recursion_context(rctx);
10022 fail:
10023 	preempt_enable_notrace();
10024 }
10025 
10026 static void perf_swevent_read(struct perf_event *event)
10027 {
10028 }
10029 
10030 static int perf_swevent_add(struct perf_event *event, int flags)
10031 {
10032 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10033 	struct hw_perf_event *hwc = &event->hw;
10034 	struct hlist_head *head;
10035 
10036 	if (is_sampling_event(event)) {
10037 		hwc->last_period = hwc->sample_period;
10038 		perf_swevent_set_period(event);
10039 	}
10040 
10041 	hwc->state = !(flags & PERF_EF_START);
10042 
10043 	head = find_swevent_head(swhash, event);
10044 	if (WARN_ON_ONCE(!head))
10045 		return -EINVAL;
10046 
10047 	hlist_add_head_rcu(&event->hlist_entry, head);
10048 	perf_event_update_userpage(event);
10049 
10050 	return 0;
10051 }
10052 
10053 static void perf_swevent_del(struct perf_event *event, int flags)
10054 {
10055 	hlist_del_rcu(&event->hlist_entry);
10056 }
10057 
10058 static void perf_swevent_start(struct perf_event *event, int flags)
10059 {
10060 	event->hw.state = 0;
10061 }
10062 
10063 static void perf_swevent_stop(struct perf_event *event, int flags)
10064 {
10065 	event->hw.state = PERF_HES_STOPPED;
10066 }
10067 
10068 /* Deref the hlist from the update side */
10069 static inline struct swevent_hlist *
10070 swevent_hlist_deref(struct swevent_htable *swhash)
10071 {
10072 	return rcu_dereference_protected(swhash->swevent_hlist,
10073 					 lockdep_is_held(&swhash->hlist_mutex));
10074 }
10075 
10076 static void swevent_hlist_release(struct swevent_htable *swhash)
10077 {
10078 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10079 
10080 	if (!hlist)
10081 		return;
10082 
10083 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10084 	kfree_rcu(hlist, rcu_head);
10085 }
10086 
10087 static void swevent_hlist_put_cpu(int cpu)
10088 {
10089 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10090 
10091 	mutex_lock(&swhash->hlist_mutex);
10092 
10093 	if (!--swhash->hlist_refcount)
10094 		swevent_hlist_release(swhash);
10095 
10096 	mutex_unlock(&swhash->hlist_mutex);
10097 }
10098 
10099 static void swevent_hlist_put(void)
10100 {
10101 	int cpu;
10102 
10103 	for_each_possible_cpu(cpu)
10104 		swevent_hlist_put_cpu(cpu);
10105 }
10106 
10107 static int swevent_hlist_get_cpu(int cpu)
10108 {
10109 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10110 	int err = 0;
10111 
10112 	mutex_lock(&swhash->hlist_mutex);
10113 	if (!swevent_hlist_deref(swhash) &&
10114 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10115 		struct swevent_hlist *hlist;
10116 
10117 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10118 		if (!hlist) {
10119 			err = -ENOMEM;
10120 			goto exit;
10121 		}
10122 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10123 	}
10124 	swhash->hlist_refcount++;
10125 exit:
10126 	mutex_unlock(&swhash->hlist_mutex);
10127 
10128 	return err;
10129 }
10130 
10131 static int swevent_hlist_get(void)
10132 {
10133 	int err, cpu, failed_cpu;
10134 
10135 	mutex_lock(&pmus_lock);
10136 	for_each_possible_cpu(cpu) {
10137 		err = swevent_hlist_get_cpu(cpu);
10138 		if (err) {
10139 			failed_cpu = cpu;
10140 			goto fail;
10141 		}
10142 	}
10143 	mutex_unlock(&pmus_lock);
10144 	return 0;
10145 fail:
10146 	for_each_possible_cpu(cpu) {
10147 		if (cpu == failed_cpu)
10148 			break;
10149 		swevent_hlist_put_cpu(cpu);
10150 	}
10151 	mutex_unlock(&pmus_lock);
10152 	return err;
10153 }
10154 
10155 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10156 
10157 static void sw_perf_event_destroy(struct perf_event *event)
10158 {
10159 	u64 event_id = event->attr.config;
10160 
10161 	WARN_ON(event->parent);
10162 
10163 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10164 	swevent_hlist_put();
10165 }
10166 
10167 static struct pmu perf_cpu_clock; /* fwd declaration */
10168 static struct pmu perf_task_clock;
10169 
10170 static int perf_swevent_init(struct perf_event *event)
10171 {
10172 	u64 event_id = event->attr.config;
10173 
10174 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10175 		return -ENOENT;
10176 
10177 	/*
10178 	 * no branch sampling for software events
10179 	 */
10180 	if (has_branch_stack(event))
10181 		return -EOPNOTSUPP;
10182 
10183 	switch (event_id) {
10184 	case PERF_COUNT_SW_CPU_CLOCK:
10185 		event->attr.type = perf_cpu_clock.type;
10186 		return -ENOENT;
10187 	case PERF_COUNT_SW_TASK_CLOCK:
10188 		event->attr.type = perf_task_clock.type;
10189 		return -ENOENT;
10190 
10191 	default:
10192 		break;
10193 	}
10194 
10195 	if (event_id >= PERF_COUNT_SW_MAX)
10196 		return -ENOENT;
10197 
10198 	if (!event->parent) {
10199 		int err;
10200 
10201 		err = swevent_hlist_get();
10202 		if (err)
10203 			return err;
10204 
10205 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10206 		event->destroy = sw_perf_event_destroy;
10207 	}
10208 
10209 	return 0;
10210 }
10211 
10212 static struct pmu perf_swevent = {
10213 	.task_ctx_nr	= perf_sw_context,
10214 
10215 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10216 
10217 	.event_init	= perf_swevent_init,
10218 	.add		= perf_swevent_add,
10219 	.del		= perf_swevent_del,
10220 	.start		= perf_swevent_start,
10221 	.stop		= perf_swevent_stop,
10222 	.read		= perf_swevent_read,
10223 };
10224 
10225 #ifdef CONFIG_EVENT_TRACING
10226 
10227 static void tp_perf_event_destroy(struct perf_event *event)
10228 {
10229 	perf_trace_destroy(event);
10230 }
10231 
10232 static int perf_tp_event_init(struct perf_event *event)
10233 {
10234 	int err;
10235 
10236 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10237 		return -ENOENT;
10238 
10239 	/*
10240 	 * no branch sampling for tracepoint events
10241 	 */
10242 	if (has_branch_stack(event))
10243 		return -EOPNOTSUPP;
10244 
10245 	err = perf_trace_init(event);
10246 	if (err)
10247 		return err;
10248 
10249 	event->destroy = tp_perf_event_destroy;
10250 
10251 	return 0;
10252 }
10253 
10254 static struct pmu perf_tracepoint = {
10255 	.task_ctx_nr	= perf_sw_context,
10256 
10257 	.event_init	= perf_tp_event_init,
10258 	.add		= perf_trace_add,
10259 	.del		= perf_trace_del,
10260 	.start		= perf_swevent_start,
10261 	.stop		= perf_swevent_stop,
10262 	.read		= perf_swevent_read,
10263 };
10264 
10265 static int perf_tp_filter_match(struct perf_event *event,
10266 				struct perf_sample_data *data)
10267 {
10268 	void *record = data->raw->frag.data;
10269 
10270 	/* only top level events have filters set */
10271 	if (event->parent)
10272 		event = event->parent;
10273 
10274 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10275 		return 1;
10276 	return 0;
10277 }
10278 
10279 static int perf_tp_event_match(struct perf_event *event,
10280 				struct perf_sample_data *data,
10281 				struct pt_regs *regs)
10282 {
10283 	if (event->hw.state & PERF_HES_STOPPED)
10284 		return 0;
10285 	/*
10286 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10287 	 */
10288 	if (event->attr.exclude_kernel && !user_mode(regs))
10289 		return 0;
10290 
10291 	if (!perf_tp_filter_match(event, data))
10292 		return 0;
10293 
10294 	return 1;
10295 }
10296 
10297 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10298 			       struct trace_event_call *call, u64 count,
10299 			       struct pt_regs *regs, struct hlist_head *head,
10300 			       struct task_struct *task)
10301 {
10302 	if (bpf_prog_array_valid(call)) {
10303 		*(struct pt_regs **)raw_data = regs;
10304 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10305 			perf_swevent_put_recursion_context(rctx);
10306 			return;
10307 		}
10308 	}
10309 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10310 		      rctx, task);
10311 }
10312 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10313 
10314 static void __perf_tp_event_target_task(u64 count, void *record,
10315 					struct pt_regs *regs,
10316 					struct perf_sample_data *data,
10317 					struct perf_event *event)
10318 {
10319 	struct trace_entry *entry = record;
10320 
10321 	if (event->attr.config != entry->type)
10322 		return;
10323 	/* Cannot deliver synchronous signal to other task. */
10324 	if (event->attr.sigtrap)
10325 		return;
10326 	if (perf_tp_event_match(event, data, regs))
10327 		perf_swevent_event(event, count, data, regs);
10328 }
10329 
10330 static void perf_tp_event_target_task(u64 count, void *record,
10331 				      struct pt_regs *regs,
10332 				      struct perf_sample_data *data,
10333 				      struct perf_event_context *ctx)
10334 {
10335 	unsigned int cpu = smp_processor_id();
10336 	struct pmu *pmu = &perf_tracepoint;
10337 	struct perf_event *event, *sibling;
10338 
10339 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10340 		__perf_tp_event_target_task(count, record, regs, data, event);
10341 		for_each_sibling_event(sibling, event)
10342 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10343 	}
10344 
10345 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10346 		__perf_tp_event_target_task(count, record, regs, data, event);
10347 		for_each_sibling_event(sibling, event)
10348 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10349 	}
10350 }
10351 
10352 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10353 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10354 		   struct task_struct *task)
10355 {
10356 	struct perf_sample_data data;
10357 	struct perf_event *event;
10358 
10359 	struct perf_raw_record raw = {
10360 		.frag = {
10361 			.size = entry_size,
10362 			.data = record,
10363 		},
10364 	};
10365 
10366 	perf_sample_data_init(&data, 0, 0);
10367 	perf_sample_save_raw_data(&data, &raw);
10368 
10369 	perf_trace_buf_update(record, event_type);
10370 
10371 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10372 		if (perf_tp_event_match(event, &data, regs)) {
10373 			perf_swevent_event(event, count, &data, regs);
10374 
10375 			/*
10376 			 * Here use the same on-stack perf_sample_data,
10377 			 * some members in data are event-specific and
10378 			 * need to be re-computed for different sweveents.
10379 			 * Re-initialize data->sample_flags safely to avoid
10380 			 * the problem that next event skips preparing data
10381 			 * because data->sample_flags is set.
10382 			 */
10383 			perf_sample_data_init(&data, 0, 0);
10384 			perf_sample_save_raw_data(&data, &raw);
10385 		}
10386 	}
10387 
10388 	/*
10389 	 * If we got specified a target task, also iterate its context and
10390 	 * deliver this event there too.
10391 	 */
10392 	if (task && task != current) {
10393 		struct perf_event_context *ctx;
10394 
10395 		rcu_read_lock();
10396 		ctx = rcu_dereference(task->perf_event_ctxp);
10397 		if (!ctx)
10398 			goto unlock;
10399 
10400 		raw_spin_lock(&ctx->lock);
10401 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10402 		raw_spin_unlock(&ctx->lock);
10403 unlock:
10404 		rcu_read_unlock();
10405 	}
10406 
10407 	perf_swevent_put_recursion_context(rctx);
10408 }
10409 EXPORT_SYMBOL_GPL(perf_tp_event);
10410 
10411 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10412 /*
10413  * Flags in config, used by dynamic PMU kprobe and uprobe
10414  * The flags should match following PMU_FORMAT_ATTR().
10415  *
10416  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10417  *                               if not set, create kprobe/uprobe
10418  *
10419  * The following values specify a reference counter (or semaphore in the
10420  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10421  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10422  *
10423  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10424  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10425  */
10426 enum perf_probe_config {
10427 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10428 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10429 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10430 };
10431 
10432 PMU_FORMAT_ATTR(retprobe, "config:0");
10433 #endif
10434 
10435 #ifdef CONFIG_KPROBE_EVENTS
10436 static struct attribute *kprobe_attrs[] = {
10437 	&format_attr_retprobe.attr,
10438 	NULL,
10439 };
10440 
10441 static struct attribute_group kprobe_format_group = {
10442 	.name = "format",
10443 	.attrs = kprobe_attrs,
10444 };
10445 
10446 static const struct attribute_group *kprobe_attr_groups[] = {
10447 	&kprobe_format_group,
10448 	NULL,
10449 };
10450 
10451 static int perf_kprobe_event_init(struct perf_event *event);
10452 static struct pmu perf_kprobe = {
10453 	.task_ctx_nr	= perf_sw_context,
10454 	.event_init	= perf_kprobe_event_init,
10455 	.add		= perf_trace_add,
10456 	.del		= perf_trace_del,
10457 	.start		= perf_swevent_start,
10458 	.stop		= perf_swevent_stop,
10459 	.read		= perf_swevent_read,
10460 	.attr_groups	= kprobe_attr_groups,
10461 };
10462 
10463 static int perf_kprobe_event_init(struct perf_event *event)
10464 {
10465 	int err;
10466 	bool is_retprobe;
10467 
10468 	if (event->attr.type != perf_kprobe.type)
10469 		return -ENOENT;
10470 
10471 	if (!perfmon_capable())
10472 		return -EACCES;
10473 
10474 	/*
10475 	 * no branch sampling for probe events
10476 	 */
10477 	if (has_branch_stack(event))
10478 		return -EOPNOTSUPP;
10479 
10480 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10481 	err = perf_kprobe_init(event, is_retprobe);
10482 	if (err)
10483 		return err;
10484 
10485 	event->destroy = perf_kprobe_destroy;
10486 
10487 	return 0;
10488 }
10489 #endif /* CONFIG_KPROBE_EVENTS */
10490 
10491 #ifdef CONFIG_UPROBE_EVENTS
10492 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10493 
10494 static struct attribute *uprobe_attrs[] = {
10495 	&format_attr_retprobe.attr,
10496 	&format_attr_ref_ctr_offset.attr,
10497 	NULL,
10498 };
10499 
10500 static struct attribute_group uprobe_format_group = {
10501 	.name = "format",
10502 	.attrs = uprobe_attrs,
10503 };
10504 
10505 static const struct attribute_group *uprobe_attr_groups[] = {
10506 	&uprobe_format_group,
10507 	NULL,
10508 };
10509 
10510 static int perf_uprobe_event_init(struct perf_event *event);
10511 static struct pmu perf_uprobe = {
10512 	.task_ctx_nr	= perf_sw_context,
10513 	.event_init	= perf_uprobe_event_init,
10514 	.add		= perf_trace_add,
10515 	.del		= perf_trace_del,
10516 	.start		= perf_swevent_start,
10517 	.stop		= perf_swevent_stop,
10518 	.read		= perf_swevent_read,
10519 	.attr_groups	= uprobe_attr_groups,
10520 };
10521 
10522 static int perf_uprobe_event_init(struct perf_event *event)
10523 {
10524 	int err;
10525 	unsigned long ref_ctr_offset;
10526 	bool is_retprobe;
10527 
10528 	if (event->attr.type != perf_uprobe.type)
10529 		return -ENOENT;
10530 
10531 	if (!perfmon_capable())
10532 		return -EACCES;
10533 
10534 	/*
10535 	 * no branch sampling for probe events
10536 	 */
10537 	if (has_branch_stack(event))
10538 		return -EOPNOTSUPP;
10539 
10540 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10541 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10542 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10543 	if (err)
10544 		return err;
10545 
10546 	event->destroy = perf_uprobe_destroy;
10547 
10548 	return 0;
10549 }
10550 #endif /* CONFIG_UPROBE_EVENTS */
10551 
10552 static inline void perf_tp_register(void)
10553 {
10554 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10555 #ifdef CONFIG_KPROBE_EVENTS
10556 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10557 #endif
10558 #ifdef CONFIG_UPROBE_EVENTS
10559 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10560 #endif
10561 }
10562 
10563 static void perf_event_free_filter(struct perf_event *event)
10564 {
10565 	ftrace_profile_free_filter(event);
10566 }
10567 
10568 /*
10569  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10570  * with perf_event_open()
10571  */
10572 static inline bool perf_event_is_tracing(struct perf_event *event)
10573 {
10574 	if (event->pmu == &perf_tracepoint)
10575 		return true;
10576 #ifdef CONFIG_KPROBE_EVENTS
10577 	if (event->pmu == &perf_kprobe)
10578 		return true;
10579 #endif
10580 #ifdef CONFIG_UPROBE_EVENTS
10581 	if (event->pmu == &perf_uprobe)
10582 		return true;
10583 #endif
10584 	return false;
10585 }
10586 
10587 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10588 			    u64 bpf_cookie)
10589 {
10590 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10591 
10592 	if (!perf_event_is_tracing(event))
10593 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10594 
10595 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10596 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10597 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10598 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10599 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10600 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10601 		return -EINVAL;
10602 
10603 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10604 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10605 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10606 		return -EINVAL;
10607 
10608 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10609 		/* only uprobe programs are allowed to be sleepable */
10610 		return -EINVAL;
10611 
10612 	/* Kprobe override only works for kprobes, not uprobes. */
10613 	if (prog->kprobe_override && !is_kprobe)
10614 		return -EINVAL;
10615 
10616 	if (is_tracepoint || is_syscall_tp) {
10617 		int off = trace_event_get_offsets(event->tp_event);
10618 
10619 		if (prog->aux->max_ctx_offset > off)
10620 			return -EACCES;
10621 	}
10622 
10623 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10624 }
10625 
10626 void perf_event_free_bpf_prog(struct perf_event *event)
10627 {
10628 	if (!perf_event_is_tracing(event)) {
10629 		perf_event_free_bpf_handler(event);
10630 		return;
10631 	}
10632 	perf_event_detach_bpf_prog(event);
10633 }
10634 
10635 #else
10636 
10637 static inline void perf_tp_register(void)
10638 {
10639 }
10640 
10641 static void perf_event_free_filter(struct perf_event *event)
10642 {
10643 }
10644 
10645 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10646 			    u64 bpf_cookie)
10647 {
10648 	return -ENOENT;
10649 }
10650 
10651 void perf_event_free_bpf_prog(struct perf_event *event)
10652 {
10653 }
10654 #endif /* CONFIG_EVENT_TRACING */
10655 
10656 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10657 void perf_bp_event(struct perf_event *bp, void *data)
10658 {
10659 	struct perf_sample_data sample;
10660 	struct pt_regs *regs = data;
10661 
10662 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10663 
10664 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10665 		perf_swevent_event(bp, 1, &sample, regs);
10666 }
10667 #endif
10668 
10669 /*
10670  * Allocate a new address filter
10671  */
10672 static struct perf_addr_filter *
10673 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10674 {
10675 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10676 	struct perf_addr_filter *filter;
10677 
10678 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10679 	if (!filter)
10680 		return NULL;
10681 
10682 	INIT_LIST_HEAD(&filter->entry);
10683 	list_add_tail(&filter->entry, filters);
10684 
10685 	return filter;
10686 }
10687 
10688 static void free_filters_list(struct list_head *filters)
10689 {
10690 	struct perf_addr_filter *filter, *iter;
10691 
10692 	list_for_each_entry_safe(filter, iter, filters, entry) {
10693 		path_put(&filter->path);
10694 		list_del(&filter->entry);
10695 		kfree(filter);
10696 	}
10697 }
10698 
10699 /*
10700  * Free existing address filters and optionally install new ones
10701  */
10702 static void perf_addr_filters_splice(struct perf_event *event,
10703 				     struct list_head *head)
10704 {
10705 	unsigned long flags;
10706 	LIST_HEAD(list);
10707 
10708 	if (!has_addr_filter(event))
10709 		return;
10710 
10711 	/* don't bother with children, they don't have their own filters */
10712 	if (event->parent)
10713 		return;
10714 
10715 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10716 
10717 	list_splice_init(&event->addr_filters.list, &list);
10718 	if (head)
10719 		list_splice(head, &event->addr_filters.list);
10720 
10721 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10722 
10723 	free_filters_list(&list);
10724 }
10725 
10726 /*
10727  * Scan through mm's vmas and see if one of them matches the
10728  * @filter; if so, adjust filter's address range.
10729  * Called with mm::mmap_lock down for reading.
10730  */
10731 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10732 				   struct mm_struct *mm,
10733 				   struct perf_addr_filter_range *fr)
10734 {
10735 	struct vm_area_struct *vma;
10736 	VMA_ITERATOR(vmi, mm, 0);
10737 
10738 	for_each_vma(vmi, vma) {
10739 		if (!vma->vm_file)
10740 			continue;
10741 
10742 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10743 			return;
10744 	}
10745 }
10746 
10747 /*
10748  * Update event's address range filters based on the
10749  * task's existing mappings, if any.
10750  */
10751 static void perf_event_addr_filters_apply(struct perf_event *event)
10752 {
10753 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10754 	struct task_struct *task = READ_ONCE(event->ctx->task);
10755 	struct perf_addr_filter *filter;
10756 	struct mm_struct *mm = NULL;
10757 	unsigned int count = 0;
10758 	unsigned long flags;
10759 
10760 	/*
10761 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10762 	 * will stop on the parent's child_mutex that our caller is also holding
10763 	 */
10764 	if (task == TASK_TOMBSTONE)
10765 		return;
10766 
10767 	if (ifh->nr_file_filters) {
10768 		mm = get_task_mm(task);
10769 		if (!mm)
10770 			goto restart;
10771 
10772 		mmap_read_lock(mm);
10773 	}
10774 
10775 	raw_spin_lock_irqsave(&ifh->lock, flags);
10776 	list_for_each_entry(filter, &ifh->list, entry) {
10777 		if (filter->path.dentry) {
10778 			/*
10779 			 * Adjust base offset if the filter is associated to a
10780 			 * binary that needs to be mapped:
10781 			 */
10782 			event->addr_filter_ranges[count].start = 0;
10783 			event->addr_filter_ranges[count].size = 0;
10784 
10785 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10786 		} else {
10787 			event->addr_filter_ranges[count].start = filter->offset;
10788 			event->addr_filter_ranges[count].size  = filter->size;
10789 		}
10790 
10791 		count++;
10792 	}
10793 
10794 	event->addr_filters_gen++;
10795 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10796 
10797 	if (ifh->nr_file_filters) {
10798 		mmap_read_unlock(mm);
10799 
10800 		mmput(mm);
10801 	}
10802 
10803 restart:
10804 	perf_event_stop(event, 1);
10805 }
10806 
10807 /*
10808  * Address range filtering: limiting the data to certain
10809  * instruction address ranges. Filters are ioctl()ed to us from
10810  * userspace as ascii strings.
10811  *
10812  * Filter string format:
10813  *
10814  * ACTION RANGE_SPEC
10815  * where ACTION is one of the
10816  *  * "filter": limit the trace to this region
10817  *  * "start": start tracing from this address
10818  *  * "stop": stop tracing at this address/region;
10819  * RANGE_SPEC is
10820  *  * for kernel addresses: <start address>[/<size>]
10821  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10822  *
10823  * if <size> is not specified or is zero, the range is treated as a single
10824  * address; not valid for ACTION=="filter".
10825  */
10826 enum {
10827 	IF_ACT_NONE = -1,
10828 	IF_ACT_FILTER,
10829 	IF_ACT_START,
10830 	IF_ACT_STOP,
10831 	IF_SRC_FILE,
10832 	IF_SRC_KERNEL,
10833 	IF_SRC_FILEADDR,
10834 	IF_SRC_KERNELADDR,
10835 };
10836 
10837 enum {
10838 	IF_STATE_ACTION = 0,
10839 	IF_STATE_SOURCE,
10840 	IF_STATE_END,
10841 };
10842 
10843 static const match_table_t if_tokens = {
10844 	{ IF_ACT_FILTER,	"filter" },
10845 	{ IF_ACT_START,		"start" },
10846 	{ IF_ACT_STOP,		"stop" },
10847 	{ IF_SRC_FILE,		"%u/%u@%s" },
10848 	{ IF_SRC_KERNEL,	"%u/%u" },
10849 	{ IF_SRC_FILEADDR,	"%u@%s" },
10850 	{ IF_SRC_KERNELADDR,	"%u" },
10851 	{ IF_ACT_NONE,		NULL },
10852 };
10853 
10854 /*
10855  * Address filter string parser
10856  */
10857 static int
10858 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10859 			     struct list_head *filters)
10860 {
10861 	struct perf_addr_filter *filter = NULL;
10862 	char *start, *orig, *filename = NULL;
10863 	substring_t args[MAX_OPT_ARGS];
10864 	int state = IF_STATE_ACTION, token;
10865 	unsigned int kernel = 0;
10866 	int ret = -EINVAL;
10867 
10868 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10869 	if (!fstr)
10870 		return -ENOMEM;
10871 
10872 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10873 		static const enum perf_addr_filter_action_t actions[] = {
10874 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10875 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10876 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10877 		};
10878 		ret = -EINVAL;
10879 
10880 		if (!*start)
10881 			continue;
10882 
10883 		/* filter definition begins */
10884 		if (state == IF_STATE_ACTION) {
10885 			filter = perf_addr_filter_new(event, filters);
10886 			if (!filter)
10887 				goto fail;
10888 		}
10889 
10890 		token = match_token(start, if_tokens, args);
10891 		switch (token) {
10892 		case IF_ACT_FILTER:
10893 		case IF_ACT_START:
10894 		case IF_ACT_STOP:
10895 			if (state != IF_STATE_ACTION)
10896 				goto fail;
10897 
10898 			filter->action = actions[token];
10899 			state = IF_STATE_SOURCE;
10900 			break;
10901 
10902 		case IF_SRC_KERNELADDR:
10903 		case IF_SRC_KERNEL:
10904 			kernel = 1;
10905 			fallthrough;
10906 
10907 		case IF_SRC_FILEADDR:
10908 		case IF_SRC_FILE:
10909 			if (state != IF_STATE_SOURCE)
10910 				goto fail;
10911 
10912 			*args[0].to = 0;
10913 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10914 			if (ret)
10915 				goto fail;
10916 
10917 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10918 				*args[1].to = 0;
10919 				ret = kstrtoul(args[1].from, 0, &filter->size);
10920 				if (ret)
10921 					goto fail;
10922 			}
10923 
10924 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10925 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10926 
10927 				kfree(filename);
10928 				filename = match_strdup(&args[fpos]);
10929 				if (!filename) {
10930 					ret = -ENOMEM;
10931 					goto fail;
10932 				}
10933 			}
10934 
10935 			state = IF_STATE_END;
10936 			break;
10937 
10938 		default:
10939 			goto fail;
10940 		}
10941 
10942 		/*
10943 		 * Filter definition is fully parsed, validate and install it.
10944 		 * Make sure that it doesn't contradict itself or the event's
10945 		 * attribute.
10946 		 */
10947 		if (state == IF_STATE_END) {
10948 			ret = -EINVAL;
10949 
10950 			/*
10951 			 * ACTION "filter" must have a non-zero length region
10952 			 * specified.
10953 			 */
10954 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10955 			    !filter->size)
10956 				goto fail;
10957 
10958 			if (!kernel) {
10959 				if (!filename)
10960 					goto fail;
10961 
10962 				/*
10963 				 * For now, we only support file-based filters
10964 				 * in per-task events; doing so for CPU-wide
10965 				 * events requires additional context switching
10966 				 * trickery, since same object code will be
10967 				 * mapped at different virtual addresses in
10968 				 * different processes.
10969 				 */
10970 				ret = -EOPNOTSUPP;
10971 				if (!event->ctx->task)
10972 					goto fail;
10973 
10974 				/* look up the path and grab its inode */
10975 				ret = kern_path(filename, LOOKUP_FOLLOW,
10976 						&filter->path);
10977 				if (ret)
10978 					goto fail;
10979 
10980 				ret = -EINVAL;
10981 				if (!filter->path.dentry ||
10982 				    !S_ISREG(d_inode(filter->path.dentry)
10983 					     ->i_mode))
10984 					goto fail;
10985 
10986 				event->addr_filters.nr_file_filters++;
10987 			}
10988 
10989 			/* ready to consume more filters */
10990 			kfree(filename);
10991 			filename = NULL;
10992 			state = IF_STATE_ACTION;
10993 			filter = NULL;
10994 			kernel = 0;
10995 		}
10996 	}
10997 
10998 	if (state != IF_STATE_ACTION)
10999 		goto fail;
11000 
11001 	kfree(filename);
11002 	kfree(orig);
11003 
11004 	return 0;
11005 
11006 fail:
11007 	kfree(filename);
11008 	free_filters_list(filters);
11009 	kfree(orig);
11010 
11011 	return ret;
11012 }
11013 
11014 static int
11015 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11016 {
11017 	LIST_HEAD(filters);
11018 	int ret;
11019 
11020 	/*
11021 	 * Since this is called in perf_ioctl() path, we're already holding
11022 	 * ctx::mutex.
11023 	 */
11024 	lockdep_assert_held(&event->ctx->mutex);
11025 
11026 	if (WARN_ON_ONCE(event->parent))
11027 		return -EINVAL;
11028 
11029 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11030 	if (ret)
11031 		goto fail_clear_files;
11032 
11033 	ret = event->pmu->addr_filters_validate(&filters);
11034 	if (ret)
11035 		goto fail_free_filters;
11036 
11037 	/* remove existing filters, if any */
11038 	perf_addr_filters_splice(event, &filters);
11039 
11040 	/* install new filters */
11041 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11042 
11043 	return ret;
11044 
11045 fail_free_filters:
11046 	free_filters_list(&filters);
11047 
11048 fail_clear_files:
11049 	event->addr_filters.nr_file_filters = 0;
11050 
11051 	return ret;
11052 }
11053 
11054 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11055 {
11056 	int ret = -EINVAL;
11057 	char *filter_str;
11058 
11059 	filter_str = strndup_user(arg, PAGE_SIZE);
11060 	if (IS_ERR(filter_str))
11061 		return PTR_ERR(filter_str);
11062 
11063 #ifdef CONFIG_EVENT_TRACING
11064 	if (perf_event_is_tracing(event)) {
11065 		struct perf_event_context *ctx = event->ctx;
11066 
11067 		/*
11068 		 * Beware, here be dragons!!
11069 		 *
11070 		 * the tracepoint muck will deadlock against ctx->mutex, but
11071 		 * the tracepoint stuff does not actually need it. So
11072 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11073 		 * already have a reference on ctx.
11074 		 *
11075 		 * This can result in event getting moved to a different ctx,
11076 		 * but that does not affect the tracepoint state.
11077 		 */
11078 		mutex_unlock(&ctx->mutex);
11079 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11080 		mutex_lock(&ctx->mutex);
11081 	} else
11082 #endif
11083 	if (has_addr_filter(event))
11084 		ret = perf_event_set_addr_filter(event, filter_str);
11085 
11086 	kfree(filter_str);
11087 	return ret;
11088 }
11089 
11090 /*
11091  * hrtimer based swevent callback
11092  */
11093 
11094 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11095 {
11096 	enum hrtimer_restart ret = HRTIMER_RESTART;
11097 	struct perf_sample_data data;
11098 	struct pt_regs *regs;
11099 	struct perf_event *event;
11100 	u64 period;
11101 
11102 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11103 
11104 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11105 		return HRTIMER_NORESTART;
11106 
11107 	event->pmu->read(event);
11108 
11109 	perf_sample_data_init(&data, 0, event->hw.last_period);
11110 	regs = get_irq_regs();
11111 
11112 	if (regs && !perf_exclude_event(event, regs)) {
11113 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11114 			if (__perf_event_overflow(event, 1, &data, regs))
11115 				ret = HRTIMER_NORESTART;
11116 	}
11117 
11118 	period = max_t(u64, 10000, event->hw.sample_period);
11119 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11120 
11121 	return ret;
11122 }
11123 
11124 static void perf_swevent_start_hrtimer(struct perf_event *event)
11125 {
11126 	struct hw_perf_event *hwc = &event->hw;
11127 	s64 period;
11128 
11129 	if (!is_sampling_event(event))
11130 		return;
11131 
11132 	period = local64_read(&hwc->period_left);
11133 	if (period) {
11134 		if (period < 0)
11135 			period = 10000;
11136 
11137 		local64_set(&hwc->period_left, 0);
11138 	} else {
11139 		period = max_t(u64, 10000, hwc->sample_period);
11140 	}
11141 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11142 		      HRTIMER_MODE_REL_PINNED_HARD);
11143 }
11144 
11145 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11146 {
11147 	struct hw_perf_event *hwc = &event->hw;
11148 
11149 	if (is_sampling_event(event)) {
11150 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11151 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11152 
11153 		hrtimer_cancel(&hwc->hrtimer);
11154 	}
11155 }
11156 
11157 static void perf_swevent_init_hrtimer(struct perf_event *event)
11158 {
11159 	struct hw_perf_event *hwc = &event->hw;
11160 
11161 	if (!is_sampling_event(event))
11162 		return;
11163 
11164 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11165 	hwc->hrtimer.function = perf_swevent_hrtimer;
11166 
11167 	/*
11168 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11169 	 * mapping and avoid the whole period adjust feedback stuff.
11170 	 */
11171 	if (event->attr.freq) {
11172 		long freq = event->attr.sample_freq;
11173 
11174 		event->attr.sample_period = NSEC_PER_SEC / freq;
11175 		hwc->sample_period = event->attr.sample_period;
11176 		local64_set(&hwc->period_left, hwc->sample_period);
11177 		hwc->last_period = hwc->sample_period;
11178 		event->attr.freq = 0;
11179 	}
11180 }
11181 
11182 /*
11183  * Software event: cpu wall time clock
11184  */
11185 
11186 static void cpu_clock_event_update(struct perf_event *event)
11187 {
11188 	s64 prev;
11189 	u64 now;
11190 
11191 	now = local_clock();
11192 	prev = local64_xchg(&event->hw.prev_count, now);
11193 	local64_add(now - prev, &event->count);
11194 }
11195 
11196 static void cpu_clock_event_start(struct perf_event *event, int flags)
11197 {
11198 	local64_set(&event->hw.prev_count, local_clock());
11199 	perf_swevent_start_hrtimer(event);
11200 }
11201 
11202 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11203 {
11204 	perf_swevent_cancel_hrtimer(event);
11205 	cpu_clock_event_update(event);
11206 }
11207 
11208 static int cpu_clock_event_add(struct perf_event *event, int flags)
11209 {
11210 	if (flags & PERF_EF_START)
11211 		cpu_clock_event_start(event, flags);
11212 	perf_event_update_userpage(event);
11213 
11214 	return 0;
11215 }
11216 
11217 static void cpu_clock_event_del(struct perf_event *event, int flags)
11218 {
11219 	cpu_clock_event_stop(event, flags);
11220 }
11221 
11222 static void cpu_clock_event_read(struct perf_event *event)
11223 {
11224 	cpu_clock_event_update(event);
11225 }
11226 
11227 static int cpu_clock_event_init(struct perf_event *event)
11228 {
11229 	if (event->attr.type != perf_cpu_clock.type)
11230 		return -ENOENT;
11231 
11232 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11233 		return -ENOENT;
11234 
11235 	/*
11236 	 * no branch sampling for software events
11237 	 */
11238 	if (has_branch_stack(event))
11239 		return -EOPNOTSUPP;
11240 
11241 	perf_swevent_init_hrtimer(event);
11242 
11243 	return 0;
11244 }
11245 
11246 static struct pmu perf_cpu_clock = {
11247 	.task_ctx_nr	= perf_sw_context,
11248 
11249 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11250 	.dev		= PMU_NULL_DEV,
11251 
11252 	.event_init	= cpu_clock_event_init,
11253 	.add		= cpu_clock_event_add,
11254 	.del		= cpu_clock_event_del,
11255 	.start		= cpu_clock_event_start,
11256 	.stop		= cpu_clock_event_stop,
11257 	.read		= cpu_clock_event_read,
11258 };
11259 
11260 /*
11261  * Software event: task time clock
11262  */
11263 
11264 static void task_clock_event_update(struct perf_event *event, u64 now)
11265 {
11266 	u64 prev;
11267 	s64 delta;
11268 
11269 	prev = local64_xchg(&event->hw.prev_count, now);
11270 	delta = now - prev;
11271 	local64_add(delta, &event->count);
11272 }
11273 
11274 static void task_clock_event_start(struct perf_event *event, int flags)
11275 {
11276 	local64_set(&event->hw.prev_count, event->ctx->time);
11277 	perf_swevent_start_hrtimer(event);
11278 }
11279 
11280 static void task_clock_event_stop(struct perf_event *event, int flags)
11281 {
11282 	perf_swevent_cancel_hrtimer(event);
11283 	task_clock_event_update(event, event->ctx->time);
11284 }
11285 
11286 static int task_clock_event_add(struct perf_event *event, int flags)
11287 {
11288 	if (flags & PERF_EF_START)
11289 		task_clock_event_start(event, flags);
11290 	perf_event_update_userpage(event);
11291 
11292 	return 0;
11293 }
11294 
11295 static void task_clock_event_del(struct perf_event *event, int flags)
11296 {
11297 	task_clock_event_stop(event, PERF_EF_UPDATE);
11298 }
11299 
11300 static void task_clock_event_read(struct perf_event *event)
11301 {
11302 	u64 now = perf_clock();
11303 	u64 delta = now - event->ctx->timestamp;
11304 	u64 time = event->ctx->time + delta;
11305 
11306 	task_clock_event_update(event, time);
11307 }
11308 
11309 static int task_clock_event_init(struct perf_event *event)
11310 {
11311 	if (event->attr.type != perf_task_clock.type)
11312 		return -ENOENT;
11313 
11314 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11315 		return -ENOENT;
11316 
11317 	/*
11318 	 * no branch sampling for software events
11319 	 */
11320 	if (has_branch_stack(event))
11321 		return -EOPNOTSUPP;
11322 
11323 	perf_swevent_init_hrtimer(event);
11324 
11325 	return 0;
11326 }
11327 
11328 static struct pmu perf_task_clock = {
11329 	.task_ctx_nr	= perf_sw_context,
11330 
11331 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11332 	.dev		= PMU_NULL_DEV,
11333 
11334 	.event_init	= task_clock_event_init,
11335 	.add		= task_clock_event_add,
11336 	.del		= task_clock_event_del,
11337 	.start		= task_clock_event_start,
11338 	.stop		= task_clock_event_stop,
11339 	.read		= task_clock_event_read,
11340 };
11341 
11342 static void perf_pmu_nop_void(struct pmu *pmu)
11343 {
11344 }
11345 
11346 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11347 {
11348 }
11349 
11350 static int perf_pmu_nop_int(struct pmu *pmu)
11351 {
11352 	return 0;
11353 }
11354 
11355 static int perf_event_nop_int(struct perf_event *event, u64 value)
11356 {
11357 	return 0;
11358 }
11359 
11360 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11361 
11362 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11363 {
11364 	__this_cpu_write(nop_txn_flags, flags);
11365 
11366 	if (flags & ~PERF_PMU_TXN_ADD)
11367 		return;
11368 
11369 	perf_pmu_disable(pmu);
11370 }
11371 
11372 static int perf_pmu_commit_txn(struct pmu *pmu)
11373 {
11374 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11375 
11376 	__this_cpu_write(nop_txn_flags, 0);
11377 
11378 	if (flags & ~PERF_PMU_TXN_ADD)
11379 		return 0;
11380 
11381 	perf_pmu_enable(pmu);
11382 	return 0;
11383 }
11384 
11385 static void perf_pmu_cancel_txn(struct pmu *pmu)
11386 {
11387 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11388 
11389 	__this_cpu_write(nop_txn_flags, 0);
11390 
11391 	if (flags & ~PERF_PMU_TXN_ADD)
11392 		return;
11393 
11394 	perf_pmu_enable(pmu);
11395 }
11396 
11397 static int perf_event_idx_default(struct perf_event *event)
11398 {
11399 	return 0;
11400 }
11401 
11402 static void free_pmu_context(struct pmu *pmu)
11403 {
11404 	free_percpu(pmu->cpu_pmu_context);
11405 }
11406 
11407 /*
11408  * Let userspace know that this PMU supports address range filtering:
11409  */
11410 static ssize_t nr_addr_filters_show(struct device *dev,
11411 				    struct device_attribute *attr,
11412 				    char *page)
11413 {
11414 	struct pmu *pmu = dev_get_drvdata(dev);
11415 
11416 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11417 }
11418 DEVICE_ATTR_RO(nr_addr_filters);
11419 
11420 static struct idr pmu_idr;
11421 
11422 static ssize_t
11423 type_show(struct device *dev, struct device_attribute *attr, char *page)
11424 {
11425 	struct pmu *pmu = dev_get_drvdata(dev);
11426 
11427 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11428 }
11429 static DEVICE_ATTR_RO(type);
11430 
11431 static ssize_t
11432 perf_event_mux_interval_ms_show(struct device *dev,
11433 				struct device_attribute *attr,
11434 				char *page)
11435 {
11436 	struct pmu *pmu = dev_get_drvdata(dev);
11437 
11438 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11439 }
11440 
11441 static DEFINE_MUTEX(mux_interval_mutex);
11442 
11443 static ssize_t
11444 perf_event_mux_interval_ms_store(struct device *dev,
11445 				 struct device_attribute *attr,
11446 				 const char *buf, size_t count)
11447 {
11448 	struct pmu *pmu = dev_get_drvdata(dev);
11449 	int timer, cpu, ret;
11450 
11451 	ret = kstrtoint(buf, 0, &timer);
11452 	if (ret)
11453 		return ret;
11454 
11455 	if (timer < 1)
11456 		return -EINVAL;
11457 
11458 	/* same value, noting to do */
11459 	if (timer == pmu->hrtimer_interval_ms)
11460 		return count;
11461 
11462 	mutex_lock(&mux_interval_mutex);
11463 	pmu->hrtimer_interval_ms = timer;
11464 
11465 	/* update all cpuctx for this PMU */
11466 	cpus_read_lock();
11467 	for_each_online_cpu(cpu) {
11468 		struct perf_cpu_pmu_context *cpc;
11469 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11470 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11471 
11472 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11473 	}
11474 	cpus_read_unlock();
11475 	mutex_unlock(&mux_interval_mutex);
11476 
11477 	return count;
11478 }
11479 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11480 
11481 static struct attribute *pmu_dev_attrs[] = {
11482 	&dev_attr_type.attr,
11483 	&dev_attr_perf_event_mux_interval_ms.attr,
11484 	&dev_attr_nr_addr_filters.attr,
11485 	NULL,
11486 };
11487 
11488 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11489 {
11490 	struct device *dev = kobj_to_dev(kobj);
11491 	struct pmu *pmu = dev_get_drvdata(dev);
11492 
11493 	if (n == 2 && !pmu->nr_addr_filters)
11494 		return 0;
11495 
11496 	return a->mode;
11497 }
11498 
11499 static struct attribute_group pmu_dev_attr_group = {
11500 	.is_visible = pmu_dev_is_visible,
11501 	.attrs = pmu_dev_attrs,
11502 };
11503 
11504 static const struct attribute_group *pmu_dev_groups[] = {
11505 	&pmu_dev_attr_group,
11506 	NULL,
11507 };
11508 
11509 static int pmu_bus_running;
11510 static struct bus_type pmu_bus = {
11511 	.name		= "event_source",
11512 	.dev_groups	= pmu_dev_groups,
11513 };
11514 
11515 static void pmu_dev_release(struct device *dev)
11516 {
11517 	kfree(dev);
11518 }
11519 
11520 static int pmu_dev_alloc(struct pmu *pmu)
11521 {
11522 	int ret = -ENOMEM;
11523 
11524 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11525 	if (!pmu->dev)
11526 		goto out;
11527 
11528 	pmu->dev->groups = pmu->attr_groups;
11529 	device_initialize(pmu->dev);
11530 
11531 	dev_set_drvdata(pmu->dev, pmu);
11532 	pmu->dev->bus = &pmu_bus;
11533 	pmu->dev->parent = pmu->parent;
11534 	pmu->dev->release = pmu_dev_release;
11535 
11536 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11537 	if (ret)
11538 		goto free_dev;
11539 
11540 	ret = device_add(pmu->dev);
11541 	if (ret)
11542 		goto free_dev;
11543 
11544 	if (pmu->attr_update) {
11545 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11546 		if (ret)
11547 			goto del_dev;
11548 	}
11549 
11550 out:
11551 	return ret;
11552 
11553 del_dev:
11554 	device_del(pmu->dev);
11555 
11556 free_dev:
11557 	put_device(pmu->dev);
11558 	goto out;
11559 }
11560 
11561 static struct lock_class_key cpuctx_mutex;
11562 static struct lock_class_key cpuctx_lock;
11563 
11564 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11565 {
11566 	int cpu, ret, max = PERF_TYPE_MAX;
11567 
11568 	mutex_lock(&pmus_lock);
11569 	ret = -ENOMEM;
11570 	pmu->pmu_disable_count = alloc_percpu(int);
11571 	if (!pmu->pmu_disable_count)
11572 		goto unlock;
11573 
11574 	pmu->type = -1;
11575 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11576 		ret = -EINVAL;
11577 		goto free_pdc;
11578 	}
11579 
11580 	pmu->name = name;
11581 
11582 	if (type >= 0)
11583 		max = type;
11584 
11585 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11586 	if (ret < 0)
11587 		goto free_pdc;
11588 
11589 	WARN_ON(type >= 0 && ret != type);
11590 
11591 	type = ret;
11592 	pmu->type = type;
11593 
11594 	if (pmu_bus_running && !pmu->dev) {
11595 		ret = pmu_dev_alloc(pmu);
11596 		if (ret)
11597 			goto free_idr;
11598 	}
11599 
11600 	ret = -ENOMEM;
11601 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11602 	if (!pmu->cpu_pmu_context)
11603 		goto free_dev;
11604 
11605 	for_each_possible_cpu(cpu) {
11606 		struct perf_cpu_pmu_context *cpc;
11607 
11608 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11609 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11610 		__perf_mux_hrtimer_init(cpc, cpu);
11611 	}
11612 
11613 	if (!pmu->start_txn) {
11614 		if (pmu->pmu_enable) {
11615 			/*
11616 			 * If we have pmu_enable/pmu_disable calls, install
11617 			 * transaction stubs that use that to try and batch
11618 			 * hardware accesses.
11619 			 */
11620 			pmu->start_txn  = perf_pmu_start_txn;
11621 			pmu->commit_txn = perf_pmu_commit_txn;
11622 			pmu->cancel_txn = perf_pmu_cancel_txn;
11623 		} else {
11624 			pmu->start_txn  = perf_pmu_nop_txn;
11625 			pmu->commit_txn = perf_pmu_nop_int;
11626 			pmu->cancel_txn = perf_pmu_nop_void;
11627 		}
11628 	}
11629 
11630 	if (!pmu->pmu_enable) {
11631 		pmu->pmu_enable  = perf_pmu_nop_void;
11632 		pmu->pmu_disable = perf_pmu_nop_void;
11633 	}
11634 
11635 	if (!pmu->check_period)
11636 		pmu->check_period = perf_event_nop_int;
11637 
11638 	if (!pmu->event_idx)
11639 		pmu->event_idx = perf_event_idx_default;
11640 
11641 	list_add_rcu(&pmu->entry, &pmus);
11642 	atomic_set(&pmu->exclusive_cnt, 0);
11643 	ret = 0;
11644 unlock:
11645 	mutex_unlock(&pmus_lock);
11646 
11647 	return ret;
11648 
11649 free_dev:
11650 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11651 		device_del(pmu->dev);
11652 		put_device(pmu->dev);
11653 	}
11654 
11655 free_idr:
11656 	idr_remove(&pmu_idr, pmu->type);
11657 
11658 free_pdc:
11659 	free_percpu(pmu->pmu_disable_count);
11660 	goto unlock;
11661 }
11662 EXPORT_SYMBOL_GPL(perf_pmu_register);
11663 
11664 void perf_pmu_unregister(struct pmu *pmu)
11665 {
11666 	mutex_lock(&pmus_lock);
11667 	list_del_rcu(&pmu->entry);
11668 
11669 	/*
11670 	 * We dereference the pmu list under both SRCU and regular RCU, so
11671 	 * synchronize against both of those.
11672 	 */
11673 	synchronize_srcu(&pmus_srcu);
11674 	synchronize_rcu();
11675 
11676 	free_percpu(pmu->pmu_disable_count);
11677 	idr_remove(&pmu_idr, pmu->type);
11678 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11679 		if (pmu->nr_addr_filters)
11680 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11681 		device_del(pmu->dev);
11682 		put_device(pmu->dev);
11683 	}
11684 	free_pmu_context(pmu);
11685 	mutex_unlock(&pmus_lock);
11686 }
11687 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11688 
11689 static inline bool has_extended_regs(struct perf_event *event)
11690 {
11691 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11692 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11693 }
11694 
11695 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11696 {
11697 	struct perf_event_context *ctx = NULL;
11698 	int ret;
11699 
11700 	if (!try_module_get(pmu->module))
11701 		return -ENODEV;
11702 
11703 	/*
11704 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11705 	 * for example, validate if the group fits on the PMU. Therefore,
11706 	 * if this is a sibling event, acquire the ctx->mutex to protect
11707 	 * the sibling_list.
11708 	 */
11709 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11710 		/*
11711 		 * This ctx->mutex can nest when we're called through
11712 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11713 		 */
11714 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11715 						 SINGLE_DEPTH_NESTING);
11716 		BUG_ON(!ctx);
11717 	}
11718 
11719 	event->pmu = pmu;
11720 	ret = pmu->event_init(event);
11721 
11722 	if (ctx)
11723 		perf_event_ctx_unlock(event->group_leader, ctx);
11724 
11725 	if (!ret) {
11726 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11727 		    has_extended_regs(event))
11728 			ret = -EOPNOTSUPP;
11729 
11730 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11731 		    event_has_any_exclude_flag(event))
11732 			ret = -EINVAL;
11733 
11734 		if (ret && event->destroy)
11735 			event->destroy(event);
11736 	}
11737 
11738 	if (ret)
11739 		module_put(pmu->module);
11740 
11741 	return ret;
11742 }
11743 
11744 static struct pmu *perf_init_event(struct perf_event *event)
11745 {
11746 	bool extended_type = false;
11747 	int idx, type, ret;
11748 	struct pmu *pmu;
11749 
11750 	idx = srcu_read_lock(&pmus_srcu);
11751 
11752 	/*
11753 	 * Save original type before calling pmu->event_init() since certain
11754 	 * pmus overwrites event->attr.type to forward event to another pmu.
11755 	 */
11756 	event->orig_type = event->attr.type;
11757 
11758 	/* Try parent's PMU first: */
11759 	if (event->parent && event->parent->pmu) {
11760 		pmu = event->parent->pmu;
11761 		ret = perf_try_init_event(pmu, event);
11762 		if (!ret)
11763 			goto unlock;
11764 	}
11765 
11766 	/*
11767 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11768 	 * are often aliases for PERF_TYPE_RAW.
11769 	 */
11770 	type = event->attr.type;
11771 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11772 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11773 		if (!type) {
11774 			type = PERF_TYPE_RAW;
11775 		} else {
11776 			extended_type = true;
11777 			event->attr.config &= PERF_HW_EVENT_MASK;
11778 		}
11779 	}
11780 
11781 again:
11782 	rcu_read_lock();
11783 	pmu = idr_find(&pmu_idr, type);
11784 	rcu_read_unlock();
11785 	if (pmu) {
11786 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11787 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11788 			goto fail;
11789 
11790 		ret = perf_try_init_event(pmu, event);
11791 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11792 			type = event->attr.type;
11793 			goto again;
11794 		}
11795 
11796 		if (ret)
11797 			pmu = ERR_PTR(ret);
11798 
11799 		goto unlock;
11800 	}
11801 
11802 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11803 		ret = perf_try_init_event(pmu, event);
11804 		if (!ret)
11805 			goto unlock;
11806 
11807 		if (ret != -ENOENT) {
11808 			pmu = ERR_PTR(ret);
11809 			goto unlock;
11810 		}
11811 	}
11812 fail:
11813 	pmu = ERR_PTR(-ENOENT);
11814 unlock:
11815 	srcu_read_unlock(&pmus_srcu, idx);
11816 
11817 	return pmu;
11818 }
11819 
11820 static void attach_sb_event(struct perf_event *event)
11821 {
11822 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11823 
11824 	raw_spin_lock(&pel->lock);
11825 	list_add_rcu(&event->sb_list, &pel->list);
11826 	raw_spin_unlock(&pel->lock);
11827 }
11828 
11829 /*
11830  * We keep a list of all !task (and therefore per-cpu) events
11831  * that need to receive side-band records.
11832  *
11833  * This avoids having to scan all the various PMU per-cpu contexts
11834  * looking for them.
11835  */
11836 static void account_pmu_sb_event(struct perf_event *event)
11837 {
11838 	if (is_sb_event(event))
11839 		attach_sb_event(event);
11840 }
11841 
11842 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11843 static void account_freq_event_nohz(void)
11844 {
11845 #ifdef CONFIG_NO_HZ_FULL
11846 	/* Lock so we don't race with concurrent unaccount */
11847 	spin_lock(&nr_freq_lock);
11848 	if (atomic_inc_return(&nr_freq_events) == 1)
11849 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11850 	spin_unlock(&nr_freq_lock);
11851 #endif
11852 }
11853 
11854 static void account_freq_event(void)
11855 {
11856 	if (tick_nohz_full_enabled())
11857 		account_freq_event_nohz();
11858 	else
11859 		atomic_inc(&nr_freq_events);
11860 }
11861 
11862 
11863 static void account_event(struct perf_event *event)
11864 {
11865 	bool inc = false;
11866 
11867 	if (event->parent)
11868 		return;
11869 
11870 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11871 		inc = true;
11872 	if (event->attr.mmap || event->attr.mmap_data)
11873 		atomic_inc(&nr_mmap_events);
11874 	if (event->attr.build_id)
11875 		atomic_inc(&nr_build_id_events);
11876 	if (event->attr.comm)
11877 		atomic_inc(&nr_comm_events);
11878 	if (event->attr.namespaces)
11879 		atomic_inc(&nr_namespaces_events);
11880 	if (event->attr.cgroup)
11881 		atomic_inc(&nr_cgroup_events);
11882 	if (event->attr.task)
11883 		atomic_inc(&nr_task_events);
11884 	if (event->attr.freq)
11885 		account_freq_event();
11886 	if (event->attr.context_switch) {
11887 		atomic_inc(&nr_switch_events);
11888 		inc = true;
11889 	}
11890 	if (has_branch_stack(event))
11891 		inc = true;
11892 	if (is_cgroup_event(event))
11893 		inc = true;
11894 	if (event->attr.ksymbol)
11895 		atomic_inc(&nr_ksymbol_events);
11896 	if (event->attr.bpf_event)
11897 		atomic_inc(&nr_bpf_events);
11898 	if (event->attr.text_poke)
11899 		atomic_inc(&nr_text_poke_events);
11900 
11901 	if (inc) {
11902 		/*
11903 		 * We need the mutex here because static_branch_enable()
11904 		 * must complete *before* the perf_sched_count increment
11905 		 * becomes visible.
11906 		 */
11907 		if (atomic_inc_not_zero(&perf_sched_count))
11908 			goto enabled;
11909 
11910 		mutex_lock(&perf_sched_mutex);
11911 		if (!atomic_read(&perf_sched_count)) {
11912 			static_branch_enable(&perf_sched_events);
11913 			/*
11914 			 * Guarantee that all CPUs observe they key change and
11915 			 * call the perf scheduling hooks before proceeding to
11916 			 * install events that need them.
11917 			 */
11918 			synchronize_rcu();
11919 		}
11920 		/*
11921 		 * Now that we have waited for the sync_sched(), allow further
11922 		 * increments to by-pass the mutex.
11923 		 */
11924 		atomic_inc(&perf_sched_count);
11925 		mutex_unlock(&perf_sched_mutex);
11926 	}
11927 enabled:
11928 
11929 	account_pmu_sb_event(event);
11930 }
11931 
11932 /*
11933  * Allocate and initialize an event structure
11934  */
11935 static struct perf_event *
11936 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11937 		 struct task_struct *task,
11938 		 struct perf_event *group_leader,
11939 		 struct perf_event *parent_event,
11940 		 perf_overflow_handler_t overflow_handler,
11941 		 void *context, int cgroup_fd)
11942 {
11943 	struct pmu *pmu;
11944 	struct perf_event *event;
11945 	struct hw_perf_event *hwc;
11946 	long err = -EINVAL;
11947 	int node;
11948 
11949 	if ((unsigned)cpu >= nr_cpu_ids) {
11950 		if (!task || cpu != -1)
11951 			return ERR_PTR(-EINVAL);
11952 	}
11953 	if (attr->sigtrap && !task) {
11954 		/* Requires a task: avoid signalling random tasks. */
11955 		return ERR_PTR(-EINVAL);
11956 	}
11957 
11958 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11959 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11960 				      node);
11961 	if (!event)
11962 		return ERR_PTR(-ENOMEM);
11963 
11964 	/*
11965 	 * Single events are their own group leaders, with an
11966 	 * empty sibling list:
11967 	 */
11968 	if (!group_leader)
11969 		group_leader = event;
11970 
11971 	mutex_init(&event->child_mutex);
11972 	INIT_LIST_HEAD(&event->child_list);
11973 
11974 	INIT_LIST_HEAD(&event->event_entry);
11975 	INIT_LIST_HEAD(&event->sibling_list);
11976 	INIT_LIST_HEAD(&event->active_list);
11977 	init_event_group(event);
11978 	INIT_LIST_HEAD(&event->rb_entry);
11979 	INIT_LIST_HEAD(&event->active_entry);
11980 	INIT_LIST_HEAD(&event->addr_filters.list);
11981 	INIT_HLIST_NODE(&event->hlist_entry);
11982 
11983 
11984 	init_waitqueue_head(&event->waitq);
11985 	init_irq_work(&event->pending_irq, perf_pending_irq);
11986 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
11987 	init_task_work(&event->pending_task, perf_pending_task);
11988 	rcuwait_init(&event->pending_work_wait);
11989 
11990 	mutex_init(&event->mmap_mutex);
11991 	raw_spin_lock_init(&event->addr_filters.lock);
11992 
11993 	atomic_long_set(&event->refcount, 1);
11994 	event->cpu		= cpu;
11995 	event->attr		= *attr;
11996 	event->group_leader	= group_leader;
11997 	event->pmu		= NULL;
11998 	event->oncpu		= -1;
11999 
12000 	event->parent		= parent_event;
12001 
12002 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12003 	event->id		= atomic64_inc_return(&perf_event_id);
12004 
12005 	event->state		= PERF_EVENT_STATE_INACTIVE;
12006 
12007 	if (parent_event)
12008 		event->event_caps = parent_event->event_caps;
12009 
12010 	if (task) {
12011 		event->attach_state = PERF_ATTACH_TASK;
12012 		/*
12013 		 * XXX pmu::event_init needs to know what task to account to
12014 		 * and we cannot use the ctx information because we need the
12015 		 * pmu before we get a ctx.
12016 		 */
12017 		event->hw.target = get_task_struct(task);
12018 	}
12019 
12020 	event->clock = &local_clock;
12021 	if (parent_event)
12022 		event->clock = parent_event->clock;
12023 
12024 	if (!overflow_handler && parent_event) {
12025 		overflow_handler = parent_event->overflow_handler;
12026 		context = parent_event->overflow_handler_context;
12027 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12028 		if (parent_event->prog) {
12029 			struct bpf_prog *prog = parent_event->prog;
12030 
12031 			bpf_prog_inc(prog);
12032 			event->prog = prog;
12033 		}
12034 #endif
12035 	}
12036 
12037 	if (overflow_handler) {
12038 		event->overflow_handler	= overflow_handler;
12039 		event->overflow_handler_context = context;
12040 	} else if (is_write_backward(event)){
12041 		event->overflow_handler = perf_event_output_backward;
12042 		event->overflow_handler_context = NULL;
12043 	} else {
12044 		event->overflow_handler = perf_event_output_forward;
12045 		event->overflow_handler_context = NULL;
12046 	}
12047 
12048 	perf_event__state_init(event);
12049 
12050 	pmu = NULL;
12051 
12052 	hwc = &event->hw;
12053 	hwc->sample_period = attr->sample_period;
12054 	if (attr->freq && attr->sample_freq)
12055 		hwc->sample_period = 1;
12056 	hwc->last_period = hwc->sample_period;
12057 
12058 	local64_set(&hwc->period_left, hwc->sample_period);
12059 
12060 	/*
12061 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12062 	 * See perf_output_read().
12063 	 */
12064 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12065 		goto err_ns;
12066 
12067 	if (!has_branch_stack(event))
12068 		event->attr.branch_sample_type = 0;
12069 
12070 	pmu = perf_init_event(event);
12071 	if (IS_ERR(pmu)) {
12072 		err = PTR_ERR(pmu);
12073 		goto err_ns;
12074 	}
12075 
12076 	/*
12077 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12078 	 * events (they don't make sense as the cgroup will be different
12079 	 * on other CPUs in the uncore mask).
12080 	 */
12081 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12082 		err = -EINVAL;
12083 		goto err_pmu;
12084 	}
12085 
12086 	if (event->attr.aux_output &&
12087 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12088 		err = -EOPNOTSUPP;
12089 		goto err_pmu;
12090 	}
12091 
12092 	if (cgroup_fd != -1) {
12093 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12094 		if (err)
12095 			goto err_pmu;
12096 	}
12097 
12098 	err = exclusive_event_init(event);
12099 	if (err)
12100 		goto err_pmu;
12101 
12102 	if (has_addr_filter(event)) {
12103 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12104 						    sizeof(struct perf_addr_filter_range),
12105 						    GFP_KERNEL);
12106 		if (!event->addr_filter_ranges) {
12107 			err = -ENOMEM;
12108 			goto err_per_task;
12109 		}
12110 
12111 		/*
12112 		 * Clone the parent's vma offsets: they are valid until exec()
12113 		 * even if the mm is not shared with the parent.
12114 		 */
12115 		if (event->parent) {
12116 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12117 
12118 			raw_spin_lock_irq(&ifh->lock);
12119 			memcpy(event->addr_filter_ranges,
12120 			       event->parent->addr_filter_ranges,
12121 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12122 			raw_spin_unlock_irq(&ifh->lock);
12123 		}
12124 
12125 		/* force hw sync on the address filters */
12126 		event->addr_filters_gen = 1;
12127 	}
12128 
12129 	if (!event->parent) {
12130 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12131 			err = get_callchain_buffers(attr->sample_max_stack);
12132 			if (err)
12133 				goto err_addr_filters;
12134 		}
12135 	}
12136 
12137 	err = security_perf_event_alloc(event);
12138 	if (err)
12139 		goto err_callchain_buffer;
12140 
12141 	/* symmetric to unaccount_event() in _free_event() */
12142 	account_event(event);
12143 
12144 	return event;
12145 
12146 err_callchain_buffer:
12147 	if (!event->parent) {
12148 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12149 			put_callchain_buffers();
12150 	}
12151 err_addr_filters:
12152 	kfree(event->addr_filter_ranges);
12153 
12154 err_per_task:
12155 	exclusive_event_destroy(event);
12156 
12157 err_pmu:
12158 	if (is_cgroup_event(event))
12159 		perf_detach_cgroup(event);
12160 	if (event->destroy)
12161 		event->destroy(event);
12162 	module_put(pmu->module);
12163 err_ns:
12164 	if (event->hw.target)
12165 		put_task_struct(event->hw.target);
12166 	call_rcu(&event->rcu_head, free_event_rcu);
12167 
12168 	return ERR_PTR(err);
12169 }
12170 
12171 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12172 			  struct perf_event_attr *attr)
12173 {
12174 	u32 size;
12175 	int ret;
12176 
12177 	/* Zero the full structure, so that a short copy will be nice. */
12178 	memset(attr, 0, sizeof(*attr));
12179 
12180 	ret = get_user(size, &uattr->size);
12181 	if (ret)
12182 		return ret;
12183 
12184 	/* ABI compatibility quirk: */
12185 	if (!size)
12186 		size = PERF_ATTR_SIZE_VER0;
12187 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12188 		goto err_size;
12189 
12190 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12191 	if (ret) {
12192 		if (ret == -E2BIG)
12193 			goto err_size;
12194 		return ret;
12195 	}
12196 
12197 	attr->size = size;
12198 
12199 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12200 		return -EINVAL;
12201 
12202 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12203 		return -EINVAL;
12204 
12205 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12206 		return -EINVAL;
12207 
12208 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12209 		u64 mask = attr->branch_sample_type;
12210 
12211 		/* only using defined bits */
12212 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12213 			return -EINVAL;
12214 
12215 		/* at least one branch bit must be set */
12216 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12217 			return -EINVAL;
12218 
12219 		/* propagate priv level, when not set for branch */
12220 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12221 
12222 			/* exclude_kernel checked on syscall entry */
12223 			if (!attr->exclude_kernel)
12224 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12225 
12226 			if (!attr->exclude_user)
12227 				mask |= PERF_SAMPLE_BRANCH_USER;
12228 
12229 			if (!attr->exclude_hv)
12230 				mask |= PERF_SAMPLE_BRANCH_HV;
12231 			/*
12232 			 * adjust user setting (for HW filter setup)
12233 			 */
12234 			attr->branch_sample_type = mask;
12235 		}
12236 		/* privileged levels capture (kernel, hv): check permissions */
12237 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12238 			ret = perf_allow_kernel(attr);
12239 			if (ret)
12240 				return ret;
12241 		}
12242 	}
12243 
12244 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12245 		ret = perf_reg_validate(attr->sample_regs_user);
12246 		if (ret)
12247 			return ret;
12248 	}
12249 
12250 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12251 		if (!arch_perf_have_user_stack_dump())
12252 			return -ENOSYS;
12253 
12254 		/*
12255 		 * We have __u32 type for the size, but so far
12256 		 * we can only use __u16 as maximum due to the
12257 		 * __u16 sample size limit.
12258 		 */
12259 		if (attr->sample_stack_user >= USHRT_MAX)
12260 			return -EINVAL;
12261 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12262 			return -EINVAL;
12263 	}
12264 
12265 	if (!attr->sample_max_stack)
12266 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12267 
12268 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12269 		ret = perf_reg_validate(attr->sample_regs_intr);
12270 
12271 #ifndef CONFIG_CGROUP_PERF
12272 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12273 		return -EINVAL;
12274 #endif
12275 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12276 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12277 		return -EINVAL;
12278 
12279 	if (!attr->inherit && attr->inherit_thread)
12280 		return -EINVAL;
12281 
12282 	if (attr->remove_on_exec && attr->enable_on_exec)
12283 		return -EINVAL;
12284 
12285 	if (attr->sigtrap && !attr->remove_on_exec)
12286 		return -EINVAL;
12287 
12288 out:
12289 	return ret;
12290 
12291 err_size:
12292 	put_user(sizeof(*attr), &uattr->size);
12293 	ret = -E2BIG;
12294 	goto out;
12295 }
12296 
12297 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12298 {
12299 	if (b < a)
12300 		swap(a, b);
12301 
12302 	mutex_lock(a);
12303 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12304 }
12305 
12306 static int
12307 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12308 {
12309 	struct perf_buffer *rb = NULL;
12310 	int ret = -EINVAL;
12311 
12312 	if (!output_event) {
12313 		mutex_lock(&event->mmap_mutex);
12314 		goto set;
12315 	}
12316 
12317 	/* don't allow circular references */
12318 	if (event == output_event)
12319 		goto out;
12320 
12321 	/*
12322 	 * Don't allow cross-cpu buffers
12323 	 */
12324 	if (output_event->cpu != event->cpu)
12325 		goto out;
12326 
12327 	/*
12328 	 * If its not a per-cpu rb, it must be the same task.
12329 	 */
12330 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12331 		goto out;
12332 
12333 	/*
12334 	 * Mixing clocks in the same buffer is trouble you don't need.
12335 	 */
12336 	if (output_event->clock != event->clock)
12337 		goto out;
12338 
12339 	/*
12340 	 * Either writing ring buffer from beginning or from end.
12341 	 * Mixing is not allowed.
12342 	 */
12343 	if (is_write_backward(output_event) != is_write_backward(event))
12344 		goto out;
12345 
12346 	/*
12347 	 * If both events generate aux data, they must be on the same PMU
12348 	 */
12349 	if (has_aux(event) && has_aux(output_event) &&
12350 	    event->pmu != output_event->pmu)
12351 		goto out;
12352 
12353 	/*
12354 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12355 	 * output_event is already on rb->event_list, and the list iteration
12356 	 * restarts after every removal, it is guaranteed this new event is
12357 	 * observed *OR* if output_event is already removed, it's guaranteed we
12358 	 * observe !rb->mmap_count.
12359 	 */
12360 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12361 set:
12362 	/* Can't redirect output if we've got an active mmap() */
12363 	if (atomic_read(&event->mmap_count))
12364 		goto unlock;
12365 
12366 	if (output_event) {
12367 		/* get the rb we want to redirect to */
12368 		rb = ring_buffer_get(output_event);
12369 		if (!rb)
12370 			goto unlock;
12371 
12372 		/* did we race against perf_mmap_close() */
12373 		if (!atomic_read(&rb->mmap_count)) {
12374 			ring_buffer_put(rb);
12375 			goto unlock;
12376 		}
12377 	}
12378 
12379 	ring_buffer_attach(event, rb);
12380 
12381 	ret = 0;
12382 unlock:
12383 	mutex_unlock(&event->mmap_mutex);
12384 	if (output_event)
12385 		mutex_unlock(&output_event->mmap_mutex);
12386 
12387 out:
12388 	return ret;
12389 }
12390 
12391 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12392 {
12393 	bool nmi_safe = false;
12394 
12395 	switch (clk_id) {
12396 	case CLOCK_MONOTONIC:
12397 		event->clock = &ktime_get_mono_fast_ns;
12398 		nmi_safe = true;
12399 		break;
12400 
12401 	case CLOCK_MONOTONIC_RAW:
12402 		event->clock = &ktime_get_raw_fast_ns;
12403 		nmi_safe = true;
12404 		break;
12405 
12406 	case CLOCK_REALTIME:
12407 		event->clock = &ktime_get_real_ns;
12408 		break;
12409 
12410 	case CLOCK_BOOTTIME:
12411 		event->clock = &ktime_get_boottime_ns;
12412 		break;
12413 
12414 	case CLOCK_TAI:
12415 		event->clock = &ktime_get_clocktai_ns;
12416 		break;
12417 
12418 	default:
12419 		return -EINVAL;
12420 	}
12421 
12422 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12423 		return -EINVAL;
12424 
12425 	return 0;
12426 }
12427 
12428 static bool
12429 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12430 {
12431 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12432 	bool is_capable = perfmon_capable();
12433 
12434 	if (attr->sigtrap) {
12435 		/*
12436 		 * perf_event_attr::sigtrap sends signals to the other task.
12437 		 * Require the current task to also have CAP_KILL.
12438 		 */
12439 		rcu_read_lock();
12440 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12441 		rcu_read_unlock();
12442 
12443 		/*
12444 		 * If the required capabilities aren't available, checks for
12445 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12446 		 * can effectively change the target task.
12447 		 */
12448 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12449 	}
12450 
12451 	/*
12452 	 * Preserve ptrace permission check for backwards compatibility. The
12453 	 * ptrace check also includes checks that the current task and other
12454 	 * task have matching uids, and is therefore not done here explicitly.
12455 	 */
12456 	return is_capable || ptrace_may_access(task, ptrace_mode);
12457 }
12458 
12459 /**
12460  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12461  *
12462  * @attr_uptr:	event_id type attributes for monitoring/sampling
12463  * @pid:		target pid
12464  * @cpu:		target cpu
12465  * @group_fd:		group leader event fd
12466  * @flags:		perf event open flags
12467  */
12468 SYSCALL_DEFINE5(perf_event_open,
12469 		struct perf_event_attr __user *, attr_uptr,
12470 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12471 {
12472 	struct perf_event *group_leader = NULL, *output_event = NULL;
12473 	struct perf_event_pmu_context *pmu_ctx;
12474 	struct perf_event *event, *sibling;
12475 	struct perf_event_attr attr;
12476 	struct perf_event_context *ctx;
12477 	struct file *event_file = NULL;
12478 	struct fd group = {NULL, 0};
12479 	struct task_struct *task = NULL;
12480 	struct pmu *pmu;
12481 	int event_fd;
12482 	int move_group = 0;
12483 	int err;
12484 	int f_flags = O_RDWR;
12485 	int cgroup_fd = -1;
12486 
12487 	/* for future expandability... */
12488 	if (flags & ~PERF_FLAG_ALL)
12489 		return -EINVAL;
12490 
12491 	err = perf_copy_attr(attr_uptr, &attr);
12492 	if (err)
12493 		return err;
12494 
12495 	/* Do we allow access to perf_event_open(2) ? */
12496 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12497 	if (err)
12498 		return err;
12499 
12500 	if (!attr.exclude_kernel) {
12501 		err = perf_allow_kernel(&attr);
12502 		if (err)
12503 			return err;
12504 	}
12505 
12506 	if (attr.namespaces) {
12507 		if (!perfmon_capable())
12508 			return -EACCES;
12509 	}
12510 
12511 	if (attr.freq) {
12512 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12513 			return -EINVAL;
12514 	} else {
12515 		if (attr.sample_period & (1ULL << 63))
12516 			return -EINVAL;
12517 	}
12518 
12519 	/* Only privileged users can get physical addresses */
12520 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12521 		err = perf_allow_kernel(&attr);
12522 		if (err)
12523 			return err;
12524 	}
12525 
12526 	/* REGS_INTR can leak data, lockdown must prevent this */
12527 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12528 		err = security_locked_down(LOCKDOWN_PERF);
12529 		if (err)
12530 			return err;
12531 	}
12532 
12533 	/*
12534 	 * In cgroup mode, the pid argument is used to pass the fd
12535 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12536 	 * designates the cpu on which to monitor threads from that
12537 	 * cgroup.
12538 	 */
12539 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12540 		return -EINVAL;
12541 
12542 	if (flags & PERF_FLAG_FD_CLOEXEC)
12543 		f_flags |= O_CLOEXEC;
12544 
12545 	event_fd = get_unused_fd_flags(f_flags);
12546 	if (event_fd < 0)
12547 		return event_fd;
12548 
12549 	if (group_fd != -1) {
12550 		err = perf_fget_light(group_fd, &group);
12551 		if (err)
12552 			goto err_fd;
12553 		group_leader = group.file->private_data;
12554 		if (flags & PERF_FLAG_FD_OUTPUT)
12555 			output_event = group_leader;
12556 		if (flags & PERF_FLAG_FD_NO_GROUP)
12557 			group_leader = NULL;
12558 	}
12559 
12560 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12561 		task = find_lively_task_by_vpid(pid);
12562 		if (IS_ERR(task)) {
12563 			err = PTR_ERR(task);
12564 			goto err_group_fd;
12565 		}
12566 	}
12567 
12568 	if (task && group_leader &&
12569 	    group_leader->attr.inherit != attr.inherit) {
12570 		err = -EINVAL;
12571 		goto err_task;
12572 	}
12573 
12574 	if (flags & PERF_FLAG_PID_CGROUP)
12575 		cgroup_fd = pid;
12576 
12577 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12578 				 NULL, NULL, cgroup_fd);
12579 	if (IS_ERR(event)) {
12580 		err = PTR_ERR(event);
12581 		goto err_task;
12582 	}
12583 
12584 	if (is_sampling_event(event)) {
12585 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12586 			err = -EOPNOTSUPP;
12587 			goto err_alloc;
12588 		}
12589 	}
12590 
12591 	/*
12592 	 * Special case software events and allow them to be part of
12593 	 * any hardware group.
12594 	 */
12595 	pmu = event->pmu;
12596 
12597 	if (attr.use_clockid) {
12598 		err = perf_event_set_clock(event, attr.clockid);
12599 		if (err)
12600 			goto err_alloc;
12601 	}
12602 
12603 	if (pmu->task_ctx_nr == perf_sw_context)
12604 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12605 
12606 	if (task) {
12607 		err = down_read_interruptible(&task->signal->exec_update_lock);
12608 		if (err)
12609 			goto err_alloc;
12610 
12611 		/*
12612 		 * We must hold exec_update_lock across this and any potential
12613 		 * perf_install_in_context() call for this new event to
12614 		 * serialize against exec() altering our credentials (and the
12615 		 * perf_event_exit_task() that could imply).
12616 		 */
12617 		err = -EACCES;
12618 		if (!perf_check_permission(&attr, task))
12619 			goto err_cred;
12620 	}
12621 
12622 	/*
12623 	 * Get the target context (task or percpu):
12624 	 */
12625 	ctx = find_get_context(task, event);
12626 	if (IS_ERR(ctx)) {
12627 		err = PTR_ERR(ctx);
12628 		goto err_cred;
12629 	}
12630 
12631 	mutex_lock(&ctx->mutex);
12632 
12633 	if (ctx->task == TASK_TOMBSTONE) {
12634 		err = -ESRCH;
12635 		goto err_locked;
12636 	}
12637 
12638 	if (!task) {
12639 		/*
12640 		 * Check if the @cpu we're creating an event for is online.
12641 		 *
12642 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12643 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12644 		 */
12645 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12646 
12647 		if (!cpuctx->online) {
12648 			err = -ENODEV;
12649 			goto err_locked;
12650 		}
12651 	}
12652 
12653 	if (group_leader) {
12654 		err = -EINVAL;
12655 
12656 		/*
12657 		 * Do not allow a recursive hierarchy (this new sibling
12658 		 * becoming part of another group-sibling):
12659 		 */
12660 		if (group_leader->group_leader != group_leader)
12661 			goto err_locked;
12662 
12663 		/* All events in a group should have the same clock */
12664 		if (group_leader->clock != event->clock)
12665 			goto err_locked;
12666 
12667 		/*
12668 		 * Make sure we're both events for the same CPU;
12669 		 * grouping events for different CPUs is broken; since
12670 		 * you can never concurrently schedule them anyhow.
12671 		 */
12672 		if (group_leader->cpu != event->cpu)
12673 			goto err_locked;
12674 
12675 		/*
12676 		 * Make sure we're both on the same context; either task or cpu.
12677 		 */
12678 		if (group_leader->ctx != ctx)
12679 			goto err_locked;
12680 
12681 		/*
12682 		 * Only a group leader can be exclusive or pinned
12683 		 */
12684 		if (attr.exclusive || attr.pinned)
12685 			goto err_locked;
12686 
12687 		if (is_software_event(event) &&
12688 		    !in_software_context(group_leader)) {
12689 			/*
12690 			 * If the event is a sw event, but the group_leader
12691 			 * is on hw context.
12692 			 *
12693 			 * Allow the addition of software events to hw
12694 			 * groups, this is safe because software events
12695 			 * never fail to schedule.
12696 			 *
12697 			 * Note the comment that goes with struct
12698 			 * perf_event_pmu_context.
12699 			 */
12700 			pmu = group_leader->pmu_ctx->pmu;
12701 		} else if (!is_software_event(event)) {
12702 			if (is_software_event(group_leader) &&
12703 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12704 				/*
12705 				 * In case the group is a pure software group, and we
12706 				 * try to add a hardware event, move the whole group to
12707 				 * the hardware context.
12708 				 */
12709 				move_group = 1;
12710 			}
12711 
12712 			/* Don't allow group of multiple hw events from different pmus */
12713 			if (!in_software_context(group_leader) &&
12714 			    group_leader->pmu_ctx->pmu != pmu)
12715 				goto err_locked;
12716 		}
12717 	}
12718 
12719 	/*
12720 	 * Now that we're certain of the pmu; find the pmu_ctx.
12721 	 */
12722 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12723 	if (IS_ERR(pmu_ctx)) {
12724 		err = PTR_ERR(pmu_ctx);
12725 		goto err_locked;
12726 	}
12727 	event->pmu_ctx = pmu_ctx;
12728 
12729 	if (output_event) {
12730 		err = perf_event_set_output(event, output_event);
12731 		if (err)
12732 			goto err_context;
12733 	}
12734 
12735 	if (!perf_event_validate_size(event)) {
12736 		err = -E2BIG;
12737 		goto err_context;
12738 	}
12739 
12740 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12741 		err = -EINVAL;
12742 		goto err_context;
12743 	}
12744 
12745 	/*
12746 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12747 	 * because we need to serialize with concurrent event creation.
12748 	 */
12749 	if (!exclusive_event_installable(event, ctx)) {
12750 		err = -EBUSY;
12751 		goto err_context;
12752 	}
12753 
12754 	WARN_ON_ONCE(ctx->parent_ctx);
12755 
12756 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12757 	if (IS_ERR(event_file)) {
12758 		err = PTR_ERR(event_file);
12759 		event_file = NULL;
12760 		goto err_context;
12761 	}
12762 
12763 	/*
12764 	 * This is the point on no return; we cannot fail hereafter. This is
12765 	 * where we start modifying current state.
12766 	 */
12767 
12768 	if (move_group) {
12769 		perf_remove_from_context(group_leader, 0);
12770 		put_pmu_ctx(group_leader->pmu_ctx);
12771 
12772 		for_each_sibling_event(sibling, group_leader) {
12773 			perf_remove_from_context(sibling, 0);
12774 			put_pmu_ctx(sibling->pmu_ctx);
12775 		}
12776 
12777 		/*
12778 		 * Install the group siblings before the group leader.
12779 		 *
12780 		 * Because a group leader will try and install the entire group
12781 		 * (through the sibling list, which is still in-tact), we can
12782 		 * end up with siblings installed in the wrong context.
12783 		 *
12784 		 * By installing siblings first we NO-OP because they're not
12785 		 * reachable through the group lists.
12786 		 */
12787 		for_each_sibling_event(sibling, group_leader) {
12788 			sibling->pmu_ctx = pmu_ctx;
12789 			get_pmu_ctx(pmu_ctx);
12790 			perf_event__state_init(sibling);
12791 			perf_install_in_context(ctx, sibling, sibling->cpu);
12792 		}
12793 
12794 		/*
12795 		 * Removing from the context ends up with disabled
12796 		 * event. What we want here is event in the initial
12797 		 * startup state, ready to be add into new context.
12798 		 */
12799 		group_leader->pmu_ctx = pmu_ctx;
12800 		get_pmu_ctx(pmu_ctx);
12801 		perf_event__state_init(group_leader);
12802 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12803 	}
12804 
12805 	/*
12806 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12807 	 * that we're serialized against further additions and before
12808 	 * perf_install_in_context() which is the point the event is active and
12809 	 * can use these values.
12810 	 */
12811 	perf_event__header_size(event);
12812 	perf_event__id_header_size(event);
12813 
12814 	event->owner = current;
12815 
12816 	perf_install_in_context(ctx, event, event->cpu);
12817 	perf_unpin_context(ctx);
12818 
12819 	mutex_unlock(&ctx->mutex);
12820 
12821 	if (task) {
12822 		up_read(&task->signal->exec_update_lock);
12823 		put_task_struct(task);
12824 	}
12825 
12826 	mutex_lock(&current->perf_event_mutex);
12827 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12828 	mutex_unlock(&current->perf_event_mutex);
12829 
12830 	/*
12831 	 * Drop the reference on the group_event after placing the
12832 	 * new event on the sibling_list. This ensures destruction
12833 	 * of the group leader will find the pointer to itself in
12834 	 * perf_group_detach().
12835 	 */
12836 	fdput(group);
12837 	fd_install(event_fd, event_file);
12838 	return event_fd;
12839 
12840 err_context:
12841 	put_pmu_ctx(event->pmu_ctx);
12842 	event->pmu_ctx = NULL; /* _free_event() */
12843 err_locked:
12844 	mutex_unlock(&ctx->mutex);
12845 	perf_unpin_context(ctx);
12846 	put_ctx(ctx);
12847 err_cred:
12848 	if (task)
12849 		up_read(&task->signal->exec_update_lock);
12850 err_alloc:
12851 	free_event(event);
12852 err_task:
12853 	if (task)
12854 		put_task_struct(task);
12855 err_group_fd:
12856 	fdput(group);
12857 err_fd:
12858 	put_unused_fd(event_fd);
12859 	return err;
12860 }
12861 
12862 /**
12863  * perf_event_create_kernel_counter
12864  *
12865  * @attr: attributes of the counter to create
12866  * @cpu: cpu in which the counter is bound
12867  * @task: task to profile (NULL for percpu)
12868  * @overflow_handler: callback to trigger when we hit the event
12869  * @context: context data could be used in overflow_handler callback
12870  */
12871 struct perf_event *
12872 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12873 				 struct task_struct *task,
12874 				 perf_overflow_handler_t overflow_handler,
12875 				 void *context)
12876 {
12877 	struct perf_event_pmu_context *pmu_ctx;
12878 	struct perf_event_context *ctx;
12879 	struct perf_event *event;
12880 	struct pmu *pmu;
12881 	int err;
12882 
12883 	/*
12884 	 * Grouping is not supported for kernel events, neither is 'AUX',
12885 	 * make sure the caller's intentions are adjusted.
12886 	 */
12887 	if (attr->aux_output)
12888 		return ERR_PTR(-EINVAL);
12889 
12890 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12891 				 overflow_handler, context, -1);
12892 	if (IS_ERR(event)) {
12893 		err = PTR_ERR(event);
12894 		goto err;
12895 	}
12896 
12897 	/* Mark owner so we could distinguish it from user events. */
12898 	event->owner = TASK_TOMBSTONE;
12899 	pmu = event->pmu;
12900 
12901 	if (pmu->task_ctx_nr == perf_sw_context)
12902 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12903 
12904 	/*
12905 	 * Get the target context (task or percpu):
12906 	 */
12907 	ctx = find_get_context(task, event);
12908 	if (IS_ERR(ctx)) {
12909 		err = PTR_ERR(ctx);
12910 		goto err_alloc;
12911 	}
12912 
12913 	WARN_ON_ONCE(ctx->parent_ctx);
12914 	mutex_lock(&ctx->mutex);
12915 	if (ctx->task == TASK_TOMBSTONE) {
12916 		err = -ESRCH;
12917 		goto err_unlock;
12918 	}
12919 
12920 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12921 	if (IS_ERR(pmu_ctx)) {
12922 		err = PTR_ERR(pmu_ctx);
12923 		goto err_unlock;
12924 	}
12925 	event->pmu_ctx = pmu_ctx;
12926 
12927 	if (!task) {
12928 		/*
12929 		 * Check if the @cpu we're creating an event for is online.
12930 		 *
12931 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12932 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12933 		 */
12934 		struct perf_cpu_context *cpuctx =
12935 			container_of(ctx, struct perf_cpu_context, ctx);
12936 		if (!cpuctx->online) {
12937 			err = -ENODEV;
12938 			goto err_pmu_ctx;
12939 		}
12940 	}
12941 
12942 	if (!exclusive_event_installable(event, ctx)) {
12943 		err = -EBUSY;
12944 		goto err_pmu_ctx;
12945 	}
12946 
12947 	perf_install_in_context(ctx, event, event->cpu);
12948 	perf_unpin_context(ctx);
12949 	mutex_unlock(&ctx->mutex);
12950 
12951 	return event;
12952 
12953 err_pmu_ctx:
12954 	put_pmu_ctx(pmu_ctx);
12955 	event->pmu_ctx = NULL; /* _free_event() */
12956 err_unlock:
12957 	mutex_unlock(&ctx->mutex);
12958 	perf_unpin_context(ctx);
12959 	put_ctx(ctx);
12960 err_alloc:
12961 	free_event(event);
12962 err:
12963 	return ERR_PTR(err);
12964 }
12965 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12966 
12967 static void __perf_pmu_remove(struct perf_event_context *ctx,
12968 			      int cpu, struct pmu *pmu,
12969 			      struct perf_event_groups *groups,
12970 			      struct list_head *events)
12971 {
12972 	struct perf_event *event, *sibling;
12973 
12974 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12975 		perf_remove_from_context(event, 0);
12976 		put_pmu_ctx(event->pmu_ctx);
12977 		list_add(&event->migrate_entry, events);
12978 
12979 		for_each_sibling_event(sibling, event) {
12980 			perf_remove_from_context(sibling, 0);
12981 			put_pmu_ctx(sibling->pmu_ctx);
12982 			list_add(&sibling->migrate_entry, events);
12983 		}
12984 	}
12985 }
12986 
12987 static void __perf_pmu_install_event(struct pmu *pmu,
12988 				     struct perf_event_context *ctx,
12989 				     int cpu, struct perf_event *event)
12990 {
12991 	struct perf_event_pmu_context *epc;
12992 	struct perf_event_context *old_ctx = event->ctx;
12993 
12994 	get_ctx(ctx); /* normally find_get_context() */
12995 
12996 	event->cpu = cpu;
12997 	epc = find_get_pmu_context(pmu, ctx, event);
12998 	event->pmu_ctx = epc;
12999 
13000 	if (event->state >= PERF_EVENT_STATE_OFF)
13001 		event->state = PERF_EVENT_STATE_INACTIVE;
13002 	perf_install_in_context(ctx, event, cpu);
13003 
13004 	/*
13005 	 * Now that event->ctx is updated and visible, put the old ctx.
13006 	 */
13007 	put_ctx(old_ctx);
13008 }
13009 
13010 static void __perf_pmu_install(struct perf_event_context *ctx,
13011 			       int cpu, struct pmu *pmu, struct list_head *events)
13012 {
13013 	struct perf_event *event, *tmp;
13014 
13015 	/*
13016 	 * Re-instate events in 2 passes.
13017 	 *
13018 	 * Skip over group leaders and only install siblings on this first
13019 	 * pass, siblings will not get enabled without a leader, however a
13020 	 * leader will enable its siblings, even if those are still on the old
13021 	 * context.
13022 	 */
13023 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13024 		if (event->group_leader == event)
13025 			continue;
13026 
13027 		list_del(&event->migrate_entry);
13028 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13029 	}
13030 
13031 	/*
13032 	 * Once all the siblings are setup properly, install the group leaders
13033 	 * to make it go.
13034 	 */
13035 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13036 		list_del(&event->migrate_entry);
13037 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13038 	}
13039 }
13040 
13041 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13042 {
13043 	struct perf_event_context *src_ctx, *dst_ctx;
13044 	LIST_HEAD(events);
13045 
13046 	/*
13047 	 * Since per-cpu context is persistent, no need to grab an extra
13048 	 * reference.
13049 	 */
13050 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13051 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13052 
13053 	/*
13054 	 * See perf_event_ctx_lock() for comments on the details
13055 	 * of swizzling perf_event::ctx.
13056 	 */
13057 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13058 
13059 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13060 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13061 
13062 	if (!list_empty(&events)) {
13063 		/*
13064 		 * Wait for the events to quiesce before re-instating them.
13065 		 */
13066 		synchronize_rcu();
13067 
13068 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13069 	}
13070 
13071 	mutex_unlock(&dst_ctx->mutex);
13072 	mutex_unlock(&src_ctx->mutex);
13073 }
13074 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13075 
13076 static void sync_child_event(struct perf_event *child_event)
13077 {
13078 	struct perf_event *parent_event = child_event->parent;
13079 	u64 child_val;
13080 
13081 	if (child_event->attr.inherit_stat) {
13082 		struct task_struct *task = child_event->ctx->task;
13083 
13084 		if (task && task != TASK_TOMBSTONE)
13085 			perf_event_read_event(child_event, task);
13086 	}
13087 
13088 	child_val = perf_event_count(child_event);
13089 
13090 	/*
13091 	 * Add back the child's count to the parent's count:
13092 	 */
13093 	atomic64_add(child_val, &parent_event->child_count);
13094 	atomic64_add(child_event->total_time_enabled,
13095 		     &parent_event->child_total_time_enabled);
13096 	atomic64_add(child_event->total_time_running,
13097 		     &parent_event->child_total_time_running);
13098 }
13099 
13100 static void
13101 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13102 {
13103 	struct perf_event *parent_event = event->parent;
13104 	unsigned long detach_flags = 0;
13105 
13106 	if (parent_event) {
13107 		/*
13108 		 * Do not destroy the 'original' grouping; because of the
13109 		 * context switch optimization the original events could've
13110 		 * ended up in a random child task.
13111 		 *
13112 		 * If we were to destroy the original group, all group related
13113 		 * operations would cease to function properly after this
13114 		 * random child dies.
13115 		 *
13116 		 * Do destroy all inherited groups, we don't care about those
13117 		 * and being thorough is better.
13118 		 */
13119 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13120 		mutex_lock(&parent_event->child_mutex);
13121 	}
13122 
13123 	perf_remove_from_context(event, detach_flags);
13124 
13125 	raw_spin_lock_irq(&ctx->lock);
13126 	if (event->state > PERF_EVENT_STATE_EXIT)
13127 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13128 	raw_spin_unlock_irq(&ctx->lock);
13129 
13130 	/*
13131 	 * Child events can be freed.
13132 	 */
13133 	if (parent_event) {
13134 		mutex_unlock(&parent_event->child_mutex);
13135 		/*
13136 		 * Kick perf_poll() for is_event_hup();
13137 		 */
13138 		perf_event_wakeup(parent_event);
13139 		free_event(event);
13140 		put_event(parent_event);
13141 		return;
13142 	}
13143 
13144 	/*
13145 	 * Parent events are governed by their filedesc, retain them.
13146 	 */
13147 	perf_event_wakeup(event);
13148 }
13149 
13150 static void perf_event_exit_task_context(struct task_struct *child)
13151 {
13152 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13153 	struct perf_event *child_event, *next;
13154 
13155 	WARN_ON_ONCE(child != current);
13156 
13157 	child_ctx = perf_pin_task_context(child);
13158 	if (!child_ctx)
13159 		return;
13160 
13161 	/*
13162 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13163 	 * ctx::mutex over the entire thing. This serializes against almost
13164 	 * everything that wants to access the ctx.
13165 	 *
13166 	 * The exception is sys_perf_event_open() /
13167 	 * perf_event_create_kernel_count() which does find_get_context()
13168 	 * without ctx::mutex (it cannot because of the move_group double mutex
13169 	 * lock thing). See the comments in perf_install_in_context().
13170 	 */
13171 	mutex_lock(&child_ctx->mutex);
13172 
13173 	/*
13174 	 * In a single ctx::lock section, de-schedule the events and detach the
13175 	 * context from the task such that we cannot ever get it scheduled back
13176 	 * in.
13177 	 */
13178 	raw_spin_lock_irq(&child_ctx->lock);
13179 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13180 
13181 	/*
13182 	 * Now that the context is inactive, destroy the task <-> ctx relation
13183 	 * and mark the context dead.
13184 	 */
13185 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13186 	put_ctx(child_ctx); /* cannot be last */
13187 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13188 	put_task_struct(current); /* cannot be last */
13189 
13190 	clone_ctx = unclone_ctx(child_ctx);
13191 	raw_spin_unlock_irq(&child_ctx->lock);
13192 
13193 	if (clone_ctx)
13194 		put_ctx(clone_ctx);
13195 
13196 	/*
13197 	 * Report the task dead after unscheduling the events so that we
13198 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13199 	 * get a few PERF_RECORD_READ events.
13200 	 */
13201 	perf_event_task(child, child_ctx, 0);
13202 
13203 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13204 		perf_event_exit_event(child_event, child_ctx);
13205 
13206 	mutex_unlock(&child_ctx->mutex);
13207 
13208 	put_ctx(child_ctx);
13209 }
13210 
13211 /*
13212  * When a child task exits, feed back event values to parent events.
13213  *
13214  * Can be called with exec_update_lock held when called from
13215  * setup_new_exec().
13216  */
13217 void perf_event_exit_task(struct task_struct *child)
13218 {
13219 	struct perf_event *event, *tmp;
13220 
13221 	mutex_lock(&child->perf_event_mutex);
13222 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13223 				 owner_entry) {
13224 		list_del_init(&event->owner_entry);
13225 
13226 		/*
13227 		 * Ensure the list deletion is visible before we clear
13228 		 * the owner, closes a race against perf_release() where
13229 		 * we need to serialize on the owner->perf_event_mutex.
13230 		 */
13231 		smp_store_release(&event->owner, NULL);
13232 	}
13233 	mutex_unlock(&child->perf_event_mutex);
13234 
13235 	perf_event_exit_task_context(child);
13236 
13237 	/*
13238 	 * The perf_event_exit_task_context calls perf_event_task
13239 	 * with child's task_ctx, which generates EXIT events for
13240 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13241 	 * At this point we need to send EXIT events to cpu contexts.
13242 	 */
13243 	perf_event_task(child, NULL, 0);
13244 }
13245 
13246 static void perf_free_event(struct perf_event *event,
13247 			    struct perf_event_context *ctx)
13248 {
13249 	struct perf_event *parent = event->parent;
13250 
13251 	if (WARN_ON_ONCE(!parent))
13252 		return;
13253 
13254 	mutex_lock(&parent->child_mutex);
13255 	list_del_init(&event->child_list);
13256 	mutex_unlock(&parent->child_mutex);
13257 
13258 	put_event(parent);
13259 
13260 	raw_spin_lock_irq(&ctx->lock);
13261 	perf_group_detach(event);
13262 	list_del_event(event, ctx);
13263 	raw_spin_unlock_irq(&ctx->lock);
13264 	free_event(event);
13265 }
13266 
13267 /*
13268  * Free a context as created by inheritance by perf_event_init_task() below,
13269  * used by fork() in case of fail.
13270  *
13271  * Even though the task has never lived, the context and events have been
13272  * exposed through the child_list, so we must take care tearing it all down.
13273  */
13274 void perf_event_free_task(struct task_struct *task)
13275 {
13276 	struct perf_event_context *ctx;
13277 	struct perf_event *event, *tmp;
13278 
13279 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13280 	if (!ctx)
13281 		return;
13282 
13283 	mutex_lock(&ctx->mutex);
13284 	raw_spin_lock_irq(&ctx->lock);
13285 	/*
13286 	 * Destroy the task <-> ctx relation and mark the context dead.
13287 	 *
13288 	 * This is important because even though the task hasn't been
13289 	 * exposed yet the context has been (through child_list).
13290 	 */
13291 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13292 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13293 	put_task_struct(task); /* cannot be last */
13294 	raw_spin_unlock_irq(&ctx->lock);
13295 
13296 
13297 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13298 		perf_free_event(event, ctx);
13299 
13300 	mutex_unlock(&ctx->mutex);
13301 
13302 	/*
13303 	 * perf_event_release_kernel() could've stolen some of our
13304 	 * child events and still have them on its free_list. In that
13305 	 * case we must wait for these events to have been freed (in
13306 	 * particular all their references to this task must've been
13307 	 * dropped).
13308 	 *
13309 	 * Without this copy_process() will unconditionally free this
13310 	 * task (irrespective of its reference count) and
13311 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13312 	 * use-after-free.
13313 	 *
13314 	 * Wait for all events to drop their context reference.
13315 	 */
13316 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13317 	put_ctx(ctx); /* must be last */
13318 }
13319 
13320 void perf_event_delayed_put(struct task_struct *task)
13321 {
13322 	WARN_ON_ONCE(task->perf_event_ctxp);
13323 }
13324 
13325 struct file *perf_event_get(unsigned int fd)
13326 {
13327 	struct file *file = fget(fd);
13328 	if (!file)
13329 		return ERR_PTR(-EBADF);
13330 
13331 	if (file->f_op != &perf_fops) {
13332 		fput(file);
13333 		return ERR_PTR(-EBADF);
13334 	}
13335 
13336 	return file;
13337 }
13338 
13339 const struct perf_event *perf_get_event(struct file *file)
13340 {
13341 	if (file->f_op != &perf_fops)
13342 		return ERR_PTR(-EINVAL);
13343 
13344 	return file->private_data;
13345 }
13346 
13347 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13348 {
13349 	if (!event)
13350 		return ERR_PTR(-EINVAL);
13351 
13352 	return &event->attr;
13353 }
13354 
13355 /*
13356  * Inherit an event from parent task to child task.
13357  *
13358  * Returns:
13359  *  - valid pointer on success
13360  *  - NULL for orphaned events
13361  *  - IS_ERR() on error
13362  */
13363 static struct perf_event *
13364 inherit_event(struct perf_event *parent_event,
13365 	      struct task_struct *parent,
13366 	      struct perf_event_context *parent_ctx,
13367 	      struct task_struct *child,
13368 	      struct perf_event *group_leader,
13369 	      struct perf_event_context *child_ctx)
13370 {
13371 	enum perf_event_state parent_state = parent_event->state;
13372 	struct perf_event_pmu_context *pmu_ctx;
13373 	struct perf_event *child_event;
13374 	unsigned long flags;
13375 
13376 	/*
13377 	 * Instead of creating recursive hierarchies of events,
13378 	 * we link inherited events back to the original parent,
13379 	 * which has a filp for sure, which we use as the reference
13380 	 * count:
13381 	 */
13382 	if (parent_event->parent)
13383 		parent_event = parent_event->parent;
13384 
13385 	child_event = perf_event_alloc(&parent_event->attr,
13386 					   parent_event->cpu,
13387 					   child,
13388 					   group_leader, parent_event,
13389 					   NULL, NULL, -1);
13390 	if (IS_ERR(child_event))
13391 		return child_event;
13392 
13393 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13394 	if (IS_ERR(pmu_ctx)) {
13395 		free_event(child_event);
13396 		return ERR_CAST(pmu_ctx);
13397 	}
13398 	child_event->pmu_ctx = pmu_ctx;
13399 
13400 	/*
13401 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13402 	 * must be under the same lock in order to serialize against
13403 	 * perf_event_release_kernel(), such that either we must observe
13404 	 * is_orphaned_event() or they will observe us on the child_list.
13405 	 */
13406 	mutex_lock(&parent_event->child_mutex);
13407 	if (is_orphaned_event(parent_event) ||
13408 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13409 		mutex_unlock(&parent_event->child_mutex);
13410 		/* task_ctx_data is freed with child_ctx */
13411 		free_event(child_event);
13412 		return NULL;
13413 	}
13414 
13415 	get_ctx(child_ctx);
13416 
13417 	/*
13418 	 * Make the child state follow the state of the parent event,
13419 	 * not its attr.disabled bit.  We hold the parent's mutex,
13420 	 * so we won't race with perf_event_{en, dis}able_family.
13421 	 */
13422 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13423 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13424 	else
13425 		child_event->state = PERF_EVENT_STATE_OFF;
13426 
13427 	if (parent_event->attr.freq) {
13428 		u64 sample_period = parent_event->hw.sample_period;
13429 		struct hw_perf_event *hwc = &child_event->hw;
13430 
13431 		hwc->sample_period = sample_period;
13432 		hwc->last_period   = sample_period;
13433 
13434 		local64_set(&hwc->period_left, sample_period);
13435 	}
13436 
13437 	child_event->ctx = child_ctx;
13438 	child_event->overflow_handler = parent_event->overflow_handler;
13439 	child_event->overflow_handler_context
13440 		= parent_event->overflow_handler_context;
13441 
13442 	/*
13443 	 * Precalculate sample_data sizes
13444 	 */
13445 	perf_event__header_size(child_event);
13446 	perf_event__id_header_size(child_event);
13447 
13448 	/*
13449 	 * Link it up in the child's context:
13450 	 */
13451 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13452 	add_event_to_ctx(child_event, child_ctx);
13453 	child_event->attach_state |= PERF_ATTACH_CHILD;
13454 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13455 
13456 	/*
13457 	 * Link this into the parent event's child list
13458 	 */
13459 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13460 	mutex_unlock(&parent_event->child_mutex);
13461 
13462 	return child_event;
13463 }
13464 
13465 /*
13466  * Inherits an event group.
13467  *
13468  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13469  * This matches with perf_event_release_kernel() removing all child events.
13470  *
13471  * Returns:
13472  *  - 0 on success
13473  *  - <0 on error
13474  */
13475 static int inherit_group(struct perf_event *parent_event,
13476 	      struct task_struct *parent,
13477 	      struct perf_event_context *parent_ctx,
13478 	      struct task_struct *child,
13479 	      struct perf_event_context *child_ctx)
13480 {
13481 	struct perf_event *leader;
13482 	struct perf_event *sub;
13483 	struct perf_event *child_ctr;
13484 
13485 	leader = inherit_event(parent_event, parent, parent_ctx,
13486 				 child, NULL, child_ctx);
13487 	if (IS_ERR(leader))
13488 		return PTR_ERR(leader);
13489 	/*
13490 	 * @leader can be NULL here because of is_orphaned_event(). In this
13491 	 * case inherit_event() will create individual events, similar to what
13492 	 * perf_group_detach() would do anyway.
13493 	 */
13494 	for_each_sibling_event(sub, parent_event) {
13495 		child_ctr = inherit_event(sub, parent, parent_ctx,
13496 					    child, leader, child_ctx);
13497 		if (IS_ERR(child_ctr))
13498 			return PTR_ERR(child_ctr);
13499 
13500 		if (sub->aux_event == parent_event && child_ctr &&
13501 		    !perf_get_aux_event(child_ctr, leader))
13502 			return -EINVAL;
13503 	}
13504 	if (leader)
13505 		leader->group_generation = parent_event->group_generation;
13506 	return 0;
13507 }
13508 
13509 /*
13510  * Creates the child task context and tries to inherit the event-group.
13511  *
13512  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13513  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13514  * consistent with perf_event_release_kernel() removing all child events.
13515  *
13516  * Returns:
13517  *  - 0 on success
13518  *  - <0 on error
13519  */
13520 static int
13521 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13522 		   struct perf_event_context *parent_ctx,
13523 		   struct task_struct *child,
13524 		   u64 clone_flags, int *inherited_all)
13525 {
13526 	struct perf_event_context *child_ctx;
13527 	int ret;
13528 
13529 	if (!event->attr.inherit ||
13530 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13531 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13532 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13533 		*inherited_all = 0;
13534 		return 0;
13535 	}
13536 
13537 	child_ctx = child->perf_event_ctxp;
13538 	if (!child_ctx) {
13539 		/*
13540 		 * This is executed from the parent task context, so
13541 		 * inherit events that have been marked for cloning.
13542 		 * First allocate and initialize a context for the
13543 		 * child.
13544 		 */
13545 		child_ctx = alloc_perf_context(child);
13546 		if (!child_ctx)
13547 			return -ENOMEM;
13548 
13549 		child->perf_event_ctxp = child_ctx;
13550 	}
13551 
13552 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13553 	if (ret)
13554 		*inherited_all = 0;
13555 
13556 	return ret;
13557 }
13558 
13559 /*
13560  * Initialize the perf_event context in task_struct
13561  */
13562 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13563 {
13564 	struct perf_event_context *child_ctx, *parent_ctx;
13565 	struct perf_event_context *cloned_ctx;
13566 	struct perf_event *event;
13567 	struct task_struct *parent = current;
13568 	int inherited_all = 1;
13569 	unsigned long flags;
13570 	int ret = 0;
13571 
13572 	if (likely(!parent->perf_event_ctxp))
13573 		return 0;
13574 
13575 	/*
13576 	 * If the parent's context is a clone, pin it so it won't get
13577 	 * swapped under us.
13578 	 */
13579 	parent_ctx = perf_pin_task_context(parent);
13580 	if (!parent_ctx)
13581 		return 0;
13582 
13583 	/*
13584 	 * No need to check if parent_ctx != NULL here; since we saw
13585 	 * it non-NULL earlier, the only reason for it to become NULL
13586 	 * is if we exit, and since we're currently in the middle of
13587 	 * a fork we can't be exiting at the same time.
13588 	 */
13589 
13590 	/*
13591 	 * Lock the parent list. No need to lock the child - not PID
13592 	 * hashed yet and not running, so nobody can access it.
13593 	 */
13594 	mutex_lock(&parent_ctx->mutex);
13595 
13596 	/*
13597 	 * We dont have to disable NMIs - we are only looking at
13598 	 * the list, not manipulating it:
13599 	 */
13600 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13601 		ret = inherit_task_group(event, parent, parent_ctx,
13602 					 child, clone_flags, &inherited_all);
13603 		if (ret)
13604 			goto out_unlock;
13605 	}
13606 
13607 	/*
13608 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13609 	 * to allocations, but we need to prevent rotation because
13610 	 * rotate_ctx() will change the list from interrupt context.
13611 	 */
13612 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13613 	parent_ctx->rotate_disable = 1;
13614 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13615 
13616 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13617 		ret = inherit_task_group(event, parent, parent_ctx,
13618 					 child, clone_flags, &inherited_all);
13619 		if (ret)
13620 			goto out_unlock;
13621 	}
13622 
13623 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13624 	parent_ctx->rotate_disable = 0;
13625 
13626 	child_ctx = child->perf_event_ctxp;
13627 
13628 	if (child_ctx && inherited_all) {
13629 		/*
13630 		 * Mark the child context as a clone of the parent
13631 		 * context, or of whatever the parent is a clone of.
13632 		 *
13633 		 * Note that if the parent is a clone, the holding of
13634 		 * parent_ctx->lock avoids it from being uncloned.
13635 		 */
13636 		cloned_ctx = parent_ctx->parent_ctx;
13637 		if (cloned_ctx) {
13638 			child_ctx->parent_ctx = cloned_ctx;
13639 			child_ctx->parent_gen = parent_ctx->parent_gen;
13640 		} else {
13641 			child_ctx->parent_ctx = parent_ctx;
13642 			child_ctx->parent_gen = parent_ctx->generation;
13643 		}
13644 		get_ctx(child_ctx->parent_ctx);
13645 	}
13646 
13647 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13648 out_unlock:
13649 	mutex_unlock(&parent_ctx->mutex);
13650 
13651 	perf_unpin_context(parent_ctx);
13652 	put_ctx(parent_ctx);
13653 
13654 	return ret;
13655 }
13656 
13657 /*
13658  * Initialize the perf_event context in task_struct
13659  */
13660 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13661 {
13662 	int ret;
13663 
13664 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13665 	child->perf_event_ctxp = NULL;
13666 	mutex_init(&child->perf_event_mutex);
13667 	INIT_LIST_HEAD(&child->perf_event_list);
13668 
13669 	ret = perf_event_init_context(child, clone_flags);
13670 	if (ret) {
13671 		perf_event_free_task(child);
13672 		return ret;
13673 	}
13674 
13675 	return 0;
13676 }
13677 
13678 static void __init perf_event_init_all_cpus(void)
13679 {
13680 	struct swevent_htable *swhash;
13681 	struct perf_cpu_context *cpuctx;
13682 	int cpu;
13683 
13684 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13685 
13686 	for_each_possible_cpu(cpu) {
13687 		swhash = &per_cpu(swevent_htable, cpu);
13688 		mutex_init(&swhash->hlist_mutex);
13689 
13690 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13691 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13692 
13693 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13694 
13695 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13696 		__perf_event_init_context(&cpuctx->ctx);
13697 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13698 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13699 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13700 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13701 		cpuctx->heap = cpuctx->heap_default;
13702 	}
13703 }
13704 
13705 static void perf_swevent_init_cpu(unsigned int cpu)
13706 {
13707 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13708 
13709 	mutex_lock(&swhash->hlist_mutex);
13710 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13711 		struct swevent_hlist *hlist;
13712 
13713 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13714 		WARN_ON(!hlist);
13715 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13716 	}
13717 	mutex_unlock(&swhash->hlist_mutex);
13718 }
13719 
13720 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13721 static void __perf_event_exit_context(void *__info)
13722 {
13723 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13724 	struct perf_event_context *ctx = __info;
13725 	struct perf_event *event;
13726 
13727 	raw_spin_lock(&ctx->lock);
13728 	ctx_sched_out(ctx, EVENT_TIME);
13729 	list_for_each_entry(event, &ctx->event_list, event_entry)
13730 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13731 	raw_spin_unlock(&ctx->lock);
13732 }
13733 
13734 static void perf_event_exit_cpu_context(int cpu)
13735 {
13736 	struct perf_cpu_context *cpuctx;
13737 	struct perf_event_context *ctx;
13738 
13739 	// XXX simplify cpuctx->online
13740 	mutex_lock(&pmus_lock);
13741 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13742 	ctx = &cpuctx->ctx;
13743 
13744 	mutex_lock(&ctx->mutex);
13745 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13746 	cpuctx->online = 0;
13747 	mutex_unlock(&ctx->mutex);
13748 	cpumask_clear_cpu(cpu, perf_online_mask);
13749 	mutex_unlock(&pmus_lock);
13750 }
13751 #else
13752 
13753 static void perf_event_exit_cpu_context(int cpu) { }
13754 
13755 #endif
13756 
13757 int perf_event_init_cpu(unsigned int cpu)
13758 {
13759 	struct perf_cpu_context *cpuctx;
13760 	struct perf_event_context *ctx;
13761 
13762 	perf_swevent_init_cpu(cpu);
13763 
13764 	mutex_lock(&pmus_lock);
13765 	cpumask_set_cpu(cpu, perf_online_mask);
13766 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13767 	ctx = &cpuctx->ctx;
13768 
13769 	mutex_lock(&ctx->mutex);
13770 	cpuctx->online = 1;
13771 	mutex_unlock(&ctx->mutex);
13772 	mutex_unlock(&pmus_lock);
13773 
13774 	return 0;
13775 }
13776 
13777 int perf_event_exit_cpu(unsigned int cpu)
13778 {
13779 	perf_event_exit_cpu_context(cpu);
13780 	return 0;
13781 }
13782 
13783 static int
13784 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13785 {
13786 	int cpu;
13787 
13788 	for_each_online_cpu(cpu)
13789 		perf_event_exit_cpu(cpu);
13790 
13791 	return NOTIFY_OK;
13792 }
13793 
13794 /*
13795  * Run the perf reboot notifier at the very last possible moment so that
13796  * the generic watchdog code runs as long as possible.
13797  */
13798 static struct notifier_block perf_reboot_notifier = {
13799 	.notifier_call = perf_reboot,
13800 	.priority = INT_MIN,
13801 };
13802 
13803 void __init perf_event_init(void)
13804 {
13805 	int ret;
13806 
13807 	idr_init(&pmu_idr);
13808 
13809 	perf_event_init_all_cpus();
13810 	init_srcu_struct(&pmus_srcu);
13811 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13812 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13813 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13814 	perf_tp_register();
13815 	perf_event_init_cpu(smp_processor_id());
13816 	register_reboot_notifier(&perf_reboot_notifier);
13817 
13818 	ret = init_hw_breakpoint();
13819 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13820 
13821 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13822 
13823 	/*
13824 	 * Build time assertion that we keep the data_head at the intended
13825 	 * location.  IOW, validation we got the __reserved[] size right.
13826 	 */
13827 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13828 		     != 1024);
13829 }
13830 
13831 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13832 			      char *page)
13833 {
13834 	struct perf_pmu_events_attr *pmu_attr =
13835 		container_of(attr, struct perf_pmu_events_attr, attr);
13836 
13837 	if (pmu_attr->event_str)
13838 		return sprintf(page, "%s\n", pmu_attr->event_str);
13839 
13840 	return 0;
13841 }
13842 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13843 
13844 static int __init perf_event_sysfs_init(void)
13845 {
13846 	struct pmu *pmu;
13847 	int ret;
13848 
13849 	mutex_lock(&pmus_lock);
13850 
13851 	ret = bus_register(&pmu_bus);
13852 	if (ret)
13853 		goto unlock;
13854 
13855 	list_for_each_entry(pmu, &pmus, entry) {
13856 		if (pmu->dev)
13857 			continue;
13858 
13859 		ret = pmu_dev_alloc(pmu);
13860 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13861 	}
13862 	pmu_bus_running = 1;
13863 	ret = 0;
13864 
13865 unlock:
13866 	mutex_unlock(&pmus_lock);
13867 
13868 	return ret;
13869 }
13870 device_initcall(perf_event_sysfs_init);
13871 
13872 #ifdef CONFIG_CGROUP_PERF
13873 static struct cgroup_subsys_state *
13874 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13875 {
13876 	struct perf_cgroup *jc;
13877 
13878 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13879 	if (!jc)
13880 		return ERR_PTR(-ENOMEM);
13881 
13882 	jc->info = alloc_percpu(struct perf_cgroup_info);
13883 	if (!jc->info) {
13884 		kfree(jc);
13885 		return ERR_PTR(-ENOMEM);
13886 	}
13887 
13888 	return &jc->css;
13889 }
13890 
13891 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13892 {
13893 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13894 
13895 	free_percpu(jc->info);
13896 	kfree(jc);
13897 }
13898 
13899 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13900 {
13901 	perf_event_cgroup(css->cgroup);
13902 	return 0;
13903 }
13904 
13905 static int __perf_cgroup_move(void *info)
13906 {
13907 	struct task_struct *task = info;
13908 
13909 	preempt_disable();
13910 	perf_cgroup_switch(task);
13911 	preempt_enable();
13912 
13913 	return 0;
13914 }
13915 
13916 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13917 {
13918 	struct task_struct *task;
13919 	struct cgroup_subsys_state *css;
13920 
13921 	cgroup_taskset_for_each(task, css, tset)
13922 		task_function_call(task, __perf_cgroup_move, task);
13923 }
13924 
13925 struct cgroup_subsys perf_event_cgrp_subsys = {
13926 	.css_alloc	= perf_cgroup_css_alloc,
13927 	.css_free	= perf_cgroup_css_free,
13928 	.css_online	= perf_cgroup_css_online,
13929 	.attach		= perf_cgroup_attach,
13930 	/*
13931 	 * Implicitly enable on dfl hierarchy so that perf events can
13932 	 * always be filtered by cgroup2 path as long as perf_event
13933 	 * controller is not mounted on a legacy hierarchy.
13934 	 */
13935 	.implicit_on_dfl = true,
13936 	.threaded	= true,
13937 };
13938 #endif /* CONFIG_CGROUP_PERF */
13939 
13940 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13941